ML18142A350

From kanterella
Jump to navigation Jump to search
Cycle 7 Core Performance Rept.
ML18142A350
Person / Time
Site: Surry Dominion icon.png
Issue date: 03/31/1985
From: Hendrixson E, Snow C
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML18142A348 List:
References
85-230, VEP-NOS-17, NUDOCS 8504190374
Download: ML18142A350 (50)


Text

.!

~

,. i e VEP-NOS-17 VIRGINIA POWER SURRY UNIT 2, CYCLE 7 CORE PERFORMANCE REPORT NUCLEAR OPERATIONS DEPARTMENT "rt\ ) .

8504190374 850412 ACP~. . . .

1 * ,

l* ~-

-~-.

+* _;., \

e VEP-NOS-17 SURRY UNIT 2, CYCLE 7 CORE PERFORMANCE REPORT by Nancy S. Pierce Reviewed: Approved:

E. S. Hendrixson, Engineer c~

C. T. Snow, Supervisor Nuclear Fuel Operation Nuclear Fuel Operation Operations and Maintenance Support Subsection Nuclear Operations Department Virginia Power Richmond, Virginia March, 1985

    • A \

e CLASSIFICATION/DISCLAIMER The data, techniques, information, and conclusions in this report have been prepared solely for use by Virginia Power (the Company), and they may not be appropriate for use in situations other than those for which they were specifically prepared. The Company therefore makes no claim or warranty whatsoever, express or implied,as to their accuracy, usefulness, or applicability. In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusions in it. By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company. Any such written approval shall itself be deemed to incorporate the disclaimers* of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it.

i

e e TABLE OF CONTENTS SECTION TITLE PAGE NO.

Classification/Disclaimer i List of Tables iii List of Figures iv 1 Introduction and Summary. ., 1 2 Burnup Follow 7 3 Reactivity Depletion Follow 15 4 Power Distribution Follow 17 5 Primary Coolant Activity Follow 38 6 Conclusions 42 7 References. 43 ii

  • I

\.

LIST OF TABLES TABLE TITLE PAGE NO.

4.1 Summary of Flux Maps for Routine Operation . . . . . . . . . 21 iii

I e

LIST OF FIGURES FIGURE TITLE PAGE NO.

1.1 Core Loading Map 4 1.2 Movable Detector and Thermocouple Locations. 5 1.3 Control Rod Locations. 6 2.1 Core Burnup History 9 2.2 Monthly Average Load Factors 10 2.3 Assemblywise Accumulated Burnup: Measured and Predicted 11 2.4 Assemblywise Accumulated Burnup: Comparison of Measured and Predicted. 12 2.5A Sub-Batch Burnup Sharing 13 2.5B Sub-Batch Bu_rnup Sharing 14 3.1 Critical Boron Concentration versus Burnup - HFP,ARO 16 4.1 Assemblywise Power Distribution - S2-7-05 23 4.2 Assemblywise Power Distribution - S2-7-23 24 4.3 Assemblywise Power Distribution - S2-7-45 25 4.4 Hot Channel Factor Normalized Operating Envelope 26 4.5 Heat Flux Hot Channel Factor, Fi(Z) - S2-7-05. 27 4.6 Heat Flux Hot Channel Factor, Fi(Z) - S2-7-23. 28 4.7 Heat Flux Hot Channel Factor, Fi(Z) - S2-7-45. 29

4. 8 Maximum Heat Flux Hot Channel Factor, FQ-;,p, vs.

Axial Position . . . . . . . . . . . . . . 30 4.9 Maximum Heat Flux Hot Channel Factor, F-Q, versus Burnup 31 4.10 Enthalpy Rise Hot Channel Factor, F-DH(N), versus Burnup 32 4.11 Target Delta Flux versus Burnup 33 iv

I

\. e LIST OF FIGURES CONT'D FIGURE TITLE PAGE NO.

4.12 Core Average Axial Power Distribution - S2-7-05 34 4.13 Core Average Axial Power Distribution - S2-7-23 35 4.14 Core Average Axial Power Distribution - S2-7-45 36 4.15 Core Average Axial Peaking Factor, F-Z, versus Burnup 37 5.1 Dose Equivalent I-131 versus Time 40 5.2 I-131/I-133 Activity Ratio versus Time 41 V

I

\_

Section 1 INTRODUCTION AND

SUMMARY

On March 20, 1985, Surry Unit 2 completed Cycle 7. Since the initial criticality of Cycle 7 on September 25, 1983, the reactor core produced approximately 87 x 10 6 MBTU (14,802 Megawatt days per metric ton of contained uranium) which has resulted in the generation of approximately 8.1 x 10 9 KWHr gross (7.7 x 10 9 KWHr net) of electrical energy. The purpose of this report is to present an analysis of the core performance for routine operation during Cycle 7. The physics tests that were performed during the startup of this cycle were covered in the Surry Unit 2, Cycle 7 Startup Physics Test Report 1 and, therefore, will not be included here.

The seventh cycle core consisted of six sub-batches of fuel: a thrice-burned sub-batch from cycles 4, 5, and 6 (6B5), two twice-burned sub-batches from cycles 5 and 6 (7A2 and 7B2), a once-burned batch from cycle 6 (8), and two fresh sub-batches (9A and Sl/9C). The Surry 2, Cycle 7 core loading map specifying the fuel batch identification, fuel assembly locations, burnable poison locations and source assembly locations is shown in Figure 1.1. Movable detector locations and thermocouple locations are identified in Figure 1.2. Control rod locations are shown in Figure 1.3.

Routine core follow involves the analysis of four principal performance indicators. These are burnup distribution, reactivity depletion, power distribution, and primary coolant activity. The core 1

\ e burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, thereby ensuring that the fuel held over for the next cycle will be compatible with the new fuel that is inserted.

Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate at what burnup level refueling will be required. Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specifications 2 limits thereby ensuring that adequate margins to linear power density and critical heat flux thermal limits are maintained. Lastly, as part of normal core follow, the primary coolant activity is monitored to verify that the dose equivalent iodine-131 concentration is within the limits specified by the Surry Technical Specifications, and to assess the integrity of the fuel.

Each of the four performance indicators is discussed in detail for the Surry 2, Cycle 7 core in the body of this report. The results are summarized below:

1. Burnup Follow - The burnup tilt (deviation from quadrant symmetry) on the core was no greater than +/-0. 55% with the burnup accumulation in each batch deviating from design prediction by less than 1.2%.
2. Reactivity Depletion Follow The critical boron concentration, used to monitor reactivity depletion, was consistently within +/-0.47% ~K/K of the design prediction which is within the +/-1% ~K/K margin allowed by Section 4.10 of the Technical Specifications.
3. Power Distribution Follow - Incore flux maps taken each month indicated that the assemblywise radial power distributions deviated from the design predictions by an average difference of less than 2%. All hot channel factors met their respective Technical Specifications limits.

2

4. Primary Coolant Activity Follow The average dose equivalent iodine-131 activity level in the primary coolant during Cycle 7 3

was approximately 1.0 x 10- µCi/gm. This corresponds to much less than 1%

of the operating limit for the concentration of radioiodine in the primary coolant.

In addition, the effects of fuel densification were monitored throughout the cycle. No densification effects were observed.

3

Figure 1.1 SURRY UN IT 2 - CYCLE 7 CORE LOADING MAP R p N M L K J H G F E D C B A I 1 P2 I 6R4 I 2P6 I I I I I

~~~=~1 _ _ 1_ _ 1_ _ 1 ~ ~ ~ - -

1 3NO I 2P7 I 5R8 I 5P2 I 2RO I 4PO I ON8 I

_ _ 1I _ _ 1I _ _ 1I _

12P_ 1I _ _ 1I _ 12P_ 1I _ _ 1I _ _ 1I _ _ 2 I 5P3 I 3R9 I 3R1 I OP9 I 4P8 I 2P3 I 5R7 I 1 R7 I 2PO I

_ _ 1I _ _ 1I _8P _ 1I _ _ 1I_ _ 1I_ss 16P _ 1I _ _ 1I _ 16P_ 1I _ _ 1I _ _ 1I _ _

8P I 4P2 I 4P4 I 4R5 I lPO I OR6 I 3P9 I 2R5 I 5P1 I 4R8 I 6P5 I 2P4 I I I I 16P I I 20P I 4P I 20P I

_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _

I 16P I I I 4 I 3N2 I 5R6 I 2R6 I OL7 I lRO I W41 I 2P8 I Wll I 5R4 I OL4 I 2R1 I 5R2 I ON6 I I I 8P I 16P I I 16P I I 4P I I 16P I 1_ _ 1_ _ 1_ _ 1_ _ , _ _ 1_ _ 1_ _ 1_ _ , _ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I 16P I 8P I I 5 I 1 P7 I 4R2 I 4P1 I 5R3 I 1 L2 I 2R4 I 1 P3 I 3R3 I 1 LO I 4R6 I 6P4 I ORl I 4P5 I

_ _ 1I _ _ 1I _ _ I, _ _ 1I _

16P _ ,I _ _ 1I _

16P 16P_ 1I _ _ 1I _ 16P_ 1I _ _ 1I _ _ 1I _ _ I1_

16P 16P_ 1I _ _ 1I _ _ 6 I 2P2 I 5R1 I 3P8 I OR2 I W29 I 2R8 I 1N2 I 4P7 I 2N8 I OR9 I W20 I 1R8 I OP7 I 3R6 I 1P8 I II II 12P II II _ _ II _ _ II _

20P

_ II _ _ II _4P_ II _ _ II _

16P 16P

_ II _ _ II _ 20P

_ II _ _ II _ _ I' 12P I _ _ II 7 l ~ l ~ l ~ I OP4 I 6P6 I 2P5 I 3P3 I 1R3 I 5P6 I 6PO I 1P4 I OP3 I OP2 I 3PO I 6R3 I I ss I I I 4P I 4P I I 4P I 20P I 4P I I 4P I 4P I I I I 8 l4P61~ltii>9l--rii9lwrr-l4ii9ITNol6P115NOl"""TRDIWOlll2R9131'614R113P4l I I 12P I I 20P I I 16P I I 4P I I 16P I I 20P I I 12P I I 9 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I 1 Pl I 5R5 I OP6 I 3R4 I 1L1 I 1R5 I 2P9 I OR3 I DL2 I 6RO I 3P7 I 3R8 I 5PO I I I 16P I I 16P I I 16P I I 16P I 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I 16P I I 16P I I 10 I ONl I OR8 I 3R7 I OL6 I 2R3 I W05 I 1P9 I W48 I 1R6 I OL5 I 2R2 I 5R9 I 1N7 I I I 8P I 16P I I 16P I I 4P I 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I 16P I I 16P I 8P I I 11 I DP5 I 5P4 I 4R7 I 6P2 I 2R7 I 6P7 I 4R3 I 6P8 I OR4 I OPl I 5P8 I I. I I 16P I I 20P I 4P I 20P I 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I 16P I I I 12 I 2P1 I OR5 I 4R4 I 1 P5 I 3P5 I 5P9 I 5RO I 6R1 I 3P1 I I I 8P I 16P I I ss I 1_ _ 1_ _ , _ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I 16P I 8P I I 13 I ON4 I 6P3 I 1R1 I 3P2 I OR7 I 5P7 I 2N3 I I I I 12P I I 12P I 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I I 14 I 4P3 I 6R5 I OP8 I I 1--> ASSEMBLY ID I I I I 15 I 1--> ONE OF THE FOLLOWING 1_ _ 1_ _ 1_ _ 1 I_ _ I A. SS - SECONDARY SOURCE B. XXP - BURNABLE POISON ASSEMBLY (XX-NUMBER OF ROOS)

FUEL ASSEMBLY DESIGN PARAMETERS SUB-BATCH 6BS 7A2 7B2 SA 9 Sl/9C INITIAL ENRICHMENT(W/0 U235) 3.20 3.13 3.41 3.61 3.59 3.59 ASSEMBLY TYPE 15X15 15X15 15X15 15X15 15X15 15X15 NUMBER OF ASSEMBLIES 8 8 12 68 57 4 FUEL RODS PER ASSEMBLY 204 204 204 204 204 204 ASSEMBLY IDENTIFICATION W04,WOS OL2,0L4 ONl ,ON4 OP1-0P9 0Rl-OR9 6R2-6RS Wll,W20 OLS-017 ON6,0N8 1P0-1P9 lRO, lRl W29,W32 lL0-112 1N2, 1N7 2P0-2P9 1R3, lRS W41,W48 2N3,2N8 3P0-3P9 1R6-1R9 3N0,3N2 4P0-4P9 2R0-2R9 4NO,SNO SPO-SP9 3R0,3Rl 6P0-6P8 3R3-3R9 4Rl-4R9 5RO-SR9 6R0,6Rl 4

e e Figure 1. 2 SURRY UN IT 2 - CYCLE 7 MOVABLE DETECTOR. AND THERMOCOUPLE LOCATIONS R p N M L K J H G F E D C B A I

I I MD I TC I 1

  • I 1--1--1--1 I

__ 1I __ 1 __ 1 I __ 1 TC I __ 1I __ 1 TC I __ 1 MD I __ 1 I __ 2 I MD I I I I MD I I I I MD I I TC I I TC I MD I TC I I TC I I TC I 1--1--1--1--1--1--1--1--1--1--l--1

__ 1 I __ 1 TC I __ 1I __

MO 1 I __ 1 I __ 1 I __

MD 1 I I MO 1 I __ 1 TC I __ 1I __ 1I __ 4 I I I I I I I I I I I MO I I MO I I I MD I I MD I TC I MO I TC I I TC I MO I TC I I TC I 5 1--l--l--l---;;;ol--1--1--1--1--1--1--1--1-.-1 I I TC I I TC I I I MO I TC I MO I I I I I 6 1--.1--1--1--1--1--1--1--1--1--1--1--1--:--:--1 1

I __ 1 TC I __ 1 TC I __ 1 MD I __ 1I __ ,I __ , I __

MO 1I __ ,I __

MD ,_.

I __ , I __ 1 TC I __

MO 1 I __ 1I __

MO 1 I __ 1I 7 I I I MO I I MO I I I I I I I I MO I I I I MO I TC I TC I I TC I TC I I TC I TC I MO I TC I I TC I HD I TC I B 1--1--1--1--1--1--1--1--1--l---;;;ol--l--l--l--l--l I I I I I I I I I I I I I I I I 1 TC HO TC HD

--l--l---;;;ol--l--l--l---;;;ol--1--1--1--:--1--l---;;;ol--

TC MO 1 9 1

I __ 1 I __ 1 TC I __ 1I __ 1I __ 1 I __ 1 TC I __ 1I __ 1I __ 1 I __ 1 TC I __ 1 MO I __ 1I __ 1 TC I 10 I I I I I I I MO I I MO I I I I I I I I I I I I I I I I I I I 1 TC MD TC TC

--1--1--1--1--1Hi>1--1--1--1--1--i--,;;ol--

TC MO 1 11 I I I I I I I I I I I I 1 MO TC TC

--1--1--1--1--IHi>l--l--,;;ol--l--l--

TC MD TC 1 12 I I I I I I I I I I 1 --IHi>l--1--1--1--1--1--1--

TC TC 1 13 I I

  • I I I MO I I I 14 MO - Movable Detector 1 -

TC

-1--1--1--1-- 1 -

TC

- 1 TC - Thermocouple 1 __ 1__ 1 I MO I TC I

__ 1 TC I 15 5

I \

I e

Figure 1.3 SURRY UN IT 2 CYCLE 7 CONTROL ROD LOCATIONS R P N M L K J H G F E D C B A 180° LCX)P C I LCX)P B OUTLET INLET 1 V

N-41 C

SB A

B SA SP D

SA SP A

B SB C

N-43 2

3 4

5 A B D C D B A 6 LCX)P C LCX)P B SA SP SB SB SP SA 7 INLEI' urLET 90~ D C C D -27 oo 8 SA SP SB SB SP SA 9 A B D C D B A 10 SB SP SP SB 11 C B B C 12 N-44 LCX)P A A

SA D

SAi A

N-42 LCX)P A 13 14 15 OUTLET INLET Absorber Material Ag-in-Cd FUNCTION NUMBER OF CLUSTERS Control Bank D 8 Control Bank C 8 Control Bank B 8 Control Bank A 8 Shutdown Bank SB 8 Shutdown Bank SA 8 SP (Spare Rod Locations) 8 6

Section 2 BURNUP FOLLOW The burnup history for the Surry Unit 2, Cycle 7 core is graphically depicted in Figure 2.1. The Surry 2, Cycle 7 core achieved a burnup of 14,802 MWD/MTU. As shown in Figure 2.2, the average load factor for Cycle 7 was 81% when referenced to rated thermal power (2441 MW(t)).

Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed burnup distribution analysis. The NEWTOTE 3 computer code is used to calculate these assemblywise burnups. Figure 2. 3 is a radial burnup distribution map in which the assemblywise burnup accumulation of the core at the end of Cycle 7 operation is given. For comparison purposes, the design values are also given. Figure 2.4 is a radial burnup distribution map in which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 7 operation is also given. As can be seen from this figure, the accumulated assembly burnups were generally within +/-2.9% of the predicted values. In addition, deviation from quadrant symmetry in the core, as indicated by the burnup tilt factors, was no greater than +/-0.55%.

The burnup sharing on a batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle batch burnup predictions to be made for use in reload fuel design studies.

Batch definitions are given in Figure 1.1. As seen in Figure 2.5, the batch burnup sharing for Surry Unit 2, Cycle 7 followed design predictions closely with each batch deviating less than 1.2% from design. Symmetric burnup in conjunction with agreement between actual and predicted 7

e assemblywise burnups and batch burnup sharing indicate that the Cycle 7 core did deplete as designed.

8

e Figure 2. 1 SURRY 2 - CYCLE 7 CORE BURNUP HISTORY 16000 15000 14000 .,,I/

~JI" 13000 C

y 12000 ~

V C ~

V L l l 000 E

10000

/

B u 9000

/

R N 8000

/

u p 7000 V M 6000

/

H D

I M

5000 4000

/

T u 3000

~/

2000

_____. /

1000

/

0-I

  • V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l l l l l l l l l i l l l l l l l l l l 5 0 N D* J F M A M J J A s 0 N D J F M A E C 0 E A E A p A y

u u u E C 0 E A E A p p T V C N B R R N L G p T V C N B R R

.8 8 8. 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 TIME(MONTHSl

~--- CYCLE 7 MAXIMUM DESIGN BURNUP 15500 MWD/MTU BURNUP WINDOW FOR CYCLE 8 DESIGN - 13500 TO 15500 MWD/MTU 9

eFigure 2.2 SURRY 2 - CYCLE 7 MONTHLY AVERAGE LOAD FACTORS PERCENT 100 90 80 70 60 50 40 30 20 10 0

.s 0 N D J F M A M J J A s 0 N D J F M C E C 0 E A E A p A u u u E C 0 E A E A y p T V C N B R R y N L G p T V C N B R C L

8 8 8 8 B 8 8 8 8 8 8 B 8 8 B 8 8 8 8 E 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 MONTH THERMAL ENERGY GENERATIO~ IN MO~THIMWHTl LOAD FACTOR=-------------------------------------------*--

AUTHORIZED POWER LEVEL IMWTl X HOURS IN MONTH (EXCLUDES REFUELING OUTAGES!

10

e e Figure 2.3 SURRY 2 - CYCLE 7 ASSEMBL YWISE ACCUMULATED BURNUP MEASURED AND PREDICTED (1000 MWD/MTU)

R N M L K J H G E D C B A I 23.901 11.281 24.771 I MEASURED I I 24. 15 I 11 . 49 I 24. 15 I I PREDICTED I 2 I 31. 7BI 25.641 15.171 30.281 15.331 26.481 32.31 I 2 I 31. 721 25.801 15.381 30.901 15.381 25.801 31. 721 I 26.851 15. 701 17.641 36.061 35.571 35.691 17.901 16.141 27.31 I I 26. 701 15.671 17.651 36.291 35. 751 36.291 17.651 15.671 26. 101 4 I 26.651 32.271 18.001 37.51 I 18.341 35.461 18.261 37.01 I 18.351 32.661 26. 791 4 I 26.581 32.321 18.041 37.391 16.541 35.951 18.541 37.391 18.041 32.321 26.581 5 I 31.491 15.381 17.671 39.021 19.00I 39.501 26.321 39.261 19.261 39.641 18.071 15.691 32.021 5 I 31.631 15.631 17.991 39. 161 19.291 39. 771 29.041 39. 771 19.291 39.181 17.991 15.631 31.631 6 I 25.6111 17.471 37.141 18.751 39.261 18.471 36.351 18.551 39.431 19.271 37.391 17.771 26.011 6 I 25.781 17.601 37.351 19.221 39.1111 18.861 36.761 18.681 39.471 19.221 37.351 17.601 25.761 7 I 23.831 15.081 36.721 18.171 39.031 16.351 40.351 32.101 40.771 18.531 39.731 18.511 36.491 15.471 24.321 7 I 24.011 15.351 36.411 16.461 39.611 18.761 40.611 32.461 40.811 18.761 39.611 18.481 36.411 15.351 24.011 8 I 10.971 30.121 35.981 35.991 27.671 35.951 32.521 17.931 31.611 36.361 28.921 35.541 35.51 I 31.251 11.61 I 8 I 11.491 30.941 35.771 35.961 26.761 36.5lll 32.271 18.061 32.271 36.501 28.761 35.961 35.771 30,9111 11.*191 9 I 23.991 15.051 36.331 16.261 38.751 15.1111 40.361 32.231 40.741 18.061 39.631 18.471 36.431 15.691 23.891 9 I 24.011 15.351 36.411 18.1181 39.611 18.781 40.811 32.461 40.811 18.781 39.611 18.481 36.411 15.351 24.011 10 I 26.211 17.801 37.191 19.361 39.081 18.1/1 36.211 18.391 38.861 19.091 37.631 17.921 26.011 10 I 25.781 11.601 37.351 19.221 39.471 18.861 36.781 18.881 39.471 19.221 37.351 17.601 25."/BI 11 I 32.071 16.031 18.361 39.021 19.061 39.531 28.761 39.461 19.111 39.261 18.351 16.071 31.641 11 I 31.631 15.631 17.991 39.181 19.291 39.771 29.041 39.771 19.291 39.181 17.991 15.631 31.631 12 I 27. 141 32.821 18.181 37.091 18. 151 35. 701 18.291 37.681 18.301 32.651 26. 711 12 I 26.581 32.321 18.041 37.391 18.541 35.951 18.541 37.391 18.041 32.321 26.581 13 I 27.081 16.131 17. 771 36.091 35.031 36.291 17.81JI 15.921 26.661 13 I 26. 701 15.671 17.651 36.291 35. 751 36.291 17.651 15.671 26. 701 14 I 31.851 26.011 15.341 30.841 15.441 25.771 31.731 14 I 31. 721 25.601 15.381 30.901 15.381 25.801 31. 721 15 I 24.381 11.531 23.851 15 I 24.151 11.491 24. 151 R p N M L K J H G E D C B A 11

Figure 2.4 SURRY 2 - CYCLE 7 ASSEMBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED (1000 MWD/MTU)

R p N M L K J H G E 0 C B A I 23. 90 I 11. 28 I 24. 771 I MEASURED I I -1.041 -1.831 2.561 I M/P % OlfF I 2 I 31.781 25.641 15.171 30.281 15.331 26.481 32.311 2 I o.181 -0.601 -1.301 -2.001 -0.211 2.641 1.861 I 26.851 15. 701 17.641 36.061 35.571 35.691 17.901 16.141 27.31 I I o.561 0.241 -0.051 -o.641 -o.5nl -1.651 1.471 3.041 2.321 4 I 26.651 32.271 18.00I 37.511 18.341 35.1161 16.261 37.011 16.351 32.661 26.791 4 I 0.241 -0.111 -0.251 0.311 -1.041 -1.351 -1.491 -1.031 1.691 1.031 0.801 I 31.491 15.381 17.871 39.021 19.00I 39.501 28.321 39.281 19.261 39.641 18.071 15.891 32.021 I -0.441 -1.631 -0.691 -0.41 I -1.491 -0.691 -2.461 -1.231 -0.161 1.171 0.41 I 1.651 1.231 6 I 25.641 17.471 37.141 18.751 39.261 18.471 36.351 18.551 39.431 19.271 37.391 17.771 26.071 6 I -0.531 -0.741 -0.551 -2.471 -0.551 -2.161 -1.161 -1.781 -0.101 o.241 0.121 0.9*11 1.151 7 I 23.631 15.081 36.721 18.171 39.031 18.351 40.351 32.101 40.771 18.531 39.731 18.511 36.491 15.471 24.321 7 I -o. 72 I -1. 751 o. 84 I -1. 65 I -1. 4 71 -2. 29 I -1. 121 -1. 1o I -o. 11 I -1. 32 I o. 30 I o. 19 I o.21 I o. 79 I 1. 3 1 I 8 I 10.971 30.121 35.981 35.991 27.671 35.951 32.521 17.931 31.611 36.381 28.921 35.541 35.511 31.251 11.611 8 I -4.*181 -2.641 0.571 o.081 -3.771 -1.491 o.761 -0.121 -2.051 -0.321 0.581 -1.181 -0.751 1.021 1.051 9 I 23.991 15.051 36.331 18.261 38.751 18.141 40.361 32.231 40.741 18.061 39.631 18.471 36.431 15.691 23.891 9 I -0.051 -1.961 -0.221 -1.111 -2.161 -3.391 -1.111 -0.121 -0.111 -3.801 0.041 -0.061 o.051 2.191 -0.461 10 r 26.211 11.601 37. 191 19.361 39.081 18. nr 36.211 18.391 38.861 19.091 37.631 11.921 26.01 r 10 I 1.671 1.121 -0.431 o. 701 -1.001 -3. 781 -1.551 -2.581 -1.541 -o.671 o. 751 1.801 0.891 11 I 32.071 16.031 18.361 39.021 19.061 39.531 28.761 39.461 19.111 39.261 18.351 16.071 31.641 11 I 1.381 2.551 2.031 -0.41 I -1.151 -0.621 -0.961 -o. 791 -0.91 I 0.201 2.001 2. 781 0.041 12 I 21.11,1 32.821 18.181 37.091 18.151 35.701 18.291 37.681 18.301 32.651 26.711 12 I 2.091 1.551 o. 741 -0.831 -2.091 -0.691 -1.351 o. 771 1.41 I 1.001 0.461 13 I 27.061 16.131 17.771 36.091 35.031 36.291 17.841 15.921 26.661 ------------------ 13 I 1.441 2.981 o.661 -0.571 -2.011 -0.001 1.121 1.621 -0.071 I ARITHMETIC AVG I (PCT OIFF; -0.201 14 I 3 1. 65 I 26. o 1 I 15. 34 I 30. 64 I 15. 44 I 25. 771 31 . 7 3 I ------------------ 14 I 0.41 I 0.831 -0.251 -0.161 0.431 -0.11 I 0.041 15 I STANDARD DEV I I 24.361 11.531 23.651 I AVG ABS PCT I 15 I  ; 0.89 I I 0.951 o.321 -1.211 I OIFF; 1.13 I R p N M L K J H G F E 0 C B A BURNUP SHARING (MWD/MTU)

Batch Cycle 4 Cycle 5 Cycle 6 Cycle 7 Total BURNUP TILT 6B5 9376 8310 6729 14949 39364 7A2 16441 7694 15062 39197 NW = -0.53 7B2 14619 10991 9147 34757 BA 17681 13632 31313 NE = +0.44 9 17568 17568 Sl/9G 11348 11348 SW = -0.04 Gore Average 14802 SE = +0.14 12

I FIGURE 2.5A SURRY UNIT 2 - CYCLE 7 SUB-BATCH BURNUP SHARING SUB-BATCH 6B5 8 9 SYMBOL DIAMOND SQUARE TRIANGLE 44000 40000

__.., -v

__.., *v

__.., /.5 --

36000 ............. i, V

.,,,. 'I s __,-p

.-'IV u 32000 __.,,..~ ..Pf'.--

B B

A 28000 __.. ,<7 -- ~

-~ __.,,..i:;r

=

T M ~

C H ~

~_.

Y""""'

~ ------

24000  :::i----

B u __.. c:r-

-- ~

R ,er N 20000

....a u _.I:: ~

p

~ ~

~

/

M 16000 .,,..er l,J D - ~

~

I _/"'

M 12000 T

./' .

./~

u

,.,,,, ./~

8000 _,.,.-

_/"'

,,/!' ..

4000 __..~

.,,/ -

.. ..lr

~

0 -~ .. I I I 0 2000 4000 6000 8000 10000 12000 14000 16000 CYCLE BURNUP MWO/MTU 13

. I SURRY UNIT 2 - CYCLE 7

  • FIGURE 2.5B SUB-BATCH BURNUP SHARING SUB-BATCH 7A2 782 S1/9C SYMBOL DIAMOND SQUARE TRIANGLE 44000

~

40000 .---

_.. /l<T

-f-C"

-..(T 36000

_.1,-"7

~

s _i.,,-- .-.-- "'='

~ ___.!: i:t-t:r" u 32000 ,_,__-,

~

B ~ a-B ....- _::i----

~

A .28000 T

C .

IA"'

-- fY' Lr" ~

H 1,.......-

24000 B

u R

N 20000 u

p M 16000 w

D I

M 12000 T

u .--- -

_-1( -

--tr


1 rr ...

8000 I,.___.-

~

4000

__..a ,-.. -- ~

~ --- i.s-0 -~

I '. '. '. I .. I . . ... ..

I I 0 2000 4000 6000 8000 10000 12000 14000 16000 CYCLE BURNUP MWD/MTU 14

e Section 3 REACTIVITY DEPLETION FOLLOW The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous reactivity behavior. The FOLLOW 4 computer code was used to normalize "actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon and samarium concentrations, moderator temperature, and power level. The normalized critical boron concentration versus burnup curve for the Surry 2, Cycle 7 core is shown in Figure 3. 1. It can be seen that the measured data typically compare to within 56 ppm of the design prediction. This corresponds to less than +/-0 .47% ll.K/K which is within the +/-1% ll.K/K criterion for reactivity anomalies set forth in Section 4 .10 of the Technical Specifications. In conclusion, the trend indicated by the critical boron concentration verifies that the Cycle 7 core depleted as expected without any reactivity anomalies.

15

I '

\ ~

f'.igure 3 .1 SURRY UNIT 2 - CYCLE 7 CRITICAL BORON CONCENTRATION VS. BURNUP HFP-ARO X MEASURED PREDICTED 1200 1000 C

R I

T <

I C

L A

800 'O ~

B ~~

  • o ~ ~x R

0 N "': ~

C 600 ~

0 N

C E ~~~-

N T

X R

A 400 T

I 0

N

"' "'~

xxx 1~~ k

~

p p

M 200

"'"' ~

I\. X,

~ IV.*

~

"~

~

0- .. . , ..

~

I 0 2000 4000 6000 8000 10000 12000 14000 16000 CYCLE BURNUP IMWD/MTUl 16

I Section 4 POWER DISTRIBUTION FOLLOW Analysis of core power distribution data on a routine basis is necessary to verify that the hot channel factors are within the Technical Specifications limits and to ensure that the reactor is operating without any abnormal conditions which could cause an "uneven" burnup distribution. Three-dimensional core power distributions are determined from movable detector flux map measurements using the INCORE 5 computer program. A summary of all full core flux maps taken since the completion of startup physics testing for Surry 2, Cycle 7 is given in Table 4.1.

Power distribution maps were generally taken at monthly intervals with additional maps taken as needed.

Radial (X-Y) core power distributions for a representative series of incore flux maps are given in Figures 4.1 through 4.3. Figure 4.1 shows a power distribution map that was taken early in cycle life. Figure 4.2 shows a power distribution map that was taken near mid-cycle burnup.

Figure 4.3 shows a map that was taken late in Cycle 7 life. The radial power distributions were taken under equilibrium operating conditions with the unit at approximately full power. In each case, the measured relative assembly powers were generally within 4. 2~£ of the predicted values with an average percent difference of less , than 2. O~{, which is considered good agreement. In addition, as indicated by the INCORE tilt factors, the power distributions were essentially symmetric for all cases.

An important aspect of core power distribution follow is the monitoring 17

\

-* e of nuclear hot channel factors. Verification that these factors are within Technical Specifications limits ensures that linear power density and critical heat flux limits will not be violated, thereby providing adequate thermal margins and maintaining fuel cladding integrity. The Technical Specifications limit on the axially dependent heat flux hot channel factor, FQ(Z), was 2.18 x K(Z), where K(Z) is the hot channel factor normalized operating envelope. Figure 4.4 is a plot of the K(Z) curve associated with the 2.18 FQ(Z) limit. The axially dependent heat flux hot channel factors, FQ(Z), for a representative set of flux maps are given in Figures 4.5 through 4.7. Throughout Cycle 7, the measured values of FQ(Z) were within the Technical Specifications limit. A summary of the maximum values of axially-dependent heat flux hot channel factors measured during Cycle 7 is given in Figure 4.8. Figure 4.9 shows the maximum values for the Heat Flux Hot Channel Factor measured during Cycle 7. As can be seen from the figure, there was a 20% margin to the limit at the beginning of the cycle, with the margin generally remaining unchanged throughout cycle operation.

The value of the enthalpy rise hot channel factor, F-delta H, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed. The Technical Specifications limit for this parameter is set such that the critical heat flux (DNB) limit will not be violated. Additionally, the F-delta H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation. The Cycle 7 limit on the enthalpy rise hot channel factor was set at 1.55(1+0.3(1-P)),

where Pis the fractional power level. A summary of the maximum values for the Enthalpy Rise Hot Channel Factor measured during Cycle 7 is given in Figure 4 .10.

18

\

The Technical Specifications require that target delta flux* values be determined periodically. The target delta flux is the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon. Therefore, the delta flux is measured with the core at or near these conditions and the target delta flux is established at this measured point. Since the target delta flux varies as a function of burnup, the target value is updated monthly. Operational delta flux limits are then established about this target value. By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided. The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately -1.5% at the beginning of Cycle 7. After approximately two-thirds of the cycle, delta flux values had shifted to -4% and then moved to -2.5% by the end of Cycle 7.

This axial power shift can also be observed in the corresponding core average axial power distribution for a representative series of maps given in Figures 4.12 through 4.14. In Map S2-7-05 (Figure 4.12), taken at approximately 200 MWD/MTU, the axial power distribution had a slightly peaked cosine shape with a peaking factor of 1.18. In Map S2-7-23 (Figure 4.13), taken at approximately 7,500 MWD/MTU, the axial power distribution had shifted toward the bottom of the core with an axial peaking factor of 1.15. Finally, in Map S2-7-45 (Figure 4.14), taken at approximately 14,150 MWD/MTU, the axial power shape was slightly concave with a peaking factor was 1.14. The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15.

In conclusion, the Surry 2, Cycle 7 core performed satisfactorily with Pt-Pb 0

'-"Delta Flux = X 100 where Pt= power in top of core (rfii(t))

2441 Pb= power in bottom of core (MW(t))

19

e power distribution analyses verifying that design predictions were accurate and that the values of the FQ (Z) and F-del ta H hot channel factors were within the limits of the Technical Specifications.

20

TABLE 4.1 SURRY UNIT 2 - CYCLE 7

SUMMARY

OF FLUX MAPS FOR ROUTINE OPERATION I I 1 I 2 I I I I I I BURNI F-Q(T) HOT I F-DH(N) HOT !CORE F(Z) I 4 I I I IMAP UP I !BANK CHANNEL FACTOR ICHNL.FACTOR I MAX 31 QPTR I AXIAL NO. I INO. DATE MWD/IPWRI D I .1 I I F(XY) I I OFF OF I I MTU I ( %) I STEPS I ASSY IP IN IAXIAL I IASSYIPINIF-DH(N) AXIAL! F(Z) I MAX !LOCI SET THIM!

I I I I I IPOINTIF-Q(T)I I I POINTI I I I I (%) BLESI I , _ _ _ _ l _ _ l _ l _ l _ _ l I _ _ I__ I _ _ I_ _ I_ _ I_ _ I_I I I I I I I I I I 5 10-05-831 198 100 228 ElOI IH 33 1.761 LlOI GHI 1.420 34 1 .177 1.378 1.007 NE! -1.35 38 I (5) I I I I I I 8 10-21-831 621 100 228 E06 IH 34 1 . 11111 E06 IHI 1. 421 33 1. 171 1.380 1. 008 SE -1.14 38 I ( 6) I I 11 10-26-83 825 100 2111 Fll HG 35 1. 7811 E06 IHI 1. 424 113 1.192 1.386 1 .010 SE -11.51 38 I I I 13 11-23-83 16117 99 226 Fll HG 311 1. 7611 E06 IHI 1. 433 34 1. 170 1.396 1.008 SE -1. 23 38 I I I 14 1-10-84 2493 100 228 F1 1 HG 35 i. 765 F05 H11 1.432 34 1. 163 1. 396 1.008 NE -1.64 43 I I

.N I 15 I 2-08-84 311115 100 227 LlO GH 22 1. 7113 E06 IHI 1. 41,4 34 1.154 1.393 1. 010 NE -1.58 42 I-' I ( 7l I I I I 18 I 1,- 16-811 11668 I 75 185 LlO GH 34 1.814 LlO GHI 1. 41,4 311 1.185 1. 408 1 .007 NE -3.29 41 I I I I I 19 I 5-23-84 57811100 226 LlO GH 112 1.755 LlO GHI 1. 450 114 1.147 1.412 1 .009 NE -2.43 44 NOTES: IIOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEMBLY LOCATIONS (E.G. H-8 IS THE CENTER-OF-CORE ASSEMBLY),

FOLLOWED BY TIIE PIN LOCATION (DENOTED BY THE 11 Y11 COORDINATE WITH TIIE FIFTEEN ROWS OF FUEL RODS LETTERED A THIWUGH RAND THE "X" COORDINATE DESIGNATED IN A SIMILAR MANNER).

IN TIIE "Z" DIRECTION TIIE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROM THE TOP OF THE CORE.

1. F-Q(T) INCLUDES A TOTAL UNCERTAINTY OF 1.08
2. F-DH(N) INCLUDES A MEASUREMENT UNCERTAINTY OF 1.04
3. F(XY) IS EVALUATED AT THE MIDPLANE OF THE CORE
4. QPTR - QUADRANT POWER TILT RATIO.
5. MAPS 6 AND 7 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE-EXCORE DETECTOR CALIBRATION.
6. MAPS 9, 10 AND 12 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE-EXCORE DETECTOR CALIBRATION.
7. MAPS 16 AND 17 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE-EXCORE DETECTOR CALIBRATION.

TABLE 11. 1 (CONTINUED)

I I 1 I 2 I I I I I BURNI I F-Q(T) IIOT I F-Dll(N) HOT ICORE F(Z) I 4 I I I MAP UP I BANK I CHANNEL FACTOR ICHNL.FACTOR I MAX I 3I QPTR I AXIAL NO. I NO. DATE MWD/IPWR D I I I I F(XY) I I OFF OF I I

I I

MTU I(%) STEPSIASSYIPINIAXIAL I I I

!POINT F-Q(T)I IASSYIPINIF-DH(N)IAXIALI F(Z) I I

I I

I IPOINTI I I MAX !LOCI I

I_ _ I _ _ I_ _ I _ _ I_I I

I I

I SET THIM!

(%) BLESI

_I 20 6-06-811 I 6255 100 226 LlO I GH 113 1.751 I LlO I GH 1. 4119 44 1.146 1. 410 1.009 NEI -2.53 44

( 8) I I I I I 23 7-12-8111 71185 100 222 F11 I IIG 31, 1. 757 I Fl 1 I HG 1.466 45 1. 148 1.447 1.008 SEI -3. 12 LIQ I I I I 24 8-15-841 8590 94 210 LlOI Gil 45 1. 755 LlOI GH 1. 11119 45 1.154 1. 415 1.008 NEI -3.62 45 I I I I 25 9-21-841 9702 99 205 E06 I LG 118 1. 755 F05 I IL 1.464 47 1.136 1. 421 1.009 NEI -3. 911 38 (9l I I I I I 28 ll0-04-811110173 99 228 LlOI DI 43 1. 745 LlOI DI 1. 457 45 1.1111 1. 411 1.007 NEI -3.35 45

( 1o l I I I I I 36 I 11-28-811 I l 1260 100 228 L061 DGI 116 1. 777 L06 I DG 1. 465 47 1 . 151 1 . 411 1.007 NEI -4.68 47 I I I I I I 37 I 12-24-811 I 12003 86 201 LlO I DI I 43 1. 712 LlO I DG 1. 1158 46 1.125 1. 419 1.009 NEI -2.92 47 I I I I I I 38 IOl-30-85113122 100 223 LlOI DI I 52 1. 719 L10 I DI 1.450 53 1.132 1. 414 1.008 NE I -2.53 117

( 11 l I I I I I I I N

N 1,5 I03-0l-85l14150llOO 223 LlOI DGI 53 1. 716 F051 IL 1.433 53 1 . 141 1.389 1.009 NEI -2.71 47

8. MAPS 21 AND 22 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE-EXCORE DETECTOR CALIBRATION.
9. MAPS 26 AND 27 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE-EXCORE DETECTOR CALIBRATION.
10. MAPS 29 TIIROUGH 35 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE-EXCORE DETECTOR CALIBRATIONS.
11. MAPS 39 THROUGH 411 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE-EXCORE DETECTOR CALIBRATIONS.

l I

e e Figure 4. 1 SURRY UNIT 2 - CYCLE 7 ASSEMBLYWISE POWER DISTRIBUTION S2-7-05 N M L H G o C B A PREDICTED

  • 0.53
  • 0.88 . 0.53 . PRED I CTfD
  • MEASURED * . 0.55
  • 0.90
  • 0.55 .
  • MEASURED *
  • PCT DI ffERENCE. 2.8
  • 2.8
  • 2.8 .
  • PCT O I f FERENCE *
  • 0.40. 0.75. 1.09. 1.16. 1.09. 0.75. 0.40 .
  • 0.39. 0.75. 1.09. 1.17. 1.09. 0.74. 0.41. 2

.-0.7.-0.2. 0.3. 0.5. 0.7.*0.9. 4.5.

. o: 50. : . i : 02. : . i : i 5. : . i : iii. : . i : 2i . : . i : iii. : . i : i 5. : . i : 02. : . o: 50. :
  • o. 50 . 1. o 1 . 1. 14 . 1. 11 . 1. 19 . 1. 16
  • 1. 14 . 1. u4
  • o. 53 .

. -0.1. -0.1. -0.4. -0.5. -1.3. -1.3. -0.9. 2.4. 4.5.

. o: 50.:. o: 86. : . i: i j. : . i: iii. : . i: i9. : . i: i 5. : . i : i 9. : . i: iii. : . i: i j. : . o: 86. : . ii: 50. :

. o. 49 . o. 85

  • 1. 12
  • 1. 18 . 1. 18 . 1. 1 J
  • 1. 11 . 1. 18 . 1. 14
  • o. 88 . o. 52 . 4

. -2. 2 . -1. 2 . -o. 8 * -o. 7 . -1. 0 . -1. 5 . -1. 3 . -o. 8 . 0. 7 . 2. 1 . 3. 2 *

. ii: j9. : . i : iii. : . i: i j. : . ii: 99. : . i: 22. : . i: 03. : . i: 23. : . i : iij. : . i: 22. : . ii: 99. : . i: i j. : . i : oi. : . u: 39. :

. o. 39 . o. 99

  • 1. 11 . o. 97 . 1. 20
  • 1. u 1 . 1. 20 . 1. u 1 . 1. 21 . u. 98 . 1. 14 . 1. o*, . u. ,, 1 . 5

. -2.2 . -2.2 . -1.9 . -1.4 . -1. 1 * -2.5 . -2.5 * -1.9 . -o.6 . -0.2 . 0.9 . 2.5 . J.9 .

*ii: 74 * :
  • i: iii* : . i: iii. : . i: 2i. : . i : ui. : . i: 22.: . i: 20. : . i: 22. : . i: oi. : . i: 2i. : . i: ii,. : . i : i,;. : . ,-, : i4. :

. 0.74. 1.14. 1.16. 1.17. 0.99. 1.20. 1.17. 1.21. 1.01. 1.22. 1.19. 1.17. 0.17. 6

. -o. 2 . -o. 2 * -1. 6 . -3. 3 . -2. 1 . -1. 9 * -2. 7 . -1. 5 . 0. 1 . 0. 7 . 1. 0 . 2. 4 . J. 4 .

. ii: 5j. : . i : OB. : . i: i i. : . i: iii. : . i: 6j. : . i : 2i . : . i: 03. : . i: is. : . i: 03. : . i : 2i . : . i: 6j. : . i : iii. : . i: ii. : . i : i,ii. : . II: s i. :

. 0.51. 1.08. 1.19. 1.18. 0.99. 1.19. 1.02. 1.14. 1.03. 1.22. 1.04. 1.20. 1.20. 1.11. O.'J',. 7

. -J. 7 . -o. 4 . 1. 7 . -o. 4 . -3 . 7 . -1. 8 . -o. 8 . -1. 1 . 0. 0 . 0. 4 . 1. 7 . 1. 7 . 2. 3 . 2. ~ .  ? *6 .

. o: iii,.: . i: i6. : . i: 20. : . i: iii. : . i: 23. : . i: iii. : . i: i,;. : . i: is. : . i: i,;. : . i : iii. : . i : 23. : . i: i,;. : . i: 20. : . i : i;, . : . II: 88. :
  • o. 84 . 1 . 14 . 1. 22 . 1. 16 . 1. 24 . 1. 19 . 1. 14 . 1 . 1 5
  • 1 . 14
  • 1. 19 . 1. 25 . 1 . 16 . 1. 2 3 . 1. 1" . o. n . 8

. -3.7. *1.5. 1.7. 1.4. 1.0. 0.3. *0.5. -0.2. -o.o. *0.0. 1.7. 1.7. 2.3. 2.<J. 1,.6.

  • o: 53 *: * ; : oil* :
  • i: i 1* :
  • i: ; 8* : *; : o3 * :
  • i: 2i * : * ; : 03 * : * ; : ; s * : * ; : 03 * : * ; : 2i * :
  • i: oi * : * ; : i;, * : * ; : i; * : * ; : ,,ii* * *,i: ~ j * :

. 0.51-, 1.06. 1.17. 1.19. 1.04. 1.21. 1.00. 1.14. 1.02. 1.21. 1.03. 1.20. 1.21. 1.11 O.'J/. 9

, -3.7. -1.8. 0.1. 0.7. 1.0. -0.4. -2.7. -1.3. -0.5. -0.5. O.J. 1.7. 2.8. 11.:, 7,IJ.

. 0.74, 1.14. 1.18. 1.21. 1.01. 1.22. 1.20. 1.22, 1.01. 1.21. 1.18. 1,lll. 0./11

. 0.75, 1.14. 1.18. 1.23. 1,0U. 1.19. 1.17. 1.20. 1.00. 1.21. 1.18. 1.18. tl.7! 10 0.1 . 0.1 . 0.5 . 1.0 . *1.2 . *2.9 . *3.0 . *1.8 . -0.4 * -0.2 . 0.3 , 3.2 . l. I

. 0.39 . 1.01 . 1.13 . 0.99 . 1.22 . 1.03 . 1.23 . 1.03 . 1.22 . 0.99 . 1.13 . 1.01 . ll.1*)

. 0.40. 1.03. 1.14. 1.00. 1.20. 1.01 . 1.18. 1.00. 1.21 . 0.99. 1.15. 1.04. 0.111 11 1.5. 1.5. 1.5. 1 . 0 . - 1 . 4 . - 2 . 6 . - 4 . 2 . - 2 . 8 . - 0 . 7 . O.J. 1.9. 3.1. J.l

....... : . o: 50. : . 6: 86. : . i : ii. : . i: i9. : . i : iii. : . i: is. : . i: iii. : . i : i!i. : . i : ii. : . o: 86. : . o: 50. : .

. U. 52 . 0. l:S8 . 1 . 16 . 1. 19 . I . 18 . 1. 12 . 1. 15 . I . 18 . 1 . 11, . 0. 88 . 0. ';2 . 12 2.9 . 2.9 . *2.1 . -0.1 . *0,9 . -2.8 , *3.1 . *U.4 . 0.8 . 2.4 . 3.3 .

. . . . . . . : . 0: 50. : . ; :02. : . i: i 5. : . 1: i 8. : . 1:21 . : . 1: 18. : . 1: 15. : . i: O?. : . 0: 50. : ...... .

. 0. 52 . 1. 011 . 1. 16 . 1. 16 . 1. 1 I , 1 . I / . 1. 1 / . 1. 011 . 0. 52 . 13 2.5. 2.1 . 1.0. -1.8. -2.8. -1.0. 1.5. 2.5. 2.') .

. 0.1111 . u. 7':> . 1.09 . 1.16 . 1.09 . 0. 75 . 0.40 .

. 0. 40 . 0. , ., . 1. 09 . 1. 16 . 1 . ltJ . 0. 76 . 0. 40 . 14

2. 1 . 2. 4 . 0. 3 * -o. 1 . 1 , I)
  • 1. 5 . 1. 5 .

ST ANOARO . 0.53 . 0.88 . 0.53 .

  • AVERAG[ .

DEVIATION . 0.55 . 0.90 . 0.54 * .PCT OlffERlNCE. 15

=1.228 2.7. 2.3. 1.5. 1. 7

SUMMARY

MAP NO: S2-7-5 DATE: 10/05/83 POWER: 100%

CONTROL ROD POSITIONS: F*Q(T) = 1. 761 QPTR:

D BANK AT 228 STEPS F*DH(N) = 1.420 NW 0.98881 NE 1. 0071 F(Z) = 1.177 SW 0.99711 SE 1. 0070 F(XY) = 1. 378 BURNUP = 198 MWD/MTU A.O.= *1.351(%)

23

e Figure 4.2 SURRY UN IT 2 - CYCLE 7 ASSEMBLYWISE POWER DISTRIBUTION S2-7-23 R N H L K J H G D C A PREDICTED .**********************

o.48 . o. 74

  • o.,,8 . ****************

PRlOICI ID

  • MEASURED *
  • 0. 48 . 0. 74
  • 0. 48 * , H!:.ASUHI I> *
  • PCT DIFFERENCE. * -o.5 * -o.5 . o.3 * .PCT OIFFEHlNG(.
  • 0.42 . 0. 73 . 1.02 . 0.99 . 1.02
  • 0. 73 . D.42 *

. D.42 . 0. 74 . 1.01 . 0.98

  • 1.02 . O. 74 . 0.42 . 2 0.9. 1.0. -0.2. -0.7. 0.1
  • 1.5. 1.5.
  • ci: ;j *: *;: 06 * : * ; : ; 9*: *;: 09 * : *;: ci1 *: * ; : 09 * : *;:; 9*: *;: 06 * :
  • o: i,j * :

. 0.54

  • 1.07 . 1.21 . 1.09
  • 1.06 . 1.08
  • 1.21 . 1.08
  • 0.54 .

0.9. D.9. 1.0. 0.3. -1.5. -1.l . 1.5. 1.5. 0.9.

  • ci: 53 * :
  • ci: 89 * : *;: 23 * : *;: i8 * : *;: 26 * : *;:;; *: *;: 26 *: *;:; 8*: *;: 23 * :
  • o: 89 * :
  • o: 5.i * :

. 0.53 . 0.89

  • 1.24
  • 1. 18 . 1.25 . 1.08 . 1.23
  • 1.20
  • 1.25 . 0.91
  • 0.54 . 4

. -1.0. -0.2. 0.5. 0.6. -1.1 * -2.3. -2.3

  • 1.9. 1.5. 1.3 . 1.8 .
*u:42*: * ;:oti*: * ;:2j*: *;:03* :* ;:j2*: * ;:uj* :*;: ;9*: * ;:o3* :*; :j2*: *;:oj*: *; :2j*: * ;:oi.*:
  • i,:;,;,*:

. 0.41. 1.04. 1.21. 1.03. 1.30. 1.00. 1.16. 1.01. 1.33. 1.05. 1.24. 1.08. 0.liJ. 5

. -2.3 . -2.3 . -1.5 . -0.3 * -0.9 . -2.9 . -2.9 . -2.0 . 0.9 . 1.6 . 1.0 . 1.8 . ~. I *

  • o: 7j. :
  • i: i 9.:
  • i : i 1.: . i: ii. : . i: 6j. : . i: 28. : . i: ii.. : . i: 28. : . i: 6j. : . i: j i. : . i: i 1. : . i: i 9. : . u: i ',. :

. 0.12. 1.18. 1.16. 1.28. 1.02. 1.26. 1.11. 1.21. 1.03. 1.32. 1.18. 1.21. u.1*1. 6

. -0.9. -0.9. -1.3 . -2.3 . -1.1 . -1.4. -2.3. -1.0. -0.1 . 0.8. 1.0. 1.4 .  ?.;> .

  • o: 48 * : *;: 02 * : * ; : 08 * : *; : 26 * : *;: 03 * : *;: 2a * : * ; : oi * : *;: ; j * : * ; : o; * : * ; : 2a * : * ; :i,j * : * ; : 26 * : * ; : us* : * ; :,,;. * :
  • u: .-,ii* :

. 0.117 . 1.01 . 1.09 . 1 .24 . 1.00 . 1.25 . 1.01 . 1. 12 . 1.01 . 1.27

  • 1.03 . 1.26 . 1.U8
  • 1.1)3 . 0.1,9 . 7

. -2.3. -0.6. 0.5. -1.6. -3.1. -1.7. -0.2. -0.9. -0.3. -0.5. -0.3. 0.1. -0.0. l.?. I.J.

*(): 74 * : *0: 99 *:
  • i : 07 *: *i: j i * : *i: i 9* : *i: i 3* : *i: i 2*: *i: 23 *: *i: i 2*:
  • i: i 3*: *i: i 9* : *i: ii* :
  • i :07 * : *{I: 9:1. : . (I: ii1. :

. o.73. 0.97. 1.01. 1.09. 1.15. 1.11. 1.12. 1.23. 1.11. 1.12. 1.11. 1.10. 1.05. o.94. o.u,. 8

. -2.4. -1.2. 0.5. -2.0. -3.6. -2.1 . 0.2. 0.0. -1.1 . -1.5. -1.5. -1.2. -1.7. 0.8.  ?.I.

. o: 48. : . i :i,2. : . i: 08. : . i: 26. : . i: 03. : . i: 28. : . i: 6i. : . i: i j. : . i: 6i. : . i: 28. : . i: 03. : . i: 26. : . i: 08. : . i : ,*,;,. : . i,: i,i; . .

. 0. 4 7 . 1. 01 . 1. 10 . 1. 21,

  • 0. 99 . 1. 23
  • 1.01 . 1. 13 . 1. 00
  • 1. 24 . 1. 00 . 1. 22 . 1. 08 . I." . u. 51 9

. -2.3 . -o.4 . 1.5 . -1.0 . -3.6 .. -3.6

  • 0.1 * -o.3 * -o.8 . -2.8 . -2.1 . -2.8 . 0.1 . 2.? . 4.8
  • * * * * * * : *o: 1i * : * ; : ; ii* : * ; : ; 1* : * ; : j; * : * ; : oj * : * ; : 2a * : *;:; i. * : * ; : 2a * : *;: iJj * : *;: .i; * : *;: ; 1* : * ; : ; 9* :
  • i,: i .i * : * * * * * *

. 0.711. 1.21. 1.19. 1.33. 1.04. 1.25. 1.12. 1.26. 1.02. 1.31. 1.19. 1.24. U./6. 10 1.5. 1:5. 1.4. 1.3. 1.3. -2.3. -1.5. -1.8. -1.1. -0.3. 1.9. 3."/. 3.H

. 0,112. 1.06. 1.23 . 1,03, 1.32. 1.03 , 1.19, 1.03 . 1.32. 1.03. 1.23 , 1.U6 . 11,11;* .

. 0.42, 1.08. 1.25. 1.04 . 1.32. 1.02. 1.17. 1.01 . 1.311. 1.05. 1.25 . 1.09 . ll.113 11

2. 1 . 2. 1 . 1. 7 . 1. 3 . 0. 4 . - 1. 6 . -2. 2 . -2. 3 . 1. 9 . 1. 9 . 2. 0 . 2. 6 . J. I .

. u.~d. 0.89. 1.23. 1.1e. 1.26. 1.11. 1.26. 1.1e. 1.23. o.89. u.~3 .

. U.5'). 0.91. 1.?~. 1.16. 1.24. 1.09. 1.2~. 1.20. 1.?6. 0.91. O.~'J. 12

2. 6 . 2. 1 . 1. 2 . -o. 1 . -1. 2 . -1. 9 . -1. 1 . 1. 6 . 1. 8 . 2. o . 2.? .

. . . . . . . : . 0: ~j. : . i :06. : . 1: i 9. : . i: 09. : . 1: 07. : . i: i.19. : . i : i 9. : . 1: 06. : . CJ: ~j. : ...... .

. U.~'J. 1.HI. 1.21. 1.07. l.05. 1.09. 1.21. 1.06. O.J5. 13 3.U. l.~. 1.2. -1.6. -1.9. 0.2. 1.~. 1."/. 2.1 .

. . . . . . . : . 0: i,2. : . U: i j. : . 1: 11?. : . 0: 99. : . i: 112. : . l1: 7j. : . U: i~?. : ...... .

. O.lf3 . U. /') . U.99 . U.98 . 1.03 . U. 74 . 0.4? . 14 3.4 . 3.11 . -2.11 . -0.6 . 1.0 . 1.4 . 1.11 ,

.... SiANilARo* ... * * * * * * * * * * * * * * : *o: 4s * : *a: 14 * : *a: 4e * : * * * * * * * * * * * * * *  : .... AVi hAC~i ....

O[VIAT ION . 0.50. 0.75. 0.49. . PCT DI f I LIU NCC . 15

aQ,9118 3.4. 1.3. 1.3. ,. 5

SUMMARY

MAP NO: S2-7-23 DATE: 7/12/84 POWER: lOO?s CONTROL ROD POSITIONS: F-Q(T) = 1. 757 QPTR:

D BA~K AT 222 STEPS F-DH(N) = 1.466 NW 0.9859j NE 1.0061 F(Z) = 1.148 SW 1.00011 SE 1.0079 F(XY) = 1.447 BURNUp = 7485 !1\v'D/~U A.O.= -3.117( 0

~)

24

-1 Figure 4.3 SURRY UN IT 2 - CYCLE 7 ASSEMBLYWISE POWER DISTRIBUTION S2-7-45 H

R N

" L K G D C B A PREDICTED  :.o: 49. : . o:; j. : . o: 49. : ****************

PR£0 I Clf.lJ

  • MEASURED * . 0.49. 0.73. 0.50.
  • MEASURED *
  • PCT DI ffERENCE. 0.5 . 0.5
  • 1.3 . .PCT DIFFERENC:f. .
  • 0.1,4
  • o. 74 . 1.02
  • 0.95
  • 1.02 . o. 74 . 0.4*1 .
  • 0.45
  • 0. 74
  • 1.02
  • 0.95
  • 1.03 . 0. 76 . 0.45 . 2 1.8. 0.3 * -0.1 * -0.3. 0.8. 2.4 . 2.9.
. o: 56. : . i: 08. : . i: 22. : . i: 06.: . i: 03. : . i: 06. : . i: 22.:. i: 08. : . o:S6. :
  • 0.57. 1.08. 1.21 . 1.06. 1.02. 1.05. 1.25. 1.12. 0.58 .
1. 4 * -0. 1 * -0. 6 . -0. 1 * -1. 2 . -0. 5 . 2. 4 . 3. I . 3. 6 .
. o: 56.: . o: 9i. : "i: 26. : . i: ii,. : . i: 26. : . i: 09. : . i: 28.:. i: ii,. : . i :26. : . o: 9i . : . o: 56. :

. 0.55 . 0.90 . 1.25 . 1.15 . 1.28 . 1.08 . 1.26 . 1.16 . 1.28 . 0.92 . 0.57 . 4

. -1.1 * -o.6 . -1.4 . -o.4 . -o.6 * -1.5 . -1. 1 . o.5 . 1.0 . 1.2 . 1.8 .

*o:.-,4*: * ;:os*: * ;:26*: * ;:aj* :* ;:j2* :* ;:02*: * ;: ;5*: *; :02*: *; :32*: * ;:03*: *; :26*: *; :08*:
  • o:.-,.-, *:

. 0.43

  • 1.05. 1.24. I.OJ . 1.31 . 1.02. 1.14 . 1.01
  • 1.33. 1.04. 1.25 . 1.09 . 0.115 . 5

. -2.9. -2.9. -1.1. -0.2. -o.6. -o.o. -1.J. -1.3. o.5. o.J. -0.1. o.9.  ?.o.

*o:,,;* :*;:22*: * ;: ;;*: *; :32*: *; :02*: *;:29* :* ;:oii*: *;:29*: *; :02*: *;:32*: *;: ;i,*: *; :22*: *.:,: ;4*:

. o. 74 . 1.21

  • 1.14 . 1.29 . 1.02
  • 1.27 . 1.08 . 1.28
  • 1.03 . 1.32 . 1.14 . 1.23 . u. io . 6
  • -0.9. -0.9. -1.2. -2.3 . -0.4. -0.2. -1.4. -o.o. 0.4. -0.2. -0.8. 0.6 .  ?..J .
.o: i,9. : . i: 02. : . i: 06. : . i: 29. : . i: 02. : . i :21. : . o: 99. : . i: io. :.o: 99. : . i: 21. : . i: 62. : . i: 26. : . i :i,i;. : - i :ui>. :.,, :49. :

. 0.49. 1.03. 1.07. 1.27. 0.99. 1.26. 1.00. 1.10. 1.00. 1.28. 1.01. 1.27. 1.06. 1.01,. tJ.50. 7

. -0.6. 0.5. 1.1. -1.3. -3.1. -1.2. 0.9. 0.3. 1.1. 0.3. -0.9. -1.4. 0.4. 1.8. 1.9.

.o: 73. : .ii: 95. : . i: 03. : . i: 09. : . i: i5. : . i: 09. : . i: io. :. i :25. : . i: i6. : . i: 09. : . i: is. : . i: 09.: . i :03. : .i,: :,;; : .,*,: i j. :

. 0.72. 0.95. 1.04. 1.07. 1.11. 1.07. 1.11. 1.27. 1.09. 1.08. 1.13. 1.UB. 1.03. 0.9/. 0./6. 8

. -0.6. 0.0. 1.1 * -1.7. -3.5. -1.7. 1.2. 1.3. -0.4. -1.2. -2.2. -0.9. 0.2. 1.H. J.9.

*0:49*: * ;:02*: * ;:oi;*:
  • i:28*: * ;:02*: * ;:2,* :*o:99.: *;: io*: *o::i9*: * ;:2,*: *; :02*: * ;:28*: * ;:06 *: *; :,,2*: *u:,;9*:

. o.49. 1.02. 1.06. 1.26. o.98. 1.23 . o.96. 1.09. o.99. 1.23 . o.99. 1.2a . 1.01 . 1.06 . o.n . 9

. -0.6. -0.2. o.o. -1.7. -3.5. -3.6. -3.6. -1.0. -0.1 . -3.2. -2.3. -0.3. 1.0. ].lj. 6.5 .

.......:.o: 74. : . i: 22. : . i: i5. : . i: 32. : . i: 02. : . i: 26. : . i: 09. : . i: 26. : . i: 02. : . i: 32. : . i: ii,. : . i: 22. : . i,: ii, ... -.....

  • 0.74. 1.22. 1.15. 1.33. 1.00. 1.23. 1.07. 1.26. 1.01 . 1.31 . 1.15. 1.24. o.7i 10 0.0. 0.0. 0.2. 0.6. -2.0. -3.4. -1.7. -1.5. -1.7. -1.2. -0.3. 1.4. J ..~
. o: 44. : . i: 06. : . i: 26. : . i: 03. : . i: 32. : . i: 02. : . i : is. : . i: 02. : . i: 32. : . i: 03. : . i :26. : . i :08. : . ;, : i,i, -

. 0.45. 1.11. 1.28. 1.04. 1.30. 0.99. 1.13. 1.00. 1.30. 1.04. 1.27. 1.10. 11.,,*, 11 2.l. 2.3. 1.5. 0.6. -1.7. -2.7. -1.8. -1.9. -2.0. 0.3. 0.8. 1.7.  ?.9

  • * * * * * *: *.;:56. :*0:9;*: *; :26*: * ;:;5*: *; :26*: *; :09* :*;:29*: * ;: ;5*: * ;:2;;*: *0:9; *: *o:5c,*: * * * *

. 0.58 . 0.94 . 1.27 . 1.13 . 1.25 . 1.07 . 1.26 . 1.14 . 1.26 . 0.92 . 0.51 . 12 4.6. 3.o. o.5 . -1.1. -~.o. -2.4. -1.8 . -1.0. -o.o . 1.3 . 2.2 .

. . . . . . . : . o: 56. : . i :08. : . i :22. : . i : 06. : . i :oj" : . i : CH5. : . i : 22. : . i :08. : . o: 56. : ...... .

. 0.58 . 1.13 . 1.23 . 1.03 . 1.00 . 1.05 . 1.21 . 1.08 . 0.57 . 13 4.5 . 4.5 . U.6 . -2.9 . -2.5 . -1.0 . -0.6 . 0.0 . 1.6 .

. . . . . . . : . 6: i,i,. : . o: 1i,. : . i: 02. : . o: 95. : . i : i,2. : . ii: 74. : . a: 44. : ...... .

. 0.46 . 0. 78 . 1.05

  • 0.96 . 1.02 . o. 74 . 0.44 . 14
4. 5 . 5. 2 . 2. 6 . 0. 6 . 0. U . -0. I . -0. 7 .

SJ AND/\RD . 0.49. 0.73 . 0.1,9. , f\~ tl{/\(,1 ,

DEVIATION . 0. 52 . 0. 75 . 0. 49 . . PC f O If f ! l<L NCL 15

=1.293 6.1 . 3.8 . 0.4. 1. ~

SUMMARY

!1AP NO: SZ-7-45 DATE: 3/01/85 POWER: 100%

CONTROL ROD POSITIONS: F-Q(T) = 1. 716 QPTR:

D BANK AT 223 STEPS F-DH(N) = 1.433 NW 0.99771 NE 1. 0023 I

F(Z) = 1.141 SW 1. 00021 SE 0.9998 F(XY) = 1.389 BURNUP = 14150 MWD/!1TU A.O. = -2.712(%)

25

T

'* e e Figure 4.4 HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE 1 .2 (6.0, 1.0) 1 .o (10. 9, o. 94)-

K z*

a.a \

\ \

\

N 0

R 11 o.s

\

A L

I z

E D

(12. 0, 0.46)

F Q

0,4 -

z*

0.2 a.a,_ I 0 2 4 6 8 10 12 CORE HEIGHT lFTl BGTTOM TOP 26

Figure 4.5 SURRY UN IT 2 - CYCLE 7 HEAT FLUX HOT CHANNEL FACTOR, F6(Z)

S2-7-05 2.5 +

N H Q2.0 +

µ, -

i::i:::

0 X X XX XX X H XX X X X X X XX X X X XX X u X X X X X XX X X X

<i:: X X X X X

µ, X X X 1.5 + X X X X X

....l X X

~

z X z

22u X X

H X 0 1.0 +

r:: X X .
> X

....l

µ, -x X

H - X

<i::

~

r:: 0.5 +

0.0 +

I . I . I

  • I ..** I **.. I **.. I .. I
  • I
  • I
  • I * . I .** I 61 55 50 45 40 35 30 25 20 15 lU 5 1 BOTTOM Of CORE TOP OF CORE AXIAL POSITION (NODES) 27

Figure 4.6 SURRY UN IT 2 - CYCLE 7 HEAT FLUX HOT CHANNEL FACTOR, F6(Z)

S2-7-23 2.5 +

p,:

X X X X X X X X X X X X X X 0 XX X X X XXXXXXX H

u X XX X X X

X X XXXXX

<t!

r... 1.:5 + X X

X X XX X

,-.:i X X X

µ:i z X X

~u X H X 1.0 +

§l X

>:: -X X

i X

,-.:i r...

X

~

gj 0. 5 +

0.0 +

I *, I I I I I I I I I I I I 61 ~~ 50 45 40 35 30 25 20 15 10 5 1 BOfTOM or COil[ TOP OF CORE AXIAL POSITION (NODES) 28

Figure 4. 7 SURRY UN IT 2 - CYCLE 7 HEAT FLUX HOT CHANNEL FACTOR, F6(Z)

S2-7-45 2.5 +

N HO"

>"< 2.0 +

X X X X X X X X XX XX X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

1. ~ + X X X X X X X X

X X X X

1.0 +X

- X ll.5 +

o.u +

I * *

  • I
  • I
  • I
  • I
  • I
  • I
  • I
  • I
  • I
  • I * . I .*. I

(, 1 ~,5 50 45 40 35 30 25 20 I', [,, o; 1 IIOTIOM Of CORE TOP Of CORE 29

e e Figure 4.8 SURRY UNIT 2 - CYCLE 7

  • MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, FQ
  • P VS AXIAL POSITION FQ
  • P LIMIT
  • MAXIMUM FQ
  • P 2.2 2.0

~

~

1 .8

' l

\

1 .6 * * ~**** \

... '~ * * * *

  • \

1 .4 * ,, \

F Q

1 .2

~

  • 1.0 * *
  • p
  • a.a Q.6 Q.4 0.2 o.o - I 61 55 50 45 40 35 30 25 20 15 10 5 AXIAL POSITION (NODEl BOTTOM OF CORE TOP OF CORE 30
  • SURRY UNIT 2 - CYCLE 7 e Figure 4.9 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, F-Q VS. BURNUP

- TECH SPEC LIMIT X MEASURED VALUE 2.2 2.l M

A X 2.0 I

M u

M 1 .9 H

E A

T X 1 .8 F X L X X ',( X ',( ',(

u X X /',.

X :K X X 1 .7 H

0 T

C 1 .6 H

A N

N E 1 .5 L

F A

C 1.4 T

0 R

l .3 1 .2 - I 0 2000 4000 6000 8000 10000 12000 14000 16000 CYCLE BURNUP (MWO/MTUl 31

e e I .

Figure 4.10 SURRY UNIT 2 - CYCLE 7 ENTHALPY RISE HOT CHANNEL FACTOR, F-DHCNl VS. BURNUP

- TECH SPEC LIMIT X MEASURED VALUE l . 60 l .55 E l .so N

T H X X X A . X

,i, L l . 45 X X " "

.P X y X X X

R l l . 40 s

E H

0 l . 35 T

C H

A l . 30 N

N E

L l . 25 F

A C

T 0 l . 20 R

l .l5 l . l 0-I 0 2000 4000 6000 8000 10000 12000 14000 16000 CYCLE BURNUP CMWD/MTUl 32

')

C

  • e.

Figure 4.11 SURRY UNIT 2 - CYCLE 7 TARGET DELTA FLUX VS. BURNUP 10 8

6 T

A R

G 4 E

T D

.E 2 L

T A

F 0 L

u X

b. b. b.

l -2 N b. b. b. b.

p -

E b. b.

R -4 -

C b. b.

E N

T

-6

-8 I

0 2000 4000 6000 8000 10000 12000 l 4000 16000 CYCLE BURNUP (MWD/HTU) 33

l

'.\ llil Figure 4. 12 SURRY UN IT 2 - CYCLE 7 CORE AVERAGE AXIAL POWER DISTRIBUTION S2-7-05 1.5 +

F=l.177 z

A. O.= -1. 35 1.2 +

X X X X X X X X X X X X X X X X X X X X X X X X X XX X X X X X X X X X XX X X X X X X X X

@: 0.9 +

X X N X H X

~ X X

X

~

X X

0.6 +

........ X X N

N

~

-x X

- X 0.3 + X 0.0 +

I ..*.* I . I

  • I
  • I
  • I
  • I
  • I
  • I
  • I
  • I * . I .** I 61 55 50 45 'W 35 30 25 20 15 l(J 5 1 BOTTOM OF CORE TOP OF CORE 34

Figure 4. 13 SURRY UN IT 2 - CYCLE 7 CORE AVERAGE AXIAL POWER DISTRIBUTION S2-7-23

1. 5 +

Fz = 1.148 A. 0. -3.12 1.2 +

X X X XX X X X XX X XX X XX X X X X X XX X X X X X XX X X X X X X X X X X X X X X X Cl

µ::J X X X X

N 0.9 +

H X X

~ X XX

~ X X

0.6 +

X

- X

-x X X

0.3 +

o.o +

I ..... I . I

  • I
  • I
  • I
  • I
  • I
  • I
  • I
  • I * . I ..* I 61 '.>5 50 45 40 35 30 25 20 1~ 10 5 1 B01TOM OF CORE TOP OF CORE 35

L

'.I ..

Figure 4. 14 SURRY UN IT 2 - CYCLE 7 CORE AVERAGE AXIAL POWER DISTRIBUTION S2-7-45

,. 5 +

1.141

= -2. 71 1.2 +

X X X X X X XXX XX X XX X X X X X XXX XXXX XX XX X X X X X X X X X X X X X X X X a

~ 0.9 +

X X X X X

N X X H

~

X X X X R 0.6 + X

-x N

- X X

N

~

0.3 +

0.0 +

I ..... I , I

  • I
  • I
  • I
  • I
  • I ** I
  • I
  • I * . I
  • I 61 55 50 45 40 35 30 25 20 15 lU 5* 1 80110M OF COH[ TOP OF CORE 36

)

L Figure 4.15 SURRY UNIT 2 - CYCLE 7 CORE AVERAGE AXIAL PEAKING FACTOR, F~Z VS, BURNUP l .4 1 .3 A

X I

A L

p E

A K l .2 l

N 6.

G

6. b.

F 6.

A 6. 6. A C 6. 6. ~

T 6. 6.

6.

0 6.

R l .l l .0 - I I 0 2000 4000 6000 8000 10000 1~000 l 4000 16000 CYCLE BURNUP (MWD/HTUl 37

Section 5 PRIMARY COOLANT ACTIVITY FOLLOW Activity levels of iodine-131 and 133 in the primary coolant are important in core performance follow analysis because they are used as indicators of defective fuel. Additionally, they are also important with respect to the offsite dose calculation values associated with accident analyses. Both I-131 and I-133 can leak into the primary coolant system throught a breach in the cladding. As indicated in the Surry Technical Specifications, the dose equivalent I-131 concentration in the primary coolant is limited to 1. 0 µCi/ gm for normal steady state operation.

Figure 5.1 shows the dose equivalent I-131 activity level history for the Surry 2, Cycle 7 core. The demineralizer flow rate averaged 105 gpm during power operation. The data shows that during Cycle 7, the core operated substantially below the 1. 0 µCi/ gm limit during steady state operation (the spike data is associated with power transients and unit shutdown). Specifically, the average dose equivalent I-131 concentration

-3 of 1.0 X 10 µCi/ gm is equal to much less than 1~~ of the Technical Specifications limit.

The ratio of the specific activities of I-131 to I-133 is used to characterize the type of fuel failure which may have occurred in the reactor core. Use of the ratio for this determination is feasible because I-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days). For pinhole defects, where the diffusion time through the defect is on the order of days, the I-133 38

e decays out leaving the I-131 dominant in activity, thereby causing the ratio to be 0.5 or more. In the case of large leaks, uranium particles in the coolant, and "tramp" uranium*, where the diffusion mechanism is negligible, the I-131/I-133 ratio will generally be less than 0.1. Figure 5.2 shows the I-131/I-133 ratio data for the Surry 2, Cycle 7 core. An evaluation of the measured values for dose equivalent I-131 and the I-131/I-133 ratio indicates that there were essentially no fuel defects in the Cycle 7 core, -but there was a trace of uranium in the primary coolant system.

,'."Tramp"-. uranium consists of small particles of uranium which adhere to the outside of the fuel during the manufacturing process.

39

- SURRY UNIT 2 e

CYCLE 7 Fl GURE 5. l DOSE EQUIVALENT I-131 vs. TIME

'b l TECHNICAL SPEClF!CATlONS LIMIT l

-~----------------------------

b

-:..;---------------------------------4

(!)

c "o a-Cf) w a:::

u (!) (!) (!)

a (!)

a:::

u ...

(!) &

-b (!)

1:: -

(!)

(!) ~ (!)

(!)

" (!)

(!)

(!)

(!) (!)

9 (!)

r/1 ~

(!) (!) (!)

(!) (!)

.'o (!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

(!) (!)

(!)

(!)


100 OCT NOV DEC JAN FEB MAR APR t1AY *JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR 1983 1984 1985 40

- 'r' FIGURE 5 .2 SURRY UNIT 2 CYCLE 7 I - 1 3 1 / I - 1 3 3 RC T I VI TY RAT I O vs. T I ME

(!)

0 N

(!)

(!)

-~

(~

ao t--- I!)

a: (!)

a:::

>- (!)

l'J 1--0

_.co I!>

>~

1 --

u (!)

(!)

IP a: (!) (!)

0 (T") (D

(!)

(T")

  • 0

.p

-' IP

(!)

'!b

(!)

(!)

(!)

(!)

r,

µ

(!) (!)

ID

% (!) (!)

~ t!> C

(!) (!)

I

(!) ~

(!) (!) (!) C

(!)~ (!)

(!) (!) (!)(!) ,lb~

~

!)

~

~~

0 (!)

l'J~ DC!> C!> (!)

(!)

~

C!l N (!) (!)

CJ ia C!> _ /:, INTI (!)~ (!) ,j'. ~~

Cg)

IT\

'(!) ( t!l 0

~ ~if- 1li

r ~*

~

~~~ l.m...l"I I ~c

-~

':fJ i!) I ~ ~ - !) ~(!) C

~;

~

(!) C 1~(!)-

~ """' ~

~~(!

~  :!l (!)I ~(Tl (!).ii) ,

~

(!) .:n,-rn,\;

" y

~6.

cf,9- :611:1~ ~

~: CD'( ~ c¥ ~Cl

-- ,n 0

(!)

(!)

~ C (!)-.:. ..,~-

~

(!) ~ ~~ Y:r" "Uij ~C!@

C (!I CE 0

0

--,r rr I' ti I I 1111 ~~-n 100 50

~

w

J::

0 0 ~

-, I I I I I I I I I I I I I I I OCT NOV DEC JRN FEB MRR APR ~RY JUN JUL RUG SEP OCT NOV DEG JRN FEB MRR 1983 1984 1985 41

Section 6 CONCLUSIONS The Surry 2, Cycle 7 core has completed operation. Throughout this cycle, all core performance indicators compared favorably with the design predictions and the core related Technical Specifications limits were met with significant margin. No significant abnormalities in reactivity or burnup accumulation were detected. In addition, the excellent mechanical integrity of the fuel has not changed throughout Cycle 7 as indicated by the radioiodine analysis.

42

r:(

Section 7 REFERENCES

1) E. S. Hendrixson, "Surry Unit 2, Cycle 7 Startup Physics Test Report," VEP-NOS-7, October, 1983
2) Surry Power Station Technical Specifications, Sections 3.1.D, 3.12.B, and 4.10.
3) T. K. Ross, "NEWTOTE Code", NFO-CCR-6, Vepco, April, 1984.
4) R. D. Klatt, W. D. Leggett, III, and L. D. Eisenhart, "FOLLOW Code," WCAP-7482, February, 1970.
5) W. D. Leggett, III and L. D. Eisenhart, "INCORE Code,"

WCAP-7149, December, 1967.

43