ML20101J587

From kanterella
Jump to navigation Jump to search
Rev 0 to Technical Rept NE-876, North Anna Unit 2,Cycle 8 Core Performance Rept
ML20101J587
Person / Time
Site: North Anna Dominion icon.png
Issue date: 05/31/1992
From: Dziadosz D, Thanh Nguyen, Psuik T
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML20101J555 List:
References
NE-876, NE-876-R, NE-876-R00, NUDOCS 9207010148
Download: ML20101J587 (53)


Text

m

- p,

o a

g-o.

e r

j.

9, g

. ', -,./

e-g' s.dg g,.

[

J'

-.,/,'

,.,i..,

g.

,,,; \\

- I-p.'.

,, _,,..g. y, g,'.'.

.i

,,',iM

-i e. b,. J., '

. k. '.,.. -.

=

J.a.1. y. ',.

l?.).; i k 4, ?.y,;.}';.;f: v ;,:, :

._..=

6 s'.-

~

',t s.;;*

.' f, y.,-

'.,, " ',I s

s

'.f,,. * ' \\ i -

.-f %.'

I c

t

,,,,..,,y

'g. -..

.1 g

.[

I;

- *',. ',l',.

, !Ig 6 ' N "., '[.','t y', _

s 7

4 y-,?

.,. ~ - -_..;$,,,s'p..;,~( 2 ' /':..:

q

f.

n...,

.e,

~;:,, ;; ;_

, h-h s-

.'l' 6. '. G. -

4

}

,[

q

.j _' j.

,g'__

_. s ;,

- ll.'{

e..e.,.'-

~... '. -

f n'

.:L J '

.T, j,;, f.

_ \\_... _

.; f ;,.... _ -...

,. s ;,.

\\.. ;..,...

- :...; n.W.,q..

s

..q..,.,'~

t-

.,.g,3

.+m

. J.

. m

.....'.i,,7*,.

1 g

". j.- '

c..,.

... L a_ :. ; y,; ;,,,

,e.

L, 3

[f,,

n- -

5

..... S.'N;. U.

'.y (

{. '...],-

[:

. ~.

.,t s

j "
..; 4 l. ) f f T,h{..

t..,*

.6' a..'

$i

) l(. '. '. i ' - -

{

('

a'

- 4.

. N

.e l' ' ' '

' ', '.,, ' ' Ni*

',1

~

"i.

.C 4.

\\.

- s.

A

.'a,

.o..

p e

g _ v,,(., b

.. M. u.

f.

t, 'We, g.

'.*s s.

6,e,,.... -s.. ', / ;. p.,..

i

,c.

,p..

t.

,'! t

..<U,* ;.,

.y,.

e.

..,.-, ',,.,('j_

t,.,

4

. j

/

A

, ;6,.,, ?

  • I,,.

.- g.

' ^

's a'

f s y' h,.. w%. ;. -', '

,. h

  • g s,,9

. c.

~)>r.,ary ae 4

s

t. w ;

. 3,

.g -

,, V.

Y.',f.',-

. $" g ', ; *, e.

. r. a j..

+

6 l.

3 :.

f,,

..l. ' f::.{ J. J i i ;. /:. ) d f.;

f, f' ' ' .

"n..'.

W.,'

?

. '~

-. Y. y,.' ' ' '

~'

r

.,.} g. ;.. _.. y K ^.b ',f.:., )' h...,. )) J., )'..

,. L ; '..,L6,

^

.;,o

. ;;.. 3 <.

^:

. i -

i

?-

..., ; _.., f *.

s.

...(.

tp.3.,...t.z, 4.. %

......p..

,,.s

..../..3.s.v'

,...y

\\

..,.;,--.4 9,,,. 7,::,

.,. {..,

...g*,..

A I

<.,s, q.

,s q,.

8

'I

1. -

+ -e

,'..V*

.,,f

.s I. ' [ [.; d

'l j

N, i ;.., -

6 g

,(. g

..,, -( y.[('>.

'O

.,a,

.'l-*

  • I g

,.1.,-

. ~,

sf...

R.

. '.. ;~

.( t

.s J,

v

..- g a

.. ~..

.r

...g

.. :. y.

g....

3.

-,'Y' q s.' M.,

s g.z ' n.,4 9

.. f...,.

. .I-

3. 3.,

z s

,3 6

.N'

=

'.l,

~

'7

'- 4'

...t.

s.,4

. g.,, e.,..'s'-

k

.i*.

4

. 'p t

, - }., ; p y.. ' 4 4-

, y,

-y y.q.

j-

.,.. - l

-,),

y'-

7

s

.;.I.

..\\...,-

i.,.

-s.; c.

)4.

,.6,.i

... y*,...;

,,g

..,\\l9 - t..p... -

i. 1* -

- \\ \\_,

,h y

6.

.p... s...:.,,...

, 4. ' ;,8 4 o

r g,

s ' p\\

n L.

-i. g,,

.. e.

j ;, + t p.

J n,.g c

.. k,-

. '..,,,.., - ;,2 n

.., p+f. ~.

,..,, I,$ '.

~,;

..*.'b',,s....

I,

.y.'. ' "

w,. (..

/. '

,, g

  • ^

t.

+

- c 6.. -p.\\....,. s h, *

'Y i,

z.,......'

?, ; 4. s _..~.,.:.-

g.

,t

')' '.*

's'.

,,s-

, n ' _.: ('_'..,...

y 4.:.:

. i. J,

8 p,

.z.

..,r.

+ l) - - n.

s4

.*(y

.4'

.s O,-

)

, (k../..

9 k. -

. T '

P-9pq

- Q.'p

).

',i

  • 3

- p

( +

.. ',.., ; [j #

.i

[., '.,. 4

..[. [ E.

, s,. -

7.?.,. e

,4'y t

...e...

  1. c'y,

L

- v\\.....,

. 3..

.c, e,

~

  • * ~ ~

. h, g. s.

, - pe gp.,.

n i c.

... -.. b., c.

r :. ~. -

e

.q.

s 4 -

a

.g 7'

\\'

'.. Y

's

$M',t,.

j

.y

~.

K

.,: ~ *'

_ e>,

U,f ' p. '

& { },... *

' a 7 e-

.]

b. >-

.. ; y..

y_..

,q u 3;..

'i - -

( e..,

g 7..,.

7,

,.'..'.9 g

.. N

)

y,,,../~.

.. 4 f n'q ~..

':,. M. ' i l.e. ':

, q

,Q mj

.i o,,,'c. 4 - C4 -..

. * -, m,,

f.. ' (

. :#,, 3 a. y x

. i,, Q t 1

.s.

4,....~

4,.r 3

g...-

s, s

.<.m.

v.

'.,q,4,. -

,...,W * "' '....s p

s ig j 4, V,,i.,...s%... ',

.s

'.,,g, 'W8, (p

,. - '..'\\O.

',,y.

l

,..cj

........o,

  • -s.,a y N;--

'g

..., y. :..::. :.

,.. /, - ~.....~3,..

s. s n

. s,t'.N

's-

.g y x. i....

'.,,. p, :, o.,.i..Q.

,,t[ n '.... i

,,, ;.' r

,g.,,

. 3 f,.9...'.,

jf.:;..A c:s

,'t ;,' -

,2

.M ;;.;<....,...~.;..

  • C:

w

. x;.. +

- c

+ ;

..~.&; /* % e

.s

,. s2.y. p.s ;.....

c y ;.'.. ~. y ;,.

m s.'.

c.., '

's 4.';,, : ~,,

.3 s

p.

, p* *

.n

. ;; ?,' l '. f,0;:,. ',.} ': ' N ',;.

ed

' ' 5 Y., q'_. ; ~ p * ',

. ( (*,

\\. ':

b

'., f ',. :

g

- p(u. i,. f p' ;%' 'Of f.. 'V '

'N,n p :, ;. ;g % 'q;N;. l ' -.., n, A t. ;

c.;- ;2 (

),

. c.4-

! ',; 3( h.'. '; cG 71 :. s. m

;., A.,,". - ;.
. 4
w

.'y

.4 1.,

n.:. y

g... -

v

.,.3*..c...

,_ ;, t... +

q.. q. s e lg 1g.;f.:..

~.. - -:.,.

_ g.y p -J. [ 7.i -*..,

7

. 4.% g 6... s. '.:g~[.M:., s y*L, _ ?.

c. .,. a = 3. q,.. "..

, '. ' y ; g:. :.., '. -

.m

(,

-l k, ;;;e... '

r.,. :

.. :... ] -

wt

, h.. '. ty. n,.. ;.

... $,49 e...

3, p

n g.

s.;

.w...-

..e,.

u.

s.

m

.t c.

' I ['. [

'y*.

s

'.. Y.: f.,'.,..u;, ~; ;gt.L.:.^x f n.. G N N.

F %. n.: N.:',.D q.1 f i{ s +. } Q,' j ['l'.,:.. K.,.@yQ ? !.j. ' / ' (. gj.,.':_T,-

N ', ; y,'

.,.; :.[ '

g[

. - f.

y...

.-(

$I,i f ',,, ', - e l

c s

s. yt.

.y

'..,.. :y

.,?'

\\.

Y,

?, %w$.

m.

1-

,.. _.+ ;Q ;., ;.. e.. >.,

?

,u

.c..

h'

,3

j.,'v. M.b Y; Q::
  • j,a., ((..%. ac # '.l. 'i l,

p, ;.,,..

.:. < y.g c.

c. ; -. ;.

kJ I;, /, k...m,'h,+;h.,..) g '.3 $.

n. $..y.:. -'[a[. w

.u.'

((m. 1%+'[f 3,[.cy:h..h

[w'*jQa ;.e [l. '.,' I V

j g.

,. v..

-~

e, hk ].f..[%e h,..,th.,

. ~.

v.+. [ ').;: $. I ;.:;'

1[jk

f.E']2 w

y d

j ww. _,.

.~..,,.

n.

M B R E M W M. G M M W

s s

s.

TECilNICAL REPORT NE-876 - Rev. 0 NORTti ANNA UNIT 2, CYCLE 8 CORE PERFORMANCE REPORT r

NUCLEAR ANALYSIS AND FUEL POWER ENGINEERING SERVICES VIRGINI A POWER MAY, 1992 4/ ICV Q PREPARED BY [/ [

0 4:y,v T. T. Nguyen date' REVIEWED BY:

5/tc/ 94 T. S. Psuik Date REVIEVED BY: I/1 hos f 41-f t.

T. /.. Brookmire Date REVIEWED BY: j b 7 '7 1

5' 274 z.

A. P. Main Date APPROVEDBY:m[

P ' 0 * > / #-27-72

0. Dzietlosz 6' Date OA Category: Nuclear Safety Related Keywords: N2C8, Core Performance

s s-TABLE OF CONTENTS PAGE 1

Table of Contents List of Tables 2

3 List of Figures.

Section 1 Introduction and Sunmary.

5 Section 2 Burnup.

12 Section 3 Reactivity Depletion.

. 23 Section 4 Power Dist:ibution.

25 Section 5 Primary Coolnnt Activity.

45 Section 6 Conclusions 50 Saction 7 References.

51 e

l l

l NE-876 N2C8 Core Performance Report Page 1 of 51

IS LIST OF TABLES TABLE TITLE PAGE 3

r

-4.1 Summary of Flux Maps for Routine Operation

. 29 s

'\\

1 NE-876 -N2C8 Core Performance Report Page 2 of 51

s LIST OF FIGURES FIGURE TITLE PAGE 1.1 Core Loading Map....

8 1.2 Burnable Poison and Source Assembly Locations.

9 1.3 Movable Detector Locations.

10 1.4 Control Rod Locations.

11 2.1 Core Burnup llistory 14 1

2.2 Monthly Average Load Factors 15 2.3 Assemblywise Accumulated Burnup: Measured and Predicted 16 2.4 Assemblywise Accumulated Burnup:

Comparison of Measured and Predicted 17 2.5A Sub-Batch Burnup Sharing 18 2.5B Sub-Batch Burnup Sharing 19 2.5C Sub-Batch Burnup Sharing 20 2.5D Sub-Batch Burnup Sharing 21 2.5E Sub-B tch Burnup Sharing 22 3.1 Critical Boron Concentrar. ion versus Burnup - IlFP-ARD 24 4.1 Assemblywise Power Distribution - N2-8-07 30 4.2 Assemblywise Power Distribution - N2-8-14 31 4.3 Assemblywise Power Distribution - N2-8-25 32 4.4 lbt Channel Factot Normalized Operating Envelope 33 o

4.5 lient Flux Hot Channel Factor, F (Z) - N2-8-07 34 4.6 Heat Flux Hot Channel Factor, F (Z) - N2-8-14 35 q

4.)

Hea: Flux Hot Channel Factor, F (Z) - N2-8-25 36 q

4.8 Maximum Heat Flux ilot Channel Factor, F ( Z )*P, vs

?.

n Ax ia 1 Posit ic;n 37 NE-876 'N2C8 Core Performance Report Page 3 of 51

l -.

LIST OF FIGURES CONT'D

. FIGURE TIT 1.E PAGE 4.9 - Maximum lleat Flux flot Channel Factor, F (Z), vs. Burnup

. 38 q

4.10- Maximum Enthalpy Rise !!ot Channel-Factor, F-delta-Il vs.

Burnup.

.-39

.. 40

[

4.11 Target Delta Flux versus Burnup

'4.12 Core Average Axial Power Distribution - N2-8.

. 41 4.13 Core Average Axial Power Distribution - N2-8-14

, 42 4.14 Core Average Axial Power Distribution - N2-8-25 43 4.15 Core Average Axial Peaking Factor vs. Burnup.

. 44 5.1. Dose Equivalent 1-131 vs. Time.

. 48 5.2 I-131/I-133 Activity Ratio vs. Time

. 49

\\

/

NE-876 N2C8 Core Performance Report Page 4 of 51

+'

Section 1 INTRODUCTION AND

SUMMARY

On February 26, 1992, North Anna Unit 2 completed Cycle 8.

Since the Initial criticality of Cycle 8 on November 1,

1990, the reactor core 8

produced approximately i.0862 x 10 MBTU (18,239 Megawatt days per met ric ton of contained uranium).

The purpose of this report is to present an analysis of the core pe r f o rtna n c e for routine operation during Cycle 8.

F The physics tests that were performed during the startup of this cycle were covered in the North Anna 1:n i t 2,

Cycle 8 Startup P;iy s i cs Test Report

  • and, therefore, will not be included here Nort h Anna Unit 2 was in coastdown f rom January 14, 1992, at which t ime

~

the burnup was approximately 16,829 MWD /MTU. The coastdown accounted for an additional core burnup of roughly 1,410 MWD /MTU from the end of full power reactivity.

The Cycle 8 core consisted of 14 sul-batches of f uel: four once-burned batches from Cycle 7 (batches 9A, 9B, N1/10A, and N1/10B); seven twice-burned batches, one from North Anna 1 Cycles 3 and 4 (batch N1/5),

one f rom North Anna 2 Cycle 5 and North Anna 1 Cycle 4 (batch N1/6), one f rom Nort h Anna 1 Cycles 5 and 6 (batch N1/ 7), one f rom North Anna 2 Cycles 2 and 3 (batch 4), one from North Anna 2 Cycles 3 and 4 (batch 5A), and two from North Anna 2 Cycles 6 and 7 (batches 8A and BB); one NE-876 N2C8 Core Performance Report Page 5 of 51

L

thrice-burned' batch f rom North Anna 2 Cycles 5,6, and 7 (batch 7A); and' two fresh batches (batches 10A and 10B).

The North Anna 2 Cycle'8 core loading map specifying the fuel batch identification, and fuel assembly locations is shown in Figure 1.1.

The burnable poison locations and source assembly locations is shown in Figure 1.2.

Movable detector locations are shown in Figure 1.3.

Control ro'i locations are shown in Figure 1a.

Routine core follow involves the analysis of four principal performance indicators.

These are burnup distribution, reactivity depletion,-power distribution, and -primary coolant activity.

The core burnup distribution is followed to verify both burnnp symmetry and proper batch - burnup sharing, thereby ensuring that the fuel held over for the next cycle will be compatible with the new fuel that is inserted.

Reactivity depletion Js monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate at what burnup level refueling will be -required.

Core power distribution' follow includes the monitoring of nuc1c r hot channel factors _to verify that they are within the Technical Specifications:

1imits, thereby ensuring that adequate margins for linear power density and critical-heat flux thermal limits are maintained.

Lastl;, as part of normal core follow, the primary coolant activity is monitored to verify that the dose equivalent iodine-131 concentration is within the limits 2

specified by the North Anna Unic 2 Technical Specifications 4

radiciodine analysis based on the iodine-131 concentration in the coolant is performed to assess the integrity of the fuel.

NE-876 N2C8_ Core Performance Report Page 6 of 51

Each of the four performance indicators is discussed in detail for the North Anna Unit 2, Cycle 8 core in the body of this report. The results are summarized below:

1. Burnup - The burnup tilt (deviation from quadrant symmetry) no greater than 10.30' with the burnup accumulation in on the core was each batch deviating f rom design prediction by no recre than 1.69*..
2. Reactivity Depletion - The critical boron concentration.

used to monitor reactivity depletion, was consistently within 10.39' AK/K of the desigii prediction which is within che ilt AK/K margin allowed by Section 4.1.1.1.2 of the Technical Specifications 3.

Power Distribution - Incore flux maps taken each month s

indicated that the assemblywise radial power distributions deviated from the design predict ions by a muimum average dif ference of 2.5*,.

All hot channel facters inet their respective Technical Specifications limits.

4.

primary Coolant /,c t. i v i t y - The average dose equivalent iodine-131 activity level in the primary coolant during Cycle 8 was approximately 0.0242 pCi/gm.

This corresponds to less than 31 of the operating limit for the concentration of radiciodine in the primary coolant. Radiciodine analys is indicated several fuel rod defects, which prompted ultrasonic testing (UT) during the Cycle 8 to Cycle 9 refueling outage During UT testing, it. was confirmed that night f ue l rcxis in five fuel assemblies were defective NE-SM N2C6 Core Performance Report page 7 of 51

Figure 1.1 NORTH ANNA UNIT 2 - CYCLE 8 CORE 1.0ADING MAP

]

R P

N N

L K

J H

C F

f D

C A

i 54 4 as I $4 1

1 $31 1 Wse I sin l I

I I"98~Illia~ I E

l lN1/neAl aA I I sa inn / leal los I Wl? I to6 l v33 l 137 t vu i sel I wls 1 2

i i

l _ _ I__

_I l __

_1

__. l. ___..

i ra l los I lea i sa i los I es I ita I tot i FA l v7? I v60 1 voz l s39 I v39 i x24 1 v26 1 v43 1 vol 1 3

)

l __._... I I

I i

l i

1

_I l_ _

j i FA i 98 4 ton l 9A i 10R l 9A I let i 94 l 108 i 95 1 7A l

i v26 1 x46 I v42 1 xla i v48 i xe7 1 v64 l mes i v53 1 x52 1 v35 4 4

1.- 1 I

l _ I __ l __ l _ _ l __ I l.__f I

i aA I los i los IN1/ leal loa I 9s I 96 I 98 i 10A IN1/ leal los I 106 l ta l

I W14 I v34 I v51 l vil I ve9 l x5e i 133 1 x32 I vir i sc5 lY% i vsa I wil 1 1

i i

i l ____ f.

I i

1

._._1 _ _ l.

l __._ t I

IN!/ leal laa l 94 I lea l 9A I loa l N!/5 1 19A l 9A i 16A I Va l IGA lN!/16Al l rio i ve7 l Mol i v?o I als I vt*

Itil I vo3 l nol i 177 i Nil I vil I s t9 1 6

1._ _ _1

_.. l _ I i __.__ I _ __ l I _ _ l _.__ l _._ l I.._ _ l ___._ l _ _

I sa i les i 9a i los 1 9a i lea l 98 i laa I 9a l lea 1 9s I los I 9a i 104 4 5A I

I 554 8 v55 1 148 I V63 l x41 I vl6 1 x*o i vil i xis I vl*

I x42 1 v61 l x47 I v46 1 50^

l 7

1 1

I i

l I

l _.)

1.

1 I

L __I_

l_ _I I

i 68 1 98 l 106 l 9A i 9n 14 l loa i N:/7 I 104 14 1 94 4 aa l lap 4 9e 1 as I i WiS I uth I v45 t xt? I a45 l p?7 i yl5 l csa i vo2 l 918 I us! I un6 1 v32 I ust i Wh4 I a

i l __ t l ____ I l _ _ _ l_._ _ I _ _ I_

__I I

l__l l _.__ I I

I SA

! los I 9a i los I 9a i ion i 9a l les IN1/ leal lea I 9s 1 los i vs i les I sa i 1 534 1 v29 l x34 I vsa l x43 i v?3 I art I via i til i via I x29 1 v41 i N49 l vs4 l 5% l 9

I l

i I

I l.. _ _ L_ _ I

l. _ _ I_.

i 104 l __ l l _ _ l __ l l

IN!/ leal lea i 94 1 les t 9a l Is4 lN1/>

l 104 i va 1 9A I lea (N1/10Al i so? I vir 1 ao5 I va i als ! vee 1 E 56 I vt 1 xar ! vol i sl6 i vos i so4 4 le 1

I l._ I 1

1._

I l _ -.,_ l __ l l__I l __ I i 8A 1 los I los INtricai. loa I 9n i vs i es i laa IN!/loal los I los I aa !

I WIS l v57 1 V35 I tot i vi9 l xW f x76 1x% i Yl$ l V06 l v57 l v37 l W25 1 11 1

1 l _.

l _ _ l.__, ! _ _.. l I

i I _ l __ _. l._ _ I _

I l MI/h I 48 1 108 1 94 l 108 1 94 I lot i 4A l loa i 98 l 7A i

1 757 1 x26 l V62 i Rio l vso l xv4 I vs9 l als i V54 1 x23 l V57 1 12 l_ ~l l __. -_ I I

l _.

l

1. _ _I

_l._I 1

1 7A i 10b l 16A l 9%

i tot i 92 l Ita I not i 7A i

1 Vlo l Vn*

I vit l xia l V46 1 x21 l V?5 i vit l V16 1 13 I

l_I l

_I I

- I __ _ \\ _._ _.. I I

I 4A IN!/ leal (GB l 96 I 108 (N!/ leal SA i

l Wlb i nei I v10 l x77 l V49 I Ell I Wo4 l 14 I

I I. -.I_ _I_

I I

l i 54 i BB l 54 l

l l-- > B AICH i 507 i W%1 l 541 1 15 1

l-->

ASSEMBLY 1D l_ _t i

i i

I fli t aS$fMELY otSIGN PAPAMIffRS SUR-gAICH N1/5 N1/6 N1/7 NI/10s NI/133 4

54 7A 8A 86 9a 93 40A I

INlllat INRICHNENT 3AG 3.59 3.60 3.aa

=.00 3.41 3.59 3.60 3.79 4.00 3.80 4.01 3.'49 iW/0 0-235)

ASSEMelv TYPE 17 17 17 17 17 17 17x17 17m17 17x17 17m17 17 17 17 17 17 17 17:17 17:17 17 17 1

NUN 8t p OF aisfMBt!ES i

l 1

12 1

?

6 7

6 4

16

.51 24 l

76%

764 764 FUE L RODS Pf R ASSf MBli 764 2h4 764

?b4

?64 264 76%

.W 764 76%

NE-876 N2C8 Core Performance Kaport Page 8 of 51

{

9 Figure 1.2 NORTil ANNA UNIT 2 - CYCLE 8 BURNABLE PolSON AND SOURCE ASSEMBLY LOCATIONS O

P M

M L

E J

H G

F f

0 0

S A

I

(

l l

i I

l I

l I

l I _._. I l

i i

  • P l

I 6P 1 1

1 l

l lBP008 i jnP087 l l

1 7

1 1.__ _ I l._.___ I l._._l _, l_ _ _

i i /p i I?P 1 i F0P i i I?P 1 TP l i

l IBPoin 18Pe74 I IBP066 l lBP025 18Pfl6 i 4

3 i _._ l. _ _ i

!... _ l l_ ___l.____i__

.I _ _ I _

l 1

i i sp i i lop I l Pop i i 16p i i

i i

i Ibpo*4 i isPo60 1 1$P459 1 IBPO43 i 1

j 4

,_l__I I

i 1

I l ____ I __ I O _.._._ l _ ___ I ____

i i /P 1 16P 1 I 20P i i

1 1 :op i l 16P l 7P I I

I 18P013 15P042 I leposa 1 i

i 18P057 l 16Po4l 189015 I i

4 l _ _ _ f _._ t 1.___ f.

l ___.._ I l_.I l _..._ f._ I __ l.._. I i

j 1/P l l l 'IP l

l 16P 4 1 thP l l 70P l l IFP l 4

p 1

16PD2? I 18P0% l I bP0 52 1 l$ Pall 1 lAF05% i 1890?! l I

b I__I

-l l

l..-. I _ _1 l

I

$ __ I l

I __... !

l 4 6P I l 20P 1 1 16P 1 1 169 l t 16P 1 1 /0P i l 4P i l

I lBP006 l IBP054 1 ISP050 $

itF3% 1 18P9?9 l 18P455 I (BPN95 I i

7 I

l I__l l __. I _._ l _. I l _._ _ I _ _ l _

.l-_ _ I _...I_

l. _.. I I

I l 209 l 1 5511 (

l IbP 1 I thP I l SSIS l t 70P I 1

1 1

1 IBro63 I i

i laPoss l IBPoA4 l l

1 19P062 I l

l 5

I-. _ l __ I

1. _._ I l____I l _ _ I_ _ _I I

l __ l _._ I _ _ i

... I I

I

  • P 1

I rop I i 16p i i 16P l 1 16P I I teP l I

  • P i

i l

19P004 l fBP032 l lBPO?A 1 (BP955 i ISPO?/ l IkPOSI i (BP901 I i

9 l ___ L __ l __ _ l

.l_ _ l I _ __.I_ _.l. __ I l ___.I.. _ _l l_

I

.I i

l I?P I l lod i l 16P l l 16P l 1 F0P 4

$ !?P 1 l

l 18P020 l IBP0$0 s 189026 1

!BPO?% l lBP049 1 lBP019 I l

10 I

I _. _ l,.... l l-_ l I

l I._____l l

I _.._ I I

l l TP l 148 l 70P l l

1 l 200 l i ItP l TP 1 1

4 18P012 18P M i lEPO4a %

1 1

18P0%? l 189654 IBP010 l 1

11 l __ I I

l__-

I l.__ I l _.. I l -,_ l._ __..l._.__.I I

I I

I isp i i 20P l I lop i t lop i l

i l

i 18P014 l lBPO*6 l 15P0%$ 1 16P037 l l

1 I?

I l__ _ l._ _ l l ___ t I

l____._f __..l.__ _ I I

i /P i !?P l 1 20p i i !?P 1 TP I I

I I BP611 18P018 I 18P061 1 IBP017 IEP049 6 l

15 l

I i

1 _ __. I

.l___

I l

_. I l

l i

I %P l I

  • P 1

1 I

I I

lepoo? !

1BP001 1 1

1 4

1 1

I l _,. ___,., I _ __1

..__. l._ _.._ l i

I I

4P - 4 BURNA#ts p91'aDN WOD CLU'iif P 1

1 l

l

?P - ? B419hAhlf Pul%N 900 ClO5!!R l,,_ _ j __,_ l

}

l$

!?P - !? BtWhAh[ POISPN wuD (tusitk 16P - 16 BUWNLELE 9015CN kDD (t t?sllit 20P 20 BUDNAB4 7 Pol 5ON ROD CttrIH P SSve - tilnNDARY $0uME NE-876 N2C8 Core Performance Report.

Page 9 of 51

Figure 1.3-NORTH ANNA UNIT 2 - CYCLE 8 h.%MOVAlli.E - DETECTOR LOCATIONS N '%,

i D

P W

M L

5 J

M f

L 0

C S

A 1

i i

i*w I

I MD 1 i

N,'

1 i

1 g -- q I, -

l(--

g g

-1 1

1 1

I l MD I 1

4

.I I

I l_ _4 li,%

I I

I I

I I

i 1

i Ma i 1

I Mo i Mn i I

I no I +

3 1

i l

i l

i I

l I

.s.~

I I

I i

i I

I i

s i

I i

I I

I MD - 1 1

I Ma l I pn 8 i

f i

4 1

I i

1__f.

I 1

l __.

I I

l_

4,'

a l

i I

i i

i i

i

. Mn I ma i 1 Mo I

% g 1

I i

1 N

I I no -l 1 MD i l Mo I I

i i

1 1

__ l i

l.

~I 1

I I

I l

l _. _ f 1

" +

1 1

1 i

l 1

I i

-1 I

I i

i I

'N g, 1

I I

I Mo i l

I no i I MD 1 1

I I

i 6

1 i

1-I l__

l _..i_

l.._._.l___

I I

1 1

I I

i i

1 1

I i

i i

i l

i i

i i

i 1

1-I Mo I I

i i me I i M0 I I

I ra I

-l

  • D 1

1.

7 i

l_

._1 I

l _ _ _. l __1 I

I l.

1 I

i 1

1 1

' %,I I

l-I I

l I

a

.1 I

i i

1-1 1

1 1 - No f i M0 l'

1 Mu l 1

1 I

I MD I i

1 Mo i M0 1 I

a I - !

I 1

1 1

1-

_ l _._ l -

t i

i i

i i

l i

1 I

i-i

.1-i l

i l

4 I

I i

I i

1 1

1 1

i MD i i

i l MD i Mo I i

i l

1 MD I 9

1 1

1 I

i 1,

l _.__. I i

l._t i

1._._,

l __ I I

l i

i i

l i

l i

i i

l i

l I

i i MD I i

i 1 MO 1 l

l t

i MD I i MD I le i

l' 1

I i

i l

i I

i 1.I I

l i

I I

I i

1 I

I i

i i

i i

i I'

I i

! MD i I MD I I MD l MD 1 1

1 l

18 l_ J 1..

1

_I l..__ _1__1__ -. l _ _

I 1

l _ __i i

I I

I I

I i

1 I

I i

1

~ *

! MD i i

i

1. MD i b

I I

I MD 1 MD I L2 LI t __ _ l I _. I _.. _ l I _.__ i i

i i

i i

1-I I

t i

I i

i I

l l No 1

-I ko I i

1 11 1

.t_I

.I.

I i

1_l I

i

('

I f

a l

1 1

1 I

I MD l i

i 1 Mo I I

i H

5 l

l__i' L_ _ i __ i

_. I I

i nu - Moun t. Dei.< tor 1

i i

i MD 1 1

i is

- i __ l I

_i 4.

NE-876 N2C8 Core Performance tieport Page 10 of 51

4 Figure 1.4 NORTil ANNA UNIT 2 - CYCLE 8 CONTROL ROD LOCATIONS R

P N

N l

K J

H C

f E

D C

P A

180' l

Loon A l

l 1

l Loop C 1

Outlet i

I i

l Inlet Y

l lA l 10 l lA I l[/

?

bl I

l l

l 1I l_

H-41 l

I l

l SA i l LA l 1 SP l i N 45 3

l.___,1 1

I I

l

__.1 I

l _ __ I I

iC i iB i l

lB l iC l l

4 I

i 1

I I

I __ _ I i _.. l._ _ l i

I l

i LP l l Sh l l $P j l

l l 'B l l

l 1

h I

i l

I i

l _,_, I l.__ l. _ l I

l l

1 l A l

] B l lD l lC l

]b I IB l lA I

(

Loop 4 I

I i

l l_

l I

l __. I

l. _ )

I i

l Loop e Ini m is I i

l SA i l

1 i SB l l Sh !

! SP l l SA i l

l Outlet 7

i_.l[270, ac 4y!

I I

I l _

,1 l _ I __ _. l __. I

.I 1.I I

i io I i

i lc 1 I

i 1c 1 1

I io i

1-a i

l 1

I i

1 l _ __1 1

I I

I I

I I

I I

J sA I I LP l l 50 l 1 SB l 1

l l LA 1 1

I 9

I I

l l _ _. I l _1 __ l l

I.

__ 1 1B 1 lA I 10 l

l_ _I i

I lA I I e i i D l 1C I lD 1

1 I

I l __.1 l

l_I I_ _I I

I I

I I

I I se I i

l i SP i i se i I SP 1 1

11 I

i i

1 i

l I

l I

i i

l __ I ___ I l

Ic I IB l 1

1 IB I IC i i

1 I

I I

l i

I I

I l _ i _.__ l ___. !

i i se l I LA !

I LA I I

I I

is x

N-%

l l

l l

l 1._,.,,,. I l

l 1

N-40 l

IA I ID i Ia I i

14 1

I I

I l _ _,1 1

I

/

I i

i I

\\

15 Lovek l

l 1!

lono B Ab sor tier Dutiet intet Naterin i

Ag*In-Cd O'

function Nunber of Clusters CALLED NORTH t

Contro' D ar.k D 8

V Contro; L.r*

C 8

Centrol *ank b 8

Control BarA A a

Shutdown Bank SB 8

Shutdown Bank $A 8

SP tSpare Rod Iocations) 8 NE-576 N2C8 Core l'erformance Report Pap,e 11 of 51

Section 2 4

1 BURNUP t

The_ burnup history for -the North Anna Unit 2,

Cycle 8 core is graphically depicted in Figure 2.1.

The Nor th Anna 2,

Cycle 8 core achieved'a burnup of 18,239 tlWD/MTU.

.As shown in Figure 2.2, the average load factor for Cycle 8 was 95.2% when referenced to rated thermal power J

= (2893 MW(t)). Unit 2 performed-a power coastdown starting on January 14, 1992 until shutdown for refueling on February 26, 1992.

Radial - (X-Y) burnup distribution maps show how the core burnup is shared'among the various fuel assembl!es, and thereby allow a detailed burnup distribution analysis.

The NEWTOTE' computer code is used to calculate these assemblywise burnups.

Figure 2.3 is a rcdial burnup

-distritiution map in which the assemblywise burnup accumulation of the core at the end of Cyc1c-8 operation is given.

For comparison purposes, the design values are also given. - t'igure 2.4 is a radial-burnup distribution map in which the percentage difference comparison of measured and

_ predicted assemblywise burnup accumulation at the end of Cycle 8 operation is also given. As can be seen from this figure, the accumulated assembly burnups were generally within 12.98% of the predicted values.

In

- addition, deviation from quadrant symmetry in the core throughout the cycle was'no greater than 10.30%.

The burnup sharing on a batch basis is monitored to verify that the e

core is operating as designed and ;o enable accurate end-of-cycle batch NE-876 N2C8 Core Performance Report Page 12 of 51 l

~

burnup predictions to be made for use in reload fuel design studies.

Batch definitions are given in Figure 1.1.

As seen in Figures 2.5A, 2.5B, 2.5C, 2.5D, and 2.5E the batch burnup sharing for North Anna 2, Cycle 8 followed design predict ions closely with no batch deviating from prediction by more than 1.69%.

Syemetric burnup in conjunction with agreement between actual and predicted assemblywise burnups and batch burnup sharing indicate that the Cycle 8 core did deplete as designed.

i i

SE-876 N2C8 Core Performance Report Page 13 of 51

Figure 2.1 NORTH ANNA UNIT 2 - CYCLE 8 CORE BURNUP HISTORY non.- -

I inn.

f inn.

/

17 tit f

lif tl :

/l mn:

/.

nn '

,/

in., :

nin!

f

,/

iin:

Ei inn:

/

z

/

e nn' g n,,!

l

/

5

/'

Ilit :

U ni,'

/

/,

un:

/

.ni.

f

^

1 /

nss!

>/

un: /

ini

!/

l i

4 5 55 5 5 55 5 5 5 s5 55 5 5 5 s s s a a.-a a s 5 s sssasssas VME (MONTHS)

WAXlWUW DESICS SURNVP -

19800WWD/VIU NE-876 N2C8 Core Perrormance Report Page 14 of 51

[

l

_..=

i

<g 4

Figure 2.2 NORTH ANNA UNIT 2 - CYCLE 8 MONTHLY AVERAGE LOAD FACTORS 100 7

~;

}f M (

h]

k h

^

3 I

Y N i

30 T

", e L

,e u.

w t

.p y

g g

w

$h dk 4

e

  • Pl 3

4 ff.+ Y W

f

.h

?g$ q.

.y c

m or p

~

p e

w 4

'I 4

fe

.(-

i:

q;

+

=

^

v 4

9

,,0 1

e x

tc.

y y

z.:,

y s

8

)

[

(j 4

1 4

oO n

A,

.x n

^ '

a.

y<

b

^

~

~

t s

(.

4 L

p

.s t.:,

rn V

t-s x

3 y

~e q'

4Q p,y 47 w

G~O

$a 3,>

+

r.,

s-A.;

1.

si p

,g M h 7,j

,t'$ $

g" e

e 3-o

p 2

+

4 e

e 4

P.

4<:,-

~

4 W

b N

h.- n

,5 '

q, 9

3-g.

y y'

n.

u 3

m

y

+

4' y

v-y w

.a,,

=

4 4

4 os

@g 4

4 ft 4

e

<pj k

p

?

'f g-p

'('

g ig

p a

g e-n g

n L

?

,3,0

)

s

~

e r

9

.E..

2'-

K y

,7, O

~

3 y

t u.,

10 i

4

+

4 uj i) k k & f.

4 w

U

+

f, 3

L m

D D N _N N N N N N N N N N N % %

T 4 4 4

-1 4 4 4 4 4 4 4 4 4 4 4 4 G

h 0 N A 9.4-A T

N G A. A A.0 a A q.

%q ' y @ d

(%Y T 5

k 4'

Q

.v N

N

~

n V

MONTH NE-876 N2Cd Core Perfornance Report Page 15 of 51

Figure 2.3 NORTH ANNA UNIT 2 - CYCLE 8 ASSEMBLWISE ACCUMULATED BURNUP MEASURED AND PREDICTED (GWD/MTU)

R P

N N

L k

J H

G F

t C

C S

a

....~...............

I 1 39.131 48.64) 39.5el I ' w asupto I I

l 39.011 41. eel 19.el

..............................l.....

1 Pwattito I 2

1 41.rst 35.651 19.161 35.6 1 19.r51 3L99t 48.391 2

1 41. 331 3L 67) 19.141 35.671 19.141 3L 671 41.331

...~......................-.................................

3=

l 44.981 19.741 27.tri 39.398 23.a71 39.691 22.991 ro.rol 45.*el 3

1 44.601 19.691 12.611 39.6al 23.*61 39.6a1 rt.611 19.691 44.641 I 45.261 34,371 13.734 44.551 74.67) 44.161 74.611 44.628 P3.951 35.061 **.4el 4

4 44.6tl M.611 23.741 44.931 2t.718 44.441 r4.?ll 44.931 r3.741 34.611 44.6 1

....,.........................................................................,. ~...

5 I to.aol 19.32l 23.181 44. ort 24. 3al 43.761 43.19) 4 3.611 24.a5) 44.5el 23.441 19.721 41.441 5

1 41.34

.1 19.7el 23.751 44.ul 74.651 43.141 43.158 43 lat 24.651 44.wl 23.751 '*. re t 41.341.......

6 1 307:1 t2.361 s4.571 24.39) 4 3,951 70 741 42, ell 25.171 44.521 24.301 64. I"

..t91 SL 671 6

1 35.671 22.61

.....................8 44.921 24.651 44.621 24.all 41.a71 24.est 44.621 74.451 4:..el 22.6tl 35.hti

-......... ~..........................................................

7 1 39.lel 19.131 39.r71 74.131 42.611 r4.171 44.471 25.2a! 44.661 ts.le t 42.a41 23.59 8 Sa.a61 ta.as i 1a.671 7

i H.041 19.151 39.691 24.6al 43. lel 24.70) **.%) 24.711 44.661.ts.7el 43.lel ts 6al 39.691 19.151 39.e41

.............................................~...........................,........................

a 1 42.131 36.6*l 21.591 43.a51 42.631 40.571 74.tal 53. ell 24.64) 42.?al 42.761 43.3al 23.401 SL F91 41.481 a

1 41.atl 35.63) 13.97 8 44.471 42.971 4?.aal ?%.651 53.241 74.651 42.a41 47.978 44.421 F3.971 35.611 4 4.801 1 39.091 16.901 38.501 74.231 42.711 74.451 44.43l 24.131 4 bill Ps.641 4 3.421 24. 361 39.691 19.701 3a./51 9

in 1 39.04) 19.15% 39.69) 24.6al 43.1o1 24.701 44.41 24.71) 49.666 24.701 43.181 P4.6al 39.691 19.151 39.641

...................................... ~...........,.........................................

to i 35.241 21.921 44.641 F4.751 44.33) 24.54l 42.29 8 24.471 44. t71 24.531 44.691 ??.9a l 3L 751.......

le i 35.671 22.611 *4.921 24.651 44.6?1 24.831 41.876 24.631 4%.621 74.65) 44.921 22.611 35.671 Il l 41.?al 19.761 23.961 44.661 24.tal 43.64) 47 sel 42.32 8 ?4.421 44.3al 24.191 70.14 f 41.511 la 1 41. % l 1. 79 4 23. 751 44.561 ?%.651 43.181 4 3.151 4 3.16 4 74.451 44.% l

.........."............~..................................,.................23,751 19.70l 48.3%)

12 1 45.101 35.10! 23.931 44. t al 23.911 43.481 24.661 44.3al 23. 7t l 35.531 45.76l.......

12

........3 44.591 34.616 2 3.141 44.911 F4.711 44.491 24,711 44.931 23. 7%) 14.611 44.61) 13 1 45.951 19.841 21.63) 3a.Ml 23.151 Sa.5al it.lal 19.5a1 44.57 4 13 1 44.641 19.691 22.611 39.6al 23.945 39.6a) 22.611 19.691 64.681 14 1 42.34l 15.93l 19.16) 35.3al la.$al 35.171 41.e95 14 8 4 4.331 3L671 19.141 35.621 19.h) SL 67) 41.331 15 i 34.7il 4t.ari 3a.524 is i 39.o11 41.aol 39. ell R

P W

N 1

J H

C F

i D

C E

a

(

NE-876 N2C8 Core Performance Report Page 16 of 51 i

i

4' 4

Figure 2.4 NORTH ANNA UNIT 2 - CYCLE 8 ASSEMBLWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED (GWD/MTU)

R P

W M

1 E

J M

C f

I O

C B

A I

l 39.111 48.641 3L 101 1 measWfD i i

1 a.311 4.09) 0,1\\{

l M/P % tlff 1 t

i 41.751 35.4%l 19.161 14.611 19.tsi 3s 99 6 41.391 2

1

-e.est 0.071 -e.071 s.tsi s.a96 9.131

...,.....-0.70).__....

5 1 44.961 19. 741 77.tti 39.391 t).a rl 59.691 71.991 20.201 44.901 3

1 0.6*l e.241 -1.7;l -e.r31 4.171 0.071 1.611 2.591 7.971 4

1 45. 761 34.171 23.711 44.%1 74.621 44.181 24.611 44.671 21.9si st e6l 44.4e l 4

l 1.4%l 4.661 1.$2l 0.471 9

....- 0.691 e 0 t l

_0.d el ~ 0. 361 0. 7ll - 0. 4 81 - 0 671....._....

5 1 40.all 19.121 25.181 44. 0 71 74.181 4 5. ?61 41.191 4 5.611 74 8%I 44.S61 25.461 19,771 41.444 5

l - 1. 0 tl -l.911 - 2. 391 - 1.101 - 1.121 9.181 8.9/l 0.941

4. 'el
  • 151 - 3. ?* l 0.101 4.7%I 6

l 15.201 ??.541 44.571 24.391 d 941 FL 741 47.0ll

?*

s?l

. L. I.. m 391 **. l4 l 77.?* l SL6? l 6

..b

^ '

~

/

l 59.18 l 19.151 39.??l ?*.131 42.611 R4.171 44.4 71 75.tal 44 661 75.19) 47.a*l /1.sql 14.861 la.asi la.6il

?

l 0.171 -0.09) -1.0%)

- ?.111 - G.4 5 l 2.311 0.01]

4.611 -9.541 -4.411 -2.041 -1.526 8.951

.-2.211 -1.lts..................

g 8

1 4?. iil 56.6? ! 25.591 4 3.851 4?.611

  • 2.%71 14.781 St.a ll ?*.6%) 42.181 47. 761 4L ia l 23.481 15. '91 4 6.981 R

l 6.181 F.791 -1.tal -1.281 -4.f.01 -0.111 -1.411 0.371 "0.0*l -0 fil -0.441 2.341 -2 %81 9.4%l 9.471 9

l 39.091 18.901 54.501 74.231 42.211 24.451 **.431 74.151 *5.111 24.641 45.421 24.561 59.694 19.?01 14.151 9

i P.141 -l.51i 2.981 -1.811 -2.061 -1.011 6.50t 2.351 1.011 -0.75l 4.75t -1.301 0.011 3.261 0.P*l 19 1 14.24 l 21.921 44.601 7%. /S 5 44.55l ?* ba t 42.201 24.*?! 44.17 4 /*.M i 44.691 22.981 SL 7sl 16

.... 0. 601 _1.Ml - 0 991 -0.st '.

t.421 1.4?l 0.?*l i -1 ?ll 1.951 -0.721 0.421 3.651 -1.411 Il

! 41.2Al 19.741 ?5.401 44.6%l 24,28I 41.0*] 4?.501 47. 571 14.6?! 4*.131 ?*.141 70 !41 4 4 t > l 11

-1. Sit

?.001 -0.126 -9.391.,_

1 -0.111 0.108 4 411 0.?ll - 1. 511 - 0 % l 1.841

?.141 0.571 Il I *5.101 35.101 25.911 64.181 21.91) 4 L 481 24. col **.381 ?$. 715 35.451 %5. /bl I?

l 1.151 1.411 0.801 -1.661 *5.fil 2.1/l -2.6*]

1.??! -0.118 2.611 2.511 13 4 4S.95! 19. 801 21.611 18. 751 71.151 la 481 ??.181 19. Sal 44,571 11 s 3.011 0.591 -4.35l 2.551 -A.161 -2.1#1 -1.9/1 -0.551 -0.0/l 1 AD I T PM1 f lC A Wf. I inct Dltr = -e x.i 14 1 4?.3 1 55.911 19.161 5s.3tl is. sal 3L 175 41.e91 14 1 2. 4 *.1 0./31 0.081 -0.618 2.431 -1.401 -0.591 15 I stambaso m y 1 i 18.711 41.s71 sa.s?l I avt an M1 I is GM1 l

l -0.411 9.0 l 1.251 1 Diff 1.12 I 1

R P

h M

L t

J H

6 i

i D

C 9

a BATCH GHARING l MWD /HTUI BATCH NO. OF BOC BATCH EOC BATCH CYCLE ASSEMBLIES BURNUP BURHVP BURNUF N1/5 2

22,603 42,104 19,501 N1/6 1

37,921 45,097 7,176 BURNUP TILT N1/7 1

34,556 53,C27 18,471 N1/10A 12 23,945 38,513 14,5b8 NW = -0.10 l NE 2 0.30 N1/108 1

23,443 45,108 21,665


l------------

-0.15 l SE = -0.04 4

2 23,869 42,678 18,809 SW =

SA 8

33,607 38,916 5,309 7A 7

38,025 45,258 7,033 8A 8

34,941 41,407 6,410 8B 4

35.405 41,945 6,480 9A 16 23,632 4*,219 20,587 98 31 20,543 40,134 19,591 10A 28 0

23,953 23,*53 10B l

3o 0

21,890 21,890 CYCLE AVERAGE ACCUMULATED BURNUP = 18,239 I

NE-876 N2CS Core Pelformanct R e po r t.

Page 17 of 51

Figure 2.5A NORTH ANNA UNIT 2 - CYCLE 8 SUB-BATCH BURNUP SHARING 60 i

i i

i i

i SUB-BATCH l

l l

N1/5 g

i i

t r

i i

o i

l i

i i

I m

i

)

i

'_ e S t.

7ATCH s

i e

i i

i

,3 i

w e,e 1, i

i i

N1/6 i

i i

A i

i 4

+

1 l

)

i i/,

j i

N i

4 A

O i

i i

e i

a==

i e

i g

",O i i i

i i

i

/

j 6

s i

i SUE-BATCH i

i,4 i

i 4

[

i i

i i

i i

i i

i 1A i

i i

1 N1/7 v

i i

i i

!A i

)

v i

y i

1

-y i

4 h i

..I I

i i

I /f i

i in 7-W

    • 3 i

l if '

q jM" i

l i

i

/*

-Wn i

t 4A g-i i

i

,4 u

cp i

i i

-f i

i v

"O im g'

'~' i I

i t

/

D

" ig/'

I i

i t

i i

/ ~I i i

i t

f6 e

i t

i 7

t t-f ia i

1 i

. -r i i

i i

  • D ;. _

/n 1

i l

m l

l Vl i

i i

l

+

I I

h I

i

_.[t F

i i

i i

}

i ft i

e i

i

~~'

yi i

j t/ >

i 4

i i

i i

}

i i

i C

I i

i i

'CV) i i

i i

i j,

i i

i i

i j

i i

i

_A 4

i i

i i

i i

e 69 !

I I

l#

i i

t i

i r4*

t i

24 i

l i

i i

~

i J

i eV i

i i

'A

/

t s

i

/- t i

i i

O, i

t t

i

~,4 1

}

t i

6 j

i i

t i

i e

i j

i i

i i

l a

i I

i I

20 '

O 2

4 6

5 10 12 14 16 18 CYCLE BURNUP (GWd/MtU)

NE-876 N2C8 Core Performance Report Page 18 of 51

)

I

Figure 2.SB NORTH ANNA UNIT 2 - CYCLE 8 SUB-BATCH BURNUP SHAPING I

i i

i I

i l

j l

l 1 SUS-BATCH I

i i

i i

I I

i N1/10A 43 i

i g

i i

a i

t i

j _

t j

i i

i i

t I

i i

t.j BUB-B ATCH D

I t

1 l

i f

I

/!

N1/105 i

i t

d 4 4 !_._I f i )}

4 i

l I

1 j

i

/

h I

i i

i I

i

y/

I l

I r/l I

! $US-S ATCH 5

I I

I i

l I f/. /

4

  1. C 4Q L

!/ /i i

I 1

I I

i v

l I

i I

9,V /

i gs l

I i

7 t

t I

l 4' V if' n

8 I

i ^ VI"I

{ ~' 6 }-

I I// 1 l,fT i I

I i

I v

iV

. /_..

i r#-,f' I t

Z l

I 1

4 ljf I I

i

)

i i

i y

i i

i 4I I

!Zl i

l i

i i

27 L j

)# i g)

{

i t

j C

"l l

U i

I -/ I g i i

i i

t i

}

i i

l 1

fA i

1 Q

u t

j 1

i J,=i l

i

  1. 1A i

1 i

j i l I

MN!

k I

i i

i 4

7 I //3 i

(

{

I

?

V) V 1

\\

\\

l l

e i

l I

i I

}

I

'a ((

L. *

~

I/ I l

i I

i l

I l

t i

I l

I I

i.

l i

{

1 l

I l

i i

l i

3 I

I i

i I

i i

I 2O

..ic t

~

4 y

.c CYCLE BURNUP (GWd/MlU) l

'4 E - 5 7 6 52C8 Core Performance Report Page 19 of 51

A 4

Figure 2.5C NORTH ANNA UNIT 2 - CYCLE 8 SUB-BATCH BURNUP SHARIN'1 i

1 i

j SUB-BATCH O

SA l

t I

j I,

O l

i L'

daj; m

3 I

j

[u-

SUS-SATCH a

I 7

l I

f 4

l 7A i

i O'M i

j

{

y i

l 1

im

'. 4 Syg_ GATCH l

l,/ [i l

A SA O

V 1

C w

y I

l

.O 40,

'/

I

$US-B ATCH s

i

[-

y'

\\ p cca v

g 7,

3,

/

c u

_.y/w I eI l

~

M e$

f W

l r /.

y e/ 'i fawe i

i i

I T

4 C

i

[~ / - !

C l

6 l

}

j I.C t

}

I I

i I

i i

}

i i

i tm[

I i

i I

I u

n

4n 1_

a A

1. v v

iv 1

c s

CYCLE BURNUP (GWd/MtU)

NE-876 N2C8 Core Perfcrmance Report

=

Page 20 of 51

Figure 2.5D NORTii ANNA UNIT 2 - CYCLE 8 SUB-BATCil BURNUP SilARING f

i i

I i

i l

i SUB -B ATC H X_'_

9A i

i i

i i

i I

I I

f a

^

i l

i I

i I

i

/

77, l SUS-BAICH O

I i

i i

7 an i l

J l

I i

I/"

l

/I os g

i i

I l

i g

l/t~

O

-~

~'

l l

I l

l i

}

l/

'/)

y(

i

{ / '~i I /i ' j l

I I

I

)

i V

i i

l i / i j

o 1

w :, o -

w

,N I

i I

l/I l

Z l

I l

1

/!

!/!

j i

i I

I l

l

/

gI I

l I

l Z

I l/ !

l/ I l

i s

N "29 i I

s i

A i f'

j 4

1 I

I i _A i

fi l

l 4

i I

_A i

gi I

i I

i i

i p

m ;; l l

! /~I

.V I

[

I l

l M

~~I I

M i

/l l

l I

j j

/!

!/d l

1 I

I l

l l

i C

i

/i

  1. 1 1

I i

I I

i i

I ft r;'

I i

i i

i 4

C I

I

/

i i

l i

i i

i i /~

i l

l l

l

_N i

l I

i I

II l

i I

I on !

I i

i I

i I

l 4

~~

L_!

I I

l l

t i

i 0

6 5

1C

'2 14

'E E

CYCL.E BURNUP (GWd/MtC)

NE-876 N2CS Core Performance Report Page 21 of 31

_ _. _ _ - -_._._- ~ - _ _ - ~

_--...-__._.___._._-__.m.

Figare 2.5E g

NORTH AhWA UNIT 2 - CYCLE 8 SUB-BATCH BURNUP SHARING il i

i l

i~

l i

I j

i SUB-BATCH i

I I

i I

I 17 10A 24 i

i i

i i

f' O

1 O

i i

i i ri/

4 W

)

'y, i

i

/

~

e i

i

/

4

/

I I

i i/ y; i

j SUB-3ATCH I

2 k::

-1 I

i

~

/ji 10B

/g C

I

~

i i/

o 3g

._L. L

!/ A i

i i

4 I

i i

i i

Ag i i

i i

l I

f f.

I l'

t

.f 7

4

/~/ I i

i I

l 4

sie i

i i

i 1

= n-

/fgt i

i i

i

=

i t

N i

j!

i l

i

1. 1 1

i 1

I. //

I I

i I

i-C H

I

!# 1 I

i 1

i j

l i

i i

i i

i i

l 7

f i#

l l

I i

1 I

l i

i j

j i

=

i i

i

  1. 1 i

i i

I I,v,:

\\

l

\\

Z I

i/

I l

1 i

i

/

I l

i i

i I

,ii

/

I 1

l i

l I

i j

i r

l of I

I I

I' I

l I

t l

l l

0 4

?

10 12 u

u 2

CYCLE BURNUP (GV'd/MtU)

NE-576 N2C8 Core Performance Report Page 22 of 51

... ~

e-Section 3 i

REACTIVITY !)El>LETION The primary coolant cr it ical borcr cot.cerit rat ion is monitored f or the purposes of f ollowir g core reactivity and to ider.t i f y any anomalous reactisity be ha,' i o r. The FULLOW' computer code was used to no. cn a l i ze

" actual" critical boron concentration measurements t o ries ign cond i t iote, taking Jnto canalderation control rod position, xenon concentration, noderator temperature, and power level.

The normalized critical boron conc"nt rat ion versun burnup curvr for the North Anna ? Cycle 8 core is shown in rigure 3.1.

It :an he seen that the measured data typically compared to within 58 ppm of the design prediction. This correspondr, to 10.39*,

AK/K which is within the 1 1 *. AK/K criterion for reactivity anomalies set f or th in Soc'. ion 4.1.1.1.2 of the Te chn ica l Spec i f icat i_ons.

In conclusion, the trent indicated by the cr it ical horon coacentration verifies that t.he Cycle 8 core deplettd as expected wit hout any r eact iv it y anomalics, i

NE-876 N2C6 Core Performance Report

" age

.a of 51

.~ _-

Fir,ure 3.1 NORTH ANNA UNIT 2 - CYCLE 8 CRITICAL DDRON CONCENTRATION vs. BURN'IP (HFP.ARO) 1600 m 1500-1 2i r

G.1400-4 1300 h

z NS,

- j

~

O 1200 1100 1000-2 3

uj o 800 N

y300, YA U 700---

h-O 000-2 at r

A O 500-CD l

J 400 g\\

300 200 3

0 100 0

vi 4

0 1

2 3

4 5

6 7

8 9 10 11 12 13 14

  • .3

?S 17 CYCLE RURNUP (GWD/MTU)

I

  • *
  • MEASURED

- PREDICED i

NE-A76 N2CS Core Performance keport Page 24 of 51

_ _ _ ~

)

Section 4 i.

POWER DISTRll3UT10N Analysis - of core power distribution data on a routine basis is necessary to verify that the hot channel factors are within the Technical j

Specifications limits and to ent.ure that the reactor is operating without 1

any= abnormal conditioon which could cause an

' uneven" burnup i

distribution. Three dimensional core power distribut ions are determined S

Irom movable dutcetor flux map measurements using the INCORE computer program. A summary of all full core flux maps taken since the completion of startup physich testing for North Anna 2, Cycle 8 is given in Table

-4.1.

Power distribution maps wern generally taken at mont hly intervals with addioonal.uaps taken as needed, l

i I

Radial (X-Y) core power distribut ion f or a representative series of l

incore' flux.aps are given in f igures 4.1, 4.2, and 4.3.

Figure 4.1 show-a power distribution map that was taken early in cycle life.

Figure 4,2 shows a powca distribution map that was taken near mid-cycle burnup.

Figure 4.3 shows a map that was taken near the end of

.cle 8.

The measured relat ive assembly powers were generally within 7.0*.

and the maximum average percent dif ference was equal.to 2,5*,.

In addition, as

' indicated - by the INCORE tilt factors, the power distributions were essentially symmetric for each case.

hn important aspect of core pbwer distribution follow is the monitoring of nuclear hot' chennel factors.

Verification that these factors are NE-876 N2C8 Core Perfo mance Report Page 25 of 51

within Technical Specifications limits ensures that linear power density and critical heat flux limit:: wall not be violated, thereby providing adequate thermal margin and maintaining fuel cladding integrity.

North Anna Unit 2 Technical Specification 3.2.2 limited the axially dependent heat flux hot channel factor, F (Z), to 2.19 x K(Z), where K(Z) is the g

hot channel factor normalized operating envelope, and 2.19 is the Fq limit at. rated thermal power, both as specified in the Core Operations Limit Report (C0hR)*

Figure 4.4 is a plot of the K(Z) curve associated with the 2.19 F (Z) limit.

q The axially dependent heat flux hot channel factors, F (Z), for a 9

representative set of flux maps are given in Figures 4.5, 4.6, and 4.7.

Throughout Cycle 8, thn measurou values of F (Z) were within the Technical 9

Specifications limit.

A summary of the maximum values of axially-dependent heat tlux hot channel factors measured during Cycle 8 is given in Figure 4.8.

This figure indicates that the minimum margin to the F limit in the axial region covered by the Technical Spec!fication 9

4.2.2.2 is 11.4%.

(Technical Specificat. ion 4.2.2.2.g states that Fq surveillence is not applicable in the lower core region from 0% to 15%

inclusive, and the upper core region from 85% to 100% inclusive.)

Figu re - 4.9 shows the maximum - values for the heat flux hot channel factor measured during Cycle 6.

As can be seen from the figure, there was an approxim.Ite 16.00'. margin f rom the maximum F (Z) to the 2.19 limit q

at - the beginning c,f thn cycle, which was the minimum margin seen for the cycle.

NE-876 N2C6 Core Performance Report page 26 of 51

The value of the enthalpy rfSe hot channel factor. F delta II, which is the ratio of the integral of the power along the rod with the hinhest inte3; rated power to that of the average rod, is routinely followed.

The Technical Specifications limit for this parameter is set stah that the departure from nucleate Soiling ratio (DN!!K) limit will not be violated.

Additionally, the F-delta-Il limit ensures that the value of this paramet er i

used in the LOCA-ECCS analysiv in not exceeded during normal operation.

North Anna Technical Fpecification 3.2.3 limited the enthalpy rise hot channel factor to 1.49(140.3(1-P)) for Cycle 8,

where 1.49 is the F-delta-ll at rated thermal power and 0.3 is the power f actor rnult iplier, both as specified in the C01.R.

A summary of the ma x i mt.m values for the enthalpy rise hot channel factor monaured during Cycle 8 is given in i

Figurr. /.10.

A, can be seen from this figure, the mini um margin to the limit was approximatelv 2. 2'.

The target delta flux

  • is the delta flux which would occur at condit ions of f ull ; ower, all rods out, and equilthrium <enon.

The delta f?ax is measured with the core at or near these condit ions ar.] the t arget delta flux is established at this incasured paint. Since the target delta flux varies as a f unct ion of burnup, the target value is upda t ed rnonth ly.

I!y maintaining the value of delta flux r elatively constant, adverse axial power shapes due to xenon redistribution are avoided.

The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately -1.4*. at the Pt-Ph De l t a F lux = ----- X 100 where Pt power in top of rore ( %( t ) )

=

2893 Pb = power in bottom of core ( %( L ')

NE-876 N2C8 Core Performance keport Page 27 of 51

i ber. inning of Cycle 8.

Delta flux values decreased steadily to -5.3% near a cycle burnop of 14,300 MWD /HTU, where it then gradually increased to j

-3.6% before the coastdown. - At the end of Cycle 8, the target. delta flux lucrea*.ed to 44.2% due to ti.e coastdown. This axial power shif t can also be observed in the correspondf r; core average axial power distribution for a representative series of maps given in Figures 4.12 through 4.14.

[

In Map N2 8-07 (Figure 4.12), taken at 1505 MWD /MTU, the axial power dist ribution had a shape peaked towerd the middle af the core with a peaking ' factor of 1.208.

In Map N2 8-14 (Figure 4.13),

t.a k e n at r

approximately 9129 MW9/MTU, the axial power distribution peaked slightly toward the bottom of the core with an axial peaking factor of 1.157 Finally, in Map N2-8 25 (Figure 4.14), taken at 16,640 MWD /MTU, the axial peaking factor was 1.157, with the axial power distribution shifted alightly back toward the top.

The history of F-Z during the cycle can be seen more cicarly in a plot of F-Z versus burnup given in Figure 4.15.

In conclusion, t he North Anna 2 Cycle 8 core performed satisf actorily

. with power cistribution analyses verifying that. desigt, predictions wuri

+

f accurate and that the values of the F (Z) and F-delta-ll hot chnnnel q

factors were within the limits of the Technical Specifications.

t i

r 1

NE-876: N2C8 Core Performance Report Page 28 of 51-

.. _ _ _. _ _. _. ~,.. -... _

I Tatile 4.1 NORTil ANNA LNIT 2 - CYC118 SWAKY 0" l'ISX MAPS l'OR RWTINE OPEKATION

__7

__._._)

I si l tt wN l l P Am r I t 9til Nt i f -inu a l Hol l(tel f lD j

l ( nes l Asiat i NO,l e

lmAPI l

tr l

l t

l ( N A 4418 iACitW l ( spel. f AC t0lr INAE ifIsvI 1 !!(

  • l (W f I fsf l IN3 l 14 & 1 8 1 MoC l DWW l $ tl Pt l l

l Mall l 1 Sl l l f Hlilj l

l l h Its l til l l Ask v il'Im ( A s i at l l *]~7 lial&d fMil l mat j l(e( l t i. I (Silti

(

l i

l l

}

l l

IMilN f lf -W(Il lA5kylPlN If - (pH a llPUI All l l

t i

l l

l l.. _ l.. _ _.....

1._. - l _.... l.... _ l.. _i_. I _ _. l.... 81%.. _. l _. _ I _... l _.. _.... l _. _. I _. l _. _ _ l _... l.. l.... I ~,.1 l / l17-l= 991 14 6 l lec { flA l Oli l 1Pl 11 l 1 l bill $P l litit l % l1.198) s.41811,964l Nf 1 7.068l 46 l l 8 l b l - P94 t l 1% 54 l Su l FIA l Dit l 108 af l 1.661 1 6to f ) IJ l 1.415 $ % l1.1411 8.64111.996l Nt l T.1161 44 l l 9 107 17-911 5694 l 100 ' TTA l lill l 101 17 l 14814 i H971 lJ l 1.4th 1 it 14.8711 4.e4611.D48l Nf l - F,%9) % l Il0 101-82 9tl 444/ l Itk i flA l Dil l IFl %A i 1.617 l H0/1 lJ l 4.447 4 48 14. 8 661

1. 44 t l 1. 0 0 7 l Nt l
1. p(,7 4 % l

~~

li n 164 0 4 tell %het j 100 l Ith I fill 1 imi 59 l 1.804 l M!! li i 1. 4 % l 4% l l.1 % l 1. 4 % ) l l 9'18 l Nil - L4481 64 l lit Ita 15 911 ti611 l 100 l IPh i f 65 I INI 4f 4 1.6?6 i He/l lJ l I.6%9 1 % l1.84F1 8 6%6ll.09 71 Ne 1 6.607) % l 111 105 11 94l IF%4 l 100 8

??A i f o% i IH1 er l 1.411 I HOFI IJ l 1.447 l 47 14.164l. 64%ll. Deft Nij -4.4118 sh l lit 196-(s-911 9179 l

<98 4 tie i ts4 l IHj ne l 1.814 l Ho7l IJ l 1. 6 t.4 1 44 ll 157l 1.6 4k i l,0 011 N( 1 - 4 t St l % 1 51% 161 17 918 160 % i 166 j fte j d ev l IHI 44 l j $% l Hg Fi jJ l 1.441 l % l 4. l e.6 ) I 4%4.ll.001l Nf (

4,% %l % l 116 108-1U411 18116 l 198 3 178 l H61 l l>l kn i 1.61% l Hef t il i 1.6%I ) 46 18.144l 1.64411.061d NI6 -4.74/4 66 l lit lD9 1091* 1t%9 160 i ??6 i H0/ I IJl % i 1,6 % 1 He ll I J l 1.417 l b) 14.1 bA 1 L. 45114. Ii001 Nt 1 - 4. %21 66 l 114 jou-78-t's I Put i 4F l 61 l L itt i Jll 19 l 4.4/9 I Jb41 HI l 1. u l l S4 jl.8//l 1,%1ll.6%)l NW1 L.FF8l t$ l 119 116-01 9ll 11/S1 1 409 1 278 l *01 l IJi %% 1 1.8% l 9 014 f u l 1.419 i %t ll.itti ),464 l l. 0061 Nt ! 4 < t041 44 l lit l l e - I k 911 11766 1 169 l ??B 4 HC7 l I Ji %9 1 1.4% 1 He f t IJ l 1.615 l Si li.lF7l 1.4*kil.0061 Nil *b 96*.1 th j 175 til-It 91I 14t0/ 1 lio l tie i Het l IJ1 $1 l 1. 8t.% 1 He ll I J l 1. 4 T 8 i $$ 11. 8 /91 1.t hl t.606) Ni l L i8t l 44 l lio 112-17 911 1%69? I a00 l ??S 1 H0/ l IJI % i 1.464 l F 0 tl in i 1.677 1 gn (1.jpli ), 6 t i l l. t e s. ) Ni l 4.4191 64 l h

124 let o ett t hu ti i 10; I tcA i uor I JJi 4.

I 1.ats l lef t im I l.*P4 4 44 11.8%r1 8.44*ll. m t M i -1.4751 4% !

li6 lV2 it-Ull 1//39 i Ag i gg$

l HQ/ l jJ[ jf l [.50 l JDbl if l 1.201 i il ll.lui 9.61%ll.bb/l Nel *ae.% tt 64 l I

..-..__0 Nalt 5 er;i LPut t of Ailow ; Apt sM r !I 11 b t.f f I W I Nn A%l ht.1 Y l of A f lDNS 4 i f.

H A 15 IH1 P I nil P (W -((*f A%'fM6Ii1, f Ot t Otti D $ 7 ' H1 PIN tDCA1juN IIA NW1 li t i Og "r*

(OuPOINAfl W1TH IHf bl V1 WilI N 64.% (W l L4 L k ylf $

ll 118 &l D A 1 W otM.H P AND T Hf

  • a " ( Hw lt i ka l l 14 tlLNA f f D IN A tjeels A9 MANNip),

jN ItW "/" 4. l kf ( l l ON 1Hf ( DFt 15 DIVlli b INIO bl ARI AL POINIL $1&&llhG I PtiM l Hi f (W' (W f t4 ( DF l.

1. #-Gill INT t til4 5 & 111146 U KfW1AleefV Of '1,0% A 1.03.

I. Ctwt till lif f !Ni b Ai f HI f f! Al Qu AD& Au f PONl k t il l f pon INUw(.

t, mAM 71 ants ?? Ni &t uu AP II P -( HFi ItDE MAI'$ t &ll N f f% IMf D6[ /l p f,@( ( Al l @& Al l ON, ( ! /l ( Al j $& A l lON e NE-876 N2C8 Core Performance Report Page 29 of 51

Figure 4.1 NORTH ANNA UNIT 2 - CYCLE 8 t

ASSES LYWJSE POWER DISTRll3UT10N N2-8 07 J

P P

N N

L E

J N

6 f

8 C

8 A

i t

i 4...............

PM DICil D D.f6 9.17 4 4.16.

894 DICil G

9. te. 9. $4. 9.76.

8E AM810 I

. ev a.at y

.8'C f Dis f llfl N;l.

6.5. bS.

4.2.

,PC 9 Dif flM NLt.

0.53. 9.62. 1.99. 0.91. l.99 4.6f. 9.11.

l.Il. 0.64. 0.54.

t 9.14. 0.64. 1.11, 9.99.

4.6.

f.4. A.4.

l.8. f.8.

1..t. 5.3.

l 6.8%

l.10. 1.tt. 1.Te 1.54 1.te. 1.tn, 8.19. 9.1%.

6.1%. 1.89. 8.f4. 1.f4. 1.31

8. tl. 1 74. 1. l t. D. k6.

1 l#

0.6.

0.4.

3.1 0.9.

1.t.

l.t.

P.6.

3.4 2

. 6.5% 4 9 64. 4 79 l.16. 3.11 1.44. l 37. 3.16 4 1.79. 0.64 6.3%.

4.1%. 0.64. 1.34, 0.14. 1.34 1.16. 3.35. 3.11. 1.50. 4.64. 9.A4 4

4.0. 4.6. 4.4,

6.6.

l.4 1.4 4.1.

l.8,

9.4 9.1.

9.4.

.44.......................................

. 8.11. 1.30. l.19 1.lb. 1.F9. 1.19 3.It. 3.19 1.19 1.1%. 1.f9 3.10. e 3 %.

.-9.31. 1.6F, 1.17 1.14 I 19. 1.75. 1.1%. l.it 1.11. I.1%, l.ft. 1.99 4.54

. 't.). t.1.

1,6. - 1. t. < e.1.

f. B -.

f.9. f.t 1.4. -e.1, 41.t. -9 6 f.6.

4..

0.61. l 76. 1.16 4.79, 1.it. 1.1t. l.04 1 12 z

1.16. 8.t9 4 1.16. 1.26. 0.67.

0.6v. 1.te, 8.86 1,79 1.18. l 36 4.97 1.3%

1.89 1.74. 1.15. 5.21. 9.61.

6 4.9 0.9. -9.6 6.4 0.6 f.9.

f.9 t.1.

l.)

-.l. 3. - t. t. 3, b.

8.F.

9.14 1.99. 1.78. 1.11. 1.19 1.31. 1.89. 1.18. l.19. 1.51 1.19. 1.12. 3.19. 1.89. 0.76.

0.7/. 1.09 1.la. 1.30. 1.11. 1.79 1.FA. 1.3%

1.11. 3.5%. 8.14. 1.11. 1.17. 1.0) 4.16 F

3.1.

0.0.

1,1. *l.1. *l.1. 4.1.

1.e,

A.4 1.1.

l.6

-0.1. -1.6

  • t.1
  • l.6.

0.7

. 9.12. 0.91. l.19. 1.13 1.10. 1.00 1.58 0.9%. I.30. 1.00. 1,10. 1.11. I.19 s.9). 9. 52.

P.5%

0.95. 1,74 1.13 1,8s. I.es. 1.t9. 0.97. 1.50 1.08, 1.09. 1.49 1.11. e.97. 9.as,

e 3.1

- 0. 9 1,6

-0.0.

0.9.

0.0..t.$

t.9.

9.1 0.2 1.1.

3.%

2.1.

8,6 0.6 0.76 1.09 1,20. 1.51, l.lt 1.%)

1.19. 3.10. 1,89. 1, 5), 8.19 1.37. 1.ta. l.69 S.t6

. 0.27.l.97.

3.16. 4.t9

).19 4.50 1.1F 3.?9 8 39 a. 3 3. 1. 8 9. l.,36 1.19 l.09 4,tr.

9

?

3.1 1 1.

3.4

  • l.'s.

9.1.

6.1. ~4,1. -l.l.

6.0.

0.1.

9.1. al.9. - 0. 3.

0.4 3.s.

. 0.62

1. t%. 1.16.. l J9. 1.18 3.1!. l.64 l. 51. 1. i p '. 1.79 3 16. 1.2%

0.ht.

0.60 1.78 1.lb l.50 l.18 1.17. 1.6s. 3.51 1.17. 1.t9 1.lt 1.ft 6.6*

10 3.3. -3.1

- 0.1.

9.1.

9.8. ~0.5. *0.1. -1,9. +0.6 0.4.

1.9.

1.8 f.4

. 0. 31. l.80

.1.29 - 8.th I,tv 1.19. 3.12 8.19. 4.29. 1.1%

1.79 1,19. 6.31

. 8.37 1.09. 1.74 1.16. 8.ta 1.la. l.Il 3.39 1.t9. 3.15. 1.51 1.17. e.)*

II 9.6. *6.4 9.6.

4.4,

0.8. -0.6 0.F t.b. -0.3.

0.,2,

l.S.

1.7 f6

.6."

4.44 I.tv. 4.16 3 17. 4.44 4 57. l.16 8.19. 9.44

0. %.

,0 6

0. 6%.. 4.38. l.it. 1,19 1 41 1.10 3.1 %. 1.79. 0.56. 0.56.

It I4 8.7 1.9.

6.7.

1.4. +1.4. al.4 0.F. -0.4 l5 1.5.

4.14 1.10. 1.tv 1.19. 1.30. 1.fo. 1.t%. 1.10. s.3h P.16 1.11 4.fi 1.11 1.te 1.44, 1.24 3.09 8.36 15 t.6 1.0.

-t.f'.

t.4 al.8. *1.6. +3.2.

4.7 1.1 9.51. 0.61 1.04.0.95. l.99 D.67 9.51.

0. 54 0.64 a.le 0.91. 1.67. 0.6/

8.51 14

4. 6.

4.6.

1.0.

8.4. -1.5. +3.1.

1.s M 48db48tD 0.76. 0.3?. 0.76 S VI & AC8 Id 9t Alltm 0.78. 0.3%

0.t6

.PCI Dis f l ki ntl.

1%

  • l.1/8 4.4 f.4
  • 0.4.

8.%

I*E.A.R.1 MAP Not N2-8+07-DAlf! 12/14/90 POWER -1907 CONTROL ROD P051110N F+0lft = 1.874 QPTR D BANK AT 228 SitPS F-0HIMI

  • 1.419 NW 1.0035 int 1.0045 i

f(Z) a 1.206 SW 0.9952 l51 0.99t0 Fm)

  • 1.408 BURNUP s 1505 MWD /MTU A.O. 8 -2.008%

t l~

NE-876 N2C8 Core Performance Report Page 30 of $1

.. ~.. -. - -. _ -. -. _. _. - _ _ _ _ _ _. -. - -... - _. _... _. -. _., _., _. _. -. _ -. _.. - ~ _ ~

l<

Figurn 4.2 NORTH ANNA UNIT 2 - CYCLT. 8 ASSEMBLYWISE POWER DISTRIBUTION N2-8-i4 W

P W

M i

8 J

H f

(

0 t

8

..sti tl( ti b...

Wi l>! C tl i 0.t3 0.14. 0.t0 M &5tM D 0.79. 0.3%

0.28.

De e'.ts't p l

..P(1 Sif fl Pl Wl.

1.5 3.4 3.S

.vC l 011

  • l lel w t.

0.54 4.61 1.0?

0.09 1.07 0.61 0.%4

0. 36 0.61. 1.4%

0.49. 3.41 0,65 0.1%

F 0.9 0.1 0.1 1.0 1.4.

l.F 6.17 l 01. 1.f4 1.13. l.51 1.11.....1.fi. 1.0#......

0.5#

0.17 1.01 1.tl 3.1 %. l.50 1.14 1.F6. 1.10 0.39 3

08.

0.4 1.5 0.4

-0./

0.4 f.?

Le 4.*

....0,17 0.p%

l.10 1.15 1.16 1.11

1. 46 1.11 1.50 0.8%

0.1/.

4.38 0.6%

1.31 1.17 4.%

4.11

1. %

1.14 1,37 0. k1

0. M 4

1.7.

0.0 4.1 0.f 0.1

  • 0.1

-0.3 1.1 1./

1.7 1.9

..l.10 1.15 1.11 l.17 1.15 1.17.................,

1.07

0. 54 0 54 3.0/

1.37 1.1%

1.10 4.5%

l.0%. l.78 1.lf

1. h 1.l*

1.11 1.19 1.39 1.84 4.74 1.0/

0.%

1.9.

1.9 1,6. -l.%

-0.4 1.6 1.6 1.6 1.4 0.4 0.6 66 3.4 0.61 1.71 1.11 1.17 1.17 1.11 1.f4 1.3P 1.47 1.1P f.61 1.33 1.73 4.61 1.t!

1.12 1.16 1.17 1.40 1.08. 1.40 1.49 l.16 1.11 1.it 0.6%

6

-0,6 0.6

-0.6

$. '/.

+0.0 1.8 4.9 f0 1.h

-0.1

- 4. t.

0.4 T.!

0,74 1.02 1.55 1.16 1.17 1.17 1.19 1.l?

1.49 1.37 1.11 1.46 1.15 3.07 0./A 0.20 1.01 1.11. 1, 44 1.1%

1. 5*

l.it 1.41 l.ft 1.40 1.17

1. 14 1.11 1.0?

9.?8 F

3.4

0. 7.

1.1.

1.4

=l 6 1.0 2.4 F.4 7.1

  • O 0.1 1.6

-1.6

-0 8 0.4

.............................................................................,.. 0. 44 4. 44 0.49 1.31 1.11 1.09 l.0%

1.57 1.00 1.11 1.01 1.09 1.ll

'. 4 8 0 09 0%

0.09 4.79 1,10 4.06 1.0%

1.%

4.0?

1. 48 1.0*

1.08 4.0#

1.F9 0 89

0. %

8 3.%

0./

i.6

-1.0 0.4 0.4 1.0 1.6 0.A 4.6

-0.7

-4.6 l.7 0.4 1.6

....................8.tb 1.11 1.5/

.....1.17 1.19 1.%1 1.17 1.%6 1.1%

4.07 4.if 0./A 1.0/

l.11 1.19 0.f8 1.01 1.10 1.14 1.16 1.5=

l.11 1.3%

1.10 1.3P 4.18 1.35 1.13 1.01 0.r8 9

1.4 0.9 3.1

-1.1

-0.4 0.8 1.7

-1./

0.6 0.6 1.0 0.9 0.1 1.0 2.5 1.15 1.37 1.17 8.31 1.06 1.t?

1.11 1.Al I in 1.?S 0.61 0.61 1./1 0.60 1.70 1.12 1.58 1,87 1.5 1.04 1.56 1.81 1,38 8.It 1.26 0.61 le i.%

-7,h

-0.1 0.4 0.0 1.0 l.0

-1.?

-0.7 0.4

/.T

?.1 1.4

.....9. 14 1.e7 1.30 1.1%

.......1.17 8.10..................................

.................. 8 %7 1.11 1,57 1.13

1. to 1.07 0.1%

0.3%

l.06 1.1?

1.1%

1.34 1.1%

1.6A 1.lb 1.37 1.1%

l. tk 1.40 0,5%

ll 0.

0,0 n.0 1.6

-1.4

?.e

-l.9

-l.1 0.7 1,4

7. '/

1.1 1.4

.....1,10 0.8%

0.%t 0,11 0.84

1. 30 1.11 1,%

3.11 1.%

1,8%

. 0.39. 0.81 1.37 1.11 1.37 1.06 8.31 1.l?

1. 40 0.6/

0 le it 4.1,

l.a 4.6

-1.*

-$,0

-T.9 1.1

-0.4 0.7 3.0 1.1 O %#

l.0f 1.ti 1.11 1.11 1.11 1.t1 1.01 0.5' O.it 1.0A 1.tk 1.e4 l.11 1,10 1.?0 1.07 0.5A 11 4.1 16

-4

?

~4.?

-t.1

-1.0 0.5 S.?

....,0.A4 0.6%

l.02 0.69 1.07 0.61

0. S*

6.1%

0.64 1.02 0.AA 1.00 0.60 0.5%

14 5.1 5.1 0.1 0.9 2.6 e.0 2.1

.0,78 AVjk&M

% f ANLAktl 0.78

0. %

Divles!ON U.79 0.%

0.7#

.PCI ( I f i t FI M E,

1%

l.6 al.177 3.7 1.0

-1.4 kVEA.D MAP NOI NO 5-14 Daft 06/24/91 POWIR: 100).

CONTROL ROD POSITIDNi F-Qtil 1.831 GFIRt D BANK AT 028 SifPL F-DHlMI s 1.458 NW 0.9990 l NL 1,0008 I

fill

  • 1.157 SW 0.9919 lM l.0002 1.459 F(xyl

=

BURNUP

  • 9129 MWD /MTU A.O.

= -4.532 NL-SM N2C8 Core Performance Report Pa g,e 31 of 51

Figure 4.3 NORTH ANNA UNIT 2 - CYCLE 8 ASSE%LWISE POWER DISTRlbOT10N N2-8*25 R

P N

N 1

0 J

N 0

F i

0 C

0 A

l'M D IC ll D 0.51. 0.18. 9.11 tvl DIC f( D Matt *10

. 0.15. 0.41. 4.35.

rE &l.uM D 1

..6Ci pittlM Nct.

7.2 7,7.

6.4

.PCI llif 8 8 9t NCf,

)

l 9.3P. 0.64. 1.01. 0.94. 1.01. 0.64 4.51 0.40. 0.6%.1.04. 0.9f.1.96. 0.67. 6.19 7

0.0 1.4 1.%

I.S.

P.9. 6.6. 6.9.

. 4.4 0. 4.06 1.tl. 1.17. I.31. l.It. 1.75. 3.06. 0.40.

r

. 9.41. 1.04. 3.20. I,Il 1.54. 3.11. I f%

l.Il 0.65.

1 f.6.

f.9. -3.1

-0.6. *0.0 0.1.

l.t.

4.9 8.1

. 0.40. 9.66. 1.ft 1.11

1. 46 1.19
1. %. 3.11. 4.18 9.66. 9,40

. 0.64. 4.47 4.50

  • 3.80. 4.54 1.09 4.3%. l.it. l.11. 0.84. 0.41 4

3.1 1.4.

4.1 0.h 0.4.

0.4 0.8.

1.0 1.8.

F.?

4.t

...,.1.16 1.1%

l.09. 1.1%. l.56 l.14 l.tl 1.06 0.11 0.57. 1.06. 3.t8. 4.11 8.36. l.06 1.t6 l.09 1.5=

1.16 1.10 1.86 1.11 1.11. I.FF l.0a. 0.39 0.%. *0.4.

l.9

-F.5. -1.6 0.8 0.4 0.9 0.0. *0.8

-3.4 f.t.

1.4 6.H. 1,77. 3.11. 1.17 1.16 1.37 1.96 1.M, 1.16 l.11 l.lt. 1.ft 4 64 8.64 1.12 4.10. 1.34 1 14. 1.58. l.07 1.54 4.16. 1. 59 1.0A I fi 8,66 e

6.t.

0.7.

0.8 al.9

-1.?

9.6.

0.9 8.9 9.7.

I.6. -t.4

-0,5 3.6 4.......

..I%.

1 17 4.%

1.17

1. h. 1.14. 1. 5(

l.it. 1.#5. 0.31.

0.33 1.03. l.If

1. %. I.lb 8.33 1.05 1.10 1,53. 3.17 1.37 1.19. I. 5e 4.19 4.14. 1.14 1.29 1.09 4.97 0.51 P

f.4.

1.5

  • l.S. -t.3

,.0

. -3.0 3.6 l.6 1.4. 1.%. v.8.

4.9 f.3

-l.8 0.4 4........

9. 2 9.91. 1.51. 4.10
1. e A - 1.h 1.%

3.00

1. h. 1.De. l.De. 1.34 1.31 0.94 GMe 0.41 9.97. 1.78 4.08 1.01 1.01 1.34 1.05. l.36 1.04 1.07 1.06 1.tn 0.90 0.18 8

1.4 8.4 1.9 1.3.

1,6 1.0

-l.A t.8 0.0.

9.1.

l.7 4.9

-2.3 11 0.4 0.31 1.01. I.47 3.%

1.15 1.%

1,17 8.h 1.17.

I.h. 1.46

1. %. 8.17. 4.05 0.11.

4.31 1.04. 4.d4 1.11 1.44 a.34 1.15. l.5?

3.1 1. I. 56 4 16 A.3%

1.lt 1.04 0.5F.

9 7.4 0.5.

3.2. -2.1

-0.9.

1.6. -3.0 3.0 9.F

+ 0. 3.

0.4 1.6 9.7 0,6 3.0.

. 9.64 1.27. 1,83 1.57 1.16 1.31 1.06. I.57. l.16. 1.11 1.11. 1.t?

0.64 0.62. 1.19. 1.10 1.58. 1,1h 1.34 1.04. 3.15 4.14. l.16 1 15 1.th S.67 10

- 1. 3 _ - F. 3. - 0,1.

0.4

-0.6

+1.9

-3.8 t.5

-l.1, -0.5 t,0 3.?

4.9

, 0.57 1.06 1.t?

l.Il. 1.36 4.1%

l.09. 1.1%

4,36 1.11. 1.?d 1.06 0.11

. 0.58. 1. 0**

. 1.32. 1.13 1.h 1.17. l.06 1.45 I.h. I.11 l.%

1.11 0.19 11 31, 3.1,

7.6 1.8

  • t.9

- P.9.

f.8 t.1.

0.6 8.7,

6.J 4.9.

6.7 0.49 0.66 1.ta 1.14 1.%

l.10 1.%

4.11 1.16, 0.06. e.4 0 J

0.43 9.90 1.33 l.09 1.11. 1.06 l. 3.!

1.09 8.f4. 0.90 9.41

!?

a.4,

b.T 1.8

-1,6. -1,6 3.4

-P.7

-1.0.

0.S. 01

.6 0.40. 1.06 8.ft 1.It 1.31 1.lt 1.tl I.06 0.46

. 0.45 1.fS 1.1%. l.06 l.76 1.09 1 t0 1.01 0.42 15 1

6.4 1.6

-% I

-4.9

- 1. 6

-2.4

-I.!

3.1 6.)

. 0.17

8. tis. I.01. 0.91. 1.01 0.H, 0.5?

. 0.60

8. t *. 1.0%. 0.91. l.04 4.6%
0. 56.

14 8.4 6.4 F.0.

0.9 2.1

- 4. 2. -1.9 STANDAkD 9.51 0.36. e.31.

S vi p AGI itvletIDN 0.53 0.39. 9.35

.PCI Dif fikf MCf.

15 mt. fos s.4 s.1

-0 %

= t.s I

EUflHARY NAP _N0; N2-8-26 DATE 01/10/92 POWERI 100%

CONTROL RDD POSITION; f-QITI

  • 1.837 QPTR1 D BANK AT 228 STIPS r*DHIM) a 1.424 NW 0.9993 i NL 1.00s0

.l-Ft21 s 1.157 SW 0.0961 i SE 0.9996 i

1 FlWV)

= 1.439 BURNUP a 1 %40 NwD/NTU A.C.2 3.$75%

NE-876 N2C8 Core Performance Report Pag;c 32 of 51

1 Figure 4.4 NORTil ANNA Unit 2 - CYCLE 8 110T CllANNEL FACTOR NORMALIZED OPERAT1NG ENVELOPE 1.20,

( 6.0.1.C )

1.os :

\\(10.93,0.9371) i

9.50

\\

l

.;(12.0,0.4566)

J.40

).10 l

I 0.00-

~,-

0 1

2 3

4 5

6 7

8 9

10 11 12 CORE HEIGNT (FT)

L NE-876 N2C8 Core Performance kcport Page 33 of 51

Figure 4.5 NORT}l ANNA Unit 2 - CYCLE 8 liEAT FLUX 110T CllANNEL FACTOR, F (Z) 9 N2-8 07 2.50--

h r

I f2.00i v

2 o

G

  • %g i

51.soi d

z X

Z x

X 6 1.00i X

x w

x o

X I

Q X

x X

3 0.50i'-

w Hb Z

0.00 " ! -

60 55 50 45 40 35 30 25 20 15 10 5

90TTOW AXML70STTl0H (N00E3)

TDP NE-876 N2C8 Core Performance Repcrt Page 34 of 51 l

9 Figure 4.6 NORTil ANNA Unit 2 CYCLE 8 ilEAT FLUX ll0T CilANNEL FACTOR, F (Z) q N2-8 14 2.50 I

N 7

2 2.00i-v xb

+

1.5 02.

a x

x k

z

x x

x.

X 61.005 n

x\\

o:c r

X n

3 0.50--

tu H

E5 0.004 -

60 55 50 45 40 35 30 25 20 15 10 5

BOTTOW AXIAi. POSm0N (NODES)

TOP NE-676 N2C8 Core Per;ormance Report Pa t;e J5 of 51

Figure 4.7 NORTH ANNA Unit 2 - CYCLE 8 HEAT FLUX HOT CHANNEL FACTOR, F (Z) g N2-8 25 2.50 A6 I

f2.00i 1.50--*

^

~ g

  • h a

x x

t w

x x

z it 6 1.00 "E w

ox x

3 0.50' u.

W 6

x 0.00 " :

k-
9:

i 60 55 50 45 40 35

-M 25 20 15 10 5

BOTTOW AXtAL POSm0N (NODES)

TOP l

i NE-8'/6 N2C8 Core Perf ormance Report Page 36 of 51

o Figurt 4.8 NORTH ANNA Unit 2 CYCLE 8 MAXIMUM llEAT FLUX !!OT CilANNEL FACTOR, Fn(Z)/ P, vs. AXI AL POSITION 2.2 N

y-2.0

}

ior',,c

,"e 3

g 1.8

n 1.6 I

i 1.4,

s

\\-

1:

a. 1.2

\\

e I

E,o ' '

1 i n 08 0.6 0.4 l

0.2 g

5 1 T

1 1 T

T g 7 1 Y Y T T y T T f Y I T T T T y T T T T T 5 T

T T

4 Y T T T 61 55 50 45 40 30 30 25 20 15 10 5

1 Ax1AL rosmON (NODE)

FQ*P UMIT

  • MA)0 MUM FQ*P B01101l Of COR[

10P Of CORE NE-8"6 N2CS Cort-Performance Report Page 37 of 51

Figure 4.9 NORTH ANNA Unit 2 - CYCLE 8 i

MAXIMUM llEAT FLUX ll0T CilANNEL FACTOR, l'q(2), vs. BURNUP

% 2.3 -

O I

l-I

~

6

!- {-l l

l l

FULL POWER i

TECH SPEC LIMIT b

!l

!I I-l l

l l

2<

.n I

I i

l l

!l

!l MEASURED l

Ii

! l!l !II VALUE I

,33 N

!I i

!l

! !II l

l l

Z z0 l

lii!

i i

i ii,jI j

i i

i U. 9-.It l

l 1

1 I

!.I

,.i.!

I Il il

1 *l I! 1

? ! r l'

  • l

~

1.8 x

I I

l !!l i

lI l

l D

i IiilI I

II I

i

.2 1.7 Ii i

t l

i ll I

l A

'r Ii!!l I l!Ii I

l-1~6 6.i l

_i!_!

I i

l l

I!

t 1.5 l

l 1

i i

4 i

eg

- -.i i i

1 i

t i

i i.

f 1

I l

i i

I

! Iii!II i

!I 2

,4 l!'!

i p

I!!l l

a 1.3 li;;!

i i

l i

l l

l l

l

-l l

e O

a E

S 10 12 14 16

'S CYCLE BURNUP (GWd/MtU) i NE-876 N2C8 Core Performance Report Page 38 of 51

Figure 4.10 NORTH ANNA 11 nit 2 - CYCLE 8 MAXIMUM ENTHALPY RISE HOT CHANNLL FACTOR, F-delta-ll, vs. BURNUP 1 5 0 r r IILL POWER M

L!

!I

! IECH SPEC LIMIT v

l i

r i

l l

l l

1;5, l

. : _2 l

i l

. ;, j i

j i

l YEASURED c;

- -.a 1, !. l VALUE I

L_I_ e J 1 AO F s

a i

i z

7 s

a

1.. _t, C i

i t

1

(

=

i y

l i

\\

k 3 30 __i.nl u'.

i i

I l l i

~

v l

i

~

I i

i i

g

.A

'. : 5 ---

v i

j i

j i

4 i

,t l

~

i i

i T

i I

j j

i j

t i

4 4

, _) j U

L t'

i i

4 l

i i

t i

i E-15 y

1

)

z,.,

l i

4 i

l j

1 i

I

1. I A v

0 2

e a

,e CYCLE BURNUP (GWd/MtU)

NE-876 NCCS Core Performance Report Page 39 of 51

Figure 4.11 NORTH ANNA Unit 2 - CYCLE 8 TARGET DELTA TLUX vs. BURNUP 14.0 bA L-I I

I I

i l

I i

i l

i l

i i

1 i

1 l

1 i

i i

r l

7 j

12.0 j

1 j

'i i

i c

10.0 W

I i

}

I

{

l j

i i

O i

i l

i i

i I

I g u-1 r

i I

I l

i i

1 l

w 1

,i I

c. u,,

4 i

i I

i i

i l

i i

i i

i

'A q

.0 l

l

!j!

j I

=

i A

I i

i i

I l

l I

'" n i

i i

i j

l I

i i

i i

i i

i i

i I

2 0.0 i

i i

i i

i

.i i

l O

- 2 u, l

  • i i

i l

2' s:

i l

l l

i i

I I

l c-C,.

i l

l I

i

! Al l

-O. '

A A A

,A i

i g

i C.

- o.O i

7-i1 t

4 I

- 8. 0 I

I 1

i l

}

i I

I i

l J

t i

I I

I I

I l

I i

--10.0 0

4 6

2 10 12 14 1 r,,

18

~

CYCLE BURNUP (GWd/MtU) l i

l l

NE-876 N2C8 Core Performance Report Page 40 of 51 l

_ye--

)

Figure 4.12

?

NORTli ANNA Unit 2 - CYCLE 8 C0kt AVERAGE AXIAL POWER DISTRIBUTION i

N2-8-07 3

Fz = 1.208 AXIAL OFFSET = -2.008 1.50--

1.2 02-

%M

/

X X

x m

O h%

X f

M g 0.90;,-

y, 2

x 5

x m0.60.

5 7*

x N

6

g y

h X

0.30

.y

~

^

0.00 t-

+-:
~

60 55 50 45 40 35 30 25 20 15 10 5

BOTTOW AXtAL POSm0N (NODES)

TOP NE-876 N2CS Core Performance Report Page 41 of 51

if t

)

Figure 4.1'l NORT}l ANNA Unit 2 - CYCLE 8 CORE AVERAGE AXIA1. POWER DISTRIBUTION N2-8-14 Fz = 1.157 AXIAL OFFSET = -4 532 1.50 P

1.20I-O N M^

E x

Bf o,goi.

x i

x Y

1 z

X o

x 5

x m0.60,-

6-n* -

x C

x 0.302-0.00 %

l

~

l 2

60 55 50 45 40 35 30 25 20 15 10 a

BOTTOW AXtAL POSm0N (NODES)

TOP d

A

)

NE-876 N2C8 Core Performance Report Page 42 of 51 s

o eigure 4.14 NORTH ANNA Unit 2 - CYCLE 6 CORE AVERACE AXIAL POWER DISTRIBUTION N2-8-25 Yz = 1.157 AXIAL OFFSET = -3.573 1.50--

1.20 x

O x

M &[

i N

x gg Y. g

-, 0.9 0,-

x gx

.x x

cr O

X b

h no.60 x

0 x

0.306 0.00 %; :

+
-

60 55 50 45 40 35 30 25 20 15 10 5

00TTOW AXIAL. POSm0N (NODES)

TOP NE-876 N2C8 Cote Performance Report Page 43 of 51

s 4

Figure 4.15 NORTil ANNA Unit 2 - CYCll: 8 CORE AVERAGE AXIAL PEAKING FACTOR vs. bURNUP l4 i

i i

i 1

i I

l l

l l

l l

l i

i

!~

l l

l I

l l

i l

l l

i i

i i

i i

i 1

i j

i l

l I

i t

i I

i

(

i

}

y

,7 O

i l

l

~

i i

1 p.

i l

U l

i 1

l l

1 I

i t

i i

I 3

I I

f i

l I

l l

l v

ru

..._._______4._-l l

l 1

l l

2.

1 ' ",

. _.i I

e i

Z l

l ui j

l i

i 1

l l

l n

R;C}~

isj j

M i

i 8

L I

,]_

)

i ml s 8

in

.t m

o i

i i

i i

l l

j l

l l

j J

l t

i i

l I

t i

X, I

I e

I I

I l

l i

i

< l1 F i

i I

I l

i j

I' I

i l

l 1

l i

i I

i i

l I

i l

l l

l l

l i

r I

I I

i I

i I

1.O O

a 6

3 10 12 14 16 15 CYCLE BURNUP (GWd/MtU)

NE-876 N2CS Core Performaace Rt ort Page 44 of 51

O Section 5 PRIMARY CODI. ANT ACTIVITY i

The specJfic activity levels of radiolodines in the primary coolant are irnportant to core and fuel perforttance as indicators of f ailed fuel and are i rnport ant with respect to offsite dose calculations associated wi*h accident analyses.

Two.aechanisms are responsible f or the presence of radiciodines in the prirra ry coolant.

Radiofodines are always present due to direct fission product recoil from trate fissile materials plated onto core coroponen t s and fuel structured surfaces or trace fissile materials existing as impurities in core structurel materials.

This fissile material in generally referred to as " tramp" material, and the resulting fodines are referred to

.s tramp iodine. Fission products will also diffuse into th-primary coolant if a breach in the cladding (fuel defects) exists.

Fuel detects are generally the pr edom ituint source of rad iciod ines in the primary coolant.

North Anna 2 Technical Specification 3.4.8 limits the radiciodines in the primary coolant to a dose equivalent I-131 value of 1.0 tiCi/gm for

r. odes one through five, inclusive.

Figure 5,1 show:. the dose-equivalent 1-131 act ivity history for Cycle 8.

These data show that the dose equivalent 1-131 activity was substantially below the

1. 0 1.? i / gm limit f or steac'y state power operat ion. The average f ull power equilibrium dose NE-876 N2C8 Core Performance Report Page 45 of 51

B e

- equivalent 1-131 concentration for the cycle was 2.42 X 10 pC1/gm which corresponds to less than 3% of the Technical Specification limit.

u Correcting the 1-131 concentration for tramp fodine involves calculating the 1-131 activity from tramp fissile sources and subtracting

- this value from the measured 1-131.

The resultant is an estimate of the 1-131 activity resulting directly from defective fuel. The magnitude of the tramp-corrected 1-131 can be used as an indication of the nucher of

' defective - f uel rods.

The cycle average tramp corrected iodine-131 concentration was 1.57 X 10-2 pCi/gm with an average demineralizer flow rate -of approximately 77 gpm during power operation.

This magnit0de of tramp corrected 1-131 typically indicates the presence of defective fuel rods.

Another positivn indication of defective fuel is the presence of spikes in radiofodine during large or rapid power transients.

Several lodine spikes can be seen on Figure 5.1.

r The. ratio of the specific activities of I-131 to 1-133 is used to characterize the type (size) of fuel failure or failures which may have occurred in the reactor core. Use of the ratio for this determination is feasible because I-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately. eight days).

For pinhole defects, where.the diffusion time through the defect is on the order of days, the I-133 decays ! caving the 1-131 dominant in activity, thereby-causing the ratio to be roughly 0.5 or more. In the case of larger leaks and tramp material', where the diffusion mechanism is negligible, the l

I-131/1-133 ratio will generally be less than J.1.

The use of these l,

NE-876 N2C8 Core Performance Report.

Page 46' of 31

,,%9'

, o.s.,ny,m%-r y,

,w-rm,

,,,.m..%m.,,,,,,

.mm,o.,,. mmc,,,,_.,

5,mm, m..,cm.--.m.,--wrm_,,,v,m.-.,

.. _. _. _. _ _. - _ -... _ _ _ _ _ _.. _._._ _..... _ _.._ _ ~._ _.

ratios with regard to defect size is empirically determined and generally used f.hroughouc the commercial nuclear power industry.

-rigure 5.2 shows the 1-131/I-133 ratio data for North Anna 2 Cycle 8.

Aside from the large increases in the ratio during the time when the defects occurred, the 1-131/I-133 ratio settled out below a ratio of 0.5 toward the middle and end of cycle.

This indicates that the defects in-the cladding were likely to be myierately sized.

Fuel ultrasonic testing was performed during the Cycle 8 to Cycle 9 refueling outage. Eight fuel rods in five fuct asser.blies were confirmed to be defective.

The five fuel assemblics are X49, Y39, Y40, Y42, Y47.

i Assembly X49 was used for two cycles, Visual confirmation of the defective rod showed a t hrough-wa ll def ect. on a corner rod below the bottom grid.

This defect. appears to be externally generated, but it is not clear whether debtis or some other external mechanism induced the primary defect.

Extensive hydriding was also observed toward the upper spans of this rod.

Assemblics Y39, Y40, Y42,-and Y47 are all from the i

new fuel batch for Cycle 8.

No evidence of debris induced failures was found, during the visual examination of these assemb!!cs There was evidence of hydriding of the fuel cladding just above the bottom grid on the failed fuel rods that were visible.

Possible failure mechanisms are currently being evaluated with the fuel vendor (Westinghouse). These fuel assemblies will be restricted f rom further use pending any repair projects to replace the defective fuel rods.

1 NE-876~ N2C8' Core Performance Report Page 47 of 51 g

.m g

w e

--pr-v e - e-t 4 gh

Figure 5.1 NORTH ANNA UNIT 2 - Li LE 8 1

DOSE EQUIVALENT I-131 vs. TIME 1.00E + 01 -

1.00E 4 00 ---

a 2 1.OOE -

C e

=

a 3

1.OOE -

g

~E O

I-O K

O_

2 1.OOE P-1.00E 100'

'l i

i i

i ie i

i g

s 80 80 40 1

20 1,00E -

o-31AUG90 09DEC90 19 MAR 91 27JUN91 050CT91 13JAN92 22APR92 !.

DATE NE-876 N2C8 Core Performance Report Page 48 of 51

, _ _ -.... _ - - -, - - -. = - _,.

t O

Figure 5.2 NORTil ANNA UNIT 2 CYCLE 8 1-131 / l-133 ACTIVITY RATIO vs. TIME 1.5 --

~

r 1.4 --

1.3 1.2 -

1.1 1.0 -

. e-o k.'

- 0.9 av H

v/.

M

.8 -

..P.

0 a

~

l c,-. o 7 s.

M

.s

.a

-l 0.6

.k-P 0.5

.s %*-~

~

O.4 -

9

~._

n.

.. y.

.. =..

'>,,g,.,

4."

.e k,

$;"i-)%'[~i, O.3 -

. < ?.

"r -

i 2 i

x%

0.2 r

80 o M# -

og 0.1 40 2 8

20 g 0.0 -

o i

31AUG90 09DFC90 19 MAR 91 27JUN91 050CT91 13JAN92 22APR92 t

DATE NE-876 N2C8 Core Performance Report Page J.9 of 51

i 9

Section 6 CONCLUSIONS P

The North Anna 2, Cycle 8 core has completed operation.

Throughout this cycle, all core performance indicaters compared favorably with the design predictions and the core redated Technical Specifications limits were met. with significant margin.

No significant abnormalities in reactivity or burnup accumulatien were detected.

Kadiofodine enalysis indicated that there were apparr.nt fuct rod defects during Cycle 8.

During ultrasonic tunting of the fuel, eight fuel rods in five fuel assemblics were determined to be defective.

One of the five fuel assemblies was tand for two cycles of ope ra t ion.

The remining four asemblies woro e sed only one cycle.

.These five assemblics will be

. reatricted from further use pending repair.

4 6

NE-876 N2C8 Core Performance Report Page 50 of 51

l t-Section 7 REFERENCES 1)

E. A. Hoffmaa, "Noith Anna Un'.

.vcle 8 Startup Phys ics Test Report," NE-817..icr

+f, 1991.

2) North Anna Power duo. ion Jnit 2 Technical Specifications, Sections 3/4.1, 3/4.2 and 3/4.4.8.

3)

T. K. Ross, "NEWTOTE Code", VEPCO NFO-CCR-6 Rev. 9, April, 1984 4)

R. D. Klatt, W. D. Leggett, ill, and L. D. Eisenhart.

" FOLLOW Code," WCAP-7482, February, 1970.

5)

W. D. Leggett, III and L. D. Eisenhart, "INCORf. Code,"

WCAP-7149, December, 1967.

6) MemGr;t ud um from R. G. McAndrew to J. R. Hayes " Core Operating Limits Report (COLR) Tech Spec Amendment 146/130", July 5, 1991.

7)

T. T. Nguyen, " North Anna 2, Cycle 8 FULOW Input and Calculations",

PM-363, rev. O. Addendum B, May 1992.

.-2C8 Core Performance Report Page 51 of $1 la-876 4

._ _-_ __ _ _ _ -