ML20107K114
| ML20107K114 | |
| Person / Time | |
|---|---|
| Site: | North Anna |
| Issue date: | 05/31/1995 |
| From: | VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | |
| Shared Package | |
| ML20107K112 | List: |
| References | |
| NUDOCS 9604250430 | |
| Download: ML20107K114 (16) | |
Text
-
.j -
i 4
i CORE OPERATING LIMITS REPORT North Anna 2 Cycle 11 Pattern UM Revision 0 May 1995 d
4 l
1
)
i 4
e i
j 9604250430 960422 ge Y PDR ADOCK 05000339 P
\\
N2C11/UM COLR Rev 0 May 1995 Page 1 r
4 i
CORE OPERATING LIMITS N2C11 Pattern UM i
1.O INTRODUCTION The Core Operating Limits Report (COLR) ' for North Anna Unit 2 Cycle 11 l
has been prepared in accordance with Technical Specification. 6.9.1.7.
I The technical specifications affected by this report are listed below:
1 3/4.1.1.4 Moderator Temperature Coefficient 3/4.1.3.5
. Shutdown Bank Insertion Limit 3/4.1.3.6 Control Bank Insertion Limits 3/4.2.1 Axial Flux. Difference 3/4.2.2 IIsat Flux Hot Channel Factor i
3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor and Power Factor Multiplier 3
The cycle-specific parameter limits for North Anna'2 Cycle 11 for the specifications listed above are provided on the following pages, and were developed using the NRC-approved methodologies specified in Technical Specification 6.9.1.7.
1 4
4 l
4 l
1 i
j.
I N2C11/UM COLR Rev 0 May 1995 Page 2 j
e s
- 2.0 OPERATING LIMITS 2.1 Moderator Tamperature coefficient (Specification 3/4.1.1.4) 4 1
2.1.1 The moderator temperature coefficient (MTC) limits are:
'The BOC/ARO-MTC shall be less positive than or equal to
+0.6E-4 Ak/k/'F below 70 percent of RATED THERMAL POWER.
The BOC/ARO-MTC shall be less positive than or equal to O (zero) Ak/k/'F at or above 70 percent of RATED THERMAL POWER.
)
The EOC/ARO/RTP-MTC shall be less negative than -5.0E-4 Ak/k/'F.
2.1.2 The MTC surveillance limits are:
The 300 ppm /ARO/RTP-MTC should be less negative than or equal to -4.0E-4 Ak/k/'F.
l 1
The 60 ppm /ARO/RTP-MTC should be less negative than or equal to -4.7E-04 Ak/k/'F.
4 where:
BOC - Beginning of Cycle ARO - All Rods Out EOC - End of Cycle 1
RTP - RATED THERMAL POWER 2.2 Shutdown Bank Insertion Limit (Specification 3/4.1.3.5) 2.2.1 The shutdown rods shall be withdrawn to at least 225 steps.
I 2.3 control Bank Insertion Limits (Specification 3/4.1.3.6) 2.3.1 The control rod banks shall be limited in physical insertion as shown in Figure 1.
2.4 Axial Flux Difference (Specification 3/4.2.1) 2.4.1 The AXIAL FLUX DIFFERENCE Limit:s are provided in Figures 2a and 2b.
N2C11/UM COLR Rev 0 May 1995 Page 3
,r' 2.5 Heat Flux Hot Channel Factor-FQ(Z) (Specification 3/4.2.2) 2.5.1 The Fg(Z) limits ares g
2.19 Fg(Z) s ---
- K(Z) for P > 0.5 P
Pg(Z) s 4.38
- K(Z) for P s 0.5 THERMAL POWER where:
P = -------------------, and RATED THERMAL POWER K(Z) is provided in Figure 3 2.5.3 The Fg(Z) Survei21ance limits are:
2.19 X(Z) g(Z)M for P > 0.5 s ---
F P
N(2)
K(Z) g(Z)M for P s 0.5 s 4.38
- F N(Z)
THERMAL POWER where:
P = -------------------
RATED THERMAL POWER K(Z) is provided in Figure 3, and N(Z) is a non-equilibrium multiplier on Fo(Z)M to account for power distribution transients during normar operation, provided
)
in Table 1 and plotted in Figures 4 through 10.
The top and bottom 15% of the core is excluded per Technical Specification 4.2.2.2.G.
2.6 Nuclear Enthalpy Rise Hot Channel Factor - FAH(N) and Power Factor Multiplier (Specification 3/4.2.3)
FAH(N) s 1.49 * (1 + 0.3 * (1 - P))
THERMAL POWER where:
P = -------------------
RATED THERMAL POWER j
N2C11/UM COLR Rev 0 May 1995 Page 4
Tablo 1 N2C11 NORMAL OPERATION N(z) 's Height 0 to 1000 1000 to 3000 3000 to 5000 5000 to 7000 7000 to 9000 9000 to 17600 17600 to EOC l
Node (feeQ MWDMTU MWDMTU MWDMTU MWDMTU MWDMTU MWDMTU MWDMTU 1
10 10.2 1.173 1.173 1.181 1.181 1.181 1.181
'1.177 11 10.0 1.166 1.166 1.175 1.175 1.175 1.175 1.175 12 9.8 1.158 1.158 1.172 1.172 1.172 1.172 1.170 13 9.6 1.151 1.151 1.176 1.176 1.176 1.176 1.168 14 9.4 1.146 1.146 1.181 1.181 1.181 1.181 1.168 15 9.2 1.145 1.145 1.187 1.187 1.187 1.187 1.174 16 9.0 1.143 1.143 1.194 1.194 1.194 1.194 1.183 17 8.8 1.141 1.141 1.205 1.205 1.205 1.205 1.194 18 8.6 1.137 1.137 1.214 1.214 1.214 1213 1.204 19 8.4 1.140 1.140 1.219 1.219 1.219 1.219 1.212 20 8.2 1.144 1.144 1224 1.224 1.224 1.223 1.219 1
21 8.0 1.149 1.149 1.225 1.225 1.225 1.225 1.223 22 7.8 1.156 1.156 1.225 1.225 1.225 1,228 1.227 23 7.6 1.160 1.160 1.223 1.223 1.223 1.230 1.230 24 7.4 1.160 1.160 1.220 1.220 1.220 1.233 1.233 1
25 7.2 1.158 1.158 1.218 1.218 1.218 1.234 1.234 26 7.0 1.153 1.153 1.212 1.212 1.212 1.233 1.233 27 6.8 1.146 1.146 1.206 1.206 1.20S 1.235 1.235 28 6.6 1.136 1.136 1.1W 1.195 1.195 1.233 1.233 i
29 6.4 1.126 1.126 1.182 1.182 1.182 1.231 1.231 30 6.2 1.116 1.116 1.168 1.168 1.168 1.223 1.223 3
31 6.0 1.105 1.105 1.157 1.157 1.157 1.216 1.216 32 5.8 1.097 1.097 1.148 1.148 1.148 1.202 1.202 33 5.6 1.090 1.090 1.137 1.137 1.137 1.189 1.189 1
34 5.4 1.092 1.092 1.129 1.129 1.129 1.169 1.169 35 5.2 1.093 1.093 1.119 1.119 1.119 1.143 1.143 36 5.0 1.099 1.099 1.116 1.117 1.117 1.126 1.124 37 4.8 1.108 1.108 1.119 1.120 1.120 1.123 1.123 38 4.6 1.119 1.119 1.124 1.125 1.125 1.127 1.127, 39 4.4 1.128 1.128 1.129 -
1.126 1.126 1.132 1.132 j
40 4.2 1.136 1.136 1.135 1.127 1.127 1.136 1.136 41 4.0 1.144 1.144 1.143 1.126 1.126 1.138 1.138 42 3.8 1.152 1.152 1.151 1.124 1.124 1.tas 1.139 43 3.6 1.160 1.160 1.160 1.123 1.123 1.139 1.139 44 3.4 1.170 1.170 1.170 1.124 1.124 1.136 1.136 45 3.2 1.180 1.180 1.180 1.124 1.124 1.136 1.136 46 3.0 1.190 1.190 1.190 1.122 1.122 1.140 1.140 47 2.8 1.197 1.197 1.197 1.123 1.123 1.148 1.148 48 2.6 1.205 1.205 1.205 1.129 1.129 1.156 1.156 49 2.4 1.211 1.211 1.211 1.138 1.138 1.165 1.165 50 2.2 1.220 1.220 1.220 1.146 1.146 1.173 p.173 51 2.0 1.229 1.229 1.229 1.152 1.152 1.179 1.179 52 1.8 1.238 1.238 1.238 1.157 1.157 1.184 1.184 i
N2C11/UM COLR Rev 0 May 1995 Page 5
i-Figura 1 North Anna Unit 2 cycle 11 CONTROL ROD BANK INSERTION LIMITS
- FUWr wrrHDRAWN = 225 I
230
.c--,---,
i i
i
'f i i
i r
220 fi e
f i
e 20 i
. f.
t 6
e f
i l
2M f,
t i
e i
i fI O R,1MP /
t t
190
, j; f
.f.
.f 180 f,_,,,,, _,
i fi
-w.
170
,f
.f f,
g o 1e0 l j', !
l l
,f E
s0 i
i i
1 g
/
i i
fi Om y
t i
e tfl e
g f!
I f
a 130 g,
y
- i f
i 120 in'n,,,3 l'
l l
i f
11 0 i.
I i
t I f I
g
, f;,,,,,
"3 100 l
f i
E m;
i 4.',..
i o
E. i i
e sf:
i i
g 6
O 70 i l
l f
a:
i r
I I
f l
t g
27 l
i i
t i
I t
I f
l
[
j i
i f
t i
i g
t /
t a
6 t
f
?
y
?
. fi t
/8 6
i I
g f
i f
l I
6 t
10 '
i f8 i
I t
t 6
9 i
f ta naa n) i t.
i 6
i t
0.
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 FUt1Y INSERTED FRACTION OF RATED THERMAL POWER N2C11/UM COLR Rev 0 May 1995 Page 6
.___m-Figuro 2a N2C11 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER (BOC to 5000 MWD /MTU)
~120 110 1-12,1 X) ti,100) 3 Unaccoptet>le
/
\\
Unacceptabl e 2
Operatior
/
\\
Operation 80
(
/
Acceptat'le
\\
g 70
/
Operaticn
\\
3 w
E
/
\\
o 60 i
25, 50)
H 20, 50) 50
$i H
40 E
l u
{
30 20 10 0
30
-20
-10 0
10 20 30 PERCENT FLUX DIFFERENCE (DELTA-1)
N2C11/UM COLR Rev 0 May.1995 Page 7
,e Figura 2b N2C11 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER (5000 MWD /MTU to EOC) 120 110 100
(-12,1C E,100) 3 Unacceptable /
\\
Unacc sptabh 2
Ogeration /
\\
Ope ation d
[
Acceptable
\\
Cperation
\\
j j
E
/
\\
B 6
i H
(27,00)
( + 20, 50) 50 o
H 40 j
5o 6
30 1
20 10 0
30
-20
-10 0
10 20 30 PERCENT FLUX DIFFERENCE (DELTA l) l N2C11/UM COLR Rev 0 May 1995 Page 8
Figura 3
,e K(Z) - NORMALIZED FQ AS A FUNCTION OF CORE HEIGHT 1.2 1.0 m %,N 0;,1.0)
@ 0.8 02, 0.925) 0 11.
O Wda i
4 0.6 l
seO
~
~
Z l
8 0.4 2
0.2 0.0 l
0 1
2 3
4 5
6 7
8 9
10 11 12 CORE HEIGHT IN FT s
u.
N2C11/UM COLR Rev 0 May 1995 Page 9
Figure 4.
N2C11 NON-EQUILIBRIUM MULTIPLIER 0 - 1000 MWD /MTU BURNUP 1.300 1.250 1.200 4
/
O l ' 'sc y
8 1.100 1.050 1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT, FT
'- N2C11/UM COLR May 1995 Page 10
l o'
,e Figure 5 N2011 NON-EQUILIBRIUM MULTIPLIER 1000 - 3000 MWD /MTU BURNUP 1.300-4 1.250 1.200 l
O 1.150 v'
l 1.100 1.050 Y
1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT, FT N2C11/UM COLR May 1995 Page 11
Figure 6 N2011 NON-EQUILIBRIUM MULTIPLIER 3000 - 5000 MWD /MTU BURNUP 1.300 1.250 1.200 a
l 1.150 8z 1.100 t
1.050 1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT, FT N2C11/UM COLR May 1995 Page 12
Figure 7 N2C11 NON-EQUILIBRIUM MULTIPLIER 5000-7000 MWD /MTU BURNUP 1.300 1.250 1.200
/
l I 1.150
.i aE 1.100 1.050 1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT, FT N2C11/UM COLR May 1995 Page 13
Feure8 N2011 NON EQUILlBRIUM MULTIPUER 7000 - 9000 MWD /MTU BURNUP 1.300 1.250 1.200 i
/
1,150 2E 1.100 J
1.050 1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 CORE HEIGHT. FT N2C11/UM COLR May 1995 Page 14
,o Figure 9 a
N2C11 NON EQUILIBRIUM MULTIPLIER 9000-17600 MWD /MTU BURNUP 1.300 4
I 1.250 1.200
\\
/
4 9
1.150 c
1.100 1.050 4
1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 i
CORE HEIGHT, FT N2011/UM COLR May 1995 Page 15 J
l 1
i 4
Figure 10 N2C11 NON EQUILIBRIUM MULTIPLIER 17600 MWD /MTU to EOC 1.300 1.250 1.200
\\
i 1.150 1
1.100 1.050 I
1.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 l
i -
CORE HEIGHT, FT
\\
\\
N2C11/UM COLR May 1995 Page 16