ML20107D223

From kanterella
Jump to navigation Jump to search
COLR North Anna 1 Cycle 12 Pattern Bl, Rev 0
ML20107D223
Person / Time
Site: North Anna Dominion icon.png
Issue date: 02/29/1996
From:
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML20107D202 List:
References
NUDOCS 9604180173
Download: ML20107D223 (16)


Text

,

.. ~... -

i l

CORE OPERAT1J13 LIMITS REPORT j

North Anna 1 Cycle 12 Pattern BL Revision 0 l

l February 1996 1-l l

l l

6 l

I i

N1C12/BL COLR Rev 0 Feb 1996 Page 1 9604180173 960415 PDR ADOCK 05000330 P

PDR

i.0 INTRODUCTION The Core Operating Limits Report (COLR) for North Anna Unit 1 Cycle 12 has l

been prepared in accordance with Technical Specification 6.9.1.7.

The Technical Specifications affected by this report are listed below:

3/4.1.1.4 Moderator Temperature Coefficient 3/4.1.3.5 Shutdown Bank Insertion Limit 3/4.1.3.6 Control Bank Insertion Limits 3/4.2.1 Axial Flux Difference 3/4.2.2 Heat Flux Hot Channel Factor l

3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor and Power Factor Multiplier l

l The cycle-specific parameter limits for North Anna 1 Cycle 12 for the specifications listed above are provided on the following pages, and were developed using the NRC-approved methodologies specified in Technical Specification 6.9.1.7.

N1C12/BL COLR Rev 0 Feb 1996 Page 2

2.0 OPERATIND LIMITS 2.1 Moderator Temperature coefficient (Specification 3/4.1.1.4) 2.1.1 The moderator temperature coefficient (MTC) limits are:

The BOC/ARO-MTC shall be less positive than or equal to

+0.6E-4 ok/k/'F below 70 percent of RATED THERMAL POWER.

The BOC/ARO-MTC shall be less positive than or equal to O (zero) Ak/k/'F at or above 70 percent of RATED THERMAL POWER.

The EOC/ARO/RTP-MTC shall be less negative than -5.0E-4 Ak/k/*F.

2.1.2 The MTC surveillance limits are:

1 The 300 ppm /ARO/RTP-MTC should be less negative than or equal to -4. 0E-4 Ak/k/'F.

The 60 ppm /ARO/RTP-MTC should be less negative than or equal to -4.7E-04 Ak/k/*F.

where:

BOC - Beginning of Cycle ARO - All Rods Out EOC - End of Cycle RTP - RATED THERMAL POWER 2.2 Shutdown Bank Insertion Limit (Specification 3/4.1.3.5) 2.2.1 The shutdown rods shall be withdrawn to at least 225 steps.

2.3 Control Bank Insertion Limits (Specification 3/4.1.3.6) 2.3.1 The control rod tanks shall be limited in physical insertion as shown in Figure 1.

2.4 Axial Flux Difference (Specification 3/4.2.1) 2.4.1 The AXIAL FLUX DIFFERENCE Limits are provided in Figures 2a and 2b.

N1C12/BL COLR Rev 0 Feb 1996 Page 3 1

)

2.5 H nt Flux B3t Channel Factrr-FQ(Z) (SpHcification 3/4.2.2) 2.5.1 The Fg(Z) limits are:

2.19 Fg(Z)

  • K(Z) for P > 0.5 s

P i

Fg(Z) s 4.38

  • K(Z) for P s 0.5 i

l THERMAL POWER where:

P = -------------------

and j

RATED THERMAL POWER j

K(Z) is provided in Figure 3 l

2.5.2 The Fg(Z) Surveillance limits are:

2.19 K(Z) g(Z)M F

s ----

  • for P > 0.5 P

N(Z)

K(Z) g(Z)M F

for P s 0.5 s 4.38

  • l N(Z)

THERMAL POWER where:

P = -------------------

RATED THERMAL POWER K(Z) is provided in Figure 3, and N(Z) is a non-equilibrium multiplier on Fo(Z)M to account for I

power distribution transients during normal operation.

Values l

for N(Z) are provided in Table 1 and plotted in Figures 4 l

through 10.

Values of N(Z) for the top and bottom 15% of the core are excluded per Technical Specification 4.2.2.2.G.

2.6 Nuclear Enthalpy Rise Hot Channel Factor - FAH(N) and Power Factor Multiplier (Specification 3/4.2.3) i FAH(N) s 1.49 * (1 + 0.3 (1 - P))

THERMAL POWER where:

P = -------------------

RATED THERMAL POWER 1

N1C12/BL COLR Rev 0 Feb 1996 Page 4

...= -

Table 1

l N1C12 Normal Operation N(z) Curves i

1 0 MWDIT 1000 MWD /T 3000 MWD /T 5000 MWDff 7000 MWD /T 9000 MWD /T NODE HEIGHT to to to to to to 17800 MWD /T (FEET) 1000 M5ND/T 3000 MWD /T 5000 MWD /T 7000 MWDIT 9000 MWD /T 17800 MWD /T and beyond 10 10.2 1.159 1.159 1.177 1.177 1.177 1.177 1.175 11 10.0 1.152 1.152 1.173 1.173 1.173 1.173 1.172

}

12 9.8 1.143 1.143 1.168 1.168 1.168 1.168 1.167 13 9.6 1.136 1.136 1.173 1.173 1.173 1.173 1.165 14 9.4 1.132 1.132 1.177 1.177 1.177 1.177 1.164 15 9.2 1.131 1.131 1.188 1.188 1.188 1.188 1.171

)

{

16 9.0 1.131 1.131 1.199 1.199 1.199 1.199 1.179 i

j 17 8.8 1.137 1.137 1.208 1.208 1.208 1.208 1.190 18 8.6 1.142 1.142 1.217 1.217 1.217 1.217 1.200 l

19 8.4 1.145 1.145 1.222 1 ???

1.222 1.221 1.208

)

20 8.2 1.147 1.147 1.226 1.226 1.226 1.225 1.214 i

21 8.0 1.148 1.148 1.227 1.227 1.227 1.227 1.219 l

22 7.8 1.149 1.149 1.227 1.227 1.227 1.228 1.226 4

23 7.6 1.148 1.148 1.224 1.224 1.224 1.230 1.231 24 7.4 1.146 1.146 1.220 1.220 1.220 1.233 1.233 i

25 7.2 1.144 1.144 1.215 1.215 1.215 1.234 1.234 26 7.0 1.140 1.140

'1.210 1.210 1.210 1.235 1.235 27 6.8 1.135 1.135 1.203 1.203 1.203 1.236 1.236 28 6.6 1.128 1.128 1.192 1.192 1.192 1.234 1.234 l

29 6.4 1.120 1.120 1.179 1.179 1.179 1.231 1.231 l

30 6.2 1.111 1.111 1.165 1.165 1.165 1.223 1.223 4

31 6.0 1.100 1.100 1.154 1.154 1.154 1.216 1.216 32 5.8 1.091 1.091 1.146 1.146 1.146 1.202 1.202 i

33 5.6 1.085 1.085 1.135 1.135 1.135 1.188 1.188 i

34 5.4 1.087 1.087 1.125 1.126 1.126 1.167 1.168 i

35 5.2 1.090 1.090 1.116 1.116 1.116 1.142 1.142 36 5.0 1.097 1.097 1.113 1.114 1.114 1.125 1.124 I

37 4.8 1.107 1.107 1.116 1.117 1.117 1.121 1.121 38 4.6 1.119 1.119 1.122 1.122 1.122 1.125 1.125 i

39 4.4 1.129 1.129 1.129 1.124 1.124 1.129 1.129 l

40 4.2 1.138 1.138 1.137 1.124 1.124 1.134 1.134 41 4.0 1.147 1.147 1.147 1.124 1.124 1.136 1.136 l

42 3.8 1.157 1.157 1.157 1.122 1.122 1.138 1.138 4

43 3.6 1.167 1.167 1.167 1.124 1.124 1.138 1.138 44 3.4 1.179 1.179 1.179 1.125 1.125 1.137 1.137 45 3.2 1.191 1.191 1.191 1.126 1.126 1.135 1.135 j

46 3.0 1.202 1.202 1.202 1.125 1.125 1.132 1.132 47 2.8 1.212 1.212 1.212 1.126 1.126 1.131 1.131 48 2.6 1.221 1.221 1.221 1.130 1.130 1.136 1.136 49 2.4' 1.229 1.229 1.229 1.136 1.136 1.145 1.145 50 2.2 1.237 1.237 1.237 1.143 1.143 1.153 1.153 51 2.0 1.244 1.244 1.244 1.150 1.150 1.162 1.162 l

52 1.8 1.250 1.250 1.250 1.155 1.155 1.169 1.169 N1C12/BL COLR Rev 0 Feb 1996 Page 5

f FIGURa 1

North Anna 1 cycle 12 Control Rod Bank Insertion Limits FULLY WITHDRAWN-225 230 220 A'8* # ' '*83

/

210

/

200 I

190

[

C Bank 180

/

/

170

/

160

/

/

Z 150 140

/

D Bank 130 a ]c

/

/

y 120 MS

' " 8' 110 bE

/

\\

l o 2 100 CE

/

0 90 8

/

g 80 - -

70 - -

/

60

/

50

/

40

/

30

/

20

/

10 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FRACTION OF RATED THERMAL POWER N1C12/BL COLR Rev 0 Feb 1996 Page 6

FIGURE 2n N1C12 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER (BOC to 5000 MWD /MTU) l 120 110 100 f-12.10ll)

+ 6. 100) l 90

\\

C Unacceptat le Unacceptable l

h E*'

80 O"

Acceptable k

03eration 2 70 C

T w

h O 60 w

u-50

(-M W

(+ 20 m o

Hz

$ 40 C

30 20 l

l 10 i

0

-30

-20

-10 0

10 20 30 PERCENT FLUX DIFFERENCE (DELTA-1)

N1C12/BL COLR Rev 0 Feb 1996 Page 7

l

~

FIGURE 2b NIC12 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER (5000 MWD /MTU to EOC) 120 110 100

)

(-12,100'i

+ 6. 100) i i

90

\\

C Unacceptable Unacceptabh 80 Operadon Fera r e

/

g

/

Acceptattie P "

2 70 C

)

l W

1 Z

t-l Q 60 l

W

/

i r-27 En

(.20 Sin u-50 f-z WO 40 CW o.

30 20 10 l

l 0

-30

-20

-10 0

10 20 30 PERCENT FLUX DIFFERENCE (DELTA-1) w1C12/BL COLR Rev 0 Feb 1996 Page,8 i

l

FIGURE 3

K(Z) - NORIOLLIZED FQ AS A FUNCTION OF CORE HEIGHT 1.2 1.1 l

[6,1.0 1

1 g

0.925) 0.9 0.8 20.7 O

N 0.6 CCoZi 0.5 N

II 0.4 01 0.2 l

0.1 0

O 1

2 3

4 5

6 7

8 9

10 11 12 CORE HEIGHT (FT)

N1C12/BL COLR Rev 0 Feb 1996 Page 9

FIGURE 4 N1C12 NON-EQUILIBRIUM MULTIPLIER i

a l'

O - 1000 MWD /MTU BURNUP l

1.300 l

I 1

(

1.250 I

l

\\

i i

l

\\

i k

t 1.200

\\

l

\\

\\

z i

9

\\

U

\\

/

z 1,150

/

\\

\\

_N

\\

f h

(

l E

\\

/

V l

\\

l

\\

/

1.100

\\

/

N/

1.050 l

l 1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT, FT N1C12/BL COLR Feb 1996 Page 10 l

l 1

FIGURE 5 N1C12 NON-EQUILIBRIUM MULTIPLIER l

1000 - 3000 MWD /MTU BURNUP 1

[

1.300 1

4 l

)

1 1.250 h

s l

\\

\\

\\

4 1.200 -

\\

\\

\\

z T

9

\\

l U

\\

/

z 1.150 2

'(

[

g

/

R

\\

f

^

(

\\

E

\\

)

NJ I

\\

/

l

\\

/

i

\\

/

1.100

\\

/

f

\\/

1 l

1.050 l

l 1.000 0.0 2.0 4.0 e.o 8.0 10.0 12.0 CORE HEIGHT, FT i

N1C1TBL COLR Feb 1995 Page 11

FIGURE 6 N1C12 NON EQUILIBRIUM MULTIPLIER 3000 - 5000 MWD /MTU BURNUP 1.300 l

l l

I i

1.250

(

\\

\\

cx

\\

/

\\

\\

1.200

\\

/

\\

\\

/

\\

\\

/

\\

l 2

V i

l 9

(

/

y 1.150

\\,

/

j

/

t

\\

f Ci

\\

/{

l z

\\

\\

/

l v

l 1.100 1

l l

1.050 1.000 t

l 0.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT, FT N1C12/BL COLR Feb 1996 Page 12

._~.-.

FIGURE 7 N1C12 NON-EQUILIBRIUM MULTIPLIER 5000 - 7000 MWD /MTU BURNUP 1.300 l

l l

I 1.250

)

',/

\\,

1.200

'/

\\

/

\\

/

\\ /

ii

/

~

c z 1.150

\\

/

2

\\

/

R

\\

(

E

\\

/

/

sg r

1.100 1.050 l

l I

Ii 1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT, FT N1C12/BL COLR Feb 1996 Page 13

3 FIGURE 8 N1C12 NON-EQUILIBRIUM MULTIPLIER

~

7000 - 9000 MWD /MTU BURNUP 1.300 ll l

l I

l I

1.250 l

  1. h

/

)

\\

/

\\

1.200

/

\\

/

\\ /

8

/

~

i P

/

O

\\

e

.150

\\

/

1 p

T

/

5

\\

)

/

s

(

'VI i

1.100 i

l l

l 1.050 1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT, FT NiC12/BL COLR Feb 1996 age 14

FIGURE 9 N1C12 NON-EQUILIBRIUM MULTIPLIER 9000 - 17800 MWD /MTU BURNUP 1.300 l

1.250

/N

/

s

/

T

\\

1.200

/

\\

/

\\

\\ /

z9

\\

/

1 1.150 l

i

(

E

\\TN

/

NJ 1.100 l

l i

1.050 r

l 1.000 O.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT, FT i

N1C12/BL COLR Feb 1996 Page 15 i

I 1

I f

~ '

FIGURE 10 l ',

  • N1C12 NON-EQUILIBRIUM MULTIPLIER

>17800 MWD /MTU BURNUP 1.300 ll l

l l

l 1.250 l

/N

/

\\

\\

(

x

\\

1.200

/

\\

/

\\

/

\\

5

\\

/

L/

\\

l j 1.150

]

I s

\\rx

/

NJ 1.100 l

I l

1.050 1

1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT, FT N1C12/BL COLR Feb 1996 Page 16