ML18026A228
ML18026A228 | |
Person / Time | |
---|---|
Site: | Susquehanna |
Issue date: | 06/10/1981 |
From: | Curtis N PENNSYLVANIA POWER & LIGHT CO. |
To: | Schwencer A Office of Nuclear Reactor Regulation |
Shared Package | |
ML18026A229 | List: |
References | |
NUDOCS 8106120200 | |
Download: ML18026A228 (264) | |
Text
REGULATORT INFORMATION DISTRIBUTION SYSTEM (RIDS)
ACCESSION NBR 8106120200 DOC ~ DATE 81/06/10 NOTARIZED NO DOCKET ¹ FACIL:50 387 Susquehanna Steam Electric Station~ Unit 1> Pennsylva 05000387 50 388 Susquehanna Steam Electric Station~ Unit 2i Pennsylva 050g~F8)
AUTH ~ NAME AUTHOR AFF ILIATION CURTIS<N.A, Pennsylvania Power 8 Light Co.
REC I P ~ iVAME RECIPIFNT AFFILIATION SCHNENCERtA', Licensing Branch 2
SUBJECT:
Forwards annual const noise progress rept'Sound Level Measurements Near Susquehanna Steam Electric Station Site Const 1980 '
DISTRIBUTION CODE: R001S COPIES RECEIVED:LTR. ~NCL 4 . SIZE:
TITLE! PSAR/FSAR AMOTS and Related Correspondence I.
NOTES:Send IRE 3 copies FSAR 8 all amends' cy':BHR LRG PM(CRIB) 05000387 Send ISE 3 copies FSAR L all amends' cy.'B'l<R LRG PM(CRIB) 05000388 RECIPIENT COPIES REC IP IENT COPIES ID CODE/NAME LTTR, ENCL ID CODE/NAME LTTR ENCL ACTION: A/9 LICENSNG 1 0 LIC BR ¹2 BC j. 0 LIC BR ¹2 LA 1 0 STARKeR ~ 04 1 1 INTERNAl: ACCID EVAL BR26 1 1 AUX SYS BR 27 1 1 CHEM ENG BR 11 1 1 CONT SYS- BR 09 1 1 CORE PERF BR 10 1 1 EFF TR SYS BR12 1 1 EMERG PREP 1 0 EMRG PRP DEV 35 1 1 PRP LI C 36 EQUIP QUAL BR13 3 3 22'MRG 3 3 FE lA REP DIV 39 1 1 GEOSC IENCES 28 2 .
2 HU 1 FACT ENG 40 1 1 HYD/GEO BR 30 2 2 IEC SYS BR 16 1 1 ISE 06 3 3 LIC GUID BR 33 1 1 LIC QUAL BR 32 1 1 MATL ENG BR 17 1 1 MECH ENG BR 18 1 1 MPA 1 0 NRC PDR 02 1 1 OELD 1 0 OP LIC BR 34 1 1 PO'iitER SYS BR 19 1 1 PROC/TST REV 20 1 1 QA BR 21 1 1 SS BR22 1 1 REAC SYS BR 23- 1 1 REG FILE 01 1 SIT ANAL BR 24 1 iVG BR25 1 1 EXTERNAL ACRS 41 16 16 LPDR 03 1 1 NSIC 05 1 1
'duN > 6 1S81 TOTAL NUMBER OF COPIES REQUIRED: I.TTR ~ ENCL
TWO NORTH NINTH STREET, ALLENTOWN, PA. 1810I PHONEr (2I5) 770 515 I NORMAN W. CUIITIS Vice president-Engineering rL Constructfcn-Nuclear 770.5381 June 10, 1981 Mr. A. Schwencer, Chief Licensing Branch No. 2 Division of Project Management U.S. Nuclear Regulatory Commission Washington, D.C. 20555 SUSQUEHANNA STEAM ELECTRIC, STATION CONSTRUCTION NOISE PROGRESS REPORT ER 100450 FILE 991-2 PLA-837
Dear Mr. Schwencer:
Enclosed for your information are forty copies of the annual Construction Noise Progress Report, "Sound Level Measurements Near Susquehanna Steam Electric Station Site Construction 1980."
Very truly yours, gzy~
N. W. Curtis Vice President-Engineering G Construction-Nuclear RRS/mks Attachments (40) 5 I /QO
$ ].UQL p 0 Q~ PENNSYLVANIA POWER 8L LIGHT COMPANY
I I
0
- Bolt Beranek. and Newman Inc.
~ w Report No. 3024A'-6
~ C p ~
4 Sound Level Measurements Near Susquehanna Steam Electric Statron Site Construction 598D Construction Noise Progress Report'.O; Bames: anct EW'oocf--
iC .'
~ .
March 198t C i
- s~~
Prepared; for:
Pennsylvania: Popover and Light Company
SUBJECT:
Study on Torsional effect on the seismic response analysis of (1) ESSH Pumphouse (2) Diesel Generator Building As requested by NRC analysis has been performed to study the effects of including torsion in the dynamic response analysis for (a) ESSW Pumphouse (b) Diesel Generator Building.
The Analytical Procedure used in this study consists of:
(i) %he eccentricities of these structures were calculated.
(ii) The structures were represented by a fixed base 3-D stick rredels with structural masses properly lumped at the calculated eccentricities, as shown in Figure 1 and 2.
(iii) Axial frequency analyses of the 3-D stick rmdels were performed to determine the structure frequencies.
(iv) The frequencies determined are then cmtpared with the corresponding frequencies associated with the fixed base models having zero eccentricities.
%he results of cmparison for the ESSW Pumphouse is shown on Table-1 and for the Diesel Generator building is shown on Table-2. These results indicate that there are insignificant shifts in the structural frequencies by including the eccentricities in the dynamic analysis.
From the results of this study, it is concluded that the structures reeled by lumped stick rmdels without the inclusion of eccentricities in the dynamic analysis is adequate for the prediction of desired structural responses.
Ql& + >o 4 og WP26/27-1
0.0 0.0 660.0 0 0 0.0- 685.5 8.0' EL.685'-6" 0.0 8.0 685.5 0.0 0.0 716.0 01 0.0 1.1 716.0 Zr..660'-0" MASSES AT NODES 3 MD 5 FIGURE-1 ESSH PUMP &DUSE 3-D STICK K)DEL
EL. 737r-1S" 6
10 05 COORDINATES EL. 723'-0" 5
04 0.0 0.0 660.0 EL;710'-9" 0.0 0-0 677.0 4
0'L 701'-3" 0.0 0.0 701.3 4 0.0 0.0 710.8 0.0 0.0 723.0 8
0.0 0.0 737.1 1.12 EL 677r 0 0.5 -1.0 677.0 2
7 8.9 -6.8 701.3 9 19.5. -1.3 723.0 EL. 660 '-0" 10 0.3 -3.1 737.1 MASSES AT NODES 4g 8~9@ 10 FIGURE 2 DIESEL .(KNEKGOR BUILDING
,3-D STICK N)DEL
'i Table-1: ESSW HJMPHOUSE:
Frequencies with and without eccentricities (See Figure-1)
Fr encies ( s)
With Eccentricit Without Eccentricit 13.93 13.94 18.05 18.06 28.94 28.97 38.83 40.01 TaMe-2: DIESEL GENERATOR BUIZDING:
Frequencies with and without eccentricities (See Figure-2)
Fr encies ( s)
With Eccentricit Without Eccentricit 8.86 8.96 9.65 9.71 22.56 23.42 31.69 32.04 33.45 33.66 WP26/26-1
SUM1XT: Equivalence of Fixed Base and Flexible Base Models used for the analysis of Primary Containment for seismic loads.
In continuation of our response to the NRC question 130.20 as desired by NRC, a study has been made on the above subject. 'Ihe object of this study is to datanstrate that as the shear wave velocity is increased, the results fran the flexible base model converge to the results of the fixed base riedel.
The study considers the vertical seismic analysis for SSE for (a) a fixed base riedel (b) flexible base mdels for various foundation flexibililites defined by shear wave velocities Vs, 2Vs, 5Vs, 10Vs where Vs for the Susquehanna site is 6200 ft./sec. 'Ibis corresponds to an equivalent vertical spring constant as shown in Table-l. A sketch of the flexible base vertical seismic model is shown in figure 1) .
3.~ of FSAR (See A damping value of 5% of critical was used for all fixed base structural rrodes. 'the damping determination technique described in reference 3.7b-3 of FSAR !.BC-Tcp-4A, Rev. 3, Appendix D3 has been used to calculate the canposite modal damping for the flexible base mxlel.
'Ihe results for the fixed base and the flexible models are shawn in Table-2 and Table-3, in terms of frequencies and rmdal danping values. The seismic (SSE) responses in terms of axial forces are presented in Tabl~;
'Ihe results indicate the follcwing:
(a) Table-2: Frequencies values approach fixed base conditions for 5Vs.
(b) Table-3: Modal damping values approach the fixed base condition for 5vs.
(c) Table-4: Seismic responses approach fixed base conditions for 2Vs.
These results demonstrate that as the shear wave velocity is increased to 2 to 5 times the actual site shear wave velocity, the results fran the flexible base model converge to the results of the fixed base model. 'Ihus use of the flexible base model for the seismic analysis of the contairment structure is more realistic.
WP26/25-1
(e Table-1: CDN1'AINMEN1". ivalent Vertical e S in Constants.
Prcan %SAR Section 3.7b.5, Reference 3.7b-3 (BC-Top-4-A, Page 3-15)
Equivalent 4GR Vertical Spring Constant, kz (1- >)
Where W = Poisson's ratio = 0.3 Radius of Circular base mat = 50 ft.
Shear Modulus = C Vs 2 Vs = Shear Wave Velocity = 6200 ft./sec.
.Mass density of foundation medium =.4.3478E-3 -. "- =
k.sec2/ft (JC = 140 1bs/cft.)
Vs = Vs k = 4.78E07 k/ft.
Vs = k = 1.912E08 k/ft.
Vs = 5Vs kz = 1.195E09 k/ft.
Vs = 10Vs k = 4. 78E10 k/ft.
WP26/25-2
Table-2: CXKZAINMENT: Vertical Seismic Model Flexible Base Vs. Fixed Base Fre encies. ( )
Frequencies (Cps)
Flexible Base Fixed Base Vs 6200 ft/sec. 2V 5Vs
- 16. 19 17.24 17.45 17.47 17.48 20.95 23.18 24.09 24.23 24. 28
- 38. 24 38.63 38. 75 38.77 38.78 Table-3: OONZAINMEK': Vertical Seismic Model Flexible Base Vs. Fixed Base Modal in 8 Critical Modal Oamping (a Critical)
Flexible Base Fixed Base Vs =
6200 ft/sec. 2V 5Vs 10V 9.3 5.3 5.0 5.0 5.0 9.1 6.1 5.0 5.0 5.0 5.0 5.1 5.0 5.0 5.0 m26/25-3
Table-4: CCPZAIMRP: Axial Forces (SSE) (ki )
See Figure 3.7b-8 of FSAR, Attachment ¹1) for location of merribers.
Member Flexible Base Fixed
¹ Base Vs =
6200 ft/sec. 2V 5Vs 10V 14.5 21.8 22.2 21.9 21.9
- 84. 7 127.5 130.0 127. 7 127. 8 239.9 360.7 367.7 360.8 361.1 412.2 617.9 629.1 617.0 617.6 576.5 860.7 874.9 857.7 858.4 6 734.5 1090.8 1106. 6 1084.3 1085.1 866.9 1280. 4 1296. 1 1269. 5 1270.3 991.5 1454. 3 1468. 5 1437.7 1438.4 1095.4 1595. 9 1607. 5 1573.1 1573.7 10 1319.0 1773.8 1774.7 . 1733.2 1733.2 1479.1 1968.3 1956. 7 1909.4 1908.7 12 1611.6 2107.5 2078.2 2025.5 2024.0 13 1701.4 2177.3 2128.2 2071.5 2069.0 14 34.9 34.8 33.1 31.7 31.6 15 127. 3 126. 3 119.6 114. 3 113.8 16 201-3 197. 3 185.9 176.9 176. 2 17 843.4 842. 7 787.2 743.4 739. 6 18 899.6 895.0 835.9 789.3 785.2 19 759.5 727.5 680.6 642.5 639.2 20 799.1 762.2 712.5 672.5 669.1 m 26/25-4
TABLE (Cont'd)
'c Flexible Base Fixed Base Vs =
6200 ft/sec. 2V 5Vs 10V 21 829.5 786.9 734.8 693.5 689. 9 22 845.3 797.2 743.3 701.5 697. 8 23 602. 9 611.5 571.5 540.0 537. 3 24 602. 9 611.5 571.5 540.0 537.3 25 76. 9 78.2 73.2 69.3 68.9 26 234.2 238.4 223.1 211.0 209.9 27 418.5 426.1 398.4 376.6 374.7 28 1701.3 2177.3 2128.2 2071.5 2069.0 29 845.3 797.2 743.3 701.5 697.8 30 83.2 82.6 80.9 77.1 77.5 WP26/25-5
~
r
, Ul HQO 1
2 ETTA'C;H BAIT 4 I.
191.1' I
/91.8'2 L EGEND IIRYWELL ' MASS POINT WALL>> DNODE POINT NUMBER D3 77e.e. D14 D23 Q MEMBER NUMBER RPV OS PRING NUMBER Q3
~
&15 759.1'ACTOR 760.9'25 SHIEL
-Gs 763.1'50.1'38.1'18.1 Qs 745.1'R Dls 739.1'S 738.3' QS 729.8'7 07 710.1'4 De 7161 De Qe 702.3' D27 g2 I 26 Go 0304 Qll D19 SUPP R ESSI ON RPV PEDESTAL CHAMBER WALL 673.1'02 011 LD0 D20 02 6r58 6 H Q 03 Q3 31 29 SUSQUEHANNA STEAM ELECTRIC STATION
'UNITS 1 AND 2
,FINAL SAFETY ANALYSIS REPORT" VERTICAL SEISMIC MOORE'OF CONTAINMENT WITH FLEXIBLE BASE FIGURE 3 'b-8
SUSQU19%NNA SES UNIT 1 AND 2 DOCKET NUMBERS 50-387 AND 50-388 CATEGORY I MASONRY MALS PREAMBLE: .
Safety related masonry walls are interior partitions whose primary function is to provide shielding and fire protection. Masonry walls are not used as primary shear walls for seismic resistance of the structure. All category I rrasanry walls are reinforced with all cells fully grouted. The infill material of double wythe walls is either grout or concrete. The minimum specified compressive strength for grout, concrete, and mortar is 2500 psi. hhrtar infillis not used on SSES masonry walls. Metal ties, between the wythes of double wythe walls, are provided at 24" spacing maximum in horizontal and vertical directions. Seismic design is in accordance with SSES FSAR Section 3.7. Allowable stresses are as noted in FSAR Section 3.8, Table 3.8-8 and Table 3.8-9. Safety related rrasonry walls are Q-listed and have been added to the FSAR Design Criteria Sultry (Table 3.2-1), in response to NRC, Quality Assurance Branch, Question No. 260.1-b (34).
QUESTION NO. 1:
In your response to Question 2, you indicated that Sm is the allcwable stress as specified in UBC. For extreme and/or abnormal loading combinations, you increase the allowable stress by a factor of 1.67, which is in conformance with the practice of SRP Sections 3.8.3 and 3.8.4, for reinforced concrete structures. However, concrete masonry walls are quite different fran reinforced concrete walls, particularly the unreinforced ones, the use of such a practice may not result in an adequate design. Depending on the types of stress, that. is, tensile, shearing or axial campressive, the factor may vary from 0 to 2.5 (see enclosure 2). Specify the masonry design strength fm used in Susquehanna masonry walls and the allowable values for all types of stresses.
RESPONSE
Code allcwable stresses for masonry tension, shear, carpression, and borxl are increased by a factor of 1.67 for load canbinations involving abnormal and/or extreme environmental conditions which are credible but highly improbable. Since code allcwable stresses are generally associated with a factor of safety of 3, the 1.67 increase provides a factor of safety against failure of 1.8 (3 -. 1.67) (see Table 4 for the increase allowed for each type of stress). 'Ihere are no unreinforced masonry walls on SSES project. Susquehanna SES masonry walls are designed based on an ultimate compressive strength, f'm, of 1500 psi as specified in UBC 1976, for solid grouted hollow masonry. Minima axpressive strength at 28 days for mortar, grout, and concrete is 2500 psi. Materials are in accordance with FSAR Appendix 3.8C.
The allowable stresses are as listed in Table l.
WP26/15-1
TABLE 1.
SSES ALLONABU" STRESSES Materials and Alla@able Stress: UBC 1976 (1)
Stress i
- 1. MasonrL f'm = 1500 (see note 2)
Compression:
Flexural .33f'm = 500 Axial .20f' (1-(h/40t) ) h = clear height, in.
t = wall thickness, in.
Flexural Shear 1.1 ~f'm = 43 Bond (deformed bars) 140 Bearing .25f 'm = 375 Bed Joint tension Normal (See note 3)
Parallel 25 Mcdulus of elasticity, Em 1000f 'm = 1,500,000 Modulus of rigidity, E 400f 'm = 600,000
- 2. Reinforcement:
Tension:
Grade 40 Steel 20,000 (used for ties only)
Grade 60 Steel 24, 000 Ccmpres sion:
Grade 40 Steel 16,000 (used for ties only)
Grade 60 Steel 24, 000 Notes: (1) For stress increase allied for abnormal, or extreme environmental load canbinations See Table 4.
(2) Ultimate crepressive strength as specified in UBC 1976 for solid grouted hollow concrete units Grade N.
(3) Zero tension normal to bed joint is used.
NP26/15-2
QUFSTION NO. 2 In the note to your response to Question 2, you stated that the allowable shear or tension between masonry block and concrete or grout infill is considered to be equal to three percent of the ccapressive strength of the block. The allowable shear or tension as specified by you is in the staff's opinion too high. To specify the allowable shear or tension of the vertical joint between wythes in terms of the canpression strength of the block is in the first place unconservative and the use of seemingly low percentage of 3% rray actually result in an allowable shearing stress greater than its corresponding strength. Therefore, a revision of the stress criterion is required.
RESPONSE
The specified shear and tension, for the interface of masonry block and concrete or grout infill, of three percent of ccmpressive strength, f'm, is based on the relationship 1.1 ~f'm given in ACI-531-79. For f'm = 1500 psi, this relationship yields a value of 43 psi ccmpared to 45 psi (.03 x 1500) allied for evaluation of project masonry walls. The difference of 2 psi is justified by the fact that the ultimate axpressive strength of masonry f'm, is generally higher than 1500 psi.
The values for shear and tension as specified above have been used only as a guide in evaluating double wythe walls, where infill thickness is greater than 8 inches (24" thick walls and larger).
For walls having an infill thickness of less than 8 inches (total of four walls), zero tension/shear is assumed for evaluation purposes.
For SSES masonry walls, the actual shear stress, as determined by VQ/Ib for uncracked sections, and in the canpression zone of cracked sections ranges from 5-10 psi; except for three walls. For these three walls shearing stress is in the range of 10-15 psi.
QUESTION NO. 3 In your response to Question 4: (1) It is indicated that response spectrum method is used for the dynamic analysis of the concrete masonry walls. However, there is no mention as to which of the response spectra is used, upper floor or lnrer floor response spectrum or the average of the two. It is required that an upper bound envelope of the individual floor is used. (2) Though the use of ACI 318 formula the cracking of concrete masonry wall is considered. The use of such a formula is questionable in view of the fact that in a concrete masonry wall the weakest section is the bed joint and the rrodulus of rupture is equal to that of neither the concrete block nor the mortar. Indicate hcw the modulus of rupture is established in ycur ccmputation.
WP26/15-3
RESPONSE ITEM (1):
Response spectrum for the lever floor has been used for evaluation of cracked/uncracked behavior of masonry walls, as applicable, for vertical motion, and for walls cantilevered fran the floor. For horizontal motion, the lcwer floor response spectrum has been used in the initial evaluation of cracked/uncracked behavior, as applicable, for walls spanning between two floors and walls having side connection at concrete walls. These walls have also been re-evaluated based on the average acceleration of the upper and lcwer floors. Where the upper floor acceleration is less than the lower floor acceleration, the lower floor acceleration is used. For justification of using average acceleration, see Enclosure l.
RESPONSE ITEN (2):
Although ACI-318 formula is derived for cracked concrete sections, the use of the formula for masonry walls takes into consideration the difference in material strengths. 'Ihe difference between masonry behavior and concrete behavior is recognized and allowances are provided in selection of seismic acceleration within a frequency variation of plus or minus fifteen percent of the natural frequency.
The mxlulus of rupture (fr) for masonry is approximated by increasing the VBC allowable flexural tensile stress by a factor of safety of 3 and then applying a 33% reduction to arrive at a lcwer bound value. M.s value is used only for stiffness and frequency calculations of the cracked section and not for strength. Alla>ance for uncertainties in the modulus of rupture is accounted for in the frequency variation of
+ 155 of the natural frequency.
QUESTION NO. 4:
In response to Question 5, it is stated that when the design stresses of masonry walls exceed the alliable stresses, fixes are designed such that the criteria is satisfied. Indicate the number of walls where such fixes are needed and provide examples.
RESPONSE
The number of masonry walls requiring fixes for cracked section criteria is 36. Wall location, thickness, and elevation are as shown in Table 2. Typical fixes are shawm in details type 1, type 2, type 3, and type 4 (see Enclosure 2).
WP26/15-4
' TABLE 2 SSES MASONRY NAILS WALLS WHICH REQUIRED FIXES PDR CRACKED SECTION CRITERIA NAIL BLDG. FZOOR ELEVATION THICKNESS K). OF NALIS REF. E4Q.
Control 656'-0 8" C-1301 Control 741'-0 6" C-1304 Control 741'-0 8 II C-1304 Control 753'-0 8 II C-1304 Control 771'-0 8" 16 C-1304 Control 783 '-0 1'W" C-1307 Control 806 '-0 8ll C-1308 Control 806'-0 1 '-0" C-1308 Reactor 728'-0 8 II C-1202 Reactor 799 '-0 8 II C-1205 WP26/15-5
QUESTION NO. 5:
Provide justification for any deviation fran the attached staff's interim criteria in your design and analysis of the masonry walls.
RESPONSE
Deviations and justification for differences between SSES criteria and SEB interim criteria are as noted in the following paragraphs.
Items which are not specifically addressed are in accordance with the criteria or not applicable to the project.
ITEM NO. 1: General R irments The materials, testing, analysis, design, construction and inspection related to the design and construction of safety-related concrete masonry walls shall conform to the applicable requirements contained in Uniform Building Code 1979, unless specified otherwise, by the provisions in this criteria.
RESPONSE
Uniform Building Code, 1976 edition, has been used for design and evaluation of Susquehanna nasonry walls. A carparison of 1976 and 1979 editions of UBC shears no significant difference in criteria applicable to SSES masonry walls. In addition, ACI-531-79 is used to supplement UBC allowable stresses, and ACI-318 1977 in stiffness calculations.
ITEM NO. 2: Loads and Load Ccmbinations The loads and load ccmbinations shall include consideration of normal loads, severe environmental load, extrene environmental load, and abnormal loads. Specifically, for operating plants, the load canbinations provided in plant's FSAR shall govern.
For operating license applications, the following load ccmbinations shall apply for definition of load terms, (see SRP Section 3.8.4.11-3).
RESPONSE
For canparison of SEB interim load combinations and load ccmbinations used for masonry walls evaluation see Table 3. Definition of terms is as shown belch.
Notation D = Dead load of structure plus any other permanent loads contributing stress.
L = Live loads expected to be present when the plant is operating, including rnvable equi', piping, cables.
WP26/15-6
P = Design basis accident pressure loads.
R = Steam/water jet forces or reactions resulting from rupture of process piping.
TQ = Therma 1 ef fects during norma 1 operating conditions inc luding temperature gradient and equipnent and pipe reactions.
Ho = Force on structure due to thermal acpansion of pipes under operating conditions. \
Ta = Added thermal effects (over and above operating thermal effects) which occur during a design accident.
Ha = Force on structure due to thermal expansion of pipes under accident conditions.
E = Load due to Operating Basis Earthquake.
E' Load due to Design Basis Eartl~uake.
W = Wind load.
W' Tornado wind load.
Ds = Force on blockmll due to story drift under Operating Basis Earthquake Loading.
D's = Force on bloc3amll due to story drift under Safe Shutdown Earthquake Loading.
WP26/15-7
TM3LE 3. COMBINATION COMPARISON IDAD COMBINATION SEB IPI1~M CRITERIA
- 1. D+L 1. D+L
- 2. D+L+ E 2. D+L+E+ Ds Service 3. D+ L+W 3. Not Applicable INo wind pressure I Load Condition la. D + L + To + Ro la. D + L + To + H 2a. D+L+To+++E 2a. D + L + To + H + E 3a. D + L + To + R + W 3a. Not Applicable INo wind pressurel Extreme envi- 4. D + L + To + R + E D+L+To+Ho+E +Ds ronrrental D+L+ To+ 5'o+Wt 5~ D+L+To+Ho+W ISee note 2 I
- 6. D + L + Ta + Ra + 1.5 Pa 6. D + L + (To + Ta) + R + ISee note 1 1.25 Pa + Ha I
abnormal/severe I 7. D + L + Ta + 1.25 Pa + 1.0 D + L + (To + Ta) + 1.25 Pa + R +
environmental (Yr + Y; + Ym) + 1.25E + Ra 1.25 E + Ds abnormal/
extreme 8e D + L + Ta + Ra + leO 1.0 (Yr + Y~ + Ym) +
1.0E'.
P + 8e D + L + (To + Ta) + R + leO P +
0 E'+D's environmental conditions Notes: (1) Abnoxmal load canbination in SSES-FSAR Table 3.8-9. Part C will be revised to read D + L + (To + Ta) + R + 1.5 Pa + Q. All other load canbinations will remain unchanged e (2) W'oes not include W, tornado missile. bhsonry walls are not used for protection of safety related equipment against tornado missiles.
WP26/15-8
ITEM NO. 3: Alliable Stresses Allowable stresses provided in chapter 24 of UBC-79, as supplemented by the follcwing rmdifications/exceptions shall apply.
(a) When wind or seismic loads (OBE) are considered in the loading ccrribinations, no increase in the allowable stresses are permitted.
RESPONSE
Design and evaluation of masonry walls is based on a 33% increase in the allowable stress. This increase is permissible per UBC, 1979 and per ACI-531-79. The factor is also ccapatible with the 25't increase in stress noted in SSES FSAR for Barking Stress Design Method.
ITEM NO. 3: (b) Use of allcwable stresses corresponding to special inspection category shall be substantiated by dear>nstration of mnpliance with the inspection requirements of the NRC criteria.
RESPONSE
Stresses corresponding to special inspection have been used in the design and evaluation of SSES masonry walls. Inspection required to assure that masonry construction is in accordance with Appendix "D" and amendments to the PSAR, and to assure that materials are in accordance with FSAR Appendix 3.8C is implemented. Documentation of this inspection is in project jobsite files.
IVm NO. 3: (c) For load conditions, which represent extreme envirorznental, abnormal, abnormal/severe envirormental, and abnormal/
extreme environmental conditions the allowable working stresses may be multiplied by the factors shcwn in the following table: (See table 4).
WP26/15-9
TABLE 4.
STRESS INCRF~ FACIOR COMPARISON FACIOR FACIOR JUSTIFICATION/COHMXT Axial or flexural \
cmpression 2.5 1.67 See Response Question Cl Bearing 2.5 1.67 Reinforcement stress except shear 2.0 1.67 See note 1 Shear Reinforcement 1.5 1.5 I Anchor bolts are not usedI and/or bolts I in safety related masonryl I walls I Masonry tension Parallel to bed joint 1.5 1.5 Shear carried by masonry 1.0 1.67 See note 2 Masonry tension perpendicular to bed joint For reinforced masonry 0 0 For unreinforced masonry 1.0 N/A I No unreinforced I masonry walls I
(1) Shall not exceed .90 fy (2) The actual shear stress carried by masonry is within the allowable shear stress given in UBC Table 24-H with no increase factor applied.
RESPONSE
See table above.
WP26/15-10 .10-
QUESTION ?D. 5: Design and Analysis Considerations
~ITEM 4:
In new construction, no unreinforced masonry wall is permitted, also all grout in concrete masonry walls shall be compacted by vibration.
RESPONSE
- a. %here are no unreinforced masonry walls in SSES project.
- b. Cell grout and/or infill grout or concrete is carpacted by either mechanical vibrators or by rodding.
ITEM 4z Special constructions (e.g., multiwythe, composite) or other items not covered by the code shall be reviewed on a case by case basis for their acceptance.
RESPONSE
Double wythe walls are designed as carposite sections, except as noted in response to Question No. 2. Allowable stresses are per ACI-531-79.
~ITEM 4 Licensees or applicants shall suhnit for staff's review.
QA/QC information, if available,
RESPONSE
Applicable QA/QC information is available at SSES jobsite and will be submitted upon request.
WP26/15-11
ENCLOSURE 1.
JUSTIFICATION FOR THE USE OF AVERAGE RESPONSE SPECTM, (13 PAGES)
JUSTIFICATION OF USING APPROXIMATION METHOD TO DETERMINE MAXIMUM WALL PANEL RESPONSES TO SEISMIC MOTION The evaluations herein demonstrate that: (1) The use of the average floor acceleration response spectra to calculate the response of the wall panel is appropriate, and (2) The use of uniform inertia load with magnitude equal to the average spectral acceleration for the fundamental mode, in calculating the maximum seismic responses is a good approximation, even considering the higher mode effect.
For the purposes of this evaluation, the seismic response of a simply-supported, uniform beam simulating a strip of the wall panel with unit width is considered, as shown in Figure l.
(1) Use of Avera e S ectra The equation of motion of an undamped, simply-supported beam can be written in terms of the total displacement with respect to some fixed reference axis as:
m 8
Bt u + EI a4u ax4
= 0 Where m and EI are the mass density and flexural rigidity of the beam. Denote the seismic excitations at the ends of the EC-9
the beam as Ua and Ub. Then the total disPlacement u(x,t) can be
/
expressed in terms of 'the two seismic motions and the relative displacement to the seismic motions as:
u(x,t) = (x/L) Ub + (l -x/L) Ua + r(x,t) (2) 1 Nhere L is the length of the beam. The relation expressed by the above equation is shown in Figure 2. The relative dis-placement r(x,t) needs to satisfy the following simply-supported conditions:
r(o,t) = r(L,t) = 0 a2r> a2rl 0
-(4) ax Ix=o ax Ix=L Substitute Equation 2 into Equation l, the equation of motion in terms of relative displacement r(x,t) can be expressed as:
~~
2 ma r + EZa r ~~
m(x/L) Ub m(l x/L)Ua at2 ax4 EC-9
The eigen-function solutions for the homogeneous equation associated with Equation 5 that satisfy the boundary condi-tions specified by Equations 3 and 4 are:
san nox n = 1, 2, 3, L
and the corresponding frequencies of vibration are:
4 n = l, 2, 3, mL So, the solution of Equation 5 can be expressed as:
r(x,t) = $ a(t) sin (7) n=l L Substitute Equation 7 into Equation 5, and multiply the latter by sin nmx, and then integrate it with respect L
to x over the full length of the beam, the equation of motion can be transformed into modal equations of motion as:
n+" nn =I'"a+
~~
n= 1, 3 5 2
(Sa) and 2 ~ ~ ~~
an + Q na rn Va Ub n = 2, 4, 6, 2
(Sb) where I'n = participation factor 4 (9)
If damping in the form of modal damping ratio is included, Equations Sa and Sb becomes:
2 ~~ ~~
an+ 26nunan+ M nan rn Ua+ Ub n = 1 3 5 2
(10a) and
~o A
2 OO ~~
n + 2~n<n n + < n n = I'n Ua U n = 2,4,6,...
2 (lob)
Where g is the damping ratio of the nth mode.
EC-9
Equation 10a means that the odd-number modes which are sym-metrical about the mid-span of the beam'will be excited by the average of the two seismic excitations; while equation 10b means that the even-number modes which are antisymmetrical about the mid-span of the beam will be excited by half of the difference between the two seismic excitations.
Expressing the maximum modal displacement response in equa-tions 10a and 10b in terms of absolute acceleration response spectra gives:
a(< nP n) 2 n
'2 b@ n," n) n 4mL4 a(<n,"n) + b<<n,"n) n5, 5EZ n = 1,2,3,...
This illustrates that the use of the-average of two floor accelera-tion response spectra to calculate the modal response of a wall panel is appropriate.
EC-5
(2) Contribution of Higher Modes From Equation 11, the relative importance of modes can .be evaluated by examining the frequency ratios, modal partici-pation ratios, and maximum modal response ratios for constant acceleration which can be shown as:
lO . (0 . lO
~ ~ ~ ~ 1 ~ I ~ 4 ~ 0 ~ ~ (12) 1 2 3 r
1
.r .r2 3 ' . . = 1 : -1/2 : 1/3 : . . .- (13)
~l : ~2 : "3 : . . . = 1 : 1 : 1 : . . . (14)
(0 M2
- 0) 0) 2 32 243 1 2 For an SRSS method of combining maximum response, the contri-bution of higher modes is clearly negligible.
If for example, the fundamental frequency "1 is above 8 Hz, the second frequency is above 32 H which 'is already in the rigid range, i.e., in the range of no amplification. Thus the Sa and Sb values associated with modes other than the fundamental will be the Zero-Period-Acceleration (ZPA) values of the two seismic motions Ua and Ub. Using the absolute, sum (ABS) method of combining the modal maximum responses; the con-tribution of higher modes is not more than .4% of the fundamental.
mode.
EC-9
The relative importance of modes can also be evaluated by examining the moment and shear responses in the beam for
'I each mode, as shown in the following.
The moment in the beam due to the nt mode can be evaluated by:
M (X)
EIa2 3X an sin L (15) 4mL a(<n "n) b (<n,~n) n m n = 1,2,3,...
The moment at the mid-span of the beam is contributed only by the symetrical modes and can be expressed as follows:
a(<n,"n) + b (~n,"n) (16) n = 1,3,5,...
EC-9
For a constant spectral acceleration, the contibution to the mid-span moment of the beam from each mode can be expressed in the following ratio:
M(j'M(i 1 2 3 2I M
2J 27 125 (17)
Using the SRSS Method of combining modal responses', the con-tribution of the higher modes to the mid-span moment is less than 1% of that from the fundamental modes. Using the ABS method of combining modal responses, the contribution of higher modes is less than about 5%.
- The shear force in the beam due to the n mode can be eval-uated as:
Q n
(X) = EI 83
>X3 a
n sin nmX L
4mL a(<n "n) b (~n,"n) cos nm X (18) n n = 1,2,3,4,...
The maximum shear occurs at the support of the beam and can be expressed as:
Q.
n (0) c-n22 a(<n,"n) + b (<n,"n) (19) n = 1,2,3,4,...
The contribution of the higher modes to the maximum shear at the beam support relative to that of the fundamental mode can be evaluated by comparing the modal ef fective masses (MEM) associated with the f undamental mode and the higher modes. The modal ef fective mass of the fundamental mode is MEM SmL 0.81 (20a) mL 1 2 The modal effective mass associated with modes higher than the fundamental mode can be calculated as MEM1 = (1 0.81)mL = O.l'9 mL (20b)
The ratio of MEM1 TO MEM1 is 0.19/0.81 = 23%. That is the contribution of higher modes to the maximum shear is at most 23% of the contribution due to the fundamental mode. This ratio does not take into account the ratio of the spectral
acceleration for the fundamental mode to the ZPA value for the higher modes. When the difference in spectral accelera-tions is accounted for, the contribution of higher modes to the maximum shear would be less than 23%. For example, if the spectral acceleration for the fundamental mode is 1.5 ZPA, then the ratio of higher mode contribution would be 0.19/(0.81 x 1.5) = 16%.
(3) Uniform Inertia Load Approximation Using the modal responses, the maximum moment and shear of the beam can be calculated. This moment and shear can then be compared to the moment and shear based on a uniform inertia load using the average of the two floor spectral accelerations at the fundamental mode of the beam.
'The maximum moment occured at the mid-span of the beam induced by a uniform load with the following magnitude:
f(X) = m a 1' + b <1') (21) can be expressed as:
mL a 1' + b <1') (22)
EC-9
From Equation 16, the moment at the mid-span of the beam due to the fundamental mode is:
a (~1'"1) b (~1'"1) (23)
The maximum difference between the moments from Equations 22 and 23 is about 3%.
The maximum shear occurred at the support of the beam induced by the uniform load expressed in Equation 21, can be written as:
Q*(0) mL a 1' b 1' (24 )
2 From Equation 19, the shear at the support of the beam due to the fundamental mode is:
Q (0) C4mL Sa (gl'~1) + Sb (gl~~l) (25) 1 2 EC-9
The shear from Equa tion 24 is greater than the shear from Equation 25 by about 25%. This margin can well cover the contribution to the shear due to the higher mode ef feet, as discussed previously.
From the above comparison, it can be concluded that -the use of a uni form inertia load with the magnitude of the averaged floor spectral acceleration at the fundamental mode, provides a good approximation for calculating the seismic response in the wall panel.
EC-9
-1 2-
IDEALIZED) S/&PLY- SUPPozTED QNeFORhl 8EAN ...
F/G'URE Mo /
Pl- ~) CLa.
X Qb L
+~L P g]PM ' E.7 +'FE]V S'E'IS'MIC EX@/7A T!O~
,... Ahl&. REL A7,iVE D jsPLAcEME<7,,
TYPICAL WALL F3XES TYPE 1 TYPE 2 TYPE 3 TYPE 4 WP26/15-12
caNC. rLsLAB ANCHORS 4 Ah/COORS o
p I
~
) ~
AMcrL8 SAP (rrz) o 0
cob/C. BLOCK W'T'7 IhlTECYAI-5 War.< R'Egv(R'80 sV
, Cites/eM Pwa~)
TYPE 1 ANGLE BRACJNG TO CONCRETE
sap
~ 0 II gS
\
.n 8 X./$
, 7(br'o]vc.
5Lock WAI L.
TVPE 2 ANGL8 BR'ACING 7d STE'EL
conc. rzooa aaAB
~
P J
ANGLE prier) coQTINUoUs, A A/ALE (Nkw)
Cr v~)
conc. BLOCK o
f'wry, ArrACeaa
@ACRE'M %ALL EACH rO
.END WirH ANCHORS (NEW)
HEAL C-fEP iaruv'S) (r ve)
coAc Fhoo]c sLAS 0
0 E'/DTIhl G. CONC. 0 W7 A7'rv7eCVAt.s Hl.ock ~ALL: '..
REQUIRED BV bSSICvN. (ma~3 TYPF
'I)V FARM(TTENT SC/PF'ORTS
CALCULATIONCOVER SHEET A B NO.
e DISCIPLINE~~ ~~ ++ COVER SH.
CALC. NO.
.0 NO. OF SH NO.
TS OF 0
mLE /872/A'A7< D/Wr D~~ C~~/~4 CALC. SHEET CONTROL:
NH&tPi4&/~g4 r/I wu z, As'/eA.7Z HPhrP~e ~ &c z~e'4 STATEMENT OF PROBLEM
~P'</ >/Z A rut/4 4 Hi ~A ~~+ E48W AY PA~ %+A e7Dd'MW dw//W4 WpgH ~W~ p~
fVdA'8 NAIr<SrEAR EFZrSZ lAZVZS ~ZZ~
SAR CHANGE SAR CHECKEDY SAR CHANGE REQ'D. Q NOTICE INITIATED ~
4+~~~+~+~~ ~+~ + ~ ~~
URCESOF DATA Zez uA r r
~4 S S'~ '
-Z j zv.'Jr.
++ ~ ~++4~~~~ +~~
2 d84AH H4 6'/VICAR APEg rYd, 0 l4'9 79'SW7~
SO RCES OF FORMULAE 5 REFERENCES ~
ScAZS /AY gus/ rV&ePPA ~Z u8'PE 9ZA'-4/-Err- ~-)
Cwh'F &'AP 3'oc'5& 8Z8A'+f7 PSYCH-Wf'2l-/$-2
~ 5 earp p4g YE WWP~HSM~4 AND MAAc'r~OAr ~A7. a2up /
PEP'M7cm/ 8A 4, 88%6,-/Y/- gz/-4+-g PRELIMINARYCALC. Q FINALCALC. SUPERSEDES CALC. NO.
R EV Z~g'7 Sze>>rr CALC LATION BY CH KED Y DATE APPROVE6 BY DATE Prelirnlnsry cslcs checked only et group supenrlscr's request.
Considers p3pER, codes end standards, redundancy end se psretlon, operablllty and mal ntalnebl lit y, technical adequacy, accuracy and clarity.
8856-QA-2Il/74)
.,CALCULATION SHEET ( ')
ygL
~
~
sst:8 CALC. r + REV. NO.
ORIGINATOR ~>> ~'+~~~+r DATE ~~ + CHECKEO OATE PROJECT AMIES AWWWAA 4A JOB NQ.
c~8z AHA'&cnws'r SHEET NO g4'7SA'W4FS HlWP4~W z'~Zz~4 &ma 2 rf~~mWrZ~e'~
3 8'maZ m Va~arar eeAl~ rvrg~rmaAm gAe Cy b+4e g~f guPp ~pe~ Mes~
g~v Eaiz) re mru~eZ 6 9e wrr&w rate rajya
~ Wrac da M~ y~~, 23ard Va'Mes'rr~ ~ m~g porc ~geZ gN &as'e car zrrra4~>, gag asA~are
>r she Cv &~~~a iw/~e~WWrrr PW3'~c'~EaA'~,
+~errW~i'I g, Za~rIgresx~re rvr PzP'MicA~y e rr'~e 8'ar'eXed 9eddrrj'e d./
res'seJ'm ~wirr dXa4~ r~my ure we~Yr-(4+6'rrrA~
yeadre a~H H4rrx wre e~r'rre g Derccrrarrr~ rer r'aces u xMHe'~re e~MA ~.
jrrrar gP'm rs es'uo( sIs MrrreH /I'u~ &i@'r lava/
je //g /s @we'~& /u dd 3'gp ~Arne z8e4c-/yue 21
+g rrr~rr Z rem~ norw.
23 rIk Verrli~g aY 8C'W Mw~e uccmrr, 24 AA'V 4W~ MrvcYu>rcAS 26 27 c2g ~rYA ~P~ ~me ~EP'c~arrr +m~~smzrr"+resgwrr'ge
<gv udge ~uguo~rr r~A~A~ ymss~re z/
%Sr'~lZ gey~verrVea og Are+/erg W'ssrj.
ui/8 30 ~ra Xpmy grurve. Z/riprej4m~rer 8~waverr ghat o&we'gp'e'pdwg& Fa /uAd'w MPH&
pres'5'ere +/~~a ~guk~rr r~baAm yrei~~re.
36
~~y 7'~m g) Arcrrl~AmS e4>~ rcrr~ zg e F) Z5zr' ~~r'r'9e rW r'-ea~Aeu'vrW < Ww/s e SF P-20768 Rev. I6/76I
~ggI Q:.CALCULATION SHEETS)
,,dd &~~~~r,//'ZZ
~4 s'P&E/HA~4
//g,.,~-/I-8/
ZZW4' SuBJECT ~ ~+ +~~ + ~~ ~~i SHEETNO x&5 /sr/ +AS~
6 17~
~7 I s ggS~~e //r~4/. /~u/./ 2 PX N4~< /YJ'. r/>s~/~
f 9 10
- ,12 13
~14 772. 7 ps u'4+.r, //'8 19 gPV 21 22 23 24 25 27 30 31 32 s..
cows SPA'8 ~
36 SFP 20268 Rev. t6/76) p 74'//I/ SEfg EO 69 <5/76>
'<'aLC.
ygL DRIGIMATDR PROJECT
'+ ~~
Q:CALCULATION SHEET ~Q DATE +A~K P
~
CHECKED JOS Nq.
5-9 -P/
SUgJECT C4 8 H X/ WJ+P gl7sZ4'87Ã S6 4 7$ ~ SHEET NO
~omgZ SPSrer7s. H~srsrH~~+
Ev'n@'e4r r/~4c 4e~4- ./eve/+g g~~~z. Zyy ~g~e
~K'2Z/B' J
10 75'e 47'e
" 12
~r es s~~e 13
/O'W 14 18 19 gypped, zpr 20 JeEIM</~u' = ww.w'ree~yeWg 21 22 FwzegrRE h eAE~
24 26 c;~MA~ For frMe g 27 see 8&/1 sA/zan Pc gz~~~~g> +4'cw44W
~+Wc'~~
30 277' pZ 31 32 I
EE 30 SPP.20768 Rev. (6176) 4v 1+'i EO.69 {6/76)
Q CALCULATION SHEET j) t 4
ORIGINATOR
/ DATE + ~ ~ +/ CHECKED REV. NO.
DATE PROJECT +~~4 ~K A;Mj/Ii JOB NO. 8$ ~5E Co~ D / ~m~ g /'w
~c d~r ~g~ /g 2 ~oo.
row Esp
/ ZO / ZcP yZc9 X2
, y7sa 8'77 8 ~ 2~Z a STD inc' 8 7,5 4 +'a I'
9 10
~+.c isla pre r +us r+'zr 12 13 14 r zo yzo
~z.~( s-~r'- +'5'P 2/d, 2'7.E jZZ/
j0 8X3,5'/'Pw Z +7.z 4+a A////)
19 20 22 Pg~v ~r/< J<>4 C'v =+~
54.2 /y M W 5.%8cS 23 gz,y C.
24 25 26 27 rd rz>
30 31 32 35 6FP-20766 Rev. I6/76) EO 69 I5/76)
CALCULATIONSHEET
>~pl ORIGINATOR +~'~ ~~~ DATE ~~ +
CALC. N CHECKED REV. NO.
DATE PROJECT~~++~++
t JOB NO.
4~+ ~ +~ ~ / ~ ~+~~~+
e SUBJECT
~~ ~/~~ W~e SHEET O T~~ ~u'~aN
+ 7o7AL.
10 A~ /ZO Pz> yzd /zan re 4 /8'e, P 12
&~6'p/65$
5 '7/,> Zg 5 //0 a+7,4 13 z4Ã8'</ g 784' 14 16
~6 18 hp /2> gz~ y2d 19 -A'9 97g jot
= PCFy dt's> > ZP7,3
~
+7+ //P 8'+7,r 21 ho+7 ggz e 23 24 27
=
7~ t'5~/z XS 75 g~~
30
/W5'M,5'ygmy
= 74zo/z = S~ 7l~ p~
82 7 ys'rP 6FP.20768 Rev. I6/76) 60.69 I5/76)
0 E
,ps~
ggC
+, CALCUULTION SHEET~) CALC. NW ORIGINATOR ~~~ DATE +++ ~ +r CHECKED
+~ CAC8PP Pt PROJECT
~ ~oars JOe NO.
2 SUBJECT ~M~
+~ ~ S J
~A'A'~Z m raw fggtP
~P'~~
3 6Pro~m
/z ~
10 11
+P cg
/2O 34.5 rgo u'. s~g 12 P+rErzw)~ z7pz FP7y,
/ZAN 13
~c.r Z7g9' o,f 14 16 1
'z fi.17 18 19 .. +~=-~z. Sr".~
20 21 E/ -
l$/E.SS)C ~ ~m Z <+78 24 25 dP~~ = r4~g~ = 2r~ZZ y~ ..
Z8'g ~mEE 27 30 31
+E+g ~ CV AN/9 R C Wa GAPA>>
dZ W ~END EE /fPrr'4 r3 r
I9
'FP.20768 Pev (617@ 60 69 <6/76)
ygl QCAI.CULATION SHEET:
t s~
ORIGINATOR ~E
~
~/ MmmeP CQSg, IsyS A g gg g CALC. N REV. NO.
PROJECT. JOB NO.
SUBJECT +~ SHEET NO c'P~WA/
'8 gze fs'6 Pzd 9 >7.l 10 (ajar~)'. rVrZ 0'+>
il 11 4+x 12 13
'14 16 iso i
t Ps 4Z."/ ~ 5~Z, +7+
Og.
18 =
Q+ /gi~SSJ J'9 477z,.
21 23 24 25 p,~ zv ARV v 77M/+ <<V'g5'5 P+ pay 26 27
/R>v 7g'~/VV = .V'9'7<
+jPpv 87~v i+'5'
+ cp yC~<<~S<<~c 36 SiP-20768 Rev. I6/76) ED 69 I5/76I
a CALCUULTION SHEET
II CALC.
J ORIGINATOR ' ~ DATE + +~ ~ CHECKED PROJECT + JOB NO.
,,, D~w Mate +~As-<w AuFmww,,.
+~A'7N~W ~~g~~ ~~~
>~+<Pc Wu/c A J ~ ~ /JJ JmA'~A~
~~ 4 uX 7M~'NA~g 8~~ k cP @gal ~C'M~avl .
7 g~~ pW~AWPZ .
8 9
/r'S.
F~w'Pv'2 10
+Zom JJM~g A 13 Z.
C~
16 Or5 q <~ Crz~
18 19 21 Qz. P 23 24 27 ag~m ~ ~Sr', <.
30 31 30 6>P-20768 Rw. (6/76) 60.69 {6/76)
\
k0. 341 10 OIKTtOKH GRAPH PAPKR KUOKHK OIKT2OEH COe 10 X 10 PER INCH MADC IH U. IL A
.L 4
~ ~
1
1I
>gCH HgL CjjPALCUlATIONSHEET CALC. NO.
~ / REV. NO, OR IG INATOR ~~~+~ DATE S CHECKED y ROJECT >/'/~A Z4 ry~ JOB NO gP~Q SUBJECT ~~ ~NwP~ A'r&wgp@,,
E~ri ~8TF PE /gal p+
d~P~+ /ye~ +ey g y~ yr -~)
.9 10 ~w A Asg
<<~-)
12 13 45'~m e r~ W~+< 8< Occam,p&gs, j'sg-14
<~<w~~y nc r5uc 8 +~Ah re,
>i"iA~
8 A'roWs - ~-Sz 18
~,z 19
= P~~
21
/x/ y /N~ ~~47 g~ dz,k 4/ i 0 ~ Q 4gg 5ZWp z
= +'>7 wz+
SFP 20768 Aev. (6/76)
~z ED.65 I6/76)
0 SUSOUEHA~A STEAM ELECTRIC STATION, UNI~1 AND 2
~ ~
CALCULATIO COVER SHEET COVER SH
=
P, P P J BNO DISCIPLINE Al NK( LEA>L NO. OF SHEETS ~>C 0 NO. ~
CALC. SHEET CONTROL:
PCPLii& iO N 0 s SUSQUEHANNA STATION UNITS 1 & 2 PENNSYLVANIA P & L
~tSf.~ CAGGS JOB 8856 'II>
xc M E6 SUBJECT Q,< +PAPE'( SQS< E. qO, tie,,a l, $ 6,6O,6S,~ i, 3~,~S 0 0 V t2.i o o Ko> 0 A>asm fIiCC~t lX A, l25, iXC, t>>,I2 E., ti<,
SA,~&~>WC
'QCwtr 4.iJi~io~ l:
STATEMENT OF PROBLEM COHPLAZ 'PP.E. 5 uA.IC OfLO t Itmi~r > liight Coe QC <<A V e "C e.w '<os', w A(b 64. ',sK,>S, L'l,~S,G'I, So V A ip ~ f O OPERA lits it O O b>>~P~ YIi6V ~A, vJ OII,i'C 'l C tr.c 4H t'o ii Li&R. Si % a~
hHD bPBz O'T IhI( CORDI Tlo SAR CHANGE R CHECKED SAR CHANGE REQ'D. Q NOTICE INITIATED ~
.g)URCES OF DATAI50HC fRlCS: 885 6-'Nb -li'3- lt -l9- 5y 3 3C,A- LOS- l (tub 75A- tOR-Xhrk C.A-'10 s - i fair t CA o v (jt'b tot- i lot l tr M- tOt - 3 fLCv- C C'IE.', r O t-(jB>rg lOO T I-c>~) y - tOA-). 4u( f'B-to).-3 Ivy t3-to3-t P -to~- 2 Ilb.i 0 sit> P>- l Lt - t 5,v6 lied. <n"" > l'"ro ll8'O-lent-t (vr 'h tlBo- tQ'- a IlC.ts-tc k 4 tI HC -tpi-i SAT ttCP-tOg-t 4 2 trlD'- iii - Ir" ~ Hcl)-lig - \ Rug
< SI M-2t3-t 4v k SisUs.xt'ss-'x 4 (Lri Iick-so>- i l ascii-lo4-24l
'9;A-so~- i Ixvi.'Dl.a,-ioq-x 't4rl Ghs-cot-t (Lrk G'bs-rot-i I 3 ci38-zoi-z 4rk (,BB->t-~4rl,
&bit-Lo>- l (<v> tl,6kB-koi-k Gab 6<6-Xo).- 5 4r5 EBB-~p-I Aur3, fg,-+p-g4y g cost't Nays OF FORMULAE & REFERENCES ~~PL + f~<+~<4t- (le EAL NO. tltO 4 l65) I'OURCES 6, K> tf ocC ss> QlATRIL& A {AocCOA5 A%A, 5SSG HI 'g>tl I5 C l- iICrt. ittp Jib 6 "u.<OCr.ctCit4OiN(r NPSli 'EOA. PuI.H,i"oi-0 e~ Ke4O cuCmL~O DE.C. 1st P(AHl'Ml'Hnhtcl C u SSS6 - Hl - K-LI-,KO-l < '4PF'o. 330 NOS'~(SKI-5 PAN tIc i. 4X Cree% - l-i U. i OC.tf i>'. t. C,b.t-C,Ctl tOR.
Io IIi< tH& %PE.C <f'it' XtON A- lhcl Rov-. 30 obz4,, U r y- w'c t~ic.. v,i9 ~t.~ o ASscsi> un xioN o otttwicc,s ~ s,t.vc vN
'PRELIMINARYCALC. Q FINAL CALC.Pg. SUPERSEOES CALO, S'I-9 l52-3 l5z-z
"/21.I~a t', K.o,l. INCR'b Y-A5 I tl g VS 6. KAI.isPit4.~ <AS REV. 'HECKED BY NO. DATE CALCULATIONBY DATE APPROVED BY DATE
'Preliminary caics checked only at group supendsor's request.
'Considers PSAR, codes and standards, redundancy and separation, opersbiiity and maintainability, technical adequacy, accuracy and clarity.
8856-OA-2I1/74)
I SUSQUEHANNA STEAM ELECTRIC STATION, UNITS 1 AND 2 CALCULATIONCOVER SHEET COVER SH. + OF ~~
JOB NO 88% DISCIPLINE ~ ~i " N+~~+ NO. OF SHEETS 0 NO.
5p(LAg C Ai.( M,i-oxio CALC. SHEET CONTROL:
I'ITLE SUSQUEHANNA STATION UNITS I Q 2 PENNSYLVANIA P 9 L JOB 8856 SUBJECT STATEMENT OF PROBLEM iaaf-SAR CHECKED 0 SAR CHANGE REQ'D.O SAR CHANGE NOTICE INITIATED 0 i l HS5- -i He,S- >0q- z (hv 5 iiQA- 2.'b"- i SOURCES OF DATA IOH ~ f fM& f~'64 RQR Q9- )$ 3- ~ fgpr i HCS Ko i \ fan% 5 %leg - xli- 'Hob- Oil- i karl,
' 5 IS" 4r Pi24-(5-9 6 ( ilk 'i -9 4v'6 PAL 22-7 4v. E.
AhVfc l>u-2S-5 6
4 t'. f'n a-SI,-3 A os- -C C PnaC.- iS( 4 D PIXY- IW-W 4rh Pi~ h-2i-a 5 > Pi~A-ZI,-S 5 > Pi gC,-2-~ 4 T-so- b S URGES OF FORMULAE & REFERENCES 8 P..$ ,>, tOIK SPP AY-tLM, ')P 4ViN6- - '8-'b'5-W io 'WK&X 4ovb't iOv QP IiWiu - K-'2~1 t II. 'j". EP, ~S.>. - M<- KZ <- i8-2, Qg. QQ. Qf S(gQ SPEW'f'iGfh<lt t4 w 9Kt0 664K:CS 9D( t4o. al 1 ss55 Rur 0
.w%.>. H,-(og
'PRELIMINARYCALC. O FINAL CALC. SUPERSEDES CALC. NO.
~
ygL CALCULAT10N SHEET s~ REV. NO.
ORIGINATOR AfOV 08 t CHECKED 4- +~ p gC'ATE SUSQUEHANNA STATION UNITS 1 &2 PROJECT JOB NO.
SUBJECT SHEET NO.
SE Clog 3 NPS,H LAIC,K1 0<<oea HoPE. A qp gg= 4 -hg 4, ln,,
(g 5) h oOiI
<g (IZO'r) sUl 'TASL C. P,oj 1))o !i' 'Ii. wr cii I. oI)
C< (m) (~') Il5 l~~) (, )
1S. EW 8. ~(~)o~ 2 0 13 Cy= 10,+o LK lS 8, E4~Ll) l( 0. o'l 14 l'bl 8. a(<lO 1 ~ l~
1 "3k ~ ?.5 x l() ll 0. 30 lkg' 8, I.S<<0 5. S> P. 21 17" ~-
TOPI) I ~ t 5.5X I
'::-ie--
[ (Io.o'o) =:CI,>5 4/P'pod' g 8-6)
/ioo'P) = P,s I ot, ( / !).3)
~p=+ 5) (Q I 22 4Xo't
>8= t.I '35 6550 24 62 'N kb,3oo 25 00)~
FO8, P I P4 ~ FA'Z'IPJ65:
27 oi-= o,sos 5L o'ioos (55so) = Ii IiI esl~.
28
- d. (IS.5$ )"
I'13. I oIv lf - Io > oI 'Is 55)(ii IQ(c. I 35) = 2 $$ ) Ip
~
(~ (O,g1) 3O nc(/ gy /I ~$ )
3
>P= o.ooo2I<, ~ALP - o,oooxip (o,oia)(imp)(I,I.q5)(65so) 34, gS 8, L,Q r. LO~
35 36 SF P.20768 Rev. I6/76) EO 69 (6/76)
c>" CALCULATION SHEET )
gE REV. NO.
KALi8 ha+YAA f~olt 08 ~97S ORIGINATOR DATE CHECKED PROJECT JOB NO. '38<4 SUBJECT 4 Cu< h cio + MOB SS56 SHEET NO 80 5 <<gi >k~;
FOR. Pi P%. ~
iP=o oooiig~gi JS 3 ': o.oooxio (o.oi~)(so)(ii.as)(osso)'
8i25 x LQ~
- 0. 50 6
~ 2l- 5$
FOII. f'iPE.~ Pire<eea=
o,ho'I Q -. 0,<0$ '(sivK) g= >im g~(Qz) 10 (is, is)"
IP 'I l>~ = its S (is. is'(s,s>)((i as) =
i.i~,io'o.~i 13 )
16'"
(=ooi~~ (~pi g A w)
~ 11
-1B--
+P= o.ooooio 4~Lg: o.ooozib Co,pisa K>>~)(si. tE) >it'5) k.~ 8. 2,S X IO'5
<P=O.>S 20 21 p'I=
22 23 3.$ 1
~( i R~')(isHM) 24 25 25 2i 6+0 (AK44c stet/~.~+~~- t-z~p 4 8)
~<~p~ /
. Ag<p 27 Z, = geo'ios/s'~hS~MW z~~~Z~- ~//aa-wy-op~/)
2B inc.= (o70'- < '(a'os/s )
)'3,l( @
~~J 30 k.=~.,ioa (q @MAL-)
~4'C 3
5<<.-- i.os~k . i k" <<~A = s.qo 4 (g i y 8-<)
Q,R 5g HISHI) = 4,k~ ~ 4< t up
= ~S,~~ S.'l~+ ~E,l6 S.R5
'FP-20768 Rov. I6/76) ii5,R i g NS PILH=
'k W (Q'i) EO 69 I6/76I
8 yfL (CALCULATION SHEET ~ REV. NO.
OR IG INATOR ,IIOII Il ~ OATE I <-Z.I PROJECT SUSQUEHANNA STATION UNITS I & 2 JOB NO. 8 SUBJECT P &$ ~ JOB 8856 HEET NO 8 I H,O)7lI 6 2
N/4,(( (( = I( 4 l((vl(
g> q ko.
+II(SL K lhS~ 'b i DP 7 on dv (p )
EN (AkK(-Is (), k+
ls -i(. 2,$ 0 i ~ io 4=is,RM- O,ll 11
'Cb '; tie'=
12 m,mo o,i6 3'..'4'
<oS'56
% l-22, 0 5't 2') - 2)S 0. 5't 17 r yoga) ~P = -
6, l 8
~
18"..'
- 19. ~
(, I(( + (~'fA
( ~4
'0'1
- l(( ~o 4(
~~
22 p= gagoss&tuH A>>
24 g - ((,>>'4("-(,(((, (((/s) 5, = ('.q6 lola (~6Z 44 p~r(44S( -~ H8// zw' 8 6) 24 26 27 28 29 g< = 2(,.
g(I v'I') =
Qgk (io Fi=
>'3.lk W o b(,KJI('4 (g
l ((ss(. (RL(W i
'+3 ~X)
= o s4( f4 (u/I (g /I-('-)
30 <>..wP.
31 e o tlf~H<= hg- ~g ~ ~0. ~ugly.
32
+PgH g = g(,.P,Q )g.io t 53,I6 Os& "t 34 gl(sH sl = 'l'l,'l5 R.
35, 36 (std((4 Rev. I6/76)
= 'l'I X (g 2) 'FP.20768 EO 69 I5/76)
yfL SHEET )
S CALC. NO.
ORIGINATOR DATE ~ ~978 CHECKED K PROJECT SUSQUEHANNA STATI JOB NO.
SUBJECT WK(.KCg4ip~~ JoB 8856 SHEET NO.
'No>g C.
SHA YA64IC.
Q. hate(,xH (7 Oa. CII- '>
Cp 5'CRAINM -2. l 2 ~ 0 Cv- m,~o Kx 50 I
lyly l S2-x(O 36' S:5 )la ~
-Q.
12 ~
)X- >S Ei>5 w (0 13 r'6
~0<~i ~P =
2,O2,
~
lpga +
60.I3 iY
-17 4(=
'19 26 21 22 23 24 25 4. It )0. (A~'F) = ii.S'6Q < 4~
26 (0,<5)k' 27 'PzHh=h~-g~ ~ g -g 28 29 NINA'6 = >> lt - 9.9'( ~ P3,l t, - Zq,g(
4 e
NPsw~ = z3.eg.
N I 6<8= ~ 4 (Aul g) <n Iy I3 35 36
yyf,l l, CALCULATtON SHEET ')
gf CALC. NO. REV. NO.
NOV 0 ~9~8 C -*
OR IG INATOR DATE CHECKED DATE PROJECT SUSQUEHANNA STAT JOB NO SUBJECT NQ~ gg ~g JOB 8856 SHEET NO.
NPSQA = -~Q ~
t
~ ~a. ~~/~
g, +~6%8 7 t-u
>P= 2~ Q.o Q =M,mo 0. 0$
l34 l, 0'l E'\ - 0'oa
'b lkh 0,~>
ling 13m ,oval ~< '-
14
'15 lA 0 0 %Ilk gI = II.SI
.1&
19 20
'1
= ~'L ll 22 (010') = gS.i( 8 23 24 gv, <~qq ski!'l ~
25 ~
26 Nrsge = I,- kg < ~
27 2& NOSH&= 2x << I8 SG + ss iv - >~ iq 29 30
~ISaa .
3>,0i k gpgHn=c A (.g~)
35 36 SF P.76766 Rou. I6/76I ED 69 I6/76)
e t e~
ygL (: CALCULATlONSHEET CALC NO
)
ORIGINATOR NPy '81 CHECKED PROJECT SUSQUEHANNh STATI JOB NO. 98% 4
( SUBJECT ~ME ko < JOB 8856 SHEET NO.
NoT, e.
N(Sly&,= ~s 4 4 ~ I TWICE E, (
np 7 O~ (pu,)
+~(LA '4'N~ > ~
g ~c'= 2p 0 r
pe >o,yo Oi09
v=
~l lJh" l OS
~
'."" 0. kS 0 kG
~
so<'g i 14 15 k)= 3.ql ~ GO ~
1S+ l~
'S,IS8 R
'0 16-a 19-AE ll k
+,= <10'an
~'s"
~)~)
Caan 21 22 (I W<>') = SS,ia k 23
.24 25 kgb (
Zoo F j= 'll,'5'h g. ) Q~
Co.izP (qq ~ - gp g ) g (g I 26 ~ ~
NhH A = -
g5 4,t + Q-Q 27 26 NI'AHA, = >z, l[ 8.38 ~ gp,(g - pp ( )
29 NI'Slit,: 1$ . tIS VI'Sea.= I< 4C (gZ) 35 36
t ygL ( "CALCULATIONSHEET )
CALC. NO. l ORIGINATOR 0~08197S,. S~ DATE PROJECT SUSQUEHANNA STATION UNITS 1 &2 JOB No 8 ~4
( SUBJECT wPsHK= I
~-4~ ~4. -4,~
4 Q. 4M(r'CH o~ .)
2~
IX'p 5YPAI+~ - X' ~9= k 0 Q= ao,mo I SO
~
) l - 3'x ggl C'0.'t 0
- 12. zz- EE o 3L 13 ~
yoga'I P I LS 14 15 hI= <~a~ I A'o,VP M
16(
h~
=
l0.38 II'B't
.16..
V 19'0 (CIA 4 )
2'I g( = 2E. II P, = Iqg'o/g" m (+u)
. 22 23 4(t.~') as.l4 24 25 k<<(Ao'F) = 5,'I'I II x
'I K iNM" = 1'i.)'I k (Q QI A-6) 26 .~o,~~ k 27 NPSH 0 = 4r 4f, > 4. 4upa.
28 29 hqg~g= >a.i<- tO.SS + 3'3,>a tW.i I NPsHK =
Sl.%0
<Q<) (g 35 36
( l CALCULATION SHEET Np SfCHTH GACC. NO.
4 IMP pAT NOV 0OS 1978 CHECKEP ~ PA iN*
EHA Np "E/T
( BgE Pq~ Np Whbw& &'I W, LIPID.ta nP on. 4 (~)
&0 SgeLb i ~<~
"P= 2~ 2.0 4= D,QO o,l<
l>6 1,68
> (
> ~ > I 'Lt
- , O.NN
. Xi- gS 0.4 l 1Z, 13
+PCPri v'P =
' ko,S>
1l.lo Jk'Aq
- 17. =
'11h'-:
- 19. 4(=V,- 2, )
- 20. >3 I\ t,= 'E4'o Q"
21 22 k w-a) 24 (gee(AO 'e) = >,5t l Q, Cg i
~
I t25 co,s> P 26 " Hl'SHr=
27 2& NPSHP = ~3. II - ll. IO ~ 55.ig - IP,gS 29 NseHn = >q,1z 30 35 36 EO 69 (6/76)
o 0
I
~
Page I of 6 REPORT OF PERFORMANCE TEST FOR PUMP S/N I07384 A performance test was conducted 8 September l976 for a pump on order 006-3605I (AE 23l). All necessary data associated with the hydraulic performance was obtained, The serial numbers for the Impel ler and casings are as follows:
Sta e No, ~Cssle s ~lm el I ers I 66044 57303 2 64953 68422 3' 64946 68449 64957 556ll 5 ~ 64703 69496 6 70976 68404 VIbration was found to be satisfactory as indicated by the data sheets.
The NPSH points for a flow of 3004 GPM towards shutoff have been plotted on Curve N-83l, Rev. 0 and fall on the head capacity curve. The NPSH data from 3625 GPM to runout ls also plotted on N-83l, Rev. 0.
cclcttpt,'ttcLENt
,SUSQUEHANNA Ie2
,NPLI 0 E2 -C.OD 0 O~~ed CI Attttreved with CettitterttL Rey'ee end FORM.
tN
~
Notcy ttttrtctttc tter eeeeeertbL,
~~
Reste ertd Aeeubei\ ter C) &orovecL Neturther ectten req'd.
8 x~ c I-I &Ãeered. Subtnit eerttCed eepy g Cefttried by Setter ehd ~~
] p zap by Buyer.
s Oete ~ <
VPF Ne.
CERTIFICATE OF COMPLAINCE s
The performance test on Pump S/N I07384 on order 006-3605I (AE.23l) was conducted ln accordance with Procedure CQCP-I085, Rev, 4 except the test was conducted In the Cameron shell, R. Lemp Cameron Test Dept.
~ I ~
CUSTO @ p g./? ~.P DESIGN CONDITIONS CURVE /tI/ gQ/ Q~ I/ g PROPOSAL NO OOC-364 4/ ITEM' GPI!I Q/ FsI EFF ~ ~
Ineyeranll Rund SPECIAL NOTES T.H.IFY.t 448 aHP SO./ 0 POMP ~gg~g -g pump un/ RPN / 7t5'0 DRIVER fv/+ 7Q
/~ HP
/>>>~'tt'wd gA)yg/oct]V g//NLL 7OOA~ /corot DRAWN DATE 7 /ro 4'iw. BY g,P,~,
'. 'rl- ~ I as ~ I~ ~~
+1 0 aY : c.P/P:. ji I" ii!I I
, II
'ig '
~ ~
I
~ et': Ilt~:
i-.il! ~ 0
-OPO j!C)~AL cE art e Ia ~ 8
','I
~ ~
elji ~ i
~
I I f5
~
I 4 bate e
~
I Hk:: 'I I ~~ ' I~
i: I: I I I r IIs
~ ~ ~ ~ ~
I
~ ~ ~ laj tjtl !! !It
- ll !Ils ,l.s ~ ~
I Til
~ ~ ~
sl I I ~ ~ ~
jlf:
III: il:I
't ~.
jjll!!II t'rI l
'. ~ ~
t l'i
~ ~ ~ ~
tl Is I ei I I~ ',:
~ ~ ~ ~ ~
e' I I! :I II,
~ ~ ~
$ 0. I~ rre I~I illiI lli:
, I~ II ls i
II I)
~ ~ ~
~
!le
~ ~
II!
- I
~
.s sa'a a I'T I~ I ~ ~ I I.I I I~
I;.t I
~ ~
I ~ ~ I a
I T
~
ii!;.
ao
~ ~ ~ :-: ~ ~ ":ill I ~
II I 'l
'I"
~ ~ I~ I I ~ ~
ls i
~
I I
a ~ ~
~
t tl sill fe.
isa D
7 ..".:It: Ills alii +Il I Ihi: jlli Ie ~ ~ I ~
- I:
~ I ~ ~ I I I~
~
I sit'; I'Is ~
II I
ifj Ili
~
~
'I' I ael
~, Iff I
'ilt
~
sl<. ~ a A ~ ~ ~ I I I ~ I ~ t ~ ~ ~ bra
\
e..'. .I.ll ;I!i I'l ~ ~ I tillI ~ I If , II I I tt
- 4 tulsa ~ ~ ~
C eo I~ I a
Il.l
~ ~ ~ ~
Ial sell
~
'ltlf I,t; ,itl at ~
!1 /d.iW Il I~
~ ~
il",
~ ea ~
I~
a
~ ~ ~
i I
~ I II:I ill.!
'll
~
- I j II 'IIii g 4o
~ ~ ~ ~ I are
~
4 tl ~ I Il II4 I~
II
~
e ~
I ~ ~ ~
I r
~ ~ ~
I~ ~
.ii I I lgl', il I ill) I
' ~
Ill ":I Iiie I, ,. 'lii Ii!I So i:;I .'f. I I I jt I
~
Te I ~
tf!:~ 'I I I
~
I tie
~ a ~ ~
IIa I If ~
)
flit ll I I Ilik tal II~
is ~
~ I I:
PJHR,"8
~
~ ~ ~ ~ I 20
':ss
~
I "I~
~ ~
- . l-':.
~ ~
I , Illi iI!Ir uc nr /II0 10
.::::Il:
~ I il
- '/
~ ~ I ~ ~
~!II gll" ,.J'~A igjk'- ".:,: ill j?g/'dOO i
~ ~
~ ~ ~ ~ ~ I Illf IIII Ilt',
0 l 0 400 /ado /@do OOOO . /sf OO oO I a..-s,-
GALLONS PER MINUTE CURVE/I/-8 JI,RnV.O
P~ 3o~C PuWP d~ ro788+
~~IF dF 8~8F>8&dmCZ g~gv~ ~-gpy gg v'. y J
~d Tcf:
4'RPA Acz rsr=rc'ivy cp J p~~g 7 AP4 cfrg
~~~~~p4 A~PA>~r~w r~~p 4.+ ~r. gp
- d. qu<rrc+ ~os +4< C~ ~<a. caaAsc-Zh'c"c uazg) r>mawa's g uw.ou A. d'uL'7uu p'.
~ypgg~
Cowed ac 7'~
PC. o CAMERON PUMP DIVISION ING ERSOLL- ND COM PALY TEST RECORD e 't AS READ DISCHARGE HEAD 1
fORREC SUCTION LIFT FT.
ZERO DEPRESSED-.PL>~FT.
CHANGE IN VELOCITY HEAD IN FEET O TOTAL HEAD VENTURI TUBES O
co r 0 SIZES AND READINGS TOTAL G.P.M. 191/
WATER H.P. 5 3. ,0 2 50.
~
AS READ
&A~ . 73,72 ,$ 70
~mao /fgf su 33.
0 ~ 0 BRAKE H. P.
).7 aAji NpdE seAL PUMP EFFICIENCY 7>. 65. o ',7 .3 PUMP 7
SIZE TYP TAGES DRIVER NOTES>>
FULLLOADSF'EED NO. /P7g G.Phl, p5 TOTALHEAD y g SUCT RA' EFF, Q LIQUID 3I 5 IN FT DIA YANKDIA DIFFUSOR TEMP.
PO. SUCTiON CONNKCTION C.L. PUMPTOC,~
VISCOS. Pp ~()i Oi TOC.I PUMP DISC. OAUGK GRAVITY
/0 sv- Nae. b c c, TEST STAND CUSTOMER ORDKR g~ + p I TKhl BY NO.
y 3 NO
OMP S/W PE peD-4 CUSTOMER DATE EST STAND ATA BY
} PSHAW}}}} VP SUBMERGENCE 1 ~I SP, GR.
+~LCORRECTION RDER NO. ITEM NO, FP ED BY TOTAL HEAD CORR.DISCH HD + VEL.KH-SUCT ELL Oo oR 314 a
5 ~ Ao c4 V:
~i C5 ~ V V) PCA o Ag o 0 4J gK V10 HO CP O 0 O 0 ABU+ ) u~ gS ' U) ~
Q~ )L: Ã4 QD
).'f V2'7 30 a.5 /;o ~ 0c2 2 0 53 S .3 8.73 2A . K ~32.5 z5. 7 23,. 3 .5 0 G36 >5.
a . 4 3'}PI F~ 3
D I STR I BUT ION NO. DATE VENDOR Z CL I EN T FI PQ 0 g )976 EL D Q.E. APED DRAWING CIVIL Z R EVI EW ELECT. COMMENTS AS PLT. DES. CC 0 CHECKED BELOW MECH. Z I 0 E 0 NO COMMENTS. CON. SYS. I-F 0 COMMENTS AS INOICA. ARCH. TEO, FOR APED'S IN. CC O FORMATION AND USE PURCH. ONLY. NO REPLY RE- EXPED. LU 0 QlllR ED. G 63 COMMENTS AS INOICA. INSPECT TEO, WHEN DIRECTLY SCHED. AFFECTING BECHTEL RESPONSIBILITY. REPLY START UP REQUIRED IF NOT IN. CORPORATED BY APED. E Y 0 FP
/ g7 RECORD Z REVIEWED C E I L 0 BECHTEL I-BECHTEL JOB N(K SAN FRANCISCO 0 SAN F RANCISCO 8856 0
k
'i
SUSQUEHA~STEAM ELECTRIC STATION, UNITS~AND 2 ~qiI f
<< ~ CALCULATIONCOVER SHEET Ql COVER SH Q OF DI$CIPLINE KEGHIitrltC 0 L NM (rirQprR NO. OF SHEETS ~S iI. II, g ., t /r f A L L LL L,A T l o Fl 0 SUSQUEHANNA STEAM 0 NQ.
CALC, SHEET CONTROL:
~
ELECTRIC STATl0g t'-tc<<I<SSV SUBJECT
~M&',6,2i,a~, <9, ( I, SS,$ 6, op gxi l ItN> 2 Foe. VMlc QO~G~ (t Z ) of ho~, AL(, i l I XO'l >
Z i 8,
'Pi'7 ao N g25, 226, X2(.
(ay<~ kh~" gp,5A STATEMENT OF PROBLEM LOIA PVL<K . PP Q.QSIA.Q.IE. 0 gS 'lN 7 H 4,ui~<o~ 2 au.R s~+<c ~ 'I A('rS% l
<<JA(I i'<<.<% 'Ho<<s 6 o ow 6 .it'ic.%.H "ted%
OI't lANi (o gC.it"'( l IIN tu lM 0 u 2, M.M'Of <<L L to
'4(': P i~> p,,P,C,>,4 ~ r )
SAR CHANGE R CHECKED SAR CHANGE REQ'D. INITIATED 'OTICE ~ QF DATA I&oHE. (Q. S t 8856=>6B'- o3-I l4nrb '966" ol-~ Enr 5 >16- 5- Rrv 3,>(I- pg- <<'OURCES i)CR-<<<<O i RV G) il )L 4V 'pCA i iii l RVr I) iii X tetr 5 't)( Pi IO'A 'I I4'l i Oil PC A t)C.rA
~ >6 I G ~
0'66 -'to)t 5l) 'F66 ~lett 3 (IEArl (T6P io)I Ll, G 66 to% i s G P)h- i 05-i i(Air s I DG. l ~~
~ . 2 )E - . T Ll @pe ~ ~ GP)IF~
G66-<<oi,-a. bArl G66-to'I-I: 'st G6P -ia>-z 4r l 6'i36 tos- l P~c G66- tot-<< I'Ltv6 (66-ln.- 2, l G66-lin-i (4nr%, G66- i lto-.2.,6ulo . G6(.- iii-i @jr'66- ill- 6nr'\ GIt)6-tt2- i (4AF 8 (FP,P)-il) ~ i P~-5
&6&.- 'll%-i bArd 96Po- iti)- i Q4,"5 666- idio. L Itt)IT 5 ) 666-li3. l 5nr 8 G6PF-<<6- i tArrs,GP l'.- t t8 2. 4- 2 ~
(F66- li4-3 (4 i, G6P. - \i~-< br', 466- two-i Iw 'b, sl6I3- iio- l 4-8, <<tQ,- i<<o-i 4e r, (o~'-,: '<<PAGi
$ QURCE$ QF FORMULAE 8t REFERENCE$ '
G.<.. Lp,a~ PlL (t q5 giga, .885I' Kl-E~l -'BUD -8 SSo4-Hi - E<<- iS - 'I P (L<oe.aP~C< (:" V . SSS'( - 4< 6<< 5>- I 0 .ht"lIL.Iio Ali- Vi '. 8'i(i f l.t) C.Ah(.KI A COLL OL /Wiles, [gal)J'Ec) 7'-~->iht4'i)<<Laic)QIIrt<P<bl(r NPSH POP PVL<<R P5'lirl~ ILht(rtHK~t+O., /<<LAN,iLI,<<tl
~ ~
7)
"PRELIMINARYCALC, Q ". T', FINAL CALC SUFERSEOES CALO. NO. ~ll ) E 'l'5't- \ I l<~ l6 lsl- lLI \ h- l<<) iSl-ti CON v N(y.t P g VA<<FLNU.S~ / Z@
4 f)o < Q. KALiNPM.5 gaS / 6 'Al'i n. I 8/>>F I II ES 6. YALlNFllLSFAS l, ~gA~Lr)r( z/L'~ 9- H0 Sly ~r REV DATE NO. DATE CALCULATIONBY CHECKED BY DATE AP ROVED BY
'Preliminary caics checked only st group supervisor's request.
"Considers PSAR, codes snd standards, redundancy snd se paration, operability and maintainability, technical adequacy, accuracy and clarity. 8856-(iA-ait04)
SUSQUEHANNA STEAM ELECTRIC STATION, UNITS 1 AND 2 CALCULATIONCOVER SHEET COVER SH. > OF ~ DISCIPLINF AG iCAt- >KC~CAt2 NO 8856 NO..O NO. OF SHEFTS Q CALC. SHEET TITLE g, Q. g., 4 P LQ~C.M.L 0,g iow 0 SUSQUEHANNA STEAM CONTROL'UBJECT ELECTRIC STATION STATEMENT OF PROB LEM SAR CHANGE AR CHECKED Q SAR CHANGE REQ'D. Q NOTICE INITIATED Q "SOURCESOF DATA itbIi-tto-5 Ru:~i tiber-tto-st Arrl H66. i- i M"'5 <4s'-i i-K 1PAJ, 4 8 f - il t stab-ill-~ 4 t itQ-t (-i 4rt 869-iQ-t(4eR '766-NOR- i 4.-4, bhi,-g.o)-2
'bcA" to-X Su 2 WcAAY t Ger 2 OcAK2iie x Cue 2 bc',-(2ii~bEu: 2 4r 2, %6B-ziS-t avr5, c.A-zo -i (Lur 'l 'bcA L>o l IltAr2 1 'Pcb-.aohxlt 4r x GBB-xOEI-i 4rc IEP.L- xoit-z. 4v(, 6.66- dq-E l2vrt 6PEE &x-Et IcvrsI,6rif.' to -i 4rtI I
(P)B-IO'5 2 4V K, O'I3B" i0$ - I 4'5 N 0'lB- iotD-i Rtu i 6fi6-WOW. i Rtnr6 66B Xgt- 4.s( (rAB XOS- \ s i 6II6- >OR,-i twas t're@- >Oct Rw'5 Gr65-bio- I Lr3 (r66- Xto-2. Ere 6.Ir,I3-).it-L 4r2, &66-Zii-2 Lur3 ((55-) A.-t hErtI,6PB- Xi~-2. RW~, 6%EL-u5-t Cur I) 6KB- 7 iIE- t +3 66I3-2i6-2. RVS 5, Colt't tsar~~ FOR SOURCES OF FORMULAE & REFERENCES 3 'POS, 0 'NY "SA iC. ut 'YO quoi CA W oV Of Oih c. ijAt-
~I I2A'( QV.6LN% CA.iNCr QH.V'ANiC C,ATA t 0(r t~ 9~ - tI4II-i tN6'Ot4 HPib E. Oi'SOE 5,~%,A+ XABL~
P. <<C.. - '4S I Y V,AL AKW ( C.6,HOiIP L L4L 4e. t l Il. ls.l, -(.+$ $ ." 48(>ghL Qrt,b~ 4KOVKL -Ilies- 6th-X her to A 4I2 W 1lILIiiirJ'tt46
'PRELIMINARYCALC. Q 6-X5$ ~ 3 FINALCALC.Pf SUPERSEDES CALC ND iSL- R t5t-iO i- iS>- tt tSt-t, tSi-D tS t-St t~i- 5 isa-2 iS i- I REV. CALCULATIONBY "CHECKED BY DATE APPROVED BY DATE NO. DATE EPrellrnlnary calcs checked only at group supeniisor's request.
~ EI am~Drave Escis Rntrf RnnRrntlnn nrNArahuhir maintien//litv h lc rien 'N'v i d r v
NO. 88% SUSQUEHANNA STEAM ELECTRIC STATION, UNIT CALCULATIONCOVER SHEET DISCIPLINE I"LC Ii+<t C Ai- N'++i-< AtL 1 AND 2 COVER SH. NO. OF SHEETS
+ OF ~
0 NO. CALG SHEET CONTROL: r ITLF g 0
~ t 6 ~ P C44C.V.4A %i QM 6 SOS(UEHANNA STEAM, E TRI STATi SUBJECT STATEMENT OF PROBLEM @rsvp, SAR CHANGE AR CHECKED Q SAR CHANGE REQ'D. P NOTICE INITIATED ~
SOURCES OF DATA 6 ob. 2A- i 4 2 CrSPt->i'4-I lLiar I, Cthe-2S-2,4rl-, GI64 ~ XtS-5 Avr2., ~Pari-2(Q,-tt (4v t, c,4h6-2to-'i 4s,'HAP..1ia-i Gee- %to- i (hu '. tris - bio- \ Rur'5 it@6-tip-t 4:c,HPh-it0-5 Rur IIKC.- 'l ti- w liar'i 'Hli@ -tty-i Auu K, 6ttl6P~-at%-t RVrt,86'tt-1SC-i Rur l HPtO-2'bS 2 tv'I ii6> >66-t M$ i 8554-t v(. (v 1'izA- Xo- io
'I IAI- 6>i - isla) 4y- io, 5 '- PIDA-3K-5 (herc t'r Via.Pi-2K-> 4r PI%A- lh-9 (bar'll Vi2A-'lx-I Ru: c plzA- iE-PIR,A-6O-6 4vr'0 7i A - r,i- 4r 0 PIZ. - t a-6 4 c PlaA-io->Lr) rD 'PiaA-Pi-KIBE P t>4>p i ~(sPl2A)K<&6)PttA-><-<&C)PitA" 80-34re,P lt C<-l'l i 4Cr t PqA-Itl-(Qg;(,
Cot4 w Nlc,yz CAb SOURCES OF FORMULAE 5 REFERENCES C:<0 - 'Ai- 5 5-tl. t.Ai.c,v.i.A<iotqb - 0-0 - h3 R4 0 iC CL- 4->'tI II,. 5$ - bi G.- IQQ 'l 2'E W QIR CAi.(,U.i I6 cict6ts i4- fE (L4g 4 l . 0 A,g tuOtll lt. V y-Rico% OC->t.R. - $ 4- Ia,i '\-XO-i PRELIMINARYCALC. P FINAL CALC. gf SUPERSEDES CALC. NO. REV. CALCULATIONBY "CHECKED BY DATE APPROVED BY DATE NO. DATE
'Prelim'inary calcs checked only at group supervisor's request.
~+r'nnstrlare ttqact nrtat'. anrt ttanrlarrtt rarlnnrlanrv anrl saoaration. onarahllltv and malntalnahllitv. tarhniral adenttacv. arrttrarv and claritv
+c h
ye SUSQUEHANNA STEAM ELECTRIC STATION, UNITS 1 AND 2 CALCULATIONCOVER SHEET COVER SH.~OF A CALC. NO. 45 i 6 0 NO. DISCIPLINE ~ (,~AL NO. OF SHEETS CALC. SHEET CONTROL: TITLE 0, Q. R. ~ 8 5'KLrt LA L,6%t 0 HG
,SUSQUEHANNA STEAM ELECTRIC STATlON, STATEMENT OF PROBLEM AR CHECKED 0 SAR CHANGE REQ'D. Q SAR CHANGE NOTICE INITIATED 0 SOURCES Of DATA Pi 4
Ii -iS - I V ML Pi~P~~u 5 P>> Ii-iIo - C I Lr ~ Pi~aai P ia a W - iq - i 4 e
+ a~~
i 6 Pi> I~ -iS-S 4 SOURCESOF FORMULAE & REFERENCES i ~ 'MC-A N0%4<lc P.L B'Bh4 @<5 E- ~- 2
- 0. PLPtN& St .c.i& i c.AC<0%
R. Q.Q.. f'vwPb
-c 6 w c.HKN6- - R2,G2 4 zB R'I CQQil,'96N< 406AXxoN WRAu)iN 6- 4-l'I t ~S . 'PRELIMINARYCALC. Q FINALCALC. SUPERSEDES CALC. NO.
NO 'ATE CALCULATIONBY 'HECKED BY DATE APPROVED BY DATE
'Preliminary calcs checked only at group supervisor's request. 'fA BC'hC! '. L.'. .-
8 IG+ ORIGINATOR PROJECT SUBJECT
~ o1- \ NKVLS
( <
~8 CALCULATION SHEET CALC NO JOB NO.
SHEET NO. 3 i5 h k6 dm 8 6~ 6
.,~
REV NO SEC<<pu 5 - NPSZ ~hI <a<P<ie<g 2 Ho&+ u('sH g = 4. - 4g + k~ h. (qo) c15wC No>C Q, kE M&XH .cP 'IXSO Pew OA- 4 2 0
~e 4ts. 0 03 ~
0,5t 15 O.tg 1P( t,W~lo ~
'17 18 tI = 2,bo 19 4(= 'L'ho ~ k I'I"l&
k.. 20 ~ I oo a ((= g,qo 8 23 24 25 26 27 28 29 g(goo') ='~~.io k (Q ~~<An'. gC ~4 Z) k<<(>oo'v) = ll Sspoo (ada I oo i~P Nl5Q 1 = g< gg>> 4<- 4,<I)~ = Rl.94 - 6,10-. 55 L4 - >R ( t
= ~l),s( (e, 35 36 N(EHR. = 3 w 9 (4 k ~ Ac/ V - 0 f ~qgi.~ ~.j~~ig '( pg),
I.~. ~ ~ yt ygL (.,'ALCULATIONSHEET ) REV. NO. P ORIGINATOR ASAA 14 191 4 44 DATE PROJECT 8444 SUBJECT I C.LAW <sOM'o SHEET NO. NPOL4 C g<(.u,I A,<<CI~ Hop+ & 5 ho - ~up~ 7 .--. 4( wA6wt. 6
'ko>~ Q. 'WRkL6-XQ oe- C~
1~ 2.0 3p -'lip ,Oo 0407 3~ 12 ESo'o L.SQ
~ 4 13 ~lA 5. 5V 14 gl 5,50 > lb 13( >P = 9.00 IA( =
4.00 IAAAA" l k i44<jeC 18,;,
"~
20 4 IA =(6& - t,W%'3'/3') W, = SS>'3'/3" (~M M h ~~P -'~ 23 4(= kl the 24 25 26 27 28 29 NI'gag = gz-kg th-4<< =
"l0 SW 0c 34'5
(+j ~g AAA - gf Ay~,.AA ~~~ ~+~ 36
y,A
~ ~
s~'ALG.
~gg<
ORIGINATOR V'n 5 AI 4 t4 Q CALCULATIONSHEET
~Q +~ ~ DATE ~ i,aI SUSQUEHANNA STEAM 1 61973 No. h5 t k 4 REv. No. 0 ~i PI@( V.h. ~
SUBJECT i ~ SHEET NO. 3
~ ~Z~~~ u~.
cfear 6 HOVE NPGH h tlP0H g. 7 (4C) (R) (0) Qc) RI,hb. 3>. I4 X<.'l4 H lto Sell "lx.OQ ed c, il.cl(o 35. I4 L2,fg 3e,sC gCl C RI,94 55 lb 23,4 l
',)
io.S< 12 b3 L4 i3 R l.,l Io E5 l4 'to.59
'H xl 'l(, 35. l4 'lSAz 16 19'0 21 22 23 24 25 26 27 35 36 ED.69
v v i DISTRIBUTION 4:1976 NO. ND R /VO APED DRAWING REVIEW CLIENT COMMENTS F IKLD A'S 'CHECKED BELOW CIVIL F No comments. O $ Q Comments as indicate'de ELECT. I'. DES. I for APED's Information Bnd use only, No reply, MK H. 5 required. CON. SYS. I-C. 0Q 'Comments as indicated, RCH. IL when directly affecting O Bechtel responsibility. uI UJ Reply required if not FKD O Incorporated by APED. IN%'KCT FOR a OBY BATS SCHKD. t~-MC START-uF C B I M Reviewed BECHTEL woo No.
'SAN FRANCISCO 8856 0
I-BECHTEL SAM FRAMCISCO
Page I of 6 RFPORT OF PERFORMANCE TEST FOR PU~IP S/N 05733I4 4 A performance test was conducted 26 July 1976 for a pump on order 006-36049 (AE 234). All necessary data associated with the hydraulic performance was obtained. The serial numbers for the Impeller and casings are as follows: Stage Castnes ~la alleys I 599IO 66465 2 58664 66235 3 58665 68009 59882 65490 The vibration was found to be satisfactory as indicated by ihe Data Sheets. The NPSH points for a flow of 9898 GPM towards shut-off have been plot ed on Curve N-8IO, Rev. 0 and fall on the head capacity curve. The NPSH data from l208I GPi~1 to runout is also plotted on N-8I0, Rev: 0. GEIIERAL "@ ElECYRIC RUCLEAR EIIERGY OIVISIOtf 0 Disapproved per con;ments. R vise and resubmit for approvaL 0 Approved with Comments. Revise and resubmit IN FINAL FORM. Q Refer to EDS No 0 Approved. No further actionreq'd. C) Approved. Submit certified copy. by Boyor. Review/ by
~,y Certified by Selter and Approved ys;so. ~+7 y g /
CERT I F I CATE OF COMPL I ANCE The perforroance test of pump S/N 05733I4 on order 006-36049 (AE 234) was in accordance with Procedure CQCP-f085, Rev. 4. J jrf.& conducted lj~ R. Lemp Cameron Test Department
<~
CCSTO~m .P", A,/).W, g. ES:GN CONDITIONS CUR~E /8-8/0, A~Lr.O
?."O. OSAL NO.OO~-III> gf ITEM GPM /dq OOO. EFF is RCQCP&R"KC)I88~ RCBL~CS PUMP Q y grD/I Q-P SPECIAL NOTES T.H,IFT.I QOO BI,P SG./,0 pvrrP sw od ~34/'/ RPh1 //Q 0 pooc~p DRIVER IIP 7-47. 7r pudgy V-c-.d 74b r P Wo7O4 BRA WN grE)~, DATE c~~<r,or/ <H~r-4 Arl Tr1 le O 4- F', BY TH/I C>rs Ir ~"./ 4 I +I'I~+~ I~ I ~ ~
7/A'-r I- g w,Q 7/+/g-. $ TIHA T- . ph.'P, I ~ DID.O C~ !It-: 'oA'gA4 r j I ~ ~ ~ I
~ ~ I~
I i~ I I e . I ~
~ ~ ~ ~ e ~ .- ~ i r ~ e ~ '.: I I ~
I e '"
~ I LL. ~ ~
I ~ I II ~ ~ s
~ ~ 'e C'. N/~C I ~ ~
I~
~ ~
1 I assi ~ ~
' ~ ~ I ~ ~ e .' I ~
I ~ ~ ~ I~ I ' 90 *I I
~ ~ I ~ I ~ ~ , ~ ~ ~ II ~ I ~ e I ~ ~ ~ I ' ~ ~ ':-.I: ~ ~ ~ li I ~
80 I: ~ ~ e: ~ l ~ ~ I r r ~ I I I ~ ~ ~ > ~ ~ e
~' I ~ ~ ~ ~
I~
~ ~ It :: I:". e I ~ I I '
sse ~ e ~
~ ~ ~ .;<<I ~ ~ ~
I I ~ ~ I I~ ~ ~ J~
~
I I~ ~ l
'I' e ~ ~ ~ ~ I ~ I r K "EEI ~
rI
~ ~ ' I: s I ~
I
~ ~
II I
~ ~ ~ ~ I ~ ~ I ~ e :::LLl ~ ' ~ ~ I ' '
I I
~ ~
e! I:.=
~ ~ ~ ~ ~ ' ~ ~
II
~ ~ is ~ -"I ~ ~ I ~ ~ ~ ~ 1 I~ ~ I Icosi I' I I ~ 'I ~ I~
tt I I'0
~ ~
1 ~ I ~ ' I
~ ~ ~ ~ I ~ e ~
I~
~ I~ I ~ .-
i ~. ~
~ i ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
I tiI I ~ e
~ ~
Sf7< ::::LL:
~ -LL:: &~
re I
~ Ie ~ e ~ + :sitI ~ ~
0 r ~ I pa~ Clb Ti4 QC I
~ ~ ~ ~ ~ ~ Ie ~
0 40 ~ ~ e ~ I
~ ~ ~ ~
I ~ I' I :::.:I
- .:I: I, 'I" i...I., 1st ~ ~ ~ I lie IE'I
~ ' I I I ~i ~ ~ ~ ~ ~ e uc.//oN. No"I ~ ~ I 'i:I I ~ ~ ~ ~
I
~ ~ ~ ~ ~ ~ ~ ~ r 'I' :..il I~ ~ ~ ~ II el. ~ ~
- se' ~ ~
2a "I . I e ~ I ~
~ ~ ~
I
~ II lel: i..i , ~
1
~ ~ I~ ~ ~ I tee I ".:I: ~ = ~ ~ ~ ~ ~ ~ i ~ ~ ~ ~ ~
I
~ I ~ ~ ~
I~ I
~ ' I I ~ ~
I ~
~
I s
~
I e [iI I!
~ ~
ii
~
I s .", r
* ':jVr .Sh@R g :C :i iI ~ ~ s ~ ~ ~
5 c r4'A /t/d gWl E'.
~ ~ ~ e ~ ~ ~ ~ ~ I 10 ei: (. ~
I I ~ t ~ 1 !i:,i e
~ ~
ei I ~ ~
~ ~ :'. I! ~ I ~ e ~ I I I: 1~)li" I /b // /~ /3 /9 GALLUISE Psst MNUTE Serstd tt
\ I CU VE gr 8/0 AC'r, d(
@gap op guzv~ 4-g~o gzv o 0 F'~Br-cA/~A~~~ ag r< r~g ~~ca, r~o~,. ~++y~z~~cy 4m~~ ~ps,~/ r~zr- gA a/a A'Pz+ H'asD donrz iA~y A7 APPA~P//we i~4/ Pd Hr g~r rd Eve.proN .rVoz2l-Z (d.9 zr. g~ggc ~FzoA XA'gr. nb~ D r /ape+~ gg ~g zoo/y rgb/ g~~ yy~gADS >P~ycrigap; po e.t. 4>c Fi'4'~ A'd ~344-po. p r-; cogg~crr~nr Pwc'~~4~bg
I I
N PUMP DIVISION tNGERSOLL H TEST RECORD. g~b% DISCHARGE HEAD AS READ s~ CQRIIECTED I 5o7 CsG. rV 0
=-u SLrCTIOII LIFT FT.
ZERO DEPRESSED,-- CHANGE IN VELOCITY FT. ip HEAD IN FEET g / TOTAL HEAD 5 C (-.2 (/r pl VENTURI TUBES SIZES AND o ~.>~ READINGS C./'. G.P.M. ~c'.cg ms'OTAL 3~37 VtfATER H. P. L5(~7 (9 ~) 2 "j 3
~METER AS READ 5 ,5 I 3 3 "t 6 ; Egg
.E
/Jr Pb rL pe )
C
"--=--~ H'vl gg cl /~o 0L. R. P. M.
5e~~ ~'"" a' BRAKE H. P. L-qo ~ H~S Ig)f I~ c~c 2 'f
) $ 7c~
t Icos t)I7 r) c c.p I'/3 II7o //75 PUMP EF'FtCIENCY 86. g e qi C So. o PUMP SIZE TYPE STAGES DRIVER gg y 'rrJIW LOADSPEED R.P JVl N.- G.P.M 05 33] TOTAL HEAD AP SUCT. R.P.Ih, EFF, <<>> troTRst IN Pl'i LIOUID C/ 0 /g 6oo IMPELLER DIA VANE DIA DIFFUSOR TEMP. J 7 SUCTION CONNECTION C.L. PUMPTOC I. VlSCOS. TO C. L. PUMP DISC. GAUGE GRAVITY
/g OCgG ?d-7'Ãs ra~ cacP - ro TEST STAND r <yg 7 CUSTOMER ~9 ~ ~ ~ ~ ~ . (&~8 "'O4'- Zr o ~-
ORDER ITEM NO.
'EST 'PP D\ NO.
V k I
J r g J I II o Q r J 5%
j
~ I I Sd ~ ~
M
~ Rk5 ~ S 5 ~
L SR RRII E 5 L
~
L R W. %
~RW RM%88$
WW N5 55
~
RRl
.W- 55 5RSliPJR WE%
IN555
~
RW W& RH
~
WJ WWHH
f
~s Xb 102.1 2 8%FEltKNCK DRAWINGS Q 1NI RTVib P IA.111 e PIPIQltr Plkll Akhl gl M-S.S ~ b ~ s g M-~) ~ O ~ ~ ~ 34 ~,t r ~ r otoort/Jt taeoca 4 COMPONENTS ON ~s asst srs e+ s ~ ss ~ ses rss owsso oases Q eOQ THIS DWG, ARE 6-LISTED 'PEC. 8858-6-9 APPLlES PKNN5YLVAN1A POWEN I LlONT COMPANY aolotossso toseetovasek SMltoasssa otosso oosstec otal% rect i oeet I McHTEL~ oorr rMrrctoco $ 5dMKFRIC -REACTOR SUlLblMt'ESIDUAL RkT ltEMOvAI. uer a %a 5r Q ~ss CB-202-I U~8 K esto
1 v sr
'Oe ~ ~ ~ ~ ~ ~ ~ ~
F s
~ ~
I I I ~ ~
~ ~
I I ~ ~
~ tt r ~ ~ ~ ~ ~ ~
4 ~
~ I ~ ~
I
~ ~ 1 "i.".
I
..1 @I 1l:.: ~ I t I I ~ ~
1 I ~ ~
~ .
I
~ .I ~ 1 S .r ~ ~ ~ ~
I" ~
~ s I. ~ s~ ~ ~ ,I ' - ~ ~ ~ ~ ~ )l~.f ~ . t-j'sit'f'l ll ~ I4l lsl ~ INI NV.o. ~ ~,
t ~
,l I-..I'+.
s I ~ ~ ~ r M~ al 4 ~ NN vga ~ OI I y' N~ Sl+ ~ ~ ~ ~ ~ ! II I
~
I ~ ~ k. 1
~
1
~ ~ Ir I Qrss Ij~+$ ~ ~ ~ ~
- t,is I.: I I ~ I ~ 'y i:
I ~
~ ' ~ ~ tsar I'
r ~ ~ I!'II .!1 I s
~ ~ ~' ~ ~
I ~ f ~ i '; I ~:1 ~ s r I 's.-'..I I t r'
~ t I ...'. r COllPONENTS 01 ~
p .p. - s I ~" I THIS QWG. NIE 04ISTED. ~ sssa aaee aa ol
~~ ~ ~ I I tB~YLNSN tOWEN 4 UBHl COlltANT SPEC. SNN4-0 APPLIES I ~ ~
r
~ I . 1.1 1 OS%
SaSSSSSSSVef, ~V1V~ tSJCI vsC I~'WlI, IWV0 I I I r ~ ~ ~ r' NOclSl WS MNcsKO s ~ ~ ~ ~ ~ ~ Is " I I I I y I i \ I I tsova RC - aaacme sue ys I I ~ I I ~ ~
,'s I I I ~
I
~
I' I RHR. UNIT 0, r ~ ~ ~ s y I I r'I s
~ ~
I I ~ 's Was g 11 was. NN DCA Olla 1 3
I
~ ~ ~ EEAFf ZION' \,
jjjlOZ~ QWt'.":.Q ~l.
"I ~e ~
1'e
.:,.:i:.." '.."::: ..Vsssl ~ ~
I ~ ' = ~
-I- ~ ~ ~ ~ ~ I '..wwhwa ~ Nsaa~s 44S ~tt~1IQs w ICE I ~%s ass l&Etl w 1'%~a IA'assltVtv ~ ~: !.:
I r.'I .
) rl.
s
'-'I I
I re I I I
',i s't . teaaeSsasf tstavttt e
~ M ~ p. lt 4.Ots
~ 1~ ~ NQEE: REVISED IO ~ ~ ~ ~ ~, . '
ADD EIBD e AND WEUNINtI WELD'IQSe
)I jjEQIJ IIIQIBIQ, s ~*
- I
'r X ~warred
- IIt
~ @&1 ~ ~ - ~ Rgaglatk& tgee~ SICSICA'ia& CICVate ~
et~ ~
~ ~.ssasaava asar iaIIasr'rsaeu ~ ~ ssw 7> ~u~~c.
rrs u' rsrrsts'4oot C CrVares(
~ !s.r. "a.'s zQdiei wu~r w mrr~rrrssrsrs err (c
Aerg~~rpauc m m<r ram e II t ~ mr rccaurcz
~ I- I,
- 4. ~
v 1
~ ~ ~ .1. r~ ~ ~ +sire r \' r, ~~ ~, \ . r e' l ~ ~ '. %'essg v r ~ e ~ 'e RNV.4 ' t f leDi ~
I i l4l .~
~ ~ I e ~I i
M -NI.IC t INI Sle1
~ ~ iS tllv114 tLAIIiANAaNI .. i 'Nl I ~,
r ~0 ) ~ ~ er vjr
,,I rr s v
('i~ikY~
~ s ~ ' ,e 'r I.
s!llsaqa
~~
r ~- O Qo ~
. ' r , AIINAVP . .l -'l Vg e I" rrr rr eVN eaErg 'lisegi r I
rS tr'
~ s ~
I e I, sw a err aaa Slab kV I aallt
'i ~ 1 Sl v Itd 'ij se ~ .. . WaeleO ltOSII aWnr ~.
COMPONENTS ON jgiEIICN'~IINIIENNIIEvo.I E'jtlit c.ttrl nc jtti'.s'. al ~.~l ..'r THIS ISO. ARE GeUSTED .I' . ~ is
~ as "~ "- 1llaa~ asrt" SPEC. IbSN APPLIES ~ENNEVLNANIA Non N UONT COIEMN . ~t~t ~ II.Se a ) al lsl ~ mes~asaseaa a,
el r Q*
~ - r .t.I SOMILTRIC ~ v zrrj ~ ~ ri s rl'ee
RQ4%R..BLDQ';H.R,'".
~'NT ',IL >.gg'tl R .le aa 4esj aaeaisia Ir-. rrPP; 9)
Q.S iR 6 RE('9.'~V '-.'+l'<g>W=-~-"."-.8::".:"...="..:~""'-" OEEN DCAltRII IE
'j4":~q I
AS V%-<
.~ ',"'., IIIIIIIIIIIII IIIIIIIIIIIIIII sjliljllljill I I jilljljljl ljljljljljlpljljljljill .hl'- ';
Ee.alO i as@ tat jt lk i feewati lie.is, I '.a t 1' ~ JI t. c-
0 SR~ 0< N.OA.OSNOo ~ 4 ~ l4I IRIYiO. P %1@i ~ M
~
Iil ll~N ~
~
b. hg PION
~
Ikkll 4%A bl
~ ~ ~ ~ ~ %1 aL COMPONENTS ON C
N W ~ W% gj ON maae THlS DWG. ARE O-LISTED
~-
SPEC. llSS4-e APPLlES PCSNSTNINA NWEII L LIGHT COlltANT ALl~ tUSOYLVJPEL IANIMNCNCO ISOMETRIC REACTOR BLDQ R.H.R. - UNlT- R esa 4l ~ IQ~+ NN DCA Rll I 2
~ OO
+iVnrpep aaWWs .4 N tlSI REV,O PSZb
-(yl H-3l.t " hfNAlf f II AMBI'~ll.,
Pfoglv3 II H3h4>> 4. g
~
S
~o ~ <<N S ~ ~ CC OCMCCOOO ~ JO ~
COMPONENTS ON THIS DWG. ARE O-LISTED tENNTLVANAtOWEh L LIGHT COMtAMT SPEC. 885S4-9 APPUES JLLCJCOOIL OCM VLVJJI J 04CLSN~ CCCJS CLOCC NC CC JAW COOC L IJOC O
&OCTCL CJCC IHAJKalCO ISONfTNC -RQCNE BID. ~ kH.k - UNIT< 2
I~ II
~ I I ~ ~ ~V gs C.fl.'iao'/ro ga+TN ~ ~ 4 e-es/aa!o H-r/-l ~ t N/4 rizo fN-AlQPl Os Iffy/ g fag II s ~ /Pe+a+ r Q SI a IS fssrc I fsssssfsfss ~ Cl IlaW I'TWW ~ sf ~
COMPONENTS ON THIS DWG. ARE O-USTED KRNSYLVANIAPOWEA A UGlll COMPANY SPEC. 88SLG-9 APPUES Afffsfsssl, fllssf fr ssas OCISW~Cffsrfffffsasffs~ lmflfrsfC
~ CCffflL CAff SCANOCCO IgeatZTR// -macule 8Ln6. /ff.,lf.R. UNIT> 2 ~ ssasf ss ~ IT N -2/d -I ~ W Ss A L uss 4
4
~SO ~
QV.Q 55yrb 5
~gUtlNaCO lola SAetS 4C'54VVSer. O447775t C4l'O m ~ ~
b4,.CtWW eau I 5 bIV,+~4 ~45~ 554745
<<sea go.
ble45-4 ~ V44 IL444 ~ 745 m 5a4 5'+ 5E'I5LV75 N4
+4 ~ ~+
5'4 ~4' 54e p~ ~ 5 ~
~ 4 ~ )
~ /+1 yg j* p$ JO
~ )5 )(0' ~
(, REFERENCE DRAVtlt5IGS r HI gl 4~ (SI Rtv, b
+4 bb'b ~ 4 eb44b.
h&4 hei A4 bb r.. l4-Q4 7 C4 go ~+f / 44'4 44y4 A 5.5 415 VLa ~4 5
~ ~
444ltlll ~I 4545OA ~4 SCt OtV 45ofL 457554 7574L h 444 4447 COMPONENTS ON THIS DWG. ARE 6-USTED SPEC. 8856-G-9 APPUES tggmmal towN c NN COQPNN
~INMILM&4 ~4444744444444444am 44755erf 7 ISOMETRIC- lKACTOR, BLDG .
Q4H.R - UNIT I WS, Q Sl ASS-I20-I 574775'<'!'eoc, I E45 OW ~ C 544
=)
0 V NO?2LE COND:TlON3 12"-465.14 r i4- C.OOO TH5LEDOLET 1 RCQ'D.Oa1 4ll WLET TEE
~ 4 thol Set Ik-(AXE~
a a cc~ca. 12~4bb lib TH REDOLET 55 REQ'D. EQUAL SPhCNO REACTOR r b ~SEE r RW DETNL FOk
-A NOVEL CON Fl. ~ gal 0"~gLG ~
GBS-II8- 4 REFERENCE. DRAWlhltIS 151 REV. 2 P.KI.O. p-aHa ~ 2 Plhi4 PLhl4 ARfh 24
)
cP i~ I alw W cow tea OWO IN SQSQRO COWJIPONENTS ON THIS DWG. ARE 6-USTED SPEC. 88684-8 APPLIES
~
lEW$TLYANAtOWH N 06NT CON%NY
~ araraa 8w'aaiw rrrrKTarrkhw ~ acrf aa aar woco ~ araf a ISOMETRIC" REACTOR 5LDS.
RHR -UNIT I raa I 19 wasaa oa.
~ es6 GBB- ll8-4 a~1 tmXr~r~~>nLkfiJ..l~ 4<1 TCEIHZTQ R
Ol SPRAY NO?ZLR COHIIECTIONS li"-Gb5-IIS IX COOO THRKOOLKT 2REQ't.ON~ INLET TM COtV. 4<<GCH 5'0% f~Q,~IS-IA I oF CSNTRR H.5 lt"-LOOO+ THREOOLKT SS RRQ'O. EQUAL SPhCINO G89 I 8-
-=-'
tlgf lO
~ gb REFERENCE ORAWIHGS I 0-lsl REV.2. Pd.Z.D.
8 Qr5 + 5 PIPINO PLAN<<hRCA RO Il gg NThll
~tk~cO<<I FOR NOLLLE CONN'S.
K.S
+o ~ <<<<<<VWftttt t lartlel&tl1,ItlylOtOEttsCfL PWCV << ttl r ~ ~R COMPONENTS ON THIS OWG: AIIE O-LISTED 5Ã5TLNNAPOWlS S LlQllCOMPANY SPEC bb5S G-9 APPLIES OCÃNl I&tlQNCISQ XSOHETRIC REACTOR BLDG.
RHR OMIT I SI-IS essa GM-)f5-$ 2'
SUBJECT:
Study on Torsional effect on the seismic response analysis of (1) ESSH Pumphouse (2) Diesel Generator Building As requested by NRC analysis has been performed to study the effects of including torsion in the dynamic response analysis for (a) ESSW Pumphouse (b) Diesel Generator Building. The Analytical Procedure used in this study consists of: (i) %he eccentricities of these structures were calculated. (ii) The structures were represented by a fixed base 3-D stick rredels with structural masses properly lumped at the calculated eccentricities, as shown in Figure 1 and 2. (iii) Axial frequency analyses of the 3-D stick rmdels were performed to determine the structure frequencies. (iv) The frequencies determined are then cmtpared with the corresponding frequencies associated with the fixed base models having zero eccentricities. %he results of cmparison for the ESSW Pumphouse is shown on Table-1 and for the Diesel Generator building is shown on Table-2. These results indicate that there are insignificant shifts in the structural frequencies by including the eccentricities in the dynamic analysis. From the results of this study, it is concluded that the structures reeled by lumped stick rmdels without the inclusion of eccentricities in the dynamic analysis is adequate for the prediction of desired structural responses. Ql& + >o 4 og WP26/27-1
0.0 0.0 660.0 0 0 0.0- 685.5 8.0' EL.685'-6" 0.0 8.0 685.5 0.0 0.0 716.0 01 0.0 1.1 716.0 Zr..660'-0" MASSES AT NODES 3 MD 5 FIGURE-1 ESSH PUMP &DUSE 3-D STICK K)DEL
EL. 737r-1S" 6 10 05 COORDINATES EL. 723'-0" 5 04 0.0 0.0 660.0 EL;710'-9" 0.0 0-0 677.0 4 0'L 701'-3" 0.0 0.0 701.3 4 0.0 0.0 710.8 0.0 0.0 723.0 8 0.0 0.0 737.1 1.12 EL 677r 0 0.5 -1.0 677.0 2 7 8.9 -6.8 701.3 9 19.5. -1.3 723.0 EL. 660 '-0" 10 0.3 -3.1 737.1 MASSES AT NODES 4g 8~9@ 10 FIGURE 2 DIESEL .(KNEKGOR BUILDING
,3-D STICK N)DEL
'i Table-1: ESSW HJMPHOUSE: Frequencies with and without eccentricities (See Figure-1) Fr encies ( s) With Eccentricit Without Eccentricit 13.93 13.94 18.05 18.06 28.94 28.97 38.83 40.01 TaMe-2: DIESEL GENERATOR BUIZDING: Frequencies with and without eccentricities (See Figure-2) Fr encies ( s) With Eccentricit Without Eccentricit 8.86 8.96 9.65 9.71 22.56 23.42 31.69 32.04 33.45 33.66 WP26/26-1
SUM1XT: Equivalence of Fixed Base and Flexible Base Models used for the analysis of Primary Containment for seismic loads. In continuation of our response to the NRC question 130.20 as desired by NRC, a study has been made on the above subject. 'Ihe object of this study is to datanstrate that as the shear wave velocity is increased, the results fran the flexible base model converge to the results of the fixed base riedel. The study considers the vertical seismic analysis for SSE for (a) a fixed base riedel (b) flexible base mdels for various foundation flexibililites defined by shear wave velocities Vs, 2Vs, 5Vs, 10Vs where Vs for the Susquehanna site is 6200 ft./sec. 'Ibis corresponds to an equivalent vertical spring constant as shown in Table-l. A sketch of the flexible base vertical seismic model is shown in figure 1) . 3.~ of FSAR (See A damping value of 5% of critical was used for all fixed base structural rrodes. 'the damping determination technique described in reference 3.7b-3 of FSAR !.BC-Tcp-4A, Rev. 3, Appendix D3 has been used to calculate the canposite modal damping for the flexible base mxlel. 'Ihe results for the fixed base and the flexible models are shawn in Table-2 and Table-3, in terms of frequencies and rmdal danping values. The seismic (SSE) responses in terms of axial forces are presented in Tabl~; 'Ihe results indicate the follcwing: (a) Table-2: Frequencies values approach fixed base conditions for 5Vs. (b) Table-3: Modal damping values approach the fixed base condition for 5vs. (c) Table-4: Seismic responses approach fixed base conditions for 2Vs. These results demonstrate that as the shear wave velocity is increased to 2 to 5 times the actual site shear wave velocity, the results fran the flexible base model converge to the results of the fixed base model. 'Ihus use of the flexible base model for the seismic analysis of the contairment structure is more realistic. WP26/25-1
(e Table-1: CDN1'AINMEN1". ivalent Vertical e S in Constants. Prcan %SAR Section 3.7b.5, Reference 3.7b-3 (BC-Top-4-A, Page 3-15) Equivalent 4GR Vertical Spring Constant, kz (1- >) Where W = Poisson's ratio = 0.3 Radius of Circular base mat = 50 ft. Shear Modulus = C Vs 2 Vs = Shear Wave Velocity = 6200 ft./sec.
.Mass density of foundation medium =.4.3478E-3 -. "- =
k.sec2/ft (JC = 140 1bs/cft.) Vs = Vs k = 4.78E07 k/ft. Vs = k = 1.912E08 k/ft. Vs = 5Vs kz = 1.195E09 k/ft. Vs = 10Vs k = 4. 78E10 k/ft. WP26/25-2
Table-2: CXKZAINMENT: Vertical Seismic Model Flexible Base Vs. Fixed Base Fre encies. ( ) Frequencies (Cps) Flexible Base Fixed Base Vs 6200 ft/sec. 2V 5Vs
- 16. 19 17.24 17.45 17.47 17.48 20.95 23.18 24.09 24.23 24. 28
- 38. 24 38.63 38. 75 38.77 38.78 Table-3: OONZAINMEK': Vertical Seismic Model Flexible Base Vs. Fixed Base Modal in 8 Critical Modal Oamping (a Critical)
Flexible Base Fixed Base Vs = 6200 ft/sec. 2V 5Vs 10V 9.3 5.3 5.0 5.0 5.0 9.1 6.1 5.0 5.0 5.0 5.0 5.1 5.0 5.0 5.0 m26/25-3
Table-4: CCPZAIMRP: Axial Forces (SSE) (ki ) See Figure 3.7b-8 of FSAR, Attachment ¹1) for location of merribers. Member Flexible Base Fixed
¹ Base Vs =
6200 ft/sec. 2V 5Vs 10V 14.5 21.8 22.2 21.9 21.9
- 84. 7 127.5 130.0 127. 7 127. 8 239.9 360.7 367.7 360.8 361.1 412.2 617.9 629.1 617.0 617.6 576.5 860.7 874.9 857.7 858.4 6 734.5 1090.8 1106. 6 1084.3 1085.1 866.9 1280. 4 1296. 1 1269. 5 1270.3 991.5 1454. 3 1468. 5 1437.7 1438.4 1095.4 1595. 9 1607. 5 1573.1 1573.7 10 1319.0 1773.8 1774.7 . 1733.2 1733.2 1479.1 1968.3 1956. 7 1909.4 1908.7 12 1611.6 2107.5 2078.2 2025.5 2024.0 13 1701.4 2177.3 2128.2 2071.5 2069.0 14 34.9 34.8 33.1 31.7 31.6 15 127. 3 126. 3 119.6 114. 3 113.8 16 201-3 197. 3 185.9 176.9 176. 2 17 843.4 842. 7 787.2 743.4 739. 6 18 899.6 895.0 835.9 789.3 785.2 19 759.5 727.5 680.6 642.5 639.2 20 799.1 762.2 712.5 672.5 669.1 m 26/25-4
TABLE (Cont'd) 'c Flexible Base Fixed Base Vs = 6200 ft/sec. 2V 5Vs 10V 21 829.5 786.9 734.8 693.5 689. 9 22 845.3 797.2 743.3 701.5 697. 8 23 602. 9 611.5 571.5 540.0 537. 3 24 602. 9 611.5 571.5 540.0 537.3 25 76. 9 78.2 73.2 69.3 68.9 26 234.2 238.4 223.1 211.0 209.9 27 418.5 426.1 398.4 376.6 374.7 28 1701.3 2177.3 2128.2 2071.5 2069.0 29 845.3 797.2 743.3 701.5 697.8 30 83.2 82.6 80.9 77.1 77.5 WP26/25-5
~
r
, Ul HQO 1
2 ETTA'C;H BAIT 4 I. 191.1' I
/91.8'2 L EGEND IIRYWELL ' MASS POINT WALL>> DNODE POINT NUMBER D3 77e.e. D14 D23 Q MEMBER NUMBER RPV OS PRING NUMBER Q3 ~ &15 759.1'ACTOR 760.9'25 SHIEL -Gs 763.1'50.1'38.1'18.1 Qs 745.1'R Dls 739.1'S 738.3' QS 729.8'7 07 710.1'4 De 7161 De Qe 702.3' D27 g2 I 26 Go 0304 Qll D19 SUPP R ESSI ON RPV PEDESTAL CHAMBER WALL 673.1'02 011 LD0 D20 02 6r58 6 H Q 03 Q3 31 29 SUSQUEHANNA STEAM ELECTRIC STATION 'UNITS 1 AND 2 ,FINAL SAFETY ANALYSIS REPORT" VERTICAL SEISMIC MOORE'OF CONTAINMENT WITH FLEXIBLE BASE FIGURE 3 'b-8
SUSQU19%NNA SES UNIT 1 AND 2 DOCKET NUMBERS 50-387 AND 50-388 CATEGORY I MASONRY MALS PREAMBLE: . Safety related masonry walls are interior partitions whose primary function is to provide shielding and fire protection. Masonry walls are not used as primary shear walls for seismic resistance of the structure. All category I rrasanry walls are reinforced with all cells fully grouted. The infill material of double wythe walls is either grout or concrete. The minimum specified compressive strength for grout, concrete, and mortar is 2500 psi. hhrtar infillis not used on SSES masonry walls. Metal ties, between the wythes of double wythe walls, are provided at 24" spacing maximum in horizontal and vertical directions. Seismic design is in accordance with SSES FSAR Section 3.7. Allowable stresses are as noted in FSAR Section 3.8, Table 3.8-8 and Table 3.8-9. Safety related rrasonry walls are Q-listed and have been added to the FSAR Design Criteria Sultry (Table 3.2-1), in response to NRC, Quality Assurance Branch, Question No. 260.1-b (34). QUESTION NO. 1: In your response to Question 2, you indicated that Sm is the allcwable stress as specified in UBC. For extreme and/or abnormal loading combinations, you increase the allowable stress by a factor of 1.67, which is in conformance with the practice of SRP Sections 3.8.3 and 3.8.4, for reinforced concrete structures. However, concrete masonry walls are quite different fran reinforced concrete walls, particularly the unreinforced ones, the use of such a practice may not result in an adequate design. Depending on the types of stress, that. is, tensile, shearing or axial campressive, the factor may vary from 0 to 2.5 (see enclosure 2). Specify the masonry design strength fm used in Susquehanna masonry walls and the allowable values for all types of stresses.
RESPONSE
Code allcwable stresses for masonry tension, shear, carpression, and borxl are increased by a factor of 1.67 for load canbinations involving abnormal and/or extreme environmental conditions which are credible but highly improbable. Since code allcwable stresses are generally associated with a factor of safety of 3, the 1.67 increase provides a factor of safety against failure of 1.8 (3 -. 1.67) (see Table 4 for the increase allowed for each type of stress). 'Ihere are no unreinforced masonry walls on SSES project. Susquehanna SES masonry walls are designed based on an ultimate compressive strength, f'm, of 1500 psi as specified in UBC 1976, for solid grouted hollow masonry. Minima axpressive strength at 28 days for mortar, grout, and concrete is 2500 psi. Materials are in accordance with FSAR Appendix 3.8C. The allowable stresses are as listed in Table l. WP26/15-1
TABLE 1. SSES ALLONABU" STRESSES Materials and Alla@able Stress: UBC 1976 (1) Stress i
- 1. MasonrL f'm = 1500 (see note 2)
Compression: Flexural .33f'm = 500 Axial .20f' (1-(h/40t) ) h = clear height, in. t = wall thickness, in. Flexural Shear 1.1 ~f'm = 43 Bond (deformed bars) 140 Bearing .25f 'm = 375 Bed Joint tension Normal (See note 3) Parallel 25 Mcdulus of elasticity, Em 1000f 'm = 1,500,000 Modulus of rigidity, E 400f 'm = 600,000
- 2. Reinforcement:
Tension: Grade 40 Steel 20,000 (used for ties only) Grade 60 Steel 24, 000 Ccmpres sion: Grade 40 Steel 16,000 (used for ties only) Grade 60 Steel 24, 000 Notes: (1) For stress increase allied for abnormal, or extreme environmental load canbinations See Table 4. (2) Ultimate crepressive strength as specified in UBC 1976 for solid grouted hollow concrete units Grade N. (3) Zero tension normal to bed joint is used. NP26/15-2
QUFSTION NO. 2 In the note to your response to Question 2, you stated that the allowable shear or tension between masonry block and concrete or grout infill is considered to be equal to three percent of the ccapressive strength of the block. The allowable shear or tension as specified by you is in the staff's opinion too high. To specify the allowable shear or tension of the vertical joint between wythes in terms of the canpression strength of the block is in the first place unconservative and the use of seemingly low percentage of 3% rray actually result in an allowable shearing stress greater than its corresponding strength. Therefore, a revision of the stress criterion is required.
RESPONSE
The specified shear and tension, for the interface of masonry block and concrete or grout infill, of three percent of ccmpressive strength, f'm, is based on the relationship 1.1 ~f'm given in ACI-531-79. For f'm = 1500 psi, this relationship yields a value of 43 psi ccmpared to 45 psi (.03 x 1500) allied for evaluation of project masonry walls. The difference of 2 psi is justified by the fact that the ultimate axpressive strength of masonry f'm, is generally higher than 1500 psi. The values for shear and tension as specified above have been used only as a guide in evaluating double wythe walls, where infill thickness is greater than 8 inches (24" thick walls and larger). For walls having an infill thickness of less than 8 inches (total of four walls), zero tension/shear is assumed for evaluation purposes. For SSES masonry walls, the actual shear stress, as determined by VQ/Ib for uncracked sections, and in the canpression zone of cracked sections ranges from 5-10 psi; except for three walls. For these three walls shearing stress is in the range of 10-15 psi. QUESTION NO. 3 In your response to Question 4: (1) It is indicated that response spectrum method is used for the dynamic analysis of the concrete masonry walls. However, there is no mention as to which of the response spectra is used, upper floor or lnrer floor response spectrum or the average of the two. It is required that an upper bound envelope of the individual floor is used. (2) Though the use of ACI 318 formula the cracking of concrete masonry wall is considered. The use of such a formula is questionable in view of the fact that in a concrete masonry wall the weakest section is the bed joint and the rrodulus of rupture is equal to that of neither the concrete block nor the mortar. Indicate hcw the modulus of rupture is established in ycur ccmputation. WP26/15-3
RESPONSE ITEM (1): Response spectrum for the lever floor has been used for evaluation of cracked/uncracked behavior of masonry walls, as applicable, for vertical motion, and for walls cantilevered fran the floor. For horizontal motion, the lcwer floor response spectrum has been used in the initial evaluation of cracked/uncracked behavior, as applicable, for walls spanning between two floors and walls having side connection at concrete walls. These walls have also been re-evaluated based on the average acceleration of the upper and lcwer floors. Where the upper floor acceleration is less than the lower floor acceleration, the lower floor acceleration is used. For justification of using average acceleration, see Enclosure l. RESPONSE ITEN (2): Although ACI-318 formula is derived for cracked concrete sections, the use of the formula for masonry walls takes into consideration the difference in material strengths. 'Ihe difference between masonry behavior and concrete behavior is recognized and allowances are provided in selection of seismic acceleration within a frequency variation of plus or minus fifteen percent of the natural frequency. The mxlulus of rupture (fr) for masonry is approximated by increasing the VBC allowable flexural tensile stress by a factor of safety of 3 and then applying a 33% reduction to arrive at a lcwer bound value. M.s value is used only for stiffness and frequency calculations of the cracked section and not for strength. Alla>ance for uncertainties in the modulus of rupture is accounted for in the frequency variation of
+ 155 of the natural frequency.
QUESTION NO. 4: In response to Question 5, it is stated that when the design stresses of masonry walls exceed the alliable stresses, fixes are designed such that the criteria is satisfied. Indicate the number of walls where such fixes are needed and provide examples.
RESPONSE
The number of masonry walls requiring fixes for cracked section criteria is 36. Wall location, thickness, and elevation are as shown in Table 2. Typical fixes are shawm in details type 1, type 2, type 3, and type 4 (see Enclosure 2). WP26/15-4
' TABLE 2 SSES MASONRY NAILS WALLS WHICH REQUIRED FIXES PDR CRACKED SECTION CRITERIA NAIL BLDG. FZOOR ELEVATION THICKNESS K). OF NALIS REF. E4Q. Control 656'-0 8" C-1301 Control 741'-0 6" C-1304 Control 741'-0 8 II C-1304 Control 753'-0 8 II C-1304 Control 771'-0 8" 16 C-1304 Control 783 '-0 1'W" C-1307 Control 806 '-0 8ll C-1308 Control 806'-0 1 '-0" C-1308 Reactor 728'-0 8 II C-1202 Reactor 799 '-0 8 II C-1205 WP26/15-5
QUESTION NO. 5: Provide justification for any deviation fran the attached staff's interim criteria in your design and analysis of the masonry walls.
RESPONSE
Deviations and justification for differences between SSES criteria and SEB interim criteria are as noted in the following paragraphs. Items which are not specifically addressed are in accordance with the criteria or not applicable to the project. ITEM NO. 1: General R irments The materials, testing, analysis, design, construction and inspection related to the design and construction of safety-related concrete masonry walls shall conform to the applicable requirements contained in Uniform Building Code 1979, unless specified otherwise, by the provisions in this criteria.
RESPONSE
Uniform Building Code, 1976 edition, has been used for design and evaluation of Susquehanna nasonry walls. A carparison of 1976 and 1979 editions of UBC shears no significant difference in criteria applicable to SSES masonry walls. In addition, ACI-531-79 is used to supplement UBC allowable stresses, and ACI-318 1977 in stiffness calculations. ITEM NO. 2: Loads and Load Ccmbinations The loads and load ccmbinations shall include consideration of normal loads, severe environmental load, extrene environmental load, and abnormal loads. Specifically, for operating plants, the load canbinations provided in plant's FSAR shall govern. For operating license applications, the following load ccmbinations shall apply for definition of load terms, (see SRP Section 3.8.4.11-3).
RESPONSE
For canparison of SEB interim load combinations and load ccmbinations used for masonry walls evaluation see Table 3. Definition of terms is as shown belch. Notation D = Dead load of structure plus any other permanent loads contributing stress. L = Live loads expected to be present when the plant is operating, including rnvable equi', piping, cables. WP26/15-6
P = Design basis accident pressure loads. R = Steam/water jet forces or reactions resulting from rupture of process piping. TQ = Therma 1 ef fects during norma 1 operating conditions inc luding temperature gradient and equipnent and pipe reactions. Ho = Force on structure due to thermal acpansion of pipes under operating conditions. \ Ta = Added thermal effects (over and above operating thermal effects) which occur during a design accident. Ha = Force on structure due to thermal expansion of pipes under accident conditions. E = Load due to Operating Basis Earthquake. E' Load due to Design Basis Eartl~uake. W = Wind load. W' Tornado wind load. Ds = Force on blockmll due to story drift under Operating Basis Earthquake Loading. D's = Force on bloc3amll due to story drift under Safe Shutdown Earthquake Loading. WP26/15-7
TM3LE 3. COMBINATION COMPARISON IDAD COMBINATION SEB IPI1~M CRITERIA
- 1. D+L 1. D+L
- 2. D+L+ E 2. D+L+E+ Ds Service 3. D+ L+W 3. Not Applicable INo wind pressure I Load Condition la. D + L + To + Ro la. D + L + To + H 2a. D+L+To+++E 2a. D + L + To + H + E 3a. D + L + To + R + W 3a. Not Applicable INo wind pressurel Extreme envi- 4. D + L + To + R + E D+L+To+Ho+E +Ds ronrrental D+L+ To+ 5'o+Wt 5~ D+L+To+Ho+W ISee note 2 I
- 6. D + L + Ta + Ra + 1.5 Pa 6. D + L + (To + Ta) + R + ISee note 1 1.25 Pa + Ha I
abnormal/severe I 7. D + L + Ta + 1.25 Pa + 1.0 D + L + (To + Ta) + 1.25 Pa + R + environmental (Yr + Y; + Ym) + 1.25E + Ra 1.25 E + Ds abnormal/ extreme 8e D + L + Ta + Ra + leO 1.0 (Yr + Y~ + Ym) + 1.0E'. P + 8e D + L + (To + Ta) + R + leO P + 0 E'+D's environmental conditions Notes: (1) Abnoxmal load canbination in SSES-FSAR Table 3.8-9. Part C will be revised to read D + L + (To + Ta) + R + 1.5 Pa + Q. All other load canbinations will remain unchanged e (2) W'oes not include W, tornado missile. bhsonry walls are not used for protection of safety related equipment against tornado missiles. WP26/15-8
ITEM NO. 3: Alliable Stresses Allowable stresses provided in chapter 24 of UBC-79, as supplemented by the follcwing rmdifications/exceptions shall apply. (a) When wind or seismic loads (OBE) are considered in the loading ccrribinations, no increase in the allowable stresses are permitted.
RESPONSE
Design and evaluation of masonry walls is based on a 33% increase in the allowable stress. This increase is permissible per UBC, 1979 and per ACI-531-79. The factor is also ccapatible with the 25't increase in stress noted in SSES FSAR for Barking Stress Design Method. ITEM NO. 3: (b) Use of allcwable stresses corresponding to special inspection category shall be substantiated by dear>nstration of mnpliance with the inspection requirements of the NRC criteria.
RESPONSE
Stresses corresponding to special inspection have been used in the design and evaluation of SSES masonry walls. Inspection required to assure that masonry construction is in accordance with Appendix "D" and amendments to the PSAR, and to assure that materials are in accordance with FSAR Appendix 3.8C is implemented. Documentation of this inspection is in project jobsite files. IVm NO. 3: (c) For load conditions, which represent extreme envirorznental, abnormal, abnormal/severe envirormental, and abnormal/ extreme environmental conditions the allowable working stresses may be multiplied by the factors shcwn in the following table: (See table 4). WP26/15-9
TABLE 4. STRESS INCRF~ FACIOR COMPARISON FACIOR FACIOR JUSTIFICATION/COHMXT Axial or flexural \ cmpression 2.5 1.67 See Response Question Cl Bearing 2.5 1.67 Reinforcement stress except shear 2.0 1.67 See note 1 Shear Reinforcement 1.5 1.5 I Anchor bolts are not usedI and/or bolts I in safety related masonryl I walls I Masonry tension Parallel to bed joint 1.5 1.5 Shear carried by masonry 1.0 1.67 See note 2 Masonry tension perpendicular to bed joint For reinforced masonry 0 0 For unreinforced masonry 1.0 N/A I No unreinforced I masonry walls I (1) Shall not exceed .90 fy (2) The actual shear stress carried by masonry is within the allowable shear stress given in UBC Table 24-H with no increase factor applied.
RESPONSE
See table above. WP26/15-10 .10-
QUESTION ?D. 5: Design and Analysis Considerations ~ITEM 4: In new construction, no unreinforced masonry wall is permitted, also all grout in concrete masonry walls shall be compacted by vibration.
RESPONSE
- a. %here are no unreinforced masonry walls in SSES project.
- b. Cell grout and/or infill grout or concrete is carpacted by either mechanical vibrators or by rodding.
ITEM 4z Special constructions (e.g., multiwythe, composite) or other items not covered by the code shall be reviewed on a case by case basis for their acceptance.
RESPONSE
Double wythe walls are designed as carposite sections, except as noted in response to Question No. 2. Allowable stresses are per ACI-531-79. ~ITEM 4 Licensees or applicants shall suhnit for staff's review. QA/QC information, if available,
RESPONSE
Applicable QA/QC information is available at SSES jobsite and will be submitted upon request. WP26/15-11
ENCLOSURE 1. JUSTIFICATION FOR THE USE OF AVERAGE RESPONSE SPECTM, (13 PAGES)
JUSTIFICATION OF USING APPROXIMATION METHOD TO DETERMINE MAXIMUM WALL PANEL RESPONSES TO SEISMIC MOTION The evaluations herein demonstrate that: (1) The use of the average floor acceleration response spectra to calculate the response of the wall panel is appropriate, and (2) The use of uniform inertia load with magnitude equal to the average spectral acceleration for the fundamental mode, in calculating the maximum seismic responses is a good approximation, even considering the higher mode effect. For the purposes of this evaluation, the seismic response of a simply-supported, uniform beam simulating a strip of the wall panel with unit width is considered, as shown in Figure l. (1) Use of Avera e S ectra The equation of motion of an undamped, simply-supported beam can be written in terms of the total displacement with respect to some fixed reference axis as: m 8 Bt u + EI a4u ax4
= 0 Where m and EI are the mass density and flexural rigidity of the beam. Denote the seismic excitations at the ends of the EC-9
the beam as Ua and Ub. Then the total disPlacement u(x,t) can be
/
expressed in terms of 'the two seismic motions and the relative displacement to the seismic motions as: u(x,t) = (x/L) Ub + (l -x/L) Ua + r(x,t) (2) 1 Nhere L is the length of the beam. The relation expressed by the above equation is shown in Figure 2. The relative dis-placement r(x,t) needs to satisfy the following simply-supported conditions: r(o,t) = r(L,t) = 0 a2r> a2rl 0
-(4) ax Ix=o ax Ix=L Substitute Equation 2 into Equation l, the equation of motion in terms of relative displacement r(x,t) can be expressed as: ~~
2 ma r + EZa r ~~ m(x/L) Ub m(l x/L)Ua at2 ax4 EC-9
The eigen-function solutions for the homogeneous equation associated with Equation 5 that satisfy the boundary condi-tions specified by Equations 3 and 4 are: san nox n = 1, 2, 3, L and the corresponding frequencies of vibration are: 4 n = l, 2, 3, mL So, the solution of Equation 5 can be expressed as: r(x,t) = $ a(t) sin (7) n=l L Substitute Equation 7 into Equation 5, and multiply the latter by sin nmx, and then integrate it with respect L to x over the full length of the beam, the equation of motion can be transformed into modal equations of motion as:
n+" nn =I'"a+
~~
n= 1, 3 5 2 (Sa) and 2 ~ ~ ~~ an + Q na rn Va Ub n = 2, 4, 6, 2 (Sb) where I'n = participation factor 4 (9) If damping in the form of modal damping ratio is included, Equations Sa and Sb becomes: 2 ~~ ~~ an+ 26nunan+ M nan rn Ua+ Ub n = 1 3 5 2 (10a) and
~o A
2 OO ~~ n + 2~n<n n + < n n = I'n Ua U n = 2,4,6,... 2 (lob) Where g is the damping ratio of the nth mode. EC-9
Equation 10a means that the odd-number modes which are sym-metrical about the mid-span of the beam'will be excited by the average of the two seismic excitations; while equation 10b means that the even-number modes which are antisymmetrical about the mid-span of the beam will be excited by half of the difference between the two seismic excitations. Expressing the maximum modal displacement response in equa-tions 10a and 10b in terms of absolute acceleration response spectra gives: a(< nP n) 2 n
'2 b@ n," n) n 4mL4 a(<n,"n) + b<<n,"n) n5, 5EZ n = 1,2,3,...
This illustrates that the use of the-average of two floor accelera-tion response spectra to calculate the modal response of a wall panel is appropriate. EC-5
(2) Contribution of Higher Modes From Equation 11, the relative importance of modes can .be evaluated by examining the frequency ratios, modal partici-pation ratios, and maximum modal response ratios for constant acceleration which can be shown as: lO . (0 . lO
~ ~ ~ ~ 1 ~ I ~ 4 ~ 0 ~ ~ (12) 1 2 3 r
1
.r .r2 3 ' . . = 1 : -1/2 : 1/3 : . . .- (13) ~l : ~2 : "3 : . . . = 1 : 1 : 1 : . . . (14)
(0 M2
- 0) 0) 2 32 243 1 2 For an SRSS method of combining maximum response, the contri-bution of higher modes is clearly negligible.
If for example, the fundamental frequency "1 is above 8 Hz, the second frequency is above 32 H which 'is already in the rigid range, i.e., in the range of no amplification. Thus the Sa and Sb values associated with modes other than the fundamental will be the Zero-Period-Acceleration (ZPA) values of the two seismic motions Ua and Ub. Using the absolute, sum (ABS) method of combining the modal maximum responses; the con-tribution of higher modes is not more than .4% of the fundamental. mode. EC-9
The relative importance of modes can also be evaluated by examining the moment and shear responses in the beam for
'I each mode, as shown in the following.
The moment in the beam due to the nt mode can be evaluated by: M (X) EIa2 3X an sin L (15) 4mL a(<n "n) b (<n,~n) n m n = 1,2,3,... The moment at the mid-span of the beam is contributed only by the symetrical modes and can be expressed as follows: a(<n,"n) + b (~n,"n) (16) n = 1,3,5,... EC-9
For a constant spectral acceleration, the contibution to the mid-span moment of the beam from each mode can be expressed in the following ratio: M(j'M(i 1 2 3 2I M 2J 27 125 (17) Using the SRSS Method of combining modal responses', the con-tribution of the higher modes to the mid-span moment is less than 1% of that from the fundamental modes. Using the ABS method of combining modal responses, the contribution of higher modes is less than about 5%. - The shear force in the beam due to the n mode can be eval-uated as: Q n (X) = EI 83
>X3 a
n sin nmX L 4mL a(<n "n) b (~n,"n) cos nm X (18) n n = 1,2,3,4,...
The maximum shear occurs at the support of the beam and can be expressed as: Q. n (0) c-n22 a(<n,"n) + b (<n,"n) (19) n = 1,2,3,4,... The contribution of the higher modes to the maximum shear at the beam support relative to that of the fundamental mode can be evaluated by comparing the modal ef fective masses (MEM) associated with the f undamental mode and the higher modes. The modal ef fective mass of the fundamental mode is MEM SmL 0.81 (20a) mL 1 2 The modal effective mass associated with modes higher than the fundamental mode can be calculated as MEM1 = (1 0.81)mL = O.l'9 mL (20b) The ratio of MEM1 TO MEM1 is 0.19/0.81 = 23%. That is the contribution of higher modes to the maximum shear is at most 23% of the contribution due to the fundamental mode. This ratio does not take into account the ratio of the spectral
acceleration for the fundamental mode to the ZPA value for the higher modes. When the difference in spectral accelera-tions is accounted for, the contribution of higher modes to the maximum shear would be less than 23%. For example, if the spectral acceleration for the fundamental mode is 1.5 ZPA, then the ratio of higher mode contribution would be 0.19/(0.81 x 1.5) = 16%. (3) Uniform Inertia Load Approximation Using the modal responses, the maximum moment and shear of the beam can be calculated. This moment and shear can then be compared to the moment and shear based on a uniform inertia load using the average of the two floor spectral accelerations at the fundamental mode of the beam.
'The maximum moment occured at the mid-span of the beam induced by a uniform load with the following magnitude:
f(X) = m a 1' + b <1') (21) can be expressed as: mL a 1' + b <1') (22) EC-9
From Equation 16, the moment at the mid-span of the beam due to the fundamental mode is: a (~1'"1) b (~1'"1) (23) The maximum difference between the moments from Equations 22 and 23 is about 3%. The maximum shear occurred at the support of the beam induced by the uniform load expressed in Equation 21, can be written as: Q*(0) mL a 1' b 1' (24 ) 2 From Equation 19, the shear at the support of the beam due to the fundamental mode is: Q (0) C4mL Sa (gl'~1) + Sb (gl~~l) (25) 1 2 EC-9
The shear from Equa tion 24 is greater than the shear from Equation 25 by about 25%. This margin can well cover the contribution to the shear due to the higher mode ef feet, as discussed previously. From the above comparison, it can be concluded that -the use of a uni form inertia load with the magnitude of the averaged floor spectral acceleration at the fundamental mode, provides a good approximation for calculating the seismic response in the wall panel. EC-9
-1 2-
IDEALIZED) S/&PLY- SUPPozTED QNeFORhl 8EAN ... F/G'URE Mo / Pl- ~) CLa. X Qb L
+~L P g]PM ' E.7 +'FE]V S'E'IS'MIC EX@/7A T!O~
,... Ahl&. REL A7,iVE D jsPLAcEME<7,,
TYPICAL WALL F3XES TYPE 1 TYPE 2 TYPE 3 TYPE 4 WP26/15-12
caNC. rLsLAB ANCHORS 4 Ah/COORS o p I
~ ) ~
AMcrL8 SAP (rrz) o 0 cob/C. BLOCK W'T'7 IhlTECYAI-5 War.< R'Egv(R'80 sV
, Cites/eM Pwa~)
TYPE 1 ANGLE BRACJNG TO CONCRETE
sap
~ 0 II gS \ .n 8 X./$
, 7(br'o]vc. 5Lock WAI L. TVPE 2 ANGL8 BR'ACING 7d STE'EL
conc. rzooa aaAB
~
P J ANGLE prier) coQTINUoUs, A A/ALE (Nkw) Cr v~) conc. BLOCK o f'wry, ArrACeaa
@ACRE'M %ALL EACH rO .END WirH ANCHORS (NEW)
HEAL C-fEP iaruv'S) (r ve)
coAc Fhoo]c sLAS 0 bp ML; Jf.RAM (eprzrinlS). 0 E'/DTIhl G. CONC. 0 W7 A7'rv7eCVAt.s Hl.ock ~ALL: '.. REQUIRED BV bSSICvN. (ma~3 TYPF
'I)V FARM(TTENT SC/PF'ORTS
CALCULATIONCOVER SHEET A B NO. e DISCIPLINE~~ ~~ ++ COVER SH. CALC. NO.
.0 NO. OF SH NO.
TS OF 0 mLE /872/A'A7< D/Wr D~~ C~~/~4 CALC. SHEET CONTROL: NH&tPi4&/~g4 r/I wu z, As'/eA.7Z HPhrP~e ~ &c z~e'4 STATEMENT OF PROBLEM
~P'</ >/Z A rut/4 4 Hi ~A ~~+ E48W AY PA~ %+A e7Dd'MW dw//W4 WpgH ~W~ p~
fVdA'8 NAIr<SrEAR EFZrSZ lAZVZS ~ZZ~ SAR CHANGE SAR CHECKEDY SAR CHANGE REQ'D. Q NOTICE INITIATED ~ 4+~~~+~+~~ ~+~ + ~ ~~ URCESOF DATA Zez uA r r
~4 S S'~ ' -Z j zv.'Jr. ++ ~ ~++4~~~~ +~~
2 d84AH H4 6'/VICAR APEg rYd, 0 l4'9 79'SW7~ SO RCES OF FORMULAE 5 REFERENCES ~ ScAZS /AY gus/ rV&ePPA ~Z u8'PE 9ZA'-4/-Err- ~-) Cwh'F &'AP 3'oc'5& 8Z8A'+f7 PSYCH-Wf'2l-/$-2
~ 5 earp p4g YE WWP~HSM~4 AND MAAc'r~OAr ~A7. a2up /
PEP'M7cm/ 8A 4, 88%6,-/Y/- gz/-4+-g PRELIMINARYCALC. Q FINALCALC. SUPERSEDES CALC. NO. R EV Z~g'7 Sze>>rr CALC LATION BY CH KED Y DATE APPROVE6 BY DATE Prelirnlnsry cslcs checked only et group supenrlscr's request. Considers p3pER, codes end standards, redundancy end se psretlon, operablllty and mal ntalnebl lit y, technical adequacy, accuracy and clarity. 8856-QA-2Il/74)
.,CALCULATION SHEET ( ')
ygL
~ ~
sst:8 CALC. r + REV. NO. ORIGINATOR ~>> ~'+~~~+r DATE ~~ + CHECKEO OATE PROJECT AMIES AWWWAA 4A JOB NQ. c~8z AHA'&cnws'r SHEET NO g4'7SA'W4FS HlWP4~W z'~Zz~4 &ma 2 rf~~mWrZ~e'~ 3 8'maZ m Va~arar eeAl~ rvrg~rmaAm gAe Cy b+4e g~f guPp ~pe~ Mes~ g~v Eaiz) re mru~eZ 6 9e wrr&w rate rajya
~ Wrac da M~ y~~, 23ard Va'Mes'rr~ ~ m~g porc ~geZ gN &as'e car zrrra4~>, gag asA~are >r she Cv &~~~a iw/~e~WWrrr PW3'~c'~EaA'~, +~errW~i'I g, Za~rIgresx~re rvr PzP'MicA~y e rr'~e 8'ar'eXed 9eddrrj'e d./
res'seJ'm ~wirr dXa4~ r~my ure we~Yr-(4+6'rrrA~ yeadre a~H H4rrx wre e~r'rre g Derccrrarrr~ rer r'aces u xMHe'~re e~MA ~. jrrrar gP'm rs es'uo( sIs MrrreH /I'u~ &i@'r lava/ je //g /s @we'~& /u dd 3'gp ~Arne z8e4c-/yue 21
+g rrr~rr Z rem~ norw.
23 rIk Verrli~g aY 8C'W Mw~e uccmrr, 24 AA'V 4W~ MrvcYu>rcAS 26 27 c2g ~rYA ~P~ ~me ~EP'c~arrr +m~~smzrr"+resgwrr'ge
<gv udge ~uguo~rr r~A~A~ ymss~re z/ %Sr'~lZ gey~verrVea og Are+/erg W'ssrj.
ui/8 30 ~ra Xpmy grurve. Z/riprej4m~rer 8~waverr ghat o&we'gp'e'pdwg& Fa /uAd'w MPH& pres'5'ere +/~~a ~guk~rr r~baAm yrei~~re. 36
~~y 7'~m g) Arcrrl~AmS e4>~ rcrr~ zg e F) Z5zr' ~~r'r'9e rW r'-ea~Aeu'vrW < Ww/s e SF P-20768 Rev. I6/76I
~ggI Q:.CALCULATION SHEETS) ,,dd &~~~~r,//'ZZ ~4 s'P&E/HA~4 //g,.,~-/I-8/
ZZW4' SuBJECT ~ ~+ +~~ + ~~ ~~i SHEETNO x&5 /sr/ +AS~ 6 17~
~7 I s ggS~~e //r~4/. /~u/./ 2 PX N4~< /YJ'. r/>s~/~
f 9 10
- ,12 13
~14 772. 7 ps u'4+.r, //'8 19 gPV 21 22 23 24 25 27 30 31 32 s.. cows SPA'8 ~ 36 SFP 20268 Rev. t6/76) p 74'//I/ SEfg EO 69 <5/76>
'<'aLC.
ygL DRIGIMATDR PROJECT
'+ ~~
Q:CALCULATION SHEET ~Q DATE +A~K P
~
CHECKED JOS Nq. 5-9 -P/ SUgJECT C4 8 H X/ WJ+P gl7sZ4'87Ã S6 4 7$ ~ SHEET NO
~omgZ SPSrer7s. H~srsrH~~+
Ev'n@'e4r r/~4c 4e~4- ./eve/+g g~~~z. Zyy ~g~e
~K'2Z/B' J
10 75'e 47'e
" 12 ~r es s~~e 13 /O'W 14 18 19 gypped, zpr 20 JeEIM</~u' = ww.w'ree~yeWg 21 22 FwzegrRE h eAE~
24 26 c;~MA~ For frMe g 27 see 8&/1 sA/zan Pc gz~~~~g> +4'cw44W
~+Wc'~~
30 277' pZ 31 32 I EE 30 SPP.20768 Rev. (6176) 4v 1+'i EO.69 {6/76)
Q CALCULATION SHEET j) t 4 ORIGINATOR
/ DATE + ~ ~ +/ CHECKED REV. NO.
DATE PROJECT +~~4 ~K A;Mj/Ii JOB NO. 8$ ~5E Co~ D / ~m~ g /'w
~c d~r ~g~ /g 2 ~oo.
row Esp
/ ZO / ZcP yZc9 X2 , y7sa 8'77 8 ~ 2~Z a STD inc' 8 7,5 4 +'a I'
9 10
~+.c isla pre r +us r+'zr 12 13 14 r zo yzo ~z.~( s-~r'- +'5'P 2/d, 2'7.E jZZ/
j0 8X3,5'/'Pw Z +7.z 4+a A////) 19 20 22 Pg~v ~r/< J<>4 C'v =+~ 54.2 /y M W 5.%8cS 23 gz,y C. 24 25 26 27 rd rz> 30 31 32 35 6FP-20766 Rev. I6/76) EO 69 I5/76)
CALCULATIONSHEET
>~pl ORIGINATOR +~'~ ~~~ DATE ~~ +
CALC. N CHECKED REV. NO. DATE PROJECT~~++~++ t JOB NO. 4~+ ~ +~ ~ / ~ ~+~~~+ e SUBJECT
~~ ~/~~ W~e SHEET O T~~ ~u'~aN + 7o7AL.
10 A~ /ZO Pz> yzd /zan re 4 /8'e, P 12
&~6'p/65$
5 '7/,> Zg 5 //0 a+7,4 13 z4Ã8'</ g 784' 14 16 ~6 18 hp /2> gz~ y2d 19 -A'9 97g jot
= PCFy dt's> > ZP7,3 ~ +7+ //P 8'+7,r 21 ho+7 ggz e 23 24 27 =
7~ t'5~/z XS 75 g~~ 30
/W5'M,5'ygmy = 74zo/z = S~ 7l~ p~
82 7 ys'rP 6FP.20768 Rev. I6/76) 60.69 I5/76)
0 E
,ps~
ggC
+, CALCUULTION SHEET~) CALC. NW ORIGINATOR ~~~ DATE +++ ~ +r CHECKED +~ CAC8PP Pt PROJECT ~ ~oars JOe NO.
2 SUBJECT ~M~
+~ ~ S J ~A'A'~Z m raw fggtP ~P'~~
3 6Pro~m
/z ~
10 11
+P cg /2O 34.5 rgo u'. s~g 12 P+rErzw)~ z7pz FP7y, /ZAN 13 ~c.r Z7g9' o,f 14 16 1 'z fi.17 18 19 .. +~=-~z. Sr".~
20 21 E/ - l$/E.SS)C ~ ~m Z <+78 24 25 dP~~ = r4~g~ = 2r~ZZ y~ .. Z8'g ~mEE 27 30 31
+E+g ~ CV AN/9 R C Wa GAPA>>
dZ W ~END EE /fPrr'4 r3 r I9
'FP.20768 Pev (617@ 60 69 <6/76)
ygl QCAI.CULATION SHEET: t s~ ORIGINATOR ~E
~ ~/ MmmeP CQSg, IsyS A g gg g CALC. N REV. NO.
PROJECT. JOB NO. SUBJECT +~ SHEET NO c'P~WA/
'8 gze fs'6 Pzd 9 >7.l 10 (ajar~)'. rVrZ 0'+>
il 11 4+x 12 13
'14 16 iso i
t Ps 4Z."/ ~ 5~Z, +7+ Og. 18 = Q+ /gi~SSJ J'9 477z,. 21 23 24 25 p,~ zv ARV v 77M/+ <<V'g5'5 P+ pay 26 27
/R>v 7g'~/VV = .V'9'7< +jPpv 87~v i+'5' + cp yC~<<~S<<~c 36 SiP-20768 Rev. I6/76) ED 69 I5/76I
a CALCUULTION SHEET II CALC. J ORIGINATOR ' ~ DATE + +~ ~ CHECKED PROJECT + JOB NO.
,,, D~w Mate +~As-<w AuFmww,,. +~A'7N~W ~~g~~ ~~~ >~+<Pc Wu/c A J ~ ~ /JJ JmA'~A~ ~~ 4 uX 7M~'NA~g 8~~ k cP @gal ~C'M~avl .
7 g~~ pW~AWPZ . 8 9
/r'S.
F~w'Pv'2 10
+Zom JJM~g A 13 Z.
C~ 16 Or5 q <~ Crz~ 18 19 21 Qz. P 23 24 27 ag~m ~ ~Sr', <. 30 31 30 6>P-20768 Rw. (6/76) 60.69 {6/76)
\ k0. 341 10 OIKTtOKH GRAPH PAPKR KUOKHK OIKT2OEH COe 10 X 10 PER INCH MADC IH U. IL A .L 4
~ ~
1
1I
>gCH HgL CjjPALCUlATIONSHEET CALC. NO. ~ / REV. NO, OR IG INATOR ~~~+~ DATE S CHECKED y ROJECT >/'/~A Z4 ry~ JOB NO gP~Q SUBJECT ~~ ~NwP~ A'r&wgp@,,
E~ri ~8TF PE /gal p+ d~P~+ /ye~ +ey g y~ yr -~)
.9 10 ~w A Asg <<~-)
12 13 45'~m e r~ W~+< 8< Occam,p&gs, j'sg-14
<~<w~~y nc r5uc 8 +~Ah re, >i"iA~
8 A'roWs - ~-Sz 18
~,z 19 = P~~
21
/x/ y /N~ ~~47 g~ dz,k 4/ i 0 ~ Q 4gg 5ZWp z = +'>7 wz+
SFP 20768 Aev. (6/76)
~z ED.65 I6/76)
0 SUSOUEHA~A STEAM ELECTRIC STATION, UNI~1 AND 2
~ ~
CALCULATIO COVER SHEET COVER SH
=
P, P P J BNO DISCIPLINE Al NK( LEA>L NO. OF SHEETS ~>C 0 NO. ~ CALC. SHEET CONTROL: PCPLii& iO N 0 s SUSQUEHANNA STATION UNITS 1 & 2 PENNSYLVANIA P & L
~tSf.~ CAGGS JOB 8856 'II>
xc M E6 SUBJECT Q,< +PAPE'( SQS< E. qO, tie,,a l, $ 6,6O,6S,~ i, 3~,~S 0 0 V t2.i o o Ko> 0 A>asm fIiCC~t lX A, l25, iXC, t>>,I2 E., ti<, SA,~&~>WC
'QCwtr 4.iJi~io~ l:
STATEMENT OF PROBLEM COHPLAZ 'PP.E. 5 uA.IC OfLO t Itmi~r > liight Coe QC <<A V e "C e.w '<os', w A(b 64. ',sK,>S, L'l,~S,G'I, So V A ip ~ f O OPERA lits it O O b>>~P~ YIi6V ~A, vJ OII,i'C 'l C tr.c 4H t'o ii Li&R. Si % a~ hHD bPBz O'T IhI( CORDI Tlo SAR CHANGE R CHECKED SAR CHANGE REQ'D. Q NOTICE INITIATED ~
.g)URCES OF DATAI50HC fRlCS: 885 6-'Nb -li'3- lt -l9- 5y 3 3C,A- LOS- l (tub 75A- tOR-Xhrk C.A-'10 s - i fair t CA o v (jt'b tot- i lot l tr M- tOt - 3 fLCv- C C'IE.', r O t-(jB>rg lOO T I-c>~) y - tOA-). 4u( f'B-to).-3 Ivy t3-to3-t P -to~- 2 Ilb.i 0 sit> P>- l Lt - t 5,v6 lied. <n"" > l'"ro ll8'O-lent-t (vr 'h tlBo- tQ'- a IlC.ts-tc k 4 tI HC -tpi-i SAT ttCP-tOg-t 4 2 trlD'- iii - Ir" ~ Hcl)-lig - \ Rug < SI M-2t3-t 4v k SisUs.xt'ss-'x 4 (Lri Iick-so>- i l ascii-lo4-24l '9;A-so~- i Ixvi.'Dl.a,-ioq-x 't4rl Ghs-cot-t (Lrk G'bs-rot-i I 3 ci38-zoi-z 4rk (,BB->t-~4rl, &bit-Lo>- l (<v> tl,6kB-koi-k Gab 6<6-Xo).- 5 4r5 EBB-~p-I Aur3, fg,-+p-g4y g cost't Nays OF FORMULAE & REFERENCES ~~PL + f~<+~<4t- (le EAL NO. tltO 4 l65) I'OURCES 6, K> tf ocC ss> QlATRIL& A {AocCOA5 A%A, 5SSG HI 'g>tl I5 C l- iICrt. ittp Jib 6 "u.<OCr.ctCit4OiN(r NPSli 'EOA. PuI.H,i"oi-0 e~ Ke4O cuCmL~O DE.C. 1st P(AHl'Ml'Hnhtcl C u SSS6 - Hl - K-LI-,KO-l < '4PF'o. 330 NOS'~(SKI-5 PAN tIc i. 4X Cree% - l-i U. i OC.tf i>'. t. C,b.t-C,Ctl tOR.
Io IIi< tH& %PE.C <f'it' XtON A- lhcl Rov-. 30 obz4,, U r y- w'c t~ic.. v,i9 ~t.~ o ASscsi> un xioN o otttwicc,s ~ s,t.vc vN
'PRELIMINARYCALC. Q FINAL CALC.Pg. SUPERSEOES CALO, S'I-9 l52-3 l5z-z "/21.I~a t', K.o,l. INCR'b Y-A5 I tl g VS 6. KAI.isPit4.~ <AS REV. 'HECKED BY NO. DATE CALCULATIONBY DATE APPROVED BY DATE 'Preliminary caics checked only at group supendsor's request.
'Considers PSAR, codes and standards, redundancy and separation, opersbiiity and maintainability, technical adequacy, accuracy and clarity. 8856-OA-2I1/74)
I SUSQUEHANNA STEAM ELECTRIC STATION, UNITS 1 AND 2 CALCULATIONCOVER SHEET COVER SH. + OF ~~ JOB NO 88% DISCIPLINE ~ ~i " N+~~+ NO. OF SHEETS 0 NO. 5p(LAg C Ai.( M,i-oxio CALC. SHEET CONTROL: I'ITLE SUSQUEHANNA STATION UNITS I Q 2 PENNSYLVANIA P 9 L JOB 8856 SUBJECT STATEMENT OF PROBLEM iaaf-SAR CHECKED 0 SAR CHANGE REQ'D.O SAR CHANGE NOTICE INITIATED 0 i l HS5- -i He,S- >0q- z (hv 5 iiQA- 2.'b"- i SOURCES OF DATA IOH ~ f fM& f~'64 RQR Q9- )$ 3- ~ fgpr i HCS Ko i \ fan% 5 %leg - xli- 'Hob- Oil- i karl,
' 5 IS" 4r Pi24-(5-9 6 ( ilk 'i -9 4v'6 PAL 22-7 4v. E.
AhVfc l>u-2S-5 6 4 t'. f'n a-SI,-3 A os- -C C PnaC.- iS( 4 D PIXY- IW-W 4rh Pi~ h-2i-a 5 > Pi~A-ZI,-S 5 > Pi gC,-2-~ 4 T-so- b S URGES OF FORMULAE & REFERENCES 8 P..$ ,>, tOIK SPP AY-tLM, ')P 4ViN6- - '8-'b'5-W io 'WK&X 4ovb't iOv QP IiWiu - K-'2~1 t II. 'j". EP, ~S.>. - M<- KZ <- i8-2, Qg. QQ. Qf S(gQ SPEW'f'iGfh<lt t4 w 9Kt0 664K:CS 9D( t4o. al 1 ss55 Rur 0
.w%.>. H,-(og 'PRELIMINARYCALC. O FINAL CALC. SUPERSEDES CALC. NO.
~
ygL CALCULAT10N SHEET s~ REV. NO. ORIGINATOR AfOV 08 t CHECKED 4- +~ p gC'ATE SUSQUEHANNA STATION UNITS 1 &2 PROJECT JOB NO. SUBJECT SHEET NO. SE Clog 3 NPS,H LAIC,K1 0<<oea HoPE. A qp gg= 4 -hg 4, ln,, (g 5) h oOiI
<g (IZO'r) sUl 'TASL C. P,oj 1))o !i' 'Ii. wr cii I. oI)
C< (m) (~') Il5 l~~) (, ) 1S. EW 8. ~(~)o~ 2 0 13 Cy= 10,+o LK lS 8, E4~Ll) l( 0. o'l 14 l'bl 8. a(<lO 1 ~ l~ 1 "3k ~ ?.5 x l() ll 0. 30 lkg' 8, I.S<<0 5. S> P. 21 17" ~- TOPI) I ~ t 5.5X I '::-ie-- [ (Io.o'o) =:CI,>5 4/P'pod' g 8-6)
/ioo'P) = P,s I ot, ( / !).3) ~p=+ 5) (Q I 22 4Xo't >8= t.I '35 6550 24 62 'N kb,3oo 25 00)~
FO8, P I P4 ~ FA'Z'IPJ65: 27 oi-= o,sos 5L o'ioos (55so) = Ii IiI esl~. 28
- d. (IS.5$ )"
I'13. I oIv lf - Io > oI 'Is 55)(ii IQ(c. I 35) = 2 $$ ) Ip
~
(~ (O,g1) 3O nc(/ gy /I ~$ ) 3
>P= o.ooo2I<, ~ALP - o,oooxip (o,oia)(imp)(I,I.q5)(65so) 34, gS 8, L,Q r. LO~
35 36 SF P.20768 Rev. I6/76) EO 69 (6/76)
c>" CALCULATION SHEET ) gE REV. NO. KALi8 ha+YAA f~olt 08 ~97S ORIGINATOR DATE CHECKED PROJECT JOB NO. '38<4 SUBJECT 4 Cu< h cio + MOB SS56 SHEET NO 80 5 <<gi >k~; FOR. Pi P%. ~ iP=o oooiig~gi JS 3 ': o.oooxio (o.oi~)(so)(ii.as)(osso)' 8i25 x LQ~
- 0. 50 6
~ 2l- 5$
FOII. f'iPE.~ Pire<eea= o,ho'I Q -. 0,<0$ '(sivK) g= >im g~(Qz) 10 (is, is)" IP 'I l>~ = its S (is. is'(s,s>)((i as) = i.i~,io'o.~i 13 ) 16'" (=ooi~~ (~pi g A w) ~ 11 -1B--
+P= o.ooooio 4~Lg: o.ooozib Co,pisa K>>~)(si. tE) >it'5) k.~ 8. 2,S X IO'5 <P=O.>S 20 21 p'I=
22 23 3.$ 1
~( i R~')(isHM) 24 25 25 2i 6+0 (AK44c stet/~.~+~~- t-z~p 4 8) ~<~p~ / . Ag<p 27 Z, = geo'ios/s'~hS~MW z~~~Z~- ~//aa-wy-op~/)
2B inc.= (o70'- < '(a'os/s )
)'3,l( @ ~~J 30 k.=~.,ioa (q @MAL-) ~4'C 3
5<<.-- i.os~k . i k" <<~A = s.qo 4 (g i y 8-<) Q,R 5g HISHI) = 4,k~ ~ 4< t up
= ~S,~~ S.'l~+ ~E,l6 S.R5 'FP-20768 Rov. I6/76) ii5,R i g NS PILH= 'k W (Q'i) EO 69 I6/76I
8 yfL (CALCULATION SHEET ~ REV. NO. OR IG INATOR ,IIOII Il ~ OATE I <-Z.I PROJECT SUSQUEHANNA STATION UNITS I & 2 JOB NO. 8 SUBJECT P &$ ~ JOB 8856 HEET NO 8 I H,O)7lI 6 2 N/4,(( (( = I( 4 l((vl( g> q ko.
+II(SL K lhS~ 'b i DP 7 on dv (p )
EN (AkK(-Is (), k+ ls -i(. 2,$ 0 i ~ io 4=is,RM- O,ll 11 'Cb '; tie'= 12 m,mo o,i6 3'..'4'
<oS'56 % l-22, 0 5't 2') - 2)S 0. 5't 17 r yoga) ~P = -
6, l 8
~
18"..'
- 19. ~
(, I(( + (~'fA ( ~4
'0'1 - l(( ~o 4( ~~
22 p= gagoss&tuH A>> 24 g - ((,>>'4("-(,(((, (((/s) 5, = ('.q6 lola (~6Z 44 p~r(44S( -~ H8// zw' 8 6) 24 26 27 28 29 g< = 2(,. g(I v'I') = Qgk (io Fi=
>'3.lk W o b(,KJI('4 (g
l ((ss(. (RL(W i
'+3 ~X) = o s4( f4 (u/I (g /I-('-)
30 <>..wP. 31 e o tlf~H<= hg- ~g ~ ~0. ~ugly. 32
+PgH g = g(,.P,Q )g.io t 53,I6 Os& "t 34 gl(sH sl = 'l'l,'l5 R.
35, 36 (std((4 Rev. I6/76)
= 'l'I X (g 2) 'FP.20768 EO 69 I5/76)
yfL SHEET ) S CALC. NO. ORIGINATOR DATE ~ ~978 CHECKED K PROJECT SUSQUEHANNA STATI JOB NO. SUBJECT WK(.KCg4ip~~ JoB 8856 SHEET NO.
'No>g C.
SHA YA64IC. Q. hate(,xH (7 Oa. CII- '> Cp 5'CRAINM -2. l 2 ~ 0 Cv- m,~o Kx 50 I lyly l S2-x(O 36' S:5 )la ~
-Q.
12 ~
)X- >S Ei>5 w (0 13 r'6 ~0<~i ~P =
2,O2,
~
lpga + 60.I3 iY -17 4(= '19 26 21 22 23 24 25 4. It )0. (A~'F) = ii.S'6Q < 4~ 26 (0,<5)k' 27 'PzHh=h~-g~ ~ g -g 28 29 NINA'6 = >> lt - 9.9'( ~ P3,l t, - Zq,g( 4 e NPsw~ = z3.eg. N I 6<8= ~ 4 (Aul g) <n Iy I3 35 36
yyf,l l, CALCULATtON SHEET ') gf CALC. NO. REV. NO. NOV 0 ~9~8 C -* OR IG INATOR DATE CHECKED DATE PROJECT SUSQUEHANNA STAT JOB NO SUBJECT NQ~ gg ~g JOB 8856 SHEET NO. NPSQA = -~Q ~ t
~ ~a. ~~/~
g, +~6%8 7 t-u
>P= 2~ Q.o Q =M,mo 0. 0$
l34 l, 0'l E'\ - 0'oa
'b lkh 0,~>
ling 13m ,oval ~< '- 14 '15 lA 0 0 %Ilk gI = II.SI
.1&
19 20
'1 = ~'L ll 22 (010') = gS.i( 8 23 24 gv, <~qq ski!'l ~
25 ~ 26 Nrsge = I,- kg < ~ 27 2& NOSH&= 2x << I8 SG + ss iv - >~ iq 29 30
~ISaa .
3>,0i k gpgHn=c A (.g~) 35 36 SF P.76766 Rou. I6/76I ED 69 I6/76)
e t e~ ygL (: CALCULATlONSHEET CALC NO
)
ORIGINATOR NPy '81 CHECKED PROJECT SUSQUEHANNh STATI JOB NO. 98% 4 ( SUBJECT ~ME ko < JOB 8856 SHEET NO. NoT, e. N(Sly&,= ~s 4 4 ~ I TWICE E, ( np 7 O~ (pu,)
+~(LA '4'N~ > ~
g ~c'= 2p 0 r pe >o,yo Oi09
v= ~l lJh" l OS ~ '."" 0. kS 0 kG ~
so<'g i 14 15 k)= 3.ql ~ GO ~ 1S+ l~
'S,IS8 R
'0 16-a 19-AE ll k
+,= <10'an ~'s" ~)~)
Caan 21 22 (I W<>') = SS,ia k 23
.24 25 kgb (
Zoo F j= 'll,'5'h g. ) Q~ Co.izP (qq ~ - gp g ) g (g I 26 ~ ~ NhH A = - g5 4,t + Q-Q 27 26 NI'AHA, = >z, l[ 8.38 ~ gp,(g - pp ( ) 29 NI'Slit,: 1$ . tIS VI'Sea.= I< 4C (gZ) 35 36
t ygL ( "CALCULATIONSHEET ) CALC. NO. l ORIGINATOR 0~08197S,. S~ DATE PROJECT SUSQUEHANNA STATION UNITS 1 &2 JOB No 8 ~4 ( SUBJECT wPsHK= I
~-4~ ~4. -4,~
4 Q. 4M(r'CH o~ .) 2~ IX'p 5YPAI+~ - X' ~9= k 0 Q= ao,mo I SO
~ ) l - 3'x ggl C'0.'t 0
- 12. zz- EE o 3L 13 ~
yoga'I P I LS 14 15 hI= <~a~ I A'o,VP M 16( h~
=
l0.38 II'B't
.16..
V 19'0 (CIA 4 ) 2'I g( = 2E. II P, = Iqg'o/g" m (+u) . 22 23 4(t.~') as.l4 24 25 k<<(Ao'F) = 5,'I'I II x
'I K iNM" = 1'i.)'I k (Q QI A-6) 26 .~o,~~ k 27 NPSH 0 = 4r 4f, > 4. 4upa.
28 29 hqg~g= >a.i<- tO.SS + 3'3,>a tW.i I NPsHK = Sl.%0
<Q<) (g 35 36
( l CALCULATION SHEET Np SfCHTH GACC. NO. 4 IMP pAT NOV 0OS 1978 CHECKEP ~ PA iN* EHA Np "E/T ( BgE Pq~ Np Whbw& &'I W, LIPID.ta nP on. 4 (~)
&0 SgeLb i ~<~ "P= 2~ 2.0 4= D,QO o,l<
l>6 1,68
> ( > ~ > I 'Lt ;, O.NN . Xi- gS 0.4 l 1Z, 13 +PCPri v'P =
' ko,S> 1l.lo Jk'Aq
- 17. =
'11h'-:
- 19. 4(=V,- 2, )
- 20. >3 I\ t,= 'E4'o Q"
21 22 k w-a) 24 (gee(AO 'e) = >,5t l Q, Cg i
~
I t25 co,s> P 26 " Hl'SHr= 27 2& NPSHP = ~3. II - ll. IO ~ 55.ig - IP,gS 29 NseHn = >q,1z 30 35 36 EO 69 (6/76)
o 0 I ~
Page I of 6 REPORT OF PERFORMANCE TEST FOR PUMP S/N I07384 A performance test was conducted 8 September l976 for a pump on order 006-3605I (AE 23l). All necessary data associated with the hydraulic performance was obtained, The serial numbers for the Impel ler and casings are as follows: Sta e No, ~Cssle s ~lm el I ers I 66044 57303 2 64953 68422 3' 64946 68449 64957 556ll 5 ~ 64703 69496 6 70976 68404 VIbration was found to be satisfactory as indicated by the data sheets. The NPSH points for a flow of 3004 GPM towards shutoff have been plotted on Curve N-83l, Rev. 0 and fall on the head capacity curve. The NPSH data from 3625 GPM to runout ls also plotted on N-83l, Rev. 0. cclcttpt,'ttcLENt ,SUSQUEHANNA Ie2 ,NPLI 0 E2 -C.OD 0 O~~ed CI Attttreved with CettitterttL Rey'ee end FORM. tN
~
Notcy ttttrtctttc tter eeeeeertbL,
~~
Reste ertd Aeeubei\ ter C) &orovecL Neturther ectten req'd. 8 x~ c I-I &Ãeered. Subtnit eerttCed eepy g Cefttried by Setter ehd ~~
] p zap by Buyer.
s Oete ~ < VPF Ne. CERTIFICATE OF COMPLAINCE s The performance test on Pump S/N I07384 on order 006-3605I (AE.23l) was conducted ln accordance with Procedure CQCP-I085, Rev, 4 except the test was conducted In the Cameron shell, R. Lemp Cameron Test Dept.
~ I ~
CUSTO @ p g./? ~.P DESIGN CONDITIONS CURVE /tI/ gQ/ Q~ I/ g PROPOSAL NO OOC-364 4/ ITEM' GPI!I Q/ FsI EFF ~ ~ Ineyeranll Rund SPECIAL NOTES T.H.IFY.t 448 aHP SO./ 0 POMP ~gg~g -g pump un/ RPN / 7t5'0 DRIVER fv/+ 7Q
/~ HP />>>~'tt'wd gA)yg/oct]V g//NLL 7OOA~ /corot DRAWN DATE 7 /ro 4'iw. BY g,P,~, '. 'rl- ~ I as ~ I~ ~~ +1 0 aY : c.P/P:. ji I" ii!I I , II 'ig ' ~ ~
I
~ et': Ilt~:
i-.il! ~ 0
-OPO j!C)~AL cE art e Ia ~ 8 ','I ~ ~
elji ~ i
~
I I f5
~
I 4 bate e
~
I Hk:: 'I I ~~ ' I~ i: I: I I I r IIs
~ ~ ~ ~ ~
I
~ ~ ~ laj tjtl !! !It
- ll !Ils ,l.s ~ ~
I Til
~ ~ ~
sl I I ~ ~ ~ jlf: III: il:I
't ~.
jjll!!II t'rI l
'. ~ ~
t l'i
~ ~ ~ ~
tl Is I ei I I~ ',:
~ ~ ~ ~ ~
e' I I! :I II,
~ ~ ~ $ 0. I~ rre I~I illiI lli: , I~ II ls i
II I)
~ ~ ~ ~ !le ~ ~
II!
- I
~ .s sa'a a I'T I~ I ~ ~ I I.I I I~
I;.t I
~ ~
I ~ ~ I a I T
~
ii!;. ao
~ ~ ~ :-: ~ ~ ":ill I ~
II I 'l
'I" ~ ~ I~ I I ~ ~
ls i
~
I I a ~ ~
~
t tl sill fe. isa D 7 ..".:It: Ills alii +Il I Ihi: jlli Ie ~ ~ I ~
- I:
~ I ~ ~ I I I~ ~
I sit'; I'Is ~ II I ifj Ili
~ ~ 'I' I ael ~, Iff I 'ilt ~
sl<. ~ a A ~ ~ ~ I I I ~ I ~ t ~ ~ ~ bra
\
e..'. .I.ll ;I!i I'l ~ ~ I tillI ~ I If , II I I tt
- 4 tulsa ~ ~ ~
C eo I~ I a Il.l
~ ~ ~ ~
Ial sell
~ 'ltlf I,t; ,itl at ~ !1 /d.iW Il I~ ~ ~
il",
~ ea ~
I~ a
~ ~ ~
i I
~ I II:I ill.! 'll ~
- I j II 'IIii g 4o
~ ~ ~ ~ I are ~
4 tl ~ I Il II4 I~ II
~
e ~ I ~ ~ ~ I r
~ ~ ~
I~ ~
.ii I I lgl', il I ill) I ' ~
Ill ":I Iiie I, ,. 'lii Ii!I So i:;I .'f. I I I jt I
~
Te I ~ tf!:~ 'I I I
~
I tie
~ a ~ ~
IIa I If ~
)
flit ll I I Ilik tal II~ is ~
~ I I:
PJHR,"8
~ ~ ~ ~ ~ I 20 ':ss ~
I "I~
~ ~
- . l-':.
~ ~
I , Illi iI!Ir uc nr /II0 10
.::::Il: ~ I il
- '/
~ ~ I ~ ~ ~!II gll" ,.J'~A igjk'- ".:,: ill j?g/'dOO i ~ ~ ~ ~ ~ ~ ~ I Illf IIII Ilt',
0 l 0 400 /ado /@do OOOO . /sf OO oO I a..-s,- GALLONS PER MINUTE CURVE/I/-8 JI,RnV.O
P~ 3o~C PuWP d~ ro788+
~~IF dF 8~8F>8&dmCZ g~gv~ ~-gpy gg v'. y J
~d Tcf: 4'RPA Acz rsr=rc'ivy cp J p~~g 7 AP4 cfrg
~~~~~p4 A~PA>~r~w r~~p 4.+ ~r. gp
- d. qu<rrc+ ~os +4< C~ ~<a. caaAsc-Zh'c"c uazg) r>mawa's g uw.ou A. d'uL'7uu p'.
~ypgg~
Cowed ac 7'~
PC. o CAMERON PUMP DIVISION ING ERSOLL- ND COM PALY TEST RECORD e 't AS READ DISCHARGE HEAD 1 fORREC SUCTION LIFT FT. ZERO DEPRESSED-.PL>~FT. CHANGE IN VELOCITY HEAD IN FEET O TOTAL HEAD VENTURI TUBES O co r 0 SIZES AND READINGS TOTAL G.P.M. 191/ WATER H.P. 5 3. ,0 2 50.
~
AS READ
&A~ . 73,72 ,$ 70 ~mao /fgf su 33.
0 ~ 0 BRAKE H. P.
).7 aAji NpdE seAL PUMP EFFICIENCY 7>. 65. o ',7 .3 PUMP 7
SIZE TYP TAGES DRIVER NOTES>> FULLLOADSF'EED NO. /P7g G.Phl, p5 TOTALHEAD y g SUCT RA' EFF, Q LIQUID 3I 5 IN FT DIA YANKDIA DIFFUSOR TEMP. PO. SUCTiON CONNKCTION C.L. PUMPTOC,~ VISCOS. Pp ~()i Oi TOC.I PUMP DISC. OAUGK GRAVITY
/0 sv- Nae. b c c, TEST STAND CUSTOMER ORDKR g~ + p I TKhl BY NO.
y 3 NO
OMP S/W PE peD-4 CUSTOMER DATE EST STAND ATA BY
} PSHAW }}}}}} VP SUBMERGENCE 1 ~I SP, GR. +~LCORRECTION RDER NO. ITEM NO, FP ED BY TOTAL HEAD CORR.DISCH HD + VEL.KH-SUCT ELL Oo oR 314 a
5 ~ Ao c4 V:
~i C5 ~ V V) PCA o Ag o 0 4J gK V10 HO CP O 0 O 0 ABU+ ) u~ gS ' U) ~
Q~ )L: Ã4 QD
).'f V2'7 30 a.5 /;o ~ 0c2 2 0 53 S .3 8.73 2A . K ~32.5 z5. 7 23,. 3 .5 0 G36 >5.
a . 4 3'}PI F~ 3
D I STR I BUT ION NO. DATE VENDOR Z CL I EN T FI PQ 0 g )976 EL D Q.E. APED DRAWING CIVIL Z R EVI EW ELECT. COMMENTS AS PLT. DES. CC 0 CHECKED BELOW MECH. Z I 0 E 0 NO COMMENTS. CON. SYS. I-F 0 COMMENTS AS INOICA. ARCH. TEO, FOR APED'S IN. CC O FORMATION AND USE PURCH. ONLY. NO REPLY RE- EXPED. LU 0 QlllR ED. G 63 COMMENTS AS INOICA. INSPECT TEO, WHEN DIRECTLY SCHED. AFFECTING BECHTEL RESPONSIBILITY. REPLY START UP REQUIRED IF NOT IN. CORPORATED BY APED. E Y 0 FP
/ g7 RECORD Z REVIEWED C E I L 0 BECHTEL I-BECHTEL JOB N(K SAN FRANCISCO 0 SAN F RANCISCO 8856 0
k
'i
SUSQUEHA~STEAM ELECTRIC STATION, UNITS~AND 2 ~qiI f
<< ~ CALCULATIONCOVER SHEET Ql COVER SH Q OF DI$CIPLINE KEGHIitrltC 0 L NM (rirQprR NO. OF SHEETS ~S iI. II, g ., t /r f A L L LL L,A T l o Fl 0 SUSQUEHANNA STEAM 0 NQ.
CALC, SHEET CONTROL:
~
ELECTRIC STATl0g t'-tc<<I<SSV SUBJECT
~M&',6,2i,a~, <9, ( I, SS,$ 6, op gxi l ItN> 2 Foe. VMlc QO~G~ (t Z ) of ho~, AL(, i l I XO'l >
Z i 8,
'Pi'7 ao N g25, 226, X2(.
(ay<~ kh~" gp,5A STATEMENT OF PROBLEM LOIA PVL<K . PP Q.QSIA.Q.IE. 0 gS 'lN 7 H 4,ui~<o~ 2 au.R s~+<c ~ 'I A('rS% l
<<JA(I i'<<.<% 'Ho<<s 6 o ow 6 .it'ic.%.H "ted%
OI't lANi (o gC.it"'( l IIN tu lM 0 u 2, M.M'Of <<L L to
'4(': P i~> p,,P,C,>,4 ~ r )
SAR CHANGE R CHECKED SAR CHANGE REQ'D. INITIATED 'OTICE ~ QF DATA I&oHE. (Q. S t 8856=>6B'- o3-I l4nrb '966" ol-~ Enr 5 >16- 5- Rrv 3,>(I- pg- <<'OURCES i)CR-<<<<O i RV G) il )L 4V 'pCA i iii l RVr I) iii X tetr 5 't)( Pi IO'A 'I I4'l i Oil PC A t)C.rA
~ >6 I G ~
0'66 -'to)t 5l) 'F66 ~lett 3 (IEArl (T6P io)I Ll, G 66 to% i s G P)h- i 05-i i(Air s I DG. l ~~
~ . 2 )E - . T Ll @pe ~ ~ GP)IF~
G66-<<oi,-a. bArl G66-to'I-I: 'st G6P -ia>-z 4r l 6'i36 tos- l P~c G66- tot-<< I'Ltv6 (66-ln.- 2, l G66-lin-i (4nr%, G66- i lto-.2.,6ulo . G6(.- iii-i @jr'66- ill- 6nr'\ GIt)6-tt2- i (4AF 8 (FP,P)-il) ~ i P~-5
&6&.- 'll%-i bArd 96Po- iti)- i Q4,"5 666- idio. L Itt)IT 5 ) 666-li3. l 5nr 8 G6PF-<<6- i tArrs,GP l'.- t t8 2. 4- 2 ~
(F66- li4-3 (4 i, G6P. - \i~-< br', 466- two-i Iw 'b, sl6I3- iio- l 4-8, <<tQ,- i<<o-i 4e r, (o~'-,: '<<PAGi
$ QURCE$ QF FORMULAE 8t REFERENCE$ '
G.<.. Lp,a~ PlL (t q5 giga, .885I' Kl-E~l -'BUD -8 SSo4-Hi - E<<- iS - 'I P (L<oe.aP~C< (:" V . SSS'( - 4< 6<< 5>- I 0 .ht"lIL.Iio Ali- Vi '. 8'i(i f l.t) C.Ah(.KI A COLL OL /Wiles, [gal)J'Ec) 7'-~->iht4'i)<<Laic)QIIrt<P<bl(r NPSH POP PVL<<R P5'lirl~ ILht(rtHK~t+O., /<<LAN,iLI,<<tl
~ ~
7)
"PRELIMINARYCALC, Q ". T', FINAL CALC SUFERSEOES CALO. NO. ~ll ) E 'l'5't- \ I l<~ l6 lsl- lLI \ h- l<<) iSl-ti CON v N(y.t P g VA<<FLNU.S~ / Z@
4 f)o < Q. KALiNPM.5 gaS / 6 'Al'i n. I 8/>>F I II ES 6. YALlNFllLSFAS l, ~gA~Lr)r( z/L'~ 9- H0 Sly ~r REV DATE NO. DATE CALCULATIONBY CHECKED BY DATE AP ROVED BY
'Preliminary caics checked only st group supervisor's request.
"Considers PSAR, codes snd standards, redundancy snd se paration, operability and maintainability, technical adequacy, accuracy and clarity. 8856-(iA-ait04)
SUSQUEHANNA STEAM ELECTRIC STATION, UNITS 1 AND 2 CALCULATIONCOVER SHEET COVER SH. > OF ~ DISCIPLINF AG iCAt- >KC~CAt2 NO 8856 NO..O NO. OF SHEFTS Q CALC. SHEET TITLE g, Q. g., 4 P LQ~C.M.L 0,g iow 0 SUSQUEHANNA STEAM CONTROL'UBJECT ELECTRIC STATION STATEMENT OF PROB LEM SAR CHANGE AR CHECKED Q SAR CHANGE REQ'D. Q NOTICE INITIATED Q "SOURCESOF DATA itbIi-tto-5 Ru:~i tiber-tto-st Arrl H66. i- i M"'5 <4s'-i i-K 1PAJ, 4 8 f - il t stab-ill-~ 4 t itQ-t (-i 4rt 869-iQ-t(4eR '766-NOR- i 4.-4, bhi,-g.o)-2
'bcA" to-X Su 2 WcAAY t Ger 2 OcAK2iie x Cue 2 bc',-(2ii~bEu: 2 4r 2, %6B-ziS-t avr5, c.A-zo -i (Lur 'l 'bcA L>o l IltAr2 1 'Pcb-.aohxlt 4r x GBB-xOEI-i 4rc IEP.L- xoit-z. 4v(, 6.66- dq-E l2vrt 6PEE &x-Et IcvrsI,6rif.' to -i 4rtI I
(P)B-IO'5 2 4V K, O'I3B" i0$ - I 4'5 N 0'lB- iotD-i Rtu i 6fi6-WOW. i Rtnr6 66B Xgt- 4.s( (rAB XOS- \ s i 6II6- >OR,-i twas t're@- >Oct Rw'5 Gr65-bio- I Lr3 (r66- Xto-2. Ere 6.Ir,I3-).it-L 4r2, &66-Zii-2 Lur3 ((55-) A.-t hErtI,6PB- Xi~-2. RW~, 6%EL-u5-t Cur I) 6KB- 7 iIE- t +3 66I3-2i6-2. RVS 5, Colt't tsar~~ FOR SOURCES OF FORMULAE & REFERENCES 3 'POS, 0 'NY "SA iC. ut 'YO quoi CA W oV Of Oih c. ijAt-
~I I2A'( QV.6LN% CA.iNCr QH.V'ANiC C,ATA t 0(r t~ 9~ - tI4II-i tN6'Ot4 HPib E. Oi'SOE 5,~%,A+ XABL~
P. <<C.. - '4S I Y V,AL AKW ( C.6,HOiIP L L4L 4e. t l Il. ls.l, -(.+$ $ ." 48(>ghL Qrt,b~ 4KOVKL -Ilies- 6th-X her to A 4I2 W 1lILIiiirJ'tt46
'PRELIMINARYCALC. Q 6-X5$ ~ 3 FINALCALC.Pf SUPERSEDES CALC ND iSL- R t5t-iO i- iS>- tt tSt-t, tSi-D tS t-St t~i- 5 isa-2 iS i- I REV. CALCULATIONBY "CHECKED BY DATE APPROVED BY DATE NO. DATE EPrellrnlnary calcs checked only at group supeniisor's request.
~ EI am~Drave Escis Rntrf RnnRrntlnn nrNArahuhir maintien//litv h lc rien 'N'v i d r v
NO. 88% SUSQUEHANNA STEAM ELECTRIC STATION, UNIT CALCULATIONCOVER SHEET DISCIPLINE I"LC Ii+<t C Ai- N'++i-< AtL 1 AND 2 COVER SH. NO. OF SHEETS
+ OF ~
0 NO. CALG SHEET CONTROL: r ITLF g 0
~ t 6 ~ P C44C.V.4A %i QM 6 SOS(UEHANNA STEAM, E TRI STATi SUBJECT STATEMENT OF PROBLEM @rsvp, SAR CHANGE AR CHECKED Q SAR CHANGE REQ'D. P NOTICE INITIATED ~
SOURCES OF DATA 6 ob. 2A- i 4 2 CrSPt->i'4-I lLiar I, Cthe-2S-2,4rl-, GI64 ~ XtS-5 Avr2., ~Pari-2(Q,-tt (4v t, c,4h6-2to-'i 4s,'HAP..1ia-i Gee- %to- i (hu '. tris - bio- \ Rur'5 it@6-tip-t 4:c,HPh-it0-5 Rur IIKC.- 'l ti- w liar'i 'Hli@ -tty-i Auu K, 6ttl6P~-at%-t RVrt,86'tt-1SC-i Rur l HPtO-2'bS 2 tv'I ii6> >66-t M$ i 8554-t v(. (v 1'izA- Xo- io
'I IAI- 6>i - isla) 4y- io, 5 '- PIDA-3K-5 (herc t'r Via.Pi-2K-> 4r PI%A- lh-9 (bar'll Vi2A-'lx-I Ru: c plzA- iE-PIR,A-6O-6 4vr'0 7i A - r,i- 4r 0 PIZ. - t a-6 4 c PlaA-io->Lr) rD 'PiaA-Pi-KIBE P t>4>p i ~(sPl2A)K<&6)PttA-><-<&C)PitA" 80-34re,P lt C<-l'l i 4Cr t PqA-Itl-(Qg;(,
Cot4 w Nlc,yz CAb SOURCES OF FORMULAE 5 REFERENCES C:<0 - 'Ai- 5 5-tl. t.Ai.c,v.i.A<iotqb - 0-0 - h3 R4 0 iC CL- 4->'tI II,. 5$ - bi G.- IQQ 'l 2'E W QIR CAi.(,U.i I6 cict6ts i4- fE (L4g 4 l . 0 A,g tuOtll lt. V y-Rico% OC->t.R. - $ 4- Ia,i '\-XO-i PRELIMINARYCALC. P FINAL CALC. gf SUPERSEDES CALC. NO. REV. CALCULATIONBY "CHECKED BY DATE APPROVED BY DATE NO. DATE
'Prelim'inary calcs checked only at group supervisor's request.
~+r'nnstrlare ttqact nrtat'. anrt ttanrlarrtt rarlnnrlanrv anrl saoaration. onarahllltv and malntalnahllitv. tarhniral adenttacv. arrttrarv and claritv
+c h
ye SUSQUEHANNA STEAM ELECTRIC STATION, UNITS 1 AND 2 CALCULATIONCOVER SHEET COVER SH.~OF A CALC. NO. 45 i 6 0 NO. DISCIPLINE ~ (,~AL NO. OF SHEETS CALC. SHEET CONTROL: TITLE 0, Q. R. ~ 8 5'KLrt LA L,6%t 0 HG
,SUSQUEHANNA STEAM ELECTRIC STATlON, STATEMENT OF PROBLEM AR CHECKED 0 SAR CHANGE REQ'D. Q SAR CHANGE NOTICE INITIATED 0 SOURCES Of DATA Pi 4
Ii -iS - I V ML Pi~P~~u 5 P>> Ii-iIo - C I Lr ~ Pi~aai P ia a W - iq - i 4 e
+ a~~
i 6 Pi> I~ -iS-S 4 SOURCESOF FORMULAE & REFERENCES i ~ 'MC-A N0%4<lc P.L B'Bh4 @<5 E- ~- 2
- 0. PLPtN& St .c.i& i c.AC<0%
R. Q.Q.. f'vwPb
-c 6 w c.HKN6- - R2,G2 4 zB R'I CQQil,'96N< 406AXxoN WRAu)iN 6- 4-l'I t ~S . 'PRELIMINARYCALC. Q FINALCALC. SUPERSEDES CALC. NO.
NO 'ATE CALCULATIONBY 'HECKED BY DATE APPROVED BY DATE
'Preliminary calcs checked only at group supervisor's request. 'fA BC'hC! '. L.'. .-
8 IG+ ORIGINATOR PROJECT SUBJECT
~ o1- \ NKVLS
( <
~8 CALCULATION SHEET CALC NO JOB NO.
SHEET NO. 3 i5 h k6 dm 8 6~ 6
.,~
REV NO SEC<<pu 5 - NPSZ ~hI <a<P<ie<g 2 Ho&+ u('sH g = 4. - 4g + k~ h. (qo) c15wC No>C Q, kE M&XH .cP 'IXSO Pew OA- 4 2 0
~e 4ts. 0 03 ~
0,5t 15 O.tg 1P( t,W~lo ~
'17 18 tI = 2,bo 19 4(= 'L'ho ~ k I'I"l&
k.. 20 ~ I oo a ((= g,qo 8 23 24 25 26 27 28 29 g(goo') ='~~.io k (Q ~~<An'. gC ~4 Z) k<<(>oo'v) = ll Sspoo (ada I oo i~P Nl5Q 1 = g< gg>> 4<- 4,<I)~ = Rl.94 - 6,10-. 55 L4 - >R ( t
= ~l),s( (e, 35 36 N(EHR. = 3 w 9 (4 k ~ Ac/ V - 0 f ~qgi.~ ~.j~~ig '( pg),
I.~. ~ ~ yt ygL (.,'ALCULATIONSHEET ) REV. NO. P ORIGINATOR ASAA 14 191 4 44 DATE PROJECT 8444 SUBJECT I C.LAW <sOM'o SHEET NO. NPOL4 C g<(.u,I A,<<CI~ Hop+ & 5 ho - ~up~ 7 .--. 4( wA6wt. 6
'ko>~ Q. 'WRkL6-XQ oe- C~
1~ 2.0 3p -'lip ,Oo 0407 3~ 12 ESo'o L.SQ
~ 4 13 ~lA 5. 5V 14 gl 5,50 > lb 13( >P = 9.00 IA( =
4.00 IAAAA" l k i44<jeC 18,;,
"~
20 4 IA =(6& - t,W%'3'/3') W, = SS>'3'/3" (~M M h ~~P -'~ 23 4(= kl the 24 25 26 27 28 29 NI'gag = gz-kg th-4<< =
"l0 SW 0c 34'5
(+j ~g AAA - gf Ay~,.AA ~~~ ~+~ 36
y,A
~ ~
s~'ALG.
~gg<
ORIGINATOR V'n 5 AI 4 t4 Q CALCULATIONSHEET
~Q +~ ~ DATE ~ i,aI SUSQUEHANNA STEAM 1 61973 No. h5 t k 4 REv. No. 0 ~i PI@( V.h. ~
SUBJECT i ~ SHEET NO. 3
~ ~Z~~~ u~.
cfear 6 HOVE NPGH h tlP0H g. 7 (4C) (R) (0) Qc) RI,hb. 3>. I4 X<.'l4 H lto Sell "lx.OQ ed c, il.cl(o 35. I4 L2,fg 3e,sC gCl C RI,94 55 lb 23,4 l
',)
io.S< 12 b3 L4 i3 R l.,l Io E5 l4 'to.59
'H xl 'l(, 35. l4 'lSAz 16 19'0 21 22 23 24 25 26 27 35 36 ED.69
v v i DISTRIBUTION 4:1976 NO. ND R /VO APED DRAWING REVIEW CLIENT COMMENTS F IKLD A'S 'CHECKED BELOW CIVIL F No comments. O $ Q Comments as indicate'de ELECT. I'. DES. I for APED's Information Bnd use only, No reply, MK H. 5 required. CON. SYS. I-C. 0Q 'Comments as indicated, RCH. IL when directly affecting O Bechtel responsibility. uI UJ Reply required if not FKD O Incorporated by APED. IN%'KCT FOR a OBY BATS SCHKD. t~-MC START-uF C B I M Reviewed BECHTEL woo No.
'SAN FRANCISCO 8856 0
I-BECHTEL SAM FRAMCISCO
Page I of 6 RFPORT OF PERFORMANCE TEST FOR PU~IP S/N 05733I4 4 A performance test was conducted 26 July 1976 for a pump on order 006-36049 (AE 234). All necessary data associated with the hydraulic performance was obtained. The serial numbers for the Impeller and casings are as follows: Stage Castnes ~la alleys I 599IO 66465 2 58664 66235 3 58665 68009 59882 65490 The vibration was found to be satisfactory as indicated by ihe Data Sheets. The NPSH points for a flow of 9898 GPM towards shut-off have been plot ed on Curve N-8IO, Rev. 0 and fall on the head capacity curve. The NPSH data from l208I GPi~1 to runout is also plotted on N-8I0, Rev: 0. GEIIERAL "@ ElECYRIC RUCLEAR EIIERGY OIVISIOtf 0 Disapproved per con;ments. R vise and resubmit for approvaL 0 Approved with Comments. Revise and resubmit IN FINAL FORM. Q Refer to EDS No 0 Approved. No further actionreq'd. C) Approved. Submit certified copy. by Boyor. Review/ by
~,y Certified by Selter and Approved ys;so. ~+7 y g /
CERT I F I CATE OF COMPL I ANCE The perforroance test of pump S/N 05733I4 on order 006-36049 (AE 234) was in accordance with Procedure CQCP-f085, Rev. 4. J jrf.& conducted lj~ R. Lemp Cameron Test Department
<~
CCSTO~m .P", A,/).W, g. ES:GN CONDITIONS CUR~E /8-8/0, A~Lr.O
?."O. OSAL NO.OO~-III> gf ITEM GPM /dq OOO. EFF is RCQCP&R"KC)I88~ RCBL~CS PUMP Q y grD/I Q-P SPECIAL NOTES T.H,IFT.I QOO BI,P SG./,0 pvrrP sw od ~34/'/ RPh1 //Q 0 pooc~p DRIVER IIP 7-47. 7r pudgy V-c-.d 74b r P Wo7O4 BRA WN grE)~, DATE c~~<r,or/ <H~r-4 Arl Tr1 le O 4- F', BY TH/I C>rs Ir ~"./ 4 I +I'I~+~ I~ I ~ ~
7/A'-r I- g w,Q 7/+/g-. $ TIHA T- . ph.'P, I ~ DID.O C~ !It-: 'oA'gA4 r j I ~ ~ ~ I
~ ~ I~
I i~ I I e . I ~
~ ~ ~ ~ e ~ .- ~ i r ~ e ~ '.: I I ~
I e '"
~ I LL. ~ ~
I ~ I II ~ ~ s
~ ~ 'e C'. N/~C I ~ ~
I~
~ ~
1 I assi ~ ~
' ~ ~ I ~ ~ e .' I ~
I ~ ~ ~ I~ I ' 90 *I I
~ ~ I ~ I ~ ~ , ~ ~ ~ II ~ I ~ e I ~ ~ ~ I ' ~ ~ ':-.I: ~ ~ ~ li I ~
80 I: ~ ~ e: ~ l ~ ~ I r r ~ I I I ~ ~ ~ > ~ ~ e
~' I ~ ~ ~ ~
I~
~ ~ It :: I:". e I ~ I I '
sse ~ e ~
~ ~ ~ .;<<I ~ ~ ~
I I ~ ~ I I~ ~ ~ J~
~
I I~ ~ l
'I' e ~ ~ ~ ~ I ~ I r K "EEI ~
rI
~ ~ ' I: s I ~
I
~ ~
II I
~ ~ ~ ~ I ~ ~ I ~ e :::LLl ~ ' ~ ~ I ' '
I I
~ ~
e! I:.=
~ ~ ~ ~ ~ ' ~ ~
II
~ ~ is ~ -"I ~ ~ I ~ ~ ~ ~ 1 I~ ~ I Icosi I' I I ~ 'I ~ I~
tt I I'0
~ ~
1 ~ I ~ ' I
~ ~ ~ ~ I ~ e ~
I~
~ I~ I ~ .-
i ~. ~
~ i ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
I tiI I ~ e
~ ~
Sf7< ::::LL:
~ -LL:: &~
re I
~ Ie ~ e ~ + :sitI ~ ~
0 r ~ I pa~ Clb Ti4 QC I
~ ~ ~ ~ ~ ~ Ie ~
0 40 ~ ~ e ~ I
~ ~ ~ ~
I ~ I' I :::.:I
- .:I: I, 'I" i...I., 1st ~ ~ ~ I lie IE'I
~ ' I I I ~i ~ ~ ~ ~ ~ e uc.//oN. No"I ~ ~ I 'i:I I ~ ~ ~ ~
I
~ ~ ~ ~ ~ ~ ~ ~ r 'I' :..il I~ ~ ~ ~ II el. ~ ~
- se' ~ ~
2a "I . I e ~ I ~
~ ~ ~
I
~ II lel: i..i , ~
1
~ ~ I~ ~ ~ I tee I ".:I: ~ = ~ ~ ~ ~ ~ ~ i ~ ~ ~ ~ ~
I
~ I ~ ~ ~
I~ I
~ ' I I ~ ~
I ~
~
I s
~
I e [iI I!
~ ~
ii
~
I s .", r
* ':jVr .Sh@R g :C :i iI ~ ~ s ~ ~ ~
5 c r4'A /t/d gWl E'.
~ ~ ~ e ~ ~ ~ ~ ~ I 10 ei: (. ~
I I ~ t ~ 1 !i:,i e
~ ~
ei I ~ ~
~ ~ :'. I! ~ I ~ e ~ I I I: 1~)li" I /b // /~ /3 /9 GALLUISE Psst MNUTE Serstd tt
\ I CU VE gr 8/0 AC'r, d(
@gap op guzv~ 4-g~o gzv o 0 F'~Br-cA/~A~~~ ag r< r~g ~~ca, r~o~,. ~++y~z~~cy 4m~~ ~ps,~/ r~zr- gA a/a A'Pz+ H'asD donrz iA~y A7 APPA~P//we i~4/ Pd Hr g~r rd Eve.proN .rVoz2l-Z (d.9 zr. g~ggc ~FzoA XA'gr. nb~ D r /ape+~ gg ~g zoo/y rgb/ g~~ yy~gADS >P~ycrigap; po e.t. 4>c Fi'4'~ A'd ~344-po. p r-; cogg~crr~nr Pwc'~~4~bg
I I
N PUMP DIVISION tNGERSOLL H TEST RECORD. g~b% DISCHARGE HEAD AS READ s~ CQRIIECTED I 5o7 CsG. rV 0
=-u SLrCTIOII LIFT FT.
ZERO DEPRESSED,-- CHANGE IN VELOCITY FT. ip HEAD IN FEET g / TOTAL HEAD 5 C (-.2 (/r pl VENTURI TUBES SIZES AND o ~.>~ READINGS C./'. G.P.M. ~c'.cg ms'OTAL 3~37 VtfATER H. P. L5(~7 (9 ~) 2 "j 3
~METER AS READ 5 ,5 I 3 3 "t 6 ; Egg
.E
/Jr Pb rL pe )
C
"--=--~ H'vl gg cl /~o 0L. R. P. M.
5e~~ ~'"" a' BRAKE H. P. L-qo ~ H~S Ig)f I~ c~c 2 'f
) $ 7c~
t Icos t)I7 r) c c.p I'/3 II7o //75 PUMP EF'FtCIENCY 86. g e qi C So. o PUMP SIZE TYPE STAGES DRIVER gg y 'rrJIW LOADSPEED R.P JVl N.- G.P.M 05 33] TOTAL HEAD AP SUCT. R.P.Ih, EFF, <<>> troTRst IN Pl'i LIOUID C/ 0 /g 6oo IMPELLER DIA VANE DIA DIFFUSOR TEMP. J 7 SUCTION CONNECTION C.L. PUMPTOC I. VlSCOS. TO C. L. PUMP DISC. GAUGE GRAVITY
/g OCgG ?d-7'Ãs ra~ cacP - ro TEST STAND r <yg 7 CUSTOMER ~9 ~ ~ ~ ~ ~ . (&~8 "'O4'- Zr o ~-
ORDER ITEM NO.
'EST 'PP D\ NO.
V k I
J r g J I II o Q r J 5%
j
~ I I Sd ~ ~
M
~ Rk5 ~ S 5 ~
L SR RRII E 5 L
~
L R W. %
~RW RM%88$
WW N5 55
~
RRl
.W- 55 5RSliPJR WE%
IN555
~
RW W& RH
~
WJ WWHH
f
~s Xb 102.1 2 8%FEltKNCK DRAWINGS Q 1NI RTVib P IA.111 e PIPIQltr Plkll Akhl gl M-S.S ~ b ~ s g M-~) ~ O ~ ~ ~ 34 ~,t r ~ r otoort/Jt taeoca 4 COMPONENTS ON ~s asst srs e+ s ~ ss ~ ses rss owsso oases Q eOQ THIS DWG, ARE 6-LISTED 'PEC. 8858-6-9 APPLlES PKNN5YLVAN1A POWEN I LlONT COMPANY aolotossso toseetovasek SMltoasssa otosso oosstec otal% rect i oeet I McHTEL~ oorr rMrrctoco $ 5dMKFRIC -REACTOR SUlLblMt'ESIDUAL RkT ltEMOvAI. uer a %a 5r Q ~ss CB-202-I U~8 K esto
1 v sr
'Oe ~ ~ ~ ~ ~ ~ ~ ~
F s
~ ~
I I I ~ ~
~ ~
I I ~ ~
~ tt r ~ ~ ~ ~ ~ ~
4 ~
~ I ~ ~
I
~ ~ 1 "i.".
I
..1 @I 1l:.: ~ I t I I ~ ~
1 I ~ ~
~ .
I
~ .I ~ 1 S .r ~ ~ ~ ~
I" ~
~ s I. ~ s~ ~ ~ ,I ' - ~ ~ ~ ~ ~ )l~.f ~ . t-j'sit'f'l ll ~ I4l lsl ~ INI NV.o. ~ ~,
t ~
,l I-..I'+.
s I ~ ~ ~ r M~ al 4 ~ NN vga ~ OI I y' N~ Sl+ ~ ~ ~ ~ ~ ! II I
~
I ~ ~ k. 1
~
1
~ ~ Ir I Qrss Ij~+$ ~ ~ ~ ~
- t,is I.: I I ~ I ~ 'y i:
I ~
~ ' ~ ~ tsar I'
r ~ ~ I!'II .!1 I s
~ ~ ~' ~ ~
I ~ f ~ i '; I ~:1 ~ s r I 's.-'..I I t r'
~ t I ...'. r COllPONENTS 01 ~
p .p. - s I ~" I THIS QWG. NIE 04ISTED. ~ sssa aaee aa ol
~~ ~ ~ I I tB~YLNSN tOWEN 4 UBHl COlltANT SPEC. SNN4-0 APPLIES I ~ ~
r
~ I . 1.1 1 OS%
SaSSSSSSSVef, ~V1V~ tSJCI vsC I~'WlI, IWV0 I I I r ~ ~ ~ r' NOclSl WS MNcsKO s ~ ~ ~ ~ ~ ~ Is " I I I I y I i \ I I tsova RC - aaacme sue ys I I ~ I I ~ ~
,'s I I I ~
I
~
I' I RHR. UNIT 0, r ~ ~ ~ s y I I r'I s
~ ~
I I ~ 's Was g 11 was. NN DCA Olla 1 3
I
~ ~ ~ EEAFf ZION' \,
jjjlOZ~ QWt'.":.Q ~l.
"I ~e ~
1'e
.:,.:i:.." '.."::: ..Vsssl ~ ~
I ~ ' = ~
-I- ~ ~ ~ ~ ~ I '..wwhwa ~ Nsaa~s 44S ~tt~1IQs w ICE I ~%s ass l&Etl w 1'%~a IA'assltVtv ~ ~: !.:
I r.'I .
) rl.
s
'-'I I
I re I I I
',i s't . teaaeSsasf tstavttt e
~ M ~ p. lt 4.Ots
~ 1~ ~ NQEE: REVISED IO ~ ~ ~ ~ ~, . '
ADD EIBD e AND WEUNINtI WELD'IQSe
)I jjEQIJ IIIQIBIQ, s ~*
- I
'r X ~warred
- IIt
~ @&1 ~ ~ - ~ Rgaglatk& tgee~ SICSICA'ia& CICVate ~
et~ ~
~ ~.ssasaava asar iaIIasr'rsaeu ~ ~ ssw 7> ~u~~c.
rrs u' rsrrsts'4oot C CrVares(
~ !s.r. "a.'s zQdiei wu~r w mrr~rrrssrsrs err (c
Aerg~~rpauc m m<r ram e II t ~ mr rccaurcz
~ I- I,
- 4. ~
v 1
~ ~ ~ .1. r~ ~ ~ +sire r \' r, ~~ ~, \ . r e' l ~ ~ '. %'essg v r ~ e ~ 'e RNV.4 ' t f leDi ~
I i l4l .~
~ ~ I e ~I i
M -NI.IC t INI Sle1
~ ~ iS tllv114 tLAIIiANAaNI .. i 'Nl I ~,
r ~0 ) ~ ~ er vjr
,,I rr s v
('i~ikY~
~ s ~ ' ,e 'r I.
s!llsaqa
~~
r ~- O Qo ~
. ' r , AIINAVP . .l -'l Vg e I" rrr rr eVN eaErg 'lisegi r I
rS tr'
~ s ~
I e I, sw a err aaa Slab kV I aallt
'i ~ 1 Sl v Itd 'ij se ~ .. . WaeleO ltOSII aWnr ~.
COMPONENTS ON jgiEIICN'~IINIIENNIIEvo.I E'jtlit c.ttrl nc jtti'.s'. al ~.~l ..'r THIS ISO. ARE GeUSTED .I' . ~ is
~ as "~ "- 1llaa~ asrt" SPEC. IbSN APPLIES ~ENNEVLNANIA Non N UONT COIEMN . ~t~t ~ II.Se a ) al lsl ~ mes~asaseaa a,
el r Q*
~ - r .t.I SOMILTRIC ~ v zrrj ~ ~ ri s rl'ee
RQ4%R..BLDQ';H.R,'".
~'NT ',IL >.gg'tl R .le aa 4esj aaeaisia Ir-. rrPP; 9)
Q.S iR 6 RE('9.'~V '-.'+l'<g>W=-~-"."-.8::".:"...="..:~""'-" OEEN DCAltRII IE
'j4":~q I
AS V%-<
.~ ',"'., IIIIIIIIIIIII IIIIIIIIIIIIIII sjliljllljill I I jilljljljl ljljljljljlpljljljljill .hl'- ';
Ee.alO i as@ tat jt lk i feewati lie.is, I '.a t 1' ~ JI t. c-
0 SR~ 0< N.OA.OSNOo ~ 4 ~ l4I IRIYiO. P %1@i ~ M
~
Iil ll~N ~
~
b. hg PION
~
Ikkll 4%A bl
~ ~ ~ ~ ~ %1 aL COMPONENTS ON C
N W ~ W% gj ON maae THlS DWG. ARE O-LISTED
~-
SPEC. llSS4-e APPLlES PCSNSTNINA NWEII L LIGHT COlltANT ALl~ tUSOYLVJPEL IANIMNCNCO ISOMETRIC REACTOR BLDQ R.H.R. - UNlT- R esa 4l ~ IQ~+ NN DCA Rll I 2
~ OO
+iVnrpep aaWWs .4 N tlSI REV,O PSZb
-(yl H-3l.t " hfNAlf f II AMBI'~ll.,
Pfoglv3 II H3h4>> 4. g
~
S
~o ~ <<N S ~ ~ CC OCMCCOOO ~ JO ~
COMPONENTS ON THIS DWG. ARE O-LISTED tENNTLVANAtOWEh L LIGHT COMtAMT SPEC. 885S4-9 APPUES JLLCJCOOIL OCM VLVJJI J 04CLSN~ CCCJS CLOCC NC CC JAW COOC L IJOC O
&OCTCL CJCC IHAJKalCO ISONfTNC -RQCNE BID. ~ kH.k - UNIT< 2
I~ II
~ I I ~ ~ ~V gs C.fl.'iao'/ro ga+TN ~ ~ 4 e-es/aa!o H-r/-l ~ t N/4 rizo fN-AlQPl Os Iffy/ g fag II s ~ /Pe+a+ r Q SI a IS fssrc I fsssssfsfss ~ Cl IlaW I'TWW ~ sf ~
COMPONENTS ON THIS DWG. ARE O-USTED KRNSYLVANIAPOWEA A UGlll COMPANY SPEC. 88SLG-9 APPUES Afffsfsssl, fllssf fr ssas OCISW~Cffsrfffffsasffs~ lmflfrsfC
~ CCffflL CAff SCANOCCO IgeatZTR// -macule 8Ln6. /ff.,lf.R. UNIT> 2 ~ ssasf ss ~ IT N -2/d -I ~ W Ss A L uss 4
4
~SO ~
QV.Q 55yrb 5
~gUtlNaCO lola SAetS 4C'54VVSer. O447775t C4l'O m ~ ~
b4,.CtWW eau I 5 bIV,+~4 ~45~ 554745
<<sea go.
ble45-4 ~ V44 IL444 ~ 745 m 5a4 5'+ 5E'I5LV75 N4
+4 ~ ~+
5'4 ~4' 54e p~ ~ 5 ~
~ 4 ~ )
~ /+1 yg j* p$ JO
~ )5 )(0' ~
(, REFERENCE DRAVtlt5IGS r HI gl 4~ (SI Rtv, b
+4 bb'b ~ 4 eb44b.
h&4 hei A4 bb r.. l4-Q4 7 C4 go ~+f / 44'4 44y4 A 5.5 415 VLa ~4 5
~ ~
444ltlll ~I 4545OA ~4 SCt OtV 45ofL 457554 7574L h 444 4447 COMPONENTS ON THIS DWG. ARE 6-USTED SPEC. 8856-G-9 APPUES tggmmal towN c NN COQPNN
~INMILM&4 ~4444744444444444am 44755erf 7 ISOMETRIC- lKACTOR, BLDG .
Q4H.R - UNIT I WS, Q Sl ASS-I20-I 574775'<'!'eoc, I E45 OW ~ C 544
=)
0 V NO?2LE COND:TlON3 12"-465.14 r i4- C.OOO TH5LEDOLET 1 RCQ'D.Oa1 4ll WLET TEE
~ 4 thol Set Ik-(AXE~
a a cc~ca. 12~4bb lib TH REDOLET 55 REQ'D. EQUAL SPhCNO REACTOR r b ~SEE r RW DETNL FOk
-A NOVEL CON Fl. ~ gal 0"~gLG ~
GBS-II8- 4 REFERENCE. DRAWlhltIS 151 REV. 2 P.KI.O. p-aHa ~ 2 Plhi4 PLhl4 ARfh 24
)
cP i~ I alw W cow tea OWO IN SQSQRO COWJIPONENTS ON THIS DWG. ARE 6-USTED SPEC. 88684-8 APPLIES
~
lEW$TLYANAtOWH N 06NT CON%NY
~ araraa 8w'aaiw rrrrKTarrkhw ~ acrf aa aar woco ~ araf a ISOMETRIC" REACTOR 5LDS.
RHR -UNIT I raa I 19 wasaa oa.
~ es6 GBB- ll8-4 a~1 tmXr~r~~>nLkfiJ..l~ 4<1 TCEIHZTQ R
Ol SPRAY NO?ZLR COHIIECTIONS li"-Gb5-IIS IX COOO THRKOOLKT 2REQ't.ON~ INLET TM COtV. 4<<GCH 5'0% f~Q,~IS-IA I oF CSNTRR H.5 lt"-LOOO+ THREOOLKT SS RRQ'O. EQUAL SPhCINO G89 I 8-
-=-'
tlgf lO
~ gb REFERENCE ORAWIHGS I 0-lsl REV.2. Pd.Z.D.
8 Qr5 + 5 PIPINO PLAN<<hRCA RO Il gg NThll
~tk~cO<<I FOR NOLLLE CONN'S.
K.S
+o ~ <<<<<<VWftttt t lartlel&tl1,ItlylOtOEttsCfL PWCV << ttl r ~ ~R COMPONENTS ON THIS OWG: AIIE O-LISTED 5Ã5TLNNAPOWlS S LlQllCOMPANY SPEC bb5S G-9 APPLIES OCÃNl I&tlQNCISQ XSOHETRIC REACTOR BLDG.
RHR OMIT I SI-IS essa GM-)f5-$ 2'}}