ML18151A894
| ML18151A894 | |
| Person / Time | |
|---|---|
| Site: | Surry, North Anna |
| Issue date: | 11/30/1991 |
| From: | Berryman R, Dziadosz D VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | |
| Shared Package | |
| ML18151A895 | List: |
| References | |
| VEP-NAF-2, NUDOCS 9201060272 | |
| Download: ML18151A894 (60) | |
Text
.I
- 1 I
- Ii Ill
- 1-i I
I_
ll I'
. ~11 II
- I
- 1
/_
I'
,I 9201060272 911220 PDR ADOCK 05000280 p
PQR Reactor Power Dist1ibution Analysis Using A Moveable In-Core Detector System and The TIP/CECOR Computer Code Package Nuclear Analysis and Fuel Department Nuclear Engine~ring Services VEP-NAF-2 November, 1991 VIRGINIA POWER D
I
- It*
I I
I*
- I,.
I I I,.
I I
I
,I,.
I VEP-NAF-2 REACTOR POWER DISTRIBUTION ANALYSIS USING A MOVEABLE IN-CORE DETECTOR SYSTEM AND THE TIP/CECOR COMPUTER CODE PACKAGE BY T. W. SCHLEICHER NUCLEAR ANALYSIS AND FUEL DEPARTMENT NUCLEAR ENGINEERING SERVICES VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND, VIRGINIA NOVEMBER, 1991 Recommended for Approval:
t?,i~
Supervisor, Nuclear Core Design Approved:
R. M. Berryman Manager, Nuclear Analysis and Fuel
.1
\\I 11' I
11*
- v
'(,,
I
!I I
I
- I
.I,.
CLASSIFICATION/ DISCLAIMER The data, information, analytical techniques, and conclusions in this report have been prepared solely for use by the Virginia Electric and Power Company (the Company), and they may not be appropriate for use in.situations other than those (or which they_were specifically prepared. The Company therefore makes no claim or warranty whatsoever, express or implied, as to their accuracy, usefulness, or applicability. In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, information, analytical techniques, or conclusions in it.
By making this report available, the Company does not authorize its use by -others, and any such use is expressly forbidden except with the prior written approval of the Company. Any such written approval sha 11
- itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, information, and analytical techniques, or conclusions in it.
i
\\'
ii, II
- I
'(
I I
I I,,
I ii,,
I ABSTRACT The Virginia Electric and Power Company (Virginia Power) currently uses a version of the Westinghou~e INCO~E code ~o infer a three-dimensional core power distribution from a limited number of moveable in-core detectors at the Surry and N~rth Anna Power Stations.
In response to changes in reload design and the po-tential for the use of fixed in-core detectors in future cycles, Virginia Power has acquired the ABB/C-E CECOR system to perform this function.
The Virginia Power version of the CECOR code, also known as TIP/CECOR, uses the CECOR radial solution methodology. However, since the Virginia Power moveable detectors generate signals at 61 axial points, as compared to the 4 or 5 typically provided by fixed detectors, no axial synthesis is performed.
Calculations documented in this report validate the Virginia Power TIP/CECOR package as an alternative to INCORE and show that coefficients generated by either the Virginia Power PDQ Discrete or Two Zone models are acceptable.
I I
'I*,,
I 1:
CLASSIFICATION/DISCLAIMER.
ABSTRACT....
- TABLE OF CONTENTS LJST OF TABLES __...
LIST OF FIGURES..
SECTION 1 - INTRODUCTION TABLE OF CONTENTS SECTION 2 - CODE PACKAGE DESCRIPTION SECTION 3 - METHODOLOGY SECTION 4 - RESULTS..
SECTION 5 -
SUMMARY
AND CONCLUSIONS SECTION 6 - REFERENCES...
Page i
ii iii iv V
1 3
9 17 52 53 iii
,(
.I I
I t*
I I
I I
II, I
I t
- I, II I
LIST OF TABLES Table Title 3-1 Simulation Database 3-2 North Anna Discrete Database 3-3 Surry Discrete Database 3-4 North A~~a.Two Zone Database 3-5 Surry Two Zone Database 4-1 Summary of Simulation Database Statistics 4~2 Axial Offset Comparison for Simulation Database (38 Thimbles) 4-3 Axial Offset Comparison for Simulation Database (44 Thimbles) 4-4 Axial Offset Comparison for Simulation Database (50 Thimbles) 4-5 Summary of SlC9 Simulation Statistics 4-6 Summary of North Anna Discrete Statistics 4-7 Summary of Surry Discrete Statistics...
4-8 Suminary_ of North Anna Two Zone Statistics 4-9 Summary of Surry Two Zone Statistics Page 12 13 14 15 16 19 20 21 22 23 24 25 26 27 iv
I I
I I
I I
Figure LIST OF FIGURES Title Page 2-1 Virginia Power TIP/CECOR Code Package Flowchart 6
2-2 Surry and North Anna Instrumented Assembly Locations 7
2-3 Vi rgi ni a Power TIP/CECOR Geometry 8
4-1 Detector. Level 28 FQ Comparison (S1C9 Simulation/I Level INCOR) 28 4-2 Detector Level 28 FQ Comparison (S1C9 Simulation/I Level CECOR) 29 4-3 Detector Level 28 FQ Comparison (S1C9 Simulation/7 Level CECOR) 30 4-4 Detector Level 28 FQ Comparison (S1C9 Simulation/22 Level CECOR) 31 4-5 RPO Comparison for N1C2 Map 44 (INCOR with 1 Analysis Level) 32 4-6 RPO Comparison for N1C2 Map 44 (CECOR with 1 Analysis Level) 33 4-7 RPO Comparison for N1C2 Map 44 (CECOR with 7 Analysis Levels) 34 4-8 RPO Comparison for N1C2 Map 44 (CECOR with 22 Analysis Levels) 35 4-9 FAH Comparison for N1C2 Map 44 (INCOR with 1 Analysis Level) 36 4-10 FAH Comparison for N1C2 Map 44 (CECOR with 1 Analysis Level) 37 4-11 FAH Comparison for N1C2 Map 44 (CECOR with 7 Analysis Levels) 12 FAH Comparison for N1C2 Map 44 (CECOR with 22 Analysis Levels) 4-13 Fz(Z) Comparison North Anna Unit 1, Cycle 2 Map 44 4-14 FQ(Z) Comparison North Anna Unit 1, Cycle 2 Map 44 4-15 RPO Comparison for S1C6 Map 70 (INCOR with 1 Analysis Level) 4-16 RPO Comparison for S1C6 Map 70 (CECOR with 1 Analysis Level) 4-17 RPO Comparison for S1C6 Map 70 (CECOR with 7 Analysis Levels) 4-18 RPO Comparison for S1C6 Map 70 (CECOR with 22 Analysis Levels) 4-19 FAH Comparison for S1C6 Map 70 (INCOR with 1 Analysis Level) 4-20 FAH Comparison for S1C6 Map 70 (CECOR with 1 Analysis Level) 4-21 FAH Comparison for S1C6 Map 70 (CECOR with 7 Analysis Levels) 4-22 FAH Comparison for SlC6 Map 70 (CECOR with 22 Analysis Levels) 4-23 Fz(Z) Comparison Surry Unit 1, Cycle 6 Map 70 4-24 FQ(Z) Comparison Surry Unit 1, Cycle 6 Map 70 38 39 40 41 42 43 44 45 46 47 48 49 50 51 V
I.
,.I
- I,,
I ii I I.
- 1 I
I.
ii 1,
- t*
I -
- 1.
SECTION 1 INTRODUCTION Virginia Electric and Power Company (Virginia Power) reactors at the Surry and North Anna Power Stations use a Westinghouse moveable in-core detector system 1 to measure the neutron flux distribution at sixty-one axial points in a maximum of fifty instr:~mentation thimbles.
Virginia Power currently uses a version of the Westinghouse INCORE code 2 to infer a three-dimensional assembly and pe~k pin power distribution from these moveable detector readings.
INCORE also uses pre-computed (by Virginia Power's PDQ Discrete Model 3 ) relative power densities, peak pins, and thimbl~ fluxes.
INCORE code results are used for core power distrib-ution monitoring and surveillance, core follow, and methods development verifi-cation.
The design of Surry Unit 1, Cycle 13 (scheduled start-up April, 1994) will include part-length Hafnium flux suppression inserts to protect the reactor vessel welds from neutron embrittlement.
The increased number of axial regions defined by this design would require modification to Virginia Power 1 s production version of INCORE.
This requirement, as well as the potential for using some or all fixed in-core detectors in the future, prompted Virginia Power to acquire the ABB/C-E CECOR system 4 for use at the Surry and North Anna Power Stations.
The CECOR system, which has been reviewed by the USNRC 5,
is used for all ABB/C-E reactors with fixed in-core detectors to synthesize full-core radial and axial assembly and peak pin powers.
CECOR uses the fixed in-core detector readings and precomputed (from 2-group diffusion theory calculations) signal-to-power conversions, pin-to-box factors, and average coupling coefficients to syn-thesize full-core power distributions.
The Virginia Power version of the CECOR code, also known as TIP/CECOR, uses the CECOR radial solution methodology.
How-ever, since the Virginia Power moveable detectors generate signals at sixty-one 1
I II
. I
/'
I I
1*
J, I
I I
'\\
I I
axial points, as compared to the four or five typically provided by fixed detec-tors, no axial synthesis is performed.
The purpose of the topical report is to validate the Virginia Power TIP/CECOR package as an alternative to INCORE by demonstrating the following:
TIP/CE~PR has synthesis uncertainties similar to those of INCORE.
TIP/CECOR, when used with PDQ Discrete Model 3 physics input, has overall uncertainties similar to those of INCORE.
TIP/CECOR, when used with PDQ 30 Two Zone Model' physics input, has overall uncertainties simil~r to those of INCORE.
TIP/CECOR, when used with either model's physics input, has overall un-certainties less than approved nuclear reliability factors'.
2
,1*
/I I
1/*
- I I
J.
I 1:
I,.
I/,.
I SECTION 2 - CODE PACKAGE DESCRIPTION Figure 2-1 shows the relationships between the sources of input (Moveable de-tector data and PDQ physics input) and the three codes in the Virginia Power TIP/CECOR Code Package (CESIC, TIP/CECOR, and CEWED).
TERMINOLOGY Terms used frequently in conjunction with the TIP/CECOR Code Package include:
analysis level, rod bank region, and detector level.
An analysis level is an axial region, corresponding to axial regions in the physics model, for which there is a unique set of coefficients.
For example, a 2-dimensional physics model could only generate coefficients for one analysis level, while a 22-plane, 3-dimensional physics model could generate coefficients for up to 22 analysis levels.
Rod bank regions are axial regions, superimposed over the analysis levels, for which there is a unique control rod configuration.
For example, a single set of eight control rods partially inserted defines two rod bank regions (unrodded and rodded).
It is important to note that, while the dimensions of the analysis levels are predetermined, the dimensions of the rod bank regions are specific to the individual flux map (i.e., determined by control rod positions).
A detector level is a discrete axial point at which a reaction rate is measured (and a power level determined).
Each detector level has both a corresponding analysis level and rod bank region.
For example, detector level 55 may be in analysis level 18 and rod bank region 2.
3
I I
,I,,
I, I
I,,
I I
I-I I
MOVEABLE DETECTOR DATA Figure 2-2 shows the location of the fifty instrumentation thimbles at the Surry and North Anna Power Stations.
The moveable detector system consists of five detector drives that simultaneously traverse five thimbles, recording a flux 0gnal at 61 a_x_ial points.
A 'flux map' consists of a sufficient number of de-tector passes to ensure at least 38 of the 50 thimbles have been traversed. This raw detector data is provided as input to the CESIC code.
PDQ PHYSICS INPUT Precomputed assemblywise relative power densities, peak pins, and thimble fluxes are obtained from either PDQ Discrete or PDQ Two Zone calculations.
If the 2D PDQ Discrete Model is used, only 1 analysis level is possible, and a sep-arate PDQ calculation is required for each rod bank region.
If the 3D PDQ Two Zone Model is used, :either 1, 7, or 22 analysis levels (See Figure 2-3) may be used with input from a single PDQ calculation or separate PDQ calculations for each rod bank region. If a single, partially rodded 3D calculation is used, and the PDQ calculation and flux map are not at exactly the same _rod position, data for the nearest analysis level with the same rod configuration are used.
CESIC CESIC is a pre-processor for CECOR that writes CECOR Snapshot and Coefficient Files necessary for the execution of CECOR.
The Snapshot File ~ontains moveable detector data that has been shifted (to account for detector misalignment), ad-justed (to account for reactor power level changes, the detector scale setting, and the detector background reading), and calibrated (to account for detector to detector differences).
The Coefficient File contains signal-to-power conver-4
I I
I I
-1
'I 1:
I I
I I
sions, pin-to-box factors, and average coupling coefficients calculated using the ABB/CE methodology 4 and PDQ relative power densities, peak pins, and thimble fluxes.
TIP/CECOR permits the use of axially dependent coefficients.
Sets of coefficients are generated for each rod bank region for a user-specified number of analysis levels.
CECOR TIP/CECOR synthesizes three-dimensional box and peak pin power distributions using data from the Snapshot and Coefficient Files.
Modifications made to the ABB/CE CECOR program to create TIP/CECOR were limited to:
The bypassing of axial synthesis when moveable detector data is provided.
The sixty-one axial detector readings provide an explicit axial shape.
Reformatting numerous edits that were designed assuming a limited number of axial detector levels.
The creation of an output file to transfer data to the CEWED program.
CECOR performs sixty-one independent radial solutions (one for each detector level).
Coefficients are assigned by determining what rod bank region and anal-ysis level bounds each detector level (an averaging technique is used for detector levels exactly corresponding to rod bank region or analysis level boundaries).
CEWED CEWED is a post-processor for CECOR that generates a concise summary of the CECOR calculation as well as producing station-specific edits.
5
I I
I I,,
I
.I I
I I
I II I
I
--=:. -
FIGURE 2-1 VIRGINIA POWER TIP/CECOR CODE PACKAGE FLOWCHART
~OVEABLE IN-CORE PDQ DISCRETE OR DETECTOR SYSTEM TWO ZONE MODEL Raw Detector Signals RPD's, Peak Pins,
& Thimble Fluxes CESIC CECOR Snapshot File containing Shifted, Adjusted, and Calibrated Detector Signals CECOR Coefficient File containing W-Primes, Coupling Coefficients, and I-Pins TIP/CECOR
- CECOR Edit File containing 3-D Assembly and Peak Pin power-s and other miscellaneous data required by CEWED CEWED 6
I I
I I,,
I
,I I
I I
I I
I,,
I FIGURE 2-2 SURRY AND NORTH ANNA INSTRUMENTED THIMBLE LOCATIONS RP NM L-K
_J_H_G FED C
8 A
( 1)
( 2)
( 3)
( 4) ( 5)
( 6)
( 7)
( 8)
( 9)
(IO)
(11)
(12)
(13) (14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28) (29)
(30)
(31) (32)
(33)
(34)
(35)
(36)
(37)
, (38)
(39)
(40) (41)
(42)
(43)
(44) (45)
(46)
(47)
(48)
(49)
(50)
(
) = Moveable Detector Number 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 7
I FIGURE 2-3 VIRGINIA POWER TIP /CECOR GEOMETRY I
CM FROM PDQ TWO-ZONE TIP/CECOR TIP/CECOR TIP/CECOR BOTTOM MODEL AXIAL 22 ANALYSIS 7 ANALYSIS 1 ANALYSIS
,1 OF FUEL FUEL MESH LEVEL MODEL LEVEL MODEL LEVEL MODEL 0.000 I
PLANE 1 LEVEL 1
- 5. 715 PLANE 2 LEVEL 2 LEVEL 1
- 11. 430 I
PLANE 3 LEVEL 3 22.860 PLANE 4 LEVEL 4 I
34.290 PLANE 5 LEVEL 5 LEVEL 2
- 45. 720 PLANE 6 LEVEL 6 I
68.580 PLANE 7 LEVEL 7 91.440
.I PLANE 8 LEVEL 8 114. 300 PLANE 9 LEVEL 9 LEVEL 3 137.160 PLANE 10 LEVEL 10 160.020 PLANE 11 LEVEL 11 I
182.880 LEVEL 4 LEVEL 1 PLANE 12 LEVEL 12 205.740 I
PLANE 13 LEVEL 13 228.600 PLANE 14 LEVEL 14 LEVEL 5 251. 460 I
PLANE 15 LEVEL 15 274.320 PLANE 16 LEVEL 16 I
297.180 PLANE 17 LEVEL 17 320.040 LEVEL 6 I
PLANE 18 LEVEL 18 331. 470 PLANE 19 LEVEL 19 342.900 I
PLANE 20 LEVEL 20 354.330 PLANE 21 LEVEL 21 LEVEL 7 I
360.045 PLANE 22 LEVEL 22 365.760 NOTE:
THERE ARE 61 DETECTOR LEVELS (NODES) UNIFORMLY SPACED FROM BOTTOM TO TOP.
-I 8
I I
I I
I I
I I
I I
I I
I
,I I
I SECTION 3 - METHODOLOGY The data used in the generation of each RPO, FAH* and Fq uncertainty factor were random samples of historical flux maps and are believed to be representative of the entire population (data from all possible flux maps).
RPO data consisted of percent dif_f_er.ences, (Predi cted-Measured)/Measured, for each assembly having both a predicted and measured RPO greater than 1.
FAH data consisted of percent differences for each assembly having both a predicted and measured FAH greater than 1.
Fq data consisted of percent differences for each assembly at five (for Surry) or six (for North Anna) axial locations having both a predicted and meas-ured Fq greater than 1. Axial locations approximately halfway between the grids were selected for conservatism.
Since the Two Zone PDQ Model does not include grids, the predicted axial power distribution is not depressed at grid locations resulting in a maximum difference between measured and predicted Fq tending to occur halfway between the grids.
Uncertainty factors were calculated using the equation: 1.0 + (TL/100.), where TL is the appropriate 95%/95% one-sided upper tolerance limit.
Si nee the Kolomogorov D-test indicated that all of the statistical samples analyzed were non-normal, tolerance limits were calculated using a method described by Somerville. 7 This method determ~nes the 95%/95% one-sided upper tolerance limit to be bounded by the mth largest value in a ranking of the observed values of a non-normal distribution.
The value of 11m" is a function of the number of obser-vations which, for populations greater than 500 (n>SOO), can be approximated by the equation 17+.045*(n-500).
The overall uncertainty associated with TIP/CECOR includes a measurement un-certainty and a synthesis uncertainty.
The synthesis uncertainty, which is in-dicative of the code's ability to calculate the power distribution in 9
I I
I I
I I
I I
I I
I I
I I
I I
uninstrumented assemblies, can be determined by performing TIP/CECOR calculations using simulated detector traces (traces that exp 1 icitly represent PDQ 3-Dimensional Two Zone predictions). Table 3-1 lists the 27 simulated flux maps that comprised the Simulation Database.- Fo~maps with fewer than 50 thimbles, thimble removal was determined by random number generation.
For the 38-thimble maps, Thimbles* *2; 6, 10, 13, 15, 20, 26, 28, 31, 39, 44, and 46 were removed.
For the 44-thimble maps, Thimbles 8, 9, 22, 28, 32, and 40 were removed.
The Simulation Database was analyzed using TIP/CECOR (with 1, 7, and 22 analysis levels) and INCORE (with 1 analysis level).
An additional simulation case was performed for Surry Unit 1, Cycle 9 at O MWD/MTU with part-length Hafnium flux suppression inserts.
A good estimate of the. impact of the inserts was obtained by modelling them as part-length inserts made of control rod material (Ag-In-Cd).
Assemblies Hl, R8, A8, and H15 contained 27-inch long inserts (spanning Detector Levels 17 through 28). Assemblies M3, 03, N4, C4, N12, Cl2, M13, and 013 containe.d 54-inch long inserts (spanning Detector Levels 5 through 28). The purpose of this case was to investigate the ability of INCORE and TIP/CECOR to synthesize power distributions in the presence of these inserts.
The PDQ Discrete Model is currently used to generate precomputed relative power densities, peak pins, and thimble fluxes for INCORE.
The feasibility of using this input with TIP/CECOR was demonstrated by determining the overall uncertainty for a series of historical flux maps (listed in Tables 3-2 and 3-3 for North Anna and Surry, respectively). These seventy-nine maps, which include a range of power levels and rod configurations (including several dropped rod cases), comprised the Discrete Database.
Since the PDQ Discrete Model is only 2-Dimensional, the Discrete Database was analyzed using TIP/CECOR and INCORE with only 1 analysis level and uncertainty factors were only determined for RPO and FAH*
10
I I
I I
I I
I I
I I
I I
I I
I I
The feasibility of using 3-D PDQ Two Zone physics input with TIP/CECOR was demonstrated by determining the overall uncerta.inty for a series of historical flux maps (listed in Tables 3-4 and 3-5 for North Anna and Surry, respectively).
These eighty maps, which include a range_of power levels and rod configurations, comprised the Two Zone Database.
With the exception of Surry Cyc 1 es prior to Cycle 4, these_maps are identical to those included in Two Zone Topical Report 6
- The Two Zone Database was analyzed using TIP/CECOR (with 1, 7, and 22 analysis levels) and INCORE (with 1 analysjs level).
11
I I
I I
I I
I I
I I
I I
I I
I -I FLUX MAP N1C8 Simulated Map 01 N1C8 Simulated Map 02 N1C8 Simula~ed Map 03 N1C8 Simulated Map 04 N1C8 Simulated Map 05 N1C8 Simulated Map 06 N1C8 Simulated Map 07 N1C8 Simulated Map 08 N1C8 Simulated Map 09 N1C8 Simulated Map 01 N1C8 Simulated Map 02 N1C8 Simulated Map 03 N1C8 Simulated Map 04 N1C8 Simulated Map 05 N1C8 Simulated Map 06 N1C8 Simulated Map 07 N1C8 Simulated Map 08 N1C8 Simulated Map 09 N1C8 Simulated Map 01 N1C8 Simulated Map 02 N1C8 Simulated Map 03 N1C8 Simulated Map 04 N1C8 Simulated Map 05 N1C8 Simulated Map 06 N1C8 Simulated Map 07 N1C8 Simulated Map 08 N1C8 Simulated Map 09 TABLE 3-1 SIMULATION DATABASE CYCLE PERCENT MWD/MTU _
POWER 150 100.0 1000 100.0 3000 100.0 5000 100.0 7000 100.0
. 9000 100.0 11000 100.0 13000 100.0 15000 100.0 150 100.0 1000 100.0 3000 100.0 5000 100.0 7000 100.0 9000 100.0 11000 100.0 13000 100.0 15000 100.0 150 100.0 1000 100.0 3000 100.0 5000 100.0 7000 100.0 9000 100.0 11000 100.0 13000 100.0 15000 100.0 D-BANK THIMBLES POSITION USED 228 38 228 38 228 38 228 38 228 38 228 38 228 38 228 38 228 38 228 44 228 44 228 44 228 44 228 44 228 44 228 44 228 44 228 44 228 50 228 50 228
~o 228 50 228 50 228 50 228 50 228 50 228 50 12
I I
I I
I I
I I
I I
I.
I I
I I
I FLUX MAP N1C8 Map 01 NlC8 Map 02 N1C8 Map 03.
N1C8 Map 04 N1C8 Map 05 N1C8 Map 06 N1C8 Map 07 N1C8 Map 08 N1C8 Map 09 NlC8 Map 10 N1C8 Map 11 N1C8 Map 12 N1C8 Map 13 N1C8 Map 14 N1C8 Map 15 NlC8 Map 16 N1C8 Map 17 N1C8 Map 18 NlC8 Map 19 N1C8 Map 20 N1C8 Map 21 N1C8 Map 22 N2C7 Map 01 N2C7 Map 02 N2C7 Map 03 N2C7 Map 04 N2C7 Map 05 N2C7 Map 06 N2C7 Map 07 N2C7 Map 08 N2C7 Map 09 N2C7 Map 10 N2C7 Map 11 N2C7 Map 12 N2C7 Map 13 N2C7 Map 14 N2C7 Map 15 N2C7 Map 16 N2C7 Map 17 N2C7 Map 18 N2C7 Map 19 N2C7 Map 20 N2C7 Map 21 N2C7 Map 22 N2C7 Map 23 N2C7 Map 24 N2C7 Map 25 N2C7 Map 26 TABLE 3-2 NORTH ANNA DISCRETE DATABASE CYCLE PERCENT D-BANK THIMBLES DATE MWD/MTU _
POWER POSITION USED 07 /17 /89 14 28.8 163 38 07/19/89 47 74.4 192 44 07/26/89 257 100.0 228 43 07/27/89 280 100.0 206 21 07/27/89 300 100.0 228 21 08/21/89 1243 100.0 228 43 09/22/89 2550 100.0 228 42 10/23/89 3786 100.0 228 44 11/17 /89 4768 100.0 228 44 12/27/89 5728 95.6 228 42 01/30/90 6970 100.0 228 44 02/28/90 8122 99.9 228 44 04/02/90 9462 100.0 228 44 04/26/90 10387 100.0 228 46 05/25/90 11559 99.9 228 45 06/20/90 12580 100.0 228 43 06/21/90 12609 99.9, 217 21 06/21/90 12627 100.0 228 25 07/23/90 13897 100.0 228 47 08/22/90 15079 100.1 228 47 09/19/90 16200 100.0 228 47 10/17/90 17224 82.8 228 44 05/10/89 19 29.9 123 46 05/11/89 35 45.0 134 46 05/13/89 60 82.0 195 46 05/17/89 224 98.0 208 45 05/18/89 253 99.2 1 210 26 05/18/89 264 99.0 204 21 05/18/89 270 99.0 216
-29 06/01/89 800 100.0 228 46 06/23/89 1700 100.0 228 44 07/24/89 2914 100.0 228 46 08/22/89 4066 100.0.
228 45 09/21/89 5257 100.0 228 45 10/20/89 6409 100.0 228 45 11/06/89 7095 99.9 228 46 12/08/89 8339 100.0 228 47 01/08/90 9572 99.9 228 47 02/05/90 10685 100.0 228 47 03/07/90 11892 100.0 228
- 47 03/27/90 12691 100.0 228 46 03/27/90 12700 99.9 216 26 03/28/90 12721 99.9 228 26 04/25/90 13841 100.0 228 46 05/18/90 14731 100.0 228 47 06/14/90 15822 99.9 228 47 07/16/90 17014 85.4 228 47 08/16/90 17932 49.6 112 47 13
I I
I I
I I
I I
I,,
I I
I I
I I
FLUX MAP SlClO Map 10 SlClO Map 19 SlClO Map 20 -
SlClO Map 21 SlClO Map 22 SlClO Map 28 SlClO Map 29 SlClO Map 30 SlClO Map 31 SlClO Map 35 SlClO Map 36 SlClO Map 37 SlClO Map 41 S1C10 Map 44 S1C10 Map 46 S1C10 Map 48 S1C10 Map 49 S1Cl0 Map 50 S2C10 Map 02 S2Cl0 Map 14 S2C10 Map 15 S2C10 Map 18 S2C10 Map 19 S2C10 Map 20 S2C10 Map 22 S2C10 Map 25 S2C10 Map 26 S2Cl0 Map 31 S2C10 Map 35 S2C10 Map 38 S2C10 Map 41 TABLE 3-3 SURRY DISCRETE DATABASE CYCLE PERCENT D-BANK THIMBLES DATE MWD/MTU -
POWER POSITION USED 07/07/89 1850 25.7 133 44 08/22/89 3373 100.0 217 44 09/28/89 4420 100.0 217 43 10/21/89 5185 73.8 193 44 10/24/89 5254 100.0 225 40 11/27/89 6439 100.0 223 44 12/28/89 7419 100.1 224.
40 01/29/90 8346 99.9 223 40 03/06/90 9701 100.0 223 44 04/07/90 10800 100.0 221 41 04/26/90 11440 100.0 217 41 05/21/90 12300 100.0 216 42 07/11/90 13450 100.0 213 40 07/27/90 13829 97.9 212 44 07/28/90 13860 95.5 215 40 07/30/90 13908 94.4 224 43 08/23/90 14858 83.4 224 42 09/24/90 15520 66.2 224 43 10/02/89 115 63.9 180 42 02/28/90 3549 100.0 221 40 03/26/90 4453 100.0 224 41 04/24/90 5244 100.0 223 41 05/31/90 6476 100.0 218 41 06/27/90 7564 100.0 221 41 07/18/90 8016 100.0 222 41 09/04/90 9412 100.0 223 39 09/26/90 10325 99.8 224 39 11/18/90 11165 27.6 191 42 11/19/90 11200 44.9 187
-42 11/21/90 11231 66.0 190 41 11/26/90 11392 90.1 216 42 14
I I
I I
I I
I I
I I
I I
I I
I I
FLUX MAP NlCl Map 01 NlCl Map 25 NlCl Map 52.
NlCl Map 68 N1C2 Map 07 N1C2 Map 15 N1C2 Map 26 N1C2 Map 44 N1C3 Map 02 N1C3 Map 14 N1C3 Map 33 N1C3 Map 84 N1C4 Map 02 NlC4 Map 07 N1C4 Map 17 N1C4 Map 25 N1C5 Map 01 N1C5 *Map 15 N1C5 Map 23 N1C5 Map 34 N1C6 Map 09 N1C6 Map 17 N1C6 Map 29 N2C2 Map 02 N2C2 Map 20 N2C2 Map 27 N2C3 Map 01 N2C3 Map 14 N2C3 Map 25 N2C3 Map 37 N2C4 Map 01 N2C4 Map 08 N2C4 Map 22 N2C4 Map 28 N2C5 Map 08 N2C5 Map 19 N2C5 Map 29 N2C6 Map 04 N2C6 Map 13 N2C6 Map 22 TABLE 3-4 NORTH ANNA TWO ZONE DATABASE CYCLE PERCENT 0-BANK THIMBLES DATE MWD/MTU _
POWER POSITION USED 04/09/78 0
4.0 228 48
. 05/14/78 300 96.0 216 48 01/18/79 8405 96.4 218 38 08/01/79 14070 100.0 220 49 01/24/80 28 30.0 165 46 02/07/80 300 99.1 228
- 48 05/05/80 3277 99.9 222 47 09/30/80 8109 99.9 210 47 04/08/81 0
4.0 220 46 04/27/81 487 100.2 224 42 11/13/81 6883 99.8 213 48 03/15/82 11434 100.0 216 48 03/14/83 13 29.1 180 48 03/24/83 305 100.0 221 45 08/17/83 5520 100.0 216 42 02/15/84 10170 100.0 226 39 09/25/84
- 0.
4.0 228 39 10/10/84 225.
99.8 224 48 04/16/85 6831.
99.9 224 43 10/22/85 12983.
100.0 228 45 01/28/86 378.
100.0 219 48 07/21/86 6690.
100.0 228 48 03/06/87 14340.
100.0 228 39 06/03/82 0
4.0 228 44 11/05/82 3225 100.0 224 50 02/15/83 6750 99.9 218 50 05/29/83 0
4.0 211
~l 07/22/83 1566 100.0 212 48 12/30/83 7647 99.9 217 43 06/14/84 13040 100.0 221 46 11/03/84 0
3.0 211 46 12/07/84 1060 100.0 228 49 06/04/85 6610 100.0 220 46 10/10/85 11267 100.0 228 49 04/21/86 250 100.0 228 49 10/10/86 6075 100.0 228 39 04/24/87 13671 100.0 228 50 11/16/87 222 100.0 228 47 03/17/88 4930 100.0 228 46 10/11/88 13175 100.0 228 45 15
I..
I I
I I
I I
I I
I I
I I
I I..
I FLUX MAP S1C5 Map 01 SlC5 Map 11 S1C5 Map 23-S1C5 Map 32.
S1C6 Map 01 S1C6 Map 13 S1C6 Map 56 S1C6 Map 70 S1C7 Map 02 S1C7 Map 03 S1C7 Map 08 S1C7 Map 14 S1C7 Map 22 S1C8 Map 08 S1C8 Map 37 S1C9 Map 06 S1C9 Mqp 28 S1C9 Map 40 S2C4 Map 01 S2C4 Map 10 S2C4 Map 23 S2C4 Map 34 S2C5 Map 01 S2C5 Map 17 S2C5 Map 23 S2C5 Map 35 S2C6 Map 01 S2C6 Map 07 S2C6 Map 18 S2C6 Map 29 S2C7 Map 02 S2C7 Map 13 S2C7 Map 19 S2C7 Map 38 S2C8 Map 13 S2C8 Map 23 S2C8 Map 34 S2C9 Map 09 S2C9 Map 17 S2C9 Map 27 TABLE 3-5 SURRY TWO ZONE DATABASE CYCLE PERCENT D-BANK THIMBLES DATE-..
MWD/MTU _
POWER POSITION USED 07/07/78 0
0.0 218 40 08/18/78 1300 100.0 220 42 03/12/79 7411 100.0 224 43 06/06/80 11580 100.0 216 42 07/07/81 0
0.0 201 40 08/10/81 973 100.0 217 42 04/20/82 7518 100.0 228 42 10/28/82 13207 100.0 222 38 05/31/83 0
2.0 221 38 06/17/83 6
50.8 180 45 07/19/83 807 100.0 223 49 11/16/83 4329 100.0 228 45 03/20/84 7630 100.0 226 39 02/04/85 925 100.0 228 47 10/22/85 8081 100.0 227 38 07/29/86 240 100.0 220 39 06/02/87 7295 100.0 222 44 02/19/88 14606 100.0 217 44 10/10/77 0
3.0 228 47 11/16/77 1186 100.0 223 41 08/14/78 8250 100.0 201 41 12/14/78 11934 100.0 226 47 08/15/80 0
0.0 216 42 10/17/80 1690 100.0 217 48 02/11/81 5619 100.0 219 49 08/12/81 11320 100.0 220 44 12/30/81 0
0.0 223 "47 02/10/82 1116 100.0 228 47 09/17/82 7390 100.0 228 47 04/27/83 13900 100.0 227 47 09/29/83 10 46.5 178 38 11/23/83 1647 99.0 226 38 05/23/84 5781 100.0 226 44 01/30/85 13122 100.0 223 47 09/21/85 2423 100.0 211 42 02/11/86 6525 99.9 218 41 09/05/86 12391 100.0 221 41 04/23/81 1072 100.0 208 43 10/14/87 6687 100.0 223 44 06/28/88 13553 100.0 224 41 16
I I
I I
I I
I
,I I
I I
I I
I I
I SECTION 4 - RESULTS This section summarizes results of the TIP/CECOR validation.
Results are presented separately for the SimuJation Database, the Discrete Database, and the Two Zone Database.
Results of TIP/CECOR and INCORE calculations analyzing the Simulation Database are provided in Table 4-1.
The synthesis uncertainty was found to be independent of the number of thimbles used.
TIP/CECOR (using 1, 7, or 22 analysis levels) and INCORE (using 1 analysis level) all had essentially no RPO or FAH synthesis
. uncertainty.
TIP/CECOR (usirig 1 analysis level) and INCORE (using 1 analysis level) had essentially the same FQ uncertainties.
Increasing the number of analysis levels used with TIP/CECOR (to 7 or 22), significantly reduces the FQ uncertainty factor.
Axial offsets for the Simulation Database for 38 thimbles, 44 thimbles, and 50 thimbles are provided in Tables 4-2 through 4-4, respectively.
The use of multiple analysis levels significantly improves the calculation of axial offset.. Table 4-5 summarizes the results of the Surry Unit 1, Cycle 9 Simulation.
The synthesis uncertainties exhibit trends similar to those of the Simulation Database (i.e., multiple analysis levels minimize synthesis uncer-tainty).
However, large localized maximum and minimum FQ differences, expected with INCORE and 1 analysis level CECOR because of the inserts, were also found with 7 analysis level CECOR.
FQ comparison maps for Detector Level 28 (near the top of each insert), provided in Figures 4-1 through 4-4, demonstrate this dif-ficulty in determining FQ in assemblies adjacent to the inserts.
INCOR under-predicts FQ by.over six percent for relatively high powered assemblies P9, Nll, Mll, L3, G2, E3, and Cll (Figure 4-1). Both 1 analysis level CECOR and 7 analysis level CECOR have problems with assemblies with the inserts (Figures 4-2 and 4-3).
CECOR using 22 analysis levels (Figure 4-4) is necessary to avoid these problems.
17
I
. I I
I I
I I
- 1 I
I I
I I
I I..
I Results of TIP/CECOR and INCORE calculations analyzing the Discrete Database are provided in Tables 4-6 and 4-7 (for North Anna and Surry, respectively).
TIP/CECOR (using 1 analysis level) had RPD and FAH uncertainty factors similar to those of INCORE (using 1 analysis level).
Results of J_IP/CECOR and INCORE calculations analyzing the Two Zone Database are provided in Tables 4-8 and 4-9 (for North Anna and Surry, respectively).
TIP/CECOR (using 1, 7, or 22 analysis levels) had identical or lower RPD uncer-tainties than INCORE (using 1 analysis level).
TIP/CECOR ~using 1, 7, or 22 analysis levels) had slightly higher FAH uncertainties than INCORE (using 1 analysis level). This can be attributed to peaking factor methodology differences between TIP/CECOR and INCORE. Both TIP/CECOR and INCORE determine the peak pin power for each assembly at each detector level, however, INCORE also monitors the power for pins other than the peak location. TIP/CECOR 1 s FAH calculation assumes the peak pin is the same pin for each detector level, while INCORE 1 s FAH is the maximum of the integral of each monitored pin. Therefore, when the assembly peak pin is not the same pin for each detector level (e.g., partially rodded cores),
TIP/CECOR will calculate a more conservative FAH*
TIP/CECOR (using 1 analysis level) and INCORE (using 1 analysis level) had essentially the sa~e FQ uncer-tainties. Increasing the number of analysis levels used with TIP/CECOR (to either 7 or 22), reduces the FQ uncertainty factor.
Predicted versus measured RPD and FAH comparison maps and plots of Fz(z) and F0(z) were generated to document the consistency of INCORE and CECOR results.
Since providing these comparisons for each map would involve* a prohib.itive number of figures, only the map with the maximum average difference in FQ between predicted and CECOR (using 1 analysis level) was selected.
Comparisons for the selected North Anna map (N1C2 Map 44),
Figures 4-5 through 4-14, and the selected Surry map (S1C6 Map 70), Figures 4-15 through 4-24, demonstrate the consistency of INCORE and CECOR results.
18
I I
I I
I I
I I
I I
I.
I I
I I
I
~
TYPE RPO RPO RPO FaH FaH FaH FQ FQ FQ TABLE 4-1
SUMMARY
OF SIMULATION DATABASE STATISTICS CODE/
ANALYSIS
- OE..
- IJF _
MEAN STD.
MAX.
MIN.
UNCERT.
LEVELS THIMBLES OBS.
DIFF.
DEV.
DIFF. *mFF.
FACTOR INCOR/1 38 1413
-0.017 0.141 0.3
-0.6 1.004 CECOR/1-38 1413
-0.004 0.031 0.3
-0.3 1.001 CECOR/7 38 1413 0.006 0.044 0.4
-0.2 1.001 CECOR/22 38 1413 0.005 0.038 0.4
-0.2 1.000 INCOR/1 44 1413
-0.019 a.po 0.3
-0.6 1.004 CECOR/1 44 1413
-0.003 0.029 0.3
-0.3 1.001 CECOR/7 44 1413 0.007 0.044 0.4
-0.2 1.000 CECOR/22 44 1413 0.006 0.040 0.4
-0.2 1.000 INCOR/1 50 1413
-0.016 0.133 0.3
-0.6 1.004 CECOR/1 50 1413
-0.004 0.030 0.2
-0.3 1.001 CECOR/7 50 1413 0.006 0.042 0.4
-0.2 1.000 CECOR/22 50 1413 0.005 0.039 0.4
-0.2 1.000 INCOR/1 38 1413 0.044 0.131 0.5
-0.5 1.002 CECOR/1 38 1413 0.038 0.079 0.5
-0.2 1.000 CECOR/7 38 1413 0.000 0.045 0.2
-0.2 1.001 CECOR/22 38 1413
-0.004 0.042 0.2
-0.2 1:002 INCOR/1 44 1413 0.048 0.126 0.5
-0.4 1.002 CECOR/1 44 1413 0.039 0.079 0.5
-0.2 1.000 CECOR/7 44 1413 0.001 0.045 0.2
-0.2 1.001 CECOR/22 44 1413
-0.003 0.042 0.2
-0.2 1.002 INCOR/1 50 1413 0.055 0.122 0.6
-0.4 1.002 CECOR/1 50 1413 0.038 0.080 0.5
-0.2 1.000 CECOR/7 50 1413 0.000 0.045 0.2
-0.2 1.001 CECOR/22 50 1413
-0.003 0.041 0.2
-0.2 1.002 INCOR/1 38 8478
-0.171 2.027 7.5
-6.0 1.037 CECOR/1 38 8478
-0.177 1.987 7.1
-5. 9 -.
1.038 CECOR/7 38 8478 0.327 0.454 1.5
-1.4 1.007 CECOR/22 38 8478 0.474 0.085 0.7 0.0 1.004 INCOR/1 44 8478
-0.130 1.906 6.7
-5.1 1.035 CECOR/1 44 8478
-0.134 1.818 5.8
-5.2 1.035 CECOR/7 44 8478 0.327 0.434 1.3
-1.4 1.007 CECOR/22 44 8478 0.476 0.080 0.7 0.0 1.004 INCOR/1 50 8478
-0.144 1.948 6.6
-5.1 1.036 CECOR/1 50 8478
-0.150 1.846 5.8
-5.3 1.035 CECOR/7 50 8478 0.326 0.437 1.4
-1.4 1.007 CECOR/22 50 8478 0.475 0.081 0.7 0.0 1.004 19
I...
I I
I I
I I
I I
I I
I I
I I..
I TABLE 4-2 AXIAL OFFSET COMPARISON FOR SIMULATION DATABASE (38 THIMBLES)
-CODE/NUMBER OF ANALYSIS LEVELS MAP NUMBER PDQ INCOR/1 CECOR/1 CECOR/7 CECOR/22 1
-0.48
-0.836
-1.016
-0.387
-0.374 2
0.05
-0.434
-0. 611 0.132 0.143 3
-1. 51
-2.207
-2.389
-1. 475
-1.462 4
-2.28
-3.200
-3.387
-2.288
-2.271 5
-2.73
-3.835
-4.020
-2.755
-2.732 6
-2.94
-4.265
-4.452
-2.982
-2.960 7
-3.14
-4.675
-4.861
-3.192
-3.165 8
.:.3.21
-4.964
-5.144
-3.265
-3. 236 9
-2.99
-4.976
-5.150
-3.045
-3.015 20
I I
I I
I I
I
,I I
I I
I I
I I
I TABLE 4-3 AXIAL OFFSET COMPARISON FOR SIMULATION DATABASE (44 THIMBLES)
CODEtNUMBER OF ANALYSIS LEVELS MAP NUMBER PDQ INCOR/1 CECOR/1 CECOR/7 CECOR/22 1
-0.48
-0.687
-0.873
-0.385
-0.375 2
0.05
-0.276
-0.462 0.134 0.143 3
-1.51
-2.025
-2.. 222
-1.473
-1.462 4
-2.28
-2.999
-3.207
-2.286
-2.272 5
-2.73
-3.622
-3.832
-2. 75-J
-2.733 6
-2.94
-4.039
-4.254
-2.979
-2.961 7
-3.14
-4.444
-4.658
-3.190
-3.166 8
-3.21
-4.735
-4.942
-3.262
-'3.237 9
-2.99
-4.753
-4.951
-3.042
-3.015 21
I I
I I
I I
I I
I I
I I
I I
I I
TABLE 4-4 AXIAL OFFSET COMPARISON FOR SIMULATION DATABASE (50 THIMBLES)
-CODEtNUMBER OF ANALYSIS LEVELS MAP NUMBER PDQ INCOR/1 CECOR/1 CECOR/7 CECOR/22 1
-0.48
-0.725
-0.921
-0.386
-0.375 2
0.05
-0.317
-0.511 0.133 0.143 3
-1.51
-2.077
-2.278
-1.474
-1.462 4
-2.28
-3.060
-3.268
-2.287
-2.272 5
-2.73
-3.688
-3.896
-2.754
-2.733 6
-2.94
-4.111
-4.322
-2.981
-2.961 7
-3.14
-4.519
-4.729
-3.191
-3.166 8
-3.21
-4.809
-5.013
-3.264
-3.237 9
-2.99
-4.824
-5.021
-3.044
-3.016 22
I I
I
, I I
I
I' I
I I
I I
I
.I I
I TYPE RPO
~
FAH FQ TABLE 4-5
SUMMARY
OF SlC9 SIMULATION STATISTICS CODE/
ANALYSIS
- OF- -
- -OF MEAN STD.
MAX.
MIN.
UNCERT.
LEVELS THIMBLES OBS.
DIFF.
DEV.
DIFF.
DIFF.
FACTOR INCOR/1 50 157 0.003 0.127 0.4
-0.4 1.004 CECOR/1-50 157
-0.018 0.153 0.3
-0.7 1.007 CECOR/7 50 157 0.028 0.118 0.7
-0.1 l.001 CECOR/22 50 157 0.024 0.111 0.7
-0.1 1.001 INCOR/1 50 157 0.065 0.114 0.4
-0.2 1.002 CECOR/1 50 157 0.074 0.124 0.6
-0.3 1.003 CECOR/7 50 157 0.016 0.058 0.4
-0.1 1.001 CECOR/22 50 157 0.008 0.042 0.2
-0.1 1.001 INCOR/1 50 785 0.313 1.793 8.8 -13.4 1.021 CECOR/1 50 785 0.385 2.066 15.7
-8.8 1.019 CECOR/7 50 785 0.399 1.162 9.9
-5.5 1.004 CECOR/22 50 785 0.340 0.051 0.5 0.0 1.003 23
I I
I I
I I
I
, I I
I
, I I
I I
I I
--=-* --
DESCRIPTION RPO > 1. 00 RPO > 1.00 F aH > 1. 00 F aH > 1.00 TABLE 4-6
SUMMARY
OF NORTH ANNA DISCRETE STATISTICS CODE/PDQ MODEL/
DATA MEAN STANDARD UNCERT.
ANALYSIS-LEVELS-POINTS DIFFERENCE DEVIATION FACTOR INCOR/DISCRETE/1 5317 0.228 1.31 1.022 CECOR/DISCRETE/1 5329 0.116 1.10 1..016 INCOR/DISCRETE/1 5759 0.245 1.16 1.020 CECOR/DISCRETE/1 5772 0.005 1.18 1.019 24
I I
I I
I I
I II I
I I.
I I
I I
I DESCRIPTION RPO > 1. 00 RPO > 1.00 FAH > 1. 00 F AH > 1. 00 TABLE 4-1
SUMMARY
OF SURRY DISCRETE STATISTICS CODE/PDQ MODEL/
DATA MEAN STANDARD UNCERT.
ANALYSIS-LEVELS--
POINTS DIFFERENCE DEVIATION FACTOR INCOR/DISCRETE/1 3365 0.158 1.59 1.027 CECOR/DISCRETE/1 3375 0.096 1.22 1.021 INCOR/DISCRETE/1 3679 0.114 1.55 1.026 CECOR/DISCRETE/1 3689
-0.165 1.29 1.024
- .1 L
25
I I
I I
I I
I I
I I
1*
I I
I I
I DESCRIPTION RPO > 1. 00 RPO > 1. 00 RPO > 1. 00 RPO > 1.00 FAH > 1. 00 F AH > 1. 00 FAH > 1. 00 FAH > 1.00 Fq > 1.00 Fq > 1.00 Fq > 1.00 Fq > 1.00 TABLE 4-8
SUMMARY
OF NORTH ANNA TWO ZONE STATISTICS CODE/PDQ MODEL/
DATA MEAN STANDARD UNCERT.
ANALYSIS LEVELS-POINTS DIFFERENCE DEVIATION FACTOR INCOR/TWO ZONE/1 3998 0.216 1.84 1.029 CECOR/TWO ZONE/1 4003 0.123
- 1. 73 1.029 CECOR/TWO ZONE/7 4002 0.124
- 1. 73 1.029 CECOR/TWO ZONE/22 4002 0.124
- 1. 73 1.029 INCOR/TWO ZONE/I 5176 0.135
- 1. 90 1.032 CECOR/TWO ZONE/1 5174
-0.058
- 1. 90 1.037 CECOR/TWO ZONE/7 5175
-0.148 1.91 1.038 CECOR/TWO ZONE/22 5176
-0.161
- 1. 91 1.038 INCOR/TWO ZONE/I 31300
-2.086 2.80 1.066 CECOR/TWO ZONE/I 31303
-2.237 2.79 1.067 CECOR/TWO ZONE/7 31287
-2.064 2.47 1.062 CECOR/TWO ZONE/22. 31280
-1. 948 2.47 1.061 26
I ii I
I I
I I
I I.
I I
I I
.I DESCRIPTION RPO > 1.00 RPO > 1. 00 RPO > 1. 00 RPO > 1. 00 F AH > 1. 00 F AH > l. 00 FAH > 1. 00 F AH > 1. 00 Fq > 1.00 Fq > 1. 00 Fq > 1.00 Fq > 1.00 TABLE 4-9
SUMMARY
OF SURRY TWO ZONE STATISTICS CODE/PDQ MODEL/
DATA MEAN STANDARD UNCERT.
ANALYSIS LEVEL~-
POINTS DIFFERENCE DEVIATION FACTOR INCOR/TWO ZONE/1 4081 0.071 1.39 1.022 CECOR/TWO ZONE/1 4094 0.044 1.23
- 1. 020 CECOR/TWO ZONE/7 4089 0.042 1.23 1.020 CECOR/TWO ZONE/22 4091 0.042 1.22 1.020 INCOR/TWO ZONE/1 5129 0.074 1.43 1.022 CECOR/TWO ZONE/1 5137
-0.017 1.29 1.023 CECOR/TWO ZONE/7 5140
-0.111 1.29
- 1.024 CECOR/TWO ZONE/22 5141
-0.128 1.29 1.024 INCOR/TWO ZONE/1 25576
-2.429 2.72 1.068 CECOR/TWO ZONE/1 25585
-2.479 2.61 1.067 CECOR/TWO ZONE/7 25580
-2.339 2.20 1.057 CECOR/TWO ZONE/22 25572
-2.221 2.20 1.056 27
.I I
I I
- 1 I
FIGURE 4-1 DETECTOR LEVEL 28 FQ COMPARISON (S1C9 SIMULATION/1 LEVEL INCOR)
R p
N ti L
0.759 0.735 3.3 0.831 1.589 0.810 1.482 2.6 7.2 0.833 1.363 1.651 0.854 1.335 1.605
-2.5 2.1 2.* 9 0.774 1.588 1.655 1.619 0.795 1.552 1.625 1.645
-2.6 2.3 1.8 -1.6 1.160 1.627 1.569 1.627 1.167 1.599 1.577 1.617
-0.6 1.8 -0.5 0.6 0.677 1.574 1.525 1.663 1.648 0.644 1.498 1.545 1.648 1.660 5.1 5.1
-1.3 0.9 -0.7 0.653 1.382 1.646 1.363 1.692 0.626 1.339 1.636 1.382 1.679 4.3 3.2 0.6
-1.4 0.8 0.677 1.574 1.525 1.663 1.648 0.622 1.478 1.547 1.651 1.678 8.8 6.5
-1.4 0.7 -1.8 1.160 1.627 1.569 1.627 1.175 1.620 1.595 1.638
-1.3 0.4
-1.6 -0.7 0.774 1.588 1.655 1.619 0.761 1.492 1.557 1.645
- 1. 7 6.4 6.3 -1.6 0.833 1.363 1.651 0.791 1.289 1.617 5.3 5.7 2.1 0.831 1.. 589 0.817 1.522 1.7 4.4 0.759 0.756 0.4 KAX DIFFERENCE
=
KAX DIFF (FQ3>1.0) =
RMS DIFFERENCE
=
8.8 7.2 2.8 K
J H
0.674 0.652 0.642 0.622 5.0 4.8 1.160 1.573 1.381 1.175 1.496 1.334
-1.3 5.1 3.5 1.628 1.526 1.646 1.607 1.542 1.632 1.3 -1.0 0.9 1.568 1.664 1.364 1.592 1.652 1.375
-1.5 0.7 -0.8 1.631 1.652 1.696 1.634 1.680 1.678
-0.2
-1.7 1.1 1.686 1.665 1.565 1.699 1.651 1.587
-0.8 0.8 -1.4 1.660 1.713 1.689 1.642 1.733 1.712 1.1
-1.2 -1.3 1.558 1.688 1.597 1.586 1. 713 1.611
-1.8 -1.5 -0.9 1.660 1. 713 1.689 1.647 1.732 1.714 0.8 -1.1
-1.5 1.686 1.665 1.565 1.712 1.655 1.591
-1.5 0.6 -1.6 1.631 1.652 1.696 1.650 1.693 1.686
-1.2
-2.4 0.6 1.568 1.664 1.364 1.597 1.656 1.382
-1.8 0.5 -1.3 1.628 1.526 1.646 1.578 1.541 1.635 3.2 -1.0 0.7 1.160 1.573 1.381 1.140 1.520 1.383 1.8 3.5 -0.1 0.674 0.652 0.688 0.696
-2.0
-6.3 ASSEMBLY R 9)
ASSEMBLY G 2)
G 0.674 0.639 5.5 1.573 1.468 7.2 1.526 1.533
-0.5 1.664 1.649 0.9 1.652 1.677
-1.5 1.665 1.647 1.1
- 1. 713 1.732
-1.1 1.688 1.711
-1.3 1.713 1.732
-1.1 1.665 1.648 1.0 1.652 1.663
-0.7 1.664 1.647 1.0 1.526 1.546
-1.3 1.573 1.554 1.2 0.674 0.713
-5.5 F
E 1.160 0.759 1.155 0.747 0.4 1.6 1.628 1.589 1.590 1.488 2.4 6.8 1.568 1.651 1.591 1.576
-1.4 4.8 1.631 1.619 1.638 1.653
-0.4 -2.1 1.686 1.627
- 1. 700 1.640
-0.8 -0.8 1.660 1.648 1.643 1.680 1.0 -1.9 1.558 1.692 1.582 1.678
-1.5 0.8 1.660 1.648 1.650 1.683 0.6 -2.1 1.686 1.627 1.704 1.639
-1.1
-0.7 1.631 1.619 1.617 1.645 0.9 -1.6 1.568 1.651 1.579 1.612
-o.7 2.4 1.628 1.589 1.620 1.560 0.5 1.9 1.160 0.759 1.175 0.796
-1.3 -4.6 x.xxx x.xxx X.K D
C 0.831 0.804 3.4 1.363 0.833 1.335 0.851 2.1
-2.1 1.655 1.588 1.639 1.548 1.0 2.6 1.569 1.627 1.596 1.591
-1.7 2.3 1.663 1.525 1.656 1.541 0.4 -1.0 1.363 1.646 1.377 1.630
-1.0 1.0 1.663 1.525 1.652 1.531 0.7 -0.4 1.569 1.627 1.592 1.590
-1.4 2.3 1.655 1.588 1.566 1.488 5.7 6.7 1.363 0.833 1.318 0.811 3.4 2.7 0.831 0.841
-1.2 PREDICTED MEASURED B
0.774 0.785
-1.4 1.160 1.160 o.o 1.574 1.546 1.8 1.382 1.373 0.7 1.574 1.521 3.5 1.160 1.147 1.1 0.774 0.760 1.8 PERCENT DIFFERENCE A
1 2
3 4
5 6
0.677 0.711 7
-4.8 0.653 0.695 8
-6.0 0.677 0.698 9
-3.0 10 11 12 13 14 15 28
I I
I I
I I
I I
I I
I FIGURE 4-2 DETECTOR LEVEL 28 FQ COMPARISON (S1C9 SIMULATION/I LEVEL CECOR)
R p
N ti L
K J
0.674 0.673 0.1 0.759 1.160 1.573 0.768 1.149 1.522
-1.2 1.0 3.4 0.831 1.589 1.628 1.526 0.718 1.524 1.589 1.546 15.7 4.3 2.5 -1.3 0.833 1.363 1.651 1.568 1.664 0.874 1.339 1.636 1.592 1.645
-4.7 1.8 0.9 -1.5 1.2 0.774 1.588 1.655 1.619 1.631 1.652 0.791 1.549 1.620 1.647 1.642 1.681
-2.1 2.5 2.2
-1.7 -0.7 -1.7 1.160 1.627 1.569 1.627 1.686 1.665 1.152 1.593 1.583 1.617 1.700 1.649 0.7 2.1
-0.9 0.6 -0.8 1.0 0.677 1.574 1.525 1.663 1.648 1.660 1.713 0.676 1.526 1.546 1.643 1.675 1.645 1.737 0.1 3.1
-1.4 1.2 -1.6 0.9 -1.4 0.653 1.382 1.646 1.363 1.692 1.558 1.688 0.569 1.342 1.636 1.370 1.681 1.582 1. 712 14.8 3.0 0.6
-0.5 0.7 -1.5 -1.4 0.677 1.574 1.525 1.663 1.648 1.660 1.713 0.674 1.521 1.532 1.643 1.677 1.646 1.731 0.4 3.5 -0.5 1.2
-1.7 0.9 -1.0 1.160 1.627 1.569 1.627 1.686 1.665 1.158 1.617 1.594 1.643 1. 710 1.654 0.2 0.6
-1.6
-1.0 -1.4 0.7 0.774 1.588 1.655 1.619 1.631 1.652 0.785 1.525 1.616 1.647 1.645 1.689
-1.4 4.1 2.4 -1.7 -0.9 -2.2 0.833 1.363 1.651 1.568 1.664
- 0. 720 1.331 1.617 1.589 1.653 15.7 2.4 2.1
-1.3 0.7 0.831 1.589 1.628 1.526 0.868 1.544 1.588 1.530
-4.3 2.9 2.5 -0.3 0.759 1.160 1.573 0.755 1.149 1.529 0.5 1.0 2.9 0.674 0.677
-0.4 MAX DIFFERENCE
=
t!AX DIFF CFQ3>1.0) =
RMS DIFFERENCE
=
15.7 ASSEMBLY D 3 4.2 ASSEtlBLY G 2 3.6 H
0.652 0.568 14.8 1.381 1.338
-3.2 1.646 1.636 0.6 1.364 1.364 0.0 1.696 1.677 1.1 1.565 1.585
-1.3 1.689 1.714
-1.5 1.597 1.612
-0.9 1.689 1.713
-1.4 1.565 1.588
-1.4 1.696 1.686 0.6 1.364 1.373
-0.7 1.646 1.636 0.6 1.381 1.374 0.5 0.652 0.694
-6.1 G
0.674 0.669 0.7 1.573 1.510 4.2 1.526 1.520 0.4 1.664 1.640 1.5 1.652 1.682
-1.8 1.665 1.648 1.0 1.713
- 1. 737
-1.4 1.688 1.712
-1.4 1.713 1.737
-1.4 1.665 1.650 0.9 1.652 1.678
-1.5 1.664 1.644 1.2 1.526 1.539
-0.8 1.573 1.551 1.4 0.674
- o. 715
-5.7 F
E 1.160 0.759 1.146 0.763 1.2 -0.5 1.628 1.589 1.579 1.510 3.1 5.2 1.568 1.651 1.598 1.613
-1.9 2.4 1.631 1.619 1.643 1.647
-0.7 -1.7 1.686 1.627 1.698 1.642
-0.7 -0.9 1.660 1.648 1.646 1.683 0.9 -2.1 1.558 1.692 1.579 1.678
-1.3 0.8 1.660 1.648 1.649 1.683 0.7 -2.1 1.686 1.627 1.703 1.644
-1.0
-1.0 1.631 1.619 1.618 1.647 0.8
-1.7 1.568 1.651 1.587 1.618
-1.2 2.0 1.628 1.589 1.617 1.562 0.7 1.7 1.160 0.759 1.171 0.786
-0.9
-3.4 x.xxx x.xxx x.x D
C 0.831 0.718 15.7 1.363 0.833 1.338 0.876 1.9 -4.9 1.655 1.588 1.641 1.557 0.9 2.0 1.569 1.627 1.597 1.597
-1.8 1.9 1.663 1.525 1.651 1.536 0.7
-0.7 1.363 1.646 1.371 1.636
-0.6 0.6 1.663 1.525 1.644 1.523 1.2 0.1 1.569 1.627 1.600 1.579
-1.9 3.0 1.655 1.588 1.611 1.507 2.7 5.4 1.363 0.833 1.321 0. 720 3.2 15.7 0.831 0.871
-4.6 PREDICTED MEASURED B
0.774
- o. 771 0.4 1.160 1.159 0.1 1.574 1.552 1.4 1.382 1.353 2.1 1.574 1.520 3.6 1.160 1.146 1.2 0.774 0.776
-0.3 PERCENT DIFFERENCE A
1 2
3 4
5 6
0.677
- 0. 716 7
-5.4 0.653 0.688 8
-5.1 0.677 0.680 9
-0.4 10 11 12 13 14 15 29
- I I
I
,I I
I I
FIGURE 4-3 DETECTOR LEVEL 28 FQ COMPARISON (S1C9 SIMULATION/7 LEVEL CECOR)
R p
N II 0.831 0.759 9.5 0.833 1.363 0.840 1.344
-0.8 1.4 0.774 1.588 1.655
- 0. 771 1.573 1.645 0.4 1.0 0.6 1.160 1.627 1.569 1.152 1.616 1.561 0.7 0.7 0.5 0.677 1.574 1.525 1.663 0.669 1.559 1.522 1.655 1.2 1.0 0.2 0.5 0.653 1.382 1.646 1.363 0.601 1.362 1.640 1.359 8.7 1.5 0.4 0.3 0.677 1.574 1.525 1.663 0.668 1.557 1.517 1.654 1.3 1.1 0.5 0.5 1.160 1.627 1.569 1.152 1.621 1.562 0.7 0.4 0.4 0.774 1.588 1.655 0.769 1.565 1.643 0.7 1.5 0.7 0.833 1.363 0.761 1.344 9.5 1.4 0.831 0.841
-1.2 IIAX DIFFERENCE
=
KAX DIFF (FQ3>1.0) =
RIIS DIFFERENCE
=
L K
J 0.674 0.666 1.2*
0.759 1.160 1.573 o_.753 1.150 1.557 0.8 0.9 1.0 1.589 1.628 1.526 1.564 1.614 1.522 1.6 0.9 0.3 1.651 1.568 1.664 1.643 1.560 1.657 0.5 0.5 0.4 1.619 1.631 1.652 1.615 1.623 1.650 0.2 0.5 0.1 1.627 1.686 1.665 1.619 1.680 1.659 0.5 0.4 0.4 1.648 1.660 1.713 1.644 1.653 1.710 0.2 0.4 0.2 1.692 1.558 1.688 1.684 1.553 1.683 0.5 0.3 0.3 1.648 1.660 1. 713 1.646 1.653 1.707 0.1 0.4 0.4 1.627 1.686 1.665 1.620 1.680 1.659 0.4 0.4 0.4 1.619 1.631 1.652 1.615 1.623 1.648 0.2 0.5 0.2 1.651 1.568 1.664 1.644 1.562 1.658 0.4 0.4 0.4 1.589 1.628 1.526 1.582 1.619 1.519 0.4 0.6 0.5 0.759 1.160 1.573 0.753 1.153 1.563 0.8 0.6 0.6 0.674 0.672 0.3 9.5 1.2 1.9 ASSEKBLY D 3 ASSEKBLY G 2 H
G F
E 0.652 0.674 0.599 0.665 8.8 1.4 1.381 1.573 1.160 0.759 1.360 1.555 1.153 0.754 1.5 1.2 0.6 0.7 1.646 1.526 1.628 1.589 1.640 1.515 1.614 1.563 0.4 0.7 0.9 1.7 1.364 1.664 1.568 1.651 1.362 1.656 1.564 1.640 0.1 0.5 0.3 0.7 1.696 1.652 1.631 1.619 1.689 1.648 1.624 1.615 0.4 0.2 0.4 0.2 1.565 1.665 1.686 1.627 1.561 1:659 1.681 1.620 0.3 0.4 0.3 0.4 1.689 1.713 1.660 1.648 1.686 1.710 1.654 1.644 0.2 0.2 0.4 0.2 1.597 1.688 1.558 1.692 1.592 1.684 1.555 1.684 0.3 0.2 0.2 0.5 1.689 1.713 1.660 1.648 1.685 1.710 1.654 1.644 0.2 0.2 0.4 0.2 1.565 1.665 1.686 1.627 1.560 1.658 1.680 1.620
-0.3 0.4 0.4 0.4 1.696 1.652 1.631 1.619 1.689 1.647 1.622 1.615 0.4 0.3 0.6 0.2 1.364 1.664 1.568 1.651 1.361 1.656 1.561 1.643 0.2 0.5 0.4 0.5 1.646 1.526 1.628 1.589 1.640 1.519 1.621 1.584 0.4 0.5 0.4 0.3 1.381 1.573 1.160 0.759 1.375 1.563 1.155 0.761 0.4 0.6 o.4 -0.3 0.652 0.674 0.663 0.683
-1. 7
-1.3 D
C 0.831 0.7_59 9.5 1.363 0.833 1.345 0.843 1.3 -1.2 1.655 1.588 1.647 1.582 0.5 0.4 1.569 1.627 1.563 1.618 0.4 0.6 1.663 1.525 1.657 1.518 0.4 0.5 1.363 1.646 1.359 1.640 0.3 0.4 1.663 1.525 1.655 1.516 0.5 0.6 1.569 1.627 1.566 1.613 0.2 0.9 1.655 1.588 1.643 1.562 0.7 1.7 1.363 0.833 1.341 0.761 1.6 9.5 0.831 0.840
-1.1 PREDICTED KEASURED B
0.774 0.769 0.7 1.160 1.153 0.6 1.574 1.564 0.6 1.382 1.368 1.0 1.574 1.561 0.8 1.160 1.153 0.6 0.774 0.768 0.8 PERCENT DIFFERENCE A
1 2
3 4
5 6
0.677 0.685 7
-1.2 0.653 0.662 8
-1.4 0.677 0.676 9
0.1 10 11 12 13 14 15 30
I
,I
,~
I I
I I.
I I -I FIGURE 4-4 DETECTOR LEVEL 28 FQ COMPARISON (S1C9 SIMULATION/22 LEVEL CECORJ R
p N
II 0.831 0.828 0.4 0.833 1.363 0.830 1.358 0.4 0.4 0.774 1.588 1.655
- 0. 772 1.583 1.649 0.3 0.3 0.4 1.160 1.627 1.569 1.156 1.622 1.564 0.3 0.3 0.3 0.677 1.574 1.525 1.663 0.674 1.569 1.520 1.658 0.4 0.3 0.3 0.3 0.653 1.382 1.646 1.363 0.651 1.377 1.640 1.358 0.3 0.4 0.4 0.4 0.677 1.574 1.525 1.663 0.674 1.569 1.520 1.657 0.4 0.3 0.3 0.4 1.160 1.627 1.569 1.156 1.622 1.564 0.3 0.3 0.3 0.774 1.588 1.655 0.772 1.583 1.649 0.3 0.3 0.4 0.833 1.363 0.830 1.358 0.4 0.4 0.831 0.828 0.4 IIAX DIFFERENCE
=
IIAX DIFF CFQ3>1.0) =
RIIS DIFFERENCE
=
L 0.759 0.757 0.3 1.589 1.583 0.4 1.651 1.645 0.4 1.619 1.614 0.3 1.627 1.622 0.3 1.648 1.643 0.3 1.692 1.686 0.4 1.648 1.642 0.4 1.627 1.622 0.3 1.619 1.614 0.3 1.651 1.646 0.3 1.589 1.583 0.4 0.759 0.756 0.5 0.4 0.3 0.4 K
J 0.674 0.672 0.3 1.160 1.573 1.156 1.567 0.3 0.4 1.628 1.526 1.623 1.520 0.3 0.4 1.568 1.664 1.562 1.658 0.4 0.4 1.631 1.652 1.625 1.646 0.4 0.4 1.686 1.665 1.680 1.659 0.4 0.4 1.660 1.713 1.654 1.707 0.4 0.4 1.558 1.688 1.553 1.682 0.3 0.4 1.660 1.713 1.654 1.708 0.4 0.3 1.686 1.665 1.680 1.659 0.4 0.4 1.631 1.652 1.625 1.646 0.4 0.4 1.568 1.664 1.563 1.658 0.3 0.4 1.628 1.526 1.623 1.521 0.3 0.3 1.160 1.573 1.155 1.567 0.4 0.4 0.674 0.671 0.4 ASSEKBLY 815 ASSEIIBLY J 3 H
0.652 0.649 0.5 1.381 1.376 0.4 1.646 1.641 0.3 1.364 1.360 0.3 1.696 1.691 0.3 1.565 1.560 0.3 1.689 1.684 0.3 1.597 1.592 0.3 1.689 1.684 0.3 1.565 1.560 0.3 1.696 1.691 0.3 1.364 1.360 0.3 1.646 1.641 0.3 1.381 1.376 0.4 0.652 0.649 0.5 G
0.674 0.672 0.3 1.573 1.567 0.4 1.526 1.521 0.3 1.664 1.659 0.3 1.652 1.646 0.4 1.665 1.659 0.4
- 1. 713 1.707 0.4 1.688 1.682 0.4 1.713 1.707 0.4 1.665 1.659 0.4 1.652 1.646 0.4 1.664 1.658 0.4 1.526 1.521 0.3 1.573 1.567 0.4 0.674 0.672 0.3 F
E 1.160 0.759 1.156 0.757 0.3 0.3 1.628 1.589 1.623 1.584 0.3 0.3 1.568 1.651 1.562 1.645 0.4 0.4 1.631 1.619 1.625 1.614 0.4 0.3 1.686 1.627 1.680 1.622 0.4 0.3 1.660 1.648 1.654 1.643 0.4 0.3 1.558 1.692 1.553 1.686 0.3 0.4 1.660 1.648 1.654 1.643 0.4 0.3 1.686 1.627 1.680 1.622 0.4 0.3 1.631 1.619 1.625 1.614 0.4 0.3 1.568 1.651 1.562 1.645 0.4 0.4 1.628 1.589 1.622 1.583 0.4 0.4 1.160 0.759 1.155 0.756 0.4 0.4 x.xxx x.xxx x.x D
C 0.831 0.828 0.4 1.363 0.833 1.358 0.830 0.4 0.4 1.655 1.588 1.649 1.583 0.4 0.3 1.569 1.627 1.564 1.622 0.3 0.3 1.663 1.525 1.657 1.520 0.4 0.3 1.363 1.646 1.358 1.640 0.4 0.4 1.663 1.525 1.657 1.520 0.4 0.3 1.569 1.627 1.563 1.622 0.4 0.3 1.655 1.588 1.649 1.583 0.4 0.3 1.363 0.833 1.358 0.830 0.4 0.4 0.831 0.828 0.4 PREDICTED IIEASURED B
0.774 0.772 0.3 1.160 1.156 0.3 1.574 1.568 0.4 1.382 1.377 0.4 1.574 1.569 0.3 1.160 1.156 0.3 0.774 0.772 0.3 PERCENT DIFFERENCE A
1 2
3 4
5 6
0.677 0.674 7
0.4 0.653 0.651 8
0.3 0.677 0.674 9
0.4 10 11 12 13 14 15 31
I I
I I
I I
I I
I I
FIGURE 4-5 RPD COMPARISON FOR N1C2 MAP 44 (INCOR WITH 1 ANALYSIS LEVEL)
R p
N II L
0.739 0.768
-3.8 0.771 1.114 0.785 1.131
-1.8 -1.5 0.771 0.847 1.054 0.789 0.852 1.057
-2.3 -0.6
-0.3 0.739 1.114 1.054 0.988 0.747 1.127 1.051 0.981
-1.1
-1.2 0.3 0.7 0.996 0.963 1.089 1.156 0.992 0.960 1.084 1.149 0.4 0.3 0.5 0.6 0.740 1.141 0.971 1.082 0.996 0.725 1.132 0.964 1.081 1.001 2.1 0.8 0.7 0.1
-o*.5 0.881 0.970 1.102 0.995 1.112 0.887 0.963 1.095° 0.987 1.102
-0.7 0.7 0.6 0.8 0.9 0.740 1.141 0.971 1.082 0.996
- 0. 721 1.130 0.963 1.071 0.984 2.6 1.0 0.8 1.0 1.2 0.996 0.963. 1.089 1.156 0.973 0.941 1.061 1.124 2.4 2.3 2.6 2.8 0.739 1.114 1.054 0.988 0.735 1.109 1.040 0.960 0.5 0.5 1.3 2.9 0.771 0.847 1.054 0.781 0.841 1.024
-1.3 0.7 2.9 0.771 1.114 0.791 1.158
-2.5 -3.8 0.739 0.767
-3.7 MAX DIFFERENCE
=
MAX DIFF (RPD>1.0) =
RIIS DIFFERENCE
=
-7.3
-4.4 2.3 K
J H
G 0.740 0.881 0.740 0.780 0.929 0.776
-5.1
-5.2 -4.6 0.997 1.141 0.969 1.141 0.968 1.149 0.978 1.179 3.0 -0.7 -0.9 -3.2 0.963 0.969 1.088 0.969 0.945 0.953 1.071 0.976 1.9 1.7 1.6 -0.7 1.089 1.080 0.984 1.080 1.067 1.060 0.965 1.075 2.1 1.9 2.0 0.5 1.156 0.996 1.111 0.996 1.141 0.972 1.084 0.973 1.3 2.5 2.5 2.4 1.024 1.144 1.027 1.144 1.007 1.115 1.002 1.105 1.7 2.6 2.5 3.5 1.143 1.010 1.162 1.010 1.138 0.987 1.134 0.978 0.4 2.3 2.5 3.3 1.027 1.161 0.961 1.161 1.012 1.134 0.939 1.139 1.5 2.4 2.3. 1.9 1.143 1.010 1.162 1.131 1.001 1.147 1.1 0.9 1.3 1.024 1.144 1.027 1.002 1.138 1.019 2.2 0.5 0.8 1.156 0.996 1.111 1.140 0.992 1.108 1.4 0.4 0.3 1.089 1.080 0.984 1.073 1.084 0.988 1.5 -0.4 -0.4 0.963 0.969 1.088 0.981 0.974 1.094
-1.8 -0.5 -0.5 0.997 1.141 0.969 1.031 1.165 0.983
-3.3 -2.1
-'1.4 0.740 0.881 0.762 0.897
-2.9 -1.8 ASSEIIBLY B 5)
ASSEIIBLY C 5) 1.010 0.995 1.5 1.144 1.138 0.5 0.996 0.995 0.1
- 1.080 1.078 0.2 0.969 0.968 0.1 1.141 1.139 0.2 0.740 0.743
-0.4 F
E 0.997 0.739 1.042 0.777
-4.3 -4.9 0.963 1.114 0.987 1.155
-2.4 -3.5 1.089 1.054 1.082 1.068 0.6 -1.3 1.156 0.988 1.131 0.975 2.2 1.3 1.024 1.156 0.990 1.139 3.4
. 1.5 1.143 0.996 1.103 0.970 3.6 2.7 1.027 1.112 1.008 1.101 1.9 1.0 1.143 0.996 1.127 0.988 1.4 0.8 1.024 1.156 1.014 1.152 1.0 0.3 1.156 0.988 1.146 0.983 0.9 0.5 1.089 1.054 1.075 1.040 1.3 1.3 0.963 1.114 0.953 1.088 1.0 2.4 0.997 0.739 0.987 0.721 1.0 2.5 x.xxx x.xxx x.x D
C 0.771 0.817
-5.6 0.847 0.771 0.862 0.809
-1.7 -4.7 1.054 1.114 1.052 1.165 0.2
-4.4 1.089 0.963 1.088 0.991 0.1
-2.8 1.082 0.971 1.083 0.979
-0.1
-0.8 0.995 1.102 0.997 1.110
-0.2 -0.7 1.082 0.971 1.085 0.985
-0.3 -1;4 1.089 0.963 1.084 0.984 0.5 -2.1 1.054 1.114 1.067 1.149
-1.2
-3.0 0.847 0. 771 0.862 0.809
-1.7 -4.7 0.771 0.809
-4.7 PREDICTED IIEASURED B
0.739 0.797
-7.3 0.996 1.047
-4.9 1.141 1.155
-1.2 0.970 0.994
-2.4 1.141 1.177
-3.1 0.996 1.042
-4.4 0.739 0.771
-4.2 PERCENT DIFFERENCE A
1 2
3 4
5 6
0.740 0.756 7
-2.1 0.881 0.915 8
-3.7 0.740 0.775 9
-4.5 10 11 12 13 14 15 32
.I I
I I
'I I
I I
I FIGURE 4-6 RPD COMPARISON FO,R N1C2 MAP 44 (CECOR WITH 1 ANALYSIS LEVEL)
R p
N II L
K J
H 0.740 0.881 0.758 0.929
-2.4 -5.2 0.739 0.997 1.141 0.969 0.739 0.994 1.142 0.988 0.0 0.3
-0.1
-1.9 0.771 1.114 0.963 0.969 1.088 0.801 1.118 0.953 0.941 1.092
-3.7 -0.4 1.0 3.0
--o.4 0.771 0.847 1.054 1.089 1.080 0.984 0.779 0.854 1.046 1.073 1.055 0.962
-1.0
-0.8 0.8 1.5 2.4 2.3 0.739 1.114 1.054 0.988 1.156 0.996 1.111 0.742 1.128 1.055 0.969 1.134 0.967 1.085
-0.4
-1.2
-0.1 2.0 1.9 3.0 2.4 0.996 0.963 1.089 1.156 1.024 1.144 1.027 0.994 0.962 1.090 1.164 1.012 1.119 1.004 0.2 0.1
-0.1
-0.7 1.2 2.2 2.3 0.740 1.141 0.971 1.082 0.996 1.143 1.010 1.162 0.734 1.130 0.952 1.076 0.995 1.130 0.986 1.134 0.8
- 1.0 2.0 0.6 0.1 1.2 2.4 2.5 0.881 0.970 1.102 0.995 1.112 1.027 1.161 0.961 0.875 0.965 1.109 0.993 1.118 1.017 1.141 0.942 0.7 0.5 -0.6 0.2
-0.5 1.0 1.8 2.0 0.740 1.141 0.971 1.082 0.996 1.143 1.010 1.162 0,733 1.129 0.962 1.066 0.969 1.124 0.996 1.145 1.0 1.1 0.9 1.5 2.8 1.7 1.4 1.5 0.996 0.963 1.089 1.156 1.024 1.144 1.027 0.981 0.940 1.068 1.130 1.008 1.134 1.020 1.5 2.4 2.0 2.3 1.6 0.9 0.7 0.739 1.114 1.054 0.988 1.156 0.996 1.111 0.729 1.102 1.037 0.959 1.140 0.990 1.112 1.4 1.1 1.6 3.0 1.4 0.6
-0.1 0.771 0.847 1.054 1.089 1.080 0.984 0.781 0.845 1.048 1.086 1.079 0.987
-1.3 0.2 0.6 0.3 0.1
-0.3 0.771 1.114 0.963 0.969 1.088 0.774 1.125 0.972 0.979 1.104
-0.4
-1.0
-0.9 -1.0
-1.4 0.739 0.997 1.141 0.969 0.767 1.016 1.160 0.982
-3.7 -1.9 -1.6 -1.3 0.740 0.881 0.761 0.897
-2.8 -1.8 IIAX DIFFERENCE
=
IIAX DIFF (RPD>1.0) =
RIIS DIFFERENCE
=
-7.3 ( ASSEIIBLY B 5) 5.0 ( ASSEIIBLY F 6) 2.1 G
0.740 0.769
-3.8 1.141 1.173
-2.7 0.969 0.981
-1.2 1.080 1.074 0.6 0.996 0.976 2.0 1.144 1.109 3.2 1.010 0.982 2.9 1.161 1.133 2.5 1.010 0.992 1.8 1.144 1.134 0.9 0.996 0.993 0.3 1.080 1.079 0.1 0.969 0.969 o.o 1.141 1.148
-0.6 0.740 0.748
-1.1 F
E 0.997 0.739 1.042 0.766
-4.3 -3.5 0.963 1.114 0.986 1.148
-2.3 -3.0 1.089 1.054 1.095 1.065
-0.5 -1.0 1.156 0.988 1.132 0.969 2.1 2.0 1.024 1.156 0.975 1.133 5.0 2.0 1.143 0.996 1.109 0.981 3.1 1.5 1.027 1.112 0.997 1.099 3.0 1.2 1.143 0.996 1.143 0.993 o.o 0.3 1.024 1.156 1.020 1.151 0.4 0.4 1.156 0.988 1.155 0.972 0.1 1.6 1.089 1.054 1.081 1.047 0.7 0.7 0.963 1.114 0.941 1.102 2.3 1.1 0.997 0.739 0.989 0.731 0.8 1.1 x.xxx x.xxx x.x D
C 0.771 0.816
-5.5 0.847 0.771 0.868 0.793
-2.4 -2.8 1.054 1.114 1.067 1.150
-1.2
-3.1 1.089 0.963 1.093 0.984
-0.4 -2.1 1.082 0.971 1.084 0.983
-0.2
-1.2 0.995 1.102 0.994 1.104 0.1
-0.2 1.082 0.971 1.086 0.985
-0.4 -1.4 1.089 0.963 1.095 0.983
-0.5 -2.0 1.054 1.114 1.061 1.142
-0.7 -2.5 0.847 o. 771 0.855 0.808
-0.9 -4.6 0.771 0.769 0.3 PREDICTED IIEASURED B
0.739 0.797
-7.3 0.996 1.034
-3.7 1.141 1.168
-2.3 0.970 0.991
-2.1 1.141 1.176
-3.0 0.996 1.035
-3.8 0.739 0.761
-2.9 PERCENT DIFFERENCE A
1 2
3 4
5 6
0.740 0.760 7
-2.6 0.881 0.911 8
-3.3 0.740 0.780 9
-5.1 10 11 12 13 14 15 33
I I
I I
I,,
I I
I
- 1.
I I
I FIGURE 4-7 RPD COMPARISON FOR N1C2 MAP 44 (CECOR WITH 7 ANALYSIS LEVELS)
R p
N It L
K J
0.740 0.759
-2.5 0.739 0.997 1.141 0.740 0.995 1.144
-0.1 0.2
-0.3
- 0. 771 1.114 0.963 0.969 0.801 1.119 0.953 0.941
-3.7 -0.4 1.0 3.0 0.771 0.847 1.054 1.089 1.080
- o. 779 0.854 1.046 1.072 1.054
-1.0
-0.8 0.8 1.6 2.5 0.739 1.114 1.054 0.988 1.156 0.996 0.743 1.128 1.054 0.968 1.134 0.967
-0.5
-1.2 0.0 2.1 1.9 3.0 0.996 0.963 1.089 1.156 1.024 1.144 0.995 0.961 1.088 1.164 1.013 1.119 0.1 0.2 0.1
-0.7 1.1 2.2 0.740 1.141 0.971 1.082 0.996 1.143 1.010 0.735 1.133 0.951 1.075 0.994 1.130 0.986 0.7 0.7 2.1 0.7 0.2 1.2 2.4 0.881 0.970 1.102 0.995 1.112 1.027 1.161 0.877 0.967 1.109 0.993 1.117 1.016 1.141 0.5 0.3
-0.6 0.2
-0.4 1.1 1.8 0.740 1.141 0.971 1.082 0.996 1.143 1.010 0.735 1.132 0.961 1.066 0.968 1.124 0.995 0.7 0.8 1.0 1.5 2.9 1.7 1.5 0.996 0.963 1.089 1.156 1.024 1.144 0.982 0.940 1.068 1.130 1.009 1.134 1.4 2.4 2.0 2.3 1.5 0.9 0.739 1.114 1.054 0.988 1.156 0.996 0.730 1.102 1.037 0.959 1.141 0.990 1.2 1.1 1.6 3.0 1.3 0.6 0.771 0.847 1.054 1.089 1.080 0.782 0.845 1.047 1.085 1.078
-1.4 0.2 0.7 0.4 0.2 0.771 1.114 0.963 0.969 0.775 1.126 0.971 0.978
-0.5
-1.1
-0.8 -0.9 0.739 0.997 1.141 0.768 1.017 1.162
-3.8
-2.0
-1.8 0.740 0.762
-2.9 ltAX DIFFERENCE
=
MAX DIFF (RPD>1.0) =
RMS DIFFERENCE
=
-7.3 ASSEltBLY B 5 5.0 ASSEltBLY F 6 2.1 H
0.881 0.929
-5.2 0.969 0.989
-2.0 1.088 1.091
-0.3 0.984 0.961 2.4 1.111 1.084 2.5 1.027 1.003 2.4 1.162 1.134 2.5 0.961 0.942 2.0 1.162 1.145 1.5 1.027 1.019 0.8 1.111 1.111 0.0 0.984 0.986
-0.2 1.088 1.104
-1.4 0.969 0.983
-1.4 0.881 0.898
-1.9 G
0.740 0.770
-3.9 1.141 1.175
-2.9 0.969 0.980
-1.1 1.080 1.073 0.7 0.996 0.975 2.2 1.144 1.109 3.2 1.010 0.982 2.9 1.161 1.133 2.5 1.010 0.992 1.8 1.144 1.134 0.9 0.996 0.993 0.3 1.080 1.077 0.3 0.969 0.968 0.1 1.141 1.148
-0.6 0.740 0.748
-1.1 F
E 0.997 0.739 1.042 0.767
-4.3 -3.7 0.963 1.114 0.985 1.149
-2.2 -3.0 1.089 1.054 1.094 1.064
-0.5 -0.9 1.156 0.988 1.132 0.969 2.1 2.0 1.024 1.156 0.975 1.133 5.0 2.0 1.143 0.996 1.108 0.980 3.2 1.6 1.027 1.112 0.996 1.097 3.1 1.4 1.143 0.996 1.143 0.992 0.0 0.4 1.024 1.156 1.021 1.151 0.3 0.4 1.156 0.988 1.155 0.971 0.1 1.8 1.089 1.054 1.080 1.046 0.8 0.8 0.963 1.114 0.940 1.103 2.4 1.0 0.997 0.739 0.989 0.733 0.8 0.8 x.xxx x.xxx x.x D
C
- 0. 771 0.817
-5.6 0.847 0.771 0.868 0.794
-2.4 -2.9 1.054 1.114 1.067 1.151
-1.2
-3.2 1.089 0.963 1.092 0.983
-0.3 -2.0 1.082 0.971 1.084 0.982
-0.2
-1.1 0.995 1.102 0.993 1.104 0.2
-0.2 1.082 0.971 1.086 0.984
-0.4 -1.3 1.089 0.963 1.094 0.982
-0.5 -1.9 1.054 1.114 1.060 1.142
-0.6 -2.5 0.847 0.771 0.855 0.809
-0.9 -4.7
- 0. 771 0.770 0.1 PREDICTED ltEASURED B
0.739 0.797
-7.3 0.996 1.034
-3.7 1.141 1.168
-2.3 0.970 0.992
-2.2 1.141 1.177
-3.1 0.996 1.035
-3.8 0.739 0.762
-3.0 PERCENT DIFFERENCE A
1 2
3 4
5 6
0.740 0.761 7
-2.8 0.881 0.912 8
-3.4 0.740 0.780 9
-5.1 10 11 12 13 14 15 34
I I
I I
- 1.
I I
I I
I FIGURE 4-8 RPD COMPARISON FOR N1C2 MAP 44 (CECOR WITH 22 ANALYSIS LEVELS)
R p
N If L
K J
H 0.740 0.881 0.759 0.929
-2.5 -5.2 0.739 0.997 1.141 0.969 0.740 0.995 1.144 0.989
-0.1 0.2
-0.3 -2.0 0.771 1.114 0.963 0.969 1.088 0.801 1.120 0.953 0.941 1.091
-3.7 -0.5 1.0 3.0 -0.3
- o. 771 0.847 1.054 1.089 1.080 0.984 0.779 0.854 1.046 1.072 1.054 0.961
-1.0
-0.8 0.8 1.6 2.5 2.4 0.739 1.114 1.054 0.988 1.156 0.996 1.111 0.743 1.128 1.053 0.968 1.134 0.967 1.084
-0.5 -1.2 0.1 2.1 1.9 3.0 2.5 0.996 0.963 1.089 1.156 1.024 1.144 1.027 0.994 0.961 1.089 1.163 1.014 1.119 1.004 0.2 0.2 0.0
-0.6 1.0 2.2 2.3 0.740 1.141 0.971 1.082 0.996 1.143 1.010 1.162 0.735 1.133 0.951 1.075 0.994 1.130 0.986 1.134 0.7 0.7 2.1 0.7 0.2 1.2 2.4 2.5 0.881 0.970 1.102 0.995 1.112 1.027 1.161 0.961 0.877 0.968 1.109 0.993 1.117 1.016 1.141 0.942 0.5 0.2
-0.6 0.2
-0.4 1.1 1.8 2.0 0.740 1.141 0.971 1.082 0.996 1.143 1.010 1.162 0.735 1.132 0.961 1.066 0.968 1.124 0.995 1.144 0.7 0.8 1.0 1.5 2.9 1.7 1.5 1.6 0.996 0.963 1.089 1.156 1.024 1.144 1.027 0.982 0.940 1.068 1.130 1.010 1.134 1.019 1.4 2.4 2.0 2.3 1.4 0.9 0.8 0.739 1.114 1.054 0.988 1.156 0.996 1.111 0.730 1.102 1.037 0.959 1.141 0.990 1.111 1.2 1.1 1.6 3.0 1.3 0.6 o.o
- o. 771 0.847 1.054 1.089 1.080 0.984 0.782 0.845 1.048 1.085 1.078 0.986
-1.4 0.2 0.6 0.4 0.2
-0.2 0.771 1.114 0.963 0.969 1.088 0.775 L126 0.971 0.978 1.103
-0.5 -1.1
-0.8 -0.9 -1.4 0.739 0.997 1.141 0.969 0.767 1,017 1.162 0.983
-3.7 -2.0
-1.8 -1.4 0.740 0.881 0.762 0.898
-2.9 -1.9 IIAX DIFFERENCE
=
IIAX DIFF (RPD>1.0) =
RIIS DIFFERENCE
=
-7.3 5.1 2.1 ASSEIIBLY B 5)
ASSEIIBLY F 6)
G 0.740 0.770
-3.9 1.141 1.175
-2.9 0.969 0.980
-1.1 1.080 1.073 0.7 0.996 0.975 2.2 1.144 1.109 3.2 1.010 0.982 2.9 1.161 1.133 2.5 1.010 0.992 1.8 1.144 1.135 0.8 0.996 0.993 0.3 1.080 1.077 0.3 0.969 0.968 0.1 1.141
- 1.148
-0.6 0.740 0.748
-1.1 F
E 0.997 0.739 1.042 0.767
-4.3 -3.7 0.963 1.114 0.985 1.149
-2.2
-3.0 1.089 1.054 1.094 1.065
-0.5 -1.0 1.156 0.988 1.132 0.969 2.1 2.0 1.024 1.156 0.974 1.133 5.1 2.0 1.143 0.996 1.108 0.980 3.2 1.6 1.027 1.112 0.996 1.097 3.1 1.4 1.143 0.996 1.143 0.992 o.o 0.4 1.024 1.156 1.022 1.151 0.2 0.4 1.156 0.988 1.154 0.971 0.2 1.8 1.089 1.054 1.080 1.046 0.8 0.8 0.963 1.114 0.940 1.103 2.4 1.0 0.997 0.739 0.989 0.733 0.8 0.8 x.xxx x.xxx x.x D
C 0.771 0.817
-5.6 0.847 0.771 0.868 0.794
-2.4
-2.9 1.054 1.114 1.067 1.151
-1.2
-3.2 1.089 0.963 1.092 0.983
-0.3
-2.0 1.082 0.971 1.084 0.982
-0.2
-1.1 0.995 1.102 0.993 1.104 0.2
-0.2 1.082 0.971 1.086 0.984
-0.4 -1.3 1.089 0.963 1.094 0.982
-0.5 -1.9 1.054 1.114 1.060 1.142
-0.6 -2.5 0.847 0.771 0.855 0.809
-0.9 -4.7 0.771 0.770 0.1 PREDICTED IIEASURED B
0.739 0.797
-7.3 0.996 1.034
-3.7 1.141 1.168
-2.3 0.970 0.992
-2.2 1.141 1.177
-3.1 0.996 1.035
-3.8 0.739 0.762
-3.0 PERCENT DIFFERENCE A
1 2
3 4
5 6
0.740 0.761 7
-2.8 0.881 0.912 8
-3.4 0.740 0.780 9
-5.1 10 11 12 13 14 15 35
I I
I I,.
I I
I I
.1 I
I FIGURE 4-9 F t:i.H COMPARISON FOR N1C2 MAP 44 (INCOR WITH 1 ANALYSIS LEVEL)
R p
N ti L
K J
H 1.085 1.116 1.095 1.148
-0.9 -2.8 1.101 1.207 1.222 1.015 1.102 1.172 1.230 1.016
-0.1 3.0 -0.7 -0.1 1.089 1.216 1.011 1.013 1.160 1.094 1.234 0.993 0.997 1.171
-0.5 -1.5 1.8 1.6 -0.9 1.088 0.936 1.124 1.126 1.133 1.014 1.094 0.942 1.128 1.105 1.111 0.996
-0.5 -0.6 -0.4 1.9 2.0 1.8 1.101 1.216 1.124 1.040 1.219 1.037 1.160 1.097 1.229 1.123 1.032 1.204 1.011 1.139 0.4
-1.1 0.1 0.8 1.2 2.6 1.8 1.206 1.011 1.126 1.219 1.054 1.206 1.061 1.20*0 1.011 1.120 1.212 1.039 1.184 1.035 0.5 0.0 0.5 0.6 1.4 1.9 2.5 1.084 1.223 1.015 1.135 1.037 1.206 1.037 1.215 1.077 1.213 1.008 1.127 1.033 1.201 1.013 1.186 0.6 0.8 0.7 0.7 0.4 0.4 2.4 2.4 1.116 1.017 1.163 1.027 1.165 1.059 1.213 0.973 1.123 1.010 1.155 1.024 1.159 1.050 1.201 0.951
-0.6 0.7 0.7 0.3 0.5 0.9 1.0 2.3 1.084 1.223 1.015 1.135 1.037 1.206 1.037 1.215 1.091 1.212 1.003 1.118 1.024 1.193 1.025 1.204
-0.6 0.9 1.2 1.5 1.3 1.1 1.2 0.9 1.206 1.011 1.126 1.219 1.054 1.206 1.061 1.177 0.988 1.097 1.187 1.031 1.200 1.052 2.5 2.3 2.6 2.7 2.2 0.5
- 0.9 1.101 1.216 1.124 1.040 1.219 1.037 1.160 1.094 1.209 1.109 1.011 1.199 1.033 1.164 0.6 0.6 1.4 2.9 1.7 0.4
-0.3 1.088 0.936 1.124 1.126 1.133 1.014 1.075 0.929 1.129 1.108 1.138 1.018 1.2 0.8 -0.4 1.6 -0.4 -0.4 1.089 1.216 1.011 1.013 1.160 1.097 1.264 1.030 1.019 1.159
-0.7 -3.8 -1.8 -0.6 0.1 1.101 1.207 1.222 1.015 1.144 1.248 1.247 1.023
-3.8 -3.3 -2.0
-0.8 1.085 1.116 1.108 1.133
-2.1
-1.5 MAX DIFFERENCE
=
MAX DIFF (FDH>1.0) =
RtlS DIFFERENCE
=
-4.7 ASSEtlBLY B 6)
-4.2 ASSEtlBLY C 5) 1.9 G
1.085 1.129
-3.9 1.222 1.262
-3.2 1.013 1.012 0.1 1.133 1.127 0.5 1.037 1.011 2.6 1.206 1.165 3.5 1.037 1.006 3.1 1.213 1.191 1.8 1.037 1.022 1.5 1.206 1.200 0.5 1.037 1.031 0.6 1.133 1.131 0.2 1.013 1.012 0.1 1.222 1.219 0.2 1.085 1.100
-1.4 F
E 1.207 1.101 1.261 1.141
-4.3 -3.5 1.011 1.216 1.035 1.259
-2.3 -3.4 1.126 1.124 1.118 1.140 0.7 -1.4 1.219 1.040 1.193 1.025 2.2 1.5 1.054 1.219 1.030 1.202 2.3 1.4 1.206 1.037 1.163 1.009 3.7 2.8 1.059 1.165 1.040 1.155 1.8 0.9 1.206 1.037 1.191 1.026 1.3 1.1 1.054 1.219 1.047 1.214 0.7 0.4 1.219 1.040 1.203 1.035 1.3 0.5 1.126 1.124 1.111 1.109 1.4 1.4 1.011 1.216 0.998 1.188 1.3 2.4 1.207 1.101 1.195 1.090 1.0 1.0 x.xxx x.xxx x.x D
C 1.089 1.105
-1.4 0.936 1.088 0.950 1.123
-1.5 -3.1 1.124 1.216 1.149 1.269
-2.2 -4.2 1.126 1.0.11 1.124 1.042 0.2
-3.0 1.135 1.015 1.144 1.024
-0.8 -0.9 1.027 1.163 1.028 1.173
-0.1
-0.9 1.135 1.015 1.138 1.035
-0.3 -1.9 1.126 1.011 1.120 1.032 0.5 -2.0 1.124 1.216 1.137 1.252
-1.1
-2.9 0.936 1.088 0.952 1.103
-1.7 -1.4 1.089 1.092
-0.3 PREDICTED tlEASURED B
1.101 1.144
-3.8 1.206 1.266
-4.7 1.223 1.237
-1.1 1.017 1.028
-1.1 1.223 1.261
-3.0 1.206 1.262
-4.4 1.101 1.134
-2.9 PERCENT DIFFERENCE 1
2 3
4 5
6 1.084 1.112 7
-2.5 1.116 1.145 8
-2.5 1.084 1.126 9
-3.7 10 11 12 13 14 15 36
I I
I I
I I
I.
I I
I I
I I
,I I
I FIGURE 4-10 F !J.H COMPARISON FOR N1C2 MAP 44 (CECOR WITH 1 ANALYSIS LEVEL)
R p
N K
L K
J 1.085 1.112
-2.4 1.101 1.207 1.222 1.101 1.203 1.226 o.o 0.3 -0.3 1.089 1.216 1.011 1.013 1.131 1.222 1.001 0.986
-3.7 -0.5 1.0 2.7 1.088 0.936 1.124 1.126 1.133 1.099 0.944 1.117 1.110 1.108
-1.0
-0.8 0.6 1.4 2.3 1.101 1.216 1.124 1.040 1.219 1.037 1.106 1.232 1.125 1.020 1.196 1.008
-0.5 -1.3
-0.1 2.0 1.9 2.9 1.206 1.011 1.126 1.219 1.054 1.206 1.203 1.009 1.127 1.227 1.050 1.181 0.2 0.2
-0.1
-0.7 0.4 2.1 1.084 1.223 1.015 1.135 1.037 1.206 1.037 1.076 1.214 0.998 1.130 1.037 1.194 1.013 0.7 0.7 1.7 0.4 0.0 1.0 2.4 1.116 1.017 1.163 1.027 1.165 1.059 1.213 1.110 1.020 1.177 1.026 1.172 1.049 1.194 0.5
-0.3 -1;2 0.1
-0.6 1.0 1.6 1.084 1.223 1.015 1.135 1.037 1.206 1.037 1.076 1.213 1.008 1.120 1.009 1.188 1.023 0.7 0.8 0.7 1.3 2.8 1.5 1.4 1.206 1.011 1.126 1.219 1.054 1.206 1.188 0.987 1.105 1.191 1.046 1.198 1.5 2.4 1.9 2.4 0.8 0.7 1.101 1.216 1.124 1.040 1.219 1.037 1.086 1.203 1.107 1.010 1.203 1.032 1.4 1.1 1.5 3.0 1.3 0.5 1.088 0.936 1.124 1.126 1.133 1.103 0.934 1.119 1.123 1.133
-1.4 0.2 0.4 0.3 0.0 1.089 1.216 1.011 1.013 1.093 1.229 1.020 1.026
-0.4 -1.1
-0.9 -1.3 1.101 1.207 1.222 1.143 1.231 1.245
-3.7 -1.9 -1.8 1.085 1.117
-2.9 KAX DIFFERENCE
=
HAX DIFF CFDH>1.0) =
RKS DIFFERENCE
=
-7.2 ASSEKBLY B 5 4.3 ASSEKBLY F 6 2.1 H
1.116 1.178
-5.3 1.015 1.043
-2.7 1.160 1.168
-0.7 1.014 0.991 2.3 1.160 1.134 2.3 1.061 1.036 2.4 1.215 1.187 2.4 0.973 0.954 2.0 1.215 1.197 1.5 1.061 1.053 0.8 1.160 1.162
-0.2 1.014 1.017
-0.3 1.160 1.182
-1.9 1.015 1.037
-2.1 1.116 1.138
-1.9 G
1.085 1.128
-3.8 1.222 1.259
-2.9 1.013 1.028
-1.5 1.133 1.128 0.4 1.037 1.017
- 2.0 1.206 1.172 2.9 1.037 1.009 2.8 1.213 1.185 2.4 1.037 1.019 1.8 1.206 1.198 0.7 1.037 1.035 0.2 1.133 1.132 0.1 1.013 1.015
-0.2 1.222 1.232
-0.8 1.085 1.097
-1.1 F
E 1.207 1.101 1.262 1.142
-4.4 -3.6 1.011 1.216 1.035 1.254
-2.3 -3.0 1.126 1.124 1.132 1.137
-0.5 -1.1 1.219 1.040 1.194 1.020 2.1 2.0 1.054 1.219 1.011 1.195 4.3 2.0 1.206 1.037 1.171 1.022 3.0 1.5 1.059 1.165 1.028 1.152 3.0 1.1 1.206 1.037 1.208 1.034
-0.2 0.3 1.054 1.219 1.059 1.214
-0.5 0.4 1.219 1.040 1.218 1.023 0.1 1.7 1.126 1.124 1.118 1.117 0.7 0.6 1.011 1.216 0.988 1.204 2.3 1.0 1.207 1.101 1.197 1.090 0.8 1.0 x.xxx x.xxx x.x D
C 1.089 1.153
-5.6 0.936 1.088 0.960 1.120
-2.5 -2.9 1.124 1.216 1.139 1.257
-1.3 -3.3 1.126 1.011 1.130 1.033
-0.4 -2.1 1.135 1.015 1.138 1.030
-0.3 -1.5 1.027 1.163 1.027 1.172 0.0
-0.8 1.135 1.015 1.141 1.033
-0.5 -1.7 1.126 1.011 1.133.1.032
-0.6 -2.0 1.124 1.216 1.132 1.247
-0.7 -2.5 0.936 1.088 0.946 1.141
-1.1
-4.6 1.089 1.086 0.3 PREDICTED KEASURED B
1.101 1.187
-7.2 1.206 1.251
-3.6 1.223 1.254
-2.5 1.017 1.047
-2.9 1.223 1.263
-3.2 1.206 1.253
-3.8 1.101 1.135
-3.0 PERCENT DIFFERENCE A
1 2
3 4
5 6
1.084 1.116 7
-2.9 1.116 1.156 8
-3.5 1.084 1.144 9
-5.2 10 11 12 13 14 15 37
I I
I I
I I
I I
I I
I I,,
I FIGURE 4-11 F b.H COMPARISON FOR N1C2 MAP 44 (CECOR WITH 7 ANALYSIS LEVELS)
R p
N II L
.K J
H 1.085 1.116 1.113 1.179
-2.5 -5.3 1.101 1.207 1.222 1.015 1.103 1.205 1.229 1.044
-0.2 0.2
-0.6 -2.8 1.089 1.216 1.011 1 *. 013 1.160 1.133 1.224 1.000 0.986 1.169
-3.9 -0.7 1.1 2.7 -0.8 1.088 0.936 1.124 1.126 1.133 1.014 1.101 0.943 1.116 1.111 1.108 0.992
-1.2
-0.7 0.7 1.4 2.3 2.2 1.101 1.216 1.124 1.040 1.219 1.037 1.160 1.107 1.233 1.124 1.019 1.196 1.008 1.134
-0.5 -1.4 0.0 2.1 1.9 2.9 2.3 1.206 1.011 1.126 1.219 1.054 1.206 1.061 1.205 1.008 1.128 1.227 1.052 1.182 1.036 0.1 0.3
-0.2
-0.7 0.2 2.0 2.4 1.084 1.223 1.015 1.135 1.037 1.206 1.037 1.215 1.079 1.218 0.997 1.130 1.036 1.194 1.013 1.188 0.5 0.4 1.8 0.4 0.1 1.0 2,4 2.3 1.116 1.017 1.163 1.027 1.165 1.059 1.213 0.973 1.113 1.022 1.177 1.026 1.173 1.048 1.195 0.954 0.3
-0.5 -1.2 0.1
-0.7 1.0 1.5 2.0 1.0~4 1.223 1.015 1.135 1.037 1.206 1.037 1.215 1.078 1.217 1.008 1.120 1.009 1.188 1.023 1.199 0.6 0.5 0.7 1.3 2.8 1.5 1.4 1.3 1.206 1.011 1.126 1.219 1.054 1.206 1.061 1.189 0.986 1.106 1.192 1.048 1.198 1.052 1.4 2.5 1.8 2.3 0.6 0.7 0.9 1.101 1.216 1.124 1.040 1.219 1.037 1.160 1.087 1.205 1.106 1.009 1.203 1.031 1.162 1.3 0.9 1.6 3.1 1.3 0.6 -0.2 1.088 0.936 1.124 1.126 1.133 1.014 1.105 0.933 1.118 1.124 1.133 1.017
-1.5 0.3 0.5 0.2 0.0 -0.3 1.089 1.216 1.011 1.013 1.160 1.095 1.231 1.020 1.026 1.182
-0.5 -1.2
-0.9 -1.3 -1.9 1.101 1.207 1.222 1.015 1.144 1.232 1.248 1.038
-3.8 -2.0
-2.1
-2.2 1.085 1.116 1.118 1.139
-3.0 -2.0 IIAX DIFFERENCE
=
IIAX DIFF ( FDH> 1
- o*) =
RIIS DIFFERENCE
=
-7.2 ASSEMBLY B 5) 4.3 ASSEIIBLY F 6) 2.1 G
1.085 1.129
-3.9 1.222 1.262
-3.2 1.013 1.027
-1.4 1.133 1.128 0.4 1.037 1.016 2.1 1.206 1.171 3.0 1.037 1.008 2.9 1.213 1.186 2.3 1.037 1.019 1.8 1.206 1.198 0.7 1.037 1.034 0.3 1.133 1.132 0.1 1.013 1.015
-0.2 1.222 1.234
-1.0 1.085 1.098
-1.2 F
E 1.207 1.101 1.262 1.143
-4.4 -3.7 1.011 1.216 1.034 1.256
-2.2
-3.2 1.126 1.124 1.134 1.136
-0.7 -1.1 1.219 1.040 1.194 1.019 2.1 2.1 1.054 1.219 1.011 1.195 4.3 2.0 1.206 1.037 1.171 1.021 3.0 1.6 1.059 1.165 1.028 1.152 3.0 1.1 1.206 1.037 1.207 1.034
-0.1 0.3 1.054 1.219 1.061 1.214
-0.7 0.4 1.219 1.040 1.21,8 1.022 0.1 1.8 1.126 1.124 1.119 1.117 0.6 0.6 1.011 1.216 0.987 1.206 2.4 0.8 1.207 1.101 1.198 1.091 0.8 0.9 x.xxx x.xxx x.x D
C 1.089 1.154
-5.6 0.936 1.088 0.959 1.122
-2.4 -3.0 1.124 1.216 1.138 1.258
-1.2 -3.3 1.126 1.011 1.132 1.032
-0.5 -2.0 1.135 1.015 1.139 1.029
-0.4 -1.4 1.027 1.163 1.027 1.172 0.0
-0.8 1.135 1.015 1.141 1.032
-0.5 -1.6 1.126 1.011 1.134 1.031
-0.7 -1.9 1.124 1.216 1.131 1.249
-0.6 -2.6 0.936 1.088 0.945 1.143
-1.0
-4.8 1.089 1.088 0.1 PREDICTED MEASURED B
1.101 1.187
-7.2 1.206 1.252
-3.7 1.223 1.256
-2.6 1.017 1.048
-3.0 1.223 1.266
-3.4 1.206 1.254
-3.8 1.101 1.136
-3.1 PERCENT DIFFERENCE A
1 2
3 4
5 6
1.084 1.116 7
-2.9 1.116 1.157 8
-3.5 1.084 1.145 9
-5.3 10 11 12 13 14 15 38
I...
I I
I I
I I
I I
I I
I I
I FIGURE 4-12 F !J.H COMPARISON FOR N1C2 MAP 44 (CECOR WITH 22 ANALYSIS LEVELS)
R p
N 11 L
K J
1.085 1.113
-2.5 1.101 1.207 1.222 1.103 1.205 1.230
-0.2 0.2 -0.7 1.089 1.216 1.011 1.013 1.132 1.224 1.000 0.987
-3.8 -0.7 1.1 2.6 1.088 0.936 1.124 1.126 1.133 1.101 0.943 1.116 1.112 1.109
-1.2 -0.7 0.7 1.3
- 2.2 1.101 1.216 1.124 1.040 1.219 1.037 1.107 1.233 1.124 1.019 1.196 1.008
-0.5 -1.4.o.o 2.1 1.9 2.9 1.206 1.011 1.126 1.219 1.054 1.206 1.205 1.008 1.129 1.227 1.054 1.182 0.1 0.3 -0.3 -0.7 o.o 2.0 1.084 1.223 1.015 1.135 1.037 1.206 1.037 1.079 1.218 0.998 1.131 1.036 1.194 1.013 0.5 0'.4
- 1. 7 0.4 0.1 1.0 2.4 1.116 1.017 1.163 1'.027 1.165 1.059 1.213 1.113 1.023 1.178 1.026 1.173 1.049 1.195 0.3
-0.6 -1.3 0.1 -0.7 1.0 1.5 1.084 1.223 1.015 1.135 1.037 1.206 1.037 1.078 1.217 1.009 1.120 1.009 1.188 1.023 0.6 0.5 0.6 1.3 2.8 1.5 1.4 1.206 1.011 1.126 1.219 1.054 1.206 1.190 0.986 1.107 1.192 1.050 1.198 1.3 2.5 1.7 2.3 0.4 0.7 1.101 1.216 1.124 1.040 1.219 1.037 1.087 1.206 1.106 1.009 1.203 1.031 1.3 0.8 1.6 3.1 1.3 0.6 1.088 0.936 1.124 1.126 1.133 1.105 0.933 1.118 1.125 1.134
-1.5 0.3 0.5 0.1
-0.1 1.089 1.216 1.011 1.013 1.095 1.231 1.020 1.026
-0.5 -1.2 -0.9 -1.3 1.101 1.207 1.222 1.144 1.232 1.249
-3.8 -2.0 -2.2 1.085 1.118
-3.0 l'IAX DIFFERENCE
=
l'IAX DIFF (FDH>1.0) =
RKS DIFFERENCE
=
-7.2 ASSEl'IBLY B 5 4.3 ASSEl'IBLY F 6 2.1 H
1.116 1.179
-5.3 1.015 1.046
-3.0 1.160 1.169
-0.8 1.014 0.992 2.2 1.160 1.134 2.3 1.061 1.036 2.4 1.215 1.188 2.3 0.973 0.955 1.9 1.215 1.199 1.3 1.061 1.052 0.9 1.160 1.163
-0.3 1.014 1.018
-0.4 1.160 1.182
-1.9 1.015 1.039
-2.3 1.116 1.139
-2.0 G
1.085 1.129
-3.9 1.222 1.2.63
-3.2 1.013 1.029
-1.6 1.133 1.128 0.4 1.037 1.016 2.1 1.206 1.171 3.0 1.037 1.008 2.9 1.213 1.186 2.3 1.037 1.019 1.8 1.206 1.198 0.7 1.037 1.034 0.3 1.133 1.133 o.o 1.013 1.016
-0.3 1.222 1.234
-1.0 1.085 1.098
-1.2 F
E 1.207 1.101 1.262 1.143
-4.4 -3.7 1.011 1.216 1.034 1.256
-2.2 -3.2 1.126 1.124 1.135 1.136
-0.8 -1.1 1.219 1.040 1.194 1.020 2.1 2.0 1.054 1.219 1.011 1.195 4.3 2.0 1.206 1.037 1.171 1.021 3.0 1.6 1.059 1.165 1.028 1.152 3.0 1.1 1.206 1.037 1.207 1.034
-0.1 0.3 1.054 1.219 1.063 1.214
-0.8 0.4 1.219 1.040 1.218 1.022 0.1 1.8 1.126 1.124 1.120 1.117 0.5 0.6 1.011 1.216 0.987 1.206 2.4 0.8 1.207 1.101 1.198 1.091 0.8 0.9 x.xxx x.xxx x.x D
C 1.089 1.154
-5.6 0.936 1.088 0.959 1.122
-2.4 -3.0 1.124 1.216 1.138 1.259
-1.2 -3.4 1.126 1.011 1.132 1.032
-0.5 -2.0 1.135 1.015 1.140 1.030
-0.4 -1.5 1.027 1.163 1.027 1.173 o.o
-0.9 1.135 1.015 1.141 1.033
-0.5 -1.7 1.126 1.011 1.135 1.031
-0.8 -1.9 1.124 1.216 1.131 1.249
-0.6 -2.6 0.936 1.088 0.945 1.143
-1.0 -4.8 1.089 1.088 0.1 PREDICTED l'IEASURED B
1.101 1.187
-7.2 1.206 1.252
-3.7 1.223 1.256
-2.6 1.017 1.049
-3.1 1.223 1.266
-3.4 1.206 1.254
-3.8 1.101 1.135
-3.0 PERCENT DIFFERENCE A
1 2
3 4
5 6
1.084 1.116 7
-2.9 1.116 1.157 8
-3.5 1.084 1.145 9
-5.3 10 11 12 13 14 15 39
I...
I,.
I I
I I
I-I I
I I
I I
I -I 0
U')
U')
(\\J.
0 0.
U')
NO
~
N LL 0
U').
0 U')
(\\J.
0 0
0
)I
- lit
- I FIGURE 4-13 FZ(Z) COMPARISON NORTH ANNA UNIT 1, CYCLE 2 MAP 44 I
Ix *1
- a-+-------------------------.
o.oo 20.00 40.00 60.00 80.00 100.00 PERCENT HEIGHT FROM BOTTOM OF CORE AAA
+ + +
XXX
(!) (!) (!)
CECOR C 1 LEVEL)
CECOR C 7 LEVEL)
CECOR (22 LEVEL)
I NCOR C 1 LEVEL) 40
I I
I I
I I
I I
'I I
I I
I I
I,,
I 0
<<)
0 I().
0
(\\J.
0 0\\
NO
"-,J a
LL 0
'°.
0 0
I"").
0 0
0
- w
FIGURE 4-14 FOCZ) COMPARISON NORTH ANNA UNIT 1. CYCLE 2 MAP 44 I!
~
I!
a-----------~----.-----.
o.oo 20.00 40.00 60.00 80.00 100.00 PERCENT HEIGHT FROM BOTTOM OF CORE AAA
+ + +
XXX C) C) C)
CECOR C 1 LEVEL)
CECOR C 7 LEVEL)
CECOR (22 LEVEL)
I NCOR C 1 LEVEL) 41
I I
I I
I I
I I
I I
I I
I I
I I
FIGURE 4-15 RPD COMPARISON FOR S1C6 MAP 70 (INCOR WITH 1 ANALYSIS LEVEL)
R p
N L
K J
H 0.434 0.676 0.421 0.655 3.1 3.2 0.428 0.863 0.978 0.922 0.433 0.847 0.964 0.909
-1.2
- 1.9 1.5 1.4 0.494 1.011 1.163 1.061 1.030 0.499 1.021 1.142 1.045 1.029
-1.0
-1.0 1.8 1.5 0.1 0.491 0.922 1.207 1.150 1.235 1.106 0.493 0.924 1.207 1.132 1.216 1.088
-0.4 -0.2 o.o 1.6 1.6 1.7 0.427 1.007 1.205 1.170 1.275 1.161 1.281 0.428 1.008 1.203 1.164 1.262 1.139 1.268
-0.2
-0.1 0.2 0.5 1.0 1.9 1.0 0.861 1.161 1.150 1.277 1.155 1.268 1.066 0.861 1.161 1.149 1.279 1.147 1.261 1.075 0.0 0.0 0.1
-0.2 0.7 0.6 -0.8 0.433 0.977 1.060 1.234 1.161 1.270 0.985,1.229 0.433 0.977 1.059 1.225 1.142 1.250 0.996 1.247 o.o 0.0 0.1 0.7 1.7 1.6 -1.1
-1.4 0.675 0.921 1.039 1.105 1.281 1.067 1.231 1.053 0.675 0.921 1.039 1.091 1.240 1.040 1.187 1.067 0.0 0.0 o.o 1.3 3.3 2.6 3.7 -1.3 0.433 0.977 1.060 1.234 1.161 1.270 0.985 1.229 0.443 0.988 1.071 1.226 1.146 1.251 0.983 1.234
-2.3
-1.1
-1.0 0.7 1.3 1.5 0.2
-0.4 0.861 1.161 1.150 1.277 1.155 1.268 1.066 0.879 1.185 1.159 1.274 1.153 1.261 1.055
-2.0
-2.0
-0.8 0.2 0.2 0.6
- 1.0 0.427 1.007 1.205 1.170 1.275 1.161 1.281 0.433 1.021 1.217 1.177 1.276 1.146 1.247
-1.4 -1.4 -1.0
-0.6 -0.1 1.3 2.7 0.491 0.922 1.207 1.150 1.235 1.106 0.495 0.928 1.214 1.149 1.226 1.086
-0.8 -0.6 -0.6 0.1 0.7 1.8 0.494 1.011 1.163 1.061 1.030 0.497 1.017 1.163 1.056 1.033
-0.6 -0.6 o.o 0.5 -0.3 0.428 0.863 0.978 0.922 0.431 0.867 0.984 0.931
-0.7 -0.5 -0.6 -1.0 0.434 0.676 0.437 0.683
-0.7 -1.0 nAX DIFFERENCE
=
nAX DIFF (RPD>1.0) =
RMS DIFFERENCE
=
3.7 ASSEnBLY J 8) 3.7 ASSEnBLY J 8) 1.2 G
0.434 0.429 1.2 0.978 0.978 0.0 1.061 1.062
-0.1 1.235 1.223 1.0 1.161 1.149 1.0 1.268 1.271
-0.2 0.985 0.998
-1.3 1.231 1.244
-1.0 0.985 0.993
-0.8 1.268 1.259 0.7 1.161 1.125 3.2 1.235 1.227 0.7 1.061 1.077
-1.5 0.978 0.989
-1.1 0.434 0.439
-1.1 F
E 0.863 0.428 0.876 0.435
-1.5 -1.6 1.163 1.011 1.181 1.026
-1.5 -1.5 1.150 1.207 1.125 1.226 2.2 -1.5 1.275 1.170 1.248 1.171 2.2 -0.1 1.155 1.277 1.135 1.268 1.8 0.7 1.270 1.161 1.271 1.152
-0.1 0.8 1.067 1.281 1.075 1.288
-0.7 -0.5 1.270 1.161 1.279 1.163
-0.7 -0.2 1.155 1.277 1.162 1.278
-0.6 -0.1 1.275 1.170 1.279 1.172
-0.3 -0.2 1.150 1.207 1.165 1.212
-1.3 -0.4 1.163 1.011 1.184 1.021
-1.8 -1.0 0.863 0.428 0.875 0.437
-1.4 -2.1 x.xxx x.xxx x.x D
C 0.494 0.502
-1.6 0.922 0.491 0.937 0.496
-1.6 -1.0 1.205 1.007 1.224 1.017
-1.6 -1.0 1.150 1.161 1.168 1.176
-1.5 -1.3 1.234 1.060 1.220 1.063 1.1
-0.3 1.105 1.039 1.093 1.032 1.1 0.7 1.234 1.060 1.227 1.054 0.6 0.6 1.150 1.161 1.149 1.159 0.1 0.2 1.205 1.007 1.206 1.010
-0.1
-0.3 0.922 0.491 0.920 0.496 0.2
-1.0 0.494 0.495
-0.2 PREDICTED nEASURED B
0.427 0.428
-0.2 0.861 0.871
-1.1 0.977 0.991
-1.4 0.921 0.923
-0.2 0.977 0:919
-0.2 0.861 0.872
-1.3 0.427 0.432
-1.2 PERCENT DIFFERENCE 1
2 3
4 5
6 0.433 0.439 7
-1.4 0.675 0.681 8
-0.9 0.433 0.438 9
-1.1 10 11 12 14 15 42
I I
I I
I I
I I
I I
I.
I I
I I
FIGURE 4-16 RPD COMPARISON FOR SIC6 MAP 70 (CECOR WITH I ANALYSIS LEVEL)
R p
N K
L K
J 0.434 0.425 2.1 0.428 0.863 0.978 0.425 0.852 0.965 0.7 1.3 1.3 0.494 1.011 1.163 1.061 0.498 1.004 1.149 1.043
-0.8 0.7 1.2 1.7 0.491 0.922 1.207 1.150 1.235 0.491 0.920 1.199 1.137 1.214 0.0 0.2 0.7 1.1 1.7 0.427 1.007 1.205 1.170 1.275 1.161 0.428 1.009 1.203 1.163 1.261 1.137
-0.2
-0.2 0.2 0.6 1.1 2.1 0.861 1.161 1.150 1.277 1.155 1.268 0.862 1.161 1.149 1.283 1.150 1.262
-0.1 0.0 0.1
-0.5 0.4 0.5 0.433 0.977 1.060 1.234 1.161 1.270 0.985 0.435 0.979 1.059 1.227 1.149 1.260 0.983
-0.5
-0.2 0.1 0.6 1.0 0.8 0.2 0.675 0.921 1.039 1.105 1.281 1.067 1.231 0.678 0.925 1.040 1.093 1.238 1.053 1.226
-0.4 -0.4
-0.1 1.1 3.5 1.3 0.4 0.433 0.977 1.060 1.234 1.161 1.270 0.985 0.437 0.986 1.068 1.233 1.151 1.262 0.982
-0.9
-0.9
-0.7 0.1 0.9 0.6 0.3 0.861 1.161 1.150. 1.277 1.155 1.268 0.875 1.188 1.159 1.278 1.153 1.267
-1.6
-2.3
-0.8 -0.1 0.2 0.1 0.427 1.007 1.205 1.170 1.275 1.161 0.434 1.021 1.215 1.177 1.274 1.151
-1.6
-1.4
-0.8 -0.6 0.1 0.9 0.491 0.922 1.207 1.150 1.235 0.494 0.928 1.212 1.150 1.231
-0.6
-0.6 -0.4 0.0 0.3 0.494 1.011 1.163 1.061 0.497 1.014 1.165 1.061
-0.6 -0.3 -0.2 0.0 0.428 0.863 0.978 0.430 0.865 0.981
-0.5
-0.2 -0.3 0.434 0.436
-0.5 KAX DIFFERENCE
=
KAX DIFF CRPD>1.0) =
RKS DIFFERENCE
=
3.5 ASSEKBLY L 8 3.5 ASSEKBLY L 8 1.0 H
0.676 0.655 3.2 0.922 0.915 0.8 1.030 1.036
-0.6 1.106 1.085 1.9 1.281 1.269 0.9 1.066 1.077
-1.0 1.229 1.237
-0.6 1.053 1.056
-0.3 1.229 1.229 0.0 1.066 1.057 0.9 1.281 1.244 3.0 1.106 1.097 0.8 1.030 1.031
-0.1 0.922 0.927
-0.5 0.676 0.680
-0.6 G
0.434 0.429 1.2 0.978 0.979
-0.1 1.061 1.062
-0.1 1.235 1.228 0.6 1.161 1.155 0.5 1.268 1.267 0.1 0.985 1.001
-1.6 1.231 1.241
-0.8 0.985 0.992
-0.7 1.268 1.265 0.2 1.161 1.152 0.8 1.235 1.234 0.1 1.061 1.070
-0.8 0.978 0.989
-1.1 0.434 0.438
-0.9 F
E 0.863 0.428 0.876 0.433
-1.5 -1.2 1.163 1.011 1.169 1.017
-0.5 -0.6 1.150 1.207 1.149 1.212 0.1
-0.4 1.275 1.170 1.268 1.174 0.6
-0.3 1.155 1.277 1.131 1.274 2.1 0.2 1.270 1,161 1,269 1.161 0.1 0.0 1.067 1.281 1.072 1.283
-0.5
-0.2 1.270 1.161 1.274 1.162
-0.3
-0.1 1.155 1.277 1.156 1.278
-0.1
-0.1 1.275 1.170 1,276 1.174
-0.1
-0.3 1.150 1.207 1.157 1.212
-0.6
-0.4 1.163 1.011 1.187 1.022
-2.0
-1.1 0.863 0.428 0.876 0.434
-1.5 -1.4 x.xxx x.xxx x.x D
C 0.494 0.498
-0.8 0.922 0.491 0.932 0.497
-1.1
-1.2 1.205 1.007 1.226 1.019
-1. 7
-1.2 1.150 1.161 1.157 1.171
-0.6 -0.9 1.234 1.060 1.237 1.065
-0.2
-0.5 1.105 1.039 1.103 1.028 0.2 1.1 1.234 1.060 1.233 1.057 0.1 0.3 1.150 1.161 1.149 1.160 0.1 0.1 1.205 1.007 1,205 1.009 0.0
-0.2 0.922 0.491 0.917 0.497 0.5
-1.2 0.494 0.496
-0.4 PREDICTED KEASURED B
0.427 0.428
-0.2 0.861 0.872
-1.3 0.977 0.998
-2.1 0.921 0.920 0.1 0.977 0.977 0.0 0.861 0.861 0.0 0.427 0.428
-0.2 PERCENT DIFFERENCE A
1 2
3 4
5 6
0.433 0.440 7
-1.6 0.675 0.679 8
-0.6 0.433 0.438 9
-1.1 10 11 12 13 14 15 43
I I
I I
I I
I I
I I
I I
I
- I I
I FIGURE 4-17 RPD COMPARISON FOR S1C6 MAP 70 (CECOR WITH 7 ANALYSIS LEVELS)
R p
N II 0.494 0.498
-0.8 0.491 0.922 0.491 0.920 0.0 0.2 0.427 1.007 1.205 0.428 1.009 1.203
-0.2
-0.2
.0.2 0.861 1.161 1.150 0.863 1.163 1.149
-0.2
-0.2 0.1 0.433 0.977 1.060 1.234 0.435 0.980 1.059 1,228
-0.5 -0.3 0.1 0.5 0.675 0.921 1.039 1.105 0.678 0.924 1.039 1.093
-0.4
-0.3
.0.0 1.1 0.433 0.977 1.060 1.234 0.437 0.987 1.068 1.233
-0.9 -1.0
-0.7 0.1 0.861 1.161 1.150 0.876 1.189 1.158
-1. 7
-2.4
-0.7 0.427 1.007 1.205 0.434 1.022 1.216
-1.6 -1.5 -0.9 0.491 0.922 0.494 0.927
-0.6
-0.5 0.494 0.497
-0.6 IIAX DIFFERENCE
=
IIAX DIFF CRPD>1.. 0) =
RIIS DIFFERENCE
=
L K
J H
0.434 0.676 0.425 0.656 2.1 3.0 0.428 0.863 0.978 0.922 0.424 0.853 0.966 0.915 0.9 1.2 1.2 0.8 1.011 1.163 1.061 1.030 1.005 1.150 1.040 1.036 0.6*
1.1 2.0
-0.6 1.207 1.150 1.235 1.106 1.199 1.135 1.214 1.085 0.7 1.3 1.7 1.9 1.170 1.275 1.161 1.281 1.162 1.262 1.134 1.271 0.7 1.0 2.4 0.8 1.277 1.155 1.268 1.066 1.283 1.148 1.262 1.076
-0.5 0.6 0.5 -0.9 1.161 1.270 0.985 1.229 1.148 1.260 0.982 1.238 1.1 0.8 D.3
-0.7 1.281 1.067 1.231 1.053 1.239 1.053 1.226 1.056 3.4 1.3 0.4
-0.3 1.161 1.270 0.985 1.229 1.150 1.262 0.982 1.229 1.0 0.6 0.3 o.o 1.277 1.155 1.268 1.066 1.279 1.152 1.268 1.057
-0.2 0.3 0.0 0.9 1.170 1.275 1.161 1.281 1.176 1.275 1.151 1.244
-0.5 o.o 0.9 3.0 1.207 1.150 1.235 1.106 1.212 1.150 1.231 1.096
-0.4 o.o 0.3 0.9 1.011 1.163 1.061 1.030 1.015 1.166 1.061 1.030
-0.4 -0.3 o.o 0.0 0.428 0.863 0.978 0.922 0.430 0.865 0.981 0.926
-0.5 -0.2
-0.3
~o.4 0.434 0.676 0.436 0.680
-0.5
-0.6 3.4 ASSEIIBLY L 8) 3.4 ASSEIIBLY L 8) 1.0 G
0.434 0.429 1.2 0.978 0.980
-0.2 1.061 1.062
-0.1 1.235 1.228 0.6 1.161 1.154 0.6 1.268 1.268 0.0 0.985 1.001
-1.6 1.231 1.241
-0.8 0.985 0.991
-0.6 1.268 1.266 0.2 1.161 1.151 0.9 1.235 1.234 0.1 1.061 1.068
-0.7 0.978 0.990
-1.2 0.434 0.438
-0.9 F
E 0.863 0.428 0.876 0.433
-1.5 -1.2 1.163 1.011 1.170 1.018
-0.6 -0.7 1.150 1.207 1.149 1.213 0.1
-0.5 1.275 1.170 1.268 1.173 0.6 -0.3 1.155 1.277 1.129 1.274 2.3 0.2 1.270 1.161 1.270 1.160 0.0 0.1 1.067 1.281 1.072 1.283
-0.5 -0.2 1.270 1.161 1.274 1.162
-0.3 -0.1 1.155 1.277 1.155 1.279 0.0
-0.2 1.275 1.170 1.277 1.173
-0.2 -0.3 1.150 1.207 1.156 1.212
-0.5 -0.4 1.163 1.011 1.188 1.023
-2.1
-1.2 0.863 0.428 0.877 0.434
-1.6 -1.4 x.xxx x.xxx x.x D
C 0.494 0.498
-0.8 0.922 0.491 0.932 0.497
-1.1
-1.2 1.205 1.007 1.227 1.019
-1.8 -1.2 1.150 1.161 1.156 1.172
-0.5
-0.9 1.234 1.060 1.238 1.064
-0.3 -0.4 1.105 1.039 1.102 1.027 0.3 1.2 1.234 1.060 1.233 1.056 0.1 0.4 1.150 1.161 1.148 1.162 0.2
-0.1 1.205 1.007 1.205 1.009 0.0
-0.2 0.922 0.491 0.917 0.497 0.5
-1.2 0.494 0.496
-0.4 PREDICTED IIEASURED B
0.427 0.428
-0.2 0.861 0.872
-1.3 0.977 0.998
-2.1 0.921 0.920 0.1 0.977 0.978
-0.1 0.861 0.862
-0.1 0.427 0.427 0.0 PERCENT DIFFERENCE A
1 2
3 4
5 6
0.433 0.440 7
-1.6 0.675 0.679 8
-0.6 0.433 0.438 9
-1.1 10 11 12 13 14 15 44
I I
I I
I I
I
.I I
I I
I I
I I
I FIGURE 4-18 RPD COMPARISON FOR S1C6 MAP 70 (CECOR WITH 22 ANALYSIS LEVELS)
R p
N II 0.494 0.498
-0.8 0.491 0.922 0.491 0.920 0.0 0.2 0.427 1.007 1.205 0.427 1-009 1.204 0.0
-0.2 0.1 0.861 1.161 1.150 0.863 1.163 1.149
-0.2 -0.2 0.1 0.433 0.977 1.060 1.234 0.435 0.980 1.059 1.228
-0.5
-0.3 0.1 0.5 0.675 0.921 1.039 1.105 0.678 0.925 1.039 1.093
-0.4 -0.4 0.0 1.1 0.433 0.977 1.060 1.234 0.437 0.987 1.068 1.234
-0.9
-1.0 -0.7 o.o 0.861 1.161 1.150 0.876 1.189 1.158
-1.7 -2.4
-0.7 0.427 1.007 1.205 0.433 1.022 1.216
-1.4 -1.5
-0.9 0.491 0.922 0.494 0.927
-0.6
-0.5 0.494 0.496
-0.4 IIAX DIFFERENCE
=
IIAX DIFF (RPD>1.0) =
RIIS DIFFERENCE
=
L 0.428 0.424 0.9 1.011 1.005 0.6 1.207 1.200 0.6 1.170 1.162 0.7 1.277 1.283
-0.5 1.161 1.148 1.1 1.281 1.239 3.4 1.161 1.150 1.0 1.277 1.279
-0.2 1.170 1.176
-0.5 1.207 1.212
-0.4 1.011 1.015
-0.4 0.428 0.430
-0.5 3.4 3.4 1.0 K
J H
0.434 0.676 0.425 0.655 2.1 3.2 0.863 0.978 0.922 0.853 0.966 0.915 1.2 1.2 0.8 1.163 1.061 1.030 1.150 1.039 1.036 1.1 2.1
-0.6 1.150 1.235 1.106 1.135 1.214 1.085 1.3 1.7 1.9 1.275 1.161 1.281 1.262 1.133 1.271 1.0 2.5 0.8 1.155 1.268 1.066 1.149 1.263 1.076 0.5 0.4 -0.9 1.270 0.985 1.229 1.260 0.981 1.238 0.8 0.4
-0.7 1.067 1.231 1.053 1.053 1.226 1.056 1.3 0.4 -0.3 1.270 0.985 1.229 1.262 0.982 1.229 0.6 0.3 o.o 1.155 1.268 1.066 1.153 1.269 1.057 0.2
-0.1 0.9 1.275 1.161 1.281 1.275 1.151 1.245 0.0 0.9 2.9 1.150 1.235 1.106 1.150 1.232 1.096 o.o 0.2 0.9 1.163 1.061 1.030 1.166 1.060 1.030
-0.3 0.1 0.0 0.863 0.978 0.922 0.865 0.982 0.926
-0.2
-0.4 -0.4 0.434 0.676 0.436 0.680
-0.5 -0.6 ASSEKBLY L 8)
ASSEKBLY L 8)
G 0.434 0.429 1.2 0.978 0.980
-0.2 1.061 1.062
-0.1 1.235 1.228 0.6 1.161 1.154 0.6 1.268 1.268 0.0 0.985 1.001
-1.6 1.231 1.241
-0.8 0.985 0.991
-0.6 1.268 1.266 0.2 1.161 1.151 0.9 1.235 1.235 o.o 1.061 1.068
-0.7 0.978 0.990
-1.2 0.434 0.438
-0.9 F
E 0.863 0.428 0.876 0.432
-1.5 -0.9 1.163 1.011 1.169 1.018
-0.5 -0.7 1.150 1.207 1.148 1.213 0.2
-0.5 1.275 1.170 1.268 1.173 0.6 -0.3 1.155 1.277 1.129 1.274 2.3 0.2 1.270 1.161 1.270 1.160 o.o 0.1 1.067 1.281 1.072 1.284
-0.5 -0.2 1.270 1.161 1.275 1.161
-0.4 o.o 1.155 1.277 1.155 1.279 0.0 -0.2 1.275 1.170 1.277 1.173
-0.2 -0.3 1.150 1.207 1.156 1.213
-0.5 -0.5 1.163 1.011 1.188 1.023
-2.1
-1.2 0.863 0.428 0.877 0.434
-1.6 -1.4 x.xxx x.xxx x.x D
C B
0.494 0.498
-0.8 0.922 0.491 0.932 0.496
-1.1
-1.0 1.205 1.007 0.427 1.227 1.019 0.428
-1.8 -1.2. -0.2 1.15Q 1.161 1.156 1.172
-0.5 -0.9 1.234 1.060 1.238 1.064
-0.3 -0.4 1.105 1.039 1.102 1.027 0.3 1.2 1.234 1.060 1.234 1.056 0.0 0.4 1.150 1.161 1.148 1.162 0.2
-0.1 1.205 1.007 1.206 1.009
-0.1
-0.2 0.922 0.491 0.917 0.497 0.5 -1.2 0.494 0.496
-0.4 PREDICTED IIEASURED 0.861 0.872
-1.3 0.977 0.998
-2."1 0.921 0.919 0.2 0.977 0.978
-0.1 0.861 0.862
-0.1 0.427 0.427 o.o PERCENT DIFFERENCE A
1 2
3 4
5 6
0.433 0.440 7
-1.6 0.675 0.679 8
-0.6 0.433 0.438 9
-1.1 10 11 12 13 14 15 45
I I
I I
I I
I I..
I I
I I
I I
I,.
I FIGURE 4-19 F AH COMPARISON FOR S1C6 MAP 70 (INCOR WITH 1 ANALYSIS LEVEL)
R p
N ti L
K J
0.689 0.675 2.1 0.771 1.119 1.104 0.768 1.099 1.089 0.4 1.8 1.4 0.808 1.215 1.232 1.116 0.813 1.218 1.210 1.100
-0.6
-0.2 1.8 1.5 0.801 1.076 1.267 1.219 1.281 0.802 1.076 1.264 1.199 1.261
-0.1 0.0 0.2 1.7 1.6
- o. 770 1.213 1.271 1.221 1.308 1.207 0.770 1.212 1.268 1.217 1.297 1.188 0.0 0.1 0.2 0.3 0.8 1.6 1.118 1.230 1.219 1.310 1.199 1.313 1.118 1.230 1.219 1.310 1.192 1.301 o.o 0.0 0.0 0.0 0.6 0.9 0.688 1.103 1.115 1.281 1.207 1.314 1.012 0.688 1.102 1.114 1.273 1.180 1.294 1.007 0.0 0.1 0.1 0.6 2.3 1.5 0.5 0.907 0.969 1.056 1.169 1.307 1.104 1.267 0.907 0.969 1.056 1.150 1.266 1.074 1.222 0.0 0.0 0.0 1.7 3.2 2.8 3.7 0.688 1.103 1.115 1.281 1.207 1.314 1.012 0.688 1.115 1.130 1.274 1.185 1.294 1.007 0.0
-1.1
-1.3 0.5 1.9 1.5 0.5 1.118 1.230 1.219 1.310 1.199 1.313 1.141 1.256 1.224 1.310 1.198 1.303
-2.0
-2.1
-0.4 0.0 0.1 0.8 0.770 1.213 1.271 1.221 1.308 1.207 0.783 1.230 1.283 1.227 1.310 1.188
-1.7 -1.4
-0.9
-0.5 -0.2 1.6 0.801 1.076 1.267 1.219 1.281 0.809 1.083 1.275 1.218 1.270
-1.0
-0.6
-0.6 0.1 0.9 0.808 1.215 1.232 1.116 0.813 1.222 1.231 1.111
-0.6
-0.6 0.1 0.5 0.771 1.119 1.104 0.776 1.126 1.099
-0.6 -0.6 0.5 0.689 0.696
-1.0 tlAX DIFFERENCE
=
tlAX DIFF (FDH>1.0) =
RtlS DIFFERENCE
=
3.7 ASSEtlBLY J 8 3.7 ASSEtlBLY J 8 1.2 H
0.908 0.887 2.4 0.970 0.961 0.9 1.051 1.042 0.9 1.170 1.152 1.6 1.307 1.294 1.0 1.103 1.109
-0.5 1.265 1.283
-1.4 1.069 1.084
-1.4 1.265 1.270
-0.4 1.103 1.087 1.5 1.307 1.274 2.6 1.170 1.145 2.2 1.051 1.062
-1.0 0.970 0.980
-1.0 0.908 0.917
-1.0 G
0.689 0.680 1.3 1.104 1.106
-0.2 1.116 1.117
-0.1 1.281 1.269 0.9 1.207 1.197 0.8 1.313 1.314
-0.1 1.012 1.015
-0.3 1.267 1.280
-1.0 1.012 1.019
-0.7 1.313 1.299 1.1 1.207 1.169 3.3 1.281 1.278 0.2 1.116 1.134
-1.6 1.104 1.118
-1.3 0.689 0.696
-1.0 F
E 1.119 0.771 1.136 0.783
-1.5 -1.5 1.232 1.215 1.250 1.234
-1.4 -1.5 1.219 1.267 1.192 1.288 2.3 -1.6 1.308 1.221 1.279 1.228 2.3
-0.6 1.199 1.310 1.173 1.302 2.2 0.6 1.314 1.207 1.312 1.200 0.2 0.6 1.104 1.307 1.112 1.314
-0.7 -0.5 1.314 1.207 1.323 1.213
-0.7 -0.5 1.199 1.310 1.202 1.311
-0.2
-0.1 1.308 1.221 1.311 1.221
-0.2 o.o 1.219.1.267 1.232 1.272
-1.1
-0.4 1.232 1.215 1.253 1.227
-1.7 -1.0 1.119 0.771 1.136 0.784
-1.5 -1.7 x.xxx x.xxx x.x D
C 0.808 0.821
-1.6 1.076 0.801 1.093 0.811
-1.6 -1.2 1.271 1.213 1.291 1.227
-1.5 -1.1 1.219 1.230 1.238 1.247
-1.5 -1.4 1.281 1.115 1.267 1.120 1.1
-0.4 1.169 1.056 1.156 1.055 1.1 0.1 1.281 1.115 1.275 1.108 0.5 0.6 1.219 1.230 1.218 1.228 0.1 0.2 1.271 1.213 1.272 1.215
-0.1
-0.2 1.076 0.801 1.076 0.804 0.0
-0.4 0.808 0.811
-0.4 PREDICTED tlEASURED B
0.770 0.777
-0.9 1.118 1.134
-1.4 1.103 1.114
-1.0 0.969 0.970
-0.1 1.103 1.102 0.1 1.118 1.132
-1.2 0.770 0.774
-0.5 PERCENT DIFFERENCE A
1 2
3 4
5 6
o.,688 0.693 7
-0.7 0.907 0.911 8
-0.4 0.688 0.692 9
-0.6 10 11 12 13 14 15 46
I I
I I
I I
I I..
I I
I I
I I
I
~
I FIGURE 4-20 F AH COMPARISON FOR S1C6 MAP 70 (CECOR WITH 1 ANALYSIS LEVEL)
R p
N II 0.808 0.815
-0.9 0.801 1.076 0.802 1.074
-0.1 0.2 0.770 1.213 1.271 0.771 1.215 1.268
-0.1
-0.2 0.2 1.118 1.230 1.219 1.119 1.231 1.218
-0.1
-0.1 0.1 0.688 1.103 1.115 1.281 0.690 1.105 1.114 1.274
-0.3 -0.2 0.1 0.5 0.907 0.969 1.056 1.169 0.910 0.973 1.056 1.157
-0.3
-0.4 0.0 1.0 0.688 1.103 1.115 1.281 0.693 1.113 1.123 1.280
-0.7
-0.9
-0.7 0.1 1.118 1.230 1.219 1.136 1.258 1.228
-1.6 -2.2
-0.7 0.770 1.213 1.271 0.782 1.230 1.281
-1.5 -1.4 -0.8 0.801 1.076 0.806 1.08?
-0.6 -0.6 0.808 0.812
-0.5 IIAX DIFFERENCE
=
IIAX DIFF CFDH>1.0) =
RIIS DIFFERENCE
=
L K
J H
0.689 0.908 0.675 0.880 2.1 3.2 0.771 1.119 1.104 0.9-70 0.764 1.106 1.089 0.963 0.9 1.2 1.4 0.7 1.215 1.232 1.116 1.051 1.207 1.217 1.096 1.057 0.7 1.2 1.8 -0.6 1.267 1.219 1.281 1.170 1.259 1.204 1.259 1.148 0.6 1.2 1.7 1.9 1.221 1.308 1.207 1.307 1.213 1.293 1.181 1.295 0.7 1.2 2.2 0.9 1.310 1.199 1.313 1.103 1.316 1.193 1.307 1.114
-0.5 0.5 0.5 -1.0 1.207 1.314 1.012 1.265 1.194 1.304 1.009 1.274 1.1 0.8 0.3 -0.7 1.307 1.104 1.267 1.069 1.263 1.089 1.262 1.072 3.5 1.4 0.4 -0.3 1.207 1.314 1.012 1.265 1.196 1.306 1.009 1.265 0.9 0.6 0.3 0.0 1.310 1.199 1.313 1.103 1.311 1.197 1.313 1.094
-0.1 0.2 o.o 0.8 1.221 1.308 1.207 1.307 1.228 1.306 1.196 1.269
-0.6 0.2 0.9 3.0 1.267 1.219 1.281 1.170 1.272 1.219 1.277 1.160
-0.4 0.0 0.3 0.9 1.215 1.232 1.116 1.051 1.219 1.234 1.116 1.052
-0.3 -0.2 0.0
-0.1 0.771 1.119 1.104 0.970 0.775 1.122 1.107 0.975
-0.5 -0.3 -0.3 -0.5 0.689 0.908 0.692 0.913
-0.4 -0.5 3.5 ASSEMBLY L 8) 3.5 ASSEMBLY L 8) 1.0 C
0.689 0.681 1.2 1.104 1.105
-0.1 1.116 1.117
-0.1 1.281 1.274 0.5 1.207 1.200 0.6 1.313 1.313 0.0 1.012 1.028
-1.6 1.267 1.277
-0.8 1.012 1.019
-0.7 1.313 1.311 0.2 1.207 1.197 0.8 1.281 1.281 o.o 1.116 1.125
-0.8 1.104 1.117
-1.2 0.689 0.695
-0.9 F
E 1.119 0.771 1.137 0.779
-1.6 -1.0 1.232 1.215 1.238 1.223
-0.5 -0.7 1.219 1.267 1.218 1.273 0.1
-0.5 1.308 1.221 1.300 1.224 0.6 -0.2 1.199 1.310 1.174 1.306 2.1 0.3 1.314 1.207 1.314 1.207 0.0 o.o 1.104 1.307 1.109 1.309
-0.5 -0.2 1.314 1.207 1.319 1.208
.,-0.4
-0.1 1.199 1.310 1.200 1.311
-0.1
-0.1 1.308 1.221 1.308 1.225 0.0
-0.3 1.219 1.267 1.226 1.273
-0.6 -0.5 1.232 1.215 1.257 1.229
-2.0 -1.1 1.119 0.771 1.137 0.782
-1.6 -1.4 x.xxx x.xxx x.x D
C 0.808 0.815
-0.9 1.076 0.801 1.088 0.810
-1.1
-1.1 1.271 1.213 1.293 1.227
-1.7 -1.1 1.219 1.230 1.227 1.241
-0.7 -0.9 1.281 1.115 1.284 1.120
-0.2 -0.4 1.169 1.056 1.167 1.044 0.2 1.1 1.281 1.115 1.280 1.111 0.1 0.4 1.219 1.230 1.218 1.229 0.1 0.1 1.271 1.213 1.271 1.215 0.0
-0.2 1.076 0.801 1.071 0.810 0.5 -1.1 0.808 0.811
-0.4 PREDICTED IIEASURED B
0.770 0.772
-0.3 1.118 1.132
-1.2 1.103 1.126
-2.0 0.969 0.968 0.1 1.103 1.103 0.0 1.118 1.118 0.0 0.770 0.771
-0.1 PERCENT DIFFERENCE A
1 2
3 4
5 6
0.688 0.698 7
-1.4 0.907 0.912 8
-0.5 0.688 0.695 9
-1.0 10 11 12 13 14 15 47
I..
I I
I I
I I
I I
I I
I I
I I
~
I FIGURE 4-21 FAH COMPARISON FOR S1C6 MAP 70 (CECOR WITH 7 ANALYSIS LEVELS)
R p
N
!I L
K J
0.689 0.675 2.1 0.771 1.119 1.104 0.764 1.107 1.091 0.9 1.1 1.2 0.808 1.215 1.232 1.116 0.815 1.208 1.220 1.095
-0.9 0.6 1.0 1.9 0.801 1.076 1.267 1.219 1.281 0.801 1.074 1.263 1.203 1.261 0.0 0.2 0.3 1.3 1.6 0.770 1.213 1.271 1.221 1.308 1.207 0.771 1.216 1.272 1.215 1.295 1.178
-0.1
-0.2
-0.1 0.5 1.0 2.5 1.118 1.230 1.219 1.310 1.199 1.313 1.120 1.234 1.218 1.318 1.192 1.308
-0.2
-0.3 0.1
-0.6 0.6 0.4 0.688 1.103 1.115 1.281 1.207 1.314 1.012 0.690 1.107 1.115 1.275 1.193 1.305 1.010
-0.3
-0.4 o.o 0.5 1.2 0.7 0.2 0.907 0.969 1.056 1.169 1.307 1.104 1.267 0.911 0.972 1.063 1.156 1.265 1.089 1.263
-0.4
-0.3 -0.7 1.1 3.3 1.4 0.3 0.688 1.103 1.115 1.281 1.207 1.314 1.012 0.693 1.115 1.124 1.281 1.196 1.307 1.010
-0.7
-1.1
-0.8 o.o 0.9 0.5 0.2 1.118 1.230 1.219 1.310 1.199 1.313 1.137 1.261 1.228 1.313 1.196 1.314
-1.7 -2.5 -0.7 -0.2 0.3 -0.1 0.770 1.213 1.271 1.221 1.308 1.207 0.781 1.231 1.285 1.229 1.308 1.196
-1.4 -1.5 -1.1
-0.7 o.o 0.9 0.801 1.076 1.267 1.219 1.281 0.806 1.083 1.276 1.219 1.279
-0.6 -0.6
-0.7 o.o 0.2 0.808 1.215 1.232 1.116 0.812
!IAX DIFFERENCE
=
MAX DIFF (FDH>1.0) =
R!IS DIFFERENCE
=
-0.5 1.220 1.237 1.117
-0.4 -0.4 -0.1 0.771 1.119 1.104 0.775 1.123 1.109
-0.5 -0.4
-0.5 0.689 0.691
-0.3 3.3 ASSE!IBLY L 8 3.3 ASSE!IBLY L 8 1.0 H
0.908 0.880 3.2 0.970 0.962 0.8 1.051 1.063
-1.1 1.170 1.148 1.9 1.307 1.297 0.8 1.103 1.113
-0.9 1.265 1.275
-0.8 1.069 1.072
-0.3 1.265 1.266
-0.1 1.103 1.093 0.9 1.307 1.270 2.9 1.170 1.159 0.9 1.051 1.056
-0.5 0.970 0.974
-0.4 0.908 0.913
-0.5 G
0.689 0.681 1.2 1.104 1.107
-0.3 1.116 1.118
-0.2 1.281 1.275 0.5 1.207 1.199 0.7 1.313 1.313 0.0 1.012 1.030
-1.7 1.267 1.278
-0.9 1.012 1.020
-0.8 1.313 1.311 0.2 1.207 1.196 0.9 1.281 1.282
-0.1 1.116 1.125
-0.8 1.104 1.118
-1.3 0.689 0.695
-0.9 F
E 1.119 0.771 1.137 0.779
-1.6 -1.0 1.232 1.215 1.241 1.223
-0.7 -0.7 1.219 1.267 1.217 1.277 0.2
-0.8 1.308 1.221 1.302 1.226 0.5 -0.4 1.199 1.310 1.172 1.308 2.3 0.2 1.314 1.207 1.315 1.206
-0.1 0.1 1.104 1.307 1.109 1.310
-0.5 -0.2 1.314 1.207 1.320 1.207
-0.5 o.o 1.199 1.310 1.199 1.313 o.o
-0.2 1.308 1.221 1.310 1.226
-0.2 -0.4 1.219 1.267 1.226 1.277
-0.6 -0.8 1.232 1.215 1.260 1.230
-2.2
-1.2 1.119 0.771 1.138 0.782
-1.7 -1.4 x.xxx x.xxx x.x D
C 0.808 0.815
-0.9 1.076 0.801 1.088 0.810
-1.1
-1.1 1.271 1.213 1.297 1.228
-2.0
-1.2 1.219 1.230 1.226 1.244
-0.6 -1.1 1.281 1.115 1.285 1.121
-0.3 -0.5 1.169 1.056 1.166 1.050 0.3 0.6 1.281 1.115 1.281 1.112 0.0 0.3 1.219 1.230 1.217 1.232 0.2
-0.2 1.271 1.213 1.274 1.216
-0.2
-0.2 1.076 0.801 1.071 0.810 0.5
-1.1 0.808 0.811
-0.4 PREDICTED
!IEASURED B
0.770 0.771
-0.1 1.118 1.132
-1.2 1.103 1.128
-2.2 0.969 0.967 0.2 1.103 1.105
-0.2 1.118 1.119
-0.1 0.770 0.771
-0.1 PERCENT DIFFERENCE A
1 2
3 4
5 6
0.688 0.698 7
-1.4 0.907 0.912 8
-0.5 0.688 0.695 9
-1.0 10 11 12 13 14 15 48
I I
I I
I I
I I
I I
I.
I I
I I
I FIGURE 4-22 F /J.H COMPARISON FOR S1C6 MAP 70 (CECOR WITH 22 ANALYSIS LEVELS)
R p
N II 0.808 0.815
-0.9 0.801 1.076 0.801 1.074 o.o 0.2 0.770 1.213 1.271 0.771 1.215 1.273
-0.1
-0.2
-0.2 1.118 1.230 1.219 1.120 1.234 1.218
-0.2 -0.3 0.1 0.688 1.103 1.115 1.281 0.690 1.107 1.115 1.275
-0.3 -0.4 0.0 0.5 0.907 0.969 1.056 1.169 0.911 0.973 1.063 1.156
-0.4 -0.4 -0.7 1.1 0.688 1.103 1.115 1.281 0.693 1.115 1.124 1.281
-0.7 -1.1
-0.8 o.o 1.118 1.230 1.219 1.137 1.262 1.228
-1.7 -2.5
-0.7 0.770 1.213 1.271 0.781 1.231 1.285
-1.4 -1.5
-1.1 0.801 1.076 0.806 1.083
-0.6
-0.6 0.808 0.812
-0.5 IIAX DIFFERENCE
=
KAX DIFF (FDH>1.0) =
RIIS DIFFERENCE
=
L 0.771 0.764 0.9 1.215 1.208 0.6 1.267 1.263 0.3 1.221 1.215 0.5 1.310 1.318
-0.6 1.207 1.193 1.2 1.307 1.265 3.3 1.207 1.196 0.9 1.310 1.313
-0.2 1.221 1.229
-0.7 1.267 1.277
-0.8 1.215 1.220
-0.4 0.771 0.775
-0.5 3.3 3.3 1.0 K
J
~
0.689 0.674 2.2 1.119 1.104 1.107 1.091 1.1 1.2 1.232 1.116 1.220 1.094 1.0 2.0 1.219 1.281 1.203 1.261 1.3 1.6 1.308 1.207 1.295 1.178 1.0 2.5 1.199 1.313 1.192 1.308 0.6 0.4 1.314 1.012 1.305 1.010 0.7 0.2 1.104 1.267 1.089 1.263 1.4 0.3 1.314 1.012 1.307 1.010 0.5 0.2 1.199 1.313 1.196 1.314 0.3 -0.1 1.308 1.207 1.308 1.196 0.0 0.9 1.219 1.281 1.219 1.279 o.o 0.2 1.232 1.116 1.237 1.117
-0.4 -0.1 1.119 1.104 1.123 1.109
-0.4 -0.5 0.689 0.692
-0.4 ASSEIIBLY L 8 ASSEIIBLY L 8 H
0.908 0.880 3.2 0.970 0.963 0.7 1.051 1.063
-1.1 1.170 1.148 1.9 1.307 1.297 0.8 1.103 1.113
-0.9 1.265 1.274
-0.7 1.069 1.072
-0.3 1.265 1.266
-0.1 1.103 1.093 0.9 1.307 1.271 2.8 1.170 1.159 0,9 1.051 1.057
-0.6 0.970 0.974
-0.4 0.908 0.913
-0.5 G
0.689 0.681 1.2 1.104 1.107
-0.3 1.116 1.118
-0.2 1.281 1.275 0.5 1.207 1.199 0.7 1.313 1.313 0.0 1.012 1.029
-1.7 1.267 1.278
-0.9 1.012 1.020
-0.8 1.313 1.312 0.1 1.207 1.196 0.9 1.281 1.282
-0.1 1.116 1.125
-0.8 1.104 1.118
-1.3 0.689 0.695
-0.9 F
E 1.119 0.771 1.137 0.779
-1.6 -1.0 1.232 1.215 1.241 1.223
-0.7 -0.7 1.219 1.267 1.217 1.278 0.2
-0.9 1.308 1.221 1.301 1.226 0.5
-0.4 1.199 1.310 1.172 1.308 2.3 0.2 1.314 1.207 1.315 1.206
-0.1 0.1 1.104 1.307 1.109 1.310
-0.5 -0.2 1.314 1.207 1.320 1.207
-0.5 0.0 1.199 1.310 1.199 1.313 0.0
-0.2 1.308 1.221 1.310 1.226
-0.2
-0.4 1.219 1.267 1.226 1.277
-0.6 -0.8 1.232 1.215 1.261 1.230
-2.3 -1.2 1.119 0.771 1.138 0.782
-1.7 -1.4 x.xxx x.xxx x.x D
C 0.808 0.815
-0.9 1.076 0.801 1.088 0.810
-1.1
-1.1 1.271 1.213 1.297 1.228
-2.0
-1.2 1.219 1.230 1.226 1.244
-0.6 -1.1 1.281 1.115 1.285 1.121
-0.3 -0.5 1.169 1.056 1.166 1.051 0.3 0.5 1.281 1.115 1.281 1.112 o.o 0.3 1.219 1.230 1.217 1.233 0.2
-0.2 1.271 1.213 1.275 1.216
-0.3 -0.2 1.076 0.801 1.071 0.810 0.5 -1.1 0.808 0.811
-0.4 PREDICTED MEASURED B
0.770
- 0. 771
-0.1 1.118 1.132
-1.2 1.103 1.128
-2.2 0.969 0.967 0.2 1.103 1.105
-0.2 1.118 1.119
-0.1 0.770 0.770 0.0 PERCENT DIFFERENCE A
1 2
3 4
5 6
0.688 0.698 7
-1.4 0.907 0.912 8
-0.5 0.688 0.695 9
-1.0 10 11 12 13 14 15 49
I I
I I
I I
I I
I I
I I
I I
I,.
I FIGURE 4-23 FZCZ) COMPARISON SURRY UNIT 1, CYCLE 6 MAP 70 0
I()
(\\I.
0 0.
I()
0 ""!
¥ 0
(\\I.
0 0
0 i
- +----.--------~----,....----"I 0 o.oo 20.00 40.00 60.00 80.00 100.00 PERCENT HEIGHT FROM BOTTOM OF CORE AAA
+ + +*
XXX
(!) (!) (!)
CECOR C 1 LEVEL)
CECOR C 7 LEVEL)
CECOR (22 LEVEL)
I NCOR ( 1 LEVEL) 50
I._,
I I
I I
I I
I I
I I
I I
I I
I 0 co 0
I().
0
(\\J.
0 0\\
0 U:).
0 0
t").
0 0
0 FIGURE 4-24 FQ(Z) COMPARISON SURRY UNIT 1. CYCLE 6 MAP 70 0.-t------..--------.-----r-------.-----,
o.oo 20.00 40.00 60.00 80.00 100.00 PERCENT HEIGHT FROM BOTTOM OF CORE AAA
+ + +
XXX
(!) (!) (!)
CECOR C 1 LEVEL)
CECOR C 7 LEVEL)
CECOR C22 LEVEL)
[ NCOR C 1 LEVEL) 51
I I
I I
I I
I I
I I
I I
I I
I,,
I SECTION 5 -
SUMMARY
AND CONCLUSIONS The results presented in this topical report validate the Virginia Power TIP/CECOR package as an alternat~ve to ~NCORE by demonstrating that TIP/CECOR 1 s RPO, F~H* and Fq uncertainty factors are similar to INCORE 1 s uncertainty factors.
In all cases a~alyzed, uncertainty factors for both CECOR and INCORE were less than values approved by the USNRC in Reference 8 (1.05 for F~H and 1.075 for Fq).
Extensive benchmarking demonstrated TIP/CECOR's ability to synthesize three-dimensional core power distributions, using moveable detector data, with physics input from either the PDQ Discrete or Two Zo~e Model.
CECOR also provides the capability to use more than one analysis level. Simulation benchmarking confirms that, although not necessary for current reload designs, the use of multiple analysis levels permits improved accuracy due to the better axial representation of signal-to-power conversions 1 pin-to-box factors, and coupling coefficients.
Based on the results of the flux suppression insert simulation, however, 22 analysis levels shall be used for future cycle designs using inserts.
52
- 1.
I I
I I
- 1 I
I I
I I
I I
I I
I SECTION 6 - REFERENCES
- 1.
11Technical Manual for In-core Instrumentation 11, WCAP-7631, Westinghouse Elec-tric Corporation, 1968.
- 2.
W.
D.
Leggett, III and L.
D.
Eisenhart, "The INCORE Code", WCAP-7149, Westinghouse Electric ~or~ora~on, De~ember 1967.
- 3.
M. L. Smith, "The PDQ07 Discrete Model", VEP-FRD-19A, Virginia Electric and Power Company, July 1981.
- 4. W. B. Terney, et al, "The C-E CECOR Fixed In-Core Detector Analysis System",
Trans. Am. Nucl. Soc.
, 44, (542) 1983.
- 5. A. Jonsson, W. 8. Terney, and M. W. Crump, "Evaluation of Uncertainty in the Nuclear Power Peaking Measured by the Self-Powered Fixed In-Core Detector System," CENPD-153-P, Revision 1-P-A, Combustion Engineering, Inc., May 1980.
- 6.
R. A. Hall, "The PDQ Two Zone Model", VEP-NAF-1, Virginia Electric and Power Company, July 1990.
- 7.
- P. N. Somerville, "Tables for Obtaining Non-Parametric Tolerance Limits, 11 Ann.
of Math. Stat.,, Volume 29, No. 2, June, 1958.
- 8.
J. G. Miller, 11Vepco Nuclear Design Reliability Factors", VEP-FRD-45A, Virginia Electric and Power Company, October 1982.
53