ML18040B008

From kanterella
Jump to navigation Jump to search
Forwards Supplemental Response to SER Open Item 3.10.1(3). Fatigue Cycling Effects on NSSS Equipment Due to Safety Relief Loads (License Condition 23(a)) Discussed
ML18040B008
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 06/09/1983
From: Curtis N
PENNSYLVANIA POWER & LIGHT CO.
To: Schwencer A
Office of Nuclear Reactor Regulation
References
PLA-1698, NUDOCS 8306140648
Download: ML18040B008 (120)


Text

RFGUI.ATORY * 'ORMATION DISTRIBUTION SY M (RIDS)

ACCESSION NBR; 83061k064l8 OOC ~ DATE: 83/06/09 NOTARIZED: NO DOCKET FACILg50.587 8usquehanna

.50 388 Susquehanna.

Steam Electric Stationr. Unit li Steam Electric Station< Uni,t 2< Pennsylva Pennsylva 05000387 05000388 AUTH'AMK AUTHOR Al FLLIATION CURTIS rN ~ >l ~ Pennsylvania Power 8 Light Co+,

AECIP,NAME RECIPIENT AFFILIATION SGHNENCERrA ~ Licenssng* Branch'

SUBJECT:

For wards supplemental response to SER Open Item 3 ~ 10 ~ 1(3) ~

Fat>gue cycling effects on NSSS equipment due to safety relief. loads (License Condition 23(a)) di.scussed, DISTRIBUTION CODE'001S -GOPIES RECEIVED:LTR, ENCL .Q SIZE;,

TITLE: Licensing'Submittal: .PSAR/FEAR Amdts 8 Related Correspondence NOTES: 1cy NMSS/FCAF/PM'5000387 NMSS/FCAF/PM'cy 05000388 RECIPIENT ~COPIES RECIPIENT COPIES IO CODE/NAME LTTR ENCL ID CODE/NAME LTTR ENCL NRA/DL/AOL 1 0" NRR L82 BG 1 0 HRA f.82 LA 0 PERCHrR ~ 01 1 1 INTERNAL: ELO/HOSP 1 0 IE F II.E 1 1 IE/DEPKR/EPB 36 IE/OEPER/IRB 35 1 1 IE/DEQA/QAB ?1 NRR/DE/AEAB 0 NRR/DE/CEB 1l 1 NRR/DE/EHEB 1 1 NRR/DE/EQB 13 2 2 NRR/DE/GB 28 2 2 t4RA/OE/MKB 18 i NRR/DE/MTEB 17 1 NRR/DE/SAB 24 1 NRR/DE/SGEB 25 NRA/OE/SGEB. 35 1 NRR/DHFS/HFEB40 1 1 NRR/DHFS/LQB 32 i 1 NRR/DHF8/PSRB hlRA/OL/SSPB 1 0 NRR/DS I/AEB 26 NRA/DSI/ASB i NRR/DSI/CPB i 0 NRR/OSI'/CSB 09 i 1 NRR/DSI/ICSB i6 LIRA/DSI/METB 12 1 NRR/DSI/PSB i& 1 NR - 6 22 1 NRR/DS I/RSB 23 1 G F Il E 04 RGN1

/MIB 0 EXTERNALS ACRS 41 BNL(AMOTS ONLY)

DMB/DSS (AMDTS) 1 FEMA~REP OI'Ii 39 I PGR 03 2 2 NRC PDR 02 NSIC 05 1 NTIS NOTES: 1 1 TOTaL NUMBER OF COPIES REQUIRED: LTTR 56 ENCL 49

\ g) 4'I, ~

s >v r ~

Pennsylvania Power 8 Light Company Two North Ninth Street ~ Allentown, PA 18101 ~ 215 l 770.5151 Norman W. Curtis Vice President-Engineering 8 Construction-Nuclear 21 5/770-7501 JUN 09 1983 Director of Nuclear Reactor Regulation Attention: Mr. A. Schwencer, Chief Licensing Branch No. 2 Division of Licensing U.S. Nuclear Regulatory Commission Washington, D.C. 20555 SUSQUEHANNA STEAM ELECTRIC STATION NSSS EQUIPMENT FATIGUE EVALUATION-SUPPLEMENTARY DATA LICENSE CONDITION (23)(a) AND SER ITEM 3.10.1(3)

ER 100450 FILE 148-01 PLA-1698

Reference:

1) PLA-1222, dated 7/29/82 from N. W. Curtis to A. Schwencer

Dear Mr. Schwencer:

This letter and its attachments contain the data requested by the NRC to supplement our response (Reference,l) to your concerns regarding the fatigue cycling effects on NSSS equipment due to SRV loads (License Condition 23(a) and SER Item 3.10.1(3)) .

1.0 Number of SRV Events for BWR-4 Reactors Derivation of the HPCI turbine fatigue test requirements indicated that 900 SRV actuations were appropriate for equipment fatigue design in BWR-4 plants. This value is based on empirical data from the operation of Browns Ferry and Peach Bottom.

Based on observed response time histories of components due to SRV loads, two (2) significant peak load cycles on equipment outside containment and four (4) significant peak load cycles on equipment inside containment can be expected for one (1) SRV actuation.

Consequently, the number of peak load cycles due to SRV actuations postulated for the 40 years of plant operation is 3600 for equipment inside containment and 1800 for equipment outside containment.

Observing that the significant load cycles from an SRV discharge occur within the first half second of the event, the fatigue aging required time in a response spectrum test is approximately 450 seconds (7.5 minutes) .

i "830bi40b48 830b09 goo PDR ADOCtl'5000387 PDR t (

t E ,

sg, rl, Page 2 SSES PLA-1698 JUN 09 1983 ER 100450 File 148-01 Mr. A. Schwencer 2.0 E ui ment Fati ue Anal sis and Testin Su lementa Information The following information is provided as a quantitative backup to demonstrate that the SRV fatigue aging requirement of Paragraph 1.0 is met for'he equipment previously identified in Reference 1.

2.1 ~anal sls:

Fatigue analyses were performed for the five components listed in section 1 of Reference l. Based on an environment with 1800 significant stress cycles (as explained above for equipment outside containment),

the maximum usage factor (or cumulative damage factor) was 0.33 which occurred on the RCIC pump holddown bolts (5500 cycles allowed for the calculated fatigue stress) . The calculations are contained within Attachment l.

2.2 Test:

Supportive data is given below for equipment whose fatigue life adequacy was demonstrated using methods of extended duration testing.

2.2.1 MSIV-LCS Blower (E32-C001/C002)

Extended duration testing was performed on the blower. The total test time was 40 minutes and was achieved as follows:

a) 4 Upset Condition Tests (OBE + SRV) for 5 minutes each at 2g's input.

b) 4 Faulted Condition Tests (SSE + SRV + LOCA) for 5 minutes each at 3g's input.

These g-levels are far in excess of the O.llg ZPA of the required SRV spectra. See the SQRT form in Attachment 2. For the sine sweep test method which was performed in the range of 3.8 to 33 hertz, several thousand cycles minimum per each 5 minute test was imposed on the test specimen such that the cumulative number of cycles greatly exceeded the required 3,600 cycles from Section 1.0. Neither structural nor operability failure occurred during this testing.

2.2.2 Electrical Cabinets Additional extended duration testing of the cabinets with mounted devices was performed to demonstrate fatigue life adequacy of this equipment. Test programs and results are described below.

2.2.2.1 4.16KV Switchgear The extended duration test is verified on- pages 2 and 3 of the SQRT form in Attachment. 3. A biaxial sine sweep test covering the ampli-fied portions of the SRV spectrum (4 to 70 Hz) was performed in both the side-to-side/vertical and front-to-back/vertical orienta-tions in the single cell configuration and in the front-to-back/

@i 1 V I ~

Page 3 SSES PLA-1698 JUN 09 1983 ER 100450 File 148-01 Mr. A. Schwencer vertical orientation only for the multiple cell configuration. The SRV fatigue tests were performed by sweeping up and down at a sweep rate of one octave per minute for 30 minutes. The input acceleration level was approximately 0.08 g. This sinusoidal input level would produce a spectral acceleration level of approximately 2 g at 2%

damping, which is well above the SRV + LOCA levels of approximately 0.9 g.

2.2.2.2 125 VDC Power Distribution Panel Upon completion of the first combined load qualification test, SRV fatigue tests were performed using multi-frequency biaxial motion (XY and ZY). Each test was run for 60 minutes by repeating the test table input motion which had a TRS enveloping the required SRV RRS.

Enveloping was checked at the beginning, middle, and end of each test. Refer to the SQRT form and spectra in Attachment 4.

2.2.2.3 Power Ran e Monitorin Cabinet Qualification, testing of this NSSS cabinet was completed in the week of March 27, 1983. Successful fatigue cycling tests were performed using two biaxial time history motions (HGV) for 15 minutes in each plane. The input waveforms had a TRS designed to envelope the following RRS.

gv 2 2

.25 5 .6 6

.75 8 1.5 10 1.5

.75

.16 '0 12 (ZPA) .16 20 50,ZPA The test plan and panel RRS .were determined to be adequate for Susquehanna prior to the test.

2.2.3 Valve Motor 0 erators Extended duration testing was conducted during dynamic qualification of Limitorque motor operators as follows.

Fatigue was not considered a concern for the metal parts of the actuator due to the low stresses involved. The critical parts are the plastic parts, limit switch rotors, limit switch finger base and torque switch. For the unit selected, an SMB-2-60, the orientation most severe for fatigue is the vertical direction. Therefore the test was done only in the vertical direction. The g loading of 3g was a conservative load based on the fact that the actual SRV-only loads are less than 3g.

~ l ~ l I

Page 4 SSES PLA-1699 JUN,O g ]9,8B ER 100450 File 148-01 Mr. A. Schwencer The test excitation was in the form of a sine sweep from 10 to 70 to 10 hertz at a sweep rate of one octave per minute which imposed approximately 30,000 cycles on the operator. These load cycles are significant regardless of frequency because the operator fundamental frequency was previously found to be in excess of- 100 hertz. The test unit was operated after this testing.

2.2.4 MSIV Actuator The referenced letter describes that credit was taken for additional testing to cover SRV fatigue cycling on the actuator.

Since the required vertical input motion to the inclined actuator is approximately an order to magnitude greater than the horizontal component, it, dominates the critical stress in the yoke rods. Repeating this input after horizontal rotation of the test specimen for each upset'nd faulted condition test, therefore, results in twice as many yoke rod stress cycles than will occur on the SSES MSIV actuator for the design condition of five upset and one faulted-condition load events. The horizontal and vertical upset and faulted RRS and TRS for the actuator are shown in Attachment 5.

Therefore, credit for SRV aging is taken for 5 upset tests and 1 faulted test. Since an upset test is equivalent to 60 SRV events while a faulted test is equivalent to 50 SRV events, this additional qualifi-cation testing is equivalent to 350 SRV events.

Further testing run on the test specimen is equivalent to another 390 SRV events as shown below, giving a total of 740 equivalent SRV events produced by the testing.

2 50% Upset Tests 120 SRV events 2 40% Upset Tests 120 SRV events 2 50% Faulted Tests 100,SRV events 1 40% Faulted Tests 50 SRV events 390 Total In regard to test levels, the MSIV upper mass g-level calculated in the piping analysis was approximately 9 g's using an SRSS combination.

With an actuator fundamental frequency of 10 hz, the full level faulted testing subjected this mass to more than twice this value as shown by the TRS in the attachment, and this was verified by the accelerometer records.

Therefore, the above-reduced level tests are sufficient to cover SRV excitation while the higher g-levels associated with the qualification tests can be considered equivalent to additional SRV stress cycles on a fatigue usage factor basis, concluding that the required number of 900 SRV events were met by the testing.

~ ~ ~ 1

~

~ '

Page 5 SSES PLA-1699 JUN .0 9 1983 ER 100450 Fil5 148-01 Mr. A. Schwencer 2.2.5 CRD Vent and Drain Valves SRV fatigue cycling will be part of the upcoming dynamic, qualification test on the SSES CRD vent and drain valves. The current test plan calls for horizontal and vertical time history waveforms simultaneously input to the test table for a cumulative time of 15 minutes. This test will be repeated after a 90 degree rotation of the test specimen.

The TRS will envelope the following generic RRS during testing of the later model valves in SSES Unit 2:

Horizontal Vertical g'S Freq. (Hz) g s Freq. (Hz) 1 5 1 5 8 10 6 10 8 40 6 40 2.5 60 2.5 60 2.5 (zPA) 2.5 (zPA) while the TRS will envelope the following conservative RRS during testing of the earlier model valves in SSES Unit 1:

Horizontal and Vertical g s (Freq. (Hz) 0.3 5 hz 2.4 10 2.4 40 0.75 60 (zPA) 3.0 Conclusion The data contained-within and attached to this letter supports our position (Reference 1) that all NSSS equipment will perform satisfactorily under the fatigue cycling effects due to SRV loads. This letter fulfills and completes our actions under License Condition 23(a) and SER Item 3.10.1(3).

Very truly yours, N. W. Curt. is Vice President, Engineering and Construction-Nuclear cc: Mr. R. L. Perch NRC Mr. A. Lee NRC

~

~ ~ I ~

I ~ ~ OO Page 6 SSES PLA-1699 JUN 09 1983 ER 100450 File 148-01 Mr. A. Schwencer Attachments:

Attachment l.

Part 1 RHR Heat Exchanger Fatigue Life Evaluation due to SRV Actuations Part 2 RHR Pump/Motor Fatigue Life Evaluation due to SRV Actuations Part 3 Core Spray Pump/Motor Fatigue Life Evaluation due to SRV Actuations Part 4 HPCI Pump Fatigue Life Evaluation due to SRV Actuations Part 5 RCIC Pump Fatigue Life Evaluation due to SRV Actuations Attachment 2: SQRT Form for the MSIV LCS Blower Attachment 3: SQRT Form for the 4.16 kV Switchgear Attachment 4: SQRT Form and SRV Response Spectra for the 125 VDC Distribution Panels Attachment 5: MSIV Required Response Spectra

ATTACHMENT 1 g064,8 g30g

II I

< ~

PART 1

a l

rg() '1 I GEHERAL ELECTRIC CO.

Nuclear Energy Business Operations i ~

ENGINEERING CALCULATIONSHEET NUMBE R

~

P, C KChg SUBJECT SHEET ~OF I.iF e C~A uJ~Aid;~ Otit- -to s~ ~ydw groUt.

&'c&ERAL: ~qe. ~~~ p~ ~V P~~-~ +~ ~e 4 ss~kg.,gee.c.

hfptcH Ceu.S 8< t ~rerum pyrecJJ& LtM ~ogV~r~a Ode Vo sP ctun- V W

<AS. ~He +o ye~~ ~rm aF- Tm fgwM pl~ IecuE for Jg of'<gQ -rhea ~ unarVu co~pp<< ~eve @me yegg ex+~ -s.'rsr dF ques rsr~ro>sxsrs og L.a+C(0& ~l~ Vb T pe@,p Srewr&4

(~ facy pdE- P ggli H czrjRodS.

L eavr K 5'cfppopv gp'qmET

g. o o'FK gdP/ro g:7 pgAepz7 got Ts.

&ppoe7 prSn'~ter ZrtC'frg&c WAP~f~fV'< r -4 gl& PlpbCVrorJS R&c7 HE'Uc"4 M U. ~ S~6$ E<'lM Q Rt~<ST LORQ5.

gp 7Q f>(g

- MOE .(hM4 f ~IN /~5~

I".Al pj's-'Wiles~< iJ<~ Qiips

~ L.tg~

g>Jp, 7I MS 4s'xv fg'AQ SH~

~S'I- g) gf' +(g -fg. y'ol . >

r ).

g~Cg f'rA ~ 7'~. $

) r voMg

~ore..:t cz.rs a v wJiY sracsscs ~icr. I'~ yr~y N~ go~'l.< cnfc4 V

VERIBED BY s 2J'-X3 YERIFIL' NEO 87 (REV 8/81)

I ~ I

> g l

II I ~

'I h

A,

GEHERAL ELECTRIC CO.

F ir F F>E ~

Nuclear Energy Business Operations ENGlNEERING CALCULATlONSHEET NUMBI:-R r

DATE Mz(rW SUBJECT $ 13rd. H . H& ~WV~C -R!TraCU BY SHEET B QF CtF5'8c ti~vteu Othe -To QgV Wv 087'i~Vg.

Law f.g. 5'upI on'z~cwlr g CflccdcFJ Ya uSSFJ S~~ = SVVB t Sr C Per: -t)IEF-0 PIE oF-T-, SE~.s- s) .

~Bog s'~~ rE brJr'a STa~ir- ( nraEEUJ rJFHYFJ, pc~~Y, )

pvP t ~+ fLJ ~~ M Aoy

~

g

~sA~d0g<J8V/ gg <Al ~ W~g Q g~<~ Q~ trIJ5 goop pyjpg~~

Xfflfaa ('I JJCE.FJ Ffl Jr tia J3 FFrrrOE OF Q..~ Q UJK'rrramaay fm ~ra )B x'7'IO y 2,7 - tt'73- h~wpy, ~~~ pplac.il YtW~

~ z~~ wm v<..~

g~=, Ea~ as pC pp:

rrJE (HEn El YJHJ FFJFF 'Fn JJFYTJl il'-BFE QiEfor. ETUUSQ A<a0Q 4R"ft~< 5'Y~ = IC t73'Ha W0 7.

r VTFJJJE HFrrg i TFUJJ~JYTUiJ Q SBJTF /pCF

) i flap, 5 TJFEF J e~

CyM< ~ m,c ~ e< (do,otto g~~. gJ~~W oF t:g~ Ci ~+<CD

~~

FIWiM~ ~

iqoW&IC,C, tg <s 6'y jr~wCw N~ 0,%.

~

LC.ic Peg zcs, ado

-. Ppa gAr5

.~

~

Ws<r: t gq g i~3 I-~<we ry't f-'j~ ~

ta-g,

~

Il

~'t~:~ ~7. ~

JJF-I.

FI.QTrcEs ~i.

F'ETFUE'J V~Ur (Frrao EJYS H'JraiC F@r-3?ira-I Fan JHJH-Fa~ UTT..J)F La~CW ~~l pe<g p,F.r.<.~q n O'.ECJJJYFYFo J'FBBFE - I3rr5 taar Qy~sr<g COol5fZ44 l<<<W Ud< Pu m~ ~VS Sap~~

~dMDg&l'I04 ~q ag. dF ~

ETF~FS I3rr3'F JI. SE.4aa

'BJ: <'3d SEE.IY>

FYrn Q=

Crrfl-

~>~

S

", FeOm I

d= ~

po~rrarrr=-

EJ,EBF CUrrer. I" C+~.

CynbsS 3 ar ).

VERIFIEB BY d Q-fS NEO.87 tRKV 8/8]I

103 102 w

~h 0 Max. nominal stress C 2,7 Srn 10 Max. nominal stress ~ 3.0Sm 1.0 102 104 100 tots

!-',. 103 P

~1 10'OTE: Number ol cycles, IV t

f E 30 X 106 psi FIG. I-9.4 DESIGN FATIGUE CURVE FOR HIGH STRENGTH STEEL BOLTING FOR TEMPERATURES NOT EXCEEDING 700'F Table I-9.1 Contains Tabulated Values and a Forntula for Accurale Interpolation of These Curves

s e~ I y I

WSI ~ I ~ OIlb bo ~ V ~ IIV VV~

~

Nuclear Energy Business Operations l ->/~+

t/ I ~ ENGINEERING CALCULATIONSHEET NUMBER -zs-fs SUBJECT

~4+ LV~MN r1~ "IO 5g.v Q~~g~ ~Iong, SHEET ~QF ~

C-6 QG$

.'7g+

~~m'G W ~-0 WHIST

<m K C8m

~ ~~.PeegMIu~

QP I 8~~F7 ~

'>mG Pwh W u% ~V~u~-

L C ~~69 e W

-Q C~

~

Lt ~58K, Wcmq~o~c.

( gd 0 Np g~ ~

W PgP{ (g ~ ~ du'6z.

gg&f/sl-ftv'6 ~g dg T~IN~

yes aP~>~a P~1 m~.

IAaWM 88'O Cd

~F P ~ WIdeC CQ Ht~CM S yP-sf~ ~n Mal&~

FXPeP.I WI ~ ~MQddS

~

~~ PlC}-

<dc.ate~ 8W~ SH~ ~em. SqaesS ~~~I oa.

~

0 D I < CH8Rd4E Qp MO-(OQ 5<8CrW ~

~Kg ~NCE Pol.Tl <Cc 5,WI+hPP

~D SOI Ci~'CR.

$ <~& I~ mE DeS&i~~ W~~ Ss~

-C<C SC~~ t< B)t'QOU ~'~ SH~ PWM QICQcM~

/IJb g PJA LAIR 7 EQ.

eA-.a a/M'rtd<4:

5'gt'kidd ~)~~ gggCL.: Cea F8'/Wq<VE&f S<~&5 PUG W g'IPg~l< (P~ g SSg O'M i/CA) ~0 5ygg(S. LOSES QAE~ lP~

Pa~ w'fi p~~MI ~rneu~ p.i~~ maVsgg wept mieuunec I7(7I PP I767I )<+

(~

=

f)~Q i~s y1 g~/

W<<4'~t'ig WKI4'<P=M VERIFIEO BY 7 .~2-8'5 Rsd+i FhygrAC CUPS QQ~~wM1'- (g gp ~3~ /f1'= I4;ado ~cM fp$ 4

~g.~ (

o.t> g

( ~dy NEO.$ 7 (REV 8/81)

Dgp 4 PI>-A~

~

5h<

S4 2SCQ L4IK 24l B OO 2569 WA 30-II C

QA C'4 CRO 35I 7 30-0 3cN 4 3e-0 10 30I 3 D(s'cHzgae p~p 3'-I3

~uccf gaW(4 36I 5 35-2 36~

ITOA 30l I 3SH 363 450M 24 I A

) 256 A g~M ITSA Sdcl td~

S'l ~ 330-2 3I2

~P s<.9Cc5 CBS8

&C 'fl u~

2M 0 $ HoH'g lA~T(d>S gJ P

a 240 (708 on 300 33O 0

'o 22TA 2Q XO 7 Rl lit

> ~ c I ~

  • 4 i+%

0

bkHkRAL kLkCIRIC CO.

Nuclear Energy 8usiness Operations l -0/cq.

ENGINEERING CALCULATION SHEET NUMBER DATE ECT dd, . Um. BY SHEET OF

~~Ne7m~ WC WV ~~~I~us.

~ H~ F:~~ mZV<>e: ~~I~~ S<AW'C.

~ g.,

iiCsks ~~r3$ - ~i~ C ~>oo = -at<>> uw

~~I~~

(. 5

<4C +-<~ ~ &~4(d~

Chlhh~\iA ~g ~~ g]gg~~~

4c+ ~u~ P ~ )

2i7 d7i4 +Wahoo ~ ~~giCi+

OC~e7 4 SWeO = tt~af V7 (<,~.

I</>~~>,j "

KRiFIED BY -7 -z-Q L 2~3 told y <i%4 IW J g

~P&m ISLErg + 5+~

goal+

PA lVeth5 CdEalg (gg7~~&lf P) .Obg . g-4'= w tzo~a ay~

(J~~ @~0~

I NEO b7 (RKV b/dl)

I I

'1 J ~

k

~ I,

'I 1 -s/~g

~

Nuclear Energy Business Operations (S I ENGINEERING CALCULATION SHEET

~ hUMBER SUBJECT + ~ ~~~ ~ DATE BY SHEET~OF gVamRZIe~ Out=- ga 5m m<ueqteui.

Wa p s~m~ can SaLN>am: 1

~V& Sg~~

(~: p~~ m --~~

~W Q<mWNw~vj~

<~ ~ ~~ <~~

I~ RS w Qp-r ~P<I< ~~ ~y)Ig~i~< aug

~ggI C. ~y 5'~

P-, ~

~ ~Cilia 4774 uS

~d SSV V

=

~~ + P > Padre ~ gW~e V~

~Wd0+ ~73,

~~a g G~ = 470~

VERlFlED BY (4 g>g.~Q"g +

Pea +

%g3

)

I'A>G73 +y7Qpg 2.

~V ~

Q gQ-I5 5 x~t~

rcpt.

P~= 777 t'~'~

~ yw ~

g 40 tV ~ )47~%'77

= C7iWQ'>

Pc'<70~~

W>~G eA~ Ch778ckl~W, 3g RP- Q 3y~ Pb' P%fQ ~ ~ fddd

d. 2- ~ (

/ddt Cy~

NEO.S7 (REv 8181)

I I I

Nuclear Energy Business Operations

'I

-4/(-y lg I f(I ~ ENGINEERING CALCULATIONSHEET NUMSER DATE

~

Q08 7D 5'M

~6QJ r tl By SHEET ~OF ~

~~:

~-i, ~

op SM+cs5 ~9062 MME~

St~-0S z- ie-

~ ~M+ 2-+3.

~~I SV~ ~d- ~m~

gljG

&t <~Ex QO ~ zF CeN'

~ HI pig~ g7~49I<'f,

~No g U

poise!~, CHANC

~ ante.

VHY7V~

~i V~h. x ~ =

5~ f +o>+ ~d( > P+'.

p, ~~ gag v~~

"fh 6 QV~F ~& 8 77~~ &J7 ~P P&T7@ ~N'hZ

(

pm'y~yu~M ~Fever ~<<~

h g ever ~~y Hy~F~g"-, Clice~< C0PC.~ ~~et- ep- W QwI7 p('dg&EG <J1&<M&Q ~<CA f0<~ (7,d~

MU fdg. GY~: t~~ PPP 5 C.-tg ~y ~.I 5'c~ X I(

Sv(7

~~

PA'.H g 54~OF $4~@ R~ Hh"TlWt~ /35 Lp('g Qgdg-S<eH P Pg& 4PH blOTag D&4D Cb4C ~

( +'NZ /

~F- Ma Yo('('~(7 4~ 5/(7 p(( '~t=- H~c.

ay~ F((~ >~(~s ~ .g~v ~v ~(e(- ~~<g

/'r

(~ ~

uS~ ~~~rz = -

(yx cRIF(ED BY NEO.87 (REV 8/81)

10 103 102 10 10 102 103 104 10 106 Number ol cyciee, N NOTE". E ~ 30 X 10 ktt

~ ~ UTS C 80.0 kt I

~:.~ r C13 UTS 'I 16.0-130.0 kel Interpolete lor UTS 80.0-116.0 kti FIG. I-9.1 DESIGN FATIGUE CURVES FOR CARBON, LOW ALLOY, AND HIGH TENSILE STEELS FOR METAL TEMPERATURES NOT EXCEEDING 700'F Table l-9.1 Contains Tabulaled Values and a Formula for Accurate Interpolation of These Curves

~ I 0'

  • I~

1 "P

7 "

~

I

!(56 V)LAY IKON II t prone'rl La to use the tcnsQe strcnf~ higher~ength irons, stress con- gray iron under completely reversed (or fapgttc Qznit) and, after deter- ~tration factors associated Trlth cycles of bending stress are thotrn mining thc sec(ion modulus of the changes of shape in the past are im- in the graph on left in Fl . 11, tn actual shape, to apply the proper rtant for torque loads~ well as which each point represents the bending formtfla. However, b muse or bending and tension loads. data from one spcclznen. The cffc:ts of the diglculty in obttLining a Isodulus of ElasQcity. Typical of temperature on fatigue liznlt and aningful value for thc tcnsQC stress-szrain curves for gray iron tensQe strength are shown in thc en~St in tests of smaQ specimens, are shown in Fig. 10. Gray iron does right-hand graph in Fig. 11.

c load computed in this manner not obey HooRe's law and the znodu- , Axial loading or torsional ]~~

usually be somewhat lower than hls in Sentdon ls usually dctermizted cycles are frequently encountered ia " .

the tsctual load required to rap~ arbitrarQy as the slope of the line designiug pazts of cast iron, and ln the ~, unless unfavorable redd- connecting the regin of the s~- many instances these are not cout-ished ~

ual stresses ae present in the fin-Ekongntion of f~

tart ht vcz7 smfLI1 (of the order of iron ct frac-strain curve with the point corre-sponding to 4 of the tensQC strength. Some engineers uac'-the slope of the stress-strtLin curve near pletely reversed loads. Types of reg-ularly repeated sees'ariatlon ustt-ally can be expressed as a function of a mean stress and a stress range.

the origin for determining the pc+sible thc designer 'rlherever 20 modulus of elftsticity. should use actual data from thc 1Ln-As indicated in Table 12, the mod- ited information avaQable. Wllhottt 60 ulus of gray iron varies considerably precisely applicable test data, an es.

g,so more than for most metals. Thus, in timate of the reversed bcndiag Close 60 utdng observed strain to calculate fatigue limit of machined parts tnay stress, it is esaen(ial to measure the be made by utdng about SS% of thc modulus of the particular gray iron minimum specif)ed tensQc szrtnga so specimen being considered. The nu- of the paMcular grade of gray izoa merical value of the modulus in being coruddered. This is probably s rit 20 torsion is always less thrn in ten- as.fe value rather than an average (don. lusl as it ls fo. SteeL of the few data avaQable concerning Io 20 Hardness of gzay iron, as meas- the fatigue limit for gray iron.

0 I 2 5 stroih, oztot irL por in.

4 ured by BrincQ or RocRwcll tcsters, is an aveztage result of the soft graphite in the izon and the metallic matrix. Vttriations in graphite ldse table IS. Cow~ of ~~))

ncso of Gray Irons. as Inattontnr by G~pMLe

~

Ag. ZO. ~i stress-strtttrs

)or t)tres eh+a of yrtty frcra tn tctt-caroos and distribution wQ) cause wide var-iations in hardnesa (particularly 'type of Total

~rtt C htsrns cfots. Efodtrftrs of ofdsti~ tr ttssssssrscf tosphite osrtroo, % tLrrr (s) esrtrdfht to fsobtts k, B oad C, rcprascntfsty W BocRsoell hardness) even though of t)tc tcasffc ctrcstyt)L. the hardness of the metallic matrix A ~ ~ ~ ~ ~ ~ ~ s os csee(c) sl J is constant. To Qlustrnte this effect, A ~ ~~ ~ ~ ~ ~ 2JS CS I SIP 0.(Od in, per in.) and hence is sel- the miczohardncss of the matrix of A dz)O ss 0 (NLO dom reported. The dctdgncr cannot five types of hardened iron, as com-D D

..i...i

~ ~ ~ ~ ~ ~ ~

200 Mo

$ 4.0 cs'v CSJ coJ use the numerical value of perma- pared with ItocRwcll C measure- ~ ~ ~ ~ ~ ~ ~

] ncnt elongs,tion in any quantitative ments on the same iron, is shown in (a) Mcasttrod by convcazfoaai I.~ Lest. (b) Hardncos of taatrls, roeasttrsd Rocttre2 cr. Table 13. tilth atttrc~fal harness Torsfonal Shear Strength. hs It is apparent that ifany hardness lo Roc)~

toots. Snd cott.

C. (c) Although tbfs own w Table 12, most gray irons correlation is to be tsttempted, the 'ra)uc sraa obndaod ln thc xpcddL tera have high torsional shear strength. graphite must be constant as to type lated. ll Is not tyafcal of srtsy Man grades have torsiontLl saength and amount in the irons being com- II.OS% C. 04narily thc harness of M greater ths,n some grades of steel. pared. It is recommended that Brin- iron Is Rococo)) C CS to SO.

Ls characteristic, along with low ell hardness be used when possible.

notch ttensitivfty, maRes gray iron a An approxizuazfon of the effect of suitable material for shafting of Fatigue Limit in Reversed range oi stress on thc fatigue ))znil various types, particularly in the Ileftding may be obtained from IQagrsmt es of higher tensQC ~ngth. such as Fig. 12. The tensQc stwztgth ost shafts are sub/ected to dy- Because fatigue limits are expen- is plotted on thc horizontal acids to namic torsional stresses and the de- sive to determine, the designer usu- represent the fracture strength a.

Idgner should consider carefully the ally has incomplete information on der static load (which correspond(

exa"t nature af the loads. Irar the this property. Typical 8-N curves for to aero stress range). The reversed.

Tonal to strontth 50 0 Notched specrmens, sness hosed on (tress oroo 0 tthhotched specirhehs 4NOtshed SpeCimenS, stress hosed on hei oreo Eoch pomt represents one fothprs e'rhtt o Notched o Ltnnotched Notch consists of tronstorso hole ui specnheh diorheter 20 sos ~hi rririisrs ,,oe,ooo rema Ml ~reset .... jdp04 orr o Notched spscrmehs rerlyyl Isiirr~ IO

~"".rrpoO err w Srere hieo rerleee ~

~"".so.coo er s ser cree

~ Unnotched specimens Ecch point represntts ohs test 0 0 l eumber o 2oo 4oo 600 aoo coo o 2oo 400 6oo eoo tooo Of CTCt ~ S tO frdtrrre Tostiht) tomperotrrre, F Tostiht l ~ fhperotMre, f

+ Y clcrocs trait off~B,ofequi~rt~tro oa forfyoc )frrsft of yrtty tron of t)tc tens(fc Cr, yzy p t. Wr Ca. (Tr. ~ton Coulns and J~e O. Saath, proc. ABTh(. df TST. Ipd>>

Z JZ Bf, ZSS Zta, SSry p, yet ~

p ~

~~RarlSI~~RarrlE

~mwwaawr ~~wwws ~~aarra ~~aarII

~~wwwww ~~narra

~~sarsBI~~RarSIR ~~barras

~~Warrkl ~~Rarss ~~&arrs

~MWKRSRII~MWRrSEI KWRSRrlBI~R$ 5$ 8 ~MHRrlll~WRSSll ~~~args

~MWRSRI

~~~ERRIIII~MERRIII~HER%III MHESSII MRhiIIIIIMRRIIIII HPII!lily'%P)lllllHP)IIIIIHPIIIIIRPIIIII h+II)))

~ III &.%~~wwsws

~~warsha~~RarrsR

~~Earssl~~Earr%$

HW mmaans ~~Harss

~~%arrl ~RRarrll

~~Haaksg

~wRarsrll~wRarrlR .raars

~WWk'r ~Mwsarl ~~warrH

~MRErrll

~&ERHSI~WRRRHl ~HE%III~a

~MKERIII Sa

~HERBIII~KENIII a~&ESNQ

<eII WEEEIII WESHIIIIWSEAIIII~WSIIIII m aaaIII a H%5lllll MPIPIIIWPIIIIIIMPIIIIII ~ IIIIIHPlliilh'

PART 3 Nuclear Energy Business Operations I -!0/~ q

'E\

ENGlNEERlNG CALCULATlON SHEET I ~

) ~

E

'NUMBER DATE SUBJECT ~~ " . ~~ ~~ ~~ By SHEET t OF WQ fAlq ttdg ~g ~ gPAJ ~gtlg~dA/5 CC~&~:

pJE gev.

~a o

S'g4

~~~

mFFH.FO l.~

HHFS TTFEH H tO~FS~6'TO feR. p~R PMi~K peTteoft'A C~R~R-Bcyuevte&s eye@. cy -yS

~ PWFT +

gemeddg 7>

~~ gZ~~

+0 .~~<3 g~

pm~~ ep7 g<~

~ ~e K w lc ff J

~

~7w w ~-ltd.~

~O ~It Tegi~ Vt=

DPF +

Cgt M PON SZt-W7

&Ptf. PDP ~

gaia'emetaS

~o Wt UMEkl gf

~P'CbVF

~~ ~~~

~yRqie, ~u Raus Oyaa~<C- ~~~>CS tRG 4'~0/~7 P0A) mog~g . MR17t'~ Pools

~m ~

'TNPQST gy'Cqtdd ~Q Otg~~~ h8'R>M, p ~, PEW'~/,~pea~p gyd~tC n~'4r1 5'Cf, gad

~AtS ti~Fy ~ ~

~WE gg&

flV~YE@2 t fdd M

~~t~

i~ ~wC

'~N IC 8 ~

~Ce4~e~mV ct E

@f8

~P f ~

d8 Ter~&

fg4H QHC dp5pMQ<K PQ~ ~FP-(EAkS.

%S'e~~tdac. ~gL~ s<~ ~4<<s'r~ < gu~eT'~-

S aTTW gFSFETEeC. ETT~ Wg SEITFO q i TFEEE ~STEW < " )

O(ccHrea.c8 H~

Hd ging 5f~D RT ~2$ -

QlVl p Mp ~~ ~8 Qy~~ ~g

~

~ Gl~n ~<6 H~ ~~ tytyf.

POESY

<F.IFiED OY NEO 87 (REV 8/S1)

<~

) .<Ia IT $4 I $$~

tAIC tt$4IC4C t$ 0C SD I'lI 4$ $

t$ 4C tAIC ~>Top ~g~D <<4I ~

4~ SD I ~T SS SDI~ ~

lt I TDD t$ 44

<<AD 4<<%

~ SDI IO 4

S<<I S SDI ~ IS

$ 4T0 IS $ 0 Stl $

44 $ 4l

$ 4I tIt 4$ 4C I T<<1 t$ I SO I SSO~I D I 5'QCrHZ~ S$ $ 't

<<AIA DISC&~ tfESg ~AJC( gdgf f t$ 4A IT<<A SC/Cg(IT d

~ TE P <ytRr 6 8 AhK Dlh.

PP sfhccE o9s8 /Jd(7$ .

O gH8WC LoCevious ~gpgdrt1FD.

ITDC Slt ID

<<4IC

~

t$ 4C

<<Al C

~

~ ITALO IO II ~

ltt

~

ID 8

W C

IA N SA I IA 4 $ 41 8 O II 0 t410 SDTA t$ 40 ITDC Ct PV D S$ 4~S nigl C l$ $ A ttl* S$ 44 tOI S$ 0'4 O

uaDE BY h

Nuclear Energy Business Operations I -tijaq

'ENGlNEERlNG CALCULATlONSHEET t~ $

1 NUMBER DATE SUBJECT 7(.bN Mes

~PA. ~:

t/6 qe ~ ~g~vleu Pl'(l(tt(6 t t Fo EvRC44 z+gg

<V("QAJ pgdevl o~

SH 4 c~t-zw ~ aeC~Vce s=o .

gee nc.

(- t ~q (7(y'J:.

&8 W Z~~T)l- M~g m P) Og( "Cl) Sad 4.0~Pe+ f3) - ~g,y ~.

<~r ~

f7woC lt,lo2- l< uQ ~~< l7l 5,< ~Qg: 4 Le~ ma, oeemwwc<

(7to hatt(got j ~tz

((t 9ti9 .AI07 P>>'t

+ l>

/ ~df.

('.u ~~a g '~ (Rt ~~+0 6.S-

/d) l

( ~) ~g p~),~

W~u t~X l4" g /34') GX CD Q7 LIJ 4'7 to O

-)~

lt'dtt(cJ p~ XT~ ot~&vc&~ ~9 ps)'ttv

~Kg /3~t)o(,

Sr%

l3~ tt'.cp 's'((-(/g s&(70 z7om p; ~7 /9$ l( Cad 7)o-

~gttev(: cUods'h~lkHsA&JQ() 9o,p gt(- ~7oW Pt NEO d7 {REV d/dl) Qg~ J Fee FtK't4L = ~god '

H~ ) md dd hf~

Nuclear Energy Business Operations ENGINEERING CALCULATIONSHEET I

I~ 4 E,<>E DATE

'NUMBE(I SUBJECT ~ 5 CQ.. C5 - Fllz T(Cr46 BY SHEET ~p- 'IT

+0 S ~ ~gg<ES- g(yAJg 3-. S .)

SSI'T3ECC +ZOCSTII SN ~

(A +7$ 47 t&EQ+

4-I I<< IS~TEIEIEy FTEEH mn SSI S SSI IS 4 4

)4I I 'S ild

~F SIEVING CEIITEII<EETC ~ S4I

~~ QT3CC<PHEIE (TIPS CIIC) FIC)CII LTTC<a~ow, I 34A SN I R'~ ~p g~~(< ti(~ 0 SSS I SSO ~ 4

~~+'('7<7 ~+37Z.I (son= ~p.p. ~ ZAIA 2SAA 0 f~9+>( Ft/M(3(M P'~ Pl F + +2 (~~7 P~ I k Ig

+-

~ma(IS AJ ~

~ t~

P'(7C 3'79 W CS >33;7 gHI g ggC<.~

4SQ ITST' IEz) I.

A(

II M7>V7>I5- L 77CE +IEC33$

<-~ g k'l lsC 3 R~ ~N W~~S 5s&/ '.~~ ~p (J(SM

~rye(~ ~~~ V~uF(.'- gvemyT((s<

NEO 47 (REV sy~~c.,W~ A/~

d/dl)

~

~

StWatC.

crA/r(OAF'est. WT(dcv< pvs vs r uv ( m.

btHtKAL k C IN 4 4U. I lg/ g Nuclear Energy Business Operations I

o i~

il

~

1'o o ENGINEERING CALCULATIONSHEET NUMBER DATE SUBJECT BY SHoET~OF

-:PVRt.dd tIM OUE '7b 5@V ~AJR"7 S' (k)~q <L-

~

s Y/4 pSi'HO',

ts,

~HM~

s~= +7 7 st'< 2.75j = '7$ 35 Swa88 =

Neo.ar (aev are]}

i -iS/zq Nuclear Energy Business Operations ENGINEERING CALCULATION SHEET NUMBER Eo~g DATE

% Vf'6P I PC@ ~++

BJECT 8Y SHEET~OF~~

W~W I-t/W

Cc I Pd g.uR Odt5 %0 g~8Tt C ~O --R ':PQ P-4Acig -~ t' ..I) +~. '4 9$ '76 M>~g 0 7II2- = ~34K ~ +Pg zp~ l7 9 >o - WICgz7 3't~rC + ~3Ceo ~ 4 I ~s5 o~ F~ ~l ~~we)- CAW ~we ~c go~~ ~~ i~ ~C, bi ~g~ p + u~ po. IrIg z a.~ ld $5144tp~gpg ~j" ~ >'>.R3$ 3 < ~ C&89$ NEO 57 (RFV b/81) glq 1 )g I ~ ( t t Nuclear Energy Business Operations l -li/zq ENG(NEERlNG CALCULATIONSHEET ~y ~ ~ )i ~ ~ NUMBER DATE
a'
~ s~ ~ SUBJECT ~ ave .l4f~dE 5 fA ~o: ~<~ 4 MA+Io l~ <~~ ~ ~p'. ~p ~mi'- oP .~ ~ g~Ri~P~~. ~~<~ tss g~ ~ PtMF cec~mvi ~~, i" &~ mA/~1~ ('wcv~ew4w otto~'.Pt~WW~ swears). ft"~ neOW S<~ ~ Pgp 4 g~ <'/ f~reAI tl . ~E 5,g~ tJ gtlg > 5'7awe. 4 ~ Pws pf4~c- vs~ S We~g, gy~-ty 008, sM, v~g eve /&res v'~ u~sH~ ~ ttF Vi>W<B- gd "~ - CR"-H~M ~< M ~J~, em~ Aa5L'4 PW5 gg4 V~ C, Ceg~ ~ COdSta5Ae 4 M WR &eTt ~at(VP Lt~ ~ gO CQJ AC-'WR It~A/S', >sos pci gl~~ P~ 0 g~~ ~~ ~7iov r il) slee@ = .'~ x~5 - iidom q.ie ~ PA8 7 - c}g'(4 -Ng70 rhz~ ex~eJd Q+wxiiwevr~ ) g = 'tilii P' s ~voce mnv~m u~iq, PknCAW + 4g- ~go S '~: ~ ~>CH Id t5 ~~t ~~ ~ / ~y~ ~ tP4~ ~M OP- ~ause Rq- ~lq ~-T <P, W 'QR; '{pQ.<04 Qf7$ Ai 9 f 2-( x7 ~ g /g) ('gg~t~, ~) m~ ogg~a&y ~W&$ t~cmz = ~, C~W<'f ~~0 m m~FeW, ~~<<u t7 &," ~ O's'H ~PW~ Rg ~ ~1H c'AA~V'hglc< 0~ ~<~ p~p~ 'y~ ~~ t s rJd ~~ ~~gq ~c&pw~.ate< ~~y~ t ~l.~~g Rw Qo Ne Ve + c.~~ 4'~,-..~a t ~ x~-.- gII7> Pfr. Qatccut: cdpJG.- (" AWCe~7- >P Pep 5 11072'h Ct' =~ (e QS~ Rec<iiP =. tiiS' VZDE BY 4-7:,.~-.-== yEIFIE91 y NEOidl tREV d/dl) hNCklNF ERRING G ~-(7 zq. CRUMB R" OATE 3,UBJECT BY '>HE ET ~~ fP&gAWK. Pd~ MP ~cWggP'Pl BoHL . ~>W Ae fo PLNT Q 175 s:ran~ mo slav was' j ~~" 4 Iaaf 85 t IJ. (48 ~ ~~-'- Id. UB Rp IQ 6@I M ~ ~aura 'r5 I 3 L <>br g5 l>9~ $ 8g t Eg J z. ~a5KN w33 l" g~uLp,<E <fee'SS AV NilX. Col A ~min. = .~< " +"'4'~ >o ZW f-SS - I ~ = 1'5. Cc ISSUE 'l'E lg ZX.7G g. l l' )7.rgb >i Cf Sus. CS P/~ DRFZI-27 SECTION 5. 0 PAGE BS OF 104 ;eoE 8Y y-~-63 VFRlFIED 9Y 'l N ~ ) ~ ~ 'P ~ ENGINEERING CALCULATIONSHEET 'f '- lS/tR (Ey AUMBER SEE DATE lo Ck 'UBJECT SHEET pJ.i ~~. e, 4 6~ ~2.3M 5OO X. h1 92. (I $ g95 y I~ g. 4 ~ - 59 z. w LS5 S ss.s8'xy Sr -'5-,CRo + ~<5 4 ~b zq'~1 pg,. 573 C PET'I
2. 4eum 2-53 ZS-38 PgIWa(Pg I S~~-
gETy-d~~ + q. ESSE ~+38 ~ ~4 ~MB ( + ol~~~i~ I'~V~ ~"'~ " PgrI~ / E= ~P fQ 37K PSP BF WE'frdVM 6JR . USMC p= 37~ pSt ,) svs. cs prm t DRF PAGE 1-27 SECTION 5~0 70 OF 104 INVADE BY 5 -l -gS 'ERlFIEQ BY ENGINEERING CALCULATlONSHEET g I fJ ~ i-~ //z.q ]oI E 0 NUMBER USJECT OATE sv SHE" T ~r c" c.I~. see.SSS >i& . zy. (.sc - l 4 = I2,.89 Za- 7C l t. 46 C to~-5' = z.z.qs-Q%o -$ 0i W01. il Lg f<R5K i2 E~ I 2 x. $ 2.'7 22'g5 'z {Vo + ] iso !ec Qg Zp P Q~ = Apso PsZ 7+~ rgb~ lyq 22.$ C SUS. CS P/N
,<CDE. BY VERIFfF.D 9Y
.rP' DRFZ1-27 .SECTION 5.0 P AGE 71 OF 104 ~ ~ ~ ~ ENGINEERlNG CALCULATlON SHEET 1 z%< OATE ASMBER I SUBJECT ,~P PRtVClPA,L..WgESS- "I9vo g + ~zb. 4R 70 Xt4 +e,Rise ahSE.S, "I'BK R, P>, g>, P,P 6, l-Om+P- TttAQ TOP ~Cg SC l'HK~ iS, ~O p' PD>Yl0$4R'L 5gf;EsG c&LcuL,Awol gog. N4zs c=AsZ . +PJl~daK ~+ y, QD,(f5 7', ~dg Psz 8>.~ SUS. CS P/N DRFZ 1-27 ..geE ot SECTION PAGE 72
5. 0 OF 104 g+-l3 i'ERitlEb
Nuclear Energy Business Operations I -my~~ ~ I gl E ~ ENGINEERING CkLCULATION SHEET I NUMBER DATE SUBJECT Q/~h 1AM I ~A~ -t0 ~D ~MLSft ~g I p- ~4+79 = uY DW- + ru->7 W < I9) ~>'= 4fq f VWb= I 7~~ g- On+ 9'>- 9nx t'+ "tw<<3~ + )C $7< I 0'f$ 73 g +w 2M3 ~ 75" + Rg l0>  %)e IR ~ 3P~ P 5i'pss P <<Cc wl >'Ir pc. 4 flL g~1 I~ +yr / <~'3, sdt9 gp I qy - dr% 8-7 W TACO& a&~ Qg~Y~WpJ~. g g 3 3I dde )4$ l rJ = fO,ddt ~ ug~ ~tea = (~d (O,OOP ~ d-YC C f, MADE BY >ZR(F(ED PY Neo e7 raev ere') <0 asumw ~Beaver; IO4 '1 03 102 10 10 103 104 Qb,drJ> Numbsr of cyclss, N ~ NOTE: E 30 X 106 ksi ~ ~ UTS C SO.O ksi UTS 116.0-130.0 ksl Intsrpolste for UTS BOA)-116.0 ksi ,FIG. 1-9.1 DESIGN FA I iiui iuttvta 1-UK l;AKUON, LOW ALLOY, AND HIGH TENSILE STEEI.S FOR METAl TEMPERATURE T EXCEEDING 7OO'F Table 1-9.1 Contains Tabulated V a Formula for Accurate Interfsolation of urves ~ 11 II ~ J h II '1 V 356 VM,Y l'RO'.i t cn is to use the tensile strength ~ezwtrength irons, centraCion factors associaCed Tyith st~ con- gray iron under completely reversef cycles of bending stress are sbocTI (or fa:tigue Omit) and, after deter-mining the section modulus of the changes of shape ln thc part are 1m- in the graph on lett in Fig, 11, in a"tual sh.pet,to apply Che proper t for torque loads as Trell as which ec.ch point represents th, bending formula. However, because or bending and tendon loads. data from one specimen. The effcctt the dMlculty in obCcdzling a Hodulccs ef Elasticity. Typical of temperature on fatigue limit anti anlngful value for the tensile stress>>strain curves for gray iron teztsi) e strength are shown in the eng'll in tests of small specimens, are shown in kg. 10. Gray tron does right-hand graph in Pig. 11'. e )ted computed in this lnanner not obey Hooke's law and the'modu- Axial leading or torsional loatling Tri)1 usually be somewhat lower than lus ln tencdon 1s usus~ determined cycles are frecfuently encountered ic the actual load required to rupture arbitrarily as the slope of the line designing parts of cast izon, aud io Che pert unlca, uzdavorable resid- connecting the origin of the szzess- many instances these are not coat ~ ual cresses are present in the f)n- strain curve with the point corre- pletely reversed loads. Types of reg-gart. sponding to 4 of the tcnsi) e ularly repeated stress vaziatlon asti. Houmtion of gray !ron at frac- ally can be caressed as a funtUctn ture is very smaQ (0! the order of atrength. 8ome engineers use the slope of the stress-strain curve near the origin for determining Che of a mean s~ Wherever possible the designer and a stress range. ?0 lnodulus of elasticity. should use. actual data from the lim-As indicated in Ta.ble 12, the mod- ited informaCion avaQable. Wltbotlt 60 ulus o! gray iron vazim contdderably precisely applicable test data, an es-550 60 more than for most meMs. Thus, ln timate of the reversed bendittg fatigue limitof lzlacbined parts may Cross O acing observed strain to calculate Iio stress, it is essenthQ to measure the be made by using about 55% of the znodulus o! the particular gray iron minimum spec)fled iensQe strehgQ1 so 40 specimen being consMerecl. The nu- of the particula grade of gray lzoa merical value of the modulus in being considered. This is probably s r7t 20 torsion is always less than in ten- safe value rather than an average Io 20 sion, just as it is for steeL of the few data available conce~ Hardnccs of gray iron, as meas- the fatigue liznit for gray iron. 0 ured by Bzinrli or Roakwell Cesters, 0 plfl. Jft, ~ I 2 attolnt 9001 lb. pef trl, for three cfosscc of prttv trcta ta tca-cfoa. Nccftluc of cfcchcftlt ta tttcnscarocf to Jtctftttc 4, JI aacf C, r~ceca5ap lrs 5 Mesa-ctrctta ccrpcc 4 is an averal,e result of the soft graphite in tlte iron and the metallic matrix. Vazilstions fn.graphite Idse and distribution wK came wide var-iaCions ln l sardness (parCicularly Bockwell hz;Bless) even though Ttsbie XS. Cottstarboct of Qockstcll Ear4-Ter of ssctto of Gray Zrona. as Zstnttestee4 Ctspbitt lrr Gtalthlio Total carbon. % ~IIretd suw (e) C Stottts ae. oorttdfbt of the tcacQc ctrcapth. the hardnest of the metallic matrix A ~ ~ ~ ~ r ~ aj)IS 454(c) Clk 4'SJI ~ is constant. '].'o Qlustrate this effect, A ~ ~ ~~s ~~ 254 4SL Slk in. per in.) and hence is ael- the znicroha"dness of the matrix o! a o" ~ ~ ~ ~ ~ ~ CLO five of Ilazdened iron, ss com- D ~ ~ ~ ~ ~ ~ 240 $ 40 CSS dom re ported. The des1gner cannot ~ a vyith RockweQ C measure- D ~ ~ ~ ~ ~ ~ ~ XAIO CS 7 COS e numerical value of perma-(a) Moacttrocf by cccsecotlcmal Rccttta7 ncnt el ongaCion in any quantitative er. ments on tht: same iron, is shown in Table 15. C Coat. (b) wfth afric~ Ha~ of uautx, soear ystf haloes ccssccr atsd coo. Tot sional Gh'ear Strength. As shown ln Table 12, znost gray irons Xt is appian,nt that lf any hardness correlation is to be attempt&, the Vorced va)tte seas SCI ob~tyPM ROCktren C. hs (C) Alt~ Ihh the specific Icu have high torsional shear strength. graphite mu f.t be constant as to type CSIOCI, fs ta hOC Of Cray Itcct Of Many g.adcs have torldona} strength and amount in the irons being com- S.(sft% C. Orensac1ly the F~cil ~csa of atch eater than some grades of steel. pared. It is z I commended that Brin- treat Is C 4S lo $ 0. gnotchcharacteristic, along with low sensitivity, makes gray izcyn a ell hardneaf, be used Tyhen pocsible. 'An approximation of the effect of suitable material for shafting of Fatigut Uysit ifi Ilevoysstd range of stress on the fatigue llznft various types, particularly in the l4sdiftg may be obtained from diagrams 'grades of higher teneQe strength. such as Fig. 12. The tensQe strength Host shafts are sub)octed to dy- Because fl.tigue Omits are exp."n- is plotted on the horizontal'xis to namic torsional stresses and the de- aive to dete:mine, Che designer usu- repreoent the fracture strength un-signer should conlddez carefully the ally has tnfiymplete info~Cion on der static load (which corresponds exact nature of the loads r thc this proper'y. Typic'-N cuzves for to pro stress range). The revezsetf FottVw Htnlt Tensile atstttyth D HOlshed Spestrn>~ stress based tn press otoo 0 Unhatched spoc<twns 4, Holched apocimtns, sltoss baaed on not woo Koch poet teptrsonts otto foti(nto litnit e Hotched ~c 0 IfntOIChed Hotch conststa of tronsterse hCCo ~t specimen dtorneter ~ t IO 20 Jef notice ~ et~ ~l>> ttt~ls Mr, I<est ~. .......eo,ioo ~ i eopoo ~ ~ eN eot o Hotahod speciotons ~ tlnnotched specimens ~ ~ ~ ettaoc. Itpoo est ea pete rtl~ ...COW et ee art cree Eoch potn'. represents one tost ~ 400 600 800 Iooo 200 iooo loa IO IO to 200 400 6oo noo HMmber OI cycles tO foihtre Test tnd tetnpolotUte, F Teatinc ternoerotttte, F Pic. If. S-yKf a4f off&9 5/ tests pertctarc cta fcttfcrttc Ifrnft of ttnav Ircttt of thc tcrteffc Mcafyth shctcra. Cctnsccftfcra: ZA4 C Xdt af, JAS Xa, M7?, SJZ 4, tJJ Cr, tdp NI,OW Ca. (Vy. ~hsccs Ccuuts actd Jacsoc O. 8cofth. Proc. AfrZM, dl,vs7, ipcf) 103 102 hier. nomlnel slrese C 2.7 Sm 10 Max. nominal slreee ~ 3.0S cR Tl rn co 1.0 C7 102 103 104 101 Number ol cyelee, N NOTE: E ~30X 100pei FlG. f-9.4 DESIGN FATlGUE CURVE FOR HlGH STRENGTH STEEL 80LTlNG t >+<Ilttcc; AIAT r:Yf'cf+!err Table l-9.1 Contains Tabuiated Values and a Formula for Accurate fnterpotation of These Curves 4r I GENERAL ELECTRIC CO. Nuclear Energy Business Operations sUBgECT SUS . H <T d& ~F 4<(A gY SHEET OF &Jr(L48 7(dd Ptl6' $ g t1 HC<0rt t(d>S. ~~5'7Q7 &'O~IJ(g~ Qg(qt~ Qd~~((j Jg hfECE gtf5~ ()peed J aWo ~a<e$ 4~ ap ~h,( pu~ Ga ~pnP&Pf<. wee tTo~ Halo Dsw< edlas Q ogg~g, PM( foul geg4 ((tdt1$ . Mh>Q P~ I( )&fKfget 5aOS18R. )E~P )EOESTFFS 5 +OFF/ (F(IFT(F FHddFdTFFFFE tHld (HOU(HIT(dec. fi9d f'VS) f s M~pog p~Agwzo $ <lwc mao Dp<<" ( C pE-'po '('P< c p(((lw) ~g~x(r i~EgE gals-v go ~Lcd~~Z Z<~ f~('I M( 4'(I.HS'e~ C& Iv(cddlc Loc<g(ddddf ~pots& sptc ff'>Ps OSA7 I+ ~+~ d '++ fs(~ I~ f=- +'I P(s(('((dyPJ 7/PC, Pygmy Pf g l(~ Q 4)IPPC 1(0AI~ H'ERE SIC'(H(( Ft(@34'A "/ ffI&((C Y<>>d~ 7(l< ~IeQK Ppr.yg~ C SEC WV7&PCP l(-'c:sP( N'S4 SPF<<(.('.'r'~(') &~or((. $ (i(. v(od eat O(S'C&ef<.F Ad'Ez ~ Ldr(m~ &III ~( l ~~ ~~ 4~ 7oA+~ < WC Pi t)S f g g4 %PC 574 r(C <~4%5(g. Neo ev (REv e(es( a~ t' ~ 0 GENERAL ELECTRIC CO. F itE Nuclear Energy Business Operations ENGINEERING CALCULATIONSHEET NUMBER par Cg SQ. PI C.g 0& - Fp "rggJ+ BY SHEET OF EP GdR L4R VI44 P~G f5 5 gQ 4 ~Oped S.
l. B((a55ee v~ (Hdw fsa~v (E oft; ((EEPP: Oap+85( re,~ 4"-()
at(tdttttFTTOF g>>faim te(O Za 5>>FF7(d V Ssyet. teraS c U a(E.F( MQ gr8vsrff4~ 0$ wc'HG ~V~ c~~ m~ ~pyMiu ~~~~~ ~~~ t~ it>>J PFK70g 5F- cP p IPtox 5~wo55 - (sq~P xdP =d sr(c PE( ~ tft>>exttt(Ptd(E s<(EoE( 5'r = ~+~'5 = b(Ksg late'. ~ = (T(ts>>Q(t((v: gtT-E>>7 re(p (5., cuÃTH*TE METe6 sgqeFEreh re. C~.= Wg(dae(ia r( SrS ( CU(ait8' ~ xl = (<ooo,Ctrees gdr ap(r)e((Whirr Pae,doo ((sar.') ( (V( P(T S FT('aa Ho lA7 5F((avd 8>>(i (S '. ( Pep'F(g 8 e5(-re( 5(ar .O.() Wt Wttl f oft srtt P(c Puts t(iPXt. (d (+('F(9 (c( c ~ apE ) SV(soda rof-'r-- M ada gU& YTT les Qe dbd (v( ~ >a,ae(o (TD5 . /gal~ gMax~E Cd~JB 's(to.tof (ae ~5~taava.M~i~ ll CI 8. l9((N'Vg? EgO518t.: ill (tete r ~ (D, +Irk II(e CRL t((ttsPPD E>>(SCWv D(so fe 5'(T(C H. Eat I/. ltst(D5 ~dr~Ve~<v~ GS'tace, a~ ~otP sf~ v'e0( p>p Spy +<444 SYgEH ptts>>E-) eve<D ~ rv(ETox aF op (r ((terve(sex pE(trsvttu isevoHvstat we TSE PSTG ] 5>>EesgxeE5 = ((ser(w ,x + = +I lsd = 4H5% ((5T'ftw~d>>(~ ST PE-s5 Nts>>reaiout: P(a1t>> ts-KC F(Eo(IT fi8>>((a((C CJP>C i', SW 5'(T l. 8 OF P) lea u= F (, 4=ee,- -"F* F ii 5>>se f(c'F(r>> Oi(ev a(atteua(sis po>>Spa(istud>> Q acus FtEH(FIR vpp +go75 EE-rsassattsttsvivrof p(EII(eettFe ET Eats Iie(ato ete>>s (E>>THEEceeeet .N (x vppt~(pre o a<~ pipperz~,IHFsx ~ )~654~: gIy~ ~qQ~ 5~~ TJ= g-t~~~ SFo>> Ig ~ <CPU D(eatao (rcatsedeotet((~3 \'I Pdds>>E(E la(~'ls leo~Tea(- c(5(a I t( E((euE) I / ~ (;r'R(R~D8V ~~'+ NEO.87 (REV 8((81) Nuclear Energy Business Operations ~ ,~ I I I ~ I ~ ENGINEERING CALCULATION SHEET NUMBER DATE I SHEET OF E44LCJRN(~~ SF'O SIE'-0 a~VV< ZID<S . t4h Ld P4~P WOt)IPtQ~ Pod f: Ef sT'Esic. FFFTIF Pqd+~is-cFizovoFT<EIo FTJITSFT >IS Sg~ ~ qziEc~ POSEFOPFTSOO ~n +. ~ I9IIo gTFC. iFE TJ~OOP-, TIPS = HEI'~ < EF74-@47-I ). ~ ~ FTSSsIK I'~ Lc reps. TTTIT i Ig DsIF ~r9 9I P c. SPA'CUSVE H~ t Q ( OI- ~ ~ Ptc+O Wt / THE Qf<00g. TH,7, Q ~ F Mg PS<> +cga P c AiWVf IIlQ,~Fe. ~~ HsTO SHOO SiTEH'MS OI gP&.ay~ si3 we Pcw~'~ QsfRGJUf ~< ~aa~N7 sw~H . oVC %0 orcM~ QGd Co<~+Rwi<C~ gs < ~w +AVE ~sHI~~ <<oc~ co<<. F oTOE 'csin'h OF ~ P~ s.-~~ = I't'tl < ~W = T9aV~ 79 ~ g~ '39 <Qs+c W5W ~IS ~ WC5, ~~ ~q~t C~~ CSh'r r ~BY) //- eovo etio~ . E Coy~GP PV~ WIiU~~1~~ fed%: CFFOEVIFF~ Z~~~ IS E7S PS- FFHIEFT iS LCF<<>>< ~i-'~ YF'I MtJ4514 W c FFToi'-TIFI~"Esy sIoc y= g;oo'o cilosET Cool FsoEvB cFFsovoivssg VERIFIED BY 'e NEO.87 (REV 8/81) r ~ y 'e> l 'I 03 102 Vl I\ o Max. nominal 0 stress ( 2.7 Sm 10 Max. nominal stress 3.0S 1.0 101 NOTE: 102 103 '04 Number oi cycles, N 106 30 X 106 psi FIG. I-9.4 DESIGN FATIGUE CURVE FOR HIGH STRENGTH STEEL BOLTING FOR TEMPERATURES NOT EXCEEDING 700'F Table I-9.1 Contains Tabulated Values and a Formula for Accurate Interpolation of These Curves ~E ~ ~ 104 103 0 ~ 0 ~I 102 10 102 I 5 10 103 104 106 pg,dfra Number of cycles, N 30 X 106 ~ NOTE. E ksi ( UTS 80.0 ksi UTS 115.0-130.0 ksl Inserfsolefo for UTS 80.0-115.0 ksi FIG. I-9.1 DESIGN FATIGUE CURVES fOR CARBON, LOW ALLOY, AND IIIGH TENSILE STEELS FOR METAL TEMPERATURES NOT EXCEEDING 7OO'F Table I-9.1 Contains Tabulated Values and a Fornfuia for Accurate Interpolation ol These Curves r ~ '.4 ~ lx r ' ~ I ~o ~ ~ ~ 'lo'e ~ ~ el I> ~ 'I I .1(s I') ~ I I (. o' si ~ .I' I Ii 'l II I e II~I e( 'I It ) 'I'l)l ~ ~ il ~ I I'~ ~ 'sf ~ o (I::.I.'I'.' I I. ~ ~ ~ s I I I I. ~ I 'el ' I ~ ~ I'I" ~ I.:i': I: ~ I ~:I i:(s  !( ~ ~ I, ~ ei ' 3 j) ',I o ~ ~ I ~ I I ~ )I ~ ~ ~ I le (I ~ I h) <<e os e sjl' le )s 'l. (o '.I I I > e , ~ 'Is' ' I '!s ' 'I' i D I (,o
I os, ~
.'j - I: ~ ~ I ~ Iso I o ~ ~ ~ l(iI::o i ) I Is II 'es I'oi ' ~ lse I tD e e ~: (S. ~ eo e) I 'I) ~ ~ o e(s Io ~:I (sl. I ~ ~ IeI o ~ e,)I>ei I ~ I ss ol I':, I)(. I:). ele ,e e I I o e e ~ I II Il I':. ll>' ~~ ~ ~ ~ I ~ e I<< I o: i)I)Ii: ~ j ~ ~ ~ I I, I ~ I ~ ~ e so' I lt I ~ e',) .~ ~ ) I )I;;i I I. I ' -t)s I ( ~ .'I ~, lsI . I ~ ~ I~I o I l ~ j ~ i' ') '(' 'I "'. e!': .I .'ll l( I, I' 'I s ~ ~ ) i st  ! ~  ! . ~ e ) ~ I ) I ~ e (I sl es ' Tl >e III ) i (, ' ' ~ s II sl ~, ~ I ~~ I ( ~ !I :e: o e' II ) '.s: ~ I o 'II )(I i il ~ ej; .. I I I)l 1.(!II I ( ~ I ~ ss l! I i(>j s.: 'i)l )Il! Iij >i'(l I j(lt I III:II ~ sl: I ~ ) ~ I ~ II o ~ ~ ) ~ e I ~ ~ e It ~ . (Is, I los j Iljl) ~ ~ I jjiej ~ !I 'I! l e fs , ~ I I'l >I  !: I 'I'f I'Ie o I 11 ( ~ e I' ~~ ~ I I ~ i Is Ii '"
I ,I, lo ,I ~ .ot,o(.
st o sl I ~ ~ i) '!e' Is "I e I ~ ( o. II si( ols. ~ I t fl ~ ) 'P E I ~ ~ ~ 'V ~ oM ' v e ~~ te.eel(et'CIIOTe el. Tv Sl LA; Aspc. 4 ((s( I(sess( LJ(t((so(st 'e.".C I ~ t ~e ~ 4 ff I . i ~ P~)~P. + p ~ e ~ ~ ~~ e ~ ~ I eel ~ ~ ' ll ~ I ~ ~ ~ s s jl>e ~~ .s s ~ Is II ~ I ~ s I ~ il ~ I ~ '. ~ ~ s s e I~ I ~ I ~ ~ ~~ ~ )( s ill 'el Ij ~ l I )ll s ~ (( ~ ~ (~ ~ ~ I i'! ')e I ' I ~ ~ s le, e ~ e,l I ~ ( ~~ Is ' I ~ (~ s I I~ I.e I I I ~ ~ ~ I .II ~ ~
I
~ s i' I ~ sl I, ee ~ I lee ~ ~ ( ~ ~ ~ ' 11 II I I' ~ ,e( ~~ ' I ~ I I I ~ el II I ~ ~ I (~ ~ ~ le ~ (el.. e ~ I, I, 'l sl 'll ee l~ l~ I !,,sl' (js ~ I e Ie e('l jl' sll 's ~ ~ I I ,s I~ . ~: i.e .I ( I ~ (s I(l ( I~ e, s ~ I 'll '.. ~ ~ ~ I, ~,I ~ I .'I i. I:( s ey Is ~ I II( ~ ( ~ (sl s ~ I e,'s ~ ~ ( e( ~ ~ i!: s .! (le ,es I
( ~
~ ~ Il-II ~ i.s! I ~ s e(j ee( ~ I I, ~ ~ ~ ~ ~ ~ I II ~ sl ( I ~ ~ ~
Is,'s I  !!'l"I Ie) s ~ I ' I ~
Ij !(l je s,s sl I ) 'ess ( ~ I I I,'('e(e el( ~ sjl e'l ( . I j(I 'I.!Is III .s Is ~ I I ((: I ~ I I~ I', ' I (I: s- I s I. I'. e ~ e. lj'lle ,le ~ I ~ ej ( s I
) ~  !~~ ~ ( ~ el;I I s ls 's s I
I ~ ee I e I'.l '!(I I l lle e(( ss' Ie sl 1 II'II'P j ls !I!i '. el I: .II ls ~ . I I s 0 V 0 V ~e ee o v o ee 0 0 I ~e GEHERAL ELECTRIC CO. Nuclear Energy Business Operations ENGINEERING CALCULATION SHEET NUMBER, ~ PCZC- PuTT ]-~ . DATE i -Ss. EHE ET ~~ 'E OF EII< L~RTV'~ PtJF Za Sg g PMUHVlaAJS. & <'~F ~I C~<K PM Sr~CIJ PE5Z&4~E4 QW PW'5 0 3'g'+'g k'g Pg EJ~ teak ~HI~ ~t t 0 E8VC l FoP PE'EFdg~i>J~ FAIT(caJE Lig& Eu'wt.clatter OdE- -t0 5'g V HCtdnztd AJS ~y ygegs'tm. A B~JJ ChC wt $ H, CFg78 (d CP( f( c ~C LrJcn Tres WC'P6 SE~-fFg7 B~EP NW ~E ~ ftJ~ SVRE&$ V'H ~ ~P ~fJ7t Ii'i- < ~F ttlE ~+pl+4f'C. Ferry +ulJ ~o~&J<$ uC~g ~~~pp ~~ qHQ ggF 4 55(-7Z. Qtf(CQ Cd47RI<< Cd&pMV'E'+FEt~(~ pypJp pyrJg~lC grdg~fFf Fdg Pli 5'tJD)C.. Cf ~tJtPWMV, ~67~C L~g yak+ p~ SVCndV W4D OIS~W~ ntraau:.. (~kg C. t' ~~4~/ PI <+ UP< >~~J n Oyde~tt faIECli6'p ~t'/Ca a$ 'OCA, SSC . HIJfl $ f'0 Lellllr ~i'rit d>Qr t~ <wc w+ldwsts . ~t: FOMP~IUW ~ OMC $ 1PC < < ~R t<<QS &CPG EJRVJll'i:- p~~.p porn Pdw'> ~ ANci<t,'. (3d(7'$ . fn~gilti.J< Fred wEce s,7r.g<'5'. O'J~P pc~t 5 rn i gO 7P; gq~tJl V n tZu'7 g7~ y<C, Co~J'g Q(CV7 WEEI5 P( gF i-:>g EF>.+1g tP; F ilW, I.CX Prude nmF~EJ.P~V YeuJF C'dE ra S$ 6 +SPJ+tJJt~ W~C EFFCc E S p'f Vd nFI<< VERlRED BY g ZP~ NEO.87 (REV 8/8]) GENERAL ELECTRIC CO. i) ~ (g ~ Nuclear Energy 8usiness Operations ENGINEERING CALCULATION SHEET NUMBER OATE SUP l SHEET~0 A<.%MA Yto~r. I ptic Te 5'p V fthm P Po& 00HnJ SU LYg: <"RI.Nuwzu T(r.(st< SA<-.-SS S.,t,'t',~ f 5t. C F-'ep. OFF tt eSi 7.z-, Foo s.i.). PBc fl5ooE o7posx w /k A pEsoz1 oF' o8.Q.o pz.o . 3.n g) Ho( i;.. r9'~B-t gg77dil UyQ~ @)g ~H Ttc, P4PX. c-~5(ppftggg gd<. f a".r'cf7:t<+(, rt ptd<<CI s" xct I> =d i~c'I gt.'t. g7zw<~y tt.'S) g<.<g<qr~ ~yt<'c-.', = zc', c < ~ ].." P Q S<.C $ 7"f8<HCP CRI.<tlCl(7(M 5(tIo+ Q 3 C( Qp (I ) HPPgt <cc zo,@zir z S'Y(tc'vs Q'Pc&)l gW C(<t 4 f~rtc 8 ~t= ~ ~g gd~g &'2.,o 9'2 Polio 57/oos ot /3z7c'Palo'fl<oo $ TRc~s I o,"- o '~ ~i zoo logic, 8>I.7'trtanP(e . Cg-gleet PROM FnT(~E afgYE'gttT II eF <<.) g = gazoo I Cqom, A~cH<t R = lS;ore ' WI.~arCu SVresy p5 ~t ~7<<t<(t~ ~4cci~7(dye'c<,75 +o'( f)o/C!t<g 5(t7: g tr d f- (! g. ~ttttt't-"/(<<- 8 7'PE+5 < E~C'++7': 7(d J Ft(c7(tlt. o f-'- (zoK SOÃooS= ICozz x+ -.:- bo,zot jJL7(.'l'8JRY'i8lk 5<(tcoN = "- = ~ - 3l,tcR'~ rt 8dI.S ~II<r-l'.(~: 5n - >4'eat< p~~ct.-tI< ~pu< QSi<V. (p aI PP g<= gC:,l<tg Pc p,J~ /tr,<Id'f.t<a. g/ttIC< <rd Lr ~07'C(<t >t ($ >e "I I ((u'I/ S (PCi~(I /~g(<~<(E COl'tlC 0/I f. Ic;-r II Kez AA. I'ggQg pCAj 5- zc -b>~ I/ERIFIE." 8y ~ c v'g(t-. NEO 81 tREV 8/81) GENERAL ELECTRIC CO. Nuclear Energy Business Operations ~ 5 Qrg, ENGINEERING CALCULATIONSHEET . NUMBER VERlFIEO 8Y P~ BJECT OCs45 L.iW V ~oa &J8 Yo sM dc-cVevtd&. Ejm FOLgowtdt/'o~ wF$ 'E HO>D PO rJ 8mYS: ~ parr)pCA i Om< ~S t-7~, ~-~-I . S/.<'g <74TA I ggo F - P q -.. I'I 2M IV GlH /8y= = N~ = I7,atb << ~ PA AI 0 Q9RS5: C PVt fd 5<pv &M 3(60 Ng'I= Cn755 4.PI7 ~ i i pygmy I3 ~ /hJ ~ ~. 'i LO4p5 ~N ~I< ~ II AMVE Pydd&<C- Le~ @+6 P.~~ (1F 5 0$ HOPAW. MO 3.o $ I= ly+ sS A~aff-AtId 4 <SI~/gc VEP-7 COQUE I ~g.l&Cc e ref 5'W ~s /0/~ C il uECEld Yiiid - ii.d7g ~~ +gay. $ ((+QQATTOQ= 0- Iz gP ~ I p~ipoH K5 F~ lih "<X VSIQ(/- SZAZie. COe&l(~ ~<We peg)e ga gg ili@g J.5+ii.(2, = O.it'8 Q ;CiNceggs'11MEVf H~PViiAG). g,, I 9 gg ~ ~~ A~ x~IyC = I~I M llM ~ AM I~ ~, PaweaJ6 MKdM<lo>> do4x I370$ = f~~ ~ ~: ~ 3>O P~ -- Oe4, X A4I7 - X7> m ~" d'a4X la Cr5 7$ @,=~>>- W. ~ ~= .0 NEO 87 EREV 8/81) I ~ \ ~ t GENERAL ELECTRIC CO. I~ ~ jt ~ Nuclear Energy Business Operations ENGINEERING CALCULATIONSHEET I NUMBER DATE I - - * / SHEET~OF~ p/ To sp Ii HcTvh rlaUS. .'ERG t P ~ ~O Svkytc. + Sd.v M~m~S VePSg: ~ ~ VS'W ~l'IMQG Lt~ c4fxvM40J 3~X~ y 'I&4 p,S38 Q= g to,gdd f;+ d5 tt,vd5 Q= g - z,z7't+,z-v7 w,ar W '- Ig,a~o +'V>> - guoA-> I Ny= Mp~ 0 I'p,BIO +'A3 = I71 I'>3 ~U ciW ]g g@+ o UV +PcE ~@8@ T= Fy+ + gJO~ C -'~~t >5; 30+ -%<Sitd dVdddt + ~ 2-S; 3oW IJy~iD~ g~~ ~T'PEP ~~ ~~g7 = ZO t"o3 P'~ P~'cf-etiddd 5 a]~~ tJ5&r 4p f,2.z,7 C~ Ae HI &4' S~~<t-l Go~g. Pgt-"; P $ M SPC~ R~ t.5.z. V SH ddt 5 tdddd za38 + z,S3$ 'I, ww7 =3~d7 ~tSd<<gd-AC(.eH&% 804,7 Spent'M t+ p+5'l", 5'W. HC (J-2 76~c8 /.~ x ~ t: 'FoW WL-T l ~r~a~
fEtlSILC f gd'dtd = dtO ddd tdk g/<dodd ST~M (J ddd NEO 87 (ACV 8/8l)
II I ~ 0 GENERAL ELECTRIC Co. I <~ 1 Nuclear Energy Business Operations ENGINEERING CALCULATIONSHEET NUMBER UBJECT 5~ LC <Id4 ' DOG -fb Iform+ V+ TlNG t &5 Cpf Rc~VRnoAiS. V/ill/4 DATE By SHEET ~OF l p /Jdpd g 7~ CPg.Q/~+O~D: FowÃdce Q~ S ~/HE waefd pjzee SSif T(C C NdZtG ~to~/ppf-'f g~ 8'5(-72 O'TJ ~P . ~Ps& reps 0'/HAAI&'A/%S. gy4y~a tp~ Wc~ Imp&" ~- '>.a -y'. Ho~po~rC ~s 3.o ) y'Beg ~ Cu C~c(~ WETHdg WW U~ ~<gee -eVM ~Pr<< f8~~~ o(' evnea Dyd~(c ma(.yeti mev~~y. 5'+Avg, ~~ = 7g'pC' dnlQ %gal Ld~ Pre+= AoQ Red<~ ~d V4CTl~ +aetFMTW Cdn/S(pEg./dm $ 640& ed&'8), ~ Q,OTQ PbP(5. ~g (R.P V~~(,~ ~C~C+ g~.S('~-IC+ p t~ 5'g-0 eP-Le&g uwdE ~ lK Qm ~ (.Gy o-iz- - o.(c'. C H+~ g gh/ >Hli4 $ d y tP ~z< x p~g!r '= I = $ ($ 5" 0 goqAI. <Pv' l t 1't g~qq;C ~ gg.y - 7/V~< W I,II9 / Racy' Vj ~~ t3 pe +gdf I NEO.87 (REV 8/81) ~I ~ P 'h D 0 (g ~ ~ ~ ~ )( ~f 4 op- 'g dCB HO, Cvs&CT SHMT HO
Ugly f Am4v bolt ~ AB& HAYI.. (,ZSF: BZ'Af. e fv <4 i g-IDl- sl( tS) 7 s
T~miIH .. ~gt.g.g Q1Bz ~ ( VII' + 4 cP. &o57 w ~ C).7g~ N (erF'i .g.z i) gisc ws~ua< v~ i', %0 ' 11 adit Ldt: "ili toned..a Yc h& 9 C A@I eW ~V~W<g IS ~ "~ Pepsi{>>'s s T7 4 &o&7 $5 ae > 78~- W))md,f~ tet.Ol~ ~hesS = O.t;g<<Sa ~ m.( hei t'F't) CKF>>4, Sf S>M, eiufC. ~ LMigc.$. Kss. 1s= O. g 8 Pg ~ (a, ks'K) Mt1~~A. Ct v'i '~~v "~ I I ~ f7 ~ ~. $ 8~1 7 /A 7EPE 7 f ~p {J~ p~ g Bygp~~y~ VERIFIED ~. Qg. PIVNC<E i-iFo CA ~~X(de gW GENERAL ELECTRIC.CO. Nuclear Energy Business Operaticns ENGINEERING CALCULATIONSHEET NUMBER I DATE W-~-8 SUBJECT Ace)C, (.t r< SHEET OF~ K UrIt VR %leal P~ g f2..4 C3c.T dh-f<o~c.
3. ~0 VPgisQ~
YE5! SC'TETm5 = Cs~ 5 (EEF Q(EC; F: O!'-F-~T Cs!->z W.Z S! g ~o Q~ ~G (D~ ~~06 SW~W~ Is gdE- Wu C a c p Heex. ~z ~~.). See V Ia. C4FJ SC~Pial44+ )uA ~, 5 5r~~ VSl HW <4S spec~ r!BUTTS S~~E YZsET QY + ~~ s j) 5< HTHEZZ ~ (5
  • CBrlc&27m ~d J YFzYEzTJTSYrusT sYRcss '~ = (z4.(s l!5<'hy~<ETT
. QR 'Z!!i 5!55 WE'Cr FYTE~ r~TTHT!E ZiTET!E ~EH >>!F !!) ii! 4= I 5 CS(TCC-m ~ C-P fr'.~ macum76p v ~r~S< = (V4$ pA'/~ S<~w-' t. Vt. t~q L<< i O, +. l + ~ ~+'in<El<+ ++> t1$ lvQ f w- 5Hgx+$ ~Ps ((it'. g [zan 'flit1 't'~ M > P.', I1 "Ugl ~ VRL 59K t1 91I:I!Fee<N . gl liii P'7 4 +Q S NEO 87 tREV 8/81) )~ ~ )E E e I ~1 P ~ A / CGAÃ/i~~ I 1 e F'rcpt. I I I J.i I A cc ~ e f I i j ' /2 34 . 9o6 ~ I ~ "(;go. I -l I I ' I g gl 3~ ~ 37/ e
.I s
i '!. '6 3 gg~O ~ +5( '::':.l ~ Jag@ 'e I e I e e Z3.oo . cog 'II I I I I 3&.o o . ed3 1 I I
I
~ I I 1 e ~ e I QO OD I ~ e ~ e I; I HORIZONTAL 7 P/ 30 . ee4 e f l,os, 0 e ~ 71) e e ~ Q.sDE + yA't y.zw ~ gl3 ~ ~ I ~ I I I S.'0" ~ ~~ ( ~ I I ~ 'e P~. 0 ~ 7D $ I g g.4'0 73'f I (0 I I I I I e I i: ~ ~ 25 I I I '!'i ~ ~ ~ I  : r,'Il I" ( / 54 11 I I e ~ ( I iS4 I I I I 50 I .730 'l' ~ e ~ ~ i )qo 9Po  ! fbi'a. 9'0 f.yso s /oO I S6'D e e, I e i I i'.! ~ ':'I. e4$ P I I I ! l I ~ rRO I: ..' ~: i I I, ~ s I I .gpo l' . r,ZPZ I e l. ~ e I I I ~ s e I .I I 'j I ,-:-!:j I I V'8 7/0'+74 i I'j I I !]i ~ I I l (: ~eeIed I I Pp-'IE Ir. yiri'v + iong ~ ~ ~ f,e)Le.f Q'g i/zo/4-z I, I I I e -' I e ~ ~ I ~ ( I ~ I I I I I IP~ .;. V-Rf4. (H,.): I ~ I'"1 e ) ~ I I ~ i ~ I ~ I I 1 i JJw-L . i 'J.i . L i-~ e . ~ I ~ . ~ gl ~ r' C t 4 1O4 103 102 10 10 102 103 104 1O6 Number of cycles, N NOTE: E "30X10 ksi ( UTS 80.0 ksi UTS 116.0-130.0 ksi Interpolase lor UTS 80.0-115.0 ksi FIG. 1-9.1 DESIGN FATIGUE CURVES FOR CARBON, LOW ALLOY, AND HIGH TENSILE STEELS FOR METAL TEMPERATURES NOT EXCEEDING 70PF Table I-9.1 Contains Tabulated Values and a Forms.la lor Accurate Interpolation ol These Curves srRiFIEn l3Y I kr s~ ~ I I I 1 g 4 103 l02 0 Mart. nominal \ ( ~ ~I stress 2.7 Sm 10 Max. nominal stress ~ 3.0Sm t 106 106 'lo 104 101 Number of cycles, ftf NOTE: E ~ 30 X 106 psi FIG. I-9.4 DESIGN FATIGUE CURVE FOR HIGH STRENGTH STEEL BOLTING FOR TEMPERATURES NOT EXCEEDING 700'F Table I-9.1 Contains Tabulated Values and a Formula (or Atxurate Interpolation ol These Curves t )1 ~ la ~ ~ l~ ATTACHMENT 2 ~ r ~ 1 I A ~ ' 1 0 )/2 Isa E32-C001 E32-C002 ualificatfon Surya of Eouf nt f I Plant Name. Susquehanna 1 & 2
l. Utility: PP &L
2. NSSS: GE 3. A/E:.Bechtel 4 tlK II II. Component Name Blower, HSIV Leakage Control System
1. Scope: [.".3 NSSS [ 3 BOP E32-C001 1
2. Ysodel Number: 2 CH 6 041-1U quantity E32-C002 2 3 Vendor: GE Lompoc, Ca .
4. If the componen. is a cabinet or panel, name and m:idel No. of the devices included: N A 5.
4 Physical Description '. Appearance Blower Mith Votor
b. Dimensions 14.74" width, 13.76" len th & 14.&>" height
/eight 120 1bs.
6. Location: Building: Reactor Building, Outside of'ontainment E1 evat f on: 71 g ft & 733,ft.
7. Field hiounting Conditions L'xg Boit '(No. a ~ gite q )
fx3 Inlet & out~et Threaded to pipe
8. a. System fn which located: MSIV Leakage Control System b F << l 0 *<<pl steam/air mixture leaking, through the MSIV to tice standby gas treatment
c. Is the equipment required for 5 3 Hot Standby 5 3 Cold Shutdown sys.
E 3 Both . E 3 Neither S. Pertinent Reference Design Specifications: 21A3762 12I80 f' ~ hYL; ~ ~ X' ' III. Js Equipment Available for Inspection in the Plant: pQ Yes f ].No IV. Equipment gualification method: M Test [ ] Analysis I ] C~inat<on of Test and Analysis gualification Report~: VPF 3830-14-1 Blower, MSIV-LCS. Seismic Loading'gualification (Ho., Title and Date) Test geport on Blower~SIV Leak~e~Ctrol Conpany that Prepared Report: Approved Engineering Test Lab Corpany that Reviewed Report; 'eneral Electric Y. Yibration Input:
1. Loads considered: a. f ] Seismic only
b. [ ] Hydrodynamic only
c. C:x] Conbination of (a) and fb)
2. Method of Combining RRS: f ] Absolute Sum fx] SRSS j.] o er, spec>ty
3. Required Response Spectra (attach the graphs): See Ref. Doc 4 thru 6 5 Note 1
4. Da~r ing Corresponding to RRS: OBE N/A SSE N/A S. Requir'ed Acceleration in Each Direction: fx] ZPA j ] Other QBE S/S ~ F/B ~
6. ilere rattle effects or other rthretton 'loeL cons(deredt
[x] Yes $ ] Ho If yes, describe loads consid red and how they were treated in overall qualification program: The overall test time was 40 minutes.'his is far in excess of the anticipated duration of Seismic Vibration %&&&~0~&&~&M\&&~~~ and hydrodynamic vibrations NOTE: If care than one report complete items IV thru VII for each report. NOTE 1: As the equipment is rigid within the frequency range of ~pago interest only ZPA is considered. Damping coefficient is not pertinent r' APL. E32-CQ01 E32- COD -'j L VI ~ If gualfffcatfon by Test, then Comp1ete~: random [x3 Single Frequency Sine Sweep [ 3 Nultf-Frequency: sine teat 2m [ 3 Single Axfs [x] Hultf -Axis Each test run 3~ Ho. of Oualification Tests: OBE 4 SSE 4 Other lasted 5 minutes Frequency Range: 3 .8 - 33HZ
5. Natural Frequencies fn Each Dfrectfon (Sfd /Sfd, Front/Back, Vertical):Note 1 S/S ~ ~1000 HZ F/B ~ <1000 HZ V ~ ~1000 MZ
6. Nethod oF Determining Natural Frequencies
[x] Lab Test [ g In-Situ Test [3 Analysis
7. TRS'nveloping RRS using Hultf-Frequency Test [ ] Yes (Attach TRS 4 RRS graphs)
[ 3 No t/g, B. !nput g-!eve! Test: OBE 5/S ~ g F/B 2.0g B v 2.0g SSE S/S ~ 'Og F/B 3.0g V ~ 3'Og
9. Laborato,y Hountfng:
l. (xl 'Iolt (Ho. 4 ~ Size z; ) L g Held (Length ) [ 3 10, Functfon>l operability verified: [x] Yes [3 No [ 3 Not Applicable est Res.its including modfffcatfons mde. After the test was completed there wa!, no evidence of structural damage
12. Other te:;t performed (such as aging or fraoflfty test, fncludfng results):
An independent test was run to determine the natural frequency using an external shock excitation method, the natural frequency was determined to be ab)ut 1000 HZ+10~ (Ref. 2) ~Note: If qualification by a combination of test and analysfs also complete Item VII. Note 1: No natura) frequency observed during resonance search. Listed values were determined from external shock excitation 12/80 . P g y/~ <<g << MPL: E32-C001 I ~ If gualkfkcatkon YII. ~  %%% P ww w w I&w w \ by W %Analysis, W%&I  %& ~ '%  % &&&&&M&~~ & ~~ then complete:
1. Method of Analysis: N/A
~ f 3 Static Analysis f 3 Equivalent Static Analysis f g Dynamic Analysis: f 3 Tkln.-History f 3 Response Spectrum
2. Natural Frequencies kn Each Direction (Side/Side, Front/Back, Yertkcal}:
S/S- F/B o Y ~
3. Model Type: f] 3D f )2D f )ID
[ 3 Finite E lcm nt f ) Beam f ] Closed Form Solution C. f 3 Corputer Codes: Frequency Range and No. of ides considered: [] Hand Calculations
5. Method of Co&',ning Dynamic Responses: f ] Absolute Sum [ 3 SRSS f g Other:
6. Darqkng: OBE SSE Basis for i,he danqkng us d:
7. Support Considerations kn the nudel:
8. Crit'ical Structural Elem nts Governing load or Response S<.ksmkc Total Stress A. Id ntification Location Combination Stress bilityy Stress Allo~able Naxkaum Allowable Deflection B. Max. Critical to Assure Functional Opera-Deflection location 12/80
TA8LE 1 SUSQUEHANNA MSIV LC SYSTEM BLOWER S RT The ZPA of all the spectra given by Dynamic Load Analysis on Susquehanna are combined by the SRSS method to obtain the appropriate acceleration for the evaluation. SPECTRA ZPA (Ref. 4, 5, 5 6) ~Vert. ( ) ~Her i. ( ) SSE 0.09 0.47 LOCA E-W Steam Flow 0'. 05 0.03 N-S 0.02 Chugging 0.24 E-W 0.42 N-S 0.13 SRV 3 Ad j. Yal ves 0.03 0.03 Sy)metric (SRV ALL) 0.11 >>0-SRSS 0.28 SRSS Qe65 Test qualified Acceleration (From Ref. 3) I~ II ' ~ I ATTACHMENT 3 ~ I I ~ ~ I "~ ~ ~ 9-1/q ~ If (r ~ Form: Meet l E-109-1 Rev.2 Cual ification Sum@ of Eauirrrent I. Plant Nme: SUSQUM%A
l. Utility: PP&L
2. NSSS: GE d. A/k:: B~zc,v Sew X XI. Canoenent Nam: 4 ~ 16 KV Switchgear 2A201, Cubicle 2A20110
l. Sccoe: [ ) NSSS [g ) BOP
2. Handel Number: 50-DHP-250 (quantity: 12
3. Vendor: Westinghouse
4. Xf the ccaponent is a cabinet or panel, name and model 1W. of the devices included:
0~ physical Description a. Aprtearance Sel f stand cabinet b, Disransions 2' x 6.5' x 7.5' per cubicle 2000 lbs per cubicle
6. Location: Building: Reactor buildin Elevation: 719 '> < 74 9 '1"
\ 7~ Field Mounting Conditions [ ] Bolt (No. , Size ) [ xj Weld (Length ) Plug weld [ ) (See attachm nt 2 rom DWG; C-804 Rev .20)
8. a. System in which located: 4.16 V/ Power Distribution S stem Functicnal

Description:

4 16 KV Power Distribution

~

c. Xs the equipment required for [ ) Hot Standby [ ] Cold Shutdcf 'i

[x ] Both [ j Neither

9. Pertinent Reference Design Specifications: Spec ~

G-22,

  • lA201 r lA202 r 1A20 r lA204 r lA205 r 1A206 r 2A20 1 r 2A202 r 2A203 r 2A204 r 2A205 r 2A206 ~

PF2/23-1 Devices covered:

items 1, 2, 4., 6, 14, 17, 18, 37, 56 57 59 60 63r 77, 78, 79r 86, 91, 95, 106, 110, 114, 115 123, 125 141 r 142 r 143 r 146 r '148 r 154 r 158 6 160 ~ (S'ee yP E 403 8 3 Pg 32)

Total 33 Devices

a-c/4 Meet 2 Form: E109-1 Rev. 1 I

III. Is uianent Available for Inspection in the Plant: f x ] Yes [ ]No IV. Equipment Qualification Method:

[x] Test [ ] Analysis [ ] Canbination of Test a Analysis Qualification Et.port*

(No., Title and Date) 57577-1 Seismic & H drod namic Qualification of 4.16KV switchgear, dated 2/6/81 (Bechtel V.P.

Ca;.="-.,'hat Prepared R port W 'le Lab rat~ories f-:8856-E-403-8-3)

Qzpany that Reviewed Report Bechtel power Cor oratio San Francisco V. Vibration Input:

Eaads considered: a. [x] Seismic only

b. [ ] Hydrodynamic cnly
c. [xl Ccmbination of (a) and (b)
2. method of canbining RRS: [x]Absolute Sum [ ]SRSS [ ]

(Other.,specifv)

3. Reguired ihspccse Sp etre (attach the graphs): See attachm '- Phase II t - III Sy Darrping Corresponding to RRS: OBE 1/2 8 OBE + SRV + LOCA 2%

attac SSE SSE + SRV + LOCA

= 6 Phase 2%

5. quired Acceleration in Each Direction: [ ] ZPA [ ] Other (See attachment 41) . (Specify)

CBE S/S = F/B = V=

SSE S/S = F/B = V=

as per required response spectra

6. Were fatigue effects or other vibration loaves cons idere(D

[x] Yes []No If yes, describe loads considered and hm they were treated in over!3.1 qualification program: A biaxial sine sw ~~ified ortion of SRV s ect '~/Bg V at a swee rate of 1 octave m NOZE: If sere than one report ~~'! o"o it~ lV thru Vll for each reoort.

PF2/23-2

I

/

P

Sheet 3 Form: El 09-1 RgV2 VI. If Qualification b Test, then Ccxnolete":

Q ] randem

l. f ) Single Frequency fx] Multi-Frequency f ] sine beat f )
2. f ) Single Axis [x] Multi-Axis 0 ~ No. of ~alification Tests: CBE 5 SSE 2 Other (Five upset conditions followed by two faulted (Specify) condition) 4, Frequency 'Range: 1 to 100 Hz.

Natural Frequencies in Each Direction (Side/Side, Front/Back, Vertical):

From in-situ measurements.

mul tice 1 1 S/S = 45 63 75 F/B = 23 37 45 6 51' Greater than 80 Hz single eel/0 ~

13'6I 26I, 32 48 26'1 M thcd o~ Determining natural Frequencies g 38 Q 50~ 59.

f j Lab West fx] In-Situ 'Inst [ ] Analysis TRS envelopin" RPS using Multi-Frequency Test g] Yes {Attach TRS a Bic5 graphs lSee attachment 5 3-Phase XI [ ) Nc attachnmt 47-Phase XIX)

Inpu. c-level Test: P.F S/S = F/B = V =

SSE S/S = F/B = V-Laboratory Mounting:

{See attachment N3-Phase attachment I7-Phase XIX)

II fx) Bolt (No. 4, Grade Size 1/2g 5

)

bolts f ] Wld (Length ) f )

10. Functicnal cperability verified: g ) Yes f ) No f ) Not Applicable Results including modifications made: See attachment 44 & ~5.
12. Other test performed (such as aging or fragility test, including results):

(1) Xn-situ test for the simulation of in service conditions for s Extended duration test for simulating SRV repetitions.

~: Xf qualification Iteri Vll.

by a ccmbination of test and analysis also ccaplete PF2/23-3

3-+fQ Sheet 4 Form: El+9- l Vll . If Qualification b Anal is, then co lete: (Not Applicable)

1. Method of Analysis:

[ ] Static Analysis f ) Equivalent Static Analysis

[ ] Dynamic Analysis [ ] Time-History [ ] Response pectrum

2. Natural Frequencies in Each Direction (Side/Side, Front/Back rVertical):

S/S = F/B = V=

3. Model type: f ] 3D [) 2D r'[r] 1D Finite 4.

[ ]

[ ) Computer Codes:

Frequency Range and No.

Element of mx3es f ] Beam consider r ] Closed Form Solution

[ ] Hand Calculations

5. Method of Combining Dynamic Responses: f ) Absolute Sum [ ) SRSS

[ ] Other:

(Specify)

6. Damping: OBE SSE Basis for the damping used:
7. Support Considerationns in the nndel:
8. Critical Structural Elements:

governing Load or Response Seismic Total Stress A. Identification Location Combination Stress Stress Allowable r

B. rMax.

D Critical flection L.xation Maximum Allowable Deflection to Assure Functional rabilit pF2/23-4

ATTACHMENT 4 f-I/1

~ )4 ~

SUSQrJZ&%% ST&v, 2- TRIC STATION K'ITS 1 A%0 2 DYMC QUALIFICATION O." K}'JIM')R WAIT 1 & CQeDN 125 V dc Distribution Panels B&.7L F0R~ME ORDER NO.: 8856-E-120 SQRT FOiM NLNBER(S ): E120-1

'Ihe Qualification Report(s) identified above have been evaluated by Be&tel and the cmcnnent identified above has been repxalifed, Were neo ssary, to shm that the cmmnent is capable of meeting the recuirmoats of the Susquohanna Ecyipmt Qualification Program for

,Dynamic Eaads and the NRZ Seismic Qualification Review Team (S~) Program.

'WP27/34-1

~

p g s

Sheet 1 Form:

Qualif ication Sana of i nt I. Plant Name: SUSQU:-WANA TKEe:

l. Utility: PP&L
2. NSSS: GE 3. A/E: BECHTEL II. Canaonent Name: 125 V dc Distribution Panels E120 1, Sccpe: [ ] NSSS [ ~ ] BOP CDP-222 jt=~~ >- ~ F-C-'-P0 4 Quantity:
3. &ndor- H" WJR
4. If the c<xaonent is a cabinet or panel, name and mcdel hb. of the devices includec:

R. V.P. 8856-E-120-2 (Attachm nt ~l

5. physical Description a. Appearance Pan 1 N x D x H
b. Dim nsions 20" x 10" x 90"
c. Weigh- 550 Ms
6. Lccation;: Building: Control Structure Elevation: Elev. 771'

) Bolts

] Weld (Length ) Wall

] Mounted

8. a. Systen in &~ich located: Electrical Power Distribution
b. Functional

Description:

125 dc distribution panel

c. Is the equipment required for [ ] Hot Standby [ ] Cold Shutdown

[x] Both [ ] Neither

9. Pertinent Reference Design Specifications: 8856-E120
  • Tag Nos.

lD614 2D614 PF2/23-1 lD624 2D624 1D634 2D634 1D644 2D644

~

I 1 p g II

~

4 II

~ l

Sheet 2 Form: =120 1 III. Is Ecruianent Available for Ins tion in the Plant: [ x] Yes [ ] No IV. Equipnont CUalification Yathod:

[X] Test [ ] Analysis [ ] Ccebination of Test 6 Analysi alification Report* Bechtel Document 48856-E404-14-4 (No., Title and Date) le 426340-5 seismic 6 h drod amic loading test report of 125 V dc Dist. Panel) 4/13/81 Ccrnpany that Prepared Report le Laboratories Car@any that Reviewed Report Bechtel Pawer Cortxoration San Francisco V. Vibration Input:

1. Loads considered: a. fx] Seismic only
b. [ ] Hydrodynamic cnly
c. fx] Canbination of (a,'nd (b)
2. H thod of ccmbining RRS: [/Absolute Sum [ ]SRSS [ ]

(Other, specify)

3. Required Response Spectra (attach the graphs): Se attachment "2 4, Damping Correaron3ing to RSS: OSS SSE OBE + SRV + LOCA 2% sss + sRv + Mcn - 2a
5. Required Ao"eleration in Each Direction: I ] ZPA [ ] Other (Specify)

CBE S/S = F/B = V =

SSE S/S = F/B = V =

see attac?mnt 42

6. Vhre fatigue effects or other vibration loads consia red?

[x] Yes []No If yes, describe loads considered and hm they were treated in overall qualification program: Tne specimen was subjected to a multi rectum biaxial andan motion or sixty minutes in tM FB/V and SS/V confi-guration. The TRS enveloped the SRV spectra. (see attache 14)

NOZE: If more than one report ccaplete items 1V thru Vll for each report.

1 a a p ~

I l, 0

0

Sheet 3 Form: E120-1 VI. If Qualification b Test, then Canolete*:

[x) random

l. [ ] Single Frequency fx] Multi-Frequency [ ) sine beat
2. [ ] Single Axis fx) Multi-Axis

[)

3. No. of Qualification Tests: CBE SSE 6 Other (Six faulted conditions) (Spa.'if y)
4. Frequency Range: 1 to 100 Hz
5. Natural Frecyencies in Each Direction (Side/Side, Front/Back, Vertical):

S/S 16 32 37 63 F/B 19 t 23 g 30 36 58 V = 19 32 50 75 90

6. M thod of Determining Natural Frequencies

[x] Lab Test [ ] In-Situ Test f ] Analysis

7. TRS enveloping RRS using Multi-Frequency Test f ] Yes (Attach TRS & RRS graphs See attachment r,3 [] No
8. Input g-level Test: OBE S/S = V=

SSE S/S =

See attadment >3

9. Laboratory Mounting:

l.

1

[Q Bolt (No. 6, Size3," dia) [ ) R ld (Length ) f ]

10. Functional operability verified:.:[ x] Yes [ ) No [ ) Not Applicable ll. Test Results including mx3ifications made:

structural fun~on The sp cion was qua1ified integrity.

~

without ccznpromise on and

12. Other test performed (such as aging or fragility test, including results):

Waded duration test for 60 minutes (see attachnent 04)

"NOIr.: If qualification by a canbination of test and analysis also carplete Item Vll.

~ I

~ + $ 1

~

Sheet 4 Form:

Vll . If Qualification b Anal is, then lete: (Not applicable)

l. Method of Analysis:

[ ) Static Analysis [ ] ~ivalent Static Analysis

[ ] adamic Analysis [ ] Time-History [ ) Response Spectrum I

2. Natural Frequencies in Each Direction (Side/Side, Fron /Back, Vertical):

S/S = V

3. Hcdel type: [ ) 3D [) 2D [) lD

[ ) Finite Element [ ) Beam [ ) Closed Form Solution

4. [ 1 Ccaputer Ccdes:

Frequency Range and No. of mx3es consider'ed:

[:! Hano Calculations N=-'Sod of Ccmbining Dynamic Respons'es: [ ] Absolute Sum [ ] SRSS

[ ] Other:

/ (Specify)

6. D-mping: GBE SSE '.

Basis for the da~ing used:

7. S 'gport Considerationns in the model.:
8. D itical Structural Elements:

Governing Load or Response Seismic Total Stress A. Iclantification Location Ccrnbination Stress Stress Allowable Maximum Alliable Deflection B. Ya.x. Critical to Assure Functional Deflection Location rabilit PF2/23-4

j g ~ ~

0

WYLE LABORATORIES I

Reoort No.26340-5 f -&/q Page No .

, CUSTOMER Job No .

Pull Scale l c2 g Accel. No. Control ( Q Response ( )

erator Date Z Specimen Deopfog ~X 2. C r Axis of Test CJ /45')

Sgu /~P4CZ E

re~>

RES PONS E 5 PECTRU M

'/57PFsr st'o sttsrstsFF) 2 2 6 4 C 7 4 410 S 6 4 C 7 4 110 2 $ 6 4 C 2 4 450

~ ~ I ~

Is 111 ~ SSIS ~ ~ t I I 1 ~ Its ~ I II ~

4 s

11 I

'11ts

~ ~ ~ ~ 1 ~ 1 SS ~ ~ ~ ~ 1 ~ ~ ~ ~ 1 ~ I I

ll ~ II

'lsl 1 ~ I S I I 1 I ~ ti III I I I~~~ F 11 ttt I II III I,'1 I I I

I I I

II lilt I I I I I I II4 Ilt lilt I I II I I I II I I I 11 I I I I lilt Issti I I ~ II Il IIII III 10 1 s t Is

'I 1 1 ~ ~ ~ ~ '1

~ ~ ~ ~

'hl

~ I I ~ I ~ ~ ~ I 'I ~ ~ ~ I I ~ ~ 1 ~ I~~I ~ I 1 I I tt ~, ~ I ~ I ~ ~ I ~ t I S II~1 I 1st I

0 z0 W

1 V

V C

s 1 ~ s s ~ st ~ ~ ~ 1 1 ~ 1 ~ ' ~ 1 ~ s ~ ~ ~ ~ ~ I ~ ~ ~

1111 ~ 111 111 I t . ~ ~ ~ I I 1 I ~ ~ I I ~ I st ~ s ~ ~ I ~ I I I I ~ I 11 I ~ ~ ~ s I I ~ I I I I I 1st ~ I 11 I~I sl I Its I I I I I II 1st Is 1441/ Ill

~

Itsl I I s I tl I I II I I 1 st I S I S Isl I it Ill st ~; )4ll s It Ills 50

\ st 1 1 I~ 1 ~ ~ ~ ~ 1 1 ~ ~ 1 I~

~ ~ I ~ 11 It ~ ~ ts ~ ~ ~ ~ ~ ~ ~ ~ I .s ~ ~ ~ 11 ~ I I ~ I I s ~ ~ I ~ I 1 I 1

' s I ~ ~ ~ ~ I ~ 1 I~ ~

C

~ 1 I ~ 1st I I ~ ~ I~ ~ 1 I ~ I 1 I~~1 ~ I t I ~ I $ ~ 1 ~ ~ 11 11 1 1 ~ 1 ~ 1 ~ I ~ st t ~ ~ ' ~ I ~ 1

~

~ I I III'I 11 ~ I ~ . ~ I I ~ I ~ ~ I ' ~ .'

~ s 11 ~ I ~ '1 s ~ I ~ 1 'I ~ II ~ 11 I I I I II I~~ I 1 ( ~ ~ . I I ~ 11 ~ ~ I II tttl I I I I I ~ I I I ~ 11 I I I I 1 2 10 100 1000 FREQUENCY HZ 200

l ~

p l ~

0 g4 0

, ViY~E LABORATORIES Report. No.36340-6 jl> C->/7

~ 4'gi I (Qi

" CUSTOMER Page No.

Job No. 2. C~4 R

/

nil Scale 1 c7 Accel. No. Control (c ) Response ( )

erator Specimen Date Z.-S -F'I Damping ~ X Axis of Test~

/-P'gv/Sar~~

7&x

~~~~+ Qe~/'Nv7E 7'/

RESPONSE SPECTRUM 6 C C 7 7 10 2 2 i 4 C 7 C 010 C C 7 C ~ 1 10

~ t ~ t 't I ~ ~ ~ I ~ ~ I ~ ~ ~ ~ ~ ~ I ~ I t ~ ~ II I I ~

7 I I ~ I I I ~ Is ~ I I t ~ ~ I ~ I ~ \ ~ ~ ~ ~ I II ~ I I I I I I ~ I I I ~ It ~ I~ ~ I ~ ~ ~ II I I

~ ~ t ~ ~ It ~ t I I t ~ ~ I I I ~ I I I I I ~ ~ ~ II I I~ ~ ~ I It it I ~

~

I I 11

~

I I ~

~

I II I ~ I I I

~ ~ ~

III III

~ ~ I I

1st ~ ~

I I ii I s i Il II~ I III lit I IIIIII

~ I I I I I I1 I

I I I 1 sl IIII II ~

I I 4 I ~ i I I I~

II 'll Il I I 4 I I i I lil Ie IIIIII ll ill 1

I 4 3 I

I Iiil Ii I I I I I 10

\ ~ I

~ t 'I ~ ~ t I ~ I ~ t \

I I ~ I I ~ st ~ I It I I ~ ~ I I I~~~ ~ I l ,~I I I It I I I I 111

~

t'ss

~ ~ ~ I I I I I II ~ I 1sl I s C

lie V

ieP et

~ ~ I ~ t ~ t ~ ' I \ I t t t I I I I I IIII ' t I III I'It I

'0

~ ~ ~ ~ ~

I I I I stt Il i II I II li ltl

~

it

~ ~ ~ ~ ~ ~ I Itl I I ~ I ~ I I I I I I I I

I il' II II till l ~ I l 1 I II I ~

~

S I I I ~ Is 1st I I I I 1 II I slit I I li I I I I I I I

I I

I Ills il I slit

~

I I I I I

~ I II I

lilt I II 4 I '!

t \ I I ~

'st t ~, ~ I st I I It I I

I

~ ~ ~

I t I I I I ~ I III~ I 1st I~~ I I ~ 1st I I t t I~

~ ~ ~ ~ I ~ t ~ I~~ I ~ I

~ ~ I ~ I I

I I ~ I ' ~

I'I

'I I IIII I Ill ll I I

~ ~

I ~ I ~ ~ ~ I I t I

'I

~

I I I I I Ills ll I I I I I III I I I I'I

~ ~ ~

~ ~ I I I ~ ~ II I II I~I 11 ~ ~

II

~

I I I ~ I I I ~ ~ ~ I I ~ l 1 I ~ ~ I~ ' ~ I ~ ~ I I~ I I II II Is ~ I I I I III ills ~ I I ~

I I 1 Io FREQUENCY Hz

jQ" ~ I 'Q ~

(

ATTACHMENT 5

I C'

t f

J'

NEDO: 22l77 CLASS: I IRTE: AUG 1982 TIE: 82NED875 PM% Soy of ~~+

FIGURE 39 K7ZIQH DIRECTICHS NOTE:!IWITCHBRACKET IS ROTATED 90 DEG COUNTERCLOCKWISE SO IT IS VISIBLE I

r" MOTION DIRECTIONS

I.

6/ 16~18~ 8 yoga>R I- 3 .TAB HZ I RUN TPPS24,8926 OBE 98X XA-YC DATE CHANNEL DECI N RATIO 2 7412 POINTS ANALYZED DELTA T I/ 6 OCTAVE 188.88 HZ LP FILTER 6 ES 4.88 X DAHPINC START TIHE 8.888 SEC END TIHE 29.64B SEC 8 RECORDS SKIPPED 21B RECORDS ANALYZED 188.8 X AND 8.8 X RRS PLOTTED HULTIPLY SCALE BY 18~i 8 I 8.8 1.8 2.8 3.8 4.8 6.8 6.8 7.8 8.8 9.8 18"~-I

~ ~ ~

18*~ 8 ' ~

I~~ ~ ~

0 I~ ~ ' ~ 'I' ' ~ ~ ~ ~ I~

~ ~

~ ~ ~

~~ ~ ~~~ ~ ~ ~~~

IS~~ I

~ I o

~ ~

Ul

~0

~ ~ ~ ~ ~ ~ ~ ~

18*~ 2 H

SEHI-CLOSED HETHOD APPROXIHATION t 7-22-08 REVISION

l gA 4 h~

0 0

y~T(CA L RUN 6 TPP624 8926 QBE 98Z XA"YC DATE 8 . ~82 Ibtl8> 8  ! CHA'NNEL TAB V TION RATIO 2 7412 POINTS ANALYZED OKLTA 84 I/ 6 PCThVK 188.88 HZ LP FILTER POLES Z OAMPIMt$ STAllT TIHE $ .$ $$ EC EHC TIHE 2$ .6 ~ 6 EEC 8 RECORDS SKIPPED 218 RECORDS ANALYZED ~ .

I88.8 Z AND 8.8 Z RRS PLOTTED

~ccELEnaTroN (.G)

HULTIPLY SCALK BY 18""

~ 3 .6 .9 1.2 I.b 1.8 2.1 2.4 2.7 3.8 If~~"I 0~ ~

~ ~ ~

0 ~

~ (

l 1801 8 '"(

l~ ~ *

~~ a a~ a ~

I Pl

~ ~(

I ~

>n

~

I

~M ~

aN ~ ~ ~ ~

'(

~ ~

18'+ I a

18*0 2 SEHI-CLOSED HETHOO APPROXIHATION ( 7-22"88 REVISION

'I 1"

0

HORROR'TAL TPP624o8926 HSIV SSEX 8%X 188 DATE BZ 9t58s 8 C ANNEL 3 TAB N I

TION RATIO 2 7514 POINTS ANALYZED DELTA 884 I/ 6 OCTAVE 188.88 HZ LP FILTER POLES 4.88 X DAMP INC START TIME, 8.888 SEC END TIHE 38.866'EC 8 RECORDS SKIPPED 221 RECORDS ANALYZED 188.8 X AND 8.8 X RRS PLOTTED MVLTIPLY SCALE BY I8"~ I 8.8 0 3 .6 .9 1.2 1.5 1.8 2.1 2.4 2 7 3.8 18~~-I I8~~ 8 I~

IP~ I H Ã W

~ t I~

~ ~ o p

I8i* 2 M

SElil-CLOSED METHOD APPROXIHATION: 7-22"B8 REVISION 0

fr ~-g, 0

V 6'APICAL TPP524.8926 HSIV SSEX BZXA-188ZY DATE 2 9t585 S CHANNEL 4 TAB V I DE TION RATIO 2 7514 POINTS ANALYZED DELTA .SS4 I/ 6 OCTAVE 188 .88 ll2 LP FILTER POLES 4.88 Z DAHP INC START TIHE S.S88 SEC END TIHE 38.8S6 SEC 8 RECORDS SKIPPED 221 RECORDS ANALYZED 188.8 X AND 8.8 X RRS PLOTTED HVLTIPLY SCALE BY 18~* I 1.8 1.5 2.8 2.5 3.S 3.S 4.8 4.5 S.B 18~"-I 1$ "* 8 "I~

i~

~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~

~ ~ ~

~0 hl bJ

~ ~

p IS** 2 pV Q

SEHI-CI.OSED HETHOD API'IIOXIHATION ! 7" 22-88 IIEVIS ION M 0

~ ~