ML20148J835

From kanterella
Jump to navigation Jump to search
COLR North Anna Unit 1 Cycle 13 Pattern Og
ML20148J835
Person / Time
Site: North Anna Dominion icon.png
Issue date: 05/31/1997
From:
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML20148J802 List:
References
NUDOCS 9706170277
Download: ML20148J835 (16)


Text

,. _ ,,

1 4

4 4

Core Operating Limits Report (COLR)

North Anna Unit 1 Cycle 13 Pattern OG

)

i i

l Virginia Electric and Power Company 1 ~e 9706170277 970609

, PDR ADOCK 05000338' p PDR

t .-

3 I i 1 .

1 .

1.0 . INTRODUCTION 4

l j The Core Operating Limits Report (COLR) for North Anna Unit 1 l Cycle 13 has been prepared in accordance with Technical

Specification (TS) 6.9.1.7. The Technical Specifications affected by this report are listed below

i 3/4.1.1.4 Moderator Temperature Coefficient 3/4.1.3.5 Shutdown Bank Insertion Limit 3/4.1.3.6 Control Bank Insertion Limits 3/4.2.1 Axial Flux Difference 3/4.2.2 Heat Flux Hot Channel Factor 3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor and Power Factor Multiplier i

The cycle-specific parameter limits for North Anna 1 Cycle 13 for '

the specifications sisted above are provided on the following pages, and were developed using the NRC-approved methodologies specified in Technical Specification 6.9.1.7.

I i

~l l

j N1C13/OG COLR May 1997 Page 2

4 2.0 , OPERATING LIMITS 2.1 Moderator Temperature coefficient (TS 3/4.1.1.4) '

ll 2.1.1' The moderator temperature coefficient (MTC) limits are:

The BOC/ARO-MTC shall be less positive than or equal to  !

+0.6E-4 .Ak/k/"F below 70 percent of RATED THERMAL POWER.

The BOC/ARO-MTC shall be less positive than or equal to 0 (zero) Ak/k/*F at or above 70 percent of RATED THERMAL POWER. '

The EOC/ARO/RTP-MTC shall be less negative than -5.0E-4 Ak/k/ F.

2.1.2 ~ The MTC surveillance limits are:  !

The 300 ppm /ARO/RTP-MTC should be less negative than or equal to -4.0E-4 Ak/k/ F. )

l The 60 ppm /ARO/RTP-MTC should be less negative than or equal to -4.7E-04 Ak/k/ F.

where: BOC - Beginning of Cycle ARO - All Rods Out EOC - End of Cycle RTP - RATED THERMAL POWER 2.2 Shutdown Bank Insertion Limit (TS 3/4.1.3.5) 2.2.1 The shutdown rods shall be withdrawn to at least 225  :

steps.

l 2.3 Control Bank Insertion Limits (TS 3/4.1.3.6) .

2.3.1 The control rod ;anks shall be limited in physical insertion as shown in Figure 1.

s N1C13/OG COLR May 1997 Page 3

. .- .~ . .- _ _ , - - - - - _ - . . . . . . _ . -.. . _ _ .

i .

1 1

2.( Axial Flux Difference (TS 3/4.2.1) 2.4.1 The AXIAL FLUX DIFFERENCE limits are provided in Figure 2.

l

l 2.5 Heat Flux Hot Channel Factor-FQ(Z) (TS 3/4.2.2) l I The Fg(Z) limits are:

l 2.5.1 '

i 2.19 Fg(Z) 5 ----

  • K(Z) for P > 0.5 I P

Fg(Z) $ 4.38

  • K(Z) for P $ 0.5 l

THERMAL POWER l where: P = ------------------- , and ,

RATED THERMAL POWER l i

K(Z) is provided in Figure 3.

2.5.2 The Fg(Z) surveillance limits are:

2.19 K(Z)

F g(Z)M $ ---- * ----

for P > 0.5 P N(Z)

K(Z)

Fg (Z) M $ 4.38 * ---- for P 5 0.5 N(Z)

N1C13/OG COLR May 1997 Page 4

l .

4 THERMAL POWER where: P = ------------------- ,

RATED THERMAL POWER

]

K(Z) is provided in Figure 3, and N(Z) is a non-equilibrium multiplier on Fg(Z)M to account for power distribution transients during normal operation, provided in Table 1 and plotted in Figures 4 through 10. The top and bottom 15% of the core is excluded per TS 4.2.2.2.G. I 2.6 Nuclear Enthalpy Rise Hot Channel Factor - FAH(N) and Power Factor Multiplier (TS 3/4.2.3)  :

FAH(N) $ 1.49 * {1 + 0.3 * (1 - P) }

THERMAL POWER where: P = -------------------

RATED THERMAL POWER I

1 l

i l

I l

L 1

I..

N1C13/OG COLR May 1997 Page 5 i

j.  ;
=

3 a

Table 1 i^

.NIC13 NORMAL' OPERATION N(z)

I l Height Node (feet) 0 to 1000 1000 to MWDMTU MWDNTU MWI.WMTU 3000 3000 to 5000 5000 to 7000 7000 to 9000 9000 to 181 .

MWDMTU MWDIMTU MWDMTU MWDMTU 10 10.2 1.078 1.078 1.157 1.157 1.157

11 10.0 1.157 1.139 1.086 1.086 1.157 1.157 1.157 1.157 1.141 l 12 9.8 1.094 1.094 1.156 1.156 1.156 j 13 9.6 1.156 1.142 1.102 1.102 1.155 1.155 j 1.155 1.155 1.144 '

g 14 9.4 1.109 1.109 1.154 1.154 1.154 j 15 9.2 1.154 1.145 1.113 1.113 1.157 1.157 .

( 16 1.157 1.157 1.147 9.0 1.117 1.117 1.160 1.160 1.160 1.160 i 17 8.8 1.120 1.153 1.120 1.167 1.167 1.167 i 18 8.6 1.167 1.160 l 1.120 1.120 1.175 1.175 1.175 1.175 1.165 i 19 8.4 1.124 1.124 1.184 1.184 1.184 1.184

{ 20 8.2 1.134 1.169  :

1.134 1.191 1.191 1.191

} 21 8.0 1.191 1.174 1.14S 1.145 1.197 1.197 l 1.197 1.197 1.180 22 7.8 1.155

1.155 1.205 1.205 1.205 1.205 1.187 23 7.6 1.162 1.162 1.209 1.209 1.209 1.209 i 24 7.4 1.192 1.167 1.167 1.211 1.211 j 1.211 1.211 1.194 25 7.2 1.169 1.169 i 1.211 1.211 1.211 1.211 j 26 7.0 1.168 1.194 1.168 1.208 1.208 1.208 27 1.208 1.192 2

6.8 1.165 1.165 1.206 I 1.27f 1.206 1.206 1.190 28 6.6 1.160 1.160 1.201 1.201 1.201 1.200 l 29 6.4 1.157 1.186 i 1.157 1.194 1.194 1.194 j 30 1.193 1.180 6.2 1.154 1.154 1.183 j

' 1.183 1.183 1.183 1.172 31 6.0 1.150 1.150 )

1.173 1.173 1.173 1.172 i 32 5.8 1.165 i 1.145 1.145 1.161 1.161

1.161 1.161 1.158-33 5.6 1.138 1.138 1.147 1.148 1.148 1.155 j 34 5.4 1.129 1.155 1.129 1.134 1.134 1.134 j 35 1.149 1.149 5.2 1.114 1.114 1.117

)

1.119 1.119 1.139 1.139  !

i, 36 5.0 1.110 1,110

  • 1.112 1.111 1.111 1.130 37 4.8 1.118 1.130 1.118 1.118 1.109 1.109 38 1.123 1.123 t 4.6 1.128 1.128 1.128 I 1.110 1.110 - 1.122 1.122 39 4.4 1.136 1.136 1.136 1.112 1.112 1.126
40 4.2 1.126 1.143 1.143 1.143 1.116 1.116 1.129 1.130 1 41 4.0 1.149 1.149 1.149 1.122 1.122 1.131 i 42 3.8 1.131 1.155 1.155 1.155 1.127 j 1.127 1.131 1.130 43 3.6 1.163 1.163

' 1.163 1.131 1.131 1.131 44 3.4 1.129 1.175 1.175 1.175 1.132 1.132 1.132 1.128 s 45 3.2 1.190 1.190 1.190 1.135 1.135 1.135 i 46 3.0 1.131 1.203 1.203 1.203 1.141 1.141 l

! 47 1.141 1.136 2.8 1.217 1.217 1.217 i

1.150 1.150 1.150 1.1,46 48 2.6 1.229 1.229 1.229 1.160 1.160 1.160

)

49 2.4 1.155 )

1.241 1.241 1.241 1.170 1.170 1.170 1.163 50 2.2 1.252 1 252 l

1.252 1.179 1.179 1.179 51 2.0 1.171  ;

1.262 1.262 1.262 1.188 1.188 52 1.188 1.179 1.8 1.271 1.271 1.271 1.196 1.196 1.196 1.186 i

N1C13/OG COLR May 1997 lage 6 l

L

Figure 1 Control Rod Bank Insertion Limits

FULLY WITHDRAWN = 225 230 1.624. 225) 210 / "

200 190 (1, 1941 180 C Bank [

170 /

160 [

z 150 /

l _

140 [

E $ 130 D Benig [

h 120 ,

[

110 [

@ 100 [

O 90 '

! O 80 70 .

60 50 40 30 20 10 0 048 01 O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 FRACTION OF RATED THERMAL POWER 6

N1C13/OG COLR May 1997 Page 7

. I

. j l

l

. Figure 2 4

N1C13 Axial Flux Difference Li: nits 1

120 l l

i 110

( 12,100) (+6, ' 00) 100 ,

Unacceptsble 0mration 90 Unareptabie i

AGG6 Tumble Operation Opermiion i

i i 80 i u

l

! E 70 I i

l I i

60 -

, \

j l

e \

o (-
27, fiO) (+20, 50) y 50 ,

e  :

2 1 oI 40 30 20 i 10 4

'i 0

-30 -20 10 0 10 20 30 Percent Flux Difference (Delta-1)

NIC13/OG COLR May 1997 Page 8

. -- _ _ . . _ m . _- . .__

9 Figure 3 K(Z) - NORMALIZED FQ AS A FUNCTION OF CORE HEIGNT 1.2 1.1 1

(6,1.0)

^

0.9 Q 0.925) 0.8

~

N 3

u. 0.7 8

N 3

4 0.6 E

cc o

2 10.5 ti u

0.4 ,

0.3 0.2 0.1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 CORE HEIGHT (FT)

N1C13/OG COLR May 1997 Page 9

tj -

~

I i =

1 Figure 4 N1C13 NON-EQUILIBRIUM MULTIPLIER 0- 1000 MWD /MTU BURNUP 1.300 1.250 1.200 1.150 z

1.100 r

1.050 1.000 2.0 4.0 6.0 8.0 10 0 12.0 CORE HEIGHT, FT N1C13/OG COLR May 1997 Page 10 i.

t .. .

Figure 5 N1C13 NON-EQUILIBRIUM MULTIPLIER 1000 - 3000 MWD /MTU BURNUP 1.300 l

l h 1 1.250

)

l l

1.200 l 1

I i

h 1 .150 e 1 R

E 1.100 -

\

~

s 1.050 l 1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0

( CORE HEIGHT, FT i

N1C13/OG COLR May 1997 p

i

. . = ~ . . . . . . . - ~ . . ~ . . -- . . . . . _ . . ~ . - . ~ . - - . . - . - . - . . . . . . . - . . _ - . - . - .

l l'e

  • r r .

Figure 6 N1C13 NON-EQUILIBRIUM MULTIPLIER i

3000- 5000 MWD /MTU BURNUP 1.300 c

1 1.250 \

h 1

i i

1.200 l 1

l 1.150 "

1.100 1.050 1.000 2.0 4.0 6.0 8.0 10.0 .

12.0 CORE HEIGHT, FT N1C13/OG COLR May 1997 Page 12

e .. ,

l ,

Figure 7 4

l N1C13 NON-EQUILlBRIUM MULTIPLIER 5000 -7000 MWD /MTU BURNUP I

1.300 1

4 1

)

4 1.250 1 1

i l i

4 i

l 1.200 5

. \

I i

~

1.150 -

4 u.

I a

s, 1 1.100 i

1 a

1.050 1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT, FT N1C13/OG COLR May 1997 Page 13

4 /. . . ,

e i - Figure 8 i

N1013 NON-EQUILIBRIUM MULTIPLIER 7000 - 9000 MWD /MTU BURNUP 1.300 i.

i i

1.250 d ,

1 1 8 4

)

i 1.200 n

i I

i i

i 1.150 k

k '

J t

1.100

., 1 l

J 4 .

1 I

1 1.050 l

l l

I 1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT, FT

- N1C13/OG COLR May 1997 Page 14

1. . - _ - . . _ . -.

rs . . ,

. Figure 9

NiC13 NON-EQUILIBRlUM MULTIPLlER 9000- 18100 MWD /MTU BURNUP 1.300 4

1.250 .l l

b l l [

1.200 i

~

1.150 R

f 1.100 1.050 1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT. FT N1013/OG COLR May 1997 Page 15

.. - l Figure 10 ,

N1C13 NON-EQUILIBRIUM MULTIPLIER 18100 MWD /MTU to EOC  ;

1.300 1.250 I

l 1.200

\ 1 I / -

4 1.150 '

g

\s i

/

1.100 1.050 I

I 1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT, FT NiC13/OG COLR May 1997 Page 16