ML20002D277

From kanterella
Jump to navigation Jump to search
Control Rod Reactivity Worth Determination by Rod Swap Technique.
ML20002D277
Person / Time
Site: Surry, North Anna  Dominion icon.png
Issue date: 12/31/1980
From: Beck W, Bowling M, Ross T
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML18139B000 List:
References
VEP-FRD-36A, NUDOCS 8101200235
Download: ML20002D277 (61)


Text

I  !

I e VEP-FRD-36 A CONTROL ROD REACTIVITY WORTH DETERMINATION BY THE ROD SWAP TECHNIQUE BY T. K. ROSS W. C. BECK Reviewed By:

. j -

/A, *. t r . ., , ~; e v. r M. L. Smith, Supervisor Nuclear Fuel Engineering I Approved By: Anproved By:

l $, -

lbhw k. k ".

- - /

M. L. Bowling,'Directdr J Lozito ~ rector Nuclear Fuel Engineering

I - -- - ~

l

I Section 2 I ROD SWAP REACTIVITY TESTS 2.1 Test Description The objective of the rod swap tests is to measure the reactivity worth of each control rod bank. The firoc step in the rod swap procedure is to dilute the most reactive control rod bank (hereafter referred to as the reference bank) into the core and measure its reactivity worth using conven-tional test techniques. The dilution rate is selected so that the rate of change of core reactivity is approximately 300 pcm per hour. At the completion of the reference bank reactivity worth measurement, the reactor coolant system temperature and boron concentration are stabilized such that the reactor is I critical with the reference bank at or near full insertion. At this point, a boron endpoint determination is made, and an isothermal temperature coeffi-cient test is performed. Initial statepoint data for c rod swap maneuser are obtained by moving the reference bank to its fully inserted position, if neces-sary, and recording the core reactivity and moderator temperature. A rod swap maneuver is performed by withdrawing the reference bank while one of the other i

control rod banks (i.e., a test bank) is inserted. The core is kept nominally critical throughout this rod swap and the maneuver is continued until the test bank is fully inserted and the reference bank is at the position at which the l

core is just critical. -This measured critical position (MCP) of tle reference bank with the test bank fully inserted is the major parameter of interest since it is a measure of the reactivity worth of the test bank. Statepoint data I (core reactivity and moderator temperature) are recorded with the reference bank at the MCP. The reference bank is alternately withdrawn and inserted a s=all amount about the MCP in order to measure the differential reactivity worth of the reference bank over this region. The rod swap maneuver is performed

.E .

I I in reverse order such that the reference bank once again is at or near full insertion and the test bank is once again fully withdrawn from the core. Statepoint data (rod position, core reactivity, and moderator temperature) are recorded in order to confirm RCS boron concentration stability. The rod swap process is then repeated for all of the other control rod banks (control and shutdown).

In summary, conventional dilution /boration test data are obtained in order to determie.e the reactivity worth of the reference bank iaserted alone.

Rod swap test data are obtained in order to determine the reactivity worth of each test bank with the reference bank partially' inserted in the core.

2.2 Test Data Analysis Mathodology The reactivity worth of the reference bank is determined using the standard analysis techniques associated with dilution /boratior rod worth test data. The reactivity worth of each test bank is determined from the measured reference bank reactivity worth data and the measured critical position data.

As outlir.ed in Section 2.1, the data that are recorded during the tests include the following
1) the integral and differential reactivity worth of the reierence bank with all other control rod banks withdrawn from the core, lI 1
2) the critical RCS boron concentration associated with the reference bank being fully inserted in the core with all other control l rod banks withdrawn from the cere,.
3) the isothermal temperature coefficient associated with the reference bank being fully inserted in the core witn all other control I rod banks withdrawn from the core, l
4) the critical position of the reference bank associated with each of the control rod banks being individually fully inserted in the core,

.g 3

I I 5) the core reactivity and moderator temperature associated with the reference bank being fully inserted alone, and the reference bank being at the measured critical positions identified in Item 4,

6) the differential reactivity worth of the reference bank in the region cf the measured critical positions identified in Item 4.

Items 1, 2, 3, 5, and 6 represent data that are obtained and analyzed using the current standard testing and analysis procedures. The measured critical reference bank position data, Item 4, are also analyzed in a straightforward manner. The analysis accounts for of f-nominal conditions that may have existed during the test. These may include the following:

A) variations in the moderator temperature, B) variations in the RCS boron concentration, C) deviations frem crit.cality i wit'- the reference bank fully inserted alone, and

3) deviations from criticality with the reference bank at the measured critical position (MCP) and the test bank fully inserted.

Tne reactivity effects of Items A and B can be minimized through strict control of the RCS temperature and boron concentration during the test and can be quantified based on the test data. The reactivity effects of Items C and D are measured directly by the reactivity computer during the test. Equation (1) is used to adjust the measur'id critical position data to account for off-nominal test conditions.

I I 6 I

I A I MCP 1 MCP = MCP - ~#

(aC x T) +(CB * "C C C '

sah _

Where:

MCP^ =

the measured critical position of the reference bank adjusted for off-nominal test conditions.

MCP = the measured critical position of the reference bank.

LT = the increase in moderator temperature during the test.

. a- = the isothermal temperature coefficient measured with the reference bank ful'ly inserted alone, aC B

= e n rease n r n c n entrat n during the test.

a C

B I

c " ** * 'Y "*"' " "**

  • Y

_B C inserted alone.

MCP P = the core reactivity measured with the reference bank at the C

I MCP and the test bank fully inserted.

[\ah = the measured differential reactivity worth of the reference bank in the region of the MCP.

These data adjustments were quantified as part of the data analysis of the rod swap tests performed during the startup of Surry 1, Cycle 5 and 5

North A.ina 1 Cycle 2, and are su=marized in Table 2.1. It can be seen from the information in this table that the data adjustments are usually very small.

The reactivity worth of each test bank is determined from the measured reference bank reactivity worth data and the MCPA of the reference bank for each test bank using the following basic reactivity balance equation:

I I

I 7

I

I R = AR"(M) + R(M)

I Where:

R = the measured total integral reactivity worth of the reference bank inserted alone.

I AR (M) = the measured integral reactivity worth of the reference I M bank in rted alone from the fully withdrawn position to the MCP I T',g(g) = the total integral react M ty g orth of the test bank w M the reference bank at the MCP As described previously, the value of the total ;ntegral reactivity I worth of the reference bank inserted alone, R',

M is determined using the dilution /

boration measurement and analysis techniques. The alue of iR (M) for each test uank is determined from the same measured reference bank worth data using the appropriate adjusted measured critical position, MCP^. Figures 2.1 and 2.2 present graphs of the measured integral worth of the reference bank for Surry 1, Cycle 5 and North Anna 1, Cycle 2, respectively, and illustrate the determination of the values of A' (M). The total integral worth of the test A M bank with the reference bank at the MCP , T'iR(M), s dete M ned hom Gese measured data using the reactivity balance given in Equation (2). The deter-mination of the measured integral reactivity worth of each test bank from the Surry and North Anna test data is illustrated in Table 2.2.

I

I I

I lI 8

TAlt!.Ql, HEASURED CRITICAL POSITI0ff DATA ADJUSTilf fli SllfiMARY Measured Critical Adjusted f1 w.ured Reference Bank Measured Data Differential Critical Reference Test Position-NCP Adjustixnts Rod Wor *th Bank Position -

Bank (steps) (pcm) (pcm/ step) flCP (st< -; -

i Surry 1, Cycle 5 l D 186 -8 -S.4 165 C 123 -0 -6.4 122

A 96 -14 -9.0 M SU 138 -14 -6.0 136 SA 171 -6

-5.6 170

f. orth Ar.na 1, Cycle 2 C 164 +1 -5.6 164 t* 228 +16 2;'

A 189 -10 -11.4 1 P.S -

D S3 159 -3 q.==

l -5.3 159

&g 4 SA 200 -6 9.0 '

199 6

r QC)

A C -a Mce - Mcr - --(tk araireil Dat a .t))us t. rent )

rerenttal und liorth) bfh 6

'TI.e .%.n ;ured D.ita A.lj us ti..ent for 11 bank 1.s not applied to t he !!(:P valo.e (228 e.tepa) u t i. t L t.e l 3. P* 6 v.il u.- i..a 1.

i.o great er t han 223 .stepn. This !!cauureil Data Adjustmca.t 8" t t he .uaount of ree.r t i vi t y 1.y wl. i ch t i.e total w rtis CJg of !! 1.ank, in:ierted alone, 6.xceeds the tot,1 worth of tt:a reference bank, inuestut alone.

h

W W W W W

_ _ _ _ _ _ _ _ . _ ___ _ _ _ _ . _ _ _ _ _ _ . . _ _ _ . _ . . . _ _ . . _ . . _ _ . _ . . _ _ . _ _ . _ _ _ _ . _ .__..._.m . _ _ _ _ . . . . _ _ _ . . _ . _ . . _ _

M M M M M M M M M M I

I l TAllt.Is 2. 2 Ml:ASl!HED TEST ll ANK IflTECRAI. WOHTil SUtntARY l Adjusted Measured Referen$e ikin k Re fer ence ti nl. Test n,na -

i Crit ic.a1 Ruference t! orth to MCPA- Tot al Wor t h - To t.,1  !!.ar t h -

Tm Bank Position - 11 gh g!!

Bank MCP A (steps) AR (H) i R ( fi) gpc,) (pcm) (pc ,y Surry 1, Cycle 5 D 185 148 1405 1257 C 122 524 1405 381 A 94 756 140i 6 '. 9 53 136 428 1405 917 I

l SA 170 227 1405 1116 6-*  ?! ort h Anna 1, Cycle 2 o

C 164 385 1069 (l '.

11 22ft 0 1969 l i . c'. 5 u

A 108 226 l i ,i .9 F '. i g g Sil 159 420 106) o '. 9 h)

SA 199 119 1669 9 50

/ R(::) =R - En"(M)

$JY '

  • As Inlicatt d in tiac note on. Table 2.1, s t e t <.. t a l int c;;ral vor th of h b.uA, f i.:- r t . . G < c. e , -:

..t . r  %,J 6

t han ti.a t oc::t integral w<.rth of the referenec bank, in:.c rted . 1 D.a .1 Adjuntuent (15 pcm). The total tr.t eya l u,rth o f 1: L.ad:, " 30. y ,

by (b. . o. . .

c u t . 6 ... % d i.f it' '

t. t !..

.: n

r. . ..

h bai.k at i t 's 2:CPA (i.e., fully wit!. drawn); TI = id69 resa t 16;(. d , =t,.ia J GM ;,es . b

)

4 1

J J

i l f

o FIOURE 2.1 l SURRY UNIT 1 - CYCLE 5 MEASURED REFERENCE BANK WORTH l 1

g B BANK WITH ALL OTHER BANKS OUT j l

1 1 1,

I 1

i O

! O

! g .__- _ __. _ . . . .

]

, _ . . _ . . _ . . _ . . - l O ~~~:-. 4 -.. i._ A (MCF = 94 steps), AR"(M) = 756 pcm  ;

j .. . .

w A

= 122 steps), AR !('I) = 324 pcm l

N -

C (MCP _

._~ ._ A v j . . _ . - - . _ . _ _ - - _

SB (MCP = 136 steps), an".r;) ,,

= 428 pcm .

n .. _ 2_ .

SA (MCP = 170 steps), LR"( t) = 227 pcm l @ . - . - _ _ _ _ _ . .___.___ _ . -- - D (MCAP = 185 steps), AR"(:1) " 1/4 I:cn l g; _

l ,

t . __ __ . . _ _ . _ _ . _ _ _ _ - _ . _ . . .

> .. _ s _ L _ . .. .--..._en_ 4 - n - .... . ,

l -.- - , _ - . .-. . . . - - - . .,_.. .-- . . - .. _ _ . .

}

4 ga _ . . _ . . _ . . . . _ . _ _ _ . _ _ .. _ . __..

2g _._ _ . _ . . . . . . . _ . . _ . _ _ . - _ ,.. .. .. _ . __ _

I

_._.._ . . . . _ _ ._= ._ _ _ .. . .

g a ... . _ . _ . . . ---_. _ . . _ . . . - . . _ _ _ . . . ._.. . . . ..

g ___

.._.._..___7..

....___._e_

.*.ab_ ...ep .

__$..i_.m. ,

I ya p.- ,

Z

_ _ _ _ . _ _ . . ~ . _

_..A_.._

__,q_. -. . ._-_.

__._. ,_ .._.i I

_. _, .__ . . . _ . + . . . ~ . ----..s - s ..

_...I.-.._._ _ . -C ___

a._ -....-.. - .-- .

-'S E - - -

, ._._. - _ _ _t._. . . . . . . . _

m.3 . _ . . _ .

p .

i I w

_._.-t u.

_..L._._..._u.

._ I. .

. L. , .l.

t_ _ . . l . sA--

.;.L_;

_.I..._=..

n.

w 4__. L. 2_. l _ _ __ . . _ . .

g;- _. a _ . _ __ _ . . . a._ ;.. ,

g

.I w

. _ _ _ . . . _ . n . . _.2_ _ . , . . . .

,u.,. .l. l. N _

O 40 80 120 180 200 228 I BANK POSITION (STEPS)

I 11 I . -_ . . _ - _ - _ . . - _ . . . - _ -

I I FIGURE 2.2 g NORTH ANiiA UNIT 1 - CYCLE 2 MEASURED REFERENCE BANK WORTH D BANK WITH ALL OTHER BANKS OUT I

e I O g s.

SB (MCP = 159 steps), AR"(M) = 420 pcc Z I h A

C (MCP = 164 steps), AR (H) = 385 pen ---

A A (MCP = 188 steps), AR (M) = 226 pen

\ A SA (MCP = 199 steps), AR"'M) = 139 pen I

r gg 1

- - = - - - - . - .

a. 3 _v  %.- . . _ _ . _ . . . _ _

w .\ .. .- _ . _ . _ _ .

I I g \_

I g - __

ce \ --

2E _\.- __.. . _ . . . . . _ _ .

. '. ~~
:

I 3 .. ._. .

~ ~ ~ ~ ~ ~

a: -

- ~~C .. ~~~~~_.~

-- <SS we I H4 Z

~~

_ __;__._.l l

<c 1'.-~...~.~.._~_~

g_. .  :..::.

, j g. .

y I ,

,, ~

_u

_ _. j.- -

7 , ._ _ ._ g 77q . .- __ __

g_a _ . ._ . -

1 L~.~~-t ! -~ 1 . ~ T:~...

E ,

, "-- - = ra.:d- 7 c- i :-_. -.

, 5 __._..___.., .r - - r- i n.,

0 40 80 120 160 200 229 l BANK POSITION (STEPS)

I 12 I

!I

!I Section 3

I CALCULATIONAL METHODOLOGY
I 3.1 Introduction l

The design information required to support the rod swap tests censists of individual control rod bank worths, predicted critical reference bank positions, and test bank total integral worths. The design data required to produce this information are generated using the Vepco PDQ07 Discrete ( and FLAME

a models. The PDQ07 model calculates core reactivity and power distr'butions i
in two dimensions (x,y). For data requiring an axial representation (e.g.,

any core configuration with control rods partially inserted), the FLAME model is employed.

The design predictions, which are required for the rod swap test, are determined from the following sets of calculations:

1) the total integral reactivity worth of each control rod bank

= individually inserten in the core,

2) the critical boron concentration with the reference bank fully inserted in the core,
3) the differential and integral reactivity worth of the reference

]

bank as a function of bank position with all other banks withdrawn I from the core, and

4) the differential and integral reactivity worth of the reference l

i bank as a function of bank position with each test bank individually inserted in the core.

Items 1 and 2 are calculated with the PDQ07 Discrete model. Items 3 and 4 are calculated with the FLAME model.

!I 13

.I

_ _ \

I I The design predictions for the critical reference bank position with each test bank fully inserted in the core and for the total integral worth of each test bank are determined from t>e above design data and basic reactivity I balance equations. The methodologies used to generate these data are described

, in detail below.

3.2 PDQ07 Discrete Calculations The total integral reactivity worth of each control rod bank individually inserted in the core is required in order to determine tne identity of the reference bank. In audition, these bank worths are used in the reactivity balance equations described in Sections 3.4 and 3.5. The total integral worth of a control rod bank individually inserted in the core is calculated by the jh W following equation:

'I k. - k Bank Worth (pcm) = k xk g

x 10 5

(3)

Where:

k = eigenvalue from a PDQ07 Discrete run at hot zero power, all I rods out critical boron concentration, with all rods out.

k. = eigenvalue from a PDQ07 Discrete run at hot zero power, all I
  • rods cut critical boron concentration, with one control rod bank fully inserted in the core.

The critical boron concentration with the reference bank fully inserted, CB (ref), is obtained by performing a poison search with the PDQ07 Discrete I model.

The calculation of the total integral worth of the reference bank with each test bank fully inserted requires two PDQ07 Discrete runs per test bank: 1) a run with the test bank fully inserted and a boron concentration of C heO; and 2) a mn W M the reference bank and the test bank fuUy inserted B

and a boron concentration of CB (ref). The reference bank worths are computed 14

I ,

I I using the same technique as in Equation (3). The reference bank worths determined i

in this mann c provide normalization for the FLAME model calculations discussed in Section 3.3.

3.3 FLAME Calculations The differential and integral worths of the reference bank with all other banks out, and with each of the test banks fully inserted are calculated using the FLAME model. The same methodology is used for both sets of calculations.

First, a series of cases is run with the FLAME 3 code in which only the referer.ce bank moves: ,

1) reference bank out,
2) reference bank inserted in the top node of the appropriate assemblies,
3) reference bank inserted in the top 2 nodes of the appropriate assemblies, n+1) reference bank inserted in the top 'n' nodes of the appropriate assemblies, last) reference bank fully inserted.

For the reference bank worths with all other banks out, the all rods out critical boron concentration is used. For the reference bank worths with the test banks

.I - -ted, the reference bank in critical boron concentration, C (re B

, s useL The change in core reactivity resulting from each movement of the reference bank is a direct indication of its differential worth.

The second step in the process is the normalization of the total integral worth calculated by FLAME 3 to,the reference bank worth given by the PDQ07 Discrete model (Section 3.2 above). Based on this methodology, the following i equations are used to compute the reference bank worths:

I g u

I I Differential Worth at Node 'i' (pem/ step) =

k, -k i+1 10 j

k xk 2 x SPN i-1 i+1 Integral Worth at , k, - ki (5)

Node 'i' (pcm) x 10 5 x N I k x k.

o 1 Where:

k o

= eigenvalue given by FLAME 3 for the reference bank out I k.

= eigenvalue given by FLAME 3 for the reference bank inserted in the ith node SPN = number of steps of control rod movement per node N. = total integral worth of the reference bank from the PDQ07 Discrete 3 model divided by the total integral worth from FLAME 3 for similar conditions of boron concentration and rod configuration For these calculations, there are six (6) normalization factors (N ).3 Five of these are for the cases with the reference bank being .nserted with a test bank fully inserted. The other is for the reference tank inserted alor2.

Equations '4) and (5) are used to calculate the differential and integral worths of the reference bank as a function of bank position.

3.4 Design Predictions of the Critical Reference Bank Positions l

The determination of the predicted critical position (PCP) of the reference bank with a test bank fully inserted is based on the following reactivity balance equation:

R =T +A (P) (6)

Where:

l I R = the total integral worth of the reference bank inserted alone T = the total integral worth of the test bank inserted alone A (P) = the integral worth of the reference bank from the fully withdrawn position to the PCP with the test bank fully I inserted 16

I I The values of R and T are calculated with the PDQ07 Discrete model as discussed in Section 3.2 and the value for a (P) is determined using Equation (6). The design prediction of the reference bank worth as a function of bank position with the test bank fully inserted (calculated with the FLAME model as discussed in Section 3 3) is then used to determine the bank position at which the reference bank worth equals the value of a (P). This bank position is the predicted critical position of the reference bank with the test bank fully inserted.

Figures 3.1 through 3.10 are ;; aphs of the predicted integral worths of the reference bank with each test bank fully inserted . Also shown is an illustration of the determination of each PCP based upon the value of

, L. (p) for each test bank. Table 3.1 preserts a su= mary of the predicted critical position of the reference bank associated with each test bank .

3.5 Design Predictions of the Integral Worth of Each Test Bank The determination el the predicted total integral worth of the test

.I bank with the reference bank at the PCP is based on the following reactivity balance equation:

R (7)

=aR(P)+Tf(P)-R Where:

R = the total integral worth of the reference bank inserted alone

~

LR (P) = the integral worth of the reference bank inserted alone from the fully withdrawn position to the PCP i

' P = ee al integral worth of the test bank w M the reference T*R(P) bank at the PCP k

I

.I

I I The value of R is calculated with the PDQ07 Discrete model as discussed in Section 3.2. The values of AR (P) are determined using the calculations of the integral reference bank worth as a function of bank position with all other banks out (calculated with the FI.AME model as discussed in Section 3.3) and the PCP values determined in Section 3.4. Figures 3.11 and 3.12 are graphs of the predicted integral worth of the reference bank for Surry I 1, Cycle 5( and North Anna 1, Cycle 2 , respectively. The determination of the values of LR (P) based upon the PCP for each test bank is illustrated on these figures. The total integral worth of each test bank with the reference bank at the appropriate PCP, T s detemined using Equation (D. Tame I R(P),

3.2 presents an illustration and summary of the determination of these reactivity worth values.

As described in Section 2.2, the measured total integral worth of eachtestbank'(R(M),isdeterminedwiththereferencebankinsertedtothe adjusted measured critical position, MCP^. Whenever the MCP^ is not identical to the predicted critical position, PCP, the predicted worth of the test bank, A P with the reference bank at the MCP , TAR (M), est be decemined in order to put the design values and the test results on the same basis. The values for T are determined from design data using the following reactivity tilanca equation:

I Tgg(3) + AR b = [ + a M) (8) t I Where:

T[R(M) = bank the t at talthe inte87a1 MCP worth of the test bank wM the reference I AR (M) =

the integral worth of the refgrence bank from the fully withdrawn position to the MCP inserted alone P

T = the total integral worth of the test bank inserted alone A (M) =

the integral worth of the refgrence bank from the fully l withdrawn position to the MCP with the test bank fully inserted

I I

The values of T are calculated with the PDQ07 Discrete model. The values of a (M) are determined using the calculations of the integral reference bank worth as a function of position with each test bank fully inserted and the MCP^ values. Figure 3.13 is a graph of the North Anna 1, Cycle 2 predicted reference bank (D bank) integral worth with test bank C fully inserted.

This figure provides an illustrative example of the determination of the a (M) values. Similarly, the values of SR (M) are determined using the calculations of the integral cedarence bank worth as a function of position with all other A

banks out and the MCP values. Figure 3.14 is a graph of the North Anna 1, Cycle 2 predicted integral worth of the reference bank (D bank) with all other banks out. This figure provides an illustrative example of the determination of the ARP (M) values. Table 3.3 presents an illustration and summary of the d._:ermination of the predicted reactivity worth of the test banks with the A P reference bank at the MCP , T e es ank worths dete M ned for Surry aR(M).

l

'W 1, Cycle 5 and North Anna 1, Cycle 2 are summarized in Table 3.4 and illustrate g

!g that the test bank worths are insensitive to small changes in the position i

of the reference bank.

I I

I I

I I 19 I

M M M M M M M M M M M M M TAllt.E 3.1 Pill:DICTI'.D CI:ITICAl. POSITIO!! SUl! malty lteference liank Total Test llank Total iteference llank llortin Predicted Critical llorth (Inserted Alone)- llorth (Inserted Alone)- to PCP (Test llank In)- Iteference llank

,, g P g,P g Pp) Position - PCP (pcra) (pcm) "'P"'

1:ank ,,

Surry 1, Cycle 5 D 1374 1183 186 181 C 1374 867 507 123 A 1374 631 743 98 SB 1374 964 410 133 S SA 1374 1149 225 172 florth Anna 1, Cycle 2 C 1095 687 408 167 11 1095 1039 6 222 A 1095 7119 306 195 l Sit 1095 713 332 162 SA 1095 941 154 203 l

l l

W W W W M M M M M M M M M M M TAlli.E 'l.2 P11EDICTED TEST ltANK INTEGilAL UCitTil IJITil TIIE ItEl'EllENCE P,AllK AT Till: PCP lteference llank Total lieference llank llorth Test 11ank Total llo r tit (Inse[,ted Alone)- to PCP (Inserted Alone)- llorth (itef liank at PCP)-

Test it P T

P 3 P)

!!ank (pen) (pem) Alt (P)

(pcm)

Surry 1, Cycle 5 D 1374 165 1209 C 1374 521 853 A 1374 739 635 SB 1374 453 921 FJ F' SA 1374 215 1159 North Anna 1, Cycle 2 C 1095 458 637 15 1095 7 1038 A 1095 210 885 l

3 15 1095 495 600 l

l SA 1095 131 964 l

P P T = 11 - Alt P(P) g(p)

E E E E E E TAlll.E 3. 3 A

4 PREDICTED TEST llANK li4TEGRA1. WORTil UITl! Tile 1 EFl:1:Et!CE BAlW. AT Tile ttCP Test llank Morth (Inserted Alone)- to !!CPA (Test Bank In)- to !!CP^ (Inserted Alone)- Ref liank at !!CP^-

P P P P Test T AR (ft) T g AltT(II) (pcm)

Bank (pcm) g g Surry 1, Cycle 5 D 1188 164 147 1205 C 867 520 531 856 A 631 772 766 637 SB 964 393 432 925 SA 1149 235 226 1158 tlort h Anna 1, Cycle 2 c 687 429 479 637 B 1089 0 0 1039 A 789 393 277 905 Sh 713 407 520 600 SA 94L 192 167 966 P P P P T

gg =T 4 Alt. ,(II) - Ali (?!)

. . ~ _ _ _ _ _ - _ _

E E E TAllt.l: 3.4

! Pl!EDICTI:D TEST liAt!K lin'l:GRAI, Unt:Tll Sl!!!HAltY Predictet! Ad lianted !! asured Test Bant; Uorth Test Bank Morth Ica Ref liank at PC1'- Ref liank at MCPA-Critical

" " '"' "" P P l Reference Dani: T T Position-tiCP^ ANIP) ANIM)

Test Position-PCP

' Ilank (steps) (steps) IPC"U (PC")

Surry 1, Cycle 5 ,

1 D 1f11 1f15 1209 1205 i C 123 L22 853 856 A 98 94 635 637 SB 133 136 921 925 o

" 170 1159 1158 SA 172 4

i a

North Anna 1, Cycle 2 C 167 164 637 637 11 222 228 1083 1039 A 195 188 8115 905 Sil 1 02 159 600 600 SA 203 199 964 966

, l ',

.g

_M o

_ " ge:N

- s W.-

n eC3Mg czm NI O< n Fl' nc ]

T U3gO,,_Oqma gmm 2[gO DC2ZX ro.A4.2 g I y

T 0

  • W g32X rD gg O 332X *2 =

M 0

0 M d 2 , . e- _ , _ . ' ' - , - '

  • 4l,;.. fit iIi '

3!

[,
+ . '

' - 4ti1;T. -

j! .

! t . - i . 4

j '

tiIil ,i .It M

"l1[l :;t 'Iij . '!t j t 1!ilI

t ii, j 1,' ,e . 5I l 0 - ~

0

(

_M 2 -

i,: ll4 -

j;:. t1' i {:

t ' . ' . , . -

i

)

nMN qv u m'm im M M0

,1 J

e r ,

C0

+ - . ,

o

_ Pit .

a ww- o i ~HcO

_ i I' . 4 '

(

_M

  • s t

u Foe ,nni * ,, . I H 4

+ . ,;

. i 2- ' .

!i1!.. t ,I  :!. i e  !

T . * , .

M R0 . >

8! .i-  !. .i. 1 Ii ., i l O07 ,I

, i W1 ( - , , , 1 .

f ti i6-l  ! t . . ' .  !

r 't,- ' , , , . . , .

L i

i. il' .- . i .

M A f

e[, + r t . f, t L1; * . *,

I . - . . ' <

t6 j g . t.

4!' .I ,. .

R I'

i

! t rl;. - !Fi i;. . i' l :!*f l , il,-t, G - ) t t,i. I tIIi .}. i. '.

. , ' . I E0 {1itij!,  ;-.*t

{:/.

M T N (8

t r ' '

f8  ?;: .;tt ' 1* ,5 i. . .!,

- ,g. i' ; .i ,  ;'

4 l, 4

'; . t. t .- ,t. t2
  • i, !: .

' lt t>

I -

.i .f! ' -

6

j , , IJ, i, t, lt i . j7i
  • rt ., . . '  !

M &

kfgtr:tt .

tt

,tt

-j.4:l i . . ' .'

.j

, ,l i . ; i l

j, 2

' i

,I .

,  !,. i. ' : .i . - .  ;

0 4 . }.i'.h 0 .ti il,  ;.t. , j:i. ,

1 . . . i.

  • 4

_M

- 1, j{,p i

,Ir j a ii .t!,!;;.t

?-1k iI}t -

t. [ . . . * .i .

i mnm t&'d

  • Hoo

.t- ij. j:

I,. i;te fl,I t

.3 'e a g'1;tgir1,'g . ,l  ;;l

- y; -

g g

{l.

g.l

l ,,1,!i g

6

1. l:!li; l , I

,. 'I '. ' * .h I

. . .1- i.

? i. . - .

t-  ! .- t 46 I + 1 , -

~

. 4 .1li ,-Ii I r! !,i{

f !p, = 4 f > . . it . ;- . .ii-

] .; :' .

  • t , l .;+ It  !

(

n ,O .o o pgo g -eo goc3 3

$N@

M D37M C OocD" y Oz mOag n9 C r y

h-C M *y

_M

_?Il llj,[j,

. iiI;l!.  ; ,. , ,

L

ji:! i 1j,< i; j 3+ iI
' i

~

um me----mm as uma en sum mas aus umm ' hun uma amm sus num i

s

i l

tl i

i

INTEGRAL WORTH (PCM) ,
( 4( 0 8( 0 1700 1100 2 (10 0 2d00  !

i f -,

4. - l ,.5- I' i t * *

,-

  • I'
..7. . . .

i .

j t--

' . - .- l T. -

i .

.g s .+

4

+

r t . .r J t j . .. .

7,

.- . 1 .. r- . .. . + . , . .

+. {

-}

g , . .- .} } . 4 ,

7 l ..

. 4 .} , . , 7.

jt i

9 l 4 .j 4 , 4.- ..

4. . 4 L ,,

.p p .

4. . 2. ,

( ' ,

ii "g t ,

t

+

t l 7 t ,

r [, '

t, '

i * "Q f bt t-

, b 1 -f -

'- . . *' i i

'*~'~

F* - +-t^* * * - ' '

g I; i + * *

{'Tl

{. f

j. e ,

t e ri  ;

{  ;

t i

j.f;,6 .

. t

.; ;.  ; , . f, * . - **

-. . i . 2 , , .,. . ,. . .

g l l g;

I f I.I h  !

I

  • tt- +

i}. g MQ ,

t'tt OC i *-  ;  :

r  ;- t 1 r .

t* +t+

3 ,e

  • g qg i t  ?, ' ' -

l - ,-

g; tl +

-- l*

  • t r- t - - * *
  • y, Z t t t , ,

In M lf i i g i 1! ,' * ' ' ' '

I '

D gq e l

Eg l

, l-t ' t- t

!?i. t-

  • t

+1 *}+}'

o ,.. , . . , - . Z

' I * :l0 C Is o l}- .t  !

,l. {

!,. .l, ' . f, Il

,-.l j 1 ,. .t .

b  !

m M

. t 4

, t 7, .

1-.*

1 2

1

i. .

6 i

t' l

3. . .. t'a6. .

.4 5

i M rqwm M

-g t i i  ; j  !, i -+ + -' tt ,-l{- -{t- $ * '

-t } -i - * - T l f-

-z.{ W g

g i

t.

t-On ~,**'**,-,**{'*i l {

6 t

. jg f}i:

t-

e

.' . t tt

't t* *

  • 1

! t

  • -t t
  • j
  • I:

tt r

    • A' ff) M M Q Z
  • I*t ZQ -

i ' i ' .

t

i. ,

, ' t.+-' + i ' t, t

i

,4.

D-

.! -I . o (d

a m rn o

. i; t

4, . i. ,

i i ,4 t

- i - .

en  : t .t  ;

e

, 4i. ,

1, i

. g

. ,i ,! .

3

. -j s

i 1 - ' ';  !

i ,

I e a a i i t 4-t Z EO mM i

--i  : l >

rq i i r> - i i'. i* un X t e g z r--

e i :

. 4, m . . . . . f. o m .t i.e

. i.

' _M = " "

Em Cno ,! t '

,r, 4' t i o n

i M

ll'j, t , .et ,, .

2 I cn

~

,'a i

- ' * * " ',,  %;  ;;! o

,iI. i '. , ' ' ! ' ,,

. . . .. , i i i i i{

N t M

  • , , '
  • y i., . : -i n  ;,iis,..t

, 2 o . . ' .

C3 j+'.'!

' ?. I.

e i

. , i i

{+;I f

N I I e N

W

I 6 i

~

'l Ii,i' i. l i g g

] 3m3r i

v u.o g

o4n_lfr CI

  1. I CC0nq
  1. l  :
C wg w I U3mg"Odro

" " r t

2 $glUmZOg Cg2X D EG:0t2  :-

g

^

U C cgZ7 EMg2 _ 3 DmZx C s h 0

[ 0 d

2 .

.-.~-

=4 t1- t4 i)- .' ')' .

1

. t.- . rJ *2 . , . i,

~

,t - -

.- . ' .- . ~ -

cI4 *I , .-. '-- --

t .+} ;j' i a '65 !1 m ....1_" ,

. , j

+ pl rt4t ,, ,, 3! . , '4 9 -

- -. -~9 - +'

1[ J +

+ .' ' '

~

0 i j: ,.it ii i' ,.1f; 3

0 . .

('

.m e m 2 t,,. . ' - 1.

.9 p..- . - . , - N nm d Qv a x

[ p,  ![ ,!

. - _ ,- ,* . t'-- .

. ,.,+e 7rtR -

,1,. 77J.

,t r

~

,+{i,-I.. ., 4>,:

r.
  • 7tt.t ~uNo ' $r
i. . . j c i - - . +.' .
  • a

.f. 7t.i,f 1 4 iit ,

- - .t . ;7 ' : .

a

)

. , . 1 .- 4 . .7- . .- .

p1,},

N0 -

44 4 ,4 3_i- . -

u ~" uOo C0 . . . . -

Pi t

.- r. ,4 t' . 1 .-;. ,.: , -;- 7

(

, ,f i ,j, t 7 -

. + ,. . . . - .

l6il. i t sl;. jJ i i:* ' , .'.

. pt, 3 r ,. .. .

H --.

4  ; . 1 . .  !. . , .

T il.

,t

, ;j

- q . y4j {.

j . ,. 1 ,

!t I.!:I,

, ,,6 .! . '

R0 e

j{i j t , , ,i!,4 l > .

  • i 1 -

.a}i -

. p ,4i. a[ r O0P ,+ - . , ,. , ' . ,-

,43- 1 W1 - . _ , - . ,-

, ,p1 j

Fj

- tt
  • i; ' i .

p , +.

l-4

- .7 t;. + -

r_ . 2 . ,- ' '

- t .t' ,1  !

L -

a 1 I3 }- ' ' , ' , :

r . '6i+! .~ a. , -

-}- t - ; t ' ' i h -

- :i l._ . -

0 -

-}

tt .1:i'r; . - ' ' ,

EO , .

e T (' . - ,O

,, a o. m " .a o :.

  • 8 I g - l I g 1 g i I N 'g}

l

t

{9ltt ;

r,,.'-li.;

]

I -

.t t) }it l8a ' ,t

, t t , ,7, 6 4 t.4 i.- ;- r -

t: l.,t: - i( . i' i-a t3y:-l

.Ij;l i}g r};t 1 - . .

j+jt, ,t t: ,. i- :

-;e, - jI,a i-3 t2 +! ' ' e -

ot

{t7,7,pt j, ,...l . tip:

,

  • i-,  ;

( -

r:;!-!/ ,

e t i, t ll- , - -

4 .i ,j

F; l,l j

ji['gl,l.}t t iis l , t * . a

iti I' .' t a ilq

,- ii.I 'l [; . - t.

' t.i r e

il }.j. 7, .!il. j,.it-I

.- ,- j]: :li ' e -

ll i!l j,l-

- i i+t

,J-

.:, i

il! 'l. +

(

o ,O .o , a -mo aoC 3 gnu e gm77 g D QCwgw . $ ntnu/

crc a

,m e ,

l l

I I

FIGURE 3.4 I

l P'EDICTED REFERENCE BANK WORTH SL'KRY UNIT 1 - CYCLE 5 8 BANK HITH SB BANK IN l

! I L

I, O O

u ,.

y--. .

y .-,. . ,,._

_ _+ ,

t . .

i ,r+*<-*

r

  • , + - + +-+ - + + - '

i .--t*+-++ .__ . . . . . . . . _ _ .

. . ..,. .. ;. . , . t ; i .. .a 4 4 , . . . . _ . i l r l i ._._;_ m _L ._. ;_ a _. . .-..;....;.__ . _ . . .

...,t . _ , _ . - . . - . . . . .

a '

I O ' '

  • P P P G, ., - . . . - . _ . - . . ,

.-t-~'--++-',-

--F--------

arT(P) = R - T -

<n. . . + . . . . , . . 3 -, t r.;.

,e .

137 t. - 9 64 2e.-., , . ..-; . . . . - .4 r

i e . a ..._; .._,. . . _ _ - . . _ . a _4 ._.... .

g_ ' -

. 410 pcm g g 7 ...,.,_._1. ._. . i ..._o . q ..

[

t L; .4 ..... . . r, . . .. 1 .a . _ . - , . . .

r  ; . p ,- 7 : _.- . -; . _, i-., + ;- .. _. L .- , . . . . .

I

>==

. 2--._,._,

I

. .-_ _., . _ . 1 . . . . . . _ . . . _. .,1__. .. . .. .

gC i

' "*- f ' I ~ +- ' *'

  • s--*- *-

CO

- " *-r-" '---" -- -

2; -,....y...-_._ p. . . g , u- . . . _ . _ _ _ . . . . . - . ... ,. . . .

...r..-.. ._ . . . , _

(g . . . . - . . -... .. p .. . . . . .

g . . . . . . . . . - _ ..- .t. _

. .4 CD . _ _ _ . - _ - . - - - _ . - . _ _ . . . _ -

'I ya Hg 2

t. . _ . .

(2

.-g

._. g .,. . .. _ . . , . . _ , .._ . - - . - - . . _ . . .

m -.. 1-..,._. , .- ..

I

. q. ...m ... . . . . , . ,.-. , , . , , . . .. . . _

t i .

t i . . : .. -- _ . - _3_ ' -

_ _ ~ _ _ _ ._._ . _ _ __ _% .PCF = 133 steps _ _.

i I

w . _ . _ - . _ . . . .. .a- . .. . . _ . . . . . . . . . . . . . . . .

.__g ;__ ._. _. _ __

i

._g . _. _. . _ . _ . .

l

._m_..

___g ,

, _ . ._. .. g, W I I O 40 BANK POSITION (STEPS) 80 120 160 200 229 27

---.w,g,,e-ww-.--e ,

w+- . . ,p...,.,,e , . . , - . , _ .y , _ _ ,,,_,,-.m,., ,,y .p ...,g,-

j INTEGRAL HORTH (PCN) 0 200 400 600 800 1('00 1000

! ,i ._.. . t 4  ;  ; -3 ., . . . , . .- , .;.

t..

i 3 I _;.

}., .

4-

. t. . r 1  :

y .i . .;. _i, .7 r .

r . -

.. 7, 4, 7 1

- .7, . ., _ . . . ., .. . ,

1

,1 j v  ; e L .-

.-t. }

t

+ , . .

1 r 1' r

, 7

. 4 t

  • i t 1 t r*- ,

j i *r -* t --- +  ;-

,= t f f- t- t-c

i I - t t t* I i

,+

w 3

. . t{ .

1 t t 1 l- i t ri -t r +- f- 1. -

2 O 3 . j .t i- 4 - 4 7 -j , [q l I .!. O

' ~ '

!  ! Ji. i l [ _ _

'y -

i + I i t I .i. i- 1 CD w Cn on .

j. t t, . . .

OC y ,

I  ;

7-

j.  !
I 4

i 7-p {

e t '.. .!

1 i 7

t.

i. . I 1

4 _ . l' .a.

t- :

i U3 --t A E rn A

.- l' 3

X g3 -

f --

t t  ; i t tt t 1-- i- f h -

}- A- t- t- 1 gg4 G jg i.. j M

.g [

I'

. .g.- 4 4  ;

t tt .

j j ,

i co l. i

.I t ' I

i. t 1, 'l . g .  ;

,. .t . t, . 4 MC Q ..#. _

.{ p. ,.

' 9 7 .J 7 7 E M Z 't i . I.  ! ',! I - -

i t J'.' .;: yej CD [ ,. .J-

-l t

  • t : }, ' *-* ~4 *-* M f't / / t]

~'

y ,1, pq ,

l, ii : .  ! y. .

.  !. .,p4- .J. I

{

j _ .i; jj j L

--t m -1 :=

8

,- +- -

T *A mm

, i s

t l {i

,.% . t . , ,!

. .I/- . - , ..

1

.1 l,
, 4

-.J. .

4 h, jijt '

3 1it3 i q - Ftt i]- +

i I'44-

- a n

m  ;

4 j

- Ch 2 2O 1 u

=

al 37 .
.t [ . ..

.t',7,..+.a j.I i

} ..f y n

t M c,i l.i' Ii lI l

, . 1 .

n lj . . .

"; }-

U3 O C4 1]{,l,t' l't': .l', i*

I**' ' . ~ l 'i'

'Illi, I

' t{I

' ~ ~

23

~

3 CD -<

'! " ^ ' ~

l j' '

220 M

0 i l j.- 'H!i!! 'il 'll

,r i tj t

! I t- - +

t F- l l' to to u e :o m

~ l ' , ,' X 2 T-lliit. Ii.;!'- i ll E '

-!lul -il!'!

CO ~

o-.

- y' j I, I, . !i' ti; [n , e l

Z z cn

i-

,. -i

' I4't * ,1' u m t

n,'?';-,'f t t ,tt G j

iii n.,,4

,t I

.{ .l,.,l l

,-4 7 f }l.f 4

3,

,!,4.ii i. +

4 ,

m  ;;

j

, . t, ,

i

, t.

e ,t

. I-i. tj g f5}- *l, 0- l6  ; 8 t

i h

  • j 1 O H , .

'* * }^ t'f

' . y1- i*if 't Q i t

'a 3 . f

,I i i  !

t

' l }' . *i

,i .  ! ;  : ;

  • t t .  !

a

t. 4 4

- i j

.t

j }6 I'- m 's' y

m

+ ,

I i

t

-t r

t +-

  • r 1

j

' +-

i 8

} t I

N

  • t

'

  • t
  • f i I r i 1 p i i M

(9

' Il 1'i! } i m

5 I.

' - e A

V

- 2o2d2 "zzm" .g J

m u.#

Czwd # I O< nrm 72m3 c Ryma zm g2mZnm g,zX gO%d~.,. n ,

o mmzA Iwag n MMzX sZ H

~

W O

O W d 2 { I ,;.j,j

,t l, ]tI

.i1I ;}
}

.[

2, ij3 ..-

4

. i 6 e; . i:i .i ,i,; 1 i,'* ..

i I ttt.-}.

ljtf {tl i . . - ' .

W 0 i4 t'

iI,l t,*. . t 1. ! . rr.

. .

  • i i , :,. .

J ,'

t .

t.

i!nf.

. ,h  !

s 0

( o 2

. , lII 3[Nmb , 3m g.

W t.

i:-I

.ii t1.

r t1 t, 3

, roo, s ,* y

.i6 t! ,i, l4i1 ' , :, :. e .

) .#i. , .

W M0 C0

,.;t .t:- -

.I . . i , -

.i , j i t6 t

rox. 3u 1

y P1 },.

1c3

'!.i,

,t1 t,4 :1.;

,'i, l,i.

1 tt,t.

r.

t  ! . , .,

m (

1 {';={ i .  ; . ; , ' ,

m

,. ,' t ,.i , , , .

u tl;t ,

.l.4 .. . i  ;. . +

H f.I t l,! f .

I ' , ri; t, 1 i, ttI  !

T I 1! tt*; . , ,I ,

R0 - r.!,!,. I , i. i . ;. - . '  ;! '

W O0 W 71 tt!,t.

. iy ;4 4 . ,

-1

.I f1t.i i i.j.e

,I

+ ;- t

. r ,- &; i i

,. ;. 4 ' . . '

s L

.:. .' . i! ' * .

e s R I,4Itf

,' i t' , ea 1

i.,

.t.; . - .

u -

R . tef i. t . ,t4 .

f - ii, J

  • i,Li ,. . .l> ..i,. t  ;.;. . . '  ! .

G . - * ,

E0 },

.!4f. t;,!  ;:. .  ; . . '

M T (8 N

',. t e i

!.;H,t. .

,t, t,

.l

- ; ;. t,o I,!.

i.

[, t1

+ '/ .

.- i I  !.t, .! . . ' .. , .

!. . i. ",i

! ,-. t:i. :1 t> '  ! . , . '

. .i: !.!1 4+ . ; . . ' ..',* + .

M  !,.

. + ;t, - .
>
- . 4

.i r{* , r . . * ,

. oo 0 I i j l [ I i l i i , , l j l I  ! l l l E y 4 mtf D1( .r

( ,1t, t 1. i l-i .  ;. r! .- ,

4 {,. t

. ,- ' . e -

.' i . ,-. . ' .

M .-.

l ,,ri* .i, i,. ;;..; I1 4 . t!

. - . . t . r, ;1- . . ' . , .  ? * .

.~

t .j. ' .i .; .!! .

- .i ;; . * , - . - . .i l plj i+. . j;;.t . , .  ?. . .~

  • 4 1i .i M 'i 4i 3t, - . . . ;.

. . , ' .~

(

goo o .o .o .

Mo ,mo

, gr.G

?

mmzx 7omMygOz mmsMog- -

M

- g r,

4 i

(

!  ! FIGURE 3 7 l, NORTH ANNA UNIT 1 - CYCLE 2

!, PREDICTED REFERENCE BANK WORTH i 0 BRNK WITH B BANK IN 1

I 1

i.

o o

Q .

r ._ . _ _ _ . . _ _ _ . . - . . . . _

. u..._.__. ., _ . . . . .- .. .... .. .

[ . . _ . . _ . . . . -_. ... . _ _ . . . L. .

7 _. - - . . _..- .-_ .-.

j e ......_

o . . - _= . . . . . . _ . .. ... ...

E g g _ _ . _ - p p p

. . ' - . . . - _ AP%(P)

A

= R -T a._._..._ . _ . . -.-_. .

1095 - 1C89 I

=

  • ~ ~

m _

ga . . .. .. . . . _ . . . . . . '

a . .-- - . - .. . _ - . . . - - . = 6m .-.

C I

.- .. . . .. + - - + . . - - . . - . . . . .. .- . . - - - - - . .

_ _ . _ ~ . . . . .. . . _.

g .__ _ _ _ _ .._____ _._._._

I gn . . _ _. _ _ . . -

._..2--. . . .-

p - - . . . - - .

1y  %

- - . . - N.-

. - . = . . . . _ _ . .

J - _,- . .. _. ... , .-

E g g . . _ _ ,

= . . .

I D

, y, _ .. - . ._ - _ _ . _ . _ . _. .

>= g ,. . . .

g , .

l

-- .n .- -- . .-.

. . _,. . . . . . . . - - . . . - . _ . . ~ . . . . . _. - . .

a .. ... .. . . . . _ . . - . . _ - - - . - -. . - . - . . . - . -

y ._,..._

E _ . _ . ._.

. y.. ...

.....L4-..'

.. r - - -

7___..

. 4 . .

. . + . . . . . - . ~. .,- .... . . . . . -

_. . -~

...-,..7..

E _ . . _ . _ . . .

PCF=2M i stegas

%d I 40 80 120 160 200 228 I

O BANK POSITION (STEPS) i l 30 I

--- T

I FIGURE 3.8 NORTH ANNR UNIT 1 - CYCLE 2 PREDICTED REFERENCE BRNK WORTH D BANK WITH A BANK IN l

e o

-~

~~

h ~~

/PA(P) = R P P I

p .

a _

O -*- -

1095 - 789

N___..__.

C

~

=

. 206 pc=

k , . . _-. - _ . . ._

M E .. -

E g, _ _ _ . \N.__. ._.._.-.....-... -.-

ag _

x._

-\

I 4.M h

.m .

.he.,*

-...s

.he e

- _ __. .. . . . .. n --

g _ _ _ . _ _ . . . . . _

ca . _ _ - _ _ _ . . . . . ... .. . . .. . . . .

2g _

I g g __

_a_ ,

ll 6 .

~._~.~~~ ..__ ._~~_. :..: ^~ ~~ . . . . . .

y, _ .._.._ _.__ _ -._ . ____. _ . _ _ _ _ ._ _

I

>4 g

p g ._ _ . _ . . . . . . . . _ . .

3 _-  ;  %.~.J 4 Jl'. J ~a 4 5 PCP = 12.eps g s

_. - -= . _ _

.g ..

l

}

, g w

._-.._...g (.._.

g _ . .. - - ..

I . _ . . _ . _ _ __. __ _ g i .

y _; _ . _ _ _ _ - . _ _ . ..

. . .. .g ..

p ..__-...

g__...._-____.-.. _ _ _ _. .. .-. .. .. . , .

E d - . . .- .- -__

E. . . . .

i w .

O 40 80 120 160 200 228 BRNK POSITION (STEPS)

I j 31 t

t

, . - - _ . . . . _ . _ _ _ . _ . . _ . . . . , _ . . . . _ _ . . . . . . _ . - - . ~ . . _ _ _ . _ _ - _ _ . . _ _

I -

FIGURE 3 8 I NORTH RNNA UNIT 1 - CYCLE 2 PREDICTED REFERENCE BANK WORTH D BRNK WITH SB BANK IN g

I C

O I  ; - - . - .

m . _ _ _ .

I

\- _ p. _ _ _.

^" ~'~

O o \ - - - - -

~~i'~.~..' .-

~

f,,p y (p) = gP,7P

q-

_.\ = 1095 - 713 .J: .

~

d 2" = 362 pcm  ; C)O ---

l (1,3 - __ _._. _ - - . . _ . .

i jg g - _ _ _ _ _ . _ . . _ _ _

h H \ ~~~~~~~~.T.~ T ~~.T. _.

"E g a _.

k_

lq. _ _ _ . _ .

' ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~

- J _ T ~ -~- ~ ~ . . .__
'. ' _

q; CE -

g ____- _ _ _ . - _ _ _ _ ._-_-- ..--....-___

l CD L _._ ~ ~ ~ _ ~ ~Z ~ _~Z ~ '~.~~.I.~. Z _~1'.~.T. i ..

ya __ ... . _ _ _ _ . _ . . . _ _ _ . .

h >- w -- - .~.- . _ _ . - . - - . - . PCF = 162 steps

~

Z, ,

" ~

~

fL ~~~~ ~::~.~ ~. .~_:. *:

m g._ .= _ . -en... _ . . - _ _ .

I e 4 o . y go.e a .__

y - _. -- . .. .

. g _ _

g._.__.__.. . _ . .

! = l~-~ Z. __ . .: :1

~

  • I:_~~. ~..* ~~.2
. ~~Ti Ll - >

I".

,......: ~ .1Z1_Z .

w

! O 40 80 120 160 200 229 ll BANK POSITION (STEPS)

Il jB 32 i

II 4

. - . _ . ~ . - _ _ _ . . - _ _ . _ _ _ _ _ . . . _ . - . . . _ . . _ _ _ _ _ . . _ . . . . - _ . _ _ . - - - _ . . - ---

M _

M

, g=m " O

-M hmAz " 5 CZ- - I nrT4 OP

- D 2To" CmZ* rO2HI l 1 l M

t_ ra $mnmr20I ' .

T T r

._ U m*DzA r H2 (85 c2zX Z D

.- W

-W

-W 0 0

7

- 1 l r  ;

I1i

+e .

i j.:j:.

ift i i M -

I t <  ;, ,; ,

t !*

j, f l!1t . .; ,;:t- .

. 0 i i' : 8 * ,

- 0  !

i 4 I

[g 5 ,o~

-M

( J 1 a P t .

l l

- l a eoo* i ,e,.

-M

) f H

i tt a sub yn, ,

C0(

t! ,

- P8 / ,i , , ii1 +

M (

l t r

+ .'!

l.

4 1t+

,l j.i j- ,

i - .

- H . i!-

itilt.

t: i!i it. .

T 1I 1' . r , ;.

-M R

O0 l

.}

,j.

i; ,

i

,l;fi ,

W(6 -

/r jli.!

ti4 4-

. l,'

,Ij t,

W L R

l' lt t

.ll l;i i

,titi4 i

.t,+1!:'

f j.

. 4 - ' .

.l:4 R lI I j- ii+ ,

t- i:

.:t . t tt .

G t>'

i}t l; '!

it! . t + - '

W E0 T( 4 I ' It i l:  !. i i i;' ti l>

ttrt i .; i-1 - .

N

,, 'l: , i t; .

it +- t,, . .t - iI ;.

I

. f t . .i ,-4!1.

itI M

,}1I i ir + . .t i - '

+1.  ! t 1 ,1:1 l.l}je 1 - : .;, 4 1 l i t,l l  ;:i i, 0 I  !!i:i! it i;l- itt-  ;; .- .

(

M 2 i, Ii E tiiJ *,

-1 I,I I( L ,t'i (.l itt;t. ; .

L g I i ! Mq" g J a

i" c!

l 6;i! . t, WbmL 1

- i+ e iiftl;i' . .

-M t't

{

-.I ti -

i o!r  !.444i -

, .;i-I!i;

-; . s' .

w ,{1 4 Ii l'c ,'t t :i. ln! -

1t:I-i!

- i- -

e ,

( -

- e E -3 .oo nN

-M M=ZX c omMt -

  • E U-Qc nm M w" 6

.M

< lll k 1I,j -

i I

FIGURE 3 11

.ll SURRY UNIT 1 - CYCLE 5 ,

h PREDICTED REFERENCE BANK WORTH hl B BANK WITH ALL OTHER BANKS OUT I

o E o g _ _ m ,. ..q_____ . _ _ - . . _ . . . _ _ - . _ .

I

- - . - - ., a-4 4_ - _ m 4 ,.- .. p_. _ L . . _ . . . . _ . . _ . . - _ . . . .

_ . , - _. . . . - .,_ _.._.. .a , . . .. . . .. . .

p i

j _.._....;. - . _ . _ _ ._ A (PCP = 98 steps), aR (P) = 739 pen TZ -

's M M m----- - - - - ~ = C (PCP = 123 steps), AR (P) = 521 pen --

.. - , . 4 .p _ n - i.'"* ~ P SB (PCP = 133 steps), AR (P) = 453 pc= .

. .65,
, ..g-..t, l' m m r: ,

. .. SA (PCP = 172 steps), AP'(P) = 215 pcm -

yo

~

me -_- .

~

D (PCP = 181 steps), d(P) = 165 pc=  !--

c

- _. = _ _ _ . _ . _ . - . . _ .. _._

I '------ --

I- '

- - - - - - - - - - - - - - - - T~~~~~

! H M i

.wa _ . . _ .. ._ . . . . .__.~

ea e.

~N_ _ . _ .

j 2% \ . . _ - _ . _ _ . ... - . . _

.. :.~^~

y . .

g - _ . . _ . _ . _ _ _ _ _ _

j g .-- .

c3 . _ . _ . - _ . _ . - - _ _ . . - . . _ .

Wo 1

i F- g . A _. _ = . _ _ _ . _ . _ _ . _ . ___

1 2 ,

, m . _ _ , ,,

.i .g _ _ . _ _ _ _

1--

-c l

g_ _ en

-~---~~~-~ ~ZZ e -

l, 4 '

g -g_

[ ._.

p. t_- t - .

.en . _ _ _ _ . _

~

l,  ; t_i .. ~_ .._ D ~ _ ~ .._. ~ . - _ . - _

g ._ g = _ __ _ ._ g _ .' .

1

= . ._ _ __

j , i ._ g ._. ._ _._ .___ g _. I _ .  %.

1 c.

) 0 40 80 120 160 200 228 l BANK POSITION (STEPS) 4 i

4 34

1 P

! FIGURE 3 12 NORTH ANNA UNIT 1 - CYCLE 2

PREDICTED REFERENCE BANK WORTH i D BANK HITH ALL OTHER BRNKS OUT i

i J

a llq E

= -

'SB (PCP = 162 steps), AR (P) = 495 pen'

~

C (PCP = 167 steps), AR (P) = 458 pen o A (PCP = 195 steps), AR (?) = 210 pcm.

!E O

, _SA (PCP = 203 steps), AR (P) = 131 pen-P lg B (PCP = 222 stecs), AR (P) = 7 pc:i j x

n

\ . __. 2 $~~. $' !ZiT'..

E -- _ 7- 1~.11 111 2'l yo N- .-

QE I w Z

--A y

X

..~ \

~

>- ~~~

  • E _ .. .:Z Z :.'_

QO ~ ~ - - - - - .__ _ . - -

35 - - - - . _ - - . . . . . _ _ . _

j + _. -_ _ _ _ . _ . . . . . _ . . _ . . . . _ _ _ .

g SB t---- ;7_-- ; --

g _ _ _ _ _ _ . . _

CD _ _ _ ,

-~

I; i._T ~';_ :_ . _ _7___ :_ __._

LLJ O g g- - - . . - - - . - - . - - -

l >- w* '

til-~ ~l~~l~_  !.TI _.!1 Z --

w .

gg . . _ _ . . . _ .

_- Ill _ _~~~ _::: T ..

,y.

o - -

ri -\- A -- - - -

v N _

~ -

9

. _ . - - _ _ l' i E 8^ -~i . _

~

t I- ._ . -- .c t :Z:1 E -

5 -

ti t g:__ .7-

_- . . _- l_-.  :

q. g_L.. ...:.., y.. 2 w

I O 40 80 BRNK POSITION (STEPS) 120 160 200 228 i

35 I

I

!I FIGURE 3.13 1

.l NORTH ANNA UNIT 1-CKCLE2 DETERMINATION OF AR (M)

T FOR TEST BANK C l

i i

o O

t1 '

l N i !

I

, , 1 i , , . .. ,

a . _ . _ _ . . . . . . _ _

I e , , ..

w g e i.t 4 g , i ra ,

go , . . .. ,, , . .

I Q%

r i

i

%o E Co '

~

N * '

3D I

i J LL_ ._.__.

CC . .

y ,._,- . - - - - . . . _ . - _ . - . . . - . . _ . - - - - - . . . . . - -- ... .

I CD ya > , ,

z5 , ,

b ._, .

t I . . _ . . . A -

. _ - . _ _ . _ . - _ _ . _ . . . _ _ . _ _ _ . .. . , = 161. steps,

_a .. .... ___ . . . _ _ _ _ _ _ _ A q M = !.29 pe=

e _______ ____ ._____ A v,

I  ; .

i i

.i

. . . . . . . _ . _ _ . ..l._. ..

- .._u . . - - . _ l... . ..

i . '

. _. . _ _ _ _ _ . . _ . _ . _ _ _ . . _ _ _ _ . . l.._...... . .-

I i

_L4

..L~._...

.l-..-.

w I

i O 40 80 120 160 200 228 BANK POSITION (STEPS) i 36 I

I I

FIGURE 3.14 l NORTHANNAUNIT1-CKCLE2 DETERMINATION OF AR (M) g FOR TEST BANK C I

o o

E Cw n-..

i  ! 4,-r , i ;i:i,!, , ,; ,t I

..;. . . . . i ,

e . i ,. . .. .

e I

t w N , ' .

-  ! - - ' ' i t+,t - i

%. i i _ _ _ _ _ , , _ _

.. j , 6 .

.j1 t6 {  !  ; ,

+ ir. . ,. i . ,. i . 1 ;

i

_.- ..e._e.. .

I E 6 i  ! .

.9

,, . i , .

8

}

. i 8 l

t.

ge . . , , .

QE \

I

, t i i ' * i i i 1 i ttit ,

..i ,

it ,

i. i .

t .... i

~ ~ ~

r p

j .

. , , , .i

, .i .!,i,  ;.

\' (: . .

7,-i , . .

g '

4 -

a. . . . . . . . . . . -

I ge . . .. f . i i ,t . .

35 '

. . . ij...i i. . .

I g C

y -i ii, .. ..

6

?, - ;

i . .

+

= -

1 ,.j,.;

+e4 . . , , i.

.it -

i ,..

+

i i

i C Eank "CP P ,

3 p9

= 154 steps, P-g tt  :

ye '

, 1, . i

~

l 5 H ",

2

. .. . I,.. , ,. 1 i ,

. i  : Ii i

, . . - i .,. . .

I

. . . , ,', ; i

.4 .. i  !

. . - . . . - . . . . .~

, . . i , , , , . . . . ,, .

I "

g .4

, 1 i.

i I ; : . ? ,!

, i e

i  !

i

,)

i i

L.

7--:

\

.i.. 6 . .

,.f'4 i f . + , .

I

., it.'!7 4.

i i.ii. . . ., i,  !. ' ', , l. .

. _ , - . - .. . -a.. .-. .-

,h} . ,. , 4 .i,, . .,**.i . --.

w 160 200 228 I O 40 80 BANK POSITION (STEPS) 120 I

37

il

I Section 4 I TEST RESULTS EVALUATION METHODOLOGY AND REVIEW CRITERIA
"" 4.1 Background As described earlier in this report, the acceptability of the results of the control rod bank worth tests serves to demonstrate the validity of the results of the calculational models used to predict control rod bank worths as part of the design process. Traditionally, the evaluation of the acceptability I of the results of control rod bank worth tests has been based on a comparison of the measured and predicted control rod bank worths. This comparison has typically been expressed in terms of the percent difference between the measured and predicted result as shown in Equation (9).

ceas - Odesign a(';) . x 100 (9)

P design In the past, the measured control rod bank worths were obtained by using the dilution /boration technique. The review criteria (design tolerance) used for this comparison has been +15% for the measurement of the reactivity worth of individual control rod banks as shown by Equation (10).

I l a(' ) l 1 15% (10)

I For individual control rod banks with relatively low reactivity worths, i.e.,

1600 pcm, the difference between the measured and predicted reactivity worth has been expressed in terms of absolute reactivity as shown by Equation (11).

a ,cm) . meas , des 1,n no y

g 38

i I

The review criteria used for this comparison has been 1100 pcm as shown by Equation (12).

B la(pcm)l < 100 pcm (12)

}

B l Finally, in srder to address additional concerns regarding shutdown margin verification, a review criteria has been established that the percent difference 1

between the measured and predicted total reactivity worth of all four control banks be within 110% as shown by Equation (13).

l I =

-A-D A-D

" meas , design x 100 < G3) la(%)l _ 10%

A thru D ,A-D

" design I

l 4.2 Rod Swap Test Evaluation and Review Criteria B The rod swap test evaluation and review criteria have been established l

at two levels. The first level addresses the individual bank worth test results.

The second level addresses the test results for the total reactivity worth of l

all of the control rod banks.

Level I Review Criteria The measurement of the reactivity worth of the reference bank is perfor=ed using the dilution /boration technique. Therefore, the standard test result evaluation methodology and review criteria for individual bank worths using the dilution /boration technique, as described above, could be used to f evaluate the results of that test. However, since the results of the reference bank recctivity worth test are used in the dete mination of the reactivity werth of each test bank, a more restrictive review criteria is used to evaluate that G

test result as shown by Equation (14).

l I n

I I -

l (I')

lAC%)!eference R 1 i Bank I As described in Section 3 of this report, the design predictions of the individual test bank reactivity worths are on exactl: the same basis as the measured test results. Therefore, it is appropriate to use tce scce test result evaluation mccnodology for the rod swap test results as for test results obtained using the dilution /boration technique. The measured test bank worths,

  • P

[

T'R(M), are compared to the design predictions, TAR (M), an te erence between the two is expressed either in terms of percent difference or in terms of absolute reactivity as appropriate. Additionally, since the individual test bank worth determinations are essentially the sace in nature as the individual control rod bank reactivity worth tests using the dilution /boraticn technique, it is appropriate to use the same review criteria for the individual test bank worths determined through red swap as shown by Equations (15a) and (15b).

ja(%)l Test i 15% for bank worths > 600 pcm (15a)

Bank

[a(pcm)[Tm i 100 pcm for bank worths < 6C0 pcm (15b)

I Bank I Level II Review Criteria A review criteria has been established to confirm that the percent difference between the ceasured and predicted total reactivity worth of all of the control rod banks (i.e., the summation of the individual bank worths, control and shutdown) be within 110%; i.e.,

40

I I T T lA(%)l Total x 100 < 10% (16)

  1. design I

In su==ary, a test result evaluation methodology and review criteria have been established to evaluate the control rod bank worth te.st results obtained by using the rod swap technique. The evaluation methodology and review criteria are appropriate with respect to the test procedure, the test data analysis methods, and the design methods; and are consistent with those used to evaluate the results of control rod bank worth tests using the dilution /

boration technique.

As in the case of the current testing programs, should the results of the rod swap tests fail to meet the established review criteria, the Station Nuclear Safety and Operating Committee will be infor=ed as required by the Vepco Nuclear Power Staticn Quality Assurance Manual. A test result that fails to meet the Level I review criteria shall be reviewed by the Station Nuclear Safety and Operating Cocmittee. Final resolution shall be based on the composite of plant startup data and an evaluation of the impact of the discrepancy on the results of the analyses of the applicable events considered in the ESAR. Eased on the results of this review, the Cocmittee ray decide to perfor= additioncl testing. This additional testing cay be a repeat of the original test or the perfor ance of other appropriate confirmatory tests. Should the test results i

fail to meet the Level II review criteria, the reactivity worth of control rod banks D thru A shall be measured (and also the remainder of the rod banks to N-1 if required) by successive insertion using the dilution /boration technique.

This will be done in order to validate the results of the calculational codels used to predict the control rod bank reactivity worths.

lI f 40a

I I section 5 I ROD SWAP TEST RESULTS I The Surry 1, Cycle 5 and North Anna 1, Cycle 2 rod swap test data were analyzed using the methodology presented in Section 2.2. The design predictions associated with these tests were performed using the methodology presented in Section 3. Figures 5.1 and 5.2 provide a comparison of the measured and predicted integral worth of the reference bank for Surry 1, Cycle 5 and North Anna 1, Cycle 2, respectively. The results of the test bank worth measurements, together with the associated design predictions and test review criteria are

,I summarized on Table 5.1. As can be seen from the information presented on this table, all of the test results met the test review criteria and were s.ceptable.

!I

.I

I I
I I

I I

41

,I

- _ _ .__ .m_ __ _- __ . _ _ . - _ . - __. _. __ . _ _ ___ __ _ _ __ _ _ _ .

l i

i TAlLE 5.1 1

ItOD SUAP TEST 1:ESULTS SURRY 1, CYCI.E 5 Hank Worth lieview i Control (pcm) Criteria 1:od tiank treasured Predicted A(pcm) A(7) (%)

15-reference bank 1405 1374 31 +2.3 +10 I D 1257 1205 52 +4.3 }l5

. C 881 856 25 +2.9 +15 l A 649 637 12 +1.9 115

, Sti 977 925 52 +5.6 115 SA 1178 1153 20 +1.7 115 1

o Total 6347 6155 192 +3.12 110 n

I L

Mol:Tli AllNA 1, CYCL.L 2 I

liank Worth ' view Control (pcm) Criteria i

_lt_od cank licasured Predictdd A(pem) A(%) (Z)

D-reference bank 1069 1095 -26 -2.4 110 l C 634 637 47 47.4 115 I; 1035 1039 -4 -0.4 115 A 343 905 -62 -6.9 115 Sl; 649 600 49 48.2 115 SA 930 966 -36 -3.7 115 Total 5200 5292 -12 -0.6 110

' ,! l l ,  !

s u

a

, I t a

, -9C"ATI U s e-

- I ]

a gm2< ez y w 1 O<- - rI c

' p

- m,rRzng i f

fggz7 E mdT y

s u g G3zx z" 2 mI"I " OHzfm ]

f G zxCO 3CCq s

1

  • " l

_e m

s

_ne

_ne O O

d 2

I ;tt.

}.t+

,ft

,}t

{t

,,8

. . i!

lt-m i tg l,,I} ,tteI9 L Lt:t ' ii' . s.

e

,it6 t j1 * ' :iI ,,3 .;. i ',.

t1+{* , , . :4' ' . ' e .

' t,8

.  ;,l' g 0

_e i *t ; ? . ;t' . :- i.

0

( + f rI, it:* i. ii' . . I.

2

_m l . t'  :' '

ft- ,. ,! , -  :!*

,, 1i. jF . 4 6 ; . ttjfe

_ e ,! ' + - ' . , .

e n l{, l+ tf. ;l- ,ita *

) '6} t , - .'  !.  :!' .j. l o N0  :{ jit' if 9 tt .t ii4  ;

_ C0 1 l }: {, r;i 6 t .e t I s P1 4

,!i, i'i;t3 , i . -L f-u f};t . .* ;l, t t} it'

(

s I l 1t

-,l-:i, t.

4 lji}tt tr* '; ; * ' .i lri .;

H I * ,+ -

i ,e+ tt' i' - t-i ts

_e

<f, itit [e)6 . , :; ' ,

T 1

t, " j ii t ittJt*

- , * * - * * - t. .' -

R0 ,l{. ,:!,+!. ;I ti ' ,

_ m O0P j j' ,1t t ll -  !+  ; [ i  ? !i i.

Wi

_m

  • l !l;3ll ,rt . hit. a, t  !- '

l.6 -

! ,;i. ft ll. .!lf. . ,t

t. l -

l t tti! it + ft;. , . * * .;- , -

L iitf1 4 , - e u

I!

. l }t l.;'6 A

, ljtt ,I .' te

  • ri * ' . * .

r- .

R

.t t,htt.f- .tf.i t .

_e

}tt fj ttit ie . - * + . , . +

G E0 l+i 4 }', .riii!! [! , !leI. i1 i

  • a ttt i,f*

lt*! l t j. * ' , , -

. - .i

_m T( 8 f1 t ,'8; it6 i + ,' .  :+ - '

  • N j' il - ,i

. tt.f

' - .! r'4 '

f  :!- . t+

_. I -

e ,j 'l.l: j. t, !l.! ' .'  ?, . ; ,i m i I

.] 1t t l j:

a !i i :. Itt; . , ' i . .

{, ! i l:i a 'iI 8t ' . ' ' .

.I

' * '4t ' . tt . . ' t .

_ , l

, l: . -
  • i , .t.

0 fi t .li

_m C ftt tj 1i j- . ' - , i t ' . ,

e 4 - -

itl, ' t;. l,f' l j * ' i! t. .

l,il ,. l  !:. it' i?.

tt1 }t , * ' .?il .

_ {t ? il . .tt' * * :t, '

e l l,.-It J,I. i:- . 8 ' .

_en jy.tt . .

It j. ij i ii i .. '  :.

?t.lfji' ij. ; . L lt. .*' . t> [.:

.A :it*

.l,'jt:N t  :  :

_n

(

C &Q . ,no ]

)

gg gNO o

DmzX ' 8MHMOz McH[ fm 3

T e C f

(

_ m s e

s '

8

)!
:,!' -  ! i ii'  ; .ri . >

. i

l
Ili,o,!!.U;i i 1I!4 jliij!! f.ii!;,Ii,iIi ,' ';ri, - 1j  ; ,!

I FIOCRE 5 2 I NORTH ANNA UNIT 1 - CYCLE 2 REFERENCE BANK WORTH l D BANK WITH ALL OTHER BANKS OUT g

I I

O O

,C , _ .

.. _ . . .p._.-.. .- . . _ . _ _ . _ , . . . . .

.._4_.-a_. - L ,._.; .. ..

I

+.4 - . .. . .

. m _.g . .--

_~+_. ._.

. .n.......

=. ..n - i. .. . . , . -_ .... .

o ,_ - y .._- _ . . . _ . _ . _, .. - . _ _ . .

o - .y - - . . _ . . .

I Cf 4

,,..._f_-._._

a.

..g_..

.a_

g, k........

s. -. .

_ ..\._._. . .

I .i.._... . _ . . . . . . , . .. .. 6 O

.. . . . s

[ .

. s..

.. s Lwq _v. . . . . . . ., , . .

I 7.-...--

g .+1.-.

,.___m L .- .1 . - .. . . ..

. 1. .

. .. 4 g . . _ .

. . _ . _ - ..~- .. %.. - , - ,. . . . . ....(.e I

g . ~ . . -

.._l...,. --..L.

q ..a...+.-.- - .. + . ~ . . _

w . s.

4g -

. - . - . . ~ . _ . , . . . . .

I

-- ~. . , - - . ~ _ . . . . . . . ..

M . .. ._. . .. . . . . . 4 . _ .- . g ....

g .:_1_ _ _. ._-....1_-. ._ ___._,-. _ . .

( __ _. .

g _

D . t_ ..._.e__ . _ _ . _ . , _ . . . ..._.

I yn + _ . _ . _ - . ..

}--  :.... . y l

H w. ,

Z L _.

. . _ . . .\....

g ,

j

.. .u. - . _ _ . ._ .u._..,_..-. , .t . . .

j . . _ . . .. . . . . -

l

' ' ~ ~ '

^ - ' - ' ' ' * ~ ~ ' ' *-~ -

O

^ ~

'\

j w y .

~ ~ ~ ~ ' . __ ,~. .-. . . . .,

__..u.

. . ..._....._...1

.___7.-_..  ;

7..,_....._ ._._.-_ 7..

i

_.u .. . _ a.a . . . .

.. u- . . . . . . , .

4 r

_. ._ ria . . . . . - - , . . . . . . ._

w s. _.

- - , . ., . . .. . . .+

1 ..,.. . ~ _ .

w 40 80 120 160 200 228 I

O BANK POSITION (STEPS)

$ 44 u -

I Section 6 VALIDATION OF THE ROD SWAP METHODOLOGY 3

As mentioned earlier in this report, in addition to the control rod bank reactivity tests that were performed using the rod swap technique, control rod bank reactivity tests were performed using the conventional dilution /bora-tion technique during the reload startup of Surry 1, Cycle 5 and North Anna 1, Cycle 2. The purpose of performing these side-by-side programs was to establish the technical basis for validating the rod swap methodology. The results of these tests are presented in Tables 6.1 and 6.2, respectively, for Surry and North Anna. The design values for these tests together with the test review criteria are also shown.

The data on these tables indicate the basic similarities that exist between the results of these two test techniques with respect to the accepta-bility of the test results, and therefore, the verification of the design calculations. More specifically, for the Surry 1, Cycle 5 test results, the average absolute percent difference for the individual bank worth tests was 2.78% for the dilution /boration tests and 3.12% for the rod swap tests. The percent difference associated with the total reactivity worth of the control rod banks that were measured was 1.2% for the dilution /boration tests and 3.12%

for the rod swap tests. For the North Anna 1, Cycle 2 test-s results, the average absolute percent difference for the individual bank worth tests was 3.46% for the dilution /boration tests and 4.83% for the rod swap tests. The percent difference associated with the total reactivity worth of the control rod banks that were measured was -1.7% for the dilution /boration tests and

-0.6% for the rod swap tests. In summary, the results of all of the tests were acceptable since all of the review criteria were met. Therefore, the I 45 I .

!I results of both test techniques demonstrated the validity of the results of i

the design calculations for control rod bank worths.

iR Since the reactivity worth of all of the coatrol rod banks is deter-jW fg mined as part of the rod swap methodology, and since the same conclusions are l ig j reached regarding the verification of the results of the design calculations for control rod bank worths, the results of the side-by-side programs demon-strate the validity of using the rod swap methodology in future Vepco startup physics testing programs.

l I

lI I

lI il I

I I

I I

I t

46

!I I

M M M M M M M M M M M M M M M M M M

)

l TAl'LE 6.1 l

j SultkY 1, CYCLE 5 !!OD UORTil RESilLTS i

i it0D SUAP TECllNI_Qtg i

i t

i

! Ilank Uortli Review

Control (pcm) Criteria i Rod Bank tfeasured Predicted A(pcm) A(%) (%)

I

! 15-reference bank 1405 1374 31 +2.3 110 i i D 1257 1205 52 14.3 +15 C 881 856 25 +2.9 +15

! A 649 637 12 +1.9 115 Sti 977 925 52 45.6 115 SA 1178 1158 20 41.7 -+15 n

N

. Total 6347 6155 192 43.12 110 lA(%)l = 3.12%

DILUTION /BOPATION TECllNIOllC ikink Uortli 1:evjew Cont rol ( per,i) Criteria Itod llank tieasured Predicted A(pcm) A(%) (%)

D 1207 1188 19 11.6 +15 C-itant D in 1082 1056 26 42.5 IIS B-Eanks C l ll in 18)9 4 ')D4 0 -41 -2.0 -T15 A-15ank: 1H C+D in 1304 1242 62 +5.0 115 E A+D 5592 5526 66 i1.2 110 lA(%)l=2.73%

L a

.m

-m

.m

- M a a

- wi wi er

- er 55555 0

- e i e) 0SSsSS 0 i e) 1 vt ~- 1 1 l 1 1 vt % 1I I i I I 1 ei(

R r 4ITTTT- 4- ei(

R r 11i11 1 C C

-e 3

2

) ) 4091 9 7 6

- 444927 6 3 7 . 4 7 .

( 2 4 7 02

- m 1

( 27 0683 0 4 i 3

l - # - 1 4 -

A + - - + - -

= -

- l l

- S ) )

.m T.

l i

S l )

m e

67 4296 24 - 643 2

3 l

(

A )

7

)

m e

p 65326 2 3 1

- 1 2

2 0

1 l

(

A l

p - - - - (

i

( - -

l

( E A

. l A ll i

E- O M T R

O U- I H

l W IOa l

- l C 2 D l

l E d 0

i C d T e e

M 6 e

1 2

E T.

t c 579506 2 1

1 O

t i

c 534 4 7 97 340 4

4 i 93 8006 9 I d 0H469 0 l

L P- d 060969 2 T e 1 1 1 6 E. A.

' h e 1 1 5 A r t I C

t r R T r l' M Y C S-D O- Um o) l' B

/

O h) a r

r c' t

c 1 R- k p 0!

- 1 A 5 n(

a d

r e

945390 0 1

T I

U(

ol i't r

t e

931 1 3 2 M 1 l

1 t

s i

638443 060869 6

2 I.

l l

k n

n a

6 0253 093 69 4

9

- lA a 1 1 5 D  :

a 1 1 1 5 le 1

ic

! l f

T 1'

- M 1

1 0

k i

n n nD a i 4 b n C i D4 :

e l k I l k on c

n on nDC+1 ra i I

+ A r la e t B CB t l r n 1

)

s n e od ssk od f 1 C o kkk n

-M C o R

e r

A t

a R nnna aaaB i l o l i l I l - 1 DCB^SS T - - - R -

- DCBAS i r

M M

M bm W

' l1 :' 1i;fl l jj{j<Ti:i

I Section 7 CONCLUSIONS I Based on the results of the ride-by-side demonstration programs, it has been concluded that it is appropriate. to use the rod swap methodology to demonstrate the validity of the results of tae calculational models used to predict control rod bank reactivity worths. Additionally, the rod swap tests that were performed during the initial startup of Surry 1, Cycle 5 and North Anna 1, Cycle 2 demonstrated that the implementation of the test procedure was very straightforward and that the data acquisition and analysis were no more difficult or complex than that associated with control rod bank reactivity worth tests using the dilution /boration technique. The potential savings in

"' "" ""' " ~ '*" "" """"' ""' - '" "" " " * - ' " ' ' " " ~

I I

I I

lI 1

I I

lI l 49 I- -- - - . - -

I Section 8 I REFERENCES

1) M. L. Smith, "The PDQ07 Discrete Model," VEP-FRD-19, July, 1976.
2) W. C. Beck, "The Vepco FLAME Model," VEP-FRD-24, October, 1978.

I 3) W. C. Beck, " Rod Swap Design Data for Surry Unit 1, Cycle Report No. 73, April, 1978.

5," NFE Technical

4) M. C. Cheok, " North Anna Units 1 and 2 Design Report," NFE Technical Report I No. 106, August, 1979.
5) J. G. Miller, S. A. Ahmed, R. T. Robins, H. H. Barker, " Design Predictions I for Surry Unit No. 1, Cycle 5,"

2), May, 1978.

NFE Technical Report No. 74 (Parts 1 and

6) T. J. Kunsitis, J. H. Leberstien, "Surry Unit 1, Cycle 5 Startt.p Physics Test Report," VEP-FRD-30, September, 1978.
7) T. J. Kunsitis, J. H. Leberstien, T. K. Ross, " North Anna Unit 1, Cycle 2 Startup Physics Test Report," VEP-FRD-35, June,1980.

lI

,I 1

l lI I

I I

I 50 I

I -

I I APPENDIX IMPACT OF THE ROD SWAP TESTS ON THE HOT I ZERO POWER STARTUP PHYSICS TESTING PROGRAM FOR RELOAD CORES Table A.1 identifies the series of tests that have been routinely performed as part of the Vepco reload hot zero power physics testing programs.

Table A.2 identifies the series of tests that will be performed in the future.

As can be seen from the information presented on these two tables, a basic trade-off is taking place. Through the implementation of the rod swap program, more control rod bank reactivity worth information will be obtained in lieu of several boron endpoint measurements. This is justified for tae following reason. The boron endpoint data is supplementary to the control rod bank reactivity worth data in that the change in the baron endpoint values is merely another way of measuring the reactivity change associated with a change in the configuration of the control rod banks. Since the rtd swap tests provide a mechanism for measuring the reactivity worths of all of the control rod banks, the elimination of selected boron endpoint measurements does not repre-sent a loss of significant information.

In summary, the implementation of the rod swap tests will change the composition of the reload hot zero power startup physics testing program.

lI l

I However, this change will result in more control rod bank reactivity worth data being obtained. The elimination of selected boron endpoint measurements does not result in the loss of required data. .

lI l

I I 51 lI I

i i

I lIl l

t i TABLE A.1 i

! HOT ZERO POWER STARTUP PHYSICS TESTI:!C PROGRA21

,i.

Reactivity Corpoter Checkout Baron Endpoint - ARO i

Temperature Coefficient - ARO t "/D Flux >bp - ARO 1

Sank D Ucrth Baron Endpoint - D in l Te=perature Coefficient - D in M/D Flux Map - D in iIl

! Bank C Worth - D in Eeron Endpoint - C+D in

{ *Iemperature Coefficient - C+D in i

j 3ank 3 Worth - C+D in i

i j Boron Endpoint - B+CtD in i

J l Bank A Worth - B+C+D in ,

I i

Soron Endpoint - A'E+C'D in j 3anks A+D Vorth in Overlap I

lll 1 *Cnly perforced when it is necessary te supply necscred date to establish

!g control rod bank withdrawal limits in order to meet the Technical Speci-

}g fica:icn limits for the moderator tenperature coefficient.

l 4

lll 1

4 1

52 i ll 4

i

i l TABLE A.2 i

HOT ZERO POWER STARTUP PHYSICS TESTING i PROGRAM VITH ROD SWAP l Reactivity Computer Checkout Boron Endpoint - ARO Tenperatura Coefficient - ARO M/D Flu:c Map - ARO Reference Bank '! orth

, Doron Endpoint - Reference Bank In l

Tenperature Coefficient - Reference Bank In l

l M/D Flux Map - Rodded I

( Control Red Bank Worths (Centrol and Shutdctm)

I I

l

- __ _ __ _ _ . _ _ _ _ _ _ - .