ML20078P961
| ML20078P961 | |
| Person / Time | |
|---|---|
| Site: | North Anna |
| Issue date: | 11/30/1994 |
| From: | Brookmire T, Miller W, Nicholson A VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | |
| Shared Package | |
| ML20078P960 | List: |
| References | |
| NE-999, NE-999-R, NE-999-R00, NUDOCS 9412210070 | |
| Download: ML20078P961 (54) | |
Text
..
s
..s..
..= -.;.
- s...
..t.
's
.-..,+.. -...
- s.,
,. -.i- -.i..
a.
....,c.
-..,.. -. ~,
- .. ~..
- - y: - :,.. ? ',' :[ l.[
[. f,- - -,' ' '_- ~..
.. I ' '., I. .
-'l
- ;j
,C
.'s
[...
.y,. '
- :T 2
.c,.
. -..,. i
.y c.
.I,.,l.,.*^
[
, l
~
^
t ',
s c
li '. -
... ~
i - :
p * +... :.
q.
_s
.. ;. A g
r
...n....
... s c.
z.
t
,,L.
e,),
a.,
G-i '
. \\._[
'q -
s.,.
. y;
..; g.,. -
r m
e, 7
-.. -.....s..-
- n.. '.,. '.......
1.
t
,. -. a
..s........
..,;.g... _ < ~............
............ <, ~- :.. r
.7_.;... ;;
.n
[,-
..:,;. [;.
~>
- s. - -,...
s.,,..... - ;',. -
. r
.s e.:
~ -...
f z.
6
.y,
,j' ',. -..
,,. r...
r.,
. :., ~..... _.
<,.. j,- i..
. 3.
': -. ;, 3., j,t
- y... ' t,
. _ 1..
..n,_.
~*f ;'..
, '.. -..-3. -
=. :. _ _,,
..s c..,',.' +,.... '.
,<,, - *; -..t.
y.: -
- . h j,. . '...,, ' )
.-..., u.
. i..
s
~.......
s-m: u
.t
.. -,*. \\ ; ::. ' '
s.
, : :.,.. 4a r
~'
,, ',....... r:.
t
... !...,...1..
- s - - :,.... y ;. ;.. _. '...> ' - j. '..).'._%.2.-*[.*
'....... -'~'...,.[
l,
- f. f..'q.r -,. :..,.,.
~.-
, ~.
..','_V.-.,,..,'.s
..... ~ '. '..,.,.-. 4
,. j.....,.
.. :. c.
..c,.
~_
., 3
...,, ' '.l.; !_.,..,.,
p..<L
[;'-
o..
- [,. _ ', f,
- v.,.
q.._.
<.n '. ;.:f.. '-
'J.
s
.W.'
j.
.,,<c...',qL..-
.e..-,....%.,..',,,7.,.~*
..i,.
.e-, s. s..
3 y ;
j.
.,t..
l,.,. "".
- G'
- ' ^-,^ - - _.. _..
c'.,,...
, ' 's.
c.,..
.. ;..,. c... _;,,,,......L e \\
...,. ~.,
.,; w.
r,
-. v.
.,u
- ' ;,,.' : ::y $,
i s i.
,), '".^. ;.'. c. "t. -,,.., ', :*'->
',E,,.. c.',-
,.' +,
',..i ':.....,
.Ur -.,.
1 V,.,
o
~.
6
.t
+
,p
'.,..,..-, - -...... -,..... -...,.c...
l'.l L h. i. h.,**..,. ' w ':: :'e..
L',.;., '. ;,., '.. '
- f le '
l.[' Q.:, ;, n,,.i.,
g., :
'l * '.; i 'z, ;;y.\\'.>'..,,.., l'.,l.<;
i,vi:....,..
- n
,. j u. ;,.[ c.,. 'c I. L. ; ; y '..,..,
'.Y,.;.f,h!..-.,.....
k.f,....,.,.;,.. s.,..
.......... t 5
.,.i
- , Y ?,
A
,s y..
', '.V. n. f...?.b, :I. L...
,. l b ' O - l '...Y :....,.',f .. ". 'l.,', E... : :
- . f , '
' Y
. ?,U_'.[ + l' '.
{
a.:,, <... p s ;.n. s ca,3., ;
f
,1,.e..>:...
- r
~. -
.....,.?..,..,-
a..,.
..,r,...
.. ~...,,-,..n..,,,...
.'..y...,.,,,.,..-,: '.:
>.s
- t. c.
.v
.'a.,
.,,.,,.e 3 a
....;'~.,.'>
,..,.;.,.'l..;}../...,,....
.._..g.
p r...,
,,i
.-. i.,...'
s
?....'..r.s..
n..
- ..
- ',.,.,. '.
- .,,.r'.'..a.
- ,.
'g*[; '_.p,..., '. V.. 71 [. 5.*Q,.,;3g i.,..[ c. 9,
, p:..... l' s._. y e..,t. i.
, - a
, ?.
- y., ; j *..., '..,L. f \\..,,.,. *.,. ;.;, '....
-'M.'
J.
.s
' !,,s.
n
...,ci.
.o m:f.f.. .s:.
%:a* '.. 4 '.,. '.; -,:
.,
- i &,,:...=..,...'.?'.:
- y-
, s
=.., ',,,. >. ', i;;. ;:;.:
t,.'. :.,~ ! c ::'Q.. ;).,..,. L
..g '$.
.4
,,; '..,%.j..
4 a.
.... :. t
....[. i :. f.s*.. ' *.'.:.,.'.*..
9 k,..,*s.p...e-^:s,4 ll,.
,',..,6:-.l
,.JA.%.,,..',..'.;*
3,.,. j :.e.-
.y
- n
. a. a'... ';;;; ;.:).<'. -.:..,s,~.. ',...
e' ce:s <.1
.s
'e j
<5 e U *.,., ' * '.
r y ",;.A 4.c'..,..?:
L i.,_ ~:
s a i,.
?.,,.+,.
,v 0'
a-, ;. ;p
,.;y.
- r, ', c, r,. J..
qa.
,ef4
- c,:
.pr,.a..
f,
'y m.- b.,*'.i,..i..
',.... g..m o.;,..i.,,
z,..
a*.
,,.g.
5,,
u
... ?,g ~e;
- .,e..
- fj r; f;;l
' (.f, ' * +-,... ~ p *.?.. i;.,. ~ _ '.l5.
.....,,.'v....,
,l,
....,'y,..
v
.s,*..,'g*A.:;.;> e..'..,,4 _ _ s.:' ';*,;**.~..',t
~.. _:
a, ;,.
..,..!.g p.
.t,;.
- .,-...f.*'.,.' v.,,_, >A';;.'.
.,\\
'.;,,,. *,.,. '.s
..:n_','.,..-.
.',> Y... :.L...,.;,,*
'.s,.
- f..
.,. ;. e
..;r....
, 4 _. 's
- q s.
a,s
- .,- :., *.;. :. ; A.
c p'
.*..',Q.,l'.
1._,' ;
'c...y):,;*;..;.' m. u
.y..:. 3
.. % c. ; 4'.,'., '. -' 9 q, s, :.n.Q ;<.e?:. ; j.w L.. s.,..,.a. s.. ;L. :. ;>..';'.~
1
', *. ~..
.t'
,s..
. -.; " < a..
-c
- o e,ag.:...
..:F;j,:, f
,..g.j,',: : ' g -Q,, '.....;.,., 7
- .l,
- .
V...,J -y.... i d =, :.,'q7.,,t<,...
, 2 *.,,' -
- -.. - e :'.: t c..
.}'.
n
...., -* *; - 1
,th 9,
.......c..'..,
A, <
s g
j y,,.-
. i:.#
-...,, y.,.,.
e,;, -
^
< c.
C
J.
s,,',,.,s. :....g;+ q
. f ~v
, 0,q
. 1
,,;,..,.,..T.'(;h,I.. '...,*-.' ' :
}7
.r e.., v,.,,1
. 3 w '.
.f, r,
., '., -* [.
,7J', '.',7,/'2l,.,.,..
., =} ', '. a,',,. h, ;,ll '...i,
,,...,.-..1'*.,.$
,I, ;.,',p.,.p,(<.,."'.'....g.,.1. ) 1.i.,
' /,. i I
..k'.
.'.i.}','...
,',y.,
, j
..a,,,,( ' ',
...,....q, g
g_...,I.,. '(_%,.
s
?g.I..
=.. v,1; ;,;..
g L.
,<r,.,.?.s.
q.
[
r t,.,,e
.*- ye.L'
..y _.;.',,
s,v, y... ;....
3,... -.s..
.,.,le.*.' A..
tt. if-.,l,,
~,.-..',is;.-
..1,*.,,.;'
. =.., *; *;. v y,.., _ ;..e
- 4.. c... J.
- .c.
,f,e,,...7
'..j",'. y;.
.-,(*; l. ".. '.. -,.-
. s.,
s,
. ',, ' :,, fg.1,..r..
4 e. -
7,'.,
.'.D'..
'.' ' \\/; % ,.,, '..,.t,,
s
..;, ;/
7[ %.:, J.,
.,,,'T g 4,.
't.'
,' 1........
,, 4ji-., -,:
h;',.+;,,.,,8,-.: },.
- I /...;
t p',
J.j .'g 7. iT 1..,
'.,'1
.,,. ( ;,,
- 2 4'...,..,{;
/,, j i.
p'.,
..+,,,,., -
l
.y
,,,,.,i.-
. i.
..,,. V8 e.. v
...n',,e,,
,,p.,.q..,...._9, i
.),..,.,.35
.?,['.
' v.h'... ;.,
'g,L.,
., 5. % +,p. */<','.'.. c'l-. '.
,..=
- .., -....,i t.' 5 p %,',' b..,.ht...q J
' '. '.;:s
.*.; V..,.
',. ~ ' ', '.
?8 p;; (~ p" '[.... '. _,.f,' N # ',,.
N
,6
.,..#..=g,., '. '. -~
.,'.,;.i :. 3.
w' a,
.*4
- i
,qg.
.y,
,..' : g :,, > i, /
- j
'*if,..
d.,
., e. i.:. #a t.
c.'s,..
..s
'e...
e *]i *,,
-. '+ . [ k.,
f,.,..,.. '. i,
,( gj, e,
- 1
.'8
.G
- f.3 f.. -
- 'A<.'.,
y,-[
a,
'.(.y,"**
.,.". q*, ~; v,,.. : :j,,.,.
- 3. >v(..;..,. 'y.,:y.a ys. 'H} ',', p '.'.m,s :;y*.. +,
.'y.:... (..' y ~..*.
- f. ((.*':.",g.'
.4, i
.: ~;*
- .;; ; ; 7. k:;.y... 9.:.s_.;.. ;v 9...p.,,.., ; y ;:,
a *;.r. v.
v
~. o g, ;'%
n :q;' lr., 4 o..,;.g f, p.,....,__....
c
,,.g w,,
- e?.. ' s.
y -.. '
3,, t.
s
.....,., g. ;,.. 4,;. ~. _.;
g t
. t:l;...,;,,
- q. g,..
. :,,& -, ', ' ;. 'L, l ' j - [. $ ; :',i, '. ;'; n..."#!;,:, j
- :. +
.',k; '. ' '. {.j Q,..g. J,; } ':;u, y ;y y}..;;f. 4,f _:,*QQ,:,,, cq g;} k /. [.
e.
a
- [;.'
- l f,:] ;.G;....,
,,, G. '
- e ' ';* '. ; ' l[. 4' [.I'-[.
(..
(',,.,I.,<,,.,..'l...[.''..[g'.
'- { * ). A i !:
Q;..;k '.}M
.?'
- ,1'
.. =. =.,.,.
'.y
'. A ,s
..N',<.,r'
[
MI-.l'.,
S'.
.'i
.. - jy,, ' g # +' " " " ' '
- p..., -i
,*,..."..,.4;*,.d. "..e [,
3'-
,..,..',$.?"r,.,
....'.['..'.. - s.,.,,.
.v./. -/ '.4.
I f
.i m./
s..
...p,.. -c 1
,d
.h
..a.
j, t
w.* I,.,
.i i. f =,),
.,,.,i::, :-l 1.:
, ; l y, ;..' _ -. '.; j o
.. 3 ;'t..'%
u s /.'
. ;s _.' : ' * 'i: :;g,{ :,* ; Q'-l;liQ ;,::'.
.f L:3.. :
.a v,.. l*
':: '..;. r]
? ! g.. - ;;....
- y;;;l,y.f..,, ~,',,,. - [..n.;.
- y; l.g...;.. a,.. '. : j _ >_ 'l
\\., _, :,,_ _..'
-l., :,}'.,. *.,
,.- s.
.N,(...,,
.. t,
-......e..,,
, ',.,,.; y 3. ' :.
..g. ;a.
%,A:i,..
., n.
,a
,.c.,-. :--: ;.-<.
,4......
. Q R. *.,r.i
...,4
, ; %;, *,u,i...... **
e.-.
v. :3
.,...*..'.'.,.,,..+i,s.,3,,.'.,*j
,,.a a,;..,,*1,'.,',=,',",.....e,.,.,',.;P
.,..,.,J..,',....%...,',.
9.
. 4 3,.'.
,m,.,..
.l
- r..
.l.',,,.-,.. '',.'r..'g
..'.s,
,. * ', * i j.,,
e.
.y. '
,.n
'cl'l,,.'f..,..
.-,, ' g (, %e,.,
s.,.,
'. - i;
'5,..',J
.s
.s.e....,,
,. - -.s'a'.
+
..., - ),- - p t
,. l /. ' -
g,;.,;.
-.y,,.
r',y
' ~
%*,"n :,,-,.
1,.-
='
'^.'.,.,.:,...,,,,,...,, '..,. :-
's.*.e-,...>g.,,'
- 1. '.;. *. q. ',', },
&..y;. ' :. "L '",,,'.. ' :[;; ' 5 y y;,. 9
.r :,
"8,p'
',+ ;.-
,'y, L
,.g,
. ','...l. '. '
'.s.
t'...
.s
-'.,.,;yl...'. '., ?,?;.. A, *..
'...g.
M
.i >
,s
'..,j.U,*..
J,.
.,, y, l.. (,. o. - ;. a:. - <- :p,l';;Q ; l 9. 6 T
... ', '.,,.'r.
4./,.
. +, *
- 'F
..;.f.'
.1'.'
.. =,..
.... s A _ _.,; ;[. *,. ;,1,. } l* .'9
.. J. l,:
(:
- m..;, f<.,;
r.'
- - 4 s.., l-s s
'3
- e. J i *,$l, '-}th,,' o.""'#' ". c '*.g.' -'o s.
- .i-/'.5',h.
,..,,i.-:.1,.gk';*p.',,"."',,-
, -,,, j
.6
'.j, '
J.,.
.j,*q !.
,,V;. b
'*..'.,i...
' '- i-
- . )., '. '., }...e.,'g
.., W, i 1:;. g*. j '.i. -
' [ p, '.h r
..',.',,1. >,5-f'C.S..
.,/,,'.'..
l
- 3' n -
..."..g'.?,,'.,/.'.,.,'...
e,,,'
v.-(
.....'..,','J.
_ _.,...l[ _
- a
., 4.,*n'.,;.'.2 P*.a..
s;%* :,. f. e,. s,
- .'-l~
.'"a.
.)*..'.'.
'..,,0 i m,r'. ',
^-
.a
,,,,,'...,.,....i....,
,.e
.4,.. ' L, -
.4.?,'.-
+o.
- ) %' g *f. ; ; 4,3.. '.',
. s
?
.Q. < r* 3; ; y n,,s.,-"/.,, ' 9., e e,,..;
(
js.,s,
, e
's'
.,\\',
- ,s4
/,
i g,.,'., ;. _..'
1.
3.,c'.,.,','.,;',.
af
,.u;;S,.:: ;gs'.,;;..,.'s
- W..q',
- ,*..,\\'
- g,-[*,l:
,'y., sl. i r..,'.. a,[.;,,
g' p;:
.;., v q:
y,
..[i 1 "':' s 7 's.,.., U,;1, I ' $'['s ',i '.Th*[ !,'> i. b' ' i c ' yy [d '[e.. ) M' _ _. 3,,,.;..
..g,.;,.
- .g
,.,,. n, 4....
,;. ; y
,,2 i-j N'll,. s i, c.9 l *,I,[.4A.
,y,'y. ', D.' b ? '..,.
.7,1
,'l 'b,. J ' f'. r &,. '? '.,* '
.l^. ) l N. *,\\p.', ';l(re'. Of. 'Y' :' f.. *
- t+.
'.'r,'
M. ' ;t' '.'W,.". i.
',s,
]; 'Y, '; f('
if
- f-K'** E.
b'.)
e
,.,.A.*:.
..)'.
f'..
'[; )' i. y$ -
ei.
I '.. ?. sAs,,'
+*'*{%*) U
- Y T
Q Y.
.{
- _=
t.L ' i;' I '
' *% ' v 1,,;,"
- -"!" ' p
- 1:fAWQ. 9 'M'g !/ @'
a)p" a'
4..*V (.$ f '*?, '
.s / 06;'e ' '
r l,*4 * *
,(.M & 3..y' 'I.t [1 M' '
.e Q :p.
.Mf?.., V/.[W4.m,v;'#.,.;'.
d.,;v WP W y, s., =y/.....N.,*.. ; '.'.4.. G,.^. N.., ?l'/.(:.,
.- F-s,Q;. f. '
fM.e?
e,J 4
..e c.Mp: n.* gh h
M,... % y. /
y'..i :w -. ; t.
i, ;.~ :
t
".c%.<;; y
.'1 4
J, y:;y:qf,G,, y, 9-a.i +
i.,
,c.
-;g,,,.,
,1..,,
. q, e.'.'...g.],.'.;. _ ?
.,"b.,
h,.. 'n." : ;
.q m.) '
.',.L, ; f,7.,... ;, J,.,,,_,., j
, f[ _. ~,.:
r; d.7 9.
,l' f,. p
.s
.,u ( e
.4
'(.l, %:f...],$. @;.. f cSio '/W ~ 6. %./,'.i,4 { d.ft d[: li.:C i ' '.y* ;,'.t....
g p
g
'.$(U@
",e c., fj....^
a*.
...-Ji,',,' -.' ;.,
'.,=*,6',,,.)p.%
..',t
.e
.g *,.:
f,
.C,l.,,...... y
.'.a.g
. u
,.,k.;*'
.g j
'.;+,.., ' y J...
y -.':: > t +.
.s
? ',f, ;;;,' **,..,. s ; c *[, '. s.c.~ y * ** f,, i t,,
. {e!.. e y,
.,. ;. so'.',,'
,, s,
.s.-
fU...
?r ', '.' 'g,
. y,.,., '.;:, '_ j N IS.[Ij <.k., ' ;,.h'..
l ; '
.~
I Nf'. -[.t:
s.... ;,...
s,..
y.-
... I, ' '
....~......e.sy.
j.....,
" ~
".{..[ 5
,Q.( h,h'hf M],y.' "f,'y. y;.;.g ( h",
,[.' -[ f..;
.. m,.. y 9...m_. y..y wy.gv.y,.. 4..,g,. ;,.;9..,g.,. gyg[.)i.;[.,'[( -[,: f.'.(R hh ( )y,c g,
. s.
.., [
- f
" m....
,..,s.
,5 s.
.(, g....
- [**.,'
'{,.'
....._'[
J,,,
....,s.',
p 7,#-s-f.. ' '
,,,.',; +
'[
,,f..'.*
,,.,',=8 g.g e
Y
w.. w 3
4s,n% 4 &c W,h t( ' t.
a, v n'( 4 A % nh r
t w g3 3
'\\g %
- g (
L\\.
~N.
4 p4
. 'N
,'3 :.
,I(%. /( e.
n s
s 3 -
1
\\;
%. - 73 i'.
%.. '3.' %x vp y-4
-A
' ?.+.
., N.
y, '3 4.,v. < A ;f
- A
{4'.
4
<q.
.a 4,
b s.
y y:),
\\}- 5 \\q y\\. Q \\g.
,g 4 : '.;\\ $33 9 m
1.
o4,,,,s : c tQ. 3 y:. 4.,
- 4. g
,;.. c:s e.-
c,.
a -
..s g-.
9 j.-
y
(.'.:/3
\\
h, f Ja \\'-[k 'i l k C
4 \\ t. 4,,4 N
's y
\\;- T!:.
VJ 5.x
'4 '.C s,l'- l %
\\." :\\
s ' '%
'\\; c ^a.
%i
'\\e4) Q, %, 3,.
s e
x.
'y s.g, q,z4 y-
\\J't, tg Q) w-49.,
g'eccs g
- .s
- : 8, t;g x;3
's Wg
'(,. ?g s :2 hY,
'(.ys
- c. 1 N
(
,\\ O y
o m'
k?\\
,w't --(g:, g [g g
i Q\\
e%
s%. % #
w m^k i
OA TM q
J a
a a
6.
nNorth
.enna Unit 1 Cycle 10 Core Pe ormance Report Nuclear Analysis and Fuel Nuclear Engineering Services November,1994 h
VIRGINIA POWER
TECHNICAL REPORT NE-999 - REV. O I
t h0RTH ANNA UNIT 1, CYCLE 10 l
CORE PERFORMANCE REPORT t
1 NUCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING SERVICES VIRGINIA POWER NOVEMBER, 1994
-PREPARED BY:
.I-Il f 5 'I4 W. S. Miller Date REVIEWED BY: L.O.3 ktp h uns/w A. H. Nicholson Date REVIEWED BY: T
/
e-T. A. Brookmire Date REVIEWED BY:
//*2T f[
- A. P. Main Date APPROVED BY:
Y/
4 D. Dzifdosz [/
Date QA Category: Nuclear Safety Related i
Keywords: N1C10, NICA, Core Performonce Report
,m
=-..-.,, -..
r-,
o CLASSIFICATION / DISCLAIMER The data, techniques, information, and conclusions in this report have been prepared solely for use by Virginia Electric and Power Company (the Company), and they may not be appropriate for use in situations other than those for which they have been specifically prepared.
The Company therefore makes no claim or warranty whatsoever, express or. implied, as to their accuracy, usefulness, or applicability.
In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusions in it.
By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein.
In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it.
NE-999 NIC10 Core Performance Report Page 1 of 52
TABLE OF CONTENTS PAGE Table of Contents 2
List of Tables.
3 List of Figures.
4 Section 1 Introduction and Summary.
6 Section 2 Burnup.
. 13 Section 3 Reactivity Depletion.
. 23 Section 4 Power Distribution.
. 25 Section 5 Primary Coolant Activity.
. 45 Section 6 Conclusions.
. 50 Section 7 References.
. 51
(
1 l
l l
NE-999 NIC10 Core Performance Report Ppge 2 of 52
LIST OF TABLES TABLE TITLE PAGE 4.1 Summary of Flux Maps for Routine Operation 29 5
h NE-999 NIC10 Core Performance Report Ppge 3 of 52
i i
i LIST OF FIGURES-l r
. FIGURE TITLE PAGE i
1 1.1 Core Loading Map...
9 1.2 Burnable Poison and Source Assembly Locations.
10 1.3 Available Movable Detector Locations.
11 i
1.4 Control Rod Locations.
12 2.1 Cycle Burnup History..
15 i
2.2 Monthly Average Load Factors.
16 t
i 2.3 Assemblywise Accumulated Burnup: Measured and Predicted..
17 l
2.4 Assemblywise Accumulated Burnup: Comparison of I
Heasured and Predicted.
18 2.5A Sub-Batch Burnup Sharing.
19 l
i 2.5B Sub-Batch Burnup Sharing.
. 20 i
2.5C Sub-Batch Burnup Sharing.
. 21 I
2.5D Sub-Batch Burnup Sharing.
. 22 3.1 Critical Boron Concentration versus Burnup - HFP-ARO.
. 24 i
4.1 Assemblywise Power Distribution - N1-10-04.
. 30 4.2 Assemblywise Power Distribution - N1-10-12.
. 31 -
r 4.3 Assemblywise Power Distribution - N1-10-18.
. 32 i
4.4 Hot Channel Factor Normalized Operating Envelope
. 33
}
i 4.5 Heat Flux Hot Channel Far. tor, F (Z) - N1-10-04.
34
[
q i
4.6 Ileat Flux Hot Channel Factor, F (Z) - N1-10-12.
. 35 i
q 4.7 Heat Flux Hot Channel Fac.or, F (Z) - N1-10-18.
. 36 1
q 4.8 Maximum Heat Flux Hot Channel Factor, F (Z)*P, vs.
q Axial Position.
...............37 NE-999 NIC10 Core Performance Report Pgge 4 of 52
4 LIST OF FIGURES (continued)
FIGURE TITLE PAGE 4.9 Maximum Heat Flux Hot Channel Factor, F (Z), vs. Burnup.
. 38 q
4.10 Maximum Enthalpy Rise Hot Channel Factor, F-delta-H, vs. Burnup 39 4.11 Target Delta Flux vs. Burnup
. 40 4.12 Core Average Axial Power Distribution - N1-1D-04
. 41 4.13 Core Average Axial Power Distribution - N1-10-12
. 42 4.14 Core Average Axial Power Distribution - N1-10-18
. 43 4.15 Core Average Axial Peaking Factor vs. Burnup
. 44 5.1 Dose Equivalent I-131 vs. Time
. 48 5.2 1-131/1-133 Activity Ratio vs. Time.
49 i
1 l
)
NE-999 NIC10 Core Performance Report Page 5 of 52
i 3
Section 1 l
+
INTRODUCTION AND
SUMMARY
I i
On September 09, 1991, North Anna Unit I completed Cycle 10.
Since the initial criticality of Cycle 10 on April 09, 1993, the' reactor core 8
produced approximately 1.1707 x 10 MBTU -(19,652 Megawatt days per metric ton of contained uranium).
The purpose of this report is to'present an i
analysis of the core performance for routine operation during Cycle' 10.
The physics tests that were performed during the startup of this_ cycle were covered in the North Anna Unit 1, Cycle 10 Start., Physics Tests 1
Report and, therefore, will not be included here.
t i
North Anna Unit 1 was in coastdown from June 23, 1994, at which time i
the burnup was approximately 17,288 MWD /MTU. The coastdown accounted for i
an additional core burnup of roughly 2,364 MWD /MTU from the end of reactivity.
t i
The Cycle 10 core consisted of 11 sub-batches of fuel: tt.o once-burned I
batches from Cycle 9 (batches 11A and 11B); five twice-burned batches, -
l two from Cycles 6 and 7 (batches 8A and 8B), one from Cycles 7 and 9 (batch 9B), one from Cycles 8 and 9 (ba.ch 10A), and one from North Anna 2 Cycles 2 and 3 (batch N2/4); one thrice-burned batch from Cycles 4, 5, and 6
[
(batch 6); and three fresh batches (batches 12A, 12B, and N2/11A).
The North Anna 1 Cycle 10 core loading map specifying the fuel batch NE-999 NIC10 Core Performance Report P4ge 6 of 52
identifications and fuel assembly locations is shown in Figure 1.1.
The burnable poison locations and source assembly locations are shown in Figure 1.2.
Movable detector locations are shown in Figure 1.3.
Control rod locations are shown in Figure 1.4, Routine core follow involves the analysis of four principal performance indicators.
These are burnup distribution,' reactivity depletion, power distribution, and primary coolant activity.
The core burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, thereby ensuring that the fuel held over for the next cycle will be compatible with the new fuel that is inserted.
Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate at what burnup level refueling will be required.
Core power distribution follow includes the monitoring of nuclear hot channel 8
factors to verify that they are within the Technical Specifications limits, thereby ensuring that adequate margins for linear power density and critical heat flux thermal limits are maintained.
Lastly, as part of normal core follow, the primary coolant activity is monitored to assess the status of the fuel cladding integrity and to compare the concentration of dose equivalent I-131 in the reactor coolant with the limits specified by the North Anna Unit 1 Technical Specifications".
Each these four performance indicators for the North Anna Unit 1, Cycle 10 core is discussed in detail in the body of this report.
The results are summari ed below:
NE-999 NIC10 Core Performance Report Pgge 7 of 52
I
- 1. Burnup - The burnup tilt (deviation from quadrant symmetry) on-the core was no greater than to.84% with the burnup accumulation in j
each batch deviating from design prediction by no more than 2.33%.
- 2. Reactivity Depletion. - The critical boron concentration, t
used to monitor reactivity depletion, was consistently within 10.41 AK/K l
of the design prediction which is within the 1%'AK/K margin allowed by Section 4.1.1.1.2 of the Technical Specifications.
i 3.
Power Distribution Incore flux uaps taken. each month indicated that the assemblywise radial power distributions deviated from the design predictions by a maximum average difference of 2.1%.
All hot.
.t channel factors met their respective _ Technical Specifications limits.
t 4.
Primary Coolant Activity The average. dose equivalent iodine-131 activity level in the primary coolant during Cycle.10 was approximately 0.00603 pCi/gm.
This corresponds to less than 1% of the l
operating limit for the concentration of radiolodine in the primary l
coolant.
An evaluation of the radioiodine and noble gas concentration in the RCS indicated that there were no defective fuel rods.
t 4
i NE-999 NIC10 Core Per,formance Report,
P9ge 8 of 52
~
b Figure 1.1 NORTH ANNA UNIT 1 - CYCLE 10 CORE LOADING MAP R
'P N
M 5
E J
H C
F E
D C
a A
I lea vs a neA i l Kit An2 l als i 1
1 I
I l
i I as 1 Ila 1 12s i lls i als I ala i as 1 l H41 l CAS 14sf I SA) ll 4s1 i R&2 1 h34 l 2
1 I
I I
1 i
l i 6 I its i its 1 its I als als i 12s 1 12s i 6 l
l l F38 l Zsa l 3sl l See 1 5s4 6As I ts? I 3s5 i F69 1 3
i 1
1 1
f_,
I i
'I i
r i 6 I als 1 its 1 als IM2/11A1 als IN2/llal 11s i 12s 1 11s 1 6 i F53 1 6A F 1 sal l Saa i eL6 4 646 i eL4 1 %A4 I ss9 3 5A2 i F5e 4
1 i
j i
I I
i i
l i
I l se i 12s l 12s i its l 12A i sta l 12A 1 IIA i 12A i 11s 1 12s I its
- 1. as l l not I sas 1 est i 6At I too a eat I as! i 2As I osa i 4Al I 5st i See l H33 1 5
1 1
I l
l i
I I
I I
l_
l I
I i
i lla i its i Ils 1 82A l !!A 1 tra i lla i 12A I alA 1 12 A 1 nas i 12s I tia 1 i
i eA6 1 364 1 6A3 1 260 t t&o 1 est I saa 1 es6 i eA4 i ess 1 3As 1 3s2 I las 1 6
i 1
i l
1 1
I l
i I
I I
l i 10A I its i Ils IM2/4:41 IIA i 12A 1 11A 1 12A i llA 1 124 1 ItA IN2/llAl lla l 12s 1 19A 1; I N19 4 6s0 1 4As l SLS I 2A2 i 154 1 2A5 1 009 l SA9 1 las i 1A1 1 OL2 1 5A5 i es5 l 8 25 ll
?
i i
i i
l i
1 i
l i
I I
i l
1 1 sa l !!s I its a las i 12A I alA i 12A I M2/4 1 12A i 184 l 12A 1 nla I its I tis I sa 1 H23 1 3A6 1 581 1 5A1 I oss I #A5 1 157 1 Ret I est 1 2A9 i !st i 4A1 1 2ss 1 5&9 1 H25 8
i 1
i 1
I i
l I
i l
I I
i l
I I
i 10A 4 its i its IN2/llAl lle i 12A 1 &lA i 12A 1 !!A l 12A l !! A IN2/llAl lls i 128 l 10A
(
i K33 1 350 14Ae I sta 1 2A4 i ist i IAF l ese 1 2A3 l 182 1 2A6 1 OL5 1 143 1 3aa 1 E35 9
l i
i l
1 f
I I
i 1
1 1
1 1
l l &la l Als I its 1 12A i !!A i 124 i !!A i 124 l 11A i 12A l Als l Its l 114 l l IAs 1 464 1 4 A4 1 Zs2 i 1A5 1 284 i sat I is6 1 2A1 1 467 1 6A0' l Es4 'l 1A1 1 le i
l 1
1 l~
I j
i l
i l
1 1
l I sa l 12s l 12e l Ils l 12A 1 IRA i 12A l lla i 12A Ils 1 12s i 12s i as I r
i H35 l ses 1 386 1 6A4 1 1st i 342 I 189 i eAF i 263 5A6 1 3s3 1 esa i Het 1 11 i
1 1
1 I
I I
l l
t 1
1 1
1 6 1 1ss i 12s i its (N2/ll Al ils lN2/Ilal lls i its i lls 1 6 l
t i F33 14A5 i es9 I 6Al I ett 1 547 1 ot? I 4AF i 289 I 4A9 i F61 l 12 1
1 1
1 I
i i
i l
I 1
i I 6 1 12s l 12s I sts 1 12s i las i its 1 12s t 6 i
i F60 1 460 1 5B9 I 4&6 l es6 1 3A9 l 367 1 es5 l F51 l 13 1
1 1
I l
I i
l i
i i as i 11A 1 its I tas i 12s i 11A se i i H36 j 2AF i 2s4 1 4A2 l Ss2 l IA6 H43 1 14 1
1 1
1 1
1 1
1 10A 1 && l 404 1 l
l==> sATCH l R 13 l HOF 1 E22 l 15 l
(==> ASSE MsLV ID l
l t
l l
l L
t FLifL A$stMsLY DESICM PARAMETERS sus salCH 6
4A as 9s 19A lla 11s l2a 12s M2/4 N2/ IIA INITI AL ENRICHMENT 3.59 3.60 3.se 3.99 3.80 4.01 4.19 4.00 4.21 3.41 4.02 l
IW/0 U-2353 A$$tMsLY TYPE
!?al?
17:17 17s17 17:17 IFalF 17:17 17:17 17:17 17:17 17:17 IFair HUMBER OF AS$tMattfS a
3 4
I s
la 32 24 36 a
FUEL RODS PCR AS$fMali 264 264 264 264 244 264 264 264 264 264 264 t
i NE-999 NIC10 Core Performance Report Pgge 9 of 52
4
.= -.
4_
u 4
a a
. Figure 1.2 NORTH ANNA UNIT 1 - CYCLE 10 BURNABLE POISON AND SOURCE i
ASSEMBLY LOCATIONS l
R P
d M-t K
J H
G F
E D
C a
A i
i i
i i
11 i
l 11 L
1 l
l' 1
- I i
l l
l I
ll l
l 1
2 1
1 I
I w I 2*P 1 top 1 2*P
.I 6P i i
i 1
- sp237 ISP193 isP217 11 lapl94 I BP239 i I
.3 I
1 I
il I
l' 1
I i
1 1 top i I
top i $s2e I top l l top i a
1 i
l ISProl 1 6 5P:45.8 IsPta6 l IsP202 l l
l 4
I I
I i
1 l_
1 I
I I
I I
i i e i top i i 20P i i top I ll ZoP l l 20P $ 6P I l
1 isP23a isples I isPP21 I isP213 I ISP222 4 18P204 IsP240 l l
5 1
1 1
I I
I I
I l
i l
I l
I i 2*P l
l 2ep i
' ~l Zop 1 l Zop I top I 26P 1 1
I isP195 1 ISP223 1 18P224 isP225 18P226 IsP196 i i
6 I
I I
I I
l-I I
i I
i I
i i
1 20P i I top i 16p i i 2ep i 1 top 1 1
i 1
1' isPler I isp227 1 18P209 I IsP228 1 Isplas'l 1
l 7
i i
i l
i i
l 1
i l
i l
I i top I i top 1 i 16p 1; I aw l l Zop I l 20p i l
i I
isP238 l lap 214 l 1s9212 l' isP211 1 1 sP215 11 18P219 I l
l 4
l 1
l 1
I I
i i
i I
I H
l i
l I
I l
l t top i i top i i tw I top I top i l
l l
I i
l IsPia9 I IsP229 i lsP210 l sP239 l sP190 i i
l 1
9 1
I I
I I
I i
1 1
I
~I I
I I
I I
I i
1 24P l l 20p i i top. l l 20p,
I top i rep l 1
i isPl*F i ISP231 I laptar l 18P233 I isP234 isP19s l l
le f
f i
l l
l I
I l
1 I
L i
i i p i top l l lop l l fop l l top i
- 1. Zop i p I
l l
itP243 isP205 1 18P235 l lsP216 l
ISP236 I ISP206 IsP241 l
11 i
1 l
i i
l i
1 l
1 l
i i
1 I
l 1 fop i l fop 1 $$19.
20P i j 20P l
l l
l LIP 207 1 ISP198 l l sP192 l lsP268 I
l 12 l
l l
l l
l l
l l
ll t
I t
i 1 6p l 24P l 1 Zop l l 24P l @
l i
l Ibp244 18P199 i
'sP220 1 lepree itP242 1
13 l
I l
i l
l l
1 l
i 1
l 1:
1 i
l i
1 1
I i
1 14 I
i 1
1 I
I 8
l
\\
l 6P
- 6 sURNABLE PCISON ROD CLU$fER l
l i
16P
- 16 suRNastE POISON POD CLUSTER 1
i 15 l'
20P
- 29 suRNAstE POISDN B00 CLU$fER 24P - 24 suPNAstE POISON ROD CLUSTER SSun
- SECONDARY SOURCE I a P or $5aa l = NO. OF sp RODS or SECONDARY SOURCE ID l
BPsaw I
- BP ASSENstY 10 i
I I
NE-999 N1C10 Core Performance Report Page 10 of 52
.e Figure 1.3 NORTH ANNA UNIT 1 - CYCLE 10 AVAILABLE MOVABLE DETECTOR LOCATIONS R
P N
M L
E J
H C
F E
D C
8 A
I I
i l
l l Mo 1 1
1 i
l i
l i
I i
I I
i i
l I
i i
t 1
I Mo l 1
2 I
I 1
1 I
f I
I I
I i
1== 1 1
i l
i l
i Mo I I
i Mo i no i l
1 1 Mo I 3
I i
1 1
1 1
I I
1 1
I I
I I
I i
l i
I i
i i
i i
! Mo I l
l Mo 1 i Mo I i
1 i
4 1
1 t
1 I
I I
I I
I I
t i
i 1
1 1
1 I
I I
I i
1 i
l 6
l Mo l I Mo l 1 no l I
I i Mo l Mo 1 i Mo i 5
1 1
i l
1 I
I i
1 1
1 1
1 1
i 1
1 i
i l
i 1
1 ** 1 1
1 1
1 1
1 l
l Mo I 1
l Mo i 1 No 1 I
i 1
1 6
t i
1 I
i i
1 1
1 l
I t
i I
I I
I I
I I
I i
1 i
i l
i 1
1 1
1 1
I no I I
I i no I i no 1 I
I Mo I i Mo i 1
7 I
i f
i i
i i
l i
I I
I I
I i
l i== 1 1
1 I
I i
l i
I i
1 1
1 i
i 1 Mo 1 l Mo 1 i no 1 I
I i
i Mo 1 i
1 Mo i No 1 i
a 1
i i
l I
i 1
i t
i I
i 1
i i
i 8
i i
l 1
i i
1 i
==1 1
1 1
1 1
1 I
i i
l l Mo l I
I I Mo 1 Mo l l
1 1
1 Mo I 9
1 1
1 i
l 1
i i
i l
i l
i l
1 1
1 1
1 1
1 1
1 1
1 1
1 1.
1 I
I I Mo I i
i i no 1 I
I I
I Mo i l Mo I le i
i i
I t
1 I
I i
i l
i l
1 1
1 1
1 i
i l
i l
l I
I i
i 1
i 1
1 Mo I I
i Mo i I Mo 1 Mo i I
I I
Il 1
1 I
I I
t i
i i
l 1
I f
1 1
1 l
l l
1 1
1 1
1 i
i 1 Mo I i
l l MD 1 1
i i
1 Mo I Mo i 12 l
1 I
t 1
I i
i l
i l
i l
i i
i i
t i
t i
l l
I i
i i no l I Mo I 1
i is 1
I I
i i
l I
i l
i i
l i
I I
I i
1 1 Mo l I
i i Mo I i
l 14 1
1 I
I I
I I
1 Mo
- Movable Detector i
1 i
l se - Locatibns not available for 1 Mo l l
l 15 flus mapping system for Cycle le 1
l l
l NE-999 NIC10 Core Performance Report Page 11 of 52
Figure 1.4 NORTH ANNA UNIT 1 - CYCLE 10 CONTROL ROD LOCATIONS R
P N
N L
K J
N G
F E
D C
a A
180' l
Loop c l
l l
l Loop e 1
Outlet I
l l
l Inlet Nl l' l l*l l' l V
N-41 1
1 l
l sA l l s4 1 1 se l l
N-43,
'3 1
1 1
I I
I I
I I
I i
ic I la 1 i
i 1e I ic l l
4 I
i l
i l
I I
i l
i I
I I
I se I i se I i sr i I
I l ss l I
l l
s I
I I
i l
i l
i I
I I
I I
I lA 1 Ie i lo l lc I Io i 1a l 1A l 6
Loop c I
1 l
l 1
l l
l l
l l
1 l
l Loop a Inlet\\l l
l sA l l
l l so l l so l l sr I i sa l i
l outlet 7
1 1
I i
i i
l l
l 1
1 I
I I
I lf '
90'M i o I l
l lc l l
l lc I I
I Io l 1727e a-1 I
I I
I l
1 1
1 I
I I
I I
I l
l l
l sa 1 i sP 1 iso l I sa 1 i
i I sA i l
l 9
1 I
I I
I I
I I
I I
I I
I I
I I
IA l 1e l l0 l lC l lD l l s I lA l le i
I I
I I
i 1
1 1
l I
l l
I i
1 l
I sa 1 I
i i se i i sa l I sr I i
11 i
I I
I I
I I
I I
I I
I I
l' l
lc I le I i
i ie l lc l l
12 F
1 1
1 1
1 1
I I
I I
I I
i l sr i i sa l I sa l l
I l
is N-44 l
l l
l l
l l
l l
l N-42 1
1A 1 Io 1 IA I i
14 I
I I
I I
i 1
i i
l i
N 15 Loop l
l l
l Loop A Absorber Outlet Inlet i
Material I
jg l
Ag-In-Cd e'
Function Humber of Clusters CALLED NORTN Control sank D 8
Control sank C a
Control sank e a
Control sank A 8
l shutdown sank ss 8
shutdown sank sA 8
se tspore Rod Locational 8
NE-999 N1C10 Core Performance Report Page 12 of 52
_ _ _~.
i I
i Section 2 1
BURNUP '
The burnup history for the North Anna Unit 1,
Cycle 10 core is.
[.i graphically depicted in Figure 2.1.
The North Anna 1, Cycle - 10 : core i
achieved a burnup of 19,652 MWD /MTU. As shown in Figure 2.2, 'the average load factor for Cycle 10 was 95.5% when referenced to rated thermal power (2893 MW(t)).
Unit 1 performed a power coastdown starting on June 23, 1994 until shutdown for refueling on September 9, 1994.
i Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed 8
burnup distribution analysis.
The TOTE computer code is used to calculate these assemblywise burnups.
Figure 2.3 is a radial burnup distribution map in which the core assemblywise burnup accumulation at i
the end of Cycle 10 operation is given.
For comparison purposes, the design values are also given. Figure 2.4 is a radial burnup distribution map in which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 10 operation is also given. As can be seen from this figure, the accumulated assembly burnups were generally within 3.46% of the predicted values.
I In addition, deviation from quadrant symmetry in the core throughout the cycle was no greater than 0. 84 T..
L The burnup sharing on a batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle batch 4
NE-999 NIC10 Core Performance Report Page 13 of 52
i I
burnup predictions to be made for use in reload-fuel design studies.
Batch definitions are given in Figure 1.1.
As seen in Figures 2.5A',. 2.5B,.
2.5C, and 2.50, the batch burnup sharing for North Anna 1,
Cycle - 10 followed design predictions closely.
Batches 9B and N2/4 had batch burnups that deviated from predicted by as' much as 2.33% and -2.16%,
respectively.- The maximum differences occurred at BOC.for both batches.
Each of these batches was comprised of a single. assembly.,The burnups for all other batches were within 2". of the predicted values throughout n
the duration of Cycle 10.
Symmetric burnup in conjunction with agreement-between actual and predicted assemblywise burnups and batch burnup l
sharing indicate that the Cycle 10 core did deplete as designed.
i b
t i
i 1
l I
f NE-999 NIC10 Core Performance Report Page 14 of 52
Figure 2.1 l
NORTH ANNA UNIT 1 - CYCLE 10 CYCLE BURNUP HISTORY I
II I
l l
l l
l
"'"{p4_p4_p4_p+____._.t.a_ H _.
_ q _ u _.
l l
l l
l l
l l
l I r l
111:2 i
i l
l I
l l
l
/r inn.
I l
l l
l l
/-
"'" 1 I
II I
II I
I l /
I S'"""i l
I II I
I I
I I
I
/
l g ' w". 3 2
I I
I l
l 1
1 V n
j n:= 1 I
I I
I II I
I/
l sun :
1 1
I I
II
/
E '"" 1 I
I Il
/
Il E '"" )
l I
I Il
/
I I
I m nn g "" 1 I
l l
/
l 2 nn !
l l
l l/
b ""1 I
I If I
""i l
I/I I
i
"" i I
fl I
I 1
l fl l
I l
i
""i l
If I
l l
1 21:0 1
If I
I l
l
""l /
I I
I 3
i e
i i
i e
i e
i I
3333333333333333333 E
3 $ 3 E. 3 0
3
- 3, 3 5 3 E E E. 3 E. 3.E TIME (MONDi5)
MAXIMUM Ot..,1GN BURNUP -
20500 MWD /MTV NE-999 NIC10 Core Performance Report Page 15 of 52
LOAD FACTOR (%)
7 e
a
.9 ca A
(n m
s cn e
o i
o o
o o
o o
o o
o o
o z
I 1
i i
i i
i l
5 APR-93 MAY-93 o
.R JUN-93 JUL-93 m
i 3,
AUG-93 1
gg i
SEP-93 35 i
u g
OCT-93 e -
<g NOV-93
$5, i
m j
DEC-93 g
[Ej O
JAN-94 z
--i FEB-94 "e ~i u' r
MAR-94 m0
>a t
APR-94 sumunummune El N O
MAY-94 E5 JUN-94
,y JUL-94 t
U AUG-94 SEP-94 K
2 CYCLE AVG
~
M 1
l I
1 I,
l Figure 2.3 l
NORTH ANNA UNIT 1 - CYCLE 10 ASSEMBLYWISE ACCUMULATED BURNUP MEASURED AND PREDICTED (GWlDg/M:rU) a P
n a
t a
s n
s r
c o
C 4
a 1
1 45.271 51.711 42.111 l ME ASURED 1 1
1 43.101 50.601 43.101 1 PPEDICTED l 2
i 42.461 39 031 19.841 38.151 20.028 34.981 43.238 2
......................1 20.16l 34.15l 20.16) 38.971 43.061 1 43.061 34.97 3
1 43.941 28.001 23.338 46.871 24.951 47.301 24.381 21.451 44.281 3
............................1 46. 991 25. 2 21 44. 991 F4. 0 F i.21.121 4 3.4 51.......
1 43.458 21.121 24.47 4
1 42. b3 4 37.821 25.151 44.741 26.551 4 7.661 26.561 46.14.l 25.491 37.491 43.25 6 4
1 42.458 37.731 25.221 45.391 26.441 47.931 26.441 45.391 25.221 17.731 43.421 5
1 42.131 20.691 24.711 66.941 26.161 50.574 26.824 50.491 26.791 48.071 24.931 21.861 43.191 5
...................................1 49. 8 21 26. 301 49. 821 26. 291 4 7. 671 25.12 4 21. 06 8 43. 581 1 43.501 21.061 25.121 47.678 26.29 6
l 19.151 23.976 45. 74 l 25.781 49.971 26.368 49.611 26.351 50.051 26.028 44.641 23.761 38.791 6
1 38.971 24.971 45.311 26.25l 49.621 25.928 49.141 25.921 49.621 26.251 45.3t l 24.071 38.971 7
1 42.701 20.184 47.021 26.071 48.771 25.781 49.211 26.781 48.421 26.331 50.011 25.644 46.871 19.851 43.431 7
.....................................................................1 49. 81 1 26. 441 46. 9 51 2 0. 2 21 4 3. 231 1 43.231 20.221 46.958 26.441 49.811 25.901 49.091 26.481 49.091 25.90 4
1 43.951 37.854 25.041 47.591 25.951 48.721 26.741 47.841 26.451 48.871 25.941 48.228 24.871 38.581 44.84l 8
j
....................................................................................4 25.381 38.231 44.231 j 44.231 34.231 25.381 4 7.941 26.261 49.151 26.4 71 48.191 26.471 49.151 26.261 4 7.94 9
8 42.611 19.551 46.431 26.021 49.44l 25.781 44.931 25.781 47.958 25.571 49.438 26.251 46.471 20.461 42.761 9
I 43.238 20.221 46.951 24.441 49.411 25.901 49.091 26.481 49.091 25.401 49.811 26.448 46.951 20.221 43.231 le 1 38.211 23.231 45.10 8 26.751 49.938 25.261 47.781 25.351 44.35l 26.0tl 45.I n t 24.581 38.921 le 1 38.971 24.071 45.311 26.251 49.621 25.924 49.181 25.921 49.621 26.251 45.34l 24.071 38.971 Il I 43.298 21.071 25.341 47.871 26.818 44.364 25.631 48.431 25.921 47.001 25.511 21.481 43.244 11
...........................................................................................1 1 43.508 21.061 25.121 47.678 26.291 49.82l 26.301 49.821 26.291 47.671 25.128 21.041 43.50 12 l 43.641 37.358 25.661 45.651 25.721 46.291 25.618 44.931 25.071 37.491 43.731 It 1 43.421 37.738 25.228 45.391 26.444 47.938 26.441 45.391 25.221 37.731 43.421 13 1 43.52l 23.691 24.111 46.03l 24.731 46.641 23.311 20.761 43.381 13 1 43.451 24.121 24.078 46.991 25.221 46.998 24.871 21.121 43.451 14 1 42.701 39.018 20.16l 34.431 19.701 34.161 42.541 14
..........................................1 43.861......
1 43.868 54.971 20.161 34.151 20.161 38.97 15 1 43.221 43.778 42.938 15 l 43.101 44.131 43.181 R
P N
M i
K J
M C
F E
D C
8 a
1 1
l l
l NE-999 NIC10 Core Performance Report Page 17 of 52
Figure 2.4 NORTH ANNA UNIT 1 - CYCLE 10 ASSEMBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED (GWD/MTU)
R P
M M
L J
N C
F E
O C
8 A
l 43.271 51.711 42.181 1 ML A5UPf D 1 I
l e.381 2.191 -2.311 1 M/P 2 DIFF l 2
3 4t.461 39. ell 19.681 3a.15l Re.stl 38.981 43.!!l 2
1 1.391 8.let 1.418 e.sel 0.041 0.341
...........................-0.641 3
1 43.94 4 f t.sel 23.331 46.871 24.951 47.101 24.381 21.451 44.281 3
l 1.121 0.688 3.181 0.261 -1.o61 e.241 1.264 1.571 1.901 4
1 4F.531 37.421 25.154 44.748 26.551 47.661 26.568 46.141 25.491 17.491 43.t51 4
l e.901 6.241.e.251.l.448 e.4tl.e.561 0.461 1.666 1.088 e.651.e. ell 5
1 42. 8 31 28.691 24.111 46.941 26.16 6 St.571 26. All 5e.491 26. 791 44.4 71 24.931 21.e61 43.191 5
l 3.151 1.751 -1.641 -1.531 0.47) 1.511
- 2. ell 1.35 0.851 -e.761 0.001 -0.721
........................................................1.1.891 6
1 19.851 23.971 45.74 5 25.784 49.971 26.36 8 49.611 26.351 St.45l 26.821 44.641 23.761 34.791 6
) s.461 0.141 0.951 -l.791 e.7el 3.684 e.6al I.651 0.868 -0.891 -1.401 -1.251 -e.471 7
l 42.701 te.Ill 47.071 26.s71 44.771 25.781 49.274 26.781 48.421 F6.331 50.011 F5.641 46.871 19.851 43.431 7
I -1.231 -e.551 0.161 1.401 2.091.e.751 e.381 1.121 -1.361 1 65l e.4el -3.031 -0.171 -1.531 8.461 8
1 4 3.951 37.651 25.e41 47.591 25.951 44.721 26.74 8 4 7.641 26.451 46.871 25.941 46.221 24.47) 38.581 44.841 4
1.081 -0.731 -0.101 -0.561 1.221 e.581 -1.681 0.921 1.386 1 -0.631 0.971..l.02 8 -e.731 -1.161 -0.47 8 9
1 42.611 19.551 46.8 31 26.o71 49.44 l 25.781 48.0 31 25.781 47.951 25.571 49.431 F6.251 46 c
.i.464 42.761 9
r 1st I.lel l -1.451 -3.141 -1.961 -1.574 -e.74 6 -e.491 +2.151 -2.641 -2.321 -1.291 -0.771 -0.701.l.4 le 4 38.211 23.231 45.101 26.751 49.938 25.261 47.741 25.351 44.351 26.021 45.111 24.581 38.921 le
................................... 8..2. 5 71 - 2. 84 8 + 2. 2 31
- 2. 55 8 -e. 891 - 0. 4 2 8..............................................8
.e.141 I -l.961 3.461 G.451 1.911 e.62 2.12 Il 1 4 3.201 21.0 71 25.341 4 7.a 71 26.0 8 8 48.361 25.631 45.4 3l 25.921 4 7.88 5 25.511 21.481 43.241 11
) +0.691 0.051 e.851 e.421 -1.061 -2.921 -2.554 -2.sel -1.411 -1.418 1.541 2.001 -0.541 12 1 43.641 37.351 25.668 45.651 25.721 46.291 25.611 44.938 25.071 17.491 43.738 12 1 0.518
.l. ell 1.77 0.581 -2.738 -3.431 -3.151 -1.081 -0.571 -0.661 0.708
.....................1........................................................
........---.-.-.-. 13 13 1 43.521 21.691 24.111 46.031 24.731 46.641 23.511 28.761 43.381
$ a.461 2.671 0.141 -2.84 8 -1.94 6 -e 741 -3.161 *l.721 -0.171 1 ARITHefflC AVC I IpC3 p1yy..e.5Ii
--.------***---*-- 14 14 1 42.701 39.081 20.361 34.431 19.7el 36.168 42.561 1 e.sel e.let
- e. ell e.731 -2.261 -2. ort.l.171 15 1 Si&NDAPs Dtv l l 43.221 43.778 42.931 l AVC AS$ PCT l 15 I
. e.a5 l
I 8.278 -e. art -e.411 I OlFF = 1.21 I R
P M
M L
E J
H C
F E
O C
B A
BATCH SHARING IMWD/MTU)
BATCH NO. OF BOC BATCH EOC BATCH CYCLE ASSENBLIES BURNUP BURNUP BURNUP N2/4 1
27,919 4?,838 19,919 N2/11A 8
0 26,053 26,053 BURNUP TILT 6
8 35,878 63,532 7,654 8A 3
38,126 44,186 6,060 NW = 0.21 l NE e 0.76 88 8
36,294 03,835 6,541
l------------
98 1
45,754 F1,707 5,953 SW = -0.41 l SE = -0.57 10A 8
37,357 42,879 5,522 11A 28 26,759 40,167 19,408 118 32 22,968 4e,310 21,342 12A 24 0
16,092 26,092 128 36 0
22,805 22,805 CYCLE AVERACE ACCUNULATED BURNUP e 19,652 NE-999 NIC10 Core Performance Report Page 18 of 52
Figure 2.5A NORTH ANNA UNIT 1 - CYCLE 10 SUB-BATCH BURNUP SHARING SUB-BATCH
,,,,,,, i,
,.,,,,,, i
,, i i i i i i,,
,, i,, i i..f 48
...,, i,,
, e..,, ia N2/4
,,,, i,,
i i i. i i i i i o i o
..,,, i,
, i.,, i i sw i i
..., i. i i,,,, i i f,.
i i g
l l l'
l l ff l,.L. P SUB-BATCH
,,,,, i,
, i i f -" '
6 i i i i i _ v'm' "i 40 i i., i g
,,,, i _,w, es, i i i i. i i
-p-6 4
fe'i e
i e i e e i SUB-BATCH
,, i i <-, i i, i i i i i i wr
_ 36 6
, fv i,,,,,,,,,,
N2/11A e
i i. - >
i, i.. i,,,, i i 5
/s i
i, i i i i, i i i i 6
i...
C
,A, i i i i e i i i, i i i i i
- n 32 x,,
/V i i il l
i l
i i i e
i i i i i i i
j j
Q
/,y
... i,,.... i i.., i i
I 5t
~
...... i.. i i i i, i i,.,
CL 28 l
6 i,, i. i. i, i i,,,
i....... i i i i. i i..
..sj l
Q
, i, e i a
i i i i i i e i e i
!. p o j
ZE i i e
.. i e i i 4 e i i e i i i m.
D 24
,o E
i e i i i i i i i i l i i t
i Ljl I
i T
.. i i..
, e i i i i i i si i i 6 Q
i,..... 6 i i i, i i,j, i, e p 20
,fe.,
, i 4
., i i i i, i
- , e
, i CD i.. i i i i i,f,
, i i,
f gg i i e
i i i, e p, i e i
i i e i.
, i im i ! e i i
i 3
, i i,,
, i i
,, i i i
, u w
i e
i i
, 7 i
6
, i i i i i e i i i i i
,y i, i i..
. i i 12 i.... i i pi i i i i i
. i i i.. i i e
i jp i, e i i i e
i i i i i i i i is[
l l
i l
i i i i
l i
.A i.. i 4
8
.... iz.
i..
4
, i i i i,
i
.,,, f 6 i i i,,, i i i i, i i
e i fi i i i e i e i i t i e i j
vf i, i i i.... i..
4 i.
4 es.,, i i..
i if i f i e
e i i i i t
t i
t i
t i i 1
fi i i i i i e i, e i 6
e i.. i 0*
0 2
4 6
8 10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU) 11NES ARE PREDICTED VAI.UES, SYMBOLS ARE hEASURED VALUES.
NE-999 NIC10 Core Performance Report Page 19 of 52
- 7.,
w-Figure 2.5B NORTH ANNA UNIT 1 - CYCLE 10 SUB-BATCH BURNUP SHARING l
45 SUB-BATCH 8A 44 O
l!
ll
! !l!!!!
lM
, SUB-BATCH 43 lIIIII I
- l. l l l
O!
O i
IIIii'::'l I /6 /n;'~
i 42 ll
!llIi ll[Nl/io;Ili E
ll l
Ill M
~ M b! !
ll f
I I
liW II?i lill i
1 I
Ifi' i /J 9 1 1 l l l l
lI ll lII I
0 g 3, I
kPl ! M c lill ll i
g L4 I/lol Illill ll
" 38
!/ b! I l l i ll llllll 37 Jilllill'!!!!Ill!I!I w
36 il ll
,I
. i i
35 0
2 4
6 8
10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)
LINES ARE PREDICTED VALUES SYMBOLS ARE MEASURED VALUES.
NE-999 NIC10 Core Performance Report Page 20 of 52
Figure 2.5C NORTH ANNA UNIT 1 - CYCLE 10 SUB-BATCll BURNUP SilARING 56 SUB-BATCH 9B 52
,, ' /Nl( Y~_M
\\
., i
, i, i.
e l
A 4% A_/,~v V 4
i, i
! _Ai < b V.3
" +,,
x 48
.'fs,' y s '; ^" ', ',
SUB-BATCH
- p m
N y.,
v up 10A uw, 44 o
u l
,~
SUB-BATCH f,
9 40
.- m.-,,,,,,
F 12A g
,O m
w i, i e
~ 32 g
7 Z
E 28 i,,,,,,,,..
D
,a m
. s f,
.p
,y
=*- 47
,y i i, i.,
O s
f, H< 20
,.,,.,,...,,, 76
.. i
,f, m.
O f.
D
, pt
,, i.., i u) 16
,2 t
f, fi i
i
,.,,../
12
,f, i
e i i i.,,,,,
.f.
i
.f.
, y!
e 8
f f,
f.
./;
4 A
i i.
i,..
< /'
i,
. i,.
O^
0 2
4 6
8 10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU) r LINLS ARE PREDICTED V.'d.UES, SYhGOLS ARE MEASURED VALUES.
I P ge 21 of 52 NE-999 NIC10 Core Performance Report 0
Figure 2.5D NORTil ANNA UNIT 1 - CYCLE 10 SUB-BATCil BURNUP S!!ARING 48 i
- i i i,,...,
, -r' SUB-BATCH i
- i i i i,, i,,,,, e i,
.,, i.,,, i i i e
i,, x%
11A i.,,,,,, i i i
,x w 44
.., i i i,,,,,
I
,, ix,e o
..,,,, i,,,,
, w,,f,
' ' ', i. ' i, i
-i es t e, i SUB-BATCH 40 i a' M ' " '
i i #i i, i, 11B i..,,.. i i, ie i x,,,,,,
i im i sf i w
36 3
,'.' l lN [.lll SUB-BATCH
,e, v, I
i,,,,,,,,
g 128
~ 32 v ', i,m" ' -' ' ' ' ' ' ' ' ' ' 'i 2
i i i e i, i,,,i o
2 A.
>A i.,, i i i i i, i ir
/vi 2 i. i i i i i i i i i i i i O
_'M
. i /1 i, i i e i i,,,,,,,
~ 28 f
,f, 1
Ai, i i i e i i i, i !,, e,,
YI I
l l
l i
l t
i,,
l i
l l
g g
$24 ^P
>.'iiiiiiiii,,e,' j A
i i 3
6 I
i i i i I
I I
i,, i i g,
g i i i i e i i e i e i, e i e e i
,p IO 20
's' M,'
- i > > > i i i !.
i,,,
' ', i i l
i i l
i i i
t i
i i,,
,fv
.. i,, i, i i,
e i,
- m. j g i * ' i e i i e e i e e i yi i i i,,
m i i i i i e i i, syi,,,, i,
U e
i i i e
i i i i i, W i i i,,,,
W i
t i i i i i i e i g i a i i e, e,
i -
i i.,
sy, i i i i, i jp
.. i., i i i is i i,
i e
i i i i i A,, i i i i i i,
i e
i iy, i e i i i i, i i, i e
i..
g ivi
... i.. i...,,
W i. < i.
i i i i i i i i i i,,,
v>i e
i i i i..,, i,,
i i M i i i i e. ! i i i i i,,,
i i '
4 i
A i e i i i i.
i i i e i e i yi i i e
i. i i i i
i, i,,,
S.
i, i i,, e i e i
i i,,,,
g
'. i i i i i i e i i i e i i, i 0
2 4
6 8
10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)
WES ARE PREDICTED VALUES, SYMBOLS ARE MEASURED VALUES.
l NE-999 NIC10 Core Performance Report Page 22 of 52
- - ~
Section 3 REACTIVITY DEPLETION The primary coolant critical boron concentration is monito, red for the purposes of following core reactivity and to identify any anomalous reactivity behavior. The FOLOW' computer code was used to normalize
" actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon concentration, moderator temperature, and power level.
The normalized critical boron concentration versus burnup curve for the North Anna 1, Cycle 10 core is l
l shown in Figure 3.1.
It can be seen that the measured data typically compared to within 62 ppm of the design prediction. This corresponds to 10.41*. AK/K which is within the 1 *. AK/K criterion for reactivity anomalies set forth in Section 4.1.1.1.2 of the Technical Specifications.
i In conclusion, the trend indicated by the critical boron concentration l
I verifies that the Cycle 10 core depleted as expected without any I
l reactivity anomalies.
i l
l l
l l
l l
l NE-999 N1C10 Core Performance Report Page 23 of 52
l Figure 3.1 NORTH ANNA UNIT 1 - CYCLE 10 CRITICAL BORON CONCENTRATION vs. BURNUP (HFP,ARO) 1500 l
- 1400 (1 1300 N
1200 g
s 1100 g
h1000 g-Ni x
~
0 3
2 N'-K o m h000
{%<
=
500 400 O 300 t
\\
E=
I
\\*
U 100 I
\\
0
..,. f.
0 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 CYCLE BURNUP (GWD/MTU) i 1
MEASURED PREDICTED NE-999 NIC10 Core Performance Report Page 24 of 52
Section 4 POWER DISTRIBUTION Routine analysis of core power distribution data is necessary to verify that the hot channel factors comply with their Technical Specifications limits, and ensure that the reactor is not operating with any abnormal 1
l conditions which could cause an
" uneven" burnup distribution.
Three-di.mensional core power distributions were determined from movable detector flux map measurements using both the INCORE' and the CECOR' I
computer programs. The INCORE program was used from the beginning of the cycle through April, 1994.
The CECOR program was used from May, 1994 through the end of the cycle. A summary of all full core flux maps taken for North Anna 1, Cycle 10 is given in Table 4.1, excluding the initial power ascension flux maps which were included in the NIC10 Startup Physics Tests Report 8 Power distribution maps were generally taken at monthly intervals with additional maps taken as needed.
7adial (X-Y) core power distribution for a representative series of INCORE and CECOR flux maps are given in Figures 4.1, 4.2, and 4.3.
Figure 4.1 shows a power distribution map that was taken early in cycle life.
Figure 4.2 shows a power distribution map that was taken near mid-cycle FI ure 4.3 shows a map that was taken near the end of Cycle 10.
burnup.
F The measured relative assembly powers were generally within 6.5*. and the maximum average percent dif ference was equal to 2.1%.
In addition, as indicated by the INCORE and the CECOR tilt
- factors, the power distributions were essentially symmetric for each case.
NE-999 NIC10 Core Performance Report Page 25 of 52
.~~.
2-e i
.i An important aspect of core power distribution follow is the monitoring -
of nuclear hot channel factors.
Verification that these factors are i
within Technical Specifications limits ensures that linear power density l
and critical heat. flux limits will not be violated, thereby providing ^
adequate thermal' margin and maintaining fuel cladding integrity.
North l
Anna Unit 1 Technical Specification 3.2.2 limited the axially dependent heat flux hot channel factor, F (Z), to 2.19 x K(Z), where.K(Z) 'is the q
hot channel factor normalized operating envelope, and 2.19 is the Fq limit at rated thermal power, both as specified in the Core Operations Limit Report (COLR)'.
Figure 4.4 is a plot of the K(Z) curve associated with the 2.19 F (Z) limit.
q i
h The axially dependent heat flux hot channel factors, F (Z), for a.
q representative set of flux maps are given in Figures 4.5, 4.6, and 4.7.
{
f Throughout Cycle 10, the measured values of Fq(Z) were within the Technical Specifications limit.
A summary of the maximum values of axially-dependent heat flux hot channel factors measured during Cycle 10 l
is given in Figure 4.8.
Figure 4.9 shows the maximum values for the heat flux measured during Cycle 10.
The rise in the EOC maximum FQ(Z) data is due to being at reduced power (during the power coastdown), and is not a concern for possible technical specification violations.
The minimum margin to the F limit in the axial region covered by the Technical q
Specification 4.2.2.2 is 13.5%
for all flux maps.
(Technical Specification 4.2.2.2.g states that Fq surveillence is not appifcable in the lower core region from 0% to 15% inclusive, and the upper core region from 85% to 100% inclusive.)
i NE-999 NIC10 Core Per,formance Report Page 26 of 52
The value of the enthalpy rise hot channel factor, F-delta-H, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed. The Technical Specifications limit for this parameter is set such that the departure from nucleate boiling ratio (DNBR) limit will not be violated.
Additionally, the F-delta-if limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation.
North Anna Technical Specification 3.2.3 limited the enthalpy rise hot channel factor to 1.49(1+0.3(1-P)) for Cycle 10, where 1.49 is the F-delta-li at rated thermal power and 0.3 is the power factor multiplier, both as specified in the COLR.
A summary of the maximum values for.the enthalpy rise hot channel factor measured during Cycle 10 is given in Figure 4.10.
As can be seen from this figure, the minimum margin to the limit was approximately 3.1*.
The target delta flux
- is the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon. The delta flux is measured monthly with the core at or near these conditions and the target delta flux is established at this measured point.
To avoid adverse axial power shapes due to xenon redistribution, Cycle 10 was monitored to ensure that it was operated as much as possible at the conditions at which the target delta flux was determined.
The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately -3.5% at the Pt-Pb
- Delta Flux = ----- X 100%
where Pt = power in top of core (MW(t))
2893 Pb = power in bottom of core (MW(t))
NE-999 NIC10 Core Performance Report Pogo 27 of 52
.~
beginning of Cycle 10.
Delta flux values varied between -3.4% and -4.8%
during full power operation.
At the end of Cycle 10, the target delta flux increased to 11.2% due to the redreed power operation during the a
coastdown.
The axial power shift during the cycle can also be observed-in the corresponding. core average axial power distributions for a l
representative series of maps given in Figures 4.12 through 4.14.
In Map
{
N1-10-04 (Figure 4.12),
taken at 1452 MWD /MTU, the axial power distribution had a shape peaked just below the middle of the core with a peaking factor of 1.218.
In Map N1-10-12 (Figure 4.13), taken at 9513 i
MWD /HTU, the axial power distribution peaked more toward the bottom of the core with an axial peaking factor of 1.161. Finally, in Map N1-10-18 (Figure 4.14), taken at 16,233 MWD /MTU, the axial peaking factor was P
1.156, with the axial power ' distribution peaked even further toward the bottom of the core. The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15.
In conclusion, the North Anna 1, Cycle 10 core perforrcd satisfactorily r
with power distribution analyses verifying that design predictions were i
accurate and that the values of the F (Z) and F-delta-H hot channel q
factors were within the limits of the Technical Specifications.
l l
4 NE-999 NIC10 Core Performance Report Page 28 of 52
. ~ -,. - -
9 Table 4.1 NORTH ANNA UNIT 1 - CYCLE 10
SUMMARY
OF FLUX MAPS FOR ROUTINE OPERATION i
i i l
i l
i i
l i
2i i
l i l l SupN l i BANK l F=Q(1) NOT l F
- DM( N ) NOT l CORE F(21 C0pt i AXIAL l NO.1 IMAPl l
UP l
i D
l CHANNEL FACTOR l CHNL. F ACIOR IMAX 1
TILT 1 0FF i 0F l IMO.1 DefE l MWO/ l PWR I STEPS I i
l 1
l SET (IMIMI I
l l Mfu 1 (2) l l AS$YlPINlAXIALIF-Q(I) lASSviPIM IF-DH(MllAX1AL l F(lll MAX lLOCl (2) 18tESI i
i i l
i l
8 3 IPo! Nil 1
13 l lP01NI i l
1 i i
l Ob 20 93 3452 99.95 225 L12 34 1.a95 E Y 1.425 1 36 1.216 1.014 3.445 Tl l 5 106 22 931 2755 l 99.918 225 l L12 i Lal 37 1.469 l Liti LF l 1.430 1 37 l).19911.0084 SWI a3.5541 46 l l 6 167*15 931 3669 l 99.94) 225 i Lir i ML1 37 1.all i Ll28 ML l 1.433 1 36 11.16411.0064 SWI 5.4041 46 l I 7 108 !!*931 4753 l 99.941 225 l L12 1 Mil 46 1.430 i L128 ML l 1.432 1 46 11.17211.6631 SW1 *3.5421 46 l l 4 109 09 938 5496 1100.631 225 i Lif l MLl 39 1.810 l Llti ML i 1.428 8 44 11.16211.0041 NEl '3.756l 46 I l 9 109 30 951 6724 1800.091 225 I con 1 IH1 45 1.793 i L121 ML i 1.423 1 45 11.16018.6678 NEl *4.0601 46 l lle 110 15-931 7324 8 99.991 225 i C64 l IH1 46 8.792 l C041 IM l 1.424 l 46 11.15411.9071 NEl -4.0621 46 l lit 118 17-931 8639 i 99.971 225 i H07 I DMI 44
!.8081 F051 EN 1 1.435 j 44 11.16411.8101 NEl -4.7451 46 l 1.813 i He?! DM i 1.439 1 44 11.16111.0111 NEj -4.5871 46 l 112 112-09-931 9513 l 99.85l 225 i H07 i DMI 48 i
133
'81 11-941 10833 (198.001 225 i H07 i DMI 44 l 1.819 j N071 DM l 1.444 1 44 11.15711.0821 NEl +4.3631 44 i
!!4 02 04 941 11787 1800.041 225 i H07 i DMI 49 l 1.822 i H074 DM l 1.443 1 49 11.I5618.011l NEl *4.5051 46 l
!!5 03 07-941 13019 l 99.941 225 i F05 i FNi 52 l 1.825 i F8ll EN i 1.441 1 52 11.16311.011l NEl -4.5441 46 l 116 04 05-941 14165 1800.041 225 1705 l ENI 53 l 1.426 I F05l EN I 1.438 1 52 11.16411.0111 NEl +4.3451 46 I (17 05-05-941 15362 1100.021 225 i F05 i
- -l 53 i 1.808 i H05) ** 1 1.427 1 51 11.16611.0091 NEl -4.5261 46 l lla l 05 27-948 16233 l 99.968 225 i F05 l **l 53 l 1.790 1 H05) ** 1 1.429 l 53 11.15611.9081 NEl -3.8914 46 l 139 06 27 94l 17454 1 95.931 225 l F05 l *al 55 l 1.699 i F051 ** 1 1.414 8 53 11.10418.9991 NEl *0.5111 46 l 120 07*27-941 16496 1 78.831 225 i F05 i +=1 Il i 1.841 i Fell ** 1 1.420 1 le 11.21011.0111 NEl 6.9671 46 l 121 04-22 941 19236 1 65.131 225 1 705 1
- -l 10 1 2.001 1 Fell -- l 1.424 1 10 !!.26611.0141 NEl 11.2171 46 1 lI I
I i
1 6l i
1lI I
I I
l
,1 f.__
I t
NOTES: HOT SP07 LOCAfl0NS ARE SPECIFIED BY CivlNG ARSEMBLY LOCATIONS (E.C. M-8 IS THE CENTER OF-CORE ASSEM8LY),
FOLLOWED SY THE PIN local 10N (OfM0 FED BV THE "Y" C00RDINAIE WlIH IME SEVENfEEN ROWS OF FUEL RODS LEf f EptD A THWOUCH 0 ANO THE "X" C00RDINAIE DES!CNAf ED IN A SIMll AR MANNER).
IN THE, "2" DIRECf!ON THE CORE IS Div!DE D INTO 61 Aul&L Po!Nf 3 STARf!NG FROM THE TOP OF THE CORE.
i
- 1. F-Q(t) INCLUDES A TOTAL UNCERTAINTY OF 1.05 K 1.03.
- 2. COPE flLT
- DEFINED AS THE AMIAL OuaDRANT POWER flLT FROM INCORE OR CECOR MAP P HAS A MAXIMUM CORE flLT OF 1.003 IN THE ME QUADRANI AS NELL.
- 3. THE CECOR PROGRAM WAS USED 10 ANALY2E MAPS 17 IHROUCH !! AND DOES NOT TRACK PIN LOCAfl0MS.
t i
1 i
NE-999 NIC10 Core Performance Report Pgge 29 of 52
i
\\
i l
F'igure 4.1 NORTH ANNA UNIT 1 - CYCLE 10 ASSEMBLYWISE POWER DISTRIBUTION N1-10-04 P
N M
L 0
J M
C F
E D
C 8
4 Pel DICIE D
. 0.27. 9.29. 0.27.
PPE DICf(D ME ASupf D
. 0.27. 0.29. 9.27.
ME asuRE D 1
. PCT Dif f f Pt NCf.
. -1.2
-l.2.
1.0.
.PCf DIFF(Pt MCE.
. 0.31 0.62. 1.10. 0.92. 1.11. 0.62. 0.31.
. 0.38. 0.6C, 1.07. 0.90. 1.08. 0.62. 0.31.
2
- 0. 9.
- 3. 8.
- 2. 5. - 2. 5. I.9.
- 0.1.
0.8.
. 0.36. l.Il. 1.25. 1.15. 1.29. 1.16. 1.25. 1.11. 0.35.
0.35. 1.09 1.19 1.13. 1.26 1.15. 1.25. 1.12. 0.36 3
. - 1. 6. - 1. 9.
- 4. 7. - 1. 9. - 2. 0.
- 0. 9.
8.1.
0.9.
2.4 0.35. 0.85. 1.27. 1.27. 1.38. 1.24. 1.32. 1.27. 4.26. 0.85. 0.36 4.35. 0.84 1.25. 1.25. l.30. 1.25. 1.30. 1.28. 8.27. 0.86. a.36 4
- l.3. al.9.
- l. 7.
- 1. 5. - 0. 8.
- 0. 9. - 0. 9.
1.1.
0.4 9.2.
0.8.
0.31 1.11. l.26. l.28. 1.27. l.14. 4. 26. 1.14. 1.27. 1.21. l.27. 1.ll. 4.38.
0.30. 1.07. 1.22. 1.14 l.24 1.15. l.27. 3.15. 4.28. 1.21. 1.25. l.11. 0.32.
5 3.3 3.3. -3.0
-2.8. 41.9.
4.4.
0.7
- 0. 7. l.2.
0.2. al. 0. -0.1.
3.8.
0.62. 1.25. 1.27 1.26 l.12 1.24. 3.13. 1.21. 1.12. 1.26. 1.27. l.29. 0.62.
0.62. 1.24. l.25 1.24 1.12. l.23. l.14. 1.23. 1.14 1.25. 1.25. 1.23. 0.62.
6
- 0.4. *0.6. al.3. -2.4. *0.4 1.2. 1.3.
l.5.
1.7. 1.3. -1.4. al.4 0.0.
. 0.27. 1.!!
1.16. l.51 1.14. 1.21. 1.12. 1.27. 1.12. 1.28. 1.14 1.31. 3.16 1.10. 0.27
. 9.24. 1.11. 3.17. 1.31. 1.12. l.28. 8.14. I. 29 1.44. l.24 1.14 1.28. 3.14 l.09. 0.27 7
2.8.
0.3.
4.4.
- 0. 7.
- l. a. - 0. 7.
1.3.
l.5 2.0.
2.4 0.2.
2.3. al.5. *l.2. *0.6.
. 0.29 0.91. 1.29. 1.24 1.26 1.13. 1.27. 0.95. 1.27. 1.13. 3.25. 1.24. 1.29. 0.93. 9.29.
9.29 0.91 1.29 l.25 1.28. 3.15 1.29. 0.96. 1,28. 1.14. 1.25. 1.21. l.27. 0.91. 4.30.
8
- l.5.
0.2.
0.2.
l.0.
1.6 3.4.
l.5. I.7.
I.0.
l.1. -0.3.
2.3. *1.4 0.3.
1.2.
0.27. 1.10. 3.16 l.38 1.14. 1.21. 1.12. 1.27. 1.12. 1.21. l.14. 1.31. 4.16 1.11. 9.27
. 0.27. 4.09 1.14 1.38 I.86. 1.23. 1.11. 1.26. 3.13. l.22. l.15 4.32. 3.18. 1.14. 0.28.
9
. -1.5
- 1. 5. - 1. 5.
9.2.
8.9 I.0.
0.4. -0.8.
0.5 9.4 l.2.
4.3.
1.7. 2.3.
3.9.
. 0.62. 1.25. 1.27 1.26. 3.12. l.21 1.11. 1.21. 1.12. 4.26. 1.27 1.25. 0.62.
. 0.61. 1.23. 1.30 3.38. 1.8%. 1.21. 1.42. 1.20. 1.12. 1.27. 1.30. 1.30. 0.65.
le al.5 1.5.
2.0.
3.9.
2.3. -0.7. -0.7..l.3. -0.3.
0.5 2.5.
3.7.
4.7.
0.31. 1.ll. 1.27. 1.21. l.27. I.14 1.26 l.14. 1.27. 1.24. 1.26. I.it. 0.31.
. 0.32. 1.13. l.10 1.26 1.28. 1.13. l.25. 1.13. 1.27 3.23. 1.30. 1.15. 0.33.
11 l.9 l.9 2.6 4.1
- 0. 9. - 0. 7. - 0. 7. - 1. 0.
- 0. 3.
1.6.
3.2 3.4.
4.4.
. 0.36 0.85. l.27. 4.27 8.32. 1.24. 1.31 1.27 1.27. 0.85. 0.35,
. 0.38 0.89 1,32 1.29 3.30 1.23. 1.29 1.26. 1.27. 9.a8. 0.37 12 5.2.
- 4. 7.
4.1.
1.6. -1.0. -1.0. -l.5.
0.6.
0.4.
3.3.
3.9 7
1 l
8.35. 1.11 1.25 1.16. l.29. 1.16. 1.25. 1.11. 0.36.
I 4.37 1.17 1.28. 1.15. 1.27. 1.14. 1.23. 1.11. 0.37.
13 l
5.5 5.7.
2.5. -l.2. al.1. -I.6.
l.7.
4.1.
3.0.
0.38. 0.62. 1.11. 0.93. 1.10 9.62. 0.31.
. 0.33. 0.66 1.12. 0.93, 1.08. 0.61. 0.30.
14 5.7 5.1 1.5.
0.6. -1.6. *l.6. -2.5.
l STANDARD 9.27. 0.29 0.27.
AVERACf l
DfVIefl0N 9.29 0.30. 9.27.
. PCT DIFFERtmCE.
15 el.290 4.4 1,9.
0.4.
1.7 l
pOMMARY MAP NO: N1-10-04 DATEl 05/20/93 PowERI 99.95%
CONTROL ROD POSITION:
F-Qtil a 1.895 CORE TILT:
D BANK AT 225 STEPS F-DH4H) a 1.425 NW 0.9879 lNE 0.9976 I
F(Z)
= 1.218 SW 1.0109 15E 1.0035 l
BURNVP s 1452 NWD/MTU A.O. s -3.485%
l l
NE-999 NIC10 Core Performance Report Pgge 30 of 52
-- -, + - -,
... _ ~ -
r i
e l'
Figure 4.2 NORTH ANNA UNIT 1 - CYCLE 10 ASSEMBLYWISE POWER DISTRIBUTION N1-10-12' i
N P
N M
L K
J H
C F
E D
C 8
8 P914fCTfD
. 9.26. 0.29. 4.27.
PRf DICTE D ME A50Pf D
. 0.27. 0.29. 9.27.
MEASUPED
. PCT ORFFERENCE.
1.8.
1.8.
2.4.
. PCT O!FFERENCE.
i 0.32. 0.59 0.99. 0.85. 0.99. 0.59. 0.32.
. 0.33. 0.50. 0.99 0.85. 1.00. 0.61. 0.33.
2
- 4. 2. a l.4.
-0. 0.
-0. 0.
1.0.
2.9.
3.8.
0.37. l.06. 1.21. 1.07. I.27. 1.07. 1.21. 1.06. 0.37 8.18. 1.07. 3.19. 1.07. 1.28. l.09. 1.25. 1.09. 4.39 3
l 1.3.
0.9. -2.3.
0.3.
9.2.
1.5.
2.8.
3.4 4.7.
l
. 0.37. 0.85. 1.29 1.21. 1.35. 1.19. 1.16. 1.21. 1.28. 0.85. 0.37.
6 9.la. 0.85. 4.30. 1.22. 1.37. I.21 1.37. 1.24 1.33. 0.86. 0.38.
4 l.2.
0.5.
0.9.
0.8.
1.3.
1.3.
1.2.
2.8.
2.0 1.7.
2.4.
0.32. 1.04 1.28. 3.10 I.36. 1.15. 1.36. 1.15. l.36. 1.18. 1.20. 1.06. 0.32.
0.31. 1.04. 1.27. 1.37. l.36. 1.18. 4.40. 1.18. 1.39. 1.19. 1.29. 1.07. 0.33.
5 al.5. al.5. -1.2.
1.0.
0.0.
2.8. 2.7.
2.6.
2.8.
3.2.
0.1.
- 1. 2.
4.8.
0.59 1.21. 3.!!. 1.35. 3.15. 1.35. 1.16. 1.35. 1.15. 1.16. 1.21. 1.21. 0.59 0.60. 1.22. l.20. 1.35. 1.16. 1.38. 1.19. 1.38. 1.18. 1.35. 1.20. 1.21. 0.60.
6 9.1.
0.1. *0.2. *0.6.
0.9.
2.5. 2.5.
2.5.
- 2. 7. - 0. 5. -0. 7.
- 0. 3.
1.7.
i 0.27. 0.99 1.07. 1.36 1.15. 1.35. 1.15. 1.37. 1.85. 1.35. 3.15. 1.36. 1.07. 0.99. 0.27.
. 0.27. 0.99. 1.07. 1.34 3.12. 1.33. 1.18. 1.40. 1.18. 1.38. 1.15. 1.33. 1.06. 0.99. 0.27.
7
- 1. 8.
- 0. 3. -0. 2.
- l. 5.
- 2. 7. - 1.1.
2.2. 2.3.
2.4 2.2. *0.3. -2.2. -0.8. *0.2.
0.6.
0.29. 0.85. 1.28. l.19. 1.36. 1.16 1.37. l.01. 1.37. 1.86 1.34. 3.19 l.24. 0.85. 9.29.
9.29. 0.85. 4.27. 1.19. 1.16 1.16. 1.40. 1.04. 1.38. 1.17. 1.35. 4.17. 1.27. 0.b6. 0.30.
8 I
2,4. =0.4
- 0.5. *0.3.
0.4 0.4.
1.8. 2.2.
0.8.
0.7. +0.9.
2.1. *0.8.
0.9.
l.9.
. 0.27. 0.99. l.07. 1.36 1.15. l.35. 1.15. 4.37. 1.15. 1.35. 1.15. 1.36 1.07. 0.99 0.27.
0.26 0.96. l.04 1.33. l.15. 1.34. I.13. l.34. 1.15. 1.34. 3.15. 1.36. 4.09 1.08. 0.28.
9
.
- 4. 0. - 3. 2. - 3. 2.
- 1. 7.
- 0. 0. -0.9.
2.4
-2.4
- 0.3. -0.4 0.4 0.0.
1.5.
2.3. 3.6.
0.59 3.21. 1.21. 1.16. 1.15. 1.35. 1.16. 1.35. 1.15. 1.35. 1.21. 1.21. 0.59.
0.57. l.l?. 1.21. 1.38. 1.15. 1.32. 3.13. 1.32. 3.14. 1.35. 1.22. 1.25. 0.62.
' le 4.0. -4.0. *0.1.
2.0.
0.5. *2.4. -2.4
-2,2. *1.1. -0.3.
1.4 2.8.
4.0.
0.32. l.06. 1.28. 1.18. 1.36. 1.15. 1.36. 1.15. 1.36. 3.18. 1.28. 1.05. 0.32.
t 0.32. 1.06 l.29 1.20. 1.34 1.!!. 1.33. 1.12. 1.35. 1.I9. I.31. 1.08. 0.33.
Il
-0.1. -0.1.
0.6.
1.8. al.0. *2.5. *2.5. *2.2. *0.6.
0.6.
1.9.
- 2. 6. 3.5.
l
. 0.37. 0.85. 1.28. 1.21. 3.36. 1.19. 1.35. 1.21. 1.29. 0.85. 0.37.
. 4.39. 0.87. 1.31. 1.20. 1.32. 1.16. 1.32. 1.19. 1.28. 0.86. 0.14.
It 3.4. 2.a.
1.8. *0.5. -2.6. -2.6. -2.6.
1.5. -0.6. l.9.
2.6.
. 0.37. 1.06 l.22. 1.07. 1.27. 1.07. 1.21. 1.06. 0.37.
. 0.38. 1.09. 1.22. 1.04. 1.25. l.05. 1.19 1.05. 4.18.
IS
- 3. 7.
3.7.
0.5. -2.6. -2.1. *2.3. -2.2. =0.9. 2.3.
j
. 0.32 0.59. 0.99. 0.05. 0.99. 0.59. 0.32.
. 0.33. 0.62. 0.99. 0.85. 0.97. 0.58. 0.31.
14 3.7.
3.5.
0.4. *0.1. *2.1. -2.0. *3.4.
SfANDARD 9.27. 0.29. 4.27.
AvtRACE DEVI A flDN
. 9.28. 0.30. 0.26
.PCI DIFFERENCE.
15
=1.17a 3.3.
1.4. -0.7.
= 1.7 i
SLWH9ARY MAP NO: N1-10-12 DATE: 12/09/93 POWER: 99.85%
CONTROL ROD POSITION:
F-QIT) a 1.813 CORE tit.TI D BANK AT 225 STEPS F-DHIN) s 1.439 NW 1.0004 l NE 1.0106 l
F(Z)
= 1.161 SW 0.9935 l SE 0.9956 BURNUP s 9513 NWD/NTU A.O. s -4.587%
i I
NE-999 NIC10 Core Performance Report Page 31 of 52
~
i o
e 4
Figure 4.3 NORTH ANNA UNIT 1 - CYCLE 10 ASSEMBLYWISE POWER DISTRIBUTION N1-10-18 R
P N
N t
K J
H G
F E
D C
B A
PREDICfED
. 9.297. 8.327. 0.298.
PRED/CTED Mf aSL*ID
. 0.301. 4.339. 0.304 MEASueED
.PCf ORFFER!NCE.
1.2.
3.5.
21.
.PCI ORFFERENCE.
0.346. 0.617. 0.993. 0.471. 0.995. 0.617. 0.346.
0.344. 0.619. 0.997. 0.874 1.012. 0.643. 8.357.
e.6.
e.5.
0.4.
0.4
- 1. 7.
4.2.
3.3.
0.401. 1.042. 8.187. 1.053. 1.274. 3.054.1.187. 4.840. e.399 e.427. 1.046. 1.192. 3.055. 1.257. 1.066. 1.215. 1.878. S.422.
6.4 0.6.
0.4.
6.2.
al.4 3.1.
2.4 2.8.
5.4.
4.401. 0.863. 1.267. 1.167. 1.337. 1.165. 1.340.1.167. 1.2M.* 9.462. 0.401.
1.253. 1.172. 1.353. 1.191. 3.%4 1.192.1.292. 0.869. e.442.
. 4.405. 0.471.
1.1.
l.8 al.0.-
4.5.
1.2.
2.2.
1.8.
2.2.
2.2.
9.8.
0.2.
4.346. 1.044. 1.265. 1.1 %. l.362. 1.118. 1.366. 1.138. 1.%1.' !.1%. 3.266. I.e41. 0.345.
0.350 1.053. 1.288 1.148. 1.379 1.859. 1.391. 1.154. 3.347. 1.165.1.24 8. I.e38. 0.368.
l.2 1.2.
1.3.
3.0.
1.3.
8.9 1.8.
- 1. 7.
1.9.
2.7.
al.9.
- e.3.
6.5.
0.617. 1.157. 1.167 1.341. 1.144. 1. %9 I,150
- 1. % 9. 1.144. 1.361. 1.167. 1.187. 0.617.
8.625. 1.203. 1.165. 1.323. 1.140. 1.341. 1.167. 1.387. 1.156. 1.367. 1.152. 1.179. 0.622.
1.3.
1.3.
- t.1.
- 2.7.
- 0.3.
0.9.
1.5.
3.3.
1.1' O.5.
- l.2.
- 0.6.
e.8.
0.301 0.997 1.054. 1.339 1.137. 1.369 1.146. 1.364. 1.146. 1.369. 1.137. 1.338. 3.055. 0.995. 0.299 0.303. 1.010 1.088. l.337. 3.117. 1.359. 1.152. 1.376. 1.156. 1.377, 3.131. 1.361. 1.042. 1.000. 0.303.
0.8 1.2.
3.1.
8.2.
- l.8.
- 0.7.
0.5.
0.6.
1.0.
0.6.
- 0.6.
- 2.8.
al.2.
0.5.
1.2.
0.336. 0.875. 1.2/6. l.165. l.365. 1.150 1.164. 1.928. 1.368. 1.150. 1.365. 1.165. 1.276. 0.875. 0.336.
0,334. 0.867. 1.249. 1.147. 1.319. l.133 1 3 %. 1.021. 1. % 4. 1.158. 1.357. 8.15e. 1.257. 0.905. O.348.
- 0.6
- 0.8.
- 2.1.
- l.6.
- 3.4.
- l.5.
- 0.8.
- 0.6.
- 0.3.
0.8.
- 0.6.
- l.3.
al.5.
3.4 3.5 9.299 0.995. 1.0%. 1.334. 1.137. 1.%9. I.146. l. %4. 1.146
- 1. % 9. 1.137. l.339. 1.0 %. 0.997. 6.301.
. 0.296 0.962. 1.038. l.329 4.147. l.357. 1.125. 1.341. 3.120 1.314. 1.122. 1.336. 1.063. 1.028. 8.319.
- l.1.
al.3.
al.6.
- e.7.
0.9.
- e.9.
al.8 al.9.
- 2.2.
- 4.1.
al.3.
- 0.2.
0.7.
3.0.
6.0.
l 0.687 1.187. l.167. 1.361. 1.144
- 1. %9 1.150. 1. % 9 1.144. 3. % I. 1.167. 1.187. 0.617.
. 0.606. 1.159. 1.168. 3.364. 1.130. 1.320. 1.116. 1.332. 3.113. 1.354. 1.188. 1.210. 0.644.
- l.7.
- 2.3.
- 0.5.
8.3.
al.2.
+3.6.
- 2.9.
- 2.7.
- 2.7.
- 0,5.
1.2.
1.9.
5.0.
. 9.345. 1.041. I.266. 1.154. 1.341. 1.134. 1.366. 1.138. 1.362. 1.154. 1.264. 1.040. 8.345.
. 0.343. l.040. 1.274 1.176. 1.352 1.168. 1.317 -. 1.103. 1.315. 1.163. 1.284. 1.064. 0.M7.-
)
- 0.7.
- 0.1.
0.6 1.9.
- 0.7.
- 2.7.
- 3.5.
- 3.0.
3.4 e.8.
1.6.
2.3.
3.3.
. 9.408. 0.862. 1.265. 1.167. 1.340. 1. lu.1.357. 1.167.1.267. 0.862. 0.399.
. 4.420. 0.473. 1.275. 1.154 1.302. 1.134. 1.306. 1.142. 1.265. 0.842. 0.418
)
4.8.
1.3.
0.8.
0.7.
- 2.8.
- 2.6.
- 2.3.
- 2.1.
- 0.1.
2.3.
4.6 0.399 1.060 1.147. 1.055. 1.275. 1.054 1.187. 1.e42. 0.401.
. 0.404 1.051. 1.185 1.642. 1.252. 1.038. 1.154. 1.031. 0.403.
1.1.
1.0.
- 0.1.
al.2.
al.4.
- 1.5.
- 2.5.
al.0.
9.5.
l
. 8.346. 0.617. e.997. 0.874. 0.995. 0.617. 8.346.
0.365. 0.622. 1.000. 8.473. 1.006. 0.61,2. 0.343.
(
l 5.7.
.8
.3.
.i 1.0....
- i.0.
STANDARD
. 0.381. 9.3 %. 0.299 AvERACE DEvtall0N
. 0.318. 0.340. 0.303.
. PCT DIFFERENCE.
(
- I.363 5.7.
1.3.
1.1.
- 1.7
SUMMARY
NAP NO: N1*10=18 UATEI 05/27/94 POWER: 99.96%
CONTROL R0D POSITION:
F*Q(Tl a 1.790 CORE TILTI D BANK AT 225 STEPS F*pHIN) s 1.420 NW 1.0041 l NE 1.0084 i
FtZ)
= 1.156 SW 0.9928 l SE 0.9947 BURNUP s 16:33 NWD/NTU A.O.s*3.891%
NE-999 NIC10 Core Performance Report Pgge 32 of 52
Figure 4.4 NORTl! ANNA UNIT 1 - CYCLE 10
!!0T CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE 1.2 2
Se$1
$0=
8x I
I I
I I
0.8 O
2 4
6 8
10 12 CORE HEIGHT (FT)
NE-999 NIC10 Core Performance Report Pgge 33 of 52
o Figure 4.5 NORTH ANNA UNIT 1 - CYCLE 10 HEAT FLUX HOT CHANNEL FACTOR, F (Z) q N1-10-04 IIllllll1 !!illlIll lllllIll
!lllllllllllllllllliljll llllll!!!
.!'il!;;! ill!
ili
!illilll l!!!!
ll ll j!!i lilll!Ill !!lililli i
lll Ill!
lli llll ll Ill. llii
!I
'I II I
=2 E
I!!!lllll Illllllll 11llllll llllllll lli I lll lll-llll
!IH!!li! Hil!!!I'Tiiiit?"f44!lill llll ll ljl HIl E
Illllil TRIlll!
Illt' ill!fitto,I 11 llI!
lHillHi J!!Illl! lilllllH IIINIll l'elillll l1 lijl l
IIII 6
'5 ili liH IH:l;lli lHilli
'llilill l:ll:l=
l l in 1
Ej
.jlL!il i
il I
illliil lililli i
i f
i ill 5
llHHill IHlllll lll1 lll l lll IHlj l
11!lil!
1 ilin i
HN I
i null in II H
l ', m I
IAI!
@1 lililllli lillllHi ll HI H
llHil I
1.
I I llIllll x
'l!N!Ill H!!lIl!I il.illll HllHil iIIIll Hillill liliiilii Iliil H
i ill
'lliIi ii i ill I
l11
~
y
'il H H il !il!IIH iii!I ll!
I llll IHl!!!
$ 0.5 II II I I I
I' ll!!illli lllllllll !!lllllll I llllll llllllll
!lllllll ll!!!!lli Illl!llli lllllllll l!llilll ll!lllll' llllllll ilHHill ihlHill lllllllll lllllll lllIll lHill!l
!llli!!i! llililll! lilllllll lllll lllllllli ll!!lill i
0 60 50 40 30 20 10 1
AXIAL POSITION (NODES) i NE-999 NIC10 Core Performance Report Pgge 34 of 52
Figure 4.6 NORTH ANNA UNIT 1 - CYCLE 10 HEAT FLUX HOT CHANNEL FACTOR, F (Z) q N1-10-12 2.5 l;',
i
. i i!
1 j!!lj:.i; u.' :... '
.... a u'.
l; i!
i
-u-;-
... ;.lill 4
!,1l
!l ll ll l
m' - ;,
I v.7, I
,6 Is lt,,
!i, l.i i 1.,
' ' I ! ! l l,
! l_.l_.J.2
. I l._l ! !.'_.i-.!- llllll1li I i l l l f l l. l it l
ll l'!'l
!,i lilfi',il ll ii.jil i,l l i {.l !,i l,' ) i 1. i. ; l 4
1
'ie
- 4 t
a
, t t
m N,,
I' ' '
- j
,,l
- 1 ; 1'.i I, ;, ; ' ! 4 Ii l
i 1
1.
i: 6 I.i..[ -. I 1!!!' il fitt i i j ' l i, l i l l. !
t
{
i i f.
f r
2 s p
!.e,e 6'
!:.... i:
. *i.
6 i-
- * * ' * ' ' ' ' ' ~ ' ' - ' " ' ' ' ' ' * ' ' '
s.4. sh,.a
[a.
ee I,
l.
'l
,iif j ;'!
l I f e
l!
!'lli eaee
- !,' s+,ll
I ii 4!li ;s;;,
,si'sesses: ;+
' i;
- ,;i;,<
- ii i
11isiil
!:s a-. l iisi!ll sei I
i 6 5
m
-,f, Y.f. l
.,f, fl...
Il I
! ll l
g.
Q i,
t g
8 t i i : i it i
1.t.
!!lllt!.l
,!! ti!!l
!illlill.
Illi!!II "ililll
.,, i..
iii.
,i llj...<l
- i Il!Il i
,i
.s f l li a
, 4
'.i li e. I '
l ll
.lt,, l 3.
U,,l l e ! I. ! !. }i,
l l [
i r
i e
i i i,,
i s
og,
~
ll!'I'!! IIlllll!! lllll!lll llllllI!! !!!!Ill!! ll!i,l!l z
l.-
I g.
l.l.!)li-i
!' ll j i lll Il Ll 'i !
I l'
Ij'
. l.
^'
I.i.
! '.l ' '.l,[ ! ' l '.' I ;, -l l '
_.i i
4 Z
i i
+
I ! l i l,
,t t !,i l l,l ll ff. lIiI
- i 1 i 6
1
.l lI li !
! !!} !!
>i !,.i l e,
7 i
! ia 1
I '.>
- +..
O
-.!' !' ',; I ' ' ; ! fl !'ii
- ' I ! ' m'..I
?
I'
'It. '.!!
.e.
.' i 1 t.' ' 4
'l.i ' l 'i l
! I'lll Z
iil18 !
II f lI!IillI. i-l1!i l ! I i i { ll..
!Ailli
!It __.
' t i( 'i,i+
1 it 6! !!
ti t X
t,'
i.'
l.' 1 i !
ll'i 1'!!!!I' Ie lf 6
i
.)
d I!!!iI! !
lllll!!!!
lI!l!ilI lll ll;! l I!!! l l l lllm 3.
,.i u.
i
!l..l' Ii l,i 'l)i n
,t,i i t, a,,l
!.I l,l t ; ',i,
( !,! ! ! ! !,! !
.l.I l,i,, ! ! ' l
.i
,,i,
- i I'
. i i l.
4,
6 f,j l'l[f f'
ff f
f l
,f a
I 0.5 i
i J
.i..
. 4 L
[.1 i
i i
i
,, sii i
1.
i i ;-
i4.,
Iifi.
lI !l!
!l
' !l, 5 i4,
. i.-
r s
s.
2 ;i. i i
!f fIl
! '.' I ' '
f!~!!
i
,.,,,, t,
,. i ;. i i....
i i,.
t, 3.
=-
lj i
ji,..,
i 0
60 50 40 30 20 10 1
AXIAL POSITION (NODES)
NE-999 NIC10 Core Performance Report Pgge 35 of 52
e I
l Figure 4.7 NORTH ANNA UNIT 1 - CYCLE 10 HEAT FLUX HOT CllANNEL FACTOR, F (Z) g N1-10-18 2.5
- i. :. ! j ; I l l.t.
il..i;*!I
- i. i jji t;;!, ij i,
i 1
- !;,:r':
, : r:.
ti
. i.
4 _ ! i r, i,i,3 i
t
-. llti:i!ll 'llllll l
l!iillij!!ilijll.a:, i l. i ' ' !llll!l i.!'Ili!!!! Ilillll I ill!!!I lillllll lililli!f !!: i
- i 1 j ;, i, t, - l l.
i, t i, i !. ji
- t t i.. i. -l1,
.. i,i,!i
.1 Ii i
r t
2 n
b!.
i I!li!! llllllIll llllllll!
lii!!ill ill!i i illlil!!
H i.
I!,,!:!.! -
6-l'!!!!!
ti u.
.mr
,i ;:;;rr i,,ii::fiTr rT
',ti
-7, 7, 7,,,
i,,!,
._..i.! =,;
1 ;
l
=
!: t i
! ! i: t i
_. _ =.,
, i i ;
a:
.t
-.1.(si. i i l i l l l
! ! ! i j l l..i.e
- i. ;. :l l 'I l i a l ?,l,...,,, (..,
,;-.p..
!!i
- :,, t, i ;, :..;
i, t:i...
i i >
J O
1 1
si i ti;,i i 4 i.i,,,n
!44 H
tiii!.i!I
!: ,iii
=lll i
1>
U I
'5 iI!!illll llilliflllilillil!
IlllIIliiill?!iiill7Mllll 1
d H%in H iiHh HNNH iiin h! HHH!h Hmhi E
ihh!IN !!NNNI HH!Nll UHlhh IHh!!N lh hMi.
I
- i.: >, >, : : ' '
>, !. l l. l l l. Ili!. j : l :.
- :i!!
44
- : l j !, : l :
U 2
H 1
- !;i: ill!!!ll!I!ii!ill!
!! ifi!!!! i!!iii!!
!!!!ll=!
t O
i tli>>
i i :-
' i
l Iill -
i
'i i
i : l~ !' !
'!!!i!ll i
l I
' ' l.l l l ! j lI ii l!It x
il,,i{,!
! ; l l, l. l }
!, ! ! l l l,l l '
! ! ! ! ' l l l,l
!,! ! l ! ',! ! !
' !.!.',! ! l,
,r
[
l l
i4 4 3 W
I i
+1 f
..A 4
!illl:'!;
. i l i l t' t' lliilii !
l' l j l ll 1 !!iili!:i il ill I u.
H l!!;
i '!i!!!i!! !iill!i!!l ii!!!!Il !illllii> llli!!!
iI i t
i
!!!'i!llj !!!.'il!!
l!! i!llll !!!!!!!'i !jjlllll I 0.5 t.'-
d.; l d d.i
. La
- 1 li, l.'!,
' t,
t'
' } ; [ t,
. 4.
.)
5 I
.l f
I l s
e i
]
.I 3
Ilj!lI !
!!Ill!!l.
8.,
I.
I l
I!Il'Ii l'!!6 i,lI I l i f' l ! ! !
!I !.!?I
'l!
'l ll';If
,!!I' l
- l ii i
!li.',.
i t
- i 60 50 40 30 20 10 1
AXIAL POSITION (NODES)
NE-999 NIC10 Core Performance Report Page 36 of 52
[
Figure 4.8 NCRTil ANNA UNIT 1 - CYCLE 10 MAXIMUM llEAT FLUX HOT CHANNEL FACTOR, F (Z)*P, vs. AXIAL POSITION q
I I
l l
l l
l l
l l
l l
l l
l l
I I
I 22 3W i
l l
l I
l lh 2.0 l
l
\\... -
t.
---.l
- l l
l.
1.8
. '., **^^*
l l
J I.
i.
4 l
l l
l l
l l
- 1-. _ I I
18)~,
I I
I I
I i
i i-I 1*
I I
I l
l I".
'A I
I I
I I
I i-l l
1 1
I l~
12 0
f l
l l
l l
l l
1 l
l t
l I
1.0 _
I I
I I
I I
I aa i
l l
l l
1 I
0.6,
g g
t l
l I
I Ud i
l l
I I
I 1
I 02 0.0,,....I I
I
(
I I
i 1
i
..s.........
61 55 50 45 40 35 30 25 20 15 10 5
1 AX!A1. POSIT 10N (NODE)
FQ*P UMIT
- *
- MAXIMUM FQ*P BOTTOM Of CORE TOP 0F CORE NE-999 NIC10 Core Performance Report Page 37 of 52
O Figure 4.9 NORTH ANNA UNIT 1 - CYCLE 10 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, F (Z), vs. BURNUP q
1 I
2.24____._______,_____.__._______________,,_
puggpoggg
..................................... TECH SPEC LIMIT 1......'......
2.20
. p.,.,..........,.....,........,..,..,..,...
..r-2.16 MEASURED L...
...........j....
m l
..g,......r..................................
.. s......p.7..........r............a.........
VALUE c-)
F-2.12
..p.
. q..,..
g
....,$........t..,....,.........,.......
4
"- 2.08 a.
.....'.....L........,..........,.........;........
2,....L.................J....
.2..
n
....s.....
.....i.....3..,.
g
,s..,....,i.,.
p s
i z 2.04 7.
z t
....._'....'..'..'..i......s..;..s.....,q..........
.... s...........
l 0 2.00
........i........a..'
^
F-L
....:.. :........ J,.........
. 1..:...
1 O
....,..p....$..$..g.
p..,.,.. '....,.,..
~
I 1.96 x
..e....a.
..>......s.
g u 1.92
.,3 3..:.. p. 3 3....i... 3. q..;...
,,,,,,_,g 4.,+
,,,,,_,.u___,,,,;___,_,,,1..,,,,,,,...
...,.. [. 7 3..,..,i...
p.
W 1.88..,.4....,.,..-.......,.,. '...
.........V 1
J.
. b, d,. d
.....d...
.a 1.84,,,,.,..+.7.,.....h..
..L..J.
..,.. s..
g
_+,,,,,.,,;,,,,,,,,,_u p
...........+....g,..,4..+...+_+.,___,,,
3
....1..
.... 4........
=
..........[.... h................. +.......
m l
1 76..
l
..+.....7.33..,...........i.:......q.........
i 1
.................l........,,........,.....s....
4.....
..t.........l........q..
...,..............'.................. 4......
.;.2........:.
1,68 0
4 8
12 16 20 CYCLE BURNUP (GWd/MTU)
NE-999 NIC10 Core Performance Report Pa,ge 38 of 52
Figure 4.10 NORTH ANNA UNIT 1 - CYCLE 10 MAXIMUM ENTHALPY RISE HOT CHANNEL FACTOR, F-delta-H, vs. BURNUP
- 1. 5 0.......,..;............. _...._............ _
puggpoggg TECH SPEC LIMIT
....;....I......
MEASURED 1.48..a,.a,.:..,..u...a...,....,.
4...............
1..,......
r.7....
g
......J.1.......,..
.....4........
O
..s.
y
..,e..
..s.....
s.
..r.
. a
.,e
. y.,..e..
- 7...,e..,..
]
s e
i i
y..,..
O
(
.. a....'..l'...............a.4..'..'........a.....
s 1.46.....,.,............. '.......,.,..............
Lg,
. 7 3.
W
..i..
..$e..
l.........'.0.,0 1
- 4.................
,6..,.0..
(
j l
g,
...s....
........J......r.,.
g
.. c... a.. J,.... u. u,. J. s,..............J..........2,.s,..............
I
.. a.. a,. s,..
7....,..
.............w4.4.,,..,.....t...,,..,..
C
.......s.........
2.....
..g...... 2......
i i i i e
*------+---F,..-----.
o Z
- e.J..J... 6.a.a..
.... 6. k,..
.J....L.
J... '.
....... r. j..e..i.. e.. [. 3..,.........,......
.,..,,...i.
7....
i
......+,+...,..
m
- 1.. J+.....
...........................t........
g r.... J..... s. k...
.J...'..
..J..J...'..
..s
.J
,,,,g
...+.i.,e.....
.....w..3.............s.4..
3.........p...
>=
4.
..s...
1.42....
A A..
nW.
.y
.y 3
......,.s................
........7....,.....
.....J.....
- . 2. J..... s... a.. a..... t J
I
.............. 4..
...........,,.................t.,.....,..
r.
F-7.
.....w.r..a..J....,....,..,..r 1-,---.--(---,
Z
.. s.. a.,..
.s,.........:.s,.....
...,......q...
i y
.........l........$.......,.y.,...
q......9..................
1.40
..................4
........i................
..I.........
......'..L,..w....,.,h......u.........'.........
,.3.
..J...'..!........................t........
...... a.. a...J..... s. a 4
...............J......r.......................!.....'..
3.
1.38..
0 4
8 12 16 20 CYCLE BURNUP (GWdIMTU)
NE-999 NIC10 Core Performance Report Page 39 of 52
l I
e Figure 4.11 NORTH ANNA UNIT 1 - CYCLE 10 s
TARGET DELTA FLUX vs. BURNUP 1
I I
I I
i 1
t t
i I
I I._.I _
I i
l l
l l
l l
I l
I l
l I
l 1
l l
1 i
10 i
l l
I i
i l
l l
i t
j i
l i
i I
t i
i i
I l
i I
I I
i i
~
i j
i t
i I
i i
l O
I l
1 t
6 6
t
'I l
t i, l --
l
- r. 1 i
i I
t i
i i
l i
4 4
l i
m enc:
i i
I 1
1 I
i i
t l
I I
I I
I l
l I
i i
i i
i i
6
{
i i
i i
i i
g i
w i
i i
I I
I i
i X
t i
i i
i l
I i
i D 4 I
I I
i I
i t.
a i
i 1
I i
l l
l l
l l
I I
I l
I 1
1 l
l 1
l l
I I
f J
i i
I I
I I
i i
I l
l 1
1 w 2 o
6 1
I I
i i
i i
I l
i i
l i
i l
i
}
i I
i I
i i
i i
I i
I I
l C
i l
~
g I
i i
i e
g i
l i
i i
i i
i i
lA l I
i I
i i
l i
l I
i I
i
- t. I.i I
l I
l I
-2 i
J l
i I
i i
r
'kk 4
~
g
, 'i 4T+i_4 a I
I
- v i
l
- $ _,l i
t I
t i
J i
l v
-6 0
4 8
12 16 20 CYCLE BURNUP (GWd/MTU) r NE-999 N1C10 Core Performance Report Pgge 40 of 52
4 e
Figure 4.12 NORTH ANNA UNIT 1 - CYCLE 10 CORE AVERAGE AXIAL POWER DISTRIBUTION N1-10-04 Fz = 1.218 AXIAL OFFSET = -3.485%
I*I' 8E E
EIE855 EE E
B BBB E
E 8
a3 c
w t:!
d g
ll2 a:
o E
=
E yu.
=
+B
.s.
h;,,, d.~
' j.'
'j-
- j;j AXIAL POSmON (NODES)
NE-999 N1C10 Core Performance Report Page 41 of 32 l
e Figure 4.13 NORTH ANNA UNIT 1 - CYCLE 10 CORE AVERAGE AXIAL POWER DISTRIBUTION N1-10-12 i
Fa = 1.161 AXI AL OFFSET = -4,587*
i..
i.e.
o, g
H...
e ed.
DC c
E... :.
g c
..s.
\\
h;,,,;,I.'
i.
j, j,
- l,-
a,-
-[.
.l AXIAL POSITION (NODES) -
i l
1 NE-999 NIC10 Core Performance Report Ppge 42 of 52 l
p.,
t.
?
- 4 Figure 4.14 NORTH ANNA UNIT 1 - CYCLE 10 CORE AVERAGE AXIAL POWER DISTRIBUTION
~
N1-10-18 v
Fz = 1.156 AXIAL OFFSET = -3.891*.
l.8
- 1.24 Es E3 33 a
n,,
3
$8
[
3 EBBBB3 g,
,a
=======.
E 3
a 1
- =
2 e
a:
.s g
E.. b '
s C
l
=
- [;,,,, ;;!,'
i! '
,j -
'ij -
,j -
,8 -
,j -
.,s.
.j.
AX1AL POSITION (NODES)
,\\
NE-999 N1C10 Core Performance Report Page 43 of 52
i Figure 4.15 NORTH ANNA UNIT 1 - CYCLE 10 CORE AVERAGE AXIAL PEAKING FACTOR vs. BURNUP 1.30 MEASURED VALUE s
................................. +.
.........{.
1.28
+
.......1'.......;...........3...t....
.....s....
i g
i a: 1.26
..........t..........,.......
O p.
6...........,.......
...........i.....,......
i O
I 1.24 l
1.........
O
..........i.....................;........._i..........
, I 2
..........,..........y........
...........s........
...+ 4..,....'.;,,,,,]..'.......l..l.....'.
( 1.22
........c.,
g n,
..... ;.......... :. 4.. :..............,..; 4..
e....
..I..,.......q..........
a 4 1. 0
..............,..,.....,...,..,.....t..,..,..
.l.....
..u.
..t..
4
.....t,..,..'
..u.
.......t.........
m l
G 1.18 j
...............,..,..3..,...,......,i..,...,.....
..u,..,...,..
g
.4........,.....
m
......... 1
> 1.16 i
..........i....,......,.....,.
g
.s.........
g
..........i..,...,....,....,....,i...
O O 1.14
....................,.........a,...
i
...........r-I 4.................>..l...--
l 7..:.....
t 1.12
.........t.........................................
..........l..........,....................i........,..
..........t..........
4......
1.10 0
4 8
12 16 20 CYCLE BURNUP (GWdIMTU)
NE-999 NIC10 Core Performance Report Page 44 of 52
Section 5 PRIMARY COOLANT ACTIVITY The ropecific activity IcVels of radiofodines in the primary coolant are important to core and fuel performance as indicators of failed fuel and are important with respect to offsite dose calculations associated with accident analyses.
Two mechanisms are responslisle for the presence of radiciodines in the primary coolant.
Radioiodines are always present due to direc*. fission product recoil from trace fissile materials plated onto core components and fuci structured surfaces or trace fissile materials existing as
)
impurities in core structural materials.
This fissile material is generally referred to as " tramp" material, and the resulting fodines are referred to as tramp lodine. Fission products will also diffuse into the primary coolant if a breach in the cladding (fuel defects) exists. Fuel
- defects, when
- present, are generally the predominant source of radioiodines in the primary coolant.
North Anna 1 Technical Specification 3.4.8 limits the radioiodines in the primary coolant to a dose equivalent I-131 value of 1.0 pCi/gm for Operational Modes 1 through 5,
inclusive.
Figure 5.1 shows the dose equivalent I-131 activity 1.1 story for Cycle 10. These data show that the dose equivalent I-131 activity was substantially below the 1.0 pC1/gm limit for steady state power operation.
The average steady state power equilibrium dose equivalent I-131 concentration for the cycle was 6.03 X NE-999 NIC10 Core Performance Report Page 45 of 52
g.
10~3 pC1/gm ~which corresponds to less than 1% of the Technical Specification limit.
Correcting the 1-131 concentration for tramp iodine involves calculating the I-131 activity f rom tramp fissile sources and subtracting this value from the measured I-131.
The resultant is an estimate of the I-131 activity resulting directly from defective fuel. The magnitude of
' l the tramp-corrected I-131 can be used as an Indication of the number of defective fuel rods.
North Anna 1 completed Cycle 10 with no fuel defects.
The cycle-average tramp corrected iodine-131 concentration was 3.53 X 10 pCi/gm with an average domineralizer flow' rate of approximately 83 gpm during power operation.
This magnitude is typical of a core with no defective.
fuel rods. Another positive indication of defective fuel is the presence of spikes in radioiodine during large or rapid power transients.
There were no such iodine spikes during Cycle 10 operation as shown in Figure 5.1.
The ratio of the specific activities of I-131 to I-133 is used to characterize the type (size) of fuel failure or failures which may have occurred in the reactor core. Use of the ratio for this determination is feasible because I-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (a, proximately eight days).
For pinhole defects, where the diffusion time through the defect is on the order of days, the I-133 decays leaving the I-131 dominant in activity, thereby causing the ratio to be roughly 0.5 or aore. In the case of larger leaks NE-999 NIC10 Core Performance Report Page 46 of 52
and tramp material, where the diffusion mechanism is negligible, the 1-131/I-133 ratio will generally be less than 0.1.
The use of these ratios with regard to defect size is strictly qualitative and generally used throughout the commercial nuclear power industry.
l l
Figure 5.2 shows the I-131/I-133 ratio data for North Anna 1 Cycle 10.
The I-131/I-133 ratio was at a constant average value of approximately 0.10, which again is typical for a core with zero' defective fuel rods.
1,.
s NE-999 N1C10 Core Performt.nce Report Page 47 of 52 L__________._________________
Figure 5.1 NORTH ANNA UNIT 1 - CYCLE 10 DOSE EQUIVALENT I-131 vs. TIME 1.00E+01 '
1.00E+00 l
1.00E-01 E
5 5c.
U 1.00E-02 g
!_ :=
- . z.. 1
~ z:
l p
m a
5 m
a E
1.00E-03 e
i i l l] l t 1 i
i I
6 4
i i
I so,
60 E
'*U 20
- 8 1.00E-05 3,
i leFEB93 2? MAYO.1 045EP93 13DEC23 2 MAR 94 01 ATLS4 090CT94 DATE NE-999 N1C10 Core Performance Report Ppge 48 of 52
A Figure 5.2 NORTil ANNA UNIT 1 - CYCLE 10 1-131 / I-133 ACTIVITY RATIO vs. TIME 1.0 '
O.9 0.0 0.7 0.6 o
P E
E 70.5 R
E T
0.4 0.3 l
l 0.2 I
i i
s t
W i j i 6
i I
1 0.0 I
i i
i i
i i
167TD93 271AY93 045EP93 13DEC33 2: MAR 94 01NIA4 000CT94 DATE l
NE-999 N1C10 Core Performance Repor:
Page 49 of 52
e e
Section 6 CONCLUSIONS The North Anna 1, Cycle 10 core has completed operation.. Throughout this cycle, all core performance indicators compared favorably with the design predictions and the core related Technical Specifications limits were met with significant margin.
No significant abnormalities in reactivity or burnup accumulation were detected.
Radiolodine analysis indicated that there were no apparent fuel rod defects during Cycle 10.
CO NE-999 NIC10 Core Performance Report Page 50 of 52
o Section 7 REFERENCES l
1)
A. H. Nicholson, " North Anna Unit 1, Cycle 10 Startup Physics Tests Report", NE-942, Rev. O, June, 1993.
- 2) North Anna Power Station Unit 1 Technical Specifications, Sections 3/4.1, 3/4.2 and 3/4.4.8.
3)
T. W. Schleicher, " Virginia Power Fuel Assembly Burnup and Isotopics Calculation Code Manual", NE-726, Rev. O, February, 1990.
4)
D. L. Gilliatt, "The Virginia Power FOLLOW Code Manual,"
NE-679, Rev. 1 Virginia Power, April, 1991.
5)
W. D. Leggett, III and L. D. Eisenhart, "INCORE Code,"
WCAP-7149, December, 1967.
6)
T.W. Schleichor, "The Virginia Power CECOR Code Package",
NE-831, Rev. ::, March, 1994.
7)
W. S. Miller, " North Anna 1, Cycle 10 FOLOW Input and Calculations",
PM-492, Rev. O, Addendum A, November, 1994.
- 8) Memorandum from R. M. Berryman to B. L. Shriver, " Reload Safety Evaluation, North Anna 1 Cycle 10 Pattern VN, NP-438",
NSA-93001, February 22, 199;.
\\
NE-999 NIC10 Core Performance Report Page 51 of 52
e e
REFERENCES (cont.)
9)
T. S. Psuik, " North Anna Unit 1, Cycle 10 Design Report",
NE-927, Rev. O, Mr 1993.
- 10) W. S. Miller, " North Anna Unit 1, Cycle 10 TOTE Calculations",
PM-470, Rev. O, Add. R, September, 1994.
- 11) R. A. Hall, et al, " North Anna Unit 1 Cycle 10 Flux Map knalysis",
PM-482, Rev. O, and Addenda, April 1993 - August 1994.
- 12) Nuclear Standard, " Fuel Integrity Monitoring", ENNS-2904 Rev. O, S/26/92.
so-NE-999 NIC10 Core Performance Report Ppge 52 of 52
__