ML20212H631

From kanterella
Jump to navigation Jump to search
Rev 2 to PECO-COLR-P2C13, COLR for Pbaps,Unit 2,Reload 12 Cycle 13
ML20212H631
Person / Time
Site: Peach Bottom Constellation icon.png
Issue date: 08/19/1999
From: Carmody J, Giancatarino A, Robert Wolfgang
PECO ENERGY CO., (FORMERLY PHILADELPHIA ELECTRIC
To:
Shared Package
ML20212H620 List:
References
PECO-COLR-P2C13, PECO-COLR-P2C13-R02, NUDOCS 9910010274
Download: ML20212H631 (22)


Text

.

A!cor:neyFWadSudeusDhhan PECOCOUp2C13 l PS 13 Cam 0pendagQuesRepen Page1,Ruro2 CORE OPERATING LIMITS REPORT FOR PEACH BOTTOM ATOMIC POWER STATION UNIT 2 RELOAD 12, CYCLE 13 l REVISION 2 Prepared By:

W e "

  • / - Date:  :

A. 6. Giancatarino Engineer Reviewed By. 4<- Date: - '~

R. J. Wolfcjang Engineer Approved By: N' _zc e ! Date: f47W

' ' u J. M. Carmody Manager Nuclear Design BWR 9910010274 990924 PDR ADOCK 05000277 P PDR

4 l P2C13Cae0puegummmpet Rena,Rm.2 I

LIST OF EFFECTIVE PMES Page(s) Revision l 1 - 22 2 i

l PECO EnuwFeindSanmesOhmen l P3C13CanopsuensUnitiRupet PttxM a gpung Wh2 INTRN @ AND su-- =3y i This report provides the followmg cycle-specific parameter limits for Peach Bottom Atomic Power Stati Unit 2 Cycle 13 (Reload 12):

Maximum Average Planar Linear Heat Generation Rate (MAPLHGR)

ARTS MAPLHGR thermallimit multipliers Single Loop Operation (SLO) MAPLHGR multipliers Minimum Critical Power Ratio (MCPR)

ARTS MCPR thermal limit adjustments and multipliers Single Loop Operation (SLO) MCPR adjustment

. Rod Block Monitor (RBM) Analytical Limits, Allowable Values and MCPR Limits Linear Heat Generation Rate (LHGR)

. Turbine Bypass Vane Parameters These values have been determined using NRC-approved methodology and are established such that all applicable limits of the plant safety analysis are met.

This report provides the means for calculating the Operating Limit MCPR and MAPLHGR thermallimits for tha following conditions:

All points in the operating region of the power / flow map including Maximum Extended Load Line Umit (MELLL) down to 81% of rated core flow during full power (3458 MWt) operation Increased Core Flow (ICF), up to 110% of rated core flow I

End-of-Cycle Power Coastdown to a minimum power level of 40%

Feecwater Heaters Out of Service (FWHOOS) to 55' F temperature reduction Final Feedwater Temperature Reduction (FWTR) between End-of-Rated (EOR) and End-of-Cycle IEOC) to 90* F temperature reduction Th3 Allowable Values, documented in Reference 17, for feedwater temperature as a function of thermal power for both FWHOOS and FWTR are specified in the appropriate Peach Bottom procedures.

Note that the term

  • EOR" refers to the cycle exposure at which operation at " rated conditions" is no longer possible (i.e., the cycle exposure at which cycle extension begins) based on the EOR point as d:cumented in the current revision of the Cycle Management Report.

Pr:paration of this report was performed in accordance with PECO Energy Fuel and Services Division Procedure FM-300, " Reload Core Licensing". This report is submrtted in accordance with Technical Sp:cification 5.6.5 of Reference (1) and contains all thermallimit parameters related to the implernentation of the ARTS Improvement Program and Maximum Extended Load Line Limit Analyses (ARTS /MELLLA) for Peach Bottom Unit 2 Cycle 13.

PECO EnmyFuelandSuuises(namen l P2Ct3CaseQpuuAngUutsRupet PECOCOLAP2013 Ptp4, Rus.2 MAPLHGR LMffS The bounding MAPLHGR limits (kW/ft) for each fuel type are provided in Figures 1 through The 5.

bounding MAPLHGR limits are the lowest kW/ft limits of the fuel lattices (excluding natural uran comprise a given fuel type as a funceon of average planar exposure. The MAPLHGR figures are us when hand calculations are required as specified in Reference (4). All MAPLHGR values for each fuelI type as a function of axial location and average planar exposure shall be less than or equal to the I applicable MAPLHGR limits for the respective fuel and lattice types to be in compliance with Technic Specification 3.2.1. These MAPLHGR limits are specified in References (2), (3), (15) and (16) an process computer databank. The ARTS-based MAPLHGR power dependent multipliers (MAPFAC(P))

provided in Figures 6 and 7. Figure 6 is valid for seven or more (of nine) Turbine Bypass Valve in-Service and Recirculation Pump Trip (RPT) In-Service with a maximum temperature reduction of 9 t for FWTR operation. Figure 7 is valid for three or more (of nine) TBVs Out-of-Service (OOS) or RPT with a maximum FWTR of 90* F. The flow-dependent multipliers (MAPFAC(F)) are provided in Fi and 9 as a function of the number of recirculation loops in operation only. The SLO MAPLHGR (0.83) is applied through MAPFAC(F) as shown in Figure 9. MAPFAC(F)is clamped at 0.83 st 48.56% of rated core flow to ensure peak clad ternperatures are maintained within the limits of t specific LOCA analysis for single recirculation loop operation. The power- and flow-dependent MAPLHG multipliers were obtained from References (5), (11), (17), and (18).

MCPR LIMITS The Operating Limit MCPR (OLMCPR) for use in Technical Specification 3.2.2 for each fuel type provided in Table 1. These values are determined by the cycle-specific fuel reload analyses in Reference (2). The OLMCPR is increased by 0.02 when operating in SLO (due to the safety limit increase). The Safety Limit MCPRs are documented in Section 2.1.1.2 of Reference (1).

l Control rod scram time venfication is required as per Technical Specification 3.1.4, " Control Rod Scram Times" Tau, a measure of scram t:me performance to notch position 36 throughout the cycle, is cetermined based on the cumulative scram time test results. The calculation of Tau shall be performed in accordance with site procedures. Linearinterpolation shall be used to calculate the OLMCPR value if Tau is cetween 0.0 (Tau Option B) and 1.0 (Tau Option A).

Seoarate MCPR values are presenteo herein (Toble 1) for the following domains:

  • TBVs in-Service (seven or more in-service) and RPT In-Service, maximum FWTR of 90 *F

+ TBVs Out-of-Service (three or more out-of-service) and RPT In-Service, maximum FWTR of 90 *F TBVs in-Service (seven or more in-service) and RPT Out-of-Service, maximum FWTR of 90 *F The OLMCPR values are documented in References (2) for the GE11 and GE13 fuel designs.

The ARTS-based power-dependent MCPR limits, OLMCPR(P), for use in Technical Specification 3.2.2 are provided in Figure 10. Figure 10 is valid for all operating conditions. The flow-dependent MCPR limits, OLMCPR(F), are provided in Figure 11. Figure 11 is valid for all operating conditions. The OLMCPR(P values below the turbine scram bypass power are documented in Reference (17). OLMCPR(P, F) curves were obtained from References (5), (11). (17) and (18).

f l .PECO EnmyRedandSamhus(Rhien

\ PSC13CanCpeukeuadisfhput Pprm3-P2013 Pages,het2 OVERALL GOVERBeGG namR Als MAPLHGR LANTS ARTS provides for power- and flow-dependent thermal limit adjustments and multipliers which allow for a more reliable administraten of the MCPR and MAPLHGR thermal limits. At any given power / flow (P state, all four iets are to be detomuned:

MAPFAC(P), MAPFAC(F), OLMCPR(P), and OLMCPR(F) from Figures 6 through 11, incluswe. The most limiting MCPR and the most limiting MAPLHGR (maximum OLMCPR(P) and OLMCPR(F) and minimum of MAPLHGR(P) and MAPLHGR(F)] for a given (P cendition will be the goveming limits. The OLMCPR for each fuel type is determined by the cycle-sp fuel reload analyses in Reference (2) Rated MAPLHGR values are a composite of results obtained from bundle-specific thermal-mechanical and emergency core cooling system analyses. Supporting documentation for the ARTS-based limits is provided in References (5), (10), (11), (14), (17), and (18)

ROD BLOCK MONITOR SETPO_llGR The RBM power-biased Analytical Limits, Allowable Values and MCPR Limits for use in Technical Specification 3.3.2.1 are provided in Table 2 per Reference (5) with supporting documentation in References (2), (11), (12) and (13).

LINEAR HEAT GENERATION RATES The beginning of life (maximum) LHGR values for each fuel type for use in Technical Specification 3.2.3 are provided in Table 3. The LHGR values as a function of fuel exposure are provided in Reference (3)

The bases for the LHGR values are documented in Reference (4).

STEAM BYPASS SYSTEM OPERABILITY The operability requirements for the steam bypass system are govemed by Technical Specification 3.7.6.

f the requirements cannot be met, the approoriate power dependent limits for Turoine Bypass Valves Out-of-Service (TBVOOS) must be used (Table 1 with Figure 7). The minimum numoer of bypass valves to maintain system operability is seven as per References (8) and (9) and Table 4 Table 4 also includes other Turoine Bypass Valve parameters.

EOC RECIRCULATION PUMP TRIP ( EOC RPT) OPERABILITY lf the EOC-RPT is inoperable, then the OLMCPR (Table 1) and MAPFAC(P) limits (Figure 7) for EOC Recirculation Pump Trip Out-of-Service (RPTOOS), must be used.

The measured EOC RPT response time as defined in Section 1.1 of the Technical Specifications shall be :

s 0.145 seconds for TCV Fast Closure Trip ( i.e. Generator Load Rejection) s 0.155 seconds for TSV Fast Closure Trip ( i.e. Turbine Trip )

I A total RPT response time of 0.175 seconds is assumed in the safety analysis for both tnps and is defined as the time from the turbine valves (TCV or TSV) start to close until umplete are suppression of the EOC-RPT circuit breakers. Reference (19) provides the basis for the RPT response time.

l i

PE 0famyFudmetuuhesthdalen PGlOCCUWE13 l P90130se45autelkesfhese Peppe> Rur,2 CONCURRBtrTBVOOS AfdD RPTOOS Cycle 13 is .not licensed for TBVOOS and RPTOOS to occur concurrently. Therefore, concurrent TBVOOS and RPTOOS is an unanalyzed condition.

REFERENCES

1) " Technical Specsfications for~ Peach Bottom Atomic Power Station Unit 2", Docket No. 50-277 Appendix A to License No. DPR-44
2) " Supplemental Reload Licensing Report for Peach Bonom Atomic Power Station Unit 2, Reload 1 l Cycle 13", .GE Nuclear Energy Document No. J11-03306SRLR, Rev.1, August 1999
3) " Lattice Dependent MAPLHGR Report for Peach Bottom Atomic Power Station Unit 2 Reload 12 Cycle 13*, J11-03306 MAPL, Revision 0, August,1998
4) " General Electric Standard Application for Reactor Fuel", NEDE-24011-P-A-13, August 1996; and NEDE-24011-P A-13-US, August 1996
5) " Maximum Extended Load Line Limit and ARTS Improvement Program Analyses for Peach Bonom Atomic Power Station Unit 2 and 3", NEDC-32162P, Revision 2, March 1995
6) " Level 8 Analytical Limit increase Engineering Report for Peach Bottom 2 and 3", NEDC-32231P, August 1993
7) Letter, G. V. Kumar to H. J. Ryan, " Justification for Reduction of Rod Block Monitor System Downscale Trip Setpoint For Peach Bottom Atomic Power Station", May 23,1994
8) " Letter from R. M. Butrovich to H. J. Diamond, " Peach Bo; 9m-2 Cycle 12 Turbine Bypass Valve Caoacity Vanation from Design Basis", January 9,1995
9) Letter from G. V. Kumar to G. C. Storey, "PBAPS Evaluation of Turbine Bypass Surveillance Requirements", January 19,1995
10) Letter, G. V. Kumar to A. M. Olson,"PECO Rerate Project, ARTS Thermal Limits", June 27,1995
11) Peach Bottom Atomic Power Station Unit 2 Cycle 13 ARTS Thermal Limits Analyses, GE Nuclear Energy, Rev. O, August 1998
12) PECO Energy Calc. PM-0875, "GE NSSS Setooints Required to Support Power Rerate"
13) Letter from M. G. Wiwel to A. S. Hegedus and R. C. Stott, " Rod Block Monitor Downscale Settings for ITS", March 14,1995
14) " Peach Bottom Atomic Power Station Unit 2 Cycle 12 ARTS Thermal Limits Analyses", NEDC-32706P, Revision 0, April 1997
15) " Lattice Dependent MAPLHGR Report for Peach Bottom Atomic Power Station Unit 2 Reload 10 Cycle 11". 24A5154AA, Revision 0, September,1994
16) " Lattice Dependent MAPLHGR Report for Peach Bottom Atomic Power Station Unit 2 Reload 11 Cycle 12",24A5366AA, Revision 0, September,1996

I PECO EnuwFudadSamusOhtme l P2ctscanopumagumasnupet PECOCCUWJCS mp7,mur.2

17) " Peach Bottom Atomic Power Station Evaluation for Extended Final Feedwater Temperature Reduction of 90* F", NEDC-32707P, Supplement 1, May 20,1998 l
18) " ARTS Flow-Dependent Limits with TBVOOS for Peach Bottom Atomic Power Station and Umonck Generating Station", NEDC-32847P, June 1998
19) PECO Calculation PE-0173 , " Determination of Total Time Required to initiate the trip Signal to the EOC-RPT Circuit Breaker" i

PECO ErmyMedhh l PE13CenOpuutigUutensput N M Re.2 FIGURE 1 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUELTYPE P9 HUB 387-12G23 (GE11) 1<00 yn ,, - ,. - mgm - -

G.00 - -

7,- 4 __'.h .

mn x

y;fAw w . .; v; , -

.np%

p M.- -- - .y# ~

10.00 (-

p

-A.

E '. . . - L .",u . . .

s 4., .~- r -

r 8.00 ,

b #

'x %w.gf *Vp%pt%)%$7 w .n ~

~~

6.00 S -

g MifiMA WW$ ._ .j WrW '

  1. A&..:-.2.Rgg$$55W9.;..

NU bnu.ag.4 $$$T En%iOMir

~ s C'I'4 59:M"! 45"% 3C

~

- I am n,.,. g

, _!": bis ~ [. .z' '.;.[

. . _ . u: 2 .i .: y-aggq YIf:-@

.e . ..

m:

~

., p,hbg.

f.p )&.,1N.s ms dy - ;. ,3

., m.p:M..

W $8RhQ. . y%,f$Q . .r. * ' h!~, W f A M nfMM% M M y ..I 6. .g z ,

~:5kuf%ip in SWIM ,j$i$ff $%/ x -

WWt.;% ,;g 2.00 4 MSMIEnW @ffSM ' t.jC; WswJE er. , ;mmy::w w .%. s:en.ew q Ap ; " - - ~

' 'yapp

e >, ,v s .y I lL_

X.g 3 00

, i qqc:e -

0.0 100 20.0 30.0 40 0 50.0 60.0 Average Planar Exposure, GWd/ST Avg Plan Avg Plan Avg Plan Exposure MAPLHGR Exposure MAPLHGR Exposure (GWd/ST)

MAPLHGR (kWM) (GWd/ST) (kWM) (GWd/ST) (kW/ft) 0.0 11.13 7.0 12.15 25.0 11.01 0.2 11.18 8.0 12.30 30.0 10.29 1.0 11.28 9.0 12.44 35.0 9.59 2.0 11.42 10.0 12.58 40.0 8.90 3.0 11.56 12.5 12.66 45.0 8.22 4.0 11.70 15.0 12.42 50.0 7.54 5.0 11.86 17.5 12.10 55.0 6.85 6.0 12.01 20,0 11.74 57.85 6.45

PECOEnmyFuelamlSeuses(Ndusi l P3C13Can0pmuhethutsRupet PECOCOLR.P2C13 Page9,Rur.2

. FIGURE 2 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE P90TB397-13GZ (GE13) 14 00 -

,y ens 1- s.

5

^

12.00 - THIS FIGURE IS REFERRED TO SY

' TECHNICAL SPECIFICATION 3.2.1 g

4-

  • f. : ' uwwmawa '-

10.00 -- /;;'

m-

  • g g
sf??

I: w il:

fd. ..,

x-

.  :.: e9 h-3 oo ??Y . -

7;x- ':q -

a ^ * ;ep~- Vy' y z 6 00 -- fnQ a  ?%m A#

h >

Yl5?f nqq;e y , _y . v f_f- g' $ k?:V Ny,N: ,'L4G%

, _: _ ,,.,' w..,..;.5;

.;;3;

' <,pgw
_ _ _.y
4.g_ ;.

s,;' *.* .- 3;

)+;;

Y ^n J:dh : N M'k .

pt- Mb 4 og .

< W':w:;3. girgl. y..' u R M m h;*oh5ES$:4W4n3W4f4' -W' Lw : e ppg g. p: T z. .ww:a:ysM "h?h.kh?$$$b r s -

  • WN k - h p:hkikW $bfNWNb@^
  • .,., .y:m;,3 m -"g;.g y x 1: jN  :';OM$fMMMM W+ ifjYhU
00 - v # .4 x x , T. 52 :1 MnWWP?;QTM 'i x ~ #

&gg -

  • " J N-:- ~t Tyo:t*:tMMt 9

l

',c

'df%s.

ir d 0 00 '

OO 10.0 :D 0 30.0 40 0 50 0 60.0 Average Planar Exposure, GWd/ST Avg Plan Avg Plan , Avg Plan Exposure MAPLHGR Exposure MAPLHGR Exposure MAPLHGR (GWd/ST) (kW/ft) [GWd/ST) (kW#t) (GWd/ST) (kW/ft) 3.0 10.89 7.0 12.10 25.0 11.17 3.2 10.91 S.0 12.23 30.0 10.44

'0.

10.99 9.0 12.37 35.0 9.73 2.0 11.12 10.0 12.52 40.0 9.03 3.0 11.29 12.5 12.61 45.0 8.34 4.0 11.47 15.0 12.51 50.0 7.65 5.0 11.67 17.5 12.24 55.0 6.95 6.0 11.89 20.0 11.90 58.22 6.49

PECO EnseFusiadSamensOlomon l P2C13CesOpsangthutsAgen Par m 0 M P2C13 pageis, psy.2 FIGURE 3 i MAXIMUM AVERAGE PLANAR UNEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE P9DT8392-15GZ(GE13)

" '<O"W&ff @sge f- W '

w gyig -:"

q 00 _ Tg$ff%1 9  %. . . THIS FIGURE IS REFERRED TO BY

.m.

  • = ..

. . . gg TECHNICAL SPECIFICATION 3.2.1 u :< . ,~ .m m . .,

yQu 7.7%f.

pg ". pf ^ #

10 00 - .i. g n" '

..,_.. ; ,muy. e

g. Qu c-

,,3.C ^ '

p.y ~:+

l e wprlA -

!hhii . WQh p7 a3 e oo .. ,.g n

a h ' .. g.f%Q*x!b.

wg" +7.n..

  • mg+:

y Gy wSGM .

,g -

'A3@i

^-

}g . . g g ..,.v-

. +:-

, 3.,.

o DM nn .s g.ge.%

2

.a 6 00 -- " 3,h ML;%.<- *

. *ggip)WA a -

"' - WAgg.. p.a. e'm' 4*g+m4 % A tn'v#P ""9)W. . r. w . &q . . . . . .:-- . .~ meftgm"W^' s

[+9 siskhbh i '

r& > sk
2 ggjo ,re ^ my 'u
h . .s a.:

s r--g< 3.e . %g.v 5 bg..Mm pWpp hR p @; % 5 M h' -

':;:q. : * ,f ftp<

-. Nf .,)

-0" <- '" '

  • 4;:

~N 9?:ge t ..:g:.

y c....

p, v

3 00

  • 0 'O O :D 0 30.0 40.0 30 0 60 0 Average Planar Exposure, GWd/ST Avg Plan Avg Plan Avg Plan Exposure MAPLHGR Exposure MAPLHGR Exposure MAPLHGR (GWd/ST) (kW/ft) (GWd/ST) (kW/ft) (GWd/ST) ikW/ft1 3.0 10.64 7.0 11.69 25.0 1.06 0.2 10.69 8.0 11.86 30.0 10.34 1.0 10.80 9.0 12.03 35.0 9.64 2.0 10.93 10.0 12.21 40.0 S.94 3.0 11.07 12.5 12.33 45.0 3.26

.t.0 11.22 15.0 12.33 50.0 757 5.0 11.37 17.5 12.11 55.0 6.88 6.0 11.53 20.0 11.78 57.88 6.48

l l

I PECO Enew Raiad SarnessOsaman )

l P2C13CaseOpossesgUmnsRupest I3 Ptge11, Aer,2

. . FIGURE 4 MAXIMUM AVERAGE PLANAR UNEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE P9DTB40612GZ(GE13) 14 00 .

p:un:E ~ '9.g fy fEk .y;rg;m@gyg

.asQRW -dy "'.wgysq4p%g7;p;grug

"*pig;q%pp ggfb

...w w w ** * .:

THIS FIGURE IS REFERRED TO BY 12.00 -O'5IIdy-@' x .

m TECHNICAL SPECIFICATION 3.2.1

.~ ysN~- .y

.,.f:gdyp u gpppagg. m

. . ms

',1M.Wst.g&cM 3.::%;c e v g9. ; e#M%gg ~ 'au pr oh 10.00 - W g yy. .w4.g yf %

..g ,.,.. u v 4C.ga ::way#;hn;ggg aM pi :

w. x E ..M y -w 4 a 8.00 9iS*$$.w'[ 'h%%l. X. f 3W'WT ag Q ',; ' J j *)h,$gkQ$.fgp

--V Pj{f ^ * * ' ' '

y., .

r .i - = *y

.,;3 c 7=

L. ~Q). ;A.: ..~ ~ -*

E '" "'"

g 8 o

g

'>.gar-rt J k Qin MgMJeig!?;:igfdpMggggg g49 g x

[

at 8' "

$ghssP**a :ngtggh

v. ......'

M[ ,~.n -n

. i . f, ,_,, j, _f, E 7:. . . . . -:w .s s-mgy u

w nw... m e P,,e". me. ,pw.w;

.xx &.g

..f. ~+.q;g,s.,::',.;.:;n,# . syy[,m$$p;Wl&&gg ww.n-onw' h,x .p, n,.s.+.:.

~

. w :: .x e -

.y ^

4 00 - f.aw N?? $& hi{$ffhu_ ggfh  ;

w#mg,ggg?!)hh?;.ggggg_g_ gweggsgggw .

s s:b j!l g: hk :yGN gg .

. _ .k( 3ggNU' . ggj% }{

2.00 -

bh%h4

($

v&sw \

l

..gxi.x, l

3 00 -

00 *: 0 20.0 30.0 40.0 50 0 60.0 Average Planar Exposure, GWd/ST  !

1 I

Avg Plan Avg Fkn Avg Plan Exposure MAPLHGR Exposure MAPLHGR Exposure (GWd/ST)

MAPLHGR (kW/tt) (GWd/ST) (kW/ft) (GWd/ST) (kW/ft) 0.0 *0.67 7.0 11.72 25.0 10.89 0.2 10.72 8.0 11.83 30.0 10.28 1.0 'O.82 9.0 11.92 35.0 9.67 2.0 10.96 10.0 12.01 40.0 9.06 3.0 11.11 12.5 11.95 45.0 8.42 4.0 11.27 15.0 11.86 50.0 7.75 5.0 11.43 17.5 11.74 55.0 7.05 6.0 t 1.60 20.'O 11.50 57.58 6.67

PECO %Fueland Samens memori l P2C13 Case %LinesRepet PECO CG.R.FJC13 Page 12, Ror.2 FIGURE 5 MAXIMUM AVERAGE PLANAR UNEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE P9DTB409-13GZ (GE13) 14'00

_ s v - ! ;(^ , < >< , e

.',  ?)'[s.D'fi%~w D* @ # g '+'? % +'

Y"<'"

~ : ,, t " ~

'd 'i

  • e' , , m ,4L- ,s r ,. su w ,4mm.<s a , -

' g ,< ,3'Ac, g W',<< A - <s'- '

12.00 ' y n,,x 'J " yu '

- < 4/ g . 7'qsg3

~A4" ** '

"M THIS FIGURE IS REFERRED TO BY c a; '", Q/

. , < t>

, 4 e sp /$ 'fn TECHNICAL SPECIFICATION 3.2.1 ~1 e

s ,, ,,

,, a y , , f, : y,

, ,; ,,a w<

^'

10.00 -

': Y1'l^# '*f' b ,' ms 'hs, *Mh'c c-r/+ 'g , 9b'8 YN f-

I c,'

,9,g9gge > :s< %~v%,:,:,e

. .. ,g3 c >';

e 4 &,:,T6;:V yo A;%,:wr~ e, ,:

  • n ,n g " t WM * '+s i'* A '%N * , + '"*
  • M,,s,'

m .wo A%', 44f-bb b ' , '

s. "T' ' ' 'V 'A N

^4 8.00 -  ;'g ^; y '

l ; ',2 '< , " * ~ -  ;,,:p '

,:J

N mW al

' l1 ' *l '

W y ,

f, ,, , y

>4 hs m

.PU'r'"*'" ' v dbT?hl

' - 4

- s

{n 6.00 -

' ^

s ' , ' , y'bg,[ >')1 ' *

>w

< 1 ' :d * ,+ Qt e , :

, q){$'R;f 4 00

.q ~, ~'~; ' _ t >u 't'P. ,

1,;

' . :> ~ ' ,

^ '

s

-  ?

1

,p'

,s .

_ c '

bbc. :

^

J 00 ' '

OO 10 0  :: 0 30.0 40 0 50.0 60 0 Average Planar Exposure, GWd/ST Avg Plan Avg Plan Avg Plan Exposure MAPLHGR Exposure MAPLHGR Exposure (GWd/ST)

MAPLHGR (kW/ft) (GWd/ST) (kW/ft) (GWd/ST) (kW/ft) 0.0 50.38 '.0 11.16 25.0 10.78 0.2 10.42 8.0 11.34 30.0 10.21 1.0 *0.48 3.0 11.54 35.0 9.62 2.0 10.57 10.0 11.73 40.0 9.01 3.0 10.67 12.5 11.80 45.0 8.37 4.0 0.77 15.0 11.80 50.0 7.69 5.0 10.88 17.5 11.63 55.0 6.96 6.0 11.00 20.0 11.35 56.99 6.67

PECO Enery Fumiand Serwoes Ohnson l P2C13 Case %MRupert PECO.COLR P2C93 Page13 Rev.2 FIGURE 6 POWER DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(P)

THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 VALID FOR 7 OR MORE TBVs IN SERVICE, RPT IN-SERVICE AND MAX 90*F FWTR  !

l 1.1 1

1 1.0 .

0989 1 00

~ 1. 00 '

1 0.9 --

0.8 -- 0817 3.7 --

. 1 s 60% Flow 1

_ 3.6 s,

6 l

$ l  :.

< J.5 5 .' ' ' '

E O.451,

412

'+ 0388 l V APLMGRf P) = M APFAC(P)

, V APLHGRsta = Standard M AFLHGR Limits

> 60% Flow :er 25% > : No Thermal Limits Monitonng Recuired 3 3 'f' j No Limits Specified j

Fer 25% s Pc 30% : M APFAC(P) = 0 511 + 0 010f D - 20%)

3.2 - -  ;

For 5 60% Core Flew

' MAPFAC(P) = 0 418 + 0 00 SIP 20%)

For > 60% Core Flow 3.1 +;  ::r 20% s = < 65%: MAPFACfP) = 0.989 + 004 914.P - 65%)

} :t 65% 5 P < 95%: MAPFAC(P) = 100 + ; l00357.P - 95%)

Fer 95% 5 P MAPFAC(P) = 100 3.0 3 10 20 20 40 50 60 70 80 90 100 Power (% Rated)

PECO EneryFueland Senness Oh l P2C13CoreOperungUnutsReport PEC040UW2013

% M k.2 FIGURE 7 POWER-DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(P)

THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 VALID FOR 3 OR MORE TBVOOS OR RPTOOS AND MAX 90*F FWTR 1.1 1.0 --

  • 00 1

1.00 1

3954 0.9 --

0.8 -- 0.778 1

l l

l 0.7 - - ,'

I 1
50% Flow 0.6 -- l

~

Q.

~

O

<  : D 51 ?

g 0.5 -- .

2 0 451,  :

l 'O 418 3.388 MAPLPGR(P) = V APF AC(P)

For 25% > D No Thermal Limits Monitoring R ecuireo 0.3 -- j

> 60% Flow No Limits Specified

For 25% 5 P< 30% V APFAC(P) = 0.511 + 0 012fP 30%)
  • For 5 60% Core Flow o,2 .

j V APFAC(P) = 0.418 + 0.006(P 30%)

, For > 60% Core Flow For 30% s P < 85%- VAPFAC(P) = 0.954 + 0 00320(P -

' " l 85%)

For 85% 5 P < 95%: V APF AC(P) = 100 + 0 00460(P - 95%)

{ For 95% 5 P' VAPFAC(P) = 100 0,0 0 *0 20 30 40 50 60 70 80 90 100 Power (% Rated)

I l

PECO Energ Fwd and SemonsDuman PECO.COUW2C13 l P2C13 Care %UrnesRussit Pugs 15, Rev.2 FIGURE 8 1

FLOW-DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(F)

THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 VALID FOR 2 LOOP RECIRC FLOW I

l 1.0 h  !

l f

0.91 0.8 -

0.7 -

0.6 -

C MAPLHGR(F) = MAPFAC(F)

@ 0,5 - For Two Loco Operation. > 70% W, c.

MAPFAC(F) = The Minimum of EITHER 1.0

$ OR (0 0268 x tWy - 70)/10 + 0.9732)l i

J .4 - l For Two Looo Operation. s 70% Wr i

MAPFAC(F) = {0 6682 x (W./100)+ 0.5055)

W,= % Rated Core Flow J.3 -

i i

3.2 -

3.1 -

0.0 10 20 20 40 50 60 70 80 90 100 110 CORE FLOW (% RATED)

r PECO EnanyFueland Sarness Olnean l P2C13CaoOperatngLinuesReport PECOCOLR-P2C13 Page 16, Rsr.2 FIGURE 9 FLOW-DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(F)

THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 AND VALID FOR SINGLE LOOP RECIRC FLOW i

l 1.0 --

l 0.9 --

0.8 --

0.7 --

j 3.6 --

f t

t. l U

g05 - \

k MAPLHGR(F) = MAPFAClF'

  • VAPLHGRf std) I 2 -

{

14 -- MAPLHGR(std) = Stansara MAALHGR Limits  !

MAPFAC(F) = MINf 0 83 af"W./100 + Bf): i I

wnere.

~3 -

We = % Rated Core Flow .

Af = 0.6682, Bf = 0 5055 f i n

i 12 -

1 l

i l 11 -- l l l 10 t i

10 20 30 40 50 60 70 30 90 100 110 CORE FLOW (% RATED) {

1 I

I

PECO EnupFudsulSenuesDhemen 1 l P2C13CueOpmengUmmsitupet PECO.COLR.P2C13 page17, Rev.2 TABLE 1 l OPERATING LIMIT MINIMUM CRITICAL POWER RATIO (OLMCP l Applicable to all fuel typee Use in conjunction with Figurse 10 and 11 Add 0.02 to the OLMCPR when in Single Loop Operation These Tables are referred to by Technical Specification 3.2.2,3.4.1 and 3.7.6 TSV in Service and TBV out of Service RPT Out of Servios RPTin Service (3 or rnors TBVOOS) i OPT.B OPT. A OPT. B OPT. A OPT. 8 OPT. A (T=0) (T=f) (t=0) (T=1) (T=0) (t=1)

BOC to EOR - 2000 1.30 1.35 1.38 1.41 1.38 1.46 mwd /ST EOR - 2000 mwd /ST to 1.33 1.36 1.38 1.41 1.38 1.46 EOC NOTES:

  • ) When Tau does not equal 0 or 1. use linear interpolation.

bMMM l P2C13CaseOpenhgusesRepet ~

h3 FIGURE 10 POWER-DEPENDENT MCPR LMNT, OLMCPR(P) i THIS FIGURE IS REFERRED TO BY TECHIGCAL SPECIFICAT10N 3.2.2 VAUD FOR ALL CONDmONS 1 l

)

3.25 3.2  ;

OPERATING LIMIT WCPR(P) = Kp

  • OPERATING LIMIT MCPR(100) 3.0 FOR P<25% :NO THERMAL L!MITS MONITORING REOulREO

> 60% Flow f NO M S SPEC M

2.91 Fon gss g p . pge,, 3: (p(3,, ).3ogy 2.8
  • .J .. '

N(Syp) = 2.28

  • 0.104(30% . P! FOR 100% CORE TLOW 7 2.78 y x<syp) = 2 s1 + 0 Des (30% . P) FOR > 60% CORE FLOW
: FOR 30% 5 P < 65% : Ko = 1.130 + 0 00534(95% P) 2.6 j j FOR e5% s P < e5% : Ko = 1058 + 0 00370(ess p)

FOR e5% $ P ' Kp = 100 + 0 00307(100% . Fi G. .

  • E . .

l 4 2.4 i 0 <

60% Flow / *

  • l 2  :  :

a .

! 2.2s 2.2 l  :

ABSOLUTE  :  :

2.0 MULT; PLIER  ;  ;

g Q 1.8

{ {

O.

: )

o g  :  :

g 1.6 -

m l l 3 - '

3,  :  :

3 1.4

  • 3  :

g  : 317

n.  :  :

o . .

I 1.2

?, j j 1.130 y .

1.056
: 1 00 1.0 1.04s 0 10 20 30 4e se se 7e se se tes Power (% Rated)

N % M W SIMgs h l Pococg=commeneneur - W_RP2C13 pese ts.nw.2 FIGURE 11 FLOW-DEPENDENT MCPR UNITS, OLMCPR(F)

THIS FIGURE IS REFERRED YO SY TECHMCAL SPECIFICATION 3.2.2 AND 3.4.1 VAUD FOR ALL CONDmONS 1.se For Two Loop Operation. SLMCPR 1 1.12, .>_ 4 0 % W r MCPR(F) = The Maximum of EITHER 1.25 1.se 1 OR { -0.5784 x (Wr/100)+ 1.7073}

For Two Loop Operation, SLMCPR 11.12, < 40% Wr MCPR(F) = { -0.5784 x (Wr/10091.7073) x  ;

sir ;

{1 + 0.0032 x (40-Wy)}

Wys % Rated Core Flow 1.s0 C

i Q.

U 1.50 -

lE o

,. 0 l

l 1

1.30 -

i 1.20 -

1.10 10 28 30 40 SS OG 70 80 to 100 110 Core Flow (% Rated)

PECOEnugFusiandSeness Dineen

-l PIC13CseOpuuteGudeRepet PornmM2C13 Page R Rus.2 TABLE 2 ROD BLOCK MONITOR ANALYTICAL LMETS, ALLOWABLE VALUES, AND MCPR LMETS THIS TABLE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.3.2.1 Applicability: BOC to EOC FUNCTION A MCM LIMIT (1) VALUE(1) LIMIT Low Power Range - Upscale s 120.0 % s 118.4 % < 1.70

  • Intermediate Power Range - Upscale s 115.2 %

s 113.6 % < 1.70 "

High Power Range - Upscale s 110.2 % s 108.6 % < 1.70 " 4

< 1.40

  • Inop N/A N/A < 1.70 *

< 1.40

  • Downscale 2 1.0% 2 2.5% < 1.70 *

< 1.40

  • Bypass Time Delay * .-- .... ....

(1) These Trip Level Settings (with RBM filter) are based on a cycle-specific rated RWE MCPR limit of 1.30 and are consistent with an RBM filter time constant between 0.1 and 0.55 seconds.

i2) This is the MCPR limit (given HERMAL POWER 2 28.3% and < 90% RTF ) below which the RBM is required to be OPERABLE (see COLR references 2 and 5 and TS Table 3.3.2.1-1).

<3) This is the MCPR limit (given -'HERMAL POWER 2 90% RTP) below which the RBM is required to be OPERABLE (see COLR references 2 and 5 and TS Table 3.3.2.1-1).

(4) This time delay option is currently not in use at Peach Bottom Unit 2 (see COLR reference 5).

PECOBuiyFussessenduesChimlen

  • I Psetscanopuesumnosa PECOCOUW2013 pas m,nw.2 TABLE 3 DESIGN LINEAR HEAT GENERATION RATE (LHGR) LINTS' FUEL TYPE LHGR LIMIT GE11 14.4 kW/ft GE13 14.4 kW/ft l

l

' e LHGR limits provioed aoove are the beginning of hfe (maximum) values. The eGR limits as a function of fuel exposure are provided in Reference (3).

E %FududSmugesN l Pac 13cmopsumousassmuse N3 stenar, ass.2 TABLE 4 l TURBINE BYPASS VALVE PARAMETERS I

TURBINE BYPASS SYSTEM RF# DON

  • TluEs Maximum delay time before start of bypees valve opening following generation of the turbine bypeos valve flow 0.10 sec signal F

Maximum time after generation of a turbine bypass valve l flow signal for bypass valve position to reach 80% of full 0.30 sec.

flow (includes the above delay time)

Minimum required number of bypass valves to maintain system operability 7

e i-