ML20064B997

From kanterella
Jump to navigation Jump to search
Errata & Addenda Sheet 5 to LOCA Analysis for Peach Bottom Atomic Power Station,Unit 3
ML20064B997
Person / Time
Site: Peach Bottom Constellation icon.png
Issue date: 10/31/1982
From:
GENERAL ELECTRIC CO.
To:
Shared Package
ML19262G943 List:
References
NEDO-24082-ERR, NEDO-24082-ERR-05, NEDO-24082-ERR-5, NUDOCS 8301040271
Download: ML20064B997 (8)


Text

  • .

NUCLEAR ENEF.GY BUSINESS GROUP

  • GENER AL ELECTRIC COMPANY SAN JOSE. CALIF 07.NI A 95125 GEN ER AL $ ELECTRIC APPLICABLE TO:

DO-2 W 2 PUBLICATION NO.

77NED356 ERuu And ADDENDA T.1. E. NO.

TITLE LOCA ANALYSIS FOR PEACH uo, 5 BOTTOM ATOMIC POWER STATION DATE October 1982 UNIT 3 NOTE: Correct allcopies of the applicable ISSUE DATE December 1977 publication as specified below.

REFERENCES INSTRUCTIONS ITEM pjSE "

nAGRAPH L NEl (

1. Page v/vi Replace with new page v/vi.
2. Page 3-1/3-2 Replace with new page 3-1/3-2.
3. Page 4-3 Replace with new page 4-3.
4. Page 4-11 Replace with new page 4-11.
5. Page 4-15/4-16 Add a new page 4-15/4-16 (Change brackets in right-hand margin indicate areas where report has been revised.)

8301040271 821230 PAGE 1 Of I PDR ADOCK 05000278 P PDR

NEDO-24083

> LIST OF TABLES Table Title P3 3-1 Significant Input Parameters to the Loss-of-Coolant Accident Analysis 3-1 4-1 Summary of Results 4-5 l 4-2 LOCA Analysis Figure Summary 4-6 4-3a MAPLHGR Versus Average Planar Exposure 4-7 4-3b MAPLHGR Versus Average Planar Exposure 4-8 4-3c MAPLHGR Versus Average Planar Exposure 4-9 4-3d MAPLiiGR Versus Average Planar Exposure 4-10 4-3e MAPLilGR Versus Average Planar Exposure 4-11 4-3f MAPLHGR Versus Average Planar Exposure 4-12 l

4-3g MAPLilGR Versus Average Planar Exposure 4-13 4-3h MAPLilGR Versus Average Planar Exposure 4-14 4-31 MAPLHGR Versus Average Planar Exposure 4-15 l

l v/vi

. . _ . _ _ _ - . _ _ _ _ . . _ _ _ .___.___._ ___ _ ____ .~_ . _ - - . _ _ _ . . .

.. _ . -- _ --- _ . . . _ _ . . . = . _ . . . . . . . .

l NEDO-24082

)

'l

3. INPUT TO ANALYSIS _

A list of the significant plant input parameters to the LOCA analysis is presented in Table 3-1.

Table 3-1 SIGNIFICANT INPUT PARAMETERS TO THE i LOSS-OF-COOLANT ACCIDENT ANALYSIS i

Plant Parameters:

j Core Thermal Power 3440 MWt, which corresponds to l 105% of rated steam flow i

Vessel Steam Output 14.05 x 106 lbm/h, which corresponds to 105% of rated steam flow l Vessel Steam Dome Pressure 1055 psia Recirculation Line Break Area for Large Breaks - Discharge 1.9 ft2 (dbl.)

- Suction 4.1 ft2 (DBA)

Number of Drilled Bundles 432 Fuel Parameters:

Peak Technical Initial

! Specification Design Minimum i Linear Heat Axial Critical Fuel Bundle Generation Rate Peaking Power Fuel Type Geometry (kW/ft) Factor Ratio

  • A. IC Type 2 7x7 18.5 1.5 1.2 B. IC Type 3 7x7 18.5 1.5 1.2 C. 8D274L 8x8 13.4 1.4 1.2 D. 8D274H 8x8 13.4 1.4 1.2 E. PTA260 8x8 13.4 1.4 1.2 F. 8DRB283 8 x 8R 13.4 1.4 1.2 G. F8DRB284H 8 x 8R 13.4 1.4 1.2 H. F8DRB299 8 x 8R 13.4 1.4 1.2 I. P8DQB326LTA 8 x 8R 13.4 1.4 1.2

]

  • To account for the 2% uncertainty in bundle power required by Appendix K, the SCAT calculation is performed with an MCPR of 1.18 (i.e., 1.2 divided by 1.02) for a bundle with an initial MCPR of 1.20.

3-1/3-2

~ . - _ -

_. _=_ --

4 ~

l i

NEDO-24082 1

1 i

4.5 RESULTS OF THE CllASTE ANALYSIS This code is used, with suitable inputs from the other codes, to calculate .the fuel cladding heatup rate, peak cladding temperature, peak local cladding 7

i

' oxidation, and core-wide metal-water reaction for large breaks. The detailed fuel model in CHASTE considers transient gap conductance, clad swelling and

rupture, and metal-water reaction. The empirical core spray heat transfer and I

channel vetting correlations are built into CHASTE, which solves the transient heat transfer equations for the entire LOCA transient at a single axial plane in a single fuel assembly. Iterative applications of CHASTE determine the i

maximum permissible planar power where required to satisfy the requirements of 10CFR50.46 acceptance criteria.

The CHASTE results presented are:

i

! e Peak Cladding Temperature versus time i

e Peak Cladding Temperature versus Break Area I

t e Peak Cladding Temperature and Peak Local Oxidation versus Planar -

l Average Exposure for the most limiting break size e Maximum Average Planar Heat Generation Rate (MAPLHGR) versus Planar Average Exposure for the most limiting break size A summary of the analytical results is given in Table 4-1. Table 4-2 lists the figures provided for this analysis. The MAPLHGR values for each fuel '

type in the PB-3 core are presented in Tables 4-3a through 4-31. .

l 4-3

NEDO-24082 4.6 METHODS In the following sections, it will be useful to refer to the methods used to analyze DBA, large breaks, and small breaks. For jet-pump reactors, these are defined as follows:

a. DBA Methods. LAMB / S CAT / SAFE / DBA- REFLOOD/ CIIASTE . Break size: DBA.
b. Large Break Methods (LBM). LAMB / SCAT / SAFE /non-DBA REFLOOD/ CHASTE.

2 Break sizes: 1.0 ft 5,A < DBA.

c. Small Break Methods (SBM). SAFE /non-DBA REFLOOD. Heat transfer coefficients: nucleate boiling prior to core uncovery, 25 Btu /hr-ft - *F after recovery, core spray when appropriate. Peak cladding temperature and peak local oxidation are calculated in non-DBA-REFLOOD. Break sizes A 5,1.0 ft2, 4-4

NED0-24082 Table 4-3e

!4APLliGR VERSUS AViASCE PLA 4AR EXPOSURE Plant: PB-3 Fuel Type: PTA260 Average Planar Exposure FL\P LilGR PCT 0xidation (4wd/t) ( kt1/ f t ) (*F) Fraction 200 11.4 1794 0.006 1,000 11.5 1803 0.007 5,000 12.1 1875 0.009 10,000 12.2 1891 0.009 15,000 12.3 1920 0.010 20,000 12.1 1923 0.010 25,000 11.7 1875 0.009 30,000 11.3 1847 0.008 35,000 10.3 1717 0.005 40,000 9.7 1645 0.003 45,000 9.1 1603 0.003 50,000 8.5 1567 0.002 _

l l

l l

l 4-11

NEDO-24082 Table 4-3f MAPLilGR VERSUS AVLMGE PLANAR EXPOSURE Plant: PB-3 Fuel Type: 8DRB283 Average Planar Exposure MAPLilGR PCT 0xidation (Ld/t) _ (kW/ft) (*F) Fraction 200 11.3 1823 0.007 1.000 11.4 1822 0.007 5,000 11.9 1884 0.009 10,000 12.1 1902 0.009 15,000 12.1 1917 0.010

.0,000 11.9 1903 0.010 25,000 11.3 1844 0.008 30,000 11.1 1815 0.007 35,000 10.5 1744 0.005 40,000 9.8 1672 0.004 4

4-12

/, .yl..

tj

%.,,, /p 1*

', s' 'i * ,

ij Ni T'/ i f i 7 - e .

j, / ,;

NE.DG-2k 8} ;O r

- w '#.! 3

, ')j c ';'

w , /* , .

~

-- 1 '

, .l

, / Table 4-31 i

..,,).1 D t ',r

.j y, .

, (J ' . ;s

/

~

MAPLHCR VERSUS AVERAGE PLANAR)

f. , ' T .,> , 'f, , f

^' '

~

EXPOSURE '

er J R~  ;;

M. [

x1 . .

p ..,

.f .

r-(Fuel Type: -P8Nh326LTA

[. f, <! .! '~

Plant: PB-3 i j

/

' p d e:m .

u. .. > , "y

(j"j ' G

  • ii 8,,

6

)

/,

Average Planar -'

i  !,

'y 'f,- / Oxidation ;-

Exposure . q , PCT t MAPLl%'R 's[ , '

f '"-

(Mwd /t).

.= a

) (kW/ft)'-[ <*

p.

+' t t,G , >

I 2

Fraction ya, a 200 10.9 ./ 1 ?.4 ' O.005

+ .

l, f' ,. ,

.- y J' 1,000 f y, ,' ' ' '1,0. 9 I -

, S,.Q30- ,j

- 0.005

- -  ; ,/ .

  • . .a v +

5,000 '1798 O.007 11.5 4, e /s i  ;/ ' n ji [ t< . ',

'\ r , ,j-J' g

  1. .) '1

~ 3 10,000 .

.+

12.4 ' pj, 1892 ,

Qf,,010

w. ,> ,p 15,000 V $ 12.5 ,, 1902,

~- -

,0.010

~

l ,

<q 7

20,000 12.5 1902 *

.0.'010

, j .

r' ..

25,000 11l'9 - ..,. ~ .

1838 y r, , ,

, 0.008 ;

, - s < ,e 30,000 / z. 11.3,, c ,,_, 1766 '"./:;1 ,0.006

} .~  ; ,

' ~

,t['

35.000 , 10.7 % '1704 , 0.005 i

,, :j l ,sf /!ij ..

((,.

~, '

i 40,000 '

  • 10.3 6 16,59

.,0.004 sf~

45,000 , i k,b ., 155f -

0.002

. ,. ./ r+ w 50,000 .

7 1 ,4 '. $(6 ~ ~ ' '

O.001

t. I , : ,. ..,

y

?/ ,

.s . .. ,

Y _. l 'h

+

3a l, ,f '~'

- .c -

i,..

f

- I y '

f ? s, i.

.I  ; 2

.r*

~

' l ~ ) ,* ,/ /', J, s - ./ , ' < ~ ~

't'

/ p, ,yl .

II *i s -

- r i

~'i.' s un *

-.t .y j, j,, ( - t 1 f "'y',

- sv

~ / r L.  ; >

ec

\ . .. ) f _ , - ,

", 4-15/,4-16 - -

4 p f .

s

' ' ' ~ Y -r-- . , . ., . _ _ - . . _ _ ,_,