ML20112E234

From kanterella
Jump to navigation Jump to search
Rev 0 to NE-1068, North Anna Unit 1,Cycle 11 Core Performance Rept, for Apr 1996
ML20112E234
Person / Time
Site: North Anna Dominion icon.png
Issue date: 04/30/1996
From: Brookmire T, Mirilovich J, Psuik T
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML20112E194 List:
References
NE-1068, NE-1068-R, NE-1068-R00, NUDOCS 9606050193
Download: ML20112E234 (54)


Text

.

Q Q.. n :. c. ;., ' t ?. ','. v.

..:d,.e.'.. :.

e

,.. \\ ;;, l,.'....+ b ;.::[. f. ?.'... :...... ~ p. :: :,;,. ~ -. C r: n,;~.;..:.

W.' : - ' - i :.:. ::

..... _... :, ". ;,,.~,. :. -),.). v. ',,:, :. : :,.,...

s

.,, i. _:, h Q _ ;. - :. ;...::,:. :,

.p.,. m.m..e..,

s : --

7..~

..,.'. a : ;;o. b, o.',',O ;..,...~.^;. ; 6:. e...:@,.

.... a

,, ~,.......

... - 8

- c-

<
; ll ::::, t.:..,,._.. :.., '...:n.:

1..

. Y..0:.

. y,. ::'.qy

.f. V :

' s fc., '.' ? '!.... ' '.

'1

.~.. ~,

p.,

s.

4....

t.

t. -

g,

....... :.. s

.s

, * :s.

.a d,.;, c.*s.< [.... . ?... q,.

- <-.2

...-...\\.>.~,..p.c..i,*'

.' h,.,..:.,

,.. l

.,.e..~- c. _..

..s..:...

%

  • s..

, :n..

n.r e.

\\

a.

,y s ' %,:

..Y \\ ' '. -: 1

...W

...<c4 :;. 4 1,v. i..,9 T..

.. !l : - '.h. :,%

.-

  • d ; ;.:
  • f',,' c. s' t. rL'.

slv

  • t.5_y. :@'.  : ::g 1

h,y: h '? T. 'b, &g..; $.',:h ;l '

..~..,... V : ; *..)

Y l' f.u '. $

^

h,'. Jf s ; ~,'

.r. ::.?:*s. :..*

' ?. '

!;. * ~. ' " h " llE.Y<,h ".,
  • sr.': '? '

- ^,J.:;. k.': :: h,: bt '

'.,.',.'l.:... ', '. *_. \\. ;,, :,Y,..,' m ".

l.,.;' '.., [r,$.'l ^.

D'

;,......{
j. r :..

.' ! ';,.,,:I',.

.. 'j.,* ;.

. )

,,;,s:

,;... ), s.

.,C t-i.

.l -

,. s... a t.; I4 -

,, : ?.

.,,r--

.'. * ' r.

- -..',,,,... l'. '. :

rvo

,w..

,, 3

  • 3,, ' g...u.. -,' (e :..'.,<

8.*/

...t

... g.,: '..-

- -,eq.,.,r..',....;,,.., -

.r m :.,. ',L::( '.,; ;.

..',.....,,05,,.

,.s,. g,.

.t et.-3 '* o..

,..,...g'

;. v.

,: s..

q

. 1

.6

...:: Q :,, _,ss. g-e',.,,.<

,s.

y

. = *.. - ' :,. ' -

s

-s. -:-.;

..g. 9..*. :'....*:. -,

.. :...i.. :..

'r.-

e..

-.' '..n

. :' :. o.1s.

v u

. a n.*

.... = :. f. 3 ;.: :.. - -

. s s. -., -

g.

..n.'....'.;.,...,~'...

.:s

,.,., i e.

',.1.,r.<

.l.....

....*p..<._

.,3 z,..a._:

>.. :,L., :

  • ~.';.,
s..' ::,. *., -.... -

t.

n.. :..., g.' s.-.,.:...

..'
..:.,, s. : r.,. _,,,,.

s

y.

r y

7

,.l>.,m..

s ;- s

.4.....,

.,. :.,*. :..s

.;p..

,. a.

,m.

.w..:e..,"..;,..;

,a a,,

s a:,... ; >;n:....,

u

,;, 4.%, ;L

., :. 9 r,~.. y ;. < > _.,

.,.., V.. in s

,- -... -... -,, e #..,. g' r

  • 4 c.i -

p.

r..

.g

-t

..,.n..

.e>w.1

,.,. s.* ;c -. -

.w..

--, '.>,. :, 4.

. - - - : A... u

~er V..,,:.. s.,. ',.. j. c ', '......

,.',f'....

r.

., ~.

H * : L,..

.') *:'".,lp ". '

,,'.s..,'.'.'.-r *.. ;.. *.. f.l;* :

e. "

.r.

.s.

- " %:, u, * ~,.-l.....

-s.: -... C, 4-

-..:.:..'.'.. ' * - ; ~.,.

,.,i,. +.-

W

,'.1;'M f, ::.. : :.. :'.

s

,- g

,. gs :

-yn..;.:.. '.

l-,

..., ::.~

g.: :~...

c u, -;. * **., :t -

,.,r. 9.'

.., k t.

- : ".. t ', -.:',,

a r

.~w

~ s;:.,.

t..:

,n~..

. t.

t.

- e. :.. ~,.,. r.:. p.l.

s.

. p....

a,

.-,'s t,

.:, ~ 7.f..*(., t.,,...

.~, ' o

. : *,.., g 9,.l,'. @ ' :

,-,., c,

s;..,.9..,...'s

./,

,,q';.

.:.., ;.,;,.,..,,..,.,,,1,:..;,.,. :.,.;,.

e..*,

.......,...,',q.-~~.-*

...... 4, y.,r,. : >:'.'.,.,..7...s.,

,a

.):-

s,..k

.;. :n..

u.

...,,..'e:,

1 R, :..,.....*,....,&..:*...,.,.;...,:,.,i'-

,,.. ".. =

-

  • q

-J... '..

y st.

,s...-

.,s.-

..,..,, :.'x :

e,n,..,.

e..

~p

,s e-.

t.

  • .5,. f".

g.,:

..s s...

n.

s,

i..

e, r

,,..,.,f.,

T s

,a

%...,~p, e ' 4 3

i

-Q*

.i : -...

~ -... <

.t..s

~... -

. ;....j.*

s

.n.

.... - ~

.-,,.g

~

'
y:(,,.':* ;,...s.: :. Y...e> :<,.,. -

.'..,o

.u.

f-

  • ,- - -:. y ";

..,...:.~.'.\\' '.. i.,.. q,_ ' :.y ;. (r.

..'. -y J.:% * *i.

  • r
.., e...,:;; [.
'c'.;.;;..s...x...
:.,.;. ; :.. n :' ::\\..'-. -..;

- f.._.;.... :n.,.

' ::5

.,.L.. ?.Q.'.,.. - }. ; s.,.

i.

,;y... :.:.

, y.,,

,. *.. 1

.: >;*. ~.

f.. -

r.

..y

., ;.,,, _,, *.. ',.,,..,,,..."..A..

'.,..Y r,'

. '.l.,.. y:.:'.. '..

~c Yn ',?. /..a -

5. l ; '.hN.%, ::.', :e'. J Y, :. ",.,,\\. !,. L ~ *.. ;
  • d.

<- :. - n:.

l i',. l ' '.;,.:W.

_v. - ?

~

'.' j;.':

'1 *:

h'**'

.~ :.. b,.. * :,):p}';.

g,..;.

  • ,c..

.u, y... :. ~.;: '.. :..::,.

.r. :

a,. : :n..~;s;;:;p::*o ;

.\\

n.

.n..>.

s. :>....e'-..... :

...,..,........-)-

b.

.....u.:,..:.....

..,..e.

v... :,.

s:....,.:

.:..., ~,.. ;l1.:.:...~.,..

. \\.

.,.. a:

... :.. g :....

r

.., y... y :; ; :. s.J..:...>.;_,..,,.a

~-

..:, ;..,g:... rc.: ":.: '.:

-t g

.,1.,. y....... - - ;., -

- ~>

c ',-

,., '. -,..,,.;....r.--

...,-....,..: a..

o,

.,.,.,. - *.1....-.

....,.-...,... - ~>...

?'."N',_,.,.,

rg.,F.,......

. ;) { ' :',!; f. g,*. '<.

  • .t.

..t s.t-...

.o.c:,.-...-

' R.. '..:K.

t r.

z..

y., <

..h..';,.,,

" Y ' {' if',',. &rg :, f' ' ~q.. J.. -

. h. o.,'.,*:.':l , ',,C

.\\,.,"'..

' :' ; * 'l' r,

-... ~

'o.'.

.,*'.....,..s.

Y *:. *.

y,..<.,..;;.' : I'

't

.., n :*-

~. s,c, J.

,.: t :.c,.1...w..'.,.

.,.~*...,.:..,

s

.-*,.,.,ti,.',.'.p.e1:..'..;.,..<

s v;.

. s...-

a

.. y..,u.s.

,;. =.,.

. ' :, a..

. pg u. y*

s

.sl' q.

.,c-.._.

,,',.,=*,.4f,t*x.../, * "d. ' \\.,* "/.e..

%... '

  • i 1

8 *

. # i... -

.. 4,.8..

a 1a

' 1

  • w' * " *-

...].. 4,,vi,."....?,

p...- l,"f-e.

g.,. "

.s

. *,...,g'*.-

  • i. *

..' ):-

a.

~l..,

.t

,n.

.. :7 p

. ef.. ;.:,. *.f-f '.

^.

1,

. [ 1.,4.J,4, y;, T.,, [.. ". Q. ., t, y'.' [. ^, ' y' '. * {,...

. +

\\/.. ~ '.

t..'

. "s

.',p'..-

5 e..,

...p.* :,.r.,

=

,,.y,.

L

  • .....r

,/y...,.,.s*%..,t g.. A

.+3 v3 >

g,J

..n r-

. ;r -

y.e ;.,...

r;-

L' ns s.

.e

, +. gr -.-

- 8

  • ./ :

<t.

.g.,'.'t'..";'$. [..' 4

,:.....,.,.',u....'.,7 -.",

, ' 5 "*h((;'. N; l

n

.v,, i, I ' ' ', ;' [1 '

/-

[,

y s. :.o, :..,~. ;.. #, /, [ h.,: +.#,

,, ,1 '..g ;'. ' *. ; ; [,.,.;., '.,., %. 'ei,' r % <.'h.. s ';-.-' -

. '., '. + --

,N

_"(',...

c

.,t

......y

..... - p) :...

,...w..,, e -.: ~ -

-..... ~;.. a...s. m....

v.

r-

.,s..

- n., ; -

) > 9.. :a.a

,.4.:.

,t.y.: 3.',y..

.L

..y ;

c. p,,:.

.s :

g -l w,... u.

..n,.

.:..v.-

..~e-

-. ~.

".,. s:.

.. ' D. s.. :.

...,.a ' W : ~ '..,, :

,?

....?.

.s.. :.,. :

.\\;.g;.'

y..,....... : 1 '.

. s.

t.:......

.c..,

v.

t..:.

.g...

+.4.

m.

g..

s y

, f,..,i....... :.

>*'a e '..

'.:.,:g -lx p* ' tlQ,.,,,s.

....s <; ^..: r a:.

  • t,,

'.L.

? /;.. l;,,. ".

/ -

c,,'.,..F..-

  • ,..s

. :,r. >, :-... t..

e

..,v...,.. '. '..,. '

..e..

L

.. :...- ls.;

- t,,

.\\r s..:

e

. 9:..,.,. ; e....,

~, ;

,..,c,..

n

,~

,"4, y.

l r..~

5

.u- :. '..

... s:

?... t..t. 's..s, g...'.',h.'..s..,.,,s.,,;..--

e :

r;

..1,.

.. *... -. ~;. -

3.'...,

.','l:,.r.,,'.

..y...

.. N.. '-i g.,.,, -

, ?..K. 7,l A;,.

. ;7.....,,.,.,:,'...<

'.a..

i.

n

../.'. *..*

a. n

,7,f.- / - l 1

, * ;- % J.,.., g... 6 Y[/.'.,p s,.p.. y, ',, r, j.,. K. -/ QiQJ '.. [,, f.,.:', ',',. y

?

+

s-..,:

. :sy,,

n;....

J.2.'..? )f.l{1,;,.. i;;*.

.{? j,,,

'?

,r,.,

,f,

, 3, g,.

,,...,.,f*n.,,',

....., g r

. s..,

s,..e

, y..*

  • 3...

. i g. : ; e. ^:,,.o,.

a.

,.,.,..7 l1

"..so.,-

3,,

1..,.,.,.. ' ':.-... ;. ;.... -l; : -:s',,,

,}

.\\,.c.,.9.,..*. ' ? h '.,.'...s

.'.'.:,k L.....,:,,

U:,.:. - -'. '.' '. ;

,.no',.

,',{h..,.*:; ;.. ? ; ($.'?.. p.s: d'. f 'ls;;,

t._,

~- t

'q.

( '. * ;-l, l'. R

'f.'i..,Q.;*,",:. U (i. ;'s.

l _:. .'.,?.... '.'i ^ '.. : E.

U.;.,'

.c

(;:..'. l N...', :,,'.'

..!.'.'^-.-'..^

I t '.

i-s

..s % a y.

l,,..s,:

y\\...

r

.' :?

., ' ' l4,,' ;. g'..,,;. '-,. '. '. ; A. '

, _.,,.. ; ~. : - '.r,.

_19. :*

s,"... ::.*,e

.o,.

s :

s...;

es ;,

,. -l.N. A,{.% ;.;%.. ;; y ;. "t{ :, ky,}... e.. ?. ;.. :; ; ~l:: ~,' _ ';:c.' le;. _1:

n' T$.

" N,:, p ?.k..k.... -[e.*.f...k :f: d...< ;<*.... ; c;, - \\;.

. h.. :,',$ i; k.*',".. ',... k.k.. 5

.e :.

j ; '(. :,qs:

- I..?. - ',

h.:. s. "

f

.e d

4..\\ (Q_., 9,,..
  • lh. ^-.

.v.

l-e.':-

,,*..s...~.

-r t

w,

-' '.*,T.

. :4. %, r,y:,' f yll.

n, g..: : ~. ;....... < >

.~.b..*j 9t.:

g '.5 J.
".: ;i.m, 3 :. ',;.1

's.; '. 1 -,.,..,.:..

.: : ',;,..+q: :. ;n.c.

p La.' c...,.

, y;..: ' :?..

t ;

s-

+.

. y q.._ -Q. T.Hf;/ :y::i...\\...,l.', ', 5 n. l _. ';......,

...3:,

). ? i;

'[.

l ;

z, 4.. ; b. : y.,j s. 3; %:;. e.e. o}.: < ;...,

.. / : ;..... ; V:a. '-

.*p

,f,.. L.,,. ; ;, f.

,.c,. * > ;

~. -., -

W,,,...1 %.:,

. :, :.~.m..... w.. ;:,.,.::..r.. ;t v.l; c'c:

.,..._:.. r..

l %..W..,..:-

.-n':,...

n.'.v.*

..- - u

  • ;..-l:':.;

.:;;(.

... ;.,. ;4..,....

-t

..........v.+,

hpl'.f.*g%'b'.1-[y e.,

y

....<..~ J, as..

.n. :.

";

  • p. n.?%y, si

..F.,s,-

J.,..

f.';}: $ fI.s-;, < ?. F;'t.g.,. - /. :b,. ;.,,,.. '. *. '. ' \\. '.: '.f.-Q,.,.,

r

-9.,-

..r

.. 'i - ' '; !p' * ?: '

. ~.;

' si

q.[ ). *'. *; ) e :

'hs?*

.l.*a.

jf' ",.' - '..'g t 's

  • + -

%~

-.*i. < '.,-';1.',,s

-p i n

? jff, s,.A.. l.* : :,.. !.' l

  • l,),sg;7.t
  • i,.
  • l..'". Q 4-

-.,-lpy; '

t: _: i,'

^

?

.,K,.

' E. :Y. Y '. ~.-l *.,,..' ' -

..*E,.,..=s

.i4.

. '- Ck \\.. '...

S

.. $(,* 5.*N'N.N.. #f', l,'{ $ Y ' ** k., ; %

s*. '4' g &:*if: '.e:s..'M., f,e '.- ' '. '.Y '. A

.g l:-

. : ? " b a' ':b '.

?

't*.!

. f ;

-V t'

,s-g( %

s

%dpn$$h.sl c.a:a....:..w&p;m.$.[..x?:l6h $C.% ';l b

es i

f

  • l
    • .. r '. w. -

s -

e-

. ': e '

s.m...,.

4,-n;.,

l

?ol

I yM$Y
anne l:n:Y.

.... :,m

~.

. ~

NU.

k&M 8

QQ5 w:j.w.c;WWM4:%

s:

Nb

.atm&?.2'$.W.'.i.

emm hN hhNbh N h.k.h.MNk.M.mM hkh

$$hMG#ew%g;#w&,pp;gy:68MQhs W5 M

~.

$mN,@A n

n wemw.w@M. p?.y7:h..m.n.g;qw%.n a: #A Ng%.w mm.p hgA NRg p :7 1 g.wge sw.M.e f6:3,h+' A'$@.tq., vgl:.p:. y.e,&; : p m..%n.:,.b.3. n:

a y:.m,4.t.w: w.w. 3:y s..,ls.g.h@~4; %

.Q:..

Mm sn:

.Wy ;4ap..,

gg

. m%N AQN:Wb?.%% 3.:p:s;,,%N f.1.%p MQ,. 9

.yIr-4

,2 r. ~

-. 3 4:m' R

p n.

.,3et.,

i,i.n.P W.M.

s a ;7.:.4i h.b:.%j. 5:1:; ;;a'c.;p i.@C;.s.n %..

4:

t.9:yhe.:f;C:">.Ry..?? -

L.! < C:4 W

p. m

?.~

M hty;&q).;&.h:q ;..y;,R y.&; Lp:

gN:2 y,.yM%! %q..:.k. g.QW;:y..'.??,:2Ngyw.

M. y u:

..w:. :;.ywy;m 7

t

.R W %,

W:9.u aM.

W:

p;L.:LQ-

s.
W.wl:,;:: y n;;g; T ap.?. %~ ;;

p:?

EMiMN;. Q;qbLt.ta;?;& :t

y n.hWMb3;q.. tt.n
s

.%% ::m:6 maMLwemw.3$@A.Q@NNMMl$.r.g ::dMM:M,WW&.:w@

M M,:.

ym D

N N

n..w, ;;.7,.. somn, e, m.& ; m..n e m.m:n y.n. n.

...Q.a.Q m,y

...n g u.y n.;...b, ~ w. t., e, p q.q p. }. p s.

y y: s.,

. g.

+

..q NMNM!nm ? n n e w n n'n.a ana m& h gN&$%e.N Mi%N$a$k NNQ N M EN k

wa mm

.))

DOWWW**m#w&a &e}fy::w elQ gf; g&g. y'y &p(.m Mg c:

4l j

f f...

.. n.Qy.w c g Ep 7.gg; 9606050193 96060s g,i...r ge. A;.

. N g,q..,;;(.g g gg.;:g; dye g. M 9/M m.'

%..<l e

rp.4 i:m 5:.M 3,,

.g jyjg :?.:.jgg tj[J PDR ADOCW 05000339

%g:m,y g.

PDR

., :, s p

m....

h k

-h

&u. %Q$@n. ?$$W.Ihh.w....h.,,.ww..

.n

. m.n,,e., n.. c. m.,..w

.;. u w.:mmna..,,_..m.._..

.g.c..wn.,

n..

a

........... -.. n e

p

A.y\\+

e,i-g

, 47,. E.

.1\\i g

v W4 x

}u;. R. wl:s x}

x u, p;m ar,.;t s

k.4 elk.

s

, f 1,m\\',(\\ s,

^^ -

'y.;

s' s

7 e

.-.y g\\c.y

.5,.

s-

=v.

-+

,..y s

i.

3(;..,.

e

].

4 v

y, P (*.

,s 3

c:

\\l s ' N ~ -

\\

[

, u g-.. [.

.xnn m,x y

..n l ?.

s;N-. v s @M w. dl y

(,

l{l

,2

=

^ -

1 me ca_

ak, 4 s-y o.

v.

.x

'Xfi. <\\ @- M X 4 N f % p f ' ',,

a

^

y...

y N-

' Ak

.s ' t :-

sm, T ';'. \\. N.. p.

..m.,

_ 4 g-

,x-)s k " )y

'\\

4

?C. D9 %

\\1n.'W s sa s

^

4 : g..,\\y og, y' :,.

,%,.sg(.

_s \\,

p ;-.

/. :

^y 3

1 it.

e t

y 4

p y :,

%g g..

V'g.7

" j,.

%prihMnnd?

W SUrtitd@kleM s

' :r '

bCore_Pe orma...nce:

s

' ^ ^

2 Rep' or,,tp g

3' 1.

m 4

x

p 4

i

< gn b

k.

r lNuclearAnal'ysishndFuel eNuclear Engineering & ServicesI a

April,;1996 t

c O

VIRGINIA POWER l

I i

E le

l t

l l

TECHNICAL REPORT NE-1068 - REV. O NORTH ANNA UNIT 1, CYCLE 11 CORE PERFORMANCE REPORT NUCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING & SERVICES VIRGINIA POWER APRIL, 1996 I

PREPARED BY:

@/7"74

/J.M.M'irilovich Date Nihth REVIEWED BY:_T. S. PsuikDate REVIEWED BY:

c; 9

M /f-f4 T. A. Brookmire Date Nff REVIEWED BY:'A. P. Main Date APPROVED BY:

9[

D. Dzifdosz F

Ifate l

QA Category: Nuclear Safety Related Keywords: N1C11, NICB, Core Performance Report

CLASSIFICATION / DISCLAIMER The data, techniques, information, and conclusions in this report have been prepared solely for use by Virginia Electric and Power Company (the Company), and they may not be appropriate for use in situations other than those for which they have been specifically prepared.

The Company therefore makes no claim or warranty whatsoever, express or implied, as to their accuracy, usefulness, or applicability.

In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusions in it.

By making this report available, the Company does not authorize its use by others, and any such is expressly forbidden except with the prior written approval of the use Company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein.

In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it.

NE-1068 NIC11 Core Performance Report Page 1 of 52

=-

i 1

l TABLE OF CONTENTS PAGE Table of Contents 2

List of Tables.

3 List of Figures.

4 Section 1 Introduction and Summary.

6 Section 2 Burnup.

13 Section 3 Reactivity Depletion.

. 23 Section 4 Power Distribution.

. 25 Section 5 Primary Coolant Activity.

. 45 Section 6 Conclusions.

. 50 Section 7 References.

. 51 I'

II I

II I

l l

l Ii NE-1068 NIC11 Core Performance Report Page 2 of 52

LIST OF TABLES TABLE TITLE PAGE 4.1 Summary of Flux Maps for Routine Operation

. 29 NE-1068 NIC11 Core Performance Report Page 3 of 52

I LIST OF FIGURES FIGURE TITLE PAGE 1.1 Core Loading Map.

9 1.2 Burnable Poison and Source Assembly Locations.

. 10 1.3 Available Novable Detector Locations............

11 1.4 Control Rod Locations.

12 2.1 Cycle Burnup History.

. 15 I

2.2 Monthly Average Load Factors.

. 16 2.3 Assemblywise Accumulated Burnup: Measured and Predicted.

. 17 2.4 Assemblywise Accumulated Burnup:

Comparison of Measured and Predicted.

. 18 2.5A Sub-Batch Burnup Sharing.

. 19 2.5B Sub-Batch Burnup Sharing.

. 20 2.5C Sub-Batch Burnup Sharing.

. 21 2.5D Sub-Batch Burnup Sharing.

. 22 3.1 Critical Boron Concentration versus Burnup - HFP-ARO.

. 24 4.1 Assemblywise Power Distribution - N1-11-04.

. 30 4.2 Assemblywise Power Distribution - N1-11-11.

. 31 4.3 Assemblywise Power Distribution - N1-11-17.

. 32 4.4 Hot Channel Factor Normalized Operating Envelope.

. 33 4.5 Heat Flux Hot Channel Factor, F (Z) - N1-11-04.

. 34 q

4.6 Heat Flux Hot Channel Factor, F (Z) - N1-11-11.

. 35 q

4.7 Heat Flux Hot Channel Factor, F (Z) - N1-11-17.

. 36 q

4.8 Maximum Heat Flux Hot Channel Factor, F (Z)*P, vs.

q Axial Position.

. 37 I'

ll NE-1068 NIC11 Core Performance Report Page 4 of 52

1 LIST OF FIGURES E

FIGURE TITLE PAGE 1.1 Core Loading Map.

9 1.2 Burnable Poison and Source Assembly Locations.

. 10 1.3 Available Movable Detector Locations

. 11 1.4 Control Rod Locations.

. 12 2.1 Cycle Burnup History.

. 15 2.2 Monthly Average Load Factors.

16 2.3 Assemblywise Accumulated Burnup: Measured and Predicted.

. 17 2.4 Assemblywise Accumulated Burnup: Comparison of Measured and Predicted.

18 2.5A Sub-Batch Burnup Sharing.

. 19 2.5B Sub-Batch Burnup Sharing.

. 20 2.5C Sub-Pstch Burnup Sharing.

...........21 i

2.5D Sub-Batch Burnup Sharing.

22 3.1 Critical Boron Concentration versus Burnup - HFP-ARO.

. 24 j

4.1 Assemblywise Power Distribution - N1-11-04.

. 30 4.2 Assemblywise Power Distribution - N1-11-11.

. 31 4.3 Assemblywise Power Distribution - N1-11-17.

. 32 4.4 Hot Channel Factor Normalized Operating Envelope

. 33 4.5 Heat Flux Hot Channel Factor, F (Z) - N1-11-04.

. 34 q

4.6 Heat Flux Hot Channel Factor, F (Z) - N1-11-11.

. 35 q

4.7 Heat Flux Hot Channel Factor, F (Z) - N1-11-17.

. 36 q

4.8 Maximum Heat Flux Hot Channel Factor, F (Z)*P, vs.

q Axial Position.

. 37 II Il NE-1068 NIC11 Core Performance Report Page 4 of 52

8 i

i LIST OF FIGURES (continued) 4 FIGURE TITLE PAGE 4

4.9 Haximum Heat Flux Hot Channel Factor, F (Z), vs. Burnup.

38 q

4.10 Maximum Enthalpy Rise liot Channel Factor, F-delta-H, vs. Burnup 39 4.11 Target Delta Flux vs. Burnup 40 4.12 Core Average Axial Power Distribution - N1-11-04

. 41 4.13 Core Average Axial Power Distribution - N1-11-11 42 4

4.14 Core Average Axial Power Distribution - N1-11-17 43 4.15 Core Average Axial Peaking Factor vs. Burnup 44 4

5.1 Dose Equivalent I-131 vs. Time

...........47 y

5.2 I-131/I-133 Activity Ratio vs. Time.

. 48 5.3 Heasured RCS Xenon-133 vs. Time.

. 49 NE-1068 NIC11 Core Performance Report Page 5 of 52

1 I

I Section 1 I

I INTRODUCTION AND

SUMMARY

On February 11, 1996, North Anna Unit 1 completed Cycle 11.

Since the initial criticality of Cycle 11 on October 08, 1994, the reactor core 8

produced approximately 1.1238 x 10 MBTU (18,848 Megawatt days per metric ton of contained uranium).

The purpose of this report is to present an analysis of the core performance for routine operation during Cycle 11.

The physics tests that were performed during the startup of this cycle were covered in the North Anna Unit 1, Cycle 11 Startup Physics Tests 1

Report and, therefore, will not be included here.

I North Anna Unit I was in coastdown from December 15, 1995, at which time the burnup was approximately 16,950 MWD /MTU. The coastdown accounted

=

for an additional core burnup of roughly 1,898 MWD /MTU from the end of reactivity.

I The Cycle 11 core consisted of 10 sub-batches of fuel: four once-burned batches, three from Cycle 10 (batches N2/11A, 12A and 12B) and one from North Anna Unit 2, Cycle 8 (batch N2/10B); four twice-burned batches, two from Cycles 8 and 9 (batches N2/9B and 10B), one from Cycles 7 and 8 (batch 9A), and one from Cycles 9 and 10 (batch 11A); and two fresh batches (batches 13A and 13B). The North Anna Unit 1, Cycle 11 core loading map specifying the fuel batch identifications and fuel assembly locations is NE-1068 N1C11 Core Performance Report Page 6 of 52

[-

shown in Figure 1.1.

The burnable poison locations and source assembly

. locations are shown in Figure 1.2.

Novable detector locations are shown in Figure 1.3.

Control rod locations are shown in Figure 1.4.

Routine core follow involves the analysis of four principal performance indicators.

These are burnup distribution, reactivity depletion, power distribution, and - primary coolant activity.

The core burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, thereby ensuring that the fuel held over for the

[

next cycle will be compatible with the new fuel that is inserted.

Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate at what burnup level refueling will be required.

Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specifications" limits, thereby ensuring that adequate margins for linear power density and critical heat flux thermal limits are maintained.

Lastly, as part of normal core follow, the primary coolant activity is monitored to assess the status of the fuel cladding integrity and to compare the concentration of dose equivalent I-131 in the reactor coolant with the limits specified by the North Anna Unit 1 Technical Specifications'.

[-

Each of these four performance indicators for the North Anna Unit 1, Cycle 11 core is discussed in detail in the body of this report.

The results are summarized below:

L NE-1068 NIC11 Core Performance Report Page 7 of 52 r

I I

1. Burnup - The burnup tilt (deviation from quadrant symmetry) on the core was no greater than 0.20% with the burnup accumulation in each batch deviating from design prediction by no more than 3.33%.

The critical boron concentration, 2.

Reactivity Depletion used to monitor reactivity depletion, was consistently within 0.32% AK/K of the design prediction which is within the 11% AK/K margin allowed by Section 4.1.1.1.2 of the Technical Specifications.

Incore flux maps taken each month 3.

Power Distribution indicated that the assemblywise radial power distributions deviated from the design predictions by a maximum average difference of 1.4%,

All hot channel factors met their respective Technical Specifications limits.

The average dose equivalent 4.

Primary Coolant Activity iodine-131 activity level in the primary coolant during Cycle 11 was approximately 0.00125 pCi/gm.

This corresponds to less than 1% of the operating limit for the concentration of radioiodine in the primary coolant.

An evaluation of the radiciodine and noble gas concentration in the RCS indicated that there were no defective fuel rods.

I E

I I

I I

NE-1068 NIC11 Core Performance Report Page 8 of 52

f Figure 1.1 NORTH ANNA UNIT 1 - CYCLE 11 CORE LOADING MAP R

P N

M L

K J

M C

F E

D C

a a

1 sta i 12a 114 1 1 1A6 l oss 247 l 1

1 1

I IN2/taAl 9A i 13s i 12s 13s 1 94 IM2/stAl eL6 l J22 l Sci l *ss act i J34 i ett i 2

1 1

1 I

i i

i les 13e i 134 l tra 1 13e.I als i 13a i 13a I tes i 1 K6e i sco I Sca 1 3st i 4ct

' 2s? l 3c4 1 4c7 l Esa 1 3

I i

i i

l I

1 1

1 l tes i 12A ll 13a i its i 13A tra 1 13a 1 als 1 13e I tra i les l l ser i les I ses I ss9 l tco 1s9.I oc2 1 5a3 i Sc6 1 tas l Esa i e

1 l

l 1

I I

I 1

1 I

I I

IN2/taAl 13a l ISS 1 12s 1 ISA i 12A I ISA i 12A l tu i 12s 1 13a i 13a IN2/alAj ets 1 6c3 i ses i Saa i scs I sat i 2c7 1 ist i 2c5 i See 1 oce i les I eL2 1 5

1 1

1 1

1 1

I I

I I

i l

1 9A i 13a i 12s I asa i tra 1 13A i 12s i 134 l 124 l 134 l als 1 13e i eA 1 ll J27 1 3c9 1 3a6 1 2C3 1 2s0 l DC6 l See 1 tc7 l es3 I tc3 1 3a3 l Sc9 l J32 1 6

11 1

1 1

1 i

i 1

1 1

1 i

l i

i sta.I ass 1, 12s i 134 I tra i 134 l als 1 Its 1 12s I alA 12A 1 ASA tra i 13e i sta i IAt i 4c6.

3ee i ecs i ese I its 1 4s5 1 5a2 1 6se I oct est i 2c2 3a2 1 5ce I las 7

1 1

I I

I I

l i

1 1

l' 1

1 I tra l tra l 134 1 tra I asa i 12s 1 12A 1 I tar.

Izs I ass 12A il 13a i 12s I als IM2/ teel als l

11 ses 3ct 2st I oc3 I sat i est i v32 i rs6 2ss I sca i se5 sc4 i ese i est i a

i 11 I

I I

I 1

I i

1 0

I I tia n 13e its ll 134 1 12a 134 1 12e its als i 134 1 12A i 134 l als 1 13e

, ita l l 1A3 1 Sc7 es4 11 ter I tea 2ct I sea

, 4er see tct 1 2s4 i les I sa4 I sc3 I e A6 8 9

1 13e i 12s ISA 12A i 134 12s.I 13A I 12A 13A l Its

, 13e 9A I

1 1

I I'

i l

94 i

1. Jts 4C9

, es!

ICS

.I Zs2 1 2cs 1 4s4 I tc4 l es?

oc4 i Sa7 l 4C5 l J2a le i

i I

1 1

l l

l

.i 12s i 13e 1 13a IM2/al&'I l

lI l

13a 1 150 1 12s,1 13A i 12A i 134 l 12A i 13A 1.N2/ttA I sta 1 4c2 1 act i ses i ec9 1 toe i 2ce i Isa 2c6 I ess I scs l Scs i eL5 l 11 1

I i

1 i

i i

i i

i i

1 i les i 12A i 15s I azs i 134 1 12A 1 au als i 13a i 124 ll tes 1 i as, I osa i sc7 1 2s, i 2c4 I as3 I oc7 l' est I sc2 i tse i a52 1 12 1

I I

I I

I 1

U i

1 1

1 i les i 13s i 13a i 12s I asa i 12s i las I tas IN2/9s 1 1 K64 I sca i sce 1 5e9 i ser i ser I 6ce i Scs l x64 l 13 1

l i

1 1

1 I

I I

I lN2/stAl 94 1 13a 1 als 134 1 94 IN2/ttel I ett 1 Je6 l ocs i Zsa sc6 i J15 I eL7 l 14 I

I I

l 1

1 i

I alA I aza i sta 1 i

l--> satCH l 1A2 i es4 1 SA3 1 15 l

l--> ASSEMeLY ID 1

l l

l l

l FUE't ASSEMBLY DESIGN PARAMETERS Sus-sATcM N2/9s N2/tes N2/stA 9A tes asA 12A 12s 11A 13a INITIAL ENRICHNENT 4.se57 4.2951 4.e155 3.7%4 4.0047 4.0945 4.0436 4.2052

4. seat 4.2097 (id/O U-235) suRNUp Af s0C 11 36335 23397 26053 39222 36795 3s783 26e92 22ae5 e

e EMWO/MTU ASSEMsLY TYPE 17str 17:17 17 17 17x17 17x17 17a17 17x17 17x17 17m17 17x17 NUMBER OF ASSEM6 LIES I

a a

7 a

24 2a 36 FUEL RODS PER ASSENsLY 264 264 2h 264 264 264 264 264 264 2M

{

NE-1068 NIC11 Core Performance Report Page 9 of 52 g

I Il Figure 1.2 NORTH ANNA UNIT 1 - CYCLE 11 gl BURNABLE POISON AND SOURCE al ASSEMBLY LOCATIONS t

R P

N M

L K

J H

C F

E D

C B

A J

l I

I I

)

i v504 1 v3DA 1 VSDA I 1

I i

1 1

l 1

e i e 1 I & I l

l I VSDA i 18P333 l

lBP334 I i VSDA I 2

1 I

l__ _I i

1 1

1 l

l w I leP 1 2ep i i leP 1 6P l l

l ISPM518P349 I i BP321 1 ISP354 ISPM7 I i

3 1

1 I

I I

i 1

_,,, _ I J

1 $51,I l

I i 2eP i i 24P 1 24P l l fop

' I I

I I

ISP357 l lBP399 1 18P319 1 (BPut l

l 4

I I

I I

i 1

1 1

I i

i l

1 6P l 29P 1 1 24P l l 24P 1 1 24P 1 1 29P 1 @ l 4

l v5DA lBP366 llP358 1 18P341 1 (SP311 l lBP342 1 18P359 lSPMS I VSDA I 5

1 1

1 1

1 1

1 1

1 1

I i

1 l

l l ISP 1 1 24P l l 24P 1 1 24P l l 24P 1 l ISP 1 l

t iSP3% l iSP343 1 iBP325 l lBP326 1 l$P344 l lBP351 l l

6 1

1 1

1 I

I i

1 I

i 1

1 1

1 I

I 2P 1 1 24P i i 24P 1 I ap i i 24P 1 1 24P i i 2P 1 1

i VSDA IBP339 1 ISP312 l 18P331 1 18P395 l lBP327 1 l&P313 1 18P335 l VSDA 1 7

I i

1 1

I I

I I

I l_

l I

i 1

l I

l i

I 20P i l 24P l I 4P i 4 4P i 1 24P l i 20P l l

l 1 VSDA i 1sP322 l IsP314 l lBP306 i ISP347 l 18P315 1 ISP324 1 i VSDA l 8

1 1

1 1

1 i

1 i

1 I

I I

i 1

I i

l 1 2P l 1 24P i l 24P 1 l ** I I 24P 1

,, 24P 1 1 2P 1 l

l v5DA lap 34e I isP316 I lap 332 1 18P384 1 ISP328 1 BP317 1 (SP336 l VSDA l 9

I i

1 1

I i

1 I

l_

I 1

l 1

1 I

i 1 ISP 1 1 24P 1 1 24P l l 24P 1 1 24P 1 1 18P 1 l

l lsP355 1 IBP345 l lBP329 i ISP334 l 18P346 i lBP352 l 1

le i

1 I

I I

I i

I i

i l

I 11 1

1 I w I top i Izw 1 I 24P. I i 24P 1 1 rop i e l

l l vSDA lap 371 isPus I isP347 I inP31a l IsP34a i BP u t IBP369,

VSDA 1 Il i

1 1

I i

1 I

i 1

1 I

i 1

i i 2eP i l 24P i $52e 1 24P 1 1 20P 11 1

1 I

Inpu4 I ISP319 i isP32e 1 lSP361 11 l

12 I

I I

I I

I l

l I

11 I

n i

i 6p i 18P l l 20P 1 1 18P 1 6P I l

l 18P37218P3% l 15P323 i ISP353 15P379 l l

13 1

I i

i 1

I i

l i

l I

i l 2P l l 2P l l

1 I v5DA I IBP337 I isP33a 1 i v5DA I le I

I I

i l

1 i

1 i

1 1

1 2P

  • 2 BURNABLE POISON ROD CLUSTER l VSDA l VSDA l VSDA i 15 4P - 4 RURNASLE POISON ROD CLUSTER l

1 I

l 6P - 6 $URNABLE POISON RCD CLUSTER 18p - 18 BURNASLE POISON RCD CLUSTER 26P - 20 SURNABLE PO!$0N ROD CLUSTER 24P - 24 8URMABLE POISON ROD CLUSTER S$su - SECONDARY SOURCE VSDA

  • VIBRATION SUPPRESION DANPING ASSENSLY I

l map or SSxx 1 - NO. OF SP RODS or SECONDARY SOURCE 10 l BPxxx or VSDA I - SP ASSEN8tY 10 or VSDA i

i I

I NE-1063 N1C11 Core Performance Report Page 10 of 52

Figure 1.3 NORTH ANNA UNIT 1 - CYCLE 11 AVAILABLE MOVABLE DETECTOR LOCATIONS R

P n

n L

K J

n C

F E

o C

8 A

l Il l

i e i I

I I

I I

l l

l l

==

l l

1 l

I n.

1 2

l l

l i

I l

1 1

1 1== l l

1

.I i

l i no I

i No i no l l

l 1 no 1 3

.l l

I I

e i

l i

1 l

ll l

ll 1

1 I

I I

I 1

.I no l!

l no I i no I i

1 i

e i

1

.'_1 1

1 1

i i

I

.l i

1 1

i l

I i no Il I no I no no I no i no i 5

l l

11 1

I i

l 11 1

1 1

l l

.I

.I

==

1 1

h 1

1 i no i 1

I I

I I

I no :l

.. no 1

6 I

ll 11 I

i l

i ll l

1 1

1 l

l l

1 no I

i no 1 1 no no no 1

7 1

1 1

1 l

i I

i 1== l I

i i

i i no I no

.. no l I

no no I no I

i e

i e

l i

I i

I i

I i

1

. 1 1

1 l-1 1

i 1:

1

=a l

ll 1 no 1 1 no no I

i no i

9 l__

1 1

l l

l u

l 1

1 ll l

1 1

1 1

1 i

i I

I I

I i

1 l

I no I I

1 i no l

l l no no 1 It i

1 1

1 1

I I

I i

l i

1 1

1 1

i l

i l

l I

I 1

l no 1 i

i no 1 no I no 1

11 I

i i

l I

I I

I I

I i

i i

i 1

i i

1 1

I I no I i

i i no 1 i

1 I

no no i 12 1

1 1

I l

i i

l I

l 1

1 1

I I

i i

i i

i l

i no I no l I

IS l

I I

i 1

1 1

ll l

l l

1 I

i i

i no I 1

i i no 1

1 14 1

1 I

I i

i I

I I

I no a nowable Detector i Mo i l

i, 15

.=. Locations not available for i

l i

Il flus mapping system for Cycle !!

NE-1068 N1C11 Core Performance Report Page 11 of 52

I, I

Figure 1.4 NORTH ANNA UNIT 1 - CYCLE 11 g

CONTROL ROD LOCATIONS 3,

R P

N N

L K

J H

G F

E P

C a

A ise' 1

I N-35 1

I i

i 1

1 I

I I

Ej i

iA 1 l0 l iA 1 1

2 g'

I I

I i

l I

l I

N-41 1

l l

l SA 1 l SA i 1

1 1 N-43 3

l I

I l

i I

I I

i 1

1 I

ic l ls I i

I ie i ic I l

4 l

l l

l 1

1 I

I I

I I

I i

1 l

l Sa 1 i

i l

l i se 1 l

l 1

5 I

I I

I I

I I

I I

I l

l I

i lA i lB l lD l lC l lD l l8 l lA l 6

i 1

1 I

I I

I I

I I

I I

i 1

gl l

l 1 SA l l

1 1 SB l l 58 l l

l l SA l l

I 7

I 1

1 1

1 I

I I

I I

I I

I I

I I

90'-

1 Io l l

l lc i i

i Ic I I

I Io i 1

-27s' 8

I I

I I

I I

I I

I I

I I

I I

I I

i 1

I sA I i

i I se I i sa 1 l

l i SA l l

l 9

I I

I I

i l

l 1

1 I

I I

I I

I I

IA l ls l Io 1 ic 1 Io I ia l lA l lo i

l i

I i

1 1

I I

I I

i 1

1 I

E, E

1 I

I I sa 1 l

l 1

I I So l I

i i

22 I

I I

I I

I I

I I

I I

I I

I I

Ic I Is I i

l Ia 1 ic 1 1

12 I

I I

I I

l i

I I

I I

I I

I i

1 sA I I sA l i

l 1

13 N-44 l

l l

l l

1 1

I l_ _I N 42 I

IA I Io 1 iA I i

14 I

I I

I I

I I

I l

l l

l 15 I

I I

I N-36 Absober Material i

Ag-In-Cd O'

Function Number of Clusters Control Bank O 8

Control Bank i 8

Control Bank B 8

Control Bank A 8

Shutdown Bank S8 8

Shutdown Bank SA 8

E I

Il NE-1068 NIC11 Core Performance Report Page 12 of 52

Section 2-l BURNUP The -burnup history for the North Anna Unit 1,

Cycle 11 core. is graphically depicted in Figure 2.1.

The North Anna Unit 1, Cycle Il core achieved a burnup of 18,848 MWD /MTU. As shown in Figure 2.2, the average load factor for Cycle 11 was 96.8% when referenced to rated thermal power f

(2893 HW(t)).

Unit 1 performed a power coastdown starting on December 15, 1995 until shutdown'for refueling on February 11, 1996.

Radial (X-Y) burnup distributiont maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed 8

burnup distribution analysis.

The TOTE computer code is used to calculate these assemblywise burnups.

Figure 2.3 is a radial burnup distribution map in which the core assemblywise burnup accumulation at the end of Cycle 11 operation is given.

For comparison purposes, the design values are also given. Figure 2.4 is a radial burnup distribution map in which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 11 operation is also given. As can be seen from this figure, the accumulated assembly burnups were generally within 13.33% of the predicted values.

In addition, deviation from quadrant symmetry in the core throughout the

(

cycle was no greater than 0.20%.

The burnup sharing on a batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle batch L

NE-1068 NIC11 Core Performance Report Page 13 of 52 r

I' I

burnup predictions to be made for use in reload fuel design studies.

Batch definitions ats given in Figure 1.1.

As seen in Figures 2.5A, 2.5B, 2.5C, and 2.5D', the batch burnup sharing for North Anna Unit 1, Cycle 11 I.

followed design pre 2 dictions closely. The burnups for all batches, except Batch 13A, were within 2% of the predicted values throughout the duration of Cycle 11.

The batch 13A burnup difference peaked at 3.36% near BOC and gradually decreased over the remander of the cycle to below 2% at EOC.

This difference can be explained by noting that the batch 13A measured I

powers were generally higher than the predicted powers during the cycle and because this is a fresh batch, the burnup deltas (especially near BOC) result in larger percent differences.

Symmetric burnup in conjunction with agreement between actual and predicted assemblywise burnups and batch burnup sharing indicate that the Cycle 11 core did deplete as designed.

I I

I I,

I I

Il NE-1068 NIC11 Core Performance Report Page 14 of 52

I i

Figure 2.1 NORTH ANNA UNIT 1 - Cycle 11 CYCLE BURNUP HISTORY

!!H8.

IllH 2HH i,...

18HI 17He.

ii... ;

j I

ii....

/

H... :

,/

(

n....

/

nies.

8L 3 11H4.

/

7 g,.... :

llH.

,/

n...

,/

(

Hee -

5960 '

/

/

HH nH.

>/

n.. : /

ii..

/

{

======

5I5555555N55EI5555

E E E E
E E E E E E E E E TIME (MONTHS)

]

MAXlWUW DESIGN BURNUP -

20100 WWD/WTU NE-1068 NIC11 Core Performance Report Page 15 of 52

=. --

I I

t LOAD FACTOR (%)

i in, i

a a

re ca A

cn c) s co co o

g o

o o

o o

o o

o o

o o

i i

i t

i 1

i 1

l l

OCT-94 l

NOV-94 l

0 R

DEC-94 i

t

r JAN-95

[

mx n

OO

?

,o FEB-95 54

=m i

MAR-95 G g j

n

>z APR-95

g>;5 t

=c.

I

=

j g,

MAY-95 y3y l

3 O

JUN-95 g-"

z

,,~

-l JUL-95 I

o w

~E AUG-95 MS a*

SEP-95

=-

l OCT-95

)

y NOV-95 e*

DEC-95 JAN-96 FEB-96 i

o m

i CYCLE AVG l

u

~

i l

)

l l

M M

M M

M M

M M

M M

M M

M M

M M

M M

M

Figure 2.3

)

-NORTH ANNA UNIT 1 - CYCLE 11

)

ASSEMBLWISE ACCUMULATED BURNUP MEASURED AND PREDICTED (GWD/MTU)

R P

N M

L R

J H

C F

E o

C a

I 1 43.621 34.est 64.511 i NE&SUREs 1 1

1 44.sel 33.278 44.5el i PmEstc1Es l 2

1 33.s11 44.191 is.s41 37.e41 19.esi 6s.9el 33.961 2

1 33.5e1 es.941 19.331 3a.2sl 19.331 6s.941 33.541 3

1 64.001 2e.e61 22.931 44.101 23.631 45.34l 23.5el 20.491 44.561 3

............................1 44.911 24.171 64.911 23.291 to. 4e l 45.251 1 43.9el re.5el 23.29 4

1 45.541 41.411 23.641 47.771 24.171 47.341 24.331 47.901 24.361 43.561 43.751 4

1 45.251 41.57 8 24.151 4 7.291 23.e91 47.6sl 23.s91 47.291 24.151 41.571 43.9el 5

1 33.4el re.348 tt. ort 44.e61 25. ret es.lst 24.541 47.951 25.311 44.521 23.551 ro.ett 32.925 5

1 33.491 re.421 24.tel 43.961 24.791 47.4el 24.e01 47.4el 24.791 43.961 24.nel re.421 33.491 6

1 49.391 23.191 47.7el 24.778 es.esi 24.9el 47.521 24.971 4a.431 25.121 47.641 22.s71 6s.411 6

.............. t...............................................1 4 7. 951 24. 791 4 7. 2 r l 23. 261 4s. 951 1 44.951 13.261 47.221 24. 791 4 7.951 24.211 47. e41 24.21 7

1 44,451 19.161 es.tel 24.e91 44.351 24.661 42.831 41.s71 43.est 24.751 6s.4e1 23.671 44.471 19. eel 43.721 7

........................................................1 4 2. 4 r l. 24. e91 4 7. 3s l 23. s 71 64. 911 19. 321 44. 32 8 1 44.321 19.321 44.911 23.s71 47.341 24.e91 42.421 41.69

(

l s

i 34.111 3a.541 23.791 47.64l 24.5sl 47.2sl 41.azi 44.748 42.e41 47.321 24.441 47.3e1 23.661 39.221 33.s91 e

...................................1 66.991 41. 541 64.ss t 41.541 66.991 23.941 4 7.431 24.151 3a. 261 33.261 i 33.261 3s.261 et.tsi 47.43t 23.94 9

1 44.221 14.7s1 43.951 24.471 47.791 24.631 42.ast 41.738 42.est 24.211 47.33l 24.141 45.641 19.311 64.6el 9

1 44.321 19.321 44.911 23.s71 47.341 24.e91 42.421 4 8.691 42.421 24.091 47.34l 23.s71 44.911.19.321 44.321

.......................................................................=

to i 4a.79 8 22.491 47.or t 25.341 49.141 24.591 66.941 24.441 44.121 25.321 47.651 23.391 es.791 to 1 44.95

.......1 23.261 4 7.221 24.798 47.951 24.211 47.e41 24.211 47.951 24.791 4 7.221 23.261 es.951 11 1 33.271 re.191 24.271 44.7' t 25.rel 47.sel t4.121 44.241 24.741 45.231 24.6el re.631 33.751 la

.................................................l 4 7. 4 e l 24. 791 4 3. 961 24.1 e 1 2e.4 21 33. 4 91 1 33.491 2e.421 24.161 43. ve 24.791 47.4el 24.se It 1 44.491 42.4s1 24.a 61 47.551 23.931 64.191 23.s,1 47.971 24.3sl 42.171 45. ell 1r 1 43.9el 41.571 24.151 47.291 23.591 47.6sl 23.s91 47.291 24.151 41.57

......................................................................1 45.251......

15 I 44.s71 to.321 23.es] 64.e91 23.491 43.971 22.721 2e.311 44.331 13 I

l 45.251 re.5el 23.291 44.911 e4.171 44.911 23.291 te.5el 43.9el

[

14 1 32.941 49.411 1a.991 3s.131 19.tel es.ast 32.9el 14 1 33.5el 4s.941 19.331 3a.2sl 19.331 4a.941 33.5el 15 1 44.581 33.121 44.551 15 1 44.sel 33.tri 44. set R

P M

M

-t K

J H

C F

E o

C a

1 I

NE-1068 NIC11 Core Performance Report Page 17 of 52

I I

Figur. 2.4 NORTH ANNA UNIT 1 - CYCLE 11 g

ASSEMBLWISE ACCUMULATED BURNUP 3

COMPARISON OF HEASURED AND PREDICTED (GWD/MTU)

R P

N M

L E

J H

C F

E D

C a

A I

1 43.621 34.eal 44.511 1 MEASURED 1 1

1 -1.541 r.451 e.4al i M/P 2 cirF 1 r

1 33.all 44.191 la.sel 37.a41 19. sal 4a.9el 33.961 2

i e.921 -1.531 -r.5ti.-1.171 -1.ral -e. ort 1.381 3

1 44.sel re.e6l 22.931 44.tel 23.631 45.341 23.3el re.491 44.561 3

I s.241 -r.171 -1.511 -1.sel -r.221 e.961

e. sal -e.e41 -1.511 4

1 45.541 41.411 23.641 47.771 24.171 47.341 24.331 47.9el re.El 41.ul 43.751 4

..................................................l I.e41 1.r91 e.911 -e.e21 -e.341 I s.661 -e.391 -2.e91

1. col 1.171 -e.re 5

1 33.401 2e.341 24.e71 44.e61 rs.rel es.tal 24.541 47.95 8 25.311 44.521 23.551 20.e t i 32.921 5

l -e.r61 -e.4el -e.161 e.231 1.651 1.631 2.271..1.161 2.111 1.251 -2.sel -2. eel -1.718 6

1 49.391 23.191 47.7e l 24.771 4a.eal 24.941 47.521 24.971 4a.431 25.121 47.641 22.a71 44.4t l 6

...............l. - e. 31 1 1.ori -e.est e.rrt 3.rel

1. eel. 3.161
1. ell 1.341 e.a91 -1.711 -1.101 i s.9e

.........................=----

.=

7 1 44.4s1 19.161 45.1e1 24.e91 4a.351 24.661 42.asi 41.a71 es.est 24.751 44.4e1 23.671 44.411 19.sel 43.721 7

i e.zal -e.a2l e.431 e.941 2.est z.ul e.911 e.451 1.4al 2.721 2.14 8 -e.e41 -e.961 -1.611 -1.%l a

i 34.111 sa. sal 23.791 47.441 24.3al 47.281 41.821 44.741 42.e41 47.321 24.441 47.34l 23.ul 39.r21 33.a91 a

i 2.561 e.azi.t.471 e.ent 1.sel e.sti e.6al.e.241 1.221 e.7el..............1 1.991 2.e91 -e.27

............1..1.a91 2.49 9

l 44.221 is.7al 43.951 24.ori 47.79) 24.631 42.451 41.73] 42.e31 24.211 47.331 24.141 45.641 19.311 44.601 9

l -e.rst -2.77?

2.121 e.asi s.871 r.261 1.est e.ne t.e.9el.e.521..e.tel 3.121 1.631 -e.est e.6tl

.. = _

le I es.791 22.491 47.ori 25.341 49.141 24.591 46.941 24.4al sa.trl 25.321 47.651 23.391 4a.791 to 1.ul -e.frl.1.141 e.El 2.171 e.921 e.551 -e.334 1 -e.331 -3.331 -e.431 2.241 2.4al 11 1 33.271 20.191 24.271 44.731 rs.rel 47.aol 24.121 4a.241 24.741 45.231 24.6el fe.631 33.751 11

.....................1 1.751 1.651 e.s48 e.sti 1.771 -e.tel 2.a71 2.e51 1.e41 e.771 1 -e.641 -1.128 e.69 12 1 44.491 42.4al 24.261 47.551 23.931 4a.191 23.a91 47.911 24.3al 4 2.171 45.011 12

..............1..e.471 e.541 e.191 1.5el e.ori 1.431 e.971 1.448 -e.531 1 1.341 2.17 13 1 44.a71 20.321 23.e51 44.a91 23.491 43.971 22.721 re.stl 44.331


------------- 13

..-e.ast -e.a6l -1.ori -e.e41..-2.ast.-r.111 -r.421 -e.911 a.9al l AattHMETIC AVC l 1

IPCT DIFF = e.26l 14 1 32.941 49.411 la.991 3a.131 19.nel 4a.ast 32.9e1


14 1 -1.661 e.961 -1.751 -e.4ti -1.171 -e.rzl -1.791 15 l $1 ANDARD DEV l l.4.501 33.121 44.551 l Avc Aas PCT l 15

.........-e.=..........

l DirF = 1.17 I i

= e.se i

1 s.461 41 e.571 R

P M

M L

E J

H C

F E

e C

a A

BATCH SHARING INWD/NTUI BATCH NO. OF BOC BATCH EOC BATCH CYCLE ASSEMBLIES BURNUP BURNUP BURNUP N2/9B 1

36,335 44,332 7,997 N2/105 1

23,397 44,739 21,342 BURNUP TILT N2/11A 8

26,053 33,369 7,316 9A 8

39,222 48,840 9,618 MW = -0.06 l NE = 0.01 10B 7

36,795 44,605 7,810


l------------

11A 8

38,783 44,271 5,488 SW = -0.04 i SE =

0.08 12A 24 26,092 44,619 18,527 128 36 22,805 44,394 21,589 13A 28 0

24,573 24,573 135 36 0

21,842 21,842 CYCLE AVERACE ACCUMULATED BURNUP a 13,343 I

I Ne. - cC u C. e.c-.

en.

a n

l l

Figure 2.5A NORTH ANNA UNIT 1 - Cycle 11 SUB-BATCil BURNUP SHARING 48 l

l l

SUB-BATCH l

i lll l !!

l N2/9B

/[

I l

l l i

l;;i Il l

$5,1 A4 oMl SUB-BATCH I

I l

fI I

' d> S7 i.

N2l1og a'

I N

/

j' i

O

^

H l

ll Wjl j

o

& 40 A',

'n n' W l

l l!

$n nV I I ef 1

zo VI

'/

l

!lI l

n Y i Il l 71 1

O. 3e l

i 3

I I MI I l

l jI 1

VI I i li l

3

,l I

j i

!I a3 I

f I ! j j ! ;I 1

Z

,/

i

' l l; o

s

/

l l

l?

l ll!I'!:

g

['

i 1

l C)

PIi i

l' a 2a I

E 1

I '

O (0

l /

I I! !l l

f I/f,)

' f'

,A l

!.,i 1

1 1

24 I

l I

l t

i

!l :

l j;

I I

i I ',

Ij,,

I I

l I,i;,

20 I

0 2

4 6

8 10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)

LINES ARE PREDICTED VALUES, SYMBOLS ARE hEASURED VALUES.

NE-1068 NIC11 Core Performance Report Page 19 of 52 f

I' 1

l Figure 2.5B i

NORTH ANNA UNIT 1 - Cycle 11 i

SUB-BATCH BURNUP SHARING 1

48 i

SUB-BATCH m

i i

i i i !

i i

t i

i i

E I

i i

i i

i i

I i

iii,,;

12A i

i i

i l

.V i

i i

i i

i i

i ty, i

Q R

I i

i I

i W:

i 3,

i i

i t

i i

i i wri.

l SUB-BATCH 40

^

i i

i i

i i

i s#

i i

i i

N2/11A i

i i

i i

i <y i i

i i

^

l i

i i

i i

yi i

j q'

D i

1 l

l i

i Af, i

}

j i

l i

i p 36 3,,7 ;

i 3

i i

i SUB-BATCH

y i

i i

i i

i vi,iit i

p' #

13B i

D i

i i

Vi i

j g 32 i

ii i i

2 g

i

< 7, I

' X6 i

i al l

M!

i i

i LXA3 i i

I C

l C

l l

Mi i sgrh i l

i i

i i

! Ag ( W't I i

i i i

I i

i I

n. 28 Xxr n E

m i

i i

i i

D fi I I.i i

t I

l i

l i

i i

g i

i i

i I

I i

i I

i i

i g

% 24 lllll,,,ll l,ll 5

D l

iiI I

I i

t

! fl g

i i

i i

i i

i i

t W1 g

i iiii>

r i

i i

I 20 If!

1

,j i

j gl f;

i o

i i

i i

i si i

p I

i i

i i

i i

i />

l l

  • ( 16 lll'l'
l'/

ll!

m i

1 rj l

1

'E 3l D 12 f

l, M

f',

i i

i t

i

i.

E!

f i

i i

3l O

/

i

)

i f

I I

I i

/_

i l

i i

vf i

W i

4 tf i i

i ip I

i i

g Wi i

i g

.,/I i

O

l 0

2 4

6 8

10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)

LINES ARE PREDICTED VALUES, SYMBOLS ARE MEASI. FRED VALUES.

NE-1068 N1C11 Core Performance Report Page 20 of 52 l

Figure 2.5C NORTH ANNA UNIT 1 - Cycle 11 SUB-BATCH BURNUP SHARING 50 SUB-BATCH 9A 7

49 o

fl SUB-BATCH 48

/

11A D

/

H 47 g

E

/

>d,P 46 I

o i

g 45 A<

~

\\

D

/

z j

/

l gr

% 44

/g

/)

D I

E

!f[

[

g-43 f;

f I

/

Q 0

i 6

42 i

cn I /!

I ! /f !

i, s

l#

l J4 lll 5

l fl!

l/I l l

l I

I fi I

i i

i 40 d' yr i

i t

i

' l4 :

i i

!i il l!

l f

l l i

i j

I!

Ii lll l

i 38 l

0 2

4 6

8 10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU) l LWES ARE PREDICTED VALUES, SYMBOLS ARE MEASURED VALUES.

NE-1068 NIC11 Core Performance Report Page 21 of 52

I I

Figure 2.5D NORTH ANNA UNIT 1 - Cycle 11 SUB-BATCH BURNUP SHARING 52 SUB-BATCH l

i i

i i

i 1

i 6

i 10B i

i i

i i

48

l;i3 i

O l

i i

i i

i i

i i

i l

I l

l l

l I 2 i

i i

i i

+

iw i SUB-BATCH 44 i

i i

i i wxf i

i i

i

-; n 7

12B i

w~

yi

^

w iv v

i D 40 o

,xg H

w<

i

/

i i

SUB-BATCH g

ur i

i iv i

i g 36 ll l

_MT l'

13A i

iyi

i l

I I

7 I

I M

O 32 w

I l

/

I I

I I

I i

6 ijA i i

i i

i b

l i

l 1

I i

i i

D

'^ '

28 f

I i

i g

i I

75 I

i i

i i

l r/

\\

l i

i i

i f

/

D

_ i /i 6

1 i

i i

l i

i i

i 9/

g J4 I i

i i

6 i

f i

I i

1,,17' s

"i I

I i

i i

i i

i I

i i ?;<!

g I

i i

i i

i i

i IM 6 O 20 ll lllil ll j/'l h

i 1

I I

i i

I s,/

)

(

l i

. f' 4

i i

i i

i h.7 i i

i g

g I

i i

i i

I I

- I/ I I

E s

+

l t

6 i

. ;4i i

i g

E i

i i

i i

i i

k/ l i

i i

l D

i f',

i t

t i

@ 1 1

i I

l V'

i I

I i

l E

i

,'/

i i

t i

i i

E i

7 j

i i

i i

i i

i g

i i

i i

i i

i 8

I ifi i

i E

ips,

i i

g

.iiiir i

i

.g i

i i

i i

i i

s. / i i

i i

i I

i 4

fs i

i i

i i

e i

i l [

l l

l i

l I

f 8

i syi i

i i

l 0

l O

2 4

6 8

10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)

I LINES ARE PREDICED VALUES. SYMBOLS ARE MEASURED VALUES.

NE-1068 NIC11 Core Performance Report Page 22 of 52

Section 3 REACTIVITY DEPLETION The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous reactivity behavior. The FOLOW" computer code. was used to normalize

" actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon concentration, moderator temperature, and power level.

The normalized' critical boron concentration versus burnup curve for the North Anna Unit 1, Cycle 11 core is shown in Figure 3.1. It can be seen that the measured data typically compared to within 47 ppe of the design prediction. This corresponds to 10.32%~ AK/K which is within the 1% AK/K criterion for reactivity anomalies set forth in Section 4.1.1.1.2 of the Technical Specifications.

In conclusion, the trend ' indicated by the critical boron concentration verifies that the Cycle 11 core depleted as expected without any reactivity anomalies.

NE-1068 N1C11 Core Performance Report Page 23 of 52

Il An important aspect of core power distribution follow is the monitoring of nuclear hot channel factors.

Verification that these factors are within Technical Specifications limits ensures that linear power density and critical heat flux limits will not be violated, thereby providing adequate thermal margin and maintaining fuel cladding integrity.

North, Anna Unit 1 Technical Specification 3.2.2 limited the axially dependent I<.

heat flux hot channel factor, F (Z), to 2.19 x K(Z), where K(Z) is the q

hot channel factor normalized operating envelope, and 2.19 is the Fq limit at rated thermal power, both as specified in the Core Operations Limit Report (COLR)**.

Figure 4.4 is a plot of the K(Z) curve associated with the 2.19 F (Z) limit.

q The axially dependent heat flux hot channel factors, F (Z), for a q

representative set of flux maps are given in Figures 4.5, 4.6, and 4.7.

Throughout Cycle 11, the measured values of F (Z) were within the q

Technical Specifications limit.

A summary of the maximum values of axially-dependent heat flux hot channel factors measured during Cycle 11 is given in Figure 4.8.

Figure 4.9 shows the maximum values for the heat flux measured during Cycle 11.

The rise in the EOC maximum FQ(Z) data is due to being at reduced power (during the power coastdown), and is not a concern for possible technical specification violations.

The minimum margin to the F limit in the axial region covered by the Technical q

Specification 4.2.2.2 is 16.3%

for all flux maps.

(Technical Specification 4.2.2.2.g states that Fq surveillence is not applicable in the lower core region from 0% to 15% inclusive, and the upper core region j

from 85% to 100% inclusive.)

NE-1068 NIC11 Core Performance Report Page 26 of 52

Section 3 REACTIVITY DEPLETION The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous reactivity behavior. The FOLOW" computer code was used to normalize

" actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon concentration, moderator temperature, and power level.

The normalized critical boron concentration versus burnup curve for the North Anna Unit 1, Cycle 11 core is shown in Figure 3.1. It can be seen that the measured data typically compared to within 47 ppe of the design prediction. This correspor.ds to f

-10.327. AK/K which is within the

17. AK/K criterion for reactivity anomalics set forth in Section 4.1.1.1.2 of the Technical Specifications.

In conclusion, the trend indicated by the critical boron concentration verifies that the Cycle 11 core depleted as expected without any reactivity anomalies.

i I

1 1

L NE-1068 NIC11 Core Performance Report Page 23 of 52

I Figure 3.1 NORTH ANNA UNIT 1 - Cycle 11 CRITICAL BORON CONCENTRATION vs. BURNUP (HFP,ARD)

I 1500

^ 1400 E

l 4

g 1200 N

O 4

1100 O

4 1000 Ng 1

in "

x y

Z M A

8=

A 4

i I!

=

O.

E A

500 1

O N ~

\\

l 400 300 0

E 200 I

m g

O 100 0

O 1

2 3 4 5 6 7 8 9101112131415181718 g

j CYCLE BURNUP (GWD/MTU)

Ill 4

" MEASURED PREDICTED I:

I NE-m e Nic u c... e.,,,,. _. R.,,,,

s., s2

Section 4 POWER DISTRIBUTION Routine analysis of core power distribution data is necessary to verify that the hot channel factors comply with their Technical Specifications limits, and ensure that the reactor is not operating with any abnormal conditions which could cause an

" uneven" burnup distribution.

Three-dimensional core power distributions were determined from movable detector flux map measurements using the CECOR' computer program.

A summary of all full core flux maps taken for North Anna Unit 1, Cycle 11 is given in Table 4.1, excluding the initial power ascension flux maps which were included in the NIC11 Startup Physics Tests Report".

Power distribution maps were generally taken at monthly intervals with additional maps taken as needed.

Radial (X-Y) core power distribution for a representative series of CECOR flux maps are given in Figures 4.1, 4.2, and 4.3.

Figure 4.1 shows a power distribution map that was taken early in cycle life. Figure 4.2 shows a power distribution map that was taken near mid-cycle burnup.

Figure 4.3 shows a map that was taken near the end of Cycle 11.

The measured relative assembly powers were generally within 5.2% and the maximum average percent difference was equal to 1.4%.

In addition, as indicated by the CECOR tilt factors, the power distributions were essentially symmetric for each case.

NE-1068 NIC11 Core Performance Report Page 25 of 52

I I

An important aspect of core power distribution follow is the monitoring of nuclear hot channel factors.

Verification that these factors are within Technical Specifications limits ensures that linear power density and critical heat flux limits will not be violated, thereby providing adequate thermal margin and maintaining fuel cladding integrity.

North, Anna Unit 1 Technical Specification 3.2.2 limited the axially dependent I

heat flux hot channel factor, F (Z), to 2.1) x K(Z), where K(Z) is the q

hot channel factor normalized operating envelope, and 2.19 is the Fq limit at rated thermal power, both as specified in the Core Operations Limit Report (COLR)**.

Figure 4.4 is a plot of the K(Z) curve associated with the 2.19 F (Z) limit.

9 The axially dependent heat flux hot channel factors, F (Z), for a q

representative set of flux maps are given in Figures 4.5, 4.6, and 4.7.

Throughout Cycle 11, the measured values of F (Z) were within the q

Technical Specifications limit.

A summary of the maximum values of axially-dependent heat flux hot channel factors measured during Cycle 11 is given in Figure 4.8.

Figure 4.9 shows the maximum values for the heat flux measured during Cycle 11.

The rise in the EOC maximum FQ(Z) data is due to being at reduced power (during the power coastdown), and is not a concern for possible technical specification violations.

The minimum margin to the F limit in the axial region covered by the Technical q

Specification 4.2.2.2 is 16.3%

for all flux maps.

(Technical Specification 4.2.2.2.g states that Fq surveillence is not applicable in the lower core region from 0% to 15% inclusive, and the upper core region from 85% to 100% inclusive.)

NE-1068 NIC11 Core Performance Report Page 26 of 52

The value of the enthalpy rise hot channel factor, F-delta-H. which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed.

The Technical Specifications limit for this parameter is set such that the departure from nucleate boiling ratio (DNBR) limit will not be violated.

Additionally, the F-delta-H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation.

North Anna Technical Specification 3.2.3 limited the enthalpy rise hot channel factor to 1.49(1+0.3(1-P)) for Cycle 11, where 1.49 is the.

F-delta-H at rated thermal power and 0.3 is the power factor multiplier, both as specified in the COLR.

A summary of the maximum values for the enthalpy rise hot channel factor measured during Cycle 11 is given in Figura 4.10.

As can be seen from this figure, the minimum margin to the limit was approximately 4.4%.

The target delta flux

  • is the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon. The delta flux is measured monthly with the core at or as near to these conditions as possible and the targ t delta flux is established at this measured point.

To avoid adverse axial power shapes due to xenon redistribution, Cycle 11 was monitored to ensure that it was operated as much as possible at the conditions at which the target delta flux was determined.

The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately -3.5% at the Pt-Pb

  • Delta Flux = ----- X 100%

where Pt = power in top of core (MW(t))

2893 Pb = power in bottom of core (MW(t))

NE-1068 NIC11 Core Performance Report Page 27 of 52

I I

beginning of Cycle 11, decreasing to approximately -4.7% near MOC, increasing to approximately -3.2% before EOR, and then increasing to approximately 5.2% due to the coastdown.

The axial power shif t during the cycle can also be observed in the corresponding core average axial power distributions for a representative series of maps given in Figures 4.12 through 4.14.

In Map N1-11-04 (Figure 4.12), taken at 1908 MWD /MTU, the axial power distribution had a shape peaked just below the middle of the core with a peaking factor of 1.200.

In Map N1-11-11 (Figure 4.13),

taken at 9852 MWD /MTU, the axial power distribution peaked more toward the bottom of the core with an axial peaking factor of 1.158.

Finally, in Map N1-11-17 (Figure 4.14), taken at 16,963 MWD /MTU, the axial peaking factor was 1.150, with the axial power distribution peaked even further toward the bottom of the core.

The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15.

In conclusion, the North Anna 1, Cycle 11 core performed satisfactorily with power distribution analyses verifying that design predictions were accurate and that the values of the F (Z) and F-delta-H hot channel 9

factors were within the limits of the Technical Specifications.

I I

I I

NE-1068 NIC11 Core Performance Report Page 28 of 52

Table 4.1 NORTH ANNA UNIT 1 - Cycle 11

SUMMARY

OF FLUX MAPS FOR ROUTINE OPERATION I

i i

1 I

2 i

i l

l l suuNuP BANK F etil NOT F-9H(N) NOT ICORE Ft2B 1 CORE AX t AL NO.i IMAP l

l D

l CHANNEL FACTOR I

CNNL. FACTOR IMAX ll Titi 1

0FF l OF 1 IMO.

DATE i NWO/

PWR STEPS l l

l 1:

'l SET :ITHINl 1 Mfu (2) l ASSV lAXI&tlF-0(I) BASSV [F-OH(NjlAXtAL 1 F(2), MAX l LOC 1 (2) ISLES]

I i

lPOINil 1

1 (POINT l l

i I i

i i

_I 1

1 I

I i

1 l

1 I

1_

I l_t i

4 114-r9-944 aves toe. eel 225 l ett I sa i 1.are I sit i 1.396 1 36 II.2eelt.seri Nwl -3.43al 45 l

'I 5 112 24-941 3e41 l tee.13l 225 i Dit i sa 1 1. ale i ett i 1.443 8 36 18.14611.es18 SEl -3.510145 j l 6 lor et-951 4379 ' lee.e51 225 i sit I se i 1.799 il sit i14121 3a it.tF311.ee41 SEI -3.6451 45 i i

I: 7 142 2s 951 5453 l 99.991 225 l Dit i 40 1 1.7e9 I Dit j 1.416 l 44 11.16341.8841 SEl -4.824145 l l 8 183 34 951 6675 llee.etl 225 1 Dit 1 46 1 t.777 st!

I 1.416 8 45 11.15a11.e431 SEl -4.26tl 45 l I 9 104 r6-951 7716 18e0.031 225 l Dit l 46 l 1.772 O!! :I1.413 1 46 f t.15711.te31 SEl -4.429145 I lie 1e5 14-951 asas il 99.971 225 1 Ett i 46 1 1.777 Dan t.410 1 47 11.1568 4.se31 SEl -4.3441451 lit le6-19-951 9s52 l lee. ell 225 i Ele 1 44 I a.7e9.I F05 1.420,

es 11.15411.8431 NEl -4.66el 45 l lar 107-21-951 11:25 llee. ort 225 i Fes 1 49 4.796

Fe5 1.4rF l es it.15531.eell NEI! -4.634145 l i

113 les-rt-951 12353 11 99.9el 225 i Fes 1 49 1.79e 1 Fe5 1.4r7 1 52 it.15311. sell NE.l -4.4451 45 l 114 1e9-19-951 135e5 1.too.sti 225 1 Fe5 i 49 i 1.774

' Fe5 1 1.424 52 It.155ft.se51 NE; ~4.r!!! 45 1 las 110 19-951 14696 L 99.931 225 1 tes 15 1 1.76a

, Fe5.I 1.415 52 II.15511.ee61 NEll -4.e271 45 l 116 111-14-951 1573r 11e0.001 225 l Les 1 52 1.763 l' F05 1.4 t o 1. 52 11.tS911.ee5l NE l *3.stel 45 l 117 112-45-951 16963 1 99.961 2r5 I les 53 1.745 11 Fe5 1.4ea 5r II.15sta.se61 NE'i -3.1981 45 las 101-15-961 tasse I 41.441 ris i Fes 11 I t.see i Fe5 1.415 11 it.ta611.eea! MEl' 5.1841 45 l_

I l

1 l

i 1

1 1

I l _I l_

NOTES: HOT Spoi LOCATIONS ARE SPECIFIED eV CIVINO ASSENSLY LOCAfl0NS (E.C. M-s IS THE CENTER-OF-CORE ASSENSLVI.

IN THE "2" DIRECTION IHE CORE IS OlvlDED INTO 6 AXIAL POINTS SIARTINO FROM IHE TOP OF THE CORE.

1. F-Ott) INCLUDES A 70IAL UNCERIAINTY OF 1.e5 X 1.03.
2. QUADRANT POWER flLi AS DEFINED eV THE CECOR C00E.

NE-1068 NIC11 Core Performance Report Page 29 of 52

I I

Figure 4.1 NORTH ANNA UNIT 1 - Cycle 11 ASSEMBLYWISE POWER DISTRIBUTION N1-11-04 R

P M

M L

K J

H C

F E

D C

4 A

PRIDICIED 0.291. 0.391. 0.293.

PREDICTED MEASURED

. 4.266. 0.364. 0.289 ME ASURED 1

. PCT DIFFERENCE.

16.

1.8.

-1.4.

. PCT OlFFEREMCE.

. 0.387. 0.510. 1.087. 0.940. 1.096. 0.520. 0.384.

. 0.342. 0.511. 1.069. 0.962. 1.042. 0.516. 0.384.

2 1.4.

-1.4.

  • 1 6.

1.9. - 1. 3.

-0.6.

0.0.

. 0. 413

  • 4.134. 1. 28 5. 1. !* a. 1. 28 7. 1.179. 1.247. 1.137. 4.403.

. 0.409. 1.122. 1.210. 1.154. 1.253. 1.166. 1.264. 1.141. 0.416.

3

-0.8.

-1.4

-1.2.

-1.5.

-2.7.

4.8.

-0.2.

0.3.

3.3.

. 0.199. 0.642. 1.285. 1.225. 1.208. 1.138. 1.202. 1.225. 1.283. 0.643. 0.414

. 4.399. 4.437. I.261. 1.217. 1.197. 1.134. 1.201. l.229 1.262. 0.012 0.405.

4 0.1.

-0.6

-1.8.

-0.7.

-0.3.

-0.4 0.0.

0.3.

0.0.

-1.3.

-2.2.

0.347. 1.134. 1.282. I.257. 1.244 1.145. 1.174 l. 8 45. I.244. 1. 257. l.287. l. I'.!. 4. 388.

0.389 1.142. 1.2 66. 1.269. 1. 252. 1.154. 1.164. 1. l b6. 1.251. 1.259 1.239. l.108. 0.342.

5 0.5.

0.7.

0.4 0.9 0.7.

1.2.

1.2.

1.0.

0.6.

0.1.

-3.7.

-2.9

-1.7.

0.519 1.285 1.226. l.243. 1.156. 1.203. 1.167. 1.202. 1.154. 1.243. l.227. I.286. 0.518.

0.519 1.289. 1.220. 1.240. 1.171. 4.235. 1.200. 1.230. 1.166. 1.234. 1.195. 1.251. 0.504.

6 4.1.

0.3.

0.2.

-0.2 1.3 2.6.

2.4.

2.3.

1.0

-0.5.

-2.6.

-2.7.

-1.9.

. 4.293. 8.096. 1.178. 1.201. 1.141. 1.196. 1.210. 1.190 1.203. 1.192. 1.140. 1.200. 1.174 1.084. 0.291.

. 0.292. 1.092. 1.181. 1.202. 3.147. 1.223. 4.272. 1.234 1.255. 1.213. 1.133. 1.156 1.140. 1.072. 0.287.

7

-0.6.

-0.4.

4.2.

0.1.

0.6.

2.2.

5.1.

3.7.

4.3.

1.0.

-0.6.

-3.6.

2.9.

-1.1.

-1.2.

0.391. 0.978. 1.205. 1.136. 1.169 1.156. 1.177. 1.187. 3.179 1.157. 1.170. 1.136. 1.285. 0.978. 0.391.

. 0.386 0.965. 1.260. 1.131 1.170. 1.176. 1.211. 1.219. 1.209. 1.183. 1.168. 1.112. 1.236. 0.969. 0.386.

8

-l.2.

-1.3.

-1.9.

-0.5.

9.1.

l.8.

2.9.

2.7.

2.6.

2.2.

-0.2.

-2.1.

-3.4.

-1.0

  • l.4.

. 0.291 1.084 1.174. 1.200. 3.140. l.191. 1.202. 1.190 1.211. 1.196. 1.142. 1.201. 1.178. 1.094. 4.293.

0.286. 1.067. 1.154. 1.194. 1.162. l.212. 1.226. 1.209. 1.223. 1.191. 1.139 1.191. 1.165. 1.092. 0.284 9

+1.5

-1.6.

-1.7.

-0.1.

1.9 l.4.

1.9.

1.6.

1.0.

-0.4.

-0.2.

-0.8.

-1.1.

-0.4

-3.3.

0.514. 1.286 1.227. 4.243. 1.154 1.201. 1.167. 1.203. 1.156. 1.244. 1.226. I.285. 0.519 0.507. 1.249. 1.223. 1.260 3.171. 1.220. 1.175. 1.206. 1.154. 3.249. 1.228. 1.F93. 0.539 10

-2.2.

2.9

-0.3.

1.4.

1.5.

l.5.

0.7.

4.2.

-0.2.

0.5.

0.2.

0.6.

3.9.

0.384. 1.141. 1.247. l.257. 1.244 1.144. 1.174. 1.145. 1.244. 1.257. 1.282. 1.134. 6.347 0.384 1.131. 1.293. 1.2&&. 1.258. 1.144. 1.166. 1.134. 1.238. 1.202. 1.301. 1.144. 6.395 11

-1.3.

-0.9 0.5 2.4.

l.2 0.3.

-0.7.

-0.6.

-1.0.

2.0.

1.5.

1.3.

2.1.

0.414. 0.643 1.283. 1.225. 1.202. 1.138. 1.204. 1.225. 1.285. 0.842. 0.399 4.419. 0.850. 1.296 1.230 1.1 94. 1.125. 1.190 1.216. 1.296. 0.869. 0.406.

12 l.3.

0.8.

1.0.

0.4

-0.7.

-l.1.

-0.9.

-0.4.

0.9 3.2.

l.9.

. 0.403 1.137. 1.247. 1.179. 1.287. 1.175. 1.285. 1.138. 0.413.

. 0.405. 1.142. 1.284. 1.169 1.260. 3.161. 1.259. 1.134 0.418.

13 0.6.

0.4

-0.1.

-0.9.

-2.1.

1.2.

-2.1.

-0.4.

1.2.

. 0.388. 0.520 1.096. 0.980. 1.087. 0.514 0.34 7

. 0.386. 0.518. 1.089. 0.973. 1.091. 0.51%. 0.3A5.

14

-0.6

-0.4

-0.6.

-0.8.

0.5.

-0.4.

-0.5.

STANDARD 0.293. 0.391. 0.298.

AVE RACE DEvl4110N 0.294 0.390. 6.292.

. PCT DIFFERENCE.

15 1.3

=l.008 0.2.

-0.4 0.3.

=

$1M1 MARY NAP HO: N1-11-04 DATE! 11/29/94 POWER: 100.04%

CONTROL ROD POSITION:

F-QtT) = 1.820 CORE TILT:

D BANK AT 225 STEPS F-DH(N) 1.396 NW 1.0022 lHE 0.9957 F(Z)

= 1.200 SW 1.0017 SE 1.0004 BURNUP = 1908 NWD/NTU A.O. = -3.438%

NE-1068 N1C11 Core Performance Report Page 30 of 52 1

Figure 4.2 NORTH ANNA UNIT 1 - Cycle 11 ASSEMBLYWISE POWER DISTRIBUTION N1-11-11 R

P M

M 1

E J

H C

F E

D C

8 8

m DICIEo

. 0.285. e.382. e.286.

m DiCIED ME8SURED

. 9.280. 0.374. 0.283.

ME85URED l

.PCI DIFFERENCE.

al.6.

  • 2.0.
  • l.1.

.PCI DIFFEREhCE.

0.383. 0.502. 0.986. s.896. 0.991. 0.543. 0.383

. 4.376. 0.495. 0.972. 0.883. 0.984. 0.503. 0.185.

g

-1.9

-l.5.

-1.4.

  • l.5.

-0.8.

8.1.

0.6.

. 8.416. l.469. 1.221. 1.099. 1.244 1.101. 1.221. 1.667. 0.496.

. 0.408. 1.946. l.204 1.686. 1.257. 1.096. 1.228. 1.0'6. 8.417 3

-2.0.

-2.1.

-1.4.

-1.2.

  • 2.4.

-0.4.

0.5.

4.9 2.6

. S.404. 0.826. l.294 1.187. 1.298. I.150. I.298. 1.187. 1.292. 8.826. 0.417

. 0.399. 0.812. 1.257 1.176. 1.298. 3.15F l.387. 1.201. 1.302. 0.821. 0.481.

4 1.2.

al.7.

-2.9.

-0.9 0.1.

0.6.

0. 7.

l.2.

0.8.

-0.6.

-l.4.

. G. 382. 1. 066. I. 292. 1. 235. 1. 358. 1.18 3. 1. 318. 1.182. I. 358. 1. 235. 1. 295. 1. 0 70. e. 38

. 0.388. 1.057. 1.283. 1.237. 1.363. l.203. 1.33F. 1.199. 1.376 1.251. 1.258 1.049. 8.378 5

-0. 7.

-0.8.

-0.7.

4.1.

0.3.

1.7.

I.4.

1.4.

l.3.

1. 3.

-2.8.

-2.8 1.5.

0.503. 1.224. 1.188. l.358. 1.191. 1.326. 1.179. 1.325. 1.191. 1.358. 3.188. 1.222. 0.542.

. 0.500. I.214. 1.180 1.349 1.197. 1.350. 1.204. l.352 1.208.1.364. l.lF3.1.204. 0.497.

6

-0.7.

-0.6.

-0.7.

1.3.

0.5.

1.8.

2.1.

2.0.

1.4.

0.5

  • l.3.

-1.5.

-I.1.

9.286. 0.992. 1.101. 3.298. 1.181. 1.321. 1.183. 1.141. 1.179. 1.314. 1.181. 1.297. 8.099. 0.946. 8.284 0.284. 0.985. 1.099 1.294 1.182. 1.337. 1.218. 3.171. 1.218. 1.144. 1.186. 1.279. 1.083. 0.982. 8.284.

7

  • 0.9.

-8.7.

-0.2.

  • 0.3.

6.1.

1.2.

3.0.

2.6.

3.3.

1.9.

e.5.

-1.4

-1.4

-0.4.

-0.2.

0.382. 0.896. 1.28 6. 3.15e l.315. 1.173. 1.154. 1.098. 1.135. 1.173. 1.315. 1.150 1.283. 0.896 0.382.

0.377. 8.884 I.262. 3.146. 1.325. 1.188. 1.156. 1.120. 1.160. 1.203. 1.325. 1.143. 3.2 %. 0.906 0.383.

8

-1.3.

-1.4 1.7.

-0.3.

0.7.

l.3.

2.0.

2.0.

2.2.

2.6.

0.8

-0.6.

-2.1.

l.1.

0.2.

. 0.284 0.986. 1.099 1.297. l.181. l.3te 1.179. 3.141. 1.184. 1.121. 1.181. l.294. 3.101. 0.992. 0.286.

4.280. 0.968. 4.088. 1.295. 1.203. 1.337. 1.196. 3.1 %. 1.196. 1.124. 1.188. l.141. I. les. 0.998. 0.279.

9

-1.6.

-1.7.

1. 7.

-e.1 8.9

1. 5.

1.5.

1.3.

1.0.

8.2.

0.6 8.3.

-0.1.

8.6.

-2.4

. 0.502 1.222. 1.188. 1.358. 1.191. l.325. 1.179 1.326. 1.192. 1.358. 1.188. 1.22I. 8.503.

. 4.494. 1.181. 1.182. 1.373. 1.295. 1.340. 1.189 1.331. 1.194. 1.311. 1.202. 1.234. 0.518.

10

-2.5.

-3.3.

-0.5.

1.1.

1.2.

l.2.

0.8.

e.4.

0.2.

1.1.

1.1.

1.1.

3.0.

0.384 1.070. 1.295. 1.235. 1.358. 1.142. 1.318. 1.183. 1.358. 1.235. 1.292. 1.066. 0.382.

. 6.376. 4.053. 1.295. 1.259 l.370. l.188. l.320. 1.180. 1.347. 1.264 1.312. 1.479. 0.389 11

-1.9.

-1.6.

4.0.

1.9.

0.9.

0.5.

0.2.

-0.3.

-0.8.

2.4.

1.6.

1.3.

l8.

. 0.417. 0.826. 1.292. 1.187. 1.294. 1.150. 1.294. 1.187 l.294. 0.826. 4.444.

. 0.482. 0.826. 1.298. 1.188. 1.292. 1.139. 1.285. 1.I76. l.308. 0.838. 0.405.

12

-1.4.

9.0.

0.5.

8.1

  • 0.4.

-1.0

-1.4.

0.9 0.5.

1.4.

4.3.

0.406 1.067 1.221. 1.101. 1.284. 1.099. 1.221. 1.069. 0.416.

. 4.466 1.063. 1.213. 1.485 1.247. 1.080 1.491. 1.064. 0.417.

13

-0.2.

-0.3

-0.6.

-1.4

-2.9.

-1.8.

-2.5.

-0.8.

6.2.

. 0. 383. 8.503. 0.991. 8.896. 0.986. 4.502. e.383.

0.374. 0.496. 8.973. 0.880 0.981. 4.i95. 4.379.

14

-2.3.

-1.4

-1.9

-1.9

-0.5.

1.5.

-1.0.

STANDARD

. 9.286. 0.382. 0.285.

AVERACE DEVloflON

. 9.274 0.374. 0.282.

. PCT DIFFERENCE.

15

=0.847 4.4.

-2.2

-0.9.

=

1.2

SUMMARY

NAP HO: N1-11-11 DATE: 6/19/95 POWER: 100.01%

CONTROL ROD POSITION:

F-QtT) a 1.789 CORE TILT:

D BANK AT 225 STEPS F-DHIN) a 1.420 HW 0.9975 l NE 1.0027 l

F(Z)

= 1.158 SW 0.9981 1 SE 1.0017 BURNUP = 9852 NWD/NTU A.O. * -4.660%

l NE-1068 NIC11 Core Performance Report Page 31 of 52

I 1

Figure 4.3 g

NORTH ANNA UNIT 1 - Cycle 11 g

ASSEMBLYWISE POWER DISTRIBUTION N1-11-17 R

P N

M L

K J

H C

F E

D C

8 A

PREDICTED

. e.317. 4.425. e.318.

PREDICTED MEASURED

. 0.315. 0.423. e.317.

M asunED 1

. PCT DIFFERENCE.

-0.8.

+0.5.

-0.3.

. PCT CIFFERENCE.

8.497. 0.528. 0.994. 0.911. 0.997. 9.529. 4.407.

. 4.493. 4.524. 0.945. 0.902. 0.995. 8.533. 0.414.

2 1.0.

-0.9.

-0.9.

-1.0 -

-0.2.

0.8.

1.6.

. e.44 8. 1. e4 3. 1.185. 1. 084. 1.28 7. 1.e46. I.145. 1. 042. 0.434.

. 8.444. 1.032. 1.176. 1.075. 1.261. 3.687. 1.201. 1.963. 8.451.

3 8.4.

1.0.

-0.8.

-0.9.

-2.0.

4.1.

1.4.

2.8.

4.8.

8.428. 0.829.1.261. 1.152.1.338.1.152. 1.338. 1.152. 1.264. e.828. 4.440

. 0.434. 0.825. 1.239 1.347. 1.333. 1.160. 1.345. I.!?8. 1.242. 8.433. 0.439 4

0.4

-0.4

-1.7.

-0.4.

8.2.

0.7.

1.1.

2.2.

1.8.

0.6.

-0.2.

0.467 1.041. 1.260. 1.189. 1.355. 1.176. 1.341. 1.!?6. 1.355. 1.189. 1.261. 1.044. 8.488 -

0.410. 1.052. 1.264. 1.203. 1.361. 3.191. 1.376. 1.192. l.377. 1.211. 1.239. 1.035. 8.409 5

0.8.

1.1.

4.4.

1.2.

0.5.

1. 2.

3.1.

1.3.

1.7.

l.9.

-1.7.

-0.9 8.3.

0.529 1.186.1.153.1.355. 1.173. 1.345.1.lu.1.545. 1.173. 1.355. 4.154. 1.146. e.524.

. 0.531. 3.192. 1.147. 1.323. 1.171. 1.359. 1.144. 1.364. 1.187. 1.364. 1.146. 1.179. 0.529 6

0.4 0.5.

-0.5.

-2 A.

-0.2.

1. 0.

1.2.

l.4.

1.3.

e.7.

-0.6.

-0. 6 '.

e.1.

. 0.319 0.994. 1.084 -. 1.331. 3.176. 1.343. 1.157. 1.111. 1.155. 1.341. 1.175. 1.330. 1.045. 0.994. 8.317.

0.319. 1.000. 1.096. 1.324. 1.167. 1.347. 1.177. 1.126. 1.176. 1.354. 1.179. 1.317. 1.078. 1.082. S.321.

7 0.0.

4.2.

0.9.

-0.2.

-0.7.

8.2.

3.8.

1.4.

1.8.

1.2.

8.3.

-1.4.

-0.6.

0.9.

1.1.

. 0.425. 0.911. 1.247. 1.153 1.341. 1.163. 1.187. 1.662. 1.148. 1.163. 1.361. 1.153. 1.287. 8.911. 8.425.

. e.423. 0.905. 1.272. 1.147

  • 353. 1.164. 3.113.1.867.1.18 6. 1.180. 1.365. I.148.1.264. e.934. 8.432.

8

-0.6.

-0.7.

  • 1.2.

-0.5.

4.6.

0.1.

0.5.

0.5.

8.7.

3.5.

e.3.

-e.5.

-1.5 2.5.

1.6.

. 0.3I7. 0.994. 1.085. 1.330. 1 175. 1.341. 1.154. l.Ill 1.154. 1.343. 1.176.1.331. 1.046. e.994. e.319.

0.314 0.984. 1.073. 1.328. 1.190. I.344. 3.151. 1.105. 1.147. 1.313. 3.172. 1.334. 1.092. 1.017. 8.3I7.

9

  • 0.9

-1.0.

-1.1.

e.2.

1.2.

e.2.

-0.3.

-0.5.

-0.9.

2.2.

-0.3.

e.3.

0.5.

1.9.

-0.6.

. 0.524. 1.186. 1.154. 1.355. 1.173. l.345. 1.164. 1.345. 1.173. l.355. 3.153. 1.186. e.529

. 0.520 1.162. 1.154. 1.362. 1.173. 1.329. 1.154. 1.329. 1.159. 1.363. 1.168. 3.294. e.556.

le

  • l.5.

-2.0.

-0.3.

0.5.

-0.2. al.2.

-1.3.

-1.3.

-1.2.

0.6.

l.3.

1.8 5.2.

..............................s..........................................................................

4.4 08. 1.044. 1.262.1 149. l ~355.1.176.1.361. I.176.1.355. 1.189. 1.264.1.041. 8.497

. 0.404. 1.036. 1.263. 1.206. 1.351. I.160. 1.332. 1.157. 1.331. 1.219. 1.286. 1.963. 8.428.

Il 1

  • 1.0.

-0.8.

4.1.

1.4

-0.3.

-1.4.

-2.1.

-1.7.

-1.8.

2.5.

2.1.

2.1.

3.1.

l

. 0.444. 0.828. 1.260. 3.152. 1.338. 1.152. 1.330. 1.152. 1.261. 0.8?9. 0.428.

0.441. 0.829. 1.260. 1.141. 3.300. 4.128. 1.309. 1.148. 1.272. 0.844. 0.456 12 0.3.

0.1.

4.0.

-0.9. - 2. 2.

-1.1.

-1.5.

-1.0.

e.9.

2.4.

I.8.

. 0.450. 1.842. 1.145. I.086. 1.287. 1.084. 1.185. 1.043. e.440.

. 0.429

1. 036. 1.172. 3. t M. l. 253.
  • 069 1.167. 1.042. 6.444 13

-0.3.

0.6.

-1.1.

-1.8. -2.7..

1.4.

-1.6.

-0.3.

1.0.

. 0.467. 4.529. 0.997. 0.911. 0.494. 8.528. 0.497.

. 0.402. 4.523. 0.986. 0.902. 1.001. 0.526. 8.446.

14

-1.4

-1.1.

-1.1.

-4.1.

0. 7.

-0.5.

-0.2.

STANDARD 6.3I4. 0.425. 0.317.

AVERACE DEVIATION

. 9.322. 4.424. 8.318.

. PCT DIFFERENCE.

15

=e.80s 1.2.

-e.3.

e.4.

=

1.0

SUMMARY

NAP No! N1-11-17 DATE: 12/15/95 POWER: 99.98%

CONTROL RCD POSITION:

F-Q(T) = 1.745 CORE TILT:

D BANK AT 225 STEPS F-DH(N) = 1.408 HW 0.9995 l NE 1.006 1

F(Z1

= 1.150 SW 0.993a l SE 1.000' BURNUP a 16963 NWD/NTU A.0.s - 3.190%

I NE-1068 NIC11 Core Performance Report Page 32 of 52

Figure 4.4 NORTH ANNA UNIT 1 - Cycle 11 HOT CHANNEL FACTOR NORhALIZED OPERATING ENVELOPE 1.2 1

1 80u.

0.8 - -

Q IMd s4 0.6 -

=

E a:

O Z

i 0.4 - -

tt M

0.2 - - --

0 O

1 2

3 4

5 6

7 8

9 10 11 12 CORE HEIGHT (FT) i NE-1068 NIC11 Core Performance Report Page 33 of 52

I I

Figure 4.5 NORTH ANNA UNIT 1 - Cycle 11 HEAT FLUX HOT CHANNEL FACTOR, F (Z) q N1-11-04 2.2 -

l 2.0 1.8 c*.

1.6 l

1.4 5

n. 1.2 e

ag E 1.0 0.8 '

0.6 I

~.,

0.4 0.2 i

0.0 l

61 55 50 46 40 35 30 25 20 15 10 5

1 AXIAL POSITION (NODE) i I

--- FO*P UMir

x MAXIMUM FQ*P BOTT0W Of CORE TOP Of CORE l

I NE.1oe N1cu c... e.e__.

...e e...

54 - 52

Figure 4.6 NORTH ANNA UNIT 1 - Cycle 11 HEAT FLUX HOT CHANNEL FACTOR, F (Z) g N1-11-11

~%

N 2.0 1.8 1.8 o

1.4

n. 1.2 0n. 1.0 0.8 0.6 0.4 0.2 0.0 61 55 50 45 40 35 30 25 20 15 10 5

1 AXIAL POSITION (NODE)

FO*P UMfr xx: MAXIMUM FQ*P 80TTOW Of CORE TOP Of CORE L

NE-1068 NIC11 Core Performance Report Page 35 of 52

I I!

Figure 4.7 i

NORTH ANNA UNIT 1 - Cycle 11 HEAT FLUX HOT CHANNEL FACTOR, F (Z) q N1-11-17 I'

2.2

^

2.0 1.8

...*=...,,

El 1.6 g

o,,.......

~,

1.4 -

g

a. 1.2 l

1.0 I:

0.8 0.6 I,'i 0.4 O.2 l

0.0 61 55 50 45 40 35 30 25 20 15 10 5

1 AXIAL POSmON (NODE)

I' FQ*P UMir MAXIMUM FQ*P 80TT0W Of CORE TOP Of CORE l

I NE-m e N1c u c... e.,... _...,m se,, s2

Figure 4.8 NORTH ANNA UNIT 1 - Cycle 11 MAXIMUM IIEAT FLUX HOT CilANNEL FACTOR, F (Z)*P, vs. AXIAL POSITION n

U w

s 2.0-1.8 4..... = -

"t,,

1.6 1.4

n. 1.2 e

G

u. 1.0 0.8 0.6 0.4 0.2 0.0 81 55 50 46 40 35 30 25 20 15 10 5

1 AX1AL POSITION (NODE)

FO*P UMIT MA)0 MUM FQ*P 80ITOW Of CORE TOP Of CORE NE-1068 NIC11 Core Performance Report Page 37 of 52

I I

Figure 4.9 NORTH ANNA UNIT 1 - Cycle 11 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, F (Z), vs. BURNUP g

2.20 FULL POWER 2.18 liji';

i 'ii

,l TECH SPEC LIMIT g

i g 2.16

llll l llllll;l l,

O 2.14 l

ll, l!'l l

l F

MEASURED i i i

i

! ii O 2.12 ii i

ii i

( 2.10 ll, l

ll6 VALUE i

y 2.08 l',,

ll, l

+

W 2.06 ll' l

i Z

i Ii iii z 2.04 il i

ii i

g 2.02 lll ll.

ll,ll:

l g!

g 2.00 i,,,,

, ii.ii i

H 1.98 ll lllilli gl o 1.96 l'

ll, lll'li, l

I i,

i 1.94 il li j

g g

i i

D 1.92 l ll,!.

l lll l

J iiii i! iiii i

y, 1.90

,i,i.

4 i i.

H 1.88 lll!l'

!!ll'll l

( 1.86

,iii, i,ii i

ii

,;j,,,

ii gl w

I 1.84 4lll

l';,l l

?.

2 1.82

'?i, l

]

ii v -

.I i

1.80

'., + + -

+ +.'? :

E i

+ +, i, yl. +i g

i i

- 1.78 i i,;,

i 1.76 l'l

ll, E 1.74 l.'

!'l l'

i g

1.72 llll' i

1.70 3

0 2

4 6

8 10 12 14 16 18 20 m

CYCLE BURNUP (GWd/MTU)

I NE-1068 N1C11 Core Performarice Report Page 38 of 52

Figure 4.10 NORTH ANNA UNIT 1 - Cycle 11 H4XIMUM ENTHALPY RISE 110T CHANNEL FACTOR, F-delta-H, vs. BURNUP 1.'50 lll}

'il FULL POWER j>

l l i

l lll:

l l ;

TECH SPEC LIMIT 1.49

!!j:

l i

g i,

iii ii >i

!;i' i :

MEASURED

. i O 1.48 H

i j l!

l i VALUE O

  • C 1.47 l

I

+

1 i

I

,_J i,i i

ii W 1.46 I

I' Z

ll: :

j Z

i i

i i

i

<f 1.45 I

I.

I

I ll'j l

l;! !

l O

l, II !

H1 o

.44

!!l

!Ii 1

l'I l!

i i lll r

LU 1.43 M

i !

,, + +'.I i !

i!

2 ll !

l! l +I I

.l :

1.42 i?,

i.,

i,

i i i i i i

CL

,', ' ' +1+

,' 4

?l i

+.

i i l !

J

<C 1.41 j

?;

I i i i.

,,. l I

b i '

l i

Z 1.40 W

!+Ii' i

i i I

'il l l ;

!l 1.39 l

l l

i i

l

! i

'l i

1.38 0

2 4

6 8

10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)

NE-1068 NIC11 Core Performance Report Page 39 of 52

I Figure 4.11 NORTH ANNA UNIT 1 - Cycle 11 TARGET DELTA FLUX vs. BURNUP l

6' I

i I

i i

i i

I i

i I

l i

i j

t I

6 i

l i

i i

e i

i i

i i

i l

I i

i i

i I

i i

l l

i l

l

}

l I

I I

{

I i

i i

t i

i I

I I

i l

i i

i I

i i

i E 3 C

i l

i t

Q i

i i

i l

i i

i I

j Q

t i

i i

i i

i i

6

[

l i

j i

i i

l l

i j

i l

l l

4 I

i i

t 6

I i

E I

i i

i t

i i

i i

t

}

I i

i i

i i

i I

i i

t i

N l

I I

I i

t i

D 1

i t

i i

l i

i i

I J

l I

I I

i i

I t

i i

i l

I Q

i l

i

}

l I

I l

l I

I i

6 I

i i

i i

i i

i i

I k

I i

6 I

I i

l i

I t

i i

H I

i i

i I

i l

i i

i i

J l

l i

I I

i I

l j

r i

i i

i i

i i

i i

i i

i i

i w,$

O l

H i

i i

i i

e W,

i i

i l

i (E

i i

(

i l,

H -3 i

i i

i i

e6

+:

+.

i, t

i i

l i

i

'V i

i i

l

'4l' Vi l

I

}

l i

i i+

4 i 24 i i

l i

t i

i i

i 4

ft I

+

j i

i i

i 3

-5 i

i i

i i

i e

i i

I i

l 1

0 2

4 6

8 10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)

NE-1068 NIC11 Core Performance Report Pago 40 of 52

9 Figure 4.12 NORTH ANNA UNIT 1 - Cycle 11 CORE AVERAGE AXIAL POWER DISTRIBUTION N1-11-04 Fz = 1.200 AXIAL OFFSET = -3.438%

1.5

  • 1.2 4 XXXXXX XXX NNNN N N

NNNN NN NXX N

N N

NN NNN M

MN NN N

N N

w q

X N

N N

I N

2 I

e N

O N

E p

w u.

. N

=M N

M 90ff0M OF C04E TOP Of COAT AXIAL POSITION (NODES)

NE-1068 NIC11 Core Performance Report Page 41 of 52

. -. _. -.. -. -. ~. - - - _ _ -. -. _. -. -. -.

1 i

i i

i Figure 4.13 j

NORTH ANNA UNIT 1 - Cycle 11 CORE AVERAGE AXIAL POWER DISTRIBUTION N1-11-11 I;

i 5

i Fz = 1.158 s

AXIAL OFFSET = -4.660%

n l

t i

\\

i.s.

f

=

4 i

4 1.2 xx i

M M

EMMM i

x x IXMEXIX x

X ENXNEMM MNE

,3 rxxx x

u XM N EXX

^

X c

x x

C 3

N e.,.

J x

n s

e i

O x

E... :

1 lx y

  • M L

x f

=

4, x

i 4

4 a

4 g,,',,,'

t

.n,.....n....s.....x....s.

...x....x.....x....'....t u

a n

4, sotton or coes AXIAL POSITION (NODES)

I I

1 i

NE-1068 N1C11 Core Performance Report Page 42 of 52

1 Figure 4.14 NORTH ANNA UNIT 1 - Cycle 11 CORE AVERAGE AXIAL POWER DISTRIBUTION N1-11-17 i

l Fz = 1.150 AXIAL OFFSET = -3.190%

1 b

s.s.

?

i 4

k.

k

]

NNx I

E KEMAN M

MN i

[

M XMNNNX

gggg, E

N NNNMMER NMMXMMX X g

Q 8

x i

Q y

XX 3

.s J

1 x

2 a:

o g... :..

=

N M

v u

R P

a a

=

=

u i.

1

. m..,,,,,

T.P.F C.Rt AXIAL POSITION (NODES)

NE-1068 NIC11 Core Performance Report Page 43 of 52

Figure 4.15 NORTH ANNA UNIT 1 - Cycle 11 CORE AVERAGE AXIAL PEAKING FACTOR vs. BURNUP I

1.30 MEASURED l

E g

l l

1.28

+

O l,

!l l

l l

Ei E

H i

u, l

1 i

i i

o 1.26 LL i

l C1 l

li E

.24 l

l M

l l

h 1.22 o.,

!i f

,i

< 1.20

?

i I

l l

+

I l

l +

I LU 1.18 I

I 0

l

.+ l!

l I

i i

I

+l4 l

j

'l l

l.'+4&!+M++.

li i

Lu 1.16 1

1

\\

i i

ii.,

i LU 1,14

'l l

gl I

M I

l O

3 O

~I i

I e

1.12 t

i I

i i

i l

i 1.10 E

O 2

4 6

8 10 12 14 16 18 20 g

CYCLE BURNUP (GWd/MTU)

I I

NE. - Nic a c _ e., _ _...,_

e..

u e s2

i l

l Section 5 l

PRIMARY COOLANT ACTIVITY l

)

l l

The specific activity levels of radiciodines in the primary coolant are important to core and fuel performance as indicators of failed fuel, and are important with respect to offsite dose calculations associated I

with accident analyses.

Two mechanisms are responsible for the presence of radiolodines in the primary coolant.

Radiciodines are always present due to direct fission

=

product recoil from trace fissile materials plated onto core components l

and fuel structured surfaces or trace fissile materials existing as 1

1 impurities in core structural materials.

This fissile material is i

generally referred to as " tramp" material, and the resulting lodines are referred to as tramp iodine. Fission products will also diffuse into the primary coolant if a breach in the cladding (fuel defects) exists. Fuel I

defects, when
present, are generally the predominant source of i

radiciodines in the primary coolant.

t l

l North Anna Unit 1

Technical Specification 3.4.8 limits the radiolodines in the primary coolant to a dose equivalent I-131 value of i

i 1.0 pCi/gm for Operational Modes 1 through 5, inclusive. Figure 5.1 shows the dose equivalent -I-131 activity history for Cycle l' These data show that the dose equivalent I-131 activity was substantially below the 1.0 pCi/gm limit for steady state power operation. The average steady state power equilibrium dose equivalent I-131 concentration for the cycle was t

l NE-1068 NIC11 Core Performance Report Page 45 of 52 l

I I

l 1.25 X 10-3 pCi/gm which corresponds to less than 1% of the Technical Specification limit.

A combination of RCS iodine activity and noble gas activity is used during operation to determine if fuel defects are present.

Figure 5.2 is the measured RCS I-131 data versus time for Cycle 11.

This trend is consistent with a core operating with no defective fuel rods. There were also no indications of large increases in the RCS I-131 during rapid power transients (lodine spikes). This is futher evidence that Cycle 11 ended with no fuel defects.

The average tramp tramp-corrected I-131 for Cycle 11 was 6.73 X 10-5 pC1/gm. To correct I-131 for tramp sources, the calculated 1-131 activity from tramp fissile sources (sources from other than fuel defects) is subtracted from the measured I-131. The difference is the tramp-corrected l

I-131, and the magnitude calculated for Cycle 11 is consistent with PWR cores with no fuel defects.

I Figure 5.3 is the RCS Xenon-133 activity trend for Cycle 11.

The l

magnitude of Xe-133 in the RCS is consistent with PWR cores operating with l

no fuel defects.

There was a small increase in the steady state Xe-133 activity between the end of February 1995 and the middle of April 1995.

This increase is not judged to be fuel related. Based on experience, fuel defects generally result in a much greater level of Xe-133 in the RSC

-1 (generally greater than 10 pCi/gm).

Also, past data from North Anna Unit 1 and North Anna Unit 2 indicate that a typical level of Xe-133 in the RCS is on the order of 10-2 pCi/gm for cores with no fuel defects.

NE-1068 NIC11 Core Performance Report Page 46 of 52

Figure 5.1 NORTH ANNA UNIT 1 - Cycle 11 DOSE EQUIVALENT I-131 vs. TIME 1.00E+01 1.00E+00 e

1.00E-01 at e.

n

$ 1.00E-02 at 8

eu E

a a

1.00E me a

E a

1.00E-04 gi j i

I l ll 8

i l il I i

i i

"m 80 40 30 "

)

1.00E-05 0

g..

.....g..

..... g

........g....

..g i>>..g..

01JUL94 000CT94 17JAN95 27APR95 0$AUG95 13NOV95 21FEB96 DATE NE-1068 NIC11 Core Performance Report Page 47 of 52 l

I I

Figure 5.2 i

NORTH ANNA UNIT 1 - Cycle 11 J

HEASURED I-131 vs. TIME l

1.00E +01, 1

I 1.00E+00 4

I i

j 1.00E-01 0

o 0 1.00E-02 g

8 m

!d I

s 1.00E-03 1.00E-04

' I" til l l

1i i{l I

i i

11 I l

8 i

4efd

. go 1.00E-05 o

g..

.. i gii

..g.,,..

...g.........g 01JUL94 000CT94 17JAN95 27APR95 05AUC05 13NOV95 21FEB96 DATE NE-1068 NIC11 Core Performance Report Page 48 of 52

Figure 5.3 NORTH ANNA UNIT 1 - Cycle 11 MEASURED RCS XENON-133 vs. TIME 1.00E +01 1.00E +00 1.00E-01

~

Io

".mm,,

8g al'.

g

]1.00E-02

"=

g n

=r o

  • ^

g j

1.00E-03 1.00E-04 Ul l 1

l l {l I

l l

14 I l

l l

.sm "w

  • b af5 f

1.00E-05 e

i...,,,,,,,,,,,,,,,,3....,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

01JUI.94 0900794 17JAN95 27APR95 05AUG95 13NOV95 21FEB98 DATE t

NE-1068 NIC11 Core Performance Report Page 49 of 52

l I

Section 6 I

l CONCLUSIONS I1 The North Anna Unit 1,

Cycle 11 core has completed operation.

lj Throughout this cycle, all core performance indicators compared favorably g

with the design predictions and the core related Technical Specifications l

limits were met with significant margin.

No significant abnormalities in reactivity or burnup accumulation were detected. An evaluation of the radiolodine and noble gas concentration in the RCS indicated that there l

(

were no apparent fuel rod defects during Cycle 11.

l l

I 1

I' l

l I

I Il NE-1068 NIC11 Core Performance Report Page 50 of 52

i l

Section 7 l

REFERENCES 1)

W. S. Miller, " North Anna Unit 1, Cycle 11 Startup l

Physics Tests Report", NE-1000, Rev. O, December, 1994.

2) North Anna Power Station Unit 1 Technical Specifications, j

Sections 3/4.1, 3/4.2 and 3/4.4.8.

i l

3)

T. W. Schleicher, " Virginia Power Fuel Assembly Burnup and Isotopics Calculation Code Manual", NE-726, Rev. 1, March, 1995.

l 4)

D. L. Gilliatt, "The Virginia Power FOLLOW Code Manual,"

NE-679, Rev. 1, Virginia Power, April, 1991.

5)

T.W. Schleicher, "The Virginia Power CECOR Code Package",

NE-831, Rev. 3, Virginia Power, July,1995.

6)

J. M. Mirilovich, " North Anna 1, Cycle 11 FOLOW Input and Calculations", PM-564, Rev. O, Addendum A, March,1996.

7)

P. D. Banning, " North Anna Unit 1, Cycle 11 Design Report",

NE-997, Rev. O, October, 1994.

8)

J. M. Mirilovich, " North Anna Unit 1, Cycle 11 TOTE Calculations",

PM-553, Rev. O, Add. Q, February, 1996.

l f

NE-1068 NIC11 Core Performance Report Page 51 of 52 r

l

~.

4 I

REFERENCES (cont.)

9)

R. A. Hall, et al, " North Anna Unit 1 Cycle 11 Flux Map Analysis",

PH-560, Rev. O, and Addenda, October 1994 - January 1996.

i

10) huclear Standard, " Fuel Integrity Monitoring", ENNS-2904 Rev. O, 5/26/92.

1 I

11) " Core Operating Limits Report North Anna 1 Cycle 11 Pattern BW",

NE-992, Rev. O, July, 1994.

1 l

j I

I II l

I I

I NE-1068 NIC11 Core Performance Report Page 52 of 52