ML20076J146
| ML20076J146 | |
| Person / Time | |
|---|---|
| Site: | North Anna |
| Issue date: | 09/30/1994 |
| From: | VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | |
| Shared Package | |
| ML20076J137 | List: |
| References | |
| NUDOCS 9410250097 | |
| Download: ML20076J146 (17) | |
Text
_.
+
I b
l l
l CORE OPERATING LIMITS REPORT North Anna 1 Cycle 11 Pattern BW Revision 0 l
September 1994 1
l l
i l
N1C11/BW COLR Rev 0 (Sep 94)
Page 1 9410250097 941018 PDR ADOCK 05000338 L
P PDR I
1.O INTRuuuunON 1
The Core Operating Limits Report (COLR) for North Anna Lhit 1 Cycle 11 has been prepared in accordance with Technical Specification 6.9.1.7.
The technical specifications affected by this report are listed below:
3/4.1.1.4 Moderator Temperature Coefficient 3/4.1.3.5 Shutdown Bank Insertion Limit 3/4.1.3.6 Control Bank Insertion Limits 3/4.2.1 Axial Flux Difference 3/4.2.2 Heat Flux Hot Channel Factor 3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor and Power Factor Multiplier The cycle-specific parameter limits for North Anna 1 Cycle 11 for the specifications listed above are provided on the following pages, and were developed using the NRC-approved methodologies specified in Technical Specification 6.9.1.7.
N1C11/BW COLR Rev 0 (Sep 94)
Page 2 i
2.0 Operating Tdmits 2.1 Moderator Tenperature Coefficient (Specification 3/4.1.1.4) i 2.1.1 The moderator temperature coefficient (MFC) limits are:
The BOC/ARO MIC shall be less positive than or equal to l
+0.6E-4 Ak/k/ F below 70 percent of RATED THERMAL POWER.
l The BOC/ARO MFC shall be less positive than or equal to O Ak/k/ F at or above 70 percent of RATED THERMAL POWER.
The EOC/ARO/RTP-KrC shall be less negative than -5.0E-4 i
Ak/k/ F.
2.1.2 The MIC surveillance limits are:
i g
The 300 ppm /ARO/RTP-MIC should Le less negative than or equal to -4.0E-4 Ak/k/ F.
1 l
The 60 ppm /ARO/RTP-MIC should be less negative than or equal to -4.7E-04 Ak/k/ F.
1 where:
BOC - Beginning of Cycle ARO - All Rods Out l
EOC - End of Cycle RTP - RATED THERMAL POWER t
l 2.2 Shutdown Bank Insertion Limit (Specification 3/4.1.3.5)
I 2.2.1 The shutdown rods shall be withdrawn to at least 225 steps.
{
l l
2.3 Control Bank Insertion Limits (Specification 3/4.1.3.6) 2.3.1 The control rod banks shall be limited in physical insertion as shown in Figure 1.
2.4 Axial Plux Difference (Specification 3/4.2.1) 2.4.1 The AXIAL FLUX DIFFERENCE limits are provided in Figures 2 and 3.
N1C11/BW COLR Rev 0 (Sep 94)
Page 3 i
i 2.5 Heat Flux Hot Channel Factor-F (Z) (Specification 3/4.2.2) g 2.5.1 The F (Z) limits are:
g 2.19 F (Z) s ---
- K(Z) for P > 0.5 g
P F (Z) s 4.38
- K(Z) for P s 0.5 g
THERMAL POWER where:
P = ------------------
, and RATED THERMAL POhTR K(Z) is provided in Figure 4 I
4 2.5.2 The F (Z) surveillance limits are:
g 2.19 K(Z)
F (Z)M s ---
for P > 0.5 g
P N(Z) l K(Z)
F (Z)M s 4.38 * ---- for P s 0.5 g
N(Z)
THERMAL POWER where:
P = ------------------
RATED THERMAL POWER K(Z) is provided in Figure 4, and N(Z) is a non-equilibrium multiplier on F (Z)M g
to account for power distribution transients during normal operation.
It is provided in Table 1 (page
- 10), and plotted in Figures 5 thru 11. The top and bottom 15% of the core is excluded per Technical Specification 4.2.2.2.G.
N1C11/BW COLR Rev 0 (Sep 91)
Page 4
NuclearEnthalpyRiseHotChannelFactor-F,[4.2.3) 2.6 and Power Factor Multiplier (Specification 3 i
Fan s 1.49 * (1 + 0.3 * (1 - P))
N 1
1 l
THERMAL POWER where:
P = -------------------
RATED THERMAL POWER 1
1 i
l l
l l
l N1C11/BW COLR Rev 0 (Sep 94)
Page 5 I
t a
FIGURE 1 NORTH JJ2G UNIT 1 Cycle 11 CONTROL ROD BANK INSERTION LIMITS VS. RATED THERMAL POWER j
l FtJLLY WITHDRAWN = 225 l
230 G ae4. = )
2m 210
/
200
/
/
nom 1#
/
/
i l
/
/
'N
/....... -.
/
1 f tm us
/
z
'N 1
/
/
Q 100
[
f b 150 yp
/
/
l O 140
/
/
?
g
./
/
IN (L
/
/i i
IAJ IE ': / -
/
l-to.n.ttal
/4 11 0
/.. ~ -
g f.- - -
m, O
E n
/
e
/
i g
/
O N
/
c
/
/
m-I
=
/
=
l l
l 10
/
i
/ en m a, l
n O.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 FULLY INSERTED FRACTION OF RATED THERMAL POWER l
N1C11/BW.DLR Rev 0 (Sep 94)
Page 6
_.,,s.
FIGURE 2 N1C11 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF FATED THERIAL POWER (BOC to 9000 MWD /MIU) l 1.20+02 l
l l
(-12,100)
(+6,100) 1.00+02 i
5 Unacceptable l
8.00+01
\\
g j
g Operation E
/
\\
Acceptable I
6.00+01
/
Operation a
/
\\
=
[
~- (-24, 50) 4.00+01
(+20,50)
M5
" 2.00+01 0.00+00
-5.00+01
-3.00+01
-1.00+01 1.00+01 3.00+01 5.00+01 PERCENTFLUXDiffERENCE(DELTA-l) l l
N1C11/BW COLR Rev 0 (Sep 94)
Page 7
t l
FIGURE 3 i
N1C11 AXIAL FLUX DIFFERDG LI.UTS AS A IWCTICN OF RATED THE?&L POWER (9000 MWD /MIU to EOC) l 1.20+02 l
l 1.00+02
(-11,100)
(+6,100)
Unacceptable l
g
/
)
Operation l
8.00+01
/
\\
[ Acceptable k
\\
5 2
5
/
Operation
\\
6.00+01
/
\\
c E
/
\\
-- (-27,50)
(+20,50) m 4.00+01 d5
" 2.00+01 0.00+00
-5.00401
-3.00+01
-1.00+01 1.00+01 3.00+01 5.00+01 PERCENT FLUX DIFFERENCE- (DELTA-l) 1 l
i N1C11/BW COLR Rev 0 (Sep 94)
Pa ge 8
l FIGURE 4 K(Z) - NOFFALIZED Fo AS A FUNCTION OF CORE HEIGrr 1.2 l
t 1.0 i
(6,1.0) 8
.8
"'"#28 0
0 IL,
,i i
g tu i
i I
N,,
J 4 0.6 E
i i
m l
O 2
i i
+
I E 0.4 M
4 1
0.2 i
l l
i i
i I
j 0.0 O
1 2
3 4
5 6
7 8
9 10 11 12 CORE HEIGHT IN FT N1C11/BW COLR Rev 0 (Sep 94)
Page 9
TABLE 1 COMBINED N(z) FOR NlCl1 AS A FUNCIlON OF CORE HEIGIIT (Plot data for Figures 5 1.hru 11) x10' MWDMr: D -1
- 1. _2
.l _1 1_2 7-9 9-17.6
>lli CORHr.ft NZ1 NZ2 NZ3 NZ4 NZ5 NZ6 NZ7 Mode 10 10.2 1.196 1.196 1.1%
1.151 1.151 1.179 1.18 11 10.0 1.189 1.189 1.189 1.161 1.161 1.176 1.177 12 9.8 1.18 1.179 1.179 1.171 1.171 1.175 1.173 13 9.6 1.171 1.177 1.177 1.178 1.178 1.178 1.169 14 9.4 1.161 1.182 1.182 1.183 1.183 1.181 1.162 15 92 1.157 1.187 1.187 1.187 1.187 1.187 1.161 16 9.0 1.159 1.191 1.191 1.191 1.191 1.191 1.168 17 8.8 1.167 1.197 1.197 1.197 1.197 1.197 1.181 18 8.6 1.172 1.206 1.206 1.206 1.206 1.205 1.19 19 8.4 1.176 1.214 1.214 1.214 1.214 1.214 1.2 20 8.2 i178 1.220 1220 1.220 1.220 1.220 1208 21 8.0 1.178 1.223 1.223 1.223 1223 1.223 1.216 22 7.8 1.177 1.225 1.225 1.225 1.225 1.226 1.223 23 7.6 1.174 1.225 1.225 1.225 1.225 1.231 1.232 24 7.4 1.17 1.223 1.223 IJ:'23 1.223 1.24 1.241 l
25 7.2 1.164 1.219 1.219 1.219 1.219 1.247 1.247 26 7.0 1.157 1.213 1.213 1.213 1.213 1.25 1.25 l
27 6.8 1.149 1.206 1.206 1.206 1.206 1.251 1.251 28 6.6 1.14 1.195 1.195 1.195 1.195 1.247 1.247 29 6.4 1.129 1.184 1.184 1.184 1.184 1.243 1.243 l
30 6.2 1.117 1.171 1.171 1.171 1.171 1232 1.232 31 6.0 1.102 1.159 1.159 1.159 1.159 1.223 1.223 l
32 5.8 1.091 1.148 1.148 1.148 1.148 1207 1.207 l
33 5.6 1.081 1.133 1.133 1.133 1.133 1.19 1.19 34 5.4 1.081 1.122 1.122 1.122 1.122 1.169 1.169 35 5.2 1.084 1.115 1.115 1.115 1.115 1.145 1.145 36 5.0 1.093 1.116 1.116 1.116 1.116 1.131 1.131 37 4.8 1.101 1.119 1.119 1.119 1.119 1.129 1.129 38 4.6 1.109 1.122 1.122 1.122 1.122 1.13 1.13 39 4.4 1.116 1.123 1.123 1.124 1.124 1.131 1.131 40 4.2 1.122 1.124 1.124 1.124 1.124 1.131 1.131 41 4.0 1.127 1.127 1.127 1.124 1.124 1.129 1.129 42 3.8 1.135 1.134 1.134 1.123 1.123 1.125 1.125 43 3.6 1.143 1.143 1.143 1.122 1.122 1.121 1.121 44 3.4 1.152 1.152 1.152 1.120 1.120 1.117 1.117 45 3.2 1.161 1.161 1.161 1.123 1.123 1.119 1.119 46 3.0 1.169 1.169 1.169 1.128 1.128 1.123 1.123 47 2.8 1.176 1.176 1.176 1.137 1.137 1.131 1.131 48 2.6 1.185 1.185 1.185 1.145 1.145 1.14 1.14 49 2.4 1.194 1.194 1.194 1.153 1.153 1.149 1.149 50 2.2 1.202 1.202 1.202 1.16 1.160 1.157 1.157 51 2.0 121 1.21 1.21 1.167 1.167 1.165 1.165 52 1.8 1.218 1.218 1.218 1.173 1.173 1.171 1.171 The core height of the node is given by CORHT,ft = 12.2 - 0.2* NODE.
Node 10 is at the top of the core, node 52 at the bottcm.
N1Cll/BW COLR Rev 0 (Sep 94)
Page 10 i
i
i.
[
FIGURE 5 N(Z) FUNCTION FOR N1C11 i
0 - 1000 MWD /MTU BURNUP l
l 1 26 1 24 1.22
\\
\\
l 1.2
/
l
/
I 18
-g NZl i t 16 V
1 14
\\
l 12 11 4
1 08 1 06 0
2 4
6 8
10 12 CORKT; CORE HEIGHT. ft N1C11/BW COIR Rev 0 (Sep 94)
Page 11
~~
FIGURE 6 N(Z) FUNCTION FOR N1C11 1000 - 3000 M MTU BURNUP I 26 1.24
[
1,22
\\
12 l
/
/
l.18 V
I i1.16 i
1 14
\\J 1
l 1.1 1 08 1 06 0
2 4
6 8
10 12
)
CORHT; CORE HEIGHT.ft N1C11/BW COLR Rev 0 (Sep 94)
Page 12 I
e j
FIGURE 7 N(Z) FUNCTION FOR N1C11 3000 - 5000 MWD /MTU BURNUP t 26
)
i :4
)
i::
\\
\\
12 l
l l
/
i is v
l i
i NZ3i1.16 l
i i4
! 12 l
11 1
i i
l 1 08 1 06 0
2 4
6 8
10 12 CORifT g CORE HEIGHT,ft N1C11/BW COLR Rev 0 (Sep 94)
Page 13 i
FIGUPI 8 N(Z) FUNCTION FOR N1C11 5000 - 7000 MWD /MTU BURNUP 1 26 1 24
\\
,=
1:
i 13
\\
\\
N24i1 16
\\
1 14 1.12 II l
l 1 08 1 06 0
2 4
6 8
10 12 CORHT; CORE HEIGHT.ft N1C11/BW COLR Rev 0 (Sep 94) page 14 i
t i
RGURE 9 N(Z) FUNCTION FOR N1Cl1 l
7000 - 9000 MWD /MTU BURNUP 1 26 i
1 24
[
I 22 l2 l
1 18
\\
i1.16
\\
l 14 en
/
Ia V
11 I 08 l
i 1 06 2
4 6
I2 CORHT; I
CORE HEIGHT.ft N1C11/BW COLR Rev 0 (Sep 94)
Page 15
l FIGURE 10 N(Z) FUNCTION FOR N1Cl1 9000 - 17600 MWD /MTU BURhTJP 1 26 1 24
/
\\
2:
i l
i2 I
1.18 j
\\
\\
NZ6 1 16
}
l 14
/
t 12 y
I I1 1 08 l
1 06 0
2 4
6 8
10 12 CORHT; CORE HEIGHT.ft N1C11/BW CCIA Rev 0 (Sep 94)
Page 16
FIGURE 11 N(Z) FUNCTION FOR NICll ABOVE 17600 MWD /MTU BURNUP 4
i i
1.26
)
i 1 24 I
i:2 3
1 i
i t:
b' E
E la f
NZ7
\\
i 1.16 t
i 14 i 12 1i 1 08 0
2 4
6 8
10 12 CORHT; CORE HEIGHT ft N1C11/BW COLR Rev 0 (Sep 94)
Page 17
_.