ML20154L069
| ML20154L069 | |
| Person / Time | |
|---|---|
| Site: | North Anna |
| Issue date: | 10/14/1998 |
| From: | VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | |
| Shared Package | |
| ML20154L054 | List: |
| References | |
| NUDOCS 9810190133 | |
| Download: ML20154L069 (9) | |
Text
{{#Wiki_filter:_ _ -. -. - -. 4 i i I CORE OPERATING LIMITS REPORT (COLR) NORTH ANNA POWER STATION UNIT 1 CYCLE 14 PATTERN XY Virginia Electric and Power Company Page 1 9810190133 981014 PDR ADOCK 05000338 P PDR a.,
. -... ~... ~. 1 N1C14 CORE OPERATING LIMITS REPORT 1
1.0 INTRODUCTION
The Core Operating Limits Report (COLR) for North Anna Unit 1 Cycle 14 has been prepared in accordance with Technical . Specification 6.9.1.7. The Technical Specifications affected by this report are listed below:. 3/4.1.1.4 Moderator. Temperature Coefficient 3/4.1.3.5 Shutdown Bank Insert.Lon-Limit 3 /4.1'. 3. 6 Control Bank Insertion Limits l 3/4.2.1 ~ Axial Flux Difference 3/4.2.2 . Heat Flux Hot Channel Factor l 3/4.2.3 Nuclear Enthalpy Rise Hot Channel-Factor and Power Factor Multiplier The cycle-specific parameter limits for North Anna 1 Cycle 14 for j l the specifications listed above are provided on the following L
- pages, and were - developed using the NRC-approved methodologies specified in Technical Specification-6.9.1.7.
I' l L l l r 4 M I 1 l N1C14/XY COLR Rev 0 Page 2 ~ L
- - ~ _. 4 I 2.0 OPERATING LIMITS I . 2.1 Moderator ~ Temperature Coefficient (Specification 3/4.1.1.4) 2.1.1. The moderator temperature coefficient (MTC) limits are: I The BOC/ARO-MTC shall be less positive than or equal to +0. 6E-4 Ak/k/ F (+6 pcm/ F) below 70 percent of RATED THERMAL POWER. The BOC/ARO-MTC shall be less positive than or equal to 0 0 (zero) Ak/k/ F (0 pcm/ F) at or above 70 percent of RATED THERMAL POWER. The EOC/ARO/RTP-MTC shall be less negative than -5.0E-4 Ak/k/ F (-50 pcm/ F). l 2.1.2 The MTC surveillance limits are: The 300 ppm /ARO/RTP-MTC should be less negative than or equal to -4.0E-4 Ak/k/ F (-40 pcm/ F). The 60 ppm /ARO/RTP-MTC should be less negative than or 0 equal to -4.7E-04 Ak/k/ F (-47 pcm/ F). where: BOC - Beginning of Cycle ARO - All Rods Out EOC - End of Cycle RTP - RATED THERMAL POWER i l 2.2 Shutdown Bank Insertion Limit (Specification 3/4.1.3.5) 2.2.1 The shutdown rods shall be withdrawn to 227 steps. l l 2.3 Control Bank Insertion Limits (Specification 3/4.1. 3. 6) I 2.3.1 The control rod banks shall be limited in physical insertion as shown in Figure A-1. l N1C14/XY COLR Rev 0 Page 3 i
_ _.. ~. ...-____.._..._...___..__......m_. .i e ..1 1. l. 2.'4 Axial-Flux Difference (Specification 3/4.2.1) 2'.4'.1 The-axial flux' difference limits are provided in Figure-A-2. 2.5 Heat Flux ' Hot. ChLanel Factor-FQ (z) ' (Specification 3/4.2.2) 2.5.1 The Fg(z) limits'are: 19 - 2 Fg(z) $ ---
- K(z) for P > 0.5 P
Fg(z) $ 4.38
- K(z) for P $ 0.5 THERMAL POWER where:
P = ------------------ , and RATED THERMAL POWER l i K(z) is provided ln Figure A-3L L 1 i \\ l 2.5.2 The Fg(z) surveillance limits:are: l L 2.19 K(z) Fg(z)M $ --- for P > 0.5 P N(z) L. c K(z) l Fg ( z) M s 4. 38 * ---- for P s 0.5 N(z) L f t. i lr { 1-N1C14/XY COLR Rev 0-Page 4 l l's ( ? L..
~. . -. ~. = -. - THERMAL POWER where: P = ------------------ RATED THERMAL POWER K(z) is provided in Figure A-3, and N(z) is a non-equilibrium multiplier on Eg(z)M to 'l account for power distribution transients during normal operation, provided in Table A-1. The top and bottom 15% of the core is excluded per TS 4.2.2.2.G. 2.6 Nuclear Enthalpy Rise Hot Channel Factor - FAH(N) and Power Factor Multiplier (Specification 3/4.2.3) FAH(N) 5 1. 4 9* (1 + 0. 3* (1 - P) ) THERMAL POWER where: P = ------------------- RATED THERMAL POWER l l N1C14/XY COLR Rev 0 Page 5
L.. l Table A-1 j N1C14 NORMAL OPERATION N(Z)'s \\ Height 0tc1000 1000 to 3000 3000 to 5000 5000 to 7000 7000 to 9000 9000 to 18200 18200 to EOC node (feet) MWD /MTU MWD /MTU MWD /MTU MWD /MTU MWD /MTU MWD /MTU MWD /MTU 10 10.2 1.141 1.141 1.146 1.146 1.146 1.146 1.124 11 10.0 1.139 1.139 1.146 1.146 1.146 1.1/ 6 1.126 12 9.8 1.135 1.135 1.149 1.149 ' 1.149 1.149 1.130 13 9.6 1.134 1.134 1.154 1.154 1.154 1.154 1.138 -14 9.4 1.140 1.140 1.159 1.159 1.159 1.159 1.146 15 9.2 1.151 1.151. 1.165 1.165 1.165 1.165 1.153 16 9.0 1.159 1.159 1.168 1.168 1.168 1.168 1.159 17 8.8 1.165 1.165 1.172 1.172 1.172 1.172 1.165 18 8.6 1.170 1.170 1.180 1.180 1.180 1.180 1.168 19 8.4 1.172 1.172 1.188 1.188 1.188 1.187 1.173 20 8.2 1.174 1.174 1.194 1.194 1.194 1.192 1.183 21 8.0 1.172 1.172 1.197 1.197 1.197 1.198 1.194 22 7.8 1.170 1.170 1.200 1.200 1.200 1.207 1.206 23 7.6 1.167 1.167 1.200 1.200 1.200 1.216 1.217 24 7.4 1.165 1.165 1.200 1.200 1.200 1.224 1.224 25 7.2 1.161 1.161 1.197 1.197 1.197 1.229 1.229 26 7.0 1.155 1.155 1.193 1.193 1.193 1.231 1.231 27-6.8 1.149 1.149 1.190 1.190 1.190 1.231 1.232 l 28 6.6 1.141 1.141 1.185 1.185 1.185 1.228 1.228 29 6.4 1.131 1.131 1.178 1.178 1.178 1.223 1.223 30 6.2 1.122 1.122 1.168 1.168 1.168 1.213 1.213 31 6.0 1.119 1.119 1.158 1.158 1.158 1.203 1.203 32 5.8 1.118 1.118 1.147 1.147 1.147 1.188 1.188 33 5.6 1.114 1.114 1.134 1.134 1.134 1.175 1.175 34 5.4 1.108 1.108 1.121 1.121 1.121 1.159 1.159 35 5.2 1.097 1.097 1.109 1.109 1.109 1.140 1.140 36 5.0 1.090 1.090 1.104 1.104 1.104 1.127 1.127 37 4.8 1.089 1.089 1.105 1.106 1.106 1.120 1.120 38 4.6 1.095 1.095 1.108 1.109 1.109 1.119 1.119 39 4.4 1.105 1.105 1.110 1.111 1.111 1.122 1.122 40 4.2 1.115 1.115 1.115 1.115 1.115 1.125 1.125 41 4.0 1.124 1.124 1.124 1.121 1.121 1.128 1.128 42 3.8 1.134 1.134 1.134 1.126 1.126 1.134 1.134 43 3.6 1.144 1.144 1.144 1.130 1.130 1.141 1.141 44 3.4 1.154 1.154 1.154 1.131 1.131 1.145 1.145 45 3.2 1.163 1.163 1.163 1.135 1.135 1.150 1.150 46 3.0 1.173 1.173 1.172 1.141 1.141 1.152 1.152 47 2.8 1.181 1.181 1.181 1.149 1.149 1.158 1.158 48 2.6 1.189 1.189 1.189 1.157 1.157 1.168 1.168 49 2.4 1.197 1.197 1.197 1.165 1.165 1.180 1.180 50 2.2 1.204 1.204 1.204 1.172 1.172 1.190 1.190 51 2.0 1.212 1.212 1.212 1.178 1.178 1.200 1.200 I 52 1.8 1.220 1.220 1.220 1.185 1.185 1.209 1.209 N1C14/XY COLR Rev 0 Page 6
t l-l' l* I Figure A-1 l Control Rod Bank Insertion Limits l 230 r-r------ j-l (0.534,227) j j --- i
a 220 Fully w/d position = 227 steps l
I 210 y-1-t I I I J 200 F (1 0,194) c-g 190 f 7 -- - / -4 180 i 170 --/- I i -y--y 160 --wl - -h' t o --H E 150 + 5 i i &140 2 3 130 -,
- -- - - l 1
f120j(o,333)- p --, H - - - D-BANK 5 8110h 4 --
I, -
c. "100l- -) i j o 90 +- ~--- l t -- - 1 i 3 ~ 80 L-I. i j f--- e I i 70 F-- i e - 60 - - -- ?
- -p j-
/ 50 - - -{ 40 -! -d r-l 30 7, f-20 i 10 --- t -- - 4 i 0 --(048<0L i _.__ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Fraction of Rated Thermal Power i N1C14/XY COLR Rev 0 Page 7 1 I
.= ,+, Figure A-2 N1C14 Axial Flux Difference Limits 120 I I I t i 110 I "-I-- { i i (-12,100) (+6, " 00) l l Un cceptable i ~-'I ~ ~~ 100' Operatiori l l Unacceptable { Acceptable Operation oderatiord-- i ~ ~~ 0 80 --- --t- -t- - - .5 k 70 - --- +- b- --- t. l 1 N
E 60-
--H 3 - li a: I i (+20, 50) g (.27, 50) y 50 - ---H e2' I I e i 40 g--t
- -J i
i i4 - -- 30 - -j -- - - + - -
- -p l
l 10 - -t - 1 i 1 l' 0 -30 -20 -10 0 10 20 30 Percent Flux Difference (Delta-1) N1C14/XY COLR Rev 0 Page 8
~.. s.. i .*4, i I-Figure A-3 K(Z) - Normalized FQ as a Function of Core Height -.1.2 7.--- r l 1.1 t
- 6,1.0) l l-l 10 m
I l' l 0.9 (12,-~.925)- 4 0.8 7-- - i l ~N 6 - g 0,7 _ -. _7. _ _{ Q i W i N 3 i < 0.6 - ; - -- - -- r - - E l E 0 z l L i 0.5 E i x 0.4 -a i t 0.3 2 i i 0.2 i l 1, i O.1 -4 +- i l t 0.0 4-l 0 1 2 3 4 5 6 7 8 9 10 11 12 l l CORE HEIGHT (FT) t N1C14/XY COLR Rev 0 Page 9 ,}}