ML20096H127

From kanterella
Jump to navigation Jump to search
Errata to NEDO-24081 LOCA Analysis for Peach Bottom Atomic Power Station Unit 2
ML20096H127
Person / Time
Site: Peach Bottom Constellation icon.png
Issue date: 06/30/1984
From:
GENERAL ELECTRIC CO.
To:
Shared Package
ML20096H087 List:
References
NEDO-24081, NEDO-24081-ERR, NUDOCS 8409110265
Download: ML20096H127 (6)


Text

o- :t NUCLEAR ENERGY BUSINESS OPERATIONS

  • GENER AL ELECTRIC COMPANY SAN JOSE, CALIFORNIA 95125 GENERAL $ ELECTRIC APPLICABLE TO:

NEDO-24081-PUBUCATlON NO.

77NED355-ERRATA And ADDENDA T, 0. E. NO.

- LOCA Analysis for Peach SHEET TITLE NO.

D Bottom APS Unit 2 DATE June 1984

' December 1977 NOTE: Conectallcopies of the applicable sSSUE DATE publication as specifiedbelow.

REFERENCES PARAG APH L NE) (CO R R EC NS AN ADDITIONS)

1. Page v/vi Replace with revised page v/vi.
2. Page 3-1/3-2 Replace with revised page 3-1/3-2.
3. Page 4-3 Replace with revised page 4-3.
4. Page 4-13/4-14 Replace with revieed page 4-13/4-14.
5. Page 4-35/4-16 Delete page 4-15/4-16 (Change bars in right-hand margin indicate where report has been revised.

gpg8? Pas 83jh ^a *

P

C iE +'

NEDO-24081 LIST OF TABLES

- Table- Title _ Page 3-1 Significant Input Parameters to the Loss-of-Coolant Accident Analysis 3-1 4-1 Sununary of Results 4-5 4-2 - LOCA^ Analysis Pigure Sununary 4-6 4-3a MAPLHGR Versus Average Planar Exposure 4-7 4-3b MAPLHGR Versus Average Planar Exposure 4-8 4-3c .MAPLHGR Versus Average Planar Exposure- 4-9 4-3d MAPLHGR Versus Average Planar Exposure 4-10 4-3e' .MAPLHGR Versus Average Planar Exposure 4-11 3f MAPLHGR Versus Average Planar Exposure 4-11 4-3g -MAPLHCR Versus Average Planar Exposure 4-12 4-3h MAPLHCR Versus Average Planar Exposure 4-12

~ 4-31 MAPLHGR Versus Average Planar Exposure 4-13/4-14 4-3j MAPLHGR Versus Average Planar Exposure 4-13/4-14

)

8 v/vi g -ve- "T - ' - * * - =<"

r.

NEDO-24031

3. INPUf TO ANALYSIS A list of the significant plant input parameters to the LOCA analysis is presented in Table 3-1.

Table 3-1 SIGNIFICANT INPUT PARAMETERS TO THE IDSS-OF-COOLANT ACCIDENT ANALYSIS Plant Parameters:

Core Thermal Power 3440 MWe, which corresponds to 105%

of rated steam flow Vessel Steam Output 14.05 x 106lbm/h, which corresponds to 105% of rated steam flow Vessel Steam Dome Pressure 1055 psia Recirculation Line Break Area for Large Breaks - Discharge 1.9 ft2 (DBA)

- Suction 4.1 f t2 (DBA)

Number of Drilled Bundles 360 Fuel Parameters:

Peak Technical Initial Specification Design Minimum Linear Heat Axial Critical Fuel Bundle Generation Rate Peaking Power Fuel Type Geometry (kW/ft) Factor Ratio A. IC Type 2 7x7 18.5 1.5 1.2 B. IC Type 3 7x7 18.5 1.5 1.2 C. 8D274L 8x8 13.4 1.4 1.2 D. 8D274H 8x8 13.4 1.4 1.2 E. LTA260 8x8 13.4 1.4 1.2 F. 8DRB284L 8x8 13.4 1.4 1.2 G. P8DRB284H 8x8 13.4 1.4 1.2 H.- P8DRB285 8x8 13.4 1.4 1. 2 I. P8DRB299/ 8x8 13.4 1.4 1.2 BP8DRB299 J. BP8DRB299H 8x8 13.4 1.4 1.2

  • Io account for the 2% uncertainty in bundle power required by Appendix K, the SCAT calculation is performed with an MCPR of 1.18 (i.e. ,1.2 divided by 1.02)'

for a bundle with an initial MCPR of 1.20.

3-1/3-2

g-NEDO-24081 4.5- RESULTS OF THE CHASTE ANALYSIS This code'is used, with suitable inputs from the other codes, to calculate the E fuel cladding heatup rate, peak cladding temperature, peak local cladding oxidation, and core-wide metal-water reaction for large breaks. The detailed fuel model in CHASTE considers transient gap conductance, clad swelling and rupture, and metal-water reaction. The empirical core spray heat transfer and channel' wetting correlations are built _into CHASTE, which solves the transient heat' transfer equations for the entire LOCA transient at a single axial plane in a single fuel assembly. Iterative applications of CHASTE determine the maximum permissible planar power where required to satisfy the requirements of 10CFR50.46 acceptance criteria.-

The CHASTE results presented are:

e Peak Cladding Temperature versus time e Peak Cladding Temperature versus Break Area s

-e . Peak Cladding Temperature and Peak Local Oxidation versus Planar Average Exposure for the most limiting break size e Maximum Average Planar Heat Generation Rate (MAPLHGR) versus Planar

. Average Exposure for the most limiting break size 4

A summary of the analytical results is given in Table 4-1. Table 4-2 lists the figures provided for this analysis. The MAPLHGR values for each fuel type in the PB-2 core are presented in Tables 4-3a through 4-3j. l Y.

4-3

. .~

NEDO-24081 Table 4-31 MAPLHGR VERSUS AVERAGE PLANAR EXPOSURE Plant: 'PB-2' Fuel _ Type: P8DRB299 and BP8DRB299 Average Planar

' Exposure MAPLHGR PCT 0xidation (mwd /t) (WW/ft) (*F) Fraction 200- 10.9 1800 0.007 1,000- 11.0 1804 0.007 5,000- 11.5 1851 0.008

~10,000 12.2 1933 C.011 15,000. 12.3 1962 0.012 20,000 12.3 1965 0.012

.25,000' 11.9 1932 0.011 30,000 11.4 1864 0.009 35,000 10.9 1799 0.007 40,000 10.4 1744 0.005 45,000 10.0 1689 0.004 Table 4-3j MAPLHCR VERSUS AVERAGE PLANAR EXPOSURE Plant: PB-2 Fuel Type: BP8DRB299H l'

. Average Planar Exposure MAPLHGR PCT 0xidation (mwd /t) (kW/ft) (*F) Fraction 200 11.1 1820 0.007 1,000 11.2 1822 0.007

.5,000 11.7 1877 0.009 10,000 12.2 1940 0.011 15,000 12.3 1954 0.012 20,000 .12.0 1930 0.011 25,000 11.2 1843 0.008 30,000 10.5 1767 0.006 35,000 9.8 1682 0.004 40,000 9.2 1607 0.003 45,000 8.7 1543 0.002 4-13/4-14