ML18149A512

From kanterella
Jump to navigation Jump to search
Qualification of WRB-1 CHF Correlation in VEPCO Cobra Code.
ML18149A512
Person / Time
Site: Surry, North Anna, 05000000
Issue date: 11/30/1986
From: Richard Anderson, Wolfhope N
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML18149A511 List:
References
VEP-NE-3, NUDOCS 8702050358
Download: ML18149A512 (51)


Text

- NOTICE -

THE ATTACHED FILES Al OFFICIAL RECORDS OF THE DIVISION OF DOCUMENT CONTROL . THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE RECORDS FACILITY BRANCH 016 . PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGE(S) FROM DOCUMENT FOR REPRODUCTION MUST BE REFERRED TO F I LE PERSONNEL .

DEADLINE RETURN DA T E RECORDS FACILITY BRANCH

PAGE 1 VEP-NE-3 QUALIFICATION OF THE WRB-1 CHF CORRELATION IM THE VIRGINIA POWER COBRA CODE by R. C. Ande:cson N. P. Wolfhope NUCLEAR ENGINEERING ENGINEERING & CONSTRUCTION VIRGINIA POWER RICHMOND, VIRGINIA Novembe:c, 1986 Recommended fo:c App:coval:

K. L. Baseho:ce, Supe:cviso:c Nuclea:c Safety Enginee:cing App:coved by:

/S.,,/h &,,2-,2.-,./~--7-L--

R. M. Be:c:cyman ,' Di:cecto:c Nuclea:c Enginee:cing

PAGE 2 CLASSIFICATION/DISCLAIMER The data. information, analytical techniques and conclusions in this report have been prepared solely for use by Virginia Power (the Company), and they may not be appropriate for use in situations other than those for which they were specifically prepared. The Company therefore makes no claim or warranty whatsoever, express or implied, as to their accuracy, usefulness, or applicability. In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, information, analytical techniques, or conclusions in it. By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, information~ and analytical techniques, or con~lusions in it.

PAGE

  • 3 ABSTRACT The database which was used to qualify the WRB-1 CHF correlation in the Westinghouse THINC code for 17x17 and 15x15 "R" grid fuel has been re-analyzed by WRB-1 with the Virginia Power COBRA code. Data analysis has shown that DNB protection is provided by a 1.17 COBRA/WRB-1 DNBR limit with 95% probability at a 957. confidence level. These results have also been shown to be applicable to 14x14, 15x15 and 17x17 Westinghouse OFA-type fuel.

PAGE ACKNOWLEDGEMENTS The authors would like to thank Mr. K. L. Basehore £or his considerable technical assistance in this project. Special thanks also go to Mrs. A. S. Pegram, Mr. K. L. Maddock and Mrs. J. Y.

Reynolds for their work in the entry and verification of the data.

The assistance of Dr. D. G. Reddy of Columbia University and Dr. A.

J. Friedland of Westinghouse in identifying and correcting data errors was also greatly appreciated.

PAGE 5 TABLE OF CONTENTS Page Title Page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Classification/Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Table of Contents........................... . . . . . . . . . . . . . . . . . 5 List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1. 0 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.0 Description of Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . ~ .... 10 3.0 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.0 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5. 0 Application of WRB-1 Correlation. . . . . . . . . . . . . . . . . . . . . . . . . 26 6.0 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Refei:ences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 Appendix A: Data Listing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

PAGE 6 LIST OF FIGURES Page 4.1 Predicted vs. Measured Critical Heat Flux (million BTU/hr-ftZ)................................... 16 4.2 Measured-to-Predicted Critical Heat Flux Ratio vs. System Outlet Pressure Cpsia) . . . . . . . . . . . . . . . . . . . . . . 17 4.3 Measured-to-Predicted Critical Heat Flux Ratio vs. Core-Average Mass Flux (million lb~/hr-ftZ) ........ 18 4.4 Measured-to-Predicted Critical Heat Flux Ratio vs. Hot Channel Outlet Quality . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.5 Me~sured-to-Predicted Critical Heat Flux Ratio vs. Inlet Temperature C°F) ......... ~******************* 20 4.6 Histogram of Measured-to-Predicted CHF Ratios . . . . . . . . . . 21

PAGE 7 LIST OF TABLES Page 4.1 Measuzed-to-Pxedicted Cxitical Heat Flux Ratio Statistics by Axial Powex Pxofile...................... 22 4.2 Measuxed-to-Pxedicted Cxitical Heat Flux Ratio Statistics by Subchannel Cell Type . . . . . . . . . . . . . . . . . . . . . 22 4.3 Measuxed-to-Pxedicted Cxitical Heat Flux Ratio Statistics by Rod Diametex (Inch) . . . . . . . . * . . . . . . . . . . . . . 22 4.4 Measuxed-to-Pxedicted Cxitical Heat Flux Ratio Statistics by Test Section Heated Length Cft) .......... 23 4.5 Measuxed-to-Pxedicted Cxitical Heat Flux Ratio Statistics by Gxid Spacing CInches). . . . . . . . . . . . . . . . . . . . 2 3 4.6 Compaxison 0£ Summaxy Statistics £xom Vixginia Powex. Westinghouse and HRC caiculations . . . . . . . . . . . . . . . 24 4.7 Measuxed-to-Pxedicted Cxitical Heat Flux Ratio Statistics £ox All Test Sections . . . . . . . . . . . . . . . . . . . . . . . *25

PAGE 8 NOMENCLATURE Va::r:iable Definition A Co::r:::r:elation coefficient A1 Co::r:::r:elation coefficient B Co::r:::r:elation coefficient B3 Co::r:relation coefficient B4 Correlation coefficient CHF C::r:itical Heat Flux (million Btu/h::r:-ft 2 )

D' No::r:mality test statistic Dg Distance to nea::r:est upstream grid Cinch)

DNBR Departu::r:e f::r:om Nucleate Boiling Ratio F Non-uniform axial flux facto::r:

GCloc) Local mass flux (million lbm/hr-ft 2 )

Gsp Mixing vane grid spacing Cinch) k Small sample co::r:rection facto::r:

Lh Dista.nce from beginning of heated length to local node Cinches)

M/P Measu::r:ed-to-Predicted CHF ratio M/P Mean Measu::r:ed-to-Predicted CHF ratio OFA Optimized Fuel Assembly p Pressu::r:e Cpsia) q" Heat flux (million Btu/h::r:-ft 2 )

q"CCHF) Critical Heat Flux (million Btu/hr-ft 2 )

s Estimated standard deviation xCloc) Local thermodynamic quality

. Chapter 1: INTRODUCTION PAGE 9 1.0 Introduction Virginia Power has recently acquired the access rights to the Westinghouse WRB-1 Critical Heat FluK CCHF) correlation. 1 A CHF correlation is used in the calculation of the Departure from Nucleate Boiling Ratio CDHBR), which is one of the ke~ analysis criteria in many of the UFSAR Chapter 15 safety analyses. The DHBR is the ratio of the ~ritical Heat FluK CCHF or q"CCHF)) and the local heat fluK q". To be licensed for use, a CHF correlation must be tested against eKperimental data which span the anticipated range of conditions over which the correlation will be applied.

Further, the population statistics of the data base must be used to set a DNBR limit such that the probability of avoiding DNB will be at least 95?. at a 95?. confidence level. This limit is referred to as the 95/95 DHBR limit.

The WRB-1 correlation has been qualified with the thermal-hydraulics code C0BRA 2 by Virginia Power. A subset of the data from the Columbia-EPRI CHF data base 3 for Westinghouse "R" grid 17K17 and 15K15 fuel was used in the analyses. Virginia Power's Horth Anna and Surry plants utilize Westinghouse 17K17 and 15K15 fuel, respectively. This Topical Report summarizes the data evaluations which were performed to qualify the code/correlation pair.

Chapter 2: DESCRIPTION OF CORRELATION PAGE 10 2.0 Description of Correlation Reference 1 begins its discussion of the WRB-1 correlation by noting that Westinghouse mixing vane CHF ~ata typically obey the functional form q"CCHF) = A - B*xCloc) C2

  • 1 )

in which x(loc) is the local thermodynamic quality, and A and Bare functions of geometry and local conditions as follows:

A= A[P,G(loc),Lh,Gsp,Dg] C2

  • 2 )

B = B[P,G(loc),Lh] (2.3)

Here, P is the system pressure, G(loc) is the local mass flux, Lh is the test section heated length, Gsp is the mixing vane grid spacing and Dg is the distance from the local node to the nearest upstream grid. The latter two terms account for the CHF-inhibiting turbulence which the mixing vane grids induce, but which decays with distance. Eventually, the following functional form was obtained:

q"CCHF) =PF+ A1 + B3*G(loc) - B4*xCloc)*GCloc) (2.4)

The Performance Factor PF and the coefficients Al, B3 and B4 are functions of the independent variables. These coefficients are Westinghouse proprietary information and are given in Reference 1.

In addition, the Critical Heat Flux is divided by the non-uniform flux factor F,' when a non-uniform axial power profile is used, as

Chapter 2: DESCRIPTION OF CORRELATION PAGE 11 a part of the calculation 0£ the DNBR:

q"CCHF)

DNBR = --------- C2. 5) q"

  • F in which q"CCHF) is given by equation (2.4), the local heat flux q" is the product of the core-average heat flux and the local radial and axial power factors, and Fis given in Reference 4.

The WRB-1 correlation uncertainty is relatively small, as reflected in its low 95/95 DHBR limit (which is only 1.17 for THIHC/WRB-1). This improved accuracy results in a substantial gain in DHB margin over the use of the W-3 correlation, which has previously been employed by- Virginia Power.

The COBRA/WRB-1 qualification data analysis and results are presented on the following pages.

Chapter 3: DATA ANALYSIS PAGE 12 3.0 Data Analysis Extensive Critical Heat Flux calculations have been performed to qualify WRB-1 in COBRA. The modeling philosophy of Reference 2 was employed throughout the project. In these analyses, COBRA models of the appropriate EPRI test sections were built and used to analyze the Reference 3 data.

The subchannel thermal-hydraulics code COBRA IIIc/MIT solved the conservation equations to obtain local fluid conditions, which were then used to predict CHF throughout the test bundles. These predictions were divided by the local heat flux to obtain a DNB ratio. The summary DNBR's were stored on disk to permit post-processor analysis. Since the input heat fluxes were measured Critical Heat Fluxes, the DNBR is a reciprocal measured-to-predicted (M/P) CHF ratio. Appropriate summary statistics were thus generated both for the DNBR and the M/P ratios. By historical precedent, the M/P statistics are used to set the correlation's 95/95 DNBR limit. The summary statistics will also be used in Virginia Power's Statistical DNBR Evaluation Methodology.s Although each thermal-hydraulics code solves the same conservation equations, the code solution schemes and flow phenomena models may differ slightly. It is thus necessary to qualify a correlation and code as a pair, since different codes which employ the same correlation may yield different results.

Even though COBRA/WRB-1 and THINC/WRB-1 will be shown in Section

Chaptez 3: DATA ANALYSIS PAGE 13 4.0 to have the same 95/95 DHBR limit, it is quite possible that the same cozzelation could have zequized diffezent DHBR limits when used in diffezent codes.

The data fzom EPRI 4x4 and 5x5 "R" gzid test sections weze analy2ed. The 5x5 test bundles have the same subchannel geometzy as the cuzzent Westinghouse 17x17 "R" gzid fuel, while the 4x4 test bundles have essentially a 15x15 geometzy matzix. The details of the test bundle geometzies aze pzovided in Refezence 3.

Some of the Refezence 3 data weze discazded pzioz to theiz incozpozation in the COBRA/WRB-1 data base. Two czitezia weze used to justify data deletions. The fizst czitezion was consistency with the pzactice of the test sponsoz: ceztain points weze excluded fzom the COBRA/WRB-1 data base because they had been excluded fzom the THIHC/WRB-1 data base in Refezence 1. Most excluded data weze deleted.undez this czitezion.

The second exclusion czitezion was consistency of the input data in Refezences 1 and 3: although some diffezences weze expected, 9 data which diffezed by moze than ten standazd deviations weze excluded as being pzobable typogzaphical ezzozs in Refezence

3. With the exception of the 22 data points which weze thzown out undez the second czitezion, this data base is the same as the one which was used in Refezence 1 to qualify THIHC/WRB-1 £oz "R" gzid fuel.

Chapter 4: . RESULTS PAGE 4.0 Results The DNBR data for a total of 19 test sections were collected and analyzed~ consisting of.945 data points. A plot of ~redict~d versus measured Critical Heat Flux is shown in Figure 4.1, illustrating. the excellent performance of the COBRA/W~B-1 combination.

The data were also examined for trends in test *section geometry and operating conditions. Plots of the M/P ratios versu:s pressure, £low, thermodynamic quality and inlet temperature are presented ~n figure~ 4.2-4~5~ As ~ay b~ seen, no significant trends in the M/P ra~io versus any of these para~eters exists.

The data are broken into subsets in Tables 4.1-4.5 to check for trends as a function of the axial power pro£ile, subchannel celi type, heated rod dia~eter, test secti~n heated length and grid spacing. The ~eans and standard deviations of each ~ubset are within a few ~ercent of the average £or the entire dataset.

We may no+/-e that the same Critical Heat Flux data were employed by Westi~ghouse in their qualification of WRB-1 in the THINC code. Further, the NRC performed audit c~lculations of some of these same data with the COBRA III and COBRA IV codes. 6 The Westinghouse and NRC calculational results are compared to the Virginia Power results in Table 4.6.

Given these results, DNB is avoided with 95~ probability at a 95~ confidence level for "R" grid fuel by meeting the following

Chapter 4: RESULTS PAGE 15 DHBR limit:

1 DHBR = (4.1)

CM/P) - 1.645*k*s in which M/P is the mean measured-to-predicted CHF ratio, s i s the estimated standard deviation of the data, the 1.645 multiplier is the z-value £or one-sided 95Y. probability of a normal distribution and k is a small sample correction £actor which provides a 95Y.

upper confidence limit on the standard deviation. Equation (4.1) yields a 95/95 DHBR limit of 1.17 £or COBRA/WRB-1, which is the same as the THIHC/WRB-1 DHBR limit.

Because the 95/95 DHBR limit is established by using the mathematical characteristics of the normal distribution, it was desirable to verify the normality of the data. To this end the D' normality test 7 was applied to the M/P population. For 945 data points, the assumption of normality cannot be rejected at a SY.

level of significance if a population's calculated D' statistic lies in the range 8134.0~D'~8245.4. For the COBRA/WRB-1 M/P population, the calculated D' statistic was 8180; the assumption of normality is thus acceptable. A histogram of the M/P data is presented in Figure 4.6.

The data statistics £or each Test Section are presented in Table 4.7.

Chapte% 4: RESULTS PAGE 16 l . 4

¢

<I:) ¢ l . 2 p

R E

0 I

C T l . 0 E

0 C

R I

T O.B I

C A

L H

E o.s A

T F

L u

X 0.4 0.2 0-0-tt;::;:;:::::;:::;:;:::::;::;::;:::;::;::;::;:::;::::;:::;::;::;:;:::;:;:::::;::;::;:::;::;::;::;:;:::;:;:;:::;::;:;::;::;:;:;:::;:::;:::;;:;:;:;:::;::;:;:::;:;:::::;:;:;:;:;::::;;:;:::;::;:;:::;:;:::::;::;::;:::;:;::::;::::;:::;;:;:;:;::;:;:;::;:::l:

0 .o. 0.2 0.4 o.s O.B l .o l .2 l .4 l .6 MEASURED CRITICAL HEAT FLUX Figu%e q.1 - P%edicted vs. Mea~u%ed C%itical Heat Flux (million BTU/h%-ftZ)

Chapter 4: RESULTS PAGE 17 1 ,30 1 ,25

()

d> ()

()

1 ,20

()

o<> <>

11 E "l i

()

A 1 , 15 ~

s u

R E l , 10 D

{) 4 I\

T 0 1 .as p

R E 1 .oo D

I C ()

T 0,95 E

D ()

C H

F 0,90 I <b

()

  • J R 0,85 A

T I

0 0,80 i

~()

()

<>o Oo

§ S°o t

8 <>

0()

o<>

8 0,15 "o

()

0.10 .. I 1200 1400 1600 1800 2000 2200 2400 2600 PRESSURE lPSIAl Figure 4.2 - Measured to Predicted Critical Heat Flux Ratio vs. System Outlet Pressure Cpsia)

Chapter 4: RESULTS PAGE 18 1 . 30 1 .25

<> j 1 . 20 0

0 t1 0

<P E <>i <> <>

A l . 15 <> 0 0 <I:)

s u <> <>~

R ~

E 1. l0 <>~

a T

  • o<>

<g>~

i<>

0 1 .as <>1 p

8~ 0 R

E l .oo 0

I C

T E

a C

0.95 a.so J8 0

~,o

<f>

~<9 H i<>

j ¢lj

~

0 F <> <>

0 R 0.65 A

T I

0 a.so 0

<f>

8 i ~~

0

$)

'1>

¢0 8

0 <> <f' 0.75 <>

0.70 o.s l .o l .5 2.0 2.5 3.0 3.5 4.0 MASS FLUX lt1LBt1/HR/FTSQI Figure 4.3 - Measu:red to Predicted Critical Heat Flux Ratio vs. Core-Average Mass Flux (million lbm/hr-ftZ)

Chapte~ 4: RESULTS PAGE 19 I .30 1 .25 1 .20 11 <> <>

E <> <>

A 1 . 15 5 ~

u <> <> <>

R <>

E 1 , I0 <>

0 <> 0 T

0 1 .05 p

R <> <> <>

E 1 .oo 0 . <> <>

I <> <> <>

C <>

T 0.95 <><>

E 0 <>

C 0,90 <>

H <>

F <>

R 0,85 <> <>

A <> <> <>

T <> <>

I <>

0 a.so <>

<> <> 8 0,75 0.10

-0, 1 o.o 0. 1 0.2 Q.3 Q.4 HOT CHANNEL OUTLET QUALITY Figu~e 4.4 - Measu~ed to P~edicted C~itical Heat Flux Ratio vs. Hot Channel Outlet 2uality

Chaptex 4: RESULTS PAGE 20 1.30 l .25 0 <>

l .20 11 <> <>

<> <> ~

E <> <>

A l . 15 <>

<> o<>o <> 8 0 $

5 <> <>

u <> 0~ 0 R

E 1 . 1a . <>

0 T 0 <>

0 1 .as ,$ <> <>

p 0 <>8 R <> <>

E -1 .oo <><>

0 J

<> g Q:) 0 C 0 0 T 0.95 0 E <> <>

0 0 0

C a.so 0 <>

0 H

~ <>

F <>

0~

<> <> <> <> 8 <>

R a.as <> <> 0

<> ~<>

A <> <> <>

T 0 0 <1)

<> 0 J <>

0 a.so <> 0

,0 0

0.75 <>

0.10 350 400 450 500 550 ,* 600 650 JNLET TEMPERATURE lOECrREES Fl Figu%e 4.5 - Measu%ed to Pxedicted Critical Heat Flux Ratio vs. Inlet Tempe%atuxe (°F>

Chapte:c 4: RESULTS PAGE 21 FREQUENCY 240 -

~ ~ ~"

220 -

M )

200 - It

~ .;,.

~~

><~ I( ,y, )

180 - .) >.)

y'I('Y>

A y> "/)

I

> IQ

),)I.

160 - ~>

~ ) ) )

.;,.M

~) M) ) )

9:>

~)

140 - ~M

.;,,I(

~

~I(

~

~I( ) ~~

',(  !'lo )/')

120 - )

l') )~

)

~ \\

~ \')

\~) )\ ))

y >.)

>) >)

~~ ~~

)

100 - \.,;,,)

~y )) ~

.;, ) ~) ~ .;, ~

.J' .J'

)

N....,,,) ~ )

)

)~ >~

"" y .,;,,*~

80 - JI, It J

~

J I

) M Q}>

.;,.~)I(

M)

)~

&h

'9 ~

~

.J' )°'IC ~

.J' ~

~

~ ~I(

¢c

,.,~

y 60 - )

) ) ) ~~) )~

> ~

))

> \io,. n~~>) ')

) ) ) >} )

',(') >}

) ) )(~ ~ ) ) n

\)M 40 -

)

~ n~ ~

y >.;>.'9M

~,¢,

)

I( It

) )~ >"le

~ .,,. 99

) )

9 ~~ )

9 9 ~

20 -

) ) Ml( )))0)

JI,

)

M )

)

>~ ~

} ~ A A

I .JI-

.JI-) *

)~

--- ~ .;,. {i<

I rI

)

.... )

...~

,AJ'J

~ )6 ~~ ~~ 00<:>¢ II

~& ..-...--....._

")/(

xx-- l'VVVV'I 0 A

" ]I -

" Xll ~

a.ea 0,85 0,90 0,95 l .oo l ,05 l ,l0 l . 15 l . 20 .l ,25 MEASURED TO PREDJCTED CHF RATJO Figu:ce 4.6 - Histog:cam of Measu:ced-to-P:cedicted CHF Ratios

Chapter 4: RESULTS PAGE 22 TABLE 4.1 MEASURED-TO-PREDICTED CRITICAL HEAT FLUX RATIO STATISTICS BY AXIAL POWER PROFILE Axial i of M/P Standard Profile Observations Mean Deviation Uniform 385 1 . 002 0.0841 Cosine 176 1. 0 11 0.0841 u*sinCu) 384 0.995 0.0829 Total 945 1 . 00 1 0.0838 TABLE 4.2 MEASURED-TO-PREDICTED CRITICAL HEAT FLUX RATIO STATISTICS BY SUBCHANNEL CELL TYPE Cell t of M/P Standard Type Obse:rvations Mean Deviation Thimble 207 0.997 0.0832 Typical 738 1. 0 02 0.0839 Total 945 1 . 00 1 0.0838 TABLE 4.3 MEASURED-TO-PREDICTED CRITICAL HEAT FLUX RATIO STATISTICS BY ROD DIAMETER CINCH)

Rod i of M/P Standa:rd Diamete:r Observations Mean Deviation 0.374" 489 1 . 0 13 0.0834 0.422" 456 0.988 0.0822 Total 945 1 *00 1 0.0838

Chapter 4: RESULTS PAGE 23

"' TABLE 4.4 MEASURED-TO-PREDICTED tRITICAL HEAT FLUX RATIO STATISTICS BY TEST SECTION HEATED LENGTH CFT)

Heated i of M/P Standard Length Observations Mean Deviation 8 ft 335 1. 0 0 3 0.0846 14 ft 610 1 . 000 0.0834 Total 945 1. 00 1 0.0838 TABLE 4.5 MEASURED-TO-PREDICTED CRITICAL HEAT FLUX RATIO STATISTICS BY GRID SPACING CINCHES)

Grid i of M/P Standard Spacing Observations Mean Deviation 13" 35 0.954 0.0716 20" 101 0.987 0.0857 22" 280 1.011 0.0835 26" 424 1. 0 0 3 0.0834 32" 105 0.994 0.0816 Total 945 1 . 00 1 0.0838.

Chaptez 4: RESULTS PAGE 24

/

TABLE 4.6 COMPARISON OF

SUMMARY

STATISTICS FROM VIRGINIA POWER, WESTINGHOUSE AND NRC CALCULATIONS EPRI M/P Number Test Analyst Code M/P Standazd of Section+ Mean Deviation Points 161 CA-1) VA Power COBRA IIIc/MIT 1.0064 0.0630 71

" " Westinghouse THINC 0.9964 0.0655 71 n NRC COBRA III 0.9912 0.0640 71

" " NRC COBRA IV 0.9910 0.0640 71 160 CA-3) VA Power COBRA IIIc/MIT 1.0079 0.0908 65

" " Westinghouse TH INC 1.0502 0.1020 67

" " NRC COBRA IV 1.0360 0.0932 67

+The corresponding Westinghouse label is listed in parentheses.

Chapter 4: RESULTS PAGE 25 TABLE 4.7 MEASURED-TO-PREDICTED CRITICAL HEAT FLUX RATIO

SUMMARY

STATISTICS FOR ALL TEST SECTIONS EPRI Number M/P Axial Rod Grid Heated Test of M/P Standard Power Diameter Spacing Length Section+ Points Mean Deviation Profile Cinch) Cinches) (ft) 124 CA-6) 32 0.9918 0.0528 Cosine 0.422 20 8 125 CA-7) 33 0.9292 0.0588 u*sinCu) 0.422 20 8 127 CA-8) 36 1.0084 0.0892 u*sinCu) 0.422 26 8 131 CA-9) 32 1.0233 0.0788 u*sinCu) 0.422 26 14 132 CA-10) 36 1.0355 0.0988 u*sinCu) 0.422 20 14 133 CA-11) 35 0.9539 0.0716 u*sin(u) 0.422 13 14 134 CA-12) 38 1.0088 0.0802 u*sinCu) 0. 42.2 32 14

(

139 CA-17) 37 0.9705 0.0873 u*sinCu) 0.422 32 14 140 CA-13) 30 1.0057 0.9712 u*sin(u) 0.422 32 8 146 CA-16) 37 1.0003 0.0576 u*sinCu) 0.422 26 14 148 CA-14) 70 1.0035 0.0786 u*sin(u). 0.422 26 14 153 CA-15) 40 0.9149 0.0558 Unifo:cm 0.422 26 14 156, CA-2) 70 1.0116 0.0780 Unifo:cm 0.374 26 14 157 CA-4) 76 1.0123 0.0788 . Unifo:cm 0.374 26 8 158 CA-19) 63 1.0254 0.0941 Unifo:cm 0.374 20 8 160 CA-3) 65 1.0079 0.0908 Unifo:cm 0.374 22 .8 161 CA-1) 71 1.0064 0.0630 Uniform 0.374 22 14 162 CA-18) 70 0.9850 0.0757 Cosine 0.374 22 14 164 CA-5) 74 1.0443 0.0917 Cosine 0.374 22 14 Total 945 1.0010 0.0838

  • +Westinghouse labels in pa:centheses.

Chapter 5: APPLICATION OF THE WRB-1 CORRELATION PAGE 26 5.0 Application of the WRB-1 Correlation Westinghouse has been using the WRB-1 c~rrelation, along with the 1.17 THINC/WRB-1 limit, on 17x17 standard fuel since 1978. In addition, Westinghouse presented data in Reference 8 which showed that the 1.17 DNBR limit provided the necessary 95/95 protection for the 14x14 and 17x17 OFA products, and demonstrated that tha limit was also applicable to the 15x15 OFA. The extension of the WRB-1 limit to the OFA product was subsequently approved 9 by the' NRC.

Virginia Power's intended application of the WRB-1 correlation will be for analyses of the Westinghouse 17x17 standard "R" grid fuel at North Anna and the Westinghouse 15x15 OFA-typet fuel at Surry. Because no "L" grid data were included in the test population, the WRB-1 correlation will not be applied to 15x15 standard fuel.

Even though only "R" grid data have been examined in this report, Virginia Power has concluded that the use of the COBRA/WRB-1 limit can be extended to Westinghouse OFA-type fuel.

COBRA/WRB-1 and THINC/WRB-1 have been shown to perform comparably bj the analyses documented herein. The similarity of the COBRA and

+Beginning with the Cycle 10 reloads, Virginia Pow*r plans to use a fuel product at Surry which includes additional features such as a removable top nozzle, but is geometrically identical (including the grids) to the Westinghouse 15x15 OFA in the active core region.

Chapter 5: APPLICATION OF THE WRB-1 CORRELATION PAGE 27 THINC codes is well established; Reference 2 was approved in p~rt on the basis of an excellent comparison between the two codes. As a result, the "R" grid COBRA/WRB-1 DNBR limit may also be applied to the Westinghouse OFA-type products. This application would be consistent with the licensed use of THIHC/WRB-1.

COBRA/WRB-1 will be applied over the same range of conditions as THIHC/WRB-1.

Chapte:r 6: CONCLUSIONS PAGE 28 6.6 Conclusions The WRB-1

  • CHF *co:r:relation has been qualified in Vi:rginia Powe:r's the:rmal-hyd:raulics code COBRA IIIc/MIT. Data :reduction has shown that the use of a 1.17 DNBR limit p:rovides 95% non-DNB p:robability at a 957. confidence level. These :results a:re applicable to Westinghouse 15x15 and 17x17 "R" g:rid fuel and to Westinghouse 14x14, 15x15 and 17x17 OFA-type fuel.

PAGE 29 REFERENCES

1. Motley, F. E., et al.: "New Westinghouse Correlation WRB-1 for Predicting Critical Heat Flux in Rod Bundles with Mixing Vane Grids," WCAP-8762-P-A (proprietary) and WCAP-8763-A Cnon-proprietary) CJuly, 1984) .
2. Sliz, .F. W. and IC L. Basehore: "Vepco Reactor Core Thermal-Hydraulic Analysis Using the COBRA IIIC/MIT Computer Code," VEP-FRD-33-A (October, 1983).
3. Fighetti, C. F. and D. G. Reddy: "Parametric Study of CHF Data," EPRI NP-2609, Vol. 3, Part 1 (September, 1982).
4. Rosal, E. R., et al.: "High Pressure Rod Bundle DNB Data with Axially Nonuniform Heat Flux," Nuclear Engineering and Design, Vol. 31 (1974).
5. Anderson, R. c.: "Statistical DNBR Evaluation Methodology,"

VEP-NE-2 (July, 1985).

6. Letter from J. F. Stolz CNRC) to c: Eicheldinger (Westinghouse),

"Staff Evaluation of WCAP-7956, WCAP-8054, WCAP-8567, and WCAP-8762," dated April 19, 1978.

7. "Assessment of the Assumption of Normality (Employing Individual Observed Values)," ANSI N15.15 (1974).
8. Letter from E. P. Rahe (Westinghouse) to C. 0. Thomas CHRC),

"Basis for the Applicability of the WRB-1 CHF Correlation to 15x15 OFA and 14x14 OFA Fuel, Supplement 1, WCAP-8762 (Proprietary)" and ~CAP-8763 (Non-Proprietary), dated November 18, 1983.

9. Letter from C. O. Thomas CNRC) to E. P. Rahe (Westinghouse),

"Acceptance for Referencing of Licensing Topica~ Report WCAP-8762(P)/WCAP-8763CNP), Supplement 1, 'Basis for the Applicability of the WRB-1 Correlation to 15x15 OFA and 14x14 OFA Fuel,'" dat~d June 29, 1984.

PAGE 30 APPENDIX A DATA LISTING

STATISTICAL ANALYSIS OF COBRA/NRB-1 DNBR DATA 15:17 THURSDAY, OCTOBER 30, 1986 11 2

3 ---------.'------------------------------------------------- TSTSECTN:;124 ----------------------------------------------------------- 3 OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS HEST u 6 l 475 1.133 0.88261 0.597 565.2 1565 3.493 0.099 0.9707 9 A-06 2 476 1.081 0.92507 0.688 537.8 1515 3.516 0.073 1.0676 3 A-06 3 477 1.192 0.83893 0.621 572.6 1790 3. 712 0.066 1. 0625 3 A-06 u g 4 478 1.036 0.96525 0.731 559.9 1790 3.764 0.066 1.0872 3 A-06 l(J 10 5 480 0.964 1.03734 o. 770 580.8 2115 3.723 0.068 1.0651 3 A-06

  • l1 II 6 481 1.034 0.96712 0.607 599.3 2115 3.14-9 0.106 0.9005 3 A-06 12 1'l 7 482 0.970 1.03093 0.699 580.l 2115 3.180 0.084 0. 9728 3 A-06 13 IJ 8 483 0.938 1.06610 0.757 565.2 2115 1-1 9 484 1.049 0.95329 0.641 623.l 2415 3.148 3.643 0.068 1.0193 3 A-06 ,.,

15 0.092 0.9649 3 A-06 I~

10 485 0.976 1.02459 0. 755 601.3 2415 3.654 0.058 1.0581 3 A-06 1ti lo 11 486 1.068 0.93633 *o.578 619.9 2415 3.015 0.104 0.8865 3 A-06 17 II 12 487 1.042 o. 95969 0.646 598.4 2415 2.983 0.063 0.9662 3 A-06 18 18 13 488 1.012 0,98814 0.688 584.7 2415 2.910 0.046 0.9998 3 A-06 1] \'.:

,o 14 489 1.026 0.97466 0.640 577.5 2415 2.501 0.052 0.9427 3 A-06 20 15 490 1.001 0.99900 0.684 562.2 2415 2.483 0.032 0.9831 3 A-06 21 21 o-, 16 491 0.997 1.00301 o. 719 547.6 2415 2.472 0.009 1.0288 3 A-06 r,*)

17 492 1,017 0.98328 0.571 585.7 2115 2,438 0.121 0.8334 3 A-06 2: 23 18 493 1.029 0.97182 0.602 574.6 2165 2.454 0.092 0.8894 3 A-06 2-!  :::,\

19 494 0.951 1.05152 o. 712 543.1 2115 2.508 0.065 0.9714 3 A-06 25 '.'5 20 496 0.980 1.02041 0.663 516.7 1515 2.491 0.105 0.9327 3 A-06

£6

.,., 21 497 0.932 1.07296 o. 719 502.4 1515 2.511 0.097 0.9614 3 A-06 ,,

2*)

22 498 0.927 1. 0787.5 0.763 481.3 1515 2.505 0.073 1. 0155 3 A-06 2d 23 499 1.044 0.95785 0.586 561.9 2415 1.997 0.060 0.8781 3 A-06 20

.,, 24 500 0.996 1.00402 0.646 539.2 2415 1.991 0.036 0.9235 3 A-06 '~

,,()

25 501 0.994 1.00604 0.697 516.1 2415 2.022 -0.003 0.9948 3 A-06 31

.,, 26 502 1.029 0.97182 0.594 544.3 2115 2.004 0.086 0.8772 3 A-06 32 27 503 0.976 1.02459 0.646 526.8 2115 1.996 0.076 0.9052 3 A-06 33 33

,.)

28 504 0.944 1.05932 o. 719 494.0 2115 1.980 0.045 0.9741 3 A-06 3,J 29 505 1.004 0.99602 0.660 496.3 1815 2.025 0.069 0.9510 3 A-06 30 506 0.966 1.03520 0.676 488.2 1815 1.947 0.076 0.9369 3 J\-06 3G 31 507 1.025 0.97561 0.574 475.2 1515 1.536 0.137 0.8444 3 A-06 37 31 32 508 1.025 0.97561 0.588 455.7 1515 1.488 0.122 0.8653 4 A-06 33 .}d

,,i

  • .;) .;lJ

.JI ----------------------------------------------------------- TSTSECTN=l25 ----------------------------------------------------------- :1

-'.'.! *12 OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS HEST ,.,

,:.J 33 510 1,271 0.78678 0.510 554.7 1515 3.537 0. 05lt l. 2091 3 A-07 34 511 1.120 0.89286 0.587 541.7 1515 3.511 0.050 1.2268 3 P.-07

~b .Ju 35 512 1.122 0.89127 0.542 579.8 1815 3.470 0.066 0.8360 3 A-07

  • !7

,: ...1 36 513 1.099 0.90992 0.614 558.0 1815 3.568 0.029 1. 2587 3 A-07 Ed 37 38 39 514 515 516 l.162 1.027 1.019 0.86059 0.97371

0. 98135 0.533 0.622 0.658 600.0 584.4 571. 7 2115 2115 2115 3.541 3.499 3.4-82
o. Olf9 0.038 0.016 l.1557 l.1918
l. 2509 3

3 3

A-07 A-07 A-07 i:J 40 517 1.224 0.81699 0.463 605.9 2145 2. 95lt 0.070 0. 7794 4 A-07 41 518 1.070 0.93458 0.573 576.5 2115 3.043 0.029 l, llf4-0

., -~

t.*J 3 A-07 .,J 42 519 1.055 0.94787 0.612 560.9 2115 3.019 0.003 1.2049 3 A-07 43 520 l.158 0.86356 0.530 619.9 2415 3.537 0.036 1.1446 3 A-07 44 521 1.082 0,92421 0,610 599.7 2lfl5 3.536 -0.003 l. 2311 3 A-07  :-)::;

b,.... 45 46 522 523 1.052 1.218 0.95057 0.82102 0.665 0.466 583.l 620.5 2415 2415 3.520 3.053

-0.037 0.043

l. 30{;,5 1.0583 3

3 A-07 A-07

,,7

[')

'*7 524 1.082 0.92421 0,568 59(1, l 2ltl5 3.052 -0.002 l. llf67 3 A-07 c9 48 525 1.040 0.96154 0.606 582,l 2415 3.004 -0.020 1.1760 3 A-07 LiJ ,,Q

STATISTICAL ANALYSIS OF COBRA/HRB-1 DNBR DATA 15:17 THURSDAY, OCTOBER 30, 1986 12 2

, ----------------------------------------------------------- TSTSECTN-125 ----------------------------------------------------------- 3 4

OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS WEST 5

____ \':

G 49 526 1.127 0.88731 0.515 579.8 2390 2.517 -0.015 1.0828 3 A-07 I

I 50 527 1.138 0.87873 0.547 560.6 2375 2.522 -0.056 1.1616 3 A-07 u 51 528 1.112 0.89928 0.600 539.2 2395 2.521 -0.099 1.2446 3 A-07 9

52 529 1.093 0.91491 0.500 581.l 2135 2.515 0.053 1.0195 3 A-07 10 10 53 530 l.063 0.94073 0.542 561.9 2100 2.514 0.028 1.0753 3 A-07 11 . 11 54 531 1.053 0.94967 0.577 544.3 2100 2.506 -0.002 1.1330 4 A-07 12 12 55 532 l.060 0.94340 0.555 518.7 1535. 2.528 0.0.53 1.0975 4 A-07 13 1]

56 533 1.028 0.97276 0.595 493.5 1525 2.507 0.032 1.1408 4 A-07 14 14 57 534 0.982 1.01833 0.634 483.9 1525 2.4132 0.022 1.1614 5 A-07 15 15 58 535 1.113 0.89847 0.475 566.4 2400 1.994 -0.010 0.9860 3 A-07 16 17 59 536 1.040 o. 96154 0.537 544.7 2395 2.037 -0.039 1.0421 3 A-07 lu 17 60 537 1.009 0.99108 0.584 523.2 2415 2.040 -0.078 1.0994 3 A-07 18 l'!

.:'.(j 61 62 538 539 1.054 1.019 0.94877 0.98135 0.508 0.560 544.0 519.3 2115 2100 1.997 2.025 0.026

-0.006 0.9989 1.06'18

{.

4 A-07 A-07 1~

!*J 63 540 1.006 0.99404 0.581 505.0 2095 1.994 -0.022 1.0905 4 A-07 cl '.!\

64 541 1.001 0.99900 0.560 503.l 1825 1.987 0.028 1.0455 4 A-07 22 ...

65 542 0.958 1.04384 0.608 484.3 1815 2.016 0.012 1.0861 4 A-07

    • J .::'J 2,1  :'I 25 25

TSTSECTN-127 ----------------------------------------------------------- .!,;

?7 OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS l'lEST 2G 211 29 2*J 66 550 1.106 0.90416 0.508 558.0 1515 3.548 0.067 1.0648 3 A-08

j(J J!)

67 551 1.027 0.97371 0.590 532.3 1515 3.543 0.036 1.1476 4 A-08

. ',J  :*1 68 552 1.085 0.92166 0.528 572.6 1815 3.549 0.045 1.0851 3 A-08 *,.

32 69 553 1.013 0.98717 0.589 558.0 1815 3.530 0.031 l.B04 4 A-08

3 70 554 1.065 0.93897 0.512 600.7 2115 3.526 0.052 1.0330 3 A-08 34 :ii 71 555 0.997 1.00301 0.569 587.6 2115 3.489 0.036 l. 07ft7 3 A-08

-  :;s 72 556 1.007 0.99305 0.640 562.6 2115 3.533 -0.012 1.2213 3 A-08 JJ 73 557 1.057 0.94607 0.484 594.8 2115 3.046 0.053 0. 9691 3 A-08

.11*

74 558 1.023 0.97752 0.524 581.4 2115 3.021 0.033 l.OJ.58 3 A-08 .,a 2:J 75 O 559 0.993 1.00705 0.576 563.8 2115 3.017 0.006 1.0840 4 A-013 .)')

76 560 1.055 0.94787 0.499 624.5 2415 3.518 0.051 0.9975 3 A-08

.a 77 561 1.060 0.94340 0.551 604.9 2415 3.521 -0.001 1.1066 3 A-08 41 :1 78 562 1.052 0.95057 0.605 585.7 2415 3.506 -0.044 1.2061 3 A-08

,4~

I,)

79 563 1.138 0.87873 0.451 616.3 2415 3.0.50 0.028 o. 9720 3 A-08

,\\

80 564 1.056 0.94697 0.497 605.2 2415 3.006 0.015 0. 994-7 3 A-08 *11 81 565 1.084 0.92251 0.544 58_2.4 2415 3.034 -0.045 1.1173 3 A-08 82 566 l.060 0.94340 0Jt79 583.1 2365 2.502 -0. 00{* 0. 9620 3 A-08 83 567 l.031 0.96993 0.523 564.5 2365 2 .t18'; -0.038 1.0216 3 A-08 17  :/

84 568 1.023 0.97752 0.569 546.3 2415 2.493 -0.067 1.1023 3 P.-08

,HJ *s 85 569 1.048 0.95420 0.455 584.4 2115 2.503 0. 05ft 0.9031 3 A-08 t,:J 86 570 1.037 o. 96432 0.491 563.2 20(15 2.511 0.029 o. 96ft5 4 A-08 . .,

,I 87 571 0.992 l,OOl306 0.543 547.6 2115 2.493 -0.003 1. 0202 *4 A-08
*!

1:/J 88 572 0.939 1.06496 0.540 520.3 1535 2.486 0.065 0.9602 4 A-03 5:)

89 573 0.880 1.13636 0.575 510.5 1515 2.4-59 0.068 0.9582 5 A-08  ;:1 90 574 0.877 1.14025 0.620 487.5 1515 2.506 0.036 1.0306 5 A-08 '.I 51 91 575 0.905 1.10497 0 .5{tl 503.4 1815 1.978 0.035 0.9272 5 A-08 92 576 0.883 1.13250 0.577 485.2 1815 1. 976 0.017 0.9654 5 A-08  :,d 93 577 0.978 1.02249 0.487 543.7 2115 2.015 0.022 0.9022 4 A-08

~,:1

'.il

- 94 95 96 578 579 580 0.971 0.898 0.986 1.02987 1.11359 1.01420 0.520 0.544 0.555 521.3 503.1 499.8 2115 1815 2115 1.983 1.979

-o. 011 0.037 0.9569 0.9258 4

5 A-08 A-08

,.t

,j i..u 2.006 -0.050 1.0363 4 A-08

STATISTICAL ANALYSIS OF COBRA/HRB-1 DNBR DATA 15 :17 THURSDAY, OCTOBER 30, 1986 13


TSTSECTN=l27 -----------------------------------------------------------

-l .j OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS NEST 6 I) 97 581 1.021 0.97943 0.462 564.2 2415 2.001 -0.021 0.8940 3 A-08 I 98 582 1.015 0.98522 0.493 545.7 2415 1.997 -0.057 0.9478 3 A-03 8

99 583 0.989 1.01112 0.541 521.6 2415 1.998 -0.094 1.0131 3 A-08 ~

0 100 585 0.819 1.22100 0.524 464.5 1515 1.467 0.116 0.8132 5 A-08 w 1U 101 586 0.777 I. 28700 0.564 444.0 1515 1,480 0.104 0.8299 5 A-08 1i 11 12 Ii 13 13 h ----------------------------------------------------------- TSTSECTN=l31 ----------------------------------------------------------- 14

  • 15 15 OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS WEST 10 16 17 17 102 619 0.954 1.04822 0.455 604.2 2395 3.450
  • 0.155 0.4915 4 A-09 n 103 0.935 1.06952 0.423 601.3 2395 3.007 0.172 0.4475 lU 620 4 A-09 104 622 0.938 1.06610 0.443 567.4 2125 2.949 0.146 0.4703. 4 A-09  ;::1

~!)

105 623 0.956 1.04603 0.387 566.1 2125 2.422 0.168

  • 0.4189 4 A-09 01 21 106 624 0.943 1.06045 0.429 563.2 2395 2.442 0.149 0.4580 4 A-09  :(!

22 107 625 0.86:S 1.15875 0.543 575.6 2405 3.413 0,136 0.5301 4 A-09 2'!

108 626 0.927 1.07875 0.479 569.4 2375 2.941 0.134 0.5026 4 A-09 2

25 j

109 110 627 628 0.888 0.965 1.12613 1.03627 0.546 o.478 541.l 532.0 2405 2415 2.933 2.463 0.107 0.101 0.54-88 0.5223 4

4 A-09 A-09

~,

2*1

26. ..*J 111 629 0.901 1.10988 o.538 502.4 2415 2.470 0.085 0.5488 4 A-09 27 112 630 1.022 0.97847 0.360 561.9 2415 1.960 0.165 0.4164 4 A-09 :1J

~8 113 631 0.995 l.00503 0.407 525.2 2405 1.952 0.127 0.4586 4 A-09 ~'.';!

2tt 114 632 1.078 0.92764 0.327 561.2 2100 1.969 0.175 0.3988 4 A-09 (,lj 30 115 633 0.998 l.00200 0.382 524.8 2095 1.949 0.156 0.4313 4 A**09 .11 31 116 634 0.928 1. 07759 0.461 492.l 2405 1.964 0.109 0.4841 4 A-09 :t.!

32 117. 635 0.917 1.09051 0.467 474.5 2115 1.997 0.124 0.4848 4 A-09 33 .!~'"

118 636 0.944 I. 05932 0.520 487.2 2125 2.468 0.092 0.5555 4 A-09 o-1 119 639 0.936 1.06838 0,517 528.7 2085 2.972 0.110 , 0.5479 4 A-09 120 640 0.988 1.01215 0.468 .555.4 1815 3.486 0.133 0.5232 4 A-09

~h 121 641 0.959 1.04275 0.520 532.7 1795 3.463 0.119 0.5642 4 A-09

~*7 122 642 1.020 0.98039 0.536 520.6 1800 3.494 0.096 0.6189 4 A-09

tJ 0.98232 o.516

..:!J 123 643 1.018 515.1 1515 3.528 0.123 0.5947 4 A-09

~u 124 644 1.021 0.97943 0.456 '*83.6 1490 2.467 0.145 0.5271 4 A-09 4.:,

125 645 1.034 0.96712 o.501 449.2 1490 2.483 0.112 0.5863 4 A-09 41 42 126 646 1.033 0.96805 0.447 441.4 1515 1.996 0.140 0.5227 4 A-09 "

127 647 1.264 0.79114 0.284 561.9 1805 1.942 0.180 0.4063 4 A-09

~3 128 648 0.937 1.06724 0.426 520.9 1500 2 .513 0.188 0.4516 4 A-09 44 129 649 0.961 1.04058 0.359 527.1 1505 1.937 0.235 0.3906 4 A-09

  • l:.i 130 650 1.021 0.97943 0.409 479.l 1502 2.004 0.174 0.4727 4 A-09

,i:1 131 651 1.166 0.85763 0.352 514.l 1805 1.952 0.144 0.4647 4 A-09 *11 132 652 1.087 0.91996 0.408 479.7 1785 2.001 0.125 0.5021 4 A-09 *ir\

..;J

.;~

133 653 0.872 l.14679 0,412 605.2 2105 3.464 0.182 0.4069 4 A-09 '*)

~;ii

      • ~ . r, ;

I.')  :.i.:

t-1

~-

J:)

([j

  • ,7 t:.ci* !o.:
.-l LJ

STATISTICAL ANALYSIS OF COBRA/WRB-1 DNBR DATA 15:17 THURSDAY, OCTOBER 30, 1986 14 1

2 2 3 ----------------------------------------------------------- TSTSECTN-132 -----------------------------------------------------------

OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS WEST G

134 654 0.892 1.12108 0.475 563.2 1515 3.421 0.213 0.4467 4 A-10 135 655 0.924 1.08225 0.427 607.2 2095 3.439 0.203 0.4160 4 A-10 a 136 1.025 656 0.97561 0.428 605.5 2405 2.950 0.197 0.4624 4 A-10 u u

  • ,o 137 657 1.111 0.90009 0.390 601.3 2205 2.978 0.181 0.4567 4 A-10 1ll 138 658 0.991 1.00908 0.461 567.7 2105 2.942 0.167 0.4817 4 A-10 11 139 659 l.024 0.97656 0.470 563.8 1805 3.442 0.160 0.5074 4 A-10 12 12 140 660 0.962 1.03950 0.476 606.5 2375 3.lt-18 0.189 0.,1826 4 A-10 13 IJ 1,1 141 661 0.914 l.09409 0.514 594.5 2400 3.349 0.184 0.4951 4 A-10 1\

142 662 0.912 1.09649 o.561 576.5 2400 3.395 0.157 0.5395 4 A-10 1:)

143 663 0.850 1.17647 0.566 560.3 2115 3.456 0.162 0.5073 4 A-10 1a 17 144 664 0.883 1.13250 0.575 545.0 2400 2.930 0.149 0.5354 4 A-10 '"

I.'

145 665 0.872 1.14679 0.580 523.6 2115 2.969 0 .14ft 0.5329 4 A-10 18 :r) 146 666 0.847 l.Hl064 0.570 526.5 1490 3.486 0.187 0.5091 4 A-10 ,,i 147 667 0.913 1.09529 0.573 529.7 1800 3.464 0.145 0.5516 4 A-10

.-o ,o ll18 668 0.855 1.16959 0.576 484.6 2100 2.470 0.148 0.5188 4 A-10 21  ;!I 149 669 0.912 1.09649 0.572 502.4 2385 2.493 0.125 0.5497 4 A-10 22 22 2'l 150 670 0.917 1.09051 0.508 573.6 2390 2.918 0.177 0.4913 4 A-10 13 151 671 0.966 1.03520 0.457 563.2 2385 2.438 0.184 OJ1655 4 A-10 '.

201 724 0.969 1.03199 0.533 486.0 1495 2.468 0.206 0.5857 5 A-11

~;) -._,j

. 'ci' 202 725 0.979 1.02145 0,554 469.0 1505 2.469 0.188 0.6152 5 A-11 _,*,

203 726 1.196 0.83612 0.415 443.0 1500 1.531 0.236 0.5627 5 A-11 23  :\j 204 727 1.174 0.85179 0.376 489.0 1505 1.463 0.298 0.5003 5 A-11

~o 2:J 30 so 31 *I 32 ----------------------------------------------------------- TSTSECTN=l34 ----------------------------------------------------------- J.2 3J :u OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS HEST

':i*l '.!I
~:,

205 728 1.020 0.98039 0,399 561.2 1510 3.393 0.170 0.4292 4 A-12 33

~, 206 207 729 730 1.019 0.869 0.98135 1.15075 0.423 0.384 562.9 606.8 1800 2095 3.408 3.369 0.136 0.182 0.4548 0.3258 4

4 A-12 A-12

.ll 33  :,-l 208 731 0.871 1.14811 0,393 607.2 2125 3.433 0.178 0.3342 4 A-12 3U  ;'I 209 732 0.954 1.04822 0.444 603.3 2'~05 3.437 0.149 0.4468 4 A-12

-.a

.,, 210 211 733 734 0.894 1.001 1.11857 0.99900 0.410 o.346 602.6 600.0 2385 2.985 0.176 0.3579 4 A-12 .,

~~

2115 2.895 0.171 0.3382 4 A-12 212 735 0.912 1.09649 0.444 559.9 2100 2.942 0.139 0.3954 4 A-12

~3 213 736 0.872 1.14679 0.486 565.8 2405 2.927 0.135 0.4472 4 A-12 44 II t;:;

214 737 0.919 1.08814 0.418 562.2 2400 2.411 0.147 0.4050 4 A-12 215 738 0.951 1.05152 0.378 560.9 2100 2.,.03 0.159 0.3510 4 A-12

.:5 216 739 0.839 1.19190 0.557 565.2 2405 3.420 0.123 0.4929 4 A-12 47 t,:;

217 740 1.035 0.96618 0.489 442.7 1490 2.444 O.J.05 0.5734 4 A-12 218 741 0.982 1.01833 0.530 482.6 23S5 2.477

-~ 219 742 0.950 1.05263 0.506 481.0 2100 2.443 0.034 0.083 0.5894 0.5069 4

4 A-12 A-12 b()

220 743 0.992 1.00806 0.567 483.6 1500 3.538 0.098 0.6369 4 A-12

!;1 221 744 1.010 0.99010 0.496 516.7 1500 3.502 0.126 0.5678 4 A-12

~ 2

~j 222 745 1.041 0.96061 0.518 519.7 1800 3 Jt94 0.089 0.5691 4 A-12 223 746 0.972 1.02881 0.542 521.9 2405 2.930 0.055 0.5969 4 A-12

."')

224 747 1.113 0.89847 0.507 525.8 2c105 2.949 0.02(, 0.6393 4 A-12 225 748 0.974 1.0266'} 0.470 522.6 2405 2.430 0.084 0.4828 4 A-12

!,J 226 749 0.939 1.06496

o. 96432 0.465 563.2 2105 3.249 0.126 0.4606 4 A-12 ',I

'.. J

  • 227 750 1.037 0.318 559.3 2085 1. 9;:2 0.176 0.3219 <* A-12 228 751 1.189 0.8<tl04 0.327 557.7 2385 1.952 0.116 0.4101 4 A-12

~*;J 229 752 1.020 0.98039 0.401 513.8 2410 1. 93<1 0.099 0.4313 4 A-12

_."J

STATISTICAL ANALYSIS OF COBRA/HRB-1 DNBR DATA 15:17 THURSDAY, OCTOBER 30, 1986 16


TSTSECTN=l34 -----------------------------------------------------------

OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS HEST 230 753 1.020 0.98039 0.378 G 514.l 2105 1.936 0.133 0.4066 4 A-12 231 754 0.983 1.01729 0.447 517.7 2105 2.452 0.107 0.4637 4 A-12 0

232 755 1.008 0.99206 0.428 475.5 2090 1.965 0.099 0.4553 4 A-12 233 756 1.021 0.97943 0.443 478.1 2425 1,949 0.052 0.5125 4 A-12 JU IQ 234 757 1.003 0,99701 0.399 514.1 1485 2,411 0.175 0.4222 4 A-12

  • 11 11 235 758 0.981 1.01937 0.452 481.0 1505 2.450 0.145 0.4679 4 A-12 12 1~

236 759 1.049 0.95329 0.340 520.0 1505 1.934 0.206 0.3764 4 A-12 n 237 1.128 13 760 0.88652 0.335 522.2 1800 1.937 0 .15lt 0.3986 4 A-12 1" J,j H_;

238 761 1.079 0.92678 0.393 481.0 1800 1,977 0.122 0,4474 4 A-12 15 239 762 1.078 0.92764 0.377 480.0 1500 1.930 0.167 0.4288 4 A-12 16 10 240 763 1.060 0.94340 0.421 440.6 1500 1.938 0.137 0.4706 4 A-12 17 If 241 764 1.162 0.86059 0.281 561. 9 1800 1.890 0.193 0.3189 4 A-12 1J JU 242 765 0.953 1.04932 0.479 562.6 2105 3.398 0.119 0.4815 4 A-12 1,~

2*2 ----------------------------------------------------------- TSTSECTN=l39 ----------------------------------------------------------- "'2~

21 OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXIH!UAL CHF ITERATNS HEST 'J 2S 243 840 l.201 0.83264 0.365 478.9 1495 1.924 0.140 0.5011 4 A-17 26 244 841 1.078 0,92764 0.485  :,

27 439.8 1505 2.403 0.087 0.5976 4 A-17

,J 245 842 1.159 0.86281 0.401 440.5 1500 1.863 0.118 0.5310 4 A-17 '.
:I 2lt6 843 1.074 0.93110 0.430 485.0 1495 2.403 0.130 0.5280 4 A-17 20 247 844 1.011 0.98912 0.538 494.9
  • 1500 3.466 0.099 0.6217 4 A-17
jJ
  • 1 248 845 1.155 0.86580 0.381 481.7 1805 l,924 0.106 0.5030 4 A-17

'-'1 249 846 1.060 0,94340 0.413 482.4 2095 l.929 0.088 0.4659 4 A-17  :)2 250 8{t7 /;l,977 1.02354 0.490 485.8 2095 2.380 0.075 0.5095 4 A-17

~..;:

3.1 251 848 0.977 1.02354 0.450 476.2 2395 1.913 0.057 0.5023 4 A-17 252 849 0.914 1.09409 0.526 494.l 2410 2.422 0.051 0.5494 4 A-17 -"

'.5 253 850 1.134 0.88183 0.333 517.5 1509 1.880 0.191 0.4020 4 A-17

..:1..

~, 254 255 851 852 1.076 1.044 0.92937 0.95785 0.376 0.491 523.6 516.7 1495 1505 2.344 3.474 0.172 0.4306 4 A-17

J 0.115 0.5858 4 A-17 256 853 1.014 0.98619 0.531 517.4 1805 3.462 0.084 0.6152 4 A-17 3il

.:;1 257 854 1. 212 0.82508 0.325 522.9 1805 l.883 0. lftl 0.4192 4 A-17 258 855 1.097 0.91158 0.370 510.9 2075 l.899 0.113 0 .Ct32l 4 A-17

-~ l

-'.,2 259 856 0.991 l.00908 0.436 520.9 2095 2.372 0.107 0.4599 4 A-17

,'.'J 260 857 0.954 1.04822 0.508 521.9 2105 2.886 0.087 0.5160 4 A-17 261 858 0,946 l.05708 0.470 526.3 2405 2.393 0.085 0.5082 4 A-17 262 859 1.015 0.98522 0.399 514.l 2395 1.890 0.096 0.4312 4 A-17 263 860 1.273 0.78555 0.271 563.0 1800 l.845 0.180 0.3671 4 A-17 264 861 1.063 0.94073 0.423 560.9 1815 3.359 0.124 0.4786 4 A-17

  • ,J 265 862 1.061 0.94251 0,388 564.2 1505 3.328 0.168 0.4380 4 A-17 266 863 l.069 0.93545 0.373 555.4 2100 2.379 0.128 0.4244 4 A-17 267 864 0.989 l.01112 0.429 563.l 2100 2.934 0.123 0.4514 4 A-17 268 865 0,950 l.05263 0.484 562.l 2105 3.375 0, ll.2 0Jt894 4 A-17
i'-

269 866 1.203 0.83126 0.297 561.4 2100 1.869 0.151 0.3804 4 A-17 270 867 1.072 0. 9328{t 0.334 564.4 2400 1.895 O.l<t5 0.3812 4 A-17

~. 1 271 868 0.989 1.01112 0.399 565.9 2405 2.356 O.J.28 0.4199 4 A-17 *,*!

272 0.927

~~

1.07875 0.472 566.3 2405 2.880 0,113 0.4657 4 A-17 273 0.945 1.05820 0.400 603.9 2405 2.918 0.163 0.4025 4 A-17

. 274 275 276

~

~3 0.947 0.918 l.066 1.05597 1.08932

o. 93809 0.449 0.390 0.330 601.l 605.1 602.8 2405 2105 2005 3.385 3.375 2.844 0.139 0.169 0.166 0.4528 0.3526 0.3745 4

4 4

A-17 A-17 A-17 277 874 0.880 1.13636 0.550 563.l 2410 3.372 0.099 0.5151 4 A-17 l,.J

STATISTICAL ANALYSIS OF COBRA/HRB-1 DNBR DATA 15:17 THURSDAY, OCTOBER 30, 1986 17 2


TSTSECTN=l3? -----------------------------------------------------------

OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS l'-lEST 6

278 875 0.906 1,10375 0.550 525.2 2405 2.885 0.065 0.5698 4 A-17 7

  • 0.126 279 876 1.087 0.91996 0.429 482.l 1500 2.382 0.5330 4 A-17 !I

!l g 9 HJ 10 11, -------------------------------- ----------- -------------- TSTSECTN-140 ----------------------------------------------------------- 11 12 12 OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS WEST 13 13

.M 1.270 0.78740 0.435 559.l 1495 3.530 0.070 1.0225 4 A-13 280 878 281 879 1.054 0.94877 0.541 538.6 1515 3.506 0.061 1.0554 4 A-13 lti 10 282 880 1.153 0.86730 0.470 577.6 1805 3,507 0.064 1.0035 4 A-13 17 17 283 881 l.074 0.93110 0.551 553.4 1790 3.527 0.037 1.0959 4 A-13 1d 18 284 882 l.064 0.93985 0.497 598.2 2115 3.514 0.065 0.6338 3 A-13 11

,o 285 883 1.034 0.96712 o.553 579.8 2100 3.519 0.037 1.0581 4 A-13  :::o 286 884 0.988 1.01215 0.625 559.6 2095 3.504 0.012 l.1431 4 A-13 21 22 287 886 1.011 0.98912 0.547 603.7 2400 3.493 0.033 1.0238 3 A-13 "':,2 288 888 1.046 0.95602 0,456 616.l 2395 3.023 0.070 0.8827 3 A-13 "'\

£J 289 889 0.990 1.01010 o?5o6 601.1 2405 2.993 0.046 0.9271 4 A-13 2,1 21 290 890 l.011 0.98912 o.540 583.4 2405 2.984 0.003 l.0103 4 A-13  :-s 25 291 891 l.070 0.93458 o.454 595.5 2085 3.027 0.077 ' 0.8994 3 A-13 :1,j

C--3 292 892 0.969 1.03199 0.515 582.8 2120 2.996 0,066 0.9240 4 A-13 L7

';.7 293 893 0.987 1.01317 0.508 581.6 2115 2.965 0,063 0.9277 4 A-13 28

~iJ 294 894 0.940 1.06383

  • 0.567 565.0 2095 3.019 0.0Ct6 0.9864 4 A-13 ~9
!D 295 895 0.983 1.01729 0.475 537.8 1505 2.501 0.109 0.8644 4 A-13 3D
o 296 896 0.984 1.01626 0.492 524,6 1500 2.490 0.092 0.8958 5 A-13
  • a1 11 297 897 0.879 1.13766 0.575 497.l 1495 2.505 0.078 0.9357 5 A-13 *:')

32 298 898 0.967 1.03413 o.463 582.2 2115 2.486 0.089 0.8285 4 A-13 J3 33 299 899 0.952 l.05042 0.501 563.0 2095 2.485 0.063 0.8026 4 A-13 3,1 34 300 900 0.887 1.12740 o.574 540.5 2100 2.515 0.041 0.9429 5 A-13

'*.... 25 301 901 0.918 1.08932 0.525 577.8 2405 2.530 0.035 0.8922 4 A-13  ;,!.)

'..S 302 902 0.971 1.02987 o.537 561.8 2405 2.508 -0.011 0.9649 4 A-13  :.,

37 303 903 0.939 l.06(t96 0.593 541.3 2405 2.519 -0.041 1.0304 4 A-13 :1*.l 38 304 904 1.003 0.99701 0.457 562.4 2405 2,032 0.013 0.8(+85 4 A-13 .'J 20 305 905 0.976 1.02459 0.502 . 539. 7 2405 2.028 -0.022 0.9066 4 A-13 Al 0:0 41 306 906 0.938 l.06610 0.540 522.5 2395 2.019 -0.037 0.9378 4 A-13 .,

,2 307 907 0.945 1.05820 0.453 560.2 2105 2.034 0.087 0.7924 5 A-13 308 908 1.002 0.99800 0.465 542.2 2090 2.044 0.0(f5 0.8622 4 A-13 :J

~:3 309 909 0.981 1.01937 0.510 515.6 2095 2.009 0.011 0.9264 4 A-J:3 ,j.j

-~ 1

..-: ~j

/,<.) -

TSTSECTN-146 ---------------- *------------------------------------------

.17 OBS RUN MDNBR MP HEATFLUX TIN. PRESSURE MASSFLUX EXITQUAL CHF ITERAHIS l'IEST 50 :in 310 1097 1.060 0.94340 0.411 561.9 1505 3.411 0.163 0.4965 4 A-16 'I 311 1098 0.988 l.01215 0.508 519.0 1495 3.385 0.131 0.5719 4 A-16 :1~

'2

  • 312 1099 1.041 0.96061 0.435 563.5 1795 3.376 0.132 0.5161 4 A-16 ,.l

!'J 313 1100 0.976 1.02459 0.509 535.9 1805 3.377 0.112 0.5664 4 A-16

.1 Ct 314 1101 1.078 0.92764 0.391 599.0 2095 3.410 0.140 0.4804 A-16

[;,...

315 1102 0.960 1.04167 0.493 564.5 2105 3.378 0.115 0.5394 4 A-16 ,'.0 316 1103 1.004 o. 99602 0.452 602.9 2400 3.449 0.130 0.5173 4 A-16 '7 b-

!:t3.

317 1104 0.965 1.03627 0.492 587.9 2400 3.415 0.116 0.5411 4 A-16 tiJ 318 1105 1.039 o. 96246 0.404 598.7 2395 2.917 0.139 0,4785 4 A-16

(:.fl 319 1106 0.930 1.07527 0.492 565.8 2400 2,918 0.113 0.5216 4 A-16 co

STATISTICAL ANAL VSIS OF COBRA/~IRB-1 DNBR DATA 15:17 THURSDAY, OCTOBER 30, 1986 18 3 ----------------------------------------------------------- TSTSECTN~l4o -----------------------------------------------------------

4 OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS WEST 5

Ii'- 6 6 320 1107 0.983 1,01729 0.426 563,5 2395 2,434 0,126 0.4772 4 A-16

_j__r 321 i108 0.925 1.08108 0.511 516.7 2395 2.443 0

0.081 0.5390 4 A-16 322 1109 1.033 0.96805 0.365 561.9 2395 1.978 0.149 0.4297 4 A-16 9

323 1111 0.960 1.04167 0.477 478.l 2415 1.963 0.061 0.5219 4 A-16 10 Ill 324 1112 0,982 1,01833 0.502 444.0 2395 1.928 0.021 0.5622 4 A-16 11 11 325 1113 1.087 0.91996

  • 0,346 602.0 2095 2,897 0.162 0.4286 4 A-16 12 12 326 1114 1.055 0.94787 0.434 560.6 2095 2.922 0.112 0.5218 4 A-16 13 13 g

327 1115 0.909 1.10011 0.523 529.1 2090 2.906 0.107 0.5419 4 A-16 14 328 1116 1,069 0.93545 0.390 557.3 2115 2.431 0.129 0.4753 4 A-16 15 15 329 1117 0.968 1.03306 0.453 527.1 2095 2.424 0.118 0 Jt998 4 A-i6 16 1J 330 1118 0.905 1,10497 0.524 494.0 2135 2,440 0.095 0.5404 4 A-16 17 17 331 1119 1.094 0.91408 0.334 557.3 2095 1.936 0.164 0.4163 4 A-16 rn I ~l 332 1120 0.970 1.03093 0.404 520.3 2100 1.968 0.146 0.4468 4 A-16 l'.l I" l:Q 333 1121 0.933 1.07181 0.448 485.9 2100 1.934 0.125 0.4767 4 A-i6 334 1122 0.910 1.09890 0.532 485.9 2115 2,433 0.089 0.5518 4 A-16 21 22 335 1123 0.941 1.06270 0.508 439.2 2095 1.973 0.077 0.5452 4 A-16 "'

23 336 1124 1.028 0.97276 0.405 523.6 1505 2,427 0.173 0.4745

  • 4. A-16  :!

337 1125 1,008 0.99206 0,464 484.9 1495 2,445 0.141 0.5329 4 A-16 24  ;.,.J 338 1126 1.008 0.99206 0.513 445.0 1515 2,412 0.104 0,5897 4 A-16 25 339 1127 1.124 0.88968 0.352 524.2 1795 1.933 0.156 0.4509 4 A-16 *,:;

2:3 27 340 1129 0.965 l.03627 0.473 442.7 1800 1,931 0.115 0.5202 4 A-16 341 1130 1.020 0.98039 0.411 564.2 1505 3.3.54 0.173 0.4778 4 A-16 2a 20 342 1131 1.080 0.92593 0.355 520.0 1490 1,945 0.200 0.4370 4 A-16 29 **:i 343 1132 1.061 0.94251 0.363 524.8 1815 1.946 0.165 0.4392 4 A-16 30 3U 31 344 1133 1.050 0.95238 0,409 475.5 1505 1.938 0.164 0,4896 4 A-16 '.l\

345 1134 1.004 0.99602 0.453 442.4 1495 1.938 0.146 0.5187 4 A-16 32 346 1135 0.996 1.00402 0.501 402,3 1515 1,962 0.109 0.5690 4 A-16

  • *~
,3 :n
,./ 0
.t-l
~G

~~ ----------------------------------------------------------- TSTSECTN=l48 ----------------------------------------------------------- 3,i 37 j/

2'1 OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS WEST .id

. ":'] :0

.. ~

347 1177 0.982 1.01833 0.406 605.5 2405 2,990 0.166 0.4522 4 A-14 :11

~ I 348 1178 0.908 1,10132 0.468 577.5 2410 2.883 0.146 0.4817 4 A-14 .11

~2 349 1179 0.971 1.02987 0.532 537.5 2400 2.931 0.078 0.5860 4 A-14

,n 350 1180 0.940 1.06383 0.365 604.6 2115 2,961 0.187 0,3891 4 A-14 351 1181 0.914 1.09409 0.441 569.1 2105 2.933 0.152 0.4570 4 A-l't .J..

352 1183 1.002 0.99800 0.323 602.6 2115 2,,489 0.198 0.3670 4 A-14 l:i 353 1184 0.994 1.00604 0.388 562.6 2100 2.450 0.155 0.4372 4 A-14

,j:

354 1185

  • 0.972 1,02881 0.463 522.6 2115 2.489 0,114 0.5103 4 A-14 I/

355 1186 0.962 1.03950 0.514 490.1 2105 2 ,lt88 0.087 0.5607 4 A-14 356 1187 0.915 1.09290 0.597 445.6 2100 2,520 0.058 0.6196 4 A-14 357 1188

.~

1.018 0.98232 0.356 604.2 2405 2,497 0.182 0.4111 4 A-14 *... )

. '1 358 1189 0.979 1.02145 0.428 562.9 2395 2,478 0.133 0.4751 4 A-14 359 1190 0.972 1.02861 0.481 530.1 2395 2.482 0.094 0.5304 4 A-14

-- 360 1191 0.896 1.11607 0.541 503.4 2395 2.495 0. 08't 0.5496

!,:1 4 A-14

[ I 361 1192 0.948 1.05485 0.606 '153.l 2415 2,510 0.008 0.6512 4 A-14 '.I 362 1193 1.094 0.91408 A-It;,

  • ,5 0.305 600.7 2405 2.oh 0.197 0.3783 4 363 1194 1.188 0.84175 0.367 540.4 2400 2.016 0.088 0.4943 4 A-14 364 1195 1.007 0.99305 0.419 517.7 2395 1. 987 0.109 0.4784 4 A-14 './
  • ..:u* 365 1196 1.129 0.88574 0.45'1 468.4 2400 1.994 0.013 0.5811 4 A-14 *...l 366 1197 0,927 1.07875 0.495 469.7 2410 2,001 0.075 0.5202 4 A-14 .. lJ
~ 367 1198 1.073 0.93197 0.275 602.6 2115 1.978 0.222 0.3347 4 A-14

STATISTICAL ANALYSIS OF COBRA/HRB-1 DNBR DATA 15:17 THURSDAY, OCTOBER 30, 1986 19


TSTSECTN-146 -----------------------------------------------------------

OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS l~EST 368 1199 1,060 0.94340 0.337 559.3 2115 1.997 0.170 0.4050 4 A-14 369 1200 1.015 0.98522 0.386 524.8 2100 1.989 0.145 0.4440 4 A-14 370 1201 0.981 1.01937 0.458 474.5 2105 2,014 0.103 0.5095 4 A-14

,o 371 1202 0.962 1.03950 0.491 447.9 2095 2.001 0.087 0.5355 4 A-14 JO 372 1203 0.971 1,02987 0.388 607.8 2115 3,441 0.169 0.4273 4 A-14

11. 11 373 1204 0.921 1.08578 0.515 559.6 2100 3.452 0.122 0.5376 4 A-14 12 Ii!

374 1205 0.990 1.01010 0.400 601.3 2110 3.437 0.159 0.4491 4 A-14 lJ 1:J 375 376 1206 1207 0.887 0.900 1.12740 1.11111 0.471 0,525 604.2 578.5 2400 2400 3.434 3.398 0.167 0.129 0.4736 0.5357 4 A-14 ,,

15 4 A-14 377 1208 0.903 1.10742 0.449 557.0 1510 3.430 0.181 0.4599 4 A-14 10 10 378 1209 1.040 0.96154 0.461 553.8 1810 3.461 0.123 0.5437 4 A-14 17 379 1210 1.040 0.96154 0.524 522.9 1790 3.470 0.095 0.6178 4 A-llt 1iJ d 380 1211 0.970 1.03093 0.535 510.9 1510 3.505 0.126 0.5884 4 A-llt 381 1212 0.922 1.08460 0.370 560.3 1505 2.505 0.226 0.3867 4 A-14 382 1213 0.937 1.06724 0.430 518.7 1500 2.508 0.184 0.4567 4 A-14

':I ~l 383 1214 0.933 1.01729 0.462 488.5 1515 2 .'187 0.148 0.5152 4 A-14 22 334 1215 1.041 0.96061 0.499 452.8 1510 2.498 0.107 0.5890 4 A-llt 31 385 1216 0.883 1.13250 0.613 546.0 2(105 3.468 0.089 0. 6136 4 A-14 2*f >1 386 1217 0.936 1.06838 0.612 517.7 2095 3.496 0.077 0.6493 4 A-14 '..!:)

387 1218 0.860 1.16279 0.632 505.4 2395 3.016 0.068 0.6162 4 A-14

~ J . ,~

388 1219 0.932 1.07296 0.606 484.6 2105 2,981 0.065 0.6405 4 A-14

/.t' 389 1220 1.032 o. 96899 0.568 483.9 1510 3.473 0.093 0.6646 4 A-14

.:/

29 390 1221 1.000 1.00000 0.613 487.5 1810 3.492 0.067 0.6952 4 A-14

J Ji) 391 1222 1.031 0.96993 0.557 411.4 1505 2,505 0.076 0.6511 4 A-14
ii 392 1223 0.942 1,06157 0.326 563.5 1495 1.997 0.263 0.3't81 4 A-14 ,.,

o*, 393 1224 0.973 1.02775 0.361 525.5 1505 1.947 0.228 0. 3982 4 A-14 ,!'.?

n 394 1225 1.001 0.99900 0.413 481.3 1500 2.016 0.177 0.4686 4 A-14 '~J 3-1 395 1226 1.020 0.98039 0.447 443.1 1495 1,986 O,llf5 0.5169 4 A-14  :,1 396 1227 1,058 0.94518 0.478 408.4 1500 1.998 0.106 0.5733 4 A-14 397 1228 1.106 0.90416 0.305 562.6 1815 1.965 0.198 0.3825 4 A-ltt 37 398 1229 1.109 0.90171 0.371 507.0 1795 1. 971 0.144 0.4667 4 A-14
,J 399 1230 1.075 0.93023 0.403 485.9 1805 1.984 0.129 0.4913 4 A-14 .. J
..-.~

400 1232 1.253 0.79808 0.243 600.3 2400 1.529 0.219 0.3452 4 A-14 401 1233 1.305 0.76628 0.209 608.5 2090 1.476 0.252 0.3092 4 A-14 ... J 402 1234 1.089 0.91827 0.314 547.3 2400 1.54(;. 0.176 0.3876 4 A-14

-~ I .!J

,! ~

403 1235 1.031 0. 96993 0.369 496.9 2405 l.5lt3 O.BO 0.4314 4 A-14 404 1236 1.014 0.98619 0.402 459.9 2400 1.529 0.097 0.4621 4 A-lCt "I

.;4 405 1237 1.117 0.89526 JI\ 0.316 517.7 2100 1.496 0.171 0.,1004 4 A-14

-15 406 1238 1.045 0.95694 0.365 477.5 2100 1.516 0.147 0.4325 4 A-14

.:!J 407 1239 1.028 0.97276 0.402 441.8 2100 1.528 0.118 0.4634 4 A-14 408 1240 1.020 0.98039 0.280 563.5 1505 1.502 0.315 0.3238 4 A-14 409 1241 1.004 0.99602 0.322 520.6 1500 1.533 0.270 0.3665 4 A *- 410 411 412 1242 1243 1244 1.093 1.101 1.065 0.91491 0.90827 0.93897 0.340 0.386 0.413 480.7 426.2 395.8 1505 l't95 1510 1.513 1.538 1.513 0.217 0.167 0.152 0.4212 0.4821 0.4989 4

4 4

A-lt1-A-14 A-14 413

  • 1245 0.945 1.05820 0.440 566.4 2105 2.928 0 .14't 0.4713 4 A-14 414 1246 0.895 1.11732 0.532 5(t6. 9 2405 2,914 0.110 0.5399 4 A-14 t.:..!

415 1247 0.934 1.07066 0.486 531. 7 2400 2.471 0,106 0.5llf7 4 A-l<t 5:,

416 1248 0.996 1.00402 0.531 523.6 1800 3.443 0.102 0.5996 4 A-14

,_ :o

,'J

.  :,/

u 0

STATISTICAL ANALYSIS OF COBRA/l'IRB-1 DNBR DATA 15:17 THURSDAY, OCTOBER 30, 1986 20 2


~----------------------.-------------------------- TSTSECTN:al53 -----------------------------------------------------------

OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS l'IEST 0

r, 417 1391 0.994 1.00604 0.416 565.8 1505 2.990 0.223 0.4575 4 A-15 418 1392 1.077 0.92851 0.404 572.6 1800 2.981 0.18(+ 0.4817 4 A-15

]

419 1393 1.165 0.85837 0.356 580.l 1805 2.716 0.192 0.4590 4 A-15 420 1394 1.196 0.83612 0.381 575.9 1810 2.989 0.171 0.5043 4 A-15 10 Ill 421 1395 1.050 0.95238 0.369 606.5 2100 2,962 0.203 0.4289 4 A-15 ii 11 422 1397 1.058 0.94518 0.429 552.2 2115 2.493 0.163 0 .502'* 4 A-15 1.2 12 423 1398 1.318 0.75873 0.292 587.6 2100 2.006 0.199 0.4260 4 A-15 13 J'.j 424 1399 1.095 0.91324 0.368 548.6 2100 1.986 0.192 0.4460 4 A-15 1*1 1-l 425 1400 1.007 0.99305 0,428 607.2 2400 2.960 0.206 0.4772 4 A-15 15 l ~l 426 1402 1.098 0.91075 0.377 600.7 2400 2.484 0.204 0.4583 4 A-15 1d lb 427 1403 1.043 0.95877 0.456 557.7 2395 2.491 0.155 0.5262 4 A-15 1/ ii 428 1404 1.068 0.93633 0.395 549.9 2400 1.976 0.180 0.4667 4 A-15 1;! l,j 429 1405 1.002 0.99800 0.480 559.3 2105 2.972 0.158 0.5321 4 A-15 ,*I

,O 430 1406 1.119 0.89366 0.446 516.4 1800 2.489 O,llf8 0.5522 4 A-15 431 1407 1.079 0.92678 0.494 525.5 1805 2.968 0.139 0.5899 4 A-15 21  ;:1 432 1409 1.029 0.97182 0.454 486.5 2105 1.981 0,145 0.5172 4 A-15

~2 'J')

.. , 433 1410 1.083 0.92336 0.416 493.0 1500 1.996 0.213 0.4988 4 A-15 434 1411 1.007 0.99305 0.487 494.3 1500 2.495 0.188 0.5425 4 A-15 2! ,.1 435 1412 1.059 0.94429 0.385 497.9 2405 1.542 0.174 0.4513 4 A-15

'.2:)

436 1413 1.132 0.88339 0.367 486.9 2100 1.530 0.175 0.4600 4 A-15

~G 437 1414 1.103 0.90662 0.426 435.6 2400 1.533 0.084 0.5200 4 A-15
~t .:I 438 1415 1.046 0.95602 0.420 430.4 2100 1.478 0.154 0.4861 4 A-15 2a .!B 439 1416 1.150 0.86957 0.451 384.2 2400 1.507 0.008 0.5740 4 A-15 29  :'9 440 1417 1.113 0.89847 0.448 382.6 2100 1.483 0.089 0.5516 4 A-15 30
11 441 1418 1.096 0.91241 0.444 382.9 1815 1.486 0.138 0.5383 4 A-15 ,,

442 1419 1.114 0.89767 0.448 373.8 1500 1.501 0.174 0.5523 4 A-15 32 32 443 1'120 1.169 0.85543 0.401 418.l 1795 1.471 0.153 0.5187 4 A-15

n 444 1421 1.134 0.88183 0.383 440.8 1500 1.426 0.237 OJ1807 4 A-15 2-1

~:,)

445 1422 1.242 0,80515 0.354 460.3 1800 1.447 0.177 0.4867 4 A-15 446 1423 1.102 0.90744 0.348 496.9 1495 1.453 0.288 0.4245 4 A-15

~a  :,,J 447 1424 1.236 0.80906 0.285 553.5 2095 1.450 0.236 0.389-3 4 A-15 37

);J 448 1425 1.162 0.86059 0.318 546.6 2400 1.473 0.219 0.4089 4 A-15 ,,.13

.?~}

449 1426 1.138 0.87873 0.404 440.l 2415 1.466 0.085 0.5090 4 A-15 450 1427 1.066 0.93809 0.532 5'18.6 2405 2.980 0.109 0.6276 4 A-15

-:u ,,,J

,1 451 1428 1.010 0.99010 0.554 494.3 2425 2.465 0.081 0.6192 4 A-15 452 453 1429 1430 1.049 1.016 0.95329 0.623 496.6 2405 2.979 0.044 0.7235 4 A-15 "*12
o. 98'125 0.526 438.5 2400 1.970 0.059 0.5916 4 A-15 454 1431 1.074 0.93110 0.595 448.2 2'i00 2.458 0.008 0.7074 4 A-15

<l *'*1 455 1432 1.101 0.90827 0.657 461.5 2410 2.948 -0.017 0.8006 4 A-15

."";.1 456 1433 1.085 0.92166 0.535 413.3 2410 1.962 0.003 0.6426 4 A-15 TSTSECTN=l56

...J OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS WEST "J.:

457 1444 0.867 1.15340 0.444 467.l 2120 1.981 0.143 0 ,{1262 4 A-02 458 1445 0.887 1.12740 0.365 530.7 2100 1.996 0.188 0.3587 4 A-02 459 1446 1.020 0.98039 0.392 541.0 2110 2.484 0.16.0 o.,t<+30 4 A-02 460 1447 0.964 1.03734 0.268 595.8 2120 1.973 0.234 0.2863 4 A-02 t~

!J

. 461 462 463 1448 14(*9 1450 1.045 0.948 0.901 0.95694 1.05485 1.10988 0.293 0.349 0.455 600.7 597.4 472.6 2110 2110 2410 2.496 2.962 2.005 0.196 0.187 0,103 0.3392 0.3663 0.4541 4

4 4

A-02 A-02 A-02

~:)

1,..,i 464 1451 0.904 1.10619 0.376 540.4 2405 1. 992 0.176 0.3764 4 A-02 c0

STATISTICAL ANALYSIS OF COBRA/HRB-1 DNBR DATA 15:17 THURSDAY, OCTOBER 30, 1986 21 2


TSTSECTN=l56 -----------------------------------------------------------

OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS WEST 5

! '- 5 465 1452 0.946 1.05708 0.421 548.6 2405 2.45G 0.143 0.4412 4 A-02 I 466 1453 1.072 0.93284 0.273 602.0 2405 1.948 0.217 0.3243 4 A-02 467 1454 1.047 0.95511 0.330 598.4 2395 2.471 0.184 0.3826 4 A-02 468 1455 1.041 o. 96061 0.359 606.8 2390 2.935 0.177 0.4141 4 A-02 10 10 469 1456 1.013 0.98717 0.294 535.9 2400 1.483 0.195 0.3300 4 A-02 11 11 470 1457 0.954 1. 04822 0.359 474.5 2395 1.526 0.140 0.3794 5 A-02

,:! ,2 471 1458 1.066 0.93809 0.281 420.1 2405 0.991 0.149 0.3318 5 A-02 13 13 472 llt60 0.963 1.03842 0.476 423.6 2100 1.998 0.083 0.5078 5 A-02 1-1 14 473 1461 0.988 1.01215 0.525 445.3 2115 2.439 0.064 0,5746 4 A-02 15 1'.j 474 1463 1.190 0.84034 0.510 486.2 2100 2.989 0.036 0.6722 4 A-02 rn 475 1464 0.914 1.09409 0.471 540.4 2125 2.969 0.138 0.4768 4 A-02 "'

Ii l/

476 1465 0.915 1.09290 0.290 535.2 2100 1.476 0.241 0.2939 4 A-02 18 ;3 477 1466 0.8,2 1,16009 0.341 484.6 2100 1.467 0.216 0.3256 5 A-02 i'I 478 1467 0.988 1,01215 0.253 480.0 2100 0.980 0.278 0.2769 5 A-02 479 1468 1.007 0.99305 0.283 416.2 2110 0.965 0.225 0.3155 5 A-02

~1 .'I

-., 480 1469 0.926 1.07991 0.379 427.2 2100 1.461 0.154 0.3889 5 A-02  ;.,~

481 1470 0.892 1.12108 0.483 436.3 2400 l.949 0.07't 0.4773 5 A-02

~'.j .:.l 482 1472 0.997 1.00301 0.418 446.3 1495 1.977 0.175 0.4616 5 A-02 24  ;:,l 483 1473 1.011 0.98912 0.361 496.9 1500 1.958 0.211 O.lt045 4 A-02

~

484 1474 1.014 0.98619 0.410 501.5 1500 2,472 0.177 OJ1604 4 A-02

_,:j 485 l't76 1.214 0.82372 0.303 559.6 1500 2.485 0.200 0.4075 4 A-02 *7 486 1477 0.905 1.10497 0.310 423.0 1500 1.005 0.358 0.3107 5 A-02 23 .:.'.ti 487 1478 0.932 1.07296 0.363 448.2 1495 1.507 0.2{1,8 0.3749 5 A-02

~g _"]

488 1479 0.915 1.09290 0.326 383.2 1495 0.932 0.338 0.3304 5 A-02 30 ,,J 489 1480 0.952 1.05042 0.402 386.4 1515 1.474 0.202 0.4239 5 A-02

?1 490 l't81 0.901 1.10988 0.425 461.9 1825 1.970 0.162 0.4242 4 A-02 J2 :J:!

,3 491 1482 1.065 0.93897 0.327 525.8 1790 1.968 0.183 0.3856 4 A-02 !J 492 1483 0.951 1.05152 0.402 520.0 1805 2.427 0.165 0.4237 4 A-02

~-1 JI 493 1484 1.161 0.86133 0.247 581.4 1800 1.923 0.222 0.3176 4 A-02

.5 494 1486 1.077 0.92851 0.314 588.6 1800 2.944 0.186 0.3747 4 A-02

.u ..id 495 1487 1.094 0.91408 0.355 558.3 1510 2.979 0.189 0.4301 4 A-02 31 ,</

496 1488 1.000 1.00000 0.295 509.9 1805 1.472 0.233 0.3267 4 A-02 3J ,(I 497 1489 1.021 0.97943 0.304 499.5 1500 1.464 0.272 0.3lt38 5 A-02 0

498 1490 1.081 0.92507 0.251 461.2 1800 0.950 0.291 0.3004 5 A-02  :.J

,,1 499 1491 0.955 1.04712 0.340 462.2 1815 1.466 0.207 0.3598 5 A-02 500 1492 1.003 0.99701 0.462 401. 7 1500 1.982 0.139 0.5133 5 A-02 "

  • l'.~

501 1493 0.971 1.02987 0.395 394.2 1305 1.482 0.154 0.4249 5 ~-02 u

., .. 502 1502 1.084 0.92251 0.346 497.9 1500 1.927 0.202 0.4156 4 l'.-02 *l*\

503 1503 1.039 0.96246 0.387 395.2 1500 1.510 0.182 0.4455 5 A-02 b 504 150ft 1.013 0.98717 0.309 385.2 1795 1.016 0.234 0.3%7 5 A-02 505 1505 0.958 1,04384 0.291 437.9 1500 0.977 0.361 0.3086 5 A-02 41  :/

506 1506 1.004 0.99602 0.384 408.4 1495 1.516 0.200 0.4270 5 A-02

.. ~ 507 1507 1.000 1.00000 0.446 416.9 1495 1.971 0.153 0.4%1 5 A-02 ,')

508 1508 1.039 0. 96246 0.491 433.4 1510 2.462 0.119 0.56*:-9 lt A-02 t.:1 509 1509 l.Ol10 o. 96154 0.511 436.9 1795 2.508 0.081 0.58U9 4 A-02 510 1525 1.062 0.94162 0.349 499.2 1500 l.938 0.206 OJ*l06 4 A-02 511 1526 0.900 . 1.11111 0.410 392.6 1497 l.492 0.221 0.4086 5 A-02 512 1527 0.896 1.11607 o.. 418 398.l 1795 l.559 0.168 0.4151 5 A-02 513 1531 1.229 0.81367 0.277 548.9 1500 l. 9lr8 0.224 0.3771 6, A-02 514 1532 l.077 0.92851 0.342 517. 7 1805 2.030 0.167 O.lf082 4 A-02 515 1534 0,945 1.05820 0.334 362.5 1805 1.038 0.232 0.3495 5 A-02

  • -~

516 1535 0.909 1.10011 0.345 365.0 1505 1.033 0.308 0.3(*74 5 A-02 517 1540 0.931 l. 07411 0.379 431. 7 1800 1.530 0,185 C.3907 5 A-02 518 1541 0.952 1.05042 0.414, 464.8 1805 1. 982 0.154 0.4367 4 A-02 t;,;

STATISTICAL ANALYSIS OF COBRA/HRB-1 DNBR DATA 15:17 THURSDAY, OCTOBER 30, 1906 22 2

3 ----------------------------------------------------------- TSTSECTN=l56 -----------------------------------------------------------

OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS NEST 519 1543 0.993 1.00705 0.417 498.9 1500 Z°.470 0.179 0.4585 4 A-02 520 1544 0,955 1.04712 0.414 517 .1* 1805 2.498 0.159 0.4378 4 A-02 521 1545 1,055 0.94787 o.417 525.8 1520 2.982 0.164 0.4872 4 A-02 1:J

" 522 1546 1.009 0.99108 0.401 548.2 1805 2,945 0.156 0.4480 4 A-02 9

10 523 1552 0.966 1.03520 0.411 557.3 1500 3.443 0.189 0.4398 4 A-02 11 11 524 1553 1.054 0.94877 0.414 560.9 1805 3,4<'t3 0.146 0.4835 4 f..-02 12 1'2 525 1554 0.892 1.12108 0.383 576.2 1500 3.463 0.213 0.3783 4 A-02 IJ J;j 526 1557 1.079 0.92678 0.352 586.6 1810 3.425 0.168 0.4207 4 A-02 11 14 1:: l5 rn 1a 17


TSTSECTN-157 ----------------------------------------------------------- 17 13 10 OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS WEST iq

~o  ::tJ 527 1559 0.979 1.02145 o.501 548.2 2100 1,983 0.134 0.5514 4 A-04

,1 ~1

,,, 528 1560 1.061 0.94251 0.575 545.0 2125 2.500 0.075 0.6773 4 A-O<'t ~~)

. :: ~

529 1561 1.088 0.91912 0.627 550.5 2115 3.003 0.055 0.7574 4 A-04 530 1562 1.052 0.95057 0.688 554.4 2115 3.439 0.051 0.8036 4 A-04 2:.i 531 532 1563 1564 1.147 1.092 0.87184 0.91575 0.523 0.597 539.5 549.2 2425 2400 1.998 2.485 0.040 0.6662 0, 72(12 5 A-04

~-i

~':,

26 0.036 4 A-04

Ll 533 1565 1.008 0.99206 0.740 536.9 2415 3.002 0.005 0.8287 4 A-Ott

',!{  ::1 534 1566 1.041 0.96061 0.730 563.8 2405 3.443 0.025 0 ,8{t(t2 4 A-04

..:..3 2*J 535 1567 1.096 0.91241 0.375 621.8 2400 1.958 0.193 0.4564 4 A-04

~*j '.i0 536 1568 0.982 1.01833 0,429 627.7 2400 2.410 0.191 0.4681 4 A-04

~)

537 1569 0.992 1.00806 0.515 617.6 2405 2.916 0.146 0.5675 4 A-04

~; 1 538 1570 0.945 1.05820 0,595 615.7 2415 3.441 0.128 0.6244 4 A-04

~~ .:,~

,,, 539 1571 1.085 0.92166 0.370 608.5 2100 2.037 0.187 0.4(160 4 A-04

,.\

540 1572 1.034 0.96712 0.426 606.5 2100 2.464 0.166 0.4891 4 A-04 :i.t 541 1573 1.029 0.97182 0.468 608.8 2105 2.961 0.147 0.5346 4 A-04 542 1574 0.940 1.06383 0.501 616.0 2105 3.418 0.152 0,5229 3 A-04 543 1575 0.975 1.02564 0.662 463.2 2105 2.031 0.033 0,7172 5 A-O(t

,1 544 1576 0.966 1.03520 0.731 461.0 2115 2.485 0.020 0.7840 5 A-04 cJ 545 1577 0.964 1. 03734 o.736 515.7 2100 2.918 0.040 0.7881 4 A-04
    • (l 546 1578 0.937 1.06724 0.692 468.0 2395 2.020 -0.003 0.7200 5 A-04 547 1579 0.956 1.04603 o.734 498.9 2lt00 2.471 -0.005 o. 7791 5 A-04 41  :,

548 1580 1.034 0.96712 0.732 534.3 2405 2.983 -0.003 0.8408 5 A-04 .1:i 549 1581 1.095 0.91324 0.636 531.0 2415 2.503 0.001 O.T/36 5 A-04 550 1582 0.993 1.00705 0.499 622.2 2405 2.901 0.155 0.5503 4 A-04

.c 551 1583 1.167 552 1584 0.996 0.85690 1.00402 0.413 0.568 466.7 465.4 2415 2405 1.047 1.550 0.090 0.035 0.5353 0.6280 5

5 A-04 A-04 553 1585 0.940 1.06383 0.486 619.6 2105 3.408 0.158 0.5072 3 A-Olt 554 1587 l. 202 0.83195 0.328 544.7 2115 1.033 0.226 0.4378 4 A-04 555 1588 1.027 0.97371 0.455 533.3 2105 1.561 0.154 0.5187 4 A-04 '"'

f_l)'"" 556 557 1589 1590 1.124 0.921 0.88968 1.08578 0.413 0.555 465.8

"'167.1 2100 1.046 0.158 0.5156 5 A-G4 2105 1.512 0.114 0.5679 5 A-04 558 1591 1.275 0.78431 0.307 558.3 2405 0.974 0.212 0.4349 5 A-04

i:

559 1592 1.060 0.94340 0,428 558.3 2405 1.490 0.158 0.5042 4 A-04 o'J 560 1593 0.991 1.00908 0.615 455.7 1505 2.032 .0.108 0.6767 5 A-04

.:J 561 1594 0.962 1.03950 0.696 458.6 1505 2.482 0.083 0.7440 5 A-04 562 1595 0.975 1.02564 0.618 467.7 1815 1. 998 0.082 0.6692 5 A-04

~-

. 563 564 565 1597 1598 1599 1.021 0.937 0.917 0.97943 1.06724 1.09051 0.523 0.625

o. 705 517.7 516.7 517.1 1815 1800 1805 1.988 2.514 2.992 0.124 0.103 0.083 0.5931 0.6502 0.7181 4

4 A-04 A-04

JI 4 A C, 566 1600 0.894 1.11657 0.546 513.2 1500 2.015 0.182 0 ,5{;).8 4 A-04 t;')

STATISTICAL ANALYSIS OF COBRA/HRB-1 DNBR DATA 15:17 THURSDAY, OCTOBER 30, 1986 23

~


TSTSECTN-157 ----------------------------------------------------------- 3 4

OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS HEST 5

6 567 1601 0.951 l,05152 0.588 516.7 1515 2.501 0.137 0.6208 4 A-04 7

568 1602 l.030 0.97087 0.628 515.4 1500 2.989 0.103 o. 7182 4 A-04 G

569 1603 1.020 o. 98039 0.697 514.8 1515 3.492 0.084 0.7898 4 A-Ott LJ  ;)

570 1604 0.828 1. 20773 0.434 576.2 1505 2.017 0.246 0.3992 10 A-04 H; "J/i 571 1605 0.976 1.02459 0.463 566.8 1505 2.481 0.184 0.5018 3 A-04 11 II 572 1606 0.954 1.04822 0.523 564.5 1505 3.010 0.161 0.5539 3 A-04 12 12 573 1607 0.946 1. 05708 0.542 571. 7 1505 3.477 0.153 0.5696 3 A-04 1:; :J 574 1608 0.928 l.07759 0.702 539.5 1800 3.446 0.089 o. 7237 4 A-04 14 l*I 575 1609 0.924 1.08225 0.506 562.7 1520 3.443 0.165 0.5191 4 A-04 1:J 576 1610 0.960 1.04167 0.697 471.0 1505 2.629 0.086 0.7435 4 A-04 16 577 1611 1.009 0.99108 0.377 570.0 1795 1.531 0.231 0.4227 4 A-04 1/

I 578 1612 1.048 0.95420 0.471 549.9 1805 2.073 0.149 0.5480 4 A-04 d

i IB Js..l 579 1613 1.000 1.00000 0.503 563.8 ]805 2,515 0.143 0.5536 4 A-04 580 1614 0.922 l. 08460 0.542 574.6 1815 2,963 0.143 0.5549 4 A-04

'.!,l ..:D 581 1615 1.040 o. 96154 0.608 561.9 1805 3.514 0.096 0.7023 4 A-04 I* 2' 582 1616 1.009 0.99108 0.382 517.l 1805 1.067 0.269 0.4283 4 A-04

.?1

~~ o*,

583 1617 0.951 1.05152 0.468 516.l 1800 1.517 0.193 0.4942 4 A-04 2:J '.l 584 1618 0.925 1.08108 0.416 495.3 1495 1.036 0.323 0.4272 4 A-04 24 i'-1 585 1619 0.997 1.00301 0.444 513.0 1505 1.462 0.225 0.4919 4 A-04 2:j 2'J 586 1620 1. 209 0.82713 0.445 393.6 1790 1.035 0.111 0.5976 5 A-04 20 ~\j 587 1621 0.966 1.03520 0.617 453.8 1495 1.989 0.116 0.6623 5 A-04 2/ cl 588 1623 0.948 l.05lt85 0.679 427.9 1800 l.957 0.056 0.7146 5 A-04 2d 21:

589 1624 0.912 1.09649 0.518 387.7 1510 1.051 0.238 0.52':6 5 A-04 2':l h) 590 1625 0.871 1.14811 0.623 . 402.9 1505 1.526 0.151 0.6025 5 A-04

,o 591 1626 0.857 1.1668& o. 719 410.7 1505 1.987 0.102 0.6841 5 A-04
11 '<I 592 1627 0.969 1.03199 0.439 575.9 1495 2 .lt68 0.195 0.4726 5 A-04 32 :J2 593 1&28 0.915 1.09290 0. 722 470.6 1805 2.472 0.064 0.7337 5 A-Olt

~3 jj

3.1 594 1629 0.983 1.01729 0.436 453.l 1510 1.004 0.282 0.47&0 5 A-04 595 1630 0.900 1.11111 0.551
i1 O,

457. 7 1500 1.538 0.189 0.5510 4 A-04 596 '1631 0.939 1.06496 0.548 455.7

  • 1805 1.518 0.136 0.5717 5 A-04
~ 597 1&32 1.088 0.91912 0.404 46&.lt 1805 1.003 0.222 0.4-8[;1 5 A-04 ..,

598 1633 0.987 1.01317 0.498 396.8 2105 1.057 0.122 0.545& 5 A-04

n 1,l 599 1634 0.949 1.05374 0.518 392,3 2425 1.049 0.079 0.5458 5 A-04

.*. Cl <')

600 1635 0.921 1. 08578 0.653 398.4 2lt05 1.505 -0.019 0.&67& 5 A-04

-:J .1()

601 163& 0.914 1.09409 0.635 400.7 2115 1.498 0.0(18 0.6lt46 5 A-0', '1

&02 1637 0.905 1.10497 0.640 48&.9 2110 2.016 0.077 0.6434 5 A-04 42

  • ~. j

.,.1 .:.t


TSTSECTN-158 -----------------------------------------------------------

'j OBS RUN MONBR MP HEATFLUX TIN PRESSURE 11ASSFLUX EXITQUAL CHF ITERATNS HEST '/

!,,.. 603 604 1638 1&39 0.958 1.010 1.04384 0.99010 0.517 0.571 555.l 554.7 2100 2105 2.035 2.503 0.138 0.092 0.5527

0. 6'133 4

4 A-19 A-19

  • .'.J
  • ,;J

.*d 605 1640 0.971 1.02987 0.&47 55&.4 2100 3.007 0.077 0.7012 ft A-19

'I 606 1641 0.910 1.09890 0.738 556.4 2105 3.496 0.069 0.7491 4 A-19 607 1642 0.964 1.03734 0.558 552.2 2395 2.048 0.097 0.5999 4 A-19 t;J 1;,

&08 1&43 0.990 1.01010 0.643 547.6 2425 2.524 0.039 0.7101 4 A-19 609 1644 0.979 l.02145 0.695 558.0 2395 2.996 0.037 0.7591 4 A-19 610 1645 0. 964 1. 03734 0.767 562.9 2435 3.446 0.022 0.8251 4 A-19

!;,... 611 612 1647 1648 l.188 l.0&8 0.84175 0.93633 0.444 0.519 611. 7 613. 7 2<'+00 2405 2 Jt98 2,971 0.117 0.118 0.5087 0.6183

{~ A-19 i::.1 4 A-19

}

613 1649 l.085 0.92166 0.595 &Oo.5 2410 3.507 0.079 0.7202 4 A-19 614 1650 1.111 0.90009 0.3-=t4 618.9 2115 1.973 0.200 0.4265 4 A-19 t,O

STATISTICAL ANALYSIS OF COBRA/~RB-1 DNBR DATA 15:17 THURSDAY, OCTOBER 30, 1986 24


TSTSECTN::158 -----------------------------------------------------------

4 OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS ~IEST

,_,.!. 0 615 1651 1.074 0,93110 0.401 616.0 2110 2.475 0.170 0.4807 4 A-19

_._L .. T I 616 1652 0.929 1. 07643 0.467 617.3 2105 2.944 0.170 0.4842 4 A-19 617 1653 1.037 0.96432 0.484 617.6 2100 3.466 0.140 0.5601 4 A-19

(,

618 1654 0.919 1.08814 0.758 521.6 2115 2.994 0.042 0.7772 4 A-19 10 1(J 619 1655 0.972 1.02881 0.756 533.0 2400 2.979 -0.002 0.8200 4 A-19

  • ,1 12 620 621 1656 1657 0.866 0.914 1.15473 1.09409 0.667 0.737

. 483.9 490.l 2100 2100 2.022 2,500 0.078 0.034 0.6443

0. 7518 4

4 A-19 A-19 12 L~ 13 622 1658 0.978 1.02249 0.651 490.4 2400 2.032 -0.001 0. 7104 4 A-19

, 14 1-1 623 1659 0.954 1.04822 0.764 490.1 2400 2.518 -0.035 0.8131 4 A-19 l:.:i 15 624 1660 1.006 0.99404 0,540

  • 484.9 2ltl5 1.508 0.052 0:6062 4 A-19 1u 625 1662 1.229 0.81367 0.379 484.3 lo 2095 1.010 0.154 0.5196 4 A-19 ,.,

1/

626 1663 1.143 0.87489 0.435 433.4 2100 1.010 0.121 0.5545 4 A-19 16 HI 627 1664 0.915 1.09290 0.626 419.1 2105 1.515 0.057 0.6391 4 A-19 1'.i 628 1665 0.895 1.11732 0.746 432.4 2100 2.039 0.011 0.7449 4 A-19 20 629 1666 0.914 1.09409 0.547 484.9 2100 1.523 0.129 0.5575 4 A-19 21 '*1 630 1667 1.017 0.98328 0.445 544.0 2115 1,514. 0.171 0.5047 4 A-19

~~

631 1668 1.037 0.96432 0.452 552.2 2395 1.523 0.144 0.5230 4 A-19 21 632 1669 1.167 0.85690 0.352 572.3 1800 1.504 0.208 0.4585 4 A-19 2,1 633 1670 1.056 0.94697 0.418 576.5 1815 2.002 .0.179 0.4926 4 A-19 25 634 1671 1.079 0.92678 0.473 572.6 1800 2.506 0.142 0.5695 4 A-19

-.:i1 '.::tl 635 1672 1.025 0.97561 0.536 572.3 1800 3.010 0.125 0.6131 4 A-19 2/  :,7 636 1673 0.942 1.06157 0.655 556.4 2100 2.998 0.082 0.6882 4 A-19
  • a 20 637 1675 1.040 0.96154 0.380 563.5 1500 1.558 0.247 0.4411 4 A-19 ~"~:

638 1676 1.040 0.96154 0Jtl7 567.7 1515 2.040 0.201 0.4838 4 A-19

)

30 '..,(J 639 1678 1.076 0.92937 0.489 569.4 1515 3.014 0.149 0.5871 4 A-19 31 ll 640 1679 1.075 0.93023 0.510 573.6 1505 3.469 0.140 0.6117 4 A-19 641 1680 0.957 1.04493 0.485 514.4 1800 1.556 0.181 0.5177 4 A-19

.;.J 642 1681 0.922 1.08460 0.559 517.1 1800 1.989 0.141 0.5748 4 A-19

}*,

~... 643 644 1682 1683 0.915 0.926 1.09290 1.07991 0.648

o. 726 514.1 513.2 1815 2.505 0.098 0.6614 4 A-19 1815 3.017 0.069 0.7501 4 A-19

,l.J 645 1684 0.926 1. 07991 0.738 534.6 1800 3.534 0.076 0.7622 4 A-19 37 ,I 646 1685 0.966 1.03520 0.471 510.5 1500 1.513 0.220 0.5079 4 A-19

~3 1686 :u 647 0.975 1.02564 0.544 508.9 1505 2.021 0.159 0.5915 4 A-19 648 1687 0.975 1.02564 0.612 508.0 1505 2.520 0.122 0.6655 4 A-19

.,,1 .,,)

649 1688 0.924 1.08225 0.682 512.5 1505 3.011 0.110 0.7028 4 A-19

,1 650 1689 1.042 0. 95969 o. 712 509.6 1510 3.515 0.070 0.8275 4 A-19 ii I'

651 1690 0.923 1.08342 0.579 446.9 1805 1.537 0.125 0.5965 4 A-19 652 1691 0.825 1. 21212 0.703 454.1 1800 2.023 0.099 0. 6ft66 4 A-19 653 1692 0.868 1.15207 0.780 457.7 1805 2.497 0.053 0.7552 4 A-19

~;1 654 1693 0.811 1.23305 0.576 461.9 1505 1.501 0.217 0.5209 4 A-19

.:,1 655 1694 0.839 1.19190 0.675 453.4 1500 2.002 0.139 0.6315 4 A-19 656 1695 0.870 1.14943 0.737 461.9 1495 2.505 0.099 0.7152 4 A-19 657 1697 0.934 1.07066 0.634 427.2 2405 1.547 -0.009 0.6608 4 A-19

.'!!'8 ~J 658 1698 1.037 0.96432 0.422 467.4 1500 1.012 0.272 0.4884 4 A-19

~* l 659 1699 1.172 0.85324 0.412 453.8 1810 1.023 0.177 0.5387 4 A-19 660 1700 1.077 0.92851 0.481 390.3 1795 1.028 0.141 0.5781 5 A-19 661 1701 0.887 1.12740 0.641 399.4 1805 1.511 0.094 0.6345 lt A-19 662 1702 0.969 1.03199 0.519 374.5 1505 1.029 0.210 0.5611 5 A-19

.. 1 663 1703 0.892 1.12108 0.639 394.5 1505 1.523 0.135 0.6357 4 A-19 664 1704 0.820 1. 21951 0.769 403.9 1505 2.041 0.095 0.7035 4 A-19 665 1705 1.010 0.99010 0.724 397 .4 1815 2.009

..'\II"'

-0.008 0.8155 4 A-19

  • ,1 1,J

STATISTICAL ANALYSIS OF COBRA/HRB-1 DNBR DATA 15:17 THURSDAY, OCTOBER 30, 1986 25

, ----------------------------------------------------------- TSTSECTN-160 -----------------------------------------------------------

OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS WEST 6

666 1720 1.062 0,94162 0.468 508.9 1800 l.1t66 0.188 0.5491 4 A-03 667 1721 1.036 o. 96525 0.554 512.6 1800 2.011 0.131 0.6342 4 A-03 668 1722 0.994 1.00604 0.637 513.5 1800 2.490 0.103 0.6992 4 A-03

~

669 1723 0.958 1.04384 0.733 510.9 1800 2.995 0.080 0.7760 4 A-03 IQ 10 670 1724 1.098 0.91075 0.456 537.8 2415 l ,(+22 0.152 0.5534 4 A-03 11 11 671 1726 0.978 1.02249 0.675 541.6 2400 2.508 12 672 1727 0.946 1. 05708 o. 772 542.9 0.065 0.7295 4 A-03 ,.,

2415 2.984 0.045 0.8069 4 A-03 1J 13 673 1728 1.115 0.89686 0.436 539.8 2115 1.469 0.175 0.5372 4 A-03 1*1 1~

674 1729 0.987 1. 01317 0.534 548.3 2115 2.005 0.146 0.5822 4 A-03

. ]j 675 1730 0.979 1.02145 0,603 550.8 2100 2.498 0.113 0.6523 4 A-03 10 676 1731 0.940 1.06383 0.684 552.2 2105 2.982 0.095 0.7105 4 A-03 IU 17 17 677 1732 1.107 0.90334 0.378 609.8 2115 1.961 0.206 0.'*624 4 A-03 1:l 678 1733 0.917 1.09051 0.558 482.2 2105 1,495 0.158 0.5652 4 A-03 679 1734 0.912 1.09649 0.683 473.5 2100 2.005 0.031 0.6879 4 A-03

'.'.(:

680 0.884  :\)

1735 1.13122 0.799 475.8 2100 2.505 0.050 0.7797 4 A-03

.21  :.;,1 681 1736 0.851 1.17509 0.899 483.lt 2105 2.978 0.039 0.8447 4 A-03

.;2 682 1737 0.971 1.02987 0.585 469.3 2415 1.502 0.084 0. 6277 4 A-03
,3 683 1738 o. 946 1.05708 0.720 465.3 2405 2.015 0.011 0.7523 4 A-03 684 1739 0.941 1.06270 0.837 2>

470.3 2415 2.526 -0.030 0.8703 4 A-03

s 685 1740 0.930 1.07527 .::::.,

0.595 438.9 1815 1.510 0.144 0.6115 4 A-03 686 1741 0.892 1.12108 0.700 449.3 1815 2.003 0.099 0.6898  ::u 2i 4 A-03 ,7 687 1742 0.870 1.14943 0.808 452.9 1815 2.496 0.068 o. 7761

'i 2*J J,*

688 689 1743 1744 0.917 0.865 1.09051 1.15607 0.864 0.641 466.5 409.3

. 1815 1805 3.003 1.475

0. 0ft2 0.145
0. 87(t9 0.6122 4

4 4

A-03 A-03 A-03

iu 2'.J 690 1745 0.912 1.09649 0.725 424.4 1800 1.971 0.076 0.7302 4 A-03

~j l1 691 1746 0.898 1.11359 0.651 405.2 2095 1.471 0.091 0.6460 4 A-03

'/)

692 1747 1.06045 :i :~

00.%3 0.655 410.4 2400 1.489 0.023 0.6822 4 A-03

,;J 693 1748 0.959 1.04275 0.563  :..u 443.9 1515 1.458 0.194 0.5966 4 A-03

~-i , I 694 1749 0.990 1.01010 0.642 450.3 1515 1.985 0.120 0.7018 (. A-03 695 1750 0,929 1.07643 0.746 453.9 1500 2.495 0.097 0.7653 4 A-03

~:..u 696 1751 0.920 1.08696 0.840 453.2 1505 2.991 0.070 0.8539 4 A-03 e,

697 1752 1.005 0. 99502 0.465 513.3 1505 1.470 0.240 0.5165 4 A-03 3d .i'J 698 1753 1.106 o. 90'*16 0.508 515.9 1505 1. 996 0.161 0.6205 4 A-03

_~

699 1754 1.000 1.00000 0.615 508.5 1515 2.485 0.134 0.6791 4 A-03

.:o 700 1755 0.983 1.01729 0.679 511. 9 1525 2.96~ 0.112 o. 7374 4 A-03

'~ 1 701 1756 1.043 0.95877 0.429 567.9 1500 2.032 0.219 0.494ct 3 A-03 ,T')

702 1757 1.190 0.84034 0.443 567.3 1515 2.530 0.166 0.5825 4 A-03 703 1758 1.093 n 0.91491 0.519 561.8 1500 3.031 0.150 0.6269 4 A-03

.; -~

704 1759 1.174 0.85179 o.428 605.5 2125 2.479 0.155 0.5549 4 A-03 t; -~.

705 1760 1.110 0.90090 0.492 604.2 2100 3.020 0.139 0.6031 4 A-03 706 1761 1.156 0.86505 0.438 599.9 2415 2.009 0.157 0.5592 4 A-03 707 1762 1.014 0.98619 0.525 604.8 2425 2.509 0.155 0.5881 4 A-03

- 708 709 710 1763 1764 1765 1.019 0.909 1.024 0.98135 1.10011

o. 97656 0.584 0.653 0.540 604.9 609.4 608.6 2415 2405 2115 3.011 3.457 3.454 0.127 0.137 0.139 0.6572 0.6557 0.6108 4

4 A-03 A-03 A-03

J 711 1766 1.343 0.74460 0.341 570.3 1800 1.490 0.201 0.5061 4 A-03 712 1767 1.140 0 .87719 0.431 567 .2 1800 2.002 0.173 0.5428 4 A-03 713 1768 1.136 0.88028 0.489 567.2 1815 2.513 0.13? 0.6137 4 A-03
.:I ~*I 714 ~69 1.056 0.94697 0.580 560.5 1815 3.027 0.117 0.6765 4 A-03 715 70 1.051 0.95147 0.609 568.5 1815 3.509 0.110 0. 7072 4 A-03

,_,.. 716 717 ~! 0.886 0.916 1.12867 1.09170 0.737 563.5 2115 3 .4'~8 0.09? 0.7214 4 A-03 0.665 547.2 2410 3.504 0.036 0.8752 4 A-03 718 Ji73 0.933 1.07181 0.683 5Ci*3.3 2{}00 2.492 0.081 o. 10,a 4 A-03 719 1*774 1.027 0.97371 o. 723 512.6 1515 3.'*61 0.090 0.8206 4 A-03 CJ ,.,]

STATISTICAL ANALYSIS OF COBRA/WRB-1 DNBR DATA 15:17 THURSDAY, OCTOBER 30, 1986 26 j


TSTSECTN-16C -----------------------------------------------------------

OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS l'IEST 0

720 1775 0.918 1.08932 0.830 510.9 1815 3.489 0.067 0.8415 4 A-03 721 1776 0.955 1.04712 0.609 411.5 1515 1.499 0.159 0.6426 4 A-03 J

722 1777 0.878 1.13895 0.745 407.8 1510 1.990 0.109 0. 7229 4 A-03

\0

" 723 1778 0.947 1,05597 0.529 385.4 1505 1.025 0.261 0.5535 5 A-03 HJ 724 1779 1,042 0.95969 0.506 386.0 1800 1.032 0,180 0.5820 5 A-03 J1 11 725 1780 0.967 1.03413 0.520 390.3 2100 1.016 0.172 0.5556 5 A-03 1:? 12 726 1781 1.016 0.98425 0.508 397.3 2365 1.005 0.124 0.5703 5 A-03 l:l 727 1782 1.117 0.89526 0.435 463.4 2415 1.002 0.155 0.5369 5 A-03 il l-l 728 1783 1.108 0.90253 0.430 460.3 2100 0.998 0.200 0.5265 5 A-03 i ~'

1..

729 1784 1.064 0.93985 0.445 445,9 1785 1.001 0.239 0.5231 5 A-03 '"

11 730 1785 1.067 0. 93721 0.464 443.2 1501 1.086 0.250 0.5471 4 A-03 '"JI rn 1*, '"

I'*

?c1 ----------------------------------------------------------- TSTSECTN-161 ----------------------------------------------------------- :.:o

.:1 OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS ~IEST 2i.

°

1 .'3 731 1796 1.095 0,91324 9.269 598.4 2115 1.998 0.237 0.3266 4 A-01

~  ! ~.1 732 1797 1,207 0.82850 0.283 600.3 2400 2,019 0,209 0.3786 4 A-01 25 733 1798 1.071 o. 93371 0.367 541.9 2400 2.014 0.156 0.4358.

,,J 4 A-01 ~ L; 734 1799 1.053 o. 94967 0.340 543.9 2100 1.983 0.187 0,3970 4 A-01 27 01 735 1800 1,043 0.95877 0.398 497.6 2100 2,013 0.142 0,4603 4 A-01 2U 20 736 1801 0.971 1.02987 0.432 493.5 2415 1. 982 0.127 0,4651 4 A-01 29 so

~~ ., 737 1802 0.893 1.11982 0.506 448.4 2415 2.043 0.099 0.5008 4 A-01

~lO 738 1803 1.072 0.93284 0.400 491.2 2100 2.008 0.130 0.4753 4 A-01

11 J1 739 1804 1.068 0.93633 0.300 602.8 2100 2.474 0.214 0.3554 4 A-01 3>
12 740 1805 1.173 0.85251 0.329 601.8 2400 2.511 0.184 0.4279 4 A-01 33 J3 741 1806 1.039 0.96246 0.353 597.9 2100 2.998 0.188 0.4067 4 A-01 34 742 1807 1,102 0.90744 0.379 604.2 2400 2,998 0.177 0.4630 4 A-01

~,

743 1808 1.020 0.98039 0.291 539.5 2100 1.482 0.248 0.3290 4 A-01 20 .J,l 744 1809 1.092 0.91575 0.290 548.9 2400 1.478 0.226 0.3512 4 A-01 3/ i7 745 1810 1.066 0.93809 0.416 552.4 2400 2.504 0.135 0.<'1916 4 A-01 38 746 1811 1,063 0.94073 0.378 555.3 2100 2.484 0.162 0.4455 4 A-01 747 1812 1.010 0.99010 0.342 '185.4 2100 1.507 0.197 0.3830 4 A-01

.'.10 -,u

.,1 748 1813 1.024 0.97656 0.333 499.9 2400 1.449 0,190 0.3782 4 A-01 749 1814 0.969 1.03199 0.392 429.9 2100 1.499 0.162 0.4212 4 A-01 4d 750 1815 0.927 1.07875 0.417 425.2 2400 1.514 O.B2 0.4285 4 A-01 l'!

.:.1 751 1816 0.920 1.08696 0.386 440.9 1500 1.486 0.274 0.3937 4 A..:01 ,).t

  • o'.!.i 752 1817 0.974 1. 02669 0.446 4'f5.2 1500 2.018 0,191 0Jf818 4 A-01 753 1818 0.980 1.02041 0.361 453.2 1800 1.476 0.219 0.3921 4 A-01

<u ,iri 754 1819 0.983 1.01729 0.430 466.2 1800 2.037 0.160 0.4688 4 A-01

  • 1l 755 1820 0.918 1.08932 0.519 497.4 2410 2.487 0.109 0.5285. 4 A-01 ,a 756 1821 0.973 1.02775 0.492 554.0 2410 2.980 0.134 0.5309 4 A-01  :,,

J'.~

757 1822 1.077 0.92851 0.376 627.3 2405 3.501 0.200 0 .. 4469 4 A-01 cJ 758 1823 0.999 1.00100 0.446 603.9 2400 3.524 0.176 0.4?40 4 A-01 759 1824 0.988 1.01215 0.387 602.4 2100 3.472 0.184 0.4239 4 A-01

-** 760 1825 l.028 0.97276 0.397

~J 572.8 2100 2.922 0.165 0.4524 4 A-01 ',J 761 1826 0.976 1,02459 0.466 570.6 2100 3.497 0.151 0.5045 4 A-01 762 1827 0.955 1. 04712 0.466 543.3 2100 2.941 0.147 OJ,935 4 A-01 763 1828 1.009 0.99108 0.463 503.3 2100 2.494 0.121 0.5180 4 A-01 5t.i c,.... 764 765 1829 1830 1.062 1.050 0.94162 0.95238 0.265 0.269 476.9 484.8 2105 2415 0.992 0.996 0.292 0.280 0.3119 4 A-01 ,;7 rJ 0.3132 4 A-01 *,I 766 1831 0.946 1.05708 o.<156

~ *,:3 l.1}

767 1832 0.956 1. 04603 0.517 459.8 468.9 2100 2100 2.010 2.467 0.133 0.104 0.4781 0.5478 '*

4 A-01 A-01 uu

STATISTICAL ANALYSIS OF COBRA/~IRB-1 DNBR DATA 15:17 THURSDAY, OCTOBER 30, 1986 27

~* ----------------------------------------------------------- TSTSECTN-161 -----------------------------------------------------------

3 OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS WEST I'

i, 768 1833 1.005 0.99502 0.286 437.3 2085 0.957 0.290 0.3186 4 A-01

--1* i 769 1834 0.965 1.03627 0.300 433.9 2415 0.970 0.268 0.3210 (1 A-01 8

770 1835 0.941 1.06270 0.487 436.8 2100 2.038 0.113 0.5079 4 A-01 g

,0 771 1836 0.950 1.05263 0.331 384.4 2100 1.012 o. 2l16 0.3486 4 A-01 10 772 1837 0.939 1.06496 0.340 382.2 2415 1.022 0.206 0.3538 4 A-01 11 11 773 1838 0.995 1.00503 0.425 404.9 2100 1.589 0.120 0.4691 4 A-01 12 1:_'}

774 1839 0.857 1.16686 0.452 416.3 2400 1.584 0.142 0.4293 4 A-01 i3 13 775 1840 0.966 1.03520 0.471 526.8 2405 2.505 0.128 0.5043 4 A-01 14 14 776 1841 0.969 l.03199 0.303 521.4 1805 1.456 0.277 0.3256 4 A-01

  • ,3 777 1842 1.046 0.95602 0.336 536.4 1805 1.997 0.209 0.3896 4 A-01 16 lti 778 184,3 0.975 1.02564 0.380 544.9 1805 2.456 0.195 0.4108 4 A-01 17 19 779 1844 1.037 o. 96432 0.460 523.9 1805 2.997 0.140 0.5289 4 A-01 11 111 780 1845 0.979 1.02145 0.322 502.2 1510 1.433 0.314 0.3493 lt A-01 781 1846 1.014 0.98619 0.377 502.6 1505 2.002 0.229 0.4236 4 A-01
J 782 1847 0.988 1.01215 0.420 511.4 1505 2.486 0.202 0.4602 4 A-01
11 ~I 783 1848 0.993 1.00705 0.485 502.2 1505 2.992 0.166 0.5340 4 A-01

'" 784 1849 0.968 1.03306 0.500 522.5 1505 3.451 0.169 0.5366

  • 4 A-01
  • ,*)

2:3 ..:'i 785 1850 1.007 0.99305 0.514 524.8 1805 3.458 0.129 0.5738 4 A-01 2*i 2*1 786 1851 1.027 0.97371 0.306 437.4 1505 1.016 0.364 0.3(184 4 A-01 25 '..!~1 787 1852 0.988 1.01215 0.282 458.8 1805 0.981 0.342 0.3089 4 A-01 2:J .?i}

. '21 788 1853 0.958 1.04384 0.499 458.2 1505 2.506 0.165 0.5302 4 A-01 .1/

789 1854 0.952 1.05042 0.477 484.3 1800 2.500 0.147 0.5035 4 A-01

~d  ?:!

790 1855 0.960 1.04167 0.419 553.8 1800 3.002 0.178 0.4'159 4 A-01 2J '.:'.:l 791 1856 0.980 1.020-.1 0.466 551.4 1800 3.493 0.156 0.5066 4 A-01 30 792 1857 0.918 l.08932 0.456 552.9 1500 3.540 0.199 0.4639 4 A-01

  • 31 ,1 793 1858 0.849 1.17786 0.422 556.4 1510 3.032 0.230 0.3971 4 A-01 82 794 1859 1.020 0.98039 0.322 397.5 1500 0.981 0.351 0.3641 4 A-01 33 795 1860 1.029 0.97182 0.310 389.~ 1800 0.960 0.286 0.3536 4 A-01 3-1 796 1861 0.966 1.03520 0.408 394.:., 1805 1.468 0.180 0.4368 4 A-01

. :.'-~

797 1862 0.893 1.11982 0.423 394.8 1505 1.466 0.253 0.4186 4 A-01

15 31 798 799 1863 1864 0.959 0.966 1.04275 l.03520 0.477 0.470 420.2 417.0 1805 1500 1.989 1.974 0.135 0.177 0.5071 4 A-01 .... ,
J' 0.5032 4 A-01
,_1 800 1865 1.051 0.95147 0.341 543.8 2095 l. 991 0.187 0.3972 4 A-01 801 1866 0.963 l. 03842 0.408 500.3

,o 2105 2.014 0.163 0Jt355 4 A-01 ..,

  • 11 L~

TSTSECTN-162 -----------------------------------------------------------

... OBS RUN MDNBR MP HEATFLUX TIN PRESSURE M.llSSFLUX EXITQUAL CHF ITERATNS WEST 4

,., .\:..,

.;/

802 1867

  • 1.024 0.97656 0.405 504.3 2100 1.962 0.166 0.3847 4 A-18 803 1868 0.970 1.03093 0.443 503.9 2400 1.996 0.152 0.6104 4 A-18 -~ ,J

.,~

804 1869 0.958 1.04384 0.513 508.5 2405 2.480 0.115 0.6977 (1 A-18 805 1870 1.004 0.99602 0.481 505.0 2100 2.492 0.129 0.4480 4 A-18 b.l 806 1871 1.173 0.85251 0.383 5(18. 9 2100 2.508 0.132 0.6383 4 A-18 Sl 807 1872 1.040 0.96154 0.419 558.0 2400 2.474 0.146 0.6186 4 A-18 808 1873 0.975 1.02564 0.493 553.0 2400 2.982 0.133 0.6830 4 A-18

=~)

809 1874 1.076 0.92937 0.451 548.0 2105 2.972 0.125 0. 6891 4 A-18 810 1875 1.152 0.86806 0.353 549.3 2395 l.9A5 0.147 0.5773 4 A-18 811 1876 1.192 0.83893 0.316 558.5 2115 1.968 0.179 0.5348 '1 A-18

...~
    • .i

. 812 813 814 1877 1878 1879 1.042 0.978 1.061 0.95969 1.02249 0.94251 0.46Ct 0.271 0.302 566.9 60.5 .lt 600.9 2090 2100 2410 3.471

1. 990 1.992 0.131 0.255 0.233 0.lf488 0.2460 0.2972 4

4 4

A-18 A-18 A-18

,.\
  • ,u i./J 815 1880 1.177 0.84962 0.319 606.3 2400 2.475 0.179 0.5333 4 A-18 l,;J

STATISTICAL ANALYSIS OF COBRA/NRB-1 DNBR DATA 15:17 THURSDAY, OCTOBER 30, 1986 28

\

TSTSECTN-162 -----------------------------------------------------------

2

  • 4 OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS WEST G

816 1881 0.980 1.02041 0.317 600.7 2100 2.481 0.215 0.2882 4 A-18 817 818 1882 1883 0.993

0. 971 1.00705 1.02987 0.338 0.390 606.4 608.9 2095 2400 2.952 2.996 0.197 0.193
0. 3116 0.3512

{.

4 A-HI A-13 8

g 819 1884 0.908 1.10132 0.440 609.3 2395 3.457 O.le6 0.3708 4 A-18 10 820 1885 1.005 0,99502 0.374 605.9 2110 3.428 0.177 0.3488 {+ A-18 11 821 1886 0.894 1.11857 0.305 571.4 1500 1,996 0.289 0.2529 4 A-18 12 822 1887 1.022 0.97847 0.275 585.9 1805 1.986 o.2c,s 0.2609 4 A-18 13 823 1888 1.080 0.92593 0.313 582.2 1800 2.530 0.201 0.3136 4 A-18 1-1 824 1889 0.855 1.16959 0.339 573.4 1500 2,466 0.258 0.2689 4 A-18 825 1890 0.961 1.04058 0.356 573.4 1505 >

2.987 0.216 0.317ft 4 A-18 16 826 1891 1.075 0.93023 0.343 583.5 1805 2.981 0.181 0.3ft20 4 A-18 17 827 1892 1.069 0.93545 0.383 581.9 1800 3.503 0.163 0.3798 4 A-18 10 828 1893 0,948 1.05485 0.387 574.3 1505 3.483 0,199 0.3404 4 A-18 !9 829 1894 1.004 0.99602 0.344 530.2 1500 1.997 0.2?;9 0.3206 (. A-18 20 830 1895 1.029 0.97182 0.350 532.9 1800 2.003 0.205 0.3341 4 A-18 ?1 831 1896 1.080 0.92593 0.391 533.9 1800 2.476 0.164 0.6000 4 A-18 22 832 1897 1.005 0.99502 0.379 534.8 1500 2.462 0.207 0.3534 4 A-18 23 833 1898 1.044 0.95785 0.416 533.8 1505 2.975 0.172 0.6169 4 A-18 21 834 1899 1.151 0.86881 0.430 532.5 1805 3.007 0.122 0.7026 4 A-18 835 1900 0.951 1. 05152 21 0.479 544.2 2120 2.934 0, ll15 0.4228 4 A-18 2G 836 1901 1.101 0.90827 0.480 534.9 1795 3.499 0.115 0.7506 4 A-18 27 837 1902 1.089 0.91827 0.382 582.9 2125 2.974 0.157 0.3860 4 A-18 26 838 1903 1.144 0.87413 0.358 586.3 2405 2.495 0.155 0.5817 (. A-18 839 840 841 1904 1905 1906 1.002 1.006 1.166 0.99800 0.99404 0.85763 0.346 0.427 0.284 584.2 589,9 584.2 2100 2425 2100

. 2,(185 2.977 1.990 0.197 0,163 0.206 0,3217 0,6102 0.3074 4

4 4

A-18 A-18 A~ 11:l 29 zo 11 12 842 1907 1.138 0.87873 0.316 584.3 2400 2.008 0.195 0.5106 4 A-18 33 843 1908 1.10ft 0.90580 0.420 582.3 2105 3.481 0.136 0.6585 4 A-18 3.1 844 1909 0.984 1,01626 0.492 585.4 2410 3.502 0.141 0.6878 4 A-18 845 1910 1.167 '5 0.85690 0.438 530.3 1500 3.545 0.127 0.7261 4 A-18 36 846 1911 0.921 l.08578 0.411 488.4 1500 2.008 0.225 0.3514 4 A-18  :~7 847 1912 1.006 0.99404 0.409 491.4 1800 2,008 0.180 0.3819 4 A-18 28 848 1913 1.085 0,92166 0.453 492,2 1805 2,490 0.126 0,6983 4 A-18 30 849 1914 0.949 1.05374 0.468 482.9 1505 2.454 0.180 0.6310 4 A-18 40 850 1915 1.046 0.95602 0.478 496.0 1505 2,969 0.139 0.7104 4 A-18 41 851 1916 1.087 0.91996 0.482 510.4 1810 2,999 0.113 0.7438 4 A-18 42 852 1917 1.036 0.96525 0.297 524.2 1510 1.475 0,291 0.2856 4 A-13 4:J 853 1918 1.075 0.93023 OIi 0.293 529.2 1805 1.488 0.251 0.2923 {. A-18 44 854 1919 1.013 0.98717 0.295 546.8 2100 1,495 0.254 0.2773 4 A-18 45 855 1920 0.937 1. 01317 0.309 552.2 2410 1.465 0.264 0.2828 4 A-18 '1G 856 1921 1.072 0.93284 0.341 509.4 2400 1.474 0,200 0.5192 4 A-18 H 857 1922 0.885 1.12994 0.350 504.9 2105 1.471 0.257 0.2875 4 A-18

.*- 858 859 860 1923 1924 1925 0.969 0.952 1.001 1.03199 1.05042 0.99900 0.354 0.346 0.292 479.4 484.8 462.4 1805 1515 2105 1.488 1.489 0.998 0.240 0.279 0.306 0.3181 0.3056

0. 2712 4

4 5

A-18 A-J.8 A-18 1,3 4g 50 51 861 , 1926 1,042 0. 95969 0.307 452.6 2385 1.015 0.272 o. 2968 4 A-18 52 862 1927 1.065 0.93897 0.382 452.5 2105 1.438 0.178 0.3774 4 A-18 53 863 1928 0.926 1.07991 0.411 458.6 2405 1.483 0.202 0.3530 4 A-18 51 864 1929 1.004 o. 99602 0.470 462.8 2105 2,025 0.133 0.6701 4 A-18 55 865 1930 0.917 1.09051 0.489 478.2 2405 2,008 0.146 0.6369 4 A-18 56 866 1931 1.021 0.97943 0.311 429.2 1805 1.022 0.298 0. 29(*6 5 A-18 57 867 1932 0.930 1.07527 0.316 436.9 1505 1.009 0.370 0.2728 4 A-18 58 868 1933 0.925 1.08108 0.396 434.3 1505 1.485 0.258 0,3397 4 A-18 59 869 1934 0.913 1.09529 0.399 433.2 1800 1.4"*8 0,235 0.3380 4 A-18 GO 0

STATISTICAL ANALYSIS OF COBRA/l'IRB-1 DNBR DATA 15:17 THURSDAY, OCTOBER 30, 1986 29

~


TSTSECTN=l6~ ----------------------------------------------------------- :i OBS. RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS l'IEST 870 1935 1.007 0.99305 0.468 442.9 1795 2.010 0.148 0.6691 4 A-18 871 1936 0.902 1.10865 0.476 438.4 1500 2.002 0.200 0.3986 4 A-18 0

(J

,u

  • 11 ----------------------------------------------------------- TSTSECTN=l64 ----------------------------------------------------------- \tJ 11 1 1l OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS l'IEST 13 13 1-1 )*1 872 1979 0.994 1.00604 0.339 492.6 2100 1.454 0.228 0.3115 4 A-05 I~

873 1980 1.006 0.99404 0.402 503.8 2105 1.968 0.171 0.3740 4 A-05 lti iO 874 1981 0.969 1.03199 0.486 502.l 2100 2,500 0.139 0.4355 4 A-05 17 II 875 1982 1.046 0.95602 0.342 500.4 2395 1.447 0.208 0.3309 4 A-05 I~ 111 876 1983 0.903 1.10742 0.435 507.2 2415 1.928 0.188 0.3633 4 A-05

,. i:l 877 1984 0.925 1.08108 0.518 510.6 2415 2.490 0 .. 138 0.4(127 4 A-05 2L'  ;;:o 878 1985 1.090 0.91743 0.288 553.1 2400 1.446 0.244 0.2903 4 A-05 21  ::1 879 1986 1.051 0.95147 0.363 555.6 2425 2.002 0.186 0.3526 4 A-05 22 22 880 1987 1.054 0.94877 0.423 554.6 2400 2.495 0.148 0 J*121 4 A-05 2.:, ~'J 881 1988 0.929 1.07643 0.504 556.0 2405 2.980 0.150 0 .Ct328 4 A-05  :.:::-1 882 1989 0.859 1.16414 0.280 562.3 2115 1.406 0.314 0.2222 4 A-05

. ::~ 883 1990 1.192 0.83893 0.328 2S 551.0 2110 2.043 0.168 0.3613 4 A-05

~G 884 1991 1.124 0.88968  ;*u

. ~1 0.387 549.0 2105 2.499 0.147 0.4023 4 A-05 27 885 1992 1.005 0.99502 0.461 548.8 2115 2.998 0,141 0.4281 4 A-05 23 886 1993 1.024 0.97656 0.486 se 557.3 2100 3.457 0.130 0.4603 4 A-05

~'.~ C*9 887 1994 1.011 0.98912 0.494 578.5 2395 3.464 0.137 0.4616 4 A-05 30 :J!l 888 1995 1.209 0.82713 0.284 598.0 2400 1.994 0.205 0.3174 4 A-05

~j' JI 889 1996 1.097 0.91158 0.326 606.0 2405 2.456 0.200 0.3307 4 A-05 32 ~t2 890 1997 1.089 0.91827 0.373 605.0 2400 2.962 0.174 0.3755 4 A-05 33 **13 891 1998 1.123 0.89047 0.416 604.4 2395 3.507 0.148 0.6611 4 A-05 3-1 .JI 892 1999 1.011 0.98912 0.259 607.2 2100 1.972 0.255 0.2420 4 A-05

- . :1i 893 2000 0.960 1.04167 0.320 597.4 2095 2.493 0.215 0.2641 4 A-05 894 2001 0.918 1.08932 0.348 605.3 2110 2.973 0.205 0.2954 4 A-05

17 *31 895 2002 1.002 0.99800 0.385 600.2 2100 3Jt82 0.171 0.3566 4 A-05
JG ~~

896 2003 0.963 1.03842 0.283 581.3 1795 1.983 0.255 0.2519 4 A-05 2:J <)

897 2004 1.003 0.99701 0.322 579.7 1805 2.535 0,208 0.2987 4 A-05

.:;U .~ ( j 898 2005 1.008 0.99206 0.347 582.2 1300 2.970 0.190 0.3233 4 A-05 ;J 899 2006 0.965 1.03627 0.394 580.7 1805 3.485 0.175 0 .35llt 4 A-05 '11 900 2007 0.980 1.02041 0.377 571. 7 1505 3,415 Cl.197 0. 3{*17 4 A-05 901 2008 0.864 1.15741 0.307 569.4 1500 1.987 0.296 0.2453 4 A-05 .,.,

.*:~ . 902 2009 0.895 1.11732 0.334 570.6 1500 2.491 0.251 0.2764 4 A-05 903 2010 0.917 1.09051 0.363 570.6 1510 2.988 0.220 0.3077 4 A-05

.';;_j 904 2011 0.896 1.11607 0.297 533.5 1505 1.427 0.338 0. 2Ct60 4 A-05 '.7 905 2012 0.899 1.11235 0.353 531.3 1500 2.007 0.259 0. 293{; 4 A-05 .,u 906 2013 0.918 1.08932 0.404 525.7 1500 2.502 0.213 0.3428 4 A-OS

-.~ FJ 907 2014 0.939 1.06496 0.438 528.8 1505 2.969 0.186 0.3802 4 A-05

..,l i;!J 908 2015 0.993 1.00705 0.472 531.8 1510 3.534 0.159 0.4331 4* A-05 ,1 909 2016 0.943 1.06045 0.288 536.3 1805 1.428 0.292 0.2512 4 A-05 ....

910 2017 0.913 1.09529 0.364 528.1 1800 1.995 0.223 0.3072 4 A-05 911 2018 0.944 1.05932 0.413 529.5 1800 2.498 0.182 0.3603 4 A-05 'J 912 2019 0.956 1.04603 0.432 5(13. 9 1815 2.941 0.166 0.3819 4 A-05 913 2020 1.075 0.93023 0.485 533.6 1805 3.471 0.124 0, Ct819 4 A-05 IJc.i 914 2021 1.107 0.90334 0.455 5ft0.0 2105 2.949 0.121 0Jt655 4 A-05 b~

915 2022 1.082 0.92421 0.477 512,2 1800 3.001 0.124 0.4772 4 A-05

!ol 916 2023 0.917 1.09051 0,3Ct0 481.8 1500 1.429 0.299 0.2884 4 A-05 L:)

917 2024 0.851 1.17509 0.412 482.2 1510 1.919 0.244 0.3240 4 A-05 ,,J

STATISTICAL ANALYSIS OF COBRA/WRB-1 DN3R DATA 15:17 THURSDAY, OCTOBER 30, 1986 30


TSTSECTN=l64 4

OBS RUN MDNBR MP HEATFLUX TIN PRESSURE MASSFLUX EXITQUAL CHF ITERATNS NEST 5

918 2025 0.909 1.10011 0.470 482.9 1500 2.486 0.187 0.3950 4 A-05

___ i_T 919 2026 0.936 1.06838 0.520 486.3 1500 3.005 0.157 0.4501 4 A-05 920 2027 0.937 l.06724 0.341 483.2 1802 1.445 . 0.257 0.2954 4 A-05 0 2028 0.843 1.18624 0.422 489.0 1805 1.961 0.216 0.3287 4 A-05 921 10 IU 922 2029 l.021 0.97943 0.475 484.3 1810 2.505 0.138 0.4484 4 A-05 11 11 923 2030 0.846 1.18203 0.379 454.l 1790 1.441 0.265 0.2963 4- A-05 12 IJ 924 2031 0.782 1.27877 0.467 461.6 1815 1.954 0.215 0.3376 't A-05 925 2032 0.918 1.08932 0.416 442.l 2405 1.463 0.200 0.3530 4 A-05 14 1.19190 0.501 463.0 2405 1.929 0.176 0.3887 4 A-05 926 2033 0.839 I ~,

927 2034 1.020 0.98039 0.297 451.6 2405 0.980 0.290 0.2800 4 A-05 io 928 2035 0.918 1.08932 0.330 404.3 2100 0.991 0.301 0.2800 5 A-05 I/

1'/

1~

929 2036 0.895 1.11732 0.431 423.3 2405 1.437 0.200 0.183 0.3567 4 A-0.5 A-05 930 2037 0.978 l.02249 0.411 419.5 2205 1.436 0.3717 4 931 2038 1.004 o. 99602 0.291 452.2 2090 0.992 0.303 0.2702 5 A-05

,j 932 2039 1.053 o. 94967 0.302 420.6 1805 0.993 0.296 0.2939 4 A-05 21 933 2040 0.918 1.08932 0.311 429.0 1505 0.972 0.386 0. 26{*0 4 A-05 2:! 0. 2{t2 934 2041 0.900 1.11111 0.389 432.2 1800 l .C.24 0.3237 4 A-05

. 23 935 2042 0.874 1.14416 0.396 422.6 1505 1.420 0.277 0.3200 4 A-05 2-1 936 2043 0.949 1.05374 0.465 438.9 1800 1.947 0.167 0.4080 4 A-05 25 937 2044 0.811 1.23305 0.473 436.0 1505 1.913 0.229 0.3547 4 A-05

~s 938 2045 0.888 1.12613 0.501 464.4 1505 2.475 0.180 0.4113 4 A-05

'!./

939 2046 1.027 0.97371 0.323 386.8 1800 0.983 0.288 0.3068 4 A-05 2a 940 2047 0.891 1.12233 0.341 384.4 1505 0.977 0.368 0.2809 4 A-05 30 941 942 2048 2049 0.944 0.861 1.05932 1.16144 0.337 0.519 400.6 530.0 2395 2110 0.985 2.956 0.281 0.155 0.2942 o.,~Bl 4

4 A-05 A-05

.. u 31 :1 943 2050 1.041 0.96061 0.402 506.3 2105 2.023 0.161 0.3868 4 A-05

" 944 2051 0.891 1.12233 0.340 499.3 2100 1.424 0.261 0.2799 4 A-05 .,J

3 945 2052 0.899 1.11235 0.347 492,0 2100 1.431 0.253 0.2884 4 A-05 cI
31
J 37
.l :l:J 0

,,:*1

,11 44

~ :5

,;/

~ I

~ ~

~*j cl

.*J

! J

  • ,r

,.,)

'--.. -