ML20058F131
| ML20058F131 | |
| Person / Time | |
|---|---|
| Site: | North Anna |
| Issue date: | 11/05/1993 |
| From: | Banning P, Brookmire T, Meyers G VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | |
| Shared Package | |
| ML20058F128 | List: |
| References | |
| NE-957, NE-957-R, NE-957-R00, NUDOCS 9312080002 | |
| Download: ML20058F131 (54) | |
Text
$:.)naW,,&m:h&usihf+.%@fw$M$$rp n W P Q R g M W W R:
N
$:M M ti W 9 p nWlF$&OWfQ N!$&u vr wp mi u m cw$w :'
mm W \\W S ViO fR f
e w e e $ e n n@ ydE Ng l n% d 4
p g
g MpMM4Mh@
pM MM k
g4wne%sw%wo$r. 4,Vfr u i,
&en s
,Ss W@e%nmfQ%:&g ^ Ys's (wy ff.,f'z ;:mby
_q Q :p /a n g y.M W W y M M E g;e m M Q f: p;; %m w M
% nwo w
am me
- wl4 p ',%7. h%nN,nf p gff :h yj;:lJM N
<(i h
m
}k WQ-dq MhMt WW n
t
@q mnwppqh:WfQN :om%;w m ay Qw gg y
.+
eq 1;
y x
9
. 4 l%l&& m%ly[(wpg&y
$ m;8&s?.( g g &y e
w h
m&;Ww
% ?.
k q' s
. x
/e{
Q.
fQW n}lhk hQ y WM N H,@,,O G WW W @x&,lylt@n%f g @y f~a @,Ne$a$en.~
gu $n&e. n#w@F
. x n.m av,
4m, n
n g s pg u
.. 4M w%QD%
%x,;y iY M,r.
- %- ',N. n.m n.m%,) h,j:q~esa'#n.q f:&nqj %;n Q n
,#n '1 4
- h gQ w&
g-ygyqwA h-J Af v 4:w";ge.
rit a es
& aw y#
am3 p,yw+
%guo
. g y
mm w./
~m a n -~, ~n. u n. w.mwm
~
me,n n,~.
n
_M ~ %Ed!% _%BM & W9 _MW Wh ' W_:
_W 4 '
_y(W
$a$$h@j@@M@n@e A_Wp
_te$ %$ 3%;MM k M d d Dn r3h T Th+$$$%e%%Mggd% $$k ?p Q
W m: ab
$Q - 9th N
% Mi d $
0 r
naewunn
~ nann a
.D 3N. hhenww,%m. 4Nhkhh ~
mwwa$w$MdhdMMh%kN DMEN M,su np m m m w m n w nns@w wm q &w w d m :
oww m
w a
m saw w
.n pew w n e p n w A m a p q A w Q ortananas,w nanannaea n m w w a n; w w m w m e w%et;w o n e-aw mag N
wm w&:emm%p m.ge mww W.4 % p ggs tJn m qu p wv iW W X @ A M i b,pp g s
> WV Qgqgg:Wz n
%paQ M4 Q
ans
%rw:
x%u:w, m y>.
,k-nqwvw wm a
1 a
G._ Warn _g Mph,Q7RWY.
M_ M&_60%$$; %fQMQ F 4~ p" _1-, A QQWT:u f
Q
% yfM MAE WWL f,;;pp::.Q; A mM -..,....
w C$$ - pw.m lm e.,n_
o '
.I J
.'w'
.mf ua r
g
" p%.u.p#.y%p-Q..Q
'? %;$m{' :'l.}m;<' A. g:w-w*Q.)a,.n.
n bq % Nym%,Q+m% ~ m._a:
z
..4.
A
%M g+n
.x-L
- 3.. m.m' M.4'.' *q;m w, + + >
~,r
'8 ; &!? n m;
i w'm e;
SAY I.(y ':' " C [.,a' 'y
., h\\
n$; -
_s N 5' '{ N% V'x&w' ' &
8W_kN
- h>b K r?,'?
b
/:
,.-?&$.5 l'
'-?!
f I
fha @hijk'.
3 g
h k
kb M
b uw w a m w,w m,T~w,Na _,k,Q n,MMME Ydh SN.kSMW,MM$$lw$9u%
uf$$ M.py $Mb8M Md ddM
^
u wn-learAnalyswand:Fue+g e y
y u,
Nuc n
w w = wr %m,.
n n.%am.i e
~~a.w-en m ~x n ~mnn nummn 4 93m s;g:
m n
m
- s=
a w
u :
9a mg a y:u. p u
~.
_n r
n
. ~, s~4s,6
~ ~ w ~ a.
"g. a.k,
, m+ ]
" a.Q g;.d
,v^)h s
.,,& G,:-
+
- Y r
- #G G;g. - m.2%
aN%, w. <,
My..
4 +a+,h ~
~
+
O k $q:;,$:wy3M F'lh U,k ? k h;i%y$,$,d;%khW'$
..M.
2m-V&&
h ' ' W.2QL
~
Q Wyt,$W ml,(&,ryg sb & h N!l k,m] id~hh,ql% '? Y &s'.l,Rt Q L' m
i A. is n r F
ly 2
A j ',
m5
&&nyg%cn$n% s Yk
?
kW ~
21 % p m A@r%w % @$y w$hS t
t av b'
W$ MWfdd%@i2QE%w AdM,'sdC 4
/ %~ gm
%Ww m.m fMRM Q k %e g $4 pc m ymw,
, " %m n& % mghiy%fffhaw&ygwlN;.n% $ml2. f.
%- #s 4 - e &.aow & e [e &~ h~ ~h h ) c kq u 3 g lvhN
{,
Wh hW N
_ 7:$ i khQh?h$%w&
m ugyNhhbM.hkhh;3@hkE N~ D nd N-- ( d- -
M.?+Y-
%sm Nhkdk k
M iMMbNb MN&d bM hk b
M [ d ~N 7 +? b k k,,! k-3MN N a M,k h,b h S h U h ? N W '
4 u
. 'Nhf 4 h
,f[q aw;msm h
hk Yh
$[
w 3yyy;yya.
w gg,~x. ~g uppyuy,g ae ;p-y nv mm y
w.
-ww
,, g # gggg,w%g ypgg %ew n
n a4n c wsg:,q i, n g;.fu 934h.mp,,
ag p
p5
- v pu w
gg gg% M, 4
f, M.. g
, My W Nw,sp ' gg.
n3g 7$
+ ' q gg
,:p _s r
4m 3 m
wf % 6 M
c'
- p;,, n+'@,
j v f
- M"mw e ~
, ':m, +* m
./y m
A s hn :
. n-r,,
1
+
m~ n
~ ~w <x. ~.n@il J
t n
a.
w nm. my
,T.-,
- j. :w-:
t~
w
%g,s nm c w s
a magg_ 5:[f36 w
-w n: Gr l i ?' re.
u (w h-MK -
'g? + h... j 9,T ~,.}
%lp&r yA 'gCeb;&p~~
Nf~
).} f *., '
N
, iV bg W
'J,.,
Y' '
sa,
' g'l
~ +
r a
fjhty' nlC.
5
$f,
?
~(
$e r k?m? h 3f8
$?am ' m ~k,f, W kVIRG, MNA,PO. cW kk, %kk.y, sY l
l t
e n 2
m
+ n s
-m m
+
w N
~
S hhYhh e
x o
s4 x
.~
%n n%yb ya;ah.
x An w%m, Ag?e ? wqpm b-~
w
- m a #,g
., emc
< ' s %*i c
e mu w
+s y
w%g. y :w @g %n* y w n n wa
&v4iK CA ~ Ep^ q%g% M "
- W < N w
+ %
o.
b;Np&ye<;w;7&n*tu;L 36 y s
v qwg&glMW *hx&
,,, M y;g @% :
WP % MP j..
9 Mi 3
(
f j @>.t*
-i g:Gri;:p 4s eA
%y'
~
tp u
%A - -
w gg
.rv L. y
?Q ~
^gp
%s 3%d dt jg MQ uyNQA &p%Q r gQ. pp L
g
{ g qy
(
^
r y g4 Qupp g-
- g
- .7 4g M'
p
.q[
e:y >>yj, r
~~
m w%
v '.m
. a;*
8 k[s y. hi. ) 4 '.b g'6 / A 6y
+
y,n gmm yV@tp g,I$Mgfl%%dM3R Jg$$
d.y.;y N c +i6 ji i
Q N
d
) M w p w9 1
3 m
t u w,p, < w um~ J up:0 s.
pf w., v mynuns n
- hfb,fk 'ff_f _f 7xgy:
h
.fR ng ws3m
- -. ff _ ;< k -Ukfh. h_,)p-
,w. hf \\f!N_l l&, l s _
8 fg
__u ur f
Q x
r.
m 5.
't I
^
' Aorth Anna Unit 2 Cycle 9 Core Performance Report Nuclear Analysis and Fuel Nuclear Engineering Services November,1993 l
VIRGINIA POWER
1 TECliNICAL REPORT NE-957 - Rev. O l
NORTil ANNA UNIT 2, CYCLE 9 CORE PERFORMANCE REPORT NUCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING SERVICES VIRGINIA POWER November, 1993 PREPARED BY:
///9N G. L. Meyers Date REVIEWED BY:
L
'"^"D llN/M T
P.D.Banningj Date REVIEWED BY: (
m e
// i 43 T. A. Brookmire Date REVIEWED BY: /
b
//-3 4 3
'A.
P. Main Date
/
APPROVED BY:
7 f)
II. Dziadosz ('
Date QA Category: Nuclear Safety Related Keywords: N2C9, Core Performance Report
_.___ _..~
4 1
i t
~
i I
t I
i t
1 TABLE OF CONTENTS i
1 i
PAGE i
t i
Table of Contents 1
I e
List of Tables.
2 List of Figures.
3 i
f Section 1 Introduction and Summary.
5 Section 2 Burnup.....
12 i
3 Section 3 Reactivity Depletion..............
1
. 22 I
v Section 4 Power Distribution............
. 24 1
Section 5 Fuel Reliability.
I
. 44
= i a
Section 6 Conclusions
. 50
-1 i
Section 7 References.
. 51 4
1 i
i
.4 4
?
i
.4 i.
j -
?
l n'
i 5j-1 4
I 4
l 5
j 4
u l
d i
I l
-NE-957 N2C9 Core Performance Report Page 1 of 52
. i l
d.
s.
LIST OF TABLES r
TABLE TITLE PAGE
,v 4.1 Summary of Flux Maps for Routine Operation
. 28 b
I I
i
)
i i
i
-t
~
l t
1 I
1
.1 NE-957 N2C9 Core Performance Report Page 2 of 52 -
I
~.
1 I
E t
LIST OF FIGURES r
?
FIGURE TITLE PAGE 1.1 Core Loading Map.
8 1.2 Burnable Poison and Source Assembly Locations.
9 1.3 Available Movable Detector Locations.
10 1.4 Control Rod Locations.
11 i
2.1 Core Burnup flistory
.. 14 2.2 Monthly Average Load Factors 15 2.3 Assemblywise Accumulated Burnup: Measured and Predicted.
16 2.4 Assemblywise Accumulated Burnup:
Comparison of Measured and Predicted
..... 17
)
2.5A Sub-Batch Burnup Sharing..
18 l
2.5B Sub-Batch Burnup Sharing.
19 l
2.5C Sub-Batch Burnup Sharing.
. 20 2.5D Sub-Batch Burnup Sharing..
..... 21 3.1 Critical Boron Concentration versus Burnup - HFP,ARO.
. 23 4.1 Assemblywise Power Distribution - N2-9-03
. 29 4.2 Assemblywise Power Distribution - N2-9-11
. 30' i
4.3 Assemblywise Power Distribution - N2-9-21 31 l
T 4.4 flot Channel Factor Normalized Operating Envelope.
. 32 4.5 Heat Flux Hot Channel Factor, F (Z) - N2-9-03 33-q l
4.6 Ileat Flux Hot Channel Factor, F (Z) - N2-9-ll
. 34 It q
4.7 Ileat Flux Hot Channel Factor, F (Z) - N2-9-21 q
. 35 48 Maximum Heat Flux Hot Channel Factor, F (Z)*P, vs.
9 Axial Position.
. 36
{
=i i
h i
NE-957 N2C9 Core Performance Report Page 3 of 52
~
I LIST OF FIGURES CONT'D FIGURE TITLE PAGE 4.9 Maximum Heat Flux Hot Channel Factor, F (Z), vs. Burnup
. 37 g
4.10 Maximum Enthalpy Rise Hot Channel Factor, F-delta-H vs.Burnup. 38 4.11 Target Delta Flux versus Burnup
. 39' 4.12 Core Average Axial Power Distribution - N2-9-03 40 4.13 Core Average Axial Power Distribution - N2-9-11
. 41 4.14 Core Average Axial Power Distribution - N2-9-21
. 42 4.15 Core Average Axial Peaking Factor vs. Burnup..
. 43-5.1 Dose Equivalent I-131 vs. Time
...........48 5.2 1-131/1-133 Activity Ratio vs. Time....
. 49 NE-957 N2C9 Core Performance Report Page-4 of 52
1 i
Section 1
\\
l l
INTRODUCTION AND
SUMMARY
l i
On September 7, 1993, North Anna Unit 2 completed Cycle 9.
Since the initial criticality of Cycle 9 on April 22, 1992, the reactor core produced approximately 1.1118 x 108 MBTU (18,662 Megawatt days per metric I
ton of contained uranium).
The purpose of this report is to present an analysis of the core performance for routine operation during Cycle 9.
i The physics tests that were performed during the startup of this cycle i
were covered in the North Anna Unit 2,
Cycle 9 Startup Physics Test 3
Report and, therefore, will not be included here.
North Anna Unit 2 was in coastdown from July 11,-1993, at which time the burnup was approximately 16,785 MWD /MTU. The coastdown accounted for f
an additional core burnup of roughly 1,877 MWD /MTU from the end of reactivity.
2 The Cycle 9 core consisted of 11 sub-batches of fuel: four once-burned j
l batches, two from Cycle 8 (batches 10A,10B), one from Cycle 7 (batch 9A),
t and one f rom North Anns 1_ Cycle 4 (batch N1/6); four twice-burned batches, f
f rom North Anna 2 Cycles 3 and '4 (batch SA), one from North Anna 1 one Cycles 7 and 8 (batch N1/9B), one from North Anna 2 Cycles 7 and 8 (batch
}
N2/9B), and, one from North Anna 2 Cycles 7 and 8 (batch N1/10A); one s
thrice-burned batch from North Anna 1 Cycles 5, 6 and 7 (batch N1/7); and i
NE-957 N2C9 Core Performance Report Page 5 of 52
.i
=~
l 1
1 k
i i
two fresh batches (batches llA and llB).
The North Anna 2 Cycle 9 core loading map specifying the fuel batch identification and fuel assembly locations is shown in Figure 1.1 The burnable poison locations and I
i I
source assembly locations are shown in Figure 1.2.
tiovable detector
'i locations are shown in Figure 1.3.
Control rod locations are shown in
'l i
Figure 1.4.
Routine core follow involves the analysis of four principal performance edicators.
These are burnup distribution, reactivity i
depletion, power distribution, and primary coolant activity.
The core burnup distribution is followed to verify both burnup symmetry and proper i
batch burnup sharing, thereby ensuring that the fuel held over for the next cycle will be compatible with the new fuel that is inserted.
Reactivity depletion is monitored to detect the existence of any abnormal l
reactivity behavior, to determine if the core is depleting as designed, j
and to indicate at what burnup level refueling will be required.
Core i
power distribution follow includes the monitoring of nuclear hot channel l
i I
factors to verify that they are within the Technical Specifications
- s limits, thereby ensuring that adequate margins for linear power density and critical heat flux thermal limits are maintained.
Lastly, as part I
t t
of normal core follow, the primary coolant activity is monitored to assess j
6 the status of the fuel cladding integrity and to compare the concentration -
i of dose equivalent 1-131 in the reactor coolant with the limits specified E
by the North Anna Unit 2 Technical Specifications.
[
2 l
NE-957 N2C9 Core Performance Report Page 6 of.52 f
.i
l Each of these four performance indicators for the North Anna Unit 2, Cycle 9 core is discussed in detail in the body of this report. The J
results are summarized below:
{
- 1. Burnup - The burnup tilt (deviation from quadrant symmetry) on the core was no greater than 0.41% with the burnup. accumulation in each batch deviating from design prediction by nc, more than 1.95%.
- 2. Reactivity Depletion - The critical boron concentration, used to monitor reactivity depletion, was consistently within 0.58 AK/K i
of the design prediction which is within the 11% AK/K margin allowed by Section 4.1.1.1.2 of the Technical Specifications.
3.
Power Distribution - Incore flux maps taken each month indicated that the assemblywise radial power distributions deviated from 4
i the design predictions by a maximum average dif f erence of 2.1%.
All hot i
channel factors eno t t hei r rompoet.ivo Technical specifications limits.
t i
4 Fuel Reliability - The average dose equivalent iodine-131 activity level in the primary coolant during Cycle 9 was approximately k
i 1.48E-2 pCi/gm.
This correspords to approximately 1.5% of the operating-I limit for the concentration of radiciodine in the primary coolant.
An evaluation of the radioiodine and noble gas concentration in the RCS indicated one to three fuel rods were defective. During the Cycle 9 core
{
of fload, one assembly was visually confirmed as having a failed fuel rod.
l Subsequent visual inspection and ultrasonic testing (UT) performed during
~
the Cycle 9 to Cycle-10 refueling outage confirmed that a total of five i
fuel rods in four assemblies were defective.
I I
i l
NE-957 N2C9 Core Performance Report.
Page 7 of 52 i
y I
h i
i Figure 1.1 i
NORTH ANNA UNIT 2 - CYCLE 9 CORE LOADING MAP i
R P
W M
L E
J H
C F
f D
C 8
a l 9s I wt/7 8 *s I
i xtl I cra 8 xla l 1
I 1
1 I
i int / scal sa l lls I les ! Its I sa las/ seal l
l sit i 554 ! 6t t i v43 i 4tt I s46 i ses 1 2
I 1 _. _ t i
i i
i f
I ** I Ila l als I ass I als i les I als I lia i va i l x23 1 2t ? I st o i vss I sie i v46 I str i 3ts I ar6 I 3
i l
i I
.I I
i i
l__ _ l 1
l vs a los I als i ISa 1 Ila l los j 11a 1 304 l Ill i job l 9s l
l mz? I vu i 56 7 i vi6 I ats i vst I sie i v!4 i st4 I vsa 4 xts i 4
I I
l_ _ _ t 1
i i
l i
i i
i Iwi/ leal laa i Ils I nos 4 ala i sea I lia i lea i sia 4 aos 4 11e i 11a IN)/loal
[
l tot i 3t s I 6t 3 1 ves l It s 1 ve9 I tt s i vt? I stt i vs3 4 4t6 1 3tl I so?
8-5 1
I I
i l
I I
I 1
l i
l i
1.
I sa 1 31s I sea l sia j ica i les i tea i ssa i les l Ala 1 joa i als I sa 1 1 504 1 414 I vt6 1 149 1 vts i v*a i vil i v=4 i Vie i tie i vos i st s I slo l 6
?
1__ _ l I
I i
i l
i l
1 i
1 l
I I mar 9si !!s a los i lia i laa i jos I tea i sin i sea i so! l Ita i lla 1 let I !!B i 98 l
r I
>=4 1 6t a i v33 1 4t o I vro i v63 1 vor i Ita i vil I v61 I vr? I ra s i vs6 1 4t 3 I use 1 7
1.___. l _ I I
I I
i 1
I I
i i
1 I
i i
i nt/7 I Ica 1 13e 1 aos i lla i los I ala i va i lla i sea i lla 1 108 1.11B I hl/6 i N!/7 I I cor i v6e i 6t e i v3s I st 7 i vi3 I Itr I me9 i st r i vos i It6 1 vs6 1 4t a i 706 i Ctr i a
1 1
1 1
i l
I I
i l
8 _ __ I I
I I
i I wa i las I los i Ita i Roa i les i Ica i 11a 1 aca i los I asa i laa i los I als i va I I mer i 4t9 1 vis l ZLB l ve4 l v38 l vit i 21 4 I ve8 l v41 4 701 l 3L 3 4 v49 l 6t? I E48 1 9
I I
i 1
4 1
I l
i i
i l
I i
i i
I i sa i ils I lea i ita I sea 1 iss I lea i les I les i !!a a loa e saa i sa i
?
l 549 l 6t t-l vo6 i Ft 9 l v?6 I vse l V18 i vs9 1 702 i Ft 3 4 v22 I sts I ss? l 10 h
i I
I i
i l
I I
1 I
1 i
l I
Inl/ teat lla i lin i Ice i Ila i tea i ala l Isa i sia l los i sia i Ila lat/ scal l 809 i 7t 6 i 51 3 i v62 1 5t 6 1 vl9 1 eL9 l vis i 31 9 i V31 1 615 I It! I slo i II 1
8 I
i l
I l_ _ I I
I I
I I
I I 98 I leB l llB I les i fla i 198 1 Ala i IDA l IIE I 10B j 9B. I i
i x31 I vst 1 4t h I v?3 1 147 i vs7 I st o i v7s i 4t r i v37 I m37 I It i
i i
l _._1 1
I I
I I
I I
i I 9B i lla 4 118 l IDE i 118 l 108 1 IIB l lia l 98 l
I rte i!M f u4 4 v79 I 4tr i vu I 6t 7 8 rio 1 x46 1 13 1
I i
i 1
i i
i i
INI/ leaf sa i 118 I los I llB i sa INI/10al I sol l S37 I st a i v.4 I st 9 l 535 l 8 06 4 14 1
1 1
i 1.,__ _ I I
I l 92 l MI/7 j 95 i
I") EaTCH I K74 i C=6 i x19 1 35
(
I-- > aSSI NEl v ID i
l l
l i
l F tili ASSIMBt y DI$1CN PAPaMITIPS StJB-salCW sa 9a 9B 10A les lla llB Wl/6 NI/7 N!/98 NI/Ita 3hfilat I Niel C HMf MI 3.s9 S. tL O 4.8) 3.99 4.?!
4.67 4.23 3,59 3.68 3.99 3.80 nuo u-23ss t
aL5t mbt v 1Yl4 17:17 SFal?
3/sl7 17 37 Ital?
17:17 I?al?
3?al?
17:17 17 17
$7sl7 NUMBER Of A551 MBill s 8
1 15 28 33 37 78 3
4 1
8
- tu 1 nous m e ass Meti ra tu 764 264 ra 264 164 764 ra r64 r64 i
1 f
l 2
i I
i.!
NE-957 N2C9 Core Perforinance Report Page 8 of 52
-~
t t
i l
Figure 1.2 NORTil ANNA UNIT 2 - CYCLE 9 i
BURNABLE POISON AND SOURCE ASSEMBLY LOCATIONS I
' I, F
i P
P w
n s
J H
C F
E D
C B-A i
i i
I t
1 i
i i
I I
i i
I I
i i te !
i rp i l
i l
i IBP162 i IBP161 i l
l 2
4 I
I I
l l 6P l 1sp ~ i i
l i
~ l SP l l
l 1 24P i i IsP l
lBPIB4 lBP169 I IBPISI i (BPIFO IBPIB3 l
-l 3
l i
i I
l l
l l
1 1
J l FDP 1 i ?sP l $518 l 24P 1 1 20P i l
1 I
IBPl56 l l$P160 l IBPl59 I IBP!35 l l
l 4
l
(__ f I
I I
i i
l l
i I
I l
1 4P 1 Top l l 26P 1 1 20P l l 14P l 8 20P 1 4P l I
'{
I (BPIB2 ISP134 l lBP151 l lBPl40 l iBP150 l (BP133 IBP181 I l
b I
l ___ _ l l
1 1
1 I
l l
l l
1 l
i i Esp i i t*P 1
I i
1 24P l i 15P l i
i l
IBP113 1 1BP149 l 1
l l
l lBPl6B l lBPl?4 l l
6 I
8 1
1 I
I i
i I
I I
I I
i i
1 rP i i r*P 1
1 l
I rop i i
i 1 2%P l I re i I
I ISPIM i IBPIs4 I
(
l IBP132 1 1
1
$6P157 8 IBP168 i i
?'
{
1.
I l
I l
l i
l i
l l
l I
i l
i i
l isp i i rop 1 I top i i rep l I top I I t*P l
I i
e
)
I 18P14F l iBF139 4 lBPISI l fBP130 1
$BP118 I fBP146 l l
I B
I I
I l__ _ I I
I I
I I
I I
i
_l I
i I
I 2P I I r*P i
i i
l 19P l i
1 l 26P I i FP $
l
-)
I leP161 I IBPl% 1 i
i IBP179 i i
1
.IBPits l IBP167 I l
9 I
I I
i 1_ __ I I
I I
I i
1 l.
I i
1 1
1 1sp i 1 2*P 1
1 I
I i
i r*P l l.sP I
l 1
ISPars 1 ISPl*5 l 1
1 1
i fBP164 $
IBPl?6 1 1-lo I
l __,,. l __,1 i
i l
i l
4 i-1 I
i 1
I
=P I rop $
-l ?*P 1
I top i i t*P 1
I top i 6P t I
i ISPIBO IBPl?B l lBP143 l IBPl37 l
$6P14? I fBP127 lBPIF9 l l
11 i
1 e
i i
i i
I i
i i
i i
i i
l l FDP i i 74P i 1517 l P=P 1
l FDP l l
I
}
l 1
fBPl?6 l lBP15= l lBP153 I ISPl?$ l.
l l
12 i
i 1
I l
i l
l l
l l
l t
- P 1 Isp 1 l 2*P 1
I isp 1
- p i
l i
ISPIT8 IBPl?) l lBP143 l lBPITT IBPlFF 1 1
13 i
i i
1 i
l i
I I
I' i
1 1 PP l i FP 1 l
l l
l 18P166 I fBP165 l l
i 14 I
I I
I I
I I
I
'I I
I
(
l PP r BuP=aBit Polum pod clatsfrP i
i I
i ep
= BuPhaB L I pulsow Pop Clusiip i
l l
I is isP - is Buv=aril Polsow Poli ca usit P 20P - ?e BtFNabt f PulMm PDD Cluill R 74P - 74 EtWhabi l 54)$$DM PDD clMLI!P S$na 51CONilAPT LDuWCl 1
3-I
)
NE-957 N2C9 Core Perfortnance Report Page 9 of 52
m_
. =.
t i
1 I
i 1
Figure 1.3
)
NORTH ANNA UNIT 2 - CYCLE 9 I
AVAILABLE MOVABLE DETECTOR LOCATIONS 5
i P
P N
M 1
F J
M C
f I
D C
S 6
I I
I I
I MD I l
2 t
I i
l i
I l
I i
1 I
i 1
5 I
I I
I I
I MD 1 1
2 I
I I
I I
I i
1 1
f I
I i
i 1
i l
i 1
i 1 MD i i
i nD 1 no I I
I i MD 1 3
l 1
1 1
I I
I I
I i
1
(
l 1
i i
i i
i I
i l
I i
l i
i nD I I
i 1
4 I
i 1
I I
I I
i 1
l 1
1 I
I i
i a
i l
i l
i l
I I
i I
I l
1 I
i l
I i
I i
l i
I I
e 1
1 1
i i
i i
i i
i i
a i
1 4
I I
I I no 1 1
i no ' I I MD i i
1 i
1 6
1 1
1 I
i 1
1 I
I I
i 1
1 1
1 I
I I
i 1
1
=I I
= 1 I
i i
I i
i I
I I
i nD i i
7 i
i i
i I
l i
i i
I I
I I
I I
I I
I I
i i
i i
i l
i i
i i
i l
i i
I I no 4 i nD I I no I i
i i
i MD 1 l
8 I
I i
i i
i i
i l
i i
l I
I i
i i
l I
e i
i 1
2 I
I I
I I
i i
I 4
a 1
1 1
1 I
n!,
I i
i i no I MD I I
I I
I MD.I 9
I i
l i
i 1
i I
I I
I I
I I
i 1
1 I
I I
I i
i l
i l
I i
l i
i i
! MD I I
l i MD I i
1 I
1 I
i 1
1 1
1 1
1 4
1 1
1 I
t i
i I
.I I
i i
i i
1 i
l 3
I 1
i i
i no I i
i 1
Il I
I i
l i
i l
I I
I I
I i
I I
i I
l i
i 1
i 1
e' I MD I I
I I nD I I
I l
i i
i i
i 1
I i
i i
l I
I i
i l
i 1
I i
8 5
I I
I i
i no I i no I i
i 11 I
I I
I I
i 1
1 I
I I
a i e
i i
i I
i I no I i
l i nD I I
I I4 1
1 I
I i
i i
I 4
I I
I I
i l MD l I
i is i
j MD - now.a.s e tw e n t m I
l i
I
=
t ecet sma emt av ilme toe flu = a weiae systen vor cycse 9 i
I r
I i
t F
I I
r b
'i NE-957 N2C9 Core Performance Report Page 10 of 52
{
.t
Figure 1.4 NORTH ANNA UNIT 2 - CYCLE 9 CONTROL ROD LOCATIONS
~
R P
N M
L K
J H
C F
E D
C B
4 180' I
Loop A I
I l
l Loop C 1
Dutlet i
l l
i Inlet i
IA I lD 1 1A l lA/
2 I
i i
l I
l 1
I l
N-41 1
I I
N-43 3
I I
I I
I i
1 1
1 1
I IC i IB i i
I Ia i Ic I 1
4 I
I I
I i
1 I
I l
i I
I I
I sr i I sB i I se i I
I I sB l l
l I
s i
I I
I I
I I
I I
I I
I I
i 1A I IB 1 lD I IC i iD I lB l l A 1 6
Loop A 1
1 I
I I
I I
I I
I I
l _.___ I I
toop c I
I I SA I I
I i LB l I sB l l sP i l SA I i
1 outlet 7
Inlethi I
l i
i i
l I
i i
l l
I I
i 1/
o 90 -l iD i I
i ic 1 1
I Ic I I
I ID 1 1-270 8
0 I
i 1
1 I
I I
I I
I I
I I
I I
I I
l l SA 1 l LP l l SB i 1 SB I I
I I SA I I
i 9
I I
I I
I I
I I
I I
I I
I I
I l
l A i lB I ID I IC l lD 1 iB i iA 1 to 1
I I
l __. I I
I I
I I
I l
i I
I I
I I SB I I
I I SP 1 i se i i $P 1 1
11 I
i l
i i
J l
i I
I I
I I
I Ic l lB l 1
1 IB i 1c l l
12 I
I I
I I
I I
I I
I I
l I
I i
13 N-44 l
l=,,.I,.. l l
l l
H-40
_n l
14 I
I I
I I
I I
i 1
I I
i 15 Loop B l
l l_
l Loop B Absor ber Outlet Inlet Naterial:
1 Ag-In-Cd O'
i function Number of Clusters CAL LE D NORTH Control Bank D 8
\\/
Control Bank C 8
Control Bank B 8
Control Bank A 8
Shutdown Bank SB 8
Shutdown Bank SA 8
SP (Spar e Rod Locations )
8 i
'I l
i NE-957 N2C9 Core Performance Report Page 11 of 52
-.~ --.
'l i
4 i
Section 2 i
BURNUP l
i l
The burnup history for the North Anna Unit 2,
Cycle ~ 9 core is
- {
graphically depicted in Figure 2.1.
The North Anna 2, Cycle 9 core I
achieved a burnup of 18,662 MWD /MTU. As shown in Figure 2.2, the average i
load factor for Cycle 9 was 93.3% when referenced to rated thermal power (2893 MW(t)).
Unit 2 performed a power coastdown starting on July 11,
?
1992 until shutdown for refueling on September 07, 1993.
I I
-i
. i Radial (X-Y) burnup distribution maps show how the core burnup is I
shared among the various fuel assemblies, and thereby allow a detailed
]
burnup distribution analysis.
The TOTE' computer code is used to
)
calculate these assemblywise burnups.
Figure 2.3 is.a radial burnup distribution map in which the core assemblywise burnup accumulation at the end of Cycic 9 operation is given.
For comparison purposes, the I
design values are also given. Figure 2.4 is a radial burnup distribution
-[
t map in which the percentage difference comparison -of measured and predicted assemblywise burnup accumulation at the end of Cycle 9 operation is also given. As can be seen from this figure, the accumulated assembly f
burnups were generally within 13.39*.
of the predicted values.
In i
addition, deviation from quadrant symmetry in the core throughout the j
l cycle was no greater than 10.41*.
- j i
The burnup sharing on a batch basis is monitored to verify that the.
j core is operating as designed and to enable accurate end-of-cycle batch
'l l
NE-957 N2C9, Core Performance Report Page 12 of 52 l
f
~...
i j
i r
burnup predictions to be made for use in reload fuel design studies, j
Batch definitions are given in Figure 1.1.
As seen in Figures 2.5A, 2.5B, 2.5C, and 2.5D, the batch burnup sharing for North Anna 2,
Cycle 9 l
followed design predictions closely with no batch deviating. from j
i, prediction by more than
- 1. 9 5*..
Symmetric burnup in conjunction with agreement between actual and predicted assemblywise burnups and batch burnup sharing indicate that the Cycle 9 core did deplete as designed.
-l I
i 1
t t
t 4
i I
l i
I a
l l
l j
j l
l i
f i
l 1
F i
t NE-957 N2C9 Core Performance Report Page 13 of 52
l Figure 2.1 NORTH ANNA UNIT 2 - CYCLE 9 CORE EURNUP HISTORY Il~
7 1
1 1
o l
l l
l l l'[l ~ I~
tilit l
l l
l l
1 l
l l
l/
f Iltti,
I I
I I
I/
I II IIII I
/
I II IIIII I /
' " ". I I IIliII II I l/l l
I
( """" i i
i l
I II I
I I
I IV1IIII II l
l l
l l
l l
l l /liliI Ii o
l,"*l
I II IIIIIIf IIIIII a.
I Ii I
I I/ IIIIIIl
- 3 !stu,
Z l
l l
l l/
l l
l l
l f
!,'lll lI I
III I
I III/
i l
i i ly i
i i
i i i!i s "" :
2 i
i I/
II II!
b 6::t :
I I
I/I I
I II III Sin l
I I
!/
! III l
l l
l l
l l
i 4t:5 1::.
}
I I/
II I IIII l
11 II e
l/
III I
II i
i l
l 2::t i
II I
IIII I
V I
IIII IIII I
i i
==
====0 E E S U = :::
O E O s M S O 23333333333333533335 MSW
~
VAXIMUM DESIGN BURNUP -
19700 MWD /WTU i
NE-957 N2C9 Core Performance Report Page 14 of 52 i
i 1
z m,
PERCENT t
f 8
-4 f.)
(J b
(h th 4
(U (O
d o
o o
o o
o o
o o
o z
tJ I
n l
l l
l l
l l
l l
l 3
3 3
e APR-92 n
4 I.
MAY-92 e
s o
4M
\\
y JUN-92 JUL-92 T.
h S$
N AUG-92 y4 l
u E
SEP-92 P*
m, a
l OCT-92
> y' n 9 ;c #
m to 3
NOV-92
>z e 5
DEC-92 S ~" E n"
O N"
I z
JAN-93 o>
y C [ to q
FEB-93 MAR-93
$n g&
APR-93 rn
- MAY-93 I
JUNE-93 e
S JULY-93 O
AUG-93 C.
SEP-93 C'<CLE AVERAGE om tr.
N w-.,.
w w
n m -,
c n.,
4
=
s i
I
$'i I'igure 2.3 NORTH ANNA UNIT 2 - CYCLE 9_
ASSEMBLYWISE ACCUMULATED BURNUP MEAS' IRED AND PREDICTED (GWD/MTU)
I P
N M
t e
J H
C F
f.
D C
B A
t r
1 j
1 l 64.371 36.r91 46.tal I nr asunt o 1 1
e 1 65.os] 36.5o1 45.e5)
I putelcito I i
7 1 48.668 45.645 19.531 37.761 19.641 65.771 47.51l 2
j l 42.o31 45.578 19.581 37.771 19.581 45.571 47.031
[
3 l 43.791 to.tri 77.801 41.731 24.671 41.e51 13.534 20.591 43.58 8 3
l 1 47.751 20.75 4 23.2o 1 4 8.441 74.661 63.441 13. ro l rd.751 47.75 8 i
4 I 43.681 36.781 74.371 45.981 25.408 46.13) 75.758 47.371 24.651 36.871 44.751 4
1 4 3.561 16.h61 F4.471 46.63 8 75.4 71 46. b81 75.47) 46.631 16.471 36.661 43.541
[
j 5
1 47.0 71 19.69 4 23.851 45. 77 8 26.h61 66.17 4 t=.951 46.63 3 !s.So l 46.631 24.121 70.071 4 3.831 5
1 47.etl 2o.718 14.401 46.571 25.o11 66.trl 24.751 66.rtl 25.011 66.34) 24.401 to.tli nr.otl
{
6 1 45.671 12.981 46.644 74.671 65.098 45.338 45.931 45.608 47.921 74.791 46.548 77.841 45.558 6
l 45.518 73.70146.73) 25.o41 43.678 45.7o 8 45.038 45.701 43.671 th.D4146.738 ti.Foi 45.511 7
1 43.331 19.621 41.028 74.all 45.768 43.98 8 43.3o1 74.621 43.n61 44.771 45.761 74.678 43. col 19.311 45.901 7
I 42.511 19.6tl =1.451 15.481 46.751 45.741 43.tal 26.778 41.tal 65.741 46.758 25.461 41.=51 19.671 45.078 o
1 37.r11 37.351 79.478 46.771 24.591 44.46 8 73.531 45.oSt 24.461 45.381 te.691 45.all 24.501 79.661 36.091 e
i 16.5sl 37.3 31 24.901 46.901 24.so l 45.04 8 24.371 45.121 24.371 45.041 te. sol =6.90 8 24.901 79.961 36. Sal 9
1 +4.4tl 4 9.761 40.691 24.951 66. la l 64.691 42. k41 ts.tel 43.861 45.131 46.791 75.131 so.a64 3 9.911 44.e91 9
1 es.ori 39.671 63.est 75.6al 66.t51 65.761 es.tsi to.778 43.tal 45.tel 66.751 75.4al 41.451 39.621 45.073 l
lo I 45.o0 0 ft.Stl 46.431 25.441 44.3 71 43.95) 43.46l 44.oll 43.Ill ts.o91 46.581 ts.561 46.o61 lo j 45.511 73.201 46. /31 75.041 4 3.67 8 65.70) 45.0 31 45.r01 4 3,671 75.041 66.731 23.ro l 45.531 j
Il i St.oni to.t61 t*.611 $6.e31 7.n61 %5.348 74.351 45.431 te.651 46.408 74,991 to.6el 41.a38 ja i t.021 20.711 26.6el 66.346 75.011 *e.rts 26.751 66.trl 25.018 46.3%) 24.408 Po.tli 47.021
. =.......................................................................................
it i 64.131 37.771 74.atl 66.711 75.691 66.478 14.751 46.761 74.6el 37.611 43. art 37 l
l 43.581 36.m64 ts.stl 66.63 4 75.471 46.68) 25.471 46.631 74.478 36.661 43.581 i
la 1 43.631 to.*ni it.=71 40.691 t=.331 Go.991 22.s71 to.ral St.ast 33 14t.751 ro.tbl ts.tel 4 3.641 76.as t 41.641 13.701 to,751 47. 751 i=
1 47.63) 45.7al 19.671 37.73 8 19.078 45.731 47.ori se i 4t.ost 45.571 19.5a1 37.771 19.5s1 45.571 47.o31 15 1 45.791 36.198 64.671 15 4 45.058 16.501 45.051 P
N M
i e
J H
G F
[
D C
B A
I l
i r
r r
i F
i t
kr i
e NE-957 N2C9 Core Performance Report Page 16 of 52
t I
w i
4 k
6 i
Figure 2.4 NORTH ANNA UNIT 2 - CYCLE 9
[
ASSEMI3LYWISE ACCUMULATED BURNUP l
COMPARISON OF MEASURED AND PREDICTED f
(CWD/MTU)
P M
M i
k J
H C
f E
D C
B A
b i
?
I l 64.1 F8 %.791 44.28) i MI A'instI D 1 1
I I -1.96l e.791 -1.T?l 1 M/P 2 CIff l 2
I si.hel 65. bel 59.%34 17.78l 19.681 65.776 42.511 j
F 1 -e. ell 0.268 -o.761 3.378 c.491 e.ssl 1.151 3
l 43.79l 20.221 72.801 41.731 24.671 41.051 23.53l 70.591 43.481 3
...... ! mam.-nmault:esara.urt.wi..et.....
4 4 h 3.481 36. 761 /4. 37) 6%.981 ts.661 6.131 25.751 47.37) 26.65l 36.671 44. 751 4
1 e.r31
.l.e*
o.411 - 1. 391 o.tri - 3.591 -e.asi
- 1. sol c.9st o.638 2.68) i 4
t 67.e71 49,691 73.ast 65.771 74.661 66.378 74.941 46.638 rs. sol 46.634 24.lti to.ori 41.s38 s
i 1 -e.cli -7 %91 r.741 -1.111 -1.398 -e.let e.nl e.ast 1.971 c.6tl - 1.141 - c. 731 -o.461 i
1 4s.674 77.9a 4 46.a91 74.671 45.098 es.33l 65.951 64.a o l $r.978 rs. 791 46.541 71.841 45.%si....
~
6 6
l e.3sl 's.941 0.241 -l.671 -l.371 c.791 2.011 c.651 -1.rti -0.991 -0.4o1 1.ssi o.061 I 4 3. nl la 671 41.071 re.all 44.r6l 63.901 63.5el 16.674 43.161 64.778 45. 761 ts.671 48.001 19.311 43.90 8 7
I i
I 3*'5l _8'M '.h8"l t.648-r.lsgrael e.est
,,g l-t;ral;r;3g - g !; g4RI. g,1.%L-r.6cl 1 3 7, Pa l 17.3%) 24.4 71 %6. 721 74. 591 64.641 rs.531 45.e 31 24.641 45.181 74.691 45.811 ?4.40 8 29.66) %.091 a
8 I a.731
...s. ps! -I.711 0.371 0.a81 1.331 -3.r61 +e.te t o.661 e.3ti -0.641 F.3rl -1.bst -c.354
-1. hl 9
i 44.671 19.741 40.69! 74.9%I 46.181 66.691 6.*.44l 24.70 f 4 3.861 45.131 46.791 ts. Ill 4e.861 19.98 8 64.891 9
l - 1.4sl 1.471 -1.8%I -1.e91 - o 811 -1.73) 3.738 -0.211 1.331 -0.741 0.071 -l.37) -1.431 1.471 -0.484 10 4 4% 00 8 ??.s-1 46.411 74.441 44.171 43.9si 43.961 64.e ll 43.Ill 14.091 66.s81 73,481 46.06]
le l
4 -1.13l
?.9?l -0.648 3 %91 1.141 - 7.7%l - F.3FI - 7.671 - 1.781 0.198 -0.311 f.b68 1.711 j
il j 47.081 PD.rel 74.614 66.831 74.861 45.3*l 24.151 64.418 76.6%) 46.60 8 7%.991 70.681 =1.838
!)
i c.131 0.77f 0.Bil 1.0=1 -0.678 -4.891 1.464 -1./el -1.661 0.!?! 7.448 7.3s) -0.66)
{
j 17 1 64.131 37.771 T4.871 66.711 24.69) 46.47] 24.7%) 66.?81 ?=.401 37.611 63.674 IF l 1.711 1.671 1.611 0.891 ~ 3.eAl -0.87) -2.791 e.751 -e.esl 2.%81 8.671 l
13 4 4 3.631 70.661 ??.4 74 6e.*98 74.338 60.991 72.671 70.781 62.831 13
+ - ------
4
- 7. Del 3.871 3.131 -7.311 -F.72) -1.091 -1.431 0.36) 0.191 1 AlellHMA gpty pg,, TIC AvC I
..g,g7g g
la i 67.63) 44. rst 19.678 37.23 8 19.878 *s.tli 6?.ori
-------- le
.....-e,ls) -1.611 -0.661 -0.011 1 1.418 e.ssi 0.638 1
15 i M aenD pi v i 4 44.791 %.191 **.671 l Arc at$ PCI l Is l
1 e.as l
I c.sel -c.arl -c.est i DIlf = 1.23 i l
W P
N M
i J
H C
f 1.
D C
B A
BATCH LHARING INWD/NTU)
BATCH NO. Of BOC BATCH EOC BATCH CYCLI ALLI NEL II S DURNUP BURMUP BURNUP j
N1/6 1
12,233 29,859 17,626 N1/7 4
29,676 36,566 6,890 BURNUP TILT N1/9B 1
37,675 43,334 5,659 N1/10A 8
35,569 42,096 6,527 NW * -0.14 i NE
- 9.16 5A 8
36,153 45,588 9,435
l------------
9A 1
23,847 45,028 21,181 SW = 0.07 i SE = -0.09
- B 15 37,101 44,112 7,011 10A 28 23,953 45,176 21,223 108 31 21,752 42,422 20,670 11A 3?
0 23,646 23,646 11B 28 0
22,621 22,621 C)CLE AVE RAG [ ACCUNUL ATID BURNUP 2 18,662 l
I i
N!:-957 N2C9 Core Performance Report.
Page 17 of 52
I Figure 2.5A NORTH ANNA UNIT 2 - CYCLE 9 SUB-BATCH BURNUP SHARING l
4 i
i i
i i
i i
i i
i i
i l SUB-BATCH i
48
- 9A I
i
(
i i
i r
i i
i i
+
6 I
i i
A I
i i
i i
6 i
e i
+
i V
j i
l i
s i
i t
6 i
3,
SUB-BATCH 44 i
i i
i i
i i
i i
e p/i I
i i
i i
I i
Mt N1/7 e
i i
i i
i i
i i
i i
e ry t i
i e
i i
i i
i i
i i
wi i
i i
i O
4O 4
i i
rg i
e i
e 2
i 1
i j /s l
e SUB-BATCH 4
i i g D
i # i
'M 11A
- 36 F '
,f 7, jyi --
lE i
i
.. fa xr m
- 5 4
m c.
i i
i i
i fM' i
i N 32 'i i A f, i
i i
i i
i i
e
, f-i i
i i
s e!
a i i
i 4
i i
i 1 28 ;
i i
i y i e
i i
i t
i i
i 4
i 3
4,f.
i 4
i f/I i
i 1
i i
i i
i i
i r
4 I
i g
mi i
i i
f,'
I i
i i
s i
l 6
i e
r i
i a 24 v gj m
4 i
i i
i i
i iz i
y.
I I
i i
a i
i / l i
e i
i a
i e
r i
e i >*; t i
O 20,,
i i
,f,
i F
i i
i 4
i
. f, i
i i
i i
e-
@ 16 P-i i
i e
i 4
f;e i
i
, f; i
i i
i i..i/ p i
i 3
1 i
ie,
i i
i t
i i
i i
i i'g I
j i
i i
12.
i f,
4 4
i 4
4 x!
4 i
i i
,f, i
i I
i i
' A i i
8 I
8
,I 4
j i i
i vi i
i i
f i
I.
/ ;f f
i i
i t
i t
I i
i I f3 1
j i
i i
e a
4 i
j 4
bA i i
i i
i i
i i
i i fi ' l t
i i
i i
t i
6 f
1 fi i
i I
f 4
I i
I e
i 6
0 r
0 2
4 6
8 10 12 14 16 18 CYCLE BURNUP (GWd/MtU)
LINES = PREDICTED VALUES
' SYMBOLS = MEASURED VALUES i
i 1
NE-957 N2C9 Core Performance Report Page 18 of 52 l
I 5
I Figure 2.5B l
NORTH ANNA UNIT 2 - CYCLE 9 SUB-BATCif BURNUP SHARING SUB-BATCH N1/9B O
SUB-BATCH 44 N1/10A l
i\\@
I 5
g i
i ie v,
l D B
l l
.rs i
%j g
j c)o l l kl e
n I
I a.
D Q
/
(
40
/
^
g>
,e l: V,! /
g 1
i j
!Il f
l>l D
t m
g d
36 f,
1
\\
0 2
4 6
B
-10 12 14 16 18 CYCLE BURNUP (GWd/MtU)
LINES = PREDICTED VALUES SYMBOLS = MEASURED VALUES 1
NE-957 N2C9 Core Performance Report Page 19 of 52
Figure 2.5C NORTil ANNA UNIT 2 - CYCLE 9 SUB-BATCil BURNUP SliARING 48 j
i i
i i
i i
l l
l i i SUB-BATCH i
i s
i i
i I
i 1
i I
i i i N1/6 i
I i
i l
I i
i i
l i
is,J f
I i
l i
l i
! M' l
l i
- 4 1
i i
t i
I i
sM! i I
i 6
I i
i I
t i
i i s,. cH ' I i
i IA.
SUB-BATCH 10B i
i i
i i
I i
t i
8f' 'I i
i i
lj(i i
I i
i i
W4 i
i t
i/i i
O 40
,,g,
ij-i D.
SUB-BATCH i
i g i',
i i
i i jc i l
i SA E
!_ M -
i i
i / l i
i
$,g AF i
i
!Ai i
i i
i g
g*
I i
i i
I i
i Igl i
l i
i i
e i
l i
i i
i /,
i i
i i
I t
i I
i /~_'
I I
I I
i I
i w
O.
1 i
i i
i i
i %
i j
i i
i i
D 32 i
g i
Li i
i i
i i/i i
i t
i l
Is p1 t
i o
i iA't i
i i
s I
i a
i
' #' f I
' ##I i
0 28 '
i g( l i
1 I
I i
i f/ i i
i t
i
/ I I
l l
l l
1 i j$ I iI I
I i
i /-i i
i i
i i
i i
i i,<
t i i
e< 24 i gi i
i i
i i
thi i
i i
i CD g,
i
,g ;
j j6, t j
i i
i m
fi i
t I
I i
D "i
i 1
i
./
l l
j i
l I
i i
i f
i IM i
i l
i i
i I
20,,
g I
i i
i 2A' !
i i
l i i i
i i
i pY i i
i l
i i
i i
i I
i I f4 i
i i
j i
i i
i i
i
'S i uca i
i i
i i i
i i
i i
i f/I I
I I
I I
I I
I I
I I J4 i
i i
i i
I i
i t
i 1 i i
6i i
i l
l 1
l
}
I i
l i
i I
O 2
4 6
8 10 12 14 16 18 CYCLE BURNUP (GWd/MtU)
LINES = PREDICTED VALUES t
SYMBOLS = MEASURED VALUES NE-957 N2C9 Core Performance Report Page 20 of 52
Figure 2.5D NORTH ANNA UNIT 2 - CYCLE 9 SUB-BATCH BURNUP SHARING 48 i
i i
i i
i i
i
+
i i
i i
SUB-BATCH i
i i
i i
i i
i i
e i
i
.ii 11B I
i e
i t
i i
I J
ip I
44! )
l l
l l
lil j [Mk Q
i s
i i
e i
i i
i (MA l i
i i
i i
i.x, -
i SUB-BATCH yi t
I i
i i
Vi 40 '
p'- i i
i r
10A i
i i
i i
p; i
i i
- f; -
O g
i i
i i
i i
l [;/s i
i D 36 '
l l
l SUB-BATCH a
i u
g
.f i
s 33 i
i fs i i
i i
i i
i e
i sV r
i s
i i JK i a
i I
e i
i e
i Z
g 32 i
y, i
m i
i i ft ' i i
i i
i
+
1 i
i t
I e
h j
i i
tg i
e i
i t
i i
i e
i i
e i
)
i M i t
i i
i i
i I
i 6
i i
O.
b, i f 3 i
i t
i j
i i
i i
j i
I e
)
i /"i i
e i
i I
i i
i t
i I
z
- 6 i
i i
m 24 C, i
e i
i i
l t
i i
k i
I i
i i
l l
I 6[
l i
e i
i i
i i
i I
e i
i i fi
+
I I 20 '
p s' #
i l
. i i
i O
i i
6 i
e i
i i
i i
r i Mi e
i i
4 h<
t i
i i
i 6
i i
Vi w.'
i i
i i
i
- m. 16,
i e
i f.
f.
i
.[
i I
e i
4 1
4 l
8 4
i D
i i
i
.f<
a u) 12 i
i io i
i i
i iM i
i t
i i
i 1
i i
i. / -- i i
i i
i i
i
, oi i
i i
i 8,,
e
, fi i
i i
i i
.f t i
e i
t I
i i
e i
l t
i i
i 4/4 s
i i
j i
i i e
i i
I i i r
i M i
i i
i i
i i i I
i i
t j
i -f ' I t
t i
i 6
i i
e i
e i
i i
i
! f/i i
t i
i t
i i
e i
I t
i i
. Mi i
i i
i i
e i
8 i
I i
e i
v, 2
i g
0 2
4 6
8 10 12 14 16 18 CYCLE BURNUP (GWd/MtU)
LINES = PREDICTED VALUES SYMBOLS = MEASURED VALUES NE-957 N2C9 Core Performance Report Page 21 of 52
. I a
/.
i t
Section 3 l
t l
s a
REACTIVITY DEPLETION I
The primary coolant critical boron concentration is monitored.for the
[
purposes of following core reactivity and to identify any anomalous
.j reactivity behavior. The F0h0W' computer code was used to normalize
' i
" actual" critical boron concentration measurements to design conditions f
taking into consideration control rod position, xenon concentration, moderator temperature, and power level.
The normalized cr'.1 al boron concentration versus burnup curve for the North Anna 2, Cycle.9 core is e
shown in Figure 3.1.
It can be seen that the measured data typically e
compared to within 88 ppm of the design. prediction. This corresponds to
.I i0.58*.
AK/K which is within the i 1 *. AK/K. criterion for reactivity anomalies set forth in Section 4.1.1.1 2 of the Technical Specifications.
I
'e In conclusion, the trend indicated by the critical boron concentration verifies that the Cycle 9 core depleted as expected without any reactivity anomalies.
i 1
l NE-957 N2C9 Core Performance Report Page 22 of 52 6
+ - - -
+
Section 4 POWER DISTRIBUTION Routine analysis of core power distribution data is necessary to verify that the hot channel-factors comply with their Technical Specifications limits, and ensure that the reactor is not operating with any abnorma' conditions which could cause an
" uneven" burnup distribution.
Three-dimensional core power distributions are determined from movable detector flux map measurements using t.h e INCORE' computer program.
A summary of all full core flux maps taken for North Anna 2, Cycle 9 is given i
in Table 4.1, excluding the initial power ascension flux maps.
Power distribution maps were gene ra lly taken a t.
monthly intervals with additional maps taken as needed.
Radial (X-Y) core power distribution for a representative series of incore flux maps are given in Figures 4.1, 4.2, and 4.3.
Figure.4.1 shows a power distribution map that was taken early in cycle life. Figure 4.2 power distribution map that was taken near mid-cycle burnup.
shows a Figure 4.3 shows a map that was taken near the end of Cycle 9.
The i
measured relative assembly powers were generally within 6.9% and the-maximum average percent difference was equal to 2.1%.
In addition, as 1
I indicated by the INCORE tilt factors, the power distributions were essentially symmetric for each case.
An important aspect of core power distribution follow is the monitoring of nuclear hot channel factors.
Verification that these factors are i
NE-957 N2C9 Core Ferformance Report Page
-24 of 52
- ~_
Figure -.1 NORTH ANNA UNIT 2 - CYCLE 9 CRITICAL BORON CONCENTRATION vs. BURNUP (HFP,ARO) 1800 1
1500 2
is cL,1400 \\g 1300 z
y-1 0 1200
'N h 1100 NN i
' \\.i j
e i
j I
i H 1000 '
U "j k
z Nst z
l 6
O 800
'\\g s
O 700 Q
I z
O 600 E
O 500 Ai
=
i NN J
400 4
I I
l l
l l\\
I l
O 300l E
i l
l l
k, g
100 0-
,ii i
i,
,,i 0
1 2
3 4
5 6
7 8
9 10 11 12 13 14 15 18 17 CYCLE BURNUP (GWD/MTU) r r MEASURED PREDICTED NE-957 N2C9 Core Performance Report Page 23 of 52
s.
within Technical Specifications limits ensures that linear power density and critical' heat flux limits will not be violated, thereby providing adequate thermal margin and maintaining fuel cladding integrity.
North Anna Unit 2 Technical Specification 3.2.2 limited the axially dependent heat flux hot channel factor, F (Z), to 2.19 x K(Z), where K(Z) is the q
hot channel f actor normalized operating envelope, and 2.19 is the Fq limit at rated thermal power, both as specified in the Core Operations Limit Report (COLR)*
Figure 4.4 is a plot of the K(Z) curve associated with the 2.19 F (Z) limit.
9 The axially dependent heat flux hot channel factors, F (Z), for a 9
representative set of flux maps are given in Figures 4.5, 4.6, and 4.7.
Throu;;hout Cycle 9, the measured values of F (Z) were within the Technical-9 Specifications limit.
A summary of the maximum values of axially-dependent heat flux bot channel factors measured during Cycle 9 is given in Figure 4.8.
Figure 4.9 shows the maximum values for LS c heat flux measured during Cycle 9.
The rise in the EOC maximum FQ(Z) data is due to power coastdown, and is not a concern for possible Technical Specification violat ions. The minimum margin to the F limik in the axial 9
region covered by the Technical Specification 4.2.2.2 is 12.4* for all flux maps.
(Technical Specification.
4.2.2.2.g states that Fq surveillence is not applicable in the lower core region'from 0; to 15%
inclusive, and the upper core region from 85% to 100% inclusive.)
The value of the enthalpy rise hot channel factor, F-delta-H, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed. The NE-957 N2C9 Core Performance Report Page 25 of 52
.c i
k Technical Specifications limit for this parameter is set such that the k
departure from nucleate boiling ratio (DNBR) limit will not be violated.
Additionally, the F-delta-li limit ensures that the value.of this parameter j
r used in the LOCA-ECCS analysis is not exceeded during normal operation.
North Anna Technical Specification 3.2.3 limited the enthalpy rise hot channel factor to 1.49(1+0.3(1-P)) for Cycle 9,
where 1.49 is the F-delta-li at rated thermal power and 0.3 is the power factor multiplier, both as speciffed in the COLR.
A summary of the maximum values for the enthalpy rise hot channel factor measured during Cycle 9 is given in Figure 4.10.
As can be seen from this figure, the minimum margin to the limit was approx',ately 2.6%.
I The target delta flux
- is the delta flux which would occur at l
conditions of full power, all rods out, and equilibrium xenon. The' delta flux is measured with the core at or near these conditions and the target delta flux is established at this measured point. Since the target delta flux varies as a function of burnup, the target value is updated monthly.
t By maintainin;; the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided.
i The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately +2.6*, at the beginning of Cycle 9.
Delta flux values decreased steadily to
{
i approximately -4.5% near a cycle burnup of 9,700 MWD /MTU and then remained constant until the end of full power reactivity. At the end of Cycle 9, Pt-Pb
~
3
- Delta Flux = ----- X 100 where Pt = power in top of core (MW(t))
l 2893 Pb = power in bottom of core (MW(t))
NE-957 N2C9 Core Performance Report Page 26 of 52
s the target delta flux increased to +5.9*. due to the coastdown. This axial power shift can also be observed in the corresponding core average axial power distribution for a representative series of maps given in Figures i
4.12 through 4.14 In Map N2-9-03 (Figure 4.12), taken at 159 MWD /MTU, j
i the axial power distribution had a shape peaked toward the middle of the core with a peaking factor of 1.210.
In Map N2-9-11 (Figure 4.13), taken i
i 8571 MWD /MTU, the axial power distribution peaked slightly toward the at bottom of the core with an axial peaking factor of 1.157.
Finally, in
'i Map N2-9-21 (Figure 4.14) which was taken at 16,086 MWD /MTU, the axial peaking factor was 1.164.
The axial power distribution remained shifted towards the bottom of the core as at middle-of-cycle. The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup j
given in Figure 4.15.
In conclusion, the Nort.h Anna 2, Cycle 9 core performed satisfactorily i
with power distribution analyses verifying that design predictions were P
accurate and that the values of the F (Z) and F-delta-!! hot channel 9
f actors were within the limits of the Technical Specifications.
i ll l
6 3
1 i
NE-957 N2C9 Core P rformance Report Page 27 of 52
[
Tat >le 4.1 NORTH ANNA UNIT 2 - CYCLE 9
SUMMARY
OF FLUX MAPS FOR ROUTINE OPERATION
~
i i i i
l i
l 1
1 l
i 2l l
l l 34 l 8tFN 1 j SANF 1 I-GEI) H0f l F - DHt M ) NOT l Cup [ fill l COPE l AXIAt l NO.!
IMAPI l
tF i
1 D I (HANNf t f ACTOR I CHHL. FACIDR IMAX l IIL1 1 0FF i ET l jNO.1 DAlf f MWD / l PWW ! SitPS l _
l l
l 8 $ti IIHiM1 i'
i l
l MTU l (XI 1 l A50VIPINlAtlAll l
l t
lANIAL l filll MAN 110Cl (2) 18t t $1 i
l l
l l
l l
IPOINilf-Qtil lai$VIPIN IF-DHfM)1PDINI I l
I l
l l
l__I I
I I
i 11 I
l _
_1 _ 1 1
1 l
l__l l_ _ t 1 3 10$-01-921 159 9 99.451 778 4 til i INI 36 l 1.847 l M 71 IH I 4.418 8 31 11.21018.0091 N( 1 0.5871 46 1 14 105 15 971 71% i 99.961 718 lAll 3 Mol 35 i 1.870 l H 7) IH l 1.406 1 31 11.70211.0101 Ni l 8.484l 46 1 1 h 106 16-971 1880. I 99.991 F28 1 Dit l C64 FT l 1.823 1 Dill Ct i 1.410 1 31 11.3901).0061 Nfl 0.170) 46 1 16 101 84-971 79a7 800.02) 278 4 t ar i irl 40 4 1.816 i Dill ct i 1.420 1 35 18.8 7418.006] NE l +0.7874 44 1 l 7 108-14-471 4118 1 99.vst 178 I al? I trl 39 l 1.810 l Dlli ct i 1.437 I ss 11.16111.0011 st i -1.6931 4% l 4
18 109 13-971 5743 1800.101 778 I l ir 1 Ma i 4s l 1.808 i Dllt fM l 1.444 1 39 11.14011.0051 st i -F 6901 46 i
{
l 9 110-09-971 6%) l 99.991 778 l 117 l Mil 44 l 1.889 i Dill f M i I.448 3 45 11.15311.0041 St l -3.4931 46 1 110 113 06 928 7457 8 99.951 F78 itil l Mil 47 1 8.819 l Dill IM i 1.45? l 47 11.15?l1,0031 Sil ~ 3.831) 46 l lli l17 04-971 8571 1 99.961 ??8 l L 3 7 I Mi l 4 7 l 1.830 i Dill IM i 1.449 l 48 !!.15Fil.003l Nt1 -4.341l 46 l l
112 101 03-934 9168 1300.03l ??8 I 110 I Hit 48 1 1.830 1 Dllt f M i 1.447 l 48 14.1674 3.004l Ml l -4.7f 01 46 j i
!!\\ 107-03-938 19991 l 99.991 228 1 110 l Hij 48 l 1.815 1 Dill th 4 1.4*3 1 48 18.156)l.0046 Nll -4.4401 46 l 11= 103-04-931 17185 l 99.911 278 1 110 l Hij 52 1 1.8051 Dlli (M j l.436 i SF ll.160ll.004j N[l'-4.4701 46 1 11s 104 05-931 13376 1800.031 778 l rst l>t s: 1 1.800 8 Dill IM i 1.432 1 57 !!.16711.0051 Ntl -4.3581 46 I l19 10s-06-931 14837 1800.071 778 6 tit i Mml sr i 1.811 1 Dill EM i 1.476 1 52 18.3 715 8.00s1 N[ 1 -4.7391 46 4 170 106-07-931 15485 1100.001 tr8 ii s i I;l 53 1 1. 788 1 0111 ( M t 1.4t0 1 55 ll.16618.006l NC l -4.3931 46 l q
171 ID6-F4-931 16086 1 49.991 778 l1 4 1 Dfl $3 4 1.780 t Dill EM i 1.413 4 55 13.86411.0064 Mll -4.?081 46 8 lF? 107-?l*931 17354 1 94.373 ??8 1 Dil 1 (MI 10 1 1.680 1 Dlil EM $ 1.407 3 57 11.10013.0061 Nf1 -0.3550 46 $
IF3 108 16-931 18033 i 75.961 718 ll 4 i ti l 10 1 1.873 l J 4l JI $ 1.417 l 30 11.18313.0101 NW1 b.93bl 46 i I_l 1
l l
I l _f
, I lll I
l I
ll I,,,,. I
?
Null $ : HDI $ POI IOCAllONS AWf SPf til lf D BV CIVING A$$$ MRI V iDC AllONS ([.C. H 8 l$ IH[ ClNffF Of-CDPI A$$tM8tVI, f01tDWfD BV 1HL PIM IOCA1IUN 9OfNOliD BV IHI "Y" CimWDINAll Wi1H IHt $1VINffiN PUWS DI IutL PUDS f
t l f 4 L PL D A IHPLRHiH P AND IHI
- K" (fh#DINal[ Dt $1CNAi( D JN A LIMilAW MANNIPl.
IN Itti */* DiptCil0N IHL COPt IS DIVIDt D INIO 61 ARI At POINT $ SI AHflNG f WOM THt IOP 0F IHL COWE.
i
- 1. I'-Ott) INCLUDt'$ A 1Diat (MCf Pf alNTY DI l.05 K 1.03.
F. COpf Illi - Di f 'eMl D A$ THE ARI AL DuaDPtN1 POW P Illi IPOM INCORf.
MAP 6 HAS A MAXIMOM COkt fiti Of 1.00b IN 1HE $t GUAl*ANI AS Wi t t.
l
- 3. MAPS 16, 17 AND 18 WIPE 1 AWI N Dut~ ID AM D8kiPVfD OUADRANI POWLP I!!I FOllDWING A SIARItF.
F i
i i
a NE-957 N2C9 Core Perforrnance Report Page 28 of 52 i
i
,, ~
e
r.
i l'igure 4.1 j
NORTH ANNA UNIT 2 - CYCLE-9 1
ASSEMBLYWISE POWER DISTRIBUTION N2-9-03 l
i P
P N
M 1
0 J
H C
F E
D C
8 8
i i
PPfDICllD 0.77 0.33
- 0. F7.
Pvt DICl(D Mi aiuvf D.
0.27 0.33 0.77.
PW ASUNI D.
1
.PC I Dif f l pt NCf.
-0.1
- 0. 7. - 1. 3,
.PCI Dif f[PE NCE.
~ i 0.37 0.47, 1.10 0.98 1.80, 0.47 0.32.
0.37 0.47 1.88. 0.97. 1.08 0.46, 0.32,
2
{
t.7
-0.3
-1.2
-l.3.
- 2.0,
2.4 -
0.0 i
0.45 1.11 1.75 1.75 - 1.78 3.75 1.23, I.!!
0.41 0.41. 1.le 1.70. 1.F4 1.77. 1.?4 1.27. 1.lt. 0.47 3
-0.8
-1.3
- 2. 3.
-0.9
-1.1 0.9
-0.5.
0.6.
2.5 O.40 0.89, 1.75 1.19. l.30
- 1. F7, 1.79, 1.39. 1.75. 0.89. 0.40 0.46 0.88 a.74 3.19 1.30 1.77. I'29 1.71 1.27 0.90 0.40 4
0.8.
-1.5,
l.0
-0.5,
0.1 0.0 0.3 1.8
- 1. 0 -
0.7 0.5
.....1.?6 I.18. l.75. 3.22 1.76. 1.!!
0.37 i
8.3?
I.11
- 1. 7%, 1.25 1.F5 1.18 0.33 1.07 1.7f 1.71 3.74 1.21 1.30 8.si. 1.79, 1.24. 1.75 1.10 0.37 5
t
-3.7
-3.7 7.4
-1.9
- 0. 7.
2.8.
F.8 2,9 F.8 1.5, -0.3. -0.5,
1.4 1.39 1.76 1.16 1.14 1.13. 1.14 3.16 0.47. 1.?$...................,.................
.1.26, 1.20
- 1. ?1. 0.48 0.46 1.70 1.37 1.25. 1.16 1.19 1.17 1.20 1.20. I.F7. 3.19 1.22 0.47 6
I
??
- f.T
-1.5
-0.9 0.4 3.8 3.9 4.7.
3.6.
1.0
-0.3
-1.1
-0.8
......1.15. 3.19 1,30 1.76 3.11 0.78 9.f8 1.11 1.75 1.30 1.18 1.15. 1.16 1.77. 3.16
-0.th 1.09 1.?3 1.78 1.17 1.14. 1.21 1.33 1.71 1.70 3.22 1.79 1.74 1.09 0.77 7
0.1
-1.7
-4.7
-1.4
~1.3
-1.1 4.8 4.8 4.6 4.4.
2.7. - 3. 3 - 1. 7, ~ 7.1. - 7. 0.
U. 3w 0.98 l.?8 1.??
1.27, 1.13 1.77 3.16, 1.27. 1.13 1.27. 1,74 1.30. 0.99 0.35 O. 54 0.97 8.76. 1,77 1.28. 3.15 3.76, 1.7). 1. 3?, 1.38. 1.30 1.26. 1.78. 0.97 0.34.
8
-0.1
-1,7
-1.5
-0.3 l.)
1.2
-0.6 4.7.
3.9 3.9,
2.5
-1.4
- 1. 7. - 1,3. - 0. 9 e.77 1.10 f.75................. +,..........
.....1.16 1.85. 1,38 3.30 1.76. 1.12 0.78 1.30. 1.38 1.15 1.35 3.77 D.??
1.07 1.P0 1.78 1.70 1.17 1 19 1.30 8.?0 1.70. 1.??
3.79 1.75 1.lf 0.78.
9
-0.1 7.6
-3.5 1.7 1.4.
1.8
?.9 f.9 3.9 3.9.
7.9
-0.7
-0.8. -0.7. -0.1 1.39..................1.?3. 0.48.
D.47 1.75 1.19 1.75 1.46 1.14 1.83 1.84 8.36 1.th O.45 1.17 1.39. 3.29 1.19 1.86. 3.14 1.15. 1.17
-1.??
1.23 1.F3 O.48 10
-4.9
-4.9
-0.0
?.6.
2.7 1.7 0.9,
0.4 1.7.
3.1 1.0. -0.1. *0.0 9.32 1.10 1.75 1.77 1.75, 1.18 1.31 0.32
.....3.76 1.18. l.75 3.??
3.26............
(
0.31 1.09, 1.75 1.?5, l. F6. 1.38 3.76, l.17. 1.75. 1.75 3.27 1.12. 0.37.
11
. 1 1.7
- 1. 2.
-0.1 f.I 1.3 6.1 0.0. -l.2, - 0. 3
- 0. 3.
l.3.
0.6 1.0.
+
1
+
0.40 0.89 B,ts I.19 1.79 1.27 f.30 1.19. 1.25. 0.89 0.40 0.41. 0.91. l.78 1.70 1,77 3.75 1.?6. 1.18 1.74 0.91 0.43 17
?.5.
7.3 F.)
0.2
-1.8
-l.8
-F.4
-1.5
-1.0 1.4 3.7 0.41 1.11 8.73 1.25 4.78 3.75 1.73. 3.11 0.41 -
0.47 1.13. 3.?1. l.27 1.75. 3.20 1.18 1.09 0.4F 13 -
?.5 7.1
- l.6, -F.3
-F.7
-1.6
-4.0
-F.i 1.5.
8 0.3?
0.47. 1.10 0.98 I.le 0.47. 0.37 0.32 0.48 1.09 0.96 3.04, 0.*5 0.30 14 0.7 0.7
-1.0
-F.0 3.6, - 1. a. -4.3.
Ll&NDAFD 0.27 0.31. O.??
AVf 8'ACf lHV!AllON
. 0.28. 0,3%. 8.?6,
15 -
.l.280 0.7
-1.3 3.5 1.7 7
S.UMMARY MAP NO: N2-9-03 DATE: 05/01/92 POWERI 99.45%
}
(DNTROL ROD POSITION:
F-QIT) a 1,842 QPTR D BANK AT 228 STEPS F-DH(M) a 1.411 NW 0.9945 l NE 1.0089 1
FIZ1 a 1.210 SW 0.9978 l 50 0.9990 BURNUP = 159 MWD /NTU A.D.
0.582%
{
NE-957 N2C9 Core Performance Report Page 29 of 52
?
w..
,m as
F f
s t
i I
f Figure l+.2 NORTH ANNA UNIT 2 - CYCLE 9 1
ASSEMBLYWISE POWER DISTRIBUTION N2-9-11 t
D P
N M
i E
J H
G f
f D
C 8
ppt Dif ff D 0.78. 0.34 9.28.
PRIDICllD MfASUPtD 0.79. 0.36, 0.79 MW ASURED 1
.PC f Dif f t Pt hKI.
3.9 3.9 7.8.
.PCI Dif f LR[ NC('.
0.34 0.49. 1.03 0.97. 1.03. 0.49, 0. 34
. 0.35 - 0.50 1.03. 0.93. 1.04 0.50. 0.35 7
4.9.
1.8 0.8 0.8 0.4.
1.7.
3.3 j
.....1.18.....1.34 0.43. 1.01. 1.?4 1.18, I.74 1.07 0.43.
0.44 5.08 3.73 1.18 1.34 1.19 1.??. 3.11 0.45 3
1.0 0.5
-0.9 0.7,
-0.4 0.4 F.T.
3.0.
4.5.
0.4?
D.91 I.32. 3.I7
- 1. 58 f.74 1.38 1.17 1.37 0.91 0.42
?
0.43 0.41 1.37. 1.31 1.38 1.?4 8.18 1.70. 1.33. 0.98 0.43.
4 1.4 0.0
- 0. 3,
0.3 0.3 0.?
0.1.
F.!.
1.7 0.7 1.F t
0.3%
3.01 1.37. 1.78 1.36. 3.15. 3.34 1.15. 3.36. 1.21 1.32. 1.07. 0.34 0.33. 1.05 1.29 1.19 8.35 3.87 I.35 1.17, 1.39. 1.22. 1.30 1.01 0.35.
5
- 1. 9. - 1. 9. -F.0
-1.
-1.1 1.4 1.4.
1.6.
l.8.
0.4. -1.4
-0.4 2.8,
....................'9 0.49 1,74 1.17 3.36 1.12 I.09 1.08. 3.09. 1.37 1.36. 3.17. 1,74 0.49,
0.49 1.75. 3.16. I.34 1.12 1.10 1.10 1.10. 1.14 3.35. 1.15 1.22 0.49 6
-0.8
-0.8
-1.0
-1.4
- 0.3 3.7 1.7
- 1. 5.
1.3
- 0. 9. - 1.8
+1.3.
- 0. 7.
0.?W 3.03 1.18 8.38 3.15. 3.09 1.09. 1.30 1.09. 3.09. 3.45. 1.38. 3.18 1.03 0.78.
- 0. 50 1.D4. 3.17
- 1. 35 -. 1.17 I.05 1.11 1.33. 8.11 1.10 1.15. 1,54 3.36 1.02 0.28 7
i 4.0
- 0. 5. -1.1
-F.I
-3.1
-3.8 1.6 1.6,
1.2 1.0
-0.3. - 1. ?. - 1. 7, -1.7
-0.1.
0.35 0.93....................................................................,,.............
1.34 3.?4 1.34. 4.06 1.33 1.17. 3.51 8.06 1.34 I.74 1.34 0.9?
0.35.
- 0. h, 0.9%
1.37 1.??
3.3%
l.01 1,71 1.13 1.37 1.09 8.34
't.70 1.3?
0.92. 0.36.
8 4.0 0.5
-I.3
-l.0
-0.4. -0.7
?.9 0.1 3.1.
1.1.
0.7
-3.7. -l.7.
-0.f.,
1.0 0.78 1.03 1.18...................
1.38 1.35. 1.09. 1.09. 1.30 1.09 1.09 1.15 1.34 3.18, 1.04. 9.?8 6
0.29 1.07 1.36 I.36 1.15. 1.08 1.09 1.30 1.11 1.10 1.37 3.37. 1.89 1.05. 0.29 9
4.0
-0.1
-7.1
-1.3
-0.5.
-0.5 0.7. - 0. 7 -
1.1.
1.2 1.4
-0.8 0.7 l..?
F.7.
4...
............1.?4. 1.31 1.36 3.17.
1.09..
1.08. 1.04. 3.12., 1. 36, 1.37. 1.24. 0.49 0.49 0.48 1.27 1.14 1,39 1.14. 1.07. 1.D6 1.07 1.17. 1.37. 1.19
- 1. ? ?. 0. 51.
10
-1.4.
-1,4
- 0. 7.
I.9 1.2
-1.6
-1.7. -1.6.
0.7.
8.1 -
2.0 2.7.
3.1 -.
0.3*
1.01 4
1.37. l.71 1.36 1.15.
1.34 1.15. l.36 8.78 -
1.3?. 1.01
. 0. 34.
- 0. 3*
1.09. 1.3%. l.P4 1.36 1.13 1.31 3.Il I.35 4.??. 1. 36 4.11 0.35.
Il 1.6 1.6 3.8.
2.7
-0.2
-2.0
-T.)
-3.2
-0.6 0.8,
2.9 3.3 4.4.
0.4?
9.91 1.3?
1.17 1.38 1,74 1.38. 8.11 8.37. 0.98. 0.4?
D.*4 0.9*, 1. 35. 1.17 f.34 1.70 1.35, 1.11 1.17. 0.9%
0.44.
IF 4.7.
3.5 7.P
-0.3
-7.8
-1.8
- 2. 2 - 6. 3.
0.4 1.2 3.9 0.45. 1.07 1.?4 1.18 1.34 1.18. l.74 1.07. 0.43 0.45 1.10 1.73 1.15 1.33. 1.16 1.73 1.09, 0.45.
Il 4.7 7.7
-7.5. -2.5
-F.3.
-1.4
-0.8 8.3.
3.7 0.34 0.49 1.03. 0.9?
3.03 0.49 0. 34 O.35 0.51. 1.04 0.92 1.01 0.49 0. 34.
14
- 3. 5.
3.5 0.6
-0.3
-1.5 0.9
-0.0
.....0.34 11ANDAPD O.28,
0.78 8VI PACE DIVIAllDN 0.79 0.35 0.77
.PC f Olf f l R[ NC(,
.lb al.169 3.5.
0.9
- 1. 8..
1.6 I
LUMNARY NAP NO: N2-9-11 DATE: 12/04/92 POWERI 99.96%
f CDNTROL ROD POSITION:
F -Q (1 )
- 1.830 QPTR:
1 t,
D BANr AT 228 STEPS I-DH(M) s 1.449 NW 0.9961 INE 1.0033 I
F(Z)
= 1.157 SW 0.9987 ISE 1.0019-BUFNVi' = 8571 NWD/NTU A.O. = -4.341%
NE-957 N2C9 Core Performance Report Page 30 of 52 a
i 6
I t
+
i a
r*
I.s t
Figure 4.3 NORTH ANNA UNIT 2 - CYCLE 9 i,
ASSEMBLYWISE POWER DISTRIBUTION N2-9-21 1
1 i
P P
N M
i g
J H
C F
E D
C 3
A j
PPf DICif D 0.3?
0.40 0.3?
PWE DICit D Mt ALOPt D 0.34. 0.47 0.34 MIAluRip I
I
.P(1 $ j f f i kl NCf.
5.3,
$.3 4.5
i i
. 0.57 0.s4 1.04 0.9s 3.04 0.54. 0.37 0.40. 0.ss 3.05 0.96. 1.06. 0.ss. 0.39 -
r 6.8 7.3
- 1. 3.
- 1. 3.
.l.5.
2.8 4.P
'i 0.47 1.07 1.74 1.16, 1.34. 1.16 l.74 1.07 0.47,
O.48 1.09 3 ?*
1.1%. 1.33 1.16. l.78. 1.33 0.49 3
4 7.4 1.8
-0.3
-0.7
-0.6 0.5.
7.8.
3.6 6.6.
OA6 0.97 1.30 3.54 I.%.
4.19 3.36 1.14 1.30 0.92. 0.46 04/
0.45 1.37 I.3%. 1.36 1.20 3.36 3.!?
- 8. 33, 0. 9+
0.4 7 4
3.7 3.3 1.4 0.6
- 0. 3.
0.2
-0.1 2.4 19 1.6,
f.6 i
0.37 1.07 1.30 1.37 8.34 3.11 1.33 1.13 1.34 1.37 1.30 1.07 0.37 i
0.37 1.06 1.79 1.16 1.33 1.14 1.1%
1.34 1.37 1.18 1.30. 1.06 0.39.
6
-c.?
-0,1
-1.?
-1.5. *0.7 3.4 1.3
- 1. %.
7.0 0.9,
-0.5 1.2.
4.8.
j 0.S=
1.24 1.14
- 1. 34 1.10 1.06. 1.07 1.08. 1.30 1.3' l.14. 1.24 0.54 s
0.54 8.75 1.14 1.33 1.30 1.09 1.09 3.09 1.37 1.33 1.52. 1.F3 0.55
.6 0.4 0.4 0.3
-1,2
-0.3 1.8 1.7 1.4
- 1. 5.
+0.7 al.6. -0.7 3.0.
s O.3T _ l.05 4......................
1.Ih 1.%
1.13 l.ca 1.06 1.30 1.06 1.08 1,83 1.16. 1.36 1.05, 0.37 0 $4 1.05 1.14 1.33 1.09 1.0.
3.10 3.3?
I.10 1.09 3.12. 1.30 1.13.
1.01', 0.32 7
4.8 0.9
-1.0
-?.2.
3.4. C3.4 1.6 3.6
- 1. 0 -
0.8
-0.a
-4. 0.
-1.9. -1.8 0,3 I
0.40 0.9%
1.31
.,{
1,89
- 1. 3 %. 1.0/
1.50 1.13 1.30 1.0/
1.33 1.19 1.34 0.95 0.41.
0.47 0.96
- 1. 17 4.3h 1.3?
3. 0i.
1.76 1,38
- 1. \\0 1.06 1.3?
1.14 1.31. 0.95, 0.41.
8 1
4.5 0.8
-1.3
-1.7
-3.3.
l.)
- 3. 3,
0.3.
0.2.
0.7. -1,3
-4.0
-1.9.
0.2.
1.7.
i 9.37 1.0*
3.16
.,....1,83. 1.36 1.16 1.05. 0.33.
i 1.36
- 1. 3.5 1.06 1.08 1.5e 1.06 1.08 0.34 1.04 1.17
- 1. 3.5 8.12 3.07 1.07 3.79 1.04. 1.08 1.13 1.34. 3.16 1.07 0.34.
9 i
4.6 0.3
-1.9
-1.4.
-0.9
-1.0
-0.9.
0.9 0.7.
0.7 0.5
-1.5 0.6.
1,6 3.5 i
0.64 3.?*
1.14
- 1. 34 I.10 1,08 1.07 1.08 1.50 1.34 1.14. 3.24. 0.54.
t 0.%?. 3.?!
1.14
- 1. h, 3.11
- 3. 0%. 1.04
- 3. 04., I.09 1.34 1.15, 1.17 0.S6 10
?.5
-F.5 0.0
- 3. 3.
0.6
- t.3
-?.h
-F.8
-1.5
+0.4
- 1. 7.
7.6.
4.7.
O.3/
1.07 3.30. 1.17 3.34 1.33 1.33 B.11. 1.34 - 1.17 3.30 I.07 0.37 0.3h 1.08 3. '.?
1.89 3.3%. 1.10 B.P9 8.08. 3.17 1.38
- 1. 54 1.30. 0.39.
Il 6
1.S l.4 1,4.
1.5
-0.9
-7.8 2.8 4.2
+3.8 0.2.
F.8.
3.5.
S.0 046 0.92 1
'.6 1.54 1.36 1.20 1.36. 1.14 1.30 0.91. 0.46 0.4n 0.95 1.3?
R.13 1.31 a.8%
1.3P. 1,33 1.30 0,95. 0.48 IF l
4.5 3.6 1.5
-I.0 3.5
- 3. 5. - 7. 9.
- l.0 0.0.
3.4 4.5.
1 0.47 1.0F 1.F4 1.36 8.34 1.36 1.74
..........0.47.
1.07 4.t 1.5
~5.3
-3.7
- 1. 5.
-1.3
-0.3 1.5 4.4
~~'
I O.49 1,09 1.10 3.l?
1.30. 3.14 1.F4 1.04 0.49.
13 0.37 0.h4 1.04 0.94 3.04 0.54 0.37 I
0.39, 0.ba 3.0%
0.95. 1.03 0.53 0.37 34 4
4.5 4.8 1.0 0.1. -a,3. -0.4 0.2 I
M Awaapp 0.32 0.40 0.32 luviarlow 0.34 0.41 0.37 Avipact l
.Pti Dif f!Ninct.
15
.l.589 4.a r.0
-1.0 1.9 4
i
.i i
GUMMAPY MAP NO: N2-9-21 DAT[r 06/24/93 POwtR: 99.99%
I i
CONikOL ROD POLITION:
F-Qtil = 1.780 GPTR:
D PANK AT 228 STEPS F-DH(M) s 1.413 NW 3.0007 lNE 1.0059 1
F(Z)
= 1.164 SW 0.9951 lSE 0.9984 BURNUP
- 16086 NWD/NTU A.O. * -4.208%
j
.NE-957 N2C9 Core Performance Report Page 31 of 52 i
J
l i
Figure 4.4 NORTH ANNA Unit 2 - CYCLE 9 HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE e
P 1.1 i
1 g 0.9 5
w i
c N0.8 3
S 25 0.7 Z
e
- 0.6 O.5 0.4 0
2 4
6 8
10 12 CORE IIEIGHT (FTj NE-957 N2C9 Core Performance Report Page 32 of 52 t
~
Figure 4.6 NORTH ANNA Unit 2 - CYCLE 9 HEAT FLUX HOT CHANNEL FACTOR, F (Z)
~
q N2-9-11 2.4 2.2 YC
's-
~)
u_.
i S 1.s 3
a:
===...........
=
- .s..".
=
U }.6 Z
e 7
rg }.4
~
=
g
-: 1.2 xa i
P 1
G SJ
= 0.8 O.6 60 50 40 30 20 10 0
IlOTIUM AXIAL POSITION (NODES)
TOP NE-957-S2C9 Core Performance Report Page 34 of 52
Figure 4.5 NORTH ANNA Unit 2 - CYCLE 9 HEAT FLUX HOT CHANNEL FACTOR, F (Z) q N2-9-03 f
2.5
=d b
]
x 0
J t
=
~
Z
$1.5
=
U i--
~
O
=
Xg
]
U
=
0.5 60 50 40 30 20 10 0
BOTIUM AXIAL POSITION (NODES)
TOP 1
NE-957 N2C9 Core Performance Report Page 33 of 52
4 Figure 4.7 NORTH ANNA Unit 2 - CYCLE 9 I
HEAT FLUX 110T CHANNEL FACTOR F (Z) 9 N2-9-21 2.4 t
E
= 2.2 ti L
E 3
i
=
0.-
31.8 s
51.6
=a i.
_A l 4.-
- .4 g
s 1.7
~
=
1 t
0.8 3
60 50 40 30 20 10 0
BOTTOM AXIAL POSITION (NODES)
TOP i
l 1
1 NE-957 N2C9 Core Performance Report Page 35 of 52
Figure 4.8 NORTH ANNA Unit 2 - CYCLE 9 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, F (Z)*P, vs. AXIAL POSITION q
I i
I i
N!
I I
I 1
I I
I I
I I
NI 1
I I
i l
i I
I 17 l
l
\\
I-.1I "* *"Il- ~ ~ A '.~ ~ A~ ~ ~ * ',-J..!
1.a I
A i.I l
I t
1
'l l
l l
l l
l 1.l'".I l\\
8
'j l
l I
I I
(
l I
I" l\\
i i
i l
l l
l I
I I
l' l \\
'A.-
i i
i 1
i i
l 't\\
1 l
l l
l l
l i
l I
l' \\
I'2 I
I i
l I
l l
1 I
l 1\\
@ 1.0 I
I J
l l
l 1
I I
I I
I I
l i
I I
I i
l I
.a I
l l
l l
l l
l l
l U8 I
I l
l l
1 I
I I
I I
l l
1 l
l l
l l
l l
U#
1 I
I I
I I
I i
I I
i i
i l
l I
I l
i I
l I
l l
l l
l l
l l
l I
l i
I I
I I
I l
i I
l 1
0.0
.i..>i...
.i........
.i...i.
.i...ii.......
61 55 50 45 40 35 30 25 20 15 10 5
1 AXIAL POSmON (NODE) a FQ*P UMir ir: MAXIMUM FQ*P BOTIOV 0F CORE TOP Of CORE
]
NE-957 N2C9 Core Performance Report Page 36 of 52
]
i
~
c 7
Figure 4.0 l
NORTil ANNA Unit 2 - CYCLE 9 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, F (Z), vs. EURNUP-q l
l 2.3 FULL POWER TECH SPEC LIMIT MEASURED i
2.2 g
VALUE O
+
O i
1 i LL i
I j
t l
l j
J 2.1 l Lu
~
l Z
i i
Z I
O
'2 H
0I x
D J 1.9 lL E
M 4 A d +I+ M
. d
?
E 1.8 i v
O l
+
i E
I
<E 1.7
?
1.6 l
0 2
4 6
8 10 12
.14 16 18 CYCLE BURNUP (GWdIMtu) 1 i
i NE-957 N2C9 Core Performance Report Page 37 of 52
4
-I l
Figure 4,10 NORTil ANNA Unit 2 - CYCLE 9 MAXIMUM ENTHALPY RISE HOT Cl!ANNEL FACTOR, F-delta-H, vs. BURNUP 5
1.5 FULL POWER TECH SPEC LIMIT MEASURED VALUE
+
e O
H O<
LL 4
.J 1.45 W
+
4, + l z
+
+
z<
+
I
+
+
U
+
H O
I e
W E2
+
m
+
+
I a
1.4 i I
i
l l
s2 x
l-3 ti l
i l
IlI LL.
O f
h 4>
a i
W o2 t
m 4:
l ll Og 4
is I
+ 4++
++
?
I i
liI
~
i 4
l I
I I
I I
-8 j
l l
l l
i
-10 0
2 4
6 8
10 12-14 16 18 CYCLE BURNUP (GWd/MtU) i i
i NE-957 N2C9 Core Performance Report Page 39 of 52
Figure 4.12 l
NORTH ANNA Unit 2 - CYCLE 9 CORE AVERAGE AXIAL POWER DISTRIBUTION N2-9-03 Fz = 1.210 AXIAL OFFSET = 0.582%
i l
\\
l 1.4 !
I i
1.2
..... ' " " " -...,'=.
l 1
e, g
i0.8 2
y 5
.6 r -
0 R
i.
0.4 h.
0.2 1
0' 60 50 40 30 20 10 0
BOTTOM AXLiL POSITION (NODES)
TOP NE-957 N2C9 Core Performance Report Page 0 of 52
~ <
Tigure 4.13 NORTH ANNA Unit 2 - CYCLE 9 CORE AVERAGE AXIAL POWER DISTRIBUTION N2-9-11 f
k Fz = 1.157 AXIAL OFFSET = -4.341' 1.4 i 1.2
..., =.....
=
=====...
==
g 1
=
b e
5 2 0.8 o
=
v.
N_
z 0.6 'r
=
0.4
=
0.2 60 50 40 30 20 10 0
BOTTOM AXIAL POSITION (NODES)
TOP i
NE-957 N2C9 Core Performance Report Page 41 of 52
i I
i
^1 l
Tigure 4.14 NORTH ANNA Unit 2 - CYCLE 9 CORE AVERAGE AXIAL POWER DISTRIBUTION N2-9-21
~
Fz = 1.164 AXIAL OFFSET = -4.208 i
i 1.2 I,
=
1
.R.
w N
d s 0.8 O
i Q
=
t 3
l t
1 0.6 i' 0.4 60 50 40 30 20 10 0
BOITOM AXIAL POSITION (NODES) 1DP i
r 1
NE-957 N2C9 Core Performance Report Page 42 of 52
~
Figure 4.15 NORTH ANNA Unit 2 - CYCLE 9 CORE AVERAGE AXIAL PEAKING FACTOR vs. BURNUP 1.4 3
1 i
)
i j
l i
1 I
1.3 >l j
e i
O t
i H
1 O
s
<LL.
l r
O x
.2 b+
1 4
w D.
l+0+
k J
4 k 4 $
+ l'
+
t l
i 1.1 6
l I
I I
l 1
O 2
4 6
8 10 12 14 16 18 CYCLE BURNUP (GWd/MtU)
NE-957 N2C9 Core Performance Report Page 43 of 52
Section 5 i
FUEL RELIABILITY i
i The spec 2fic activity levels of radioiodines in the primary coolant
\\
are i m;>o r t an t to core and fuel performance as indicators of failed ' fuel l
I and are important with respect to offsite dose calculations associated with accident anaa; es.
ti Two mechanisms are responsible for the presence of radiciodines in the j
t primary coolant.
Radiciodines are always present due to direct fission i
i t
product recoil from trace fissile materials plated onto core components.
?
t t
and fuel structure surfaces or trace fissile materials existing as
~
impurities in core structural materia:s.
This fissile material is 5
generally referred to as " tramp" material, and the resulting iodines are referred to as tramp iodine. Fission products will also dif fuse-into the i
primary coolant if a breach in the cladding (fuel defects) exists. Fuel i
i
- defects, when present, are generally the predominant source of radiciodines in the primary coolant.
i j
North Anna 2 Technical Specification 3.4.8 limits the radiofodines in b
the primary coolant to a dose equivalent 1-131 value of 1.'O pCi/gm for.
[
t modes one through five, inclusive. Figure 5.1 shows thi dose equivalent i
1-131 activity history for Cycle 9.
These data show that the dose i
t equivalent 1-131 activity was substantially below the 1.0 pCi/gm limit for steady state power operation. The average full power equilibrium dose j
r NE-957 N2C9 Core Performance Report Page 44, of 52-v
m. - _ _ _
i
,. +.
i equivalent I-131 cont.cntration for the cycle was 1.48 X'10-2 pCi/gm which
{
corresponds to approximately 1.5*, of the Technical Specification limit.
i Correcting the 1-131 concentration for tramp iodine involves calculating the 1-131 activity from tramp fissile sources and subtracting s
thir, value from the measured 1-131.
The resultant is.an estimate of the r
1-131 activity resulting directly from defective fuel. The magnitude of the tramp-corrected 1-131 can be used as an indication of the number of i
defective fuel rods.
The cycle average tramp corrected iodine-131 concentration was 4.25 X 10'3 pCi/gm with an average demineralizer flow rate of approximately 78 gpm during power operation.
l
- 7 A noticeable increase in the coolant activity occurred in late December r
1992 i nd i ca t. ing the presence of at least one defective fuel rod.
By
- i i
examining the 1-131 data, there was, the possibility that a very small 'uel i
defect existed as early as August 1992 which was indicated by the very I
small iodine spike in the RCS following the reactor trip which occurred on August 6, 1992. There was a previous reactor shutdown on May 23, 1992 with no subsequent increase in the RCS 1-131 concentration.
This j
indicates that the Cycle 9 core was initially free of detectable fuel
- l i
cladding oefects.
The average tramp corrected iodine,131 concentration prior to the large coolant activity increase in December 1992 was 2.27 X i
10 pCi/gm.
After December 1992, the average tramp corrected 1-131 l
4
-3 concentration was 8.29 X 10 pCi/gm.
The ratio of the specific actisities of I-131 to I-133 is used to characterize the type taize) of fuel failure or failures which may have NE-957 N2C9 Core Performance Report Page 45 of 52
a i
r occurred in the reactor core. Use of the ratio for this determination is feasible because 1-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) i compared to that of 1-131 (approximately eight days).
For pinhole defects, where the diffusion tire through the defect is on the order of t
days, the I-133 decays leaving the 1-131 dominant in activity, thereby l
r causing the ratio to be roughly 0.5 or more. In the case of larger leaks i
and tramp material, where the diffusion mechanism is negligible, the l
1-131/I-133 ratio will generally be less than 0.1.
.The use of these-rat.ios with regard to defect size is empirically determined and generally used throughout the commercial nuclear power industry.
l l
i Figure 5.2 shows the 1-131/I-133 ratio data for North Anna 2 Cycle 9.
)
Aside from the large increases in the ratio during the time when the i
i l
defects occurred, the 1-131/I-133 ratio was generally between 0.25 and il 0.3.
This indicates that the defects in the cladding were likely to be I
moderately sized. liowever, af ter the reactor trips on April 16, 1993 and l
l April 24, 1993, the ratio is noticeably smaller, being less than 0.25.
I 1
i This would indicate an increase in the defect size.
i Fuel ultrasonic testing and visual inspections were performed during
(
t; the Cycle 9 to Cycle 10 refueling outage.
Preliminary results indicate i
that five fuel rods in four fuel assemblies are defective. The four fuel
{
e asserr') lies are Y48, Y43, 51.,4, and SO4. Y48 and Y43 are both twice-burned j
3 f uel assemblies, 5b4 is a once-burned assembly, and SO4 operated in three cycles.
About three inches of Rod 3 on Face 3 between grids 6 and 7 was j
t missing on assembly Y48. The missing section of fuel rod was subsequently located in the transfer canal in the fuel building.
No UT examination
[
NE-957 N2C9 Core Performance Report Page 46 of.52'
6 i
i was performed on this fuel asserbly.
UT examinations identified the l
a failed fuel rods in the remaining fuel assemblies. These fuel assemblies
.j i
will be restricted from further use in accordance with the Zero Defect l
l Policy ' pending any repair projects to replace the defective fuel rods.
l 2
An internal Technical Report (separate from this report) will be 1
prepared which will consolidate the fuel examination results and an i
evaluation of the potential failure mechaniams in the detected fuel rod
^
failures.
I i
j i
i f
f r
r
[
I I
r
}
8
?
I 1
i I
i l
i 1
4 l
l NE-957 N2C9 Core Performance Report Page 47 of 52 i
Figure 5.1 NORTH ANNA UNIT 2 - CYCLE 9 DOSE EQUIVALENT I-131 vs. TIME 1 OoE + 01 1.OOE.
- 1. ODE - 01 25
_O
=
C 1.00E g
--.c D
O O
9 2
1.00E -
100E ~
i l
l i
i i
i 80 60 40
. l 1.OOE - 05 O
13JAN92 22APR92 31JUL92 08NOV92 1SFEB93 27MAY93 04SEP93 13DEC93 DATE NE-957 N2C9 Core Performance Report Page
.8 of 52
Figure 5.2 NORTH ANNA UNIT 2 - CYCII 9 I-131 / I-133 ACTIVITY RATIO vs. TIME 1.5 -
l
)
1.4 i
=
I l
1.2 t
1.1 P
1.0 --
i t
3 0.9 -
=
5 0.8 -
n 9
1
-- 0.7 -
1 r
2 I
O6-I o.5 -
0.4 0~3 -
i g54tyj. '
~ 100 i~
i i
1 i> i 4= g= 1 oa f
x
.3 c:/z.
w.s-
.e !
i
~'
0.1 w
,7-
.e-4
.r n__ M__,A g
n
- 20 C r
L
- o J
0.0 -
13JAN92 22 APP.92 31JUL92 08NOV92 16FEB93 27MAY93 04SEP93 13DEC93 DATE NE-957 N2C9 Core Performance Report Page 49 of 52
i Section 6 J
f CONCLUSIONS i
I l
)
i t
The North' Anna 2, Cycle 9 core has completed operation. Throughout this cycle, all core performance indicators compared favorably with the design.
1 b
predictions and the core related Technical Specifications limits were met j
r with significant margin.
Ne significant abnormalities in reactivity or
}
burnup accumulation were detected. Visual and UT inspections of the fuel
[
during the Cycle 9 to Cycle 10 refueling outage indicated that five fuel i
rods in four fuel assemblies were defective. These four assemblies will s
be restricted from further use in accordance with the Zero Defect
't Policy 28, pending repa2r.
i i
?
)
?
5
'f I
'i i
l NE-957 N2C9' Core Performance Report Page 50 of 52
. ~. _, _.
i
t i
~
a i
Section 7 i
REFERENCES 1)
E. A. lioffman, " North Anna Unit 2, Cycle 9 Startup Physics Test Report," NE-895, June, 1992.
l
- 2) North Anna Power Station Unit 2 Technical Specifications, Sections 3/4.1, 3/4.2 and 3/4.4.8.
3)
T. W. Schleicher, " Virginia Power Fuel Assembly Burnup and Isotopics Calculation Code Manual," Technical Report NE-726, l'eb r u a ry, 1990.
[
a i
4)
D. L. Gilliatt, "The Virginia Power FOLLOW Code Manual,"
Technical Report NE-679, Rev 1, April, 1991.
I 5)
W. D. Leggett, III and L. D. Eisenhart, "INCORE Code,"
WCAP-7149. December, 1967.
9 l
6)
R. T. Robins, " Reload Safety Evaluation North Anna 2 Cycle 9 Pattern ET", NE-870, Rev.
1, April, 1992.
t j
J l
l I
l NE-957 N2C9 Core Performance Report Page 51 of 52 r
f
l F
i REFERENCES (cont.)
{
7)
A. li. Nicholson, " North Anna 2 Cycle 9 Design Report" l
NE-885, Virginia Power, April,1992.
j r
i 1
- 8) P. D. Banning, " North Anna 2 Cycle 9 TOTE Calculations",
PM-422, April, 1992.
- 9) T. S. Psuik, et al, " Evaluation of North Anna 2 Cycle 9 Movable Detector Flux Maps", PM-435 and Addenda, April 1992 - August 1993.
h P
- 10) Memorandum f rom R.11. Berryman to 11. II. Baker, " North Anna 2, Cycle 9 Revised FUDDL and fuel Performance Data", March 25, 1992.
i
?
- 11) Memorandum f rom C, P. Sanger to D. Dziadosz, " North Anna 2 Cycle 9 Final Core Loading Plan Revision 1",
March 18, 1992.
f
- 12) Nuclear Standard, " Fuel Integrity Monitoring", ENNS-2904 Rev, 0, 5/26/92.
l t
.t t
?
i 5
i t
6 l
i i
NE-957 N2C9 Core Performance Report Page.
52 of 52 1
~.
.