ML20084G921
| ML20084G921 | |
| Person / Time | |
|---|---|
| Site: | North Anna |
| Issue date: | 05/12/1995 |
| From: | Brookmire T, Clemens C, Villaflor R VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | |
| Shared Package | |
| ML20084G913 | List: |
| References | |
| NE-1024, NE-1024-R, NE-1024-R00, NUDOCS 9506050171 | |
| Download: ML20084G921 (56) | |
Text
.
'a E
P g
o?;!,L..tN, <.*, ? f g,\\,.3..s,.' A.,f f Yc a n%..\\y
.n;:7 D.
43 yll h he, "'
- f
?
i
+,
yt
. g:'
t. \\ w a-.
t g,
- .
- V'
'Y-r
+
Wls gL.fMh_.m,, i Tt M_ _ M. % % ii.\\ $ i. .
s
- Q$% M O % ~%@M'T M ]'J;s'
,1 3
k@MNMy ? AN l duT% '
ek An MLg
. &.C N N. 3q r g-v..w y;
. N; 9,.,-
. a.
bm,w-y; v7..
.v..
gw. 3.g'.
,< 4 1
u j
s i, \\.,c g'.
a
- t. g..
\\ ; 7;, g ' a r M.@a.4 e. oi,i.
O.
-Xz- ;\\7 *s,
~ \\j 2 nh, gm'Sc 4:g
.\\. :
.v, g:. q t.. A.
i;..
a y
. m..
wage.
- s
. 1 ".
')
3' '.'
i(
,.,g.. J s
( p.,, e e
-t A1 g,'
g..
l.
X
,[r,en M. f ;.o s 3 -z u.,., \\. N,.._t
\\,,
,N,. : 4 g. n,.
. s/g:.>, ;
3 A, jN y 4
t..
g.
3 v.
t u.., -
3:
e i
, w j[ h, f,.x,.'.' Y,.. d '[4. j. s.g' ' [ \\, <.)s. \\g,.. pas,
j
' f.
T(*
.\\
,h -
i s >
e.,.sg.
~t, g;.
o 1
s g
y a
i ql
-g;;s, \\,
1 s :-
g.4,2 ; -\\,
- g-j... tg g
$e y\\,
y*
+,. *
'\\
(, \\' N 7 ' \\
.g c.1,N ':\\,
n.)\\'g;.Kl.\\ !
F Rg f
.\\y,(c fA' h -
.' lC A
_.\\
g 1
.t c' -
se
~ s.s.
-: \\ y\\
3A p,f y " < + 7.,..
y\\.% ~
Nt
-\\-
.g 3,
4(\\,
. \\ k.\\.,\\kN;N.s-s >
, cs.
- g. J : 2 ;-
-.\\.X ' - s h
[Y,[r y
N 1
- g-}/f < h,
- s. \\
.a
.s.
'g.vNg w t s
Ny y
'g\\. 'i
_ - ; +
r
- s. x
%A s
K
+
lf,.,..,
e North? Anna,
3 L
1
. Unit 2 ll],,
I.]
78"s 1 Cycle 10 J
s 4
p?
Core
+
TC Performance ~
' \\.t Reporit.
~m fCf
's, n",
.y Nuclear Analysis and Fuel' mig-s
.[, ;
Nuclear Engineering Services)
~
rt I
.. - n f
_ n \\l U'
May 1995 m
h;_ i,
' f.L I
.T
.u 3
q-; ',+
,- (
,, y.,4 a
4 Viminia Pdner f
I.
~
J i
6 g
t i t
is e
)+ '{
f f'hi 4f' E
i
[.>
J h=
d Y. w.
. ~.
n -. -. -..
'e-q., t, 1
TECHNICAL REPORT NE-1024 - Rev. 0 t
NORTH ANNA UNIT 2, CYCLE 10 CORE PERFORMANCE REPORT l
i i
f NUCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING SERVICES VIRGINIA POWER May, 1995 PREPARED BY: 8. d D
[hff C. D. Clemens bate REVIEWED BY: # F" t/M'r f/8/15 R. F. Vil'la flor Date REVIEWED BY: IA
-- 4
_f-R 5ts~
T. A. Brooksire Date I
SIY REVIEWED BY:
'A. P.' Main' Date i
3 M' f/4Nf APPROVED BY:
D. Dzia80sz 8
Date QA Category: Nuclear Safety Related Keywords: N2C10, Core Performance Report y
_y
.-.m.
___..,,v._-,
.,r,
__.__,_,,__.-..m_.
y-,,
y
TABLE OF CONTENTS PAGE Table of Contents 1
List of Tables.
2 List of Figures.
3 Section 1 Introduction and Summary..
5 Section 2 Burnup.
. 12 Section 3 Reactivity Depletion.
. 22 Section 4 Power-Distribution.
. 24 Section 5 Primary Coolant Activity..
. 44 Section 6 Conclusions
. 52 Sectico 7 References.
. 53 NE-1024 N2C10 Core Performance Report Page 1 of 54 j
l
LIST OF TABLES TABLE TITLE PAGE 4.1 Summary of Flux Maps for Routine Operation
. 28 l
i NE-1024 N2C10 Core Performance Report Page 2 of 54
LIST OF FIGURES FIGURE TITLE PAGE 1.1 '.. ora Loading Map.
8 1.2 Burnable Poison and Source Assembly Locations.
9 1,3 Available Movable Detector Locations.
. 10 1.4 Control Rod Locations.
. 11 2.1 Core Burnup History 14 2.2 Monthly Average Load Factors 15 2.3 Assemblywise Accumulated Burnup: Measured and Predicted.
16 2.4 Assemblywise Accumulated Burnup: Comparison of Measured and Predicted.
17 2.5A Sub-Batch Burnup Sharing.
18 2.5B Sub-Batch Burnup Sharing.
. 19 2.5C Sub-Batch Burnup Sharing.
. 20 2.5D Sub-Batch Burnup Sharing.
21 3.1 Critical Boron Concentration versus Burnup - HFP-ARO.
. 23 4.1 Assemblywise Power Distribution - N2-10-06.
. 29 4.2 Assemblywise Power Distribution - N2 CAM 14A.
. 30 4.3 Assemblywise Power Distribution - N2 CAM 20A.
. 31 4.4 Hot Channel Factor Normalized Operating Envelope.
. 32 4.5 Heat Flux Hot Channel Factor, F (Z) - N2-10-06.
. 33 q
4.6 Heat Flux Hot Channel Factor, F (Z) - N2 CAM 14A.
34 9
4.7 Heat Flux Hot Channel Factor, F (Z) - N2 CAM 20A.
35 9
4.8 Maximum Heat Flux Hot Channel Factor, F (Z)*P, vs.
q Axial Position.
36 NE-1024 N2C10 Core Performance Report Page 3 of 54
LIST OF FIGURES CONT'D FIGURE TITLE PAGE 4.9 Maximum Heat Flux Hot Channel Factor, F (Z), vs. Burnup 37 q
4.10 Maximum Enthalpy Rise llot Channel Factor, F-delta-H vs.Burnup. 38 4.11 Target Delta Flux versus Burnup 39 4.12 Core Average Axial Power Distributi n - N2-10-06.
. 40 4.13 Core Average Axial Power Distribution - N2 CAM 14A.
. 41 4.14 Core Average Axial Power Distribution - N2 CAM 20A.
. 42 4.15 Core Av'erage Axial Peaking Factor vs. Burnup.
. 43 1
5.1 Dose Equivalent I-131 vs. Time
...........48 5.2 Measured RCS Xenon-133 vs. Time
. 49 5.3 Measured RCS Iodine-131 vs. Time
. 50 5.4 I-131/I-133 Activity Ratio vs. Time
. 51 l
NE-1024 N2C10 Core Performance Report Page 4 of 54
L Section 1 INTRODUCTION AND
SUMMARY
f i
I On March 25, 1995 North Anna Unit 2 completed Cycle 10.
Since the l
initial criticality of Cycle 10 on October 26, 1993, the reactor core t
8 produced approximately 1.1484 x 10 MBTU (19,263 Megawatt days per metric ton of contained uranium).
The purpose of this report is to present an l
analysis of the core performance for routine operation during Cycle 10.
l l
The physics tests that were performed during the startup of this cycle were covered in the North Anna Unit 2, Cycle 10 Startup Physics Test 2
Report and thereisre, will not be included here.
North Anna Unit 2 was in coastdown from January 19, 1995 at which time the burnup was approximately 17,189 MWD /MTU. The coastdown accounted for an additional core burnup of roughly 2,074 MWD /MTU from the end of reactivity.
The Cycle 10 core consisted of 10 sub-batches of fuel: three once-burned batches, two from Cycle 9 (batches 11A and 11B) and one from Cycle 7 (batch 9A); five twice-burned batches, two from Cycles 6 and 7 (batches 8A and 8B), one from Cycles 8 and 9 (batch 10B), one from North Anna 1 Cycles 7 and 8 (batch N1/9A), and one from North Anna 1 Cycles 8 and 9 (batch N1/10C); and two fresh batches (batches 12A and 12B).
The North Anna 2 Cycle 10 core loading map specifying the fuel batch NE-1024 N2C10 Core Performance Report Page 5 of 54
identification and fuel assembly locations is shown in Figure 1.1.
The burnabic poison locations and source assembly locations is shown in Figure 1.2.
Movable detector loc tions are shown in Figuro 1.3.
Control rod locations are shown in Figure 1.4.
Routine core follow involves the analysis of four principal performance indicators.
These are burnup distribution, reactivity depletion, power distribution, and primary coolant activity.
The core burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, thereby ensuring that the fuel held over for the i
next cycle will be compatible with the new fuel that is inserted.
Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate at what burnup level refueling will be required.
Core i
power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specifications' i
limits, thereby ensuring that adequate margins for linear power density and critical heat flux thermal limits are maintained.
Lastly, as part of normal core follow, the primary coolant activity is monitored to assess the status of the fuel cladding integrity and to compare the concentration 1
l of dose equivalent I-131 in the reactor coolant with the limits specified by the North Anna Unit 2 Technical Specific.ations".
Each of these four performance indicators for the North Anna Unit 2, l
Cycle 10 core is discussed in detail in the body of this report. The results are summarized below:
NE-1024 N2C10 Core Performance Report Page 6 of 54
- 1. Burnup - The burnup tilt (deviation from quadrant symmetry) on the core was no greater than 10.46% with the burnup accumulation in each batch deviating from design prediction by no more than 2.20%.
2.
Reactivity Depletion - The critical boron concentration, used to monitor reactivity depletion, was consistently within 10.502 AK/K of the design prediction which is within the 11% AK/K margin allowed by Section 4.1.1.1.2 of the Technical Specifications.
3.
Power Distribution - Incore flux maps taken each month indicated that the assemblywise radial power distributions deviated from the design predictions by a maximum average difference of 2.6%.
All hot channel factors met their respective Technical Specifications limits.
4.
Primary Coolant Activity - The average dose equivalent iodine-131 activity level in the primary coolant during Cycle 10 was approximately 0.00418 pC1/gm.
This corresponds to less than 1% of the operating limit t
for the concentration of radiciodine in the primary coolant.
An evaluation of the radiciodine and noble gas concentration in the RCS indicated at Icast one fuel rod was defective. Vacuum sipping inspections performed during the Cycle 10 to Cycle 11 refueling outage determined that two fuel assemblies were defective.
NE-1024 N2C10 Core Performance Report Page 7 of 54
Figure 1.1 NORTH ANNA UNIT 2 - CYCLE 10 CORE LOADING MAP R
P N
M' L
E J
H C
F E
D C
a A
l SA l 80 i sa I utt I us2 l per 1 i l
I i
I tes in /9A l tre sta i 12e Ml/9A,
les I Yse i Jet i Sns 210 En4 J35 Yt9 2
I I
i int /10Cl its Its I 118 I R Fs I tas a re its int /IDCI l s7e i ens Sn3 l ble I sne stt enz 6n2 i s76 1 3 j i
1 i
I n
1 l 1es I sta 1 tra its I sta 1 114 trA tas ars i sta i les l l V37 1 3L9 i Sn6 6L3 1 Dn1 I 119 2ne 1 4L 6 3Ma i 3L6 l YS2 1 4
I I
I I
I i
i i
i les I tra a its 1A I tra i sia i tra sta i tra a stA I tre tra i les l l Y49 1 4MO 1 4No St 5 l rn3,
IL3 l In2 3L4 1 Dal 1 5t t i Ens
. en7 i V38 1 5
I I
1 1
I I
I I
i l
i
~
12A l 11A IFA l 184 H 12A ItA 12A I tas 1 1Fs int /9A I IN!/9A I als I tas i Jie i 6nt 1 ELF IMt i Its ont i tL5 n ins St r Ine 1 6t
- I 3ns l J12 1 6
I I
l I
i 1
1 I
I I
i sa i its I tas I stA i 1:a l ItA i sts I las its ara I stA I trA las o tra I sa i 1 wt? I snt 1 4t*
I IM7 1 4to l one 1 4L3 1 5t
- 6L a Ine eta en5 5L a 1 Sn5 I wr5 1 7
1 I
I I
i i
1 i
1 1 as I stA i its 1: A 1 tra l 114 i las l 9A
, its I stA 12A sta
! Its I stA
, s8 I I was i sta i sMe I rL9 I one 1 3L 7 I ett I str l SLt 1 IL6 rna l Its tw5 IL4 I wn4 I a
l I
I I
I I
i 1
I I
1 aA I sts 1 Its I stA i sta i tra i its I tas its tra,
3t3 rna alA tra las its I sa I wt6 l 4nt 16(6 1 rn7 i rtt i in6 1 6Lt 1 6tt
- L e en6 1 u 5t5 i sn5 I wet 9
l I
I l
i 1
i i
l 1
1 I
int /9A i tra i its a trA I ItA i sta 1 sta i 12A sta 12A las
, are Mt/9A i l Jte l 6M9 1 4L5 1 2n4 8 IL2 l iM9 1 OL9 1 FM2 2L4 FM5 4L7 H 6n3 I Joe,
to 1
i l
i i
l i
l
- les, l tes I tra i tra 1 alA I IZA 1 alA l nFA I alA 12A I stA als its I i Y56 i EMS l snt I zi6 I t>4 J IL7 i Dw9 1 %t s in3 I IL Sw 3nt Y33 I la l
1 1
1 i
H I
I I
l 4
tos i Ila 1 its I tas I 12A
- 11A ItA las I las ita o los I Ysa l PL2 I bar i 5L3 rn6 l 2L3 ons 6ts,
one its l Y34 l 12 I
I I
I I
l h
IN1/10Cl als l Ils I tas als I its I als als 'Nt/tDCI I s71 l en9 i ene st6 sur i str Enz 6n4 I E 66 l 13 i
1 1
1 1
1 sos ins /9A l tes H 11A 1 tra Nt/9A I tes l V46 1 Je7 I Ew*
H 217 i rn9 J36 V55 14 l
1 i
H l
I na H es
, aA 1
l--> sATCH I W96 0 W54 W5 I 15 l
l--> ASSEMBLY D 1
l I
i Fut'L A$stMSLY DESIGN PANAMETERS Sun-sATCH 4A Sa 94 108 sta las llA 1:s MI/9A N R /10(
IMlltAL INNICHMENT 3.79 4.00 3.s0 4.24 4.0 4.21 4.01 4.20 3.79 3.s2 (W/0 U-235)
A$$fMsLY TYPE 17:17 17m17 17xt?
17 17 17:17 17xt?
17ma?
17 17 17 17 17x17 NUMatR DF ASSEMstitS 4
4 1
12 32 24 to 36 3
4 FUEL RODS PER ASSEMsL1 264 264 264 264 F64 764 F64 264 F64 F64 NE-1024 N2C10 Core Performance Report Page 8 of 54
)
i Figure 1.2 NORTH ANNA UNIT 2 - CYCLE 10 BURNABLE POISON AND SOURCE
_ ASSEMBLY LOCATIONS R
P N
M L
E J
H C
F E
B C
B A
i l
l l
1 1
I I
I i
i i
i ssle i 1
1 1
I I
I I
I i
1 1
I 2
1 I
l i
1 1
1 1
1 l w I top i 1 24P i l 20P 1 6P 1 1
1 IBP298 IBPts2 l lBP264 1 ISPlat ISP306 l l
3 i
I i
l I
i 1
1 1
I I
l l 21P l 1 24P 1 1 2*P 1
1 21P l 1
I I
I ISP29e l lBP2se i ISP279 l lBP296 1 l
l 6
1 i
i i
l 1
I i
i l
i i
i I p 1 2tP i i 24P 1 l 24P l i 24P l i 21P l p i i
l IBP297 ISPla9 ISP260 1 lBP259 1 fBP258 l lBP295 lBP303 1 1
5 1
1 1
1 I
I I
i 1
1 1
1 1
l i
I top l l 24P i l 2*P 1
1 24P l i 24P 1 1 top I
I I
18P284 I ISP257 l 18P212 i ISP271 1 IBP256 i
lBP288 l
l 6
I I
I I
i l-t I
I I
I i
l I
I ISP27a I (BP270 l lBP248 I IBP269 i 24P 1 1
1 i
1 1 24P 1 1 24P 1 1 4P 1 1 24P I dBP277 1 1
1 7
1 1
I I
i 1
1 1
1 1
I l
l I
l l 24P l l 24P 1 1 4P i i %P 1 1 24P 1
1 24P l
1 i
I i
lBP263 1 ISP25% l ISP247 l lBP246 1 ISP254 BP262 '
i 1
8 1
I l'
I I
i i
l 1
1 1
I l'
1 1
1 1
I 24P l l 24P l 4P 1 1 24P l l 24P l i
l i
l l
IBP276 1 IBP268 i IBP245 1 ISP267 l lBP275 I 1
l 9
i l
i i
I I
I I
~l l
I I
I I
i i fop 1 l 24P 1 24P 1 1 24P 1 1 24P i
, 20P 1
i i
IBP2a3 l lBP253 1 BP266 l lBP265 l lBP252 i SPZS7 1 1
18 1
1
)
8 1
1 1
1 I
i i
I i
1 l
l w I tip i 1 24P 1 1 24P l 1 24P l 1 21P,
& l i
I IBP3ee IBP292 1 IBP2$1 1 fBP250 l fBP249 i BP294 1lBP342 l i
11 1
i l
i I
i i
l 1
1 H
1 l
i I
i 21P i l 24P l l 24P 1 1 21P i l
I l
l ISP291 1 (BP274 I l$P273 l ISP293 1 12 1
1 I
I I
l 1
I l
l i
1 e i lop 1 1 24P 1 1 20p i 6P 1
ISP299 lBPZ86 i ISP261 1 ISP285 ISP341 13 i
1 I
I l
1 I
i 1
1 1
1 1
i
$517 i l
I I
i l
I i
le i
I i
1 l __._ l i
l i
1 4P + 4 BUPNABLE Pol $DN ROD CIU$flR l
I I
I 6P - 6 BUPNABLE Pol $0N ROD ClUSIER l
l l
l top - 20 BUPNABLE P0150N ROD CLU$ff R 2tp - 21 BUPNABtf POISON ROD CLU5ff R 24P - 24 BUPNABLE POISDN ROD CLUSITN
$$mu - $(CONDARY $0URCf I amp or S$uu 1
- 9 0F SP PODS or Ef CONDARY $0l#tCE 10 l
BP999 i
- BP A$$fMBlY 10 l
l NE-1024 N2C10 Core Performance Report Page 9 of 54 1
- - ~ - -
Figure 1.3 NORTH ANNA UNIT 2 - CYCLE 10 AVAILABLE HOVABLE DETECTOR LOCATIONS R
P n
n L
K J
H C
F E
D C
B A
I i
1 i
e i 1
1 1
1 1
1 I
I I
I I
i I
I i
1 1 no 1 I
2 l
1 I
I i
1 1
I l
i i
1 i
i i
l i MD 1 1
i e i no 1 I
i i e 1 3
l l
l l
4 l
l l
l ll i
1 I no i 1
1 no 1 I no 1 i
i I
4 I
I I
I I
I I
I I
l 1
1 I
i i
1 1
I l
1 i
i li i
1 i
i i no l l no i I no 1 I
I I no no I i no I s
I i
i i
l I
i l
1 I
l 1
1 1
i i
i l
I i
l i
I i
i i
i l
l i
I no 1 I
I no 1 I no 1 1
1 1
6 1
1 I
I I
I i
1 1
1 I
i I
i l
i 1
1 1
I I
I a l I
=1 i
1 i
1 l
1 l
i no 1 i
i i no I i no 1 1
no 1 I no l I
y i
1 1
1 I
I I
I i
i 1
1 l
l I
I I
I i
I I
i i
i i
1 I
I I
I I no I i no I l Mo 1 1
1 1 no I i
i no I no i
a 1
1 I
i i
l 1
1 1
l 1
l 1
1 i
l i
i i
i 1
a 1 i
I i
i i
l I
i no l I
l Mo I no I 1
i no 9
I i
1 l
1 1
8.
I 1
l i
I I
l 1
i i
i i
i l
i 1
I i
i l
I i no I I
i i no l l
l l
l Mo i no i le l
l l
l l
l l
l l
l-!
c 1
I 1
1 1 no 1
i no i I no 1: no 1 I
i 14 i
1 i
l I
i I
I I
I i
l i
I l
I, I
i i
i 1
1 1 no i l
1 1 no i l
i no 1 no i 12 i
I i
1 1
1 l
i I
i 1
1 1
1 1
1 1
I I
i l
i no 1 I no I
i 13 6
1 1
a l
i i
I i
1 4
I 1
I I
i I;
a I no I I
I i no i l'
i 14 1
1 1
1 i
i I:
1 no - novable Detector 1
l i
i a - Locations not evaltable to flun i no l l
l 15 mapping systee for Cycle le i
l i
I NE-1024 N2C10 Core Performance Report Page 10 of 54
Figure 1.4 NORT11 ANNA UNIT 2 - CYCLE 10 CONTROL R0D LOCATIONS R
P N
N L
K J
N C
F E
D C
B A
18e' I
toop A 1
1 I
I Loop c 1
outlet i
I I
I Inlet A
l lA i 1o i 1A I I
2
\\
l i
i l
l l
1 I
/
N-41 1
1 1
I i
1 1
I I
I I
I i
1 1c I lB l l
l 1B l lc l l
4 I
I I
I I
I i
l i
I I
I I
l 1 SB l l
l l
5 I
I I
I I
I 1
l i
I l
i I
I IA I lB i io 1 Ic 1 1D l IB l 1A 1 6
Loop A 1
1 1
1 1
1 I
I l
i I
I I
l Loop C l
l SA i i
1 1 SP l l SB l l SP I 1 SA i 1
1 Outlet 7
\\l Inlet 1
I I
i l
1 I
I i
1 1
I I
I I
i 90'-l in 1 I
I Ic l l
l lc 1 1
1 Io 1 i 270' 8
I i
1 1
1 1
I I
I I
I I
I I
I I
I I
l 1 SA 1 1
1 9
1 1
1 I
I I
I I
I I
I I
I l
l I
IA I IB l 1D l lC l lD l l5 l lA l le 1
I I
l l
I I
I I
I I
l i
I i
1 1
i SB i l
11 I
I I
I I
I I
I I
I I
I I
I I
IC 1 iB l l
l lB I lc I i
12 I
i 1
1 I
i 1
l 1
1 1
I I
l l
15 N-44 I
l l
l l
l l
l l
l H-42 I
IA I ID I iA I i
14 1
1 I
i l
I i
I g
1 1
1 1
N 15 Loop B l
l l
l Loop B Absorber Outlet Inlet Haterial i
Ag-In-Cd 8'
function Number of Clusters CALLF.D NORTH Control Bank D 8
Control Bank C 8
Control Bank 8 8
3r Control Bank A 8
Shuidown Bank $8 8
Shutdown Bank SA 8
SP (Spare Rod Locations) 8 NE-1024 N2C10 Core Performance Report Page 11 of 54
Section 2 BURNUP The burnup history for the North Anna Unit 2,
Cycle 10 core is graphically depicted in Figure 2.1.
The North Anna 2, Cycle 10 core achieved a burnup of 19,263 MWD /MTU. As shown in Figure 2.2, the average load factor for Cycle 10 was 94.4% when referenced to rated thermal power (2893 MW(t)). Unit 2 performed a power coastdown starting on January 19, i
1995 until shutdown for refueling on March 25, 1995.
Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed burnup distribution analysis.
The TOTE' computer code is used to calculate these assemblywise burnups.
Figure 2.3 is a radial burnup distribution map in which the core assemblywise burnup accumulation at the end of Cycle 10 operation is given.
For comparison purposes, the i
design values are also given. Figure 2.4 is a radial burnup distribution j
map in which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 10 1
operation is also given. As can be seen from this figure, the accumulated assembly burnups were generally within 11.20% of the predicted values.
In addition, deviation from quadrant symmetry in the core throughout the cycle was no greater than 10.44%.
The burnup sharing on a batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle batch NE-1024 N2C10 Core Performance Report Page 12 of 54
burnup predictions to be made for use in reload fuel design studies.
Batch definitions are given in Figure 1.1.
As seen in Figures 2.5A, 2.5B, 2.5C, and 2.5D, the batch burnup sharing for North Anna 2,
Cycle 10 followed design predictions closely.
The burnups for all other batches did not deviate from predictions by more than 2.2%.
Symmetric burnup in conjunction with agreement between actual and predicted assemblywise burnups and batch burnup sharing indicate that the Cycle 10 core did depicte as designed.
NE-1024 N2C10 Core Performance Report Page 13 of 54
1 1
.s i
i Figure 2.1 NORTH ANNA UNIT 2 - CYCLE 10 l
CORE BURNUP HISTORY nus.
1 ilna.'
un,4 --__
InOO g
/
inn.
snoe.-
,/
18100
.7 inn :
/
13800.'
,/
sun.
ELs sino..
/
z
/
m ano.
/
i o
m un.
/
"j non :
/
noo.
/
5100 :
/
sun:
,/
un.
,/
noo.
/
inn.
f suo: /
O
=======
n e==
= = u = = = = = = = =
=_ = = =_ = = =_ = =_ = = =_ = = = = =_ = =_
TIME (MONTHS)
MAXIMUM DESIGN BURNUP -
20100 MWD /WTU NE-1024 N2C10 Core Performance Report Page 14 of 54
PERCENT a
e a
to co A
cn a>
N cn to o
o o
o o
o o
o o
o o
o z
M i
I i
i I
i i
i l
i OCT-93 o
E NOV-93 O
DEC-93 h
JAN-94
,gg 2
FEB-94 MM l
MAR-94
'fg g.
APR-94 llj
]
MAY-94 g3y j
E.
JUN-94 g ~.w O
JUL-94 E'"
Eh AUG-94 T
SEP-94 N[
OCT-94 8
NOV-94 a
DEC-94 C;
JAN-95 FEB-95 o
~
v MAR-95
=
h CYCLE AVG.
1 l
Figure 2.3 NORTH ANNA UNIT 2 - CYCLE 10 1
ASSEMBLWISE ACCUMULATED BURNUP
- MEASURED AND PREDICTED (GWD/MTU)
R P
M M
L R
,e H
G F
E D
C 5
A
---***=******
1 l 43.61l 45.87l 44.181 l MEasunED l 1
................ 861 48 911 45.86l l PSEDICTED l l 48 2
l 47.25l 44.391 19.541 87.191 19.85l 45.7e1 46.84l 2
i
......... 571.es.ett.19.6el.37.81l 19.sel.45.etl.47.57l l 47 3
l 42.14l 20.75) 23.14l 44.58l 34.85] 45.57l 33.76l 21.77l 41.73l 3
)
l 41...................
........... 251 30.851 33 311 44.951 25. 501 44.93l 23.21l 3.s451 41.asi.......
4 l 45.56l 40.Hl 24.55l 46.91l 96.13l 47.711 26.tel 47.731 Rb 4el 41.07145.241 4
........... 551 41 15l 25.08] 47.5e1 35.861 47.911 85.861 47.5el.25.6t1 41 151 44.551...
l 44 5
l 47.43l 30.851 24.99145.151 26.17l 44.59l 36.3Sl 48.441 86.61143.82) 24.37l 24.69147.1tl 5
.i.47.611 30.971 28 1.tl 43.7el.34.031 44.391 25.84l 44.391 26.031 43.741 25.181 30.97.l.47.411 l 45.55l 23.321 47.34l 25.71l 47.47l 36.11l 47.591 36.14l 47.85l 34.17 47.44l23.05l43.95l 6
.......1 45.031.23.35 8 47 551 36.081 47 391 25.731 47.151 25. 781 47.391 36.
081.......
6
...1....
l 43.151 19.St
.I.43.e71 19.Hl 44.64] 38.76l 47.31l 88.4el 42.54l 41.56l 42.94l 25. ell 4 7
7
............ 981 25 45.1 48.56 :
44 25.
I 45.03l 37.43124.65l 44.tel 28.5el 46.67l 41.69143.Hl 41.66l 46.tel 25.65l 47.10
.......3 37,39.l.25.378 47.891 25.78l 47.e61 41.711 44.17l 41.711 47.461 25.701 47.89] 34.64l 37.66l 45 3
e gg,93
.............................................................1 15.27l 37.191 45.933 l43.62119.35l43.65
.I 43.871 19.6el.44.98l 25.57l 47.82) 25.46] 42.64l 41.46l 41.99l 25.0el 47.7
- 15. ell.44.861 25.591 43.831 41.641 42.e31 25.591 48.36l.25.851 44.981 19.6el.43.s7 9
l 44.76l 22.e3l 47.955 26.50146.47l 25.09l 45.96l 25.14l 46.648 25.4tl 47.69l 33.64144.84l I8 go 8 45.021 23.251 47 551 26.031 47.391 25.738 47.15l 25.731 47.391 26.431 47.55l 23.251 45.021 I 47.21l 21.45l 25.35l 44.05l 88.84l 47.45l 88.818 47.e5l 25.53144.23l 25.59l 21.44147.41
.... 411 24.97l 15.121 43.74l 86.e31 44.391 25.041 48.393 26.03l 43.701 15.131 24 II l 47 gg
............................1 I44.5545.18l 42.43l 25.15l 47.39l 24.90l 47.271 25.23l 47.69l 24.99141.311 44.63l II gg
.......1 41 151 25.4tl 47.50l 28.461 47 911 25.461 47 541 25.ett.41.151 44.551 I41241.931 20.861 22.751 43.49l 24.351 43.95l 23.76l 20.78l 41.05l 33 II
..... 5l S..t.05l 23.211 44.93l 28.301 44.93l 23.21l 20.851 41.251 I
I47.5747.27l 45.431 19.41l 36.8tl 18.97l 45.71) 47.Stl I*
gg
.......8 45.08) 19.641 37.211 19.681 45.031 47.57l l
15 l 44.05l 45.50142.e4l gg l 43.86l 45.91l 43.06l R
P N
M L
E J
H G
F E
D C
S A
1 NE-1024 N2C10 Core Performance Report Page 16 of 54
Figure 2.4 NORTH ANNA UNIT 2 - CYCLE 10 ASSEMBLWISE ACCUMULATED BURNUP COMPARIKON OF MEASURED AND PREDICTED (GWD/HTU)
R P
N H
L K
J N
O F
2 D
C 9
A 1
1 43.41) 4s.271 44.1e1 l MEASURED l 1
l.e.ssi *1.391 0 741 I fVP a D1tr I a
i 47.23) 44.3tl 19.stl 37.191 19.est 4s.7ej 46.86l t
- , !.e.711 1.391.e.711.e.e61 0.471 1.stl *1.sel 3
l 42.101 to.7sl 23.14l 44.4sl 24.esl 43.37l 23.76l 21.37l 41.731 5
.......1 2.061.*.e.461.=.e.Stl. 0.771.1.791. e.tel. 2.391..E.491..1.171....
4 l 4s.s4l 4e.6tl 24.ssl 46.91126.12147.71l 26.tel 47.731 as.4el 41.0714s.241 4
......... 2. 2 61. 1. l e l. 1. as t. 1. 241. 1. el l.. e.421. 1. 311...e.471. 1. s 31 *.e.1 t l. 1. s.41 l
s
$ 47.e3) te.e3) 24.991 43.1st 26.171 44.stl 26.331 44.441 16.611 43.821 e4.s71 te.69] 47.128 5
1..*.1.211..e.7s l.0.st l.*1.2 61...e.se l...e.411.1 911..0.111. 8.22 8..0.261 *t.211. 1.371.=.1 6
l 4s.3sl 23.3tl 47.241 ts.fil 47.67 26.11l 47.stl 26.14l 47.esl 26.17147.441 23.83141.981 6
........I...e.731...e.3 e i..e. 64 ).1. ts i..s.s..t l...i. 1.s11...e.s.ti. 1 631. 0.971..e.s11.=.
1 41.lst 19.et] 44.381 7
.I.1 6sl...e.Fil..e.t.el.25.76) 47.311 ts.4el 42.s41 41.sel 42.941 ts.831 47.381 a.s.5el 4 e.ss 7
.............i
- t. lel e.431 e.6t..l e.7.tl..s.271..e.941t.e31...131 1.731 e.atl e.431 4
14s.e3137.4sl 24.esl 44.sel ts.sel 46.671 41.691 43.641 41.66l 46.sel 1s.6sl 47.181 24.641 37.661 4s.471
.i.1.931...e.6el.1.661...e.4el1.e71..e.stl.e.et t.1.1s1.e.111.e.sel...e.stl.1.4el. t.sti.1.241..e.tst e
1 43.621 19.3sl 43.est as.s7147.ett Es.4614
.i..e.s71.1.6al..2.4el.1.est.1.121.=e.s11. 2.6el 41.461 41.9,1.ts.es t 47.711.ts.ssi es.tel....
19.96l 44.tti e
................... s t l..e. t t i. 1. ts i..t. 3 e
e.94 to l 44.761 st. ell 47.tsi 26. Set 46.471 ts.stl 4s 961 as.14146.e41 ts.stl 47.49123. set 44.sel to
.I..e.571 1.e41 e.st) 1.el
...........................l. 1. 941..t.4 71. 2.s41..t. 271 1.161..e.sa l..e.tt i. 1.4 71
- e.s e l l
t1 I 47.211 ti.est ts.3sl 44.e31 t.s.sel 47.esl.ts.tti 47 esi ts.s3144.231 ts.sti 21.44147.411 11 1..e. e41..e.3 61...e. 911
...........l...e.711..t.771... 431. t.771...1.931..1 211 1.es t..2.231. e.411 e.7s tt i es.1st 42.e31 ts.1314 1 24.tel 47.271 as.231 47.691 e4.991 41.311 44 12 1 1.4 el. 2.151..s.441. 7.39...........t.
3.72).1.341..t.44 l...e.4e l..e.1ti..s.3 tl..e 631....1 e.ts 16
- 3 l 41.931 to.s61 at.7sl 43.48l 24.3sl 43.esl 22.761 to.7el 41. ell
.................. 15 l 1.4s
........l e e4].
........1.ts i. 3.221.+3.741. t.1e l.*1.961. 4.3el
- e.ss !
l ARITHMETIC Ave l l PCT DIFF e e.44 l 47.271 ts.stl 19.411 34.821 18.97143.71147.321
.................1
.4 14
.I.e.sti..s.e:I.1.3sl.1.esi. 3.sti..t.911.e.s31
.s I STANDARD DEV l l 44.esi 4s.sel 42.e41 l AVO Ass PCT l 1s
.I
.ee l
l e.es
........t.e.sel.t.318 l narr = 1.te
...............i R
P M
n L
K J
M C
F 2
0 C
B A
=
BATCH SHARING (MWD /MTU)
BATCH NO. OF BOC BATCH EOC BATCH CYCLE ASSEMBLIES BURNUP BURNUP BURHUP N1/9A 8
34,477 44,710 10,233 N1/10C 4
33,624 41,700 8,076 8A 6
38,739 43,680 4,941 BURNUP TILT 88 4
39,349 45,316 5,967 9A 1
23,713 43,662 19,949 NW = 0.11 l NE = 0.44 10B 12 39,610 46,504 6,894
.........l-.....-.....
11A 32 23,646 44,905 21,259 SW =.0.22 l SE =.0.33 118 24 22,309 44,666 22,357 12A 28 0
25,704 25,704 128 36 0
22,461 22,461 CYCLE AVERAGE ACCUNULATED BURNUP = 19,263 NE-1024 N2C10 Core Performance Report Page 17 of 54
Figure 2.5A NORTH ANNA UNIT 2 - CYCLE 10 SUB-BATCH BURNUP SHARING 48 SUB-BATCH N1/9A 46
/
o 44
/
SUB-BATCH
// M 11A E
D 42 W
/c
)
40 f
u D
/3
)
/0
/
A' O 38 p'-
4) v p
36 z
g g
o E
i D 34 W
[
rti 7O 32
}g' y<
[
m 30 m
+
U CD p'
28 26 n
24 p;
22 0
2 4
6 8
10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)
NE-1024 N2C10 Core Performance Report Page 18 of 54
i Figure 2.5B NORTH ANNA UNIT 2 - CYCLE 10
,SUB,, BATCH BURNUP SHARING 48 SUB-BATC' H
.e -3 N1/10C
/r 44 w-o -
O sT' pS*
SUB-BATCH
~
gc o
10B 7
o as S
~%"
o F
I-- 36 gA SUB-BATCH 2
12A i
d-B 32 3:
e v
28 1
./
3 A
2
/K g 24 y;
'f
\\
D 00 j
j T
f O
/
i m
k16
[
w x<
O-> 12
,,/
i s
8 8
A
./
/'
b' 4
s(
n Xz 0
'l O
2 4
6 8
10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)
NE-1024 N2C10 Core Performance Report Page 19 of 54
e l
l l
Figure 2.5C l
NORTH ANNA UNIT 2 - CYCLE 10
,SUB-BATCH BURNUP SHARING 48 SUB-BATCH 4
8A 46 l
/$of C
'0
}K o
/
c AO)-
SUB-BATCH 44
/
0 gg
^ 42 e6%*
l(
l D
( o h40
/G 3 -r6 SUB-BATCH B
2.-<M
/
11B l
3 M-38 l
C
)V l
f Q. 36 M
D
/
Z Xf
(% 34 j'
1 D
O 32 x
/
o
)k 30 e) <
m
/
i 28
'f co
/
D P
CO 26 Wl Af 24
/
22 l
20 0
2 4
6 8
10 12 14 16 18 20 l
CYCLE BURNUP (GWd/MTU) l NE-1024 N2C10 Core Performance Report Page 20 of 54 -
Figure 2.5D NORTH ANNA UNIT 2 - CYCLE 10 SUB-BATCH BURNUP EUARING I SUB-BATCH 44 12B ju j
,f M
Tv 40 f
SUB-BATCH j
,/>
9A d'
336 j
o H
/"
E
/J g 32 j.3 j
O s'"
w gg p
1
/J D
Z 24 [
cc 1
a e
C 20 g
I
./ "
o v
H 16 3#
f e'
x s
U 12 6
3 s
CD
- h!"
8
)#
,s,,
4
, /#
M 0^
0 2
4 6
8 10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)
)
NE-1024 N2C10 Core Performance Report Page 21 of 54
Section 3 REACTIVITY DEPI.ETION The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous reactivity behavior. The FOLOW" computer code was used to normalize
" actual" critical boron concentration measurements to design conditions.
taking into ' consideration control rod position, xenon concentration, moderator temperature, and power level.
The normalized critical boron concentration versus burnup curve for the North Anna 2, Cycle 10 core is shown in Figure 3.1.
It can be seen that the measured data typically compared to within 76 ppm of the design prediction. This corresponds to 10.502% AK/K which is within the 11% AK/K criterion for reactivity anomalies set forth in Section 4.1.1.1.2 of the Technical Specifications.
In conclusion, the trend indicated by the critical boron concentration verifies that the Cycle 10 core depleted as expected without any reactivity anomalies.
NE-1024 N2C10 Core Performance Report Page 22 of 54
l Figure 3.1 NORTH ANNA UNIT 2 - CYCLE 10 CRITICAL BORON CONCENTRATION vs. BURNUP
' ~
(HFP,ARO) 1500 m 1400 5
i D 1300 E
h \\ \\.
1*
z N g 0
g 33gg
=
1000 H
\\h 1
z 800 u.I N
U I
800 g
O h
o 700 s.NA z a O
N
~
8=
s
= 400 k
y 0 2 a==
a g
U 100 0
0 1
2 3 4 5 6 7 8 9101112131415181718 CYCLE BURNUP (GWD/MTU) rx: MEASURED PREDICTED NE-1024 N2C10 Core Performance Report Page 23 of 54
Section 4
, POWER DISTRIBUTION Routine analysis of core power distribution data is necessary to verify that the hot channel factors comply with their Technical Specifications limits, and ensure that the reactor is not operating with any abnormal conditions which could cause an
" uneven" burnup dis t ribution.
Three-dimensional core power distributions are determined from movable detector flux map measurements using the INCORE' and CECOR'8 computer programs. The INCORE program was used from the beginning of cycle through flux map 10.
The CECOR program was used from flux map 11 to the end of cycle. A summary of all full core flux maps taken for North Anna 2, Cycle 10 is given in Table 4.1, excluding the initini power ascension flux maps.
Power distribution maps were generally taken at monthly intervals with additional maps taken as needed.
Radial (X-Y) core power distribution for a representative series of incore flux maps are given in Figures 4.1, 4.2, and 4.3.
Figure 4.1 shows a power distribution map that was taken early in cycle life. Figure 4.2 shows a power distribution map that was taken near mid-cycle burnup.
Figure 4.3 shows a map that was taken near the end of Cycle 10.
The measured relative assembly powers were generally within 7 5% and the maximum average percent dif ference was equal to 2.6%.
In aidition, as indicated by the INCORE and CECOR tilt factors, the power distributions were essentially symmetric for each case.
NE-1024 N2C10 Core Performance Report rage 24 of 54
An important aspect of core power distribution follow is the monitoring of nuclear hot channel factors.
Verification that these factors are within Technical SpecificaUons limits ensures that linear power density and critical heat flux limits will not La violated, thereby providing adequate thermal margin and maintaining fuel cladding integrity.
North Anna Unit 2 Technical Specification 3.2.2 limited the axially dependent heat flux hot channel factor, F (Z), to 2.19 x K(Z), where K(Z) is the q
hot channel factor normalized operating envelope, and 2.19 is the Fq limit at rated thermal power, both as specified in the Core Operations Limit Report (COLR)'.
Figure 4.4 is a plot of the K(Z) curves associated with the 2.19 F (Z) limit.
q The axially dependent heat flux hot channel factors, F (Z), for a q
representative set of flux maps are given in Figutes 4.5, 4.6, and 4.7.
Throughout Cycle 10, the measured values of F (Z) were within the q
Technical Specifications limit.
A summary of the maximum values of axially-dependent heat flux hot channel factors measured during Cycle 10 is given in Figure 4.8.
Figure 4.9 shows the maximum values for the heat flux measured during Cycle 10.
The rise in the EOC maximum FQ(Z) data is due to power coastdown, and is not a concern for possible Technical Specification violations. The minimum margin to the Fq limit in the axial region covered by the Technical Specification 4.2.2.2 is 11.9% for all flux maps.
(Technical Specification 4.2.2.2.g states that Fq surveillence is not applicable in the lower core region from 0% to 15%
inclusive, and the upper core region from 85% to 100% inclusive.)
NE-1024 N2C10 Core Performance Report Page 25 of 54
t The value of the enthalpy rise hot channel factor, F-delta-H, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed. The Technical Specifications limit for this parameter is set such that the departure from nucleate boiling ratio (DNBR) limit will not be violated.
Additionally, the F-delta-H limit ensures that the value of this parameter
{
used in the LOCA-ECCS analysis is not exceeded during normal operation.
North Anna Technical Specification 3.2.3 limited the enthalpy rise hot j
channel factor to 1.49(1+0.3(1-P)) for Cycle 10, where 1.49 is the i
F-delta-H at rated thermal power and 0.3 is the power factor multiplier, l
both as specified in the COLR.
A summary of the maximum values for the enthalpy rise hot channel factor measured during Cycle 10 is given in Figure 4.10.
As can be seen from this figure, the minimum margin to the limit was approximately 1.3%.
r The target delta flux
- is the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon. The delta flux is measured with the core at or near these conditions and the target delta flux is established at this measured point. Since the target delta flux varies as a function of burnup, the target value is updated monthly.
By maintaining the value of delta flux relatively constant,' adverse axial power shapes due to xenon redistribution are avoided.
The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately -5.3% at the Pt-Pb
- Delta Flux = ----- X 100 where Pt = power in top of core (MW(t))
2893 Pb = power in bottom of core (MW(t))
NE-1024 N2C10 Core Performance Report Page 26 of 54
L beginning of Cycle 10.
Delta flux values os-111ated between -4.0% and
-6.5% and then, at a burnup of about 17000 MWD /MTU, began an increase to
-2.6% before the coastdown - At the end of Cycle 10, the target delta flux increased to 8.3% due to the coastdown. This axial power shift can also be observed in the corresponding core average axial power distribution for a representative series of maps given in Figures 4.12 through 4.14.
In Map N2-10-06 (Figure 4.12), taken at 1782 MWD /MTU, the axial power distribution had a shape peaked toward the middle of the core with a e
peaking factor of 1.221.
In Map N2 CAM 14A (Figure 4.13), taken at 10811 MWD /MTU, the axial power distribution peaked toward the bottom of the core with an axial peaking factor of 1.166.
Finally, in Map N2 CAM 20A (Figure 4.14), taken at 17126 MWD /MTU, the axial peaking factor was 1.144, with the axial power distribution shif ted slightly toward the bottom.
The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15.
In conclusion, the North Anna 2, Cycle 10 core performed satisfactorily with power distribution analyses verifying that design predictions were accurate and that the values of the F (Z) and F-delta-H hot channel q
factors were within the limits of the Technical Specifications.
N I
l NE-1024 N2C10 Core Performance Report Page 27 of 54
e Table 4.1 NORTH ANNA UNIT 2 - CYCLE 10
SUMMARY
OF FLUX MAPS FOR ROUTINE OPERATION I e a
l 1
i a
i 1
2,1 1
11 1 31 i suwN 1 I SANK l F-0(1) HDT I F-DH(Mt HOT ICORE F(in l CONE II AXIAL l NO.Il IMAPl I
UP l
l D
l CHANetL FACTOR l CHNL. F ACTOR IMAX l IILY 0FF 1 0F L i
ING.1 DATE I MWD / l PWR I STEPS 1 l
l
,, Sti lTHIMll l
l l Mtu l tra 1 1 AssYlptNIAXtAtt I
l laxlAL l Full MAX l LOC (23 IBLESl, i i l
1 1
1 1
IPOTNilF-Q(t),,ASSYlPIN IF OH(M)lPotNT I 1
l l
l l
l T lst.as.91l 6,1 itse.e,l m ! Po, !v! u l1.,,9 w,lr.r't.4s>136 lr.w,l1. sis l w -4.s4,l
- 1 6 lit-15-931 trat i 99.971 trs l Pe7 I ofi 36 l 1.860 Pef f TF 1.4e9
% 11.2t:11.e9:1 MW) -4.4051 u I 1 7 let t,r-941 3:46 Itoo.oel tts i Lit i Jll M i 1.at6 l Matt ou 3.39% i M 11.t6518.0871 MWI -4.4t61 46 I a lor o -941 3965 l 99.941 trs 1 Nat I out si i 1.sts li Mill oo 1 1.4et sa 11.19:18.ee41 ett -4.3291 46 i 19 les in 941 stra l 99.9a1 tis I Mit I col se Dill IJ i 1.4es 39 11.17811.ee54 til -4.5941 u,
1.F97 l
' rest JI i
lie le4-in-941 asas I 99.951 tes 1 Fes l Jll 46 3.se9 1.413 45 ft.3Foll.seFl NEl -4.9971 u 1
ist 1e5-12 941 is49 lies.sti its I ce4 I el u 1.ste I ca4l a,
1.432 66 it.76911.eeri NEl -s.4158 u I
lar 104-14-941 ast6 I 99.991 tts I t es I al na 1.s45,1Fesi a i 1.44e 44 II.tirit. seal NEl -6.e63146 las lor-Is-941 our llee.est zis l Fes i el 4a I, a.au 11 Fasi = 1 a.449 I 4s it.16 alt.se91 seil -5.4tal 4 -1 lie lea-It-941 toont llee.ett its I r es i el 4a l' 3.est i Fesi = l 1.4% 1 4a ;t.lbell.elel NEl -b.4til 46 l
las 1e9 o9-941 II9ss flee.eti ris i Fes I al u 1.s44 i resi = 1 1.457 I sr it.ault.se91 sa l
".1548 u 1 (16 809-27-941 12671 8 99.9si 225 l Fes 1 al u l 1,843 i Fest > 1 1.457 52 ti.16411.se91 del -s.ee91 u 1 i
13 7 ( 10 2 7-9+1 t sa69 l 99.941 ris I t es I el sr ll 1.s59 i Fesi = 1 1.452 5
II.16918.elel Mci -4.7761 46 il Ita (11-15-941 testa l 99.941 tts l Fes i al st 1.813 1 Fest u e 1.449 52 11.16711.e101 N[I -4.6591 u ll 1
119 lit Is-941 1sats llee.ent 225 i r es i el 57 a.ste i Fesi a 1 1.441 '
ss li.165f t.ee91 ot t -4.ro71 u 11 e i 1.4s 1 53 f t.144lt.ee91 #El -2.6321 % l' g
tre 101-17-951 tint 6 1 99.911 22s i res i el s 1.767 i Fesi let lor 14-9si tales I a4.sti tts 1 Fes I el at 1 1.ase i rest a l 1.459 it.taell.etti sei s.4591 4,
122 105-17-951 19e67 1 64. art tes i Fes I al II lI 1.93a l Fest a i 1.447 11 13.rtalt.alti M[l s.tsel 4,
l __ I I
l I
i l_ !
l_ l_1 1
I l_1 l __1 a - Switched to CICOR e
N0fLS: H0fsP0f LOCAi!ONS AW[ $P[Cl Fit o eV CIVING ASSEN84 V L OCATIONS (E.C. H-8 IS f6E CINflR-OF-CORE ASSE MBLY),
lot t 0WI D BY IHL PIN (OCAllON (Df MOTED BY I4 "Y" COOWDINATE WITH IHE Sf vf MIIIN ROWS OF FLEt PODS L E f f t WE D A itet00GH R AND THE "X" CtKJRDI.taff DESICNAf f D IN A SIMIL AR MANNE RI.
IN IHL "l* DlWf C1 0N THE CONE IS DIVIDED INIO 6: AXI AL POINTS ST A'tTING FROM TW TOP OF f tf CORE.
- 1. F-Q( f l INCL UD( S A 10f Al UNCE Rf AINf Y OF 1.es K 1.01,
NE-1024 N2C10 Core Performance Report Page 28 of 54
Figure 4.1 NORTH ANNA UNIT 2 - CYCLE 10 ASSEMBLYWISE POWER DISTRIBUTION N2-10-06 A
P N
M L
E J
H G
F E
D C
8 8
PREDICTED
. 9.24. 4.29. 9.24 PREDICTED NE ASURE D
. 0.25. 4.30. 9.25.
NEASURED 1
. PCT DIFFERCNCE.
2.7.
2.7.
3.6.
. PCT O!FFERENCE.
. 0.30. 0.52. 1.07. 0.92. 1.08. 0.52. 0.30.
. 0.32. 0.52. 1.00. 0.93. 1.10. 0.54. 4.32.
2 3.4.
1.6.
0.9.
0.9.
2.0.
4.6.
4.4.
. 0.39. 3.10. 1.18. 3.17. 1.32. 1.18. 1.88. 1.10. 0.39
. 0.40. 1.12. 1.10. 1.18. 1.33. 1.20. 1.22. I.14. 0.41.
3 1.4.
1.1.
0.0.
0.9.
0.7.
1.9.
3.3.
3.6.
4.2.
. 0.40. 0.84. 1.20. 1.22. 1.20. 1.21. I.20. 1.22. 1.F8. 0.64. 4.40.
. 0.41. 0.8%. 1.29, 1.25. 1.30 1.23. 1.30 1.24. l.29 0.85. 0.40.
4 2.0.
I.2.
I.2.
1.1.
l.3.
1.3.
3.1.
2.0.
1.2.
0.8.
- 1. 2.
. 0.31. 1.12. 1,29 1.24 1.27. 1.19. 1.26 1.19. 1.27. 1.21. 1.29 l.12, 0.31.
0.31 1.12 1.29 1.24. 1.28. 4.21. 1.28. 1.21. 1.te. 1.24. 1.27. 1.!!. 0.32.
5 0.2.
9.2.
0.0.
0.0 0.6.
2.2.
2.1.
1.9.
1.8.
0.5. al.1
-0.2.
3.1.
i
. 0.52 1.19. 1.22. 1.27. 1.20. 1.27. 1.14. 1.27. 1.20. 1.27. 1.F2. 1.19. 0.52.
. 0.53. 1.21 l.24. 1.20 1.22 1.29 3.t!. 1.29 1.22 1.26. 1.20 1.17. 0.52 6
l.6 1.6 3.1 0.6 1.2.
2.0.
1.9
- 1. 5.
1.6
-0.6, -1.4. -0.9.
3.0.
0.24 1.09 1.18. 1.29 1.19. 1.26. 1.27. 1.24 1.26. 1.26. 1.18. 1.20. 1.17 1.07. 0.24.
F 0.26. l.12 1.20 1.29. 1.18 1.26 1.28. 1.26 1.27. 1.t?. 1.18. 1.25. 1.15. 1.06. 9.24 6.4 3.1.
l.6.
0.6
-0.4. -0.4 1.5.
1.5.
0.9.
- 0. 7. - 0. 4. - 2. 8.
- 1. 5. - 1. 2. - 0. 2.
0.29 0.92 1.32 1.21. 1.25. 1.17 1.23. 1.13 1.23. 1.17. 1.25. 1.21. 1.52. 0.92. 0.29 0.31 0.9%
l.34. 1.22. l.27. 3.19. I.22. 1.12 1.20. 1.15. 1.23. 1.17 1.30. 0.92. 4.29.
8 6.4 3.1 1.4 1.4 1.2.
1.3. -0.1
-0. 2. - 2. 2. - 2.1. - 2. 2. - 2. 9. - 1. 6. - 0. 0.
1.2.
. 0.24 1.07 1.17 1.28 1.10 1.26. l.26. 1.24. 1.27. l.26 1.19. 1.F9 1.18. 1.09. 0.24 0.25 I.09. 1.17 1.29 I.20. 1.26 1.23. 1.22. 1.24. 1.23. 3.16. 1.26 1.17. 1.09. 8.25.
9 6.4 2.0. -0.2 0.6.
1.4 0.3
-2.0. -2.0
-2.3. -2.4. -1.9. -2.3. -0.6.
0.0.
2.2.
......1.27. l.20 1.21. 1.18. 1.27. 1.F0 1.27 1.22. 3.19. 0.52 0.52. 1.19. 1.22 0.52 1.80 1.t4 1.30. 1.21 1.24. 1.15. 1.22. 1.17. 1.24 1.22 1.19 0.53.
le
-0.4
-0.4 1.5 2.6 1.0
-2.5. -2.6
- 3. 7. - 2. 7. - 2. 2. - 0. 6.
0.4
- 2. 7.
......1.27. 1.19. 1.26. 1.19 1.27. 1.24. 1.29 1.12. 4.31.
0.31 1.12 1.29 1.21 0.31 1.14 1.32 1.27. 1.26. 1.16. 1.22 1.15. 1.24 1.22. 1.30. 1.13. 0.31.
Il 2.5 2.5 2.5.
- 2. 5. - 0. 6. - 2. 5. - 2.6. - 3. 4. -1.9
-0.9,
0.8.
1.3.
2.6.
0.40 0.84 1.24 1.22 1.28. 1.21. 1.28 1.22. 1.28. 0.84, 0.40.
0.42. 0.88 1.31. 1.22. 1.25. 1.17. 1.24. 1.89 1.26 0.86. 0.41.
12 5.3 3.9 2.5
-0.0
-3.1. -3.1
-3.7. -2.7
-1.6.
1.5.
2.3.
0.39 I.10. 3.10. 3.18 1.32 1.17. 3.18. 1.10. 0.39 0.41. 3.15. 3.15. 1.14 1.28 1.13 1.13 1.00. 4.40.
13 l
5.3 2.5
-2.4
- 3.1. - 3. 4
-4.0
-4.1
-1.7 2.1 8.30. 0.52. 1.08 0.92 1.07. 0.52 0.30.
0.32 0.54. I.09 0.98. 1.03. 0.49. 0.29 14
- 4. 7.
4.7.
0.6. -1.1
-4.0. -4.1
-4.3.
SIANDARD 0.24. 4.29. 0.t4
..PCI DIFFERE NCE.
15 8VE RAGE DtVIAIIDM
. 9. F5. 9.29 0.25.
- l.381
- 4. 7.
0.5
-3.9
- 2.0 SUNHARY l
MAP HO: N2-10-06 DATE: 12/13/93 POWER: 99.97%
l CONTROL ROD POSITIOH1 F-Q(T) = 1.860 QPTR:
D BANK AT 225 STEPS F-DH(M) = 1.409 NW 1.0106 lHE 1.0043 i
F(Z)
= 1.221 SW 1.0024 ISE 0.9826 BURNUP s 1732 mwd /MTU A.O. = -4.405%
NE-1024 N2C10 Core Performance Report Page 29 of 54
Figure 4.2 NORTil ANNA UNIT 2 - CYCLE 10 ASSEMBLWISE POWER DISTRIBUTION N2 CAM 14A A
P N
N L
E J
H C
F E
D C
8 8
PRf DICTED
. e.75. 0.30. 0.25.
PRfDICTED NE ASURE D
. 9.25. 0.31. S.25.
MEASURED
. PCT DIFifRENC[.
1.2.
2.3.
1.6.
. PCT DIFFERENCE.
e.32. 0.52. e.98. 0.85. 0.98. 0.52. 0.32.
0.32. 0.52. 0.99. 0.85 1.00. 0.54. 0.33.
2
-0.3.
9.4.
0.8.
0.1.
1.4.
4.6. 3.3.
. 8.41. 1.06. 1.70. 1.10. 1.38. 1.18. 1.21. 1.06. e.41.
. e.42. 1.06. 1.21. 1.11. 1.27 3.11. 1.24. 1.09. 0.43.
3 2.9. -0.6.
0.3.
1.5. - 2. 0 0.9.
2.5.
2.7.
4.5.
t 8.41. 0.83. 1.30. 1.19. 1.3 7. 1.18. l.37. 1.19. 1.30. 0.83. e.41.
0.41. e.42. 1.27. 1.19
- 1. 58 1.20. l.39. 1.22. 1.33. 0.84. 0.41.
4
- 0. 7. - 0. 4. - 2.6. - 0. 2.
3.1.
1.5.
1.8.
2.8.
2.3.
0.6. -0.1.
0.32. 1.07. 1.31. 1.21. 1.39. 1.19 1.18. 1.19. 1.39. 1.21. 3.11. 1.07. 8.32.
0.32. 1.06. 1.30 4.22. 1.40. 4.!!. 1.40. 1.21. 1.42. 1.?4. 1.78. 1.96. 0.33 5
-0.5.
-0.7
-0.2.
1.0 0.5.
1.4.
1.6.
1.8.
2.3.
2.4. -2.0. -0.6.
4.4 0.52. 1.21. 1.19 l.39 1.21 1.37. 1.16. 1.36. 1.21 1.39. 3.19 4.21. 0.52.
0.52 1.21. 1.88. 3.16. 1.29. 3.37. 1.18. 1.39 1.23. 1.40. 3.18. 1.20. 0.53.
6 0.0..
-0.1. -0.8. -1.9. -0.4 0.7.
1.7.
1.6.
2.0.
8.9. -0.7. -0.5.
0.9 0.25 0.96 1.10 1.37. 1.19
- 1. 56 1.19 1.13. 1.18. 1.56. 1.19. 1.37. 3.10. 0.98. 6.25.
0.25. 0.99 1.11. 1. 56. 1.18. 1.35. 1.18. 1.14. 1.19. 1.37. 1.19. 1.35. 1.09. 0.99. 9.25.
7 1.1.
0.3.
1.0. -0.7
-l.4
-0.7. -0.0.
0.6 8.8.
0.9 8.1.
1.5. -0.7.
1.4.
- 1. 8.
o 0.38 0.8%
l.34 1.88. 1.18 1.15. 1.12. 1.01. 3.12. 1.15. 1,5a. 3.18. 1.38. 0.85. 8. 30.
. 0.31 0.85 1.27 1.16. 1. 54 1.14 1.12. 1.01 1.12. 1.16 1.37. 1.17 1.28. 0.88. 0.31.
4 3.6 0.6
-2.2
- 1.4. - 2. 3. - 1.1. - 0. 7. - 0. 4. - 0. 0.
0.8. -0.1. -0.8. -1.4.
3.1.
3.4
. 0.25. 0.98 1.10 1.37. 1.19. 1.36 1.18 1.13. 1.19. 1.16. 1.19 1.37. 1.10. 0.98. 9.25.
0.25 0.97 1.09 1.36. 1.19 I.35. 1.16. 1.12. 1.17. 1.33 1.18. 1.37. 1.11. 1.01. 0.F6 9
0.3
- 0. 8. - I. 2
-0. 7.
- 0. 0. - 0. 8. - 1. 3.
-1.3
- 1. 5. - 2. 6. - 0. 6 0.1.
0.5.
2.5.
6.8 0.52 1.21. 1.19 1.39 1.21. 1.36 1.16. 1.37 - 1.21 1 39 1.19 1.21. 0.52.
. 0.52. 1.20. 1.19. 1.39 1.20 1.33. 1.13. I.54 3.49. 1.39. 1.21. 1.23. 0.54 30
-0.7. -0.9. -0.1
- 0. 2, - 0.9
- 2. 3. - 1. 9. - 1. 7. - 1. 5.
4.3.
1.4 l.9.
4.8 0.32. l.87. 1.31. 1.21. 1.39 1.19. 1.38 1.19. 1.39. 1.21. 1.31. 1.07. 0.32.
0.32 1.07 1.32. 1.23. 1.38. 1.17 1.35 1.17. 1.36 1.23. 1.54. 1.10 0.33 11 0.2.
0.6 0.8.
l.8. -0.6. -2.1
-2.2
-1.9. -2.0.
1.8.
2.3.
F.7 3.1.
. 0.41 0.83. 1.30 1.19, 1.37. 1.16. 1.37. 3.19. 1.30. 0.83. 0.41.
. 0.43. 0.84. 1. 3 8. I.l?
1.32 1.15. 1.34 1.18. 1.52. S.86. 0.43.
12 4.7.
1.0 0.2. -1.3. -3.3
-2.5
-1.8. -0.8.
1.1.
3.8. 6J 0.41 1.06. 1.21. 1.10. 1.30 1.19 1.20 1.06 8.48.
0.41. 1.06. 3.19. 1.68. 1.26. 1.09. 1.F9 1.07, 0.42 13 0.2. -0.4. -1.3
- 2. 3. - 2. 9. - 1. 8. - 0. 5.
0.5.
1.9.
. 0.32. 0.52 0.98. 0.05 0.98. 8.52. 0.32.
0.32 0.51. 0.97. 0.83. 0.96, 0.51 0.32 14
- 0. 7. - 1. 2.
- 1. 3. - 2.1. - 2.1. - 1.1. - 0. 8.
$fANDARD 9.25 0.30 0.25.
AVERACE 15 DE VI A f lDN 0.26. 0.30. 6.24
.PCI DIFFERENCE.
1.198 5.3. -0.6.
3.7.
=
1.5 SLRW1ARY NAP N01 M2 CAM 14A DATE: 08/11/94 POWERI 100.02%
CONTROL ROD POSITION:
F-QtT) = 1.851 QPTRI D BANK AT 225 STEPS F-DH(M) = 1.456 NW 0.9990 l M 1.0096 l
FlZ)
= 1.166 SW 0.9919 l SE 0.9995 BURNUP s 10811 NWD/NTU A.O. s S.427%
NE-1024 N2C10 Core Performance Report Page 30 of 54
1.
l.
,J l
l l
l '
Figure 4.3 j
i NORTH ANNA UNIT 2 - CYCLE 10 i
ASSEMBLYWISE POWER DISTRIBUTION N2 CAM 20A l
R P
N N
L.. K J
M G
F E
D C
e 8
PRE DICTED
. e.20. e.34. e.28.
Putelcita ff ASURED
. 0.29. 0.35. 0.29.
98 ASURf D l
1.2.
2.9.
1.6.
. PCT DIFffRENCE.
. 0.35. e. M. 1.00. 4.48. 1.00. 0. M. 0.34.
. e.35. 4.M. 1.01. 0.87. 1.01. 0.54. 8.%.
2 l
. -0.2.
0.3. e.6. -0.4 1.1.
4.7.
3.4.
i e.44. 1.86. 1.21. 1.09. 1.29. 1.09. 1.21. 1.06. 0.44.
i 8.4%. 1.05. 1.21. 1.10. 1.25. 1.89. 1.23. 1.08. 0.46.
3 4.1
-0.4 e.2.
3.3. -3.1. e.3.
2.2.
2.7.
5.5.
0.43. 0.84. 1.28. 1.16. 1.35, 1.15. 1.35. 1.16. 1.28. 0.84. 0.45.
. e.43. c.84. 1.25. 1.16. 1.36. 1.16. 1.37. 1.19. 3.31. 0.85. 0.43.
4 8.1. -0.4. -2.6. -0.3.
0.8.
0.9. 1.3.
2.4. 2.2.
- 0. 7.
0.1.
i l
. 6.35 3.06. 1.28. 1.18. 1.38. 1.17. 1.37. 3.17. 1.38. 1.88. 1.28. 1.06. 0.35.
. 0.35. 1.06. 1.28. 1.19. 1.38. 1.19 1.39. 1.19 1.40. l.21. 1.25, 1. 05. 8. %.
5 9.4 0.4 8.1.
l.1 0.3.
3.3.
- 1. 2,
1.4 1.9.
2.4. -2.1. -0.4. 5.2.
- 8. %. 3.21. 1.16. 1.38. 1.89 1.%. 1.14
- 1. %. 1.18. 3.34. 1.16. 1.21. 8. %
. e.%. 1.21 1.1 %, 1.34 1.88. 1.37. 1.16. 1.38. 1.29. 1.39. 1.15. 1.20. 8. %.
6 0.5 9.4
- 0. 7. - 2. 6. - 0. 7.
8.4 1.3.
1.2.
1.4.
0.8. -0.8. -0.3.
- 1. 5.
l 0.28. 1.00 1.09......1.35. 1.l?
- 1. M. 1.17. 1.12. 1.17. l. M. 1.17. 1.35. 1.89. 1. 0 0. e.28.
j
. 9.29 1.01. 1.11 1.34 1.15. 1. 35. 1.16. l.12. 1.17. 1.37. 1.17. 1.33. 1.08. 1.8 2. e.29 7
l 1.5 0.7 1.5
-0.6. -1.7. -1.0. -0.3.
0.3.
0.6.
0.8.
0.0. -1.6. -0.5. 2.3.
2.8.
1
.....0.34. 0.88. 1.29 1.15 1.37 1.14. 1.12. 1.01. 1.12 1.14. 1.37. 1.15. 1.29, 0.88. 0.34
. 9. %. 0. 81. 1.26. 1.14 1.34 1.12. 1.10 - 1.01. l.11. 1.16. 1.37. 1.15. 1.26. 0.91. 0.36.
8 4.1
-0.5. -2.3. -1.5
-2.4
- 1. 3. - 0. 9. - 0. 6. - 0.1.
1.3.
0.0
- 0. 7. -1.8.
3.9 4.3.
9.28 1.00 1.09 1.35 1.37
- 1. M. 1.17. 3.12. 1.17. 1. %. 1.17. 1. 35. 1. 09, 1.00. e.28.
0.28. 0.99 1.07. l.34
- 1. l e. 1. 35. l.15. 1.10. 1. 8 5. 1. 32. 1.16. 1.35. I.10. 1. e4. e.31.
9 0.5
-0.8. -I,3.
-0.6 0.4
- 0. 9. - 1. 5. - 1. 6. - 1. 7. - 2. 8. - 0. 5.
0.4 1.0. 3.3.
7.1.
9.%
1.21 1.16. 1,38. 1.18. l. M. 1.14. l. M. 1.39. 1.38. 1.16. 1. 21. 8. %.
0.55. 1.89 1.16, 1.38 1.17, 1.33. 3.12. I.34. 1.16. 1.38, 1.18. 1.24. 0.58.
le
. -0.9. -1.3
-0.2.
9.2
- 1.1.
-2. 7. -2.4
-2.1. -1.8.
0.3.
2.0.
2.5. 5.1.
e.35. 1,46. 1.28. 1.18. 1.38. 1.17. 1.37. 1.17. 3.38. 1.18. 1.28. 1.06. 0.35.
0.35. 1.07. 1,29 1.20 1.36 1.84. 1.13, 4.14. 1.34. 1.20. 3.32. 1.09. 8.%.
Il e.1 0.6.
0.7 1.5
-0.9. -2.6. -3.0. -2.4. -2.7.
.6.
2.8.
3.4 4.0.
4.43. 0.84. 1.28 1.I6. 1.35. 1.15. 1.35. 1.16. 1.28 0.84 0.43.
0.46. 0.85. 1.28 1.14. 1.38. 1.12. 1.32. 1.15 1.30. 0.88. 0.46.
12 6.0.
1.1.
0.1. -1.5. -3.8.
-2. 9. - 2. 0. - 0.9.
1.3.
- 4. 7.
7.0.
. 0.44 1.66 1.21. 1.09. 1.29. l.09 1.21. 1.06. e.44
. 0.44. 1.05 1.19, I.06 1.25. 1.07. 1.21. 1.07. 0.45.
13 0.2. -0.6. - 1. 5,
-2.4
-2.8. -1.6. -0.2.
0.9 2.6.
0.34. 0. %. 1. 0 0. 0. 88. 1. 00. 0.%. 0.3%.
. 0.34. 0.55. 0.99. 0.86. 0.99 0.55 0.35,
14
- e. 8. - 1. 2. - 1.1. - 1. 6. - 1. 2 - 0. 5.
8.4.
~ki EbIhb^.
1 2E e$hd~[e$2h
~ khk[
OEv!Afl0N.
e.30. 0.34 0.28.
. PCT DlffERENCE.
15
. l.4 38 5.9,
-0.0. -4.9
= 1.6
SUMMARY
MAP HO: N2CAN20A DATE! 01/17/95 POWER! 99.97%
CONTROL ROD POSITIONI F-QlT) a 1.767 QPTRI D BANK AT 225 STEPS F-DHIM) s 1.452 HW 0.9988 l NE 1.0090 i
F(Z)
= 1.144 SW 0.9910 l SE 1.0012 BURNUP s 17126 HWD/MTU A.D.s -2.652%
NE-1024 N2C10 Core Performance Report Page 31 of 54
Figure 4.4 NORTH ANNA UNIT 2 - CYCLE 10 HOT CHANNEL FACTOR NORMALIZED
-OPERATING ENVELOPE 1.2 l
l i
I i.
I i
I I
I l
e
[
i i
4 1.0 l
l l
l l
e I
l i
I l
(6,1.0) j i
I l
(t2, 0.925) g 0.8 O
i l
6 l
l i
I u.
i I
i 8
l I
O l
'l i
i l
I uJ N
i
.J i
i l
< 0.6 E
j l
CC l
l s
O l
i t
l Z
i i
~
l i
$ 0.4 l
z i
i i
i i
t i
l I
i I
I l
I i
i I
i i
l I
t l
0.2 l
i l
I l
l e
i i
l i
I I
j I
i
}
0.0 0
1 2
3 4
5 6
7 8
9 10 11 12 CORE HEIGHT IN FT NE-1024 N2C10 Core Performance Report Page 32 of 54
I l
j 1
l 1
Figure 4.5 NORTH ANNA UNIT 2 - CYCLE 10 HEAT FLUX HOT CHANNEL FACTOR, F (Z) q N2-10-06 j
2.2 m
j 2.0 1.8 e-
=
^
.,.~
1.8 1
1 1.4
\\
\\
- n. 12 1
E
.0 l
1 0.8 0.6
.L 0.4 02---
0.0 61 55 50 45 40 35 30 25 20 15 10 5
1 AX1AL POSmON (NODE)
FQ*P UMIT
- x x MAXIMUM FQ*P BOTT0W 0F CORE TOP 0F CORE NE-1024 N2C10 Core Performance Report Page 33 of 54
Figure 4.6 NORTH ANNA UNIT 2 - CYCLE 10
{
llEAT FLUX 110T CHANNEL FACTOR, F (Z) q N2 CAM 14A
~
~
f 2.0 l
1.8
==
l l
1.6 1.4
- n. 12 2
.0 1
0.8 0.6 I
0.4 02 0.0 m-81 55 50 45 40 35 30 25 20 15 10 5
1 AX1AL POSmON (NODE)
-- FQ*P UMIT x x x MA)0 MUM FQ*P TOP Of CORE BOTT0W Of CORE 1
l i
NE-1024 N2C10 Core Performance Report Page 34 of 54 l
Figure 4.7 NORTH ANNA UNIT 2 - CYCLE 10 HEAT FLUX HOT CIIANNEL FACTOR, F (Z) q N2 CAM 20A 2.2
~-
2.0 1.8 1.6 1.4
- n. 12 E
,0 1
l 0.8 O.6 0.4 02 0.0 61 55 50 45 40 35 30 25 20 15 10 5
1 AXIAL POSmON (NODE) 1 l
I xx: MAXIMUM FQ*P
(
FQ*P UMIT TOP Of CORE BOTTOM Of CORE l
l l
NE-1024 N2C10 Core Performance Report Page 35 of 54
l i
1 l
Figure 4.8 i
NORTH ANNA UNIT 2 - CYCLE 10 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, F (Z)*P, vs. AXIAL POSITION q
22
~
2.0 4
1.8 a
1.6 1.4
- n. 1.2 e
E
.0 1
0.8 0.6 0.4 02
...............................................i 0.0 81 55 50 45 40 35 30 25 20 15 10 5
1 AX1AL POSITION (NODE)
FQ*P UMIT MAXIMUM FQ*P TOP Of CORE BOTTOM Of CORE l
NE-1024 N2C10 Core Performance Report Page 36 of 54
(
Figure 4.9 NORTH ANNA UNIT 2 - CYCLE 10 MAXIMUM IIEAT FLUX !!OT CilANNEL FACTOR, F (Z), vs. BURNUP q
1 2.30 FULL POWER TECH SPEC LIMIT E 2.25 O
h
.20 MEASURED
<:( 2 VALUE l
u_
J 2.15 W
Z r
Z
< 2.10 l
IC 2.05 F-i O
l I 2.00 DJ 1.95 U-
+
F-( 1.90 W
I i
3
+ + +w
?
1.85 D
+4 ie 2 1.80
+----
E
+
y 1.75 i
i 1.70 0
2 4
6 8
10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)
NE-1024 N2C10 Core Performance Report Page 37 of 54
Figure 4.10 NORTH ANNA UNIT 2 - CYCLE 10 MAXIMUM ENTHALPY RISE HOT CHANNEL FACTOR, F-delta-H, vs. BURNUP 1.50 FULL POWER TECH SPEC LIMIT 1.49 E 1*48 MEASURED O
VALUE O 1.47 >
+
<1 1.46 J
+++
1.45
+
+
+
Z
+
< 1.44
+
+
I C 1.43 l-h 1.42
+
m 1.41
+
g 1.40
+
O 1.39 a<
% 1.38 Zw 1.37 1.36 1.35 0
2 4
6 8
10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)
NE-1024 N2C10 Core Performance Report Page 38 of 54
f 1
I ll l
lf lll 1l
'lllf
\\
l l
h1e$ 0Wa% 1. Dg S D E'-
N J
E-2 3
4 5
6 7
8 9
1 0
1 6
5 4
3 2
1 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 2
4 N
0 2C e
1 0
C
+
i o
2 re 7
C i
TN P
AO e
RR Y4
+!
GT r
f EH
)
o T
C 4
DN r
A m
L EN F an LA E6
?
T g
i ce AU u
N r
B R
FI e
e
+
LT p
U8 U
4 o
X2 r
R
+
1 t
v -
1 s
N C
U0 t_
Y 1
BC UL RE P
+
NU1 P0
( 1 G2
?
W Pa g
d1 e
4
/
M 3
T1 9
U6 i
o f
)
l i
I i i
5 4
1 8
I 20 mm
Figure 4.12 NORTH ANNA UNIT 2 - CYCLE 10 CORE AVERAGE AXIAL POWER DISTRIBUTION N2-10-06 Fz = 1.221 AXIAL OFFSET = -4.405%
1.5 MMMMM 1.3 XX X
X XXXXXX MMM M
N e
X X
X XXX XX XXX X
=
M
=
=
MN XX X
X M
M X
=
X M
M M
M
+
X M
M XX
=
X M
=
M M
X X
- M X
=
..X M
70P OF CotX 80ff0M OF Cott t
f NE-1024 N2C10 Core Performance Report Page 40 of 54
Figure 4.13 NORTH ANNA UNIT 2 - CYCLE 10 CORE AVERAGE AXIAL POWER DISTRIBUTION N2 CAM 14A Fz = 1.166 AXIAL OFFSET = -5.427%
t.s.
s.2 M
MXX IN X
XXXX XXXXX N
X X
XX XXXXXX M
N N
NNXXXX X
X XXXX X
X X
X X
XX X
X M
M l
X K
M
=
g M.
- X X
X i
1 80TT0ft CF CORE TOP OF CORE j
e-NE-1024 N2C10 Core Performance Report Page 41 of 54
t.
l Figure 4.14 NORTH ANNA UNIT 2 - CYCLE 10 CORE AVERAGE AXIAL POWER DISTRIBUTION N2 CAM 20A 1
l l
Fz = 1.144 AXIAL OFFSET = -2.632%
.s.
1.2
- XKN X
X XNN N
XMMMM XMNNKN M
MNNXMN xx x
- xxxxxxx, x
x M
N N
x K
N x
N N
x
....E,
x 1....s....:....,:...
.1...
1
.1.....,....x..
a a
n a
,0,,,,0,,
.07,0M OF CORT NE-1024 N2C10 Core Performance Report Page 42 of 54
ll) 1llll)lll 1j
!l ll ll i
l s:
Qw<gZO
<0FOM N
0O W <>ghaW E
J.
1 2
1 1
3 1
1 1
1 1
1 1
1 1
1 1
1 1
0
.3 1
1 3
1 1
2 2
2 2
2 3
3 3
3 4
4 0
2 4
6 8
0 2
4 6
8 0
2 4
6 8
0 N
2 0
y
+-
C 1
C 0
O R
C2
+
E Cor A
Y
+
V e
E C
e A
P R
N 4
e G O r
L R
f E
E
+
T o
_A H rm X
6 B
?
A a
I N
n A
N c
L F
U
+
A e
i P
g U
8 E
u R
R 4
A r
N e
I p
K e
N T
o I
+
N 2.4 r
1 U0 l
F 5
G t
1 P
+
A C
C 1
Y
(
+
T C
2 O L G
+
E R
W1 v10 s
4 d
+
/
BU P
M1 a
R 6
+
,N g
T
+
U e
P U1
) 8
?
4 3
+
o 2
f 0
M S
4 E
V A A S
+ LU U E R ED
r i
Section 5
" PRIMARY COOLANT ACTIVITY The specific activity levels of radioiodines in the primary coolant l
are important to core and fuel performance as indicators of failed fuel and are important with respect to offsite dose calculations associated with accident analyses.
Two mechanisms are responsible for the presence of radiolodines in the primary coolant.
Radiolodines are always present due to direct fission product recoil from trace fissile materials plated onto core components 1
and fuel structure surfaces or trace fissile materials existing as impurities in core structural materials.
This fissile material is generally referred to as " tramp" material, and the resulting fodines are referred to as tramp iodine. Fission products will also diffuse into the primary coolant if a breach in the cladding (fuel defects) exists. Fuel I
- defects, when present, are generally the predominant source of l
radiciodines in the primary coolant.
North Anna 2 Technical Specification 3.4.8 limits the radioiodines in
}
the primary coolant to a dose equivalent I-131 value of 1.0 pC1/gm for j
modes one through five, inclusive. Figure 5.1 shows the dose-equivalent I-131 activity history for Cycle 10.
These data show that the dose equivalent I-131 activity was substantially below the 1.0 pC1/gm limit for steady state power operation. The average full power equilibrium dose NE-1024 N2C10 Core Performance Report Tqe 44 of 54
G equivalent I-131 concentration for the cycle was 4.18 X 10~3 pC1/gm which I
corresponds to less than 1% of the Technical Specification limit.
i Correcting the I-131 concentration for tramp lodine involves calculating the I-131 activity from tramp fissile sources and subtracting l
this value from the measured I-131.
The resultant is an estimate of the l
I-131 activity resulting directly from defective fuel. The magnitude of the tramp-corrected I-131 can be used as an indication of the number of defective fuel rods.
The threshold for the tramp-corrected I-131 that would indicate the presence of a fuel defect is typically established at 5.0 X 10~4 pCi/gm.
1 The cycle average tramp-corrected I-131 was 1.44 X 10~4 pCi/gm.
The 1
average tramp-corrected I-131 during March 1995 was 3.60 X 10-4 pggjg,,
Although there was evidence of a fuel defect, the tramp-corrected I-131 l
never reached the threshold value, and in this case, was not a reliable 1
indicator of a fuel defect. This is unusual but possible for defects that l
are very small which do not permit radiciodine isotopes to readily migrate to the coolant.
l Ilowever, near the end of the cycle during coastdown operation the RCS concentration of Xe-133 (a noble gas) increased dramatically. Figure 5.2 shows the RCS Xe-133 concentration trend for Cycle 10. Noble gas isotopes such as Xe-133 and Xe-135 are more difficult to mathematically account for in the RCS compared to radiolodine because of their greater sensitivity to coolant exchanges with the RCS during dilution and uncertainties resulting from degassing in CVCS components such as the NE-1024 N2C10 Core Performance Report Page 45 of 54 I
~
)
volume control tank. Like radiciodines, radioactive noble fission gases are always present in the RCS due to tramp fissile sources. Ilowever large increases in noble gas concentration such as that shown on Figure 5.2 are not due to tramp fissile sources and can only be explained by the occurrence of a fuel defect.
Figure 5.3 is the RCS I-131 (not dose equivalent) concentration trend for Cycle 10.
The spike in the I-131 concentration which occurred when the unit was shutting down at the end of the cycle is a positive t
indication of a fuel defect. The spike in the iodine concentration is also shown on Figure 5.1.
The ratio of the specific activities of I-131 to I-133 is used to characterize the type (size) of fuel failure or failures which may have occurred in the reactor core. Use of the ratio for this determination is feasibic because I-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days).
For pinhole defects, where the diffusion time through t5:e defect is on the order of days, the I-133 decays leaving the I-131 dominant in activity, thereby causing the ratio to be roughly 0.5 or more. In the case of larger leaks and tramp material, where the diffusion mechanism is negligible, the I-131/I-133 ratio will generally be less than 0.1.
The use of these ratios with regard to defect size is empirically determined and generally used throughout the commercial nuclear power industry.
Figure 5.4 shows the I-131/I-133 ratio data for North Anna 2 Cycle 10.
l The I-131/I-133 ratio was between 0.05 and 0.15 throughout most of the NE-1024 N2C10 Core Performance Report Page 46 of 54
u cycle. Ilowever, this parameter becomes somewhat meaningless with respect to fuel defects because the defect (s) was small enough to inhibit migration of radiolodines to the RCS. The I-131 to I-133 ratio maintained a value close to 0.1 throughout the cycle which indicates that the tramp fissile material is open to the coolant (seen as a large " defect").
A ratio of approximately 0.1 is typical of a core with zero defects.
Fuel vacuum sipping tests were performed on all fuel assemblies from l
Cycle 10.
All assemblies scheduled for reuse in Cycle 11 were determined l
to have no fuel defects.
Two assemblies scheduled to be permanently discharged were found to be defective. Assembly 2L8 operated in N2C9 and N2C10 and received an accumulated average burnup of 47,382 mwd /MtU.
Assembly Y33 operated in N2C8, N2C9, and N2C10 and received an accumulated average burnup of 47,408 mwd /MtU.
Possible failure mechanisms for these two assemblies are currently being investigated.
These fuel assemblies l
will be restricted from further use in accordance with the zero defect 11 policy l
1 i
WI l
NE-1024 N2C10 Core Performance Report Page 47 of 54
Figure 5.1 NORTH ANNA UNIT 2 - CYCLE 10 DOSE EQUIVALENT I-131 vs. TIME 1.00E+01,
- 1..'t+00 1.00E-01 ne a
$ 1.00E-02, a:s s
1.00E-03 s
a 1.002-04 I
I i
i i
I
(
l l
l
'100 li i 60 eo a2 1.00E-05 o
jo isiss i si giiiiiiii i
3.
...g
....g 04SEP93 13DEC93 23MARP4 01JUL94 000CT94 17JAN95 27APR95 DATE NE-1024 N2C10 Core Performance Report Page 48 of 54
u Figure 5.2 NORTH ANNA UNIT 2 - CYCLE 10 MEASURED RCS XENON-133 VS. TIME 1.00E+01 1.00E +00 I
i 1.00E-01 m
a a
3 u"m8 s's" "
m
""' " sum,"m s h
g
,a m,
am I
l 1.00E-02 '
um"" ","s",
8 s,8ga" a
m m
a 8
8 m
i l
8 m
l m
a m
1.00E-03 l
l l
1.00E-04 --
r j
i i
i i g i
i l
l g
g g
ao,
O Sog 4%n M
to#
1.00E-05 o
liiiii.ii.;
il.
.... j
.... g..
l 04SEP93 13DEC93 23 MAR 94 01JUL94 090CT94 17JAN95 27APR95 DATE NE-1024 N2C10 Core Performance Report Page 49 of 54
Figure 5.3 NORTH ANNA UNIT 2 - CYCLE 10 MEASURED RCS 10 DINE-131 VS. TIME 1.00E+D1 1.00E+ 0D 1.00E-01, I
1 I
.3 3
2
} 1.00E-02 s
5 5
1.00E-03 I
1.00E-04
'800 l8 I i
t i
t l
l l
i i
i l
00 y 60 a2B ea o
1.00E-05 iiiiiiiiiijiiii..
g...
.....g...
.....g.
g...,,,,,,;
04SEP93 13DEC93 23 MAR 94 01JUL94 000CT94 17JAN95 27APR95 DATE NE-1024 N2C10 Core Performance Report Page 50 of 54
e o l
Figure 5.4 i
NORTH ANNA UNIT 2 - CYCLE 10 I-131 / I-133 ACTIVITY RATIO VS. TIME 11.0 3
1 0.9 i
a i
0.8 l
I 1
l0.7 1
1 i
0.0 l
lO.5
?
1 m
i 10.4 0.3 e
a r
- 0.2 a
a E
20 "
m 10.0-o i..i i.i.igi i.
..g.........gi..
.....gi.
i.
..i........
l04SEP93 13DEC93 23 MAR 94 01JUL94 090CT94 17JAN95 27APR95 l
l DATE l
NE-1024 N2C10 Core Performance Report Page 51 of 54
4 Section 6 CONCLUSIONS The North Anna 2, Cycle 10 core has completed operation.
Throughout this cycle, all core performance indicators compared favorably with design predictions.
Core related Technical Specifications limits were met with significant margin. No significant abnormalities in reactivity or burnup ac'cumulation were detected.
RCS noble gas and radiolodine activity indicated there was a fuel rod defect late during Cycle 10. Fuel vacuum sipping tests identified two discharged assemblies as defective.
These assemblies will be restricted from further use in accordance with 31 the zero defect policy l
l l
NE-1024 N2C10 Core Performance Report Page 52 of 54
Section 7 REFERENCES 1)
E. R. Hakovksy, " North Anna Unit 2, Cycle 10 Startup Physics Test Report," Technical Report NE-963 Rev. O, December, 1993.
- 2) North Anna Power Station Unit 2 Technical Specifications, Sections 3/4.1, 3/4.2 and 3/4.4.8.
3)
T. W. Schleicher, "The Virginia Power Fuel Assembly Burnup arH Isotopics Code Manual," Technical Report NE-679, Virginia Power, February, 1990.
4)
D. L. Gilliatt, "The Virginia Power Follow Code Manual,"
Technical Report NE-679, Rev. 1, Virginia Power, April, 1991.
5)
W. D. Leggett, III and L. D. Eisenhart, "INCORE Code,"
WCAP-7149, December, 1967.
- 6) Hemorandum from R. G. McAndrew to J. R. Hayes, " Core Operatirig Limits Report (COLR) Tech Spec Amendment 146/130", July 5, 1991.
7)
W. S. Miller," North Anna 2, Cycle 10 FOLOW Input and Calculations",
Calculation Note PM-507, Rev. O, Addendun R, March 1995.
8)
S. S. Kere, " Reload Safety Evaluation North Anna 2 Cycle 10 Pattern RE," Technical Report NE-955 Rev. 2, Virginia Power, October, 1993.
NE-1024 N2C10 Core Performance Report Page 53 of 54
w.
REFERENCES (cont.)
9)
P. D. Banning, " North Anna 2 Cycle 10 Design Report" l
Technical Report NE-958, Virginia Power, October, 1993.
l i
- 10) W. S. Miller, " North Anna 2 Cycle 10 TOTE Celculations",
Calculation Note PM-507, March, 1995.
I
- 11) Nuclear Standard ENNS-2904, " fuel Integrity Monitoring", Rev. O, May 26, 1992.
- 12) R. A. Hall, et al," North Anna Unit 2 Cycle 10 Flux Map Analysis",
Calculation Note PM-515 Rev. O, and Addenda, October 1993 - March 1995.
- 13) T. W. Schleicher, "The Virginia Power CECOR Code Package", Technical Report NE-831, Rev. 2, March, 1994.
1 NE-1024 N2C10 Core Performance Report Page 54 of 54
. _. = _, -.. - - _,. - __
.