ML20148J835
| ML20148J835 | |
| Person / Time | |
|---|---|
| Site: | North Anna |
| Issue date: | 05/31/1997 |
| From: | VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | |
| Shared Package | |
| ML20148J802 | List: |
| References | |
| NUDOCS 9706170277 | |
| Download: ML20148J835 (16) | |
Text
,. _
1 4
4 4
Core Operating Limits Report (COLR)
North Anna Unit 1 Cycle 13 Pattern OG
)
i i
Virginia Electric and Power Company 1 ~e 9706170277 970609 PDR ADOCK 05000338' p
t 3
I i
1 1
1.0. INTRODUCTION 4
l j
The Core Operating Limits Report (COLR) for North Anna Unit 1 l
Cycle 13 has been prepared in accordance with Technical Specification (TS) 6.9.1.7.
The Technical Specifications affected by this report are listed below:
i 3/4.1.1.4 Moderator Temperature Coefficient 3/4.1.3.5 Shutdown Bank Insertion Limit 3/4.1.3.6 Control Bank Insertion Limits 3/4.2.1 Axial Flux Difference 3/4.2.2 Heat Flux Hot Channel Factor 3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor and Power Factor Multiplier The cycle-specific parameter limits for North Anna 1 Cycle 13 for the specifications sisted above are provided on the following
- pages, and were developed using the NRC-approved methodologies specified in Technical Specification 6.9.1.7.
I i
~l l
j N1C13/OG COLR May 1997 Page 2
4 2.0, OPERATING LIMITS 2.1 Moderator Temperature coefficient (TS 3/4.1.1.4) ll 2.1.1' The moderator temperature coefficient (MTC) limits are:
The BOC/ARO-MTC shall be less positive than or equal to
+0.6E-4.Ak/k/"F below 70 percent of RATED THERMAL POWER.
The BOC/ARO-MTC shall be less positive than or equal to 0 (zero) Ak/k/*F at or above 70 percent of RATED THERMAL POWER.
The EOC/ARO/RTP-MTC shall be less negative than -5.0E-4 Ak/k/ F.
2.1.2 ~ The MTC surveillance limits are:
The 300 ppm /ARO/RTP-MTC should be less negative than or equal to -4.0E-4 Ak/k/ F.
)
The 60 ppm /ARO/RTP-MTC should be less negative than or equal to -4.7E-04 Ak/k/ F.
where: BOC - Beginning of Cycle ARO - All Rods Out EOC - End of Cycle RTP - RATED THERMAL POWER 2.2 Shutdown Bank Insertion Limit (TS 3/4.1.3.5) 2.2.1 The shutdown rods shall be withdrawn to at least 225 steps.
2.3 Control Bank Insertion Limits (TS 3/4.1.3.6) 2.3.1 The control rod ;anks shall be limited in physical insertion as shown in Figure 1.
s N1C13/OG COLR May 1997 Page 3
.~
i 1
1 2.(
Axial Flux Difference (TS 3/4.2.1) 2.4.1 The AXIAL FLUX DIFFERENCE limits are provided in Figure 2.
- l 2.5 Heat Flux Hot Channel Factor-FQ(Z) (TS 3/4.2.2) l l
2.5.1 The Fg(Z) limits are:
i 2.19 Fg(Z) 5 ----
- K(Z) for P > 0.5 P
Fg(Z) $ 4.38
- K(Z) for P $ 0.5 THERMAL POWER where:
P = -------------------
and RATED THERMAL POWER l
i K(Z) is provided in Figure 3.
2.5.2 The Fg(Z) surveillance limits are:
2.19 K(Z) g(Z)M F
for P > 0.5 P
N(Z)
K(Z)
Fg (Z) M $ 4.38 * ----
for P 5 0.5 N(Z)
N1C13/OG COLR May 1997 Page 4
l 4
THERMAL POWER where:
P = -------------------
RATED THERMAL POWER
]
K(Z) is provided in Figure 3, and N(Z) is a non-equilibrium multiplier on Fg(Z)M to account for power distribution transients during normal operation, provided in Table 1 and plotted in Figures 4 through 10. The top and bottom 15% of the core is excluded per TS 4.2.2.2.G.
I 2.6 Nuclear Enthalpy Rise Hot Channel Factor - FAH(N) and Power Factor Multiplier (TS 3/4.2.3)
FAH(N) $ 1.49 * {1 + 0.3 * (1 - P) }
THERMAL POWER where:
P = -------------------
RATED THERMAL POWER I
l i
l I
l L
1 I..
N1C13/OG COLR May 1997 Page 5
j.
=
3 Table 1 a
i
.NIC13 NORMAL' OPERATION N(z)
^
I l
Height 0 to 1000 1000 to 3000 3000 to 5000 5000 to 7000 7000 to 9000 9000 to 181 Node (feet)
MWDNTU MWI.WMTU MWDMTU MWDMTU MWDIMTU MWDMTU MWDMTU 10 10.2 1.078 1.078 1.157 1.157 1.157 1.157 1.139 11 10.0 1.086 1.086 1.157 1.157 1.157 1.157 1.141 l
12 9.8 1.094 1.094 1.156 1.156 1.156 1.156 1.142 j
13 9.6 1.102 1.102 1.155 1.155 1.155 1.155 1.144 j
g 14 9.4 1.109 1.109 1.154 1.154 1.154 1.154 1.145 j
15 9.2 1.113 1.113 1.157 1.157 1.157 1.157 1.147
(
16 9.0 1.117 1.117 1.160 1.160 1.160 1.160 1.153 i
17 8.8 1.120 1.120 1.167 1.167 1.167 1.167 1.160 l
i 18 8.6 1.120 1.120 1.175 1.175 1.175 1.175 1.165 i
19 8.4 1.124 1.124 1.184 1.184 1.184 1.184 1.169
{
20 8.2 1.134 1.134 1.191 1.191 1.191 1.191 1.174 l
}
21 8.0 1.14S 1.145 1.197 1.197 1.197 1.197 1.180 l
22 7.8 1.155 1.155 1.205 1.205 1.205 1.205 1.187 23 7.6 1.162 1.162 1.209 1.209 1.209 1.209 1.192 i
24 7.4 1.167 1.167 1.211 1.211 1.211 1.211 1.194 i
j 25 7.2 1.169 1.169 1.211 1.211 1.211 1.211 1.194 j
26 7.0 1.168 1.168 1.208 1.208 1.208 1.208 1.192 27 6.8 1.165 1.165 1.206 1.27f 1.206 1.206 1.190 2
I 28 6.6 1.160 1.160 1.201 1.201 1.201 1.200 1.186 i
l 29 6.4 1.157 1.157 1.194 1.194 1.194 1.193 1.180 j
30 6.2 1.154 1.154 1.183 1.183 1.183 1.183 1.172 j
31 6.0 1.150 1.150 1.173 1.173 1.173 1.172 1.165 i
)
i 32 5.8 1.145 1.145 1.161 1.161 1.161 1.161 1.158-33 5.6 1.138 1.138 1.147 1.148 1.148 1.155 1.155 j
34 5.4 1.129 1.129 1.134 1.134 1.134 1.149 1.149
)
j 35 5.2 1.114 1.114 1.117 1.119 1.119 1.139 1.139 i,
36 5.0 1.110 1,110 1.112 1.111 1.111 1.130 1.130 37 4.8 1.118 1.118 1.118 1.109 1.109 1.123 1.123 t
38 4.6 1.128 1.128 1.128 1.110 1.110 -
1.122 1.122 I
39 4.4 1.136 1.136 1.136 1.112 1.112 1.126 1.126 40 4.2 1.143 1.143 1.143 1.116 1.116 1.129 1.130 1
41 4.0 1.149 1.149 1.149 1.122 1.122 1.131 1.131 i
42 3.8 1.155 1.155 1.155 1.127 1.127 1.131 1.130 j
43 3.6 1.163 1.163 1.163 1.131 1.131 1.131 1.129 44 3.4 1.175 1.175 1.175 1.132 1.132 1.132 1.128 s
45 3.2 1.190 1.190 1.190 1.135 1.135 1.135 1.131 i
46 3.0 1.203 1.203 1.203 1.141 1.141 1.141 1.136 i
47 2.8 1.217 1.217 1.217 1.150 1.150 1.150 1.1,46
)
48 2.6 1.229 1.229 1.229 1.160 1.160 1.160 1.155
)
49 2.4 1.241 1.241 1.241 1.170 1.170 1.170 1.163 50 2.2 1.252 1 252 1.252 1.179 1.179 1.179 1.171 51 2.0 1.262 1.262 1.262 1.188 1.188 1.188 1.179 52 1.8 1.271 1.271 1.271 1.196 1.196 1.196 1.186 i
N1C13/OG COLR May 1997 lage 6
Figure 1 Control Rod Bank Insertion Limits FULLY WITHDRAWN = 225 230 1.624. 225)
/
210 200 190 (1, 1941
[
180 C Bank 170
/
[
160 z
150
/
[
l 140 E $ 130 D Benig[
120
[
h
[
110
[
100 90 O
O 80 70 60 50 40 30 20 10 0
048 01 O
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FRACTION OF RATED THERMAL POWER 6
N1C13/OG COLR May 1997 Page 7
j Figure 2 N1C13 Axial Flux Difference Li: nits 4
1 120 l
i 110
( 12,100)
(+6, ' 00) 100 Unacceptsble 0mration 90 Unareptabie i
AGG6 Tumble Operation Opermiion i
i 80 i
u I
E l
70 i
I
\\
i j
60 -
e
\\
o
(-:27, fiO)
(+20, 50) y 50 e
2 oI 40 30 20 i
10 4
'i 0
-30
-20 10 0
10 20 30 Percent Flux Difference (Delta-1)
NIC13/OG COLR May 1997 Page 8
m 9
Figure 3 K(Z) - NORMALIZED FQ AS A FUNCTION OF CORE HEIGNT 1.2 1.1 1
(6,1.0)
^
Q 0.925) 0.9 0.8
~N3 u.
0.7 8
N3 4 0.6 E
cco2 10.5 tiu 0.4 0.3 0.2 0.1 0
0 1
2 3
4 5
6 7
8 9
10 11 12 CORE HEIGHT (FT)
N1C13/OG COLR May 1997 Page 9
tj -
I
~
i
=
1 Figure 4 N1C13 NON-EQUILIBRIUM MULTIPLIER 0- 1000 MWD /MTU BURNUP 1.300 1.250 1.200 1.150
@z 1.100 r
1.050 1.000 2.0 4.0 6.0 8.0 10 0 12.0 CORE HEIGHT, FT N1C13/OG COLR May 1997 Page 10 i.
t...
Figure 5 N1C13 NON-EQUILIBRIUM MULTIPLIER 1000 - 3000 MWD /MTU BURNUP 1.300 l
h 1
1.250
)
l 1.200 l
i h
1 e
.150 1
RE 1.100 -
\\
~
s 1.050 l
1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0
(
CORE HEIGHT, FT i
N1C13/OG COLR May 1997 p
i
. = ~...
.. - ~.. ~.. --..... _.. ~. -. ~. - -.. -. -. -..
l l'e r
r Figure 6 N1C13 NON-EQUILIBRIUM MULTIPLIER i
3000- 5000 MWD /MTU BURNUP 1.300 c
1 h
1.250
\\
1 i
i 1.200 1
l 1.150 1.100 1.050 1.000 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT, FT N1C13/OG COLR May 1997 Page 12
- e..,
l Figure 7 4
l N1C13 NON-EQUILlBRIUM MULTIPLIER 5000 -7000 MWD /MTU BURNUP I
1.300 1
4 1
)
4 1.250 1
1 i
i 4
i l
1.200 5
\\
i
~
1.150 -
4 u.
I a
s, 1
1.100 i
1 a
1.050 1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT, FT N1C13/OG COLR May 1997 Page 13
4 /..
e i
Figure 8 i
N1013 NON-EQUILIBRIUM MULTIPLIER 7000 - 9000 MWD /MTU BURNUP 1.300 i.
i i
1.250 d
1 1
8 4
)
i 1.200 n
i I
i i
i 1.150 k
k J
t 1.100 1
J 4
1 I
1 1.050 1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT, FT
- N1C13/OG COLR May 1997 Page 14 1.
rs..,
Figure 9 NiC13 NON-EQUILIBRlUM MULTIPLlER 9000- 18100 MWD /MTU BURNUP 1.300 4
1.250
.l l
b l
l 1.200 i
1.150
~
Rf 1.100 1.050 1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT. FT N1013/OG COLR May 1997 Page 15
l Figure 10 N1C13 NON-EQUILIBRIUM MULTIPLIER 18100 MWD /MTU to EOC 1.300 1.250 I
l 1.200
\\
1 I
/
4 1.150
\\s
_g
/
1.100 1.050 I
1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT, FT NiC13/OG COLR May 1997 Page 16