ML18139C264

From kanterella
Jump to navigation Jump to search
Cycle 6 Core Performance Rept.
ML18139C264
Person / Time
Site: Surry Dominion icon.png
Issue date: 03/31/1983
From: Hartsfield T
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML18139C263 List:
References
VEP-NOS-1, NUDOCS 8303150288
Download: ML18139C264 (51)


Text

~~

VE,P- NO.,',- I -

. . .. . --~- .

  • . . Vepco. - .':

I

I SURRY UNIT: 1, CYCLE 6 CORE PERFORMANCE *

.REPORT

.. ;........ -... ~

-*- - . . -- . ~ ... "'*

/

-~g~3 l5~~8~~ggg~i-~---,

P PDR )!""-------------' I

-- * !i"

-NUCLEAR OPERATIONS DEPARTMEN~ - - - 1:

Virginia Electric and Power Company

VEP-NOS-1 SURRY UN IT 1, CYCLE 6 CORE PERFORMANCE REPORT BY T. C. HARTSFIELD REVIEWED: APPROVED:

c . .1~

C. T. Snow, Supervisor Nuclear Fuel Operation Nuclear Fuel Operation Subsection Nuclear Operations Department Virginia Electric & Power Company Richmond, Virginia March, 1983

CLASSIFICATION/DISCLAIMER The data, techniques, information, and conclusions in this report have been prepared solely for use by the Virginia Electric and Power Company (the Company), and they may not be appropriate for use in situations other than those for which they were specifically prepared. The Company there-fore makes no claim or warranty whatsoever, express or implied,as to their accuracy, usefulne~s, or applicability. In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, infor-mation, or conclusions in it. By making this report available, the Compa-ny does not authorize its use by others, and any such use is expressly forbidden except with the. prior written approval of the Company. Any such written approval shall itseH be* de-emed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any prop-erty damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or con-clusions in it.

i

ACKNOWLEDGEMENTS The author would like to acknowledge the cooperation of the Surry Pow-er Station personnel in supplying the basic data for this report. Special thanks are due Mr. L. J. Curfman. Also, the author would like to express his gratitude to Mr. C. T. Snow for his aid and guidance in preparing this report.

ii

{

'*"' ASSEtlBLY m I1_ _ I1_ _ 1I_ _ 1I 15 I 1--> ONE OF THE I_ _ I FOLLOWING:

A. PS - PRiltARY SOURCE B. 59 - SECONDARY SOURCE C. XXP - BURNABLE POISON ASSEIIILY.

IXX-IUl!ER OF RODS!

FUEL ASSEIIILY DESI6N PARANETERS I SUB-BATCH I I I 4C2 j 6C2 I 7A

- - - - - - - - - - - 1 1 _ _ _ 1_ _ _ 1 _ 1_ _ _ 1_ _ _ 1_ _ _ 1 j 7B I IIA I BB I S2/4A4 I S2/6B3 II I I I I 1-INITIAL IElfUCHtlENT IW/0 U2351 3.325 I Z.902 I 2~901 I 3.393 I 3 *.211 I 3.399 2.606 I 3.203 I I I I I I ASSEIIILT TYPE 1SX15 I 15Xl5 I 15X15 I 1SX15 I 15X15 I 15X15 15X15 I 15Xl5 I I I I I I tueER 0, ASSBIIIUES II 14 IZOl44120l56 l 14 I I I I I I FUIEL RODS PER ASSEIIILY 204 I 204 I 204 I t04 I 204 I 204 204 I 204 I I I I I I ASSENBLY IDENTIFICAnDN D11 I JOJ IDA1-0A9 l2Al-2A9 1081-089 IOC1-0C9 520 IW14-Wl5 D20 ,I J09 llAD-lA9 l3A0-3A9 1180-189 llCl-lC9 I WlB D23-D24 I Jl5 I 2AD l4AD-4A9 I 280 l2C0-2C9 I W31 ID29-D30 I J42 I ISAO-SA9 I I 3CD-3C9 I ID37-D38 I I l6A0-6A4 I l4C0-4C9 I

_____________1 I _ 1I_ _ _ 1 I _ 1 -I- - , - 1I_ _ _ 1l5CD-SC6 ___ - - - I '-

4

Figure 1.2 SURRY UNIT 1 - CYCLE 6 MOVABLE DETECTOR A.\1)

THERMOCOUPLE LOCATIONS A p N It L K J H 6 F E D C B A I

I l11DITCI l

--..----1--1--1--: I

_ _ 1_ _ 1_ _ 1_ _ , _ _ , _ _ , _ _ 1_ _ ,I_ _

I I ITCI ITCIHOI 2 lt1DI I I lt10I I I 11101

_ _ I1_TC_ 1I_ _ I1_TC_ I1_1111_ I1_TC_ ,I_ _ I1_TC_ I1_ _ 1I_TC_ 1I_ _ 3 I I I I I I I I I I I I

_ _ ,I_TC_ ,I_ _ ,I_11D_ 1I_ _ I, _ _ I1_11D_ I1 I 11D I1_TC_ I1_ _ I1_ _ ,I_ _ *4 I I I I I I I I I I MD I I 110 I

,I_ _ I,_11D_ I1_ _ ,I_HO_ 1I_TC_ ,I_11D_ ,I_TC_ ,I_ _ ,I_ TC _ 1I_11D_ ,I_TC_ 1I_ _ 1I_TC_ 1I s I I I I 110 I I I I I I I I I I

_ _ I1_ _ ITCI

, _ _ ,_ _ ,ITCI _ _ , _ _ I, _ _ l11DITCl11D

, _ _ 1_'_ , _ _ ,I_ _ I1_ _ I1_ _ ,I_ _ ,I_ _ 6 I I I I I I I I I I I I I I I I 1ITCITCl11DI

_ _ 1_ _ ,_._ _ 1_ _ 1I_ _ 1I_ _ ,IIIDI _ _ 1_ _ 1l11DI_ _ 1_ _ 1ITCl11DI

_ _ 1_ _ 1_ _ IHDI 1_ _ 1_ _ 1I 7 I I I 110 I l*HO I I I I I I I I 11D I I I I1_11D_ I1_TC_ I1_TC_ I1_ _ I1_TC_ I1_TC_ ,I_ _ 1I_TC_ 1I_TC_ 1I_ MO _ 1I_TC_ 1I_ _ 1I_TC_ 1I_l10_ 1I_TC_ 1I 8 I I I I I I I I I I t'.O ! I I I I I 1I_ _ ,I_ _ I1_ _ ITClt!DI 1_ _ , _ _ , _ _ I,_ _ ._1ITCIM:JITCI

_ _ 1_ _ 1_ _ , _ _ I1_ _*1I_ _ I1_ _ lt!DI 1_ _ 1 9 I IHOI I I lt'.ol I -1 I I I 11',0I

,I_ _ ,I_TC_ 1I_ _ ,I_ _ 1 I _ ,I_TC_ 1I_ _ 1I_ _ 1I_ _* 1I_ TC _ 1I_11D_ I1_ _ 1I_TC_ 1I 10 I I I I I I I MO I . I MD I I I I I

,I_ _ I1_ _ ,ITClt!DITCI

_ _ , _ _ , _ _ ,_ _ ITCI 1_ _ ,_ _ ITC 1_ _ ,lt!DI

_ _ 1_ _ ,I_ _ 1I_ _ 1I 11 I I I I I 110 I I I I I I HD I

,I_110_ 1I_ _ ,I_TC_ I,_ _ I, _TC_ 1I_ _ I1_ _ I1_ _ I1_TC_ I, _11D_ I1_TC_ 1I 12

.I I I I I 110 I I 1:0 I I I 1I_ _ ,I_ _ 1I_ _ 1I_ _ ,I_TC_ 1I_ _ ,I_TC_ ,I_ _ 1I_ _ ,I 13 I 11D

  • I I I I I I I 1I_TC_ I,_ _ I, _ _ I1_ _ ,I_11D_ ,I_ _ I,_TC_ ,I 14 11D - t!OVABLE DETECTOR I I I I TC - THERHOCOUPLE 1I_11D_ 1I_TC_ I,_TC_ I, 15 5

Figure 1.3

'7 SURRY UNIT 1 - CYCLE 6 CONTROL ROD LOCATIONS R p N . t1 L K J H G F E D C B A 0

180 I

LOOP C . I I I I LOOP B l OUTLET I_I_I_I INLET

, , I A I I D I I A I I ~ 2

._,_,_,_1_1_1_1_1_

N-41 I I* I I SA I I SA I I I I N-43 3

_,_1_1_1_1_1_1_1_1_1_

I I c I I B I I I I B I I c I I 4

_ , __ 1_1_1_1_1_1 __ *1_1_1_1 __ 1__

I I I SB I I SP I I SP I I SB I I I I s

,_,_1_1_1_1_1_*1_1 __ 1__ 1_1 __ 1__ 1 IAI IBI IDI lcl lol IBI IAI 6 LOOP C _ _ 1_1_1_1_1_1_1 __ 1_1._I __ I_I __ I__ I _ LOOP B INLET I I I SA I I SP I I SB I I SB I I SP I I SA I I I OUTLET 7

~l __ l _ l _ l _ l _ l _ l _ l _ l _ l _ l _ l _ l _ l _ l _ ~

  • o 90 - I I D i I I I c I I I I c I I I I D I I - 210 8

,__ 1_1 __ 1_1_1_1_1_1_1_1_1_1_1_1_1 I I I SA I I SP I I sa I I sa I I SP I I SA I I I 9

, __ 1_1_1 __ 1_1_1_1_1_1_1_1_1_1 __ 1_1 I A I I B I . I D I

  • I c I I D. I I B I I A I 10

,_1_1_1_1_1_1_1_1_1_1_1_1_1 I I I I SB I

  • I SP I I SP I I SB I I I I 11 1_1_1_1_1_1_1_1_1_1 __ 1_1_1_1 I I c I I B I I I I B I I c I I 12

,_1_1 __ 1__ 1_1_1_1_1_1_1_1 I I I I SA I I SA I I I I 13 N-44 I_ _ I _ I _ _ I _ I _ _ I _ I _ I _ I _ I N-42 I I A I I o I I A I I 14 1__ 1_1_1_1_1_1_1 JI' I I I I ~ 15 ABSORBER LOOP A I_I_I_I LOOP A MATERIAL OUTLET INLET AG-IN-CD ,0 0

FUNCTION CONTROL BANK D NUMBER OF CLUSTERS 8

CONTROL BANK C 8 CONTROL BANK B 8 COtlTROL BANK A 8 SHUTD0:..111 BAtlK SB 8 SHUTDOlm BANK SA 8 SP (SPARE ROD LOCATIONS) 8 6

Section 2 BURNUP FOLLOW The burnup history for the Surry Unit 1, Cycle 6 core is graphically depicted in Figure 2.1. The Surry 1, Cycle 6 core achieved a burnup of 16,491 MWD/MTU. As. shown in Figure 2.2, the average load factor for Cycle 6 was 83% when referenced to rated thermal power (2441 MW(t)).

Radial (X-Y) burnup distribution maps show how the core burnup is shared among the*various fuel assemblies, and thereby allow a detailed burnup distribution analysis. The NEWTOTE 3 computer code is used to calcu-late these assemblywise burnups. Figure 2.3 is a radial burnup distrib-ution map in which the assemblywise burnup accumulation of the core at the end of Cycle 6 operation is given. For comparison purposes, the design values are also given. Figure 2.4 is a radial burnup distribution map in which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 6 operation is given.

As can be seen from this figure, the accumulated assembly burnups were generally within +/-1.9% of the predicted values. In addition, deviation from quadrant symmetry in the core, as indicated by the burnup tilt fac-tors, was less than +/-0.5%.

The burnup sharing on a sub-batch basis is monitored to verify that the core is operating as designed and to* enable accurate end-of-cycle sub-batch burnup predictions to be made for use in reload fuel design studies. Sub-batch definitions are given in Figure 1.1. As seen in Figure 2.5, the s~b-batch burnup sharing for Surry Unit 1, Cycle 6 .followed design predictions very closely with each sub-batch deviating_ less than 7

1.2% from design; this is considered excellent agreement. Therefore, sym-metric burnup in conjunction with good agreement between actual.and pre-dicted assemblywise burnups and sub-batch burnup sharing indicate that the Cycle 6 core did deplete as designed.

L 8

Figure 2.1 SURRY UNIT l - CYCLE 6 CORE BURNUP HJSTORY 17000

~

16000 15000

. ~v 14000

~v

~

/

C 13000 y

C 12000 /

L E 11000 I/

B 10000

/

u R 9000 I/

N u 8000

. /

p 7000

  • /

11 w 6000 ,,-

V -.

D /

-I 5000 it""'

11 ,/

T 4000 u

3000

_/

2000

/, -- V 1000 0

- ./~

  • I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 l l l l l .l l l l l l l l l l l I . l l l J A 5 0 N D J F 11 A 11 J J A 5 0 N D J F M u u E C 0 E A E A p A u u u E C 0 E A E A L Cr p T V C N B R R y N L Cr p T V C N B R B B B B B B B B B B B B B B B B B B 8 B 8 1 l 1 1 1 l 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 TJME!l10NTH5l

--- CYCLE 6 MAXIMUM DESIGN BURNUP - 16,500 HWO/HTU 9

Figure 2.2 l

SURRY l - CYCLE 6 MONTHLY AVERAGE LOAD FACTORS PERCENT 100 90 BO 70 60 50 40 30 20 10 J A s 0 N D J F t1 A t1 J J A s 0 N D J F C u u E C 0 E A E p T V C N B A p A u u u E p

C 0 E A E "(

L G R R y N L G T V C N B C L

B 6 B 6 6 6 6 6 6 6 6 6 B 6 B 6 B 6 6 6 E 1 1 l l l l 2 2 2 2 2 2 2 2 2 2 2 2 3 3 MONTH THERMAL ENERGY GENERATION IN MONTH!MWHTl LOAD FACTOR:--------------------------------------------

AUTHORIZED POWER LEVEL lMWTl X HOURS IN MONTH

!EXCLUDES REFUELING OUTAGES) 10

Figure 2.3 SURRY UNIT 1 - CYCLE 6 ASSEH8LYWISE ACCUMULATED 8URNUP MEASURED AND PREDICTED

  • 11000 HWD/HTU I R p N M L K J H G F E D C 8 A I 22;731 10.611 23.021 I MEASURED I I 23.181 11.031 23.181 I PREDICTED I 2 I 32.521 13.861 15.701 26.041 15.811 14.051 32.421 2 I 32.211 14.251 16.241 26.791 16.241 14.251 32.211 3 I 25.121 16.471 18.811 32.731 30.981 32.791 18.721 16.401 25.101 3 I 24.851 16.161 18.901 33.561. 31.901 33.561 18.901 16.161 24.851 4 I 25.321 25.601 19.551 34.511 19.911 36.001 19.661 34.991 19.621 25.941 25.131 4 I 24.851 25. 761 19.551 34.901 20.391. 36.561 20.391 34.901 19.551 25. 761 24,851 5 I 32.311 16.051 19.451 33.161 20.831 36.801 20.541 36. 781 20 *. 811 33.251 19.561 16.591 32.571 5 I 32.211 16.161 19.551 33.701 21.071 37.001 20.461 37.001 21.071 33.701 19.551 1_6.161 32.211 6 I 14.211 18.931 34.721 20.941 36.811 21.021 35.751 20.991 36.621 20.861 34.871 19.201 14.601 6 I 14.251 18,901 34.901 21.071 37.211 20.911 35.~71 20.911 37.211 21.071 34.901 18.901 14.251 7 I 23.191 16.221 33.401 20.231 36.881 20.751 38.141 20.531 38.301 20.941 36.711 20.171 33.201 16.311 23.331 7

. I 23.181 16.241 33.561 20.391 37.001 20.911 38.061 20.331 38.061 20.911 37.001 20.391 33.561 16.~41 23.181 II I 11.041 26.501 31.561 36.231 20.301 35.511 19.971 28.961 20.411 35.561 20.471 36.301 31.661 26.751 11.351 8 I 11.031 26.791 31.901 36.561 20.461 35.471 20.331 28.711 20.331 35.471 20.461 36.561 31.901 26.791 11.031 9 ----------------------------------------------------------------.

I 23.401 16.181 ,3.331 20.241 36.991 20.811 38.261 20.421 38.191 20.841 ----------------------------------------

36.931 20.201 33.561 16.501 23.541 9 I 23.181 16.241 33.561 20.391 37.001 20.911 38.061 20.331 38.061 20.911 37.001 20.391 33.561 16.241 23.181 10 I 14.271 19.001 34.801 21.001 37.311 20.721 35.231 20.891 37.191 20.981 34.531 19.021 14.571 10 I 14.251 18.901 34.901 21.071 37.211 20.911 35.471 20.911 37.211 21.071 34.901 111.901 14.251 11 I 32.381 16.521 19.761 34.051 20.921 36.621 20.331 36.681 21.021 33.481 19.751 16.481 32.501 11 I 32.211 16.161 19.551 33,701 21.071 37.001 20.461 37.001 21.071 33.701 19.551 16.161 32.211 12 I 25.161 25.911 19.551 34.821 20.201 36.051 20.071 34.711 19.641 26.101 25.111 12 I 24.851 25.761 19.551 34.901 20.391 36.561 20.391 34.901 19.551 25.761 24.851 13 I 25.011 16. 721 19.261 33.491 31.091 32.991 18.991 16.301 25.021

  • 13 I 24.851 16.161 18.-901 33.561 31.901 33.561 18.901 16.161 24.851 14 I 32.491 14.831 16.561 26.641 16.111 14.211 32.121 I 32*.211 14.251 16.241 26. 791 16.241 14.251 32.211 15 I 23.701 11.321 23.301 15 I 23.181 11.031 23.181 R p N M L K J H G F E D C ii A 11

__J

Figure 2.4 SURRY UNIT 1 - CYCLE 6 ASSEHBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED WITH PREDICTED (1000 HWO/MTU)

R p N M L K J H G F E D C B A I 22.731 10.611 23.021 I MEASURED I I -1.931 -3. 771 -0.681 I M/P i DIFF I 2 I 32.521 13.861 15.701 26.041 15.811 14.051 32.421 2 I 0.961 -2.731 -3.321 -2.791 -2.661 -1.361 0.651 3 I 25. 121 16.471 18.811 32. 731 30.981 32. 791 18. 721 16.401 25.101 3 I 1.101 1.881 -0.471 -2.461 -2.911 -2.271 -0.971 1.441 1.001 4 I 25.321 25.601 19.55! 34.511 19.911 36.001 19".661 34.991 19.621 25.941 25.131 4 I 1.871 -0.591 -0.041 -1.101 -2.341 -1.531 -3.561 0.271 -0.321 0.711 1.121 5 I 32.311 16.051 19.451 33.161 20.831 36.801 20.541 36.78! 20.811 33.251 19.561 16.591 32.571 5 I 0.331 -0.741 -0.541 -1.591 -1.101 -0.551 0.361 -0.591.-1.231 -1.331 0.031 2.651 1.121 6 I 14.211 18.931 34.721 20.941 36.Bll 21.021 35.751 20.991 36.621 20.861 34.871 19.201 14.601 6 I -0.231 0.151 -0.511 -0.611 -1.071 0.521 0.821 0.381 -1.581 -1.001 -0.081 1.551 2.451 7 I 23.191 16.221 33.401 20.231 36.881 20.751 38.1111 20.531 38.301 20.941 36.711 20.171 33.201 16.311 23.331 7 I o.ci61 -0.161 -0.461 -0.741 -0.321 -0.781 0.211 0.961 0.621 0.161 -0.791 -1.051 -1.051 0.431 0.641 8 I 11.041 26.501 31.561 36.231 20.301 35.511 19.971 28.961 20.41! 35.561 20.47~ 36.301 31.661 26.751 11.351 8 1 0.061 -1.091 -1.061 -0.901 -0:811 0.131 -1.191 o.871 0.391 0.211 0.051 -0.121 -0.161 -0.151 2.811 9 I 23.401 16. 181 33.331 20.241 36.991 20.811 38.261 20.421 38. 191 20.841 36.931 20.201 33.561 16.501 23.541 9 I 0.951 -0.391 -0.661 -0.721 -0.031 -0.461 0.541 0.441 0.351 -0.361 -0.201 -0.921 0.011 1.601 1.561 10 I 14.271 '19.001 34.801 21.001 37.311 20.721 35.231 20.89! 37.191 20.981 34.531 19.021 14.571 10 I 0.141 0.531 -0.281 -0.,321 0.281 -0.911 -0.671 -0.111 -0.041 -0.421 -1.041 0.641 2.241 11 I 32.381 16.521 19.761 34.051 20.921 36.621 20.331 36.681 21.021 33.481 19.751 16.481 32.501 11 I 0.531 2.191 1.071 1.031 -0.671 -1.021,. -0.651 -0.861 -0.241 -0.651 0.981 1'.941 0.911 12 I 25.161 25.911 19.551 34.821 20.20) 36.051 20.07! 34.711 19.641 26.101 25.111 12 I 1.261 0.591 -0.011 -0.231 -0.901 -1.411 -1.531 -0.541 0.421 1.351 1.041 13 I 25.011 16. 721 19.261 33.491 31.091 32.991 18.99! 16.301 25.021 I 0.62! 3.1161 l.901 -0.181 -2.551 -1.671 , 0.441 0.831 0.671 ------------------

I ARITHMETIC AVG I 13

!PCT DIFF = -0.081 14 I 32.49! 14.831 16.561 26.641 16.111 14.211 32.121 I 0.881 4.071 1.951 -0.551 -0.811 -0.261 -0.271 ------------------ 14 15 I STANDARD DEV I I 23.701 11.321 ,23.301 I AVG ABS PCT I 15 I = 0.85 I I 2.241 2.601 0.521 I DI Ff,= 1.00 I R p N M L K J H G F E D C B A BURNUP SHARING (1000 HWD/HTUl BURNUP TILT BATCH I CYCLE 2 CYCLE 3 CYCLE 4 CYCLE 5 CYCLE 6 TOTAL I I I I I NW 0.9958 4C2 I 6.07 5.67 13.87 6.80 32.41 I I 6C2 I 7.85 13.68 16.69 38.22 I I NE 0.9990 7A I 17.16 9.30 26.46 I I 76 I 15.43 18.51 33.94- I I S!-1 l.0036 SA I 20.47 20.47 I I 8B I 17.45 17.45 I I SE l.0016 S2/4A4 I 11.04 17.92 28.96 I I 52/663 I 10.95 15.53 26.48 I I I CORE AVERAGE 16;49 I

  • 1 12

Figure 2.5 SURRY UNIT 1-CYCLE 6 SUB-BATCH BURNUP SHARING SYMBOLIC POINTS ARE MEASURED DATA SUB-BATCH 4C SC 7A 76 SA 88 *4A4 *6B3 SYMBOL DIAMOND X TRIANGLE STAR Y HASH SQUARE PLUS 40000

.V' 36000 /

V

)y"'

~/ V

,"'ID 32000 .... /

_._ ~

~

s u

B

- 28000 ,._....

~ "" ,!!--/

~

/'

~~

~

~

B - ~

/

~

V A ~.J '/" V' ..:ea,

~- r-- µv r1!'""

T / ~A -+ ~

C 24000

- .J~

/"

.All

~~ ~

~

~

H ,__,. V B

u 20000

~

~

,.,,rr

.__ ~ -- ~ ~~ ~

,...----+ V R _.._,-, ~~ ..J ~ /

N u ~/ .J' £, V" .V IA'"

..-/

~

p 16000 ~

~

~~ ~

V ./

y iiY V M

H 12000 ~ -./ ~

D ~ V /"'

I / ~

M / .... l,/' ......

T 8000 /

u . /v

~

~

4000 ./.

~V

~

0- ~

I 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 CYCLE BURNUP !HHO/MTUl 13

.-l Section 3 REACTIVITY DEPLETION FOLLOW The primary coolant critical boron concentration is monitored for the purposes or following core reactivity and to identify any anomalous reactivity behavior. The FOLLOW 4 computer code was used to normalize "ac-tual" critical boron concentration measurements to design conditions tak-ing into consideration control rod position, xenon and samarium concentrations, moderator temperature, and power level. The normalized critical boron concentration versus burnup curve for the Surry 1, Cycle 6 core is shown in Figure 3.1. It can be seen that the measured data compare to within 46 ppm of the design prediction. This corresponds to less than

+/-0.4% aK/K which is well within the +/-1% aK/K criterion for reactivity anomalies set forth in Section 4.10 of the Technical Specifications 2

  • In conclusion, the trend indicated by the critical boron concentration veri-fies that the Cycle 6 core depleted as expected without any reactivity anomalies.

14

Figure 3.1

.~

SURRY UNIT 1-CYCLE 6 CRITICAL BORON CONCENTRATION VS, BURNUP HFP-RRO X MEASURE[)

PREDICTED l 400 I

1200 C

R I

T X I 1000 C ~

R L ~ ',>M

~~

8 o *~

~

R 800

  • s:x o

N C

" ~~

o N

C 600 E

N

"' x..

~

"~~

I T

R ""~~ ~

A T "' ~ !ISc.

l o

N p

p 400

""~"~,

~~

11 - ~.

200

~

'% ~

0 -

0 I

2000 4000 6000 8000 l 0000 l 2000 14000

'~ 16000 CYCLE BURNUP (MWO/MTUJ 15

l Section 4 POWER DISTRIBUTION FOLLOW Analysis of core power distribution data on a routine basis is neces-sary to verify that the hot channel factors are within the Technical Spec-ifications limits and to ensure that the reactor is operating without any abnormal conditions which could cause an "uneven" burnup distribution.

Three-dimensional core power distributions are determined from movable detector flux map measurements using the INCORE 5 computer program. A sum-mary of all full-power flux maps taken since the completion of startup physics testing for Surry 1, Cycle 6 is given in Table 4.1. Power distrib-ution maps were generally taken at monthly intervals with additional maps taken as needed.

Radial (X-Y) core power distributions for a representative series of incore flux maps are giYen in Figures 4.1 through 4.3. Figure 4.1 shows a power distribution map that was taken early in cycle life. Figure 4. 2 shows a power distribution map that was taken near mid-cycle burnup. Fig-ure 4.3 shows a map that was taken late in Cycle 6 life. The radial power distributions were taken under equilibrium operating conditions with the unit at approximately full power. In each case, the measured relative assembly powers were generally within 3.1% of the predicted values with an average percent difference of less than 1. 7% which is considered good agreement. In addition, as indicated by the INCORE tilt factors, the power distributions were essentially symmetric for all cases.

An important aspect of core power distribution follow is the monitor-ing of nuclear hot channel factors. Verification that these factors are 16

.----------------------------~~--

within Technical Specifications limits ensures that linear power density and critical heat flux limits* will not be violated, thereby providing ade-quate thermal margins and.maintaining fuel cladding integrity. The Tech-nical Specifications Limit on the axially dependent heat flux hot channel factor F-Q(Z) was 2.18x K(Z), where K(Z) is the hot channel factor normal-ized operating envelope. Figure 4*.4 is a plot of the K(Z) curve associ-ated with the 2 .18 F-Q(Z) limit. The axially dependent heat flux hot channel factors, F-Q(Z), for a representative set of flux maps are given in Figures 4.5 through 4.7. Throughout Cycle 6, the measured values of F-Q(Z) were within the Technical Specifications limit. A summary of the maximum values of axially-dependent heat flux hot channel factors meas-ured during Cycle 6 is given in Figure 4.8. Figure 4.9 shows the maxlmum values for the heat flux hot channel factors measured as a function of burnup during Cycle 6. As can be seen from this figure, there was approx-imately 17% margin to the limit at the beginning of the cycle, with the margin increasing throughout cycle operation.

The value of the enthalpy rise hot channel factor, F-AH, which is the ratio of the integral of the power along the rod with the highest inte-grated power to that of ~he average rod, is routinely followed. The Tech-nical Specifications limit for this parameter is set such that the critical heat flux (DNB) limit will not be violated. Additionally, the F-AH limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation. The Cycle 6 limit on the enthalpy rise hot channel factor was 1.55 x (l+0.2(1-P)), where Pis the fractional power level. The maximum values of F-AH versus burnup are shown in Figure 4.10.

17

The Technical Specifications require that target delta flux~'< values be determined periodically. The target delta flux is the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon. Therefore, the delta flux is measured with the core at or near these conditions and the target delta flux is established at this meas-ured point. Since the target delta flux varies as a function of burnup, the target value is updated monthly. Operational delta flux limits are then established about this target value. By maintaining the value of del-ta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided. The plot of the target delta flux versus burn-up, given in Figure 4.11, shows the value of this parameter to have been approximately -2% at the beginning of Cycle 6. By the middle of the cycle, the value of delta flux had shifted to approximately -3%. For the last half of the cycle, delta flux gradually changed to -5.5% before returning to approximately -2. 0% by the end of Cycle 6. This power shift can also be observed in the corresponding core average axial power distribution for a representative series of maps given in Figures 4.12 through 4.14. In Map Sl-6-13 (Figure 4.12) taken at approximately 973 MWD/MTIJ, the axial power distribution had a slightly peaked cosine shape with a peaking factor of 1.22. In Map Sl-6-56 (Figure 4.13) taken at approximately 7,518 MWD/MTU, the axial power distribution had flattened somewhat with an axial peaking' factor of 1.16. Finally, in Map Sl-6-74 (Figure 4.14) taken at approxi-mately 14,752.MWD/MTU, the axial power distribution was slightly concave with an axial peaking factor of 1.16. The history of F-Z during the cycle Pt-Pb

~'<Delta Flux = X 100 where Pt= power in top of core (MW(t))

2441 Pb= power in bottom of core (MW(t))

18

can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15.

In conclusion, the Surry 1,- Cycle 6 core performed very satisfactori-ly with power distribution analyses verifying that design predictions were accurate and that the values of the hot channel factors were within the limits of the Technical Specifications.

19

TABLE 4.1 SURRY UNIT 1 - CYCLE 6 Slll1MARY OF INCORE FLUX NAPS FOR ROUTINE OPERATION.

I I 1 2 I I I I I BURNI I F-Q(TJ HOT F-DHlNJ HOT I CORE F(ZJ 'I I 4 I I UP I IBANK CHANNEL FACTOR CHNL.FACTOR I MAX I 31 QPTR AXIAL! NO.I NAP* DATE I MWD/IPWRI D I I IFlXY>I I OFF I OF I NO, I NTU l(.OISTEPSI I IAXIALI . IAXIALI I I I I SET ITHil11 I I I IASSYIPINIPOINTI F-Q(TJIASSYIPINIF-DH(NJIPOINTI F(ZJI I NAX ILOCI (1.J IBLESI

- - _ _ _ , _ 1 _ 1 _ _ ,_1_1 _ _ 1 '-'-' 1_ _ 1_ _ 1_ _ , _ _ 1_1 _ _._1_1 I I I I I I I I I I I I I 8 7-21-811 17011001 228 Flll HGI 34 1.810 Flll HGI 1,413 34 ll.22311.37711.0lOI.SWI -2.471 42 I I I I I I I I I I I I I 11 (SJ 7-30-811 48011001 213 Flll HGI 3S 1.826 Flll HGI 1.409 34 ll.24111.36911.0lOI ..SWI -S.601 4~

I I I I I I I I I I I I I 13 16> 8-10-811 97311001 217 Flll HGI 33 1.794 Flll HGI 1.409 34 ll.21911.36811.0081 SWI -l.8SI 42 I I I I I I I I I I I I I 1S (7> 9- 4-811 1750llOOI 220 Klll HGI 34 1.792 L6 I GHI 1.413 34 ll.2l2ll.36Sl1.008I SWI -1.481 41 I

  • I I I I I I I I I I I I 16 9-lS-811 202211001 218 LlOI GHI 33 1.796 Flll HGI 1.424 34 ll.21511.37111.0121 SWI -2.171 40 I I I I I I I I I I I I I 17 110-12-811 245011001 223 L061 GHI 34 1.787 L061 GHI 1.420 34 ll.20211.37511.0lOI SWI -1.311 40 I I I I I I I I I I I I I I 21 l8Jlll-19-8ll 368311001 227 LlOI IHI 3S 1.777 LlOI IHI 1.426 34 ll.18311.38611.0071 SWI -1.431 40 I I I I I I I I I I I I I I 22 I 1-11-821 491311001 228 ElOI GHI 22 1.7S7 .ElOI GHI *1.423 34 ll.16911.38211,00SI SEI -1.621 40 NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEMBLY LOCATIONS (E.G. H-8 IS THE CENTER-OF-CORE ASSEMBLY),

FOLLOWED BY THE PIN LOCATION (DENOTED BY THE "Y" COORDINATE WITH THE FIFTEEN ROWS OF FUEL RODS LETTERED A THROUGH RAND THE "X" COORDINATE DESIGNATED IN A Sil1ILAR HANNER); .

IN THE "Z" DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROM THE TOP OF THE CORE,

1. F-Q(T) INCLUDES A TOTAL UNCERTAINTY OF 1.08.
2. F-DH(NJ INCLUDES A 11EASURE11ENT UNCERTAINTY OF 1,04.
3. F(XY) IS EVALUATED AT THE NIDPLANE.
4. QPTR - QUADRANT POWER TILT RATIO.

5, HAPS 9 AND 10 WERE QUARTER CORE NAPS TAKEN FOR INCORE/EXCORE CALIBRATION.

6. NAP 12 WAS A QUARTER CORE NAP TAKEN FOR INCORE/EXCORE CALIBRATION.
7. NAP 14 WAS A QUARTER-CORE FLUX NAP USED FOR QUADRANT POWER TILT VERIFICATION.

8, HAPS 18,19,AND 20 WERE QUARTER-CORE FLUX 11APS USED FOR INCORE/EXCORE DETECTOR CALIBRATION.

TABLE 4.1 (CONT.)

BURNI I F-Q(TJ HOT I F-DHfNI HOT CORE F(ZJ I 4 I UP I !BANK CHANNEL FACTOR I CHNL.FACTOR MAX I 31 QPTR AXIALI NO. I MAP DATE I MWD/IPWRI D I I IF(XYJI OFF I OF I NO. I MTU I 00 ISTEPS I I IAXIALI I I I IAXIALI

  • I *I I SET ITHIMI I I I IASSYIPINIPOINTI F-Q(TJIASSYIPINIF-DH(NJIPOINTI F(ZJI ILOCI _fY.J IBLESI 1_ _ 1_1 _ _ 1_1_1 _ _ , I_I_I , _ _ , _ _ 1_ _ ,I_ MAX

_ 1_1 _ 1_1 I I I I I I I I I I I I I 25(9) 1-30-821 551111001 228 L061 IHI 44 1.729 LlOI IHI 1.421 44 ll.150ll.'38lll.0091 SWI -0.941 38 I I I I I I I I I I I I I 26 2- 8-821 582011001 228 J061 HII 44 1.767 Flll HII 1.436 44 ll.l59ll.396ll.0021 SEI -1.841 42 I I I I I I I I I I I I I 27 3- 2-821 602511001 228 L061 IHI 44 l. 768 LlOI IHI :i.424 44 ll.l79ll.38lll.0081 SWI -3.361 40 I I I I I I I I I I I I I 28 3-15-821 647211001 228 Flll HII 44 1.749 Flll HII 1.421 44 ll.16711.38311.0051 SWI -3.091 43 1- I I I I I I I I I I I I I 56(10) 4-20-821 751811001 228 Flll HII 44 1.740 Flll HII 1.420 44 ll.l59ll.38lll.0091 SWI -2.531 42 I I I 59(11) 5-15-821 8354llOOf 227 I I I I I I I I r I ElOI IHI 47 1.746 6061 HII 1.419 47 ll.15911.37711.0lll NEI -4.611 41 I I I I I I I I I I I I I 61(12) 6-17-821 945011001 222 ElOI DGI 46 1.732 F091 LGI 1.438 46 l~.165ll.387ll.0091 SEI -5.431 41 I I I I I I I I I I I I 1*

62 7-17-82ll0420llOOI 227 J061 GLI 44 1.729 F091 LGI 1.436 47 ll.160ll.386ll.0061 SEI -4.901 40 I I I I I I I I I I I I I N

I-' 63 8- 3-82lll019llOOI 224 J06 I GLI 46 1.707 F091 LGI 1.427 46 ll.149ll.380ll.0051 SEI -3.321 39 I I I I I I I I I I I I I I 66(13) 8-20-82lll577llOOI 224 J061 GLI 46 1.699 J061 GLI 1.421 46 ll.14811.37911~0061 SEI -3.701 39 I I I I I I I I I I I .I I 69(14)1 9-22-8211264411001 225 J061 GLI 52 1.687 J061 GLI 1.414 52 ll.l39ll.365ll.0071 SWI -3.171 39 I I I I I I I I I I I I I I 70 ll0-28-82ll3207llOOI 222 J061 GLI 53 1.679 F091 LGI 1.410 53 ll.14lll.366ll.0061 SWI -3.041 38 I I I I I I I I I I I I I I 73(15Jlll-12-82ll3684llOOI 226 J061 GLI 53 1.682 J061 GLI 1.398 53 ll.152ll.34lll.0031 SWI -2.971 40 I I I. I I I I I I I I I I I

74. ll2-16-82ll4752llOOI 226 J061 GLI 53 1.714 J061 GLI 1.422 53 ll.155ll.362ll.0031 SWI -2.191 40 I I I I I I I I I I I I I I 75 I l-18-83ll5859llOOI 228 J061 GLI 11 1.676 J061 GLI 1.374 11 ll.148ll.32lll.0071 SWI 0.931 40
9. MAPS 23 AND 24 WERE PARTIAL-POWER MAPS TAKEN FOR QUADRANT POWER TILT VERIFICATION.
10. MAP 29 WAS ABORTED DUE TO LOSS OF NIS CHANNEL N-41. MAPS 30 THROUGH 38 WERE QUARTER-CORE FLUX MAPS TAKEN FOR QUADRANT POWER TILT VERIFICATION. MAPS 39 AND 40 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE/EXCORE CALIBRATION. MAPS 41 THROUGH 55 WERE QUARTER-CORE FLUX MAPS TAKEN FOR QUADRANT POWER TILT VERIFICATION.
11. MAPS 57 AND 58 WERE QUARTER-CORE MAPS TAKEN FOR INCORE/EXCORE CALIBRATION.
12. MAP 60 WAS ABORTED DUE TO AN INSUFFICIENT NUJ1BER OF THIMBLES.
13. MAPS 64 AND 65 WERE QUARTER-CORE MAPS TAKEN FOR INCORE/EXCORE CALIBRATION.
14. MAP 67 WAS A QUARTER-CORE FLUX MAP USED FOR QUADRANT POWER TILT VERIFICATION. MAP 68 WAS ABORTED DUE TO AN INSUFFICIENT NUMBER OF THIMBLES.
15. MAPS 71 *AND 72 WERE QUARTER-CORE MAPS TAKEN FOR INCORE/EXCORE CALIBRATION.

Figure 4.1 SURRY UNIT 1 - CYCLE 6 ASSEMBLYWISE POWER DISTRIBUTION Sl-6-13 p N H P' E D C II A R

" L, K J 6

  • IIEASURED
  • D.39. 0.68. 0.40.
  • IIEASURED 1
  • PCT DIFFERENCE. * ~5.Z * *5.3 * -3.11 * .PCT DIFFERENCE *
  • 0.39
  • 0.116
  • 0.97
  • 1.01
  • 0.99
  • 0.118
  • 0.311
  • z
  • 1.1 * -4.l * -4.7 * -4.11 * -3.3 * -1.6 * -a.a *
  • 0.43
  • 0.95
  • 1.11
  • 1.14
  • 1.17
  • 1.15
  • 1.10
  • 0.94
  • 0.43
  • 3
  • 1.5
  • o. 1 * -a.z * -4.l * -4.Z * -3.1 * -1.6 * -o.3
  • o.5 *
  • 0.44
  • o.9o
  • 1.12
  • 1.zo
  • 1.111
  • 1.11
  • 1.16
  • 1.zo
  • 1.u
  • o.90
  • o.44 *
  • 1.7. 0.1. *0.3. -0.9. -Z.3. -2.9. -4.1. -0.7. 0.1
  • 0.3. 1.9 *
  • ** * * * ** * * * * * * * ** * * * * * * * * * ** * * * * * * * ** * * * * * * * * * * *** * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * *
  • 0
  • 0.39
  • 0.9Z
  • 1.12
  • 1.22
  • l.Zl
  • 1.19
  • 1.15
  • 1.19
  • 1.20
  • 1.23
  • 1.13
  • 0.97
  • 0.40
  • 5
  • *O.Z * *1.9 * -0.5 * *1.3 * *0.7 * -1.0 * -0.6 * -0.9 * -1.3 * -0.6
  • 0.6
  • Z.6
  • 4.4 *
  • 0.90
  • 1.11
  • 1.21
  • 1.23
  • 1.19
  • 1.111
  • 1.05
  • 1.111
  • 1.111
  • 1.21
  • 1.22
  • 1.14
  • 0.92
  • 6
  • -o.z * -o.z
  • o.o
  • o.9 * -o.z * -o.6 * -0.1 * -o.4 * -1.6 * -o.3
  • 0.11
  • z.o
  • z.1 *
  • o.41. 1.01. 1.1a. 1.21. 1.zz. 1.zo. o.97. 1.111. 0.,11. 1.1a. 1.21. 1.22. 1.111. 1.03. 0.41. 7
  • -0.1. -0.1. -o.4. 0.1. 1.2. 1.2. -o.o. 0.3. o.3. -o.5. o.z. 1.4. -o.o. o.4. o.o *
  • 0.11
  • 1.05
  • 1.21
  • 1.20
  • 1.11
  • 1.06
  • 1.19
  • 1.01
  • 1.1a
  • 1.05
  • 1.16
  • 1.20
  • 1.21
  • 1.05
  • o.73
  • 11
  • -0.1. -o.9. -1.4. -0.1. o.9. 0.1. 1.0. o.7. 0.1. -~.2. o.3. -0.1. -1.3. -o.a. 1.4 *
  • 0.41
  • 1.02
  • 1.111
  • 1.21
  • 1.21
  • 1.20
  • 0.911
  • 1.19
  • 0.97
  • 1.19
  • 1.20
  • 1.20
  • 1.17
  • 1.03
  • 0.43
  • 9
  • -0.1 * -0.3 * -0.1
  • o.3
  • o.* . o.6
  • o.3
  • 1.4 * -o.z * -0.1 * -0.1 * -o.e . -1.0
  • o.5
  • 3.6 *
  • 0.91
  • 1.13
  • 1.22
  • 1.22
  • 1.19
  • 1.21
  • 1.07
  • 1.20
  • 1.20
  • 1.22
  • 1.21
  • 1.11
  • 0.90
  • 10
  • 1.3
  • 1.3
  • 0.5 * *0.2 * *0.2
  • 1.4
  • 1.4
  • 0.11
  • 0.4
  • 0.1 * -0.1 * *0.1
  • 0.4 *
  • o.<to
  • o.96
  • 1.14
  • 1.23
  • 1.22
  • 1.22
  • 1.11
  • 1.zz
  • 1.23
  • 1.23
  • 1.u
  • o.95
  • o.39
  • 11
  • Z.3. Z,3. 1.0. -0.6. 0.3. 1.6. 1.4*. 1.3. 1.0. -0.1. 0;3. 0.9. l.Z.

, 0."4

  • 0.92
  • 1.12
  • 1.22
  • 1.22
  • 1.20
  • 1.21
  • 1.22
  • 1.13
  • 0.90
  • 0.4" , 12
  • 3.4
  • 1.8 * -0.6
  • 0.9
  • 1.3 * *0.3
  • 0.1
  • 1.1
  • 0.4
  • 0.0
  • Z.6 ,
  • 0.44
  • 0.94
  • 1.14
  • 1.17
  • 1.111
  • 1.17
  • 1.13
  • 0.95
  • 0.43
  • 13
  • 3.4 * -0.6
  • 1.9 * -1.1 * -3.3 * -1.1
  • 1.6
  • 1.0
  • 1.0* *
  • 0.40
  • 0.93
  • 1.03
  • 1.05
  • 1.01
  • 0.90
  • 0.39 *
  • 3.5
  • 3.5
  • o.5 * -1.z * -1.1
  • o.4
  • 1., *
  • 0.43. 0.73. 0.41
  • 15
  • 3.4
  • 1.6 * -1.1
  • STANDARD DEVIATION~ 1.215 AVERAGE PCT. DIFFERENCE
  • 1. Z

SUMMARY

MAP NO: Sl-6-13 DATE: 8/10/81 POWER : l OO?.

COHTROL ROD POSITIONS: F-Q(Tl = l.794 QPTR:

D BANK AT 217 STEPS F-DHCNl = 1.409 NW 0.9903 I _________

__________ , NE 0.9990_

FIZJ = 1.219 SW 1.0078 I SE l.0029 FCXYJ = 1.368 BURNUP  : 973 MWO/MTU A.O : -1.85(?.J 22

,t Figure 4.2 SURRY UNIT 1 - CYCLE 6 ASSEMBLYWISE POWER DISTRIBUTION Sl-6-56 R p N II L K J 6 F  ! D C II A IIEASURED , 0.37 , 0,61 , 0,37 , IIEASURED l

,PCT DIFFERENCE, * -s.s , -s.s , -4.4 , .PCT DIFFERENCE,

, 0,ltl , 0,112 , 0.92 , 0.1111

  • 0.93
  • 0,113 , 0.39 , I
  • 2.s * -3.6 * -<1.6 * -<1.6 * -3. 7 * -2.5 * -o.6 *
  • 0."6 , 0.99
  • l,13
  • l,Olt , l,Olt , 1,05 , 1.11
  • 0,911 , 0,46 , 3

, Z,l

  • O. 7 * -1.0 , -3,6 , -3.6 * -3,2 * -2,5 , 0.5 , 2.lt ,

, o.u

  • 0,91
  • 1,111 , 1.17 , 1.22 , 1.11 , 1.20 , 1,18 , 1.20 , 0,92 , 0."6 ,
  • o.4
  • 0.1 * -o.7 * -o.7 * -1.5 * -2.2 * -3,6
  • 0.1
  • o.8
  • 1.1
  • 2.1 *

, 0.39 , 0.97 , 1,111 , 1.20

  • 1,29 , 1,19
  • 1.26
  • 1.20 , 1,29
  • 1,21
  • 1.20 , 1.00 , 0,41
  • 5
  • -1.0. -1.0. -o.7. -o.7. -o.4. o.o. o.3. o.3. -o.o. 0.1. o.3. 2.0. 3.7.

, 0,114

  • 1.13
  • 1,17 , 1,30 , 1.20 , 1,29
  • 1,09
  • 1.30
  • 1.20 , 1,29
  • 1,111
  • 1.15
  • 0.117 , 6
  • -o.6 * -o.6 * -o.3
  • o.4 * -o.o
  • o.3
  • 0.11
  • 0.11
  • o.o * -o.o * -o.o
  • 1.0
  • 2.2 *
  • * * * * * ** * * * ** * * *** * * * * * * * ** * * * * * * *** * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  • 0 . . . . . . . . . . . .. .
  • 0,39, 0.96, 1.07; 1.24, 1.19, 1,29, 1.02, 1.27. 1,03, 1.30, 1,19. 1.23, 1.08, 0,97, 0,39, 7
  • -0.1 * -0.5 * -0.4 * -o., . -o.o * -o.o
  • o. 7
  • 1.2
  • 1.tt
  • 0.11 * -0.1 * -o.6 * -0.3
  • o.s
  • o. 7 *

, 0,65 , 0.92 , 1.07 , 1.13 , 1,25 , 1,011 , 1,25 , 1,10

  • 1.26 , 1.09 , 1,25 , 1,12
  • 1,07 , 0,9lt
  • 0,67 , II
  • -0.1 * -o.6 * -1.2 * -0.11 * -o.5 * -0.1 * -o. 7
  • 1.6
  • 0.11
  • D,6 * -o.4 * -o.a * -0.11
  • 1.2
  • 3.4 *
    • 0.39 , 0.96 , 1,07 , 1.2, , 1.20
  • 1,29
  • 1.03 , 1.27 , 1.02 , 1.211
  • 1,19 , 1.24
  • 1,011
  • 0.911 , 0.41
  • 9
  • -0.1 * -o.3 * -o.4 * -0.1
  • o.6
  • 0.2
  • 1.5
  • 1,5
  • 1.0 * -1.1 * -o.5 * -0.1 * -o.3
  • 1. 7
  • 4. 7 *
  • o.85
  • 1.is
  • 1.111
  • 1.30
  • 1.21
  • 1.211
  • 1.09
  • 1.29
  • 1.20
  • 1.29
  • 1.111
  • 1.15
  • o.85
  • 10

, 0.4

  • 0,4 , 0.5 , 0.6
  • 0.6 * -0.6
  • 0.3 * -o.o * -0.2 * -o.o
  • 0.5 , 0.3
  • 0.6 *

, 0.40, 0.99. 1,20. 1,22. 1.30, 1,19, 1.25. 1,19, 1,30. 1.22, l,ZO. 0.99, 0.40, 11

  • 1.1
  • 1.1
  • 0.11
  • o.s
  • a.s * -o.6 * -o.6 * -o.6
  • o.7
  • o.6
  • 1.0
  • 1.3
  • 1,4 *
  • O.lt6
  • D,9t
  • 1,20
  • 1,111 , 1.22 , 1.11
  • 1,22
  • 1,17 , 1,19
  • 0.92
  • 0.46
  • 12
  • 1.11. 1.3. o.5. o.5 ~ -1.9. -1.9. -1.9. -o.9. -0.1. 0.11. 2.9 *
  • 0."6 , 1.01
  • 1.18
  • 1.05
  • 1.05
  • 1.06
  • 1.12
  • 0.97
  • 0.46
  • 13
  • 2,6 , 3.5
  • 3.5 , -3.2 * -2.9 , -1.9 , -1.11 , -1.0
  • 1.5 ,
  • 0.41
  • 0.1111
  • 0,911
  • 0.92
  • 0.95 , 0.84
  • 0.39
  • 14

, 3.5

  • 4.2
  • 1.9 , -0.2 , -1.0 * -1.3 * -1.9 *
  • 0.41
  • 0.67
  • 0.39
  • 15
  • 5.3. 2,9. -0.7, STANDARD DEVIATION: 1,2113_ AVERAGE PCT. DIFFERENCE : 1, 3

SUMMARY

MAP NO: Sl-6-56 DATE: 4/20/82 POWER: 100?.

CONTROL ROD POSITIONS: F-Q(Tl = 1.740 QPTR:

D BANK AT 228 STEPS F-DHCNl = 1.420 tlW 0.9921 I NE 1.0020 F!Zl = 1.159 ----------1------ .---

SW 1.0087 I SE 0.9972 F(XYl = 1.381 BURmJP = 7518 MWO/MTU A.O = -2.53(?.l 23

Figure 4.3 SURRY UNIT 1 - CYCLE 6 ASSEMBLYWISE POWER DISTRIBUTION Sl-6-74 p It , e R N

" L J H 8 E D C A

, 111!ASURED , , 0,"1 , 0,66 , 0.42 , , l1EASU1!ED , 1

,PCT DIFFEREHC!, , -1.11, -1.11, -0.9, ,PCT DIFFEREHC!,

, 0,45 , 0,96 , 0,911 , 0,91 , 0,911 , 0,96 , 0,4:S ,

  • 4.0., 0,6 , -1.0 , -1.5 , -1.0. , 0.5 , 0.5 ,

, 0.51 , 1,06 , 1,19 , 1.05 , 1,02 , 1,04 , 1,111 , 1,0] , 0,411 , - :s

, 4.0, 4.0, 0,6, -0.1, -z.z, -1.7, 0,5, 0,5, -1.1,

, 0,49 , 0,9" , 1.24 , 1,15 , 1,22 , 1,07 , 1.21 , 1,1]

  • 1,21 , 0,92
  • 0,50 *

, o.e, 1,4. 1.,. o.:s. -1.:s. -2.2. -2.s. -o.a. -o.9. -1.0. 2,4.

, 0,42

  • 1.01 , 1,21 , 1,16 , 1,27 , 1,15 , 1,211 , 1,14 , 1.25
  • 1,15
  • 1,21 , 1,05 , 0,45 , 5
  • -1.:s * -1.:s * -0.11 * -o.z * -o.5
  • o.:s
  • o.:s * -o. 1 * -1. 1 * -1.0 * -1.1
  • 2.4
  • 5.9 *

, 0,86

  • 1,18
  • 1,14 , 1,26 , 1,13
  • 1,:SZ , 1,09 , 1,29 , 1,12 , 1,26 , 1,13 , 1,20 , 0.99 *

, 0,6 , 0,6 , -0.2 , -1.1 , -0.11 * :s.o , 2,9 , 0.11 , -2.0 , -1,6 , -1.0 , 2,0 * ],5 , '

, 0,4:S. 1.00, 1,07, 1.2:s, 1.12, 1,25, 1,0:S, 1,26, 1,01, 1,211, 1,1], 1,21, 1,05, 1.00, 0,42, 7

, 2,4. l,:S, z.o. -o.:s, -2.:s, -z.:s, :s.o, 2,5, 1,7, 0,1, -1.0, -2.2, -0.1. 0,9, 1,1,

, 0,67, 0.9:S, 1,114, 1.09, 1,25, 1,04, 1,19, 1,07, 1,24,, 1.06, 1,26, 1,07, 1,02, 0,9:S, 0,70, II

  • -o.4 , 0.1
  • o.o * -o.3 * -2.5 , -1.:s * -:s.:s
  • 2.1
  • 1.1
  • o.5 * -1.0 * -2.2 * -1.4
  • 1.:s * :s.1 *

, 0,42 , D,99 , 1,05 , 1.23 , 1,16

  • 1,27
  • D,97 , 1.24 , 1.02
  • 1.25
  • 1,13 , 1,2] , 1,05 , 1.02
  • 0.45 , 9

.- -o.4 * -o.4 * -0;4. -o.:s

  • 1.0 * -a.a * -z,5
  • 1.1 ** z.2 * -2.1 * -1.2 * -o.6 * -o.5 * *2,9
  • 7,4 *
  • o.es
  • 1.11
  • 1.15
  • 1.29
  • 1.1"
  • 1.25
  • 1.05
  • 1.21
  • 1.14
  • 1.21
  • 1.15
  • 1.111
  • o.n . 10
  • -o.4. -o.4. 0.4. 1.0. -o.5. -2.5. -1.2. -o.4. -o.6, -0.11. o.:s. o.:s. 11.1 *

. o.~4 . 1.05

  • 1.24
  • 1.11
  • 1.21
  • 1.12
  • 1.24
  • 1.11
  • 1.21
  • 1.11
  • 1.2:s
  • 1.04
  • D,44
  • 11

, 2,4 , Z,4 , 1,4 , O.Z , -0,7 , -1.9 , -2,6 , -2.9 * -o.z , -o.o , 1,0

  • 1,9 * :S.4 ,
  • o.s1
  • o.96
  • 1.22
  • 1.14
  • 1.z:s
  • 1.01
  • 1.21
  • 1.14
  • 1.n
  • o.94
  • a.so *
  • 5.2. 3.2. o.z. -0.1. -0.1. -z.1. -1.9. 0.1. o.4. 1.:s. 3,1 *
  • o.s1. 1.01. 1.21. 1.04. 1.01, 1.04. 1.111. 1.0:s, a.so. 13
  • 5.1 , s.o
  • 2.4 , -1.6 * -2,5 , -1.0
  • o.z
  • 0.6 , 2.0 *
  • o.45
  • 0.90
  • o.96
  • o.91
  • o.,, . o.e6
  • o.tt:s *
  • 5.0 , s.o * -3.0 , -1,5 , -0,3
  • 0.1 , 0.2 ,

, D,"4 , 0,67 , 0.42 , 15

, 5,0, -0.1, -0.1, STANDARD DEVIATION

  • 1,"46 AVERAGE PCT, DIFFER!NCI!
  • 1, 6

SUMMARY

MAP NO: Sl-6-74 DATE: 12/16/82 POWER: 1oor.

CONTROL ROD POSITIONS: F-Q(Tl = 1,714 QPTR:

D BANK AT 226 STEPS F-DH<Nl = 1.422 NW 1.0010 I NE 0.9950 FIZl = 1.155 ----------1----------

sw 1.0034 I SE 1.0006 FIXY> = 1.362 BURNUP = 14752 MWD/MTU A,O = -2.191?.l 24

Figure 4.4 SURRY UNIT 1 CYCLE 6 HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE (6.1; 1.0) 1.0 (10.9, 0.94) o.e N

C1' lllo

&i 0.6 I:!

i.

la N o.4 (12.0, o.46) l>4 0.2 o.o 0 2 4 6 B 10 12 BOTTOM. CORE HEIGHT (PT. ) TOP 25

SURRY UNIT 1 - CYCLE 6 HEAT FLUX HOT CHANNEL FACTOR, F ~

Sl-6-13

2. +

N

'-' 2.0

~ O' f:L<

xxxxxx xxxxx xx xx xxxxxx XX XX xx X X X X X xxxx

1. 5 xx X X

X X

X X X X X X N

0\ X X

1.0 +

X X

X X

-x X X

- X O; +

o. +

I *

  • I I
  • I
  • 61 55 50 . 45 40 35 30 25 20 15 10 5 1 BOTTOM Of CORE TOP OF CORE AXIAL POSITION (NODES) ln I_

SURRY UNIT 1 - CYCLE 6 HEAT FLUX HOT CHANNEL FACTOR, F ~

Sl-6-56 2.5 2,0 X K X >< X XX XX X><XXXXX X X XX X X )( X )( X X K K X X X XX X X )( )( X X X 1.5 )( XX X X )(

N I(

-...J X X

I(

X

1. +

I(

X

-)(

X X

X 0.5 t"rj o.o I-'*

I . I I . I , I . I ,

  • OQ I I '

i::

61 55 50 45 40 35 0 25 20 10 5 1 Ii BOTTOM OF CORE TOP OF CORE CD AXIAL POSITION (NODES) .~

0\

SURRY UNIT 1 - CYCLE 6 HEAT FLUX HOT CHANNEL FACTOR, F ~

Sl-6-74 2.5 2,

N

~ ct XX X ii.

'-' X XX XX XX XX X X X X X X XX X

~ X XX XX XX XX X X X 0 1.5 X X XX XX X xxxx

~ X X u X X N

00

~ X

)( X lJ u

1.0 X

X xx

~ X 0

i::

~

~ 0,5

~

~

i::

>:cj o.o I-'*

I

  • I .*** I I . I
  • I . . I .*. I OQ 61 0 3 2 20 15 o, i::

BOTTOM OF CORE TOP OF CORE Ii (1)

AXIAL POSITION (NODES) .i:-

-..J

Figure 4.8 SURRY UNJT l - CYCLE *6

. HAXJHUH HEAT FLUX HOT CHANNEL FACTOR, FQ **P VS AXJAL POSJTfO~

Fa

  • P LIMJT
  • MAXJMUM FQ ** P 2.2 2.0

. ---- lo,,,,,..._ .

r--.. ,-......__~

l i

~-

~ . L .....

.6

        • ****. * * ** **** \
  • .... * . ****, k* \

1 .6 ... * ~

J.

  • \

l *4 \

'~

~

\

\

F l -2

.\

~

a

  • l .o p

o.6 0,6 0.4 0.2 o.o,_ I I I 61 55 50 45

  • 40 35 30 25 . 20 15 10 5 l AXJAL POSJTJON !NOOEI BOTTOM OF CORE TOP OF CORE 29

J Figure 4.9 SURRY l - CYCLE 6 MAXIMUM HEAi FLUX HOT CHANNEL FACTOR. F-Q VS. BURNUP

- TECH SPEC LIMIT X MEASUREO VALUE I

2.2 2 .1 M

A X 2.0 J

t1 u

M l .9 H

E

" A

~

T .X l .6 F *x X

X L )

u " . X " X X X X l .7 . ~

X H X X X 0

T C l .6 H

A N

N E l .5 L

F A

C l .4 T

0 R

1. 3 .

1 .2 - I 0 2000 4000 6000 6000 10000 12000 14000 16000 18000 CYCLE BURNUP tMHD/MTUl 30

Figure 4.10 SURRY UNIT 1 - CYCLE 6 ENTHALPY RISE HOT CHANNEL FACTOR. F-DHCNl vs. BURNUP

- TECH SPEC LIMIT X MEASURED VALUE 1 .so 1 .55 E 1 .so N

T H

A L 1 . 45 p X X X y

X V

, X X X }(.

X X X R l X I 1. 40 s "

E H

0 l .35 T

C H

A l. 30 N

N E

L 1 .25 F

A C

T 0 1 .20 R

1 . 15 0 2000 4000 6000 BODO 10000 12000 14000. 16000 16000 CYCLE BURNUP !MWD/MTUJ 31

Figure 4.11 SURRY UNIT l - CYCLE 6 TARGET DELTA FLUX VS. BURNUP 10-+---+---+--+--+---+--+---t--+--+--+--t--t---+--+---t~-t-~+---+

8-+---+---i--+--+----+--+----le---+---+---+--+--+---+--+----le-----+---

6 T

A .

R

(} 4 E .

T D

E 2 L

T A

F 0 L

u X

6 6 t.

I -2 N 6 6 p

E 6 R -4 .

C 6 E

N T 6

-6

-8 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 CYCLE BURNUP CMWD/MTUl 32

SURRY UNIT 1 - CYCLE 6 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-6-13 1.5~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......

Fz = 1.219 A.O. = -1. 85 XX X 1.2 t X XX XX X XX XX XX X XX X X X XX xx xx X

X X X XX X xx Lu Lu Q

N

~

H 0.9 t X

X X

X X

X X

X X

X X

X

~

X X

0 X z xx X

0.6 ~ X N

X N X r:,:.

X X

X 0.3 X 0.0 t I ... I

  • I I . I . I . I . I . I
  • I I 61 55 50 45 40 35 30 25 20 15 10 5 1 BOTTOM or CORE TOP or CORE AXIAL POSITION (NODES)

SURRY UNIT 1 - CYCLE 6 CORE AVERAGE .AXIAL POWER DISTRIBUTION Sl-6-56

1. 5
  • Fz = 1.159 A.O.= -2.53
1. 2
  • XX X XXX XX XXXXXXX X X X xxxxxxx XX X X X X xx X X X XX X X X X X X l,.J A X X X

~ i:.l X N 0.1

  • X H X X

i z0 X

xx X

-N f:<.i N

OJ

  • X X

-X X X

o. 3
  • o.o I+

I I I I I

  • I
  • I
  • I . . . I . I
  • I **. I DI 55  :,u q:, 110 35 30 25 20 15 10 ) I BOTTOM Of CORE TOP Of CORE AXIAL POSITION (NODES)

SURRY UNIT 1 - CYCLE 6 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-6-74 1.51..~...........................................................................................................................

Fz = 1.155 A.O.= -2.19 1.2

  • X X X X X X X X X X XX X X X XX XX XX X XX XX X xxxxxxx X X X X X X X )(

,..., X X ~ X A X X r.l X l,J N 0.9 X X U1 H X X

X iz 0

X X

X

...... 0.6 ii-X N X

'-' X N X Ii<

0,3 +

o.o *, I I I I I , I , I , I , I

  • I I 61 55 50 115 110 35 30 25 20 15 10 5 . 1 BOTTOM OF CORE TOP OF CORE AXIAL POSITION (NODES)

Figure 4.15 SURRY UNIT .l - CYCLE 6 CORE AVERAGE AXIAL PERKING FACTOR, f-2 VS. BURNUP A

X I

A L

p E .. i A

K l . 2-+---+--......,"--+--+---+----+--+---+----+--t---+--+----+---1,--+---+---+

I N

G F

A " Ll C

T 0

R 0 2000 4000 6000 6000 10000 12000 14000 16000 16000 CYCLE BURNUP tHHD/MTUl 36

S.ection 5 PRIMARY COOLANT ACTIVITY FOLLOW Activity levels of iodine-131 and 133 in the primary coolant are important in core performance follow analysis because they are used as indicators of defective fuel. Additionally, they are also important with respect to the offsite dose calculation values associated with accident analyses. Both I-131 and I-133 can leak into the primary coolant system through a breach in the cladding. As indicated in the Surry Power Station Technical Specifications, the dose equivalent I-131 concentration in the primary coolant is limited to 1. 0 µ-Ci/ gm for normal steady state operation. Figure 5 .1 shows the dose equivalent I-131 activity level history for the Surry 1, Cycle 6 core (the letdown flow rate averaged 108 gpm during power operation). Reactor coolant system activity data indicate that probably two discrete fuel defect events occurred during July and August, 1981 at a core burnup of less than 2,000 MWD/MTU. The failure mechanism is unknown at this time.

The data on Figure 5.1 shows that during Cycle 6 the core operated below the 1.0 µ-Ci/gm limit during steady state operation (the spike data is associated with power transients and unit shutdown) and that the equilibrium activity levels tended to decrease following the initial defect events. Specifically, the value of dose equivalent I-131 reached approximately 0.31 µ-Ci/gm early in Cycle 6, but decreased during the cycle such that the average dose equilavent I-131 concentration was 0.18

µ-Ci/gm, which is 18% of the Technical Specifications limit.

37

The ratio of the specific activities of I-131 to I-133 is used to characterize the type of fuel failure which may have occurred in,the reac-tor core. Use of the ratio for this determination is feasible because I-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days). For pinhole defects, where the dif-fusion time through the defect is on the order of days, the I-133 decays out leaving the I-131 dominant in activity, thereby causing the ratio to be 0.5 or more. In the case of large leaks, uranium particles in the c'oolant, and/or "tramp" uranium*, where the diffusion mechanism is negli-gible, the I-131/1-133 ratio will generally be less than 0.1. Figure 5.2 shows the I-131/1-133 ratio data for the Surry 1, Cycle 6 core. The I-131/I-133 r~tio generally remained above 0.5, which indicates possible

")

pinhole defects in the fuel cladding.

  • "Tramp" uranium consists of small particles of uranium which adhere to the outside of the fuel during the manufacturing process.

38

Figure :5.1 SURRY. UN IT 1 CYCLE 6 DOSE- EQUIVALENT I - 13 1 vs. T I ME

"'o I! i

(!)

e ... (!)

I e l!j ei

(!)

m l

§

(!) -

.. (!)<!>

(!)

(!)

(!)

(!)

(!) (!) (!) . (!)

(!)

gT~HNniAL SPEQ!JF!CATIONS G!l11T<!>

(!) . a, "o (!) (!) *5 (!) (!)

(!)

(!)

(!)

9(!) (!)

(!) (!)

100 50 ~

.b Lr.J

~

0

-.,,_,.._._,_......L..,...L_._,._._...--...J.\-.U.....,.Jl-.....,....L...L.,.....--....,_.i.w.,_....,.....__,......L.....,..._.....i....-~L.L.,-U......:......i,.....--,--.,...J O Q..

AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB 1.961 1962 1963 t

39

Figure 5.2 SURRY. UN IT 1 CYCLE 6 I - 1*3 1 / I - *1-3 3 RCT I VI TY RATIO vs. TIME 0

LD

(\'1...,...........,....---,-.....,....---,--,.~--------........---........--,....;.........,....---,-.....,....--~

(!)

(!)

(!)

(!)

'J fl 0 ~ -rc ~, i h i (!) (!) ~; II er o f (!) I (!)

0

-!-......._.._____.__.....___,__~--=--............:..-~__:.-..;.__.:,_....__.:,_.....___._____ _

0 II I I -*nr I" I n ---

100 50 a::

w

i::

C

~-,~-,~. . ,~ . . . ,-~~,~-,-'-~,-~,~~,-~,--,~--,~,--,~~.~~-~,-~,o~

AUG SEP OCT NOV OEC JAN FEB l'!RR AP.R 11RY JUN JUL AUG SEP OCT NOV OEC JAN FEB 1961 1962 1963 40

Section 6 CONCLUSIONS The Surry 1 Cycle 6 core has completed operation. Throughout this cycle, all core performance indicators compared favorably with the design predictions and all core related Technical Specifications limits were met with significant margin. No abnormalities in reactivity, power distrib-ution, or burnup accumulation were detected. The analysis of radioiodine data for Cycle 6 indicates that there are pinhole leaks in the fuel clad-ding.

41

J '-*

f Section 7 REFERENCES

1) Mr. J. H. Leberstien, "Surry Unit 1, Cycle 6 Startup Physics Test Report," VEP-FRD-44, September, 1981.
2) Surry Power Station Unit 1 and 2 Technlcal Specifications, Sections 3.1.D, 3.12.B, and 4.10 .

Mrs. S. F. Cornwell, "NEWTOTE Code", VEPCO NFO-CCR-6, November, 1982.

4) Mr. R. D. Klatt, Mr. W. D. Leggett, III, and Mr. L. D. Eisenhart, "FOLLOW Code," WCAP-7482, February, 1970.
5) Mr. W. D. Leggett, III and Mr. L. D. Eisenhart, "INCORE Code,"

WCAP-7149,_December, 1967 .

42

NOTICE -

THE ATTACHED FILES ARE OFFICIAL RECORDS OF THE DIVISION OF DOCUMENT CONTROL. THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE RECORDS FACILITY ')

BRANCH 016. PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGE(S) FROM DOCUMENT FOR REPRODUCTION MUST BE REFERRED TO fl LE PERSONNEL.

DEADLINE RETURN DATE

?)@y RECORDS FACILITY BRANCH

  • .