ML18139B663

From kanterella
Jump to navigation Jump to search
Cycle 5 Core Performance Rept.
ML18139B663
Person / Time
Site: Surry Dominion icon.png
Issue date: 12/31/1981
From: Hendrixson E, Leberstein J, Lozito E
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML18139B662 List:
References
VEP-FRD-46, NUDOCS 8112290371
Download: ML18139B663 (52)


Text

- ';_: *, ... _:, . .. -.,..........

~ ~-- ... -.('*,*. ~ .. .

. VEP-FR0-46 Vepco SU.RRY UNIT 2,CYCLE 5 CORE PERFORMANCE

    • REPORT.

FUEL RESOURCES DEPARTMENT*

Virginia Electric and Power Compa~. *}*~.'

VEP-FRD-46 SURRY UNIT 2, CYCLE 5 CORE PERFORMANCE REPORT BY

_, J. H. Leberstien E. S. Hendrixson Reviewed By: Approved By:

c.:J~

C. T. Snow, Nuclear Fuel Engineer Nuclear Fuel Operation Subsection Subsection Nuclear Fuel Operation Subsection Fuel Resources Department Virginia Electric* & Power Company Richmond, Virginia December, 19 81

CL ASSIFICAT IO}U DIS CI.AIMER The data,* techni.que~, information, and con.cl.us ions in this :report have been p:repa:r:ed solely fo:r use by the Virgini.a El"?ctric and Power Company (the Company), and they may n-0t be appropriate ~or use in situations other than th-0se fo:r which th~y were spec~fically prepared. The Company therefore makes no claim o:r warranty whatsoevez, express or implied,as to their accuracy, usefulness, .or applicability. ~n particular, THE

<:'11MPAJ-IY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the

..(

data, techniques, information, or conclusions in it. By making this report available, the Company does not authorize its use by others, and any such use is expressly fbrbidden except with the prior written approval of the Company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, o:r strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage

resulting from or arising .out of the use, authorized or unauthorized,. pf this report or the data, techniques, information, or conclusions in it .

i

ACKNOWLEDGEMENTS The autho:r:s would like to acknowledge the co.opera:tion of the Su:r::r:y Powe:r: Station personnel in supplying the basic data fo:r: this :r:epo:r:t.

Special thanks is due M:r:. L. J. Cu:r:~man. Also, the authors would like to exp:r:ess thei:r: g:r:atitude to D:r:. E. J. Lozito and M:r:. C. T. Snow fo:r: thei:r:

aid and guidance in p:r:epa:r:ing this :r:epo:r:t.

ii J

TABLE OF CONTENTS SECTION TITLE PAGE NO.

Classification/Disclaimer i Acknowledgements ii List of Tables . iv List of Figu:r:es V 1 Introduction and Summary.

2 Burnup Follow . 7 3 Reactivity. Depletion Follow 14 4 Power Distribution Follow . 16

./

5 P:r:ima:i:y Coolant Activity Follow 39 6 Conclusions 43 References. 44 iii

LIST OF TABLES TABLE TITLE PA*G.E J{O.

4. 1 Summary of Flux Maps fo~ Routine Operation . 21 4.2 Summary Table of LOCA Enthalpy Rise Hot Channel Factors . 22 iv

LLST OF :FIGURES FIGURE TITLE PAGE HO.

1. 1 Co:r:e Loadi*ng . 4
1. 2 Movable Detector and The:r:mocouple Locations. 5
1. 3 Cont:r:ol Rod Lo~ations. 6
2. l Core Bu:r:nup History 9 2.2 Monthly Average Load Factors 10 2.3 Assemblywise Accumulated Burnup: Measu:r:ed and P:r:edicted 11 2.4 Assemblywise Accumulated Bu:r:nup: Compa:r:ison of Measured with P:r:edicted 12 2.5 Batch Bu:r:nup Sha:r:ing 13
3. 1 Critical Boron Concentration ve:r:sus Bu:r:nup - HFP-ARO 15
4. 1 Assemblywise Powe:r: Dist:r:ibution - S2-5-13 23 4.2 Assemblywise P~~er Distribution - S2-5-24 24 4.3 Assemblywise Power Distribution.- S2-5~39 4.4 Hot Channel Factor No:r:malized Ope:r:ating Envelope 26 4.5 Heat Flux Hot Channel Facto:r:, F-2(Z) - S2-5-13 27 4.6 Heat Flux Hot Channel Factor, F-Q(Z) - S2-5-24 28 4.7 Heat Flux Hot Channel Facto:r:, F-2(Z) - S2-5-39 29 4.8 Maximum Heat Flux Hot Channel Facto:r: ve:r:sus Bu:r:nup 30 4.9 Enthalpy Rise Hot Channel Factor versus Burnup . 31
4. 10 LOCA Enthalpy Rise Hot Channel Facto:r: - Assembly ve:r:sus Burnup . . 32

~, 4 . 11 LOCA Enthalpy Rise Hot Channel Facto:r: - Rod ve:rsus Burnup 33,

4. 12 Ta:rget Delta Flux ve:rsus Bu:rnup 34 V

___ _J

LIST OF FIGURES CONT'D FIGURE TITLE P J\'G E HO.

4.13 Core Average Axial Power Distribution - S2-5-13 35 4.14 Core Average Axial Power Distribution - S2-5-24 36 4.15 Core Average Axial Power Distribution - S2-5-39 37 4.16 Core Average Axial Peaking Factor versus Burnup 38 S. 1 Dose Equivalent I-131 Concentration versus Time 41 5.2 I-131/I-133 Ratio versus Time 42

"'\

VJ.

Section 1 INTRODUCTION AND

SUMMARY

On November 7, 1981 , after almdst fifteen months of ape:ration, Su:r:ry Unit 2 6ompleted Cycle 5. Since the in~tial criticality of Cycle 5 1 4, 1980, the :reactor core produced approximately 82 x 10 6 on August MBTU (13,971 Megawatt days pe:r metric ton of contained uranium) which has :resulted in the generation of approximately 7.8 x 10 9 KWH:r gross (7.4 x 10 9 KWH:r net) of electrical energy. The purpose of this :report is to present an analysis of the core performance fo:r :routine operation during Cycle 5. The physics tests that were* performed during the startup of this cycle were covered in the Su:r:ry 2, Cycle 5 Startup Physics Test Repo:rt 1 and, therefore, will not be included here.

The fifth cycle core consisted of six batches of fuel. Two once-burned batches were brought from Cycle 4 (Batches 6A1 and 6B). One twice-burned batch was carried over from Cycles 3 and 4 (Batch SA). One thrice-burned batch was carried over from Cycles 2,3, and 4 (Batch 4B2).

Two fresh batches (Batches 7A and 7B) were added to the Cycle 5 core.

The Su:r:ry 2, Cycle 5 core loading map specifying the fuel batch identification, fuel assembly locations, burnable poison locatio~s and source assembly locations is shown in Figure 1.1. Movable detector locations and thermocouple locations are identified in Figure 1.2.

Control rod locations a:re shown in Figure 1.3.

  • , the analysis of four principal Routine core * *follow i,nvolves performance* indicators. These are burnup distribution, . :reactivity 1

depleti-0n, distribution, and primary coolant activity. The core burnup distribution is followed to verify both burnup symmetry and propez batch burnup sharing, thereby, ensuring that the fuel held over for the next cy~le will be compatible with the new fuel that is inserted. Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to dete~mine if the core is depleting as designed, and to indicate at what burnup level refueling will be required. Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical

. Specifications2 limits thereby ensuring that adequate margins to linear power density and critical heat flux thermal limits are maintained.

Lastly, as part of normal core follow, the primary coolant activity is monitored to verify that the dose equivalent iodine-131 concentration is within the limits specified by the Surry Power Station Technical Specifications, and to assess the integrity of the fuel.

Each of the four performance indicators is discussed in detail for the Surry 2' Cycle 5 core in the body of this report. The results are summarized below:

1. Burnup Follow The burnup tilt (deviation from quadrant symmetry) on the core was no greater than +/-0. 14% ~ith the burnup aDcumulation in each batch deviating from design prediction by less than

+/-0.6%.

2. Reactivity Depletion Follow - The critical boron concentration, used to monitor reactivity depletion, was consistently within +/-0.5%

-delta K/K of the design prediction which is well within the +/-1% delta 2

K/K margin allowed by Section 4.10 of the Technical Specifications.

3. Power Distribution Follow - Incore flux maps tak~n each month indicated that the assemblywise radial power distributions deviated from*

the design predictions by an average difference of less than 1.4%. All hot channel factors met their respective Technical Specifications limits.

4. Primary Coolant Activity Follow The dose equivalent iodine-131 activity level in the primary coolant at the end of Cycle 5

~pproximately 5.4 K 10- 3 micro-Ci/gm. The average dose equivalent iodine-131 value during Cycle 5 was 6.2 10- 3 micro-Ci/gm. This corresponds to less than 1% of the operating limit for the concentration of radioiodine in the primary coolant.

In addition, the effects of fuel densification were monitored throughout the cycle. Ho densification effects were observed.

3

Figure Ll SURRY UNIT 2 - CYCLE 5 CORE LOADING R p N M L K. J li F D C B A vi9 lNi V02 .I I

J _,

T24

  • SNl L 1N3 W40 1N9 3N9 I_

Tl7.

I l

12P 12P 2 PS ... -

. W.32 4Nl 2N3 I. W45 W34 Wl9 ON4 lNS wot*

' 8P 16P ss 16P 8P . ' 3 in1 W37 OL2 W46 4N3 V26 2N4 W38 OL4 W25 W41 12P 16P 16P 4 12P

- **us 4N9 OL7 W21 T04 Tl6 W22 Tl3 T23 W39 lLl 2N7 TOl 8P 12P

- 2N2 1N7 . W28 ., T22 W35 I *0N2*

12*

v12 lNO W33 1:21 12P WOl 8P ONl SN2 5

16P 16P 16P 16P 6 V;J7 *.. 3N4 12P wo2* 4N4 16P Tl2 3Nl 16P I V22 OL9 12P VOS 4N7 lbP Tll 2Nl WlO 4N2 V20 7-16P I 12P 4NU vbO I W06 V03 I W42 12*

VOS

  • I OL3 12P RD2 OLl 12P V24 W24 VlO W27 W07 2N8 a

V23 ON9 W23 3N6 T09 2N9 V2&

I ONS 12t T07 3NS W49 lNl V06 12P 16P t Vl8 OLB I 16P 12P 16P 16P I 12P *,* 9 2NS I ON6 16P Wl7 IT20 ss W03 I 3:i7 V04 1N4 WSl T02 W44 3N2 1N6

' - - - - - 10

- I 16P 16P 16P TlS 3N8 8P lLO 12P IW12 I TOS T03 IW32 12 ..

T08 I T06 W43 OLS 12P 2N6 BP Tl4 1 - - 11 W48 W09 016 12P I W52 ON3 16P Vl6 ON7 16P W08 112 12P W30 was 12 W29 2NO ONB W47 Wl3 Wl6 3NO 4NS W20

  • gp 16P ss 16P 8P 13 Tl9 4N6 1N8 W26 3N3 4N8 TlO 12P 12P 14 I V17 SNO PS V21

~Assembly Identification 15 One er more of the following:

a. PS - Pri'mary Sorce u
b. SS - Secondary Source
c. xxP - Burnable Poison Assembly
  • (xx-number of rods)
d. xx - Depleted Burnable Poison Assembly (xx-number of rods)

FUEL ASSEMBLY DESIGN PARAMETERS 1ltJ...T!":-~

4B2 SA 6Al 6B 7A 7B In-1.tial Enrichment (w/o U235) 3.10 3.11 2.91 3.20 3,13 3,41 Assembly Type 17Xl7 lSXlS 15Xl5 lSXlS 15Xl5 15Xl5 Number of Assemblies 1 24 20 48 12 52 Fuel Rods Per Assembly 264 204 204 204 204 204 Assembly Identification RD2 T01-T24 V02-V08 W01-Wl3 OLl-019 0Nl-ON9

.. VlO, V:j.2 Wl6, l.Jl7 110-112 1N0-1N9 Vl6-V24 Wl9-W30 2N0-2N9 V26, V28 W32-W52 3N0-3N9 l,NO-l1N9 SN0-5N2 4

FIGURE 1.2 SURRY UNIT 2 - CYCLES MOVEABLE DETECTOR AND THERMOCOUPLE LOCATIONS p N M L K J H G F E D C B A I

I I MD I TC I 1 I

I ITCI I I I ITCIMDI I 2

_ _ 1_ _ 1_ _ 1_ _ 1_ _ , _ _ 1_ _ , _ _ 1_ _

IMDI I I IMDI I I !MDI I TC I I TC I MD I TC I I TC I I TC I 3 1 --'--'--'--'--'--'--'--'--'--'--

I TC I I I I MD I I I I

I I MD I I I I I MD I TC I I I I

I I 4

_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ , ,_ _ ,_ _ ,_ _ ,_._

I I I I I I I I I I I MD I I MD I 1I_ _ ,I_MD_ I, _ _ I, _MD_ 1I_TC_ ,I_MD_ ,I_TC_ ,I_ _ ,I_ TC _ 1I_HD_ 1I_TC_ ,I_ _ ,I_TC_ ,I s I I I I MD. I I I I I I I I I I

_ _ 1I_ _ 1I_TC_ 1I_ _ 1I_TC_ 1I_ _ ,I_ _ ,I_MD_ ,I_TC_ ,I_ MD _ ,I_ _ ,I_ _ ,I__*_,I_ _ ,I_ _ 6 I I I I I I I I I I I I I I I I ITCITCIMDI I I IHDI IHDI ITCIHDI (MDI I 7

' - - * , _ _ 1_ _ 1_ _ , _ _ 1_ _ 1_ _ 1_ _ , _ _ , _ _ 1_ _ , _ _ , _ _ 1_ _ , _ _ ,

I I IHDI IHDI I I I I I I INDI I I I, _MD_ 1I_TC_ 1I_TC_ ,I_ _ 1I_TC_ 1I_TC_ 1I_ _ 1I_TC_ ,I_TC_ ,I_ MD _ ,I_TC_ ,_.

I _ _ ,I_TC_ ,I_MD_ 1I_TC_ ,I 8 I I I I I I I. I I I MD I I I I I I 1I_ _ ,I_ _ 1I_ _ (TCIMDI

, __._, _ _ ,_ _ I, _ _ 1ITCIMDITCI

_ _ , _ _ 1_ _ 1_ _ I,_._1I_ _ ,I_ _ ,IHDI __, 9 I IMDI I I IMDI I I I I I (MDI I, _ _ ITCI I I (TCI I I ITC

, _ _ , _ _ , _ _ 1_ _ 1_ _ , _ _ , _ _ , _ _ 1_ _ 1_ _ , _ _

(MDI ITCI

._1 _ _ 1 10 I I I I I I I HD I I MD I I I I I I I ITCIMDITCI ITC! ITC IMDI 1_ _ 1_ _ 1_ _ , _ _ 1_ _ , _ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I I I 11 I I I I I MD I I I I I I MD I I1_MD_ 1I_ _ 1I_TC_ I, _ _ 1I_

  • TC_ 1I_ _ 1I_ _ 1I_ _ 1I_TC_ 1I_MD_ ,I_TC_. 1I 12 I I I I I MD I I MD I I I I1_ _ 1I_ _ 1I_ _ 1I_ _ 1 I_TC_ 1I_ _ 1I_TC_ 1I_ _ 1I_ _ 1I 13 I MD I I I I I I I ITCI I I IMDI ITCI 14 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 MD - MOVABLE DETECTOR I I I I TC - THERMOCOUPLE I MD I TC I TC I 15 5

FIGURE 1.3 SURRY UNIT 2 - CYCLE 5 CONTROL ROD LOCATIONS R p N M L K J H G F E D C 6 A 0

1ao I

LOOP C I I I I LOOP 6 l OUTLET I_I_I_I INLET

'-.I IAI IDI IAI I / 2

_1_1_1_1_1_1_1_1_

N-41 I I I I SA I I SA I I I ( N-43 3

_1_1_1_1_1_1_1_1_1_1_

I I c I I B I I I I B I I c I I 4

_1_1_1_1_1_1_1_1_1_1_1_1_

( I I SB I I SP I I SP I I SB I I I I 5 1_1_1_1_1_1_1_1_1_1_1_1_1_1 IAI IBI !DI lcl IOI !Bl (Al 6 LOOP C _ l _ l _ l _ l _ l _ l _ l _ l _ l _ l _ l __ l _ l _ l _ LOOP B INLET I I I SA I I SP I I SB I I SB I I SP I I SA I I I OUTLET 7 J "'-.. 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1 ,;,,/'

90~1 Io I I I I c I I I I c I I I Io I 1~~10° 8 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1 I I I SA I I SP I I SB I I SB I I SP I I SA I I I 9' 1_1_1_1_1_1_1_1_1_1_1_1 ___.. _,,1 ___ , __,___ 1_1 IAI IBI IOI (cl iDI !Bi IA( 10 1_1_1_1_1_1_1_1_1_1_1_1_1_1 I I I I SB I I SP I I SP I I SB I I I I 11 1_1_1_1_1_1_1_1_1_1_1_1_1_1 I I c I I B I I I I B I I c I I 12 1_1_1_1_1_1_1_1_1_1_1_1 I I I I SA I I SA I I I I 13 N-44 (_(_I_I_I_I_I_I_I_I N-42 I I A I I D I I A I I 14 1_1_1_1_1_1_1_1

/ I I I I "'- 15 LOOP A I_I_I_I LOOP A ABSORBER MATERIAL OUTLET INLET AG-IN-CD I 00 FUNCTION NUMBER OF CLUSTERS 1111111111111111 111111111111111111111111111111111111 CONTROL BANK D 8 CONTROL BANK C 8 CONTROL BANK B 8 CONTROL BANK A 8 SHUTDOWN BANK SB 8 SHUTDOWN BANK SA 8.

SP (SPARE ROD LOCATIONS> 8 "I

6

Section ,2 BURNUP FOLLO*W "The burnup history foz the Surry Unit 2, Cycle 5 core is graphicall~ depicted in Figure 2.1. The Surry 2, Cycle 5 core achieved a bur.nup of 13,971 MWD/MTU. As shown in Figure 2.2, the average load factoz: for C.ycie 5 was 9 0% when referenced to rated thermal powe*r ( 2 4 41 MW(t)),

Radial CX-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed

.1 burnup distribution analysis. The NEWTOTE 3 computer code is used to calculate these assemblywise burnups. Figure 2.3 is a radial burnup distribution map in which the assemblywise burnup accumulation of the core at the end of Cycle 5 operation is given. For comparison purposes, the design values are also given. Figure 2.4 is a radial burnup distribution map in which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 5 operation is also given. As can be seen from this figure, the accumulated assembly, burnups were generally within +/-3.0% of the predicted values. In addition, deviation from qu~drant symmetzy in the core, as indicated by the burnup tilt factors, was less than +/-0.14%.

The burnup sharing on a batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle batch

"'\

burnup predictions to be, made for use in reload fuel design studies.

Batch definitioni are given in Figure 1.1. As seen in tigur~ 2.5, the 7

batch burnup shazing foz Surzy Unit 2~ Cycle 5 followed design predictions vezy closely with each bat~h dev~at~ng less th~n +/-0.6% fzom design; this is considered excell.en*t .agreement. Therefore, symmetric buznup in conjunction with the good agzeement be*tween actual and pzedicted assemblywise buznups and batch burnup shazing indicate that the Cycle 5 core did deplete as design~d .

.I.

"I 8

FlGURE 2.1 SURRY UN1T 2 - CYCLE 5 CORE BURNUP HJSTORY 16000 15000 14000 13000 /

C Y l 2 000 /

C L l 1 000 /

E 10000 /

B u 9000 /

R N 8000 /

  • u /

p 7000 /

/

M 6000 J

w D 5000

/v I

M 4000

/v T

u 3000

/

2000

/

.1000 V

0-I 0

-/

0 0 I

0 0 0 0 0 0 0 0 0 0 0 I

0 a 0 0 l l .l .1 l l l 1 i l 1 l l 1 l l 1 l A s 0 N D J F M A M J J A s 0 N D J u E C 0 E A E, A p A u u u E C 0 E A G p T V C N B R R y N L G p T V C N 8 B 8 B 6 8 6 8 6 8 8 8 6 B B B B B 0 0 0 0 0 l l l l l l l l l l i 1 2 TJME(MONTHSl

"'I 9

FIGURE 2.2 SURRY 2 - CYCLE 5 MONTHLY AVERAGE LOAD FACTORS PERCENT 100 90 80 70 60 50 40 30 20 l0 A s 0 N D J F M A M J J A s 0 N A u E C 0 E A E A p A u u u E C 0 V G p T V C N B R R y N L G p T V G 8 8 6 6 6 6 6 8 8 8 8 8 8 8 6 6 901~

0 0 0 0 0 l l l 1 l 1 .l .l l l 1 MONTH THERMAL *ENERGY GENERATION IN MONTH(MWHTl LOAD FACTOR=

AUTHORIZED POWER LEVEL lMWTl X HOURS IN MONTH (EXCLUDES REFUELING OUTAGES I 10

FIGURE 2.3 ASSENBL YIUSE ACCUMULATED BURNUP MEASURED AND PREDICTED (1000 NWD/NTU)

R p N L K J H G F E D C B A l I 22.511 10.091 22.211 I MEASURED I 1 I 22.361 10.201 22.361 I PREDICTED I I 28.361 12.961 14.511 23.231 14.481 12.921 28.271 2 I 28.231 12.921 14.651 23.581 14.651 12.921 28.231 3 I 17.481 14.821 16.731 29.771 30.351 29.711 16.68f 14.831 17.701 3 I 17.461 14.701 16.651 29.961 30.891 29.961 16.651 14.701 17.461 4 I 17.591 28.111 16.381 '29.851 16.991 30.591 16.921 29.921 16.481 28.231 11.111 4 I 17.461 28.171 16.491 30.111 11.091 30.781 17.091 30.111 16.491 28.171 17.461 5 I 28.481 14.751 16.361 25.981 36.881 35.901 24.991 35.691 36.621 26.201 16.501 15.191 28.601 5 I 28.231 14.701 16.491 26.331 36.951 35.881 25.111 35.881 36.951 26.331 16.491 14.701 28.231 6 I 12.911 16.691 29.871 36.851 26.261 17.691 31.171 17.611 26.151 36.711 30.121 16.971 13.351 6 I 12.921 16.651 30.111 36.951 26.601 17.661 31.241 17.661 26.601 36.951 30.111 16.651 12.921 7 ~ I 22.431 14.581 29.711 16.971 35.801 17.591 31.561 17.651 31.591 17.621 35.381 11.001 29.961 14.751 22.451 7 I 22.361 14.651 29.961 17.091 35.881 17.661 31.451 17.561 31.451 17.661 35.881 17.091 29.961 14.651 22.361 8 I 10.121 23.301 30.721 30.641 24.711 31.161 17.751 42.511 17.651 31.161 24.701 30.621 30.721 23.391 10.431 8 I 10.201 23.581 30.891 30.781 2s.111 31.241 17.561 42.271 17.561 31.241 25.111 30.781 30.891 23.581 10.201 9 I 22.441 14.611 29.901 17.031 35.981 17.441 31.261 17.631 31.641 17.441 35.481 11.001 29.821 14.861 22.811 9 I 22.361 14.651 29.961 17.091 35.881 17.661 31.451 17.S61 31.451 17.661 35.881 17.091 29.961 14.651 22.361 10 I 13.00I 16.801 30.171 36.841 26.181 17.271 31.lOI 17.611 26.331 36.931 30.031 16.661 12.991 10 I 12.921 16.651 30.111 36.951 26.601 17.661 31.241 17.661 26.601 36.951 30.111 16.651 12.921 ll. I 28.341 14.961 16.451 25.881 36.651 35.7ol 24.581 35.851 36.961 26.111 16.611 14.971 28.211 11 I 28.231 14.701 16.491 26.331 36.951 35.881 25.lll 35.881 ,36.951 26.331 16.491 14.701 28.231 12 I 17.751 28.401 16.181 29.681 16.721 30.381 16.871 30.251 16.591 28.371 17.641 12 I 17.461 28.171 16.491 30.111 17.091 30.781 17.091 30.111 16.491 28.171 17.461 13 I 17.911 15.581 11.001 29.561 30.291 29.701 16.841 14.951 17.711 13 I 17.461 14.701 16.651 29.961 30.891 29.961 16.651 14.701 17.461 14 I 28.611 13.631 14.701 23.301 14.611 12.991 28.451 14 I 28.231 12.921 14.651 23.581 14.651 12.921 28.231 IS- I 22.691 10.411 22.161 15 I 22.361 10.201 22.361 R p N t1 L K J H G F E D C B A 11

FIGURE 2.5 SURRY UNIT 2-CYCLE 5 BATCH BURNUP SHARING SYMBOLIC P01NTS ~RE MEASURED ORTA BATCH  : 482 SA 6Al 68 7A 78 SYMBOL: OIAnONO STAR PLUS SQUARE TRIRNGLf X 44000

.,.,. ~

40000 .,......--

~v i.-----

{'.~

i...--

36000 C ~

-- ~

~

- ~~

I--""

~ ___.;:--

B A

T 32000

~c; ---

~~

~

l..--"-

__.. ~ --- __..

C 28000

~

f-f __.,.... ~V

" ...,.. -- ~ ....--- -

B u 24000 . .....- ~

.J--.."'1 :....---- ~

R N

1......--- ~ _...A L.---+ =__.--e

~ ....---

u L.i.---- J ..~

p 20000

..-1"' .:er-M _,_.- ~

-- ~

~

..Er

~

~

/

w 16000 0

I I~

~

jv ~

i,....---

V"'

~~

M ~

~

T 12000

~ ~

~

u ~ ~

8000 -~ ~

..........:::: ~

~

4000 ......-::

~

~

~

0 -~ I . , I '.' I ' .. I 0 2000 4000 6000 8000 10000 12000 l 4000 l 6000

'"'I CYCLE BURNUP* (MWD/MTUl 13

FIGURE 2.4 ASSEHBLYWISE ACCUtlULATED BURNUP COMPARISON OF MEASURED mTH PREDICTED ClOOO NWD/HTU J R p N t1 L K J H G F E D C B A 1 I 22.s11 10.091 22.211 I MEASURED I l 1 o.641 ~1.081 -0.101 I HIP/. DIFF I 2 ~ 28.361 12.961 14.Sll 23.231 14.481 12.921 !8.271 2 I 0.461 0.311 -1.021 ~1.491 -1,181 -0.041 o.1sl 3

--. ----------------.-----.--~* .- ..-------------------------------

I 17.481 14.821 16.731 29.771 30;351 29.711 16.681 14.831 11.101 3 I 0.121 o.851 0.461 -0.631 -l.731 -0.83( o.1sl o.931 1.351 4 I 17.591 28.111 16.381 29.851 16.991 30.591 16.921 29.921 16.481 28.231 11.111 4 I 0.751 -0.19( -0.70( -0.881 -O.S4( -0.611 -0.971 -0.631 -o.111 0.231 l.411 5

I 28.48( 14.751 16.361 25.98( 36.881 35.901 24.991 35.691 36.621 26.201 16.501 15.191 28.601 5 I o.911 o.371 -0.831 -1.331 -0.181 o.osl -o.471 -o.s11 -o.9ol -o.471 0.041 3.371 1.301 6 I 12.911 16.691 29.871 36.851 26.261 17.691 31.171 17.611 26.151 36.711 30.121 16.971 13.351 6 I -0.111 o.231 -0.811 -0.211 -1.281 0.191 -0.211 -0.271 -1.691 -o.651 0.031 1.921 3.271 7 I 22.431 14.581 29.711 16.971 35.801 17.591 31.561 17.651 31.591 11.621 35.381 11.001 29.961 14.751 22.451 7 I o.311 -o.s11 -o.831 -0.,01 -0.221 -D.381 o.351 o.481 o.431 -0.251 -1.391 -0.491 -0.011 o.661 o.371 3 I 10.121 23.301 30.721 30.641 24.711 31.161 17.751 42.511 17.651 31.161 24.701 30.621 30.721 23.391 10.431 8 I -0.741 -1.161 -0.551 -D.441 -1.s11 -0.251 1.081 o.581 D.491 -0.241 -l.641 -a.sol -o.S41 -o.s11 2.311 I 22.441 14.611 29.901 17.031 35.981 17.441 31.261 17.631 31.641 17.441 3S.48I 17.0DI 29.821 14.861 22.811 9 I D.331 -D.311 -0.221 -D.321 o.291 -1.231 -D.611 o.4DI o.621 -l.281 -1.121 -o.511 -o.471 l.431 l.981 10 I 13.ool 16.801 30.171 36.841 26.181 11.211 31.101 17.611 26.331 36.931 30.031 16.661 12.991 10 I o.5sl o.891 0.191 -0.311 -l.S91 -2.221 -o.441 -0.211 -1.021 -0.051 -0.261 0.021 o.481 11 I 28.341 14.961 16.451 25.881 36.651 35.701 24.581 35.851 36.961 26.111 16.611 14.971 28.211 11 I o.391 l.821 -0.211 -1.111 -o.8DI -D.491 -2.111 -0.091 0.011 -0.831 0.101 1.841 -0.011 12 1- 17.7SI 28.40( 16.181 29.681 16.721 30.381 16.871 30.25( l6.S9I 28.371 17.641 12 I 1.671 0.81( -1.921 -1.451 -2.141 -1.29( -1.271 o.4SI o.591 0.711 o.99(

13 I 17.911 15.581 11.001 29.561 30.291 29.701 16.841 14.951 11.111 13 I 2.591 6.051 2.101 -1.33( -1.93( -0.881 1.101 1.761 1.421 14 I 28.611 13.631 14.101 23.301 14.611 12.991 28.451 14 I 1.341 5.491 o.331 -1.181 -0.331 o.511 o.8ol 15 I STANDARD DEV I I 22.691 10.411 22.161 I AVG ABS PCT I 15 I = o.86 I I 1.461 2.031 -0.881 I DIFF = 0.89 I BURNUP SHARING (103 HWD/MTU)

BATCH CYCLE 2 CYCLE 3 CYCLE 4 CYCLE 5 TOTAL BU&'lUP TILT 4B2 7.28 6.61 14.91 13. 71 42.51 NW- 0.9986 SA - 6.79 15.51 11. 35 33.65 NE- 1.0000 6Al - - 16.03 11. 60 27.63 SW- 1. 0006 6B - - 11.93 14.24 26.17 SE- 1.0008 7A -  :- - 16.85 16.85 7B - - - 15.25 15.25 CORE AVERAGE 13.97 12

FIGURE 3. 1 SURRY UNIT 2-CYCL~ 5 CRITICAL BORON CONCENTRATION VS. BURNUP HFP-ARO X MEASURED PREDICTED 1400 1200 C

R I

T f 1000 C

A

!.. \>sx

~~

B 0

R 800 ~m 0

N.

~ :>x,.

~>< ~ - ..

C 0 "'~~-

N C 600 l~.

E N

x,

""" ~""'~~

T <',.:,

R A

T "" ~~ ~-

~-

0 I 400 K) ~

')(..

N

""-~x (.

p p

M 200

""' ~,

~~ ~.

~~ ~x

~. "" ~r---~

~-

~~

0-I * ' ** I 0 2000 4000 6000 BOOO 10000 12000 1 4000 16000 CYCLE BURNUP (MWD/MTUl 15

Section 3 REACTIVITY DEPLETION FOLLOW The primary coolant critical boron concentration is monitored for the purposes of following core reactivitv and to identify any anomalous

~eactivity behavior. The FOLLOW 4 computer code was used to normalize "actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon and samarium concentrations, moderator temperature, and power level. The normalized critical boron concentration versus burnup curve for the Surry 2, Cycle 5 core is shown in Figure 3. 1. It can be seen that the measured data compare to within 50 ppm of the design prediction. This corresponds to less than +/-0.5% -delta K/K which is well within the t1% ~~lta ~/K criterion for reactivity anomalies set forth in Section 4.10 of the Technical Specifications. In conclusion, the trend indicated by the critical boron concentration verifies that the Cycle 5 core depleted as expected without any reactivity anomalies.

14

,section 4 POMER DISTRIBUT~ON FOLLOW Ana].. ysis of c 0:ce 0

powe:c d,tst:c:j.bution data on a :routine basis is necessary -to verify that the hot -channel factors are within the Technical Specifications limits and to ensure tj1at the reactor i~

o-pe:cating without any a*bn.ormal condit:i,.ons which could caus*e an "uneven*"

burnup distribution. Three-dimensional core power distributions are determined fr6m. movable detector flux map measurements using the IHCORE 5 .

computer prog~am. A summary of all monthly flux maps taken since the

~ completion of startup physics testing for Surry 2, Cycle 5 is given in Table 4. 1 . Power distribution maps were generally taken at monthly intervals with additional maps taken as needed.

Radial (X-Y) core power distributions for a representative series of incore flux maps are given in Figures 4.1 th:cough 4.3. Figure 4.1 shows a powe:c dist:cibution map that was taken early in cycle life.

Figu:ce 4.2 shows a powe:c dist:cibution map that was taken near mid-cycle burnup. Figu:ce 4.3 shows a map that was taken late in Cycle 5 life. Most of the radial power distributions were taken under equilibrium operating conditions with the unit at approximtely full power. In each case, the measured relative assembly powe:cs were gene:cally within 4% of the

~

predicted values. In addition, as indicated by the INCORE tilt factors, the powe:c distributions we:ce essentially symmetric for all cases.

An important aspect of coze power dist:cibution follow is the monito:cing of nuclea:c hot channel factors. Ve:cification that these 16

.facto:rs a:re w~thin Techni~al Specifications limits ensu:res that lineal'.

powe:r density and c:ritical .heat flux limits will not be violated, the:i::~by p:i::oviding adequate the:i::rnal ma:i::gins and maintaining fuel cladding integ:ri ty.

  • The initial Cycle 5 Technical Specifications limit on the axially dependent heat flux hot channel facto:i::, F-Q(Z), was 2.19 x K(Z),

whe:i::e K(Z) is the hot channel facto:i:: no:rmalized ope:i::ating envelope. On July 28, 198 0, the Technical Specifications limit fo:r F-Q(Z) was administ:i::atively :i::educed to 2.18 x K(Z)C6l. The fo:i::mal Technical Specifications implementation of the 2.18 limit fo:i:: F-QCZ) occu:i:::i::ed with Technical Specifications Amendment No. 70, dated June 16, 19811 7 l.

Figure 4.4 is a plot of the K(Z) cu:i::ve associated with the 2. 18 F-Q(Z) limit. This cu:i::ve is :i::ep:i::esentative of the K(Z) curves used th:i::oughout Cycle 5 since K(Z) changes only slightly with changes in the F-Q(Z) limit. The axially dependent heat flux hot channel facto:i::s, F-Q(Z), for a :i::ep:i::esentative set of flux maps a:i::e given in Figu:i::es 4.5 th:i::ough 4.7.

Th:roughout Cycle 5, the measu:i::ed values of F-Q(Z) we:i::e within the Technical Specifications limit. A summa:ry of the maximum values of all heat flux hot channel factors measured du:i::ing Cycle 5 is given in Figu:i::e 4.8. As can be seen f:rom this figu:i::e, there was app:roximately 27% ma:rgin to the limit at the beginning of the cycle, with the ma:i::gin approximately constant th:i::oughout cycle operation.

The value of the enthalpy rise hot channel facto:i::, F-delta H, which is the :ratio of the integ:ral of the powe:r along the rod with the highest integ:i::ated power to that of the ave:i::age :i::od, is routinely followed. The Technical Specifications limit for this pa:i::amete:i:: is set such that the c:i:i tic al heat flux ( DNB) limit. will not be violated. Additionally, the 17

_ _J

F~delta H limit en~ures that the value of this parameter usetl in the LOCA-ECCS analysis is not exceeded during no:i:mal operation. Tl:i,e Cycle 5 limit on *the enthalpy :rise hot channel :facto.r t,rns set at 1. 55 x (1+0.2(1-P.)), whei:e P is the fractional power level. The value.s of the enthalpy rise hot chari-nel factor parameters F-delta H(LOCA,Assy) and F-delta HCLOCA,Rod) were also routinely followed 2

  • P-delta HCLOCA,Assy) and F-delta HCLOCA,Rod) represent the enthalpy rise hot* channel factor CF-delta Hl evaluated for the peak assembly and peak rod in the core, respectively, between the 1.5 ft. and 10.5 ft. levels of the core. The full power limits for F-delta HCLOCA,Assy) and F-delta HCLOCA,Rod) were set at 1.476 and 1.550 respectively. Table 4.2 surnma~izes the F-delta H(LOCA,Assy) and F-delta HCLOCA,Rod) values measured during Cycle 5 operation. Figures 4.9 through 4.11 show that all measured values foz F-delta H, F-delta HCLOCA,Assy) and F-delta HCLOCA,Rod) were within their respective Technical Specifications limits du:ring Cycle 5. The necessity for monitoring F-delta H(LOCA,Assy) and F-delta HCLOCA,Rod) was deleted f::c:om
  • the Technical Specifications on June 16, 1981 by Technical Specifications Amendment No. 70C 7 ).

The Technical Specifications ::c:equire that target delta flu:{* values be dete:rmined periodically. The target delta flux is the delta flux which *would occur at conditions of full power, all reds out, and equilibrium xenon. The::c:efore, the delta flux is measured with the co::c:e

  • Delta Flux = (Pt-Ph) x 100* / 2441 where: Pt= Power in top of core(MWCth))

Pb= Powe::c: in bottom of core (MW(th))

18

at or near these conditions and the target delta flux is established ~t this measured point. Since the taiget delta flux varies as a function of burnup~ the target value is up4ated monthly. Operattonal delta flux limits are then established about this target value. By maintaining the value of delta flux relatively c-0nstant, adverse axial power shapes due to xenon redistribution are avoided. The plot of the target delta flux versus burnup, given in Figure 4.12, shows the value of this parameter to have been approximately +1% at the beginning of Cycle 5. By the middle of the cycle, the value of delta flux had shifted to approximately -4%, and then returned to approximately -3% by the end of Cycle 5. This power shift can also be observed in the corresponding core average axial power distribution for a representative series of maps given in Figures 4.13 through 4.15. In Map S2-5-13 (Figure 4.13) taken at approximately 450 MWD/MTU, the axial power distribution had a flattened cosine shape with a peaking factor of 1.1*7. In Map S2-5-24 (Figure 4.14) taken at approximately 6,653 MWD/MTU, the axial power distribution had peaked slightly toward the bottom of the core with an axial peaking factor of 1

  • 13
  • Finally, in Map S2-5-39 (Figure 4.15) taken at approximately 13,216 MWD/MTU, the axial power distribution remained slightly I

peaked toward the bottom of the core with an axial peaking factor of 1.13. The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4. 1-6.

In conclusion, the Surry 2, Cycle 5 core performed very satisfactorily with power _distribution analyses verifying that design predictions were accurate and that the values of the hot channel factors 19

>>e~e with~n the limits of the ~echnical Speci£ications.

20

TABLE 4.1 SURRRY Ui'HT 2 - CYCLE 5 SUMl1ARY OF FLUX MAPS FOR ROUTINE OPERATION I I I I l 2 I I I I I BURNI I I F-Q(Tl HOT F-011( I~ l HOT tORE F(ZJ I 4 I I I MAP I UP I !BANK I CHANNEL FACTOR CHANNEL FACTOR IIAX I 31 QPTR I AXIAL! NO. I NO. DATE I MllD/IPWRI D I I I IF(XY) I I OFF I OF I I MTU I< iO I STEPS I ASSY I PIN I AXIAL I IASSYIPINIF-DH(NllAXIALI F( Z JI I tlAX ILbCI SET ITHIMI I I I I I I POitff I F-Q( T) I I I IPOINTI I I I I czi IBLESI I_ _ 1_1_*_1_1_1 _ _ 1 I_ I _ I I_ _ I_ _ I_ _ I_ _ I_I _ _ I_._I 13 9-12-80 45011001 215 I B06I DEi 34 I 1:716 I 0011 IHI 1.387 23 ll.17lll.352ll.0045ISE l+l.1301 49 I 14 9-20-80 7201 98 217 I H091 HGI 34 I 1. 710 I H091 HGI 1.403 34 ll.182ll.344ll.0035INE l-1.5191 42 I.

17(5) 10-17-80 16901100 217 I JOBI GHI 23 I 1. 709 I JOBI GHI 1.394 23 ll.166(1.339(1.0026INE l+l.0261 48 18 11-12-80 2540(100 214 I JOBI GHI 23 I 1.695 I JOBI GHI 1.402 34 ll.158(1.344(1.0040ISE l-0.6971 49 19 12-15-80 3660(100 212 I 0011 IHI 21 I, 1. 702 I JOBI GHI 1.412 33 (l.146ll.356il.0039INE l-0.3231 49 22(6 l 1-14-81 4704(100 215 I H091 HGI 34 I 1.693 I 11091 HGI 1.430 44 ll.l35ll.387ll.00301SE l-0.7531 48 23 2-11-81 56191100 219 I JOOI GHI 23 I 1.675 I J081 GHI 1. 4 21+ 41+ ll.129ll.372il.0030ISE l-0.4881 49 24 3-13-81 66531100 227 I Ll31 t1NI 44 I 1.670 I JOBI GHI 1.424 45 ll.l33ll.372ll.00251S~ l-0.963( 47 27(7) 4-15-81 76661100 225 I GOBI IHI 45 I 1.691 I JOBI GHI 1.429 45 ll.l35ll.38lll.00461SE l-1.7251 ft9 28 5-12-81 82581100 228 I Ll31 LLI 46 I 1.773 I Ll31 LLI 1.451 45 ll.144ll.409ll.0023ISW 1-2.935( 48 29 6-10-81 9230(100 227 I JOBI EHi 46 I l. 710 I JOBI EHi 1.428 45 ll.147ll.383(l.0019ISE l-3.4361 46 N 34(8) 7-,19-81 105371100 214 I H091 LJI 47 I 1. 720 I JOBI OIi 1.425 46 ll.154ll.377(1.0019(NE 1-4.5041 44 I-' 35 8-12-81 113201100 220 I H091 LJI 47 I l. 726 I H091 u I 1.424 {16 11.14111.3S3l1.oo13l1m 1-4.1001 44 36 9-16-81 122101100 216 I F071 DGI 46 I 1.705 I F071 DGI 1.421 46 ll.136(1.372(1.0023INE t-3.5~21 45 39(9) 10-15-81 13216(100 220 I Ll31 LLI 45 I 1.676 I J061 IOI 1.410 53 (1.133(1.366(1.00lllNE 1-2.808( 47 NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVIllG ASSEMBLY LOCATIONS ( E.G. fl-8 IS TIIE CEIHER-OF-CORE ASSEtlDLYl, FOLLmlEO BY THE PIN LOCATION ( DENOTED BY THE "Y" COORDIMATE WITfl TUE FIFTEEN ROIJS OF FUEL RODS LETTERED A THROUGH R AIID THE "X" COORDINATE OESIGIV\TED It4 A SIMILAR MAllMER J.

IN THE "Z" 0IRECTI0t4 THE CORE IS DIVIDED INTO 61 AXIAL POIIHS STARTING FRotl THE TOP OF THE CORE.

1. F-Q(TJ INCLUDES A TOTAL UNCERTAitffY OF 1.08.
2. F-Dll(NJ INCLUDES A MEASUREMENT UNCERTAIMTY OF 1.04.
3. F(XY) rs EVALUATED AT THE MIDPLANE OF THE CORE.
4. QPTR - QUADRANT POl~ER TILT RATIO.
5. MAPS 15 AMO 16 l~ERE PARTIAL 11APS TAKEN FOR I/E CALIBRATION.
6. t1APS 20 AHO 21 WERE PARTIAL t1APS TAKEN FOR I/E CALIBRATION.
7. 11APS 25 AND 26 WERE PARTIAL MAPS TAKEN FOR I/E CALIBf~ATION.
8. MAPS 30 AtlD 31 l*lERE PARTIAL MAPS TAKEN FOR I/E CALICRATiot~ BUT NOT USED.

!1APS 32 Atm 33 WERE PARTIAL MAPS TAKEtl FOR I/E CALICRATION.

9. !1APS 37 At{D 38 l!ERE PARTIAL MAPS TAKE~l FOR I/E CALIBRATION.

TABLE 4.2 SURRY UNIT 2 - CYCLE 5

SUMMARY

TABLE OF LOCA ENTHALPY RISE HOT CHANNEL FACTORS

.,. 'X" MAP BURNUP N LOCif N LOCA Fb.H/ASSY LOCATION F~n/ ROD ASSEMBLY PIN NUMBER (MWD/M,TU)

S2-5-13 'v450 1. 279 F-10 1. 392 B-6 DE S2-5-14 'v720 1. 282 F-10 1. 395 H-9 HG S2-5-17 'v1690 1. 263 F-10 1.393 H-9 HG '

S2-5-18 'v2540 1. 276 J-8 1.400 J-8 GH S2-5-19 'v3660 1. 299 J-8 1.409 J-8 GH

  • S2-5-22 'v4704 1.332 H-9 1. 433 fi-9 HG S2-5-23 'v5619 1. 334 J-8 1. 425 J-8 GH S2-5-24 'v6653 1.345 J-8 1.425 J-8 GH S2-5-27 'v7666 l. 357 J-8 1.434 J-8 GH S2-5-28 'v8258 1. 314 J-8 1. 412 L-13 LL II S2-5-29 'v9230 1. 372 J-8 1.434 J-8 EH .
  • N LOCA N LOCA F~H/ASSY and F~H/ROD are measured between 1.5 feet and 10.5 feet of the core elevation and include an uncertainty of 1.04.
  1. Th e. mon1tor1ng

. . o f FN MI /LOCA ASSY an d FNb.H /LOCA ROD was di scont1nue

. d b y Tee h n1ca

. 1 Specification Amendment No. 70, dated June 16, 1981.

FIGURE 4.1 SURRY UNIT. 2 - CYCLE 5 ASSEMBLYWISE POWER DISTRIBUTION S2-5*-13 ll p ti M K J II G D C ,I Pl!lD!CTED 0.43 0.7~ Q.43 H~EO ICTEO i*1f .~. SU~ ED

  • O.l13
  • 0.7S
  • 0.42 . I!~; 1'..~~U~ :.::o
  • PCT O!FrE,(EMCE. 0.1 . 0.1 . -0.4. * }-=CT n :r f r:i~ CtiCE.

0.4~ 0.93 1.04  !.11 l.O~ 0.93 0,42

. 0.41 . 0.93

  • 1.04. 1.10 . 1.03 . 0.9~ . 0.41 *

. -0.2 . -0.6 * -0.7. -o.o. -1.0 * -1.J . -0.7.

0.56 l.Ol 1.14 l.18 1.18 1.18 1.14 l.Ol 0.5& **ti

. 0.56 . 1.01

  • 1.13 . l.17 . 1.16 . 1.16
  • 1.12 . 1.00
  • 0.56 .
  • -0.2 . -0.l * -0.3. -0.8 * -l.b . -1.4 . -1.l . -0.6 . 0.1
  • 3 J'1 0.56 0.91 1.14 1.16 l.l? l.09 1.19 1.16 1.14 0.91 0.56

. 0.56 . 0.90

  • 1.13 . 1.15 . 1.17 . 1.03 . 1.17
  • 1.15 . 1.13 . 0.91
  • 0.57 . (. t**

I '

0.4 . -0.5. -0.4. -1.1 . -1.3 . -1.5 . -1.4 . -0.?. -0.4. 0.2 . 2.7

  • 0.42 1.01 1.14 1.23 1.03 1.04 1.20 1.04 l.03 1.23 1.14 1.01 0.42

. 0.42

  • 1.02
  • 1.13. 1.20
  • 1.01 . l.D2 . 1.13. i.C2 . l.Cl . 1.21 . 1.13 . 1.05 . 0.44. 5 i.

O.? . O.? . -0.7 . -2.3 . -1.4 . -1.5 . -1.5 * -1.5 . -1.6 * -1.l. 0.9. 4.0 . 6.3 . t 0.93 1.14 1.16 1.03 1.23 1.21 1.12 l.~l 1.23 l.Ol 1.16 1.14 0.93

  • 0.94. 1.14. 1.15. 1.02
  • 1.21
  • 1.1? . 1.11 . 1.1?. 1.19 . 1.02 . 1.17 . 1.17 . 0.9B.

0.3

  • 0.3. -0.6 * -0.6 * -l.l * -1.0 . -1.2 * -1.2 . -2.5 . -0.5
  • 0.8 . 3.4 . 5.3.

0.43 l.04 l.18 l.19 l.O~ l.21 1.11 1.13 l.ll 1.21 1.04 l.l~ l.13 l.04 0.43

. 0.43. l.05

  • l.13
  • l.lG . 1.C2 . !.19. 1.11 . 1.17 . l.ll
  • 1.19 . 1.04 . l.~l . !.20
  • 1.00 . 0.44. 7 1.8. 0.5 . -0.2 * -0.7 * -1.6 . -0.9. -0.2 . -0.4. -0.2 . -1.2 . 0.2. 1.7 . 1.8 . 3.1
  • 2.7 .

0.75 l.11 l.18 l.09 1.20 . 1.12 l.18 0.91 l.18 l.12 l.20 l.09 l.1'3 l.ll 0.75

. 0.76

  • l.ll . 1.18. 1.08. l.17 . l.ll . 1.18 . C.92
  • I.la . 1.12 . 1.20
  • 1.1! . 1.19 . 1.12 . 0.73. 8 1.8. 0.6
  • O.l * -0.8 * -2.6 . -1.3. -0.l. 0.2 . 0.1 . -0.l . 0.5 . l.O . 0.7 . 1.4. 4.0 .

0.43 1.04 1.18. 1.19 1.04 1.21 1.11 1.18 1.11 1.21 1.04 1.19 1.18 1.04 0.43

. o.t,l . 1.06 . 1.2Cl,.,__1.19

  • 1.c,, . 1.19 . 1.09
  • 1.1a . 1.11 . 1.20 . 1.03 . 1.1e . 1.1s . 1.01 . o.,,5 .

1.8 . 1.6 . 1.5 . O.l . -0.3 . -l.2 . -1.6 . -0.3

  • 0.4 . -0.6 * -0.9. -C.6 . 0.3
  • 2.7 . 6.3 .

0.93 1.14 1.16 1.03 1.23 1.21 1.12 1.21 1.23 1.03 1.16 1.14 0.93

. O.i6

  • 1.16
  • 1.16 . 1.01
  • 1.20 ** 1.18 . 1.10
  • 1.19. l.~2 . 1.02
  • 1.15
  • 1.13. 0.95
  • 10 2.5
  • 2.5 . 0.1 . -l.7. -1.7 . -1.8. -2.0 . -0.9. -0.5 . -0.3 . -1.2 . -0.1 . 1.7.

0.42 l.01 1.14 1.23 1.03 l.D4 1.20 1.04 1.03 1.23 1.14 l.01 0.42

. 0.43. 1.03

  • 1.14. 1.13. 1.00 . 1.02 . 1.15. 1.02 . 1.02 . 1.22 . 1.15 . 1.02
  • 0.42 . 11 2.3
  • 2.3 o -0.2 o -3,5 O -2,3 o -2,3 I -3,6 * -2,1 o 4

0,3 O -0,6 o 0,5 o 1,2 o 1,3 o 0.56 O.?l l.l~ l.l6 l.17. 1.09 1.19 l.!6 1.14 0.91 0.56

, 0.57

  • 0.91 . 1.10 , 1.14. 1.17. 1.06 . 1.13. 1.17 . 1.15 . 0.93. 0.57 . 12 2.2 * -0.1 . -3.s. -2.1 . -1.6 . -2.1. -o.9. 1.0
  • 1.2 . 2.s
  • 1.a .
  • 0.5~ . l.Cl
  • 1.14. 1.18. 1.10. 1.18. 1.14. l.Gl . 0.56 *

. n.s1. J.* o~ . 1.1s . 1.16

  • 1.1s . 1.19 . 1.11 . 1.04 . o.57. 13

~-9. 3.7 . l.l . -2.0 . -~.4 . 0.4. 3.0 . 3.1 . 2.5 .

0.42 0.93 1.04 1.ll 1.04 0.93 0.42

. 0.43 . 0.97 . 1.06 . 1.11

  • l.O~ . 0.?5 . 0.43.

3.7 . 4.l . 1.6 . 0.1. 0.6 . 2.0 . 3.2

  • STAt:Q/.RO 0.43 0.75 0.43 OEVIATIGH . o.~s . o.77. o.43. .r'CT ()ti1t,-::::tlCE. 1.5

=t. 226 4.~ . 2.9 . 0.6 * .: 1. ,.~

SU!':MARY MAP NO: S2-5-13 DATE: 9/12/80 POWER: 1oor.

CONTROL ROD POSITIONS: F-QCTJ = l. 716 QPTR:

D BA~'K AT 215 STEPS F-DHCN) = l.387 NW 0.995 I NE 1.002

.., FCZJ = 1.171 ----------1----------

sw 0.998 I SE 1.005 FCXYJ = l.352 BURNUP = 450 M'AD/MTU A.O =

23

FIGURE 4. 2 SURRY UNIT 2 - CYCLE 5 ASSENBLYWISE POWER D:I:STRIBUTION S2 24 R p H L K J H G .F  ! .D .c:

  • ... '(.

F'RE'DICTEO * * *Q.43

  • o. 72
  • Q.43 .* PRED?C'lm *
  • 11EAStulED *
  • 0.43 .,o.,z .*0.43.
  • MEASt.i1'1EIJ :r.
  • PCT DJ:FFERENCE. * -o.a. -o.a * .;.o.6 .* .PCT OIFFEREMCI!*

)

  • 0.44
  • o.9Z
  • L04 . 1;04 * -l.04
  • o.*9z -. 0.44 *
  • .0.44
  • 0.93
  • l.04
  • 1.02
  • 1.03
  • 0.9Z ; 0.44
  • 2
  • o.a
  • o.7 * -'0.7 * -1.1 * -1.-1 * -0.-3
  • o;s *
  • 0.58 .* 1.06
  • l.ZO . LlZ
  • 1.09 * -1.12
  • l.ZO
  • 1.06
  • 0.58 *
  • 0.59
  • l.05
  • 1.19
  • 1.12 . '1.07
  • l.ll
  • l.19 . l.06
  • 0.59
  • 3
  • 0.5. -0.5. -0.3 *. o.z. -2.0. -1.3. -o.6. 0.4. 1.8 .
  • o.sa
  • o.91
  • 1.19
  • 1.13
  • 1.zz
  • 1.04
  • 1.zz
  • 1.n
  • 1.19
  • o.91
  • o.5a *
  • o.59. ~.91. 1.11. 1.12. 1.zz. 1.04. 1.21. 1.12
  • 1.19. o.9z. 0.60.
  • ,o.s. ~o,6 - -1.6. -o.9. -o.s. -o.7. -1.z. *o.a. 0.1. a.a~ 2.4. " F
  • o.44
  • 1.06
  • 1.19
  • 1.16
  • o.-9a
  • 1.01
  • 1.-15
  • 1.01
  • o.98
  • 1.16 . 1.19
  • 1.06
  • 0.44 *
  • o.44. 1.06
  • 1.1a. 1.14. o.97. 1.01. 1.14. 1.00. o.97. 1.i5. 1.19. 1.09. o.46. 5
  • o.3. o.3. -o.a. -1.5. -1.0. -o.3. -0.4. -o.9. -1.1. -o.4*. o.4. z.1. 4.9 *
  • 0.9Z. 1.zo. 1.13. 0.9S. 1.18. 1.27. 1.11. 1.27. l.18. 0.98; l.13. l.ZO. 0.9Z.
  • o.9Z
  • 1.zo. 1.13. o.98. l.18. 1.28. 1.11. 1.21. 1.16. o.97. 1.12. 1.21. o.95
  • 6
  • 0.3. 0.3. -0.3. *0.3. *O.Z. O.Z. *O.l. *0.5. *1.6. -0.9. *0.4. l.Z. 2.8 *
  • 0.43. 1.04. l.lZ. l.ZZ. 1.01. l.27. 1.13. l.Z8. 1.13. 1.27. 1.01. 1.zz. 1.12. l.04. 0.43.
  • o.42. 1.04. 1.1z. 1.21
  • o.99. 1.21. 1.14. 1.28. 1.13. 1.26. 1.00 . 1.21 . 1.12. 1.05. o.43
  • 7
  • -1.0. -o.3. o.z. -o.a. -1.s. -o.4. 1.z. o.6. o.3. -0.1. -1.6. -1.3. -o.5. o.6. o.a *
  • o.1z. 1.04. 1.09. 1.04. 1.15. 1.11. 1.zs. o.98. 1.zs. 1.11. 1.15. 1.04. 1.09. 1.04. o.7z.
  • 0.71. l.03. l.09. 1.03. 1.11. 1.10. l.Z9. 0.99. 1.28. l.ll
  • l.13. 1.03. 1.08. 1.05. 0.75
  • a
  • -1.0. *0.5. -0.3. - l . l . *3.0. -1.l. l.3. l.4. 0.5. *O.l * -1.7. -1.2. *l.O. 1.3. 3.8 .
  • 0.43. 1.04. l.lZ. l.ZZ. 1.01. l.Z7. l.13. 1.28. 1.13. 1.27. 1.01
  • l.ZZ. 1.12. 1.04. 0.43.
  • 0.42. 1.04. 1.12
  • l.,z. 1.01. 1.,6. 1.11. 1.,8. 1.15. l.Z5. l.CO
  • l.ZZ
  • 1.11. 1.06. 0.45
  • 9
  • *l.O. -o.z
  • o.z. *0.6. -o.3. *1.4. *1.9. 0.6. 1.5. *1.5. *1.4. *0.7. *0.9. 1.5. 5.0 *
  • 0.9Z. l.20. 1.13. 0.9S. 1.18. l.Z7. 1.11
  • 1.27. l.18. 0.98. l.13. 1.20. 0.92.
  • 0.93. l.Zl. 1.14. 0.99. 1.17. l.~5. 1.10. 1.27. 1.17. 0.9S. 1.12. 1.19. 0.92
  • 10

. o.9. o.9. o.7. o.3. -1.0. -z.o. -1.z. -o.5. -o.5. -o.a. -o.4. -0.1. -o.3 *

.* .0.44.

~

1.06. 1.19. '1.16. 0.98. 1.01. 1.15. 1.01. 0.98. 1.16. 1.19. 1.06. 0.44.

  • 0.45. 1.07. l.ZO. 1.16. 0.97. 0.99. l.lZ. l.00. 0.98. l.15. l.:o
  • l.07. 0.44. 11
  • l.5 *
  • las
  • 1.5
  • 0.3 * -1~9 * -2.1 * *2.6 * -1.6 * -o.6 * *O.l
  • 1.0 .* 1.3
  • o.7 .*
  • o.sa. 0.91. 1.19. 1.13. 1.zz. 1.04. 1.z:. 1.13. 1.19. o.91
  • o.58.
  • o.59
  • o.93
  • 1.:4. 1.11
  • 1.zo. 1.02 . 1.20. 1.13. 1.19. o.93. o.60
  • 12
  • Z.l. Z.l. 4.5. -1.a. -Z.l. -2.7. -1.6. -0.1. 0.5. z.1. 3.Z *
  • o.sa
  • 1.06
  • 1.20
  • 1.12
  • 1.09
  • 1.12
  • 1.20
  • 1.06
  • o.5a *
  • 0.60. 1.11. l.Zl. 1.09. 1.06. 1.11
  • l.ZO. 1.07. 0.60
  • 13
  • 3.3. 4.5. 1.3. *2.7. *3.1. *0.9. 0.6. l.Z. Z.6 *
  • 0.44
  • 0.92
  • 1.04
  • l.04
  • 1.04
  • 0.92
  • 0.44 *
  • 0.46 .- 0.96
  • l.06
  • l.C4
  • 1.04
  • 0.93
  • 0.44
  • 14
  • 4.5. 4.6. 1.s. -o.o. 0.1. o.5. o.6.

STAIIOAl?D

  • 0.43. 0.72. 0.43. AVERAGE
  • DEVIATION *
  • 0.45. 0.74. 0.43. .PCT DIFFERENCE. 15

=l.078 . 4.8. 3.1. 0.4. = 1.2 Sill1MARY MAP NO: S2-S-24 DATE: 3/13/81 PO!;lER: 100?.

"CONTROL ROD POSITIONS: F-Q(Tl = 1.670 QPTR:

D BANK AT 227 STEPS F-DHCNl = 1.424 NW .0997  ! NE l.C~O


1----------

sw 1.002 I SE 1.001 F(Zl = 1.133 F{XYl = 1.372 BIJRNUP = 6653 M}:0/MTU A.O = -0.96(?.J 24

FIGURE 4. 3 SURRY UNIT 2 - CYCLE 5 ASSEMBLYWISE POWER DISTRIBUTION S2-5-39 tii\-'t@SS A*fMAMii ,ris+ see iw; Wtfftt-Xf'iitdW>>> eee@*f'

  • .R P H *M l K J :t G E 0 C B A

~

PRl:OJCTED 0.45 0.71 0.45 FPCD!ClEU t!E.-\~t:~En . 0.45 . 0.73 . 0.45. ~!~A!3ViJCO

  • PCT O'!Ffrnrn::f. 0.1 , O.l. 0.2 . , PCT Diffl.i<Et:CE *

. o.47. 0.72 1.06 1.01 1.06 o.*2 o.*7 .

  • 0.48 . 0.92 . 1.05 . 1.00
  • 0.?3 . D.47.

l.? . O;l * -0.7 * -l.O

  • 0 0.6 . 0.3 . 0.2 .

0.61 . 1.0?. l.t4 . 1.10 1.06 . 1.10 . 1,24 , 1.0? 0.61

. U.62 , 1.10 . l.~4 , l.10 . 1.01 . 1.09. l.~4 . 1.01 . 0.61 .

1.7

  • l.O . O.l . -0.3 * -l,2 . -1.0 , 0.2 . 0.2 , 0.1
  • o.61 0.12 1.20 1.11 . 1.2s . 1.02 . 1 .* s . 1.11 1.20 o.92 o.61
  • 0.61 . 0.91 . 1.21 . l.ll , 1.24 , 1.0~ , 1.23. 1.11 . 1.20 . 0.92 . 0.62 .

, -0.3 . O.l . 0.2 * -0.l . -0.6 . -0.9 . -1.0 . -0.0 . -0. 3 . -0.'t

  • 1.6 .

o.47 1.0? 1.20 1.12 o.~l . o.9?. 1.10 . o.99. o.96 1.12 1.~o 1.09 o.47

  • o.,6. l,07 , 1.19. 1.11 . 0.96 . l.CO . 1.19 . 0,99 . 0.9& . 1.11 . 1.19 . 1.12 . 0.49 .

. -l.8. -l.8 . -0.7. -Q,6 . -0.l . 0.2 . 0.2 . -,).0. -0.4 . *0.6 . -0.8 . 2.4 , 5.7 .

0.91 1.2, 1.11 0.96 . 1.11. l.ZS. I.CB, 1.:6 1.13 , 0.9~ 1.11 . 1.24 0.92

  • 0,91 . 1.23
  • 1.11
  • o.96
  • 1.13 . 1.~?. 1.01. 1.29. 1.12 . o.95 . 1.10 . 1.~s. o.95 *

. -0.9. -0.9. -0.4. 0,3. 0.5. l.2 , 1.2 . 0.9. -0.5. -0.8 . -1.0 . 0.8 . 2.8 .

0.45 l.06 1.10 l,25 0.?9 , 1.28 , 1.11 l.27 1.11 1.28 0.99 1.25 l.10 1.06 0.45

. 0.45 , l.06 . 1.10 . l.~4 . 0.99 . 1.23 . 1.13, l.29. 1.12 . l,29. 0.93 . l.23 . l.09 . 1.06 , 0.45 .

. -1.l . -0.5. -O,l . -0.6 . -l.O . 0.4 . !.l

  • l.D . 1.7. 0.8 . -1.Q . -1.4. -0.7. -0.l . 0.0 .

0.73 l.Ol l.C~-. l.02 1.10 , l,D3. l.E7 0.98 1.27 l,C3 1.10 l.02 l.O~ 1.01 0.73

. ~.?! . !.00

  • 1.05 . 1.02 . 1.08 . 1.03 . 1.30 . I.CO . 1.29. 1.09. l.C5 . 1.01 ~ l.O~ . 1,01 . 0.74 *

. -l.1 . -0.7. -0,l . -0.7. -1.9 . -0.l . 2,2 . 2.~ . 1.3 , 0.5 . -1.7 . -1.3 . -1.0 . O,l . 2.2 .

0.45 l.06 1.10 1.25 0.9? 1.28 1.11 1,27 1.11 1.:3 O.?? 1.:5 l.10 l.J& 0.45

. 0.45. *l.05 . 1.09. l.~4 . 1.00 , l.~/. l.CG. l.~B . 1.13. l.:6

  • 0.90 . l.~3 . 1.0,. 1.03 , 0.~7 .

. -1.1. -1.0 . -1.0 . -a.s . 0.1. -o.?. -2.1 . 0.1 . ~.1 . -1.~. -1.6 . -1.1 .. -J.6 . 1.~ . 4.8.

o.92 1.2~ 1.11 o.96 1.1J 1.2a 1.oa 1.2a 1.13 o.~6 1.1t 1.2~ Q.92

  • 0.91
  • 1.2~ . 1.11 . 0.9~ . 1.11 . 1.24 . 1.00 . 1.2?
  • 1,13 . Ll.96 . 1.10
  • 1.23 . 0.93 . lC

. -1.1 * -1.1 . -0.5 * -n.1 * -1.2. -2.7. -o.s. 1.2 . o.s . -a.~ . -o.a * -9.6 . o.i .

0.47 1.09 l.20 l,12 0.96 0.?9 1.10 0.99 0.96 1.1: l.CD 1.0? 0.47

  • 0.17. l.10. 1.20 . l.10 . 0.94. 0.97. 1.07. 1.01 . 0.9S . 1.12 . 1.21 . 1.10 . 0.47 .

0.9. 0.9. -0.l . -1.4. -Z.l . -2.7. -2.7. 2.0 . l.S . 0.5 . 0.6 . 0,8 . 0.8 ,

o.61 o.*J;! . 1.i!o 1.11 1.::s 1.c:.: 1.~5 . 1.11 1.;:o o.92 o.61

. 0,63, 0.94. 1.19. 1.0?. l.21 . D.~9, l.t4 . 1,12 , 1.21 . 0.9~ . 0.62 .

2.3 . l.~ . -1.tt . -~.t! . -2.3 * -3.l . **O.J

  • 0.5 . 0.7
  • 1.4 * ~-~ .

. 0.61 . l.09. 1.24', 1.10 . 1.0~ . 1.10 . 1-~1 . 1.09 . 0.61 .

. 0.64

  • 1.15 . r.~6
  • 1.07. 1.c2 . l .. CJ. 1.23 . 1.c? . n.6~ .

. . . . . ... . .5.,

4,3, 1.6 . -3,l . -3.l . -l.7. -1.0 . -G.l . 1.7 .

o.~7 o.~:. l.06 , l.Ol . l.D6 . 0,92 , D.~7 .

  • Q,li9. 0.9J
  • 1.09. l.01 . l.1~'.)
  • 0,';l . OJ+!,
  • 5.?, 5.? . ~.3 . -0.l. -0.9. -o.s , -1.0 .

STAl'"DARO **************************************************

0.45 o.73 o.~s DEVIATION . o.48. o.75 . o.~5 .

=l.2i:Z 6.0 . 3.~. -0.6 . = 1. 2 SUMHARY MAP NO: S2-5-39 DATE: 10/15/81 POWER: 1007.

CONTROL RGD POSITIONS: F-Q(Tl = l.67n QPTR:

D BANK AT 220 STEPS F-DHCN) = 1.410 Ni~ 0.999 I NE 1.001 FCZl = 1.133


1----------

sw 0.999 I SE 1.001 FCXYJ = 1.366 BURNUP = 13216 M!'10/MTU A.O = -2.81C:O 25

FIGURE 4. 4 HOT CHANNEL FACTOR NORMALIZED OP.ERATING. _ENVELOPE 0 2 4 6 8 10 12 BOTTOM TOP CORE HEIGHT (FT.)

26

FIGURE 4.5

.SURRY UNIT 2 - CYCLE 5

.HEAT FLUX HOT CHAN~;EL FAq'OR, ~~

S2 l3 2.5 Nl.

2.0

----~---------------

E-;rz..O' xxxx rz  :<xx x 0

E-t X C,.) X X

< 1.5 X X rx. X

,... ... X X

iil z X z ...

r:

X L)

... x E-t 9 1..0

..... X X

X rx.

~-

... X

~  ; X 0.5 0 * \ ********* l ** l **** * *. j *********

50 40 30 20 10 1 60 TOP BOTTOM AXIAL POSITION (NODES) 27

FIGURE 4. 6 SURRY.UNIT 2 - CYCLE 5 HEAT FLUX HOT CHANNEL FACTOR, F ~

S.2. 24 2.5 2.0 -

  • N ...

H Ct H

~

.._, ... )( )( )C

~

0 1. 5 )(

)(

)C H )C u

<i:

~

)(

,-.:i

~

z

~

)(

i::

u 1.0 )(

H 0

i:: .: )( )(
i

.* )C

)C

,-.:i

~

H

<i:

~ 0.5

i::

0  :.1 ......... , ......... , ......... , ......... , ...... .

60 50 40 30 20 10 1 BOTTOM TOP AXIAL POSITION (NODES) . !

28

FIGURE 4. 7 SURRY UNIT 2 - CYCLE 5 HEAT FLUX HOT C}U\NNEL FACTOR, F ~

82 39 2.5 2.0 XXXXX X>e-XX XX X X xxxxxxxxx xxxxxxxxx XX XXX X

1. 5 X *x X X

X X

X X

X X

1. 0 X

' X X

0.5 0 .. I ......... ! ......... I ......... l ********* I ......... l ........ l 60 so 40 30 20 10 1 BOTTOM TOP AXIAL POSITIO~ (NODES) 29

l '

SURRY 2 CYCLE 5 FIGURE 4'.8 MAXIMUM HERT FLUX HOT CHRNN~L FRtTOR vs BURNUP 2.4 1"**-  : -:_*:?_L_-1fJ'

,-__ -_.'~ _:_,_.tt:

. { .. < . : )J

. T: . : . : .* . : h ..  :

1---G 2.3 *-*** -

LL . . . -- .

2.2 O::'.'.

0 Hfflffffi~- m*~m*n*ftmffli*m*- 'ffltJ:jffitffl.tU~11+-!+1'-!-H fl" 1-H+J:_.:r+_!+

__ Ie_HHfH . . ..: _

I- 2.1 u

a:

LL 2.0 -- ---* ..

. . ~

_]

w

!-H--f+f-l+H l+l-1+1-Ht++R'f  : .. . If.

z 1 .9 iw z

> a:

I 1.8 u

I- 1.7 0

I X

l .6

)

_]

LL 1 *5 I-a: 1.4 w

I

'.L 1.3

)

'.L

,_. 1.2 X

a:

z:: l . 1 l .0 CYCLE BURNUP lMWO/MTUl

FIGURE 4.9 SURRY UNIT 2 - CYCLE 5 ENTHALPY RISE HOT CHRNNtL FACTOR. F-DH(Nl VS. BURNUP l . GO l . 5.5 E l . 50 N

T H

A L l . 45 A p

y t:, t:, A

~

'-l '-' '-' 6 R t:, t:,

A I l . 40 A s 6 6

E H

0 l . 35 T

C H

A i . 30 N

N E

L 1 . 25 F

A C

T 0 l .20 R

6. MEASURED l .i5

-T. s. LIMIT l . l 0- ...... . I I I I

  • I 0 2000 4000 6000 8000 iOOOO 12000 14000 16000 CYCLE BURNUP IMWO/MTUl 31

FIGURE 4. 10 SURRY UNIT 2 - CYCLE 5 LOCA ENTHALPY RISE HOT CHANNEL F'ACTOR - ASSY.

vs.

BURNUP

<11 :,-,

u (/)

0 t-1 <11 zr:r..~

(/)

1. 60 :U! Ji 1:1
ill n* 1itl 11 j-1111 11

'! i

. t1*1 1t I 1

1 I I! Iii ,,

wtII I I' 1111 l *l*~*-**j 11 H 1

11 iI 1: [

, I, I,,

qt ir 11

' !It 111111*~ 11 11 iii ljl li)I i 11 1111 'JIJ I I

, ,1 11, I 11 +l I l1*h I j] ll i 1*:

1 1 I I I, I,,,, 1,,,, .111 nfr i-f J1l1:llliili1111:.::1111111*:;1::1111:1J;:i,f;:;;f :,, !:;1 i

'Technical Specifications ~~i::.

As Per Hi: ;

. ~~i i iii i 1 I j tr t 11 I II -~~JI  ! I\H~ I~ ~ Ii r jlf* !111 1

J I Amendment i/58 ii :*

~r

,-, I

(/)

(/)

1.50

11, 1 1 11 1 ,
  • 1 1 : 11 I 1, 11:, 111 111 1 11i1rm 1 5/16/80 rr .

<11 :111 I, I 1'1 I 11 111 II II 11 It. Iii! ,! I I ii I, i!: II!! 111 I!!! I IIIHTI I. fr!! TIIT ni! !i!! 11!1 iil JI I!!! l!I! ilii 1!!111::

1

111 II Ii I 11 J I 11 1 11111 I Ill ,I I! ! i;l Iii !!I! I! ! it I ! I! ! l! 1!11 ! ll I II l li !ill II!: P l!ll l!l' ll! i!ii ill! tin mr m:

1

~t~t :~IiI ~w'I 1* 11~Jl1d);

1 p:::

H 0

tn!r:_rnlrl 1il
I I i f

--111-~1- lrl ~I'_ I I

i ijli '!I I ltllr/i 11111 I

q I I i' 11,111 ~i11,rI.1,:I.J1i II ' I Ij 1i-1-1tLlllJ11 +II 1lni :11.1~:r!;Jqlttl !1/ 11'11/r/l I I II I, 11 I I I lil!t ~+:

I JI Ii\ I 11'

~ I ' " ' I i i i:; I I J~ tttt i: !: \! lii! j{ ; i 3 iii' I

1.40 L,.)

N r:r..

t-1 ,111tt1 1rn

'i UJJ_ Ii ' _Ii 11 I . 1* l ~* '

1t T 1 T I ' :i I:

µI: tj+

j I J' 1 1*1 J*j* I 1ft I

  • 1 ilj IrI ~i I1*

I l1 iiIii' ji : Ili i ~'it til ji : iLi ' :11irrr+t I: ii_:,_

11i [I .li 111: 'l Tl r 11.i 11 1

Ii 1

1 Ii:

1.I: ,1rrp: 't FT 1~~~:i1:1 II 1

i:

r:il '! I fI i, , , ;

1 11 . I I I,! I i l 11 I  ;, i, I I 1! 11 t i , Iii ii I' i 1

i [, 11 I , I,! , ' Ii I 111:

! \!1 'i II , l 1' ; I ,1:

  • I, I. 'I: I ,; i I z i J
  • !i
    i iI_ ~,*1+11 J.ij+i I I ' , 1*1 I 1J l. I, 1.1 , I! I j 11 I!, 1'.l l' . .i i, 11 Ii 11 l 11 r lj !I ,! r
    ~T :111I :11 I !111 1D I ,~ I :!iI I !:J Tl I;  !,, .. ! :ii: ! .! l 1.

~ I i I Hll I' ~ ii 'Ji 11] I'* .

! J I Ii i  ! I:.: . I J *t1-l . lj~ !\ . el 111 ]Jj L.  :.1.J ~~111.;. l' I!!:, i~~.:..:':-1~1.:.,:. 1-~.i.

w*

J I i  ! **~ *-,.:.1 I_[_*.:.:.:. LU' u f!i !1*11I ! 1*1 !111 I! I il '!

ill i'I I! ' 1111 !,I Ii !111 I I i 1 I I 1

11 Ir: I 111 ;1! 11 i !11'1 ij '11 I !I I 11111 i!lj, *;: ,'11: 411 !:IT .!Ji ! i 11r1:11111,! *11 .!11~{' :!:h..111:r1 *::; :ii!

! t .;. i I..:..!. i I t I i; I t I .. '..!.. -, l~ ' IT ' 11 I ' I, 1 I I* I _..,....:. 'I! '

  • 1 1'
  • I j,.  ; I I:
1. 30 H

0 I i I! Ii!). i 11. !l J11 I il hi:~i .l.j*11' J :~

1 1

11\1i

-r: 1+1* **1 j- ~1- +1~1-l H. ++!1* LI ~rl ii 11 !I j iII! 11 : II ILiI!fId,I- Jr 1

lj' I II !I 1 N f*I' I i I lj\tl ii!! ii I: I~ I ;i:: 'I: I Ii!'! ;I~ I I lII; ! fITITTfr ':' T:l'j! I!: .:i il+r I *r 1*l*j r liH +L 1**111 T r +-11+ ith 1 I 1TI"J-; 1+1' n'*-1** ft . . 1tl*1{ i*1:+ 11 ;r"'+* i ! 1n"h" -:-i;;.

',;Jl  ! I:: : 'i i ! !. '! 1!

1;;--;-1:~~: 1LL

q i" I ::i I ' I ' iIi! 1 11 II !I I I 11I!' I !I 1:; il [1 ! I' 'I : I I Ii I ! I I i I I! I I I;* I ' ' ' ! I iii 1I 1! . I I ! ! I! i: I:! i I:

i :~-;

'  : : ! I' I: : :: ; I;!;; ; ! ii "'

.l ij f *

"' '111111l u*,1*1 :1, ,:.:  :~' :1 .1 1 '1 1:1 1  : 1'.:_J ml11~1'.-f1*1f :;'1 :*11: :::* 11' TT':I: 1::11111*!*111 I j: I *1' :1:1 :,:; 4:: 11, '1 *11: H-1~1*,~::~ !1*H+ '.: ::: ;::: '.:; ;fu-:i-;-

r:il '*11 l'IJ 11 'I I' "' I I I I I I! " I I '

I 11( 1111 1~11 !i ! 1'+ 1 :1:: ;i;, ii l

,. I I 'II I 'I '"I f! ,_ ., .. 111 ':, ,,,, 1' I"

! 1111*: !1 11'i ,11 Iii 1* !

(/) Ii' I ' ' 1 I " 1 1111 I .. 1 I:,

.!'; 1!1'i 11 '(I I  : 111 11 1: 1 1 :1]i I; 11 . 111!; i "I j'l:f :;; *.:!: ;: , ...

i: li1 j ,-,() l~~~s1~~~~ I ' r rr **i [Iii r11 I rt11! I !ill; Ii! i-:.r l~ij i:1 I T11jll [111 ii nj111111 1 if :1L.IT, 11 1~*1 iili ii ii [i!f' :: ;r "[ i :: iF :Fi I:~: Ti 1 i ij ii t

H p:::

i;-:-~fTrr:~r:: ,

J

1. 20 1

!1 1'1: '1 '1 1 :1 Tfjt f:1:1 i1::t Ill: :jii I i1it1:i+rm:I ~11!iTl11_µ.:jl-'~nr11tTii'1r11rrrm*fa~itf:':"~~ ihtc:c.:. i:: . i ! : : ; ; i :! ;::.

. 1:p '

I i I 'I ~

I 1

>a 1 ! : IJ' ' I Ii I ; 1 l I Ii +Ii 11 i i I I! I! ii I 1. i J': ti

. ,~*r

I P-< ': l ! : 1! I 11 j : 1 I; I 1 i . " I:

1 ,l 1 :~:'1i'i:tli;l '1  ! 1Jrii1!!'1!i!f

I
  • 11Ti;T I

J!T!i!!1jt l  : I

  • 1T:!1JiT1.

j I 1lf\i I

rill,llr!:-

I. I  : : : :

  • 11Ji*;,i:'1T1Ti:

~H "I - T

  • S
  • LI-.fIT-,I 1
  • 1 1*1 1 !I* 111* 1 1*11 I 11111 1_.!Jt 1lii!.' I µw+~~.L~.4-l-!.._~H-1,t.J. 1 1+ill'1 ~.;_j_JI;_

11,* .,,, 'l'i ,,,,  ;: 1 1* ., ' i;!:!':*.*r*::,

":! I,, .. _,; ...... , ,,., . ' ...

1* 1 1 1 1 1

. '*11 .. ,,r 11,1 *1*1

~ t*, f , ~** ,

,1n 111,, .. 11, *1,T .,. ,,,;,

,_,.--44+11 I 1* "II 'i" ... , *1"* 11'1 ,,r; ,.,, I. 1*1* ,1T* I 4~ ,,*1 1,., *1 1,*11.l-~.1.J.

l;1t  ! 1:

  • T1* i.!.+l-~-!_ \.1i'1:  :**1 111* ., 1 I ,, .. ,,I .... ,. *1* "::TT***-

"!' II ...:_:___:._

I !I if i 1*1:1 !iii :1 11 [i,1i1111111 ilii lji 1111 ill\.! I ;:ij .\:; i1 il  !::: -;:;

I

!:: 1

!i .... :i:: *:;:

1 zr:il  :*1: 1:11.**.

't !!j l'til :)

,., .., .1..., *. ,.,,

1

  • ,1!

I .. , 'l ** j* .1 ... ,,1*1 ,;1,. **11 .,. , Ill!,,,,,.-, **1*1 itl--,,--1* ,.,i., I'!* *1 - I  ::11

.,,,,'"**I,,. i 1, I,* I,,_ 111  ::

1 ....

i!:;

,,.. . !ij1 i::l i-- ,-,-

      • :ii
  • t *!* 1 11 1 111 11 *1 11.1: !1 I 1:t ;11 :1:i *:. :1 1 * ! 1!:: :!: !1 1.:: *:i il;i 1; i i 11 J 1

\:: 1::1 ;: : : :! : 11 ii: :I.;  ;: 1; , 1 , :1:r !::r *.:: ,,,

      • 1 , 1:I 1111 I I  !:,1 !.: :: ... !11 :1!! :.:! !:

1 i:l: !1.' ::::!*!*!!,I :1\; !i, ::!i !\i; I;,!,: :i I ::1 :! 1,11 :!!: ... :*:*

1 1 1 :11* *** /*!:  :;'.: *'

4! 1.10 u

0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 t-1 CORE BURNUP (MWD/MTU)

FIGURE 4.11 SURRY UNIT 2 - CYCLE 5 LOCA ENTHALPY RISE HOT CHANNEL FACTOR - ROD vs.

BURNUP

-0::

UA 00

,-..:i~

zii..<l

r::

p

~

I

~

0 E-,

u

-0::

Ji<

I..,.)

I..,.) H

~

z

~u E-,

0

r::

~

Cf.l H

~

p.,

~

E-,

z

~

-0::

u 0

H CORE BURNUP (HWD/MTU)

FIGURE 4.12 .

SURR".Y UN.IT 2 - :cYDLE *5 TAR Cf T DELTA *FLUX V,S. B-URNUP lO-t--.-----r-:-.....,...-+--,---t--,--,,--,.-1---~i--,-.........,+.,........,---...,...;-----1-c----t-'--,---+-,-~+-----t--,----1~--+--+

  • 5.

T A

R G- 4-E

~ T D

-E ~

L T

R -. -

F 0 L 6 6 u .

X **-

6 6 I -2 N

p t:, 6 E

R -4 C . A E

N T

-6

+---+----1---+---+----l-----l----+---'--+---+---+----+---+----l-----l----+---+

0 2000 4000 6000 8000 10000 12000 l 4000 l 6000 CYCLE BURNUP (MWO/MTUl 34

FIGURE 4.13 SU,RR:Y. UNIT 2 .,... . C'¥C'LE 5

  • CO'R'E AV;E'RAGJ>. A:XJAL .. POWER 'D.,l'ST:l(IBUTI ON

.. :S.2 - 5 :- JJ 1 .5

- ~

~ Fz - 1.171 k

k t,q,=+1.130 k

1*2 Q,.

-k xxxxxxxx xxxxxxxx t,J k XXXXXXXX X XX X XXXXX N

H ~ X X

.... X X X I-! X X X r::,:: ~ X 0 0. 9 X X

-~

z X X I-! X N i.;

X xx N 1-t

~

... X X

o. 6-~

X X

~

~

X
0. 3

~x X

i 0- ~ ........... .

l I 60 50 40 30 20 10 1 BOTTOM TOP AXIAL POSITION (NODES)*

35

FIGURE 4. 14 SVRRY UNIT 2 - CYCLE 5 CO,RE AVERAGE AXIAL POWER DISTRIBUTION S2 -:--.5-: 24

1. 5..;;:

'1

'1

~

I

. F z

= 1.133

-o*

w N

1

  • 2_ ..;

LlcI> = -0. 963 H

H_

... )(

)(

)(

)(

~. ..; )(

)( )(

lZ 0

z 0 ..9- . )(

)(

)(

N °! )(

)(

I~

N

~ ..; )(

0. 6.

. )(

..; )(

)( )(

..; )(

0. 3 - ...

O_L... ~-~l*~-~-~-~-~-~-~-~-~-~.;~*~*~*~*~*.*.*.*.*~:-*-*.*.*.*.*.*.*.*,~-*-*.'..*.*.*.*m*..,............,......... r--

60 50 40 30 20 10 1 BOTTOM AXIAL POSITION (NODES) TOP 36

FIGURE 4.15 SURRY l.JRI T 2 -: CYCLE .5 CORE. AVE.RAGE AX;IA*L .POWER. DISTRIBU'T.I-ON S2 39 1 . 5-'":

~

~ F =1.133 z

~

M = -2.808

~

1 2 ....

,-. ~

A,..

l=l ~

N X H ~ xxxxxxxx X X

...:l H X

<.. X X z ,.. X X

  • X

~

X 0 0. 9~~ X X z

....., ,.. X X

--N N

~ X X

X X

~

~

o. 6 -:: I-! X X

I-! X

~

~ .

~ X

0. 3_ ~

~

f<

~

0 f< * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

  • i I I I l 60 50 40 30 20 10 1 BOTTOM TOP AXIAL POSITION (NODES) 37

FIGURE 4.16

  • SURRY *UNJ T .2 - *CY:CL'f *5

. 'CORiE AV:ERHGE HXJA.L PEAK1NG FACTOR, F-2 VS. BURNUP 1

  • 3-t----i---t---i---t--t-----1---t--;----i---t---i---t--t-----11----t--t-A X"

I A

L-'

p E

A K 1 . .2, l

N 6.

G-6 F  !:i.

A 6.

C 6 6 6 T 6 6 6 0 . t:.

!:i.

R ...

l .l 2000 4000 6000 BOOO 10000 12000 14000 16000 CYCLE BURNUP !MWO/MTUl 38

Se.ctiori. S

  • :PRIMARY COO'LAJfT ACTIVJ::TY FOLLOW Activity Leve l's of io*dine-131 and 133 in the primary coolant a:re impo:c:tant in c,o.:ce _pe:cfo:cmance -follo-w analysis because they are used as indicators of d~fective fuel. Additionally, they a:ce also important with
respect to the offsite dose calculation values associated with accident analyses. Both I~131 and I-133 can leak into the prima:cy coolant system throught a breach in the cladding. As indicated in the Technical Specifications the dose equivalent I-131 concentration in the primary

-coolant was limited to 1.0 mic:co,,..Ci/gm for no:cmal steady state ope:cation during Cycle 5. Figu:ce 5.1 shows the dose equivalent I-131 activity level history for the Su:rry 2, Cycle 5 co:re (the letdown flow rate averaged 105 gpm during power ope:cation). The data demonstrates considerable scatter; howeve:c, the trend shows that during Cycle 5, the core operated *substantially below the 1.0 micro-Ci/gm limit during steady state operation (the spike data is associated with power transients and unit shutdown). Specifically, the average dose equivalent I-131 concentration of 6.2 x 10- 3 micro-Ci/gm is less than 1% of the Technical Specifications limit.

The :ratio of the specific activities of I-131 to I-133 is used to characterize the type of fuel defect which may be present in a reactor core. Use of the ratio for this determination is feasible because I-133 has a sh*ort half-life Capp:coximately 2 1 hours1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />) compared to that of I-131 tapproximately eight days) so that for pinhole defects where the 39

diffusion time through the defect is on the o:z:d-er of days, the I-133 decays out leaving the I-131 ~ominant in activity, the~eby causing the

c.tio to be O. 5 o:r: rno:re. In the* cas.e of la:r:ge l*eaks, u:ranium pa:r:ticle*s in the coola*nt, and/oz: "tramp" uranium*, .where the .diffusion ,mechanism is negligible, the I-131/I-133 rat~o will generally be less than 0.1.

Figu:r:e 5.2 shows the I-131/I-133 :ratio data fo:z: the Sur:r:y 2, Cycle 5 co:t:e. These data indicate that any defects that may have been p1:esent during Cycle 5 a1:e quite small .

t:"T~amp" uranium consists of small particles of u:r:anium which adhe:t:e to the outside of the fuel rod during the manufacturing process.

40

FIGURE 5.1 SURRY ,UNIT 2 - CYCLE 5 DOSE EQUIVALENT I-131 CONCENTRATION vs. TIME 10.0

+-4-+-i~\, i '--'-'-+-s-c~-e--t---,---t----,-> ._ -*--* ._. *-"--*.* -*  :..-. ---* ; '..

: ~-

.. -'*;_;__*-'---1--'*-=--__c.*...;*;_;__*+--'-"-'-'*-c.*-'-I'*-'---'-'-*-'--*'-'--*1-*c..'.="cc.*'"-"-'--l*c..o*cc--_,_-_,*...c*-=--+-'-'-'--'*...;*4._;__*;_;__*----11--=--*-'-'-'-'-,4--'--*_,_/...;,;'-+-'---'-'---i*-~--'--'-'+*-,,-:,:c:*:-':\11 11-c',---'--=c-,",-f,--'-'-'-'-'-'4-'-

  • . -- * --- - - **--- -------- =c::_::.-c_ 1 ____ ----. _-:_:.:::,:._,-_:*:.:-: --*-- ---*

_-- - - - -_-_-_-,__~-:~--~--+-;+*;E-c;~~~;~~s;;~~~:;~o~~-~~i~ii:_~-~~ ~::~ :. --=.:::. ~~-~~~

- u E:

co

l 1.o:...a.--..... ----~----~---~----+----.. . . . . . .

-*-,--_---+--~1--'----t-~--t-~+-'--"--t-----,-----+----'---+~---1-~--t-~---t-~-.--1---~-t----1----,~--t-~

,,--......- -..... ----+,----;-,..,.....,..;.--*---*---;-.**----*~----~...

z0

--.-.-__-__-_-_+--_-_-_-.-.o---+-,..__--.-_.-_. t-i-_-i,-*"_-,_>-_-.-'-:-i:-.. . _-,,..-=-~- -'-.-.,-_+--i*---.-.-_-_>-_-.-.-_-_-+-_,.._-_-__-_-._... *:.... .. --- -~ ..:..--=-~*---+---..---t-~--

H

~H i::. :- * --  :+'-C*-: ;-,~-;;it ; ; : :- ;-: : : ..... : ~..: : : :~- : : : -: *:

~-~-f'.-*---=-~1),.._ ~-.-~-i-,--,-J--'-:-i:-*-=-:-: . -=-:-'-:-i:-+-~-:~~-;-..,..---+----+-:-* '.-:  : : : : -~:

zw .. *****

u - -***- -- - -* - ...

z 0

u

........ 0.1--111----+---~---+----+--~1----+---.....~===~~;:::::~;:.~2--_-+-,..-_-_- _ __-_+::_-:_-_-_-~_-_-_-_-_ ......._-_-_-___....,~---

M ..__-+---r~*--~~---t-----+-----+---+----~-----i----+---*-+----t------~--~

I H

-......-- ---- ---- ~ -

"H z -*--+----+-----.. - - - ~--+--~-1------1-----+------+--- f-----1-------- -*--* - - - - - - - - ..

w H -----+---- 1--------i-'---+-~-'-'-+~--1-----+-----+-~---.---+----- - . . . .

--.--~ --~--,

~

-~~i~~ .....-  : :"~ .*--t: ;-:* -: =-H:

H

i O'

i:,::i


+---t--- 1-----~1-----+-----+---+----~----+----~ - - *-~;:__ . _- -- ..:.-~---:.....f~

. ~ .. :<~::

i:,::i C/.l 0

0.01 rg\ ';;:*:_---* -------- G~-- -- ------ -* G - - - -

0 Q r - - - ___ C:J G ___

--~~t--=-----::% :r.. 8 ----,~~-~Q~=

-i---- --- - -- ----- - ~e o" ---- '< G<; G - G---

- - ----~~ --- ________ Q ________ Q _ ~ - - - - . --------0----r.---0 . - *C:ll)*--

. ~,$0@ -- ~:_:_ '. _* <~ ~ ~ - Q_Q'(;'~ 0 - : __:_*_. ~-- G I.

II ~ ,.,.---...1,.0.~0 G ~~ ... - - - - . - - 0 ll---'-~~-1c---------- --~~-=--"~ ="'~ - ___!:> _ _ <~---I\!) G":-'---:--- - i y '4)'1) . *

--~G) __ - - - -

C!)

~

  • --- ~--...

~- . . . .. . -

---*---t---+-- --+---- ~ --:-:-:-:-:- . . . . . . . . -- . .

G 0.001

=i;x;i(:)--t-----+------+-.,..-,----.-t--.,..-,----+----i-l~-,

_(i)

J"..:___---1---+~---~---,-.-f--~*------+---+----+---* -.-+----!----- ~--.--+------~----* --*-- - --

- - - ~ - - ;__:::-_+---- ~

_: f . - _:-=-j .... __ : ~

100 a+H---+-~-H--+--~l----!f-___.__,ll----11-++-+-+l--f---t---l+-f--t-t:--+t-+--t-t--:--+--

0 SEP OCT NOV DEC JAN FEB }!AR APR }1/1.Y JUN JUL AUG SEP OCT t:JV 1980 1981 41

FIGURE 5.2 SURRY UNIT 2 - CYCLE 5

  • I-131/I-133 RATIO vs. TIME 10.0

\*c*.c !".',*,-cc*'* I ,-,.,_cc., . * ... : . . _ :*: _: :..~-:. ****- ***- *- __ _

.. :.~:~_1.* :::: ::- _*-. __.__ --- -<:=. -- . --__* ___: -::-:*  : :-* =--=~ -....:::: ==::. - -

-- =-=

-*- ------ ------*- --*--*-*-** *.:::*.::._:- ~-__: -----~~-==-= __ _;_-:: ..:..:: __ -__ -:..:__,:.. . . .: . _______::.*.:.:* _*.:......:.:..::..:_ ---*-------

~=--:=- -:.:--===:- - ~ ~I.-=:-:-:-.::.= _..:.__ _____ : -~=--- _:::_----=-:- .-=-==::.:.:*

~:.c=*-c..c*'-**+*...c-:_:*cc:....c...,.~: .. *- ----+--111

_* *.* ***:_ --* ... **t; *: --* --- ~ - .

---*--**-_* ***--*-**- _*-**----~:=== _:. .-.: .-: : .:. --====--- .......:-.:::**: . .:**:*-:::*.- .... ---_:__ :.:*: ---* .*:--==*--

=*:::::-= -=-- - - - - *-----*-=--~===~=-~:.::-.*

    • -**--*- --*--- *-*----*I--**-- --- - - - * * ---*-*-** - - - - ---* - -*

-**-*-- ----*- *---- ----- *----f-----*- * - - - ------

. *-*---- - - - - - - - - - * **:*a .. --*. *-*-*-

---+-._* ~ ~ ___ ---- - -*- - - --- --*~=---=-:-==::~ *: :_i ~~_:___:_ ___:__~-~~

- ~~,';IL._______ ---* *-------* 9. *-- -~

. (I)~ i> .. *- --- - - - - - - - - -- . e G> ~4'> ... -E .

. ~ . ~,;_ - *--- -* ------ - -**----- ------ ------ C ** G* * ~-

1. 0 C"'l C"'l
  • PIN HOLE LEAKS

- H I

C"'l H

I

~ : - ~-:-~--  ; ~ .  ; : ~~_:_-,~~

.:.~-~--:--

. .,....,--':--ll--,-,--,--t---,-'--,--,-t--'---,---:--'--!--'--'--"-c-+--~-'--~--'---,-,---.+.c...,--,--.,....,~. :

  • (

,~--,-,r.--,-*...,-

~:........:_:_ --::--~-:--:-:-:-:- ~-=--:-*--:"*

---*- --,--.c...,--,--+-,-,-a

-:-7'7

-~=-:

,:..:....:...:...:...~-

. Q .. ... . . . . -- .- -:-:::::-- -

1
Q: ,>::

G: :~ e:


+----*---+----1----+---+----+-----+-----.___- --*- - ---r----

____

  • _.. *--~----'--'-+--"-*

.. AND/OR TRAMP

: *' URANIUM

"--1------1---,--,-+-,-,-,-~.---1-----l---.--1----,-+-.--l,--,-*---1---,....,..,----,1----1----,--1------i---ll

  • ~ t ~ ~ -~ ~-~-: ~~ ~ ~ i*-+t+-: ~ ~~ ~ ~ ~-:-- ;-~ i; -~ ~ ~ :- : ;._:.. ;-~ ~: ...

- - - - -.-. *:--- -:--7"--+-'----,-...-.-lil 100 I I I I


1--+f--!---1++----l---~-'-H-1---+--LJ_,_ i 0 --1----l""'----+---~---i-----l------l-+--'---~~---'--1----+---L-1-----11-....... -----'---*

" SEP SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG OCT NO'i 1980 1981 42

Section~

CONCLUSIONS The Surry 2 core has completed Cycle 5 operation. Throughout this cycle, all core performance indicators compared favorably with the design predictions and all core related Technical Specifications limits were met with significant margin. No abnormalities in reactivity, power distribution, or burnup accumulation were detected. In addition, the excellent mechanical integrity of the fuel has not changed significantly

  • throughout Cycle 5 as indicated by the radioiodine analysis.

43

REFERENCES

1) Mr. T. K. Ross and Mr. J. H. Leberstien, "Surry Unit 2, Cycle 5 Startup Physics Test Report," VEP-FRD-37, October, 1980.
2) Surry Power Station Unit 1 and 2 Technical Specifications, Sections 3. 1.D and 3.12.B.
3) Mr.~- K. Ross, "HEWTOTE Code", HFO-CCR-6, Revision 2, Vepco, July, 1981.
4) Mr. R. D. Klatt, Mr. W. D. Leggett, III, and Mr. L. D. Eisenhart, "FOLLOW Code," WCAP-7482, February, 1970.
5) Mr. W. D. Leggett, III and Mr. L. D. Eisenhart, "IHCORE Code,"

1.JCAP-7149, December, 1967.

6) Letter from Mr. B. R. Sylvia (Vepco) to . Mr. H. R. Denton CNRC), ij "Supplemental Information Concerning Our Assessment of NUREG-0630, July 28, 1980 CDocket No. 50-281).
7) Surry Power Station Units 1 and 2, Technical Specifications Amendment Number 70, dated June 16, 1981.

4~