ML19352A279

From kanterella
Jump to navigation Jump to search
Reactor Sys Transient Analyses Using Retran Computer Code
ML19352A279
Person / Time
Site: Surry, North Anna  Dominion icon.png
Issue date: 03/31/1981
From: Smith N
Virginia Power (Virginia Electric & Power Co)
To:
Shared Package
ML18139B242 List:
References
VEP-FRD-41, NUDOCS 8104160337
Download: ML19352A279 (122)


Text

{{#Wiki_filter:_. VEP-F RD-41 I I I VEPCO REACTOR SYSTEM TRANSIENT ANALYSES USING THE RETRAN COMPUTER CODE BY N. A. SMITH NUCLEAR FUEL ENGINEERING GROUP FUEL RESOURCES DEPARTMENT VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND, VIRGINIA M ARCH,1981 RECOMMENDED FOR APPROVAL: I /Qn d && R. W. Cross Supervisor, Nuclear Fuel Engineering l APPROVED: R n. %- R. M. Ber~ yman r Director, Nuclear Fuel Engineering psf /& o 861

I ~ CLASSIFICATIC'?/DISCLAI}IR l-The data, infor=ation, analytical :echniques, and c:nclusicas in this report have been prepared solely for use by the Virginia Ele :ric and ?:ver Cc=pany (the C :pany), and they :sy nc: he appropria:e f:: use in si:uati:ns other than :hese for which they were specifically prepared. The Cc=pany there-fore =akes no clais or warran:y wha: soever, express or i= plied, as to their E accuracy, use fulness, or applicability. In par:icular, IEE CC:9 XTi MX~ES NO WAR 3X,Tf CF l21CEXiTA3ILITY OR FI2?ESS FOR A PARTIC"LAR ?lRPOSE, NCR SEALL X;Y WAR.UXTY 3E DEEMED TO AF.ISE F?.0M COURSE OF DEALING CR USAGE OF UJ"E, with respect to this report or any of the data, infor=sti:n, analytical techniques, or conclusions in 1:. By =aking this reper: available, the C:=pany does no: au:hcrize its use by others, and any such use is expressly forbidden exiep: .E Any such wri::en approval vi:h :he prior writ:en approval of :he Cc=pany. shall itself be dee ed :o incorpora:e :he disclairers o' ='-d :y and dis-clai=ars of warran:1es provided herein. In no even: shall the Cc=pany be liable, under any legal theor/ whatscever (whe:her centrac:, :or:, warran:y, or s:ric: or absolu:e liabili:y), for any preper:y da sge, senzal or physical injury : dea:h,1:ss of use of preper:y, or o:her da= age resul:ing fr = or arising ou: of :he use, authori:ed er unau:hori:ed, of this rep :: or the data, infer:2:icn, analy:ical :echniques, or ::nclusicas in 1:. l I I O

~ I I ACKNOWLEDGE 5fENTS I This report is the culmination of several years of development effort in which numerous individuals have participated. The analytical work was performed by Stessrs. R. W. Cross, S. St. 511rsky, G. St. Suwal and the author. Valuable technical and editorial comments were provided by 31essrs. W. C. Beck, 51. L. Bowling, E. R. Smith, Jr. and T. L. Wheeler. Sfs. Sfiranda Cooper and afs. Sharon Kulp provided patient typing support. The efforts of these and numerous other individuals are gratefully acknowledged. I I I I I I I 1 3 3 I

I TABLE OF CONTENTS I, SECTION PAGE 1 - INTR O D UCTIO N......................... 1.1 2 - OVERVIEW OF THE RETRAN COMPUTER CODE.......... 2.1 3 - REPRESENTATIVE VEPCO NSSS MODELS 3.1 3.1 In troduction.......................... 3.1 3.2 Single Loop Model....................... 3.2 3.3 Multi-loop Model....................... 3.5 4 - SYSTEM THERMAL HYDRAULIC ANALYSIS METHODOLOGY.... 4.1 4.1 Introduction.......................... 4.1 4.2 Licensing Evaluation Process................... 4.1 4.3 System Transient Analysis................... 4.2 4.3.1 System Model Application................ 4.3 4.3.2 Transient Specific Input. 4.4 4.3.2.1 Initial Conditions................ 4.4 4.3.2.2 Reactivity Parameters.............. 4.5 4.3.2.3 System Performance Assumptions......... 4.5 4.4 Use of System Thermal Hydraulic Results 4.6 5 - QUALIFICATION COMPARISONS................. 5.1 5.1 In troduction.......................... 5.1 5.2 Verification Against Licensing analyses........... 5.1 5.2.1 Transients Resulting from Changes in Reactivity....... 5.1 5.2.1.1 Uncontrolled Control Rod Assembly Withdrawal from a Suberitical Condition - FSAR Analysis..... 5.2 I 5.2.1.2 Uncontrolled Control Rod Assembly Withdrawal from a Suberitical Condition - Current Analysis.... 5.3 1 M 5.2.1.3 Uncontrolled Control Rod Assembiy Withdrawal at Power Transient - FSAR Analysis....... s 5.4 5.2.1.4 Uncontrolled Control Rod Assembly Withdrawal at Power Transient - Current Analysis........ 5.5 5 lI 1

E t 5.2.2 Transients Resulting from Changes in Primary System Flowrate. 5.6 5.2.2.1 Complete Loss of Flow - FSAR Analysis...... 5.7 5.2.2.2 Complete Loss of Flow Transient-Current Analysis. 5.7 5.2.2.3 Partial Loss of Flow Transient-FSAR Analysis... 5.8 5.2.3 Change in Primary to Secondary Heat Transfer....... 5.9 5.2.3.1 Loss of External Electrical Load Transient - FSAR Analysis................. 5.9 5.2.3.2 Loss of External Electrical Load Transient - Current Analysis................ 5.11 5.2.3.3 Excessive Heat Removal Due to Feedwater System Malfunction Transient - FSAR Analysis...... 5.11 4 5.2.3.4 Accidental Depressurization of the Secondary System / Main Steam Line Break Transient - FSAR Analysis.... 5.12 8 5.2.3.5 Accidental Depressurization of the Secondary System / Main Steam Line Break Transient - Current Analysis... 5.14 5.2.4 Conclusions - Licensing Transient Analyses......... 5.14 5.3 Verification Against Operational Data.............. 5.15 5.3.1 Introduc tion...................... 5.15 5.3.2 Pump Coastdown Tests................. 5.1 5 5.3.2.1 Surry Pump Coastdowns............. 5.15 5.3.2.2 North Anna Pump Coastdown........... 5.16 5.3.3 North Anna Cooldown and Safety Injection Transient..... 5.17 5.3.4 ceneral Conclusions - Best Estimate Transient Analyses... 5.19 g 6 CONCL USIONS................... 6.1 7 R E F E R E N C ES.......................... 7.1 APPENDIX -

SUMMARY

OF IMPORTANT ASSUMPTIONS USED IN TRANSIENT ANALYSES DISCUSSED IN SECTION 5 E l5

LIST OF FIGURES p Number Title 5.1 Nuclear Power, Uncontrolled Rod Withdrawal from Suberitical Transient, FSAR Analysis I, 5.2 Average Fuel Temperature, Uncontrolled Rod Withdrawal from Suberitical Transient, FSAR Analysis 5.3 Average Clad Temperature, Uncontrolled Rod Withdrawal from Suberitical Transient, FSAR Analysis 5.4 Core Heat Flux, Uncontrolled Rod Withdrawal from Suberitical Transient, FSAR Analysis 5.5 Nuclear Power, Uncontrolled Rod Withdrawal from Suberitical Transient, Surry 2 Cycle 4 Reanalysis 5.6 Average Fuel Temperature, Uncontrolled Rod Withdrawal from Suberitical Transient, Surry 2 Cycle 4 Reanalysis 5.7 Average Clad Temperature, Uncontrolled Rod Withdrawal from Suberitical Transient, Surry 2 Cycle 4 Reanalysis s 5.8 Core Heat Flux, Uncontrolled Rod Withdrawal from Suberitical Transient, Surry 2 Cycle 4 Reanalysis 5.9 Nuclear Power, Uncontrolled Rod Withdrawal from Power Transient, FSAR Analysis 5.10 Pressurizer Pressure, Uncontrolled Rod Withdrawal from Power Transient, FSAR Analysis 5.11 Average Coolant Temperature, Uncontrolled Rod Withdrawal from Power Transient, FSAR Analysis 5.12 DNB Ratio, Uncontrolled Rod Withdrawal from Power Transient, FSAR Analysis t l, 5.13 Variation of Minimum DNBR with Reactivity Insertion Rate, Rod Withdrawal 5 from 102% Power, Steam Generator Tube Plugging Reanalysis 5.14 Variation of Minimum DNBR with Reactivity Insertion Rate, Rod Withdrawal I from 62% Power, Steam Generator Tube Plugging Reanalysis 5.15 Flow Coastdown, Complete Loss of Flow Transient, FSAR Analysis 5.16 Nuclear Power, Complete Loss of Flow Transient, FSAR Analysis 5.17 Average Heat Flux, Complete Loss of Flow Transient, FSAR Analysis l 5.18 DNB Ratio, Complete Loss of Flow Transient, FSAR Analysis I

I 5.19 Flow Coastdown, Complete Loss of Flow Transient, Steam Generator Tube Plugging Reanalysis I 5.20 Nuclear Power, Complete Loss of Flow Transient, Steam Generator Tube Plugging Reanalysis 5.21 Average Heat Flux, Complete Loss of Flow Transient, Steam Generator t Tube Plugging Reanalysis 5.22 DNB Ratio, Complete Loss of Flow Transient, Steam Generator Tube I Plugging Reanalysis 5.23 Flow Coastdown, Partial Loss of Flow Transient, FSAR Analysis 5.24 Nuclear Power, Partial Loss of Flow Transient, FSAR Analysis 5.25 Core Average Heat Flux, Partial Loss of Flow Transient, FSAR Analysis 5.26 DNB Ratio, Partial Loss of Flow Transient, FSAR Analysis 5.27 Pressurizer Pressure Change, Loss of Load Transient, BOL-FSAR Analysis 5.28 Nuclear Power, Loss of Load Transient, BOL - FSAR Analysis 5.29 Pressurizer Water Volume Change, Loss of Load Transient, BOL - FSAR Analysis I 5.30 Coolant Inlet Temperature Change, Loss of Load Transient, BOL - FSAR Analysis G 5.31 DNB Ratio, Loss of Load Transient, BOL - FSAR Analysis g, 5.32 Pressurizer Pressure Change, Loss of Load Transient, EOL - FSAR Analysis 5.33 Nuclear Power, Loss of Lcad Transient, EOL - FSAR Analysis l o.34 Pressurizer Water Volume Change, Loss of Load Transient, EOL - FSAR g Analysis I Ig l 5.35 Coolant Inlet Temperature Change, Loss of Load Transient, EOL - FSAR Analysis l Ur 5.36 DNB Ratio, Loss of Load Transient, EOL - FSAR Analysis l g 5.37 Pressurizer Pressure Change, Loss of Load Transient, Positive 5foderator l g Coefficient Reanalysis l l 5.38 Nuclear Power, Loss of Load Transient, Positive 5foderator Coefficient Reanalysis 5.39 Average Coolant Temperature, Loss of Load Transient, Positive 5foderator Coefficient Reanalysis 5.40 DNB Ratio, Loss of Load Transient, Positive 5foderator Coefficiint Reanalysis t I

8 I 5.41 Feedwater Temperature Change, Excessive Heat Removal due to Feedwater System Malfunction Transient, FSAR Analysis 5.42 Nuclear Power, Excessive Heat Removal due to Feedwater System Malfunction Transient, FSAR Analysis 5.43 Change in Average Coolant Temperature, Excessive Heat Removal due to Feedwater System Malfunction Transient, FSAR Analysis 1 5.44 Pressurizer Pressure Change, Excessive Heat Removal due to Feedwater System Mr.lfunction Transient, FSAR Analysis 5.45 DNB Ratio, Excessive Heat Removal due to Feedwater System Malfunction Transient, FSAR Analysis 5.46 Break Flow Rate, Main Steam Line Break, FSAR Analysis 5.47 Pressurizer Pressure, Main Steam Line Break, FSAR Analysis 5.48 Total Reactivity, Main Steam Line Break, FSAR Analysis 5.49 Core Heat Flux, Main Steam Line Break, FSAR Analysis 5.50 Pressurizer Pressure, Main Steam Line Break, Surry 1, Cycle 4 Reanalysis 5.51 Total Reactivity, Main Steam Line Break, Surry 1, Cycle 4 Reanalysis 5.52 Core Heat Flux, Main Steam Line Break, Surry 1, Cycle 4 Reanalysis 5.53 Flow Coastdown, Operational Test at Hot Zero Power, Surry Three-Pump Coastdown 5.54 Flow Coastdown, Operational Test at Hot Zero Power, Surry One Pump Coastdown 5.55 Core Flow Coastdown, Operational Test at Hot Zero Power, Surry One Pump Coastdown 5.56 Flow Coastdown, Operational Test at Hot Zero Power, North Anna Three-Pump Coastdown 5.57 Steam Pressure, North Anna Cooldown Event 5.58 Cold Leg Temperature, North Anna Cooldown Event 5.59 Hot Leg Temperature, North Anna Cooldown Event 5.60 Pressurizer Pressure, North Anna Cooldown Event 5.61 Pressurizer Level, North Anna Cooldown Event t I

i I LIST OF TABLES Table Tit'e 3.1 Thermal-Hydraulic Design Parameters - Surry Plant 4.1 Protection System Characteristics Assumed in Safety Analyses 5.1 Limiting Predicted Results - Main Steam Line Break Transient - Surry 1, Cycle 4 Reanalysis I

i i

l 1, I I I i 8 I I 8

E I SECTION 1 - INTRODUCTION The Virginia Electric and Power Company (Vepco) has developed the capability to perform system transient analyses of the North Anna and Surry Nuclear Power Stations. This capability, coupled with the core thermal / hydraulic analysis capability discussed in Reference 1, encompasses the conservative non-LOCA licensing analyses required for the Conditions I, II and III transients addressed in the Final Safety Analysis Report (limited application to Condition IV transients is also included). In addition, the capability for performing best estimate analyses for plant operational support applications has also been developed. The purpose of this effort is to 1) develop expertise in the system transient [W analysis area, 2) support reactor operation and 3) provide a basis for the reload core safety analysis and licensing process. The principal analysis tool is the RETRAN 2 computer code which determines the time dependent or transient thermal-hydraulic response of a Nuclear Steam Supply System (NSSS). The RETRAN computer code calculates 1) general system parameters as a function of time and 2) boundary conditions for input into more detailed calculations of Departure from Nucleate Boiling or other thermal and fuel performance margins. The theory and numerical algorithms, i the programming details, and the user's input information for the RETRAN computer code have been documented by its developers, Energy Incorporated (EI) and the Electric Power Research Institute (EPRI), in Volumes I through IV of Reference 2. Volume IV of Reference 2 provides the results of the extensive verification and qualification of the code which was performed by a group consisting of EI, EPRI, and 15 utilities including Vepco. The verification activity consisted of qualification of the code by comparison of code results with separate effects experiments, with systems effects tests, and with integrated system responses based on actual plant data or FSAR results. P,erformance of system transient analysis requires both single and multiloop I I i

8 1.2 modeling of the NSSS in order to analyze the required range of FSAR and operational support transients. Those transients for which the system thermal-hydraulic response of all reactor coolant loops is essentially identical require only a single loop represen-tation. However, some transients are expected to have different responses in one or more of the reactor coolant loops, and these transients require multiloop representation of the NSSS. The RETRAN computer code, which is a variable geometry code, has the high degree of flexibility necessary for various system representations. Consequently, several models, including both single and multiloop representations, have been developed for the Vepco nuclear power stations. In conjunction with both an analysis tool and system models, the development of a non-LOCA licensing analysis capability requires conservative analysis assumptions and input data. For licensing calculations, the Vepco analysis assumptions are consistent with those documented in the units' FSAR's (Refer 's 3 and 4). However, the specific analysis input may change as a result of plant modifications such as core reloads. Consequently, the appropriate licensing analysis input consists of the current limiting values for the important safety parameters. For best-estimate analyses, nominal input values and actual operating histories of the Vepco nuclear power stations are used. The remainder of the report is organized in the following manner. Section 2 provides an overview of the RETRAN computer code, and Section 3 describes the Vepco models appropriate for the Surry and North Anna Nuclear Steam Supply Systems, as illustrated by a disciassion of models developed for the Surry units. Section 4 provides a l discussion of the Vepco transient analysis techniques and their relationships to other 1 aspects of the licensing analysis process. Section 5 provides the results of a range of l comparative analyses using the RETRAN code and the models of the NSSS discussed in Section 3 with calculations performed for the 1) design and licensing of the Surry r l Nuclear Power Station and 2) actual Surry and North Anna transient data. The report conclusions and references are provided in Sections 6 and 7, respectively. l

I l

l

5 SECTION 2 - OVERVIEW OF THE RETRAN COMPUTER CODE The RETRAN computer code was developed by Energy Incorporated under the auspices of the Electric Power Research Institute 2. As such, the RETRAN package is based upon the computer code RELAP4/003 Update 85 which was released by the United States Nuclear Regulatory Commission (NRC) as part of the Water Reactor Evaluation Model (WREM) 5. A detailed description of the RETRAN computer code can be found in Volume I of Reference 2. The following paragraphs summarize the important features of the code. RETRAN contains the same fluid differential and state equations as RELAP4 for describing homogeneous equilibrium flew in one dimension. The representations used in previous RELAP codes for control volumes and functions are also used in RETRAN and allow the analyst to model a system in as much detail as desired. The modeling flexibility of the code is important and will be discussed in more detail in Section 3. The equation systems, which describe the flow conditions within the channels, are obtained from the local fluid conservation equations of mass, momentum and energy by use of mathematical integral-averaging techniques. Forms of the momentum equation are available for both compressible and incompressible flow. The heat conduction representation capabilities of RETRAN have been increased over previous RELAP versions. The principal augmentation to RETRAN is the lI l capability to more accurately calculate two-sided heat transfer. The appropriate heat i transfer correlation is selected based on thermodynamic conditions in each of two flow streams, on either side of a heat conducting solid. Consequently, representations of the heat transfer processes occurring in the steam generator, for example, are more accurate than previously possible. i Reactor kinetics are represented in RETRAN using a point kinetics model with reactivity feedback. The reactivity feedback can be represented by constant ,1 I

g 2.2 j l coefficients or in tabular form and accounts for explicit control actions (e.g., rod scram) and changes in fuel temperature, moderator temperature and density, and soluble boron concentration. The system component models utilized in RETRAN include a pump model that describes the interaction between the centrifugal pump and the primary system fluid, and valve models that represent either simple valves, check valves or inertial valves. The flexibility of the valve representation and their configuration is important in allowing a wide variety of options to the user for the modeling of system dynamics. Several representations for heat exchangers can be modeled by the code. These ir.cHe I the previously discussed two-sided heat transfer and several representations of one-sided heat transfer in conjunction with user specified boundary conditions. A non-equilibrium pressurizer can be modeled in which the thermodynamic state solutions of the liquid and vapor regions of the pressurizer are determined from a distinct mass and energy balance for each region. As in RELAP, a variety of trip functions can be modeled in the RETRAN code to represent various reactor pectection system actions. A refinement of the RETRAN code over the RELAP code is the additon of a reactor control system modeling capability. Consequently, the dynamics of linear and non-linear control systems are represented with RETRAN models of the more common analog computer elements. This additional capability is necessary for both best-estimate and licensing analysis, since the responses of various control and protection systems may have a significant effect on the overall system response. I I I I I

g SECTION 3 - REPRESENTATIVE VEPCO NSSS MODELS 3.1 Introduction The RETRAN computer code is a variable-geometry code which allows the analyst to model a system in as much detail as required for a particular analysis. To illustrate this concept, two models developed for the Surry Nuclear Power Station will be discussed in detail in this section. (The modeling methodology is also applicable to the North Anna Nuclear Power Station). I The Surry Nuclear Power Station consists of two units, Surry Units No. I and 2, which are identical Westinghouse designed three coolant loop pressurized water reactors with core thermal ratings of 2441 Mwt. The three similar heat transfer loops are connected in parallel to the reactor vessel with each loop containing a centrifugal pump, loop stop valves and a steam generator. The system includes a presssurizer and the associated control system and instrumentation necessary for operational control and protection. I I The reactor vessel encloses the reactor core consisting of 157 fuel assemblies with each assembly having 204 fuel rods and 21 thimble tubes arranged in a 15 x 15 array. The fuel used in the Surry cores consists of slightly enriched uranium dioxide fuel pellets contained within a Zircaloy-4 cladding. General thermal and hydraulic design parameters for the reactor system are listed in Table 3.1. 1 1 The RETRAN thermal hydraulic model is formulated by representing l individual portions of the hydraulic system as nodes or control volumes. Control volumes are specified by the thermodynamic state of the fluid within the volume and basic geometric data such as volume, flow area, equivalent diameter and elevation. The flow paths connecting volumes or boundary conditions associated with a volume are i designated as functions. Junctions are described by specifying the flow, flow area, elevation, effective geometric inertia, form loss coefficient and flow equation specifi-I 1 cation for that particular flow path. Thermal interactions with system metal in the I

3.2 I NSSS are modeled with heat conductors. Heat conductors may represent heat transfer from passive sources such as the metal of the reactor coolant system piping or the steam generator tubes. In addition, the internal generation of heat in the core may be represented by active heat conductors designated as powered conductors. Heat conductors are primarily specified by providing the heat transfer area, volume, hydraulic diameter, heated equivalent diameter and channel length of the particular part of the system being modeled. Temperature - dependent materials properties (specific heat, thermal conductivity and linear thermal expansion coeffic!ent) are also input. In general, the basic NSSS model is formulated with the code capabilities discussed above. An extensive research effort was conducted to determine the appropriate input required for the models of the Surry and North Anna units. 3 Information was obtained from plant drawings, the Final Safety Analysis Reports, 4 Vepco internal operating documents, equipment technical manuals and specific infort'iation requested from the NSSS vendor. Specific control capabilities and constitutive models of system components will be discussed in the following paragraphs. 3.2 Single Loop Model The analysis to be performed and level of detail required dictates the general form of the models which are required. Many transients are expected to produce similar responses simultaneously in all reactor coolant loops. Examples of such transients would include a complete loss of power simultaneously to all reactor coolant pumtv! resulting in a pump coastdown, a core reactivity insertion resulting from the uncontrolled withdrawal of a Rod Cluster Control Assembly (RCCA), or a loss of external electricalload resulting in a large, rapid steam load reduction. To perform these transients, a single loop model of a Surry unit has been formulated by representing the three actual reactor coolant loops as one loop. This approach is consistent with currently used safety analysis methodology. The resulting I representation is provided in Figure 3.1 and consists of 19 volumes, 28 junctions and 7 heat conductors. While the specific model input for the Surry and North Anna plants is I

3.3 different, the basic model description is the same for the single loop models of both plants. The reactor vessel includes representation of the downcomer, upper and lower plenums, core bypass, and reactor core. The steam generator is represented by four volumes on the primary side, one volume on the secondary side and four heat conductors representing the tubes. Single volumes represent the hot leg piping, steam generator inlet plenum, pump suction piping, reactor coolant pump, cold leg piping, pressurizer, and pressurizer surge line. Primery system boundary conditions are specified with junctions representing the pressurizer relief and safety valves. Junctions representing the feedwater inlet, steam outlet, atmospheric steam relief and steam line safety valves provide secondary system boundary conditions. Specific aspects of the basic model will be discussed below. The RETRAN code contains several system component models which are used in the Surry Single Loop 31odel. These include pump models which describe the interaction between the centrifugal pump and the primary system fluid. These models calculate pump behavior through the use of empirically developed pump characteristic curves which uniquely define the head and torque response of the pump as functions of I, volumetric flow and pump speed. RETRAN includes " built-in" pump characteristics which are representative of pumps supplied by the major reactor coolant pump manufacturers. These curves may be modified, as appropriate, by the user to more realistically represent a specific pump design. Although the built-in data are not appreciably different from Vepco's plant-specific curves, Vepco's Single Loop 51odels incorporate the specific head vs. flow response for first quadrant operation found in the Units' FSAR's ' 4 I The Single Loop 51odel incorporates the RETRAN pressurizer model which defines two separate thermodynamic regions that are not required to be in thermal equilibrium. A non-equilibrium capability is particularly necessary when the transient involves a surge of subcooled liquid into the pressurizer. In addition, the Single Loop I I

3.4 Model represents the effects of subcooled spray, electrical immersion heaters, liquid droplet rainout and vapor rise in the pressurizer. The reactor systems trip logic is modeled to the detail required for a specific analysis. RETRAN trip functions are used to model 1) protective functions, r such as the overtemperature AT trip, which result in reactor scram, 2) control system bistable element logic, such as coincidence trips which model " majority" logie and 3) general problem control (e.g., problem termination, etc.). The protective function trips necessary for the analyses documented in Section 5 and modeled in the Single Loop Model include: 1. High flux 2. Overtemperature AT 3. Overpower AT 4. Low /high pressurizer pressure 5. High pressurizer level 6. Low coolant flow 7. Loss of power to reactor coolant pumps. The Single Loop Model also incorporates the RETRAN control system capability to rnodel the following NSSS control and protection features: 1. Overtemperature AT setpoint 2. Overpower AT setpoint 3. Pressure controller !5 4. Lead / lag compensation of the low pressure trip signal. The core power response is determined by the point kinetics model in con-junction with explicit reactivity forcing functions and thermal feedback effects from ( moderator and fuel in the three core regions. The point kinetics model specified for the Single Loop Model incorporates one prompt neutron group and six delayed neutron groups with decay heat represented by 11 delayed gamma emitters and the important radioactive actinides, U-239 and Np-239. Explicit reactivity forcing functions I

,l l n ure 3.1 a

l ONE LOOP SURRY RETRAN MODEL
I I
n...,
s.,,,,

Valves Vai es S te.m k d

g Safe,y Vaives Power

[ g; so... V aiv.s / h I ~~D"'"'M-E. -_[, O !I f 3 g m 'l v I h oc i~ Q J. 'g u co e i^bb 9 O -b g E 4 .I v a i l @sgg @,,g 2 so,.,

g 5

3 1 = S I hlg e O LEGEND I yi .., c..ex,_ I

3.5 I represent reactor scram and reactivity insertion due to control rod withdrawal in the Single Loop Model as the particular analysis requires. Constant temperature coefficients or reactivity tables as a function of temperature (fuel), density (moderator) or power represent feedback effects. Core power is distributed axially among the three core conductors approximating a symmetric cosine shape. Three core materials regions are used to represent the UO fuel pellets, the helium filled gap and the Zircaloy 2 cladding. Several radial nodes are specified in the pellet regbn, in the gap and in the I cladding. Direct moderator heating is appropriately accounted for in the model. The transient fuel and clad temperatures are calculated based on temperature-dependent therinal properties, which are input in tabular form. The preceding paragraphs have discussed the Surry Single Loop Model in some detail Some of the input is transient specific and the important assumptions and parameter values will be discussed for each analysis presented in Chapter 5. 3.3 Multi-loop Model Some transients are expected to have different responses in one or more of the reactor coolant loops. These transients require multi-loop representation of the NSSS. Several examples include the rupture of a main steam line resulting in the rapid cooldown of only one reactor coolant loop or the loss of power to a single reactor ecolant pump resulting in a flow coastdown in only one coolant loop. Consequently, a two loop model has been developed which represents the Surry units. One loop of the model represents a single primary coolant loop while the other loop is structured to represent two primary coolant loops. This approach is 6 consistent with current system transient analysis methodology. The model is designed with a geometrical noding which is detailed enough to analyze transients where flow and temperature asymmetries within the reactor vessel are significant. The Surry Two Loop RETRAN Model, with a reactor vessel configuration I appropriate for analyzing a Main Steam Line Break (MSLB) transient is shown in Figure I

3.6 3.2. (The input structure of RETRAN allows rapid alterations in noding and flow path representations, as may be appropriate for analyzing multiloop transients requiring less I reactor vessel detail.) This particular configuration consists of 42 volumes, 56 junctions and 16 heat conductor nodes. Single volumes in each loop represent the hot leg piping, steam generator inlet plenum, pump suction piping, reactor coolant pump and cold leg piping. Each steam generator is represented by four primary side volumes and four heat conductor nodes for the tube region. The reactor vessel representation includes a two volume, " split" downcomer, and similarly divided inlet and outlet plena. Junctions representing interloop flow mixing in the inlet and outlet plena allow for a range of mixing assumptions to be specified, such as " perfect" or complete mixing or an incomplete mixing assumption based on actual test data (see, for example, Reference 7). The latter assumption, combined with appropriate azimuthal weighting factors applied to the temperature coefficients, may be used to conservatively model the core kinetics response to a 51SLB transient. This is facilitated by a split core model in which the reactor core is I represented by two azimuthal sectors, with each sector being divided axially into four coolant volumes. Thus, for an analysis in which an imperfect interloop flow mixing l assumption is conserv-"~?, each azimuthal core sector receives more of its flow from the nearest loop than would be dictated by complete mixing. Eight powered heat conductors represent the core and four passive heat I conductors represent the tube region in each steam generator. Junctions representing l the feedwater inlet and steam outlet in each steam generator provide secondary side boundary conditions. A junction representing safety injection of borated water via the cold leg injection path models a primary side boundary condition. Specific model l aspects will be discussed in more detail below. As in the Single Loop 5!odel, the Two Loop Stodel incorporates a Surry specific first-quadrant pump head curve and the non-equilibrium pressurizer option. I ' I

3.7 The Two Loop 51odel also makes use of the RETRAN valve system component model. The simple valve option models the main steam valves and the break opening simulation associated with the severance of a main steam line. Trip functions are modeled in a manner similar to that discussed for the Single Loop Model. Specific protective function trips currently in the Two Loop Model include: A. Steam Break Protection 1. Safety injection initiated by any of the following: a. Low Pressurizer pressure b. High header / steam line pressure differential c. Ilfgh steam flow coincident with either 1) low steam pressure or

2) low primary system average temperature 2.

Main steam line isolation B. Other-Reactor trip on low coolant loop flow. The core power response is calculated via point kinetics in the Two Loop Model as previously discussed for the One Loop Model. A specific reactivity forcing I function represents the effects of increased soluble boron levels in the core following 1 safety injection for transients, such as the Main Steam Line Break, where safety injection is important. The time-varying core boron concentration is generated by a submodel using the RETRAN control system capability which performs a detailed calculation of the dilution and transport of safety injection fluid. Moderator and Doppler feedback effects are represented using reactivity functions in a manner consistent with that reported in References 3, 4 and 7. The feedback effects are I weighted axially based on perturbation theory approximations; azimuthal weighting may be by volume, or for situations where skewed inlet temperature distributions are important, a conservative non-uniform weighting scheme suca as discussed in Reference 7 is used. Noding in the fuel, gap and cladding regions is the same as that discussed for the One Loop Model. I 1

_A-- _____A. m -. s., g TWO LOOP SURRY RETFWI MODEL I I = N N 5 N l \\ n R R w I \\ I A 7 N T 8 3 n N a R S sN N N NN a I e m n I cQO t ~ U I k p 'l / a a w n n g "n N N N + = nd -i. \\ @M \\xx\\ \\\\ \\\\ 8 l = N ~~ 3-. xxxxx x xx x ,+ -~~ N. h. n I 3 I V E n O 3 E ~ i ( Y O n N 8 3 2 % f~ I ~ n s 1 s \\ i 8 E P l N I I I

~ I I Table 3.1 Thermal - Hydraulic Design Parameters - Surry Plant Total core heat output, Mwt 2441 I Heat generated in fuel, % 97.4 System operating pressure, psi 2250 Total coolant flow rate,Ib./hg.(gpm) 100.7 x 106 (265,500) I Coolant Temperatures, F (@l00% power) Nominal inlet 543 Average rise in the core 65.5 Average rise in vessel 62.6 I Average in the core 577.0 Average in vessel 574. Nominal core outlet 608.5 I Nominal vessel outlet 605.6 Average linear power density, Kw/f t. 6.2 I I I I I I I I I I I I

I I SECTION 4 - SYSTEST TRANSIENT ANALYSIS AfETHODOLOGY I 4.1 Introduction As discussed in the introduction, Vepco system transient analysis is intended for both best estimate and licensing applications. Since core reloads are the most common 5 and expected reason for accident reanalysis, Vepco's system transient methodology will O be discussed in that context. In general, Vepco intends to continue the reference analysis approach which has been employed by our nuclear fuel vendor in support of our nuclear plants. This approach is fully' explained in Reference 8 and requires reanalysis of an accident, which is part of the licensing basis for our plants, only under certain conditions. These conditions and the licensing evaluation process are summarized in Section 4.2. Section 4.3 discusses the system transient analysis methodology and its relation to the licensing process. 4.2 Licensing Evaluation Process {I The actual execution of transient analyses forms part of an integrated system of evaluations performed to verify the acceptability of a reload core design from the 1 standpoints of safety, economics and operational flexibility. The purpose of this section l is, therefore, to provide a brief overview of the relationship of transient analyses to the integrated reload design and licensing process. The reload design process will be described in detail in a future Vepco topical report. However, the process has been ( generally described in Reference 8 and consists of a design initialization, design of the l core loading pattern, and detailed characterization of the core loading pattern by the nuclear designer. The latter process determines the values of key reload parameters. I These key reload parameters are provided to the safety analyst who uses them in I conjunction with current plant operating configurations and limits to evaluate the i impact of the core reload on plant safety. I 'I

4.2 I In performing this evaluation, it is necessary to ensure that those key parameters which influence accident response are maintained within the bounds or " limits" established by the parameter values used in the reference analysis (i.e. the currently applicable licensing calculation). The reference analysis (and the associated parameter limits) may be updated from time to time in support of a core reload or to evaluate the impact of some other plant parameter change. For cases where a parameter falls outside these previously defined limits, an evaluation of the impact of the change on the results for the appropriate transients must be made. This evaluation may be based on known sensitivities to changes in the various parameters in cases where a parameter change is small or the influence on the accident results is weak. For cases where larger parameter variations occur, or for parameters which have a strong influence on accident results, explicit reanalysis of the affected transients is required and performed as discussed in Section 4.3. Past analytical experience hae allowed the correlation of the various accidents with those parameters which have a significant impact on them. The results of such a correlation are summarized in References 3, 4 and 8. If required, a reanalysis is performed and the results are compared to the appropriate analysis acceptance criteria identified in References 3, 4 and 8. The reload evaluation process is complete if the acceptance criteria are met, and internal documentation of the reload evaluation is provided for the appropriate Vepco safety review. If the analysis acceptance criteria are not met, more detailed analysis methods and/or Technical Specifications changes may be required to meet the acceptance criteria. The NRC will be informed of the results of the evaluation process in accordance with the requirements of 10CFR 50.59. 4.3 System Transient Analysis The production of a conservative, reliable safety analysis of a given anticipated or postulated transient is accomplished by combining a system transient model with I I

4.3 appropriate transient specific input. A system transient model, such as those discussed in Section III,is designed to provide an accurate representation of the reactor plant and those associated systems and components which significantly affect the course of the transient. Transient specific input ensures (nat the dynamic response of the system to the postulated abnormality is predicted in a conservative manner, and includes a) initial conditions, b) core reactivity parameters such as Doppler and moderator temperature coefficients, and control rod insertion and reactivity characteristics, and c) assumptions concerning overall systems performance. Important systems performance assumptions include the availability of certain system components (such as pressurizer spray or I relief valves) and control and protective characteristics (setpoints, instrument errors, delay times). A summary of key analysis assumptions for those transients discussed in Chapter 5 is included in the Appendix. A general discussion of this transient specific input is provided in the paragraphs which follow. 4.3.1 System Model Application While RETRAN affords the modeling flexibility to develop an infinite number of representations for a given nuclear plant, practical considerations dictate that a small number of standard plant models be assembled and maintained for performance of the entire spectrum of system transient analyses. Section 3 provides examples of the types of models that are required for system transient analysis. RETRAN makes use of an input structure which allows modification of the base deck input for specific ceses by use of override cards. Thus, specific transient cases may be executed without altering the base plant models. The base models are designed to provide a basic system description comprised of those parameters which would not ordinarily change from cycle to cycle. Thus such parameters as system volumes and flow areas, characteristics of various relief and safety valves, primary coolant pump characteristics, etc. form part of the base models. I I

4.4 Since occasional changes to such " fixed" parameters do occur as a result of equipment modifications or replacement or upgrades to various safety-related systems, the base models are reviewed periodically to ensure that the latest system-related changes have been adequately reflected. Generally this review is performed during the initial core I design stages of each reload cycle. 4.3.2 Transient Specific Input As discussed earlier, input parameters which may lee varied for a specific analysis to ensure a conservative representation of the system response include initial conditions, core reactivity parameters and assumptions concerning systems perfor-mance. For a given type of accident, not all parameters have a significant influence on the accident response. Those parameters which are significant, and their limiting directing (i.e., maximum or minimum) are determined from: a) the unit's FSAR b) sensitivity studies such as those summarized in Reference 8. The most important of these safety-related perameters are examined in more detailin the following discussions. i 4.3.2.1 Initial Conditions Most accidents exhibit some sensitivity to the initial conditions assumed. For accident evaluation, the initial conditions are obtained by adding or subtracting, as appropriate, maximum steady-state errors to or from rated values. Steady-state errors which are applied are: a) Core Power + 2 percent allowance for calorimetric error U b) Average reactor coolant +4 F (Surry) system temperature allowance for deadband and measurement error, c) Pressurizer pressure + 30 psi allowance for operational fluctuations and measurement error. In general, errors are chosen in the directions which minimize core thermal margin or margin to other plant design criteria and are therefore dictated by the type l of analysis being performed. l I

I 4.5 I 4.3.2.2 Reactivity Parameters Reactivity parameters, which may have a significant impact on the transient response to an abnormal condition, include the Doppler and moderator temperature coefficients of reactivity. delayed neutron fractions, the trip reactivity and insertion characteries, and the differential control bank worth. The reactivity parameters are normally chosen in a manner which tends to maximize the nuclear power during the transient. The limiting value of a given parameter is dictated by the type of transient involved as indicated by the examples in Chapter 5. For example, for transients where large decreases in moderator temperature are a concern (such as a steamline break), large negative moderator temperature coefficients tend to be limiting. On the other hand, for transients where increases in moderator temperature are the major concern (for example, a loss of external electric load or turbine trip) the most positive value of moderator temperature coefficient tends to produce a more severe transient. The choice of the limiting reactivity parameter value, as discussed earlier, is made to ensure that the accident analyses are bounding with respect to the range of parameter values realized over the life of the reload core. 4.3.2.3 System Performance Assumptiens The predicted transient performance is influenced by assumptions concerning the availability of various system components and the characteristics of the reactor protection and control system. In many instances the mitigating effect of various system design features on postulated transients are ignored. This provides additional conservatism and confidence that the calculation conservatively " bounds" the actual expected system performance. For example, the analysis of the Uncontrolled Rod Withdrawal from Suberitical transient conservatively takes no credit for the source range or intermediate range flux level trips or for the intermediate range control rod stop function. For certain control system components (e.g., relief and spray valves), it is conservative to assume I I

I 4.6 I availability for some transients and unavailability for others. The choice of whether or not to include the effect of a particular system component is based on prior experience and sensitivity studies. These assumptions normally remain constant from analysis to analysis of a given transient. In order to adequately account for the impact of instrumentation errors and signal delays, conservative protection system characteristics are assumed when performing accident analyses. Thus, expected instrument errors and system response times are conservatively bounded by the analysis assumptions, thereby adding to the previously discussed conservatisms employed in a transient analysis. Exacnples of protection system setpoints and delays used in performing Surry safety analyses are shown in Table 4.1. Periodic review of protection system setpoints as defined in the plant Precautions, Limitations and Setpoints is performed to ensure that the safety analysis models continue to conservatively reflect current safety system settings. 4.4 Use of System Transient Results The results of a system thermal hydraulics analysis are used either for direct comparison to accident analysis acceptance criteria (e.g. system pressure limits) or as a boundary condition for more detailed core thermal hydraulic analyses, using the Vepco capability documented in Reference 1, or for more detailed fuel rod analyses, as required for some condition IV transients. ,I I I I I I !I

I TABLE 4.1 - PROTECTION SYSTEM CHARACTERISTICS ASSUMED IN SAFETY ANALYSIS I Mode of Protection Surry High neutron flux, I Fraction of Rated Low Power Range 0.35(0.5) High Power Range 1.18(0.5) I Overtemperature AT Variable (6.0 *) Loss of Pump Power

  • *(1.2)

Low Reactor Coolant Loop Flow, Fraction of Full Flow 0.87(0.6) I High Pressurizer Pressure, psia 2425(1.0) Initiation of Safety Injection flow on high Steamline A P, psi 150.0(Variable) on low pressurizer pressure, Psia 1715(Variable) I This value includes loop and RTD bypass line transport delays, the RTD thermal time constant and electronic signal processing delays. Undervoltage trip setpoint not used in analysis. I I I I ^ I I I I I I

-l E SECTION 5.0 - QUALIFICATION COMPARISONS 5.1 Introduction As discussed in earlier sections, the primary Vepco objectives in developing a system transient analysis capability are to provide a basis for the reload core safety analysis and licensing process and to support reactor operations. As verification of this capability, appropriate results and comparisons are provided for a representative series of analyses of licensing and best estimate plant transients. The selection of licensing analyses for presentation was based on 1) consideration of those transients which are thermally limiting and have been most frequently subject to reanalysis during the reload licensing process (e.g. Rod Withdrawal from Power and Complete Loss of Flow); 2) providing a selection of analyses for each of the major cate;ories of initiating events which include changes in reactivity (such as rod withdrswal transients), variations in primary coolant flow rate (such as loss of flow transients) and variations in primary to secondary system heat transfer rates (e.g. Main Steam Line Break); and 3) examination of transients which are both symmetric (such as a Loss of Load) and asymmetric (such as a single pump flow coastdown) with respect to the thermal hydraulic response of the reactor coolant loops. Comparisons to plant startup flow coastdown test data and the data taken during a reactor cooldown transient experienced at North Anna in 1979 are also provided to illustrate typical best estimate modeling applications. Comparisons for small and large break Loss of Coolant Accidents (LOCA) and Rod Ejection are beyond the current intended scope of application of Vepco's models and are not presented. 5.2 Verification Against Licensing Analyses 5.2.1 Transients Resulting from Changes in Reactivity Several transients result primarily from a postulated reactivity change. These transients include an Uncontrolled Control Rod Assembly Withdrawal From a I I

5.2 Suberitical Condition (UCRW from Suberitical), an Uncontrolled Control Rod Assembly Withdrawal at Power (UCRW at Power), Control Rod Assembly Drop, Chemical and Volume Control System Malfunction, Startup of an inactive Loop, Single Control Rod Assembly Withdrawal at Power and Control Rod Assembly Ejection. The first two accidents were chosen for analysis because they are subject to reanalysis for reload cores based on past Vepco experience. In addition, these two accidents represent a limiting condition for reactivity change rate (UCP J from Suberitical) and DNBR (UCRW from Power) with respect to the other Condition II accidents. 5.2.1.1 Uncontrolled Control Rod Assembly Withdrawal from a Suberitical Condi-tion Transient - FSAR Analysis A control rod assembly withdrawal incident is defined as an uncontrolled addition of reactivity to the reactor core by withdrawal of control rod assemblies resulting in a power excursion. While the probability of a transient of this type is extremely low, such a transient could be caused by a malfunction of the Reactor Control or Control Rod Drive Systems. Section 14.2.1 of the Surry FSAR (Reference 3) discusses the mitigating automatic safety systems appropriate for this transient in more detail. The nuclear power response to a continuous reactivity insertion from a suberitical condition is characterized by a very fast rise terminated by the reactivity feedback effect of the negative fuel temperature coefficient. This self-limitation of the initial power excursion is of prime importance during a startup incident, since it limits the power to a tolerable level prior to external control action. After the initial l power excursion, the nuclear power is momentarily reduced, and then, if the incident is not terminated by a reactor trip, the nuclear power increases again but at a much slower rate. This is a Condition II event, and the analysis is performed to demonstrate that the DNB criterion for Condition II events is met. I I

.I 5.3 I In order to give comparable results, the analysis assumptions used in this investigation are the same as those indicated in Reference 3. The limiting input values and analysis assumptions assumed for this investigation are provided in the Appendix (Item la). The Single Loop Model, discussed in Sectio:. 3, was used for the analysis. Figures 5.1 through 5.4 present the results of the analysis using the RETRAN computer code as compared to the FSAR results for nuclear power, average fuel and clad temperature and core heat flux, respectively. The RETRAN results are based on a single integrated kinetics and thermal-hydraulic calculation. The FSAR results, in contrast, reflect separate core kinetics (power) and heat transfer calculations, performed with two computer codes, with distinct sets of input assumptions designed to conservatively maximize core heat flux. This distinction in analytical approach most likely accounts for the differences in results for the average fuel and clad temperatures. Note that both calculations result in predicted heat fluxes, and fuel and clad temperatures which are well below steady-state full power values. Therefore large margins to the Condition Il DNB limits are maintained throughout the transient. 5.2.1.2 Uncontrolled Control Rod Assembly Withdrawal from a Suberitical Condition Transient - Current Analysis Due to changes in the calculated limit for the reactivity insertion rate parameters, this transient was reanalyzed for several reload cores. The latest reanalysis was for Cycle 4 of Surry Unit 2. The assumptions used for this analysis are the same as those discussed in Section 5.2.1.1, with the exception of the limiting reactivity insertion rate which was increased to a value of 75 pem/sec*, and a modification in the trip reactivity (see the Appendix, Item Ib). The comparison of the vendor reload analysis and RETRAN results is indicated by the excellent agreement for the core heat flux, the limiting analysis result, I as reported in the licensing submittal. The RETRAN and vendor reload analyses both I -5

  • 1 pcm = 1.0 x 10 g gjg

5.4 yielded peak values of 69% of nominal full power core heat flux. Figures 5.5 through 5.8 provide the complete RETRAN transient response for the appropriate parameters. The vendor transient results are proprietary and are omitted. The transient response is similar to and consistent with the comparisons indicated in Figures 5.1 through 5.4. 5.2.1.3 Uncontrolled Control Rod Assembly Withdrawal at Power Transient - FSAR Analysis This postulated transient, which is a Condition II event, was analyzed because it is a limiting reactivity perturbation transient with respect to the minimum DNBR criterion and because it is subject to reload reanalysis. This transient is defined as an uncontrolled addition of reactivity to the reactor core while in an at-power condition resulting in a power excursion and an increase in core heat flux. Since the heat extraction from the steam generator remains relatively constant until the steam generator pressure reaches the relief or safety valve setpoint, there is a net increase in reactor coolant temperature. Unless terminated by manual or automatic action, the power mismatch and resultant coolant temperature rise would eventually result in DNB. Therefore, to prevent the possibility of damage to the cladding, the Reactor Protection System is designed to terminate any such transient before the DNBR falls below its limit. The automatic features of the Reactor Protection System, which would prevent core damage in a control rod assembly withdrawal incident at power, are discussed in detail in Reference 3. In order to obtain conservative results (i.e., minimum DNBRs) for this transient and to provide a consistent comparison, the analysis assumptions are the same as those indicated in the FSAR. These assumptions, and the limiting values assumed I for this analysis are provided in the Appendix (Item 2a). The Single Loop Model, discussed in Section 3, was used for this analysis. It should be noted that the l Overtemperature Delta T Trip setpoint equation, which is important for this transient, is explicitly modeled in the Single Loop Me 31 using the control system capability in RETRAN. lI .I

P d 5.5 The FSAR presents the results of this transient for several initial power levels and for various reactivity insertion rates. However, a full range of system parameter transient results is presented only for two analyses from an initial power level of 100% The two 100% analyses are for differing reactivity insertions rates to demonstrate the protective action of both the High Flux and the Overtemperature Delta T Trip functions. Of the two transients, the more limiting results are for the slow reactivity insertion (2 pcm/sec) which is terminated by the Overtemperature Delta T Trip. Consequently, the analysis used for comparison of the RETRAN,and FSAR results assumed a slow reactivity insertion rate of 2 pcm/see starting from 102% of nominal full power. Analysis results for a range of reactivity insertion rates are discussed in the next section. Figures 5.9 through 5.12 present the RETRAN results, compared to the FSAR for nuclear power, pressurizer pressure, average coolant temperature and I transient DNBR, respectively. The DNBR's were calculated with COBRA IIIC/MIT using input forcing functions of core heat flux, coolant inlet temperature, coolant inlet 1lI mass velocity and RCS pressure, all from the RETRAN analysis. Note the similarities in time of trip (Figure 5.9). The decay heat level shown in the FSAR result apparently I l reflects the conservatism used by the vendor prior to the development of the ANS standard decay heat curves. Note also the similarity in predicted pressure responses in Figure 5.10, including the effects of automatic spray and Power Operated Relief Valve l (PORV) actuation. The RETRAN analysis shows, as does the FSAR, that the Condition 's II DNB criterion is met for this transient. 5.2.1.4 Uncontrolled Control Rod Assembly Withdrawal at Power Transient - Current Analysis The most recent reanalysis of this accident was required as a consequence of the plugging of steam generator tubes at the Surry Nuclear Power Station.10 It was determined that steam generator tube plugging would result in lower initial flows with consequently less initial margin to DNB and the need for revision of the constants I

5.6 I associated with the Overpower and Overtemperature Delta Temperature setpoint equation. Consequently, the UCRW at Power transient was reanalyzed to verify that the new setpoint equation constants did in fact result in minimum DNBRs above the appropriate criterion of 1.3. The only information available for comparison purposes from the licensing reanalysis was the minimum DNBR as a function of reactivity insertion rate. An analysis of the transient was performed using the Single Loop Surry RETRAN Model with those assumptions specified in the Appendix (Item 2b), including several modeling changes to reflect the impact of the low flow assumption (i.e. lower flows, lower steam generator heat transfer areas, etc.). Key input parameter values assumed for this analysis are also provided in the Appendix (Item 2b). The RETRAN results were then used as boundary conditions in the Vepco 1 version of the COBRA IIIC/MIT code. The results of this transient reanalysis are presented in Figure 5.13. Another analysis of the transient was performed at an initial power level of 62% of nominal full power. The results of this analysis and a comparison to licensing reanalysis results are provided in Figure 5.14. RETRAN results were generated with and without the assumption of operable steam generator relief valves, as shown. These results show that the RETRAN/ COBRA analysis supports the conclusion provided by the licensing reanalysis, i.e., that the updated setpoint equation constants are sufficient to provide margin to the Condition II DNBR limit for reactor operation with 90% or greater of thermal design flow. 5.2.2 Transients Resulting from Changes in Primary System Flowrate Several FSAR transients result primarily from the loss of Reactor Coolant System (RCS) flow and the corresponding decreased transfer of heat from the reactor core. Transients in this category include the Loss of Reactor Coolant Flow (partial and complete) and the Locked Rotor transients. The Complete Loss of Reactor Coolant Flow Transient was chosen for comparative analysis because it has been subject to reanalysis for reload cores based on past Vepco experience. In addition, it is the most I

I I Figure 3.1 NUCLEAR POWER UNCONTROLLED ROD WITIIDRAWAL FROM SUBCRITICAL TRANSIENT FSAR ANALYSIS l i i i i i l W i i i i i j_. [ i. r li l i ' -! 3.5 4 i i 4 e ~~~~~- -i PITRAN --~ .j. . l:. i. . j. j-l l~ [' j. - l


FS AR j- '

I I. - p-L 3.0 ~ o i i t C l l e I i i O* I i i l' l t ll l I -I i o 2.5 t .o l i j 1 -I -i i i _. 4... I l1l i t c 4 a___ - O I i i i l l' i t I l4 I u i 1 i i c l u I I I I 1__ 2.0 j-g- .jg [ -+j.. 1 -lj-3 t t e ---r- ,s j i O i } l l i c. I i i I

-._2__-.]

f } 1 g 1.5 ') l i 1..... ] !l I .I l t O e i I z i i_ 1 1 g [. j I i 4 1. _ _... ! { t -. t s [ _1' 8 't I 1.0! i . !... }... u.. i .1 \\ ; .._.f,.. ' I j. I. i i i:. : i \\ gi

.__ L.. _ _ _4

__a...'___ l p...j..a._ l 4 0.5 ! _ l_.g _. l_ q_2._. !... ll I l* i i-l 1 !.j. i -l. i r, i ! g, ' ~ l t l 0 5 10 15 20 l nee, secenas l I I

l l I I E Figure 5.2 AVERAGE FUEL TEMPERATURE I UNCONTROLLED R0D WITHDRAWAL FROM SUBCRITICAL TRANSIENT FSAR ANALYSIS s I a i f 5 ., _... i.. l . _. i. i.. I i j .,i._... _.p! q ,. I i A I t 15 l RETRAN - f j \\ l.


FsAR

/[ [ ~~~f i .] .i _.l: .g i. .t...___,;__ _ j -..ji.j i a I p 800 -- 4 --- -+ w l l l - j. -j i. _.j I - l. -i':

.i t-_:

a h l f k .. _ p. _..l _ . Il_

l i lr i

i e j- - j j -- e 700 r-

j..t-.

_.:_ _.. _ _ f.. _:. _. g . 7... _. j _. l l l 8' ll e

_, 9 l_q HjI ql p

[! Lq. g i a a o ~ I l ~~T I I! I fi d _1 1 1_ _l _._! 600 ._ i I i i IL I-1 ll ..j l. I l ...:. f_ ...3.. _: 1 J : u i, 1., 1. a,_ _ . c,_ l 1 i i i l i .l 3. i l i ~~} l l 'I-'~ I i ..t .[ j i i 500 0 0 5 10 1) zu Time, Seconds ll I

I 5 Figure 5.3 AVERACE CLAD TEMPERATURE I UNCONTROLLED ROD WITIIDRAWAL FROM SUBCRITICAL TRANSIENT FSAR ANALYSIS I ) i i i I i i t r I I F._..._F_;._.I_!. 2. ..' -.I i i i i } -i I i FITPWI i .l. i : .1 ~ } - I:


FS AR t i j

_.I i l - I 'l-l l

f. -

-l. -l I i 610 ~ g i l i 1. u I + uI l T l - I~ f I'I I I - l I ; f_..u.. [.. o .H j w ..{ t l i~ l t i 600 t a f j j j !~ +il - I ~{ 3 g J. j ;-f'~" a i g z...__;_-._._4-- - p. I i i i 1~ o 590 -t f j j '-l 3 i 3 l-a - o i J-l a i 5 I r \\ r o I t y .... _ 4 _ _, I f-( { ~l --i-n u i, o 580 t i \\- i

  • I j. __ __._. _ __ ;._. ;._. t __ __

4 j j l -r_.s_. ;\\ - -j ;- j- ' I I ! L i i d \\ l 2.._ - ]'... .l._..._.- --.... i --l t y- \\ 570 f ] j g -._ --- j.(~z-f- -- -- ..y. . 4 -.. li f i ! !1 I i --l }_ h. \\,..$. I 8 560 !. I l +- l t i t l L .. _ g... _ _. ; _.. ; _.. 4_ .. I t j ! i __ i i ,I t i [ t i I i .l ~: 550 t .i m._ 0 5 10 15 20 1 Time, Seconds I

I Figure 5.4 CORE HEAT FLUX ,I UNCONTROLLED ROD WITHDRAWAL FROM SUBCRITICAL TRANSIENT FSAR ANALYSIS ,l ... l...- 0.7 ~ I RETi!Ni* b


FSAR l

- l: ; )\\t - F I r 8 j ..Is !-l I >\\ .] . {~ + : ':t-- l __.L ~ g __L t t l l 0.6 8 j 1. j l i l l1 i l i j-I 1 g i I {. l' e o __ l I } l l 't n s 1._ z 0.5 t ' l ...__j I i-l. l-l j.. ! - i-l w o

__.2_

g I l ! I i ~l I I. I f a i' i i l!l J l t-I,_ j. ~ E 0.4 e 1 y

i. # i -

F k I i I lg q i \\ r-l l \\ I i ' ' x 4 s i g y -l-l l I l

\\

_._.3-i i L :__.. I l l 0.3 u _ !...._ i_. __L.. ..l, i .L.k}'- I I i i = l ! ^ ! ' ! [ I ~ i j i i l. !l~ l l d 1 .._____w___..,!_ _... __.4 i I e .j.. j h o 0.2 i I I I _.L _ _ . q__.. _ .[....... f._ I - _. [.. :.. 0.1 ! ~ l { ~ l i ll l . l.. ]. l 9 3 0 5 10 13 zu Time, Seconds I I I

I I Figure 5.5 I NUCLEAR POWER UNCONTROLLED ROD WITHDRAWAL FROM SUBCRITICAL TRANSIENT SURRY 2 CYCLE 4 REA'IA'.YSIS i l I RETRAN ,.....__.~-l j i 5.0 - ; --- l -. - I-i. I. ..i..... r.......l i 1 ...J._._ I I 4 j_ 4.0 .i _ -l l-l- .ll uo i I g 1 i i l i t' .l-i l ~ ...t__..l l g j. ._._.i__. I t s 'I g N I i -i ' l [ l l J' -i - l ---- .i- , =- a 3.0 i I i t u .__'.._...__._._q .;.. p.- i i 7 i l N I

j... _...

l t j g t i N I I I I t'$ i i M {. ....-......p.l. . I -. _. .....j. L.... e g .j. l t t l I l + ~ f 8 2.0 ._.... l _.l...._[.4..l I ! z i i i ~ .._ g. l.... _. ._ s.. l l y.. [. i e = 1.0. l . q..lg._. .. _4,... 7. _ ] t l I 1 f l h I I -{ I I . I. -{ l I l l y' =

0. 0
  • O 5

10 15 20 I Time, Seconds I I .__,.,___,_..._,,-y._ ____.,_...--.m.,_.,._,

llt i I Figure 5.6 AVERAGE FUEL TEliPERATURE UNCONTROLLED R0D WITHDRAWAL FROM SUBCRITICAL TRANSIENT SURRY 2 CYCLE 4 REANALYSIS i l { i j i l i l l i I ,I. I I l l3 i e 3 l

~

RETRAN i .l t i i i i I l ,-} i -. 1 i 800 i l .- -- - j i i t r i .A i i f l l I 4 --l--~-.-~- u 3 i i g j-t

  • a r

l r 'l w L._, s 700

t. _. _.I _ _.

....____:....j. { I T i i i i ~ I I. l l s i l w ~T 8 I o i g -t. i I l_ .}_..._. u-o i i - > } g i 8 I 3 I I _.i ..I. i. I i ~ ,i l j 600; _ l g ( .i.. I. i t I i i -l i. l-l l' l I ,. _..._j. _.. L l l. l .l. .l t l i { f. l f ( t } g 5003 i 4 i O 5 10 15 20 Time, Se ds I I E

E I I Figure 5.7 AVERAGE CLAD TEMPERATURE UNCONTROLLED ROD WITHDRAWAL FROM SUBCRITICAL TRANSIENT SURRY 2 CYCLE 4 REAL\\ LYSIS

. 2
= h _.p.

.._ _i. =. l j -4 4:: i.;- r-i- - f -- 620 i l -ligF:

.i.

i-,4: r i i i i 1i :. IMi

Eli : p. +..

.i- - +.. E q=:: 1.j':.:=hpi=l=_f; : iggs;;;j_=-;--gg;u...uj.i;j.5x, .1 : 4 -~-- =:_ :q_.. _::: - ; =. :._ _ =. :. u....n.--2.__2.:.;

=..,:...

l MU 3M; fif;.J.. ....p ~ I~~ !.: E "-r h.2. U.i].~f:i-iE lip!! r 610 ..-1.-_=.L..=.=_._~y.-~_.._2.- i .,_.s..,_..t.u._=_.....__ =.. :=.- _=..; . r :. ~+fi "'h?E LEE =!=!=lEEi: p q.f t:--iEji:.i!==[Ei=rj=iE= t - - ~ ~ - -_ , I - - ~ - -- ..I_..._=.:.._.__._...._.__._=r.._..__g.=...u,-- [- .. :===.r =_-__ j_n=n_;t. :_ :.=:=t=- 2 2.:- - - - - - -.;. : =_- + T- + =n.. 7 l cI 600 -l _.-.- 'E~-iMEiE ~E!"M i-i "flEli=!2 "~~iEE!E ini".Ei-Ei="{i-E. i_ u "3 . :  : =. =. Z..--. y-.C*-- f... _ =n r._ -. -.-_

,; _
-.. _.. - 3._

3 .._..._..-.-.-fr*..,._.g._...... .2 I u m ..:p=..=;.7.g-.==...=_...=.{==_...s=- a _=_ :.....:r - : =.= . -- -.. -.. y g _- -... {,..,,,,,, _ _ _. _ _....

= :rm n.n.----

p 9;= 1 a ._. 17_. _n.t. _- :..:.=_ f-.. _ ~ _ id:il9.j. 7 9 o ..z_z_ _~.-- :.. 1.

==-.r =.1=
: = n= L.,a rl._...._g =n _.n,..

t

Int......

I o - " i : =_"F =:e~;z~:=E. a:IE =-i n i.== = ; === f =_.9==2=;=-

== =-3 c r.

' - F '== == = "= = t== :=: H 590 g d=,::j--i5i!"-555"iEE!E5i"-i =i-!g XiiTi ;;;E};= --{M ;pg-ifll : =ta- -~I 7 :! r-El"T_E=iE!:!U5lli - di;i

E_E.*J.._::.~ i:E._E.=_=.t__. E=_d.. =. _:.=. i:

y

~ s-_...... I g

f. qr l - -

--I-=~;' l:[--{j --j ;j:{,r__^{ 3;,;'[ -.. ,;L r r :- ; : rrr===r==!=c:,d2 = eo ,,. i J:= ~ EiF Fl_=__ _{..l._._.=i=... _..~ ~ ~. = =, = ~ = = r 5 580 -.r ... {, ~b ig;, *-

3 *
..; {.

n4 rn:=' = : = : r r-- - - -n;r: I y . 3--f Ei_g: }=.4;j==iE.g. :j=g. : p-- ;g ; ;..;; J.~ !+ E"iE;p=ip. : 2 = ... =. - . iip:. 4.E. :i.. = i....

= c=.:

---_n==,. = :.. m n-- _ ;.- .u. : - -. <. =.. -......... -.~......l.=. nur 3 l 71; L.. L;;.

! =. =...=n
=. =. = :
. O 570

~ r n

j.

1 l hi:i. - - : ;r. i a. : ": ._:-i ;;;.i. ;..;

- j.

. :: = r. .; q - =.' r" E:gg .y- =j - ' ~ ~ - u l.l ! - 7 j.: ch[i-. =.j p : 4.i j4 !pj ii-- + 2., + + i ~ r. E. i : = 560

. l..

..t. i. l in . D-ifi : 7 il si!q

jg i

g I .j-I! { !

  • R - - 't- _j.

..l'- -'in + l 550 i 0 5 10 15 20 Time, Seconds I E I

1 i I I Figure 5.8 ' g CORE HEAT FLUX 5 UNCONTROLLED ROD WITHDRAWAL FROM SUBCRITICAL TRANSIENT SURRY 2 CYCLE 4 REANALYSIS l e l- . f - {-

.l ;:]j:;

9.du :: . :d h. .. j.; .f j

h :.f'nil!:

i:f d.j:- i f i-i't:$ : 2:.;. i I 0.7 i ..[, pl:Ml _ i . "- : 2 " r - - - * = = - 1=== I... :j. :'; ;f ::: ;;l CL;..{;. ;.. j,

;.:n;;

':--- i.. .,. i. i_ij _. 9... ..1,3d.-;15..:l-... i 2 I ........,.......g_.... g., ~ ~~'~ _.--gg C =:t-p~--{=*nn ~ '~--t 0.6 4 . i.!.J. E_i "_i_- :. i f .. i_i i. :_. i. ' ' _-_J.i._~ d._u-jiE. M .t e .t.. ~--4 =._21 ...i u = E =. ;.. ---- - - P. -t-r- s - --,--r - - t;== = C

r n-+ -- -

. = -+-- t r--- r- -t-m

:- --*-.n t- -~ n u m Wf

.t:--- z:l:=;:r=.ur.. : ' 1... _. } : r- :.. 1. '*-- :T_.. _ p. t -~ ! nut = :r:: p. - 1m r t 2 ::.;{=:= 171 ::= t =:--- :r:;nt-n =

t---- -

t :; =

-f ~ N5b5i

=-N:"5[--h-I-=M '41 i N C5[I U 5! $ N5~ HfEI-M u o.5 o i=~iE=1===ir==:]=._). EIE - 1E:..... _. ._Q= : rife:_:.__.=fEa=i==E!zi= t 'm I T-5 #I 5 'Ef=E=-((d! N =7 -!EE-p !S 5 NES M =@ f ?~"It'-~iEF"-~ 4 EF-5 0 t ..;._;gh:.. - ; =i=vp=+ - .i:si =[ =J==. -;.n..ggmig _g=ugjp B H w=8 !==='! P'i'-?=i=" 9h=i: !=ii= =; =fi:E=i=-.iX.!="=- -iEEn ' O.4 +===.==+.=_=.=.s

==E====== I=- l' u:..::m : \\i==== =-

===:=:-- - u r=u: = 1.; : =-!- _==.: i _ l ===-- w--

: =.

M - - ~....J : r:.Onn{L J r. { =. 1:.2:). I nn_C.- 1;. \\..: :.u.; - tr.1 =; ;._ j =- "-- - i - - "

3

.;. : rz :: : =-. + - - -... t - r-t:re n g mir . r *---t --r =. n f u.-- M y ..._9_

-.. 't. _:: =.. :

n... : n gr. _. ;.-..{.:=..: _._.: g :;_ ;.. :.g.._ :.=__. _ :....- '_:

t 1_

.._.... :._ ; : xx..j ::a..~__-~. { :nn. _n... {. g g _.. 4 t ~' ' ~='-"I'"~ - 3= : -- ~' ~'M %-- y .. ::: T -~~- ---

-~ :"---~

'--: 3:- *-;- * : p a y "- ~- ~ -. : = ---' ~'~~~'--~"."..g-I=..-...=.'=.~.~'.. ~- ~ 't\\~~ 5 0.3 ] -. .g... __. _..tm :.. :.. g : _ _ C ....]._.___t._ g =- - L e

l - _- =... r..= t,. =. :,: 2_..

=.._:1 ..... =._._..;._. =_.. = _=___r. . :=. z. ; t . =.... _ _... = :=.. - u..x. :. _ _... t b4 0 !.. 7_~ _ M { - i. _.:-).'.;..ijj;]. ;.i_;jOi.j.

=.g... f ~. :._- E_.Ei.-.=___ j =.. ja_ij h. _.]=...j n. f. i } =i.ii

~._ y I IN FI 5 o.2 + - - ~

1. ;_. :. u.
u_.l=...:.;b...;;

- ;l.; ,.....n. I 1:.2

=

- c 1-- C-3-{ ;5h I~

-h 5.fi:-

- - d -~ di f.; L5:--i-lnd L. p. :.}p-ti :-figj 3:: [

ja

..=. _...~! 'I.... ,. I. g.. 7.j, I - I 0.1 i..!., J ii: -i: { ':l...

f::.

E i i i i: . i - i e lei'-- .j r l t .ti i - i. 3 0.0 ' - - + - - - 0 5 10 15 20 I Time, Seconds I I

I I Figure 5.9 NUCLEAR POWER UNCONTROLLED ROD WITIIDRAWAL FROM POWER TRANSIENT I FSAR ANALYSIS I =.+==;E 1 i i I i t I ..'l i:-ii..=.i. +..;.t:F. - =!: :i.t:.: -i-e..t.::.::!.-

i. =.. j= 1

-l- +- Ejii iif:ijl3:;.Eji: =.u li; = l

l.

"l i

Elf iE:-
l!! !Ei- =
:luijli:::friil=-i=!it =ti i i.:

ijg ' h E. ....r-- l - -- r p p- - -- --- ' -. * -- gpy -.; Z..{:;_ n{:.= : .{: .-g_~ l -'Eii=+2 - =j:.:..:::. 24=.1;E!i :.nE:jsi_El:. = -- =-4 .._... = = Y.7.._. -!.=: _ i. L :......... _._... :: ' FSAR 7,7

4--?:=i===l =EE = Eli:

1.:; _- i...__.. 'E =E= r g... EilEP==il:i =lliEE5isiE:l:fflEirtii T - _=::iE3-iElti:. E! . 2..Ebip;i =EEjEE!E-l!:E==5EE =rn _ ___- 5 -T -i".+=:(-E=-!E-.= - I _- -~':".[ 12 ;,th=.iiEET.EE -!Ef EC~'[:Z -~-- i!-- i: f ' r (

. E Ei

--5 -- _Ei - - - - - - - - - iE E "~ I5$ 55Y5 f5 1.0 .. = _..:---j =n. 2... _a.2_ _.= = = r =.._=..=..r ===.r- :=. n =.=- c=:==. =., _t- - - u..._:n .= =: n.. ;.. .a . i r..- i. =- t--- - t u rt:--~: r + 4 -iEl "EE ii=i"E"5=~M..lT.. -- lEEL =lEEE-E!E!Ei' lie"-I W iE~iEsii Y + 2: 2.;..iE. _ j:_.._. J =.===.- :E==_=_ j. _.. j.u=_=.p..!.=..:.=. =. 2- =_2=== l i =_- i. i. -t =_E_=.-i,f_ c..- c t-- E 7"-lE E=.5 =~iE5 E = S EE EjM E EIEis PEc=1EF lt===!~- R -i : 1. I o 0.8 (l-2 ~.i E= t --==}=~ i i - --I=:- ut =iEE _. _.fEEE-

=

mi E r ~ --- t=n. 2::r=iEh EE'i=lE! n!]=i =.ij=iElriu.=--FEE =L:.


+-------m--

-...;. L _..... O C ^ E=i Eb5fE :EM 5-E- E--b---IU5i Nb[--$i5 Nf55-bi'- [ ::: :. !-

-----t I

0.6 E

-i +i.:= "=ilEliiiE MIME E=i-il.ls=EEbE!Es T=FEjss:e l - : i:!". -eie U

"El .... I"=IE iE E" i3 "iE~l ' i E I M i E i:'Ij!Eli" E (FEf:.:-if.2~~ l E!rtEi EEtEiE!="=!=-EW d!!E Ei=i si!E9E==- FE!E =si;!E i l k 0.4 bW 7 ~ b-~' - ~.. ~ b l A

1J

'is E!:::E!EIEi=. !E:=tr- :2=:=.ilir :r .) ! i:1.:_ i'/ :. g nfl liir.:-ijEE -i"jli :- EEjEE@iijE~I up)~Elri=EL:i i:-Eli=iE-- ' E.Q:l:p-

.r.-

l 3 - ! -- n = =ii~ i: -iiiU:: 4sEiiii!!!i-Ei! -Ejiif!!!-

!L

..:j Y u.E j: = l 8 i

i= 2

-t.-- =T}r:

p ri'
p.
-F N i l

z 0.2 ~ , y' l E.i.. l E. .i:: ~j-

f. ^

i:l:- . -f : Eii.i .i!=: i

i.::.

i:ii.!F.. !,,~ l: l l :

.j.:
l:

4 ::l - !. t r l 0.0 ~ l 0 10 20 30 40 50 60 g 3 Time, Seconds I i 1 4

E 3 I Figure 5.10 PRESSURIZER PRESSURE l UNCONTROLLED R0D WITHDRAWAL FROM POWER TRANSIENT I = FSAR ANALYSIS i":i :h : =ii.--iis -E;u-[ 22: - + !=-ja 4 =- r :i.i: .j.: ' - - niip. - ni? = 1'njE fy= El, l i el u"i_r =j lli..Ef.i ' iMni:il:==Eli'u i' Li:iili .._........._..l.. u- = p= :22}- .u. :.= i - - - - pn. l j =. =4... :.:. .--..._._: = =. w ....==i..== x.. i = i="i "ifi=i E h Ei E F-~" i E E dis iEEE i#EEf=+ I = = b, -- : =- - -.- {===- -- - l =:== l=...__=_ :: P. : :- ~ -q-.. q== _.p.==g==p- -.. : a. "== x ..u = = = i = {. "i =a_i.}E_..I=. j.. =_ i_._r=. _.f=_ i. =.H,""_i=_I !. E_.i.E. f =. _. =. j=. _=_.j = =_.;f.=. =_- ' =.m -...._t'-- L..._ T1. = '. " 7 :r.C{r Z;- 4.__ -1._... f =: = t = = = $ = = t = n={. _._... n=)==n. = : -...: - 4_-

t=

-=='--.: g

_.q.n.:_ _ g==1._ __ 4.- un m --- ; g =;; :=t:;; r.ng -- - =_..

_. - ;;;. --._ p- _;. --e ---r--- m 2-r,,

= =

t__ o 2-m !== r F== F==l. -- *.__-*.. _-, _., - t _.. - r : =. =_ = : g =.__ =__ = r -- -- -- t =_== r-- : = r _. - -I _ _ m _.__ t __I-t- :- _ l 2 - r._--*--t-a a ..._,-=~.-..E'l_=__-. E o _.. _.... _.. _ + .._E==1 =, =t --= = [=!i-1Ei=E... n=F... = y L- : 2400 . - - = - m i=ri=-J!E-~-. !i -EEi_ _ _._==-E=l==--.E==iE_=E~I=i

~i===IE-. - -.

m

._..,_=..-.___=_==_=;.--==,====r---,-r--.___-+--_-t-=-,

- - = = o = = b. =_q===. r =: = =L-t - - :n ---- j;. u t ... = : -.. E

.== =.nc
--- = n.-- t = -
. x ; :,== =t =:-.:--.== :tr--?

p

.=I- " - -- - t _ _;

' *= { : =.; {---- U . _..._ j. 2: Zd ; M= { ^ ~ " -- : =* '

" ~ = =

F ~~ ='i-" 7'" " " ' = ~ - - -- O 2300

.:..unntun;n--1u = ; = =. 1 _:.;=;= ; =.":

...:]--..tx [.= r r2 :..Lr- .._-..1'~~-**=7l.._+_..._t.._._.! l ' '. M I '- 2 --- * $. *r 9 ---.--I"*T._ ~ E..;.;f.:r *;- r U _ - 12 C..*. f C.- * :$ --.*1-- l :-- _ f=..__; =-. ...I_. - j/ . r - t- -- :.1 7 nt--= nr

  • - r " l r t-!
t-W

..I. g ....... n g r.:.

t =-:nnt : nn =:i=;= ;=;=

a.d :;.~r.-- g. - n-Q ]

  • - ! C r*. _* ! Z-* *.- !'_*.' d.* ;t._._. _ ! = M.- ! ZCC _.:
=lZ f.*

N ...n..t_.._.._.._.$---**.*t-..._i._.___t,_.._.f___._._I._-.- . n =.._ r: : g_ .....)....g.._ g I. m g.. I .9 =


l~T-;ssssJr.sasi.l==i L ;.l-inlusiuse

,... cua_....

J.x. 2

l== _ _l

2200 ra t,_xix,.: ""r illi= = =i:E '=ii-ii!=ijaj ij:i ii' Ep=jEii =i==.g=ja=={=: ~s ur.= ---:=t- = r :- t-u \\[ =i.7. ~ 2.:.r}uu;u=r;n.:=L==.r=.lxa=h.x:: )-. ... =

:.

..rt ...=2 Eua l .: n

u.

4 _=.._=..=...........k_=_.____=__..=_._..=.-- -.... rg :._. .=}=r= t=-- --=-.r u====--.=:= ..i...n: ,. l x.

== 2100 ~ r 'f.. ....u--.M.M-

  • =.

.4-- ..=;_. ~ t ..~~L :-*r.T-- -

~ 1 * *1 ^
'~.!

.=:=:

  • ~ ~ - -

-\\ ..i. .. ! C I "i.. ...4::!:- ^:!N-.. .._p... '~ t--

t.

+

- i..

+ nlf.Jjl. ? !. i. i..r i.L. i x..;.;i" n;u.

p.

-~ i 'I IT' "I" T I Mi" l 2000 l ! - l _._ ._.5 .j 4f:7 n=p : gq 1 ~ 7 O 10 20 30 40 50 60 I 1' ~ Time, Seconds E 8 i

I I Figure 5.11 I AVERAGE C00Ln'T TEMPERATURE UNCONTROLLED ROD WITHDRAWAL FROM POWER TRANSIENT FSAR ANALYSIS t i i i I i ._.___.p.. RETRAN I .i. i i-i ~ _i_. FSAR t l 'l } 'i ! l ) I - ! - [E ! l j ...l.- 590 t I ]. i z.. _ ! i i l. I l .s. I I l e u l l l .i. / l l/ u )._.._d _.. h i i I i e l l / i l '*l2:'-l l/." o. I l l l- -l ,.-l } 'f' ? j. ; l (.; y

\\

1- - ( u. l \\ o /- CO I g .___....,t_. 7.. / j q'. .g.. / e i e i { j h/ I . l l 8 _....q_._..... l 58C ^/ 1 l. 8-i l. . j- _/ \\ 4 i ~! I I i i . - -l - .j. i i 4 i .. _.. -- g... w I 570 [- __1 _ _ i 0 10 20 30 40 50 60 = Time, Seconds I I !I m<

I I Figure 5.12 I DNB RATIO UNCONTROLLED RCD WITilDR.WAL FROM POWER TRANSIENT C'C A R A N' AT.Y S T S I i i i I i i i l + ).._.. ; - - .b f .. :. I.... i l i i i !l I ,i j l- .r i i-yepco l .l .l i _ _J i t 1. FSAR _. i l l I i ! ! I I i i j; J.' l l ._ i I i i l-I ri:ll I-j j j r-- g _ i.___I i-l.._ {._.L_ j i ! ! l -.:: i g I l'i -l t L..[.. j t g _ _y - m .I a I . l ~... l 2 f" L_ l I 1 f^ t' i i i l; ! I-i:.._I 1 i i i l-i l I .l.. I I t. i ' I f f l l 1.9 r . i l._.l.. : _ l l ' N .l 1 g; I ~ j i l

l. _....

l.- 5 l I J.....l. t_ f .i j. .' L a. 1.7 I .3 l t. i i . !.... _a =_I .j l :N I' . n.. I 1.5 -i I ..f_.. 5 ( . L... += 1.2 l ~ ~ ~ ~ " - - ,b ~ f 0 10 20 30 40 50 60 Time, Seconds I I I 4

Figure 5.13 I VARIATION OF MINI:WM DNBR WITH REACTIVITY INSERTION RATE I ROD WITilDRAWAL FROM 102% POWER STEAM GENERATOR TUBE PLUGGING REANALYSIS I i 1.50 I ce f s i Y I b 4 ~ / 1.30 - VEPQ n ndor 1.20 l -6 4 l 10 10 10 10' Reactivity Insertion Rate. 6K/Second I I I

i I ~ I Figure 5.14 I VARIATION OF MINIMUM DNBR WITif REACTIVITY INSERTION RATE ROD WITIIDR.WAL FROM 627. POWER STEAM GENERATOR TUBE PLUCCING REANALYSIS I I I h l ( / VEPCO Vent or I W No relief ralve i I p / 1'50 ~ g -y' - N y / N / g\\ I l / e R / \\ / 1.40 lR 8 \\ r '5 %( a / E 1.30 10 10 5 10 10'3 Reactivity Insertion Rate. 6 K/Second I lI I I I l3

5.7 severe credible loss of flow condition. The Partial (one-pump) Loss of Flow was analyzed to previde qualification of the Two Loop Siodel. 5.2.2.1 Complete Loss of Flow Transient - FSAR Analysis This postulated transient, which is a Condition III event, is defined as the simultaneous loss of electrical power to all reactor coolant pumps at full power resulting in a rapid RCS flow reduction and consequent coolant temperature increase with the possibility of Departure from Nucleate Boiling (DNB) if the reactor is not tripped promptly. The necessary protection action to preclude DNB is discussed in more detail in Reference 3. I The conservative assumptions used in the RETRAN analysis, which are delineated in the Appendix, (Item 3a) are the same as those presented in Reference 3. Specific limiting parameter values assumed are also provided in the Appendix. The RETRAN analysis was performed with the Single Loop 31odel discussed in Section 3. Figures 5.15 through 5.18 present the results of the comparisons for this transient for flow coastdown, nuclear power, core heat fhx and DNBR, respectively. As discussed previously, the DNBRs were calculated with the Vepco version of the COBRA IIIC/5flT computer code using boundary conditions obtained from the RETRAN analysis. The minimum DNBR predicted by the Vepco analysis was 1.50 and ampares very favorably with the value of 1.46 reported in the FSAR analysis. Time of occurrence of minimum DNBR also compared well and was approximately 2.3 seconds for both analyses. Thus the RETRAN/ COBRA results support the FSAR conclusion that, while Complete Loss of Flow is a Condition III transient, the Condition II DNB criterion is met for this event. 5.2.2.2 Complete Loss of Flow Transient - Current Analysis The Complete Loss of Flow transient has had to be reanalyzed in the past fcr the Surry plants. The most recent analysis was required as a consequence of the plugging of steam generator tubes.10 The tube plugging resulted in reduced primary coolant flow and less initial margir. in DNB. Since the Loss of Flow transient was I

5.8 potentially affected, the transient was reanalyzed to verify the continued acceptability of the results. An analysis of the transient was performed with RETRAN using the assumptions specified in the Appendix (Item 3b). The specific parameter values assumed for this analysis are also provided in the Appendix. The Single Loop Model, as modified to reflect the effects of steam generator tube plugging (lower flows, steam generator heat transfer areas, etc.), was used for the analysis. A conservatively low value of initial flow was assumed in the analysis. The comparative results of this reanalysis are provided in Figures 5.19 through 5.22. Figure 5.19 shows the comparison of pump coastdown for the respective analyses, and Figure 5.20 compares the nuclear power response. Figure 5.21 presents the results for core average heat flux, and the DNBR response using the RETRAN/ COBRA methodology is compared in Figure 5.22 to the prediction reported in the licensing reanalysis. The Vepco predicted minimum DNBR again agrees wellin both magnitude and time of occurrence to the licensing reanalysis results and confirms that j the Condition Il DNB criterion is met for this event. I 5.2.2.3 Partial Loss of Flow Transient - FSAR Analysis In addition to the Complete Loss of Flow transit nt, discussed in the two previous sections, various Partial Loss of Flow Accidents may be postulated, in which power is lost to one or more reactor coolant pumps, with. the remaining pumps continuing to operate at full speed. Such a transient would result from failure of a single pump bus. Since this does not constitute loss of line voltage or frequency, no credit is taken for the direct reactor trip on low voltage. Instead, protection of the core is provided by a reactor trip actuated by low measured reactor coolant flow in any primary coolant loop. Since this transient involves unbalanced reactor coolant loop flow rates, the Surry Two Loop Model is used for the RETRAN analysis. The case analyzed assumes inme operation of el reactor cosanucops, with a subsequenuoss of pump per in a I

5.9 single loop. Specific parameter values and initial conditions assumed for this analy1(s are shown in the Appendix (Item 4). The low coolant flow trip setpoint and delay time assumed are consistent with Table 4.1. The results of the RETRAN analysis are compared to the corresponding I 3 FSAR results in Figures 5.23 to 5.26 for core flow, nuclear power, core average heat flux and DNBR, respectively. As in previous DNB analyses presented in this section, the Vepco curve was generated with the Vepco version of COBRA IIIC/MIT, using input forcing functions from the two loop RETRAN analysis. Again, the Vepco results confirm the conclusion that the Condition II DNB criterion is met for this transient. 5.2.3 Change in Primary to Secondary Heat Transfer The remaining types of non-LOCA perturbations analyzed for a nuclear plant in a FSAR are characterized by changes in primary system pressure and temperature resulting from changes in primary to secondary heat transfer. Accidents in this category would include Excessive Heat Removal Due to Feedwater System Malfunction, Loss of External Electrical Load, Excessive Load Increase Incident, Loss of Normal Feedwater, Loss of all AC Power to the Station Auxilleries, Turbine Generator Unit Overspeed and Main Steam Line Break. The majority of these transients are nonlimiting and have not been reanalyzed since the FSAR. However, the Main Steam Line Break and Loss of Load transients have required reanalysis as a result of core reloads and for that reason were chosen for comparative analysis. In addition, the Main Steam Line I Break transient reanalysis required a multiloop capability and served to qualify the Two Loop Model discussed in Section IIL Finally, the Feedwater System Malfunction transient was analyzed to further demonstrate the capability of the Single Loop Model to represent a secondary side initiated transient. 5.2.3.1 Loss of External Electrical Load Transient - FSAR Analysis I The Loss of Load transient is defined as the loss of external electrical load which may result from an abnormal variation in network frequency, or other adverse I

I I Figure 5.15 FLOW C0ASTDOWN COMPLETE LOSS OF FLOW TRANSIENT FSAR ANALYSIS r r l .l .l i t I j i k. -l-l. RETRAN 4 .{ _.._. i g t li t l . l :.1


FSAR j-.

7._ I l I i l i T +b ! ! i l 'J - I I e - L i r T~ i i. _ _i i N I .4 _.--[ i. g l I l i .l. I'

i'

.-..,i--. "3 l t.-. ~ 3 o 100 I i j y _l l 4 .L .;.. _ L. I .. ? q..-. w i } l I l a i ] _._.1. }' l....I._. w 4 80 -N, l 1 i i -], . i i s 4 i

i-l-

f _.f N-o t. s t U I f f O 6 I u ..;.--..i--...% 3 ... y i l i .,-.. q - ~. g. -.. o 60 3 i i s,- Q t [ .[... g I i I l -. d .. -.5. l -..y- -j... 40 i I I l .g ..i...;.. ..-.t. l i I i ,i l 2 .i _.....,; I l f ..i-. l l. 8 y.

7..

20 - - + - - ~ -} j "~ i r i f j l ~~ ~ ~ I l j j l j g I l o -i. -} } 0 2 4 6 8 10 Time, Seconds I I I

~_ _ _ - i I L I L L I i r I s Figure 5.16 ' g NUCLEAR POWER g COMPLETE LOSS OF FLOW TRANSIENT l FSAR ANALYSIS I i -:j,;h+l:: i- :l.:

j.:
i --

i

- t

.:i.- .. -. + .1.: j. :l

{..:! : j.i Ej,-

l:. i - j- ::aj: I i

- t -

'-i t i- - - t- - - i -- = i4 i = > t = -- i = ~ .-;..;.-_-.;._ q ..___4 ;=:__ ; u.__ _. ; =-;==.4 L_:__. 4_4 :;.=- a; p: 5 . =r =. - j..pf n.ji:==_ p= ij.l" =f=1-: r.$ ::=I :r--j +2 .. i .:r i (: m91Er. in:E+4m :=2 ="-:iE-1 : FCPJU . i: - = I: = -f - t --- -.. :.1:._ = ; =;:,. _ p = -.gn - p...... j : --- { x FM Egj_i.2ji=i =.: 3 uj: 3 ;r= :r4=iE-l'l.i nE[ifrj_-- I n -;.- -f lj I ~ *-b!b h_

).

- M t. -. _ -. f =7 t---ti;' ' ~ rt 7-j .i i 3 5!=r=enE2= pre;=.ri -i.i=; :=g- =j=i= p=:=i =Ei== =i. - - 1 = lI ' 0 100 _ _j. ;-;=} =.3-.gsg-;E;3 = ;=ggsp g_=ip=iEjmqE-jp Y i l r! i,: t.:

.N

. _ iEd E=9 i= i=,i.==.=- p:=-. - { =i="j==::. -j = p-= I .j- -

== :i;-i;-

-i-di+.j=+ 'j:: ;"-i5imi-JE;: '
.j=t
'-- :& -

I w I 1 cli+i=-- =-Er~:2'~ c; _=i=1.i-tu i--+-i=::: :% 9:=i-ti--! = r-r t 4 80 -_...=__t.. - -. : =.. r_ t =_=.. r-.._=r =--. = :.. =..=_ _ =t_ _- t _._=..- 4 =--.: =- -. t =. =:- 1 : -~ -:. r . +Er :.:.. 1. =+l-...-.. = ---tj_rc_j: - -+ f=+ H _:"-i-5-if=i :t= "" itzr J+,= 3 ,o j] : _ i 2 i nil ~~ _.Ej' - = j==i.' ' \\ ~. r_i_:f ~~ ~;E E * "@ ~.[ 2_!a-Ep_. F-q:hi=j I_. I ? ^

, t.g _,._.._...- __
--_. c;-m mfr.-...

...- r ; = :..

=i +

1-ue 60 nl -.,=: -- i.=r i--4u :::: =ini4.: I_..!:: :r- '- --i== !.. -. -,: tz. c = g 24 j::~!!= F-EhqE==l, :-,7.. l Y jE::r=-!= 4 -7?iEEE-jFi"=bf=i _r;: ~ vie I- _ ; i _fr :ij:. :.j" ! ;;:; I.j=i::.i.=l2ir j"i-isi~!: tisj-1-.. ic ~ L 40 2 2. :nx j. y;j : r-..-- j ;-...

{.
}

_._i. p -. ; ~ . : ':....i - ~ ~ l -: P

91.

j. I --j - t+ ::=:. \\- } .liiHj._ rini;:9 - -.dih:l ~ rl~ \\. i. - Fi-fi'nja- -'t: 11.} =!n-l. ~ j g %._a-, _L I - I. -j-i . l-. . J :.,-. i. j. c,:. . a. t. t s I -l l-l: 20 1-I

i. -

I I a j l j- . j': ; j. i icj ; } I l i~i 1 - l= ! : l. - _ _ - -. i i 2 i t i I i 08 O 1 z 3 4 5 l Tirse, Seconds I I I ,... -. + - - - -. - + ~.., - - --.----r ---er---- - - - - - - - - - - - - - - - <. - - - -

i .i !I I !I l l l Figure 5.17 1 i AVERAGE HEAT FLUX I j COMPLETE LOSS OF FLOW TRANSIENT FSAR ANAT.Y9T9 4 l l l l. -l ..{.".! l -l I l a l.i a l i I .'~ RET E'i ~~~ i 4 l i~.. j ~! .i i-FSAR l t i I 3 . _ a ..._ L ___. ;. _ _.i h I l. I y I i l l-i l. I f i i l 3 i 100 ~~1. i i e i w --f

  • t f

M g I I w l o I l l I l _......_.. - y I 80 I s I I i x - 1, a .._a. s [ ~~~ j g i a i .N f .i ,i m em u, ..;___7,.._.._,...__i i 5 e { = 60 j j i i g a_...u_ 1 a i u 1 e i . I

J i-

+ y j - . } f } } i } 40 l 1 l j .i,......4q. . _. 4 .t---. i l l l 1 I .. _.L..._. + _ ' { l [! I. i i 20 - - - - - + l . (.. b. I. i l i -t i k I 1

f..

i 0 i 0 1 2 3 4 5 ll Time, Seconds 1 i

lI

I I Figure 5.18 I DNB RATIO COMPLETE LOSS OF FLOW TRhNSIENT FRAR A"ALYSIS l . l..

+-

. n _- ii;.ih

.l - E'
n.
l7 ;.x-l t

rj:-[:;jr i' t:

7. ;

'.l

.j: ~ ~ l. :!..l.. ;. l. :..;e.i ]...i:: :] ;. p.g. ;it. :ij.'

._. l. t. I g .t - - r. - r - - ' ..r-


'-----t----

e .l I - l in rj -~!=-[2 !=s ' ="'..if i ~ -~ ir--i ;- .;.._...[..__.~..._._.__._..._...__.{ p yc I ... _f. _._. _-. j r.. p. 3t.._..,._

.=. 1..

r.._...u.

2_2.. l rre:... : r : l. -.... _..... l.._........_.... _. n_

x._..=. t' =..:.._-t - :.... t.- ._.{.E! rj.in;._lT - j.=Ei-l:_21-iSI jk;id :..j. i@-i al:imt.H jf riu-Ej- ;~ a l I .... :,L {. --- m t = -- (. 2 r--. n:,r ;- r-- -- ---f__-.. - = r u r. f. : = : --.. . f : ;_a ;. _. _ r- -- - - - --- r -- --._.._....t._..._ ... _. I- _ _ _..--.t_x.... f -:.j... j- : t 2 : n.--- y .._.._ t.= := : ' : rr... _:. _. - -. 22 _r r 2.4


..:--.E_.--=.-.=..--......fr=--=..------=----------.--:..dr-----

. ; =_ r n. t. ur_.:.. 2.

. =..
. t r

.:..:=._.-_==_._=_:..... I 2.3 I ~ = I=i' = =~i~=II" ~ ! 5 : i!= ~==I~=i= O ~ ~ ~= "I 4 = = .1.{.. : =:iig:--j:_=:.--j--==i =.v-ij:-+-i-l=2i-E ip /..i-n.=-}; "i: -j "i=_l +--- -, - - r : = 2- !s_..-. ! -... _, =__. _.%c.... j =_ =.... ! :....., _ _ __.._... _. _.. _...=m i. ------!= J=i =4:EF== l, 3 29 =EE t =c-i= ! =;t ~= f h i1 iti'=f'~i"'~5-i-E5-EEf'5 ~~ l'"!i555! [Si=}ili!%it-F ~s:'lII!!E.I 3 5

i- - i cOi=.:a Mi5iiM i=rif-f:li--is fir-M@) :-i- ' r "ifi? +--

t ~~ r 2.1 4. -. p g; ..i 5:3g= =_425 qu.=g . q=n_4 3_p _;. _ _ , I- -- :, t = ' - =, =r.... .:....i.- - - - - : --- r-- l =1 : = l_...}.. t -: c u - : -- : 2.0 r 11 ='+ f. " = -l..= +I 1 + "d _i ~ =.l.: / M :" =!;= i +j =. i i! ._.._.i LJ - T 2~" }!r ; ;?l ::F=' h -.-if= :4j j pH -nily.;=.i:j-gn;j=: . = - n n- = -- --: - - -- en _.... n !. =u ; 4. :.. _.,f ..I=a... ---,....:.=..=.,....+=....::. -- tr -- 2.-.- - =-, .i. l-_*

L --
1_ j.:7[ :

-.L* {. j.;ij f...- },3 l :_" 1.b E' f i.. l :. u:!: ; r:.:...;. ."j : . u . 2: j. .I t L .... _ -.=.. _.. i-. ....2: 22 : = -...: = n:..... n :=-... : 6..- - -..... j. i i 2.- 6 1,7 3 ..J' ~.:.. l ..-r ..j.: . l., i

N

~ N .j. j.. -i.: [ .}.

l g

1.6 g i l- .....c I i i . i $y _: t

. : n

- i.: l e i e l . s %.__ ;. _ j-r ~ i .i. . j.. . p-n. t q r i-4 I i 1.4 l l 0 1 2 3 4 5 Tiete, Seconds 'I I I

l' lI t Figure 5.19 FLOW COASTD0b'N I COMPLETE LOSS OF FLOW TRANSIENT STEAM CENERATOR TURE PT.f!CC7' C R F U:.%f.VC f 4 -? I e 8 1 8 l l-l 8 t i. i. } r l i l l i f + } l i. j~i RETRAN i i-t

i. -

i ld Vendor i I f i i i I I I, 1 i. I i l i i i ! ~ i l I i [ . 'i l 1 g .__7__..{_.._. + [;* 1.0 ~ i l i I i .s l g I s i N u s,. k l 1 I i e i I l 0.8 m o l l l l i i 6 e i l I O 1 i i i + 1 u I i.. e i i w 0.6 W i i i. L i t I i i ! I l-g i i i. } i l i r-i 0.4l l I j l l .. { .. [..... l I j .. j. _..-.. j.._ _ _...q. I.q... ..l_.. _ _ l 0.2 2 l i } .l. j .[ i l i i i. i i i ! \\ i I .i 4 ] I t l. .3-.. 0.0 i l O 1 2 3 4 5 6 l Time, Seconds I I I

4!I l i 1 1 1 Figure 5.20 1 i NUCLEAR POWER i { COMPLETE LOSS OF FLOW TRANSIENT 1 STFAM CENERATOR TURE PLI:CCING REANALYSIS 1 i - -. m I l i t i l I . a..' l 1 l .i. l i I. i l __i t I I I i I RETRAN 1 i I' I i~ ~t._.L. i e -{2 l ' f l ' f! vendor t i. i 1 l l ; I .... a n i l i j i .o -1 I l l t u I n

1 l

l _,i _ a: r + 1.0 I I i N } i l ! 1 o i l-- U --. I ~ l --pm t - \\ - i -' e \\_ l. i I I"I I I i i u i

I

[ o m 0.8 ! \\.' [ l l i i u j g 4 ,.a i b 1 j I. [. u i n j ~ t\\ i .i l e: ...t._ ._;1.. ..L\\, 8 o i L ca 0.6 l t l w i { 't..__..!___.. c3 i. 4 \\; ____...j>. l l I L i ua j l -. - - l \\ i. r 2 i t._ .;i.... i : O.4 7.-. y i i l j \\ } i . f p,-.. \\...j _ _. .p. 44 ...i i ), l 1 _\\ _.! I i il ....i.., \\ i I .d ( t g : __:...._ ;._ i. i } j 0.2 l 1 % ~. - - _!g,,,,,,' t. 1 ..l. a i l ; l I i I i ! I i i I I .l l 'Wl 0.08 g 0 1 2 3 4 s u Time, Seconds S I i. 1 i I 4 !I 1 _ _., -. _ _.. ~ _ - _.. _ _ _ -. _ _ _ _ _ _, _ _. _ _ _ _. - _ _ _ _.. _ _ _ _ _ _ - _

.I I I Figure 5.21 I AVERAGE !! EAT FLUX COMPLETE LOSS OF FLOW TRANSIENT STEAM GENERATOR TUBE PLUGGING REANALYSIS I T i i i I i t I L.i 1 i ! - f _..i ' I i ' l-1 I i I i i j RETRAN I ._q..._.... l 1 i o I Vendor _... l 3 . _1. I f~ g l r j i i I. _.l m I n M l l : i t

l-l

..._.._. _.__i 1.0 -- ~ ~ ~ -- ~ %

  • I I

o I N i r e .. k... f _ L f.._.3 , = N i ~ ~I~! o s. j i. i l l g, i J i u f. _ f... l.. _ !. . _l_. I N . _ _. [._ _ I_L.f i._... I l l ; I i 0.8 'I .i._ i I i i. j s's.. i r e x 1 .i 3 7 . 7._.. __ ; I, t r w i-l - s i l I N g i i I t u i 'j N i n I i i l

E 0.6 l g

q. . ]......j...... .. u _L. I .: t l a I' i i t-L - - - - + I

l l
i i

i --4

1 l-l l

I i i 0.4 i, i .l.... ,..{...._.4 t _4 l g ..I. .........L.....i. '.. _ . _......... !..... f. .. L. O. 2 --- l 8 i I I 4 4 .L i .'..g...l. .i.. i - i e 7 0.0 I O 1 2 3 4 5 6 Time, Seconds I I I

I I Figure 5.22 I DNB RATIO COMPLETE LOSS OF FLOW TRANSIENT STEAM GENEIL1 TOR TUBE PLIICCING REANALYSIS I 9 ~~~1-i i 1 i i i i 1 l l t. l t i E5 , _. } _ _... h.. _1- = I f yepco i i iii i __ i I i~ i i-Vendor E l l I........J.....l 1 1 t .p-i. 'i i i i 1. ) i i i l Ii l I --f l "-f i t' l t k.i I ._..t.._ .i__. f l I i, ',t _.l. _ i 1 'I I I 1.9 I '. _.. - J _ ,i ii [ a: I i-l -t-I - i 1 g - t _. l l .< l 4 C / i i i I i / j j l

-~ /

p-{ ~I - j F-r ,7 j f j.._.. !. I ! . i.. f. I f. I -/ i 5

l... !..._...._... i./..l...._!

!..... }.. i ', I I i /. ! i j i )i

1. 5, -.

.. l... /' 8._.._ j._ _/ L I i /i'i !'i ..L 1 I s i /,. N I t. t.._. ...,.I.. y j g g 1.3 i i i .i i l 1 l l I . l... 3....... ;. l'. L l i.l l i.. ..j. q 1.1 4 0 1 2 3 4 5 Time, Seconds lI I I

I t 3 Figure 5.23 COPE FLOW COASTDOWN I PARTIAL LOSS OF FLOW TRANSIENT FSAR ANALYSIS I i { i 1 i -i : i

! l --

.l: l l l -} i-j l l ' ' l I . i. l ; I ..t .i 1 i i-i o _1. ,. l. .r !. l l

  • ~

1 i ( l i. [-l i


FSAR

.j_ . _ _ _ _.y.-- p- .l f' I 4 l l. t .l.-._ J. ,I 9 g i l ' l l l l I f f' i h .I I ! l.I'! I. .I 6 ! l l. .;~ .i --i o

1. 0 i

_f J. _I !-... l. 'I .. ;. _._.. '._.....i _ _ _i _._. i __.. .J-I I f __.. \\ i m, 3 I e i i i i

i o

.95 k ....~4_. -4. 4 i g i u i i 1 I U { j. --.77--- l 8 \\ jq, p -.. m .. i s. l _I h. l \\ . l... ..i. - I f I I .90 \\' l l N i. !: I. !. L, i .i l ,\\- i ' [ I i k i I l .-l f \\ i j =*eu4.. ( ] q l .-H.l ..1. i.~.. - j. .1--; .85 I 2 1 i l I I i P l-i -i i y I i .( .N .i, [ iN 1 I Et_j I N I l i.. l9.., ;. ..j. i t h I .t. .80 i ~ u 0 2 4 6 8 10 11_. _. I I ._m.. - ~. - -

I I Figure 5.24 I NUCLEAR P0tGR PARTIAL LOSS OF FLOW TRRISIENT FSAR NIALYSIS I .f i i L 1 i i

t..

-l i li i j i l i i t i I i. 1 4_. . p........j. i I i PITRAN i i .. _ L.... L._. ..L.


FSAR I

es i i l ~j a.- !'.. j.c: i _ -.. i..._l....-.l s u I .[.2. _

-. +.

l i ! .I l I i

[

.i. l l l i . i. -- i w i 1 o I 5 1.0 l . ] --,I...'. l.. .I i i l 't .. ~ ; I l - ~. -. - a a._ _ i j l j.. .j: j j u u 1 w i. . l.. + i I .. M .~._ _ }.... l - l ( {U --.-...; g ,g n l i l- \\ '! __ _..,i..n.. .1__.....I.. o i p i: + z . } ' i i i t t. .j i. 1 \\ !l I i I . __.i - -l -. _,, - h- [---! 1 u y

,. j._..

c. t-s .a. i j u o . -.;, - g pl. z p .._ p I t 3 9 . t.- I l l ' \\'- ...a-.. .-..:._... 5..- j r l. . \\ -. .i-- t 1 i ~i I _i.\\- l .4 I ,,_,i' ..i.. .. I ^ i

  • \\

l .t. ] i -.i.. 1 I k i L... g 1, u, . i.. yl' 9 l ~ l ..i -l .. l. r p i b I i i I ..1. ( r-- -- i i I I I l. l

.l.

}l 1 I a .I O. i m, 0 1 2 3 4 5 6 Tir.'.c, Seconds I I f

I Figure 5.25 CORE AVERACE HEAT FLUX I PARTIAL LOSS OF FLOW TRANSTINT FSAR ANALYSIS I

=_ p * = E= '= &=+'-

~ W= t _-t-- ! - E ~-'-" _... ride. _{~ - t

  • - t=

- =" . -.. _. :=.== V- . r-I = f-- it----t=t _~-,_.g.g__.g j FITPR! ~t~~d --- - FSAR z.___g= I E. _ u I:. =Ej -- +. _ .g ---m -,= e- .=2. ._w.= =.a. w e-:= -t_ _.E= 4- + I C ~~

t

  • O

+---- - - 'Ct C- +-- ---+ --,_-g-- - - -r--- -^ u 1.0 ._ n.=.'myg - =-..y gg._ I t'.- ;=t=.:-._ ; v.. : k _ _i -+- A 1_. .__.t_--.. __. 4. _ t-- 4.- v 4 %C t_ a r g_._._ 7.-- .-_._b_ M . + - +.... _1 ~ hg-- I m .9 x. _.\\y-- M Y-v I Q 5._e. .O ~ u _i .~____.\\ V . - - - - +. _, y I .-.-.z_.. 4 t -- c -~.+.--%.-- - - r-u O . - _ _.. -.. _ _-E 7 -.t_-: +,_______m-.____;__ ---i-- .+- G r I ^ -e-.-. = _$~ '--.-+fu.-e. gm-W =l M. 5__ t---- .__.tr W = I _u d, _=...,;i. - ~ -.. _ + - -. E v_._. 3 .6 .1_-.__==== -e - = = t=--i = Z~'.~~ _.= N+dk_._.__..i=[. =EC[--~ bbI~-[-is -w =..F.= t=m . =y = r__ gc ;

____;gg :.r-- =_ __.c

.__t I t - a._. __...._5_-> W W- * * * * * * * ~ - * - t, _[-.[..- -.. _ -.... - -g_.. -_.w.--. .5 = eel--+- ---~.i

=iE. =n= ?==

= E-~ i:t=Fi=e=FF E t-* CB=H-0 1 2 3 4 5 6 Time, Seconds t 1

lI 1

l

I I I Figure 5.26 I DNB RATIO PARTIAL LOSS OF FLOW TRANSIENT FSAR ANA?JSIS i i I i i* I I I j.._. j i .l ....l.. ..}. t ... [.-- i L I l I l VePco ..i, --- 3i..j.... ...i. l.,. ].. i.. . i. .i-- i 1 ______y I j. I i-l .l j .j .; y j -- r i -l.t i l i

2. 2 f

i l I; i .c I i - ~~j I r ~ ~~ l -i l : e i( ~Tn - (, a L- .1 ,1 c L. -li l J j _f .pg..m.. l _q. l* 4 _..;_ [... { , i I i, i i i 9 2.0 I I ' I' 'I 5 l m_{ LL. l J. j l L ili l i i 1 i i i .i i e 1.9 L_.. l i i $~ - L..__h.. ;_ I _ j. __.1... :. 5_ i - i i . _j_ i l ....\\. I y_ G l-._+ \\4 5... ;.....' ! I . _l. - i i i j 4 t I i 1.8 I

. / [.'..j

.. _.L _ !.. _ ; _ 4. ;... i F ._.2. .. ;... j.. I l l i. i /f i i ..;.. 7 ..j __. .. ;..i... _...... I ,J-- 7 Q -"T.... i i g / ,j....... 1.7 t N t . f p_ s f.. ' N.. _, _.. ).. ..}.._....j....f.

j..

.g; I

s. %
/./
1. 6 l....

.4 I ~, -::s _.~ O 1 2 3 4 5 I Time, seconds I I

5.10 I network operating conditions and is considered a Condition II event. The interaction of the mitigating systems for the various credible initiating actions for this transient are discussed in further detail in References 3 and 11. For analysis purposes, the limiting condition of a complete loss of load from 102% of nominal full power without a direct reactor trip is assumed to demonstrate 1) the adequacy of the pressure relieving devices to maintain the RCS within the Condition II pressure boundary criterion (i.e.110% of design pressure) and 2) that the Condition II DNB limits are not violated for both beginning of life (BOL) and end of life (EOL) core conditions. The conservative assumptions used in the Reference 3 analysis were assumed for the RETRAN comparative analysis (note that the limiting FSAR analysis condition fcr the reactor in manual control was assumed). These asumptions and the specific analysis parameter values are indicated in the Appendix (Item Sa). Note, in particular, that many of the system pressure relieving devices are assumed to be inoperative in order to produce conservative results. The RETRAN analysis was performed with the Single Loop ModeL The comparative results for this analysis are provided in Figures 5.27 through 5.31 for the BOL parameters and Figures 5.32 through 5.36 for the EOL case. The constraining result for this analysis is the pressurizer pressure and the change in this parameter is provided in Figure 5.27. Note that the rate of pressure change, the time of peak pressure and the magnitude of the peak pressure calculated for the respective analyses are in close agreement for the pressurization period of the transient. However, some deviation exists during the depressurization phase of the transient. This deviation most likely results from steam generator secondary side modeling differences used in RETR A N and the FSAR analyses. Both analyses demonstrate that the RCS pressure criterion for Condition II events is met. Figures 5.28-5.31 provide the RETRAN and FSAR responses for nuclear power, pressurizer water volume, coolant inlet temperature and DNBR, respectively. I I 1

5011 The DNDR's were generated with COBRA. DNB is not limiting for this event, as can be seen from Figure 5.31.. Figures 5.32 through 5.36 present the results for the Loss of Load EOL analyses and again confirm that the Condition Il pressure and DNB criteria are not violated. 5.2.3.2 Less of External Electrical Load Transient - Current Analysis I The Loss of Load has been reanalyzed since the FSAR to support a Technical Specification change allowing core operation with a slightly positive moderator temperature coefficient at powers less than hot full power at BOL.12 The licensing reanalysis, to be used for comparison purposes, was only performed for the BOL case, since the moderator temperature coefficient would be highly negative at EOL and, therefore, not impacted by the proposed Technical Specifications change. The RETRAN analysis assumptions and parameter values are provided in the Appendix (Item Sb); note that for, the moderator temperature coefficient, a value of +3.0 pcm/ F was assumed. The Single Loop Model was used for l the RETRAN analysis. A comparison of the RETRAN and licensing reanalysis results is shown in Figures 5.37 through 5.40. Comparisons are provided, for nuclear power, pressurizer l l pressure, coolant average temperature, and DNBR. As discussed previously, the secondary side heat transfer modeling differences resulted in some differences in the i predictions during the depressurization phase. The RETRAN analysis results confirm the conclusion drawn in the licensing reanalysis, i.e., that the pressure relieving devices l are adequate to limit the peak pressure to a value below the Condition 11 Criterion and that the Condition II DNBR Criterion is also met. l i 5.2.3.3 Excessive Heat Removal Due to Feedwater System Malfunction Transient - 1 i FSAR Analysis Excessive heat removal incidents resulting from feedwater system malfune-tiens result from either 1) excessive feedwater flow, such as might result from a failure of the feedwater flow control valve or 2) reductions in feedwater temperature. An I l

5.12 I example of the second type of transient, which consists of the accidental opening of the feedwter bypass valve resulting in diversion of flow around the low pressure feedwater heaters, was chosen for analysis. The case examined, which was analyzed in Reference 3, assumed no reactor control and a zero moderator temperature coefficient. The resulting transient is a very gradual increase in core power in response to the primary coolant and fuel temperature reduction resulting from the decreased temperature of the feedwster to the steam generators. After the core power increases to a level which essentially matches the secondary side heat removal rate, the temperature begins to stabilize and the system pressure increases in response to the pressurizer heaters. The Appendix (Item 6) summarizes the important analysis assumptions made 3 for both the FSAR and RETRAN analyses, including specific analytical parameter values assumed. The RETRAN analysis was performed with the Single Loop Model discussed in Section 3, and conservatively assumes constant steam flow throughout the transient. The RETRAN analytical results are compared to the results reported in the FSAR,in Figures 5.41 through 5.45. It should be noted that this transient is calculated over a long time period, approximately 900 seconds. Figure 5.41, which represents the variation in feedwater temperature with time, depicts the forcing function assumed in the two analyses. Figures 5.42 - 5.45 present the results for core power, average coolant temperature, pressurizer pressure and DNBR. The primary FSAR conclusion, that DNBR increases monotonically as the transient proceeds, is supported by both analyses. 5.2.3.4 Accidental Depressurization of the Secondary System / Main Steam Line Break Transient - FSAR Analysis This class of accidents includes any uncontrolled steam release from a steam generator, such as might be caused by failure of a safety or relief valve or rupture of a main steam pipe. A Main Steam Line Break (MSLB) Transient, which is a Class IV event I

5.13 and the limiting transient in this category, was chosen for analysis. The increased steam flow resulting from this accident causes a reduction in primary coolant system temperatures and pressures. The reduced temperature causes a positive reactivity insertion (assuming a negative moderator temperature coefficient). This insertion, coupled with the assumption that the most reactive rod cluster control assembly (RCCA) sticks in its fully withdrawn position, increases the possibility that the reactor will return to a critical condition and resume power generation following reactor trip. This is a potential problem because of the high power peaking factors associated with the stuck RCCA assumption. The core power is limited by the negative Doppler and moderator reactivity effects for which conservative values are assumed in the analysis. The core is ultimately returned to a suberitical condition by boric acid delivered by the safety injection system. A more detailed discussion of the trcnsient and the various mitigating systems is provided in the units' FSAR's. 3,4 Several different 31SLB transients are discussed in the FSAR The limiting 31SLB case, which was analyzed with RETRAN for comparison to the Surry FSAR analysis, consisted of a break adjacent to a steam generator outlet nozzle with continued availability of offsite power. The STSLB was analyzed with the Two Loop afodel (See Section 3) which calculates both the primary and secondary system responses, the reactivity effects of safety injection and the core power response following return to criticality. A summary of important analysis assumptions, which correspond to the assumptions made in the FSAR, is given in the Appendix (Item 7a). Specific analytical values used fe; the analysis are also shown in the Appendix. Representative results from the FSAR analysis are presented and compared to vendor results in Figures 5.46 to 5.49, for steam flow, pressurizer pressure, core reactivity and core average heat flux, respectively. The slight differences in the shapes of the core heat flux response are believed to be related to differences in the treatment of core boron concentration buildup following safety injection. I

I 5.14 I The comparisons indicate that Vepco's RETRAN Models provide an appro-priate basis for calculating the system transient portion of the Main Steam Line Break analysis. 5.2.3.5 Accidental Depressurization of the Secondary System / Main Steam Line Break Transient - Current Analysis The Main Steam Line Break Transient has been reanalyzed for several Vepco reload cores. The reanalyses have been necessary to confirm the continued acceptability of the MSLB transient results for variations in the reload core designs. For example, a recent licensing update reanalysis of the system response was performed for the Surry Unit 1, Cycle 4 reload core (see Reference 13). The basic analytical assumptions and parameter values for this reanalysis are shown in the Appendix, (Item 7b.) The comparative results of the two analyses are summarized in Table 5.1. As can be seen the results for temperature, pressure and core heat flux for the two analyses are quite similar. The dynamic response to the MSLB reload reanalysis is shown in Figures 5.50 - 5.52. Comparison to the FSAR results (Figures 5.46 - 5.49) shows that the general characteristics of the transient responses are the same for the two cases. The vendor results for the analysis are considered proprietary and are omitted. 5.2.4 General Conclusions - Licensing Transient Analyses The analysis results shown in Figures 5.1 - 5.52 show that Vepco's analysis approach yields results which are comparable to those obtained by our NSSS vendor for previous licensing submittals. The similarities hold for a broad variety of transients of varying levels of severity and result in identical conclusions regarding core and system safety. These comparisons illustrate Vepco's general capability to perform analyses of Condition I-III transients, and the system transient aspects of certain Condition IV transients. I I

TABLE 5.1 LIMITING PREDICTED RESULTS MAIN STEAM LINE BREAK TRANSIENT SURRY 1, CYCLE 4, REANALYSIS Parameter Peak Value Licensing Analysis RETRAN Core heat flux, % of rated 28.6 25.8 Reactor inlet temperature (failed loop), OF 373 373 Reactor inlet temperature (intact loor), OF 502 504 Pressurizer Pressure, Psia 1167 1255 I E I l I I l l l

f Figure 5.27 PRESSURIZER PRESSURE CllANGE LOSS OF LOAD TRANSIEN*f BOL - FSAR ANALYSIS 1 1 y t s s l j i i ..l... i i I i i i i li ! I' l I I i RETRAN r-17 t i-i I t l -i.. i g r-i l L.__ FSAR i 6 I _... _ {._.. _..J._ _ _ ._ t. l p. i j I i U l 3 l i l l ! i I m i l' I I, I r __,j,,,_. i, h, 400; I ~' I _.._i_. ~ o i i j I i i i L w I i [ i j ' i a = 320 I i l i i i-i- I- -i .--l-l j u t-7 o., 240 ' / \\- I i 1 .. _ _.. j. i i t g j u I I U 3 .. l' [. _... ? j... r g I l / I '% l_ l. \\ v 1 s t u l i i ] u A l 160 i h. i j l g j l l .. l.... _.. _... .. i. _. . _....:._. L l r i . \\' ' '. i -- -- l E l--- I 0I E 80 l i I

i

..i. .j. . \\t. -.}.. i l i .j. i l l - - - T --- j h.' l I, \\ ;, i t 0F 0 5 10 15 20 25 t Time, Seconds ! I 1 I I

E I Figure 5.28 I NUCLEAR POWER LOSS OF LOAD TRANSIENT BOL - FSAR ANALYSIS ~j j l. l- .i .l l 1- )- l l. j i l I I i l i RETRAN t _. i i l l-l I ! l FSAR i i. i. j .j; 1

  • l ' l l.

l .l. i_ l hf-... 1.2 i l l. l l l 4- [ i 4 a r i I i i i. I i I l i I mo f< ,- j.. f G j ' 4 l t u l _k i i i i-I- I ! _j _.. . I i l i \\ l } i - l -l 4 l t I 5 ~~ g i i ! i I i l n 0.8 \\ w 1 i

i 1

i. l A _ _ _L g.- l 1 1 3 8 1 b I 'a i L... _ _ : _ _.._ _.p_ _. . -..L l i y l._. j ' I t 0*6 ! {t. i ! l I ~~ l i W I ..i. l 5 i i \\' l ' f. i I i

.. _.. t.._.. ;

{... j. i I --l I 2 g i. 0.4' ni l i l I _. 3.. Ij .J ---..-t-i i i f I i i i k i L._ {.-. !. l. u_ i. .._.}..... ..&t. J .i. 4 I i ( 0.2 _. N Q. f !' l N; l j l- -g [ l, ,i l t r l I 8 I-s' t 1 t-l 0.0 -- d 0 5 10 15 20 25 I Time, Seconds I I I f ___.-..,___..___.__-_._.._.,._.e.,

I I Figure 5.29 I PRESSURIZER ' ELATER VOLUME CHANGE LOSS OF LOAD TRMiSIENT BOL - ESAR ANALYSIS I i i i i i i ._4 l ...... ;...... l.. i _..:. _. g. --i.-..-- i i I I I - e.- r RETPRI I i ,t 'i .__..- FS AR i j

_- l-

-- i 1 i-t I ._.I i i I ..,.. ~..pe 120 I l .}._ I I g i I p w i ,-l i .i

i..

i . i a i 8

_. y -. -..

e i i 5 100. l 1 i G l _ _.. _.... _ ! - _L i -l l-1 i..f. O ~ ,j --p-----{--- I j .. _p ----- _I_-. j I I ( 80 ~ ~ ~ ~ - - ~ ~ I !, jN --[ { 1-3 l. N ' i !. _ _ _ e u l n i i i I { i .1. 60 _,._._.d i

  • I l

g t i .; __ j. N. _..... = i ,i I m E j

i..

ii I u ! \\ --..-.7-- ...,i i 40 i i f I I-I .1 j i l .. ;.. -.i - - ..t l 5 i. 4 ._,..i.-- l n 1 I 4, i 1 ..j ..i..._........ L ..c !....jl..... --.L-l + l 20 - - - - - - - - j --- i I.. I ~ ~ - ~ ' ~ ~ l .i....j.' 0 "~ ~- N -~ -~ O 5 10 15 20 25 Tir.e, Seconds 1i I l I

I i I I Figure 5.30 COOLANT INLET TEMPERATURE CHANGE LOSS OF LOAD TRANSIENT BOL.- FSAR ANALYSIS } I l l' i f' I I 35 PITRAN I l i. ] r- -- [- l

}

t :


FSAR

] l I l t in -'3 I l l i I j i 30 ? l. t i i g i i i l i ( i i i __g I p=s i 3 - i i i i I ._ /___.i \\ ; 8 E .._.a._. i l ~7 4 A ~ i c I 4 25 i r O _.. _.. r _2 _L.! /. Ny ]__ i v u [. i ! i i 3 ..,.__. 7 i w i

  • I y

O

- i
j l

l ..t. c. 20 l a a..- l~; l 1 i I i ! ! ,/ l i i I i i i --F-- L i I uo . I I 'a 15 i i l t i ~ .i.., . j _... q -.._ ;.. _._7. _ t. _.. q.... I e i i i 1 1 i. I i /. i i i e i f a i i o I 1 - L~- i .j ' l ' g) j 10 i / i l 1 i i i i l [ ... !. / .. } _..._ i. _a y.... ( - :._t y. I l _7_._.1j i i i ,/ I I I - 2 - l l l l i 'I ! ' ,..l.. ) i L 5 i i 1 1 l i l I ~l ! I J -l - I. I ./ e I j i 1 / n r-i i 2 .l. I O L-- - - = - - --- 0 5 10 15 20 25 Time, Seconds t 1 I I I

'I Figure 5.31 DNB RATIO I LOS3 OF LOAD TRANSIENT BOL - FSAR ANALYSIS t i i i i 4.0 ,,[ l 1 i i i i i i - i! 4 . ]..... i i ,I .I i i ~ l I i i-I. } } . _l. j i j. _l l-l t I l. l l 'l y ' p.. . l 4 I i -s . I / i &... / h i i f, Vepco _L f.f ! .. p..._ ;._ i. 3.0 f


Fsa

..L..l. _ i I l ./.: l - / !'l1 e = ett ri r, 'I / i - i i i i 4.__ r. _ i l l u-L_ l i i l / 1 i i ( I I .._1......_.- f! l ! ' i i . _.. l.. j......_ _.. j.... / i I /[j~ 2.0 1._ t i i i ..-.7 l /g. .. _. {... j -.... - L ).. i } ) l"' l i i _ ll I i I I i .y.. ..;. j. t. W i. I I ~ I I l .4 ......i.,,......I.. !.._ _i l'. l l ' I j ' ~ I I l ,f I' g .4.... ._.__,i_ l l. . I i I 1.0 ( a l Time, Seconds l8 l 'I i3

I I Figure 5.32 PRESSURIZER PRESSURE CHANGE I. LOSS OF LOAD TRANSICNT EOL-FSAR ANALYSIS I 4 i l j l lf l 1 t 6 I l

. s.. g..

. j l......... !i 350 f I .i......, j .._. - [.---M - ll PITPA'I -- - : ') 6 i e l i j j i .,.l }


FSAR j

I- ~ T---- ! --*- 'Q . j., g.. 9 J--~~~ ,\\ i i fo ! \\ i ! i-i E C -~ s e i g I T.. i 'I i a i i F u { l\\ i i 250l 5 o 1 g I ._} j ^ l l ; I, t il I j a._... l l .m U q \\ j j i i g .._.._.__L_..__g. 7 ... + _.. 200! I O j l. \\ I u l l } .} l ' t i ? t4 -{- - f. .7 i p ] 6 1 i ,\\ 1 I i i 3 .....t---'-'~1--*'"' i~ M I I 1 E tsol.___/ 'l f i j 1 ..l.. l . i I...._.l _.. \\ l ~. ..{.'.....- i \\ i l- ..t " I r i ~ i l ..3 100 I i ! \\. j. i l I l .l. _.f-..... f .I. l ' f J.,..!. ....!..\\~~r ^ g se ___._. / l y.,i d t / i } i i f - I -l-- -l-- g-r t } C-C 0 5 10 D 20 23 Time, Seconds I I 1 I

I 'I l I Figure 5.33 NUCLEAR POWER I LOSS OF LOAD TRANSIENT EOL - FSAR ANALYSIS r i i i 1 I .._i. l ' 1.a _

l.... _. l..

I, i i I l~ ~ j' i ._ _ i.. i !_4 - RETR.d! I i I I ki_ i _..{. M !I 'I _i -FSAR I l r 1.2 l t i 1 i 1 ~ i j i m iI u .f' i. f *. l l 4 4.a _.._u E 1.0 C { l i .l ~- ^ ^~ ~ ~ f ~~ I.._..- h f l ) g g i i = 0.8 5 ! -.__..!.. _. { _;! -i - l - j i i .I g -.. u i i l i l ! l i A o . _. y -.. _... _. _. I I l l 0.6 v u g [..._..._ . j __ _._. -__{ j '..! 2-- lI l l 0 i

  • S l

[. 1... i q.... _.. {.. n ..a i j ' l .; l I i 0.4 j f, __{.... .. n I I 0.2 ' \\ t i I ' I i i 5 f. .l' l i

  • ~ ~.,

s-2 I 3 l l -l l 7- -j- [ i 0.0 d 0 5 10 15 20 25 Time, Seconds I I ,I

I i l Figure 5.34 PRESSURIZER WATER VOLUME Cl!ANGC I LOSS OF LOAD TRA!;SIE:iT EOL-FSAR A1;ALYSIS I 5 4 i f .. _ _.I.. __. j t_.. I h f ' f f I m i y l pg7pg.g f _.. .j _ _ !.__...._[_ -!

  • I I'

l 'I - - ----- FS AR E c U 9 t i g i i i i l i I i i l i l 4 i j [ e i j J.-- - r-- o I l I l j O> i I l 1 } l 100l ,E o l _L_. :. ; _ ____J _ _ g e i iI 3 s L I 1 w __.-._u.. t_. ..g. I y 80 ;. _ _ _. I ' _ _.. _ _L..N..d I =. N_L } I e l .' N.i ~ m = 1 N i s .i..._.. i 60 - \\ l 1 j 1' ' l x...._ _w _. _. E i i 5 I j i s' I { i i i i*\\ - } 40 ..i

1... ___ L.. _.j._.. j '

l N j i i 3 ( .) 4....;__.-..'.._..' .j. i I 20 - - -, - } ..l. r ....\\.._.. ) . j j i-i i I { 6 i j ..f. .]. . [ ' i [ J i 0 5 10 15 20 25 Time, Seconds I I ._._-_,-.m --e._,,-,c-..,_y. ,nc,,_,--,-_--,w,e,---- ,w, .,_,g.


,.w-

-p-

_ _ -. _-- --______ = _ I I Figure 5.35 I COOLANT INLET TEMPERATURE CHANGE LOSS OF LOAD TRANSIENT F0f.-FO R A UI.Y9TS i 1 . I l. 4 i i i l . l. : :'. !' l l . l _- j.... a. l.. l .1 . I { t i 35 i._._ _.; gt7n3x I 1_. . 1 - l


FS AR l

j j l. I i 1 i .j ' I i l i j~; t 30 g .. _.t 2_..._1 .j._._. 1 e i + 6 l q.._...q._ _ j.. H ..Q i

l. j p.

i_ ^ N - 'I l = 25 a i 7 l. is i 3 3 i._. .M. _ '. J._ - I' N 4 i i 5 8. F I i / i o q I. 1 a 4 l j s i

/! - i j

i i i i, i, f l g 20 l-- - '(j 2 i i ' D c l g .,. _.. q'.. i. i [ u 15 1 I l i j O h f I .j. ..t. _.. _ f 4_j_.I , i ; l' 1 i ,/ l- ]! l i i -i r I .I ,i I 10 I' i g j, / ....i......... ._1. /~ L_. l.. / I I i !

. i~

l ..[. i. i I I 5i. / i

I l

i .......t l.._._a - j. l j I / I / .I. i S _ m e .1 dN. - 0 5 10 15 20 25 I 1 l Time, Seconds 1 I l l l I

I I I Figure 5.36 l l DNS RATIO ! W LOSS OF LOAD TRANSIENT EOL FSAR ANALYSI3 1-4.0 i l l.. ;..i .j.. i i, t i I i [ i l i j l-. I l l i 4 I I }' i_ . _,!, L, , m,,,..#_, _# ; r i i i )/- i. i t 't J I i ~/: I l I .[ l. ij..?j.t l l .y. 3.0 d / /_,I i j VEPCO I 2 I / i ..m t ._/ !. { '


FSAR i

ce ,. -h" - [ g, j --[ - ~ - l I 1 i a ._a.._ /j l :: _I l -l .... _.. l _ :. _ f.,.. _ _ j .i t l t _.p_...... i 4 i e .i i i j I / l I I 4 I i 1 .I i i ....i !.... I /. t 2.0 / l i l . [... j.. ..} !..J i / 1 -~~~~,<L i i s l } . g.... m... _. -.. . j. g t..... 2.. i i . ~., _ j. I .p i i i i r l i ) ..j..., 1.o g m 0 5 10 15 20 25 11_. S _. I eg s l l.

I 1 I I Figure' 5.37 PRESSURIZER PRESSURE LOSS OF LOAD TRANSIENT POSITIVE MODERATOR COEFFICIENT REANALYSIS I l I n i f ~ l l i l l g l- .. _.....l _. _.l._.._l... ..l. .g.. f-~"~ ! nETRAN l I t _g..


vrNn0n

.p . _ j..t. .a_ _ m _. f e _4_. .I ,f l l i l l };I l! T! -~T i I I i I i I _..+..~....._.4._....j..._..._pl....,_;__ r . ; i,, i I i I 3 2600 I -_. I _.. _ i _........ ! l j i T-e t j w iI e a o m l. I I g 2500 i _./ ,_g .__j l r; i i u I t-f.; j..\\ [ .l m l F/ ~-- l ) I .+ 1 o i 3 !_.._f' .~i-1 w 2400 i i .. lg. \\ l l 3 ,j. -t-\\ .f l l ( ,/ l-N I e 4 g----. $.f \\ I. l

..... L.. _. i.._. _..

,.___j..__...,. i 2300 I l i, 4 I . f. ~.. .s). _,.. I I l /,' l I i i i l {. I i i i 1 0 5 10 15 20 25 Time, Seconds I I

t I I I Figure 5.38 l NUCLEAR POWER LOSS OF LOAD TRANSIENT POSITIVE MODERATOR COEFFICIENT REANALYSIS , I i i ........ i i 1 i 3 f f I f j d . !....g..... .. f,. I ! l li I ..t.__.., l l l i I 4 s.*ieae aw.4l e . i < .I 4 1.2 i + I F. s i i j -----vcNoon i- -. f -li i q 1 .i _2 ~: 1 1 1 _ M .. i 4 i s._._.4...._. I

  • 1.0 i

~ f e j .( = ii .w. I lc l i r, i i r l f i. t I o .. _m... _ k.. .k. _.. i m l i l . i '

  • 0.8 u

-t i i g ....__l._.. 1 i ..n... p..._ul. i l i t u w i j l I f-n' l y

rxf, l

l 3 0.6 l I A ( i o I I N i. i I g 9 --y jr --F e f '.*,...f....._ __.._':,. Q {. g .l l I .2 0.4 t i l i i 4 'g. j .l l i .. q... }.... {.. : j ..._, ' {' l t.-l-1 I i f -l i i l' 'f f -f t i 0.2 j j I i i 4 i ~

_... a __ _. ; _.._.. -.

l j I I O.0, '4 g j l 0 5 10 15 20 25 I Time, Seconds I I

I I I Figure 5.39 AVERAGE COOLANT TEMPERATURE I LOSS OF LOAD TRANSIENT l I POSI*.'IVE MODEMTOR COEFFICIENT REANALYSIS i i i -' i ~j 1 I 7.. I RETMN I 595 S-- ' -- I i -- = VENDOR i I t.. ..}. j.._ l J __.... l. . p. i ., _ _ _;.. 4__ i._ k. _.... i I ..[. I i 590 l I + i l .. l _ { _.._ _ _ ; _.. ..[. .. f....d. l g....._.._, l i i i i i l c i l i' i i i i ..4......_..'... i u i i i i i i 8,585 .--.-- f-....i .i. --_he... -.-.j n i ' - i. I E N e i !N - ! I i e l I .,,/t _... l ;% l l l b i l l l .. ) _.7._ .p I c n t -+- c4 i .t l /' 's ! f' - s i I g l i 580 s-o I l l ' s' g ..9.. c t i I I __[. l l i ! N w } l l ' ?g y . ['. t [ .q.. 1 i t i i l l-I j-l- ' j-5 75

  • l-l

.i i i a i i i i . j..... l t 570 - 0 5 10 15 20 25 Time, Seconds I I

I Figure 5.40 DNB P.ATIO j I LOSS OF LOAD TRNISIENT POSITIVE MODERATOR COEFFICIENT ASSUMPTION RENTALYSIS I I 4 t' f I I .....l -.l. i i f l f f.. .l. l2: ' j;

'l.

I I i l ! VEPCO ._.----r i i i l : l ! ~ i ' ' i l j ' T~: l ., _ _r.i_.____ i ~i. I _i. } l -l' 3.0 l i i: I l t---[i-m j_ ! I l 1 t t l e i ! l i l. r--- -J' I- 'l l i i !~ ~l { l .l i i .i ; l l yi - i l i i l . j._._.p... _! q.g p._.; a

. _.a

( i. i i i i i l, 8 i l ..f_.. i

  • 6 j_

I 2.0 I i t i 1 l } l 4 . ; 9. j..._.. - -. _ _ [. 7-g I ' i f ? _e l i I _.a i .i I i l I' X! ~! j ~ ~ .. :.. j.. i, j ..a 4.. I \\ _n .I . 4_.,l.. _.. 'q J ' I i [- l __.I I g l.. ..i..f I 1 i l 't ,: I 1.0 + i 'j i I 0.0 2.5 5.0 7.5 10.0 12.5 Time, Seconds I I

I l I Fi,gure 5.41 FEEDKATER TCPEPIGUPE GRE I EXCESSIVE EFAT P12CVAL DUE TO FEEDATER SYSTEM WLFCNC1'ICti TPANSIDn' FSAR RIALYSIS 'f'j ,i !

i
f-[

l::;.f.:..j:::.f :: j.h.:::l::.k '.b::.. .J. .- lt ..l'..- .j..- .}. I i D-i El :

i.!

.il T-U i g~ .t:

4:
:. [.
i. i.

.t:

i j;.
t-iiF:
i::
ib!

H= i-lM ill;:- i. i. : 3 PT =_ t-= =i-- :=i.I!i I

.f -i
hi
.f:3

.'i hi- . f-i 2.--f f j .ffi.. j.f:f -i.5#i h}:. - : p. n jnr ~ i.hi [5 !!!ilu - !i5: ~=!'=N!!Nid 5EEhiii;: ..i ' Jil ii: i:!;i illE 5-! i '=

1,}':
)

-n

  • ip

.3 % ff f}i [- *il { i--~ ;]f firii.];f;i; -fiE[5 ' ';if '.i l -m=.== p: we ;;q= : =iggn=; gid

==r. 7se49= =ti;;.lgt .:p; p 4!i = = hie = I!rm 5Ei - siiWi=i!EE +6=-.nk =1: .+eMic -Eie--t= # # *i!= t b l -i ; Mi=ri== IE l5I-EEi-5EE55El.~ 5N'il TS 5fi!r===EE 'Ei:7' '=E I c l 2".. f i.2"- !. E ":lih. i.i. :.:ii-- hH.i.'fi.lii. F. i,.. = i. : l 'i. '.'. ' T.. l... ! '. E.. i.'.i_i: ;. f ?! 4 r y C 1 .LI:..

-~. t un
n-nu/. :.. 212.

..:t i 1x. n:. ;n..nl*n t... !

-} r '--:--

.:n ;n:- _nj nn p-_r--L-- :t n n. !--... n : : N

n. u. - f.ib.". iE. li.E i %.... E..i= ".

iE... j i.i. r..j.!i.c. 'F-E. E.". i. -i. EE_ !E_ [.. _.r-j... -. t r j I 2 4 g 25lE! 'bf!! 5.5I5'.Ni!NNN.E!! 5f"= k i.'Eh 25.!EE E!!! ~ N 'C -6 t 1 + H. ; -p3 - s!g =i-igg== =et = =iEt ss=eg-g==h as =-gg =i:F-I , i".. fih 'T. .[:3fl

. Iijg: =f_![ iiiih.. ~ }}{~if "l_ - ig.,

- - f-i: :. ;Uh;. 4 ',,l . -i. Ii:l. i .- I.i I. A h ..{.. . }:" ' ;:t.. r..n;: t ". "

  • 1:-

.I b "'-t: 1..1 : _

2. :

u: , I i ;5 ;:.L:..... .:. :p u. :n. ; ? 4 .. U :

. g....

] ];'. i-i!- !!F ~ jj@ [

fi"
:- 2f--3: E-iji,!i. : il

{:=.-'

ih:=

! ~: f

r !.

.n; '. 'rn' I C -10j 1 3 1 l

ijs-."lr r:gr

. i j =.Ii i = pi 1 [j

=- '==
.p4ii."tr

.J c!- .p:1. l_ 3p q.. ..;.. [. g n _l _ l I ~~~t E%-. .j.:. .! !t i:l!!

in si!

hih

l-!.

vi::

i!!!

5:lr .1 i -U nc: -- l. : ?'

.j.:

t, -j . i.: . I L.

Ij f;

' l-i'

E f ;

-15 I ( .l.. I .g ... g: .1 3.: .r e. i __J.; Q_ g..L._..L_...2_..a.;__%'f.I ..;; :. i l l j i-i f l gi l I i ._:.. V. j __. _.... _;......t. .. _..i. p l. [_ I -20 0 200 400 600 800 1000 Time, Seconds I l I I

l I I Figure 5.42 NUCLEAR POWER I EXCESSIVE HEAT REMOVAL DUE TO FEEDWATER SYSTEM MALFUNCTION TRANSIENT I' C.1 D A AT V9 7 9 I l - 1 I j - ..t.. .i 3 i, i i l j i I ^ ...{...... I jl l ' i 1. r ._3.... a -l..li l. ! 'l RETRAN ' I l. .l...

i... l!

t. . ------FSAR 1 l ! -l! - l I i l l l ! !'lI-j l [ .. _J i I l 8 i - l- ~ l - I: 1: l l i. I O I j l . l' 4 .c i -i s i o 1.1 'l M .i w ~~ - j i }., }. 4- .l. I i l i j. 1.; 1. i i o 4 e . __.. g _- .y o u i i l-a + i I E l l i i j : -[ I-!-l -l-~ i. -l - l u N ..._.._q i, !

t l

~ -77 i k

.[,j j

g j ]--- l I il i A .. _.j... _...q'.. _. j._.. . _;_.-p...._...j...... 1.0 I i

l.. _.........

_ :..j _..-..i. ._,l.. 2.. l _- j. i l u ,- __.j l = i i.. i I ... f.... I.. i. . 4... f.... _.. [. b I I k._1% _1.... l. * ^ l l ' l ! i I.i8 1 I I i .l p.... _.... p.t _, _j.....--p. g. ..j._ . j. l i

l i

.q., l r g l l 1 l. g . l. j .;., t ( 0.9 r 0 200 400 600 800 1000 l Time, Seconds I I I

1 I I Figure 5.43 Q CHANGE IN AVERACE COOLANT TEMPERATURE 3 EXCESSIVE IIEAT REMOVAL DUE TO FEEDWATER SYSTEM MALFUNCTION TRANSIENT F9AR ANAT.Y9T9 I i i i ? i i i l .f .._..._ f _.....h.....__ ... {._... j._ h. p...lI i 3 I l i t' i --, t i i l .l RETP4 .:l. .[ i j j ".. 5..1 I - 1 j. : i. }' ; =FSAR n .4 1 i i l l l 'i i p___ l i i w i l I i

j ;

i-j.:i:; ..l.

4 q:

l___.. p.. j .._ { 1'. e i 4 2 9 I I { _ __[_ __ i l_j - l!.

i~ f'

--i :Li : l .i w I l ! ; .; j..- i :l-l ec. i !1 r a .. _ t_... _ : I

)t--
i. :- j::

'i : j-l- j g i 9 l g s-. o I i i e i ea O i l l- .i: l l ~ l i I C i l ~~ ..._f...... {_ c -10l g lj i l - N i .l.. 1 I N.. L T -lf. - f b l l % d 5 i a.. ._ '. _ _[..... !..... l.. g .:_.... p__ _._ _ _... _ __ j.. -20 f l. I I ..i.. . l _l__.._j..l l._.:... lI i L 8 i .i. i l . l _!d...... __.]. e l l i h I .. i.. P t l -30i,. I I i !~ i l I I i ,l l I l [ i i i l l t i ..i j. -40 o -m O 200 400 600 800 1000 I Time, Seconds I I I

I ~ I Figure 5.44 PRESSURIZER PRESSURE Cl!ANCE EXCESSIVE IIEAT REMOVAL DUE TO FEEDWATER I SYSTEM MALFUNCTION TRANSIENT FSAR ANALYSIS I 8 1 I h 4 1 .i l 5 I-.!.. [...,.. p. _.. .... p.. l I. I i I i I i ! i I i l 1 j l i ' PITRAN i i 1 e &- T r I -i .. I l-l l j


FSAR P '- ~ f I

.l l I l-I I l l 1 1 j._..__... q

j. _ _ _ p _ ;

l .1 I~ I I i i i .i i i l i l-y l i I i '/ I n fI i h i I I I I l. l. t e e I l l l' W / I i t g l ..__.._.__.4.._.__.. = o. i r I a m l l e 1 i l- -[-

i :

t-i i i i i. i i i. l W t 1 i l U I I 1 4 a N I i t

, j l

I i u l i I m -20.j i I l. l - -.... ! /""..'".... i... _.. I .t ; m e / i i ' _ _i E I i l I 1 / i 2. i i I i j _ __ I i 'f ' l i i l' -40 i \\t .. l... _ [._;. i /- i. I I ( i ii i f l \\ !......[ 1 L. .j l _/ / :.. ._;..t.. 3.. 3 f -60 \\ g i a N i j i \\ / _ _.. s. _ t., 1 l I l .i = t' !j l i -80 0 200 400 600 800 1000 Time, Seconds I l I I

1 'l I I Figure 5.45 I ENB PATIO EXCESSlTE HETC RE2CVAL DUE TO IEEMTER SYSTEM tmLEU:t.TICM TRANSIENT ES?R RwlSIS I i ..s. o i i Ei~ Eif

h n!H if
i.
lE l
IL ::=J!4..:1i
i!
4!M i:E:l s- -il.:.-i mit..

I r .....l_' ..... ' : : T. '. * : -* : ; l.-.. l--- r---- t....----t--- I-il: -!:22 =i!==:e:.1=== :i=i :.-- - Vepco _-ix-. g: . ! nit $i-E! "i: I Ei"E i;ifi=~ EW5Ei+1i FSAR !" ="!M""; I i E-f j ;gj..;..;gi;jEE-Ef=-~=====};g _-!g;jj. H=1hj-ig=i-i; j

===r+==ts=iriMEEi EE==7EiiE;i=;i--' C;-; "iEih r I

rE:Eti =iE'i= frz:r!=Eif:=s=il5EE=!sE!ME iEi==i= =ir!EE=R 2.5

-i '"I'- 3 -~5"-I=?='-Ni=EEN!!E!555I-55 5 I !5!E55EW

i=-iEi"Ei-EEiE Ei==i:~iE3E;; M "tE=EEfi EEiE=EE'= m ;= ?=-=i L I
=i- : ::p p=-?i=:l=1==ii=j _..;Z =5Eij= E=}=E= isg=~ll==:=jl==l_:J::i=-- l
4....ugg. < _. p...=.=_ :.. u=.. g;=g_-. 2. g.;;; 2n==.g =.. = t. -

_ ;_.2 .._.._.............=.fu.=2.;u.... ._....,.m. e 2.3 "-' ;== r:--- - r=== ; ~~ -' ~ Il 'I fid-5!5EEbr==n---!.T W== re =- I E -i"E-!fifi!-- El=Ei===i - i=H=i!E- '- E=E EEi==r....._ ;=:,,; =, ca %' il-i5 9:ifiE "-Ehi5lMfEi"Ei===i =:= = f: N '-"" ? l i:!!". nix "E= 4:iE=filg=_jh==.Ej;f'jjf=EjE iEE[i = rt=E.=glimi=?jjiE=EjEE., j I .. " ~ ~.."i"lii~t fil5iE5l ="'=l=iiEl ' ~ i". i" Eis'==Hii '~=!EEi=i l 2.1 i-l l . f.=ihn::r-3:"if---E=l? ~.. _...... _.. ' - n~i} ~ " ----I = =-- f. t ri --f = ~! ..s.

t. :: r. :.. =.._=. L..- =. u... =...: u-1.n.g...=--.-e :. --.~,=.......=....=..2_;=._2i=..._

r= s I e g $ig .;:E}-l.jgniE}ll1-ig! ;iE ;E=: . -j. r #j =;= H .;jr., #p.! r i !:' . l i.he.[E. i:=-

i. f. E. E..=_ ! =-.i E=-- t.

Lac --- 1.9 i. ~ j,/ - _. : p... + n. .} F . f:E.:1._i_--i._: g!,F.:... 9 :. : ip a..,l i_:_ I .t.. ~ .'.f $.. iiU N' U;:*i:f:i l' Y_.$. ' [. . f:.:

t.. k

. /, /.. u .j. ;.!.: - hir

l" :

I '+- :jn 1.7 i: ' i-EI I - r I

T

~ p, g x3.: I l.3 j-i -l. jd i i i 1.5 0 200 400 000 000 luuu I Time, Seconds l I I I

I I I Figure 5,46 BREAK FLOW RATE MAIN STEAM LINE 3REAK FSAR ANALYSIS 15 f. j .p _... I i

  • --~ ~' 1

' i ~~ I' i I ~ ~ ~-~'I ~ ~ ~ - ~

  • ' - ~ ~ ~ ~

I ~ - ~ ~ i l l l . 3.___ _. I 3.. RET h' '~ l 12000-I . I I __.-FS AR i I l i l f j i ...... {.._.. _.. 4 i i g g . p _.. ~ I E 10000-I -...i._ _ _ n. s i = j - 1' l i x l l I e m g

n i

j i I l i I 8000- i_ l l{ t e i } l I i l _t._._.. l i .i.. . _ t _ _. t. _. g e i 1 I u \\- ._j. l j o i l-m i i i \\. l l i 6000-kj .. _.. ;...._ ! __ _. [__ _. _. l.. __ l_. i i l 1 .i..-...... j ___. _ _ i, _.: _\\. i i i ..j. p l.000-I g s .e.. I se. e .u .ame.r ..em*. wee.- -he,e. s i l k I l-. l-. . l.. l-. ' I 000, - \\ - I I w f.

=== [ l l l r ~ -- _ x:. i l i 1 l 6 o 10 20 30 40 50 60 I Time, Seconds e l3 I ,_,-._.-_..._-y

I I . I l Figure 5.47 I i PRESSURIZER PRESSURE MAIN STEAM LINE BREAK FSAR ANALYSIS iI i I l l .. _ f......I. I l 8 I l l 'B j i g 3000 7 -- - - - - j--- --- RETRAN ~ H' t l + '. l. fi


FS AR l

l l. l l i i g l l I I l~ ( { t s l ' l .i 3 l l I _s i i 2500'. i i i l l ' l ,m., l m ir i m ......i.... ..i.... y l - -l - \\ j. . l {i - j l I t i e 2003 ; . N ' ', -,j ~ * - -~~ ] } i 3 1 '...a_. l ..,i '\\ g._. _..._. } .. _..l i . i u i

3..

A l '\\ t .... p.. . g 4 g p... _l_ i_..._;.. [ I g 1500- \\' i .l ..{... ... y. f ] I I u \\ v l l i - [. . L.a....,. _ 2... y ....j.. i. .l 1 !g i i I l .\\ l. I.! 1000 N. i e h_.. l. 1 1._. 3 ( g .. _.j j._ l j. i i i t 500 0 10 20 30 40 50 60 ~ ' rime. Seconds I I -,v.-,----- ,,,..,---.-..,,---n-,

I Figure 5.48 TOTAL REACTIVITY MAIN STEAM LINE EREAK FSAR ANALYSIS ._..as.as.__e.._em. >.e - em.-ee - e .,em. su.. -.. ' I ~ !... _.. i i i l b, _{. 7_ m. I i RETPAN I ....... (.. ;.. FSAR I i I ...._j_...--._.~ i l .02 l l 1 l. t .._...._......i..._}'_..... _ ' I i i I : i ; I i._ i _ _! __. _ t_.I I'l 4 i i l ~ I I . 01.. l i I. i. [. i i ... _. l'. - l'.. ._i..... l I i i M l 1 __._.{ l. y r-.. 0- ! ~ ~ ~ l h .g.__.. / t 7.....,..", _i D i i _ _.... l 7...._. / I I t + 1 i l ..... J.. l e i

i. _.t.

i i i w i i 4 u i i g i 1 x - 01 i -..... / g.....-. ~ ~ O l i } l H / i. i. j I l l l _.1 .02 ! I .L.. _.L 9 l l j. i i i , ___. i I l l 1.. l I l _._.,.._ _. ; i. ...i.._ ; l 1 I f, .{.. 4 I l I I i l l ~ 0 10 20 30 40 50 60 Time, Seconds I I .-.--.~..m..

I I I Figure 5.49 CORE HEAT FLUX MAIN STEAM LINE BREAK FSAR ANALYSIS I I j...... j..... j...[ !E l 5 i _ p_. pggs; .-.__.i ~ FSAR l j 12- .:...._ ;... L.._ ___l.. L _ ! _.... . l _....J _ _ _ _.^~ I i I l 10 e,si i 3 a/ I i [ ! -_ _.. I.._.. .[_ .. _.l f... N i N' i ! /:i N l O l 'l 8 1 l i .[ t I _/ i n J .. ] /. l. ..I ._ l. . i..... I o i i i. / i -w 6 I g l ....... j.. _.. 4.. !. /' _ .L.

/__

i l g /. l i I e 7-/-*i l i u i O 4i j j .1 i I .t/. .li i I / r I l l I .l. 2 L.- /- l. 3 i' -. - -e s. i . l. i.! ( l' / I i, j i I i ..... /,..._ i a /- I t f / l-0 0 10 20 30 40 50 60 Time, Seconds l lI 1 h I t

I I Figure 5.50 t i PRESSURIZER PRESSURE MAIN STEM LINE BREAK TRANSIENT SURRY 1, CYCLE 4 REANALYSIS 1 i l l ' 3 .l .l ... l I I l i . a.. _ _;._. ...[........ . l l ..i RETRAN -- -- --- l I l.- i I ..._..i__..._.. l._.._... i i i i i [ [' j l. { 1 ; . I.. _ f ___. :._. I.._ :.. .. :..1_.. p__ i i-E ~ 2500. j I

l.. -..

.n. 3 l.. y i i mm I _p f____q I i l, _.i. M l I I p. g q I i i m 2000 f,.-- _..!- b- <l

I I

u t w l ] g .l. .{. ..i.. 4 1 ( b I I / ..I - l l . -i m ...-[..._.... i u i [ 1500 n. l i i i 4- - l 1 i l 4 t ( l m I l t x g 4 i i h r i i I l 1 1 I i i I I l I l i l l v' l l L-1000 -' 1 .._. l... _. p _. i ._...A_.. . l.... I i I. 6 . q.. _ p ____. _ q _.._.j _g_ _ ;._.._.. 7._........_.. l i I I l I l 500 4 ..m i 0 10 20 30 40 50 Time, Seconds I I

I I Figure 5.51 TOTAL REACTIVITY MAIN STEAM LINE BREAK TRANSIEh7 SURRY 1, CYCLE 4 REANALYSIS j (_ : _.7 _ _. _. 3.._. _. j.... j. . i i.. 1 I I .03 L j I I j. I I l ! f' I ! _.f I i' _.._:.. _.... j _. I _ _... !....j...._ REraAn l I .02 I ,l i I l. 'i't. I I i I . _.r -- - . l i . I 1. - - - - - - + t-4 .01 l 1 I- --- ] I I I l _.,I I I i l .j .. I. i x e l l l u i U 0 : r ' i ' ~ i r { } i .I l

M,...!

I 3 ,i 1 .i g .q. .j. i I - 01 '.(i.._...-_(...i i__.i_j.-.-l.. i i l .f I..f... .(... - l..., f. .l. i .02.1__ i i 2 i i i I l -i l l l .1....._;l l 1 I I i + i i { l i i I j. .{. .j j. g[ i l i i } .j. .j -0.3 a - _.. L-r t-r I i l~ i i 1 l l' l j j l t f l f I i i f I i i i l l 0 10 20 30 40 50 60 Time, Seconds l l l lI ll s E r

Figure 5.52 CORE HEAT FLUX MAIN STEAM LINE BREAK TRANSIENT SURRY 1, CYCLE 4 REANALYSIS I 30 - .1 I t. t pgrp;N -- .i 1 i t -

i.

i.. -l 2 'l .j. . i-j + i ]\\. }:1 ~ .j j-11

H 3

l -lii_ = }-i ~

21 1-i-Iie

'inc _.. _ _' l. 5:l : 1::.1 :.:x! .. ; j -._ j.. p c a.. .._3._. o I. - J f.' _-.N 3 -,. _. '.l'._..., .I .'.. f_. ar.t... M , _... t :: .. : t'.::_

_ r

.\\. a . Eb! 1-5. f z::. .-iE i

  • i I-i -- -
  • - f-.IE '!S![

l

_-...
5. --

-i ' t -- ] I 20. +.i1. "l: :q:3.}--?i.9 J-i.:h--g_

f t ;;i: d ;j: '::- :t.-

l q-7; o + I =, - } '..... fn= / i -t. = --.* :. : F..:lx.=c=

4
  • ----- --- l E i F ;-

.... ',,. t. -..~.- ?.::

'n

= x l 2 2 t - *:- .g._.;.._ __ t__. y.. r -- ---!--[h uiii[iiEEjz.!Ei ::!:i:j;Eh;

=t E

. !:i ~ =F xFJ xif .;if u I"i 1 '". - : 9fu. 49 2.4--j. - ----j:-t 2;;; -- i --- y

q. '-

7

_g qu_. -.._:.pq:n.2j.]:7 p_

4 [ ~ l-i hN!: f F-i Ii:: -[ i - l

- -9.'

J; o .\\. c.t.+:u.. if p a_:p_u. ;.. :l. 2.;

.!i:
-l ".i_

..;l.. _ r .2-_- _ :._ _ _a.p ....:p

_glc; g 4 _;

. !c::g. 10 ..j .l. : .l .-. {. + l 1 I cj. i.. .q:- 4 -l 3 +

-j :: l.

~ jii [ ;.. 1 I ': .l.

i'.

r i--

-l t-fj. j

-i - l .-F I l~~ f i t i t -[ f 2 i l ! !' - I i .i l i i i 1 4 ...__ l ;_.... _._; l __ u_. _ _..__ i _. j 0 0 10 20 30 40 50 60 Time, Seconds l I 1 l I I 1


,------.~--w-

- - ~ - - ~ - - - - - - - - - - ~ - - - - - * - ~ ~ - - ' - ~ - ' ~ ~ ' - - - ' ~ - - - ~ -

5.15 5.3 Verification Against Operational Data 5.3.1 Introduction The purpose of comparing RETRAN predictions to plant operational data is to demonstrate that the code, coupled with appropriate plant models and best estimate input values, provides physically realistic predictions of integrated system response to various perturbations. Vepco RETRAN comparisons are for the pump coastdown tests performed at both the Surry and North Anna plants and a plant cooldown event which occurred at North Anna Unit 1. 5.3.2 Pump Coastdown Tests Pump coastdown tests of various configurations (i.e., coastdown of a single pump, two pumps, three pumps, etc.) are performed as part of the initial startup test sequence for new nuclear units. The sections below discuss RETRAN comparisons for a single pump and a simultaneous three pump coastdown for Surry Unit No. I and for a simultaneous three pump coastdown performed on North Anna Unit No.1. Both single loop and two loop RETRAN models were used for the comparisons, as discussed below. 5.3.2.1 Surry Pump Coastdowns Pump coastdown tests were performed at the Surry Power Station Unit No. I 1 in January 1975. The tests were performed with the reactor at hot shutdown conditions with all Rod Cluster Control Assemblies (RCCA) fully inserted. The test results of reactor system flow versus time have been compared with the flow coastdown associated with the Loss of Flow transients reported in the Surry FSAR and with RETRAN analytical predictions using both the Single Loop and Two Loop Surry Models described in Section 3. The comparison for the simultaneous three pump coastdown is shown in Figure 5.53. The RETRAN code predicts a flow coastdown curve which lies between the FSAR prediction and the test data. Results for this case (3 pump coastdown) were generated with both the Single Loop and Two Loop Surry RETRAN Models. The cotstdown curves generated by the two models were essentially identical. I

5.16 Figure 5.54 compares analytical predictions made with the Surry Two Loop Model with test data for a single pump (two pumps remaining at full speed) coastdown. The data are presented in terms of loop flows. As may be seen, the RETRAN predictions are in close agreement with the data. The same data are presented in terms of core flow fraction in Figure 5.55 to allow an additional comparison to be made, i.e., to the FSAR accident analysis results. As with the three-pump coastdown, the RETRAN curve lies between the FSAR and the data in the region of interest (minimum DNBR for the single pump loss of flow accident occurs at e3 seconds - see Figure 5.26). It should be noted that although the data indicate a slightly more rapid flow coastdown than either the FSAR or the RETRAN predictions, use of either analytical curve in combination with the conservative FSAR assumptions concerning trip delay times has I been shown to provide conservative results for the postulated loss of flow accident. 5.3.2.2 North Anna Pump Coastdown The three pump coastdown test was performed on North Anna Unit No.1 in April, 1978. As with the Surry Unit No. I test, hot shutdown conditions were maintained. The reactor coolant flow versus time was measured out to 10 seconds 4 following the loss of pump power. The comparison to the FSAR flow coastdown predictions and to the RETRAN analytical predictions is shown in Figure 5.56. The RETRAN results agree quite well with the FSAR, particulary over the first four seconds of the transient, which in a complete loss of flow accident is the most limiting period from the standpoint of DNB. Note that both the FSAR and RETRAN predict a slightly slower coastdown than the data indicates over this same period. As I discussed above, slight deviations are evaluated at the time of the test to ensure the overall conservatism of the FSAR analyses. In summary, the RETRAN pump coastdown calculations performed with the Surry One and Two Loop Models and the North Anna One Loop model have been shown to give results which agree well with the measured data. I I

5.17 I 5.3.3 North Anna Cooldown and Safety Injection Transient An analysis was performed to simulate the unplanned cooldown event which occurred at North Anna Unit 1 on September 25,1979." The following sections provide

1) a brief description of the event; 2) a description of the RETRAN model used for the analytical simulation; 3) comparisons of RETRAN results with plant data taken at the time of the event; and 4) conclusions regarding the analysis and data comparisons.

The North Anna cooldown event resulted from a turbine trip and subsequent reactor trip on high feedwater heater condensate level. The high level signal was the result of tube leakage inside the heater drain cooler. Following the trip the eight condenser dump valves tripped fully open to supplement the reactor trip in providing load rejectica capability. As the plant began to cool down seven of the eight dump valves modulated closed as designed. The remaining valve stuck in its fully open position. This resulted in additional cooldown beyond the no-load temperature, causing a depressurization of the reactor coolant system and initiation of Safety Injection on low pressurizer pressure. Following Safety injection, the operator tripped the reactor coolant pumps in accordance with procedures and the system rapidly repressurized to the normal pressure range. One of the two high' head safety injection pumps was tripped; the RCS continued to repressurize at a slower rate until one of two pressurizer Power Operated Relief Valves (PORV's) opened on a high pressure signal. This valve then cycled to maintain RCS pressure at the relief setpoint. Normal pressure was restored by a combination of operator actions, including initiation of auxiliary spray, realignment of the charging pumps to the normal charging path, throttling the charging flow and reestablishment of letdown flow. The RETRAN model used to simulate the cooldown event is a 20-volume, single loop representation of the North Anna Reactor Coolant System, steam generators and associated control systems. The general description of Vepco's Single Loop Models, given in Section 3, is also applicable to this model. Additional features included in this i I

5.18 model to provide a best estimate analysis capability include the following: 1) Representation of the automatic steam dump control system. 2) Simplified representation of the feedwater control (steam generator level) system. 3) Representation of the High Head Safety Injection system 4) Automatic charging flow (pressurizer level) control in combination with RCS letdown. 5) Representation of the following operator actions as boundary conditions: -Manual tripping of the primary coolant pumps shortly after Safety Injection -Manual tripping of one charging pump after Safety Injection had restored pressurizer pressure and level to their normal values -Manual tripping of the Main Steam Isolation Valves to terminate the steam release shortly after Safety Injection initiation -Manual termination of auxiliary feedwater flow. The following discussion provides a comparison of analytical results to plant data obtained at the time of the cooldown. Plant data sources include alarm typewriter l printout and control room strip chart recordings. The resolution of the alarm printout, which is the source of most of the data, is plus or minus thirty seconds. l Figure 5.57 shows the depressurization of the main steam system. The alarm typewriter data are representative of all three loops. Examination of the data indicated that the depressurization took place in a symmetric manner. Note from the j figure the pronounced impact of operator intervention on the pressure response. 1 Figures 5.58 and 5.59 compare calculated and observed cold and hot leg temperatures, respectively. The cold leg temperature data in Figure 5.58 from 0 to 300 l seconds are based on alarm typewriter printout of narrow range Teold. The data points I i

I 5019 represented by triangles are Teold values inferred from alarm typewriter steam pressure data. These points were derived by table lookup of the saturation temperature of the steam system and correction by the calculated primary to secondary temperature difference. The dashed line represents control room strip chart data. As can be seen, the general agreement of the model with the data is good. The predicted reactor vessel AT under natural circulation conditions is slightly lower than the measured value. Figure 5.60 shows the pressurizer pressure response. The calculated initial depressurization and repressurization following Safety Injection initiation at 300 seconds show excellent agreement. This good agreement provides further qualification for the RETRAN nonequilibrium pressurizer model. Figure 5.61 shows the pressurizer level response. Both the observed data and the model indicate that pressurizer level indication was lost for a brief portion of the transient. The model predicted a slightly lower drain rate during cooldown than was observed. This may reflect a difference in the assumed initial pressurizer mixture quality and the actual plant condition. The general agreement is still quite good over the first 10 minutes of the transient. The underprediction at 1400 seconds is possibly related to the integral effects of RETRAN's underprediction of the safety injection flow rate at elevated system pressures. 5.3.4 General Conclusions-Best Estimate Transient Analyses The comparisons of best estimate RETRAN predictions to plant data presented in sections 5.3.1-5.3.3 (Figures 5.53-5.61) are indicative of Vepco's best estimate analytical capabilities; the favorable results shown here provide a cound basis j for applying this c'apability to general plant operational support. lI l 1

I I l Figure 5.53 t FLOW COASTDOWN OPERATIONAL TEST AT tt0T ZERO POWEP. 1 i SURRY TilREE - PU:fP COAFTDOWN i .f. i I l-i l I I : .....s.......-_ l i li RETRAN . i i i - [. i,1 ! : J l l l Vendor ~~T. I . I i n i r 1 ...._ _. L._... j...._ k.._.f_ OO O Data ' i ' i - i 2 1 { O I i.

I-i 8

'~ r._!._ n i 4 .i .i ,i ,i g = 100 I -i. i i

i

! j -i . :! l - r- - l 1 i i.; c s i I L i _.l l 80i N t I i N l. j 1 l- - -l .l I 8 i 1 N-l i. i i I i, l u N i ue i i s y._4 g .-.,. ;...._. J.. o 60 I s s i i . {' N I g j .p I I ~ ! ... -4 L i I i i l... .......,. =. e i ~ i 4 40-: l l . j l 5 i . l- ...,...J .-........L... .. :.. L.. _....l.. l l 4 l i l l' i i i ..p l l 9 l I i I l l i i l I l 1 i l 1 .f. 1-l i L i 3 8 d 0 2 4 6 8 10 Time, Seconds I I I .--,e -w----ev..._,-m----,., _-wn,-, .,,,---,-----n--~--v,--w.-,,--ae .v-,-..-- --,----e-n


w--

I I i Figure 5.54 FLOW COASTDOWN OPERATIONAL TEST AT !!OT ZERO POWER SURRY ONE PU:!P CoASTDOW I i -l .!~ l l L RETRANj f l I I I! i i.; l l l i ~ j. [' j ooo Data i- .'l L jJ ! I i Li.- - - - - r- -

i:

.l-i l l l l-I l 'f f i~. .j 1 t H 4 - I I f ' i .r i i j i, i. Loops B +i C' 'i l'! N i {- -l I I j -l l m m i i e i I .3 100 - :- 7LI I - I I l i T

T i
i i

t I e l 1 i I i-l ' ~ - - - - - -- -f l o c 80 P I. _j- ?! l ' !" l .!_. h ll. _.[_. t l i i i i !t i

i. li:

~ e f I l t e I 8 i l w ._ ; j.__; _. ggp._3. ; j t__.... +..! I I 'I 60 i l. . i l e i l l

l I

1 i i i v___ I i I l' '? i l I i I-l 40 l i i I i j j..L_p _ 7 j.. .. }... 1 I gi i i i - g I...i.. i l l ! i e t 8 0 20 I l.' l i [ i I

  • a

.. i....,....i... !.. i. ..i. 8. l ^ 0 ,-m..... __._w___.- 0 2 4 6 8 10 Time, Seconds I I I ---m-_ ,-m

I I I Figtne 5.55 I CORE FLOW COASTDOWN OPERATIONAL TEST AT HOT ZERO POWER SURRY ONE-PUMP COASTDOWN I

f r

'I' .f ? 5- -** k I --. : *' L*!. -,h.....b ...b**- l b i h k ' ~. b: l t ::: .j. 'Fr - ; l:l :2-19"22; -?lp - =;: L " 9 i H. 3 -. I iK

il

. nl.i .1 =:=:4! = !~W + m 4 w JiD W - 1 3 .. ('.. . ' _......._.. t,.u_.n _.

5...r - i n n = g un - : : l.= :-.u n _ r = l- - - t.

l.. + - - -

p_. - -. :: i =.. :.. f.. r - r - - -- - - -. -... =. -

q r_ =_. =_. L. c -. _ g =..:=_ o - j=.... ~. L. - -p. - -. a =... 2. .._ t

= : :r..

_.r i n-1 I N ,..l2 =j.i"E=i i== $EEE}- ";"li=J:EH -= R= E EEEE-U . T. : ~ ;...... : : ^:. ' : ".... ::~ :::. L:.. :. ; T RETRAN { :- L. .u.n. :

r. --.
1.. :~n r. =j unn= l = ~

r.__._ t.....-t.x t:: O . =. o + ...una =..r +! s,u.rIn=:=.. h=r e t : =--I===n ;t-r==r o o o DATA ~ r r' -. r =-

t_

-au t=a= =a-I _..._.._=.__.__...._...,__._l_._-.----r---~- ..m., tu : :: FSAR ~. = = --- . : :_f_.._=.. =_ -... un._=.t _-- __ t ~ -..*E = t -- - t -t2== ---H---- = =- tu u:

=:r

-t p_=r - _ c;! 2:=;== :p:;r =12-2 .u. n c .:= r-:- := n=r " l --5 ' : l ^ NE5i-emf 55}55NrY=5%~Eb5EIE N T.Zf 52- .e eri-- =+g=rs;l-g.= q.n==es.=EtEEE ss=p= M N h=" i.. : ; _ r --- - - - t..rrrr =

b. ;_=h_=c n=;n : =:=s _;c.nr_. p:; =n x==f=: t_r=t

= - c: =. n

  • : t r. _ ~

t===.

r. r.

1.:a=1 - ---t-- o . _. f _~~.. _ ___ -.,CLU ~..e...... '=... *"]. =. _IU.. 4.rT.. ~ " - :.. - - - - - - o rd T. U':.*,....

  • ...! ~. y. '** C~.~g* ' !*

"I _.-- I ~ E _L..*'**C. u 100 ...a===u===+===,"====~-- ' - r= ;- = t -==t : r' T,====. =:'l.=a.=. =:==f=r== = = = = = = - * - m - r- - rt 1-- n. 22 I 1. if:!M4-E}:M5-]!!f5bdM-5If!5.Ed@~M-M I N - + - - :. h=====.= :=== :::===== t ::=--I= :n = : t = = :,j - - -- * --- ..t-.==. t===-

t=:. :
r. c

= 3 N.,,,, ; ;; t a= r; = =--} ---"I : ~r f= = "-- 'Ix- "m{- 90 = " - _ ~ =r. I s' ~~~-7= '= . -.,.. = y- = = y... I - - - = =. :==,...-._ ....l.- v =.- = r .. =; \\ I c ..a7.. r. n.,.. =...

r. -,-

p =.. =... _.. _ -

x. r. - i. =::= =::=Jxx,: = t.=...

7..-.. ~-Ei:!1 - i-ih~...... _. _. d....... h . i;U ..f.. I ..............2--r.=. =..u x..u. t=.==_ t.......f.. o & 'i C" " d * .80 . }- =.. :. j..=u..=. ---. e : ni.n.:crlT. i l ..... l:.... _.... ..r.. i r. 3.. ur.;..-.-. t.::. : - -:.-...n. : r..:p.-::=..-..;--- t

n..

i . J'.:. .n. r..... _... ;.,y. [..._ ..p.. n ..__? l ..... m[... ...... t. j.. a =- .: n : :. I 70 I .?R:j ::2j ].,. j -t:

;p i:

j p;

p
p n.

s I ,y e,a .e .lm l 60 t I 0 2 4 6 8 10 I Time, Seconds I I

i \\ I l I Figure 5.56 FLOW COASTDOWN OPERATIONAL TEST AT 110T ZERO POWER NORTH ANNA THREE - PLMP COASTDOWN I l l l l 'l l-I i-I- I i -l l j -l l- -l: : l-u!-- .i l-j. l .} j :.+.: p . j.: J... l-

t_ ;.,j j

[.

-l-

._l. - l: l n:l- .j.-

-j;

.j9x-l: = :-i j.- I ~ l- - l al. RETRAN .i-... _ ... l- ' i.E ~,: "Iri l i t 3 " i!--l"y -h . :l _.i + ': "_.fE. o o o DATA . _. i+ + ). - + O., - :-h-l.;.;; .-l :

l.

rhp?i :)- Lt ;-hr -- FSAR 5 i~'-I:-- I m n=x f u.- ..n_: 11.:":. f - - , - - [-;

-
. : l_i_.-

E =isi:le t- = Fiti - i= 1- =;=.4-i-i-!a -Ei!'--14 =i-EE=ii=11===1!= i.i=i.i.u.ili': ]ea 1 -5;n f:: --- !=:j.!- ' ni } j 'i ~i '1 ziE y:hipjEnp5) lia--!- =iF.-jg.i-_-!:i l e E_ r --i-:!"i== imisi!d-!!+=+ iiii+:..=-:=;;"==t Nib!= 4 is I s

.-.; p ;c _ ;=;i.=l.=_-

3.- . - _ _. = __ f:. t .._ =.-y _ - _ _Ii: : I .~ !-- .. 2 lilf i. _ I.:7c:2 i ";i i

r = _

g m; N I i - I ~i-i ' 2T "-F~"~" I=i=~" - '" E*~ ~ 4 E FS~""?! ~"" -l*4-~ ~ = o.8 4 U d--[rn. - }.:. t f ,k - 2Yli.'rF 'I... r-l -j:: :tzpl- -l2.;l;in;i.7-jij j.-- l-in:--ij j7:7 ---lE-iF.j; p1: i a 2.~i. i.~ i?.i'.ii-?r.__l? - 21.!_i._-~.5_I--]!.. ' iib'} :. L -.[ ::;; -E j ;: l .552 !s'-' [7 i' -li. i , = gj:_=-u. 7 . --l - ~ -l: ~h f C~'~- ! fiYT9 !: 5)l.it'*- :l :. i e j . : j -i . !== ! =. ! :

0. 6 -

p :,. l g; g;_ p_.g .gg; g_p -p-

f.

-l-l:g g.l. l.. O ~! . - - 4 _." : f. _.. _..,f.* ..._ -. : Z ' {. l l

l..

I - l j .j J:, .l -- j - -j- -j-I _l, ....j. :.u. ; : :!-.. 4 .l. .l .l. o.4 .i l l-l i j l i I . 1- -l 'i I g I' I I I 1 I I ~i l li l l- -1 i l t I o.2 i j. .. j. j I ~ l___ 7 __ L l. 1. _.l._ [ l i I i ! l. 1 0.0 0 2' 4 6 8 10

m.. S_m I

I

I I I Figure 5.57 STEAM PRESSURE NORTH ANNA C00LDOWN EVENT I l i i i j j

7...

I l .!_ ____ l._ i MODEL ..f _ l ._:. i l ' i' [i . - v -- i W PLM;T PATA I I 1100 - i 1 8 i ! S{ ' I f _. ._ i. l I l. l _j i. Y 7-g j i-l l-1000 ' ~ ' I l j , _.. [ q.. _ _ .._.i_.. c i I . f.g! _... ! -_. f._ - .f l i i I y 900 - 1 - TUP.BINE TnIP/nEACTCP TnIP .:._ _. l m Il 1 ~ i 2 - MATN RTrpt TSOLATION VAL E i 3 I i TRIPPED CLOSED i _... }',.. [ IA 800., 3 - AUXILIARY FEEPUATER ,8 l

l.... {

TERPINATION I s b l e l' i i ,1 t;; l' .._:.....~........."7 g ! B 700 J-j ' l l [ --l 1 g li ____ ! ..p -o...,..... _:.. r_.. .+._;.~ r 1 I i I ) rm,l m, L'. m. I l I .600 -.) +- i s: r 1 i I l l ---+------r--- r-- i i 1 I ...,I. p. i l _t.. i 3 y { J,- -- ;l

--j g;--t l

e I j g j { f I I g h i 500 0 l.00 800 1200 1600 2000 Time, Seconds I I ,--w ,--,w. --w.-

!I i Figure 5.58 i COLD LEC TEMPERATURE g NORTil ANNA COOLDOWN EVENT 4 3 W l l . I _. !. d..;... ' [.....I.,.._.. __k. i.._[... I h(iDEL _ l.. ' i I i PLANT DATA (N.R.TCOLD) ~ . _ r..._.._. _ _ . 4.. A INFERRED FRO:! STEAM 570-I ! !- ] I. _.. PRESSURE DATA ~" i -F-- I ! I i l ---~~--tI. R. TCOLD .. s... ' l._k._....{.... ' l r .._ _...s_.=_) l l I ( t,. l r I e 'l l . I O l 550 _ l 'l i I ._'.3...__ . a. l..

....yl.

. i I i l o i I i i i o l \\_.. l. u f._.:._.I _L j f .d ' f___ l f_. l I = ' j \\ i c. I i i I Y Ii!... i e 530-i._-.._ ;I i ' i I.. I = L t s w 3 I I. i i

\\

. i i. i f... i I e-510 l l. . I I r o I u .i i .N i i l . [. .j. ..1 ! 5 I i ..l.... ? I ' i I i i 5( 490. l .l l :N " 4...l.. ..l.. f. I. ...N_ 3 i i -.g .f l l^l VI !~ ' i k. .a. _ + - _ 1 470 l -*+I- --f**<*.- l ' i i i l i i l l ...W..-e N. .=-.4.. i I i t I i i l i i i i i l 450

ma.

e 0 400 800 1200 1600 2000 Time, Seconds I l i!I

I E I Figure 5.59 HOT LEG TEMPERATURE NORTH ANNA C00LDOWN EVENT I I i ... }. l q I i 1 I e I.i I, i, i --t l l t MODEL 600- l .i.._ j.j __ WIDE RANCE THOT I I ,e CALCULATED FROM NARROW l 3 --- i ' i - l-L RANGE TAVG AND TCOLD l SSO. 'l. I ' 5 \\.[ }, 7.I _._.l.._._.- I e i l------ - - - ~ ~- - --;~~------ - - a-I o I 560- 1 I I 5 {\\ --. [... L_. ._l _.i _ ..._24 2 a _. .._ L y u I i e a _j... {..; __ t [ e G . ' i l, _,,,. j l P., 540. __ - 2 j E 9. . i ! i ,. I.._.i. i I y I l .. _ }'. a ..y_. _ _.....,. - - .9 520-8 ..._ l_ g,- .. J / ;........ gl......{.. :. _. ,-W l q _ N'. /

p. ~

i l 500- . - -I ' ' .+_.._ - -- u,. i'k.j, I i. l l

j..

.}.. s f,. I I l I f ? { i l I t 480 b g I 0 400 800 1200 1600 2000 9 l l I

I U I I Figure 5.60 PRESSURI.*ER PRESSURE NORTl! ANNA C00LDOWN EVENT E j ! f l' f-i i i i jl ! l- { i-I 2400- _i_ j a j i .L-la

i

-l e f

i:

.I-r.- f-l - 1 f ':l^

] -
l-.
{

.. j. -t j

1

- - ' - - - - ' ~ ~ ' .t.. I .g. 4- -t-j

.j..

r_ ; F 'd { b g i . p.. --i-5.- m m ~ 2200-

r-e

--)._. H = I .. ::. ; :: - p?h k }- { e . l : i.:.- - ri : ] c -i+ l-. ::. ,.r--i:l.i:dE=lF=1.+{5f::[L.. y -j. Ej :. I '.l-[3pil-i =;i ::

j.
.

.fr f= 9:-~-lr Eh? ' I 2100, =_ p. i: .+l-p.

.:f -i jg

.:. ; Lq p.- n p.:.:: i+ p m I - - + l: :'. y ~. l Tu -. j.T ~~~-] 'h - ~~ l :. _--f \\ I-g j.. .1

. p.

i p,..p o 2000-w -}- l: m e. i .-j.t p: -7: .l-. ji -l- "i ' I M /i -[ .i-I 1900 I -..i.

  • I

-4 1 .I< r . t. j j-j. t .l 2 i g-L. ! j. l-j. I --H 1800., l I l 8 i i l i l I g i i i i i ._] - {'.J 1700 0 200 400 600 800 1000 1200 g

11. m 1. _ ze,. S _ m I

I

I I I Figure 5.61 PRESSURIZER LEVEL NORTH ANNA C00LD0k'N EVENT i' FDDEL i j. 70. PIR7f DATA e j ~

.i.

.i_1.. -i. .I.: , w...

.i.

.i.[ i.. l t 60 - } i :iu. 3 r-[i.- I I: ..l e--

4. : i.:

.._ ii: - il(;- i: apr:

i
_E p
. '

r- "t-r: ~. r;- --I

-- l-h 2.iij-j I

.. j i --. ,1 r :n ar' 3 g... g.

p 4
g

. j. 4 50 g d 4 3i=L 4Eiipq.; l- -y _:.. =.;;= -:.._. n !~

.u..i.li.

';:.. ;; p .2: I i;.4:

.. j r

.. -. } ;.,,... } : -. - t - .c +:-. i .- {:- ::1 "hEEj E~ -ib ! -h'

  • h "i~". - } {:i :
1Lt. c. _. : - l 1

t 40 - -i.. - :m -l j.=tj,r o I a .::p n : -- - jjE*: hld- !: L.}.[,N ' : LIl y h .L".1:

nif-Hd =- : run 2-;; ;.

- all- _;:--

}
j..; {. ^ q -tic:

d r- ~ ~. ". :c:.;.;

E:-
u
j. ;

. ci-qt:!.l i j:

=

{

_. 4-- p_
l,._

..j::. p, { ; :- p i.+g 4;. 30 - p,q- -l - F j -[ 4 g .j .l. j. l 4+i. t .i-T i ' j' - l :..L- .j :l i l 20 i p j. ; -t p .l I

h

-F 6 -i -i-i.-).:!- l I

i i-].l
l.

1- .i i !~ ~], j + j. j j 10 ' 7 i j, j i i .i l.._..... __ } i , l m.. i g' i .j_.__ _ _.gi_ _ 0 400 800 1200 1600 2000 Time After Turbine Trip, Seconds I I I

I I .SECTION 6 - CONCLUSIONS I The Virginia Electric and Power Company (Vepco) has developed the capability to perform system transient analyses using the RETRAN computer code. The general code features and the types of models developed for analysis of the Surry and North Anna Units 1 and 2 have been discussed. The adequacy of these models and the associated accident analysis methodology has been demonstrated by comparison of selected analytical results to vendor calculations and to plant data. The overall good agreement realized in these comparisons demonstrates that these models and methods can be used for operational and lic2nsing support of Vepco's nuclear plants. I I I I I ' I lI I i lI l' I I I

I SECTION 7 - REFERENCES I 1. VEP-FRD-33, "Vepco Reactor Core Thermal-Hydraulic Analysis Using the COBRA IIC/MIT Compute Code," Virginia Electric and Power Company, August 1979. 2. Electric Power Research Institute Report EPRI CCM-5, "RETRAN - A Program I for One-Dimensional Transient Thermal-Hydraulic Analysis of Complex Fluid Flow Systems," Energy Incorporated, December 1978. I 3. Surry Power Station Units 1 and 2, Final Safety Analysis Report, Virginia Electric and Power Company, December 1,1969. 4. North Anna Power Station Units 1 and 2, Final Safety Analysis Report, Virginia I Electric and Power Company, January 3,1973 as amended. 5. NUREG-75/056, "WREM: Water Reactor Evaluation Model," Revision 1, May 1975. 6. WC A P-7978, "LOFTRAN Code Description," Rev. 1, Westinghouse Electric Corporation, January 1977. 7. WCAP-7909, " MARVEL - A Digital Computer Code for Transient Analysis of a Multiloop PWR System," Westirghouse Electric Corporation, October 1972. 8. WCAP-9272, " Westinghouse Reload Safety Evaluation Methodology," Westinghouse Electric Corporation, March 1978. 9. Letter from C. M. Stallings (Vepco) to E. G. Case (NRC), Serial No. 403, September 9,1977. 10. Letter from C. M. Stallings (Vepco) to E. G. Case (NRC), Serial No. 344, August 9, 1977. 11. WC A P-7769, " Overpressure Protection for Westinghouse Pressurized Water I Reactors," Westinghouse Electric Corporation, June,1972. 12. Letter from C. M. Stallings (Vepco) to K. R. Goller (NRC), Serial No. 553, June 5, I 1975. 13. Letter from C. M. Stallings (Vepco) to B. C. Rusche (NRC), Serial No. 256, September 27,1976. 14. Letter from C. M. Stallings (Vepco) to J. P. O'Reilly (NRC), Serial No. 829, transmitting LER 79-128/01T-O, October 9,1979. I I I

U U U U U U U. U U U U l APPENDIX StJMM ANY OF IMPoltTANT ASSUMPllONS USEla IN 'IH ANSIENT AN Al.YSI:S tilSCUSSI:D IN SIM*1'lON 5 Transient Sgecific Input System Model Key System Perffmance Type of Analysis Description Initial Conditiu.w Itcactivity Parameters Assumptlins I. Uncontrotted Hod Wattuirawal from Suberitical a) FSAH Analysis Surry One 1,oup Core power = 10 xrated c: MOD =*10 pcm/ F Pressure = 27 o gwin uDOP=-t.75pcm*/ F T-inlet = 550]F (c/550 F) Delnyed neutron No credit taken fort fraction = 0.0072 I) Source range higt flux trip 1 Heactivity insertion

2) Intermediate range higla flux

. Hate:60 pem/see trip

3) Intermediate range control roil stop Trip iteactivity: Fig. A.I Source of protection:

curve (a), total = 2.8% A E/K I,ow ga>wer range high neutron flux trip b) Current Analysis Surry One I,oup Same as case (a) Same as case (a), except Other assumptiosts same as Itenctivity hwertion Date caw (a) =75 pcm/sec Trip reactivity: Fig. A.I cune (b), total =4.0%A K/K (1) Trip setpoints and delay times assumed are consistent with Table 4.1 O +1 pcm=1.0x10 A K/K

M M M M M M M M M M M M M M M M M M A PP EN DIX (('ontinued) SUMM ARY Ol' IMI'OltTANT ASSUMPli6NS (fSEla IN sal Isl Y AN Al,YSI'S DISCUSSI-:D IN SE('T:ON 5 Transient Specific lotual System Mmtel Key System Performance Tyle of Analysis Description Initial Cornistions iteactivity Parameters Assumptions

2. Uncontrolled Hm! With-drawal from Power I

a) FSAll Analysis Surry One lav Core power = 1.02 x rated oMOD = 0.0 Pressure 222gpsia T-inlet = 547.1 F al>OP= -0.725 gem / F No credit taken for: Henctivity lasertiosi 1)Iligh neutron flux rod st(p Hate = 2.0 pcm/sec

2) liigh overtemperature A T rod stop Trip Remetivity: Figure A.I
3) liigh overpower AT rod curve (a), total =2.8% A K/K stop or trip Source of Protection:

liigh overtemperature AT trip

  • A r trip a*guation used (includes ernes):

A T (etpoint ) =(1.204 8 .0ll3 l*25s l*3s (T,,,-574.4)

  • 00056 (P-2250) )xAT-Itated I

i l

m M M M M M M M M M M M M M M M M M A PPEN DlX (Coritinue<11

SUMMARY

OF IMPOH'I ANT ASSUMPTIONS U$ED IN 1 H ANSlLNT AN Al.YSIS DISCUSSI:D IN SECTION 5 Transient Specsfic hgmt System Matel Key Systern Performance Tylw of Analysis lleseription initial Comtitions Henetivity Parameters Assumptions

2. Uncontrolled Hod With-drawal from Power b) Current Analysis Surry One 1.oop Core power = 1.02 x rated uMOD +1.0 pcm/*F No.creoit tegen fort (Mmhfied to reflect I) liigli neutron flux rod stop steam generator Pressure = 2220 psia Dott er power coefficient
2) liigh Overtemperature l

I) From 102% tute plugging) =-6.0 pcm/% at 100% power AT roil stop Iw>wer T-inlet = 543.4"F 3)liigh overpower AT rod stop or trip HCS Flow = 90% of full Henetivity insertion power thermal rete varied design Trip Itcactivity: Figure A.I Source of protection: curve (a), total = 2.8% liigh gewer renge high A K/N nes. tron flux trip or Iligh overtemperature AT trip

2) From 62%

Core power = 0.62xrated Trip Heactivitys power Fig. 4.1 curve (a), total:2.8%A N/K Pressure = 2220 psia aMOll:*I.Opem/ F Assumptions same as T-inlet = 550.3 F aDOP =-7.3 pcm/% at 62% power HCS Flow = 90% of full power thermal design Henetivity insertion rate varied AT trip equation used (includes errors): A T(Setpoint) = (1.168.0095 (l e 30s )(T -574.4) *.0005 (P-2250)) X AT Hated 1 +.9 ave i

M M M M M M M M M M M M M M M M M M A PPI:N DIX (('ontinued) SUntM AltY OF IMI OltTANT ASSUMPTIONS USED IN 1 R ANSIENT AN ALYSES DISCUSSED IN SECTION 5 Transiant Specific Input System Model Key Sptem Performance Type of f anlytis Description initial Cosntitions Reactivity Parameters Assumptions

3. Complete Loss of Forced Reactor Coolant Flow a) FSAR Analysis Surry One 1,oop Core power = 1.02x rated 410D = 0 Source of protection:

Pressure = 2220 psia aDOPPLER =-l.6 pcm/ F T-inlet = 547 F Trip reactivity: Fig. A.1, Curve (a) a MOD =+ 3.0 pcm/g Total = 2.8% AM/ F Source of protection: ts) Current Analysis Surry One lap Core Power = 1.02x rated (Modified to low PJ' Pump voltage reflect steam Pressure = 2220 psia aDOPPLER=-1.6 pcm/ F generator tutic Corscivative (low) initial plugging) T-inlet = 547.1 F flow was assumed Trip reactivity: Fig. A.I curve (b) Total = 4.0% AK/K

4. Partial less of Surry Two lap Core power = 1.02xrnted aMOD = 0.0 Source of protection:

Forced Itcactor Pressure = 222gpsia c: DOPPLER =-l.6 pcm/ F I,ow RC toop flow rate Coolant Flow T-iniet = 547.1 F Trip Renetivity: Fig. A.1, curve (a) Total =2.8% /H/K b

m M M M M M M M M M M M M M M M M M I A PPENi}IX (Continued) StJMMARY OF IMPORTAN T ASSUMPTIONS tlSED IN TH ANSIENT AN Al,YSES I)tSCUSSED IN SEtTilON 5 Transient S weific Input i System Moalet Key System Performance Type of Arwilysis Description Initial Cornhtions Itenctivily Parameters Assumptions

5. I,oss of External Electrical 1 oad a) FSAlt Analysis Surry One I,ory Core power = I.02xrated Ileginning of Life:

No credit taken for Pressure = 222gpsia

1) Pressurizer spray T-inlet = 547.2 F OMOD - 0.0
2) Pressurizer power operated i

relief va!v as nDOPPillt =-l.6 pcm/ F

3) Atmospheeic steaan duanp valvas l
4) Atmospheric steam Delayed neutron relief valves

] fractiosv.0072

5) threct reactor trip resulting from a End of I ife:

tut >ine-generator trip uMOD=-35pem/"F Source of protection: Ifigh pressurizer pressure nDOPPI.Elt=-I.6 pcm[F trip Delayed neutron fraction =.0048 Trip reactivity: Fig.A.1, curve (a) Total = 2.8'A. A N/K ts) Current Analysis Surry One I,oop Core power = 1.02xrate<f uMOD -+3.0pem/ F Key assumptions are the Pressure = 2220 gr.ia nDOPPilit=-1.6 pein/ F T-inlet = 547.2 F liclayed neutrun fraetion =.0072 Trip reactivity: Fig. A.1, curve (n) Total = 2.8% A N/K

M M M M M M M M M M M M M M APPENDIX (Continued) SUMM AHY OF IMPORTANT ASSUMPTIONS USED IN TR ANSIENT AN Al.YSES DISCUSSED IN SEC1 TON 5 Transient Specific loput System Model Key System Performance Type of Analysis Description initial Conditions Reactivity Parameters Assumptions

6. Excessive Dent Surry One tap Core power = 1.02xrated uMOD = 0.0 Hemetor asumed to Hemoval Due to Pressure = 2220 psia ulk4pler=-l.opem/ F be in manual control (Tave Feedwater System T-inlet = 547.2 F control inactite?: -,

Malfunction Trip Iteactivity: Source of protection: Fig. A.1, curve (a) none required Total = 2.8% A N/K

7. Main Steam 1.ine Hrcak

-8 a) FSAR Analysis Surry Two Loop Core power = 4xlo x aMOD=-25.4 m/ F Technical Specifications rated ())S50 F. -13.8 pcm/ F value for initial shutdown i Pressure = 225gpsin (1)300 F reactivity margin assumes T-inlet = 549.7 F the highest worth control rod assembly stuck in aDOPPLER(Zero power) its fully withdrawn position =-I.6pem/ F Safety injection capability based on failure of one Total power defect high-head safety injection at 30% power =.01354 K pump Differential teron No credit is taken for the worth =- 10pcm/ ppm effect of the main steam line check valves in grecluding ths-charge of secomtery fluid from i the intact steam generators prior to main steam isolation valve closure

i M M -M M l l l .l l AI' PEN DIX (Continued) SUMM ARY OF IMPORTANT ASSUMPTIONS USED IN Til ANSIENT ANAL,YSES DISCUSSED IN SECTION 5 j Transient Specific Input System Model Key System Performance j Lpe of Analysis I escription Initial Coeulitions Henctivity Pa 3 met ers Assumptions f l b7 Current Analysis Surry Two Loop Core powerz4alo 'arated aMOD=-25.4pem/ F Key performance assumptions e)550 F -13.8pern/*F are the same as for the Prewure = 2251 psia 0 )300"F FSAR Analysit, ateve T-inlet = 549.7'F aDoppler(Zero power) =-1.6pcm/*F j ) Total power defect at 30'b j power =.0148 A K i Differential boron worth -10pem/ ppm i l .l l 1 l

i I FICUPI A.1 TRIP REACTIVITY INSERTION CHAPACIERISTICS i i !-l-i i .4 Surry Analyses Prior to April 1977 __(3) 4 (b)


Surry Analyser Af ter April 1977 i.

r.._.:.._., North Anna (c). k...._ },_ . : o = :. =:_ :.-- : =: - -- -- r=n:= ra. ;=. := :=: t,-.=__2 ; t =_.n 2:: ur r.__ : r - : - r- = -. : - -- r ----tr -..:. m =u- ---t..

u,= r :

.i.-- M,5.--;=J-j g=ihiglEpi.j Wj?. ;

i.j;._j ;f cli
2:5-EEj r-fijE-ggi; :

r_nj.

)i.; :;:-ji _-izi~i==.y_.[; ~ ~ ;tEiE~.1 i= i=ijf'.-i} :-j-T _.~~::._.y_ 9 'i..~~

I

j~ ? :i;: r 3lir J. g! E = i=; = ;-j; = gi -Ei=-{=rii=i=igEj Ei=l::==I =.Ej ; f

.o ........ ~.. _.... -. -. - e . - ~.. _ _ i =l-. -, -- m i- ---... _.. :T_ _. _. r = _-t.== =L. t------ r=F=r -i--I !?-'5-~#-~~ i-251--- _ :I===!~5E~ ~ [i--i::/E: =2'== r5 I I d _ 7,...;..j. ;. ;. 2.= gunj;; - _5 1. =ng;= ^., r n 7.,;f g; ;. ;;. :;3_g n--iEs=#f;E.=:.uifs:5Eii-i;f9 i=~= i:t :!; k :a E M"r_i i D =: t ur! E=':!aiE-i =: -E!=--: _... _ ;- h!.- =. =i i =E =:= i:EH='i-~~-- y w 0.8 ,_.....__.-r_.,r...- g-.. --.,.-- - -+ --- r = ;- -- = -= u .,... -. _ _. _...v-------- u g

"=-!===r. ; ;. :+ :. _; p; __l.=i ::i pie: --j 2,...

..; ;._.. _g.. . El.;. :;===z=. ; ::.==:r~~~~1:.2252)[=Elc=_3 .:.=fgr =;. ;gh I a (c):==ri' m=E~~~ 'T T= i =~ i=E.,}==-EiE (a )" _ (b ) - = 1 t u 0.6 r . = :.t._.._.,._..__p L-... .....,......r r.- r-r, o f...,....:T= . c1 : ,___2 ct.. i r I s.4 _ :(., , x=}-{ inn =;=;rp- : --j. ;- I ;rp}..- .... I ~ =. : i....__.._.: o =..,....iC : 2" iE F"'!" -..Er'Emi '~i!E"! =_=.. !s.= si- / 3' I I =.E--: i! c - -i. ~i"i i+iE =?i !+ - =, 3: = [-iE=,j;-ij: ;p -!:Ei -./. 3 4 u 0.4 ....g ;; }...... _ . ; 34-.. ;._ gut......;- r g j j-.; g: ; o as pj, ;:.:i [: _i:-!,7=.ib g l

ti
=
=; !{=iiEf [

4__ -/..y j";f

Q.... - 9i54 ;.
.j

i-~i=: iFxb u -4 .M J. .[ o. 0.2 ....q.. / 'l f d .i ...-:l - + I 1-i~ l l /l ' i I ~~~. / p'i---~ ! j _/ .;l-. .j [. . -l 4 j i i i 0 1 2 3 I -- - -}}