ML18040B149

From kanterella
Revision as of 23:26, 17 May 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Forwards Supplemental Info Re Application for Amends 80 & 33 to Licenses NPF-14 & NPF-22,respectively,per 860428 Telcon Request.Srp Sections Re Design of Fifth Diesel Generator Facility Addressed
ML18040B149
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 05/19/1986
From: KEISER H W
PENNSYLVANIA POWER & LIGHT CO.
To: ADENSAM E
Office of Nuclear Reactor Regulation
References
RTR-NUREG-0800, RTR-NUREG-800 PLA-2645, NUDOCS 8605280293
Download: ML18040B149 (490)


Text

REGULATORYINFORMATIONDISTRIBUTIONSYSTEM(RIDS>Qaddv'ISTRIBUTIONCODE:A001DCOPIESRECEIVED:LTRENCLSIZE:TITLE:ORSubmittal:QenevalDistributionACCESSIONNBR:8605280293DOC.DATE:86/05/f9NOTARIZED:NODOCKET0FACIL:50-387SusquehannaSteamElectricStationsUnitfiPennsglva0500038750-388SusquehannaSteamElectricStationsUnit2.Pennsglva'05000388AUTH.NAMEAUTHORAFFl'LIATIONKEISER>H.W.PennsylvaniaPower5LightCo.RECIP.NAMERECIPIENTAFFlLIATION*DENSAMiE.BWRPvobjectDivectovate3$CG

SUBJECT:

ForwardssupplementalinfoveapplicationfovAmends805:33toLicensesNPF14CtNPF22irespectiveig>pev860428telconrequest.SRPSectionsvedesignoffifthdieselgenev'atorfacilitessedNOTES:fcgNMSS/FCAF/PM.LPDR2cg'sTv'anscv'ipts.icyNl"ISS/FCAF/PM.LPDR2cgsTranscripts.0500038705000388RECIPIENTIDCODE/NAMEBWRADTSBWREICSBBWRPD3PD01BWRPSB09INTERNAL:ACRSELD/HDS4NRR/ORASRQNiCOPIESLTTRENCL125ioOf1TSCB04RECIPIENTIDCODE/NAMEBWREBBWRFOBCAMPAQNONEBWRRSB*DM/LFMBNRR/LECOPIESLTTRENCLj1foffoEXTERNAl24XLPDRNSICNOTES:03051fOEQSQBRUSKE>S22oNRCPDR021Ogimn'es~/5JTOTALNUl']BEROFCOPIESREQUIRED'TTR34ENCLP5 PennsylvaniaPower8LightCompanyTwoNorthNinthStreet~Allentown,PA18101~215i770-5151HaroldW.KeiserVicePresident-NuclearOperations215/770-7502NY191986DirectorofNuclearReactorRegulationAttention:Ms.E.Adensam,ProjectDirectorBWRProjectDirectorateNo.3DivisionofBWRLicensingU.S.NuclearRegulatoryCommissionWashington,D.C.20555SUSQUEHANNASTEAMELECTRICSTATIONREQUESTFORADDITIONALINFORMATIONFORPROPOSEDAMENDMENTNO.80TONPF-14ANDPROPOSEDAMENDMENTNO.33TONPF-22PLA-2645FILESR41-2/A17-2DocketNos.50-387and50-388

DearMs.Adensam:

TheattacheddocumentisbeingprovidedinresponsetoarequestmadeduringanApril28,1986teleconbetweenyourstaffandPP&L.TheteleconwasheldtodiscussourproposedtechnicalspecificationchangeswhichreflectinstallationofafifthdieselgeneratorintotheSusquehannadesign.SpecificallyyourStaffrequestedweaddresshowthecivil/structural/seismicdesignofthefifthdieselgeneratorfacilityandsupportingcomponentsconformstotheacceptancecriteriaofappropriateStandardReviewPlan(SRP)sections.Thespecificsectionsaddressedare3.3.1,3.3.2,3.5.1.4,3.5.1.5,3.7.1,3.7.2,3.7.3,3.8.4and3.8.5.Wehaveformattedtheattachedasfollows:oThefirstpageofeachoftheabovelistedSRPsectionshasbeencopiedfollowedbythepagescontainingtheacceptancecriteria.oOurresponsestoeachcriteriaistypedonbackofthepageprecedingthepagecontainingtheacceptancecriteria.DieselGeneratorFacility."860M80293860519PDRADOCK05000387PPDRgo>Py+oSomeresponsescontainnumberedreferences-whicharealsoprovidedintheencloseddocument.Referencenumber1isadraftcopyoftheproposedchangestothoseFSARsectionsoncivil/structural/seismicdesign.Referencenumber2isaDesignDescriptionReportforthefifthdieselgeneratorandReferencenumber3isaspecificationentitled"DesignCriteriaforCivil/StructuralWorkforNewEmergency NY191986Page2SSESPLA-2645FilesR41-2/A17-2Ns.E.AdensamIfyouhavefurtherquestions,pleasecontactD.J.Walters.Verytrulyyours,.W.KeisericePresident-NuclearOperationscc:M.J.CampagnoneUSNRCR.H.JacobsUSNRC AZ~~CICSCLOILollL~TAT)ORVIAULTORSCLSOL't'VSLa.sIORAARTAIIILVAIVCVAULTtoaalaAODoatt.ORSSSRCSISTAIITOookAlaRCCtlVSRSKIDROOPCL.ASS'CXHAUSTSACeactt~ICCICOCIRS,~dlORV/CC)OV74AII5SORIIICa~alITORIIADODirtPRSSS.RSSISTAeaOooILSjaaeeaerarerraet0~~,et~ImItIOWRAOR.IRIeaovAOLCwALLIaeaccs~I~F)RSoaot'tcTIO54)I*eat>>AUXSIROt544547SOPCSAZVCLLaeaatsCLCISTORVAOOOlttMSSLRCSISTAHTDOORSROOtIelrPLANEL.675-6AB~~OICSCL4CIICtUCLOILVro)IAACt4tISATTCRYSORSROOIIICSVOCcast.~AeataCO~PRCSBLOC.Avtotsr'te4coearaao>>OAIISLOSAT7CRVCIIARASROILYWal'ltSTOSASOTIAA00~SAIIaallSaaa~rIeeat~ILIIOI)SS>>lI5IBpETCXITS~III)CTfel4XgCSCI~I4PADKL.CSYC70RAIeeAdSoveapftveaPSA.IceILVswatcHOcAR154Sal.re\54aell,Seaaaantar4LvstOILTOAlaSSCkPUUPJACRCTWATSRTRAIaottktoaaP1PLANEL.656-64/v/mtfu7PCnW/ne/DSSC7AAVSNnvoA/PA4le/5Sff)U/fule/7FelnsbfFnac77//<f/Ia)I/utah>7/ouFICINCJS'IE9>9g[ISIOOISSII>>=Jf~WetCw~redvvI~'I~~AlaiIeatantFII'Tt4~L'~!TOCIIAOOOlttPRCSSURERSSISTAII?OORROAlapsk~tLOIIUIIIDCTn<<C'/IaaVAI/Ae)fg//Vn/IIOtSbtct7'/n)c7/at)AtoaF:.s/nreSaAg74IC)SO5/4/fg/l7///fNIOF4CXUAUSTCUAeaot4Ig..TodeeAooSett.~RSSL,IISSISTAIITDOORIIAea\reaavtfcraea~ItToteaAOoOAeaPOIl~R~PLANEL.74I-6PLANEL.726-0CASKMENTISATTKRYltOOMKXUAUSTFANCXaUIUSTOIICRCSRlAIRIeaTAILSSILteaCSappaOllatoaeasatantaoDALoeeoIYrgCSIIAvsrTAll~3PLANEI.7p8'~~~NASTEASIELECTAICSTATIONUNITS1AN02FINALSAFETYANALISISREFOST/EaDIESELGENERATORBUILDINGFKANSATEIESE'~eTS+t~7OS"OATIE)72CC),F)auRESS-IOS 1~I%

~VC.4~OSCL0%a%A.~tal>>rl~T~OIILAOLNt>>L%4~ISIIAS4TILTataa<<laosvl1%111~TPIIMT0041411OCC~Ir04~>>4g4I~I\f4BararTL40F4Slwalt4%1ClaOS<<V/IOOVCTOCl<<AOLT441Ne~IW>>atl0CEoAA'LI~%11$MSiSTA>>TOrO11'1%%>>MA~%%440Ptr~IIL\I~aft\f0%%1~L<<4%,Il-I.C~CCOssLrrTSFIN0ParrlcTIP>>FA~ITaa<<AOO~TAa%ILLOCSI41%>>fOaaaaTOO400>>~4Pa>>PLANEL.675'-6OA..OeTACSILOC>>'I~%1%Plat%ilIItPLANEL726-0A(PeOASCIACNTCPLANEL.74I6gr>>rAIOATTIOTISSAOI\%VOCStat,r>>ILFIATLAOATTCNVOOO>>SIN%1STFA>>AI~r<<TAIC~~II%It%a>>3CI<<AAILT~1114%~~<<<<SLSILAALrf\TI>>cr<<taaaaMILTOC>>ADOCAIN~Tcssuac.00>>afa<<T00%4G~GTILIL~ILTIIIIaltar>>f>>A~AAMIIOpt<<r~ILII0110%1I~IIi~%at%QC1<<%%%T~%4%40~V~I'I~40CL.OST1trC>>I41114%VSplrC<<SCANTOO<<AOOttITsrrrSTrM~%>>PIO4%4>>II>>II%A<<STtA<<IACACI>>AIINllWat%OP<<MI.5~~IPLANEL.6566Hop>IrfrSAICdrFN4SSrt>>VI>>PCA<<IAv4SIS7>>AIS<<rvrISI<<I<<TIACII'cctrrolvJarrrcrvortttrc.rfcvcr@d+pAvosoAto4~SFVfrtttrfOSFANS4'rFAIIISIOFACTrfrssovtrfvrfrfI<<racttrTIOVSSI~IIIIavFIIIFIVFIASOSISddTA4AIOJdPLANEL.7OB'-08<os-zooa9~-<(CICOUDEANNACTCAJCCLCCTNKSTATIONCNNTSIANOCFINALSAFETYANALTCI~NCFONTGIESELGEJCECCATOCICCJILCSICIGCLANSATELOSC'WICTS<<I7obO*NO7CQIO.FNN11C11Cad h.~rhIICr*TorotoAIIADSTt47s'AIYCCxlcAVDTCNAICDCRAIR~rMS~NCNLROODSLADCL.14fGRATIICCOL.SLTts0TORNADOOIIO.RCCSLRts'ISTSNTOOOClrAMCSNAUSTCNAICDCRDvw4~~NDIADoorscADclTwt/0/0ELNAUST<<NA/40CRSLSDTto'.0TORNADOOIOO.Dttst.kt'DISTANTODORLSOOCCIMTAIC~ROOD.1IP'VoFI.CL.TOO.OCXNAUSTrAH)raIR/csAIRIMTAI40eASCMCMTtCATTCRYROONCSI4AUSI'AMFLEL.TOOIOAIRIMTAKSrllTSRDURRSCCIVCRI-'IOOFCLEXHAUSTSILCMCC4CMtRATDRCONT/COLCADIMCTCMCNMSCONTXOLCAIlNCI'OtOl~CllCL474I,IlSSVTANKo/4NII.SKID>>t<<oovlustcxlouor4COTOMCRAM\CXNAVSTSCLCIICCCLROOCCL.CC}R'~SRAOCCl4750NLCCIIC)INICICVOl7~%040,4o44DCRINTICTORNADOCertrtttsRCSISTANTDOORSDL0,47r.c.ICLI/P5/ItIVA/I4VPlotsA4//7$4<<7IOI/SSrrwPATPtt/IAt/Al/'/<<III<<rs8.g-/,zIfcsc/Iro/re~>p'rfC/AI/AINfr~TogrE/II/II/A/fg/'IItotH+ICC/tfSLAST4/NTNCRAocas7c'4~COILNCATCDCNANSCC~I~STNSIC<<CATCICNSSSCD'AlpKVSWITCNCCAROICSCL45KCRAIORTtkulOP4ltKV/4/}OVI'RAMSIOCCMSR0OlSCOMMCC7swITCN~OCC(IC)rl.cL.c7}lc44TL.CL.CSCCSlolsuttvtTCNCON'ItolOAKSLICSVOCswsoI77VCS<<44SrNANSEI>>TCRYROOMSECTION3-3suroLYsuoolftltsosTTCoOOOANAOCTClTtssOlsllulltANOOANNPSRDORSLARClTtp'8TORNADO04/O.OCCSthRtSISTAMTLADY0INTN~4FAIOSXHAUSTCNASIDSRSOf44NOILROOrSlstlCL7'o"nk'LCLTZCvoSuorlv~CCNNMsurNLYtAMgTOWOrOAAAOCT7~F4IINLNOOOSCADtl'74'lTOSNsdoosllrtcACCtSSOwlllll44CSKAVST~CL40/A*IR~MTAKDTORNADO44ttOOLSS,RCSIS'TANTDOORtL.SL.TOEco'I~~)j0CoToocCRAMDRCNOVASL0wklLOANCLSCRADRCLCTSIOMCVTILAL4/COUN0IM4SOUI~.ORAIICARCscoc}'O'KC,.oKIO4}'DSSO~~hlhICS.)000000I~I~To~0HH0ORI4NIOa(FYOISII5NASTAIRIMTAKSl.7/4'mAIDCSKIDAsst/COLTTorOtORANSRAILSLCSV44luOOllOAVTANICUISSCNLlllsvCSCNANosfutLCa,NtsxSCNANCSRrL.CL.CT~*IO'Vsv/ITCNCcA/LFL.CL:<<SCIL,[~I4'700OOCtlCop/44'CMOVADC,WAllOICSCLCCNLRATCNLOLcL,DTS'4CRADSCl4~7$~d0IlYSISTSRS5AlRATORrORAIMA4C'VIC0ILLAI~~~e~1tSECTIONAIRCONOR,~ICIO2ZAIRRSCRIVCRSKIDTDRMAOOOltg.RRCSSRCSISTAMT'aRoottlCOCCILARYRIMTHCOOOOCoutll~L.STS'~7dDICSCLCCCM.CIIIutlousfoKAccTANKI'CNOOCOIllit.SECTIONNNNNDCIRCCOMCOICllllt!rpboy>f0>~>SUSOUKNANNASTKASCELKCTRICSTATIONUNITSIANOKFINALSAFETYANALYSISREPORTEDIESELQENEAATOQBLIILDINQNECTIOHSFIGURESSOIO6 I

II%,g~'j]'WiHCfpv-"si%~i~5.kRl%0LL4lmmkFPii'-"'+~~'IIl~~gf~RflI$%:lhf)~~g~sg~5'='=~X~%=-~)ll~m,-~~~~W~c0tasm~~vwJg/flval!EMMYl@eiiiS~Illlllllpk.,=elpga~~RR1'LSqI~VDo SSES-FSARThBLg3,9-16LISTOFCOMPUTERPROGRAMSUSEDINBOPNEC!IANIChLSYSTEMSANDCOMPONFNTS.-COMPUTERPROGRAMvn.NAMEDOCUMENTTRACEAPILITYSYSTEMIISEDME101,'IK)32'1~912"E913LinearElasticAnalysisofPipinqPipingSystemAnalvisThprmalStressProgramsNuclearClass1PipingS~resshnalvsis'IRI/STARDYH~3BochtelBechtolBechtelBechtelCDCormechanicsResearch,TncLos,AngelesUnivac1110Itoneyvell6000Univac1110Ilnivac1110Univac1110CDCeormCE79RANSYSSvan.=onAralysisUnivac]ll0Systems,Tnc.Elizabeth,PA15037~E351PIPERIJPCDCorQuadrexCDC175Con.Camphell,rh~a/gAbIPEP1Il59/QI-Hvr5,4;//le,&r.Cambrianc<,h'n.s-.,Rev.35,07/84 e

SSES-FSAR3.10b.1.2.1FunctionalCriterionEveryinstrumentationdeviceshallbecapableofperformingitssafetyrelatedfunctionduringplantoperatingconditionsofstartup,constantpoweroperation,andnormaloremergencyshutdownwithoutimpairmentofitssafetyrelatedfunctionwhileundergoingseismicandhydrodynamicexcitation.Thesafetyrelatedfunctionofinstrumentationdevicescanbeeitherpassiveoractive.Whereonetypeofdeviceis,usedinbothtypesofapplications,thedeviceisqualifiedfortheworst-caseapplication.~~,FromtheplantOBE,SSE,SRV,andLOCAconditionsafamilyofaccelerationrequiredresponsespectra(RRS)wereeneratedfor[eachbuildingelevationfornorth-south,east-wes~erticaldirections.Thespectraforeachelevationwherenstrumentationislocatedwereexaminedtoestablishtheworst-caseresponsespectra.Pipe-mounteddevicesarequalifiedfor6gverticaland6glateralalongtheweakestaxissimultaneouslyapplied.Hangersandsnubbersareadded,ifrequired,tolimitpipingresponse.Thisvalueischeckedagainstthepipinganalysistoinsurethatthepipingreponsedoesnotexceedthequalificationlevel.Where,equipmentwasnotcapableofmeetingthisstandardvalue,theactual"g"valueggorthatequipment~~forqualification.~Wereepe~Q'eJQreaselpurchase.orderFordevicesmountedinpanels,theRRSusedwasderivedfromthepanelanalysis.3.10b.1.2.3InstrumentationSuortsInstrumentationdevices,assemblies,andcontrolpanelsshallbeseismicallyqualifiedusingthesupportsthatwillbeusedduringin-plantinstallation.Theseitemsofequipmentarerequiredtomaintaintheirfunctionalcapabilitywhileundergoingearthquakeexcitationattheequipmentsupports.3.10b-2 SSES-FSARI~~~~a~~~s3.10b.1.3DeviceQualificationTestCriteriaDevicesthatwerequalifiedbytestweretestedinaccordancewithIEEEStandard344-1975.Ingeneral,testrequirementsandacceptancecriteriaaresummarizedasfollows:sa)Devicesundertestaremounted,inamannerthatsimulatesintendeduse.b)Devicesaretestedwhileintheirnormaloperatingcondition(e.g.,energized)todeterminethatvibratoryconditionsdonotproduceamalfunctionorfailure.SeismicCategoryIdevicesshallnot-fnalfunctionduringorafterasafeshutdownearthquake.c)d)Devicesaretestedinallthreeaxes.Simultaneousexcitationinallthreeaxesispreferred;however,testsmayberunoneaxisatatimeand,thenberepeatedfortheothertwoaxesasanacceptablealternative.~gJ.Nhereappropriateafrequencysweep(aryingthefrequencyofexcitationwithtime)isonductedatalow"g"value,e.g.,0.2gasnotedinIEE44.Thistestwas=performedtoidentifyresonantfrequenciesintherangeofinterest.e)Devicesthatarefloor-orpanel-mountedaresubjectedtofiveOBEsandoneSSEineachaxistested.EachBEandSSEconsistsofrandominputmotionthatenveloptheRRSforthatdevice.Ief)Devicesthatarepipe-mountedaresubjectedtosine-beattestsoverthefrequencyrangeof1to100Hz.EachIsine-beattestisperformedatapeakaccelerationof6g*ortothepeakaccelerationforthespecificmountinglocation.g)Thecr'.eriaformalunctionorfailureincludeasmanyofthefollowingcharacteristicsasareapplicabletothesafetyrelatedfunctionofthedeviceduringandaftertesting:1)Lossofoutputsignal;e.g.,openorshortcircuit2)Outputvariationsgreaterthan+10percentoffullrange3),Spuriousorunwantedoutput;e.g.,relaycontactbounce3.10b-3 I'V0 SSES-FSAR4)Majorcalibrationshift;e.g.,greaterthanp10percentofrange5)Structuralfailure;e.g.,brokenorloosenedparts.3.10be2SEISMICCATEGORY'EQUIPMENTQUALIFICATIONDetailedinformationaboutseismicqualificationofNon-NSSSSuppliedSeismicCategoryIInstrumentationismaintainedinacentralfilewithinPP&L."AsynopsisofthisinformationwasbySQRTformspreviouslysubmittedtotheNRC.Vgp~gq'"p"g~~L'kgb5$RTf00~Qlv5llA'0~~~~e~f4~<so"~Pvapcu~d.!3.10'b.3MethodsandProceduresofAnalysisorTestingof,SuortsofInstrumentationInstrumentationequipmentwasqualifiedbytestusingthesupportdesignedforthatparticularequipmentasoneofthetest!elements.r3.10b.40eratinLicenseReview!ResultsoftestsandanalyseswereprovidedinindividualSQRTForms.3.10b-4 0E0 SSES-CESARfunctionsofelec+ricalequipmentorcomponents,whicharenecessaryforthefunctionalrequirementso.theequipment,shallnotheimpairedwhentheequipmentissubjectedtotheOBp.orSSEincon)unctionwithapplicableelectrical,mechanical,and"h"rmalloads.SSBisdefinedasanearthquakethatproducesthemaximumvibrato'rvgroundmotion"forwhichcertainstructures,systems,andcomponentsaredesignedtoremainfunctional.Thesestructures,systems,and,componentsarenecessarytoensurethefol]owinq:a)IntegrityofreactorcoolantpressureboundaryCapabilitytoshutdownthereactorandmain+aini'.insafeshutdovncondition/Capab'l:tytopreventormitiqatetheconsequencesofacciden+sthatcouldresul+inpo+entialoffsiteexposures+o.theradioac+ivematerialreleasecltotheonvironment.Theloadcombirationsincludegravityloadsandope"a+ingloads.Allovablestres..o.sinthestructuralportionsmaybeincreasedto150percen+ofallowableworkingstresslimits.Theresultinqdeflections,m'saliqnmentorbindinqofparts,oreffectsonclertricalperformancefmicrophonics,contartbounce,etc)donotorevent.heoperationoftheequipmentduringorafterthe."'.oismicdisturbance.3,10c,1.5Op~"atinaBasisEarthauake(OBE)Conditionsheloadrombinatinnsincludegravityloadsandopera+ionloads.All~..'~biostre-~sinthest;ucturalsteelportionsmaybeinr.easedto125percentoftheallovablevorkingstresslimits,assetforthintheappropriatedesignstandards,thatis,AISCManualofSteelCons+ruction,ANSIando~herapplicableindustrialcodes.Thecustomaryincreaseinnormalallowabl.eworkingtressduetoearthquakeisusedifacccrdinqtothe~npropriatecode,i+5slessthan25percent.Theresul+ingdeflections,misaliqnmentorbindingof.parts,oreffectsonelectricalperformance(microphonics,contactbounce,e+c);doesnotpreve'ntcontinuousnormaloperationoftheequipmentduringandafter+heseismicdisturbance.T'omr>c"i'")a~'l-'4,~~'4evaas'/i~+~<<~%dr)c'~gAP~4~4c'Aeo$oReudOd~Rev.~,~i310c-2/ac, o

SSES-FSAH7A10c.16PrevontiorofOverturninaandSlidina,9Stationaryelectricalequipmentisdesiqned+oprevent~verturninaorslidinabytheuseofanchorbolts,welding,orothe"suitablemechanicalanchnraqerlevices.3.10r..2WETHovsA~lPPROCEDURFSFOROUALIPYINGELFCTRICALEQUIPSEMT3.10c.2.1SeismicAnalysisNethodForthepurposeofanalysis,theequipmenthasbeenidealizedasamathematicalmodelconsistingoflumperlmassesconnectedbymasslesselasticstructuralmembers.Fordynamir.analysis,thefrequonciesandmorlo.shapeshaveheendeterminedforvibrationin+heverticalandtwoorthoqonalhorizontalrlirections,termedalohalrlirnctions.Theeffectsofcouplinqbetweenvthrationsinallhreealobaldirectionshavebeenconsidered.Thespectralaccelerationpermodehasbeenobtainedfromtheappropriater~soonsespectrumcurve,whichhasheenprcvidedfortheavpropriatedampinqvalue.Fordetermini.ngthespectralaccelerationfromtheresponsespectrumcurves,thevaluechosenisthelargestvaluoonthecurvewhenthefrequencyinquestionvarieshy+10percent.Seismicresponseintermsofinertiaforces,shears,momonts,stresses,'anrldo.flectionsaredeterminedforresponsetoseismicexcitation.ineachofthegloballir~ctionsforeachmnde.(SeeSubsection3.7b.3.7)pFor.heconsiderationofstressordeflectionatanypoint,tho.totalseismicloarlconsistsofthemostsevereseismicloadinononfthohorizontalqlobal.directionscombinedbythesumof+h~ahsolutevaluesmethodviththeverticalseismicloarl.(Seesubsection3.7h.3.61SeismicOualificationforElectricalEquipmentOggabil'gl.10c.2.2QLsUJu~.heseismicaualif-'ca+ionofCateqoyIelectricalequipment,auinmentsupports,andmaterialmeetsasaminimumtherequirementsofIEFE344-1971andprojectspecificationG-l0,"GenealProjec+ReauirementforAseismicDesiqnandAnalysisof.lassIFauimmentanrlFauipmentSupports"andcomplementedhypro'~ctSoecificaticnG-22>>DesinAssessmentandualificationTable3.9-31.gQ~+~~ofSeismicCa+eaoryIEquipment6EquipmentSupportsforSeismicRyrlrorlynamicLoads.>>Prefect.SpecificationG-10issummarizerlincomparisontnIEEE-344-1975andRegulatoryGuide1.100in3.10c-3 SSES-FSAR,";$ec<ricalecuinmeniisqualifiedforfunctionaloPerahility)urinqandafteranearthquakeofmagnitudeuptoandincludinq+heSSHaccordingtoatleastoneOfthefollovinginput~xci~ation+es+s:a)Singlefrequencysinusoidalmotionorsinebea~motionscontinuouslyinputeddurinqthetestatspecifiedrequenciestocover.hefrequencyrangeupto33Hz.b)Randomvavefom,multifrequencytests.1,1gc.2,~SeismicT~stgego",tparalysisandMethodsv~Qd)bu4mL~Q~gpTheanalysisandtestreportsfurnishedbythesupplierdemonstratetheab'li+yofelectricaleauipmenttoperfomitsrequiredfunctiondurinqandafterthetimeitissub)ectedtotheforcesresultinqfromoneSSEandarequirednumberofOBE.FourcategoriesofreportsareprovidedbythesupplierofelectricalequipmentandmaterialapplicabletoSeismicCategoryXaualification;a)Flectricalequipmentqualifiedby".estinqme+hod).)Electricalequipmentsupportandmaterialqualifiedbyanalysisandcalculati.onmethodoUlc)Electricalequipmentqualifiedbysupplier'scertificationofSeismicCateqoryIrequirements.d)Combinationofanalysisandtesting.+~-col~pp3.10c.2.3-1ElectricalEquipmentQualifiedbyTestingcSandCombinationofTestinaandAnalysisNethorlgrl'vooElo.ctrica.ipmentlitedbelovvastestedby+hesuppliersor..'-,stlaratoresbaseonsimilarityindesiqnandassembly,andal4'+ig>ropresntiQuipmentshovhirTables3.10c-4,~fci0throuqh3~10c-16:SsltjC~)hi)0C.-(yS.foe,-8Tndbctpowcl+A~5a)IndoorsecondaryunitsusaronseeIae.c>>1)b)480Vacmotorcontolcerters(seeTable3.10c-2)c)~d)e)Batterymonitorsandfuseboxes(seeTable3.10c-3)DCdistributionpanels(seeTa,hie3.10c-4)Batterychargerracksandcabinets(seeTable3.10c-8)i~~Rev.3.10c-4

sses-psLRTABLEI-BOG=~5¹ZDLRXQIII~UySXLIILIItXsfIrlPGF.@ZAN,1(:.(e.SQI)IPQENIIQSIiIIQ"In'(gocLIIoNUNITsUPPLceRITRNNn.oescRcpTlnNeduc.BesTNn.Br.0"..pt.ey.Nn.TESTCNGPLCILITIRSQULt.fPICLTIONQOLLIPICLTIONCRITRRIL'el"SIGNRDSI:8856--117-57654Si.ncleendedSecondaryttnitSubstattoaConststinoof:a.TersinalChasber~b750kVLTransforaer.c.L.N.Svitchqear18-21018-22018-2301S-24028-21028-22028-23(i28-240:teactor749749719719749749719719IITe.IIsperialICorporation12222VIIRlaboratoriesNOTncaliforniaNoreoProspectSpecReportIG-10~26340-2fIeee-344-26340-3197526340-4Bp:G.ShipvalPnv(e('+WSf<<W<'~O>Cg(opC.a~(a~77.(.:>~/-.op/~lib'0igeelTrl(u,7=8(t.'VAr<,I~SSo<~CIZ~>sterpdRQ4a(r'8'.-A(pigpg(g)f75gCoa9hrt.W~evvtye(ebs4y/e4ksHnntLvs)leFJlaba-aPaWCV~faC.c-/~)4gZdftE-RH-/'/75'(5CA'ppr>'3g.rS'77(SSAgyeKPR9w<Ief(Ss~'q)actt7h..l)...'~)~NnyetSpecifteatinnG-10iscosplesenndbySpecifteatton0-22.Ynr0-10SpecificationSussary,SReTable19-11.gNqyj:;:JP:-~,</og//5Co+(Pic.A/.JII'-'~a9g~f'--C.~'-laZ~.'3g/i3.rRev.-3~7/84-

(:iSSES-tSLRglSgg1lpgaggO'$0/CONgg0$gggJgJS5901PbEKTEHHTIZSCinNIr<LXioruIT..'I40.DESCRIPTIONtOOIPL..TNJ.9LDG.ELV.ONITSOPPLIERNO~TESTINGtLCILITIESQOLLitICLTIONQOLLIPICLTIONCRITESIL"ElaSIGNEDSy:88%6-t-IISRotorControlCenterOS-136OD-14608-516nB-517)E-52608-52708-53600-546ContreIControlD.Oen.78178167767'167767767767'ICsanCutler-AaaaerCssnCaenCavanCsanC~snCasaNyleLaboratoriesBuntssille,LlabaaaprospectSpecReport142966-10-'IO~6IEEE344-1975Sy:J.toreasnRyleReport145590-145590-2By:Vincentt.KearnsIII10-21618-21718-2'l918-22618-22718-229IS-236I8-23'I18-246IB-24728-21628-2l728-22628-22728-23628-23'128-24628-247O'1-21611-218II-22611-2361'I-246ReactorReactorReactor6837u9670683749'1197l96107196'I06837u96837497)967071'I670683719683719719~NOTE:Specification0-IOgiscospleaentedbySpecification0-22ggo7'6:5PE~.r:rollI'>"o>IP-LEIhC.Nr-"LF~Io2,+,CAEatonReportIDL57-3251By:Vincentt.KearnsIIIRev.-35-;O'I/Sa-'y-21621-2182r-2262y-23621-246og-5&5oO-5&&6337196837'l9O.gr-.u.Ci-;)ohL~'g'-f"22~WI>4'IaM>>+CtENt&aip(~)wyleLeaf'uIIIcr)lgLA\~fRoJEcg5r'6c,C-r~/-'Ll.rt~<0-l'175v<&~toScref0.I$C-f5/(yi'~;la,')howl]I\I l

0'<<~0~I:.'-?7A?.A'lL'II<<3BATT<<'?Y-VOVIYOAI4?10PGSP.8'IVe<<J4e'5',?'>iC.>tr:.IervriIr'Ti'?'<DESC~IPTIORr00tp..SV-.II.I.1LD::.SLCV.DAVIT'IOSDPFI.I?:I,SSTIVGFACILITIKS90ALIFIGATIORO'IAI.IFICATIOVG?ITKRIA~81"SIGHECRY:na<<'.scv.Oni<<OTI><<V-<<tSa<<tetVsonltug.~SOV~'<<12SVFuseRot7-1L3ggg2SOVFuseSot7-1600A'I99FuseSot.~2uv,7-1001Ip-67S1067610-68S30-6862007'0-67620-6SS2D-6s6ID-6'll10-692'lpn93'IP64420-69120-6n22D-69'I206)0ID-69S1069620-69S2D-69610-6II1D-6211D-63110-64I20-61120-62I20-6II2C-64110-6'Sl10-66120-65120-66110-67110-6SI70-67120-681l.hI-fT7'-//tIec/I7ttl.'/6V09-40)II?Ov.AS~V/84->RS6-F.-?19ArSatterVVunitOC>gyG~>nttol771ccpQ(/:ggc>g"gII='Il2222I1II2222I12I'II222.=2I'I22II22CQHNC4~)fVWatPuv?rConverstonpro%act*Inc.lvi&Labora<<oriesIIuntsvilla,A14baelntn)factSpecVine>nF.Fes"nsG-lo~6IetP.-Testreport.344-197544S963-IRcvW'tI/g/$c1)y?1JvIllgflagwe~a(p,/c(75)eiC-/up/~~t.E,Ec=.~44-lf/~<<C4flP~5~/c~~')"+0RZ-13~>/-'l'.c~c-W'et'S?(oui/<<I-')?~voTTIspeciticationG-loiscoaplenento.lbvSpecificationG-22.tlhlOVE',5PEC,t-/t7+//5t=ctuf/tLBMtt/7'<<-O8)'f5P&C.R-/oZ5,

SS>'S-rSLH-,gyp'$9c->>nc+"Z(iIi(ugtnupgygtsiQUIRQl5IIi(tvTJI'TInvI,ncLIIn/usITsoppl.teaTESTIRCgullteICLTIohQBLI.ItICLTIovITch,hn.Dcsc>>tpytovcoui,.>chTvo.St.oc.Etcv.vn.PLCII.ITICSCRITERIL"EleSICREDSY:Be56--120DCOis>tibu>>ionPanels125V225LhainSus2>>V100LhainSus125V225LhainSus2>>V100LhainBusl2.5V.('wA.MA(>u6>(=>>(zc>Q/pgg.(.binBu&10-61>>1D-61510-62>>1D-62!>1D-63u1D-63'i1D-6>>>>.10-6>>51O-6721D-6122D-6'I>>2o-6152o-62>>2o-6252o-63>>206)>>20-6u>>20-a>>52o-67220-6A2-on-5)7oO-559Conttnl771'~e~s('-aat>>5b-m1I111111122222222.C(ann/Spud('-DCC>,C>n(rt&f>>T>>EIspecialCorporationuyleLaboratoriesRovco,CalitorntaprefectSpec0-10~6IEEE-3>>>>-1975a>>poet1263>>0-5Sy:CDShkpvayReportL263>>0-326340-6By:G.ShiplrayfngZC(I4il>>irhs(,$aof>'>>>J1%>>>n,'igA..ohioAom~ysr'Ec.C-(c)$(~3ZC('<<'i)4-/'/7~5QC/,C>>rwo'lH~>>Jg/C'K5('p>>~>>tIQ'(gal-(g,>7(-LlCbgIP1I-r)g~+BOTELSpecification0-10lscoapleaentedbySpecicicationC-22.hgO7E',z~/'iY..c,(O4(8>.rQ/-(-<Ld~"(~+SPBC.8-/oZ'7,1<<Rev..35,07/Ba-

,!55'v9AR?JALAP3+JLHQ=5!)B??J!RI3kr55EQIIJP<<ELI?JDCy?JCJL)I?gl)QAJOK')KITSOPPLI0'I'IPgsc'41PT)nvP9II.PK.~'ln.!ILDOPLFv~'ill~TESTIIICPACTLITICSQUALIPICATICKQOILIFICATIO'ICATTFRIA<<Pl"slnsfri41.4<<f-".-1144.".tI.Innlrv'Ia+fP24v7SANvI~Infarfoaff<<129V7?OANID-67nID-Spn20-679)0-AAn10-61010-6701061n10-640?I'-bln)0-6?0)0h10?0-640.nnfrnl771,ICCDAafICo.?IIII222t<<ripsStrurtura1Dynaair.Aes<<archcorpnrafion,ll)1fora,OhioforCoronraferonsu1tinn0<<vo.1opeentCo.Pro]petappcFportIA179-<<I-'I~-10~'EEf-5~eph<<nA.LohrsIo344-)975JohnPolanclVnvSta+inntrV,http'rips2SnV140nAHIO-rI>0ln-Wn20-65020-6SOOO-goal,I22PouriI~II@~Iggyes/IIJQfP()~4)ntrvSi)v<<tfvI14f4)aLa~gP-OMC-I'r.".t-)g~-'EEDw$g-I'f75,CL.t)Iu~>K)itPry~1Q,RL-qyigbnT51po<<cifirl.innll-Initcnsolea<<nt<<r)hvsnecll'ication0-22.NpffVf.C-)upIfrGu)rlPfLIENTBO6y'V<C.f-lr)2.5

0'SES-FSAR:TABLE3.10c-7CABLETRAYS"SAFEGUARD"III="ITENNO.DESCR)PTJONEQUIP))2..2~)'O.BLDG.ELEV.hO.TESTINGQUALIFICATIONQUALIFICATIONFACI)ITIESCRITERIA"El"SIGNEDBY:v8856-E-132CableTrays:3"Dx24"W3"Dx18"X3"Dx1""W5"Dx24"W5"Dx18"W5"Dx12"WS9Nl-24-144S9Nl-18-'4459NI-12-14459N1-24-14459N1-18-14459NI-12-144Control670'eactorto770'82HuskyProductInc.HuskyProducts,ProjectSpecInc.7405G-10)2IEEE-IndustrialRd344-1975Florence,Kentucky1-29-76'.TestNo.977-978LoadTest-(Trays)By:T.O'araB.Heinzb.HoldDownTest)41276TestNo.1127-L2H>V2~5/14/761151)211527/21/7611888/10/761196-H,V.d~"bxii".XP~q'>x<s'e..d~'~)v",<~4>>.bxif.'8.4"t)x(1"4d4"bx<401Mgq"9yIL'vv-.tJqbx'248..'q"gy94AL~y.-tz5L-ta4-lCSL-hI4kx-l<iJ.-l'L.VA-i~SL-te>p<~kh-tfSL-la.Gl-2)cL-l5Lq-iiSL-l2,kq-gQ.-l'L41-li(l.-l2.'hl'pterIz.rS4tc.f~ivHi)~skPk14r4lgijg,PP~Cop()2C~Cttagovtlle)PAP2gr,f$)~pc.io)loJC-loi(lc.ElectricTest12/~2222Harper-))orrezB.Schusterd.SeisuicCalculation8/11/76By:B.Schustery)),tQo.V)>,L.lZ-CAHOT.-l02,Rcv.,&7+fHIta

~.:'S-r.)A4Ant.".II:)C-3ATTC.JCllhnct'.4iACKS1'<<CA<<nf<<)~~SaL'"IkP0<<LIrnv~'ipyuirvgv~<<ggEgyg~.,prov.CarPTIOX=..Du.'.)rS".:).Lni.ATJlvlsIT:IUPPI.I?;".')D..LEV~'l<<)~.<<'STINGFarILI~ICSn<<)ALIPICATlnsouhlrrrcATro)<<rPIVESIA"CI"Src'<<'0<<)I)<<'lS"-r-\)n-:)q)4e.Vkcfhatq~ts)2SvInnhDa<<cryr'I<<tmera2Snv100A)0-613)0-67310-61I106LI20-A)120-6<<)?D-63320-643hq6711DASIA106531<<10-66120-651A20-65302D-66no-603.)ntrnl771~II112222:ain111222..~<<anPnai'lvyrrConvarsaonLabnrat<<<<riesPro<<lIctsunnttvllle,Inc.42"=asAlabaaaStreyt,CrystalLake,Illinois66014p.orrctspecT<<~!Rebor~010~6ICE'4546)-'Ii"Veh344-)<<375VincentP.,Voarnn~rvCharoer.24v25a10-673ID-67410-6AI1D-6P.420-67120-67420-4&3?0-6<<)4Cn-64S1'I1I2i2aaancc)-5'/5~vOTE)So<<cirica)inn0-10lscoanleaen<<nlggj')<<C-(D)IIc~~~)>>I,gFgyral/I-))1.3>>)rn)rCdIa<<~~>>S)p~hySn.elficationr<<-?2,IDng,(~Mgqleg,lt')la/3)aI>>arc

SSES-FSARPARCELShubT8e4tOATloQCASlQCTSTABLE$.10c-l0IVI:llA>>I-vll'in<i.l-l'L's.blllI~Il(Cm-.AI'Ol/yl.DgjI'.Ll~/.V@I'7+oelf57)HCjIAclLIT/L5+VALIjgtgWPu~Lll1/I~g/'gFCi.'lgli~ilf'i.'d.~~II'ibl:.'Lroc5I6-AOCel"8-85/LLL>Cg(nfTatt.WVPyWO(~rc>>~->i'-ggg)@pe,IP7rl-'-/5ID0C5IL-gTp)Qsp6pinggpss05/2-OC5/2-DpgQ)~~c~)gqQc)b<C)7lg-Qpc(c,)c5'~YoA<fLLC/I'0-,P,S~sL.2I2Izf~g=C-,"'l'~C.C/~~/+;PXE:Lc394-/f'/L~.'ZIiso-II~go-~~.~Cps6)noh>o~')ji~oc.c)g)a~alAP<)L~~.gcygnegaLbE+~LTc5hoNbMarcoCO.C,I---/~2>pgoT'C.-'.~rtC.e.~c'-IoqI/5c>H/LE@i/'r/7t.>>l'/5P~~gq~~gppcc-lo~t>gcoupU.-pp<~~Y~pic.E-lozz-~PRMK'[SfK.0-104l~4wy/p&~.sIlEEEK4+lgfbQpoi4it,ycc'Jp.~...~i..C.Acv.GS-;07-/64-

.2(lfP<<s(:.$nPggl",'f12'Il<<':<<.1E".Cv'PT)l:I,vp(l.".!".If:I).LJrt~~g()'l'6.S(JI(PLIE((<Loi.FL4Y.<n.TSSTII!r(PACILI!'I0!inpAL)p)c)T)pvQQALIF)c\T)nvI;IIITtlIA<<t)"SIIII'lvp>>'IY'ASA1I<'.i~~<<(tCrhett14-.,12SY)nnApqit>>Vhat"I1c?Snv11:PAJi9vhlp>>.2nv2SA)9(()I10-((7\10('\I10-6(i1206I120-n2320-63120-hn3DD-171In-((S3t10-6S3(A10-66)cp-6S)E20-6s)0'D-6))ilPi(I!1)0-471\0-67v)0-60I)O684'2p67)20-6712pfnl20-6nt(30-biS'1int77)Iiov'>>Iol(vetpionIp."oh.lctsiIr.c..1222vnnIII22:asn1I'I1422sanVv)>>LahutotorL>>sH(!n.ville~Alahen1Ptn)-ctSnakcTestpi<<o::ri-1I'0lvtv-tv5463-Inevgnu-I'37Svincent.f.'ItearnsIIC)I)f-'(Ep.'.P>y/ip~()f54-$C)((IN'u~iCgO))~&MCM~5jfk~wI+g)s,.ll.Q)>>)~AwC~'(~!.!-<(~r!p!cn)1n1-1!i.')sn)rn<<nt>>IhvSoecifirst'vn'(2eAl)g:5I7ci.C,JD)]JCP)llkf)h4~r:er>f'-"=.<-->>>~Cr(Pi.waq(ft~g5~+Q.R7--Kv4&6l.).g~Q/(tIk'>(rb:=-Rev%5~7I84-

I+'0sn~'11II~Vrvf[P='iFlLA~lnv:ll:5CIIn.iJv-:II7V?V.VILOI,RAP)V'Il!IT9)IPi"~I?:1L7:."LrV.".G..FS.IunFACII.I.IR55nALIFICATInl!gI)I.IFICArlnvI>IV'IIA"1.InHF.Ii.)I!)aSirlnl)41'.AVSvitrh"irIA-~n))A)n>.1\-2')1'lA2:14:!A-?n):.A-2nziA-2n)2A-2)4oA-510gnaCIOIIa'I7in7l'))ln7i)7)9py(e.)VIestlng)iouAe'I12??2g~)gIgQQ&~kl8vfiZ!4o.(Inc).Xvl.Labnra+ocv,:Iunszrxllu~Alahana+n4UvliiLahoatocvrl'uQ~)'svilkI))4Iyai~~7:o)ec?5psr.Cilna5IRKL)44-1975Pgm,y>I'E-C'-loyI<>SH83fd-If/~~oooo,~4~)7577-147'58Il5864258664n.5hlv)y8))c)2~~'37-S<lu-SSqI4v~P:4.D~t'lagOA-StoAoA-SSEOA-51040A-sNDh4(A)gin-9bq$S)b0(~)t)Q(.~gba<<-5OVREIEI).lc<<~)2.~~i)E4>iIcic)4jnii,)nI5niiolouiqA,iiV5n&CIlc'1AOII22~hWTi:~'i~c~EIpyII~CuufPLEME>IFEDf~/='IE~-6I>4~~

l3L'In-I11CCONT%1LANDLnln?'NTESSa-a4vTa-44aoaIflfP;?IAiC:4lie:rn'JESCYI.I'I'.CilfP1.NT<1.i'lAT/1'4'lvfySO?PLf~"ELoy.vn..ESTTNO?ACILI.IESallllI?ICATIJNQOALI?ICATIO'ICNfor'lTA"El<SI4mgy~oosna-121)o>4sec-I21-721OCConrolaniarg25OVDCLnl'nntor25OVLol'.Cen~ar'25VID-'Snln'54ID2742n-25425-2642D-2'l4ID-6'52lf4112D-f522D-652ID612ID-6221C~6'12'Ifl64?2D-6122D-6222D-4322n-642'Iccnr4alC1"7..'lCteronlC11llC.nflrnina".o..trnl'nntrnlTnn4rnln1trol'ilt11ConcrnlCnncrnlnnt=nl"antrnlCollcrn1=Ontrnlnnt:nl6'I16I1170osl7291717717)117117I771171711771771171"771'IIen"slIElectricCn.I2I21I2I11I2-2ryl)LAborA.Ory,vnvc1,CA"ro?aclSppcO-Ino6T?EE-344-197IproTectSpeca-22".TREE-'1441975oepnra~2614n-p,O.Shiov4ypnpnlt~AN2614O-22434O-32614n-7flytO.ShipveyPCher7~).Ca)sI'i4el.r'Eilfcl-'f5l/OL7-539Dij(0)t7M4rAf)rf)/~EL,p/qe.lc~e-~nlgHC~leg~~l-iv'Ilc.flIafr4><arPg,~Erg5PGC=.~rent~c'.-/oglqI)*-cE54+-I'/75.Sf--/'SS;+'i+if/Igf10..:SOOCifinntianI-I1XA".14OlaonnoslhySOOCificettor.':-22AH>yf-;5)'-4,"=//.l//-')rtPI.EM&)7eo&/'rl-c,Clnz+,

SSES-FSAR.Aagg,Ing-lsaoZoggygcggggsggmgsrycugsNolP3cvTlOSRTlrJCjil'!!$OCaglA,'IDNITSOPPLIER.ITVvn.neSCRIPTIVRFOulps.,aVu.SLOG.KLE'I.SO.TESTINGFACILITIEsOoar.rFIcaTrosOoarIFICATrosCRITERIA"El"SIGMEOSy:8856-8-152Autosatic.cnnstecSvitch0ATS-5I&0ATS-526OATS-536OaTS-5461ATs-219IATS2292ATS2192ATS-229ev>-55'.Riessl-677';un.~677'77~677~neactor670'19~Reactor670'19'3<t'0)CasnRussurelecteic,CasaInc.CssnCssnQyleLaboratory'labasatoeCC80CospanyLtd.22~waaN.@oui.0/'Tele-crtlc.1~4$4LsProspectSpecG-'IO~8IEEE-344-1975F&Sa,7'r'EC.~-(~i"~ZE.is>Ivy-I'I75.Bepott1444341Sy:JasesQ.Focesant'*'sc-rt7Pc.~Ip.~NOTEISoeCiticationC-19iscosoresentehbySpecitlcationG-22-ll)](;=IFC.~.In]1I'rCoIII'Ll=agEilyCP5'f5/$4,$IWQ,I~)Rev.-36~-07/84-

~~tSSFS-ASAP.11.2b.1Coep)iancevithIEEE323-1q71forNon-HSSSClass'IEEggioa~g.l11gh11Pgg-/AS"'ggiPII<QiLgcg~el&34igggggfajMr2gAll,non-HSSSClass1EequipmentlocatedinsidecontainaenthasheepaualifiedtoIFFF323-1971gg-Ng$2Eggs,ganntJggygedogtggdcc~oigggaentW11non-HSSSClass1L?eauipaent.locatedoutsidecontainaent,~rc~ptthatlistedinTahle3.11-5hpspeenqua)ifiedtoIFFEt33-1971.APg//~/~AgggI~~p~gggpg~(~/g()~~~~g~gQ/jl7+55IE4'p~rmsa~crAv~zfh'Irt'p7V+~~5.Egu/PHAVT>Liel7%i>/u/I////.//EuVIAcur7/~7~5PoPAc4urMD&xoaentlistedinTahle3.11-5isqualifiedtoperform's&+<~safetvfunctionintheenvironaentinvhichitislocated.tlovever,thevendorsfortheeauipaentverenotrequiredtocertifycoIIplinncevithIEEF.323.TnlieucfIEEE323certificationhee'auipaentlistedinTable3.11-5Ssqualifi~dhy'cootirationofanalysis,siailarity,andprviousopo.ratinqex'perience..Thequalificationdocuaentsareavailablefor1lPCquditas'statedinsuhsection3.11.3.4.Thisqualificationmethodisjust(fledbecausetheselectedequipmentsectsacoehinationofthefnllovinqconditions:1leannoraaloperate.nqtemperatureislessthan404Ca~~Acciden~~nvironaen+isnotsubstantiallyacreseveretl.enthnncrealenvironaen~.Bythisitisaeant,theequipcrntvi1lcontinuotosatisfactorallvperforaitssafetyfunctionintho.accidentenvironILent~hovcver,itslenqthofaualifiedlifeisreduced.Fquipaontissioilartoequipeentpreviouslyusedino.h~rr,<".imparplan-.;=andother=.ndustrialapplications.4.DesiqnandfabricationisinaccordancevithanapprovohanRauditablenuclearqualityasuranceproqraa.6~Theeauipmertistested(eitherin'heshoporatthesite)priortnplants+ar~-up.Theeauipeent'sused,orfreauentlytested,durinanorI'aloperation.3~11-11 0

~~SSFS-FSAP1~3a,]HS.SQQQ)KQmoBtM1oggad"QRffX1HL$9+u2aentThir.paraqraphdiscussesthetostresultsforsafety-relatedinstrumentationandelectrical.equipeentintheVASSSexceptvhichissuppliedvithKSSSpumpsandvalves.ThetestresultsforGRsafe+yrelatedequipaentaremaintainedinaperaanen~filebyCFandcarh~readilyaudited.Znallcases,tho,oquipmantuedin.Class1Eapplicationspassedtheprescribedtests.Table3.11-1shovstheplantenvironwentalareasinvhic.haSSscia.,stFcomponentsarelocated.Tables3.11-2and3.11-3~hovthetemporature,pressureandhumidityenvironmentsandab)e3.11-4shovsha"adiationenvironmentstovhichthecomponen'.Nar'etest<d.11gg,gNQSSVy],vo%gyppedggecgZjcygggujpmeptTheelectrical.equipmentmountedonthesafety/relief,SECandrocirculationqatevalvesistestedtoconditionsvhichareatleastas=evereasthetemperature,pressureandhumiditycenditionsshovninTables3.11-1~3.11-2and3.11-3.Theyarealsntastedtotheradiation.environaentapplicable'totheirplantloca.ionasshovninTable3.11-4.Theequipmentpertnrmeditrequiredsafetyfunctionundertheextremeenvironmentalcor.ditionsspecified.'34,1.1p.i1~4pi~lgaS.Qg~ggg,hnKCCSpumpmotorslistedinTable3.11-3arerestedtothetemneraturo~pressureandhumidityconditionsshcvnin.hetable.Thcvarea]sotestedtotheradiationenvironmentapplicablctcthoirlo--.tionas;-.:ovninTable3.11-4.Theequipmenttestedportcrmreaitsrequ.'redsafetyfunctionunde"theexterne-~r!virnnmon+a1conditionsspecified.Soy-igSgClasa1EXltSXZXrylggyggmgggf:nvironaentalqualificationdocumentationfcrncn-NSSSClass1K~lactricaloquipmen~ispreantlylncatedattheBechtelhomeofficeinSanFranciscoandisavailableforHRCauditggC+~pNpp7k+C~$/cEPz>~g/rgp,'qA'55dClrj7SC7WC78+n-R:'r~57~yevgj5g~z."E~~D~cuw~rÃ7Co~AWncIA7ZDm:,c'&i+>47CS4oQ7~8z7MPAvrN5$CVW(rfjbw~fC/4K'HIC85<<A~vnwMrA.W>87~~y5ygggA<urfSWM~~P<C5r~Wipwsin.P.ev~/ec3~11-12

SSES-FSAR2.IfEquation10resultsin2.4<S<3,0Sforferriticorausteniticsteels,thecumulativeusagefactor,U,calculatedonthebasisofEquation14ofNB"3653.6,mustbe<0.1.3.IfEquation10resultsinS>3.0Sforferriticorausteniticsteels,thenthestressvalueinEquations12and]3ofNB-3653e6mustnotbe<2.4SReulatorGuide'1.47-BYPASSEDANDINOPERATIONALSTATUSINDICATIONFORNUCLEARPOWERPLANTSAFETYSYSTEMS(Ma1973)Thedesign,asdiscussedinSubsections7.1.2,7.2.2.1.2.1.5g7.3.2a.l.2.1.7,7.3.2a.2.2.1.5,7.4.2.1.2.1.7,7.4.2.2.2.1.7,7.4.2.3and7.6.2.8,complieswiththeprovisionssetforthinthisregulatoryguide.ReulatorGuide1.48-DESIGNLIMITSANDLOADINGCOMBINATIONSFORSEISMICCATEGORYIFLUIDSYSTEMCOMPONENTS(Ma1973)Thedesignloadingcombinationsfornon-NSSSsystemsforppsirjpnsC.~lro+c>1?aregeag~crrbe8rnggple~39-gr~>gp-)<Subsection3.9.3.2.GEpracticeisrepresentativeofindustrypracticeandisingeneralagreementwiththerequirementsofRegulatoryGuide1.48withthefollowingclarifications:TheprobabilityofanOBEofthemagnitudepostulatedfortheSusquehannaSESisconsistentwithitsclassificationasanEmergencyEvent.However,fordesignconservatism,loadsduetotheOBEvibratorymotionhavebeenincludedunderupsetconditions.LoadsduetotheOBEvibratorymotionplusaszcc';.tedtran=-'.nts,suchaaturbinetrip,havebeenrons~ueredintheequipmentdesignunderemergencyconditionsconsistentwiththeprobabilityoftheOBEoccurrence.b.TheuseofincreasedstresslevelsforClass2componentsisconsistentwithindustrypracticeasspecifiedinASMEB6PVCodeSectionIII.ForacomparisonofNSSScompliancewithRegulatoryGuide1.48seeTable3.13'-1.ThiscomparisonreflectsaGEpracticeonBWR4'sand5'sandtherefore,isappli'cabletotheSusquehannaSES(seeSubsections3.9.2and3.9.3).Rev.35,07/843.13-19

SSES-FSARReulatorGuide1.60DESIGNRESPONSESPEC'j.RAFORSEISMICDESIGNOFNUCLEARPOWERPLANTS(Revision1,December1973)ThedesignresponsespectrausedintheanalysisofSusquehannaSESaredifferentfromthoseoftheregulatoryguide.AdetaileddiscussionofthedsignresponsespectraispresentedinSubsection3.7b.l.~~~'>p"g~Qg+Bc~~guJalin~m~qogg4,grpq~A0-~ReulatorGuide1.61-DAMPINGVALUESFORSEISMICDESIGNOFNUCLEARPOWERPLANTS,@gs0(October1973)ThedampingvaluesusedintheseismicdesignofSusquehannaSESaredifferentfromtk>eregulatoryguide.Adetaileddiscussiono",I:lir;dampingvaluesispresentedinSubsection3.7b.l.c"IReulatorGuide1.62-MANUALINITIATIONOFPROTECTIVEACTIONS(October1973)Theprovisionsformanualinitiationofprotectiveactionsarecl>>scribedinSubsections7.2.2.1.2.1.7,7.3.2a.l.2.1.9,7.3.2a.2.2.1.7,7.3.2a.3.2.1.3,7.4.2.1.2.1.9and7.4.2.2.2.1.9.ReulatorGuide1.63-ELECTRICPENETRATIONASSEMBLIESINCONTAINMENTSTRUCTURESFORWATERCOOLEDNUCLEARPOWERPLANTS(Re'vision1,Ma1977)Sincetk>econstructionpermitforSusquehannaSESwasissuedinNovember1973,theprovisionsofRevision1tothi"regulatorygu.i<)e(whichsupplementsIEEE317-1976)werenotspecificallyconsi<lerodi>>thedesignofSusquehannaSES.Thedesignofthe~1~.ctricpenetrationassembliesisthereforeincompliancewithRegulatoryGuide1.63datedOctober1973(whichsupplementsIEEE317-1972).Specifically,Sections4.2.3,4.2.4,5.1.6,5.2.2,6.2,6.3.3,<<nd6.4nfIEEE317,-1976havenotbeenincorporated.Thepenet..:=;tioncab1=protectioniimitationcurvesar'eshowntogether~~ththeirrespectiveprotectivedevicecoordinationcurv~.sonFigures3.13-1to3.13-7.Theshnrtcircuitcurvesapplyfortheconditionwhentheelectricalandmechanicalseali.ntegrityismaintained.Theseallimitationcurve..applywhenthemechanicalsealintegrityismaintainedandtheelectricalintegrityissacrificed.Thepenetrationassembliesaretypetested.Therearennprovisionsfor'periodictestingundersimulatedfaultconditionsElectricalpenetrationcircuitsaresummarizedasfollows:cn,c4CSII$lEQKm(,~g3.13-24 SSES-FSARDESIGNRESPONSESPECTRAFORSEISMICDESIGNOFNUCLEARPOWERPLANTS(Revision1,December1973)ThedesignresponsespectrausedintheanalysisofSusquehannaSESaredifferentfromthoseoftheregulatoryguide.Adetaileddi.scussionofthed.ignresponsespectraispresentedinSubsection3.7b.l.Rr~ulaturgGuide1.61-DAMPINGVALUESFORSEISMICDESIGNOFNUCLEARPOWERPLANTS(October1973)~>hedampingvaluesusedintheseismicdesignofSgsq~epyppp)~Sar>>diiferentfromtheregulatoryguide/'"A8CPazlehxcussxon)ofthr<l~mpingvaluesispresentedinSubsection3.7b.1.i'.:Vu)ati~>r'uide1.62-MANUALINITIATIONOFPROTECTIVEACTIONS(October1973)'l'heprnvisionsformanualiniti.ationofprotectiveactionsare<1r.secibudinSubsections7.2.2.1.2.1.7,7.3.2a.1.2.l.9P7.3.2a.2.2.1.7,7;3.2a.3.2.1.3,7.4.2.1.2.1.9and7.4.2.2.2.1.9.INCONTAINMENTSTRUCTURESFORWATERCOOLEDNUCLEARPOWERPLANTS(Revision1,Ma1977)Sincet.hc'onstructionpermitforSusquehannaSESwasissuedinNavember1973,theprovi"ionsofRevision1tothisregulatoryguic!e{whichsupplementsIFEE317-1976)werenotspecifically..onE'dcredinthedesignofSusquehannaSES.ThedesignoftheI16dctric)2enetrationassembliesisthereforeincompliancewithRegulatoryGuide1.63datedOctober1973(whichsupplementsIEEE317-1972).Specifically,Sections4.2.3,4.2.4,5.1.6,5.2.2,6.2,6.3.3,and6.4nfIEEE317-1976havenotbeenincorporated.Thepenetrationcableprotectionlimitationcurvesareshowntogetherwiththeirrespectiveprotectivedevicecoordinationcurve"onFigures3.13-1to3.13-7.Theshortcircuitcurvesapplyfortheconditionwhentheelectricalandmechanicalsealintegrityismaintained.Theseallimitationcurvesapplywhenthetnechanicalsealintegrityismaintainedandtheelectricalintegrityissacrificed.Thepenetration"assembliesaretypetested.Therearenoprovisio>>sforperiodictestingundersimulatedfaultconditions.ElecLricalpenetrationcircuitsaresummarizedasfollows:kev.35,07/843.13-24 0

SSES-FSARReulatorGuide1.92/COMBININGMODALRESPONSESANDSPATIALCOMPONENTSINSEISMICRESPONSEANALYSIS(Revision1,Februar1976)SincetheconstructionpermitfortheSusquehannaSESwasissuedinNovember1973,themethodsofcombiningmodalresponsesandspatialcomponentsinseismicresponseanalysis,asdescribedinthisregulatoryguide,werenotspecificallyconsideredinthedesign.Themethodsofdesignandanalysisforstructures,components,andpipingsystemsthathavebeenemployedareReulatorGuide1.93-AVAILABILITYOFELECTRICPOWERSOURCES(December1974)CompliancewiththisguideisdiscussedinSubsection8.1.6.2.~ReulatorGuide1.94QUALITYASSURANCEREQUIREMENTSFORINSTALLATION,INSPECTION/ANDTESTINGOFSTRUCTURALCONCRETEANDSTRUCTURALSTEELDURINGTHECONSTRUCTIONPHASEOFNUCLEARPOWERPLANTS(Revision1,Aril1976)tThequalityassuranceprogramSESisdescribedinthePSAR,ComplianceoftheOperationalguideisdescribedinSectionfortheconstructionofSusquehannaAppendixDandamendments.QualityAssuranceProgramwiththis17.2.ReulatosGuide1.96DESIGNOFMAINSTEAMISOLATIONVALVEIEAKAGECONTROLSYSTEMSFORBOILINGWATERREACTORNUCLEARPOWERPLANTS(Revision1,June1976)ReulatorGuide1.95-PROTECTIONOFNUCLEARPOWFRPLANTCONTROLROOMOPERATORSAGAINSTANACCIDENTAL.CHLORINERELEASE(Februar1975)ThepresentdesignoftheSusquehannaSEScomplieswiththepositionstatementsofthisregulatoryguide.ioidVJoJSubjecttotheclarificationindicatedbelow,theprovisionsofthisregulatoryguidearemetbythecurrentplantdesign.(1)

Reference:

AppendixA,Paragraph6.Thedesignandinspectionofthi,sportionoftheleakagecontrolsystemisinaccordancewiththeprovisionsofSectionXIoftheASMEBoilerandPzessureVesselCode.The100percentvolumetricinspection3.13-37

'P0 SSES-FSARRculatorGuide1.92-COMBININGMODALRESrONSESANDSPATIALCOMPONENTS'NSEISMICRESPONSEANALYSIS(Revision1,Februar1976)Sincetheconstructionpc.rmitfortheSusquehannaSESwasissuedinNovember1973,themethodsofcombiningmodalresponsesandspatialcomponentsinseismicresponseanalysis,asdescribedinthi~reqult~~ujpg~gg~notspecificallyconsideredinthedeign~%Bemht'hocRof3e'deignandanalysisforstructuresgcomponents,andpipingsystemsthathavebeenemployedaredescribedinSections3.7a,3.7band3.9.BeulatorGuide1.93-*AVAILABILITYOFELECTRICPOWERSOURCES(December1974)CompliancewiththisguideisdiscussedinSubsection8.1.6.2.~ReulatorGuide1.94QUALITYASSURANCEREQUIREMENTSFORINSTALLATION,INSPECTIONtANDTESTINGOFSTRUCTURALCONCRETEANDSTRUCTURALSTEELDURINGTHECONSTRUCTIONPHASEOFNUCLEARPOWERPLANTS(Revision1,Aril1976)ThecualityassuranceprogramSESisdescribedinthePSAR,ComplianceoftheOperationalguideisdescribedinSectionforthe'onstructionofSusquehannaAppendixDandamendments.QualityAssuranceProgramwiththis17.2.R.aulatc'r.Guide1.95PROTECTIONOFNUCLEARPOWERPLANT-CONTROLROOMOPERATORSAGAINSTANACCIDENTALCHLORINERELEASE(Februar1975)ThepresentdesignoftheSusquehannaSEScomplieswiththepositionstatementsofthisregulatoryguide.Beulator'uide1.96,DESIGNOFMAINSTEAMISOLATIONVALVELEAKAGECONTROLSYSTEMSFORBOILINGWATERREACTORNUCLEARPOWERPLANTS(Revision1,June1976)Subjecttotheclarificationindicatedbelow,theprovisionsofthisregulatoryguidearemetbythecurrentplantdesign.(I)

Reference:

AppendixA,Paragraph6.ThedesignandinspectionofthisportionoftheleakagecontrolsystemisinaccordancewiththeprovisionsofSectionXIoftheASMEBoilerandPressureVesselCode.The100percentvolumetricinspectionPev.35,07/843.13-37

SSES-FSARReulatorGuide1.100SEISMICQUALIFICAT.NOFELECTRICEQUIPMENTFORNUCLEARPOWERPLANTS(March1976)Theimplementationparagraphofthisregulatoryguidestatesthattherequirementsof'hepositionstatementswillonlybeappliedtoplantsthatreceivedconstructionpermitsafterNovember16,1976.TheConstructionPermitforSusquehannaSESwasissuedinNovember1973andthereforetheguidelinesofthisregulatoryguidehavenotbeenutilizedinthedesignofthisnuclearpowerstation.PSeismicqualificationofthesafetyrelatedelectricequipment(non-NSSSscopeofsupply)hasbeenconductedin"'accordancewiththeIEEEStandard344-1971.Section3.10describesthecompletequalificationmethodsandproceduresthathavebeenutilized.Thesafety-relatedelectricequipment(NSSSscopeofsupply)meetsIEEE323-1971andIEEE344-1971.ReulatorGuide1.101-EMERGENCYPLANNINGFORNUCLEARPOWERPLANTSWithdrawnSeptember24,1980.ReulatorvGuide1.102-FLOODPROTECTIONFORNUCLEARPOWERPLANTS(Revision1,Setember1976)tAc3~'+.gg~l1ISA~SThepresentdesignoftheSusquehannaSEScomplieswiththeprovisionsofthisregulatoryguide.RegulatorGuide1.103-POSTTENSIONEDPRESTRESSINGSYSTEMSFORCONCRETE.REACTORVESSELSANDCONTAINMENTS(Revision1,October1976)NotApplicable.ReulatorGuide1.104-OVERHEADCRANEHANDLINGSYSTEMSFORNUCLEARPOWERPLANTS(Februar1976}(1)

Reference:

PositionC.l.b(2).Theni;1-ductilitytransitiontemperaturefor.'thestructuralsteelassociatedwiththecraneswasnotdeterminedassuggestedbythisposition.PositionSubjecttotheclarificationsandexceptionsindicatedbelow,thesafetyrelatedoverheadcranehandlingsystemsofthisstationcomplywiththeprovisionsofthisregulatoryguide.IRev.M,3.13-39 40 SSES-FSARReulator'uide1.122DEVELOPMENTOFFLO"~DESIGNRESPONSESPECTRAFORSEISMICDESIGN'FFLOOR-SUPPORTEDEQUIPMENTOR'OMPONENTS(September1976)Themethods.usedfordevelopingthefloordesignresponsespectraforSusquehannaSESareincompliancewiththepositionsofthisregulatoryguideexceptasfollows:1.ThefrequenciesusedforthecalculationoftheresponsespectraaredifferentandaredescribedinSubsection3.7b.2.5.2.Theprocedureforsmoothingthespectra(broadeningofpeaks)isdifferentandisdiscussedinSubsection3.7b.2.9.keulatorGuidel.123QUALITYASSURANCEREQUIREMENTSFORCONTROLOFPROCUREMENTOFITEMSANDSERVICESFORNUCLEARPLANTS(Revision1,Jul1977)TheSusquehannaSESqualityassuranceprogramfortheconstructionphaseisdetailedinPSARAppendixDandamendments.ComplianceoftheOperationalQualityAssuranceProgramwiththisregulatoryguideisdiscussedinSection17.2.~IIReulatorGuide1.124-DESIGNLIM1TS,ANDLOADINGCOMBINATIONSFORCLASS1LINEAR-TYPECOMPONENTSUPPORTS(November1976)SincetheconstructionpermitforSusquehannaSESwasissuedinNovember1973,thisregulatoryguidewasnotspecificallyconsideredinthedesign.ThemethodsusedtodeterminedesignloadingcombinationsforSusquehannaSESaredescribedinSectionl3~9~ReulatorGuide1.125-PHYSICALMODELSFORDESIGNANDOPERATIONOFHYDRAULICSTRUCTURESANDSYSTEMSFORNUCLEARPOWERPLANTS(March1977)NophysicalmodelswereusedduringthedesignofSusquehannaSES.UJ3.13-45

SSHS-FSAR(1)ParagraphC.2-Thedesignbasiseventcondi'onsmeetthe~~~mostseverepostulatedconditionsforSusquehannaSES.FactorsormargingiveninSection6.3.1.531.5ofIEEE323-1974verenotc~g5A~so~ih<LPWITHI-II-TMoi85~+&AEgpg<Tge/>N~M4'47/PLd'~A~fW8PfFW~~~ggfuRu7'aau<SyggygMrna+'.(2)paragraphC.4-Onlyoneagingdatapoint(121C)hasbeenijPjgDIP@he~g"Noj7joijFkPATL~cAs7'aIAsjAjsDATA'<TPwM(/jParaprapÃC.6-FlametestsweredoneinaccordancewithIEEE'VDAs-74d>'kF~Z'cF/hK'AN4E'P~IPw,<<@SPCnFWTAddo~~v~4PararahC.10-GasburnerpositronxsinaccordancevithgCpp@4~dong/cw'8A'84wr%%dC,CASWSAH~47Ãb~~rF~)Hijr'kjjFrwDjsssc.AM"8"wjjsxcTjjdDA5jdur<<sjijesjrjau~As<<Accoso-~cFw(TVEgpui~M~75e/>>gigu+7bZyujdd/./5/,(5)panelinternalwrresar~nayggalrfjedtoRegulatorycurd~/0C.,ii+'iID$D4ssjs-DjjjAcrolzDAjjcdwjrjjTjjdidcoisirs&fkijTDDAEcccEBE-exitSS/+P~EL.N7@4~1I'electriccables,Iieldsplices,andconnectionsIortheRESSscopeofsupplyhavenotbeenevaluatedagainstthisregulatoryguide.3.13-47 PENNSYLVANIAPOWER6LIGHTCOMPANYSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2DIESELGENERATOREFACILITYDESIGNDESCRIPTIONREPORT, CTABLEOFCONTENTSSECTION1.0DesignApproach1.1PurposeofDieselGeneratorE1.2ControlofDieselGeneratorE1.3SubstitutionofDieselGenerator~Pae1-11-11-21-22.0PhysicalDescription3.0Design3.1MechanicalEquipment3.1.1FuelOilStorageandTransferSystem-3.1.2CoolingWaterSystem3.1.3HeatingandVentilation3.1.4PlumbingandDrainage3.1.5Fire.Protection/Detectionk3.1.6DieselGeneratorStartingAirSystem3.1.7LubeOilSystem3.1.8JacketWaterSystem3.l..9FuelOilSystem3.2StructuralDesign3.2.1CivilDesign3.3ElectricalDesign3.3.1MediumVoltageSystem3.3.1.1NewSwitchgear3.3.1.2SwitchingPoints3.3.2480-VoltSystem3.3.3Class1E125-VoltD.C.System3.3.4TransferSwitchingSystem3.3.4.1TransferPanels3.3.4.2LocalEngine-GeneratorControl3.3.4.3DevicesToBeTransferred3.3.4.4Bypassed~adInoperableStatus3.'-.4.5DedicatedDevices3.3.5LightingSystem3.3.6GroundingSystem3.3.7CommunicationSystem3.3.&SecuritySystem3.3.9TestFacility3.3.10MildEnvironment3.4InstrumentationandControlsPanelsPanel3-13-13-13-23-2k3-33-33-43-43-53-53-63-73-73-83-83-93-93-93-103-103-103-103-113-113-123-123-133-133-133-143-144.0Studies5.0Tie-InDescription4-l.5-1 i'

AppendixA-DravingsAppendixB-Codes,Standards,andRegulationsApplicabletoDieselGeneratorEFaci.lityAppendixC-SeismicAnalysisProceduresandtiodelsforTheDieselGeneratorEBuilding

1.0DESIGNAPPROACHThedieselgeneratorEfacilityincludingthecomponentscontainedthezejnisanuclearsafetyrelated,SeismicCategoryI,Class1Efacilitythatwj,llbeusedtoprovideemergencypowertoSusquehannaSteamElectricStation(SSES)whenoneofthefourexistingdieselgeneratorsisoutofservice.ThelocationofthedieselgeneratorEfacilityisshownondrawingC-5003"PlotPlan,DieselGeneratorEFacilitySiteDevelopmentPlan"containedinAppendixAtothisreport.Thelocationofthebuildingwasselectedtosatisfytherequirementslistedbelow:oClosetotheexistingdieselgeneratorbuildings.oClosetothetie-inpointsforwater,airandelectrical.oClearancearoundthebuildingforconstructionequipment.oClearancebetweenthebuildingandthesecurityfence,bothinitstemporaryandfinalpositions.oClearancebetweenthebuildingandexistingstructuresabovegroundandunderground.oAccessibilitytotherailroadforoffloadingthedieselgeneratorandsettingitonthepedestal.oClosetotheundergroundsoundrock.Codes,standards,andregulationsapplicabletothispro)ectaregenerallythoseineffectonSeptember22,1983.Alistoftheapplicablecodes,standards,andregulationsiscontainedinAppendixBtothisreport.DieselgeneratorEusestheexistingindicationsandcontrolswhenitisintheplaceofanexistingdieselgenerator.1.1PuroseofDieselGeneratorETheSusquehannaSteamElectricStationTechnicalSpecificationsstatethatadieselzeneratorsybeinoperable.or72hours,afterwhichatwounitshutdc..mustcommence.Thefifthdieselgeneratorwillbeusedasareplacementandwillhavethecapabilityofsupplyingtheemergencyloadingforanyone'fthefourexistingdieselgenerators.Assuch,themainpurposeofdieselgeneratorEistoallo~maintenancetobeperformedonanyoneofthefourexistingdieselgeneratorswithoutthenecessityforatwounitoutage.AftertheexistingdieselgeneratorhasbeenreplacedbydieselgeneratorE,testingandmaintenancecanbeperformedontheexistingdieselgeneratorforaslongasrequired,withinthelimitationofmechanicalmaintenanceand"noload"testing.1-1

1.2ControlofDieselGeneratorEDieselgeneratorEutilizesthesamemeteringandcontrolsusedforthereplaceddieselgenerator.Anewcontrolboardisnotrequired.Theuseofatransferswitchingsystemminimizescosts,reduceselectricalwiringseparationproblems,conservesspaceandminimizeschangesinthemaincontrolroom.Furthermore,thehumanfactorsvalueofthepresentarrangementareretained.SincedieselgeneratorEisessentially,areplacementforanyoneofthefourexistingunits,thepresenceofafifthdisplaycouldcauseunnecessaryconfusioninafour-channelsystem.1.3SubstitutionofDieselGeneratorThesequencefortransferringcontrolofanexistingdieseltotheEdieselisdescribedbelow.ThesequencedescribedisforsubstitutingdieselgeneratorEfordieselgeneratorAhoweverthesamesequenceappliestotheotherdieselswiththesuffixletterschangingforthedieselbeingsubstituted.PlaceHS-00057AonOC512Ain"Disable"position.ThisactionremovesautostartsignalfromdieselgeneratorA.Theoperatormustchangethepositionofthisswitchasthefirststepintheswitchingsequence.2~ClosetheemergencyservicewatervalvesfordieselgeneratorAfromOC-553inthecontrolroom.3.PlacethelocatedswitchesonOC512AtothedieselgeneratorEposition.4.Tripandremovethe4.16KvcircuitbreakerfromOA510AOl.5.Rackinandclose4.16KvcircuitbreakerremovedfromOA510A01intoOA510A02.ThiscompletesswitchingindieselgeneratorA.6.OpentheemergencyservicewatervalvesfordieselgeneratorEfromOC-553intheControlRoom.7~PlacethelistedswitchesonOC512E-AinthedieselgeneratorAposition.8.removethe4.16KvcircuitbreakerfromOA51007.9.Rackinandclose4.16KvcircuitbreakerremovedfromOA51007intoOA51001.10.PlaceHS000571E-AonOC512E-Ainthe"ENABLE"position.ThisswitchpermitsautostartofdieselgeneratorE.Theoperatormustchangethepositionofthisswitchasthelaststepintheelectricalswitchingsequence.Thiscompletestheelectricalswitching,dieselgeneratorEisnowalignedfordieselgeneratorA.ll.Thealarm"DieselNotinAuto"willsoundinthecontrolroomwhendisablingadieselgeneratorfortransfertoanotherdieselgenerator.Thisalarmwillceasewhenthealignmentiscomplete.1-2 12.ThesequenceforplacingdieselgeneratorAbackintoservicewouldbethereverseofthestepsdiscussedabove.1-3 2.0PHYSICALDESCRIPTIONGeneralarrangementsofthedieselgeneratorEbuildingdepictinglocationofmajorequipmentareshownondrawingM-5200containedinAppendixAtothisreport.ThebuildingisdesignedtoSeismicCategoryIrequirementsandisprotectedfromtheeffectsoftornadomissiles.Itisareinforcedconcretetwostorystructurewithapenthouseandanadditionallevelbelowgrade,Reinforcedconcretewasselectedforthewallsandroofasbeingthemost.suitablematerialforprotectionagainstmissiles,seismicloadsandbelowgradeconstruction.Thefloorsofreinforcedconcretearemonolithicallyconstructedwithwallsasacommonpractice.Entrytothebuildingisatthegradeelevationbydoorsprotectedfromtheeffectsofmissileswithlabyrinths.Thebasementhousesthe125-Vdcbatteryroom,batterycharger,4160-Vswitchgear,transferpanels,terminationcabinets,buildingauxiliaryservicespanel,non-class1Eautotransferswitch,non-class1EMCC,125-Vdcswitchboard,startingaircompressorsskidsand,sump.Undergroundpipingisbroughtintothebuildingatthislevel.Inadditiontothedieselgeneratoranditsskidmountedaccessories,theflooratgradecontainstheairreceiverskidandthedieselgeneratorcontrolroom,consistingofageneratorandenginecontrolcabinet,Class1Emotorcontrolcenters,synchronizingpaneland,a4160/480Vtransformer.Thesecondstorycontainstheairintakefilter,silencer,intakepiping,exhaustmufflerandpiping,andventilationsupplyandexhaustfans.Thepenthousecontainstheexhaustchamberforthedieselgeneratorexhaustandventilationexhaust.Thecombustionairandventilationairintakeistakenfromoneendofthebuildingviaanopeningwhichisprotectedfromtornadomissiles.Tominimizerecirculationofengineexhaustintothecombustionairandventilationairintake,thecombustionexhaustandventilationexhaustarelocatedinthepenthouseattheoppositeendofthebuilding,andareprotectedfromtheeffectsoftornadomissilesbyaconcrete'verhang.Tornadodampershavebeenprovidedfortheventilationairintakeandexhaustopenings.Boththeintakeandexhaustarelocatedmorethan30feetabovegrade.Aport',ofthenortnwallatgradeelevationisremovabletofacilitateremovalofthedieselorcomponentsontheauxiliaryskidshouldthisbecomenecessaryduringthelifeofthefacility.Thisportionofthewallisdesignedtowithstandtheeffectsoftornadomissilesandseismicevents.A20tonbridgecraneisprovidedtopermithandlingofdieselgeneratorandauxiliaryskidcomponents.Theheaviestsinglepiece(enginecomponent)tobeliftedduringthemaintenanceistheturbo-chargerwhichweighsapproximately5100lbs..Majorequipmentwhoseweightislessthanthecranecapacityincludesthegeneratorrotor,generatorstator,generatorshaft,flywheel,pistonandconnectingrod.2-1 3.0DESIGN3.1MechanicalEuimentThemechanicalequipmentconsideredtobenuclearsafetyrelatedincludesthefueloilstorageandtransfersystem,combustionairintakeandexhaustsystem,startingairsystem(fromthereceiverstotheengine),thecoolingwatersystem,thejacketwatersystem,andthelubeoilsystem.Thepipingofpumps,tanks,andvalvesassociatedwiththeseportionsofthemechanicalsystemsaredesignedasSafetyClass3,SeismicCategoryIcomponentsinaccordancewithRegulatoryGuide1.26.Assuch,theyareprotectedfromtornadomissiles,floods,andothernaturalphenomena.Mechanicalequipmentinbothnon-nuclearsafetyrelatedparts'ofthesystemsdiscussedaboveandsystemswhichareentirelynon-nuclearsafetyrelated,suchaspotablewaterandserviceair,aredesignedtoprecludedamagetonuclearsafety-relatedequipmentduringandafterasafeshutdownearthquakebyseismicallysupportingsuchpipingandcomponents.PipingisseismicallysupportedusingtheequationsofASMESectionIII,NuclearPowerPlantComponents,1971issuewithalladdendaissuedthroughwinter1972.PipingwhichisnotrequiredtobeSafetyClass3isprocuredas831.1,isseismicallysupported,andisinaccordancewithANSIB31.1-1973.Theeffectsofmoderateenergybreaksinpipingsystemsareconsidered.in.thedesignofthedieselgeneratorEbuilding.Thepipinggenerallyhasbeendesignedwithstresslevelslowenoughtoprecludethepostulationofmoderateenergybreaks.Wherethisisnotpossibleessentialequipmentisprotectedfromthewettingeffectsofapipecrackbyphysicalseparationorbarriers.Essentialequipmentisprotectedfromfloodingeffectsbymountingtheequipmentonpedestals,bybarriers,orbyoperatoraction.Alevelalarmisprovidedtoindicatetheexistenceofahighwaterlevelinthebuildingsump.I3.1.1FuelOilStoraeandTransferSstemThefueloilstorageandtransfersystemconsistsofanundergroundstoragetank,atransferpump,andassociatedpiping,valves,andinstrumentation.Thetankwillbefilledfromanewfillstation.'hestoragetankissizedtocontain80,000gallonsoffueloilwhichallowsforapproximatelyth'irty(30)hoursoftestingofthedieselgeneratorandseven(7)daysofcontinuousoperation,allatfullload.Thefueloiltransferpumpiscapableoffillingtheda~"=ankfori:h=nwdieselgene"atorand(non-concurrently)thedaytankonanyuneoftheexistingdiesels.Itcanalsofill,anyoftheexistingdieselfueloilstoragetanks.Thetransferpumpisactuatedautomaticallyfromitsassociateddaytank.FillingofexistingdaytankswiththedieselgeneratorEtransferpumpiscontrolledmanually.ThefueloilstorageandtransfersystemisdesignedasaSafetyClass3,SeismicCategoryIsystem,inaccordancewith,therequirementsofRegulatoryGuides1.26and1.137andANSIStandardN-195.TheflowdiagramforthefueloilstorageandtransfersystemservingdieselgeneratorEisshownondrawingM-120,Sheet2,inAppendixA.InstrumentationandcontroldiagramsareshownondrawingJ-120,sheets3,4,and5,alsoinAppendixA.3-1 3.1.2CoolinWaterSstemTheEmergencyServiceWaterSystem(ESW)isused.tosupplycoolingwatertothefollowingcomponentsofdieselgeneratorE:oLubeOilCooleroJacketWaterCooleroFuelOilCooleroIntercoolersTheexistingemergencyservicewatersystemhasbeenextendedtothedieselgeneratorEbuildingviafour(4)10inchpipes.OneeachforloopAsupplyloopAreturn,loopBsupply,andloopBreturn.Amotoroperatedbutterflyvalveisprovidedoneachoftheselines.WhendieselgeneratorEisusedtoreplaceanotherdiesel,loopAistheprimary'oolingsource,witheitheramanualoranautomatictransfer'toloopBifloopAbecomesunavailable.TheflowdiagramfortheemergencyservicewatersystemservingdieselgeneratorEisshownondrawingM-ill,sheet3,inAppendixA.InstrumentationandcontroldiagramsareshownondrawingJ-ill,sheets10,ll,13,14,14Aand15,alsoAppendixA.3.1.3HeatinandVentilationThedesigntemperatureparametersandheatrefectiontothespacebythedieselgeneratorandotherheatproducingdeviceswereusedtosisetheventilationsystemforthedieselgeneratorEbui'lding.ThedesignparametersaredetailedinTable3.1.Thecapacityoftheventilatingsystemfanswasselectedto'andletheheatrejectiontothespacebydieselgeneratorEandtomaintainthespacetemperaturebelow120'Finsummerwhenthedieselgeneratorisoperating.Two(2)50percentcapacitysupplyfans,two(2)50percentcapacityexhaustfansandone(1)100percentcapacitybatteryroomandbasementexhaustfanwereselectedtoventilatethebuilding.Thefirstsetofinterlockedsupplyandexhaustfansmaintainspacetemperaturebelow104'Fbymeansofdampermodulationandstartingoffansfromt~=spacetherostat.Thesecondsetofinterlockedsupplyandexhaustfansstartwhentheindoortemperaturerisesabove104'F.Thisarrangementofone(1)50percentcapacitysupplyandone(1)50percentcapacityexhaustfanrunningduringthenormalventilationmodeisfurnishedtoconserveenergy;Nofiltrationorcoolingisprovidedintheventilationsystem.Themodulatingdampersystemcontrolstemperatureandisdesignedforfailsafeoperationtopermitfullventilation.ITheexhaustfanforthebatteryroomandbasementismanuallyoperated,runscontinuouslyandwasselectedforexplosion-proofconstruction.Ventilationairforthebatteryroom/chargerareaandbasementistransferredfromthebuildingspaceandleakagethroughdamperswhentheventilationsupplyfanisnotoperating.TheventilatingsystemisdesignedassafetyrelatedandSeismicCategoryI.3-2 Theheatingsystemforallareasconsistsofelectricunitheatersandelectricbaseboardheaters.Theheatersarenotsafetyrelatedandaredesignedtocommercialindustrystandards.Theyarehowever,supportedtoSeismicCategoryIrequirementstoavoidII/Isafetyimpactconcerns.Theheatershavebuilt-inthermostatstoautomaticallymaintainspacetemperatureinaccordancewiththedesignparameterslistedinTable3-1.WhendieselgeneratorEisnotoperating,actuationofthefiredetection.systemwillautomaticallystopallthesupplyandexhaustfansandoverridethetemperaturecontrols.I'heflowdiagramfortheheatingandventilatingsystemservingdieselgeneratorEisshownondrawingM-182,sheet2>inAppendixA.InstrumentationandcontroldiagramsareshownondrawingV-182,sheets7,8,8A,9,9A,10,11,13,13A,14,15,and16,alsoAppendixA.3.1.4PlumbinandDrainaePlumbinganddrainagesystemsforthedieselgeneratorEfacilityaredesignedandsizedtoaccommodatethevarioustypesofdrainageinthebuilding.Roofdrainsarepipedtothestormsewer.Equipmentandfloordrainsfromelevations675'-6"and708'-0"arepipedtoanundergroundwastewaterstoragetanklocatedoutsidethedieselgeneratorbuilding.Equipmentandfloordrainsfromelevation656'-6"(exceptfloordrainfrombatteryroom)and'ffluentfromthewastewaterstoragetankaredischargedbygravitytoanoil/waterseparatorlocatedinsidethebuildinginasump.Thefloordrainofthebatteryroomdischargestoanacidneutralizingsump,wherewasteisneutralizedanddischargedtotheoil/waterseparator.Theeffluentoftheoil/waterseparatordischargesintothebuildingsump.Thebuildingsumpisequippedwithduplexsumppumpsof100GPMcapacityeach.Buildingsumpcontents(wastewater)arepumpedtotheplantoilywastesystem.Theoilseparatedintheoil/waterseparatorispumpedandcollectedina550gallonundergroundwasteoilstoragetanklocatedoutsidethedieselgeneratorEbuilding.Theundergroundwastewaterstoragetankisdesignedt'ocontainfireprotectionwaterfromthe10minutesofoperationofpre-actionsprinklersystem.3.1.5!".reProtect'on/DetectionThedesignofthefireprotectionanddetectionsystemisinaccordancewith10CFR50,AppendixR,SectionIIIG,Jand0;NRCBranchTechnicalPosition9.5.1,NFPANationalFireCodes,andFMstandards.Thefiresuppressionsystem'etsitswaterfromtheplantyardloop.Thesprinklerandfiresta'ndpipesystemsaredesignedforawatersupplyfromone2500gpm/125psifirepumpdeliveringwaterthroughayardmainwiththeshortestrouteassumedtobeunavailable.ThefirestandpipesystemandhosesarelocatedsothatallinteriorsectionsofthebuildingcanbereachedperNFPAClassIIIrequirements.3-3 Thetype,number,andlocationofportablefireextinguishersareinaccordancewithNFPArequirements.Operationofthefiredetectionandprotectionsystemsisinterlockedwiththeventilationsystemsoastoshutdownthosesystems(exceptduringemergencyoperationofthedieselgenerator)whichwillinterferewithfirefighting,control,containment,andsuppressionofthefire.Inadditiontothefireprotectionsystem,anearlywarningfiredetectionsystemisprovidedforthebuilding.Detectorspacingandtypesofdetectorsareconsistentwiththetypeofservicerequired.Thedetectionsystemiscompatibleandinterfaceswiththeexistingplantfireprotectionmultiplexingsystem.Thefireprotectionpanelisfedfromabatteryback-uppackagefurnishedbythesmokeandtemperaturedetectionpanelvendor.TheflowdiagramforthefireprotectionsystemservingdieselgeneratorEisshowondrawingM-122,sheet9,containedinAppendixA.Theinstrumentandlogicdiagramforthesystem,indicatingfiredetectors,isshownonFigureF-1006inAppendixA.3.1.6DieselGeneratorStartinAirSstemAsintheexistingdieselgenerators,dieselgeneratorEhasastartingairsystemwhichsupplieshighpressureairsequentiallytothedieselenginecylinders.Thesystem(bothloops)consistsofaircompressors(2),airreceivers(4),airfilters,airdryers,airprecoolersmoistureseparators,andassociatedpiping,valvesandinstrumentation.TworedundantairstartingsystemsareprovidedfordieselgeneratorEtoincreasestartingreliability.Additionally,across-tieisprovidedtoalloweithercompressortochargeall4airreceivers.Eachairstartloopiscapableofperformingatotaloffive(5)-10secondstartswithoutrechargingtheairreceivers.All=equipmentmountedintheairreceivedskidissafetyclass3,SeismicCategory1inaccordancewithRegulatoryGuide1.26.Allequipmentmountedontheaircompressorskidiscommercialgrade.TheflowdiagramfortheStartingAirSystemservingdieselgeneratorEisshownondrawingM-134sheet2,inAppendixA.3.1.7LubeOilSstemThedieselgeneratorElubeoilsystemisessentiallyidenticaltotheexistingdieselgeneratorssystemandconsistsofanenginedrivenpump,standbyA.C.motordrivenpump,circulatingpump,lubeoilheater,lubeoilheatexchanger'ndassociatedpiping,valvesandinstrumentation.Theprimarypurposeofthelubeoilsystemistolubricatebearingsandothermovingpartsintheengine.Additionally,thissystemisusedtolubricateturbo-chargerbearings,keeptheenginewarminthestandbymodetoenhancer immediatestartup,coolthepistons,andmaintainenginecleanlinessbypreventingrustandcorrosion.Theenginedrivenpumpprovidestherequiredlubeoilpressureduringnormaloperation.AstandbyA.C.motordrivenpumpwillautomaticallystartuponfailureoftheenginedrivenpump.Acirculatingpumpandelectricimmersiontypeheaterareusedtomaintainlubeoilataprescribedtemperatureduringstandbyperiods.Athermostaticcontrolvalveisusedtomaintainlubeoiltemperatureduringtheseperiods.AllequipmentmountedontheauxiliaryskidisdesignedasSafetyClass3,SeismicCategory1inaccordancewithRegulatoryGuides1.26and1.29.Allequipmentsuppliedbytheenginemanufacturerhasbeenseismicallyqualified.TheflowdiagramforthelubeoilsystemservingdieselgeneratorEisshownondrawingM-134sheet2,inAppendixA.3.1.8JacketWaterSstemThedieselgeneratorEjacketwatersystemissimilartotheexistingdiesel'sjacketwatersystemandconsistsofastandpipe,enginedrivenpump,standbyA.C.motordrivenpump,circulationpump,jacketwaterheater,jacketwatercoolerandassociatedpiping,valves,andinstrumentation.Thejacketwatersystemisaclosedloopsystemwhichusestreatedwatertocooltheenginecylinderjackets,turbo-charger,andthegovernoroilcooler.Thissystemcirculateswarmjacketwaterthroughtheheaterportionoftheairintercoolerstoheatthecombustionairduringstartup.Theenginedrivenpumpprovidestherequiredjacketwaterpressureduringnormalengineoperation.AnA.C.motordrivenpumpisprovidedintheeventofenginedrivenpumpfailure.Thispumpwillautomaticallyturn-onuponlossoflubeoilpressure.Acirculatingpumpandelectricimmersiontypeheaterareusedtokeepjacketwaterataround120Fduringstand-byperiodsto0enhanceimmediatestart-up.Athermostaticcontrolvalveisusedtomaintainjacketwatertemperatureduringtheseperiods.Allequipmentmountedontheauxiliaryskidisdesignedassafetyclass3,seismi:ategory1~naccordancewitntherequirementsofU.S.RegulatoryGuide1.26.Inaddition,allequipmentsuppliedbytheenginemanufacturerandmountedontheenginehasbeenseismicallyqualified.TheflowdiagramforthejacketwatersystemservingdieselgeneratorEisshownondrawingM-134,sheet2,inAppendixA.3.1.9FuelOilSstemThedieselgeneratorEfueloilsystemisessentiallyidenticaltotheexistingdieselgeneratorssystemandconsistsofanenginedrivenpump,D.C.motordrivenpump,twenty(20)injectionpumps,fueloildaytank,fueloilheatexchanger,filters,strainersandassociatedpiping>valves,andinstrumentation.3-5 Flowfromthedaytanksuppliesfueltotheenginedrivenpumpwhichinturnsuppliesfuelat35psigtothein)ectionpumps.Areliefvalveisutilizedatthedischargeoftheenginedrivenpumptomaintainpressureat35psig.Thefueloilcoolerisusedtocoolthefueloilwhichisbypassedbythereliefvalvebacktothedaytank.Thefiltersandstrainersareusedtoassurecleanfueltothehighpressureinjectionpumps.AD.C.motordrivenfueloilpumpisprovidedtoreplacetheenginedrivenpumpintheeventofenginedrivenpumpfailure.Thispumpwillautomaticallystartuponlossofpressureatthedischargeoftheenginedrivenpump.AllequipmentmountedontheauxiliaryskidisdesignedasSafetyClass3,SeismicCategory1inaccordancewithRegulatoryGuides1.26and1.29.Allequipmentsuppliedbytheenginemanufacturerandmountedontheenginehasbeenseismicallyqualified.TheflowdiagramforthedieselgeneratorEfueloilsystemisshownondrawingM-134,Sheet2,inAppendixA.3.2StructuralDesinThedieselgeneratorEbuildingisaSeismicCategory1,two-storystructurewithapenthouseandabasementconsistingprimarilyofreinforcedconcretewalls,floorslabs,androof.Thedieselgeneratorped'estalisalsoconstructedofreinforcedconcrete.Agapbetweenthebuildingfloorandthepedestalatgradelevelisprovidedsothatvibrationsfromthedieselgeneratorarenottransmittedtothebuilding.Acurbplatehasbeeninstalledtopreventexcessivewaterandoilfromleakingdowntothebasementfromtheoperatingfloor(el.675'-6")throughthis'ap.Thefoundationsystemwasconstructedbyfirstremovingthevolumeofsoilfromtheexistinggradedowntothesoundrockwiththeplanareaslightlylargerthanthatofthebuilding.Thisvolumewasfilledwithleanconcreteextendingfromthesoundrocktoaconvenientelevation,whichis'hebottomelevationofthebuildingbasementfloormat.ThefoundationsystemfordieselgeneratorsupportEissimilartothatusedfortheexistingdieselgenerators.Itconsistsofareinforcedconcreteblockapproximately34'ongx9'idex21'-6"high,withfourverysmallopenin,"andisfoundedontheleanconcretewhichinturnisbondedtothebedrock.Thistypeoffoundationpedestalhasahighrigidityandconsequentlyitsfrequencyofthelowestfundamentalmodeofvibrationwillbemorethan1.5timesthespeedofdieselengine(600rpm).Thiswillprecludeanysupportrelatedvibrationproblems.TheouterreinforcedconcretewallsandroofofthedieselgeneratorEbuildinghavesufficientthicknesstoresisteffectsoftornadomissiles.Aportionofanouterwallisremovabletofacilitatedieselgeneratorinstallationand/oremergencyremovalandmaintenanceoperation.Thisremovablewallportionisdesignedtoresisttheeffectsoftornadomissilesandseismicloads.Sincethehighgroundwaterlevelfordesignpurposeisatelevation665'-0",awaterproofingmembraneisinstalledontheoutsideofthebasementwallsuptoelevation665'-0"andonthebottomsurfaceofthe3-6 basementfloormat.Waterstopsareprovidedatconstruction)ointsbelowelevation665'-0"..AdescriptionoftheseismicanalysisprocedureandmodelsforthedieselgeneratorEbuildingiscontainedinAppendixCto.thisreport.Thesitewasreviewedandevaluatedforexistingconditionsrelatingtosoilsandrockmaterials,drainagepatterns,pavementsandothergroundcovers,susceptibilitytoerosion,siteaccessibility,andcontrolsforsurveywork;andtoestablishabasisforverifyingtheexactlocationofallabovegradetie-insystemsandallundergroundsafetyandnonsafetyrelatedsystemsthatcouldimpactdesignorconstructionactivities.AlicensedsurveyordeterminedthehorizontalandverticallocationsofkeypointsforthesesystemsandthedatawasassembledonasingleCompositeUtilityPlan,tiedintotheplantgridanddatum.ThisCompositePlanwasusedthroughoutpreliminaryandfinaldesigntomaintaincontrolofthelocationoftie-inworkandallnewundergroundsystems*(allpipingsystems,utilities,andstructuresincludingwaterandsanitarysewerlines,stormdrainagelines,electricductbanks,fuellines,andanyotherlines).Italsoservesasabasisfordefiningthe"as-built"conditions.Basedonareviewof'vailableexistingsubsurfacedata,additionalboringswererecommendedtoestablishadesignbasisforexcavationandbackfilloperations.Theresultsoftheseinvestigationsincludingconstructionstagesheetingandbracingconsiderations,recommendationsforexcavationandbackfilloperationsanddewateringarepresentedinGibbs&Hilldocument3544-SR-001entitled"ReportonSubsurfaceInvestigationsforDieselGeneratorEFacility".ErosionandsedimentationcontrolswereimposedonconstructionactivitiesbasedonguidelinesstipulatedinCommonwealthofPennsylvaniaDepartmentofEnvironmentalResourceRulesandRegulations,Chapter102.Thesitestormdrainagesystemisdesignedtoprovideadequatedrainagethroughoutthelifeofthefacility.ThebuildingsiteisgradedtodrainawayfromthedieselgeneratorEstructure.ThepeakrateofstormwaterrunofffromthesitewasdeterminedusingtheRationalMethodofdesignbasedonpre(-i.itationva=u=sderivedfro-criteriapresentedinSection6.3.7.1ofTechnicalSpecificationG-1001.Surfacerunoffwillbeconveyedtoaperipheralditchfordischargethroughtheexistingstormdrainagesystem.3.3ElectricalDesinElectricalseparationofcontrolandpowercircuitsintheexistingdieselbuildingisasdescribed'intheSusquehannaSteamElectricStationFinalSafetyAnalysisReport(FSAR)sections3.12.3.4.2,8;1.6.1.hand8.3.1.11.4.FordrawingsandtablesseethereferencedFSARsections.ElectricalseparationofcontrolandpowercircuitsindieselgeneratorEbuildingisasdescribedinIEEE-384,1981and;RegulatoryGuide1.75,Rev.2,1978asinterpreted(FSAR)'ection8.1.6.1.h.FordrawingsseeE81-1,E81-2andE81-3ofAppendixA.3-7.

3.3.1MediumVoltaeSstemDieselgeneratorEisconnecteddirectlytotheswitchgearinthedeiselgeneratorEfacility.TheswitchgearisClass1Eandconsistsofmetal-clad,dead-front,free-standingsteelstructures,completewithbuses,draw-outcircuitbreakers,currentandpotentialtransformers,controlswitches,instruments,andotherequipmentnecessaryforproperoperation.Thecircuitbreakersarerated1200A,250MVA,4.16kV,withcommensuratebusbracing.EachofthefouremptypositionsintheswitchgearisconnectedtoaClass1Eswitchingpointlocatedatanexistingdieselgenerator.Eachswitchingpointconsistsofamanualcircuitbreakerandanemptyposition.AmanualcircuitbreakerisprovidedforinsertionintoonlyoneofthefourpositionsintheswitchgearinthedieselgeneratorEfacility,andamanualcircuitbreakerisprovidedforinsertionateachswitchingpointlocatedatanexistingdieselgenerator.Properalignmentallowsthesparedieseltobeconnectedinplaceofanyoneoftheexistingdiesels.Whennotinuse,themanualcircuitbreakersarestoredinasparecubicleintheswitchgearinthedieselgenerator'Ebuilding.Acircuitbreakerisalsoprovidedforconnectiontothe4.15kVprimaryofthenewindoortransformer.Acubicleisprovidedforauxiliarymeteringand/orinstrumentation,andforconnectiontothetestfacility.Changestothedieselgeneratorcontrolpanellocatedinthemaincontrolroomhavebeenminimized.Asystemforcontroltransferhasbeendeveloped,withconsiderationtocableseparationrequirementsandHumanFactorsEngineering.ThefollowingarelocatedatthenewswitchgearinthedieselgeneratorEbuilding:IncominglinecompartmentVoltmeterVoltmeterswitchEquippedspace(totaloffour)AmmeterAmmed".switchLocalcontrolswitchwiththreeindicatinglights(breakeropen,breakerclosed,breakerintest)TransformerfeederCircuitbreakerAmmeterandammeterswitch50/51shortcircuit/overcurrentprotectiverelays'50GgroundcurrentprotectiverelayLocalcontrolswitchwiththreeindicatinglights(breakeropen,breakerclosed,breakerintest)Keyinterlock,fordisconnectswitchontransformer-toprecludeoperatingswitchunlessbreakerisopen3-8 LockoutrelayoTestFacilitycompartmentoBreakerstoragecompartment3.3.1.2SwitchinPointsThefollowingarelocatedateachofthefournewswitchingpointsintheexistingdieselgeneratorbuildings.oCircuitbreakercompartmentManual,draw-outbreakerLocalcontrolswitchwiththreeindicatinglights(breakeropen,breakerclosed,breakerintest)AmmeterAmmeterswitchoEquippedspaceVoltmeterVoltmeterswitchAmmeterswitchLocalcontrolswitchwiththreeindicatinglights(breakeropen,breakerclosed,breakerintest)3.3.2480-VoltSstemThesecondaryofthenewindoortransformerisconnectabletoaClass1EMotorControlCenter(MCC),tosupplytheEdieselgeneratorauxiliaryloads.ThisClass1EMCCisconnectedtoanewnon-Class1EMCCviatwoshunt<<tripcircuitbreakers,eachactivatedbyanundervoltageorLOCAsignal.Thenon-Class1EMCCisnormallypoweredviaanautomatictransferswitchfromeitheraUnit1orUnit2non-Class1Eloadcenter.BothMCC'sareenclosed,free-standingcabinet-typewithmainandverticalbuses,combinationmotorstarters,feederprotectiondevices,andotherequipmentasrequired.3.3.3Class1E125-VoltDCSstemTheClass1Edcsystemsuppliespowerforoperationofthenew4.16kVswitchgearlineup,ESWvalves,dieselcontrols,fieldflashing,andsimilarrequirements.Itiscomposedofonebattery,onecharger,oneswitchboard,oneMCC,andonedistributionpanelinthedieselgeneratorEbuilding.Thecomponentsaresuitablysizedtomeettherequirementsofthesystemandareshownonthe125VDCone-linedrawingE-ll,SheetllinAppendixA.Thebatterychargeriscapableofsupportingthenecessaryloadswhilerechargingthebatterywithin8hours,aswellasprovidingthebatteryfloatandequalizingcharge.3-9 3.3.4TransferSwitchinSstemAsystemfortransferswitchinghasbeendeveloped,withconsiderationtocableseparationrequirements,HumanFactorsEngineering,andtominimizingchangestothecontrolboardsinthemaincontrolroom.3.3.4.1TransferPanelsThetransferswitchingsysteminvolvesoperationoftransferswitchesonpanelslocatedinthedieselgeneratorEbuildingandintheexistingdieselgeneratorbuildings.Severalgroupingofcontrols,metering,andalarmswillbetransferred.ThetransferswitchesinthespecifictransferpanelsinthedieselgeneratorEbuildingareusedtoselectthepathtothecontrolsofthespecificdieselgeneratortobereplaced.ThetransferswitchattheindividualtransferpanelineachexistingdieselgeneratorbuildingisusedtotransfercontrolsofthespecificdieselgeneratortobereplacedtodieselgeneratorE.Thesetwoswitchesinseriesprovideadoublebreakincontrolcircuitstoprecludeproblemsinthenewbuildingfrombeingpropagatedintoany'oftheexistingdieselgeneratorcontrols.Thissameprincipleappliestothetwopowercircuitbreakersinseries;therearealwaystwobreaksbetweendieselgeneratorEandanexistingnonaligneddieselgenerator.Also,thedieselgeneratorscannotbeparalleled.ThelocationoftheswitchgearandtransferpanelsatElevation710'ntheexistingdieselgeneratorbuildingsprovidessomeprotectionfrommissiles.Ifafireormissilefromanexistingdieselgeneratorweretooccurataswitchingpoint,itwilldisabletheswitchingpointinamannersuchthatrepairwouldberequiredbeforedieselgeneratorEcouldbeusedinplaceoftheparticularexistingdieselgenerator.3.3.4.2LocalEnine-GeneratorControlPanelsThegeneratorcontrolpanelfordieselgeneratorEincludesprotectiverelaying,andislocatedinthedieselgeneratorEbuilding.Thispanelissimilartothepanelsprovidedforeachoftheexistingdieselgenerators.(RefertoTable3-2).Thene'~'nginecont-.-'anelforthedieselgeneratorEengineincludesinstrumentation,andislocatedinthedieselgeneratorEbuilding.Thispanelissimilartothepanelsprovidedforeachoftheexistingdieselgenerators.(RefertoTable3-3).3.3.4.3DevicestobeTransferredThedevicesassociatedwiththereplaceddieselgeneratorareusedfordieselgeneratorE,viathetransferswitchingsystem.(RefertoTable3-3).Thenewdevicestobere-used,asabove,onthemaincontrolboardare:oAlarmsDieselgeneratortrippedHighpriorityalarm3>>10 LowpriorityalarmDieselgeneratorbreakertripDieselgeneratorfailstostartDieselgeneratoratnearfullloadDieselgeneratornotinautomaticmodeRoomfloodedControlsStart-StopSynchronizeFrequencyadjustmentVoltagead)ustmentManualorautomaticvoltageregulatorselectionIsochronousanddroopselectionReadytorun><lighBIS'signals(SeeSection3.3.4.4)MetersVoltageCurrentFrequencyKilowattoutput3.3.4.4BassedandInoerableStatus(BIS)PanelForeachofthesystemslistedbelow,theswitchesandindicationsforeachoftheexistingdieselgeneratorsareused,viaaswitchingtransfersystem,whendieselgeneratorEisusedinplaceofanyoneoftheexistingfourdieselgenerators.DieselGeneratorControlSystemDieselGeneratorOutputSystemDieselGeneratorAuxiliarySystem'SWSystemEachofthesesystemsexistsfortheexistingdieselgenerators.Table3-4listsindicatinglightsinexistingBISpanels.3.3.4.5DedicatedDevicesThefollowingnewdevices,locatedonthemaincontrolboard,arededicatedtothedieselgeneratorEfacility:oAlarms4.16kVSystemforDieselGeneratorEFacility-TroubleDCSystemforDieselGeneratorEFacility-TroubleHVACFailureinDieselGeneratorEFacilityControlSwitchesNotProperlyAlignedDieselGeneratorEBuildingSumpLevelHigh3-11 oIndicatingLightsAseriesoffiveindicatinglightsareprovidedtostatusthereplacementdieselgeneratorEasfollows:DieselGeneratorEnotalignedasareplacementDieselGeneratorEalignedasreplacementforDieselGeneratorADieselGeneratorEalignedasreplacementforDieselGeneratorBDieselGeneratorEalignedasreplacementforDieselGeneratorC"DieselGeneratorEalignedasreplacementforDieselGeneratorD,oLocal>>RemoteSelectorSwitchThisdeviceisadedicatedswitch,similartotheswitchesfortheexistingdieselgenerators.oEmergencyServiceWaterValvesOperationIndividualopen-closedindicatinglightsandcontrolswitchesareprovidedontheexistingmaincontrolboardforeachofthefouremergencyservicewatervalvesassociatedwithdieselgeneratorE.ThesevalvesarepoweredfromexistingDivisionIandDivisionIIMCCs.Lightingfixturesoperateon277-Vac(Securitylightsoperateat400v;explosion-prooflightsoperateat120v).Indoorlightingismetalhalideor'fluorescentdependingontheparticularapplication.Outdoorlightingishighpressuresodium.Inhazardousareassuchasthebatteryroom,incandescentexplosionprooflightingisused.ThelightingsystemispoweredfromdieselgeneratorE'sessentialacpowerdi~tributionwhichisbackedupbyadiesel'aeratorintneeventoflossofoff-sitepower.Additionalfixtures,energizedbythemainplant'snormalacpowerdistributionarealsoprovidedtoaugmenttheessentiallightingtoprovidetheminimumilluminationlevels.ExitlightingisenergizedbydieselgeneratorE'sessentialacpowerdistributionsystem,andisprovidedasrequired,thisincludesself-containedbattery-poweredlightingfixtures.Theoutdoorlightingsystemispoweredfromasourcetraceabletotheexistingsecuritysystememergencypowersupply.LightingsystemsareinaccordancewiththeNationalElectricalCode.3.3.6'roundinSstemAbarecoppergroundloopconsistingof250-MCMbarecoppercableembeddednearthebaseofthefoundation,perimeterisinstalled,andconnectedtothe3-12 applicableequipmentwitha4/0-AWGbarecopperwire.Thisisinterconnected~'otheexistingstationgrid.3.3.7CommunicationsSstemThecommunicationssystemiscompatiblewithandconnectedtotheexistingmainplantcommunicationssystem.Sufficientspeakersandpublicaddresssystemst'ationsforpaging/communicationsareprovided,aswellasPlantMaintenance/TestJacksystemstations.ThesystemisdesignedinaccordancewiththelatestissueoftheNEC.ThePAsystemisdesignedsothatalarmmessagescanbeheardunderallconditionsofoperation.3.3.8SecuritSstemThedieselgeneratorEfacilityisclassifiedasavitalarea,thereforethesecuritysystemisdesignedtosatisfyalltheapplicablerequirementsof10CFR73.Inaddition,theintrusionalarmsystemdesignmeetsthecriteriaoutlinedinRegulatoryGuide5.44.Theexistingsecurityfencewastemporarilyrelocatedpriortoconstructiontoaccommodateconstructionprogresswithoutendangeringvitalareaplantsecurity.Allsecuritydevicesandequipmentaredesignedtobecompatiblewith,andconnectedto,theexistingplantsecuritysystem.ThepurposeofthetestfacilityistoprovideameansforperiodictestingofdieselgeneratorEwhendieselgeneratorEisnotalignedtotheClass1Edistributionsystem.rThedieselgeneratorEtestfacilityconsistsofaninterconnectionbetweenthedieselgeneratorE4.16kVClass1EswitchgearandtheNon-Class1E13.8kVswitchgear(Bus10)locatedintheexistingturbinebuilding.TheconnectiontoBus10isviaasplicetaptotheMakeupWaterIntakeStructure13.8kVfeeder.Thetestfacilityinterconnectionconsistsofthefollowingma)oritems:o'16kVswitchgearcompartmentandassociatedcontrols,meteringandprotectivedevices.o,4.16kVcircuitbreaker(thisisthesamecircuitbreakerwhichisalsoutilizedinthesubstitutionofdieselgeneratorEforanyoneoftheexistingdieselgenerators.o4.16kV/13.2kV,10.5/13.15MVAOA/FA55C,step-uptransformer.o13.8kVoutdoorswitchgearunitwithassociatedcontrolandpro'tectivedevices(usedtodeenergize4.16kV/13.2kVtransformerwhentestfacilityisnotinuse)oSynchronizingpanel(forsynchronizingD.G.E4.16kVoutputto13.8kVBus10;synchronizingisacrossthe4.16kVcircuitbreaker).3-13 3.3.10MildEnvironmentThedieselgeneratorEbuildingenvironmentwillatnotimebesignificantlymoreseverethantheenvironmentthatwouldoccurduringnormalpowerplantoperation,includinganticipatedoperationaloccurrences.Itisthereforeconsideredtobea"mildenvironment".ClasslEequipmentlocatedinamildenvironmentisnotrequiredtobeenvironmentallyqualifiedbytypetest.Adherencetotherequirementsof10CFRPart50,AppendicesAandB,andtheguidanceinRegulatoryGuide1.33,Revision3,ensuresadequateperformanceofthesafety-relatedequipmentlocatedinthemildenvironment.TheClass1Eequipmentlocatedinamildenvironmentissubjecttotheplantseismicrequirements,exceptthatpreconditioning(aging)priortoseismictestingisnotrequired.3.4InstrumentationandControlsThecontrollogicforactivatingdieselgeneratorEisbasedonareviewof'xistingdieselgeneratorcontrols,discussionswiththeoperatingstaff,'ndconsiderationoftheHumanFactorsinvolvedinplacingtheEdieselgeneratorinservice.3-14 Table3>>2PROTECTIVERELAYS~METERSANDCONTROLDEVICESONTHEGENERATORCONTROLPANELFORDIESELGENERATOREThenewgeneratorcontrolpanelislocatedinthedieselgeneratorEbuildingand'includesthefollowing:oProtectiverelays:40/76Fieldfailure64FFieldGroundSensor60Voltagebalance27VUndervoltage50/51Overcurrent,shortcircuit-phasesA,B,C32ReversePower51NFGeneratorNearFullLoad59Overvoltage81Underfrequency59NNeutralovervoltage87GEDifferentialProtection,withlockoutrelay86DTheconnected87GErelayisswitchedviatransfer.panels.oMeters:DCFieldcurrentDCFieldvoltageGeneratoramperes,withammeterswitch7GeneratorkilowattsGeneratorKilovarsGeneratorvoltage,withvoltmeterswitchGeneratorfrequencyGeneratorkilowatthours Table3-1DIESELGENERATOREBUILDINGVENTILATIONSYSTEMDESIGNPARAMETERSSummerWinterOutdoorAmbientConditionsIndoorDesignConditionsoElevation675'-6"and708'-0"withD/G'E'On"pE]evation675s6>iand708tOsiwithD/GtEssiOff0oElevation656'-6"-RemainingAreawithD/G'E'On"oElevation656'-6"-RemainingAreawithD/G'E'Off"Elevation656'-6"-BatteryRoomwithD/G'E'On"or"Off"92'Fd.B/78Fw.b.120'F(Max)104'F(Max)104'F(Max)120'F(Max)104'F(Max)50F70F(Min)70'F(Min)65'F(Min)60'F(Min)60'F(Min)

Table3-2(Cont'd)oControlDevices:DCControlpowerFieldFlashpowerProtectiveRelaying-resetVolts/Vers-Whitelight-Whitelight-Pushbutton-SelectorswitchRaise-lowerFieldFlash-ManualGeneratorBreakerPushbutton>>LockoutRelay52GBTReset-triplightsVoltageRegulator-SelectorswitchManual-AutoGeneratorField-LockoutRelay86ESDReset-triplightsExcitationShutdownBridgeTransferSwitchTestBlockMetering-Current-Pushbutton-Switch-TestblockTransformersTestBlockMetering-PotentialTransformers-TestblockTransformers Table3-3DEVICES,ALARMSANDSHUTDOWNSIGNALSONTHEENGINECONTROLPANELFORDIESELGENERATOREThenewdieselenginecontrolpanelislocatedinthedieselgeneratorEbuildingandincludesthefollowing:oDevices:JacketWaterPress/AfterCoolerPressEnginehours-DualIndicator-MeterTurbo-chargeroilfilterdifferentialpressureFueloilsupply/dischargepressurePowerCylinderExhaustTemperatureTemperatureEnginelubeoilpress/turbolubeoilpressTurbo-chargerAir6Crankcasepressures-Indicator-DualIndicator-Indicator-Indicator-DualIndicator-IndicatorPowercylinderexhaustandturbotemp.-MeterRTDtemperatureManifoldpressure-Meter-IndicatorTurbo<<dischargepressAirManifoldLeftBank/RightBank-DualGaugePress.StartingAirPressureReceiver1/Receiver2-DualIndicatorEngineSpeedGovernorMode-SelectorSwitchIsochronous-ParallelSpeedControl-SelectorSwitchRaise-Off-LowerMastertripcircuit-TripMastertripcircuit-Reset-Greenlight-AmberlightTurboexhaustoutlet,turboairin/breakcaseTurbochargerspeed-Dualgaugepressure-Meter Table3-3(Cont'd)FueloildaytanklevelFueloilstoragetanklevelSequenceindication-stepControlModeselectorEngineControl-Meter-Meter-Redlight-SelectorswitchRemote-off-localLocal/remoteWhitelights-PushbuttonStart-StopSequenceIndication-Crank-WhitelightSequenceIndication-RunningidleSequenceIndication-RunningloadedUnitinEmergencymodeMastertripcircuit-Whitelight-Whitelight-Whitelight-Lockoutrelay(86)Trip-ResetAnnunciatorDCpoweroncircuit/IlDCpoweroncircuitf/2DGavailableforEmergencyEmergencystop-SelectorswitchTest<<Off-ResetPushbuttonAcknowledge-Whitelight-Whitelight-Whitelight-PushbuttonStop-ResetAirCompressorI/1AirCompressor//2-SelectorSwitchHand-Off-AutowithG/R/Alights-SelectorSwitchHand-Off-AutowithG/R/AlightsStandby)acketwaterpump-SelectorSwitchHand-Off-AutowithG/R/AlightsJacketwatercirculatingpumpSelectorSwitch Table3-3(Cont'd)JacketwaterheaterHand-Off-AutowithG/R/Alights-SelectorSwitchHand-Off-AutowithG/R/AlightsStandbylubeoilpumpLubeoilcirculatingpump.-SelectorSwitchHand-Off-AutowithG/R/Alights-SelectorSwitchHand-Off-AutowithG/R/AlightsLubeoilheate'r-SelectorSwitchHand-Off-AutowithG/R/AlightsFueloiltransferpump-SelectorSwitchHand-Off-AutowithG/R/AlightsStandbyFueloilpump-SelectorSwitchHand-Off-AutowithG/R/AlightsoLocalAlarmsandShutdownSignals:EnginelubeoilpressurelowTurbolubeoilpressurelow'ain&Conn.RodBrg.hightemp.En,"~=VibrationTurbothrustbrg.failureJacketwatertemp.highEngineoverspeedTurbooverspeedGeneratorBrg.hightemp.GeneratorReversepowerGeneratorLossofFieldGeneratorOverexcitation Table3-3(Cont'd)GeneratorDifferentialGeneratorUnderfrequencyGeneratorOvervoltageEmergencyServiceWaterEmergencyshutdownIncompletesequenceoLocalAlarmsEnginelubeoilpressurelowTurbolubeoilpressurelowEnginelubeoilpressurehighEnginecrankcasepressurehighEnginecrankcaselevellowFnginelubeoiltempoffnormalJacketwatertemp.offnormalJacketwaterpressurelowJacketwaterstandpipelevellowJacketwaterstandpipelevelhighLubeoilfilterdiff.presshighFueIoilpressurelowFuel.oilpressurehighFueloilfilterdiff.press.highFueloilstrainerdiff.press.highAux.FuelStandbyJacketwaterpumponEoildaytanklevellow-FueloildaytanklevelhighFueloilstoragetanklevellow Table3-3(Cont'd)LubeOilcirculatingPrelubepumpmalfunctionLubeoilheatermalfunctionJacketwaterheatermalfunctionJacketwatercirculatingpumpmalfunctionDGBypassesorinoperableGeneratorfieldgroundGeneratorvoltageunbalanceGeneratorneutralovervoltageGeneratorovercurrentNearfullloadVoltagereg.transfertostandbyMCCnotproperforautooperationControlswitchesnotproperforremoteautooperationStartingairpressureloworsystemmalfunctionFailuretostart Table3-4INDICATINGLIGHTSONEXISTINGBISPANELSAseparatepanelisprovidedforUnit1andUnit2foreachofthefourexistingdieselgenerators.Thefollowingisprovidedoneachpanel.oDiesel-GeneratorControlSystemOut-of-Service.Selectorswitch,(normal-bypass)withgreenindicatinglight.One(1)greenindicatinglightforeachofthefollowing:Diesel-generator,d-ccontrolpowerloss.Diesel-generator,field-flashandexcitationpowerloss.4-kVbus,transformer,circuitbreakerdisabled.Diesel-generator,controlswitchinlocal.Diesel>>generator,buildingcoolingfandisabled.One(1)greenindicatinglightascommonforalloftheabovesignals.oDiesel-GeneratorOutputSystemOut-of-Service.Selectorswitch(normal-bypass)withgreenindicatinglight.Diesel-generator,circuitbreakerrackedout.Diesel-generator,controlpowerloss.4-kVbus,transformercircuitbreakerdisabled.oDiesel-GeneratorAuxiliarySystemOut-of-Service.SelectorSwitch(normal-bypass),withgreenindicatinglight.One.,I)greenindicatinglightforeachofthefollowing:Diesel-generatorauxiliarysupply/controlpowerloss.Diesel-generatorauxiliariesnotinautomatic.PumpOP-disabled.One(1)greenindicatinglightascommonforalloftheabovesignals.

Table3-4(Cont'd)oESWSystemOut-of-ServiceSelectorSwitch(normal-bypass),withgreenindicatinglight.One(1)greenindicatinglightforthefollowing:ESWvalvescontrolpowerloss Table3-5SIGNALSTOBETRANSFERREDFOREACHOFTHEFOUREXISTINGDIESELGENERATORS~SinalAutoStart(BackUpCircuit)ShownonExistDGDwNo.G5-553-109Sh.2ShownonDGEDw.No.G5-553-243Sh.2CircuitBreakerControl(52T1)ReadyToCloseGeneratorBreaker(Unit2)G5-553-109Sh.1G5-553-109Sh.10G5-553-243G5-553-143S}1.1Sh.12GeneratorBreakerTripSignal(Unit2)SEVRAuto/ManualSwitchFieldCurrentToComputerUnitNo.1FieldCurrentToComputerUnitNo.2VoltmeterFrequencyMeterTotalizerWattMeterVARMeterDieselGeneratorDC,ControlPowerLoss(BISUnit1)DieselGeneratorFieldFlashandEx.rPowerL~'(BISUn>t1)DieselGeneratorControlSwitchinLocal(BISUnit1)G5-553-109Sh.103-E12-03-BSh.1b3-E12-03-BSh.3a3-E12-03-BSh.3a3-E12-03-BSh.3a3-E12-03-BSh.3a3-E12-03-BSh.3b3-E12-03-BSh.3b3-E12-03-BSh.3bG-5-553-109Sh.103-E12-03-BSh.2aG5-553-109Sh.10G5-553-243Sh.12G5-553-366Sh.4G5-253-366Sh.1G5-553-366Sh.1G5-253>>366Sh.5G5-253-366Sh.5NottransferredG5-253-366Sh.5G5-253-366Sh.5G5-553-243Sh.12G5-253-366Sh.5G5-553-243Sh.12DieselGeneratorAuxSupply/ControlPowerLoss(BISUnit1)ESWReturnWaterTemperatureE-259J-411Sh.9Sh.4E-259J-411Sh.23Sh,4ADieselGeneratorAuxNotinAuto(BISUnit1)E-259Sh.9G5-553-243Sh.13 Table3-5(Cont'd)OilPumpDisabled(BISUnit1)E<<257E-257Sh.2DieselGeneratorDCControlPowerLoss(BISUnit2)DieselGeneratorFieldFlashandExciterPowerLoss(BISUnit2)DieselGeneratorControlSwitchInLocal(BISUnit2)G5-553-109Sh.103-E-12-03-BSh.2aG5-558>>109Sh.10G5-553-243Sh.12G5-253-366Sh.5G5-553-243Sh.12DieselGeneratorAux.Supply/E-259ControlPowerLose(BISUnit2)Sh9E-259Sh.23DieselGeneratorAux.NotInAuto(BISUnit2)E-259Sh.9G5-553-243Sh.13OilPumpDisabled(BISUnit2)E-257E-257Sh.2AutoStartEmergencyServiceWaterPumpSynchronizingAmmeterG5-553-109Sh.103-E12-030BSh.3a3-E12-03-BSh.3bG5-553-243Sh.12G5-253-366Sh.2G5-253-366Sh.1DieselGeneratorTrippedAlarmG5>>553-109Sh.10G5-553-243Sh.12HighPriorityAlarmLowPriorityAlarmDieselC~neratorfa4l.stostarti,.'ompleteSequence)AlarmG5-553-109Sh.10G5-553-109Sh.10G5-"3-109Sh.10G5-553-243Sh.12G5-553-243Sh.12G5-553-243Sh.12DieselGeneratorNearFullLoadAlarm3-E12-03-BSh.2aG5-253-366Sh.5DieselGeneratorNotInAutoModeAlarmE-259Sh.9G5-553-243Sh.13(MultipleContactsof74R3)AutoStart(PrimaryCircuit)GeneratorBreakerOpen/ClosedManualStartG5-553-109Sh.1G5-553-109Sh.1G5-553-109Sh.1G5-553-243G5-553-243Sh.2Sh.3G5-553<<243Sh.1 Table3-5(Cont'd)ManualStopGovernorLowerRaiseReadytoCloseGeneratorBreaker-Unit1G5-553-109Sh.9G5-553-109Sh.6G5-553-109Sh.10G5-553-243Sh.3G5-553-243Sh.8G5-553-243Sh.12ReadytoCloseGeneratorBreaker-Unit2Isochronous/DroopOvercurrentwithVoltageRestraintBlock51VUnit1G5-553-109Sh.10E-259Sh.93-E12-03-BSh.2aG5-553-243Sh.12G5-553-243Sh.1G5-253-366Sh.5OvercurrentwithVoltageRestraintBlock51VUnit23-E12-03-BSh.2aG5-553-366Sh.5DieselGeneratorDifferential3-E12-03-BSh.G5-253-366Sh.1OvercurrentVoltageRestraint51VE-23Sh.6E-23Sh.10ESWValveHV-01112A,B,C,DControlSwitch(closecircuit)ESWValveHV-01112A,B,C,DControlSwitch(opencircuit)ESWValveHV-01112A,B,C,DOverRoomBypassESWValveHV-01112A,B,C,DIndicatingLightsESWValveHV-01122A,B,C,DControl~~itch{Clotho.Circuit)ESWValveHV-01122A,B,C,DControlSwitch(OpenCircuit)ESWValveHV-01122A,B,C,DOverloadBypassESWValveHV-01122A,B,C,DIndicatingLightsESWValveHV-01110A,B,C,DControlSwitch(closecircuit)ESWValveHV-01110A,B,C,DControlSwitch(OpenCircuit)E-146-E-146E-146E-146E-146E-146E-146E-146E-146E-146Sh.9Sh.9Sh.9Sh,9S.9Sh.9Sh.9Sh.9Sh.10Sh.10E-146E-146E-146E-146E-146E-'146W-146E-146E-146E-146Sh.17Sh.17Sh.17Sh.18Sh.18Sh.18Sh.18Sh.18Sh.19Sh.19 Table3-5(Cont'd)ESWValveHV-01110A,B,C,DOverloadBypassESWValveHV-01110A,B,C,DIndicatingLightsESWValveHV-01120A,B,C,DControlSwitch(CloseCircuit)E-146E-146E-146Sh.10Sh.10Sh.10E-146E-146,E-146Sh.19S11.19Sh.20ESWValveHV-01120A,B,C,DE-146ControlSwitch(OpenCircuit)Sh.10E-146Sh.20ESWValveHV-01120A,B,C,DOverloadBypassESWValveHV-01120A,B,C,DIndicatingLightsESWValveHV-01110A,B,C,DAutoLoopTransferESWValveHV-01120A,B,C,DAutoLoopTransferESWValvesloop"A"BISIndicationE-146E-146E-146E-146E-146Sh.10Sh.10S}1.10Sh.10Sh.33E-146E-146E-146E>>146E-146Sh.20Sh.20Sh.1.9Sh.20Sh.33AESWValvesloop"B"BypassIndicationESWValvesHV-01110A,B,C,DAutoLoopTransferHUACVentSupplyFanControlSwitch(Start)E-146E-146E-193Sh.33Sh.11Sh.1E-146E-146E-193Sh.33BSh.1Sh.6HVACVelacSupplyFanControlSwitch(Auto)HVACVentSupplyFanIndicatingLightsE-193E-193Sh.1Sh.1E-193E-193Sh.6Sh.6 4.0STUDIESAgasbottlemissileanalysis(Gibbs&HillCalculationNo.MC-HI-001)wasperformedtodeterminethemaximumvelocitywhichcouldbeachievedbyagasbottleduetothepostulatedfailureofthegasreliefvalve.Theanalysisassumedasuddenopeningofone(1)inchdiameteroccurred,inthebottletherebymaximizingthe'gasexitmassflowrateandcausingthegasbottletobecomeamissile.CalculationresultsforthegascylindersofthetypeandsizeusedatSusquehannaSteamElectricStationshowedthatthemostsevereimpactisduetothe143poundoxygenbottlewithamaximumvelocityof262fpswhilethe70poundzerogasbottlereachedthehighestvelocity(342fps).Thesecalculatedmaximumvelocitiesaresignificantlylessthanthe900fpsdiscussedinSusquehannaSusquehannaElectricStationFinalSafetyAnalysisReport(FSAR}Section3.5.1.5andconsequentlythemissilecharacteristicsasdescribedintheFSAR(i.e.missileweightandvelocity)canbemodifiedtoconformtothecalculatedworstcaseconditions.StructuralanalysesevaluatingtheeffectsoftheseidentifiedworstcasemissileswereincorporatedintothefinaldesigncalculationsforthedieselgeneratorEbuilding.

5.0TIE-INDESCRIPTIONThetie-inofthedieselgeneratorEfacilitywiththeoperatingplantisplannedinsuchawayastominimizetheeffectonplantopera-tions.Insofarasitispossible,thetie-insystemsaredesignedsothatmostofthepipingandcablingcanbeinstalledwithoutactuallyconnectingtotheexistingplantservices.Theexactlocationofallabove-groundtie-insystemsaswellasunder-groundsafety-relatedandcriticalnonsafety-relatedsystemthatmayimpactdesignorconstructionactivitieswasestablished.Althougheveryeffortisbeingmadetominimizeexposureofsafetyandcriticalnon-safetyrelatedsystemstopotentialdamagefromconstructionacti-vities,specificprotectivemeasuresweretakenincludingthefollowing:oExcavationwasstagedtominimizeexposureofcriticalareas.oHandexcavationmethodswereemployedwhenexcavationswerewithinthreetofourfeetofcriticalutilitiesorfacilities.oMaximumeffectivecoverwasmaintainedbyusingsteelplateoranequivalentcompositeofearthandsteelplate(orsteelcasingpipe).oTemporarysupportsand/orconcreteencasementwereutilizedwhererequired.Thedetailedtie-indescriptionconsidersbutisnotlimitedto,thefollowing:oRelocationofexistingsystemsoRelocationofexistingsystemsencounteredinareaswheretie-insarerequired.'Tie<<inconnectionsalsocanbeperformedduringtheoutages'romtheexistingplantsystemsuptoanisolationdevicesuchasacircuitbreakerorvalve;thebalanceofthesystemwouldbeinstai'adlaterin'theconstruction.Thiswouldallowcontinuedconstructionwithoutdisturbingplantoperation.Theseisolationdeviceswillserveasthe"plug-in"interfacebetweentheadditionaldieselandtheexistingsystems.Thefollowingisalistofsystemswhichrequiretie-inconnections:oStormdrainagesystemsoPowersupplysystemsoControlroompanelinterfacesystem5-1 VoComputersystemoEmergencyServicewatersystemoFueloilsystemoSumpEffluentdisposalsystemoPotablewatersystemoDemineralizedwatersystemoStationairsystemo'ireprotectionanddetectionsystemoPlantsecuritysystem5-2 APPENDIXADRAWINGS ThisAppendixcontainsthefollowingDrawinNumberdrawings:TitleC>>5003DieselGeneratorEFacilitySiteDevelopmentPlanM-5200,Sheet1DieselGeneratorEBuildingGeneralArrangementPlansM-5200,Sheet2DieselGeneratorEBuildingGeneralArrangementSectionsM-120,Sheet2FlowDiagramDieselOilStorageandTransferDieselGeneratorEBuildingJ-120,Sheets3,4,5ICDDieselGeneratorEBuildingDieselOilandStorageSystemM-ill,Sheet3FlowDiagramEmergencyServiceVaterSystemDieselGeneratorEBuildingJ-ill,Sheets10,ll,13,14,14A,15ICDDieselGeneratorEBuildingEmergencyServiceMaterSystemM-182,Sheet2DieselGeneratorEBuildingAirFlovDiagramV-182,Sheets7,8,8A,9,9A,10,11,13,13A,14,15,16ICDDieselGeneratorEBuildingAirFlowSystemM-122,Sheet9FlovDiagramFireProtectionDieselGeneratorEBuildingFig.F-1006EmergencyDieselEGeneratorInstrumentandLogicFlovDiagramFireProtectionSystemM-134,Sheet2E5,Sheet5FlovDiagramDieselAuxiliariesDieselGeneratorEBuildingSingleLineMeter&Relay4.16kVdieselgeneratorE DrawinNumberE9,Sheet77TitleOneLineDiagram480VMCC-OB565DieselGeneratorEUnits1&2E9,She'et78OneLineDiagram480VMCC-OB566DieselGeneratorEUnits1&2Ell,Sheet11125VdcOneLineDiagramDieselGeneratorEUnits1&2E23,Sheet104.16kVThreeLineDiagramDieselGeneratorEE23,Sheet12,SchematicDiagramSwitchContactDevelopmentTransferPanelsOC512E-A,E-B,E-C&E-DE23,Sheet6ASchematicMeter&RelayDiagram4.16kVDieselGeneratorA,B;C&DTransferControl-DieselGeneratorEUnits1&2E23,Sheet7SchematicMeter&RelayDiagram4.16kVDieselGeneratorsA,B,C&DTransferControl-DieselGenerator'EUnits1&2E23,Sheet8SchematicMeter&RelayDiagram4.16kVDieselGeneratorA,B,C&,DTransferControl-DieselGeneratorEUnits1&2E23,Sheet8ASchematicMeter&RelayDiagram4.16kVDieselGeneratorA,B,C&DTransferControl-DieselGeneratorEUnits1&2E26,Sheet13SchematicMeter&RelayDiagram125DCDieselGeneratorEE102,Sheet38E105,Sheet13E105,Sheet1813.8kVBreakerConnectionDiagram.4.16kVBreakerSchematicDiagramSchematicDiagram4.16kVBusOA510DieselGeneratorCircuitBreaker51006ControlCommonE23,Sheet9SchematicMeter&RelayDiagram4.16kVDieselGeneratorA,B,C&DTransferControl-DieselGeneratorEUnits1&2A-4 DrawinNumberE23,SheetllTitleSchematicMeter&RelayDiagram4.16kVDieselGeneratorA,B,C&DTransferControl-DieselGeneratorEUnits1&2E103,Sheet25SchematicDiagram4.16kVBusesAuxiliaryRelayTransferControlDieselGeneratorEUnits1&2E105,Sheet27SchematicDiagram4.16.kVBusDieselGeneratorCircuitBreakersTransferControlDieselGeneratorEUnit1E105,Sheet28SchematicDiagram4.16kVBusDieselGeneratorCircuitBreakersTransferControlDieselGeneratorEUnit1E105,Sheet29SchematicDiagram4.16kVBus"1A,1B,1C,1D"&"2A,2B,2C,2D"DieselGeneratorCircuitBreaker-TripInterlockWithDieselGenerator"A,B,C,D,&E"TransferUnits1&2E105,Sheet30SchematicDiagram4.16kVBus"1A,1B,1C,1D"&2A,2B,2C,2DDieselGeneratorCircuitBreaker-TripInterlockWithDieselGeneratorA,B,C,.D,&ETransferUnits1&2E146,Sheet9ASchematicDiagramESWDieselCoolerValvesLoopAHV-01112A,B,C,D&ETransferCommonE146,Sheet9BSchematicDiagramESWDieselCoolerValvesLoopAHV-01112A,B,C,D&ETransferCommonE146,S,"oet9CSchematicDiagramESWDieselValvesLoopAHV-01112A,B,C,D&TransferCommonCoolerE146,Sheet9DSchematicDiagramESWDieselCoolerValvesLoopAHV-01122A,B,C,D&ETransferCommonE146,Sheet9ESchematicDiagramESWDieselCoolerValvesLoopAHV-01122A,B,C,D,&ETransferCommonA-5 DrawinNumberE146,Sheet9FTitleSchematicDiagramESWDieselCoolerValvesLoopAHV-01122A,B,C,D&ETransferCommonE146,Sheet10ASchematicDiagramESWDieselCoolerValvesLoopBHV-01110A,B,C,D&ETransferCommonE146,Sheet10BSchematicDiagramESWDieselCoolerValvesLoopBHV-01110A,B,C,D&ETransferCommonE146,Sheet10CSchematicDiagramESWDieselCoolerValvesLoopBHV-01110A,B,C,D&ETransferCommonE146,Sheet10DSchematicDiagramESWDieselCoolerValvesLoopBHV-01120A,B,C,D&ETransferCommonE146,Sheet10EE146,Sheet10FSchematicDiagramESWDieselCoolerValvesLoopBHV-01120A,B,C,D&ETransferCommonI'chematicDiagramESWDieselCoolerValvesLoopBHV-01120A,B,C,D&ETransferCommonE146,SheetllASchematicDiagramESWDieselCoolerValvesAutoLoopTransferHV-01110A,B,C,D&ECommonE146,Sheet21SchematicDiagramESWDieselCoolerValvesAutoLoopTransferHV-01110A,B,C,D&ECommonE184,Sheet15SchematicDiagramDieselGeneratorAutoStart(Primary)TransferControlDieselGeneratorECommonE184,Sheet16SchematicDiagramDieselGeneratorAutoStart(Back-up).TransferControlDieselGeneratorECommonE185,Sheet12ASchematicDiagramBypassIndicationSystem(BOP)TransferControlDieselGeneratorEUnit1E185,Sheet12BSchematicDiagramBypassIndicationSystem(BOP)TransferControlDieselGeneratorEUnit1A>>6 DrawinNumberTitleE185,Sheet12CSchematicDiagramBypassIndicationSystem'(BOP)TransferControlDieselGeneratorEUnit1E185,-Sheet26ASchematicDiagramBypassIndicationSystem(BOP)TransferControlDieselGeneratorEUnit2E185,Sheet26BSchematicDiagramBypassIndicationSystem(BOP)TransferControlDieselGeneratorEUnit2E185,Sheet26CSchematicDiagramBypassIndicationSystem(BOP)TransferControlDieselGeneratorEUnit2E185,Sheet33ASchematicDiagramESWLoopABypassIndicationSystem(BOP)CommonE185,Sheet33BSchematicDiagramESWLoopABypassIndicationSystem(BOP)CommonE193,Sheet1ASchematicDiagram-HVACDieselGeneratorBuilding.VentSystemVentSupplyFansTransferScheme-CommonE193,Sheet1BSchematicDiagram-HVACDieselGeneratorBuildingVentSystemVentSupplyFansTransferScheme-CommonE259,Sheet1ASchematicDiagramDieselGeneratorExcitationTransferControlDieselGeneratorECommonE259,Sheet,9ASchematicDiagramDieselGeneratorEngineTransferControlDieselGeneratorECommonE259,Sheet9BSchematicDiagramDieselGeneratorEngineTransferControlDieselGeneratorECommonE259,>.aeet9CSchematicDiagramDieselGeneratorEngineTransferControl<<DieselGeneratorECommonE259,Sheet29SchematicDiagramDieselGenerator"A"-DieselGeneratorETransferAlignmentIndicationCommonE259,Sheet30SchematicDiagramDieselGenerator"B"-DieselGeneratorETransferAlignmentIndicationCommonA-7 Dravin,NumberE259,Sheet31TitleSchematicDiagramDieselGenerator"C"-DieselGeneratorETransferAlignmentIndicationCommonE259,Sheet32SchematicDiagramDieselGenerator"D"-DieselGeneratorETransferAlignmentIndicationCommonE331,Sheet'13SchematicDiagram-AnnunciatorPlantOperatingBenchBoardOC653TransferControl-DieselGeneratorECommonE331,Sheet14SchematicDiagram<<AnnunciatorPlantOperatingBenchBoardOC653TransferControl-DieselGeneratorECommonE331,Sheet14SchematicDiagram-AnnunciatorPlantOperatingBenchBoardOC653TransferControl-DieselGeneratorECommonE332,Sheet4ASchematicDiagram-AnnunciatorHVACControlBoardOC681TransferScheme-CommonE105,Sheet31,40E146,Sheet174.16kVBreakerConnectionDiagramESWMotorOperatedValveNo.1SchematicandConnectionDiagramE146,Sheet18ESWMotorOperatedValveNo.2SchematicandConnectionDiagramE146,Sheet19ESWMotorOperatedValveNo.3SchematicandConnectionDiagramE146,Sheet20ESWMotorOperatedValveNo.4SchematicandConnectionDiagramE259,:"-~at13DieselGeneratorStandbyJacketWaterPumpSchematicandConnectionDiagramE259,Sheet14DieselGenerator,JacketWaterCircuitPumpSchematicandConnectionDiagramE259,Sheet15DieselGeneratorJacket.WaterHeaterSchematicandConnectionDiagramE259,Sheet16DieselGeneratorStandbyLubeOilCircuitPumpSchematicandConnectionDiagramA-8 DrawinNumberTitleE259,Sheet18DieselGeneratorLubeOilHeaterSchematicandConnectionDiagramE257,Sheet2DieselGeneratorFuelOilTransferPumpSchematicandConnectionDiagramE259,Sheet19DieselGeneratorAuxiliaries-AirCompressorNo.1Schematic&ConnectionDiagramE259,Sheet20DieselGeneratorAuxiliaries-AirCompressorNo.2andConnectionDiagramE259,Sheet21DieselGeneratorStandbyFuelOilPump(DC)SchematicandConnectionDiagramE259,Sheet22DieselGeneratorGeneratorAuxiliaryMiscellaneousSystemsConnectionDiagramE259,Sheet17DieselGeneratorPreventativeLubePumpSchematicandConnectionDiagramE193,Sheet6H&VSupplyFanSchematicandConnectionDiagramE193,Sheet7H&VSupplyFanSchematicandConnectionDiagramE193,Sheet9DampersSchematicandConnectionDiagramE193,Sheet8H&VExhaustFan,SchematicandConnectionDiagramE193,Sheet10H&VExhaustFanSchematicandConnectionDiagramE193,Sheet5H&VBatteryRoomExhaust,SchematicandConnectionDiagramE259,Sheet23MiscellaneousEquipmentandDevicesSchematicandConnectionDiagramE259,Sheet27MiscellaneousEquipmentandDevicesSchematicandConnectionDiagramE259,'heet28MiscellaneousEquipmentandDevicesSchematicandConnectionDiagramA-9 DrawinNumberTitleE326,Sheet22Annunciator,AlarmsPNLOC577ESchematicDiagramE301,Sheet105E81,Sheet1ComputerInputsSchematicandConnectionDiagramDieselGeneratorEBuildingTrayandConduitPlan.E81,Sheet2DieselGeneratorEBuildingTrayandConduitPlan.E81,Sheet3DieselGeneratorEBuildingTrayandConduitPlan.E-105,Sheet19SchematicDiagram4.16kVBusOA510PDieselGeneratorCircuitBreaker510A02Control-CommonE-105,Sheet20SchematicDiagram.4.16kVBus'A510ADieselGeneratorCircuitBreaker510AOlControl-CommonE-105,Sheet21SchematicDiagram9.16kVBusOA510BDieselGeneratorCircuitBreaker510B02Control-CommonE-105,Sheet22SchematicDiagram4.16kVBusOA510BDieselGeneratorCircuitBreaker510B01Control-CommonE-105,Sheet23SchematicDiagram4.16kVBusOA510CDieselGeneratorCircuitBreaker510C02Control-CommonE-105,Sheet24SchematicDiagram4.16kVBusOA510CDieselGeneratorCircuitBreaker.510C01Control-CommonE-105,Sheet25SchematicDiagram4.16kVBusOA510DDieselGeneratorCircuitBreaker510D02Control-CommonE-105,Sh26SchematicDiagram4.16kVBusOA510DDieselGeneratorCircuitBreaker510D01Control-CommonE-105,Sheet37ConnectionDiagram4.16kVBusOA510ADieselGeneratorCircuitBreaker510A02Control-Common TitleE-105,Sheet38ConnectionDiagram4.17kVBusOA510ADieselGeneratorCircuitBreaker510A01Control-CommonE-105,Sheet39ConnectionDiagram4.16kVBusOA510BDieselGeneratorCircuitBreaker510B02Control-CommonE-105,Sheet40ConnectionDiagram4.16kVBusOA510BDieselGeneratorCircuitBreaker510B01E-105,Sheet41ConnectionDiagram4.16kVBusOA510CDieselGeneratorCircuitBreaker510C02Control-CommonE-105,Sheet42ConnectionDiagram4.16kVBusOA510CDieselGeneratorCircuitBreaker510COlControlCommonE-105,Sheet.43ConnectionDiagram4.16kVBusOA510DDieselGeneratorCircuit510D02Control<<CommonE-105,Sheet44ConnectionDiagram4.16kVBusOP510DDieselGeneratorCircuitBreaker510D01Control-CommonE-259,Sheet29ASchematicDiagramDieselGenerator"A"-DieselGeneratorETransferAlignmentIndication-CommonE-259,Sheet30ASchematicDiagramDieselGnerator"B"-DieselGeneratorETransferAlignmentIndication-CommonE-259,Sheet31ASchematicDiagramDieselGenerator"C"-DieselGeneratorETransferAlignmentIndication-CommonE-259...eet32ASchematicDiagramDieselGenerator"D"-DieselGeneratorETransferAlignmentIndication-CommonE-331,Sheet14SchmeticDiagramAnnunicatorPlantOperatingBenchBoardOC653TransferControl-DieselGeneratorE-"A"Common.,E-331,Sheet14ASchematicDiagramAnnunciatorPlantOpera-tingBenchBoardOC653TransferControl-DieselGeneratorE-"A"Common DrawinNumberTitleE-331,Sheet14BSchematicDiagramAnnunciatorPlantOperatingBenchBoardOC653TransferControl-DieselGeneratorE-"C"CommonE>>331,Sheet14C.SchematicDiagramAnnun.PlantOperatingBenchBoardOC653TransferControl-DieselGeneratorE-"D"CommonA-12 APPENDIXBCodesStandards,andRegulationsApplicabletoDieselGeneratorEFacility Thisgeneraldocumentpresentsapartiallistingofcodes,standards,regulationsapplicabletotheDieselGeneratorEFacilityattheSusquehannaSteamElectricStation-Unit1andUnit2.Thislistingissegregated'yissuingorganization,andprovidesthecode,standard>orregulationidentification,title,andeffectivedate.Wheretheeffectivedateisnotgiven,themostrecentissueineffectonSeptember22,1983willapply.B-2 1.AMERICANCONCRETEINSTITUTE(ACI)STANDARDSa.ACI-211.1'tandardPracticeforSelectingProportionsforNormalandHeavyweightConcrete1981b.ACI-214RecommendedPracticeforEvaluationofCompressionTestResultsofFieldConcrete1977c.ACI-301SpecificationsforStructuralConcreteforBuildings1981d.ACI-304RecommendedPracticeforMeasuring,Mixing,Transporting,andPlacingConcrete'978e.ACI-305RACI-306Rg.ACI-308h.ACI-309HotWeatherConcretingColdWeatherConcretingStandardPracticeforCuringConcreteRecommendedPracticeforConsolidationofConcrete1977197819811972ACI-315~(SP-66)ACIDetailingManual1980j.ACI-318BuildingCodeRequirementsofReinforcedConcrete1977k.ACI-3471.ACI-349RecommendPracticeforConcreteFormworkCodeRequirementsforNuclearSafety-RelatedSafety-RelatedConcreteStructures,19781980m.SP-2ACIManualofConcreteInspection1981B-3 2.AMERICANINSTITUTEOFSTEELCONSTRUCTION(AISC)a.AISCb.AISCc.AISCAISCSpecificationfortheDesign,FabricationandErectionofStructuralSteelforBuildingsCodeofStandardPracticeforSteelBuildingsandBridgesManualofSteelConstructionSpecificationforStructuralJointsUsingA'STMA325orA490Bolts1978'97619801978B-4 3.AMERICANIRON&STEELINSTITUTE(AISI)a.C1008b.StandardsSteelsSpecificationColdFormedSteelDesignManual1977 4.AMERICANNATIONALSTANDARDSINSTITUTE(ANSI)a.A380b.ANS-52.1c.Bl.ld.82.1e.816.1f.816.3g.816.5h.816.9816.10RecommendedPracticeforCleaningandDescalingStainlessSteelParts,EquipmentandSystemsAmericanNationalStandardNuclearSafetyCriteriafortheDesignofStationaryBoilingWaterReactorPlantsUnifiedInchScrewThreads(UNandUNRThreadForm)PipeThreads(ExceptDryseal)CastIronPipeFlangesandFlangedFittingsMalleableIronScrewedFittings,150lbs.and300lbs.SteelNickelAlloyandOtherSpecialAlloysPipeFlangesandFlangedFittingsSteelButtweldingFittingFace-to-FaceandEnd-to-EndDimensionsofFerrousValves19781983198219731975-1977198119731973816.11k.816.211.816.25m.816.34Socket-WeldingandThreadedNonmetallicFlatGasketforButtweldingEndsForgedSteelFittings1980PipeFlanges197819791981FlangedandButtweldingEndValves,Steel,NickelAlloy,andOtherSpecialAlloysn.830.2.0o.831.1p.836.10pl.836.19q.Cl-NECOverheadandGantryCranesPowerPiping(Use831.1-)967forpipesupportsfornuclearpiping,withallowablestressesper831.1-1973.Use831.1-1973forpipesupportsfornon-nuclearpiping.)WeldedandSeamlessWroughtSteelPipeStainlessSteelPipeSpecificationofGeneralRequirementsforaQualityProgram197619801979197919688-6 r.C37.04RatingStructureforACHigh-VoltageCircuitBreakersRatedonaSymmetrical.CurrentBasis1982s.C37.06PreferredRatingsandRelatedRequired1979capabilitiesforACHigh-VoltageCircuitBreakersRatedonaSymmetricalCurrentBasisC37.09TestProceduresforACHigh-VoltageCircuitBreakersRatedonaSymmetricalCurrentBasis1979u.C37.11RequirementsforElectricalControlforACHigh-VoltageCircuitBreakersRatedonaSymmetricalCurrentBasisandaTotalCurrentBasis1979v.C37.010ApplicationGuideforACHigh-VoltageCircuitBreakersRatedonaSymmetricalCurrentBasis1982w.C37.20SwitchgearAssemblies,IncludingMetal-EnclosedBus(IEEE27}[includesANSI/IEEEsupplementsC37.20a-1970,C37.20b-1972,andC37.20c-1974]1969x.C37.98y.C37.100z.C57.12.80SeismicTestingofRelaysDefinitionsforPowerSwitchgearTerminologyforPowerandDistributionTransformers197819801978aa.C57.13bb.C533RequirementsforInstrumentTransformersSpecificationforCalciumSilicateBlockandPipeThermalInsulation19781980cc.H35.1AlloyandTemperDesignationSystemforAluminum1982dd.MC96.1"TemperatureMeasurementThermocouple1982eeN18.7Administrativ=ControlsandQualityAssurancefortheOperationalPhaseofNuclearPowerPlants1976ff.N42.2gg.'45.2QualityAssuranceProgramRequirementsforNuclearFacilities1977High-VoltageConnectorsforNuclearInstruments1971hh.N45.2.2Packaging,Shipping,Receiving,StorageandHandlingofItemsforNuclearPowerPlants(DuringtheConstructionPhase)1978ii.N45.2.5SupplementaryQualityAssuranceRequirementsfor1974Installation,InspectionandTestingofStructuralB-7 ConcreteandStructuralSteelDuringtheConstruct-tionPhaseofNuclearPowerPlantsgg.N45.2.6QualificationsofInspection,Examination,and1978TestingPersonnelforNuclearPowerPlantskk.N45.2.9ll.N45.2.10mm.N45.2.11RequirementsforCollection,StorageandMaintenanceofQualityAssuranceRecordsforNuclearPowerPlantsQualityAssuranceTermsandDefinitionsQualityAssuranceRequirementsfortheDesignofNuclearPowerPlants197419731974nn.N45.2.12RequirementsforAuditingofQualityAssurance1977ProgramsforNuclearPowerPlantsoo.N45.2.13QualityAssuranceRequirementsforControlofProcurementofItemsandServicesforNuclearPowerPlants1976pp.N45.2.23QualificationsofQualityAssuranceProgramAuditPersonnelforNuclearPowerPlants1978qq.N101.4QualityAssuranceforProtectiveCoatingsAppliedtoNuclearFacilities.1972rr.N195FuelOilSystemsforStandbyDiesel-Generators1976ss.N626.3QualificationsandDutiesofPersonnelEngagedinASMEBoilerandPressureVesselCode,SectionIII,Division1and2,CertifyingActivities.1979B-8 5.AMERICANSOCIETYFORTESTINGANDMATERIALS(ASTM)a.StandardsoftheAmericanSocietyforTestingandMaterialsB-9 6.AMERICANSOCIETYOFCIVILENGINEERS(ASCE)a.PaperNo.3269WindforcesonStructures-FinalReportoftheTaskCommitteeonWindForces,CommitteeonLoadsandStresses,StructuralDivision1961B-10 7.AMERICANSOCIETYOFMECHANICALENGINEERS(ASME)a.ASMEBoilerandPressureVesselCode,SectionIII,NuclearPowerPlantComponents-1971EditionThroughandincludingWinter1972Addendumb.ASMEBoilerandPressureVesselCode,SectionII,1971orlaterEdition,MaterialSpecifications,asreferencedbySectionIIIc.ASMEBoilerandPressureVesselCode,SectionIX,Edition,WeldingQualifications,asreferencedbySectionIII.1983d.ASMEBoilerandPressureVesselCode,SectionXI,1980Edition,1980throughandincludingWinter1980Addendum,RulesforIn-ServiceInspectionofNuclearPowerPlantComponentsReactorCoolantSystems 8.AMERICANWATERWORKSASSOCIATION(AWWA)a.D1OOStandardforWeldedSteelTanksforWaterStorage1979b.M11SteelPipeManual1964B-12 9.AMERICANWELDINGSOCIETY(AWS)a.b.A2'.4WeldingHandbookSixandSeventhEditionsSymbolsforWeldingandNondestructiveTesting1979IncludingBrassingc.A5.1Spec.forCoveredCarbonSteelArcWeldingElectrodes1981d.A5.2Specification6SteelOxyfuelGasWeldingRods1980e.A5.3f.A5.4SpecificationforAluminumandAluminumAlloyCoveredAreWeldingElectrodesSpecificationforCoveredCorrosionResistingChromiumNickelSteelWeldingElectrodes19801981g.A5.5SpecificationLowAlloyStudCoveredArcWelding1981Electrodesh.A5.6SpecificationforCooperandCopper<<AlloyCovered1976ElectrodesA5.7A5.8k.A5.9SpecificationforCopperandCopper-AlloyBare1977WeldingRodsandElectrodesSpecificationforBrazingFillerMetal1981SpecificationforCorrosionResistingChromium1981andChromium-NickelSteelBareandCompositeMetalCordandStrandedWeldingRods1.A5.10SpecificationforAluminumandAluminumAlloyBareWeldingRodsandElectrodes1980m.A5.11n.,8.12o.A5.13SpecificationforNickelandNickelAlloyCovered1976WeldingElectrodesSpecificationforTungstemArcWeldingElectrodes1980SpecificationforSolidSurfaceWeldingRodsand1980Electrodesp.A5.14SpecificationforNickelandNickelAlloyBare1976WeldingRodsandElectrodesq.A5.15SpecificationforWeldingRodsandCoveredElectrode'sforCastIron1982r.A5.16SpecificationforTitaniumandTitaniumAlloyBareWeldingRods6Electrodes1970 s.A5,17t.A5.18SpecificationforCarbonSteelElectrodesandFluxesforsubmergedArcWeldingSpecificationforCarbonSteelFillerMetalsforGasShieldedArcWelding19801979u.A5.19SpecificationforMagnesiumAlloyWeldingRods1980andBareElectrodesv.A5.20SpecificationforCarbonSteelElectrodesforFluxCoveredArcWelding1979A5.21SpecificationforCompositeSurfacingWeldingRodsandElectrodes1980x.A5.22SpecificationforFluxCordCorrosion-Resisting1980ChrominumandChromium-NickelSteelElectrodesy.A5.23SpecificationforLowAlloySteelElectrodesandFluxesforsubmergedArcWelding1980z.B3.0aa.Dl.lStandardQualificationProcedureStructuralWeldingCode19771983B-14 l10.CONCRETEREINFORCEDSTEELINSTITUTE(CRSI)a.ManualofStandardPractice1981B-15 11.INSTITUTEOFELECTRICAL6ELECTRONICSENGINEERS(IEEE)a.IEEE-4StandardTechniquesforHighVoltageTesting(ANSIC68.11978b.IEEE-93GuideforTransformerImpulseTests1968c.IEEE-279CriteriaforProtectionSystemsforNuclearPowerGeneratingSystems1971IEEE-308StandardCriteriaforClass1EPowerSystemsforNuclearPowerGeneratingStations1980e.IEEE-323StandardforQualifyingClass1EEquipmentforNuclearPowerGeneratingStations1974IEEE-334StandardforTypeTestofContinuousDutyClass1EMotorsforNuclearPowerGeneratingStations1974g.IEEE-336Installation,Inspection,andTestingRequirementsforInstrumentationandElectricEquipmentDuringtheConstructionofNuclearPowerGeneratingStations(ANSIN45.2.4)1980h.IEEE-338StandardCriteriaforthePeriodicTestingofNuclearPowerGeneratingStationSafetySystems1977i.IEEE-344IEEERecommendedPracticesforSeismicQualificationofClass1EEquipmentforNuclearPowerGeneratingStations19755.IEEE-378TrialUseCriteriaforthePeriodicTestingofNuclearPowerGeneratingStationProtectionSystems1971k.IEEE-379IEEE-381StandardApplicationoftheSingle-FailureCriteriontoNuclearPowerGeneratingStationClass1E.SystemsStandardCriteriaforTypeTestsofClass1EModulesUsedinNuclearPowerGeneratingStations19771977m.IEEE-.382StandardforQualificationofSafety-RelatedValveActuators1980n.IEEE-383StandardforTypeTestofClass1EElectricCables,FieldSplices,and1974 ConnectionsforNuclearPowerGeneratingStationso.IEEE-384StandardCriteriaforIndependenceofClass1EEquipmentandCircuits1981p.IEEE-387StandardCriteriaforDiesel-GeneratorUnitsAppliedasStandbyPowerSuppliesforNuclearGeneratingStations1977q.IEEE-415GuideforPlanningofPre-OperationalTestingProgramsforClass1EPowerSystemsforNuclearPowerGeneratingStations1976r~IEEE-420StandardDesignandQualificationof-Class1EControlBoards,PanelsandRacksusedinNuclearPowerGeneratingStations1982s~IEEE-450RecommendedPracticeforMaintenance,Testing,andReplacementofLargeLoadStorageBatteriesforGeneratingStationsandSubstations1980IEEE-467QualityAssuranceProgramRequirementsfortheDesignandManufactureofClass1EInstrumentationandElectricEquipmentforNuclearPowerGeneratingStations1980u~IEEE-484RecommendedPracticeforInstallationDesignandInstallationofLargeLeadStorageBatteriesforGeneratingStationsandSubstations1981VeWoIEEE-485IEEE-494RecommendedPracticeforSizingandLargeLeadStorageBatteriesforGeneratingStationsandSubstationsStandardMethodforIdentificationofDocumentsRelatedtoClasslEEquipment.andSystemsforNuclearPowerGeneratingStations19781974X~IEEE-498StandardRequirementsfortheCalibrationandControlofMeasuringandTestEquip-mentUsedintheConstructionandMaintenanceofNuclearPowerGeneratingStations1980IEEE-535StandardQualificationofClass1ELeadStorageBatteriesforNuclearPowerGeneratingStationsB-171979 z.IEEE-603aa.IEEE-622StandardCriteriaforSafetySystemsforNuclearPowerGeneratingStationsRecommendedPracticefortheDesignInstallationofElectricPipeHeatingSystemsforNuclearPowerGeneratingStations19801979bb.IEEE-627StandardforDesignQualificationofSafetySystemsEquipmentUsedinNuclearPowerGeneratingStations1980cc.IEEE-649StandardforQualifyingClasslEMotorControlCentersforNuclearPowerGeneratingStations19&0dd.IEEE-650QualificationsofClass1EStaticBatteryChargersandInvertersforNuclearPowerGenerat'ingStations1979B-18 12.INSTRUMENTSOCIETYOFAMERICA(ISA)a..55.1InstrumentationSymbolsb.RP18.1SpecificationandGuidesfortheUseofGeneralPurposeAnnunciators19731965c.RP42.1NomenclatureforInstrumentTubingFittings1965B-19 13.INSULATEDCABLEENGINEERSASSOCIATION(ICEA)P-46-426PowerCableAmpacities,CopperConductors(IEEES-135-1)b.P54<<440Ampacities<<CablesinOpenTopCableTrays(NEMAWC-51)C~S-19-81Rubber-InsulatedWire&CablefortheTransmissionandDistributionofElectricalEnergy(NEMAWC-3)d.P-32-382Short-CircuitCharacteristicsofInsulatedCablese.S-66-524S-68-516Cross-Linked-Thermosetting-Polyethylene-InsulatedWire&CablefortheTransmissionandDistributionofElectricalEnergy(NEHAWC>>7)Ethylene<<PropyleneRubberInsulatedWireandCablefortheTransmissionandDistributionofElectricEnergy(NEMAWC-8)B-20 14.INTERNATIONALCONFERENCEOFBUILDINGOFFICIALSa.UniformBuildingCodeB-21 15.NATIONALELECTRICCODE(NEC)a.NationalElectricCode1981B-22 16.NATIONALELECTRICALMANUFACTURERSASSOCIATION(NEMA)a.AB1MoldedCaseCircuitBreakers1975b.DC-10TemperatureLimitControlsforElectricBaseBoardHeater1977c.DC-13LineVoltageIntegrallyMountedThermostatsforElectricHeaters1979d.FUILow-VoltageCartridgeFusese.ICSIndustrialControlsandSystems19781978ICS6EnclosuresforIndustrialControlsandSystems1978g.MG1MotorsandGenerator1978h.PB-1Panelboardsi.PB-2DeadfrontDistributionSwitchboard197719785.SG3Low-VoltagePowerCircuitBreakers1981k.SG4AlternatingCurrentHighVoltageCircuit1975Breakers1.SG5m.SG6n.TR27PowerSwitchgearAssemblies1981PowerSwitchingEquipment1974Commercial,InstitutionalandIndustrial1965Dry-TypeTransformerso.VE1'ableTraySystems1979B-23 17.NATIONALFIREPROTECTIONASSOCIATION(NEPA)a.NECNationalFireCodes1981b.NEPA13SprinklerSystemsc.NPFA15WaterSprayFixedSystemsd.NEPA30FlammableandCombustibleLiquidsCode198319821981e.NEPA37InstallationandUseofStationaryCombustionEnginesandGasTurbines1979f.NFPA72ALocalProtectiveSignalingSystems1979g.NFPA72DProprietaryProtectionSignalingSystems1979h.NFPA72EAutomaticFireDetectors1982B-24 18.UNDERWRITERSLABORATORY(UL)a~b.UL>>50c.UL-58d.UL-67e.UL-499f.UL-507g.UL-845h.UL-883FireProtectionEquipmentDirectoryCabinetsandBoxesSteelUndergroundTanksforFlammableandCombustibleLiquidsPanelboardsSafetyStandardsforElectricHeatingAppliancesElectricFansStandardforMotorControlCentersSafetyStandardsforFanCoilUnitsandRoomFanHeaterUnits1983198019761979197819761980i.UL-1025ElectricAirHeaters1980UL-1042ElectricBaseBoardHeatingEquipment1978B<<25 19.U.S.NUCLEARREGULATORYCOMMISSION(USNRC)a.b.10CFR2110CFR50ReportingofDefectsandNoncomplianceLicensingofProductionandUtilizationFacilitiesC~10CFR50AppendixBQualityAssuranceCriteriaforNuclearPowerPlantsandFuelReprocessingPlantsd.10CFR'50FireProtectionProgramforNuclearAppendixRPowerFacilitiesOperatingPriortoSectionsIII.GJanuary1,1979andIII.Je.BTP9.5<<1AppendixANUREG0588Rev.1GuidelinesforFireProtectionforNuclearPowerPlantsInterimStaffPositiononEnvironmentalQualificationofSafetyRelatedElectricalEquipmentB-26 20.U.S.NUCLEARREGULATORYCOMMISSION(USNRC)REGULATORYGUIDESa~1.6,IndependenceBetweenRedundantStandby,3/71Rev.0(Onsite)PowerSourcesandBetweenTheirDistributionSystems1.9Rev.2Selection,DesignandQualificationofDiesel-GeneratorUnitsUsedAsStandby(Onsite)ElectricPowerSystemsatNuclearPowerPlants12/79c~1.17Rev.1ProtectionofNuclearPowerPlantAgainst6/73IndustrialSabotaged.1.22Rev.0PeriodicTestingofProtectionSystemActuationFunctions2/72e.1.26Rev.3QualityGroupClassificationsandStandardsforWater,Sean,andRadio-Active-Waste-ContainingComponentsofNuclearPowerPlants2/76l.28Rev.1QualityAssuranceProgramRequirements(Design&Construction)3/78ge1.29Rev.3SeismicDesignClassification9/78h.1.30Rev.0QualityAssuranceRequirementsfortheInstallation,Inspection,andTestingofInstrumentationandElectricEquipment8/721.31Rev.3.,1.32Rev.2ControlofFerriteContentinStainlessSteelWeldMetal1CriteriaforSafetyRelatedElectricPowerSystemsforNuclearPowerPlants4/782/77k.1.33Rev.2QualityAssuranceProgramRequirements(Operation)2/78l.1.36Rev.0NonmetallicThermalInsulationforAusteniticStainlessSteel2/73m.1.37Rev.0QualityAssuranceRequirementsforCleaning3/73ofFluidSystemsandAssociatedComponentsofWater-CooledNuclearPowerPlantsB-27 n.1.38Rev.2QualityAssuranceRequirementsforPackaging,Shipping,Receiving,Storage,andHandlingofItemsforWater-CooledNuclearPowerPlants5/770~l.39Rev.2HousekeepingRequirementsforWater-Cooled9/77NuclearPowerPlantspe1.41Rev.0PreoperationalTestingofRedundantOn-Site3/73ElectricPowerSystemstoVerifyProperLoadGroupAssignments1.47-Rev.0BypassedandInoperableStatusIndication5/73forNuclearPowerPlantSafetySystems1.48Rev.0DesignLimitsandLoadingCombinationfor5/73SeismicCategoryIFluidSystemComponentss~1.50Rev.0ControlofPreheatTemperatureforWelding5/73ofLow-AlloySteel1.53Rev.0ApplicationoftheSingle-FailureCriterion6/73toNuclearPowerPlantProtectionSystemsu~1.54Rev.0QualityAssuranceRequirementsforProtec-6/73tiveCoatingsAppliedtoWater>>CooledNuclearPowerPlantsul.1.58Rev.1QualificationofNuclearPowerPlantInspection,Examination,andTestingPersonnel9/80v~1.60Rev.1DesignResponseSpectraforSeismicDesign12/73ofNuclearPo~erPlantsw.1.61Rev.0DamplingValuesforSeismicDesignofNuclearPowerPlants10/73Xol.62Rev.ManualInitiationofProtectiveActions10/73l.64Rev.2QualityAssuranceRequirementsfortheDesignofNuclearPowerPlants6/76Z~1.68Rev.2InitialTestProgramsforWater-CooledReactorPowerPlants8/78aa~l.74Rev.0'ualityAssuranceTermsandDefinitions2/74B-28 bb.1.75Rev.2PhysicalIndependenceofElectricSystems9/78cc.1.76Rev.0DesignBasisTornadoforNuclearPowerPlants4/74dd.1.81Rev.1SharedEmergencyandShutdownElectricSystemsforMulti-UnitNuclearPowerPlants1/75ee.l.84Rev.19DesignandFabricationCodeCaseAccepts-4/82bilityASMESectionIIIDivisionI1.85Rev.19MaterialsCodeCaseAcceptabilityASMESectionIIIDivisionI4/82gg.1.88Rev.2Collection,Storage,andMaintenanceof10/76NuclearPowerPlantQualityAssuranceRecordshh.1.89ProposedRev.1QualificationofClass1EEquipmentfor11/74NuclearPowerPlants1.92Rev.1CombiningModalResponsesandSpatialComponentsinSeismicResponseAnalysis2/765j.1.93Rev.0AvailabilityofElectricPowerSources12/74kk.1.94Rev.1QualityAssuranceRequirementsforInstallation,Inspection,andTestingofStructuralConcreteandStructuralSteelDuringtheConstructionPhaseofNuclearPowerPlants-4/76ll.1.100Rev.1SeismicQualificationofElectricEquipment8/77forNuclearPowerPlantsmm.1.105Res.InstrumentSetpoints11/76nn.1.106Rev.1ThermalOverloadProtectionforElectric3/77MotorsonMotor-OperatedValvesoo.1.108Rev.1PeriodicTestingofDieselGeneratorUnits8/77UsedasOnsiteElectricPowerSystemsatNuclearPowerPlantspp.1.115Rev.1ProtectionAgainstLow-TrajectoryTurbine7/77MissilesB-29 1.116Rev.0l.117Rev.1QualityAssuranceRequirementsforInstallation,Inspection>andTestingofEquipmentandSystemsTornadoDesignClassification6/764/78ss~1.118Rev.2PeriodicTestingofElectricPowerandProtectionSystems6/78l.122Rev.,lDevelopmentofFloorDesignResponseSpectraforSeismicDesignofFloor-SupportedEquipmentorComponents2/78uu~1.123Rev.1"QualityAssuranceRequirementsforControl7/77ofProcurementofItemsandServicesforNuclearPowerPlantsVV~1.128Rev.1InstallationDesignandInstallationof10/78LargeLeadStorageBatteriesforNuclearPowerPlants1.129Rev.1Maintenance,Testing,andReplacementof2/78LargeLeadStorageBatteriesforNuclearPowerPlantsCXX+1.131Rev.0QualificationTestsofElectricCables,FieldSplices,andConnectionsforLight-Water-CooledNuclearPowerPlants8/771.132Rev.1SiteInvestigationsforFoundationsofNuclearPowerPlants3/79ZZ~1.137Rev.1Fuel-OilSystemsforStandbyDieselGenerators10/79aaa.1.142Rev.1Safety-RelatedConcreteStructuresforNuclearPowerPlants(otherthanReactorVesselsandContainments)10/81aaal.1.144Rev.0AuditingofQualityAssuranceProgramsforNuclearPowerPlants1/79aaa2.1.146Rev.0QualificationofQualityAssuranceProgramAuditPersonnelforNuclearPowerPlants8/80bbb.1.147.Rev.2InserviceInspectionCodeCaseAccepta-bilityASMESectionXIDivisionI6/83B-30 ccc.1.148Rev.0FunctionalSpecificationforActiveValveAssembliesinSystemsImportanttoSafetyinNuclearPowerPlants3/81MEi.1.151Rev.0InstrumentSensingLines7/83B-31 APPENDIXCSeismicAnalysisProcedureandModelsforTheDieselGeneratorEBuilding TABLEOFCONTENTSSECTIONPAGE1.Introduction2.DynamicModelsC-3C<<32.1GenerationofStiffnessMatrices2.2ComputationofMassMatrices3.ModalFrequenciesandParticipationFactorsoftheModelsC-64.StructuralDampingValues5.,SeismicInputC-6C-65.1GroundDesignResponseSpectra5.2GroundMotionTimeHistories6.SeismicAnalysisbyModalResponseSpectrumMethod7.DevelopmentofFloorResponseSpectra7.1TimeHistoryAnalysisofDynamicModels7.2DevelopmentofFloorResponseSpectralCurves8.ComputerPrograms9.Rexences10.FiguresC-7C-7C-8C-9C-2 1.IntroductionThisdocumentdescribestheprocedureforthedevelopmentofthemathematicalmodelsoftheDieselGeneratorEBuildingandtheDieselGeneratorPedestal.Italsodescribestheprocedurefortheseismicanalysisofthemodelsandthedevelopmentofthefloorresponsespectralcurves.2.DynamicModelsTwomathematicalmodels(onehorizontalandonevertical)fortheDieselGeneratorEBuildingandonemathematicalmodelforthedieselgeneratorpedestalareconstructedfortheseismicanalysispurposes.Themodel,sketchesareshowninFigures1to3.ThehorizontalDieselGeneratorEbuildingmodelconsistsoffourlumpedmasses(1,2,3and4)locatedatthemasscentersofthepenthouseroof,themainroofandthetwolowerfloorelevations.Themodelhassixdegree-of-freedoms(DOF's)pernode.Thismodelhasbeenusedforthedynamicanalysesofearthquakeintwoperpendicularhorizontaldir'ections.Sincethemodelestablishedreflectstheeccentricityeffectoftheasymmetricalbuildingconfiguration,itiscapableofproducingtorsionalresponseduetoahorizontalearthquake.TheverticalDieselGeneratorEbuildingmodelisessentiallythesameasthehorizontalmodel,exceptthatishasfouradditionallumpedmasses(5,6,7and8)representingtheflexiblefloors,connectedbyverticalspringstothefourlumpedmassesofthebuildingtoformaneightlumpedmasssystem.Thismodelhasbeenusedfortheverticalanalysisonly.Thedieselgeneratorpedestalmodelhasthreelumpedmasses(1,2and3)locatedatthemasscenterofthedieselgenerator,andthetopandthemidpointofthepedestal.ThismodelhassixDOF'spernodeandhasbeenusedforthedynamicanalysisofearthquakeinthreeperpendiculardirections.TheDieselGeneratorEbuildingmodelsandthedieselgeneratorpedestalmodelwerefixedatthebasesintheseismicanalysis.Thiswasconsideredbecausethestructuresaresupportedontherockfoundation(Re~rence1,'2SNRCStandardR:iewPlan3.7.2)whichhasarelativelyhip..young'smodulusofelasticityofapproximately3millionpsi.Consequently,thesoil-structureinteractioneffectandtheinteractioneffectbetweenth'etwostructurescanbeignored.Thetwomodelscanthereforebeanalyzedseparatelyfortheirdynamicresponses.2.1GenerationofStiffnessMatricesA.HorizontalDieselGeneratorEBuildingModelThe'tiffnessofthehorizontalDieselGeneratorEbuildingmodelhasbeengeneratedfromafiniteelementmodelconstructedforthebuildingswallsC-3 consistingofplateandbeamelements,andcondesnedtothelumpedmasslocationsatfloorelevations.Ingeneratingthiscondensedstiffness,thefloorwasconsideredtoberigidinthehorizontaldirections.ThecomputationofthemodelstiffnesswascarriedoutbyusingtheMSCversionoftheNASTRANprogram(Gibbs&HillProgramNo.3030).Themodelstiffnessobtainedaboverepresentsthegrossstiffnessofthebuilding.ThismodeldoesnotincludeadditinalDOF'storepresentthelateralvibrationsofthewallpanels.Theamplificationeffectduetothelateralflexibilityofawallpanelwasthereforeseparatelyevaluated.usingasingleDOFsystemasdescribedinSection7.2.B.VerticalDieselGeneratorEBuildingModelThestiffnessoftheverticalDieselGeneratorEbuildingmodelconsistsoftwoparts.Thefirstpartiscontributedfromthebuildingwallsandisidenticaltothatofthehorizontalmodeldescribedabove.Thesecondpartisthestiffnessesofthefloorslabsintheverticaldirectionwhicharerepresentedbytheverticalspringsattachedtothelumpedmasspointsatthefloorelevations(seeFigure2).Inordertoderivetheverticalspringforafloor,aseparatefiniteelementmodelofthefloorisconstructedbyusingbeamandplateelementsandthefloorfrequenciesareanalyzed.ThespringconstantisthencomputedbasedonthefloorfrequencyandtheverticaleffectivefloormassderivedinSection2.2B.C.DieselGeneratorPedestalModelThestiffnessoftheDieselGeneratorpedestalmodelwascomputedbasedontheelasticbeamtheory.Thedieselgeneratorisconnectedtothetopofpedestalbyanequivalentbeam.Theequivalentbeampropertieswereevaluatedsuchthatthevibrationalfrequenciesofthedieselgeneratormodelitselfinthehorizontalandverticaldirectionsareequaltothegivenfrequenciesof29Hzand33Hz,respectively(Reference8).2.2ComputationofMassMatricesA.Horizontal=.'elGeneratorEBuildingModelThemassesandmassmomentsofinertiaofthehorizontalDieselGeneratorEbuildingmodelwereevaluatedatthefourlumpedmasspoints(1,2,3and4)locatedatthemasscentersonthefourfloorelevations.Describedbelowistheinformationwhichhasbeenconsideredinthecomputationoftheselumpedmasses:A.lThestructuralmassofthebuil'dingincludingfloorsandwallsA.2Themassesofma)orequipmentoneachfloor A.3Theeffectivemassesforthelineloadsconsideredtobeone-eighthofthefullliveloads(L)listedbelow(Reference2):OnRoofL30psftoaccountforsnowandiceOnelevatedfloorsL~200psf(excluding50psfasdescribedbelowinItemA.4)A.4Themassequivalenttotheuniformloadof50psfonconcretefloorstoaccountforpiping,electricaltraysandducts(Reference2)ThemassesoneachfloorasdescribedaboveinItemsA.2toA.4andthestructuralmassofthefloorinItemA.lwerelumpedtothemasscenteronthatfloor.Thestructuralmassofthewallsbetweenthetwofloorelevationswasdividedandlumpedtothemasscentersonthetwoad)scentfloor.Thefullliveloads(L)describedabovearenotexpectedtooccursimultaneouslywiththedesignearthquakes,andmostofthemwillbeabsentduringtheplantoperation.One-eighthoftheseloadsconsideredaseffectiveandincludedinthemodelingisintendedtosimulatethedynamiccharacteristicsof'hestructure(frequenciesandmodeshpaes)sothattheoveralldynamicresponses(accelerationsandresponsespectra)canberealisticallypredicted.Themassesandmassmomentsofinertia(atlumpedmasspoints1,2,3and4)oftheverticalDieselGeneratorEbuildingmodelarethesameasthoseofthehorizontalmodeldescribedabove,exceptthattheverticalmasscompoentswerereducedbytheamountsofeffectivefloormassesdescribedbelow.Theseeffectivefloormasseswereattachedtothetopofthesprings(atlumpedmasspoints5,6,7and8)mentionedaboveinSection2.1B.Theeffectivemassforeachfloorwasevaluatedbyequatingthekineticenergyofthefundamentalmodeofvibrationoftheentirefloorintheverticaldirectiontothekineticenergyoftheequivalentone-masssystemconsistingoftheeffectivemass.Thisstatementcanbeformulatedasfo'ws:inwhichmarethenodalmasses,vwxd,v~wxd,andwisthefundamentalfrequencyofthefloor.darethecomponentsofthefundamentaleigenvectorandd,isthemaximumvalueofd.Theaboveequationcanbesimplifiedto:C-5 fromwhichtheequivalentmassMwasevaluated,C.DieselGeneratorPedestalModelThedieselgeneratormasswaslumpedtothenodalpointlocatedatthemasscenterofthedieselgenerator.Appropriatestructuralmasseswerecomputedandlumpedtothetwonodalpoints(2and3)representingthepedestal.Themassassociatedwiththeupperportionofthepedestalwaslumpedtothetopofpedestal.Thiswillslightlylowerthefrequenciesofthedieselgeneratorpedestalsystem,andisthereforeconsideredtobeaconservativeapproachfromtheseismicanalysispointofview.3,ModalFrequenciesandParticipationFactorsoftheModelsFreevibrationanalyseshavebeenseparatelyperformedontheDieselGeneratorEbuildingmodelsanddieselgeneratorpedestalmodeltoobtainthenaturalfrequenciesandmodalparticipationfactors.TheMSC/NASTRANprogramwasusedtocarryoutthecomputation.=4.StructuralDampingValuesThepercentsofcriticaldampingconsideredforthereinforcedconcretestructure(Reference6)are:4%forOperatingBasisEarthquake(OBE)case7%forSafeShutdownEarthquake(SSE)case5.SeismicInput5.1GroundDesignResponseSpectraThemaximumhorizontalandverticalgroundaccelerations'onsideredareO.lgforSSEand0.05gforOBE.ThehorizontalandverticaldesignresponsespectralcurvesusedintheanalysisarebasedonthespectralcurvesdefinedintheUSNRC.RegulatoryGuide1.60(Reference3)scaleddowntomatchtheabovemaximumgroundaccelerations.5.2GroundMotionTimeHistoriesOnehorizontalandoneverticalsyntheticgroundmotiontimehistoriescompatiblewiththegrounddesignresponsespectraweregeneratedforthetimehistoryanalysisofthemodelsinordertodevelopfloorresponsespectra.Responsespectraatthedampingvaluesof1%,2%,5%,7%and10%weredevelopedusingthesetimehistoriesandcomparedwiththegrounddesignresponsespectra(Reference7).C-6 6.SeismicAnalysisbyModalResponseSpectrumMethodThelumpedmassmodelsoftheDieselGeneratorEbuildingandthedieselgeneratorpedestalhavebeenseparatelyanalyzedforthefollowingearthquakecasesbyemployingthemodalresponsespectrummethodtodeterminethestructuralresponses.~SSE-XearthquakeSSE-YearthquakeSSE-ZearthquakeOBE-XearthquakeOBE-YearthquakeOBE-ZearthquakewhereXandZarealongtheNŽSandE-Wdirectionsrespectively,andYisalongtheverticaldirection.TheanalyseshavebeenperformedbyusingthecomputerprogramMSC/NASTRAN(Gibbs&HillProgramNos.3030).ThegroundresponsespectralcurvesdescribedinSection5wereusedasinputloads.Theprogramcomputedstructuralresponses(accelerationsandrelativedisplacements)modebymodeandcombinethemodalresponsesbymeansoftheSRSSmethodaccordingtotheUSNRCRegulatoryGuide1.92(Reference4).Theanalysisresultsobtainedwereusedfortheseismicdesignofthestructures.7.DevelopmentofFloorResponseSpectra7.1TimeHistoryAnalysesofDynamicModelslnordertodevelopresponsespectra,timehistoryanalyseswerefirstperformedonthedynamicmodels.Theinputtotheanalysisarethemodalshapes,frequencies,participationfactors(seeSection3),andthegroundmotiontimehistoriesdescribedinSection5.Theresultingtimehistorieswereobtainedateachlumpedmasslocationofthemodels.Ada~tionaltimehistoriesweregeneratedatthecranerunwaygirderlocationbyusingaseparatelocalcranerunwaymodelthatincludestheflexibilitiesoftherunwaygirdersandsupportingcolumns,Theinputloadstothismodelarethetimehistoryresponsesoftheuppersupportingfloor.Theresultingtimehistoriesgeneratedattherunwaygirderlocationswereusedtodevelopresponsespectraforthecranedesign.Theaboveanalyseshavebeenperformedforthesameearthquakecasesasmentioned'inSection6.Thetimestepsizeof0.005secondswasusedinthenumericalintegration.C-7 7.2DevelopmentofFloorResponseSpectralCurvesTheaccelerationtimehistoryresponsesgeneratedfromthetimehistoryanalysisdescribedinItem7.1abovewereusedtodevelopfloorresponsespectra.Themaximumtimestepsizusedinthisanalysisis0.005seconds.ThefloorresponsespectraweregeneratedatsufficientdiscretefrequencypointsobtainedinaccordancewiththerequirementsoftheUSNRCRegulatoryGuide1.122(Reference5),andatthedampingvalues(percentsofcriticaldamping)listedbelow:forOBE:0.5X,1X,2X,3X,4X,and5XSSE:1X,2X,3X,4X,5X,and7XIThecomputerprogramRESPECT(Gibbs&HillProgramNo.3914)wasusedtocarryoutthenumericalcomputation.TheresponsespectradevelopedateachfloorelevationinaspecificdirectionforthethreeorthogonalearthquakeswerecombinedbytheSLSSmethod.AsmentionedinSection2.1A,thehorizontalDieselGeneratorEbuildingmodeldoesnotreflectthelocallateralflexibilitiesofthewallpanels.ThehorizontalresponsespectrumofawallinthelateraldirectionwasthereforeseparatelyanalyzedbyusingasingleDOFsystemandthetimehistoryattheuppersupportingfloorelevationasinput.Themaximumresponsewasthenobtainedbyenvelopingthehorizontalresponsespectradevelopedfromboththewallandthebuildingmodels.Theresultingresponsespectraobtainedabovewerethensmoothenedandbroadenedby15%oneachsideoftheresponsespectralpeakstobecomethefinalresponsespectralcurves.Thesefinalspectralcurveswereusedfortheanalysisanddesignofthepipingandequipmentinsidethebuilding.8.ComputerProgramsThecomputerprograms,brieflydescribedbelow,havebeenusedintheabo~-seismicar";-.Iyses.A.MSC/NASTRAN(Gibbs&HillProgramNo.3030),fromMacneal-SchwendlerCorporation,isageneralpurposefiniteelementcomputerprogramforthesolutionofstatic,dynamic,transient,stability,andheattransferproblemsinstructuralengineeringandotheralliedfields.CurrentversionnumberforIBMmachineis61.B.RESPECT(Gibbs&HillProgramNo.3914),byGibbs&Hill,Inc.,isaresponses'pectragenerationprogram.Itcanbeusedtogenerateresponsespectralvalues,plotspectralcurvesonlinearorsemi-logarithemicscales,smoothandbroadenthecurvesoneachsidesofspectralpeaks.C-8 TheabovementionedGibbs&Hillin-houseprogramshavebeenverifiedanddocumentedinaccordancewithGibbs&HillQAprocedure.Theverificationincludescheckingofbasicformulation,comparisonoftheanalysisresultsfromafewsamplerunswiththeresultsfromeitherhandcomputationortheanalysesbasedonotherverifiedcomputer.programs.~,9.References1.USNRCStandardReviewPlan,Section3.7.2-SeismicSystemAnalysis,Rev.1,July19812.PP&LSpecificationG-1001-DesignInputTechnicalSpecificationforNewEmergencyDieselGeneratorFacility,Rev.1,September22,19833.USNRCRegulatoryGuide1.60-DesignResponseSpectraforSeismicDesignofNuclearPowerPlants,Rev.1,December19734.USNRCRegulatoryGuide1.92-CombiningModalResponsesandSpatialComponentsinSeismicResponseAnalysis,Rev.1,February19765~6.USNRCRegulatoryGuide1.122-DevelopmentofFloorDesignResponseSpectraforSeismicDesignofFloor-SupportedEquipmentorComponents,Rev.1,February1978USNRCRegulatoryGuide1.61-DampingValuesforSeismicDesignofNuclearPowerPlants,October19737.USNRCStandardReviewPlan,Section3.71-SeismicInput,June19758.PP&LLetterG&H/EDG-132,"NaturalFrequencyoftheEDieselGenerator",datedFebruary28,1984C-9 Elev.741'-6"Elev.726'-0"Elev.708'-0"Elev.675'-6"Elev.656'-6"FIGURE1HORIZONTALDIESELGENERATOREBUILDINGMODEL VerticalSpring(typical)Elev.741'-6"Elev.726'-0"Elev.708'-0"Elev.675'-6"Elev.656'-6"FIGURE2VERTICALDIESELGENERATOREBUILDINGMODEL 0r Elev.680'-ll"Elev.676'-0"Elev.666'-3"Elev.656'-6"FIGURE3DIESELGENERATOREPEDESTALMODEL

'N SUSQUEHANNASTEAMEl,ECTRICSTATION,UNITS1AND2PENNSYLVANIAPOWER6LIGHTCOMPANYGIBBS6iHIILPROJECT3544THISDOCUMENTCOVERSNUClEARSAFETYRELATEDSTRUCTURESDESIGNCRITER1AFORCIVIL/STRUCTURALWORKFORNEWEMERGENCYDIESEIGENERATORFACILITY3544-SDC-001ISSUENO.0JANUARY1984GIBBSEcHILL,INC.ENGINEERS,DESIGNERS,CONSTRUCTORSNEWYORK,NEWYORK CONTENTSSectionPacae1.02.03.0GENERALDESCRIPTIONCIVILANDSITEWORKDESIGNCRITERIA2.1PlantDatumandOrientation2.2DesignDepthforFrostProtection2.3DesignElevationofGroundWater2.4Roadways2.5SiteDrainage2.6EarthworkSlopesDESIGNCRITERIAFORCATEGORYISTRUCTURES3.1DesignLoads'.2LoadingCombinations-ReinforcedConcreteStructures3.3LoadingCombinations-StructuralSteel3.4FactorofSafety3.5MethodsofAnalysisandDesign3.6Materials1012124.0APPLICABLECODES,STANDARDSANDSPECIFICATIONS135.0QUALITYCONTROLPROCEDURES13 Gzbbs6Hall,Inc.Document3544-SDC-001IssueNo.0January1984Page1GENERAIDESCRIPTIONThedesigncriteriacoverthestructuralassociatedwiththeDieselGenex'ator(EDG)ElectricStation.presentedhereinareintendedtodesignandcivildesignwoxkconstructionofthenewEmergencyFacilityoftheSusquehannaSteamSpecifically.thecriteriacoverthedesignofthefollowingmajorcomponentsofthenew.EDGfacility.a.EmergencyDieselGeneratorbuildingstructureb.Foundationandthemanholecoverfortheundergrounddieselfueloil'toragetank.cdUndergroundelectricalductbanks.d.Sitecivilworkconsistingofaccessandpatrolxoads,pavedareas,stormdrainagesystemandfinalgrading.e.AnyotherseismicCategoryIstructuralcomponents.Alloftheabovecomponentsexcept.item'd'resafetyelated.DescriptionofSafetyRelatedStructuresEmergencyDieselGenerator(EDG)Building:TheEDGbuildingisaSeismicCategory1,two-storystructurewithabasement,consistingprimarilyofreinforcedconcretewalls,floorslabs,androof.Theeddieselgenexatorpedestalisalsoofreinfoxceconcrete.Thebuildingtogethexwiththepedestalisfoundedonsoundrock.Agapbetweenthebuildingfloorandthepedestalatgradelevelisprovidedsothatnovibrationsfxomthedieselgeneratoraretransmittedtothebuilding.Aportionofouterwallshallbedesignedtoberemovableinordertofacilitatethedieselgeneratorinstallationand/oremergencyxemovalofDGformaintenance.

Gibbs&Hill,Inc.Document3544-SDC-001IssueNo.0January1984Page21.1~2UndergroundDieselFuelOilStorageTankSupportStructure:Thefoundationslabandthecoverforthetankmanholeareofreinforcedconcreteconstruction.2.02.1CIVILANDSITEWORKDESIGNCRITERIAPlantDatumandOrientationa.PlantdatumcorrespondstoU.S.GeologicalSurveyMeanSeaLevel(MSL)datum.Approximateplantgradeis675aboveMSL.b.PlantNorthcorrespondstotruenorth.c.HorizontalcontrolshallconformtothePennsylvaniaStateGridSystemcurrentlyinuseatthesite.22DesignDepthforFrostProtectionBottomsofallfoundationsshallbelocatedataminimumdepthof4feetbelowthegrade.Allwaterpipingshallhavea-minimumcoverof4ft.6in.2.3DesignElevationofGroundWaterAtplantstructures-665ft.aboveMSL.2.4Roadwaysa.Minimumlanewidthb.'aximumgrade1090/c~Roadalignmentandgeometryshallbebasedontheturningmovementsofexpectedoperationsandmaintenancevehicles,butnotsmallerthanstandardAASHTO50feetlongsemitrailer.

Gibbs6Hill,Inc.Document3544-SDC-001IssueNo.0January1984Page32.52.5.1SiteDrainageDesignFlowRunoffflowshallbecalculatedbytherationalformula:Q=CiAwheretheprecipitationintensity,ishallbedeterminedasfollows:a~Fordrainageditchesandculverts,precipitationintensityshallbederivedfromrainfallintensity-durationcurvesforScranton,Pennsylvania,1903-1951,TechnicalPaperNo.25,publishedbytheU.S.DepartmentofCommerce.Returnperiodof25yearsshallbeassumedforallculverts.b.Foryardstormsewers,precipitationintensityshallbeassumedas6in.perhouronbuildingroofs.2.5.2DesignVelocityandSize2.5.3a.Minimumdiameterofmainyardstormsewers-8in.b.Minimumdiameteroflaterals-4in.c.Minimumdesignvelocity2fps.ExternalLoads2.6CulvertsandstormsewersbeneathroadsshallbedesignedforH20-S16liveloading.EarthworkSlopesa.b.~Maximumearthembankment-1-1/2Horiz.to1Vert.slopesRecommendedrockslopes-1Horiz.to4Vert.

Gibbs6Hill,Inc.Document3544-SDC-001IssueNo.0January1984Page43.03.1DESIGNCRITERIAFORCATEGORYISTRUCTURESDesignI.oadsThefollowingloadsshallbeconsideredinthedesignofseismicCategoryIstructures:3.1.1D=Deadloadofstructureandanypermanentequipment.Hydrostaticloadsshall,beconsideredasdeadloads.3.1.2I=ZiveToadsliveloadsareconventionalfloororroofliveloads,includingliveloadsresultingfrommovingofequipmentcomponents,snow,etc.Soilpressureloadsduetofluctuationsofgroundwaterelevation.andduetosurcharge,shallbeconsideredasliveloads.Anallowanceof50poundspersquarefoot(lbs./ft.~)isincludedinthefloorliveloadsspecifiedbelow,'toaccountforthesupportofhungloadssuchaspiping,electricalconduitsandtraysandheating,ventilation'andairconditioning(HVAC)ducts.3.1.2.1Thefollowingvaluesofliveloadshallbeusedunlessmorerealisticuniformorconcentrated'oadsaredeterminedafterequipmentinformationhasbeenevaluated:RoofGroundandelevatedfloorsExhaustpipeenclosueroomGratingandcheckeredplate30psf250psf150psffloorsandplatformsStairwaysandwalkway100psf100psfStairhandrailsandguardrails25pounds/linearfootappliedattopofrailingor200poundsconcentratedloadappliedinanydirec-Gibbs.EcHill,Inc.Document3544-SDC-001IssueNo.0January1984Page5tionattopofrailingSurchargeoutsideandadjacenttostructures250psf3.1.2.2SupplementaryConcentratedLiveLoads:a~Inadditiontothespecifieduniformliveloads,thebeamsandgirdersshallbedesignedfortheconcentratedloadof5kips.Thisloadshallbeappliedatpointsofmaximummomentandshear.However,itisnotcumulativeandisnotcarriedtocolumnsandshallnotbeconsideredinaccesscontrolareas.b.Theslabsshallbedesignedforaconcentratedloadof5kipsdistributedoveranareaof3squarefeetatthepointsofmaximum.momentandshear,oruniformliveloadsspecifiedinSection3.1.2.1,whicheverisgreater.Theconcentratedloadisnotcumulativeandisnotcarriedtocolumnsandshal'1notbeconsideredincontrolaccessareas.3.1.2.3Nhendesigningfloormembersinareaswherefixed.equipmentwillbelocatedandwheretheoperatingweight-.oftheequipmentwillbelargerthanthefloordesign.liveload,thefloormembersshallbedesignedtakingintoconsiderationthe.floorareacoveredbytheequipmenttobeloadedbytheequipmentweight,andthesurroundingfloorareatobeloadedbythedesignliveload.3.1.2.4ImpactLoadsandDynamicLoadsCraneliftedloadshallbeincreased25percenttoaccountforimpact.Thecranegirdershallbedesignedtocarrythedeadloadandliftedloadaswellasalateralloadof20percentofthecombinedweightoftheliftedloadandtheweightofthecranetrolleyappliedone-halfoneachsideoftherunwayandatthetopofrail.'hecranegirdershallalsobedesignedforalongitudinalloadof10percentofthemaximumwheelloadappliedatthetopoftherail.Supportsforhoistsandmonorailsshallbedesignedassumingthenominalverticalloadcapacityincreasedby15percent Gibbs6Hill,Inc.Document3544-SDC-001IssueNo.0January1984Page6toallowforimpact.Theabovenotedimpactloadsshallnotbeassumedtoactconcurrentlywithseismicloads.3.1.3WindandTornadoLoadingThestructuralcomponentsofnewEDGfacilityshallbedesignedforwindandtornadoloadingwithappropriateloadcombinationsspecifiedinSections3.2and3.3.3.1.3.1W=WindLoadThedesignwindvelocityfortheEDGBuildingis80milesperhourfora100yearrecurrenceinterval.ThecorrespondingwindpressurewithconsiderationsforheightvariationsandshapecoefficientsshallbecalculatedinaccordancewithAmericanSocietyofCivilEngineers(ASCE)PaperNo.3269,"WindForcesonStructures-FinalReportoftheTaskCommitteonWindForces,CommitteeonLoadsandStresses,StructuralDivision".Theverticalwindvelocitydistributionandcorrespondingeffectivewindpressurestobeusedonbuildingwallsareasshownonthefollowingtable:WindLoadonStructuresHeigh-'".BasicDynamic:WINDLOADSWindWindwardLeewardTotalDes.SuctionZoneVelocitPressurePressureSuctionPressureonRoofFeetq(+sf)0.8q0.Sq1.3q0.6q0-5080.201610261250-1509530241539183.1.3.2W=Tornadoload:tThestructuralcomponentsofEDGfacilityshallbedesignedtowithstandtheeffectoftheDesignBasisTornadoasoutlinedinReg.Guide1.76.Tornadoloadingshallinclude(a)DynamicWind,(b)Differential Gibbs6Hill,Inc.Document3544-SDC-001IssueNo.0January1984Page7Pressureand(c)TornadoGeneratedMissiles.Totaltornadoloadingshallbedeterminedusingthefollowingdesignparameters:a~W=DynamicwindloadingwWindspeedscorrespondingtotornadoconditionsshallbeasfollows:MaximumwindspeedRotationalwindspeed-360mph-290mphTranslationalwind.speed-70mph(maximum)5mph(minimum)W=DifferentialpressureloadingpThedifferentialpressureshallbeassumedtovaryfromzeroto3psiattherateof2psipersecond,remainat3psifor2secondsandthenreturntozeropsiat2psi/second.c~W=Tornadogeneratedmissileloadm"d.Fordesignparametersfortornadogeneratedmissilesincludingmissilestobeconsidered,seeSection3.1.4.1.Totaltornadoload:~Totaltornadoloadshallbecalculatedusingfollowingcombinations:I.W=WtwIV.W=W+0.5WwpII.W=WtpV.W=W+WtwmIII.W=WtmVI.W=W+0.5W+Wtwp' GibbsEcHill,Inc.Document3544-SDC-001IssueNo.0January1984Page8MissileProtectionI.oadsTheindividualpostulatedmissileshallbeevaluatedandadequatemissileprotectionshallbeprovidedtopreventperforationandspallingoftheinsidefaceofthemissilebarrierwalls.ThemethodologyusedindesigningmissilebarriersshallbeinagreementwiththeproceduresoutlinedintheStandardReviewPlanSection3.5.3,"BarrierDesignProcedures",Rev.1.Followingtwocategoriesofmissileloadsshallbeconsidered:W=TornadoGeneratedMissileloadmFollowingtornadogeneratedmissileparametersshallbeusedincalculatingmissileloads:MissileWeight~lbImpactVelocity~fsA)Woodplank,4in.x12in.x12ft.,travelingend-'on108B)Steelpipe,3in.dia.,Schedule40,10long,travelingend-on72147D)Steelpipe,6in.dia.,Schedule40,15ft.longSteelpipe,12in.dia.,Schedule40,15ft.long285750170155E)Steelrod1-inchdia.x3ft.long317F)Automobileflyingthroughtheairatnotmorethan25ft.abovethegroundandhavingcontactareaof20sq.ft.4000195G)Utilitypole13.5in.dia, Gibbs6Hill,Inc..Document3544-SDC-001IssueNo.0January1984Page9Missile35ft.longWeight~lh1490ImpactVelocity~fsNote:Theverticalvelocitieswillbeconsideredequalto80percentofthehorizontalvelocitiesmentionedabove.3.1.4.2'=SiteProximityMissileLoadsmsFollowingparametersshallbeusedincalculatingsiteproximitymissileloads:SITEPROXIMITYMISSILEPARAMETERSMissile~WelhtImactVelocitA)Riflebulletfiredbyvandals2oz~2667fpsB)Fragmentfromatruckexplosion6oz.fragment15fps3.3..5SeismicLoadsThefollowingtwomagnitudesofearthquakeshallbeconsidered.3.1.5.13.1.5.2E=Loadsgeneratedbyoperatingbasisearthquake(OBE)E'Loadsgeneratedbysafeshutdownearthquake(SSE)'.2IoadingCombinations-ReinforcedConcreteStructures:Thefollowingcombinationsofserviceandfactoredloadingsshall-beconsideredinthedesignofreinforcedconcreteseismicCategoryIstructures.Uistherequriedultimateloadcapacityofthestructureasdefinedin,AmericanConcreteInstitute(ACI)Standard349-76.Indeterminingthemostcriticalloadingconditiontobeusedfordesign,theabsenceofaloadorloadsshallbeconsideredasappropriate.

Gibbs6Hill,Inc.Document3544-SDC-001IssueNo.0January1984Page103F1ServiceLoadCombinations:a.U=1.4D+1;7Lb.U=1.4D+1.7L+1.9Ec.U=1.4D+1.7L+1.7Wd.U=1.2D+1.9Ee.U=1.2D+1.7WWheresoilorhydrostaticpressuresarepresentandhavebeenincludedinLandD,inadditiontoalltheprecedingcombinations,therequirementsofSections9.2.4and9.2.5ofACI.318.77shallbesatisfied.3.2.2-FactoredLoadCombinationsa.U=1.0D+1.0L+1.0E'.U=1.0D+1.0L+1.0Wc.U=1.0D+1.0L+1.0Wms3.2.3Regardingprecedir"-loadswhicharevariable,thefullrangeofvariationshallbeconsideredinordertodeterminethemostcriticalcombinationofloading.3.3LoadingCombinations-StructuralSteelThefollowingcombinations'floadingsshallbeconst.deredinthedesignofstructuralsteelseismicCategoryIstructures.Sistherecgxiredsection,strengthbasedontheelasticdesignmethodsandtheallowablestressesdefinedinPartIofAmericanInstituteofSteelConstruction(AISC)SpecificationfortheDesign,FabricationandErectionofStructuralSteelforBuildings,November,1978,exceptthatthe33-percentincreaseinallowablestressesforseismicorwindloadingswillno"bepermitted.Indeterminingthemostcrticalloadingconditiontobeusedindesign, GibbsSHill,Inc.Document3544-SDC-001IssueNo.0January1984Page11theabsenceofaloadorloadsshallbeconsideredasappropriate.3.3.1ServiceLoadCombinationsa.S=D+L3.3.2b.S=D+I+Ec.S+D+L+WFactoredLoadCombinationsa.1.6S=D+L+E'.1.6S=D+I+Wc.1.6S=D+L+Wms3.4FactorofSafetyForallstructures,minimumfactorofsafetyagainstoverturning,slidingandflotationshallbemaintainedasfollows:LoadMinimumFactorofSafetCombinationOverturningSlidingFlotationa.D+H+W1.51.5b.D+H+WorD+H+Wtmsc.D+H+E1.51.5d.D+H+E'.D+FH=IateralearthpressureIF=BuoyantForceduetogroundwaterpressure Gibbs6Hill,Inc.Document3544-SDC-001IssueNo.0January1984Page123.5MethodsofAnalysisandDesignStaticanalysisanddesignofstructuresshallbeconsistentwithgenerallyacceptedengineeringpracticeandshallbebymethodssuitableforhandanalysis.Theseismicanalysisofnew'EDGBuildingshallbeperformedbyusingcomputerprograms.Fordescriptionofseismicanalysisprocedure,seedocumentNo.3544-SDC-002.3.5.2AllsteelstructuresshalLbedesignedbyworkingstressmethodsinaccordancewithPartIofAmericanInstituteofSteelConstruction'specificationforDesign,FabricationandErectionofStructuralSteelforBuildings.3.5.33.6ReinforcedConcreteStructuresshallbedesignedbyUltimateStrengthDesignmethodinaccordancewithAmericanConcreteInstitute's"CodeRequirementsforNuclearSafetyRelatedConcreteStructures"(ACI349-~.$0Materials3.6.1ConcretedMinimumcompressivestrengthofconcreteat28daysforvariousstructuresanditsapplicationsshallbeasfollows:ItemStructuralConcreteMatfoundation,walls,slabs,etc.DesignStrengthf'c(psi)'4000MassConcretefill,mudmatandductbanks20003.6.23.6.3ReinforcingSteelshallbedeformedbilletsteelofGrade60conformingtoASTMA615.StructuralSteelshallconformtoASTM-A36orotherASTMdesginationslistedinSection1.4.1.1ofAISCSpecificationsfortheDesign,FabricationandErectionofStructuralSteelforBuildings,whereconsiderednecessary.

Gibbs6Hill,Inc.Document3544-SDC-001IssueNo.0January1984Page133.6.43.6.5'AnchorboltsshallbeunfinishedboltsconformingtorequirementsofASTMA307orthreadedrodsconformingtoASTMA36.BoltmaterialconformfingtootherASTMstandardswillbeusedasrequired.WeldingelectrodesshallbeE70XXandallweldingshallbeinaccordancewithAWSDl.1.4.04.1APPLICABLECODES,STANDARDSANDSPECIFICATIONSCodeRequirements.fog>NuclearSafetyRelatedConcreteStructures(ACI349-Wfshallbeusedfordesign.ofreinforcedconcretestructures.4.24.3BuildingCodeRequirementsforReinforcedConcreteACI318-77shallbeusedassupplementtoACI349-~foritemsnotcoveredinAC1349-~gQAISCSpecificationfortheDesign,FabricationandErectionofStructuralSteelforBuildings,EighthEdition,shallbeusedforthedesignofsteelstructures.4.44.54.6AmericanAssociationofStateHighwayandTransportationOfficials(AASHTO)Form408specifications-DepartmentofTransportation-CommonwealthofPennsylvania.AmericanWeldingSociety(AWS)-"StructuralWeldingCode"AWSD1.1-81.4.75.0US-NRCRegulatoryGuide1.142,Revision1Safety-RelatedConcreteStructuresforNuclearPowerPlants(otherthanReactorVesselsandContainments).QUALITYCONTROLPROCEDURESThedesignshallcomplywiththeGibbs6HillQualityAssuranceManualandtheexceptionstoitstatedintheProjectGuide.

NUREG-0800rmerlyNUREG-76/087>seaetc(((+0on"C0r+4>>O~<<<<*<<>>8'Il'ANDARDRIEVIENPLAN3.3.1MINOLOADINGS'EVIEWRESPONSIBILITIESPrimary-Structtrral;EngineeringBranch(SEB)Secondary-None;I.AREASOFREVIEW,Thefollowingareas.relatingtothedesignofstructuresthathavetowithstandtheeffectsofthe,designwind"specifiedfortheplantarereviewedtoassureconform-ancewiththerequirementsofGeneralOesignCriterion2(Ref.1).Thedesignwindvelocityanditsrecurrenceinterval,thevelocityvariationwMh-heigh/,andtheapplicablegustfactorsarereviewedfromthestapdpo&tofuseindefiningtheinputparametersforthestructuraldesigncriteriaappropriatetoaccountforwindloadings.ThebasesfortheselectionandthevaluesoftheseparametersarewithinthereviewresponsibilityoftheMeteorologySectionoftheAccidentEvaluationBranch(AEB)asstatedinSRPSections2.3.1and2.3.2.Theproceduresthatareutiliredtotransformthedesignwindvelocityintoaneffectivepressureappliedtostructuresarereviewedtakingintoconsidera-tionthegeometricalconfigurationandphysicalcharacteristicsofthestructuresan/thedistributionofwindpressureonthestructures.II.ACCEPTANCECRITERIASEBacceptsthedesignofstructuresthatmustwithstandtheeffectsofthedesignwindloadiftherelevantrequiremeiitsofGeneralDesignCriterion2concerningnaturalphenomenaarecompliedwith.ThecriterianecessarytomeettherelevantrequirementsofGgC2areasfollows:"RRilo:.ypid"fi1fi"iSRPSi2.3.Rev.2-July1981USNRCSTANDARDREV)EWPLANStandardreviewplansare,grpPsredfortheguidanceoftheOfficeofNucjearReactorRegulationstaffresponsibleforthereviewofapplicationstoconstruct-andoperatenuclearpowerplants.ThesedocumentsaremadeavailabletothepublicssportotthoCommission'spolicyto',irrforrnttenuclearindustrysndthegeneralpublicofregulatoryproceduresandpolicies.Standardreviewplanssrenotsubstitutes.for.,regulatoryguidesortheCommission'sregulationssndcompliancewiththemlsnotrequired.Thestandardreviewplansect(OPiarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotsllsectionsoftheStandardFo'rmsthavescorrespondingreviewplan.Publishedstandardreviewplanswillberevisedperiodically,ssappropriate.toaccommodatecommentsandtoreflectnowInforma-tionsndexperience.*commentsandsuggestions'forImprovementwillbeconsideredandshouldbesenttotheU.s.NuclearRegulatorycommission,officeofNuclearReactor,,Regulation.washington,o.c.2065L Windvelocitiesof80MPH,(0;50Ft.)and95MPH(50-150,Ft),wereusedinthedesignoftheDieselGenerator(OG)"E"building.These-are-thesamewindvelocities,usedin.,the'esignofallexistingCategorpekustYuCtures.RefertoSusg.SES'sFSARSection'.3.1.1.Agustfactorofq~j.:.@VS'sedforASCEpaperNo.3269entitled"WindForcesonStructures"..;6~'<o't')sbfggi.ThesewindvelocitiesweretransformedintoequivalentpressuresusingtheexpressionprovidedinthisSRPsection.~on&~qe-'eNff986d'Ff~O'PJ'(cbog1.f,~2Q>1~f(c.bof-'&.ff.9'tUf",f'~ffAE&~,~/r;:rasp6~,f'tE~~,/IJQfJeO1f'4.<ThevariouspressureloadsappliedarepresentedinRef.3>>Pape6.Thesearethesamepressureloadsusedinthedesignofallexistfhg~CategoryIStruEcturps.f'flbv,+~hnb~~.inp;tqfebbeni'3tIIL,f.<>,gntoneofUac',&"~'AIc,NApn9[i1U~"'",-granbn!'gfHOOAE 2..w(~qO'-OiqPa3ZgI('hewin$~sed;~gthedesignshallbethemosts'everewind'that'h'asbeenhistoriq@lily2,reportedforthesiteandsurrounding'areawithsufficientmarginforthe.,limitedaccuracy,quantity,andperiodoftimeinwhichhistoricaldatahasbeenaccumulated..<zagqq0rTheacŽceptancecriteriaforthedesignwindvelocityanditsrecurrenceinterval,thevelocityvariationwithheight,theapplicablegustfactors,andthebasesfordeterminingthesesite-relatedparameters,areestab-lishedbytheAccidentEvaluationBranch(AEB)andarecontainedinSRPSections2.3.1and2.3.2.Theapprovedvaluesoftheseparametersshouldserveasbasicinputtothereviewandevaluationofthestructuraldesignprocedures.3.Theproceduresutilizedtotransformthewindvelocityintoaneffectivepressuretobeappliedtostructuresandpartsandportionsofstructures,asdelineatedinANSIA58.1,"BuildingCodeRequirementsforMinimumDesignLoadsinBuildingsandOtherStructures"(Ref.2),areacceptable.Inparticular,theproceduresutilizedareacceptableiffoundinaccord-ancewiththefollowing;For=adesignwindvelocityofV30mphspecifiedataheightof30'0feetabovetheground,thevelocitypressure,q,isgivenby:q30000256V0psf2~6q,CThezyffpetivepressureforstructures,qF,andforportionsthereof,q,atvariousheightsabovethegroundshouldbeinaccordancewithTable5andTable6ofANSIA58.1,respectively.Sincemostnuclearpowerplantsarelocatedinrelativelyopencountry,ExposureC,asdefinedinANSIA58.1,shouldbeselectedforbothtables.Dependinguponthestructuregeometryandphysicalconfiguration,pressurecoefficientsmaybeselectedinaccordancewithSection6.4ofANSIA58.1.Geometricalshapesthatarenotcoveredinthisdocumentarereviewedonacase-by-casebasis.ASCEPaperNo.3269,"WindForcesonStructures"(Ref.3),maybeusedtoobtaintheeffectivewindpressuresforcaseswhichANSIA58.1doesnotcover.III.REVIEWPROCEDURESThereviewerselectsandemphasizesmaterialfromthereviewproceduresdescribedbelowasmaybeappropriateforaparticularcase.1.Thesite-relatedparametersdescribedinsubsection'.1theAccidentEvaluationBranch(AEB)underSRPSectionsThestruc'turalreviewerexaminestheapprovedvaluesoftoassurethattheyareconsistentwiththosecontainedSections2.3.1and2'.2.arereviewedby2.3.1and2.3.2.theseparametersinSRP3.3.1-2Rev.2-July1981 55ec31lq014~'oQns5>von5rnio\nie'5i..sps5sotes)~isicenobo;j.;gaolbssbna58nlliwenelqwelA NUBEG-0800(FormerlyNUREG-75/087),iSSEC>,iSTANDARDREVIEWPLAN~oOFFlCE'OFNUCLEARREACTORREGULATION~4sh**4'3.3.2TORNADOLOADINGSREVIEWRESPONSIBILTIESPrimary-StructuralEngineeringBranch(SEB)Secondary-NoneI.AREASOFREVIEWThefollowingareasrelatingtothedesignofstructuresthathavetowithstandtheeffectsofthedesignbasistornadospecifiedfortheplantarereviewedtoassureconformancewiththerequirementsofGeneralDesignCriterion2(Ref.1).1.Thedesignparametersapplicabletothetornado,includingthetornadowindtrarislationalandtangentialvelocities,thetornado-generatedpressuredif=fer'entialanditsassociatedtimeinterval,andthespectrumoftornado-generatedmissilesincludingtheircharacteristics,arereviewed'fromthe'tandpointofuseindefiningtheinputparametersforthestructuraldesigncriteria.appropriatetoaccountfortornadoloadings.Thebasesfortheselectionandthevaluesoftheseparametersarewithinthereviewresponsi-bilityoftheAccidentEvaluationBranch(AEB)asstatedinSRPSections2.3.1,(2.3.2,and3.5.1.4.2.Theproceduresthatareutilizedtotransformthetornadoparametersintoeffectiveloadsonstructuresarereviewed,includingthefollowing:a.Thetransformationofthetornadowindintoaneffectivepressureappliedtostructure's,takingintoconsiderationthegeometricalconfigurationandphysicalcharacteristicsofthestructuresandthedistributionofwindpressureonthestructures.b.Ifventingofastructureisused,theproceduresfortransformingthetornado-generateddifferentialpressureintoaneffectivereducedpres-surearereviewedbytheAuxiliarySystemsBranch(ASB)uponSEBrequest.USNRCSTANDARDREYIEWPLANRev.2-July1981Standardreviewplansareprep'aredfortheguidanceoftheOfficeofNuclearReactorRegulationstaffresponsibleforthereviewofapplicationstoconstructandoperatenuclearpowerplants.ThesedocumentsaremadeavailabletothepublicaspartoftheCommission'spolicytoInformthenuclearIndustryandthegeneralpublicofregulatoryproceduresandpolicies.StandardreviewplansarenotsubstitutesforregulatoryguidesortheCommission'sregulationsandcompliancewiththemisnotrequired.ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathaveacorrespondingreviewplan.Publishedstandardreviewplanewillberevisedperiodically,asappropriate,toaccommodatecommentsandtoreflectnewInforms.tionandexperience.CommentsandsuggestiqpsforimprovementwillbeconsideredandshouldbesenttotheU.S.NuclearRegulatoryCommission,OfficeofNuclearReactorRegulation,Washington,O.C.20555.

er~f'.,i(P'jDP...fft9ri"69'r"IIm2)obsn't<ThetornadodesignforDG"E"buildingisperReg,,',5u$de1.76forRegionI."f)'-I+3+MaximumWindSpeed360MPH"RotationalSpeed290MPH*q'pgMax.TranslationalSpeed70MPH-'"bMin.TranslationalSpeed5MPH.,~;~nb,PRadiusofMaximumRotationalSpeed150Ft.;,='"~~iPressureDrop3.0PSI,';(,jjg;RateofPressureDrop2.0PSI/Sjc;,',,v'6'ns(SeeRef.I,Page3.3-2-3.3-4andRef.3,Pages,'and7.)Jnssfqe".~"(C2C9~.~grr*r~~y/AS'i3r'!9~irn(Nayg~<rl'>>'"'errur.':.3.i)Thetornadowindvelocitywastransformedintoap,;yqgivalentpressureusingtheexpressionprovidedinthisSRPsection;.t,'.z~asmii)Thetornadowindvelocitywastakentobeconstantwithheight.iii)Appliedtornadowindpressuresarecalculatedusipg~-the;maximumtornadowindvelocity.srlT('",qo0trt&Q'ro3Jn&,;v~o c.Thetransformationoftornado""generatedmissileloadings,whichareimpactivedynam'icloads,intoeffectiveloads.d.Thecombinationoftheaboveindividualloadingsinamannerthatwillproducethemostadversetotaltornadoeffectonstructures.3.Theinformationprovidedtodemonstratethatfailureofanystructureorcomponentnotdesignedfortornadoloadswillnotaffectthecapabilityofotherstructuresorcomponentstoperformnecessarysafetyfunctions.II.ACCEPTANCECRITERIASEBacceptsthedesignofstructuresthatmustwithstandtheeffectsofthedesigntornadowindloadandtheassociated'missilesiftherelevantrequire-'mentsofGeneralDesignCriterion2concerningnaturalphenomenaarecompliedwith.ThecriterianecessarytomeettherelevantrequirementsofGDC2areasfollows:2.3.Thetornadowindandassociatedmissilesgeneratedbythetornadicwindsusedin.tgedesignshallbethemostseverewindthathasbeenhistoricallyreports"t'oi'hesiteandsurroundingareawithsufficientmarginforthelimitedaccuracy;quantity,andperiodoftimeinwhichhistoricaldatahasbeenaccumulated.Theacceptancecriteriaforthetornadowindvelocity,thedifferentialpressureanditsassociatedtimeinterval,thespectrumoftornado"generatedmissilesandtheircharacteristics,andthebasesfordeter-miningthese'arameters,areestablishedbytheAccideritEvaluationBranch(AEB)asdescribedinSRPSections2.3.1,2.3.2,and3.5.1.4.Theapprovedva'tuesoftheseparamentersshouldserveasbasicinputtothereview.andevaluationofthestructuraldesignprocedures.:inF8Theacceptance'riteriafortheproceduresusedtotransformthetornadoparametersint'oeffectiveloadingsonstructuresareasfollows:a~Fortransformingthetornadowindvelocityintoaneffectivepres-sureappliedtostructures,thecriteriadelineatedineithertheAmericanSocietyofCivilEngineers(ASCE)PaperNo.3269,"MindForcesonStructures"(Ref.2),orinANSIA58.1,"BuildingCodeRequirementsforMinimumPesignLoadsinBuildingsandOtherSti%5tur'4's"(Ref.3),are,ingeneral,acceptable.Inparticular,thefollowingshallapply:,(i)Themaximumvelocitypressure,p,shouldbebaseduponthemaximumtornadovelocity,V,usingthefollowinaformula:p=0.00256Vpsf,inwhichVisinmph.,(ii=)"-7tH'elocitypressureshouldbeassumedconstantwithheight.(iii)Themaximumvelocitypressure,p,appliesattheradiusofthetornadofunnelatwhichthemaximumvelocityoccurs.Thetan-gentialvelocityvarieswiththeradialdistancefromthecenterofthetornadocore.Thevariationmaybeconsideredinaccord-ancewiththatdescribedinthepaper,"TornadoResistantOesignofNuclearPowerPlants"(Ref.4).3.3.22Rev2-4uly1981 (vShapeandpressurecoefficientsaretakenfromASCEPaperNo.3269.x',.lwAgustfactorofunityisused.VentingoftheDG"E"buildingisnotusedtoreducesthetornado-generateddifferentialpressure.Thefull3PSI'differentialpressureisappliedasastaticload."E..)F>nngil6sc'~'~f-Sd>EquivalentstaticloadsweredeterminedusingRe'f."7-'dfSRP3.5.3.AllowableductilityratiosweretakenfromAC1-349'b%hemodifiedNDRCformulawasusedtocalculatethedepthofmiss'ilepenetration.ThethicknessesoftheDG"E"building'swallsand",'r'deaf.exceedthosevalueslistedinTable1ofSRP3.5.3.>'fvf5<e(3n9nThethreeindividualtornado-generatedloads(w'ind:,~ViVferentialpressureandmissile)arecombinedperthemethod"presentedinthisSRPsection.(SeeRef.3,Page7.){i)g(ff(jr(I'vi",(v;f,>~.(rv'!,"gg&3io9fig..g'~&8&"...dnor08'2&m'Io<ions0".,TherearenostructuresadjacenttotheDG"E"bu'i'M'i'hus,nostructuresarepostulatedtocollapseorfailonCfire'DG"E"building.'.$$20Q9'hetornado-generatedmissilesusedinthedesignA%9feOG"E"buildingarethemoreseveremissilesofthose1AChcPR"ntheFSARTable3.5-4andtheSpectrumIImissilesforRegion>4P"(SeeRef.1,Table3.5-4a.)Theverticalvelocitieswereconsideredtobeequalto80percentofthehorizontalvelocities.

b.~do(iv)Forcalculatingvelocitypressuresonexternalsurfacesofstruc-=.9~Yures,onexternalportionsthereof,andoninternalsurfaces,wherethereareopeningsinthestructure,appropriateshapeco'efficientsshallbeusedinaccordancewithASCEPaperHo.3269(Ref.2).Gustfactorsmaybetakenasunity.Ifventingofastructureisadoptedasadesignmeasuretopermittiansformingthetornado-generateddifferentialpressureintoaneffectivereducedpressure,theacceptancecriteriaareestablishedonacase-by-casebasis,uponrequest,bytheAuxiliarySystemsBranch(ASB).Theacceptancecriteriafor.transformingthetornado-generatedmis-sileimpactintoaneffectiveorequivalentstaticloadonstructuresagedelineatedinsubsectionIIofSRPSection3.5.3.PPflfgyring,establishedtheeffectiveloadsforeachoftheabovethreeindividualtornado-generatedeffects,thecombinationthereofshouldthenbedeterminedinaconservativemannerforeachparticular-structure,asapplicable.Anacceptablemethodofcombiningthesee.fsgcts,isasfollows:'Wt=W(ii)Wt=Wtp(iii)Wt'W()W=W+.5Wtw'(v)Wt=W+W(vi)Wt=W+.5W+Ww'mwhere:Wt.....totaltornadoload,Ww.....tornadowind'oad,W.....tornadodif'PerentialpressureloadandP1W.....tornadomissileload.Foreachparticularstructureorportionthereof,themostadverseoftheabovecombinationsshouldbeused,asappropriate.ThesecombinedeffectsconstitutethetotaltornadoloadwhichshouldthenbecombinedwithotherloadsasspecifiedinSRPSections3.8.1,3.8.4,and3.8.5.Theinformationprovidedtodemonstratethatfailureofanystructureorcomponentnotdesignedfortornadoloadswillnotaffectthecapabilityofothe@,nsQucturesorcomponentstoperformnecessarysafetyfunctions,isacceg++iffoundinaccordancewitheitherofthefollowing:a.Thepostulatedcollapseorstructuralfailureofstructuresandcom-poqept~gotdesignedfortornadoloads,includingmissiles,canbesfowggot'.toresultinanystructuralorotherdamagetosafety-re1atyd:structuresorcomponents.b~",~.'~3~23Rev2-July1981 f929d."e~O'Yflab'f;C,bgr,'-"l&'Fp)9c.'RC,:)369li'.~ri"~>V9'lqPf=-9bC~)PIIVq":"i",(29gJb9DC'9~(Jl.9~99flri".:9V9lc.gaggqafi'9ZVBlBBZf~~giflO>,f"f9tt,HQQ959~9.r.9Vf"39590"~qrv9r'lQfg6'28~f.iSly>>"Ofl;l@ad2k~,i>9iIil'.~iN(.,iT'ff9~RO2df'S9fqlrO0(

bSafety-relatedstructuresaredesignedtoresisttheeffectsofthepostulatedstructuralfailure,collapse,orgeneratl.onofmissilesfromstructuresandcomponentsnotdesignedfortornadoloads.III.REVIEWPROCEDURESThereviewerselectsandemphasizesmaterialfromthereviewproceduresdescribedbelow,asmaybeappropriateforaparticularcase.1.Thesite-relatedparametersdescribedinsubsectionI.l.arereviewedby2.3.2an5.theAccidentEvaluationBranch(AEB)inaccordancewithSRPSt'31d3..1.4.Thestructuralreviewerexaminestheapprovedvaluesofthesep'arameterstoassurethattheyareconsistentwiththosecontainedintheSRPsectionsstatedabove.2.After.theacceptabilityofthesite"relatedparametersisestablished,theSEBreviewerproceedswithhisreviewofthestructuralaspectsoftornadodesigninthefollowingmannera.The.proceduresusedbytheapplicanttotransformtornadowindveloc"itiesintoeffectivepressuresarereviewedandcomparedwiththoseproceduresdelineatedineitherASCEPaperNo.3269orinANSIA58.1,whicheverisselected,and,inparticular,withtheacceptancecriteriadelineatedinsubsectionII.3.a.b.C.Whereventingisused,proceduresfortransformingthetornado-generat'eddifferentialpressureintoaneffectivereducedpressurearereviewed,uponrequest,bytheAuxiliarySystemsBranch(ASB)uponSEBrequest.Thetreatmentoftornado-generatedmissilesiscoveredinSRPSection3.5.1.4andthereviewproceduresfordesignofmissilebarriersaredescribedinSRPSection3.5.3.d.Afterproceduresfordeterminingtheindividualtornadoeffectsarereviewed,themannerinwhichtheseeffectsare-then'ombinedtoarriveatthemostadversetotaltornadoeffectisreviewedandcomparedwiththeacceptancecriteriadelineatedinsubsectionII.3.d.Otherproposedmethodswhichmaydependuponthegeometryandconfi-gurationofaparticularstructurearereviewedonacase-by-casebasis.3,TheinformationprovidedtodemonstratethatfailureofanystructureorcomponentnotdesignedfortornadoloadswillnotaffectthecapabilityofotherstructuresorcomponentstoperformnecessarysafetyfunctionsisreviewedtoassurethatoneoftheacceptancecriteriaofsubsectionII.4issatisfied.IY.EVALUATIONFINDINGSThereviewervefifiesthatsufficientinformationhasbeenprovidedtosatisfytherequirementsofthisSRPsection,andconcludesthathisevaluationissufficientlycompleteandadequategosupportthefollowingtypeofstatementtobeincludedinthestaff'ssafetyevaluationreport.3.3.2-4Rev2-July1981 3vThetornado-generatedmissilesusedinthedesignoftheDG"E",.facilityarethemore'severemissilesofthoselistedinfSARTable3.5-4'~'andtheSpectrumIImissilesforRegionI.(SeeRef.1,Table3.5-4a.)Theverticalvelocitieswereconsideredtobeequalto80percentofthehorizontalvelocities.1548-.no-'tQ916~vnr.50U1.r~olnio!s1DIasti'not:oemsvosSB~'

NUREG-0800(FormerlyNUREG-76/087)<LaRtctrWpSTANDARDREVIEWPLAN+'.~o"OFFICEOFNUCLEARREACTORREGULATIONpete3.5.1.4MISSILESGENERATEOBYNATURALPHENOMENAREYIEMRESPONSIBILITIESPrimary-AuxiliarySystemsBranch(ASB)Secondary-NoneI.AREASOFREYIBITheapplicant'sassessmentofpossiblehazardsduetomissilesgeneratedbythedesignbasistornado,flood,andanyothernaturalphenomenaidentifiedinSec-tion3.5ofthesafetyanalysisreport(SAR)isreviewedandevaluatedbytheASBtoassurethatappropriatedesignbasismissileshavebeenchosenandpr'operlycharacterized,andtoassurethattheeffectscausedbythesemissilesareaccept-able.Currently,onlymissilesfromthedesignbasistornadoareconsistentlyconsiaeredintheplantdesignbases.Missilesfromotherphenomenaarecon"sideredonacase-by-casebasiswhentheyareidentified.TheASBalsoreviewstheidentificationofthosestructures,systemsandcompo-nentsthatshouldbeprotectedagainstmissileimpactunderStandardReviewPlan(SRP)Section3.5.2.TheStructuralEngineeringBranch(SEB)determinestheacceptabilityofthedesignanalysis,proceduresandcriteriausedtoestablishtheabilityofseismicCate-goryIstructuresand/ormissilebarrierstowithstandtheeffectsoftornadomissilesaspartofitsprimaryreviewresponsibilityforSRPSection3.5.3.TheacceptancecriteriaandtheirmethodsofapplicationarecombinedinthatSRPsection.II.ACCEPTANCECRITERIAnMTheacceptabi),ityoftheassessmentasdescribedintheapplicant'sSafetyAnalysisReport(SAR)i,s.,basedoncompliancewith:GeneralDesignCriteria2and4asitrelatestothelcapabilityofstructures,systems,andcomponentsimportanttosafetytowithstandtheeffectsoftornadoesandothernaturalphenomena.Accept-anceisbasedonmeetingtheguidelinesofRegulatoryGuide1.76and1.117.The,Rev2-July1981USNRCSTANDARDREVIEWPLANStandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulationstaffresponsibleforthereviewofapplicationstoconstructandoperatenuclearpowerplants.ThesedocumentsaremadeavailabletothepublicaspartoftheCommission'spolicytoinformthenuclearindustryandthegeneralpublicofregulatoryproceduresandpolicies.StandardreviewplansarenotsubstitutesforregulatoryguidesortheCommission'sregulationsandcompliancewiththemisnotrequired.ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathaveacorrespondingreviewplan.Publishedstandardreviewplanswillberevisedperiodically,asappropriate.toaccommodatecommentsandtoreflectnewinforma.tionandexperience.CommentsandsuggestionsforimprovementwillbeconsideredandshouldbesenttotheU.S.NuclearRegulatoryCommission,OfficeofNuclearReactorRegulation.Vtashington,O.C.20555.

"1I30,WOA9a.,"f&1'C.,.'9litic',QO"f&jl~l%tl'41C~gi<<svr<f~~~(IQi.fV4ggC.f2fd~ib98&~."fictal99"g~~gB(k'ael'('+'L./sy~f',CIC'qr>&Cs"i)4+f/Alp":reer methodologyofidentificationofappropriatedesignbasis'issilesgeneratedbynaturalphenomenashallbeconsistentwiththeacceptancecriteriadefinedfortheevaluationofpotentialaccidentsfromexternalsourcesinSRPSection2.2.3.III.REYIEMPROCEOURESdeterm'heproceduresbelowareusedduringtheconstructionpermit(CP)'inethatthedesigncriteriaandbasesandthepreliminarydstreviewoforthintherepliminarysafetyanalys)sreportmeettheacceptancecriteriagiveninsubsectionII.Forreviewofoperatinglicense(OL)applications,hatheproceduresareutilizedtoverifythattheinitialdavebeenappropriatelyimplementedinthefinaldesignassetforthinthefinalsafetyanalysisreport.Uponrequestfromtheprimaryreviewer,SEBwillprovideinputfortheareasofreviewstatedinsubsectionI.Theprimaryreviewerobtainsandusessuchinputasrequiredtoassurethatthisrevie~'rocedureiscomplete.ThereviewerwillselectandemphasizematerialfromthisSRPsection,asmaybeappropriateforaparticularcase.Thejudgmentonareastobegivenattentionandemphasisinthereviewistobebasedonaninspectionofthematerialpresentedtoseewhetheritissimilartothatrecentlyreviewedonotherplantsandwhetheritemsofsecialsafetsignificanceareinvolved..1TheSARisreviewedfortheidentifi,cationofthedesignbasisnaturalphenomenawhichcouldpossiblygeneratemissiles.Postulatedmissilesarereviewedforpropercharacterization.2.Theprobabilityperyearofdamagetothetotalofallimportantstruc-tures,systems,andcomponents(asdiscussedinRegulatoryGuide1.117)duetoaspecificdesignbasisnaturalphenomenacapableofgeneratinmissilesisestimated.ing3.IfthisprobabilityisgreaterthantheacceptableprobabilitystatedinRegulatoryGuide1.117,thenspecificdesignprovisionsmustbeprovidedtoreducetheestimateofdamageprobabilitytoanallowablelevel.4.Al1plantsarerequiredtobedesignedtoprotectsafety-relatedequipmentagainstdamagefrommissileswhichmightbegeneratedbythedesignbasistornadoforthatplant.Thereviewerverifiesthattheapplicanthaspostu-Ilatedmissilesthatincludeatleastthreeobjects:amassivehighkineticresienergymissilewhichdeformsonimpact,arigidmissiletotestpenetrt'aionthrou'stance,andasmallrig>dmissileofasizesufficienttojustpghanyopeningsinprotectivebarriers.Untilmoredefinitiveguide-asslinesareestablished,thesemissilesmaybeassumedtobean1800Kgsteeautomobile,a125Kg8"armorpiercingartilleryshellanda1"1'd1sphere,allimpactingat35K.ofthemaximumhorizontalwindspeedofso1thedesignbasistornado.Thefirsttwomissilesareassumedtoimpactatnormalincidence,thelasttoimpingeuponbarrieropeningsinthemostdamagingdirections.ThesemissilesareidentifiedasSpectrumI.Alternately,themissilesselectedbytheNationalBureauofStandardsasrepresentativeofconstructionsitedebrisinreportNBSIR76-1050maybe3.5.1.4-2Rev.2-July1981 IIII~~~,J)lfP<e"q~OPi,tDQft~;ol>'~<<I' NUREG-0800IFormerlyNUREG-75/Qg)spastepSTANDARDREVIEWPLANo."OFFICEQFNUCLEARREACTORREGULATION3.5.1.5SITEPROXIMITYMISSILES(EXCEPTAIRCRAFT)REVIEWRESPONSIBILITIESPrimary-SitingAnalysisBranch(SAB)Secondary-NONEI.AREASOFREVIEWThestaffreviewsthenatureandextentofoffsiteactivitiesidentifiedinSRPSection2.2.1-2.2.2todeterminewhetheranymissilesresultingfromsuchactivities,otherthanaircraft(aircrafthazardsarereviewedseparately-inSRPSection3.5.1.6),havethepotentialforadverselyaffectingstructures,systems,andcomponents(SSC)essentialtosafety.Intheevent.thatanoffsiteactivityhasthepotentialformissile-production(e.g.,explosion)andisfoundtobe-adesignbasiseventaccmd-ingtoSRPSection2.2.3,thestaffreviewstheplantdesigntodeterminewhethertheplantisadequatelyprotectedagainsttheeffectsofthepostulatedmissiles.TheSSCthatshouldbeprotectedagainstmissilesareidentifiedinaccordancewithSRPSection3.5.2aspartoftheprimaryreviewresponsibilityoftheAuxiliarySystemsBranch(ASB).TheSitingAnalysisBranch(SAB)identifiesandcharacterizesanyoffsitemissilesthatarerequiredtobeaccommodatedwithintheplantdesignbasisinordertoprotectadequatelythesafety-relatedSSC.TheStructuralEngi-neeringBranch(SEB)onrequestbySABreviewsthemissileimpacteffectsonthesafety-relatedSSC.Theacceptancecriterianecessaryforthereviewandthemethodsofapplica'tionfortheabovereviewsarecontainedinthereferencedSRPsection.II.ACCEPTANCECRITERIASABacceptancecriteriaarebasedon'meetingtherelevantrequirementsofoneofthefollowingregulations:10CFRPart100,5100.10indicatesthatthesitelocation,in,conjunctionwithotherconsiderations(suchasplantdesign,construction,andoperation),shouldinsurealowriskofpublicexposure.ThisrequirementismetiftheprobabilityofsiteproximitymissilesimpactingtheplantandcausingradiologicalRev.1-July1981USNRCSTANDARDREVIEWPLANStandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulationstaffresponsibleforthereviewofapplicationstoconstructandoperatenuclearpowerplants.Thesedocumentsaremadeavailabletothepublicaspartofthecommission'spolicytoinformthenuclearindustryandthegeneralpublicofreguiatoryproceduresandpolicies.StandardreviewplansarenotsubstitutesforregulatoryguidesortheCommission'sregulationsandcompliancewiththemisnotrequired.ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathaveacorrespondingreviewplan.Pubgshedstandardreviewplanswillberevisedperiodically.asappropriate,toaccommodatecommentsandtoreflectnewinforms.tionandexperience.CommentsandsuggestionsforimprovementwillbeconsideredandshouldbesenttotheU.S.NuclearRegulatoryCommission.OfficeofNuclearReactorRegulation.Washington,O.C.20555.

<rCr~Thefollowingsiteproximitymissileswereconsideredinthe'designofthe06"E"facility:MissileRifflebulletFragmentfromatruckOxygenbottleAcetylenebottle2erogasbottleexplosion~lleiht2Oz.6Oz.143lb.198lb.70lb.~Velocit2667fps15fps262fps179fps342fps(SeeRef.2,Page4-1andRef.3,Page9.)

consequencesgreaterthan10CFRPart100exposureguidelinesislessthanabout',10-peryear(seeSRPSection2.2.3).Iftheresultsofthedonotindicatethattheabovecriterionismet,thentheacceptancecriteriondescribedin2belowapplies.2.GeneralDesignCriterion(GDC)4of10CFRPart50,AppendixA,requiresthatstructures,systems,andcomponents(SSC)importanttosafetybeappro-priatelyprotectedagainsttheeffectsofmissilesthatmayresultfromeventsandconditionsoutsidethenuclearpowerunit.TheplantcomplieswithGDC4andisconsideredadequatelyprotectedagainstsiteproximitymissilesifthefollowingcriterionismet:TheSSCimportanttosafetyarecapableofwithstandingtheeffectsofthepostulatedmissileswithoutlossofsafeshutdowncapabilityandwithoutcausingareleaseofradio-activitywhichwouldexceed10CFRPart100dosecriteria.III.REVIEW.PROCEDURESThereviewerselects.andemphasizesaspectsoftheareascoveredbythisSRPsectionasmaybeappropriateforaparticularcase.Thejudgmentonareastobegivenattentionandemphasisinthereviewisbasedonaninspectionofthematerialpresentedtoseewhetheritissimilartothatrecentlyreviewedonotherplantsandwhetheritemsofspecialsafetysignificanceareinvolved.1.The-identificationanddescriptionofaccidentswhichcouldpossib'lygeneratemissilesisobtainedfromthereviewperformedinaccordancewithSRPSection2.2.1-2.2.2andSRPSection2.2.3.2.TheSSCidentifiedby'ASBinreferencetoSRPSection3.5,2arereviewedwithrespecttomissilevulnerability.Usingconservativeassumptions,andexperiencegainedfrompastreviewsonsimilarSSCmissileinterac-tions,adeterminationismadeofthoseportionsoftheplantwhichclearlyhavethepotentialforunacceptablemissiledamage.IfallSSCappeartobeadequatelyprotectedagainsttheeffectsofthepostulatedmissiles,thenthereviewisterminatedandevaluationfindingsarewrittenintermsofdesignbasisconsiderations(SeesubsectionII.2ofthisSRPsection).3.Thetotalpiobabilityofthemissilesstrikingavulnerablecriticalareaoftheplantisestimated.Thetotalprobabilityperyear(PT)maybeestimatedbyusingthefollowingexpression:PT=PExP>RxPSCxPPxNwhere:PE=probabilityperyearofdesignbasiseventobtainedfromthereviewperformedunderSRPSection2.2.3,P>R=probabilityofPSC=probabilityofplant,Pp=probabilityof,tovitalareasmissilesreachingtheplant,missilesstrikingavulnerablecriticalareaofthemissilesexceedingtheenergiesrequiredtopenetrate(e.g.,basedonwallthicknessprovidedfortornado3.5.1.5-2Rev.1-Ju1y1981

~~~SL NUREG-0800.(FormerlyNUBEG-76/087)~~ARrcrirwpSTANDARDREVIEWPLANoFFIcEoFNucLEARREAcTGRREGULATION+e*g43.7.1SEISMICDESIGNPARAMETERSREVIEWRESPONSIBILITIESPrimary-StructuralEngineeringBranch(SEB)Secondary-NoneI.AREASOFREVIEWThefollowingareasrelatingtoseismicdesignparametersarereviewed.1.DesinGroundMotionFortheseismicdesignofnuclearpowerplantsitiscustomarytospecifytheearthquakegroundmotionwhichisexertedonthestructureoronthesoil"structureinteractionsystem.Thedesigngroundmotion,sometimesknownastheseismicinput,isbasedontheseismicityandgeologicconditionsatthesiteandexpressedinsuchamannerthatitcanbeappliedtothedynamicanalysisofstructures.Thedesigngroundmotionsfortheoperatingbasisearthquake(OBE)andsafeshutdownearthquake(SSE)arereviewed.TheyshouldbeconsistentwiththeinformationonseismicenvironmentatthesiteprovidedinSRPSection2.5.2,whichincludesthevariationinanddistributionofpeakgroundaccelerationinthefreefieldatdifferentdepthsacrossthesoilprofile,sourcesanddirectionsofmotion,propagationandtransmissionofseismicwaves,andotherresponsecharacteristics..DesinResonseSectraAresponsespectrumisaplotofthemaximumresponseofafamilyofsingle-degree-of-freedomdampedoscillatorswithdifferentfrequency.characteristicswh'enthebaseoftheoscillator'issubjectedtovibratorymotionindicatedbyanappropl'iatetimemotionrecord.Theresponsespectraareusuallydisplayedontripartitelog-loggraphpaper.Whenobtainedfromarecordedearthquake,theresponsespectrumtendstobeirregular,withanumberofpeaksandvalleys.Adesignresponsespec-trumisarelativelysmoothplot,obtainedfromanumberofindividual4USNRCSTANDARDREVIEWPLANRev.1-July1981StandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulationstaffresponsibleforthereviewofapplicationstoconstructandoperatenuclearpowerplants.ThesedocumentsaremadeavailabletothepublicaspartoftheCommission'spolicytoinformthenuclearindustryandthegeneralpublicofregulatoryproceduresandpolicies.StandardreviewplansarenotsubstitutesforregulatoryguidesortheCommission'sregulationsandcompliancewiththemisnotrequired.ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathaveacorrespondingreviewplan.Publishedstandardreviewplanswillbereviseoperiodically,avappropriate,toaccommodatecommentsandtoreflectnewinforma.tlonandexperience.CommentsandsuggestionsforimprovementwillbeconsideredandshouldbesenttotheU,S.NuclearRegulatoryCommission.OfficeofNuclearReactorRegulation.Washington.O.C.20566.

a&b)Themaximumgroundaccelerationvaluesarebasedonthemostsevereearthquakesthathavebeenhistoricallyreportedforthesiteandsurroundingarea.ThevaluesusedinthedesignoftheDG"E"facilityarethesameasthosevaluesutilizedinthedesignofexistingSusquehannaSESseismicCategoryIstructures.TheNRChaspreviouslyreviewedandacceptedthesemaximumgroundaccelerationvalues.FortheDG"E"buildingandpedestal,whicharefoundedonsoundbedrock,themaximumgroundaccelerationsweretakentobe0.10gforSSEand0.05gforOBE.fortheDG"E"facility'sfueltank,whichisfoundedonsoil,thevaluesare0.15gforSSEand0.08gforOBE.(SeeRef.1,Page3.7b-1.)

Inpracticalseismicanalysis,whichusuallyemployslinearmethodsofanalysis,dampingisalsousedtoaccountformanynonlineareffectssuchaschangesin.boundaryconditions,jointslippage,plastichinges,concretecracking,gaps,andothereffectswhichtendtoalterresponseamplitude.Inrealstructures,itisoftenimpossibletoseparate"true"materialdampingfromsystemdamping,whichisthemeasureoftheenergydissipation,-fromthenonlineareffects.Overallstructuraldampingusedindesignisnormallydeterminedbyobservingexperimentallythetotalresponseofthestructure.4.OnlytheoveralldampingusedforCategoryIstructures,systems,andcomponentsarereviewed.Whenapplicable,thebasisforanydampingvaluesthatdifferfromthosegiveninRegulatoryGuide1.61(Ref.4)isreviewed.SuortinMediaforCateorIStructuresThedescriptionofthesupportingmediaforeachCategoryIstructureisreviewed,includingfoundationembedmentdepth,depthofsoiloverbedrock,soillayeringcharacteristics,widthofthestructuralfoundation,totalstructuralheight,andsoilpropertiestopermitevaluationoftheapplica-bilityoffiniteelement.,orlumpedspringapproachesforsoil-structureinteractionanalysis.SEBcoordinatesotherbranches'valuationsthatinterfacewithstructur@engineeringaspectsofthereviewasfollows:IReviewofgeologicalandseismologicalinformationtoestablishthefreefieldgroundmotionisperformedbytheGeosciencesBranchasdescribedinSRPSection2.5.HydrologicandGeotechnicalEngineeringBranchreviewsthegeotechnicalparametersandmethodsemployedintheanalysisoffreefieldsoilmediaandsoilpropertiesasdescribedinSRPSection2.5.StructuralEngineeringBranchacceptstheresultsofthereviewsperformedbythesebranchesincludingthemaximumseismicgroundacceleratioqsfortheOperatingBasisEarthquake(OBE)andtheSafeShutdownEarthquake(SSE),sitedependentfreefieldgroundmotionrecords,soilproperties,etc.,asanintegralpartoftheseismicanalysisreviewofCategoryIstructures.Forthoseareasofreviewidentifiedaboveasbeingreviewedaspartoftheprimaryreviewresponsibilityofotherbranches,theacceptancecriterianecessaryforthereviewandtheirmethodsofapplicationarecontainedin.thereferencedSRPsectionofthecorrespondingprimarybranch.ACCEPTANCECRITERIASEBacceptsthedesignofstructuresthatareimportanttosafetyandmustwith-standtheeffectsoftheearthquakesiftherelevantrequirementsofGeneralDesignCriterion2(Ref.1)andAppendixAto10CFRPart100(Ref.2)concerningmaterialphenomenaarecompliedwith.TherelevantrequirementsofGDC2andAppendixAto10CFRPart100are:a~ForDesignCriterion2-Theearthquakesusedinthedesignshouldbethemostsevereonesthathavebeenhistoricallyreportedforthesiteandsurroundingareawithsufficientmarginforthelimitedaccuracy,quantityandperiodoftimeinwhichhistoricaldatahasbeenaccumulated.3.7.1-3Rev.1-July1981 ThedesignresponsespectrafortheDG"E"facilityisconstructedbylinearlyscalingdowntheamplificationfactorspresentedinTablesIandIIofReg.Guide1.60.ThescalingfactorusedistheratiooftheSusquehannaSESmaximumgroundaccelerationtothe1.0gaccelerationvalueassociatedwiththeabovetables(SeeRef.1,Page3.7b-1.).'FortheDG"E"facility,themaximumverticalgroundaccelerationwastakentobethesameasthemaximumhorizontalgroundacceleration(SeeRef.1,Page3.7b-2.)FortheDG"E"Facility,twosynthetictimehistories(oneverticalandone,horizontal)weredevelopedtocarryouttimehistoryanalyses(See.Ref.1,Page3.7b-2).

/b.ForAppendixAto10CFRPart100-Twoearthquakelevels,thesafeshutdownearthquake(SSE)andtheoperatingbasisearthquake(OBE),shallbeconsideredinthedesignofthesafety-relatedstructures,.componentsandsystems.Specificcriterianecessarytomeettherelevantrequiremen'tsofGQC2andAppendixAto10CFRPart100aredescribedbelow.TheacceptancecriteriafortheareasofreviewdescribedinsubsectionIaboveareasfollows:1.DesinGroundMotiona.DesinResonseSectraDesignresponsespectrafortheOBEandSSEareconsideredtobeacceptableiftheassociatedamplificationfactorsareinaccordancewithRegulatoryGuide1.60,"DesignResponseSpectraforNuclearPowerPlants,"foralldampingvalues.AsnotedinRegulatoryGuide1.60,therearesitecircumstanceswherethedesignresponsespectraaremoreappropriatelydevelopedtosuittheparticQlarsitecharacteristics.Designresponsespectrabaseduponsite-dependentanalysismustbederivedconsideringinsitu-variablesoilproperties,arepresentativenumberofsiteearthquake.records,verticalamplification,possibleslantedsoillayers,andtheinfluenceofanypredominantsoillayers.,Variablesoilpropertiesandnonlinearstress-strainrelationsinthesoilmediashouldbeconsidered.Ifsite-dependentdesignresponsespectraareused,thedataandbasesfromwhichthespectraarederivedshouldbeconsistentwiththoseprovidedinSection2.5.2oftheSAR.Tobeacceptablethedesignresponsespectrashouldbespecified'forthreemutuallyorthogonaldirections;twohorizontalandonevertical.Currentpracticeistoassumethatthemaximumgroundaccelerationsinthetwohorizontaldirectionsareequal,whilethemaximumverticalgroundaccelerationis2/3ofthemaximumhorizontalacceleration.ForthewesternUnitedStates(WestofRockies),theresponsespectrumforverticalmotioncanbetakenas2/3theresponsespectrumforhorizontalmotionovertheentirerangeoffrequencies.~lli~illiThedesigntimehistorytobeusedatvariousdepthsinthefree-fieldofthesoilmediashallbeconsistentwiththatdevelopedorspecifiedinSection2.5.2.WhennospecifictimehistoryisprovidedinSection2.5.2oftheSAR,anartificialtimehistorymaybegeneratedforuseintheseismicanalysis.Theartificialtimehistoryisacceptableiftheresponsespectrainthefreefieldatthespecifiedlevelofthesite3.7.1"4Rev.l-July1981 Timehistoryresponsespectrahavebeenshowntoenvelopethedesignresponsespectra(SeeRef.1,Page3.7b-2.)ThedesigngroundmotionisappliedtotheOG"E"Bldg.atthebasematlevel.Timehistoryresponsespectrahavemetthiscriteria.(SeeRef.1,Page3.7b-2andtheprovidedfigures.)Responsespectrahavebeencomputedatthesesuggestedfrequencies.(SeeRef.1,Page3.7b-2.)~~~DampingvaluesutilizedfortheDG"E"FacilityarethosepresentedinReg.Guide1.61.(SeeRef.1,Page3.7b-3.)Mostconduitandboxsupportsutilizedampingvaluesassociatedwiththeexistingplantcriteria.Thiswasdonetotakeadvantage.ofthenumeroustypicalconduit/boxsupportsthatareavailablefortheexistingcriteria.

obtainedfromsuchtimehistoryenvelopthedesignresponsespectraatthesamelocationforalldampingvaluesactuallyusedintheanalysis.AppendixAto10CFR100specifiesthatforsoilstructureinteractionanalysisorforseismicdesignofstructures,thedesignroundmotion(sometimescalledthecontrolmotionorreferencemotion)sappliedatthefoundationlevelofCategoryIstructuresinthefreefield.Whenspectralva'luesareca1culatedfromthedesigntimehistorythefrequencyintervalsaretobesmallenoughsuchthatanyreductionintheseintervalsdoesnotresultinmorethan10Xchangeinthecomputedspectra.Table3.7.1-1providesanacceptablesetoffre-quenciesatwhichtheresponsespectramaybecalculated.Anotheracceptablemethodistochooseasetoffrequenciessuchthateachfrequencyiswithin10Xofthepreviousone.Theacceptancecriterionformeetingthespectra-envelopingrequirementisthatnomorethanfivepointsofthespectraobtainedfromthetimehistoryshouldfallbelow,andnomorethan10Kbelow,thedesignresponsespectra.Table3.7.1-1SuggestedFrequencyIntervalsforCalculationofResponseSpectraFrequencyRangehertzIncrement(hertz)0.2-3.03.0-3.63.6-5.05.0-8.08.0-15.015.0-18.018.0-22.022.0-34.0.10.15.20.25.501.0"2.03.02.CriticalOaminValuesThespecificpercentageofcriticaldampingvaluesusedintheanalysesofCategoryIstructures,systems,andcomponentsareconsideredtobeacceptableiftheyareinaccordancewithRegulatoryGuide1.61,"OampingVaIuesforSeismicOesignofNuclearPowerPlants."Higherdampingvaluesmaybeusedinadynamicseismicanalysisifdocumentedtestdataarepro-videdtosupportthem.Thesevalueswouldbereviewedandacceptedbythestaffonacase-by-casebasis.Thedampingvalueforsoilmustbebaseduponactualmeasuredvaluesorotherpertinentlaboratorydataconsidering'variationinsoilpropertiesandstrainswithinthesoil.3.7.1-5Rev.1-July1981 AgeneraldescriptionofthesupportingmediaisprovidedinRef.2,page3-6.~SevenboringsweretakentodeterminethesoilandrockconditionsintheareaoftheDG"E"facility.Aplanshowingthelocationoftheborings,thesevenboringlogsandsoil/rockprofilesareprovidedinSection2.5ofRef.1.TheexcavationfortheDG"E"buildingwascarriedtounweatheredbedrockbyusingsoldierbeamsandlaggings.TheexcavationforDG"E"facility'sfueltankwascarriedoutinopencut(SeeRef.1,Page2.5-98.).About8feet(northend)and20feet(southend)ofsand,gravelandbouldersarebelowthefoundationgradeofthefueltank.Fourstandardpenetrationtestsperformedonthesoilbeneaththefueltankwerenotedtohavevaluesexceeding40blows/foot.(SeeRef.1,Page2.5-91through2.5-94.)ThefoundationmatfortheDG"E"fueltankis17feetwide,57feetlongand5feetthick.Thebearingpressureandsettlementofthesoilbeneaththefueltankweredeterminedtobelessthantheallowablevalues(SeeRef.1,Page2.5-108.)FortheDG"E"building,leanconcretewasusedasfillforthevolumebetweenthesoundbedrockandthebottomelevationofthebuildingbasementfloormat.TheexcavatedareafortheDG"E"fueltankwasbackfiliedwithsand-cement-flyashtotwo(2)feetbelowfinishedgrade.

3.SuortinMediaforCateorIStructuresTobeacceptable,thedescriptionofsupportingmediaforeachCategoryIstructuremustincludefoundationembedmentdepth,depthofsoiloverbed-rock,widthofthestructuralfoundation,totalstructuralheight,andsoilpropertiessuchasshearwavevelocity,shea~modulus,anddensityasafunctionofdepth.III.REVIEWPROCEDURESForeachareaofreview,thefollowingreviewprocedureisfollowed.Thereviewerwi11select-andemphasizematerialfromtheproceduresgivenbelowasmaybeappropriateforaparticularcase.Thescopeanddepthofreviewproceduresmustbesuchthattheacceptablecriteriadescribedabovearemet.1.DesinGroundMotiona.DesinResonseSectraDesignresponsespectrafortheOBEandSSEforalldampingvaluesarecheckedtoassurethatthespectraareinaccordancewiththeacceptancecriteriaasgiveninsubsectionII.Anydifferences'betweentheregulatoryguidespectraandtheproposedresponsespectrawhichhavenotbeenadequatelyjustifiedareidentifiedandtheapplicantisinformedoftheneedforadditionaltechnicaljustification.b.DesinTimeHistorMethodsofdefiningthedesigntimehistoryarereviewedtoascertainthattheacceptancecriteriaofsubsectionII.2ofthisSRPsectionaremet.2.CriticalDaminValuesThespecificpercentageofcriticaldampingvaluesfortheOBEandSSEusedintheanalysesofCategoryIstructures,systems,andcomponentsarecheckedtoassurethatthe'dampingvaluesareinaccordancewiththeacceptancecriteriaasgiveninsubsectionII.2ofthisSRPsection.Anydifferencesindampingvalueswhichhavenotbeenadequatelyjustifiedareidentifiedandtheapplicantisinformedoftheneedforadditionaltechnicaljustification.3.SuortinMediaforCateorIStructuresThedescriptionofthesupportingmediaisreviewedtoverifythatsufficientinformation,asspecifiedintheacceptancecriteriaofsubsectionII.3ofthisSRPsectionisincluded.Anydeficiencyintherequiredinformation15identifiedandarequestforadditionalinformationistransmittedtotheapplicant.IV.EVALUATIONFINDINGSThereviewerverifiesthatsufficientinformationhasbeenprovidedandthatehisevaluationsupportsconclusionsofthefollowingtype,tobeincludedinthestaff'ssafetyevaluationreport:3.7.1"6Rev.1-July1981

NUREG-0800(FormerlyNUREG-75/087)sosstopU.S.NUCLEARREGULATORYCOMMISSION-::"::iSTANDARDREVIEW.PLAN+--4o'"OFFICEOFNUCLEARREACTORREGULATION3.7.2SEISMICSYSTEMANALYSISREVIEWRESPONSIBILITIESPrimary-StructuralEngineeringBranch(SEB)Secondary-NoneI:AREASOFREVIEWThefollowingareasrelatedtotheseismicsystemanalysisdescribedintheapplicant'ssafetyanalysisreport(SAR)arereviewed.1.SeismicAnalsisMethodsForallCategoryIstructures,systems,andcomponents,theapplicableseisaKcanalysismethods(responsespectra,timehistory,equivalentstaticload)arereviewed.Themannerinwhichthedynamicsystemanalysismethodisperformed,includingthemodelingoffoundationtorsion,rockingandtranslation,isreviewed.Themethodchosenforselectionofsignificantmodesandanadequatenumberofmassesordegreesoffreedomisreviewed.Themannerinwhichconsiderationisgivenintheseismicdynamicanalysistomaximumrelativedisplacementsbetweensupportsisreviewed.Inaddition,othersignificanteffectsthatareaccountedforinthedynamicseismicanalysissuchashydro-dynamiceffectsandnonlinearresponsearereviewed.IftestsorempiricalmethodsareusedinlieuofanalysisforanyCategoryIstructure,thetestingprocedure,loadlevels,andacceptancebasisarealsoreviewed.2.NaturalFreuenciesandResonseslFortheoperatinglicensereview,significantnaturalfrequenciesandresponsesformajorCategoryIstructuresarereviewed.Inaddition,theresponsespectraatmajorCategoryIequipmentelevationsandpointsofsupportareIreviewed.USNRCSTANDARDREVIEWPLANRev.1-Jul1981StandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulationstaffresponsibleforthereviewofapplicationstoconstructandoperatenuclearpowerplants.ThesedocumentssremadeavailabletothepublicaspartoftheCommission'spolicytoinformthenuclearindustryandthegeneralpublicofregulatoryproceduresandpolicies.StandardreviewplansarenotsubstitutesforregulatoryguidesortheCommission'sregulationsandcompliancewiththemisnotrequired.ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathavescorrespondingreviewplan.Publishedstandardreviewplanswillberevisedperiodically,asappropriate,toaccommodatecommentssndtoreflectnewinforma-tionsndexperience.CommentsandsuggestionsforImprovementwillbeconsideredandshouldbesenttotheU.S.NuclearRegulatoryCommission,OfficeofNuclearReactorRegulation,Washington,O.C.20555.

Cvs~sac~LI 13.AnalsisProcedureforDaminTheanalysisproceduretoaccountforthedampingindifferentelementsofthemodelofacoupledsystemisreviewed.14.DeterminationofCateorIStructureOverturninMomentsThedescriptionofthemethodandprocedureusedtodeterminedesignoverturningmomentsforCategoryIstructuresisreviewed.15.SEBcoordinatesotherbranches'valuationsthatinterfacewithstructuralengineeringaspectsofthereviewasfollows:ReviewofgeologicalandseismologicalinformationtoestablishthefreefieldgroundmotionisperformedbytheGeosciencesBranchasdescribedinSRPSection2.5.HydrologicandGeotechnicalEngineeringBranchreviewsthegeotechnicalparametersandmethodsemployedintheanalysisoffreefieldsoilmedia,andsoilpropertiesasdescribedinSRPSection2.5.Struc-turalEngineeringBranchacceptstheresultsofthereviewsperformedbythesebranchesincludingthemaximumseismicgroundaccelerationsfortheOperatingBasisEarthquake(OBE)andtheSafeShutdownEarthquake(SSE),site-dependentfreefieldgroundmotionrecords,soilproperties,etc.,asanintegralpartoftheseismicanalysisreviewofCategoryIstructures.Forthoseareasofreviewidentifiedaboveasbeingreviewedaspartoftheprimaryreviewresponsibilityofotherbranches,theacceptancecriterianecessaryforthereviewandtheirmethodsofapplicationarecontainedinthereferencedSRPsectionofthecorrespondingprimarybranch,II.ACCEPTANCECRITERIATheacceptancecriteriafortheareasofreviewdescribedinsubsectionIofthisSRPsectionaregivenbelow.Otherapproacheswhichcanbejustifiedtobeequivalenttoor.moreconservativethanthestatedacceptancecriteriamaybeused.SEBacceptsthedesignofstructures,systems,andcomponentsthatareimportanttosafetyandmustwithstandtheeffectsofearthquakesiftherelevant'requirementsofGeneralDesignCriterion(GDC)2(Ref.1)andAppendixAto10CFRPart100(Ref2)concerningnaturalphenomenaarecompliedwith.TherelevantrequirementsofGDC2andAppendixAto10CFRPart100are:A.GeneralDesignCriterion2asitrelatestotheearthquakesusedinthedesignshouldbethemostsevereonesthathavebeenhistoricallyreported,forthesiteandsurroundingareawithsufficientmarginforthelimitedaccuracy,quantity,andperiodoftimeinwhichhistoricaldatahasbeenaccumulated.B.AppendixAto10CFRPart100asitrelatestotherequirementthattwoearthquakelevels,thesafeshutdownearthquake(SSE)andtheoperatingbasisearthquake(OBE),beconsideredinthedesignofsafety-relatedstructures,components,andsystems.AppendixAto10CFRPart100furtherstatesthatthedesignusedtoensurethattherequiredsafetyfunctionsaremaintainedduringandafterthevibratorygroundmotionassociatedwiththesafeshutdownearthquakeshallinvolvetheuseofeithera3.7.2"4Rev.1-July1981 1.TheDG"E"buildingandpedestalwereanalyzedbytheresponsespectrummethodtoobtainthestructuralresponses(accelerationsandrelativedisplacements).SeeRef.2,PageC-7.TheDG"E"buildingandpe'destalwereanalyzedbythetimehistorymethodtodevelopfloorresponsespectra.SeeRef.2,PageC-7&C-8.2.3.TheDG"E"buildingandpedestalarefoundedonsoundbedrock.Asaresult,thesoil-structureinteractioneffectisinsignificant.TheDG"E"building'shorizontaldynamicmodelreflectstheeccentricityeffectoftheasymmetricalbuildingconfiguration.Thus,itiscapableofproducingtorsionalresponseduetoahorizontalearthquake.(SeeRef.2,PageC-5andRef.1,Page3.7b-ll.)4.FortheDG"E"buildingandpedestaldynamicmodels,thenumberofdegreesoffreedomexceedtwicethenumberofmodeswithfrequencieslessthan33Hz.5.FortheDG"E"buildinganditspedestalallmodeswereconsidered.(SeeRef.1,Page3.7b-5.)6.7.AmodalresponsespectrumanalysiswasperformedusingtheDG"E"buildingandpedestalmodelstodeterminetherelativedisplacements.(SeeRef.2,PageC-7.)PipinginsidetheD.G."E"buildingisanalyzedindependentlyusingthefloorresponsespectra.(SeeRef.2,PageC-8.)NoexternallyappliedstructuralrestraintsareconsideredfortheDG"E"buildinganalysis.Hydrodynamicloads(SRV&LOCA)neednotbeconsideredduetothephysicallocationoftheDG"E"building.Stresslevelsarekeptbelowallowablelevels,thus,nonlinearresponses,arenotconsidered.

suitabledynamicanalysisorasuitablequalificationtesttodemonstratethatstructures,systems,andcomponentscanwithstandtheseismicandotherconcurrentloads,exceptwhereitcanbedemonstratedthattheuseofanequivalentstaticloadmethodprovidesadequateconservatism..SpecificcriterianecessarytomeettherelevantrequirementsofGDC2andAppendixAtoPart100areasfollows:1.SeismicAnalsisMethodsTheseismicanalysisofallCategoryIstructures,systems,andcomponentsshouldutilizeei,therasuitabledynamicanalysismethodoranequivalentstaticloadmethod,ifjustified.a.0namicAnalsisMethodAdynamicanalysis(e.g.,responsespectrummethod,timehistorymethod,etc.)shouldbeusedwhentheuseoftheequivalentstaticloadmethodcannotbejustified.,Tobeacceptablesuchanalysesshouldconsiderthefollowingitems:(1)Useofeitherthetimehistorymethodortheresponsespectrummethod.(2)Useofappropriatemethodsofanalysistoaccount,foreffects'fsoil-structureinteraction.~~%(3)Considerationofthetorsional,rocking,andtranslationalresponsesofthestructuresandtheirfoundations.(4)Useofanadequatenumberofmassesordegreesoffreedomindynamicmodelingtodeterminetheresponse'fallCategoryIandapplicablenon-CategoryIstructuresandplantequipment.Thenumberisconsideredadequatewhenadditionaldegreesoffreedomdonotresultinmorethana10Kincreaseinresponses.Alternately,thenumberofdegreesoffreedommaybetakenequaltotwicethenumberofmodeswithfrequencieslessthan33cps.(5)Investigationofasufficientnumberofmodestoassurepartici-pationofallsignificantmodes.Thecriterionforsufficiencyisthattheinclusionofadditionalmodesdoesnotresultinmorethana10Kincreaseinresponses.(6)ConsiderationofmaximumrelativedisplacementsamongsupportsofCategoryIstructures,systems,andcomponents.(7)Inclusionofsignificanteffectssuchaspipinginteractions,externallyappliedstructuralrestraints,hydrodynamic(bothmassandstiffnesseffects)loads,andnonlinearresponses.b.EuivalentStaticLoadMethodAnequivalentstaticloadmethodisacceptableif:3.7.2-5Rev.1-July1981 Theequivalentstaticloadmethodasdescribedhereisusedforthedesignof~somesafetyrelatedsystemsandequipmentfoundwithintheDG"E"facility.FortheDG"E"buildingandpedestal,modalfrequenciesandparticipationfactorsarepresentedinRef.1,Table3.7b-8.Modeshapeshavebeencalculatedandarepresentedinthecomputeroutput.Floorresponsespectrahavebeencalculatedandavailableuponrequest.Allsubsystems'equipment,piping,HVACducts,cabletrays,etc.)havebeendecoupledfromtheDG"E"buildingmodelsbasedonthesmallratioofindividualsubsystemmasstobuildingmass.However,thedieselgeneratorhasnotbeendecoupledfromthedieselgeneratorpedestal.Anapproximatemodelofthedieselgeneratorisincludedinthepedestalmodel.

(1)Justificationisprovidedthatthesystemcanberealisticallyrepresentedbyasimplemodelandthemethodproducesconserva-tiveresultsintermsofresponses.Typicalexamplesorpublishedresultsforsimilarstructuresmaybesubmittedinsupportoftheuseofthesimplifiedmethod.(2)Thedesignandassociatedsimplifiedanalysisaccountfortherelativemotionbetweenallpointsofsupport,(3)Toobtainanequivalentstaticloadofastructure,equipment,orcomponentwhichcanberepresentedbyasimplemodel,afactorof1.5isappliedtothepeakaccelerationoftheappli-cablefloorresponsespectrum.Afactoroflessthan1.5maybeusedifadequatejustificationisprovided.2.NaturalFreuenciesandResonseLoadsTobeacceptablefortheoperatinglicensereview,thefollowinginformationshouldbeprovided.Asummaryofnaturalfrequencies,modeshapes,modalandtotalresponses,forarepresentativenumberofmajorCategoryIstructures,includingthecontainmentbuilding,orasummaryofthetotal.responsesifthemethodofdirectinteractionisused.b.Atimehistoryofacceleration(orotherparametersofmotion)orresponsespectrumatthemajorplantequipmentelevationsandpointsofsupport.Procedures0sedforAnalticalModelinAnuclearpowerplantfacilityconsistsofverycomplexstructuralsystems.Tobeacceptable,thestiffness,mass,anddampingcharacteristicsofthestructuralsystemsshouldbeadequatelyincorporatedintotheanalyticalmodels.Specifically,thefollowingitemsshouldbeconsideredinanalyticalmodeling:a.OesinationofSstemsYersusSubsstemsMajorCategoryIstructuresthatareconsideredinconjunctionwithfoundationanditssupportingmediaaredefinedas"seismicsystems."OtherCategoryIstructures,systems,andcomponentsthatarenotdesignatedas"seismicsystems"shouldbeconsideredas"seismicsubsystems."b.OecoulinCriteriaforSubsstemsItcanbeshown,in'general,thatfrequenciesofsystemsandsub-systemshavenegligibleeffectontheerrorduetodecoupling.Itcanbeshownthatthemassratio,R,andthefrequencyratio,Rf,governtheresultswhereRandRfPredefinedas:Totalmassofthesuortedsubsstemmotalmassofthesupport>ngsystemFundamentalfreuencofthesuortedsubsstemfom>nantfrequencyotesupportmot>on3.7.2-6Rev.1-July1981 c)AdescriptionofthemethodologyusedtocomputethelumpedmassesfortheDG"E"buildinganditspedestalispresentedinRef.2,PagesC-4throughC-6.d)Twolumpedmassstickmodels(1-horizontaland1vertical)fortheDG"E"buildingand1modelforthepedestalweredeveloped.AdescriptionofthesemodelsalongwiththewaytheywereusedisprovidedinRef.2,PageC-3.4)TheDG"E"buildingandpedestalar'efoundedonsoundbedrock.Asaresult,thesoil-structureinteractioneffectisinsignificant.

Thefollowingcriteriaareacceptable:A'I(1)IfR<0.01,decouplingcanbedoneforanyRf.(2)'If0.01<R<O.l,decouplingcanbedoneif0.8>Rf>i25-m-C.(3)IfR>0.1,anapproximatemodelofthesubsystemshouldbeincludedintheprimarysystemmodel.Ifthesubsystemiscomparativelyrigidinrelationtothesupportingsystem,andalsoisrigidlyconnectedtothesupportingsystem,itissufficienttoincludeonlythemassofthesubsystematthesupportpointintheprimarysystemmodel,Ontheotherhand,incaseofasubsystemsupportedbyveryflexibleconnections,e.g.,pipesupportedbyhangers,thesubsystemneednotbeincludedintheprimarymodel.Inmostcasestheequipmentandcomponents,'whichcomeunderthedefinitionofsubsystems,areanalyzed(ortested)'sadecouple'dsystemfromtheprimarystructureandtheseismicinputfortheformerisobtainedbytheanalysisofthelatter.Oneimportantexceptiontothisprocedureisthereactorcoolantsystem,whichisconsideredasubsystembutisusuallyanalyzedusingacoupledmodelofthereactorcoolantsystemandprimarystructure.LumedMassConsiderationsTheacceptancecriteriagivenundersubsectionII.l.a(4)ofthisSRPsectionareapplicable.d.ModelinforThreeComonentInutMotionIngeneral,three-dimensionalmodelsshouldbeusedforseismicanalyses.However,simplermodelscanbeusedifjustificationcanbeprovidedthatthecouplingeffectsofthosedegreesoffreedomthatareomittedfromthethree-dimensionalmodelsarenotsignificant.4.Soil-StructureInteractionAnanalyticalmodelofasoil-structureinteractionsystemisacceptableifboththestructuremodelandthesupportingsoilmodela'eproperlycoupledandthedesignmotionisproperlyaddressed.ThecoupledmodelissubjectedtothedesigngroundmotionasspecifiedinSRPSection3.7.1ortotheregeneratedexcitationsystemdescribe'dinSectionII.4(iii)below.Asuitabledynamicanalysisusingthetimehistorymethodisperformedfortheentiresoil-structuresystemandthedynamicresponsesatvariouslocationsofthesystemarecalculated.Allassumptionstosimplifytheanalysisshouldbejustifiedandtheresultingerrorsbestudied.Anydy'namicdecouplingorcondensationprocedureshouldbesubstantiatedbytheoreticalverificationandmathematicalproofs.Atpresentmostcommonlyusedmethodsarethehalf-spaceandthefiniteboundariesmodelingmethodsandthereisnoindicationastowhichoneismorereliable,especiallywhentoomanyassumptionsareinvolved.There-fore,modelingmethodsforimplementingthesoil-structureinteractionanalysisshouldincludeboththehalf-spaceandfiniteboundariesapproaches.CategoryIstructures,systems,andcomponentsshouldbedesignedtoaccommodateresponsesobtainedbyoneofthefollowing:3.7.2-7Rev.1-July1981 ii)TheDG."E"Huildingandpedestaldynamicmodelsassumeafixedbasesincetheyrepresentstructureswhicharesupportedonrock.AdditionalboringstakenintheareaoftheDG"E"facilityindicatethatthebedrockisofthesametypeasthatfoundundertheexistingSeismicCategoryIstructureslocatednearby.PrevioustestingdeterminedtheReactorArea'sbedrockcompressionwavevelocitytobeapproximately15,000fpsandtheshearwavevelocitytobeapproximately7,000fps.(RefertoFSARTable2.5-7.)ThismethodologywasusedinthedevelopmentoffloorresponsespectrafortheOG"E"facility.SeeRef.2,PageC-8.

a.Envelopeofresultsofthetwomethods,b.Resultsofonemethodwithconservativedesign.considerationsofeffectsfromuseoftheothermethod,c.Combinationofa.andb.withprovisionofadequateconservatismindesign.Theacceptancecriteriafortheconstituentpartsoftheentiresoil-structureinteractionsystemareasfollows:i.ModelingofStructureTheacceptancecriteriagivenundersubsectionII.3ofthisSRPsectionareapplicable.ii.ModelingofSupportingSoilTheeffect'ofembedmentofstructureandthelayeringeffectofsoilshouldbeaccountedfor.Forthehalf-spacemodelingofthesoilmedia,thelumpedparameter(soilspring)methodandthecompliancefunctionmethodsareacceptable.Forthemethodofmodelingsoilmediawithfiniteboundaries,allboundariesshouldbeproperly.simulatedandtheuseof'typesofboun'dariesshouldbejustifiedand.reviewedonacase-by-casebasis.Finiteelementandfinitediffer-encemethodsareacceptablemethodsfordiscretizationofacontinuum.Thepropertiesusedi.nthesoil-structureinteractionanalysisshouldbethosecorrespondingtothelowstrainswhichareconsistentwiththerealisticsoilstraindevelopedduringthedesignearthquake.Useofhighstrainparametersneedstobeadequatelyjustifiedonacase-by-casebasis.Forstructuressupportedonrock,afixedbaseassumptionisacceptable.iii.GenerationofExcitationSystemAppendixAto10CFRPart100statesthatthevibratorygroundmotionproducedbythesafeshutdownearthquakeshallbedefinedbyresponsespectracorrespondingtothemaximumvibratoryaccelerationattheelevationsofthefoundationsofthenuclearpowerplantstructure.Aregeneratedexcitationsystemisacceptableif,whenappliedtothesoilmodel,itproducesatthestructuralfoundationlevelinthefreefieldaresponsemotionwhoseresponsespectraenvelopthedesignresponsespectraofearthquakemotion.5.DevelomentofFloorResonseSectraTobeacceptable,thefloorresponsespectrashouldbedevelopedtakingintoconsiderationthethreecomponentsoftheearthquakemotion.Theindividualfloorresponsespectralvaluesforeachfrequencyareobtainedforoneverticalandtwomutuallyperpendicularhorizontalearthquakemotionsandarecombinedaccordingtothe"squarerootofthesumofthesquares"methodtopredictthetotalfl'oorresponsespectrumforthatparticularfrequency(Ref.3).3.7.2-8Rev.1-July1981 Atimehistoryapproachwasusedinthedevelopmentoffloorresponsespectra,SeeRef.2,PageC-8.FortheDG"E"facilitytheresponsesduetothreesimultaneousorthogonalcomponentsofanearthquakearecombinedbythesquarerootofthesumofthesquaresmethodperReg.Guide1.92,Rev.1.(SeeRef.1,Page3.7b-8.)FortheOG"E"facility,thetotalresponseisobtainedbycombiningtheabsolutevaluesofallcloselyspacedmodalresponseswiththesquarerootsumofthesquares'ftheremainingmodalresponses.Twoconsecutivemodesaredefinedas.closelyspacedwhentheirfrequenciesdifferfromeachotherby10percentorless'.Reg.Guide1.92isfollowedforthecombinationofmodalresponses.(SeeRef.1,Page3.7b-8.)

Ingeneral,developmentofthefloorresponsespectraisacceptableifatimehistoryapproachisused.Ifamodalresponsespectramethodofanalysisisusedtodevelopthefloorresponsespectra,thejustificationforitsconservatismandequivalencytothatofatimehistorymethodmustbedemonstratedbyrepresentativeexamples.6.ThreeComonentsofEarthuakeMotionOependinguponwhatbasicmethodsareusedintheseismicanalysis,i.e.,responsespectraortimehistorymethod,thefollowingtwoapproachesareconsideredacceptableforthecombinationofthree-dimensionalearthquakeeffects.(Ref.4)a.ResonseSectraMethodWhentheresponsespectramethodisadoptedforseismicanalysis,themaximumstructuralresponsesduetoeachofthethreecomponentsofearthquakemotionshouldbecombinedbytakingthesquarerootofthesumofthesquaresofthemaximumcodirectionalresponsescausedbyeachofthethreecomponentsofearthquakemotionataparticularpointofthestructureorofthemathematicalmodel.b.TimeHistorAnalsisMethod'7.Whenthetimehistoryanalysismethodisemployedforseismicanaly-sis,twotypesofanalysisaregenerallyperformeddependingonthecomplexityoftheproblem.(1)Toobtainmaximumresponsesduetoeachofthethreecomponentsoftheearthquakemotion:inthiscasethemethodforcombiningthethree-dimensionaleffectsisidenticaltothatdescribedinitem6.aexceptthatthemaximumresponsesarecalculatedusingthetimehistorymethodinsteadofthespectrummethod.(2)Toobtaintimehistoryresponsesfromeachofthethreecomponentsoftheearthquakemotionandcombinethemateach'timestepalge-braically:themaximumresponseinthiscasecanbeobtainedfromthecombinedtimesolution.Whenthismethodisused,tobeaccept-able,theearthquakemotionsspecifiedint'ethreedifferentdirec-tionsshouldbestatisticallyindependent,CombinationofModalResonsesWhentheresponsespectrummethodofanalysisisusedtodeterminethedynamicresponseofdampedlinearsystems,themostprobableresponseisobtainedasthesquarerootofthesumofthesquaresoftheresponsesfromindividualmodes.Thus,themostprobablesystemresponse,R,isgivenbyNR(ZR2)1/2whereRistheresponseforthekmodeandNisthenumberofsignificantthmodescLnsideredinthemodalresponsecombination.Whenmodeswithcloselyspacedmodalfrequenciesexist,themethodsdelineatedinRef.4areacceptable.Twomodeshavingfrequencieswithin10Kofeachotherareconsideredasmodeswithcloselyspacedfrequencies.3.7.2-9Rev.1-July1981 Thecollapseofanynon-categoryIstructurewillnotstriketheDG"E"building.Responsespectralpeaksweresmoothedandbroadenedby15%oneachside.(SeeRef.2,PageC-8.)ConstantverticalstaticfactorswerenotusedintheseismicdesignoftheOG"E"building.ConstantverticalstaticfactorswereusedintheseismicdesignofseismicCat'egoryIsubsystemswhereshowntobeappropriate.Themethodusedtoaccountfortorsional,effectsispresentedinRef.1,Page~3.7b-11.

e,9.Otherapproacheswhichgiveanequivalentdegreeof'onservatismtotheabovemethods,andwhichareadequatelyjustifiedarealsoacceptable.InteractionofNon-CateorIStructureswithCateor'StructuresTobeacceptable,theinterfacesbetweenCategoryIandnon-CategoryI.structuresandplantequipmentmustbedesignedforthedynamicloadsanddisplacementsproducedbyboththeCategoryIandnon-CategoryIstructuresandplantequipment.Inaddition,astatementindicatingthefactthatallnon-CategoryIstructuresmeetanyoneofthefollowingrequirementsshouldbeprovided.Ia.Thecollapseofanynon-CategoryIstructurewi11notcausethenon-CategoryIstructuretostrikeaseismicCategoryIstructureorcomponent.b.Thecollapseofanynon-CategoryIstructurewillnotimpairtheintegrityofseismicCategoryIstructuresorcomponents.c.Thenon-CategoryIstructureswi11beanalyzedanddesignedtopreventtheirfailureunderSSEconditionsinamannersuchthatthemarginofsafetyofthesestructuresisequivalenttothatofCategoryIstructures.EffectsofParameterVariationsonFloorResonseSectra10.Considerationshouldbegivenintheanalysistotheeffectsonfloorresponsespectra(e.g.,peakwidthandperiodcoordinates}ofexpectedvariationsofstructuralproperties,dampings,soilproperties,andsoil-structureinteractions.Anyreasonablemethodfordeterminingtheamountofpeakwideningassociatedwiththestructuralfrequencycanbeused,butinnocaseshouldtheamountofpeakwideningbelessthan+lOX.Ifnospecialstudyisperformedforthispurpose,thepeakwidthshouldbeincreasedbyaminimumofk15Ktobeacceptable.(Ref.3)'UseofEuivalentStaticFactorsTheuseofequivalentstaticloadfactorsasverticalresponseloadsfortheseismicdesignofallCategoryIstructures,systems,andcomponentsinlieuoftheuseofaverticalseismicsystemdynamicanalysisisacceptableonlyifitcanbejustifiedthatthestructureisrigidintheverticaldirection.Thecriterionforrigidityisthatthelowestfrequencyintheverticaldirectionismorethan33cps.MethodsUsedtoAccountforTorsionalEffectsAnacceptablemethodoftreatingthetorsionaleffectsintheseismicanalysisofCategoryIstructuresisto.carryoutadynamicanalysiswhichincorporatesthetorsionaldegreesoffreedom.Anacceptablealternative,.ifproperlyjustified,istheuseof'staticfactorstoaccountfortorsionalaccelerationsintheseismicdesignofCategoryIstructuresinlieuoftheuseofacombinedvertical,horizontalandtorsionalsystemdynamicanalysis.Toaccountforaccidentaltorsion,anadditional'eismicityof+5Xofthemaximumbuildingdimensionatthelevelunderconside~ationshallbeassumed.3.7.2-10Rev,1-July1981 12.FortheDG"E"building,comparisonoftheresponsespectraofthetimehistoryandthedesignresponsespectraareshowninFigures3.7b-109through3.7b-'18ofRef.1.ThestructuralaccelerationsoftheDG"E"buildingobtainedfromthemodalresponsespectrumanalysiscomparedcloselywiththoseobtainedfromthetimehistoryanalysis.13..FortheDG"E"facility,the'damping'valuesaretakenfromReg.Guide1.61.Forastructuralsystemconsistingofvariouscomponentshavingdifferentmaterials,compositemodaldampingiscomputedusingequation(4)presentedherein.(SeeRef.1,Page3.7b-l2.)

12.ComarisonofResonsesTheresponsesobtainedfrombothmodalanalysisresponsespectrumandtimehistorymethodsatselectedpointsintypicalCategoryIstructuresshouldbecomparedtodemonstrateapproximateequivalencybetweenthetwomethods.13.AnalsisProcedureforDaminEitherthecompositemodaldampingapproachorthemodalsynthesistechniquecanbeusedtoaccountforelement-associateddamping.Forthecompositemodaldampingapproach,twotechniquesofdetermininganequivalentmodaldampingmatrixorcompositedampingmatrixarecommonlyused.Theyarebasedontheuseofthemassorstiffnessasaweightingfunctioningeneratingthecompositemodaldamping.Theformulationsleadto:Ãj=ke3[M3f+k4KTjK(3)(4)where[K]=assembledstiffnessmatrix,p.=equivalentmodaldampingratioofthejmode,[K],[M]=themodifiedstiffnessormassmatrixconstructedfromelementmatricesformedbytheproductofthedampingratiofortheelementanditsstiffnessormassmatrix,andf/)=jnormalizedmodalvector.thFormodelsthattakethesoil-structureinteractionintoaccountbythe~lumpedsoiIspringapproach,themethoddefinedbyequation(4)isaccept-able.Forfixedbasemodels,eitherequation(3)or(4)maybeused.Othertechniquesbasedonmodalsynthesishavebeendevelopedandareparticularlyusefulwhenmoredetaileddataonthedampingcharacteristicsofstructuralsubsystemsareavailable.Themodalsynthesisanalysisprocedureconsistsof(1)extractionofsufficientmodesfromthestructuremodel,(2)extractionofsufficientmodesfromthefiniteelementsoilmodel,and(3)performanceofacoupledanalysisusingthe,modalsynthesistechnique,whichusesthedataobtainedinsteps(1)and(2)withappro-priatedamp'ingratiosforstructureandsoiIsubsystems.Thismethodisbaseduponsatisfactionofdisplacementcompatibilityandforceequilibriumatthesysteminterfacesandutilizessubsystemeigenvectorsasinternalgeneralizedcoordinates.Thismethodresultsinanonproportionaldampingmatrixforthecompositestructureandequationsofmotionhavetobesolvedbydirectintegrationorbyuncouplingthembyuseofcomplexeigenvectors.3.7.2"11Rev.1-July1981 ThemethodusedtodetermineoverturningmomentsispresentedinRef.1,page3.7b-12.

14.Othertechniqueswhicharea1soconsideredacceptableforestimatingequivalentmodaldampingofasoil-structureinteractionmodelarereviewedonacase-by-casebasis.DeterminationofCateorIStructureOverturninMomentsTobeacceptable,thedeterminationof.thedesignmomentforoverturningshouldincorporatethefollowingitems:a.Threecomponentsofinputmotion.b.Conservativeconsiderationofverticalandlateralseismicforces.REVIEWPROCEDURESForeachareaofreview,thefollowingprocedureisimplemented.Thereviewerwillselectandemphasizematerialfromtheproceduresgivenbelow,as'aybeappropriateforaparticularcase.Thescopeanddepthofreviewproceduresmustbesuchthattheacceptancecriteriadescribedabovearemet.SeismicAnalsisMethods2.ForallCategoryIstructures,systems,andcomponents,theapplicablemethodsofseismicanalysis(responsespectra,timehistory,equivalentstatic1oad)arereviewedtoascertainthatthetechniquesemployedareinaccordancewi,ththeacceptancecriteriaasgiveninsubsectionII.1ofthisSRPsection.IfempiricalmethodsortestsareusedinlieuofanalysisforanyCategoryIstructure,theseareevaluatedtodeterminewhetherornottheassumptionsareconservative,andwhetherthetestprocedureadequatelymodelstheseismicresponse.NaturalFreuenciesandResonseLoads3.Fortheoperatinglicensereview,thesummaryofnaturalfrequenciesandresponseloadsisreviewedforcompliancewiththeacceptancecriteriainsubsectionII.2ofthisSRPsection.ProceduresUsedforAnalticalModelinTheproceduresusedformodelingforseismicsystemanalysesarereviewedtodeterminewhetherthethree-dimensionalcharacteristicsofstructuresareproperlymodeledinaccordancewiththeacceptancecriteriaofsubsec-tionII.3ofthisSRPsection,andallsignificantdegreesoffreedomhavebeenincorporatedinthemodels.Thecriteriafordecouplingofastructure,equipment,orcomponentandanalyzingitseparatelyasasubsystemarereviewedforconformancewiththeacceptancecriteriagiveninsubsectionII.3ofthisSRPsection.Soil-Struct'ureInteractionThemethodsofsoil-structureinteractionanalysisusedareexaminedtodeterminethatthetechniquesemployedareinaccordancewiththeaccept-ancecriteriaasgiveninsubsectionII.4ofthisSRPsection.Typicalmathematicalmodelsforsoil-structureinteractionanalysisarereviewed3.7.2-12Rev.1-July1981 S,

NUREG-0800(FormerlyNUREG-76I087)steerWp,oiACVl0Cyr~rQ>>o%+e~~aSTANDARDREVIEW'PLANOFFICEOFNUCLEARREACTORREGULATIONSECTION3.7.3SEISMICSUBSYSTEMANALYSISREVIEWRESPONSIBILITIESPrimary-Struct'uralEngineeringBranch(SEB)Secondary-NoneI.AREASOFREVIEWThefollowingareasrelatedtotheseismicsubsystemanalysisarereviewed:1.SeismicAnalsisMethodsThe..informationreviewedissimilartothatdescribedinsubsectionI.1ofStandardReviewPlan(SRP)Section3.7.2,butasappliedtoseismicCategoryIsubsystems.2.DeterminationofNumberofEarthuakeCclesCriteriaorproceduresusedtoestablishthenumberofearthquakecyclesduringoneseismiceventandthemaximumnumberofcyclesforwhichapplicableCate-goryIsubsystemsandcomponentsaredesignedarereviewed.3.ProceduresUsedforAnalticalModelinThecriteriaandproceduresusedformodelingtheseismic'subsystemarereviewed.4.BasisforSelectionofFreuenciesAsapplicable,criteriaorproceduresusedtoseparatefundamentalfrequenciesofcomponentsandequipmentfromtheforcingfrequenciesofthesupportstruc-turearereviewed.5.AnalsisProcedureforDaminTheinformationreviewedissimilartothatdescribedinsubsectionI.13ofSRPSection3.7.2,butasappliedtoCategoryIsubsystems.Rev.1-Jul1981USNRCSTANDAROREViEWPLANStandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulationstaffresponsibleforthereviewofapplicationstoconstructandoperatenuclearpowerplants.ThesedocumentsaremadeavailabletothepublicaspartoftheCommission'spolicytoinformthenuclearindustryandthegeneralpublicofregulatoryproceduresandpolicies.StandardreviewplansarenotsubstitutesforregulatoryguidesortheCommission'sregulationsandcompliancewiththemisnotrequired.ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathave.acorrespondingreviewplan.Publishedstandardreviewplanswillberevisedperiodically.asappropriate.toaccommodatecommentsandtoreflectnewinforms.tionandexperience.CommentsandsuggestionsforimprovementwillbeconsideredandshouldbesenttotheU.S.NuclearRegulatoryCommission,OfficeofNuclearReactorRegulation,Washington.D.C.20666.

0 6.ThreeComonentsofEarthuakeMotion7.Theinformationreviewedissimilartothatdescribedin'subsectionofSRPSection3.7.2,butasappliedtoCategoryIsubsystems.CombinationofModelResonses8.TheinformationreviewedissimilartothatdescribedinsubsectionI.7ofSRPSection3.7.2,butasappliedtoCategoryIsubsystems.InteractionofOtherSstemsWithCateorISstems9.Theseismicanalysisprocedurestoaccountfortheseismicmotionofnon-CategoryIsystemsintheseismicdesignofCategoryIsystemsarereviewed.Multi1-SuortedEuimentandComonentswithDistinctInuts10.Thecriteriaandproceduresforseismicanalysisofequip'mentandcompo-nentssupportedatdifferentelevationswithinabuildingandbetweenbuildingswithdistinctinputsarereviewed.UseofEuivalentStaticFactorsTheinformationreviewedissimilartothatdescribedinsubsectionI.10of'SRPSection3.7.2,butasappliedtoCategoryIsubsystems.TorsionalEffectsofEccentricMasses12.Thecriteriaandproceduresthatareusedtoconsiderthetorsionaleffectsofeccentricmassesinseismicsubsystemanalysesarereviewed.CateorIBuriedPiinConduitsandTunnels13.ForCategoryIburiedpiping,conduits,tunnels,andauxiliarysystems,theseismiccriteriaandmethodswhichconsiderthecompliancecharacteristicsofsoilmedia,dynamicpressures,settlementduetoearthquake,anddiffer-entialmovementsatsupportpoints,penetrations,andentrypointsintostructuresprovidedwithanchorsarereviewed.MethodsforSeismicAnalsisofCateorIDamsTheanalyticalmethodsandproceduresthatwillbeusedforseismicanalysisofCategoryIdamsarereviewed.Theassumptionsmade,,theboundaryconditionsused,thehydrodynamiceffectsconsidered,andtheproceduresbywhichstrain-dependentmaterialspropertiesareincorpo-ratedintheanalysisarereviewed.ACCEPTANCECRITERIATheacceptancecriteriafortheareasofreviewdescribedinsubsectionIofthisSRPsectionar'egivenbelow.Othercriteriawhichcanbejustifiedtobeequival'enttoormoreconservativethanthestatedacceptancecriteriamaybeused.SEBacceptsthedesignofsubsystemsthatareimportanttosafetyandmustwithstandtheeffectsofearthquakesiftherelevantrequirementsof~GeneralDesignCriterion(GDC)2(Ref.1)andAppendixAto10CFRPart1003.7.3-2Rev.1-July1981 a)Equipmenthasbeenqualifiedbyanalysisand/ortesting.Bothdynamicanalysismethodandequivalentstaticloadmethodhavebeenused.(SeeRef.1,Section3.10.)SupportsforHVACductsandelectricalracewayhaveusedtheequivalentstaticloadmethod.Forpiping,thisacceptancecriteriaismetbyfollowingRef.3.7b-14(Ref.1)whichcomplieswiththeSRP.b)OneSSEand5OBE'sareconsideredinthedesignofCategory1subsystems.Thesynthetictimehistoryhasadurationof25seconds.Forpiping,thisrequirementissatisfiedasdescribedonPage3.7b-19ofRef.1.c)ThecouplingcriteriagiveninSRP3.7.2,SectionII.3,aswellastheotherguidelinesarefollowedinanalyticalmodeling.(SeealsotheresponsetoSRP3.7.2,SectionII.3.)TheDG"E"facility'spipingismodeledbasedonRef.3.7b-14(Ref.1)whichcomplieswiththeSRP.Mainlineandbranchrunswereanalyzedtogether.Nodecouplingcriteriahadtobeconsidered.ThenumberofmassessatisfythecriteriaofnumberofDDOFequaltotwotimesthenumberofmodeswithfrequencylessthan33Hz.Athreedimensionalmodelwasused.d)e)Componentsandequipmentaredesigned/qualifiedfortheloadsdevelopedfromtheapplicationoftheappropriateDG"E"facility'sfloorresponsespectra.DampingvaluesutilizedfortheDG"E"facilityarethosepresentedinReg.Guide1.61(SeeRef.1,Page3.7b-3).Mostconduitandboxsupportsutilizedampingvaluesassociatedwiththeexistingplantcriteria.Thiswasdone,totakeadvantageofthenumeroustypicalconduit/boxsupportsthatareavailablefortheexistingcriteria.

(Ref.2)concerningmaterialphenomenaarecompliedwith.TherelevantrequirementsofGDC2andAppendixAto10CFRPart100are:1.GeneralDesignCriterion2,asitrelatestotheearthquakesusedinthedesignshouldbethemostsevereonesreportedtohaveaffectedthesiteandsurroundingareawithsufficientmarginforthelimitedaccuracy,quantity,andperiodoftimeinwhichhistoricaldatahavebeenaccumulated.2.AppendixAto10CFRPart100asitrelatestotherequirementthattwoearthquakelevels,thesafeshutdownearthquake(SSE)andtheoperatingbasisearthquake(OBE),beconsideredinthedesignofsafety-relatedstructures,components,andsystems.AppendixAto10CFRPart100furtherstatesthatthedesignusedtoensurethattherequiredsafetyfunctionsaremaintainedduringandafterthevibratorygroundmotionassociatedwiththesafeshutdownearthquakeshallinvolvetheuseofeitherasuitabledynamicanalysisorasuitablequalificationtesttodemonstratethatstructures,systems,andcomponentscanwithstandtheseismicandotherconcurrentloads,exceptwhereitcanbedemonstratedthattheuseofanequivalentstaticloadmethodprovidesadequateconservatism.SpecificcriterianecessarytomeettherelevantrequirementsofGDC2andAppendixAtoPart100areasfollows:b.SeismicAnalsisMethodsTheacceptancecriteriaprovidedinSRPSection3.7.2,subsectionII.1,areapplicable.DeterminationofNumberofEarthuakeCclesC.Duringtheplantlifeatleastonesafeshutdownearthquake(SSE)andfiveoperatingbasisearthquakes(OBE)shouldbeassumed.Thenumberofcyclesperearthquakeshouldbeobtainedfromthesynthetictimehistory(withaminimumdurationof10seconds)usedfor.thesystemanalysis,oraminimumof10maximumstresscyclesperearth-quakemaybeassumed.ProceduresUsedforAnalticalModelind.,e.TheacceptancecriteriaprovidedinSRPSection3.7.2,subsectionII.3,areapplicable.BasisforSelectionofFreuenciesToavoidresonance,thefundamentalfrequenciesofcomponentsandequipmentshouldpreferablybeselectedtobelessthan1/2ormorethantwicethedominantfrequenciesofthesupportstructure;Useofequipmentfrequencieswithinthisrangeisacceptableiftheequipmentis.adequatelydesignedfortheapplicableloads.Anal.sisProcedureforDaminTheacceptancecriteriaprovidedinSRPSection3.7.2,subsectionII.13,areapplicable.3.7.3-3Rev.1-Duly1981 ForseismicCategoryIsubsystemslocatedwithintheDG"E"facilitytheresponseduetothreeorthogonalcomponentsofanearthquakearecombinedby.thesquarerootofthesumofthesquaresmethodperReg.Guide1.92,Rev.1(SeeRef.I,Page3.7b-8)*.g)ForseismicCategoryIsubsystemslocatedwithintheDG"E"facilityandanalyzedbytheresponsespectrummethod,thetotalresponsewasobtainedbyusingthecriteriapresentedinReg.Guide1.92forthecombinationofmodalresponses.(SeeRef.1,Page3.7b-8.}h)Non-CategoryIsubsystemshaveeitherbeenlocated,physicallyisolated,,ordesignedsuchthattheywillnotinterferewiththefunctionofCategoryIsubsystemsduringaseismicevent.TheattachedNon-CategoryIpipingwasanalyzedasaCategoryIpipeinordernottocausefailureofCategoryIsystems.(SeeRef.3.7b-l4ofRef.1.)i}Anupperboundenvelopeofexcitationsatmulti-supportpointsofequipmentisusedinthe'seismicanalysisofequipment.Thepipingsupportedatdifferentelevationswasanalyzedusinganupperboundenvelopeoftheindividualresponsespectra.Inaddition,therelativedisplacementofthesupportpointsduetoequipmentmovementwasconsideredinthemostconservativeway;theabsolutesumoftheabsolutemaximumrelativedisplacements(SeeRef.3.7b-14ofRef.1).*ForthemajorityoftheClass1Econduitroutings,theexistingplantcriteriawasappliedtotakeadvantageofthenumeroustypicalconduit/boxsupportsthat.areavailablefortheexistingcriteria.Thesesupportshavebeendesignedbycombiningthemoresevereresponsefromoneofthehorizontalearthquakeswiththeresponsefromtheverticalearthquakebytheabsolutesummethod.TocompensateforthisvariationfromthemethodologypresentedinReg,Guide1.92,thepermissibleattachmentloadsforthesesupportsarereducedby25K.AnevaluationdeterminedthattypicalexistingsupportsmeettheReg.Guide1.92requirements(i.e.combinationoftheresponsesfromthethreeorthogonalearthquakesbythesquarerootsumofthesquaresmethod)ifthepermissibleattachmentloadsarereducedby25%.

ThreeComonentsofEarthuakeMotionTheacceptancecriteriaprovidedinSRPSection3.7.2,subsectionII.6,areapplicable.CombinationofModalResonsesTheacceptancecriteriaprovidedinSRPSection3.7.2,subsectionII.7,areapplicable.InteractionofOtherSstemsWithCateorISstemsTobeacceptable,eachnon-CategoryIsystemshouldbedesignedtobeisolatedfromanyCategoryIsystembyeitheraconstraintorbarrier,orshouldberemotelylocatedwithregardtotheseismicCategoryIsystem.IfitisnotfeasibleorpracticaltoisolatetheCategoryIsystem,adjacentnon-CategoryIsystemsshouldbeanalyzedaccordingtothesameseismiccriteriaasapplicabletotheCategoryIsystem.Fornon-CategoryIsystemsattachedtoCate-goryIsystems,thedynamiceffectsofthenon-CategoryIsystemsshouldbesimulatedinthemodelingoftheCategoryIsystem.Theattachednon-CategoryIsystems,upto'thefirstanchorbeyondtheinterface,shouldalsobedesignedinsuchamannerthatduringanearthquakeofSSEintensityitwillnotcauseafailureoftheCate=goryIsystem.Multi1-SuortedEuimentandComonentsWithDistinctInutsEquipmentandcomponentsinsomecasesaresupportedatseveralpointsbyeitherasinglestructureortwoseparatestructures.Themotionsoftheprimarystructureorstructuresateachofthesupportpointsmaybequitedifferent.Aconservativeandacceptableapproachforequipmentitemssupportedattwoormorelocationsistouseanupperboundenvelopeofalltheindividualresponsespectrafortheselocationstocalculatemaximuminertialresponsesofmultiply-supporteditems.Inaddi-tion,therelativedisplacementsatthesupportpointsshouldbeconsidered.Conventionalstaticanalysisproceduresareacceptableforthispurpose.Themaximumrelativesupportdisplacementscanbeobtainedfromthestruct'uralresponsecalculationsor,asaconser-vativeapproximation,byusingthefloorresponsespectra.ForthelatteroptionthemaximumdisplacementofeachsupportispredictedbySd'Sg/e,whereSisthespectralaccelerationin"g's"atthehighfrequencyendofthespectrumcurve(which,inturn,isequaltothemaximumflooracceleration),gisthegravityconstant,andeisthefundamentalfrequencyoftheprimarysupportstructureinradianspersecond.Thesupportdisplacementscanthenbeimposedonthesupportediteminthemostunfavorablecombination.Theresponsesduetotheinertiaeffectandrelativedisplacementsshouldbecombinedbytheabsolutesummethod.Inthecaseofmultiplesupportslocatedinasinglestructure,analternateacceptablemethodusingthefloorresponsespectrainvolvesdeterminationofdynamicresponsesduetotheworstsinglefloorres-ponsespectrumselectedfromasetoffloorresponsespectraobtained3.7.3-4Rev.1-July1981 j)ConstantverticalstaticfactorswereusedintheseismicdesignofSeismicCategoryIsubsystemswhereshowntobeappropriate.ConstantverticalstaticfactorsarenotusedintheseismicanalysisofCategory1piping.k)ModelingofseismicCategoryIsubsystems'ctualmassandlocationsareconsidered,thereby,accountingforanyeccentricity.tThelocationofmasspointsinthepipingmodelreflectsthetorsionaleffectsofeccentricmassessuchasvalvesandvalveoperators(SeePage3.7b-22andRef.3-7b-14ofRef.1).1)TheDG"E"buriedCategoryIpipeswereanalyzedinaccordancewithRef.3.7b-13ofRef.1.DuringaSSEevent,thedifferentialdisplacementbetweentheDG"E"buildingandthesurroundingsoilwhichsupportsthepipeswasincludedinthecomputationofpipingstress.m)NoCategoryIdamshavebeenaddedasaresultoftheDG"E"facility.

j~atvariousfloorsandappliedidenticallytoallthefloors,providedthereisnosignificantshiftinfrequenciesofthespectrapeaks.Inaddition,thesupportdisplacementsshouldbeimposedonthesupportediteminthemostunfavorablecombinationusingstaticanalysisprocedures.Inlieuoftheresponsespectrumapproach,timehistoriesofsupportmotionsmaybeusedasexcitationstothesubsystems.Becauseoftheincreasedanalyticaleffortcomparedtotheresponsespectrumtechniques,usuallyonlyamajorequipmentsystemwouldwarrantatimehistoryapproach.Thetimehistoryapproachdoes,however,providemorerealisticresultsinsomecasesascomparedtotheres-ponsespectrumenvelopemethodformultiply"supportedsystems.UseofEuivalentStaticFactorsTheacceptancecriteriaprovidedinSRPSection3.7.2,subsec-tionII.10,areapplicable.k.TorsionalEffectsofEccentricMassesForseismicCategoryIsubsystems,whenthetorsionaleffectofaneccentricmassisjudgedtobesignificant,theeccentricmassand'.itseccentricityshouldbeincludedinthemathematicalmodel.Thecriteriaforjudgingthe'significancewillbereviewedonacase-b~casebasis.1.CateorIBuriedPiinConduitsandTunnelsm.ForCategoryIburiedpiping,conduits,tunnels,andauxiliarysystems,thefollowingitemsshouldbeconsideredintheanalysis:(1}Theinertialeffectsduetoanearthquakeuponburiedsystemsandtunnelsshouldbeadequatelyaccountedforintheanalysis.Incaseofburiedsystemssufficientlyflexiblerelativetothesurroundingorunderlyingsoil,itisacceptabletoassumethatthesystemswillfollowessentiallythedisplacementsand.deformationsthatthesoilwouldhaveifthesystemswereabsent.Procedureswhichtakeintoaccountthephenomenaofwavetravelandwavereflectionincompactingsoildisplacementsfromthegrounddisplacementsareacceptable.(2)Theeffectsofstaticresistanceofthesurroundingsoilonpipingdeformationsordisplacements,differentialmovementsofpipinganchors,bentgeometryandcurvaturechanges,etc.,'shouldbeadequatelyconsidered.Proceduresutilizingtheprinciplesofthetheoryofstructuresonelasticfoundationsareacceptable.(3).Mhenapplicable,theeffectsduetolocalsoilsettlements,soil'.arching,etc.,shouldalsobeconsideredintheanalysis.MethodsforSeismicAnalsisofCateorIOamsFortheanalysisofallCategoryIdamsanappropriateapproachwhichtakesintoconsiderationthe.dynamicnatureofforces(due3.7.3-.5Rev.l-July1981 e

tobothhorizontalandverticalearthquakeloadings),thebehaviorofthedammaterialunderearthquakeloadings,soilstructureinter-actioneffects,andnonlinearstress-strainrelationsforthesoi1,shouldbeused.Analysisofearth-filleddams.shouldincludeanevaluationofdeformations.Forrock-filleddams,theanalyticalprocedureusedwillbereviewedonacase-by-casebasis.III.REVIEWPROCEDURESForeachareaofreview,thefollowingreviewprocedureisfollowed.Thereviewerwillselectandemphasizematerialfromtheproceduresgivenbelow,asmaybeappropriateforaparticularcase.ThereviewproceduresaresuchastosatisfytherequirementsofacceptancecriteriastatedinsubsectionII.1.SeismicAnalsisMethodsTheseismicanalysismethodsarereviewedtodeterminethattheseareinaccordancewiththeacceptancecriteriaofSRPSection3.7.2,subsectionII.l.2.DeterminationofNumberofEarthuakeCclesCriteriaorproceduresusedtoestablishthenumberofearthquakecyclesarereviewedtodeterminethattheyareinaccordancewiththeacceptancecriteriaasgiveninsubsectionII.2ofthisSRPsection.Justificationfor-aeviatingfromtheacceptancecriteriaisrequestedfromtheapplicant,-asnecessary.3.ProceduresUsedforAnalticalModelinThecriteriaandproceduresusedformodelingfortheseismicsubsystemanalysisarereviewedtodeterminethattheseareinaccordancewiththeacceptancecriteriaof.SRPSection3.7.2,subsectionII.3.4.SasisforSelectionofFreuenciesAsapplicable,criteriaorproceduresusedtoseparatefundamentalfre-quenciesofcomponentsandequipmentfromtheforcingfrequenciesofthesupportstructurearereviewedtodeterminecompliancewiththeaccept-ancecriteriaofsubsectionII.4ofthisSRPsection.5.AnalsisProcedureforDaminTheanalysisproceduretoaccountfordampingindifferentelementsofthemodelofacoupledsystemisreviewedtodeterminethatitisinaccordancewiththeacceptancecriteriaofSRPSection3.7.2,subsectionII.13.6.ThreeComonentsofEarthuakeMotionTheproceduresbywhichthethreecomponentsofearthquakemotionarecon-sideredindeterminingtheseismicresponseofsubsystemsarereviewedtodeterminecompliancewiththeacceptancecriteriaofSRPSection3.7.2,subsectionII.6.3.7.3-6Rev.1-July1981 0

NUREG-0800(FormerlyNUREG-76/087)~Ctgsstcur1p0lOCy+J+0+%1<<+STANDARDREVIEWPLANOFFICEOFNUCLEARREACTORREGULATIONSECTION3.8.4OTHERSEISMICCATEGORYISTRUCTURESREVIEWRESPONSIBILITIESPrimary-StructuralEngineeringBranch(SEB)Secondary-NoneI.AREASOFREVIEWThefollowingareasrelatingtoallseismicCategoryIstructuresandothersafety-relatedstructuresthatmaynotbeclassifiedasseismicCategoryI,otherthanthecontainmentanditsinteriorstructures,arereviewed:DescritionoftheStructuresThedescriptiveinformationincludingplansandsectionsofeachstructure,isreviewedtoestablishthatsufficientinformationisprovidedtodefinetheprimarystructuralaspectsandelementsrelieduponforthestructuretoperformthesafety-relatedfunction.Alsoreviewedistherelationshipbetweenadjacentstructuresincludingtheseparationprovidedotstructuralties,ifany.Amongthemajorplantstructuresthatarereviewed,togetherwiththedescriptiveinformationreviewedforeach,arethefollowing:ContainmentEnclosureBuildingThecontainmentenclosurebuilding,whichmaysurroundallorpartoftheprimaryconcreteorsteelcontainmentstructure,isprimarilyintendedtoreduceleakageduringandafteraloss-of-coolant(LOCA)fromwithinthecontainment.Concreteenclosurebuildingsalsoprotecttheprimarycontainment,whichmaybeofsteelorconcrete,fromoutsidehazards.Theenclosurebuildingisusuallyeitheraconcretestructureorastructuralsteelandmetalsidingbuilding.Whereitisaconcretestructure,itusuallyhasthegeometryofthecontainmentand,asapplicable,thedescriptiveinformationreviewedisRev.1-July1981USNRCSTANDARDREVIEWPLANStandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulationstaffresponsibleforthereviewofapplicationstoconstructandoperatenuclearpowerplanta.ThesedocumentsaremadeavailabletothepublicaspartoftheCommission'spolicytoinformthenuclearindustryendthegeneralpublicofregulatoryproceduresandpolicies.StandardreviewplansarenotsubstitutesforregulatoryguidesortheCommission'sregulationsandcompliancewiththamisnotrequired.ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathaveecorrespondingreviewplan.Publishedstandardreviewplanswillberevisedperiodically,asappropriate,toaccommodatecommentsandtoreflectnewinforms.tionandexperience.CommentsandsuggestionsforimprovementwillbeconsideredandshouldbesenttotheU.S.NuclearRegulatoryCommission,OfficeofNuclearReactorRegulation,Washington,O.C.20666.

7.8.Specialconstructiontechniques,ifproposed,arereviewedonacase-by-casebasistodeterminetheireffectsonthestructuralintegrityofthecompletedstructure.Inaddition,theinformationcontainedinitemsa,b,andcofsubsectionI.6ofStandardReviewPlanSection3.8.3isalsoreviewed.TestinandInserviceSurveillanceProramsIfapplicable,anypost-constructiontestingandinservicesurveillanceprogramsarereviewedonacase-by-casebasis.MasonrWallsAreasofreviewpertainingtomasonrywallsshouldinclude,asaminimum,thoseitemsidentifiedinAppendixAtothisSRPsection.SEBcoordinatesotherbranchesevaluationsthatinterfacewithstructuralengineeringaspectsofthereviewasfollows:determinationofstructureswhicharesubjecttoqualityassuranceprogramsinaccordancewiththerequirementsofAppendixBto10CFRPart50isperformedbytheMechanicalEngineeringBranch(MEB)aspartofitsprimaryreviewresponsibilityforSRPSections3.2.1and3.2.2.'EBwillperformitsreviewofsafety-relatedstructuresonthatbasis.De'terminationofpressureloadsfromhighenergylineslocatedinsafetyrelatedstructuresotherthancon-tainmentisperformedbytheAuxiliarySystemsBranch(ASB)asdescribedaspartofitsprimaryreviewresponsibilityforSRPSection3.6.1.SEB-acceptstheloadsthusgeneratedasapprovedbytheASBtobeincludedintheloadcombinationequationsofthisSRPsection.DeterminationofloadsgeneratedduetopressureunderaccidentconditionsisperformedbytheContainmentSystemsBranch(CSB)aspartofitsprimaryreviewrespon"sibilityforSRPSection6.2.1.SEBacceptstheloadsthusgenerated,asapprovedbytheCSBtobeincludedintheloadcombinationsinthisSRPsection.ThereviewforqualityassuranceiscoordinatedandperformedbythegualityAssuranceBranchaspartofitsprimaryreviewresponsibilityforSRPSection17.0.Forthoseareasofreviewidentifiedaboveasbeingreviewedaspartoftheprimaryreviewresponsibilityofotherbranches,theacceptancecriterianecessaryfortherev'iewandtheirmethodsofapplicationarecontainedinthereferencedSRP.sectionofthecorrespondingprimarybranch.ACCEPTANCECRITERIASEBacceptancecriteriaforthedesignofstructuresotherthancontainmentarebasedonmeetingtherelevantrequirementsofthefollowingregulations:A.B.10CFRPart50,f50.55aandGeneralDesignCriterion1astheyrelatetosafetyrelatedstructuresbeingdesigned,fabricated,erected,andtestedtoquality:standardscommensuratewiththeimportanceofthesafetyfunctiontobeperformed.GeneralDesignCriterion2asitrelatestothedesignofthesafety-relatedstructuresbeingcapabletowithstandthemostseverenaturalphenomenasuchaswind,tornadoes,floods,andearthquakesandtheappropriatecombinationofallloads.3.8.4"5Rev.1-July1981

/AdescriptionoftheOG"E"facilityisprovidedinRef.1.ACI349-1980andAISC-1978werefollowedinthedesignoftheOG"E"facility.TheAISC33Kincreaseinallowablestressesforseismicorwindloadingisnotused.(SeeRef.3,Page10.)Reg.Guides1.10,1.15and1.55werewithdrawn(seeUSHRCdistributionlist,Division1,July8,1981).

C.GeneralDesignCriterion4asitrelatestosafety-relatedstructurebeingcapableofwithstandingthedynamiceffectsofequipmentfailuresincludingmissilesandblowdownloadsassociatedwiththelossofcoolantaccidents.D.GeneralDesignCriterion5asitrelatestosharingofstructuresimportanttosafetyunlessitcanbeshownthatsuchsharingwillnotsignificantlyimpairtheirvaliditytoperformtheirsafetyfunctions.E.AppendixBto10CFRPart50asitrelatestothequalityassurancecriteriafornuclearpowerplants.TheRegulatoryGuidesandindustrystandardsidentifiedinitem2ofthissubsectionprovidesinformation,recommendationsandguidanceandingeneraldescribesabasisacceptabletothestaffthatmaybeusedtoimplementtherequirementsof10CFRPart50,950.55aandGDC1,2,4,5andAppendix8to10CFRPart50.Also,specificacceptancecriterianecessarytomeettherelevantrequirementsoftheseregulationsfortheareasofreview,describedinsubsectionIofthisSRPsectionareasfollows:1.DescritionoftheStructuresThedescriptiveinformationintheSARisconsideredacceptableifitmeetstheminimumrequirementssetforthinSection3.8.4.1oftheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants"(Ref.4).Deficientareasofdescriptiveinformationareidentifiedbythereviewerandarequestforadditionalinformationisinitiatedattheapplicationacceptancereview.Neworuniquedesignfeaturesthatarenotspecifi-'callycoveredinthe"StandardFormat..."mayrequireamoredetailedreview.Thereviewerdeterminestheadditionalinformationthatmayberequiredtoaccomplishameaningfulreviewofthestructuralaspectsofsuchneworuniquefeatures.2.AlicableCodesStandardsandSecificationsThedesign,materials,fabrication,erection,inspection,testing,andsurveillance,ifany,ofCategoryIstructuresarecoveredbycodes,standards,andguidesthatareeitherapplicableintheirentiretyorinportionsthereof.Alistofsuchdocumentsisasfollows:TitleACI349"CodeRequirementsforNuclearSafety-RelatedConcreteStructures"AISCReulatorG'uides"SpecificationfortheDesign,Fabrication,andErectionofStructuralSteelforBuildings"1.10Mechanical(Caldweld)SplicesinReinforcingBarsofCategoryIConcreteStructures3.8.4-6Rev.1-July1981 Reg.Guide1.69isnotapplicabletotheD.G."E"facility.ThesametruckexplosionfragmentasthatconsideredinthedesignoftheexistingCategoryIstructures,wasconsideredinthedesignoftheDG"E"building(RefertoPP&L'sresponsetoSRP3.5.1.5).ThedesignoftheDG"E"buildingcomplieswithReg.Guide1.94.Reg.Guide1.115isnotapplicabletotheDG"E"facility.ThedesignoftheDG"E"buildingcomplieswiththeapplicableprovisionsofReg.GuideI.I42.Reg.Guide1.143isnotapplicabletotheDG"E"facility.

1.15l.55l.69TestingofReinforcingBars.forCategoryIConcreteStructuresConcretePlacementinCategoryIStructuresConcreteRadiationShieldsforNuclearPowerPlants1.911.94l.115EvaluationsofExplosionsPostulatedtoOccuronTransportationRoutesNearNuclearPowerPlantsequalityAssuranceRequirementsforInsta1lation,Inspection,andTestingofStructuralConcreteProtectionAgainstLowTrajectoryTurbineHissiles1.142l.143Safety-RelatedConceteStructuresforNuclearPowerPlants(OtherThanReactorVesselsandContainments}DesignGuidanceforRadioactiveWasteManagementSystems,Structures,.andComponentsInstalledinLWRPlants3.LoadsandLoadCombinationsThespecifiedloadsandloadcombinationsareacceptableiffoundtobeinaccordancewiththefollowing:a~LoadsDefinitionsandNomenclatureAllthemajor1oadstobeencounteredortobepostultd1'below.Alaeare>steabl1theloadslssted,howeverarenotnecessarilyap1'-etoallthestructuesandtheirelements.Loadsandtheapplicableapp1cdeendontloadcombinationsforwhicheachstructurehastobdllphecond>talonstowhichthatparticularstructuremaybsubjected.remayeNormalloads,whicharethoseloadstobeencounteredduringnormalplantoperationandshutdown,include:Deadloadsortheirrelatedinternalmomentsandforces,inludinganypermanentequipmentloads.Liveloadsortheirrelatedinternalmomentsandforces,includinganymovableequipmentloadsandotherloadswhichvarywithintensityandoccurrence,suchassoilpressure.ToTherma1effectsand1oadsduringnorma1operatingorshutdownconditions,basedonthemostcriticaltransientorsteadystatecondition.3.8.47Rev.1-July1981 Nohigh-energypipingexistsintheDG"E"facility.

Pipereactionsduringnormaloperatingorshutdownconditions,basedonthemostcriticaltransientorsteady..statecondition.Severeenvironmentalloadsinclude:E-Loadsgeneratedbytheoperatingbasisearthquake.W-Loadsgeneratedbythedesignwindspecifiedfortheplant.Extremeenvironmentalloadsinclude:ElLoadsgeneratedbythesafeshutdownearthquake.Wt-Loadsgeneratedbythedesigntornadospecifiedfortheplant.Tornadoloadsincludeloadsduetothetornadowindpressure,thetornado-createddifferentialpressure,andtotornado-generatedmissiles.Abnormalloads,whicharethoseloadsgeneratedbyapostulatedhigh-energypipebreakaccident,include:P-Pressureequivalentstaticloadwithinoracrossacompartmentgeneratedbythepostulatedbreak,andincludinganappropriatedynamicloadfactortoaccountforthedynamicnatureoftheload.RYrY~JThermalloadsunderthermalconditionsgeneratedbythepostulatedbreakandincludingT.0PipereactionsunderthermalconditionsgeneratedbythepostulatedbreakandincludingR.0Equivalentstaticloadonthestructuregeneratedbythereactiononthebrokenhigh-energypipeduringthepostu-latedbreak,andincludinganappropriatedynamicloadfactortoaccountforthedynamicnatureoftheload.Jetimpingementequivalentstaticloadonastructure'eneratedbythepostulatedbreak,andincludinganappropriatedynamicloadfactortoaccountforthedynamicnatureoftheload.Y-Missileimpactequivalentstaticloadonastructuregeneratedbyorduringthepostulatedbreak,asfrompipewhipping,andincludinganappropriatedynamicloadfactortoaccountforthedynamicnatureoftheload.IndetermininganappropriateequivalentstaticloadforYYandrsjlV,elasto-plasticbehaviormaybeassumedwithappropriateduct-ilityratios,providedexcessivedeflectionswillnotresultinlossoffunctionofanysafety-relatedsystem.3.8.4-8.Rev.1-July1981 TheworkingstressdesignmethodwasnotusedinthedesignoftheDG"E"faci1ity.TheultimatestrengthdesignmethodandtheseloadcombinationswereusedinthedesignoftheDG"E"facility.(SeeRef.3,Page10.)

b.LoadCombinationsforConcreteStructuresForconcretestructures,theloadcombinationsareacceptableiffoundinaccordancewiththefollowing:(i)Forserviceloadconditions,eithertheworkingstressdesign(WSD)methodasoutlinedinACI318Codeorthestrengthdesignmethodmaybeused.(a)IftheWSDmethodisused,thefollowingloadcombinationsshouldbeconsidered:(1)0+L(2)0+L+E(3)0+L+WIfthermalstressesduetoTandRarepresent,thefollowingcombinationsshouldbealamoconsidered:(4)D+L+T+R,00(5)0+L+T+R+E00(6)0+L+T+R+W00BothcasesofLhavingitsfullvalueorbeingcompletelyabsentshouldbechecked.(b)Ifthestrengthdesignmethodisused,thefollowingloadcombinationsshouldbeconsidered:(1)1.40+1.7L(2)1.4D+1.7L+1.9E(3)1.40+1.7L+1.7WIfthermalstressesduetoTandRarepresentthe00tfollowingcombinationsshouldalsobeconsidered:(4)(0.75)(1.4D+1.7L+1.7T+1.7R)00(5)(0.75)(1.40+1.7L+(6)(0.75)(1.40+1.7L+Inaddition,thefollowing(7)1.20+1.9E(8}1.20+1.7W1.9E+1.7T+1.7R}001.7W+1.7T+1.7R)00combinationsshouldbeconsidered:/(ii)Forfactoredloadconditionswhichrepresentextremeenvironmental,abnormal,abnormal/severeenvironmental,and3.8.4"9Rev.1-July1981 Factoredloadcombinations(a)8(b)wereconsidered.Sincenohighenergypipingexists,factoredloadcombinations(c),(d)5(e)werenotconsidered.Inadditionthefollowingloadcombinationwasconsidered.D+L+MmswhereMms=SiteProximityHissileLoads(SeeRef.3,Page10.)Forloadswhicharevariable,thefullrangeofvariationwasconsideredinordertodeterminethemostcriticalcombinationofloading.TheelasticworkingstressdesignmethodandtheseloadcombinationswereusedinthedesignofsteelfortheDG"E"facility.(SeeRef.3,Page11.)

abnormal/extremeenvironmentalconditions,thestrengthdes;gnmethodshouldbeusedandthefollowingloadcombinationsshouldbeconsidered:(a)0+L+T+R+E'0(b)0+L+T+R+Wt00(c}0+L+T+R+15Paa'(d)0+L+T+R+1.25P+1.0(Y+Y.+y)+1.25E<(e)0+L+T+R+1.0P+1.0(Y+Y.+Y)+10f'a'rjmIncombinations(c),(d),and(e),themaximumvaluesofP,T,R,Y.,Y,andY,includinganappropriatedynamicloadfactor,shouldbeusedunlessatime-historyanalysisisper-formedtojustifyotherwise.Combinations(b)and(d)and(e)andthecorrespondingstructuralacceptancecriteriaofsub-sectionII.5ofthisSRPsectionshouldbesatisfiedfirstwithoutthetornadomissileloadin(b)andwithoutYY.r1andYin(d)and(e}.Whenconsideringtheseconcentratedloads,localsectionstrengthcapacitiesmaybeexceededprovidedtherewillbenolossoffunctionofanysafety-relatedsystem.Whereanyloadreducestheeffectsofotherloads,thecorrespondingcoefficientforthatloadshouldbetakenas0.9ifitcanbedemonstratedthattheloadisalwayspresentoroccurssimultaneouslywithotherloads.Otherwisethecoefficientforthatloadshouldbetakenaszero.Wherethestructuraleffectsofdifferentialsettlement,creep,.orshrinkagemaybesignificant,theyshouldbeincludedwiththedeadload,0,asapplicable.LoadCombinationsforSteelStructuresForsteelinteriorstructu'res,theloadcombinationsareacceptableiffoundinaccordancewiththefollowing:(i)Forserviceloadconditions,eithertheelasticworkingstressdesignmethodsofPart1oftheAISCspecifications,ortheplasticdesignmethodsofPart2oftheAISCspecifications,maybeused.(a)Iftheelasticworkingstressdesignmethodsareused,thefollowingloadcombinationsshouldbeconsidered:,(1)0+L(2)0+L+E(3)0+L+W3.8.4-10Rev.1-July1981 ThermalloadsarenotpresentintheOG"E"facility.TheplasticdesignmethodwasnotusedinthedesignoftheOG"E"facility.Factoredloadcombinations(1)5(2)wereconsidered.Sincenohighenergypipingexists,factoredloadcombinations(3),(4)8(5)werenotconsidered.Inadditionthefollowingloadcombinationwasconsidered:0+L+lhos(SeeRef.3,Page11.)

IfthermalstressesduetoTandRarepresent,thefollowingcombinationsshouldbealloconsidered:(4)0+L+T+R00(5)0+L+T+R+E00(6)D+L+T+R+W00(b)Ifplasticdesignmethodsareused,thefollowingloadcombinationsshouldbeconsidered:(1)1;70+1.7L(2)1.70+1.7L+1.7E(3)1.7D+1.7L+1.7WIfthermalstressesduetoTandRarepresent,thefollowingcombinationsshouldalso3econsidered:(4)1.3(D+L+T+R)00(5)13(0+L+E+T+R)00(6)1.3(D+L+W+T+R)00(ii}Forfactoredloadconditionsthefollowingloadcombinationsshouldbeconsidered:(a)Ifelasticworkingstressdesignmethodsareused:(1)0+L+T+R+E'0(2)0+L+T+R+W.oot=(3)0+L+T+R+Paaa(4)0+L+T+'R+P+l.0(Y+Y.+Y)+Eaaa'j,m(5)0+L+T+R+P+1.0(Y+Y.+Y)+E'aa'jm(b)Ifplasticdesignmethodsareused:(1)0+L+T,+R0'(2)0+L+T+R00(3)D+L+T+Raa(4}D+L+T+Raa(5)D+L+T+Raa+E'W+1.5Pa+1.25P+-1.0(Y+Y.+Y)+1.25Earjm+1.0P+1.0(Y+Y+Y)+Ejm3.8.4"llRev.1-July1981 Indeterminingthemostcriticalloadingconditiontobeusedindesign,theabsenceofaloadorloadswasconsideredasappropriate.TheDG"E"facility'sdesignandanalysisprocedurescomplywithACI-349.b.C.TheDG"E"facility'sdesignandanalysisprocedurescomplywithAISCSpec.,exceptthe33%increaseinallowablestressesforseismicorwindloadingisnotfollowed.Thecomputerprograms(NSC/NASTRANandRESPECT)usedfortheDG"E"buildingseismicanalysesmeettherequirementsofsubsectionII.4.eofSRPSection3.8.1.d.AdesigndescriptionreportalongwithvariousdrawingsfortheDG"E"facilityhavebeensubmittedtotheNRC.Additionalinformationisavailableuponrequest.NotapplicabletotheDG"E"facility.

Intheabovefactored1oadcombinations,thermalloadscanbeneglectedwhenitcanbeshownthattheyaresecondaryandself-limitinginnatureandwherethematerialisductile.Incombinations(3),(4),and(5),themaximumvaluesofP,a',R,Y.,Y,andY,inc1udinganappropriatedynamicloada''actor,shouldbeusedunlessatime-historyanalysisisper-formedtojustifyotherwise.Combinations(2),(4)and(5)andthecorrespondingstructuralacceptancecriteriaofsubsec-tionII.5ofthisSRPsectionshouldfirstbesatisfiedwithoutthetornadomissileloadin(2)andwithoutY,Y.,andYin(4)rand(5).Whenconsideringtheseconcentratedloads,localsectionstrengthmaybeexceededprovidedtherewi11benolossoffunctionofanysafety-relatedsystem.Mhereanyloadreducestheeffectsofotherloads,thecorrespondingcoefficientforthatloadshouldbetakenas0.9,ifitcanbedemonstratedthattheloadisalwayspresentoroccurssimultaneouslywithotherloads.Otherwise,thecoefficientforthatloadshouldbetakenaszero.Mherethestructuraleffectofdifferentialsettlementmaybesignificantitshouldbeincludedwiththedeadload,0.4.DesinandAnalsisProcedureslThedesignandanalysisproceduresutilizedforCategoryIstructuresincludingassumptionsonboundaryconditionsandexpectedbehaviorunderloads,areacceptableiffoundinaccordancewiththefollowing;a.Forconcretestructures,theproceduresareinaccordancewithACI-349,"CodeRequirementsforNuclearSafetyRelatedStructures"(Ref.1).b.Forsteelstructures,theproceduresareinaccordancewiththeAISC"Specification..."(Ref.3).c.ComputerprogramsareacceptableifthevalidationprovidedisfoundinaccordancewithproceduresdelineatedinsubsectionII.4.eofSRPSection3.8.1.5.d.DesignreportisconsideredacceptableifitcontainstheinformationspecifiedinAppendixCtothisSRPsection.e.StructuralauditisconductedinaccordancewiththeprovisionsofAppendixBtothisSRPsection.f.DesignofspentfuelpoolandrodsisconsideredacceptablewhentherequirementsofAppendixDtothisSRPsectionaremet.StructuralAccetanceCriteriaForeachoftheloadingcombinationsdelineatedinsubsectionII.3ofthisSRPsection,thefollowingdefinestheallowablelimitswhichconstitutethestructuralacceptancecriteria:3.8.4-12Rev.1-July1981 Thelimitsprovidedhereinwereusedintheloadcombinationsforconcretestructures.(SeeRef.3,Page10.)Thelimitsprovidedhereinwereusedintheloadcombinationsforsteelstructures.(SeeRef.3,Page11.)

InCombinationsforConcrete'aragraphs3.b.(i)(a)(l),(2),and(3)Paragraphs3.b.(i)(a)(4),(5),and(6)Paragraphs3.b.(i)(b)(l),(2),and(3)Paragraphs3.b.(i)(b)(4),(5),and(6)Paragraphs3.b.(i)(6),(7),and(8).Paragraphs3.b.(ii)(a),(b),(c),(d),b.InCombinationsforSteeland~~(e)Llllllts(s)1.3SU(2)UUULimitParagraphsParagraphsParagraphsParagraphsParagraphsParagraphsParagraphsNotes3.c.(i)(a)(1),(2),and(3)....3.c.(i)(a)(4),(5),and(6).3.c.(i)(b)(1),(2),and(3).3.c.(i}(b}(4),(5},and(6)....3.c.(ii)(a)(1),(2),(3),and(4)2.(c)(ii)(a)(4),and(5)(}....3.c.(ii)(b)(l),(2),(3),(4),and(5)S1.5Sy(3)Y1.6S1.7SY(1)S-Forconcretestructures,SistherequiredsectionstrengthbasedontheworkingstressdesignmethodandtheallowablestressesdefinedinACI318Code.Forstructuralsteel,Sistherequiredsectionstrength'asedonelasticdesignmethodsandtheallowablestressesdefinedinPart1oftheAISC"SpecificationfortheDesign,Fabrication,andErectionofStructuralSteelforBuildings"(Ref.3)Theone-thirdincreaseinallowablestressesforconcreteandsteelduetoseismicorwindloadingsisnotpermitted.(2)U-Forconcretestructures,UisthesectionstrengthrequiredtoresistdesignloadsbasedonthestrengthdesignmethodsdescribedinACI349Code(Ref.1).(3)Y(4)Forstructuralsteel,YisthesectionstrengthrequiredtoresistdesignloadsandbasedonplasticdesignmethodsdescribedinPart2oftheAISC"SpecificationfortheDesign,Fabrication,andErectionofStructuralSteelforBuildings"(Ref.3).Forthesetwocombinations,incomputingtherequiredsectionstrength,S,theplasticsectionmodulusofsteelshapes,exceptforthosewhichdonotmeettheAISCcriteriaforcompactsections,maybeused.3.8.4"13Rev.1-July1981 6.NospecialconstructiontechniqueswereusedfortheDG"6"facility,~Weldingofrebarwasnotpermitted.Theapplicablecodesreferredtoherearecompliedwith.7.Nospecialtestingorin-servicesurveillancerequirementsfortheDG"E"structurewererequired.8.NomasonrywallsareusedintheDG"E"facility.

6.7.e.MaterialsualitControlandSecialConstructionTechniuesForCategoryIstructuresoutsidethecontainment,theacceptancecriteriaformaterials,qualitycontrol,andanyspecialconstructiontechniquesareinaccordanc'ewiththecodesandstandardsindicatedinsubsectionI.6ofSRPSection3.8.3,asapplicable.TestinandInserviceSurveillanceReuirementsAtpresenttherearenospecialtestingorinservicesurveillancerequire-mentsforCategoryIstructuresoutsidethecontainment.However,wheresomerequirementsbecomenecessaryforspecialstructures,suchrequirementsarereviewedonacase-by-casebasis.MasonrHallsAcceptancecriteriaformasonrywallsarecontainedinAppendixAtothisSRPsection.REVIEMPROCEDURESThereviewerselectsandemphasizesmaterialfromthereviewproceduresdescribedbelow,asmaybeappropriateforaparticularcase.DescritionoftheStructures2.After,thetypeofstructureanditsfunctionalcharacteristicsareidenti"fied,informationonsimilar,andpreviouslylicensedplantsisobtainedforreference.Suchinformation,whichisavailableinsafetyanalysisreportsandamendmentsofpreviouslicenseapplications,enablesidenti-ficationofdifferencesforthecaseunderreview.Thesedifferencesrequireadditionalscrutinyandevaluation.Newanduniquefeaturesthathavenotbeenusedinthepastareofparticularinterestandarethusexaminedingreaterdetail.TheinformationfurnishedintheSARisreviewedforcompletenessinaccordancewiththe"StandardFormat..."(Ref.4).Adecisionisthenmadewithregardtothesufficiencyofthedescriptiveinformationprovided.Anyadditionalrequiredinformationnotprovidedisrequestedfromtheapplicantatanearlystageofthereviewprocess.AlicableCodesStandardsandSecifications3.Thelistofcodes,standards,guides,andspecificationsiscomparedwiththelistinsubsectionII.2ofthisSRPsection.Thereviewerassureshimselfthattheappropriatecodeorguideisutilizedandthattheapplicableeditionandstatedeffectiveaddendaareacceptable.LoadsandLoadinCombinationsThereviewerverifiesthattheloadsandloadcombinationsareasconserva-tiveasthosespecifiedinsubsectionII.3ofthisSRPsection.Anydeviationsfromtheacceptancecriteriaforloadsand'loadcombinationsthathavenotbeenadequatelyjustifiedareidentifiedasunacceptableandtransmittedtotheapplicant.3.8.4-14Rev.1<<July1981

.0 NUREG4800[FormerlyNUREG-76/OB7)<is"<<urWpe0e>~io)n004***4STANDARDREVIEWPLAN3.8.5FOUNDATIONSREVIEWRESPONSIBILITIESPrimary-StructuralEngineeringBranch(SEB)Secondary-NoneII.AREASOFREVIEWThefollowingareasrelatedtothefoundationsofallseismicCategoryIstructuresarereviewed.1.DescritionoftheFoundationsTheedescriptiveinformation,includingplansandsectionsofeach'oundation,isreviewedtoestablishthatsufficientinformationisprovidedtodefinetheprimarystructuralaspectsande'lementsreliedupontoperformthefoundationfunction.Alsoreviewedistherelationshipbetweenadjacentfoundations,includingthemethodsofseparationprovidedwheresuchseparationisusedtominimizeseismicinteractionbetweenthebuildings.Inparticular,thetypeoffoundationisidentifiedanditsstructuralcharacteristicsareexamined.Amongthevarioustypesoffoundationsreviewedaremat-foundationsandfootings,includingindividualcolumnfootings,combinedfootingssupportingmorethanonecolumn,andwallfootingssupportingbearingwalls.Othertypesoffoundationsthatmayalsobeusedarepilefoundations,drilledcaissons,caissonsforwaterfrontstructures,suchasapumphouse,androckanchorsystems.Thesetypesoffoundationarereviewedonacase-by-casebasis.ThemajorplantCategoryIfoundationsthatarereviewed,togetherwiththedescriptiveinformation,arelistedbelow:Rev.1-July1981USNRCSTANDARDREVIEWPLANStandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulationstaffresponsibleforthereviewofapplicationstoconstructandoperatenuclearpowerplants.ThesedocumentsaremadeavailabletothepublicaspartoftheCommission'spolicytoinformthenuclearindustryandthegeneralpublicofregulatoryproceduresandpollclee.StandardreviewplansarenotsubstitutesforregulatoryguidesortheCommission'sregulationsandcompliancewiththemlsnotrequired.ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotsllsectionsofthaStandardFormathavescorrespondingreviewplan.Publishedstandardreviewplanswillberevisedperiodically,ssappropriate,toaccommodatecommentsandtoreflectnewinforms.tlonendexperience.CommentsandsuggestionsforimprovementwillbeconsideredandshouldbesenttotheU.S.NuclearRegulatoryCominleelon,OfficeofNuclearReactorRegulation,Washington,O.C.20655.

AdescriptionoftheDG"E"facility'sfoundationisprovidedinRef.1,Section3.8.5.1.AdditionalinformationisprovidedinRef.2,Page3-6.

Earthquake(OBE)andtheSafeShutdownEarthquake(SSE),sitedependentfreefieldgroundmotionrecords,soilproperties,etc.,asanintegralpartofthe.seismicanalysisreviewofCategoryIstructures.ThereviewforgualityAssuranceiscoordinatedandperformedbythegualityAssuranceBranchaspartofitsprimaryreviewresponsiblityforSRPSection17.0.Forthoseareasofreviewidentifiedaboveasbeingreviewedaspartoftheprimaryreviewresponsibilityofotherbranches,theacceptancecriterianecessaryforthereviewandtheirmethodsofapplicationarecontainedinthereferencedSRPsectionofthecorrespondingprimarybranch.II.ACCEPTANCECRITERIASEBacceptancecriteriaforthedesignofseismicCategoryIfoundationsarebasedonmeetingtherelevantrequirementsofthefollowingregulations:A.lOCFRPart50,K50.55aandGeneral.DesignCriterion1astheyrelatetosafety-relatedstructuresbeingdesigned,fabricated,erected,andtestedtoqualitystandardscommensuratewiththeimportanceofthesafetyfunctiontobeperformed.8.C.GeneralDesignCriterion2(Ref.3)asitrelatestoappropriateconsiderationsbeinggiventothemostsevereofthenaturalphenomena.thathavebeenhistoricallyreportedforthesiteandsurroundingareawithsufficientmarginforthelimitedaccuracy,quantity,andperiodoftimeinwhichthehistoricaldatahavebeenaccumulated,andtothecombinationsoftheeffectsofnormalandaccidentconditionswiththeeffectsofthenaturalphenomena.GeneralDesignCriterion4(Ref.4)asitrelatestostructures,systems,andcomponentsimportanttosafetybeingappr'opriatelyprotectedagainstdynamiceffects,includingtheeffectsofmissiles,pipewhipping,anddischargingfluids,thatmayresultfromequipmentfailuresandfromeventsandconditionsoutsidethenuclearpowerunit.D.GeneralDesignCriterion5(Ref.5)asitrelatestostructures,systems,andcomponentsimportanttosafetynotbeingsharedamongnuclearpower',units.unlessitcanbeshownthatsuchsharingwillnotsignificantlyimpairtheirabilitytoperformtheirsafetyfunctions.TheRegulatoryGuidesandindustrystandardsidentifiedinitem2ofthissubsectionprovidesinformation,recommendationsandguidanceandingeneraldescribesabasisacceptabletothestaffthatmaybeusedtoimplementtherequirement-of10CFRPart50,K50.55a,andGDC1,2,4,and5.Also,specificacceptance'riterianecessarytomeettheserelevantrequirementsoftheseregulationsfortheareasofreview,describedinsubsectionIofthisSRPSectionareasfollows:1.DescritionoftheFoundationThedescriptiveinformationintheSARisconsideredacceptableifitmeetstheminimumrequirementssetforthinSection3.8.5.1ofRegulatoryGuide1.70,"StandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants."3.8.5-5Rev.1-July1981 Alistofthecodesstandardsandregulationsconsideredinthedesignofthe~DGEfacility'sfoundationisprovidedinRef.2.TheloadsandloadcombinationsusedinthedesignoftheDG"E"foundationcomplywiththoselistedinSubsectionII.Thelistedloadcombinationswereusedtocheckagainstslidingandoverturningduetoearthquakes,windsandtornadosand,againstfloatationduetofloods.(SeeRef.3,Page11.)ea0ThedesignoftheDG"E"facility'sfoundationdoesnotconsidersoil-structureinteractionsinceitisfoundedonsoundbedrock.b.CeHydrodynamicloadsneednot.beconsideredsincetheDG"E"facilityislocatedfarenoughawayfromthecontainmentstructures.DynamicsoilpressurehasbeenconsideredinthedesignoftheDG"E"faci1ity.ThedesignandanalysisproceduresfortheDG"E"facility'sfoundationcomplywithACI-349.TheAISCspecificationisnotapplicableforthedesignandanalysisproceduresusedinthedesignoftheDG"E"facility'sfoundationsinceitisconstructedoutofreinforcedconcrete.

Oeficientareasofdescriptiveinformationareidentifiedbythereviewerandarequestforadditionalinformationisinitiated.Neworuniquedesigrfeaturesthat'arenotspecificallycoveredinthe'"StandardFormat...",requireamoredetailedreview.Thereviewerdeterminestheadditionalinformationrequiredfora,meaningfulreviewofsuchneworuniquedesignfeatures.2.AlicableCodesStandardsandSecificationsThedesign,materials,fabrication,erection,inspection,testing,andsurveillance,ifany,ofseismicCategoryIfoundationsarecoveredbycodes,standards,andguidesthatareeitherapplicableintheirentiretyorinportionsthereof.Alistofsuchdocumentsiscontainedinsubsec-tionI.2oftheSRPSection3.8.3.InadditionthedocumentslistedinsubsectionII.2ofSRPSection3.8.1areacceptableforthecontainmentfoundation.3.LoadsandLoadCombinationsThespecifiedloadsandloadcombinationsusedinthedesignofseismicCategoryIfoundationsareacceptableiffoundtobeinaccordancewiththosecombinationsreferencedinsubsectionII.3ofSRPSection3.8.1forthecontainmentfoundation,andwiththosecombinationslistedinsubsectionII.3ofSRPSection3.8.4forallotherseismicCategoryIfoundations.Inadditiontotheloadcombinationsreferencedabove,thecombinationsusedtocheckagainstslidingandoverturningduetoearthquakes,winds,andtornados,andagainstfloatationduetofloods.arefoundacceptableifinaccordancewiththefollowing:a0b.C.d.e.0+H+E0+H+M0+H+E'+H+M0+F'here0,E,M,E',MareasdefinedinSRPSection3.8.4,Histhelateralearthpressure,andf'sthebouyantforceofthedesignbasisflood.Justificationshouldbeprovidedforincludingliveloadsorportionsthereofinthesecombinations.4.OesinandAnalsisProceduresThedesignandanalysisproceduresusedforseismicCategoryIfoundationsareacceptableiffoundinaccordancewiththefollowina:a~b.C.Thedesignshouldconsiderthesoil-structureinteraction,hydrodynamiceffect,anddynamicsoilpressure.ForseismicCategoryIconcretefoundationsotherthanthecontainmentfoundations,theproceduresareinaccordancewiththeACI-349Code,asaugmentedbyRegulatoryGuidel.142.ForCategoryIsteelfoundations,theproceduresareinaccordancewiththeAISC"Specifications...".3.8.5"6Rev.1-July1981 d.NotapplicabletotheDG"E"facility.e.AdesigndescriptionreportalongwithvariousdrawingsfortheDG"E"facilityhavebeensubmittedtotheNRC.Additionalinformationisavailableuponrequest.5.TheallowablelimitslistedinSubsectionII.5ofSRPSection3.8.4wereusedinthedesignoftheDG"E"foundation.Thelistedfactorsofsafetyagainstoverturning,slidingandfloatationareusedinthedesignoftheDG"E"facility.(SeeRef.3,Page11.)6.ThecriteriapertainingtocontainmentfoundationsisnotapplicablefortheDG"E"facility.NospecialconstructiontechniqueswereusedfortheDG"E"facility'sfoundation.Weldingofrebarwasnotpermitted.Theapplicablecodesreferredtoherearecompliedwith.7.Nospecialtestingorin-servicesurveillancerequirementsfortheDG"E"foundationwererequired.jv/e059c:mg d.Forthecontainmentfoundation,thedesignandanalysisproceduresreferencedinsubsectionII.4ofSRPSection3.8.1areacceptable.,e.ThedesignreportisfoundacceptableifitsatisfiestheguidelinescontainedinAppendixCtoSRPSection3.8.4.f.ThestructuralauditisconductedasdescribedinAppendixBtoSRPSection3.8.4.Fordeterminingtheoverturningmomentduetoanearthquake,thethreecomponentsoftheearthquakeshouldbecombinedinaccordancewithmethodsdescribedinSRPSection3.7:2.Computerprogramsareacceptableifthevalidationprovidedisfoundinaccordancewithproceduresdeline-atedinsubsectionII.4.eofSRPSection3.8.1.5.StructuralAccetanceCriteriaForeachoftheloadingcombinationsreferencedinsubsectionII.3ofthisSRPSection,theallowablelimitswhichconstitutetheacceptancecriteriaarereferencedinsubsectionII.5ofSRPSection3.8.1forthecontainmentfoundation,andarelistedinsubsectionII.5ofSRPSection3.8.4forallotherfoundations.Inaddition,forthefiveadditionalloadcombina-tionsdelineatedinsubsectionII.3ofthisSRPsection,thefactorsof~safetyagainstoverturning,slidingandfloatationareacceptableiffouefinaccordancewiththefollowing:MinimumFactorsofSafetForCombinationa~b.C.d.e.Overturnin1.51.51.11.1~Slid>nFloatation1.51.51.11.16.MaterialsualitControlandSecialConstructionTechniuesForthecontainmentfoundation,theacceptancecriteriaformaterials,qualitycontrol,andanyspecialconstructiontechniquesarereferencedinsubsectionII.6ofSRPSection3,8.1.Forallother.seismicCategoryIfoundations,theacceptancecriteriaaresimilartothosereferencedinsubsectionII.6ofSRPSection3.8.4.7.Testin'andInserviceSurveillanceReuirementsAtpresenttherearenospecialtestingorin-servicesurveillancerequire-'entsforseismicCategoryIfoundationsotherthanthoserequiredforthecontainmentfoundation,whicharecoveredinsubsectionII.7ofSRPSection3.8.1.However,shouldsomerequirementsbecomenecessaryforspecialfoundations,theywillbereviewedonacase-by-casebasis.III.REVIEWPROCEOURESThereviewerselectsandemphasizesmaterialfromthereviewproceduresdescribedbelow,asmaybeappropriateforaparticularcase.3.8.5"7Rev.1-July1981 TheStandbyacPoverSupplySystemconsistsoffourdiesol-qeneratorsets.Thediesel-generatorsaresizedaothatthreedieselscansupplyallthenecessaryPorerrequirexentsforoneunitinthedesiqnbasisaccidentconditionrPlusthenecessarYrequiredloadstoeffectthesafeshutdovnofthesecondunit-Thedieselqenerato.saresPecifiedtostartupandattainratdroltaq4andfrequencyrithin10seconds.Fourindependent4kVenqineeredsafetyfeaturesvitchqearassexbliesareprovidedforeachreactor'nit-Eachdiesel-generatorfeedsanindependent4kybusforeachreactorunit.Eachdiesel-qeneratorstartsautomaticallyuponlofPoverordetectionofanuc7earaccid~ntengineeredsafetyfeaturesystemloadsareapPliedintimesequence.Eachgenerator.operatesindependent7yandParallelinqduringalossofoff-sitepoverorLOCAsign3~2~2~9~32DdQ22"CXXQMXXTachreactorunitisproridedvithfourindependent125Vandtvnindependent250Vdcsystems.Eachdcsystemissuppliedfromaseparatebatt'erybankandbatterycharger.The125VdcsystemsareprovidedtosuPPlystationdccontrolpoveranddcpover'tofourdieselqeneratorsandtheirassociatedsvitchgears.The2507Vdcsystemsareprovidedtosupplypoverrequiredforthelaoadssuchasdcmoto'rdriven.Puxps.andvalves.4JM44rfdggjg/f'arger12'SesuezymQrgczoviueo~ezFrigPZdN4eaRfoc.The125/250-VdcSystemisdesiqnedtosupplyp'overadequateto.satisfytheengineeredsafetyfeatureloadreguirexentioft'eunitviththePostulatedlossofoff-sitepoverandanyconcurrentsingle'failureinthedcsystex.2~2~4~19gq~i,C~qgBeniZemmxl2~rrimate~'~~qtemhResidualHeatRemovalServiceRater.Systemisprovidedtoremovetheheatre)ectedbytheResidualHeatRemovalSystemduringshutdovnoperationandaccidentconditions.1)~)~419gmyggegcyQy~rfggQygygSystemTheEmerqencyServiceRaterSystemsuppliesvatertocoo1thestandbydiesel-ueneratorsandtheFCCSandEngineeredSafetyFeaturesequipmentrooms,andotheressentialheat1cads.

sk'ECyC.,%yJf Pow~rfroxthegenerators~sscepneaupsroac~avioc.'$Mg.vofUnitHo.1andfrox20kyto500kVonUnitHo.2bytheunitxainfransgorxersandsuppliedby.overheadlinestothe230kVand500kVswitchyards,resPectivelY.>.ggygZZeaizigZmerRiuirihuffunXxMmnTheelectricpowerdistributionsystexincludesClassIEandnon-ClassIEacanddcPowersYstexs.TheclassIF,powersystexsuppliesa11safetyrelatedeguiPxent'andsoxenon-classIEgoadswhilethenon-ClassIEsystexsuppliesthebalanceofplanteauipxent.ThoClassIEacsystexforeachunitconsistsoffourindependentLoadgrounsTwoindependentoff-sitepowersystexsprovidethenorxalelectrJ.cPowertothesegroups.Eachloadgroupincludes0.16kvswitchgear,080Vloadcenters,xotorcontrolcentersand120vcontrolandinstruxentpowerpanel.'hevitalacinsfzuxentationandcontrolpowersupplysystexsincludebatterysystexsstaticinvertersVoltageslistedarenoxinalvalues,andallelectricalecruigxentessentialtosafetyisdesignedtoacceptarangeof+10percentinvoltage.pourindependentdieselgeneratorsaresharedbetweenthetwounits.EachdieselgeneratorisprovidedasistandbysourceofexorgnncyPowerforoneofthefourClassIEacloadgroupsiweachuni+.issuxingthetotallossofoff-sitepowerandfailureofonedieselgenerator,therexainingdieselgeneratorshavesufficientcaPacitytooperateallthe-'equipxentnecessarytoPreventunduerisktopublichealthandsafetyintheeventofadesignbasisaccidentononeunitandaforcedshutdownofthesecondunit.pg~zHJ'Cc74k'EM-$EEgl7jgcN'Fb)Thenon-ClassIEacsystexincludes13~8kVswitchgear,0.16kVswitchqear,080Vloadcentersandxotorcontrolcenters.pourindependentClassIE125Vdcbatteriesand.twoindependentClassIE250VdcbatteriesandassociatedbatterychargersProvidedirectcurrentpowerfortheClassIEdcloadsofeachunit.Powerfornon-ClassIEdcloadsissuppliedfr'oxtheClassIE125and250Vbatteriesthroughanadditionalcircuitbreake"'forredundantfaultProtection.gypreal~~'g'k'NMlAfJdcJfD)hesesvstexsarediscussedinChapter8.1~2-26

~4Eyg-z~)~/+/dSV'~~

4 DIESELGENERATOR0BLDG-00jt~~hrruCAkr/(Qa1toc~lgL0Rev.35.07'4SUSOUEHANNASTEAMEI.ECTRICSTATIONUNITS1AND2FINAI.SAFETYANAI.YSISREPORTSITEFACE:STIESP~IFIGURE2.1-2 1'I

\i,S.i1~~~11I-/~1IiDIESEL/I'GENERAtOR'~~~,.-'f1-:i.LBLDG.'ri,<A~.iII1:-.iiI1'Ii:-'I'!II!rr~-~)~,......~I'~iiI,Il\1.~1r.'I,ii>1rt-'rhI)T's":)r~rprr"fIrfi*i,r/F.g~LI~III~Iir>~'~4iT~.-'-WWj'/r~ilai,IqII.II<<ji~/rIE~4~~-i'=.~i..'itwP)~,~fa~iI3507/84SUSQUENANNASTEAMELECTRICSTAUNITS1ANO2FINALSAFETYANALYSISREPOR1SITELOCATIOIIIVITHR-S?-CTOSJ?ROUiVDiaICTOPOCRAPH1F!rttRE

IIsIUlg,g-DIESELGERR"A-D'LDG[/jG'=:.::::0aerrEACTOBBLDG.~seDIESELGENERATOREBLDG.O~tOtJSTRTUQEP>sl(5Rev.35,07/84SUSCUENANNA~ELECTIUCSTATION.UNITS1AND2FINAI.SAFETYANALYSISIIEFOATL~CaweSHOWINGSAFETYRELATFACILITIESONPLANTSITEFIGURE2~4-2~vMht~Ji OISCHAAGKTOOILAETKNTICNtONOANOSUSSEOUKNTLYTOAIVEAVIAANATUAALWATEACOURSEUNITICOOLINGTOWERRAOWASTESUILOINGSKAVICK8AOMINISTRATIONSUILOINGtAAKINGIILOTJrOIESELGNKRATSIQUILOINDIESELGENERATOREBLDG.NOATH~~~~~II~*CIO8CHLOALNE8UILOINCCICULATIWATER~MFHOUTUASINESUILOINGAEACTORSUILOINQRAILAOAOSCALE50050I00FEETUNIT2COOUNGTOWEAI~I~~AAILAOAOLKCKNOSS.STCAMSEWEA0ROOFOAAINIKXTEAIOAIQCATCH8ASINQMANHOI.ESUMtOAAINRev.35,07/84SUSCUEIIANNASTEAldELECTIIICSTATIONUNITS1ANO2FINALSAFETYANALYSISREFORTPLANTCOMPLETESRO'HZNGSTORMDRAZNPZPELAYOUTFIGURE SSES-FSARthonorthandwestbranchesoftheSusquehannaRiver.Post-Oleanadvancesdidnotreachthesitevicinity(Ref.2.5-5and2.'5-6).Peltier<Ref~2.5-5)mappeddiscontinuouskameterracesalongtheSusquehannaRiverinthesitevicinity.Thehighestsuchterraceformedbyicemarginalstreamsoccursatabout650feetabovesealevelatthe.site."Ref.ertoSubsections2.5.1.2.2and2.5.1.2.3.3for.furtherdiscussionofPleistoceneerosionanddepositionatthesite.,SincetheretreatoftheRisconsinanicesheetsfromtheregion,broadregionalupliftappearstohaveoccurred,probablyatleastinpartasaresultofcrustalreboundsubsequenttotheremovaloficeload.Erosionhascontinuedandsoilprofileshaveformed.5f~g5Eggj,peep',ggGeologyg~luytgonSitesubsurfaceexplorationisdescribedanddiscussedinSubsection2.5.4.3.Laboratorytestsoffoundationmaterials,andinsituqeophysicaltestsof.thefoundationmaterialsare.discussedinSubsections2.5.4.2and2.5.5.GeologicmappingofthefinalfoundationsisdescribedinSubsections2.5.1.2.2~2.5.1.2.3and2.5.4.1.3.It'asconcludedfromthesestudiesandevaluationsthatthesitegeologicandfoundationconditionsareentirelvsuitablefortheconstructionandoperationofthenlant.i.2.5.1.).51Ggo~ogicConditionsUnderCateo1StructurAllSeismicCateqory1plantfacilities,exceptthespraypondandtheEnqineeredSafequardServiceRater(ESSW)pumphouseandpipelinearefounded,onbedrock.TheESSMpipelinetrenchisexcavaednartlyinsoilandpartlyinrock.Thelocationof'.hesefacilitiesisshownonFiqure2.5-24.Yhefoundationrockisahard,induratedsiltstone,amemberoftheDevonianNahantanqoFormation.Inthefoundationsareaitisquitemassiveandlitholoqicallyhomogeneous,withbeddinPROFT<c(PeTE.gaenerallynotwelldefined,andlackinqthebeddingplanefissilityusuallyassociatedwithlesswellinduratedshalysilts+onesandsiltyshales.Xnplacestherockexhibitsaslatycleavaqe,furtherevidenceofitsinduratednature.AllCategory1rockfoundationswereexcavatedtounweatheredbedrock.GeologicmapsandsectionsoftheCateqory1excavationsinrockareshowninF>>qures2.5-1and.-19.Noredetaileddiscussionof+hefoundationqeooqiconditionsiscontainedinSubsectionsgQv'5'4povlc(4$Y4Pcc'k,PAApp~lip+~c(~gg4:Qs'0gQA.gypg+8Pev.35,07/84bugs;np~~~(uy'""j"""(SICf5~~c~z.5;Lil) ceer*'f 2.5.1.2.2and2.5.1.2.3.FngineerinqpropertiesofthefoundationrockaredescribedinSubsection2.5.4.over50,000yearsago.Ingeneral,thedepositsarepermeabletopofthesequence.Naturalslopesadjacentor.closetotheprincipalplantstructuresarerelativelyflat.Mostoftheseslopesarecomposed.ofsoil;fewrockslopesoccur(Fiqure2.5-17showsareasofrockoutcrops).SSES-PSARa/Thespraypondissituatedoveraglacialorpreglacial,east-westtrendinqbedrockvalleyasoutlinedbycontoursontopofbedrock(Fiqure2.5-17).Thevalleyisfilledwithdensegravellyandsandyqlacialoutwashandtilldepositswhichattainamaximum,thickness'ofabout110feetadjacenttothespraypondaea.TheyweredepositednolaterthantheOleansubstage(earlyWisconsinan)oftheQisconsinanglaciationwhichoccurredandconsistofasequenceofsand,gravel,andbouldersoverlainbvsandandqravel,overlainin'urnbysiltysand.Theentiresequenceishighlyvariableinqrainsizedistributionandsortinq,andcontainsdiscontinuouspocketsofsimilarmaterials.Asarule,qrainsizedecreasesandsortinqincreasestowardtheThesouthwestern+ipofthespraypondi'scutintobedrockwhiletheremainderwasexcavatedinthesepermeableglacialmaterials.Thethicknessoftheclacialdepositsbeneaththebottoaofthespraypondrangesfromzeroattherockcontactto93feetattheeasternendofthepond.Thespraypondislinedtominimizeseepaqelossestotheunderlyingpermeableglacialdeposits.Thefoundationofthepumphousestructurelocated'atthesoutheasterncornernfthepondisunderlainby35to60feetofqlacialmaterial.TheFSSWcirculationpipelinesbetweenthepumphouseand+heplantintersectbedrockatanelevationof668feet,anproximately260feetsoutheastofthepumphouse(refertoFigure2.5-17A).AqeoloqicmapofthespraypondareaisoresentedonFigure2.5-15.FurtherdiscussionofconditionsattheESSQpumphouseandspraypondarecontainedinSubsections2.5.1.2.2,2.5.3and2.5.5.77lR.cPQVkilt/EJ)l"@~A(7V/ale+p(at2<MIEpJ;vQS't(yaaaIel2,5.$,2,5,2JagQsjde-Pgte))gimelIR"$p;jJ~~~,)fQg6gtnv~fovavp'd'eaveyAci:PgkaNorthofthespraypondtheTrimmersRockFormationformsarelativelysteepridqerisinqapproximately380ft.abovethepond.Thesouth-facingslopeofthisridqeisessentiallyarockslopeunderlainbyflaqqy,resistantsandstonethinlymantledwithsoilandrockfraqments.Theclosestapproachofthisslopetothesn'raypondisalongthenorthernperimeterofthepond;the+oeoftheslope,atelevation710-720feet,is250feetormnefrom+heedqeofthepond(atelevation679feet)-Themaximumslopealonqtheridgeisabout2horizontalto12.5-57 0

SSES-FSAR1,000ft.Thisrockcontainsnaunstablemineralsandprovideshiqhlystablefoundationconditi.ons.soilsatthesiteareglacialinarigin~depositeRmostlybyflovinq@lucia)meltwater,xuchunRertorrentialconditions.The~oilisnnncalrareous.Hostof.therockfragmentsconsistofinduratedsandstones.Theoriqinandmineralogyofthesesoils'ssuchthattheypresentnohazardousconditions(refertoSubsection2.5.1.2.5.7).Afewofthesafety-relatedprincipalplantstructuresarefoundeRansoil.ThesestructuresconsistoftheEngineeredSafequardserviceWater(ESSM)pumphouse,thespraypond,andportionsoftheSeismicCategoryIaipelinelinkingthereactorbuildingto<<hespraypandHostotherplantstructuresareounedanroc.eocationofthesestructuresisshovnonFiqure2.5-24:soilandrockfoundationsareidentifiedonFigure2.5-17A<hestaticanddynamicenqineerinqpropertiesofthesitebedrockandoverhurdensoilsveredeterminedbyfieldinvestigationandlaboratorytetinq.Theresultsoflaboratorytestingofthematerialssampledfromtheprospectsitearecoveredintvoreparts(Bof.2.5-97and2.5-98).AdetailedstudyofthesoilpropertiesatthesiteafthesprayponRandESSWpumphousei.sqiveninSubsection2.5.5.75~421ProueXti.aafZmndnfiaaBackTheCateqnryIreactorbuildinqsanddieselgeneratorbuilding,aswellasthenon-cateqoryIturbineandradwastebuildinqs(seePi.qure2.5-24)arefoundedonunweatheredsiltstonebedrack.Thesiltston~,amemberoftheNahantanqoFormationofDevonianage+'shardanRindurated,andinthefoundationsareaislitholoqicallyhoxoqeneousvithbeddinggenerallyno<<veilRefin~d,andlackinqthebeddingplanefissilityusuallyassociatedvithlessveilinduratedshalysiltstanesandsilty.-.ha1~s.Inplaces<<herockexhibitscleavage,furtherevidenceofi<<sindurateRnature..n>hoaro.aof<<heprinci.palplantstructures,bedrockbeddi.nqwhereobserveRaenerallydipsgently(lessthan104)south;locally,suchasnorthofthecirculatinqwaterpuxphouse,bedsRipslightlynorth~AtthenorthendoftheradvastebuildinganRthenarthsideofthevnit1coolinqtower,beddingdipsxorep~y.35,07j842.5-89 SSES-PSAR'.ha~~resliqhtlylover,byafactorofaho>>t15percent~is,>Vva)u>ofabout14,000fnsanr)Vofabout6,200Fps.1'he.,rinsit>resultsareinqoodaqreementviththelaboratoryi)eterminations.Additionalcross-holeand>>p-holeinsituPeismicvelocit.ymeasurementsveremadeinthespraypondarea(Ref.2.S-99).Resultsofthecross-holeexplorationsatthesitraref>>rtherdiscusserlinSubsections2.5.4.2.2and2.5.4.4.PlateloadtestsverecarriedoutonsoundrocknearthecenteroftheUnits1and2reactorb>>ildingexcavationinthevicinityof'orinn105(refertoPiqure25-18).Plates24,13.5,andRin.indiameto.rveresuhjected,tosuccessivelyincreasingtotalloarlinqsof7,22,and60tonspersquarefoot(tsf),rr.so~rtively.Atotaldeflectionof.062in.occurredvhenthe24in.o]atevasloar)erltoamaximumof.7tsf.Anadditionaldeflectionof0.036in.vasrecordedonsubsequentloadinqto'?2tsf,and'anotherA.O'36in.ofdeflee+iononapplicationofthe<0~sfmaximumload,producinqatotalsettlementof0.134in,forthethree-stageloadinqto60tsf.Recoveryoftherockby:.las..icrebounduponreleaseoftheseloadsvassubstantial:68,75,.and80percentrepeatableelasticrecoverycfthetotalReflectionsvererecorderlafterreleaseofthe7,22,and60tsf1carlinqs,resprctivelv.Additionaldeflectionsduetocyclicloarlinqverasmall.Applicationof14cyclesofloadat7,15,and3pt..fresultedinarlditionalsettlementsofonly0.012,0.00'1,and0.002in..respectively,overthecorrespondinqsinqleloadinqs.Theseresultsareconsistentviththehighmodulusvalu~sardseismicvelocitiesofthefoundationrock,andindicatestructurallystrong,competentmaterialforfoundationsin>>nveatheredrock.i.concludor)fromtheengineerinqpropertiesunvoa<hererlherlrockoftheNahantanqoFormationprovides1rl~auat~supportforthema]orplantsbothsaba'icanddynamiccnnditions.Set+lement~>nd>>sta~iclour)inqisinsiqnific..ant.It.cons:.lasticcnmn~..sionoftheunderlyingrocksand~ssentially>>pnnloadapplication.moreover,t>>rderqorolossofstrenqthanr)villexperiencear)hitiona1settlementunrlerearthq>>ak~loadinq.ofthethattherocktructuresunderofstructuresistsofpseudo-occurshebedrockv'lneq1iaihlesummaryofth~propertiesofthefoundationrockiscompiledinabler2.2,.4.2~2proportiosofFoundationSoils:h~r~s>>itsofdetai]edexplorationofthesoilsinthesprayponda~aareqivcninSubsection2.5.5.onlyinformationont.h~proper+i...-nfthep>>mpho>>scfo>>ndationsoilsisqiveninthiss>>h."-er.~ion.~)i<Ig.-e,s~g'p~Q<~kpcC{.~ge.g/~I~P%~"~'H:A':~Rv.)S,07/84

\a>>(q;as>>g~>>gSix>>lcp~>-.E5-F~~R~~~*>>p'henaturalsoilsattheoumphouesitearenormallyconsolidaterlandconsistpredominantlyofsand,aravel,cobbles,andboulders.-hesoilsarepnor]vstratified,startinqassandorsanrly<<ravelatthesurfareandqradinqtomostlycobblesandbouldersnearherlrork.Therlepthofthesoildepositbelowfoundationarablerona~..fromahout35ftatthesouthenrlcfthepumphous~"oato!itFAfta'.th~northend.~Asubsureoss-sect>onhrouahh'umphousesitisshownonFigure2.5-30cross-s~rtionD-D.Thesoilshelovteoa.nearenr~rlominartlvsanrlyaravelswithlargeamountsofcobblesandhr>>lders.Th~propertiesofthesesandyandgravellysoilsarefollovs:(rainSizeDistribution~tSolQC~Grainsizedistributiontestsweremadeonmostofthesnlit:spoonsamplesforclassificationpurposes.'ieveanrlhydrometeranalysesvereperformedaccordingtnASTNProcerlureP-422.Therangeofgrainsizecurvesis"-~ownnnFia>>re2.S-31.Themeanqrainsize(D50)of+heqravellysoils,whicharethepredominantmaterialh~lovthepumnhousevasfounrltobein+he.rangeof4..Stn2S.0mm.Mhcreverhesandisnresentbelovthepumphouse,theDSOsizisintherangeof0.14to1.0mm.QelatiyeDensityF~]ativerlr;nsityrlataverederivedfromstandardnen>>ratinntr.st.resultsusinqthe6ibbsandHoltzprocedure(pef.2.5-100)~Thisprocedureisvalidfornormallyconsolirlatedsands.Va1>>esofrelativodensityohtainerlinthiswayare..>>mmarizcrlonFiaure2.5-32.Adirectcomparisonofro1ativ~l~nsi~yfrom'tl'aluesqiveninFigure2.5-32a-.rlfromundisturherlsamplesand/orinsitedensityrannnthamad~hecausenorelativedensitytestsv~remaR~.Thesoildeposi+sareglacialinnature.Th~depositsarequitevariableinparticlesizeanrl.,or+inaandconta'ndiscontinuoussandpocketsandaravelnorkots.Grainsizeingeneralincreasesvithd-'p'h.A!'hefoundationlevelofthep!!'mphousemaximumsizesofthopartinch!!s.undis+urbedobtainedinthearavellyinf]uenco+herosultsof<hrymay.notrepresentth<heStandarclnenetrationaiVenOnFigure2.S-33.iclesareintherangeof3touhesamplesco>>ldnothesoils.Thegravelalsovillinsitedensitytestssothatinsiter.onditionasavhole.resistancevorsuselevationisThe'N~valuesvillbepev.15,07/R42.5-q2

SSES-PSARinfluencedhygravel.Secauseofthisthehigherhlovcountsverenotconsideredrepresentativeofsiteconditions.hvalueofW=40vasselectedfordesiqn.,Ofthe()9standard.penetrationtestsmadebneaththefodndltz6nlevelattheESSQPumphouse43.xceeed40blowsperfoot.Ofthe6value"thatwerelessthan40blowsperfootonlyonevalessthan30blovsperfoo?.+>>~.ra~~~~g~g+~$~1~~5QX5X~g;~~g~~pi~+-"~',q~.gJ~4\tJndisturhedsamplingofqravellysoilsvasnotpossible.Therefore,shearstrenqthtestinqvasconductedonlyonthesands.Thesheastrenqthoftheqravellysoilsvast.henconservativelyassumedtoheequaltothatofthesands.Tho.detailsofthetestinqproceduresandselectionofResignstrengthsaregiveninSubsection2.5.5.Theeffectiveanqleofinternalfrictionwasselectedfrom'be+estdatatohe35~(Piqure2.5-34).Thecyclicshearstressratiosatthetvoeffectiveconsolidationpressures1'.0ksfand6.0ksfveredeterminedtobe0.320and0.260,resoectively,for5loadinqcycles(Figure2.5-35,Subsection2.5.'5).Alinearrolationshipwasassumedincomputingcyclicshearstressratiosatothereffee+iveconsolidationDressures~d)ShearRaveVolocitgandSheartloduliCross-hol~shearvavevelocitymeasurementsvereperformedhyteston('eophysicalEngineers,Inc.(ref.2.5-99).CompressionalandshearwavevelocitiesobtainedfromthemeasurementsareqivenonPigure2.5-36.Shearmodu!iverecomputedfromthevaluesofshearvav~volocity:G=-V2gSwho.re:shearmodulus,psfunitveiqht,pcfqravitationalacceleration,ft/sec~ncv.35,07/842.5-93 ll q+~@(~@SSFS-FSARv=shearvav~velocity,fpsAdisc>>ssior.onhowtheshearmodulusisinfluencedbyronfininapre,sure,thes+rainamplitude,andth~"ela+iv~dansi+visaivenin~uhsection2.5.5.2.~helocationofal1fieldexplorationsisshovnnntheplotplan,F'quro2.5-72.n4.Atotalnfapproximately250exploratoryboringswasmadeinsoil~ndrocka-thesiie.Oorinqswereloggedindetail;horin'glogs~recontainedinRef.s.2.5-97,2.5-98and2.5-99andAppendix2.5C.-hesoilswereclassifiedinaccordancewiththeUnified"oilClassificationSvsiem.RockloqsincludeRQD(rockqualitydosiqnation)values.CoringinrockwasperformedusinqNXdo>>".le-tahe'orinaeauipment.Drillinawasconductedinlate1970(100and200seriesborinqs)toestahlishq~reralqeoloqicrelationshipsoverthesiteareaandtodetorminegeneralsoilandrockconditionsatthesite.Amor~inten.iveDoqram(300.seriesborinqs)wasconductedinthe<nrnqof1971todcfinefoundationconditionsintheprincipalolartst"ucturo.sar~a.Four45-degreeangleholesweredrilledin"h~reactoraea.Additionalexploraiiondrillingwasr.ocessary.olocatethesi+efortheSusquehannaRiverintakeandlischaranstructure~(700-B00seriesborinqs),todefinesoilandockcondi+ionsatthe,spraypondandESSQpumphousesite(1100..eriesandsome400seriesborings),andtoinvestigatefoundationconditionsforthecoolingtowers(boringsB1to810)handtherailroadspurandbridgeoverStateHighway11(borings417to455and92atpq40).BeCauSeOftheSafety-rela+edf(a+aaoryT)urcitronofthespraypond>mad=PSSMpumphousethe'xDlorationproaramforthesefacilitieswascomprehensiveard'ncludedsnliispoonandundisturbedsamples,lahoratorytesting,hvdroloaicsurvevs,nermeabilit.ytests,andseismiccross-hole~ndup-holosurveys.Af+ercomple+ionofqeoloqicborinqs,~iaiicwaterlcvelsweremeasuredinsomeoftheboringsdr'iedon~hesite.Pcrforatedplasticpipeswereinstalledinarumblerofthohnrinas'oallowcollectionoffuturewaterleveldata.geesehnrirasare6no>edontheplotplan,Figure2.5-22.Portly-sever.t~stpit~vereexcavatedbybackhoeatselected1ccaiionstoohservesoi.landrockconditions.Twonorth-southtrarchestotallinaover700ftinlenqthwereexcavatedtoobtaininfcrmat'ononphvsicalprop~rties,structure,andvariabilityof>h~near-surfac~materialsatthe.site.LoasofthetestpitsarhtrenthesarecompiledinAppendix2.5C.~ev.35,07/A42.5-94IIAAR):K~)p SSES-FShRgf54)~)~1ggcgygtjonslnRockA]1SnismicCa'.~goryIrockfoundationswerecarriedtoorwellholovunweatheredhedrock.Rockfoundationsfortheturhineandradwastetuildinqs,althoughtheyarenotSeismicCategoryIstruc+uro.,werepreparedaccordingtothesameqeneralornceduresandcri+eriausedinpreparinqtheSeismicCategoryTrockfoundations.Fxcava+.ionofrockproceededhyinitialrippingofanyweatheredsurficialrockmaterialfollovedvherenecessarybylineblastingandpro.splittinqinhnlesdrilledtoprovideslopesof1horizontalto4ver+ical.Fssentiallyverticalslopesinunweatheredrockprovedstablethroughoutthedurationofconstructionandnnspecialprotectivemeasuresvererequired.'eath~redrockwascu~on'slopesof1horizontalto2vertical.~naf~vplaces,vie'~meshvasusedforprotectionofhighervoa~heredrockslopes+hatvereexposedforextendedperiods.hesurfacenftheexcavatedfoundationrockvasscaledtoremove1nosedebrisandJettedvithvaterorairtoremoveloose~raumentsandtopreparethesurfaceforconcrete.Beforeolacemertnfstucturalconcreteorconcretebackfilltodesignelovation,allSeismicCateqoryIfoundationsvereinspectedhyanenqin~erinqgeologisttoverifythesuitabilityoftherockandi.snropersurfacepreparationtoreceiveconcrete.Illfoundationrockhea.inqaSeismicCategoryEstructurewasrvooloqica]lymapoed(seeFigure2.5-183.Foundationsforeachofthecoolinqtowers(nonsAismic-CategoryEs+ruct.ures)consistof40individualpedestalssupportinqthecolumnardex+endedtobedrock.Excavationproceededbycuttinqringtrenchandrrenarinaforeachpedestalasuitablesurfaceinunvca'hiredorpartlyweatheredbedrockbyrippinqorblastin4nares.".ary,followedhvscalinqandsetting..Duringcons.ructionoforircipalplantstructuresfoundedonrock,excavationsextendedbelowthevatertableandsome.~l~waterinqvasroquired.Dueto"thelovpermeabilityoftherock,groundwaterinflovvassmall.Devaterinqwasaccomplish'edhysurfacedrainsandsumos.Th~excavaticnfnr~hespraypond>saskESSQPumphouseasorodominan+1vinsoils.Fxcavationproceededinitiallyhyusinqgnv,15,(}7/R42.5-97~gl~gpa.(w<~4t4h~pg,pQ~~E SS~S-PSALMlarqeear>>hmovingoquipment,thenfinishedbyusingmorerefinedpocedur~s..Oncompletionofexcava<<ion,thesurfacelayerofhena<<uralsoilformationwasrecompactcdasfollows:pnrsoilshavingnotmorethan12percentpassinqtheNn.200..ievasize,80nercentrelativedensityasRcterminedbyASTI02009h)F'rallo<<hersoils,95percentofmaximumdrydensityasdeterminedbyASTI015~7>ps>>Resul>>sar~includedinAppendix2.5C.Thelocationoftestspecimenswithrespecttnthespraypondisshownon)'iqure2.5-~9.AstatisticalanalysisofthetestresultswasmadeandissummarizedonFigure2.5-60.Therequiredcompactionwasm~torexceeded.ADrotectiveconcretema+wasimmediatelyplacedoverthecompactedsoilundetheESSEPumphouseandaminimumof5in.thickreinforcedconcretelinerplacedovertheentirespraypondarea.A11temporarvslopesinsoilwereformedatamaximumslopeof11/2horizontalto1vertical.Thetemporaryslopesinthev'cinityofthe'?SSWpumphous>>vereprotectedwi>>ha3in.layerofconcret~tomaintain<<henatura}soilformationintact.Allpormanen>>slopesinsoilwereformer)ataslopo,of3horizontal.o1vertical...h~~xcava<<ionfor<<ho.SeismicCategory1pioelinesinsoilwascarr.'cdoutsimilarly.Allslopeswerecutat'maximumof11/2.",or'zontalto1vertical.Theminimumclearanceswere1ftben~a<<hhepipeand2ft<<othesiRes.p9JISQY~?.'>.0.5.3packf.illandCompaction<;~neral]v,the,excavated~area,foraminimumdistanceof10ft:-.urrounRina<<hemad'orstructures,washackfilledwithanon-corrosive1eanmixconcreteknownassand-cement-flyashbackfill.minima3amountofbackfillinghastakenplaceusingqranularbackfill,wi<<h<<hoexceptionof<<hespravpondandvicinityaddrcsed1'at~rinthssection.h~Sie'smicCategoryTpipelineswereqenerallybackfilledwith<<)>,~sand-cern<nt-f]yach;othcrwis~qranularmaterialwasused.PurisdS~i.,micCategoryIelectricalductbanksarecomposedofoirfore~.dconcr~>>aencasementsaroundplasticcrmetalducting;>>heconc".ct~~ncas<<m~ntbrinecastdirec+lyaqainstheexcavated2.5-98 J3HSoI4IIPPfILMocLInLPIAopv-I(:egwgpoeycLuceo(g;<<gupcLoo-o-r>~P+Ioccocoq7Viar+kwc(p-oo/c.ALIIJc(erIfooLodMAP'P'tP//f+Q~]ac+oecP,Py~copPr~lQ~4gp-~~a~a7:ou.k~y~~darurooossQRPole('JgoccUNgaoccQapp'IcpwPgaoa..Ttl~/Id'r(Q~'(~j'1'z.s'oc(op~ceclAdIP+2acLcp:II/5eveIce-d/eHspo.ct".Jy~goat~.y.voatsg-ga.ysuM'goop<<(oo7~grocIXui~ederaeon'p"ogh~~~a.v.(o+eooctraf~vao'IL(Jigx2cML(cartc+eoe7PoplAn~g;~TiigQMS/o>~~7'luu)o~~r~/adToLPec.ceA.ct+o5'cecetoo'Ig~plSd(s'calpog'dpcPpc(-cere(gaefpace.kgv-o(dodecg:u~uncocrcLprocL(oPPILuuode.ocg'g/Pev7'Q.

SSHS-PSARlarqeearthmovinqequipment,thenfinishedbyusinqmorerefinedprocedures.Oncompletionofexcavation,thesurfacelayerofihenaturalsoilformationwasrecompactedasfollovs:a)Porsoilshavinqnotmorethan12percent.passingtheNo.200sievesize,80percentrelativedensityasdeterminedbyAST!lD2049h)Forallothersoils,95percentofmaximumdrydensityasdeterminedbyASTID1557Tes+ResultsareincludedinAppendix2.5C.Thelocationoftestsp~cimenswithrespecttothespraypondisshovnonPiqure2.5-59.AstatisticalanalysisofthetestresultsvasmadeandisummarizedonFigure2.5-60.Therequiredcompactionvasmetorexceeded.Aprotectiveconrretema+vasimmediatelyplacedoverthecompactedsoilundertheESSMPumphouseandaminimumof5in.thickreinforcedconcretelinerplacedovertheentirespraypondarea.Alltemporarvslopesinsoilvereformedatamaximumslopeof.11/2horizontalto1vertical.Thetemporaryslopesinthevicinityofthe~SSWpumphousevereprotectedvi+ha3in.layerof,concretetomaintainthenaturalsoilformationintact.Allpormanen+slopesinsoilvereformedataslopeof3horizontal+o1vertical,Tbeexcavationfor+heSeismicCategory1pipelinesinsoilvascarriedoutsimilarly.Allslopesverecutatamaximumof11/2horizontalto1vertical.Theminimumclearancesvere1ftbeneaththepipeand2fttothesides.2.".>.4.5~)BackfillgndComportion'Generallv,theexcavatedarea,foraminimumdistanceof10ftsurroundingthemaiorstructures,vasbackfilledwithanon-corrosiveleanmixconcreteknovnassand-cement-flyashbackfill.Aminima)amountofbarkfillinqhastakenplaceusinggranularbackfill,viththeexreptionofthespraypondandvicinityaddressedlaterinth'ssection.p<gs+vg-heSeismicCategoryTpipelinesveregenerallybackfilledviththesand-cement-flyash;otherwiseqranularmaterialwasused.BuriedSeismicCategoryIelectricalductbanksarecomposedofreinforcedconcre+eencasementsaroundplasticcrmetalducting;'heconcreteencasementbeingcastdirec+lyaqainst'heexcavatedRev.35,07j842.5-98 3pzu+Qa.~n.v~tQp~~~~ELM~4@i(:II)atra-3Ajc-p;(/Qw+L.s~$-'c.~~Jg(p,l,+,~(~)$al~~p-,~:~l

~>tr'rial,'".>>.",m~rinq."pacificationint~n<<.~)os>>hqraqealsoinsn"r!r)forunsuitahl<<'ateria1suchasvnterfrozen,~manicorr)'r1-"t~rir>>.-maerial.s>>chma<<aria),whenfoundrnmovpg,Thes~nh-r~mrr<<-flva.,hheddinqmaterialvaseithermixedattheta<<c)plantornh>ainrdfromanapprovedoffsitasource.T).psan)-r.~m~n-f1yashvasthenplacerlirliftsnotexceerlinq30:.nChi.-i.)ai>>'htnOrUfee<p~rhnur.FOrpipeSthepourWaS).ro>>qh<<<<othep'n~sprinqlinean0vasalloved<<oset.Fo.ducttink.",>h~)er)dinqwasno'.placeduntiltheductbankconcretP.rrachier)'hcrooui".~4strenqth.Sand-cement-flyashwasthennour"rl<<o<<h<trpoftho.d>>cthankandallovedtoset.Analysisof.herrlevantfieldtestsforbeR6inqmaterialisnc)udo)in<<he~umvaryqiveninTable2.5-61.g,5.U,6(go>>ndva<<~rConrli'+ions."n~c'alroa~ur~sforcontolofqroundvaterlevelsbeneaths:~ismicCa<<~ao".yInlantst.ructuresfounrledonrockarenot-.rq>>'red.How~v~r,controlofqroundva<<erlevelsandseepaqesr~~0~i)a<<<<h~snravoonrl;discussionofdesiqncriteriaforahili<<vof<<hospravpondispresrn'tedinSuhsection2.5.5.d>>."ioticvat=rlevelreadinqsverrobtainedinthevicinityofp".in'nalnlant(powerblock)structuresbetweenDecember~n7Pandhuaus'672.Groundwaterfluctuationsranqedfrom1.5i,".4r))).olds209,311,to6.2findrillhole213.maxim>>mqrounrlvaterlevelmeasuredintheplantstructures;)urinath'spreconstructionperior)ranqerlfromapproximatelyf.a.<<h~v~st~dqeofthesiteofthe<<urhinehuildinq,to,>)~n>>'6'ea!thoeas<<edqeofthesiteofthereactor.">>i).);na".(re.e".<<.o.Fiqure2.5-55).Thesrlevelsvore'ohviouslynfl>>~nc>r)hv.hr<<onoqraphichiqhof7U9ftjustvestof'thenf<<h~pnv.rh)nckstructures.However,subsetquent~xr~vatovandnrar)innintheso.aroasprecludewaterlevelsfrom".isirq.nhish~i>>htinthefutue.P>>ri'.>>cnr.",tr>>crior,,>hrareajustvest.of.hepoverhlock-trueur=..va~arxr)~)toelevation710ftorlrss.Excavationsfnrth~fn>>rrla~innsoftheprincipalplantstructuresex<<ender))airv<<h~va<<or<<ab]eandsomeminorrlevato.rinq*vasrequired.>u~<<nt)-rlr:vnnrm~ahi1ityoftherock,qro>>ndvaterinflowwas=mallan).va..cnnfinedtnseopaqefromfractures.Devaterinqvasaccomnli..hr,))vrumninqfromlovareasandsumps.Mh~reseepsv.'r~no'~r)issu)nqfromfracturesintherock,holesvererlillcAir,n>h~fractur~sandpipscaulkedintheholestocontrolvhilrthemudmatwasplaced.Inthefoundationforthe2.5-102 sSFS-PSARreactorhuildina(elevation619ft)andintheturbinecondensatepumppit(atelevation635ft),hydrostnticoressurecausedliftinaofsmallareasofthe3inchthickconcretemudmatthathadheenplacedovetheimperviousmembrane.Approximately20reliefve]lsdriliedthrouqhthemudmatreleasedthepressureardallowsdthemat:+oset;tiebacktoitsoriqinalposition.Theweiahtofthestructuralconcreteslabsubsequent:lyplacedonhismudmatwasmor>thansufficientto'esistanyupliftnressures.Thehiqhostseepsno+edinthefoundationrockdurinqconstructionwereatelevation642ftir.theradvastebuildinq~xcavationandataboutthesameelevatinninthepipet"enchin.hesouthempart:'of.theUnit2turbinehuildinq.Someseepswerealsonotedinthe.foundationrockforthereactorbuildingseleva+ion619ft.andinsumpsbelowthis.Tothewestoftheurbinehuildinqin.hecirculatinqvaterpumphouseexcavation,vatnrwasnotedtoen+ertheexcavationtoanelevationofanprnximat.~ly660.ft.Hvdrostaticliftinq(describedabove)ofimperv'ousmomhranedidnotoccuratfourdationelevetionsahove640ft.gjf5'av+C.hi}d'ona)informationwithreqardtogroundvatermonitorinqandvato,.tzbl~fluctuat.i.onsintheprincipalplartstructuresareaproyidFs1inSubsect:ion2.4.13andTables2.4-31and2.4-32.+htsorwvpond,w~terlevelirformatior.'akenbetveenJuly29,1974andhuaust4,1975,ardfromJanuary<hrouqhMarch1977,indiCateaminimumVa~erleVelfluCtuatiCnCf4.0ftreCOrdeda+nts~rva'r.wells1111and1113,andamaximumfluctuationof7.0<<tin11~5.AdditionaldiscussionofqrcundvaterfluctuatiorsirhoFnravpondareacanhefoundinSuhsect'on2.5.5.Because<<"oun!wa.e".levelss-.thepordwillbehighert.hanthemaximumn"ojecedfloodel~vation(refertoPiaure2.5-38andSubsectior.7.4.t,resp~r+ively),floodinqconditionsv'llnotsiqnificantly><<fr<-whoaroundvaterlevels.4'.~ca1v~!l..wi~hir.+vomil~softheplan'etov~reinventoriedand+heinformaior.isqivonir.Table2.4-22.':rour<'.wa+.flovsavavfromtheprincipalp!antstructuresareah~nor+h,east,hardsouth.Hovevor,thepredominantfairerionofflowi.-totheeastandsoutheasta'radientsof0.05~nd0.0~,r.snect;ively.Theflovrateinbedrockisimater'.>Oh~'..e.-.;-"thar.1ftperdayaSdiSCuSSedinSubSeCtiOn2.4.1l.Groundva".ercontoursatthesiteareshcwnonFigure>.)-'10.n:~rm'ahilitynfthointactbedrockatthef/viir.h~av1raa~pormcahilitvofthesnravnonlis7,000ft/year;hovever,~OnrilerablVeXC-~dr]inSameteStS.FOrsi'eislessthan1qlacialmaterialsatthisvaluehasheenacompletedescrip+ion7..6-103 Qzwavf+~~>40~~4'Qs'~pg<ltawaM+8cu'@:gg~X4lt04%(IW/eAJ7VtgCu~~~(~b:Mvo(<~~er:ep>gvs~;p-Q.73'~~un.f~~+La.mm~~~'h~~~ur~aleWa-~p~~~yo:>>fMrs'"a.~du'~fkypulAa/plpp

'

SSPS-PSAR2,5.4.10Static..".ahi1itv2.5.4.10.1S<aticStahi1ityotSafety-P~1a'<)Sttuct(iresSuppnr+.edongock~hereactorhu'dinqs,controlstructure,andth<diesele'en<rotorhuildinq,allofwhichar<'eismicCateqory-~r>>c+ur~s,ar<foundodonsound,'nweatheredsiltstonebedrock.~heSoismic(.a+eqnryIpipelineslinkinathereactorbuildingswiththespravpondaretrenchedpartlyinsoilandpartlyinbo.drock.>h~strenq+hoftheunweatheredbedrockamplyaccommodatestheload.nf<.heplantprnvidinqhiqhlystablefoundationcnnditions.m<as>>redintheSeismicCateqoryIreactorarea,compressionalv~1ncitinsareintheranqeof14,000to16,000fps;shearwavevelocityranqeshetween6,200and7,600fps.StaticdeFcrmationalmnd>>l'smeasuredonrockcoresvaryhetween3.1nq.4x10~psi(refer~oTahl~2.5-3).measurementsof>>neonfinedcornpressivestrengthofunweathe'redfcun()ationrockfrom<hevicini".vnftheprincipalplantst"octureswerebetween3,650and16,000psi(Table2.5-3).Staticpropertiesof'thefnun.lationnckar~summarizedin>able2.5-5.Loadsinducedbythnnlantstructuresarelessthantheallowablebearinqpressurenf+);ernckandfarbelowtheultimatehearinqcapacity.Thestrue+uralloadswillproducenosiqnificanttotalord'f<r~n+ialsettlementofthefoundations.Safety-r~lat<<dstructuresfoundedonrockweredesiqnedforahvdrosta+itaround'waterloadirqcausedhyamaximumqroundwater,1<~v~1of.665f+.Thisishigherthantheexpectodmaximum,waterlev~l,a<<)iscussedinSuhsection2.4.13.?.'5.4.10."S'.atic~'ahilityofSafetv-R~la~odSt,ucturesSunonr<<donSoil~hema~fon.inqoftheFSSWpumphousois112ft,1onq,64ftwide,and3.ftthick..Thetotaldeadandliveloadsare20,000kipsand2,100kps,resnectively.Thecorresponding>>nitpressuresar2.PAk.".fandA.30ksf,respectively.Thehotoraoft;hemat:~,at,e'ovation6'>7f+..h>ultimat<bearingcapacitvoftho((atcanbeestimatedbythefnl)owinq~q<>ation(Ref.2.5->>5):whi+rP~1/?0<N+D(N"1)fc)2.5-106 SSFS-FSAnultimatehearingcapacjty8=widthofthemat=64Y=unitweiqhtofthesoil=130pcfDf=dapthof,surcharge,conservativelyassumedtobezerohearinqcapacityfactorsYq38,and33,respectively(Fef.2.5-115}correspondinqtog=35~(Subsection2.5.4.2.?)Tho.ul+ima+ahaarinqcanacityofthematfoundationvasfoundtobe158kips/saft.Thefactorofsafetywascomputedtohe51,vhichindicatesrodanqarinoverstrassinqthesupportinqgranularsoil.Therefore,theallowablehearinqpressureandsattlamentofthematfootingwereevaluatedbythemethodoflimi+inqsettlamentssuggestedbyPeck,Hanson,andThornhurn{3~f.2.5-116).Th~allovablehearinqpressureforamaximumso,.+tlamentnottoqxcaad2in.wascomputedbytheformula:vher~:0.22CnCwHallowablehearinqpressures,tsfnumberofblovsparfootinthestandardpenat.ationtestn'Cwcorrectionfactorsfor"N",fortheeffectsofoverburdenpressureandlocationofgroundwatersurfac~co;..ervaiveNvalueof4Avasselectedtorepresentthasoilsl.elow+hama'oundation(El~vation657ft,Fiqure2.5-38).TheStardardPcn<.trationTestshelovthefounda'.ionlevelveremadeanavaraqeoverburdenpressureofabout6,000psf(Figure2.5-39);thecorraspondinqcorrectionfactorCvasobtairedfromFigure19.6ofBaf.2.5-115tobe0.63.Assuminqthatthegroundwatersurfaceisat7ftbelovthematandnosurcharqe,thecorrectionfactorCvascomputedtobe0.55hyequatio194ofFc~f.2.5-115.~hanllnvablebaarinqpressurevascomputedtohe6.0kips/sqfthasadnnthovaluesof,N,C,andCwqivanabove.Atthishoarinqpressure,thesettlementof~thematfoundationshouldheloess',han2in.anRthedifferentialsettlementshouldbelessher1/4.in.Therefore,hvproportion,foradesiqntotalnrossuraof3.1kips/sqft,thecorrespondingmaximumandPav.)5,07/842.5-107 SSFS-FShR~Ij~fnentillsettlementswouldbelessthan1in.and1/2in.,respectv~lv.Settlementinsandardqraveldepnsitsoccursalmostsimultaneouslyvith~heapplicationoflead.Sincemorehen00nercon>nfthetotalloadisdcadload,'henlessthan0.2in.nfsettlom~ntjsexpectedafterthecompletionofthecng.-.~runtinn.'agert"heŽtructuralstabilityoftheESSvpumphouseisdiscussedinSuhection3.8.4and3.8.5.~hesustairedloadfromthespraypondislessthantheveiqhtofoverburdenremoved;therefore,thereisanadequatefactorofsafotyaaainstoverstressinqtheunderlyingsoil.Soilrebounddurinaexcavationir.granularsoilsofthetypefoundatthesnrzvpondisinsiqnificant.h~maximumpredictedelevationofthewatertableisbelovthehaseofth~spravpondandESSMpumphouse;therefore,hydrostaticwaterloadinqswerenotconsideredinthedesignoftheses+ru'ctures.AfulldiscussionofthewatertableinthisvicinityisinSubsection,2.5.5..hela'nralnarthpressureactingonsuhterranear.vallsofsmicCa+eqorvIstructuresvascomput.odassumingqranularhackfillhavinathepropertiesstatedinSubsection2.5.4.5.3.~heco~fficiontofearthpressure"at-rest"vasused.:idditinnallv,thewallsveredesiqnedforsurchargeloadinqsanddynamicsoilpressuesasappropriate.ThetypicalpressurediaqramsandcomhinatiorsareshovnonFiqure2.5-39.>'aterlevelsin'hespraypondareaarediscussedinSubsection2.5.5.1.2.Contoursof'heqroundvatertableinthespraypondareaaresho~nonFigure2.5-38..ProfilesofmeasuedandprospectedprnfilesoftheqroundwatertableheneaththsprayoondareshovnnnFigure2.5-40.2,.'>.4.11DesignCriteria2.5.4.11.1PesiqnCriteriaofSafety-RelatedStructuresnnRock-h~plant';=+ructuresfoundedonrockaredesignedforamaximumaccelerationnf0.10qfromanoccurrenceoftheSSF.event.Fromc.onsideationofitsenqireerinqproperties,itisevidentthatth~foundationroc:kvillnotbemeasurablyaffectedhyseismiclozdinas,andnealiqibleadditionalfoundationsettlementvillaI-.company,thesomaximumpotentialdynamicloads.~hemaximumcnn'emplat~dto>alstaticanddynamicloadsof40tsfareonlya2.5-108 S'awc<<~kt.YksQ]rdcd+yes.cdfscyp/;Rst~.~le4c.rig~~~hRsr:nge~~c.4+LN~~+s~+4d(o~14.b~r:hW~:mu.kWatftc.WaV~g+~<<aMVCESS.TYs.@'~gk7~~W~Ms~~~fW~(c~P.>>k>gPC'fddkp~~+CV4:ck.7SSC.QdaPCSCP+9:vC.g4s,.sdrWJ(/,9as~e(CEPS,k./psylzspcc7'cr.7gc.csrrcspskg.'stsRhgprcssdSrRs0,/~/cSg~SSil/krf-)dspwc7.'acyl~/AZJ4q~p~va+r'.o7IdskGllpdkkgslssscY:llf~ss-cQdt'f4Qw.Qa.7~ArtccQcckdtvtsg>>+4cgsg~771q~c~Pg~~~V~~@-CA/'CdCSCkpMadj~l.-Mc~c.v-aa.~a}x.o)Ys'f~a,gch,-skdkkds@ffcsdiew+'hR7QY2I/lcY+~+~SkddS'PkllLkd5cfffelk~cdrY-asPAlg;Jl)~4o(osQ+y~~srcyoZ3kg~YES(hR/s~~/g~~PSS~q~YPR'-c7'in2g/

SSES-PSAR2~5115peckp,Bf{anson,R~P~.andThron'burn,T~H~,1974,FoundationFnaineerina,2ndHd.,JohnRiley6Sons,Inc.~>Z~WA~~<+ac~Ary<<~7gY5'E'f.~~i8a7.av9ov.35,07/R42.5-151 tr//(EXPLANATIONf/,///////;~<<ggg>>CoraourontoaotueorocslcoraourintenKIIOrect.Sersn'.Kcctecor7I~iI~.)I~~~>Jl/IDIESELGENERATBLDG.t,gQCM~-MA~J'r/(Q~Strue-.UtesornerroonsesnKcategor7I:SasrnKCarertoryIpipeones.~/Jj+SeisrnKcofciof7?"iEfr/~g~~rrrya=R~lnIIIIIIIIIIIIIIShaarngrtenoresstructures~'founcle4cnhearock,em%J(:-)~Ir'ooeco'ooecoSCALEINFEETTIO~~-r:/j~J.'/Jeseeceel%l)IIIIRev.35.OT94~SUSQUEHANNASTEAMELECTAICSTATIONUNITS1ANO2FINALSAFETYANALYSIS8EFOIITEXTEVTO.ROC'OSOrLFOUNOATTONSFIGURE

~AS~I>>>>IIIsT)-.=:.stt4sII'F<<~<<=-///ee<<%>>eee<<sUPr)-.:.iI/ee/'elIl..Is4'"XI(1s4[.I-e,e-~l4-:',l4L-l~<<e~ste4e+eeeee~eI~~ee~4~ee~<~e<<9tT'is~~t<<ee>>e>>e~~/v~eee<<rS<<<<w>>e<<w4<<>>>>S<<<<4~>>eweeeeeew>>>>~ee>>Seee0~<<>>ww<<<<>>eew<<eee<<Sv>><<~IL0~St<<eeet<<ee'Sees<<eSw<<et<<~I<<e<<w>>C<<>>tie/4NOTES1.CEOLOCICSECTIONSARESNOMNINFICURES2.19,2.5-21A.2.5-219,2.~0AND2.5-56.2.CEUPNTSICALEIPLORATIONANOORILLROLESUSERFRRCEOFNTSICALMEASURE-MENTSAlECROONINFIRURE2.5-20,S.RURINC1116AND'l12'IRERENOIOllLLEANOARETHEREFORENOISNOINONTNEPLOtFLAN.A.TElLAPIAKIOORINCMO-2ARENOR'INOFPLOTPLPIAREA;INEIRTRUELOCAtlONSAlEINOICAIEORttNEARROISANOOISTANCESSNOINON'INEFLAN.ssgseessteCico~IAa<<e<<H'-SetwN4--j~J~1'.IIL=sIfiesgU'el.-I(~./t'erej'R~Jll(ll(ll,ill.w(IIl,l,tI~eeI'~Mse4>>iI<<~<<re>>5CaateeICItRseV.35,0t34SUSOVEHANNASTEAAIELECTRICSTATIONUNITS'IANO2FINALSAFETYAJIALYSISAEPORTPL%'LANFIGUREZ,0.22 OVILOVCC~lVvtVIIIdTIS(TIg'r'LCICR.ICIsOTC5LTNCCRIOCs4CATCOCCRRESPOsOSTOTIttPstlttt5yLYANSASTATCCCOROSNATC5TCTCIL~~~8~3+COCvtoastyOCSCLNCRATOROVILOItSOQc(SS)+sOyCRPLOTtIsARKIICCr(SS>WCCsCVROSPROPOSCCI45$5LPVC.TSVCCLCOCNO+CONCNOLOLOCATKNCytCISSLyOICCACOOORPso(RcsLotslSJPtcoRCRPVIITIvtattea~OTVROeeCMLOQICIPsCVst5tIPLANT55CVRITTPCstCCPIANTg-./I4O'LINCR.R.:IIIIIIIJs~t~(:~~~~g70tORAPtasCSCALCtovEtt~gy~ANASDRILLEOBORINGLOCATIONPLANOltstsvCHIICgrttg.svvvASSNONNFIGUREI~STLyAISAIICIIGI8LIGIII'OOMI'ANSVCCVOVSPtASTCAVCLCCTACSTJTKNN(WfV(RCCNCT4(S(LC(K(GATORfJCCITT

@nil(lllllllllllllllllllf(tIII(IIIIIIIIIIfP".IIIIII(III~IIIIIft((((((aw(l(((((l((((((((((((l((((((((((((((((l(IrYrrcr1I~'r//j,,J)'rJr~I/tITT,"I~47~r!II~I~'llt)()'grESrvrVvrrverrvrlrf~v~k4tf~~vr(~v(GENERATORE)Illc1r(.(i.-'.1III.(s(sI~~r.~(~(~.I>>~rr~'~~Unsg~)1.rrI~,(l~El'~lrr=1If~rr'rrr+~~~rII~~~~~~/~>>~rr4~I'I(arrlrrrrr(r,rrrrr1J~rrRev.35,pal~.ENANNASTEAAtELECTR!CSTATIONUNITS1ANQSRNALSAFETYA1(ALYSISREPORT1FIGVRE2~5

0I>><<e0~lIglIi00T'F.,/<</w./,///<<r;/'//.///tJY/000~Ketrt<<<<te<<0>>0~liteI'00.l/J/gE'tIfl/'I'~0~~/07te0JtIIIItlIt)~,l~I'4ILIfi',Qi000<<K<<tee~.a.0<<~<<0L~>>I<<e>><<fa)II>>Kte~e<<tttt0~<<K~I~tDIEEEIGENERATORE'LDG.'yf:g~:~piKKete~0,<<>>teeertetee<<er'<<000<<I000~teeee~e04c~r~t4JC0e~0<<I<<lettre~0<<it~0~+000~oocrtouD>ESC~POEc.OILSTCRAGETAAfKFINISAEO6&AOEEIQP7bIESEE,I<<crVEIRATl7'.:8LD4.-:;,IhIATI/IerALSO/C~gg0~0e~/-(LL...IJOEL'EC'7ICWAI.7;5.C3eCJC00000tttaWlHtKW~00>>eee<<<<0(Kte0etreJettee<<0~t<<eeeteet~teerrteej>><<<<ee<<emJr~'I'ev.35,07/84SUSCUEIIANNASTEAEEELECTRICSTATIONUNITSIANO2FINALSAFFTYANALYSISREPORTLOCATIONAIDLIMITSOFE:(CAVATIONFILLANDBACXFILLFORCLASSISTRUCTURESFICURE2447 1'

~I~~Sl~I%$,0~'45,1I4fJ~4Ir~EJ~\~I~4~rIOOIO~P$10CR!EQSOS5%55earaaxrn&%%%%%%%%WHNHRRQQQ%%%%%%SHE&WHHWWQQA%WHHWRRQRSSSOSOOSS%%%%RRSQQWMH&%RHHRBHQQR SANDY6RAYEL~~4WITHCOOOLESANOOOIADER5'*'t7BHAI.LSANOI~bOIlDESbOLUNDYCRAYELWITHCODDLE%AHOaXLOERS,tSlFINETOCOARSEOANDTRACESLT,TRACE~-:-:=-"---:--"jy-;gII@~P;,L~M>>~~~-..~gIÃ'--'g(S.s.qtII(5~"I'wee~'aaronIOTTOHOFHOLESECTION4-APREiIOVBLVDeLLEOErrOTHERS)BOIHS60Ra6OCRINCHOI5OmIOeSANDANDCRAYELEJUSTINCCRADCECRINCNO.5FILL(FINESAND,TRACEBLT).FREE.TDCOARSESANDANDSRAVELWITHBHNLOOULDLII5.5ANDAHD%RAVELOCCABIONALCOOOLESJOOULOERSFINCTDCOARSESANOWITHSHALLEOILOCRSoDORINOt4X4RU.(CRUSHEDSTCNCOORINCAI4)FivE&H5.I2b(PREVIOUSLYDRILLEDSfOTI6RB)FINEBANDBRAV54NO,GRAVELANDDOULDERSLAl4DCOOBLES5~F~TOCOAR5E5AND.AhCICRAVEL()ARICeRAYSILTSTDNE~sBo&'.s:sDARIIoRAYSILTSTDNEFINETOCO4IIQEBANDTIIACLbaT>~CCCRAIKLDARKQeAVBILTBTONEeIDOTTYOFHOLEeEL.Sea.SI~ISECTIC)N6-OOTTDHOFHOLY0ELS55.0'~tmeevai~gQy~~~~+~0sagpss

~~~~IIIII~NmrrraaXaaaaaeaeeermmmeaeaeam%%LWLL&RlXW&WSRLLLL%%%%%%WRRRRRHHHKR%%%%%IN%l%%88~8%XmarraaaaaaaK%KlENZRLEK%ESKREHKER~muaaaraan.NNNSSRE%%%%%RKQTRRL%%%%&%RRW%%4%NNRRBR%5%5%~KSLRLLWW&WW&eaaarXaAAAaaUNRRLHAAXAAitLrrrrreaaal5%REESRR16KlK1KRERERARSLRLLHXXXWWeaaraIWAAaeX,%ILRSIQXAAQR5%LRLLRHRRHXESWWNIWRSN%5NWXIWTRLLW&WWW&SHI%FHR4I5%8%E~RRREWX%%I5IILXLXRR55ILIIQXXXWX!K$585ERHHX%%KSILSIHXAAAXN5588I%X%X%X,l5%%%5505%lNSWWWW 4

igitCLIENTCONTRACTORGibba6Hill.Inc.IRAQ>'eIIll$,DISEQhfA$.CahST>UCTQRSROJECTNEE.44547BORINGNEE.1SHEET2PF2,YBORINGLOCATION'OREMAN-DRILLERJRTxLldePROJECTNAMEaciitiesINSPECTORT.C.ShiehLOCATIONBerwick,Pa.SURFACEELEV.WATERLEVELDATEHOURSCASINGDEPTHCASINGSAMPLERCOREBAR.TYPESIZEI.D.~~E"HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"TIMEDATEDRILLINGSTARTDRILLS~FINISHXXIlaJOlL0O<<nox3..u.0JEAIV%4SAMPLE(QBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)I2-IB0-66-I2EA0o<vi>~>9EhSOILDESCRIPTIONANDREMARKS0.4.5REC.33SandyGRAVEL,withCOBBLESandB5tJLDBRS>>234.5'5DarkgraySZLTSTONE.4044.5RECRQD9044.5'ottomofhole644.5'>Aj~WlFf.F5FS>E>Fl.60NOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'FT.CODING:U.S.C.S.*IINIFIEDSOILCLASSIFICATIONSYSTEMH.S.A.HOLLOWSTEMAUGERA-AUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBEDSAMPLETsTHINWALLV=VANESHEAR 14lVllIISkilDWSPR~"I~1S.'III,<Weal'~>~.Bf<P'I)9DE~La."cllII~,lIi~<I~I

~~~~~~Ii~~~I~.-1IIRCl.'NQLQQO&W&WW&558@%58%5$%WR%5%%amaaraeaaaaaaaararmaaaaaQNRRLRRRRWRKSLSLQRRR%%%eesmmreammeesamR%55IQQLSLQSRSRLQQN%%&HW,5%LLS8%%%%%%5%LRQQQRRRRIRESRE55iQKKRK5%9%5'%lSLL58%%%%%%5%8%88%WW&W&%%ERR5%%%%WW8%%%%%RERRRW&&WE%OQQQ&&%&W&8%%%%%&WW&W&iiaarammmmmm.SIQLLQLLRQQQ8%QQRQWW&WWWIIHHN%%5%8%%R%%5RS58C~INSSQRWWW&WWE%8%88%&W&&WSSRHNCSREEEW&&WRRRL88%%%%%%lWOLLQHWW&&&5588LQA%%%%%aeraraeaexaa,5t%CJWW&CR4MHSHKBIRE%~'~~~~

~s~s"~'.I.SiQddl't6M~5rrJfAS CLIENTGibbs8Hill./nc.IFEGIFGIIRS.OISIGFIIRS,COFISTRUCIORSBORINGNo.~SHEET~OF~:CONTRACTOR.'OJECTNo.FOREMAN-DRILLERJ.R-TrudePROJECTNAMEaitiesBORINGLOCATION:INSPECTORT.C.ShiehLOCATIONBerwick,Pa.SURFACEKLEV.WATERLEVELDATEHOURSCASINGDEPTHCASINGSAMPLERCOREBAR.TYPESITELD.~~3CG--NE-TIMEHAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"DATEDRILLINGSTARTDRILLINGFINISHZIWWOIS30IO<EFIOZyIE.NoSAMPI.EW0SBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)I2-186-I206plIOOPSOILDESCRIPTIONANOREMARKS579832727SS24'.018213039ReddishbrownandgrayfinetocoarseSAND,tracesilt,traceclay.Gradingwithsmallboulders.36.0'036.0-38.C.100%QD.80%DarkgraySZLTSTONE-QD.97.5460'ottomofhole646.0'0lI~60NOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.CODING:U.S.C,S.UNIFIEOSOILCLASSIFICATIONSYSTEMH.S.A.=HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBEDSAMPLET=THINWALLV=VANESHEAR vs~sae0'.-.p..:=".;"I',IJJIN"'-+HSING'lK.?.'~.:sieii2-'."li(7',i~'(IQ'(i~P4H'Jo'"zehXb<l' nPoweraLihtCo.ClIENTCONTRACTORgFOREMAN-DRILLERJ.R.TrudeINSPECTORT.C.ShiehWATERLEVEI.27OsDATE~119/83HOURSCASINGDEPTHGibbs8Hill,Inc.j4MI'ROOKSSGFYCISSCO'VSlESUMTORSROJECTNo.44547PROJECTNAMELOCATIONBerwick,Pa.ac'tiesCASINGSAMPLERCOREBAR.TYPESiZEI.O.HAMMERW,T.300lbs.140lbs.BITHAMMERFALL18"30"BORINGN.~SHEET1OF'BORINGLOCATION:N.341341.000.00SURFACEELEV.669.51'RILLINGDRILLINGSTARTFINISH,TIME~Am~2:00.m.DATEll/7/83'l/9/83zI-xleId4$ClILIO<(noKyuCFECEgO40CLSAMPLETHEC.BOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)0-66-I212-IBQlpoC9PKaWSOILDESCRIPTIONANDREMARKS371030292SS4N24'.0'5.0'7252757151013.PaLL(DarkgrayfinetocoarseSANDwithcrushedstone).(Hitconcretebetween30'nd40')5.0'ellowishbrownsiltyfineSAND.10579.7'51793122.0-15.00C.SandyGRAVELwithcobblesandboulders-.~iirIg2125.0-20.C.221152513710011020.0-2PSC.583013125.0-30.C.~20COOING:U.SCS.=UNIFIEDSOILCLASSIFICATIONSYSTEMH.S.A.HOLLOWSTEMAUGERAAUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBEDSAMPLET=THINWALLV=VANESHEARNOTEKUSEDIN.CASINGTOFT.,TNENIN.CASINGTO'T.

~A"%14a&gt+llM~4~)N!JSlfU>i"fARl-f."'.<rp"TQg~fIgtrstlI.ith.4t'Ps'I44Vg nnPower&LihtCo.CLIENTCONTRACTORGibbs8Hill,lric.E'EGItsEEEISOES'G'oE+S.COPISTEEUCTOIISROJECTNEE,44547GORINGNo.~SHEET~OF2BORINGLOCATION:FOREMAN-DRILLERJ.R.TrudePRO~ECTNAMEactiesINSPECTORT.C.ShiehWATERLEVELDATEHOURSCASINGDEPTHLOCATIONBerwick,Pa.SURFACEEI.EV.ORII.LING'RILLING'TARTFINISHCASINGSAMPLERCOREBAR.TYPESIZEI.O:~~UJ!-~TIMEHAMMERW.T.300lbs.140lbs.BITHAMMDATEXXI0OISIOeETIOAC3,LSCllOQ0C)0SAMPLEISIIBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)Ia-IB0-66-IRMIIO~OKaIAIC/IOOCOEO)X5S2TSOILDESCRIPTIONANDREMARKS30170160SS3"31.253650/1SandyGRAVELwithCobblesandboulders.179167SS0"3260'/0'0'EC~6241701701761.0-46.REC.6.0-4.5'EC47.5'arkgraySILTSTONE.47.5-5.0'EC.RQD.~10%~86053.0-57.QD~109357.5'ottomofhole857.5'OTES:USEDIN.CASINGTOFT.,THENIN.CASINGTD'T.CODING:U.S.C,S.=UNIFIEDSOILCLASSIFICATIONSYSTEMH.S.A.-HOLLOWSTEMAUGERAAUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBEDSAMPLET=THINWALLV=VANESHEAR

PCVj'bHJdP.=iPIHF.C'-"v~iV-'I&vsQl'~'t~IV@f1'Q0,Dp Penn.Power6LightCo.CLIENTCONTRACTORGibbe8Hill,inc.E'S~."GERSOESIGAEISS.COFEST4VBOORSOJECTNo.44547SDRINGNo.~SHEET~OF~BORINGLOCATION
FOREMAN"DRILLERJ.RTrudePROJECTNAMEace4492INSPECTORT.C.ShiehWATERLEVEL18.5'4.6'ATE~1117~1121HOURSCASINGDEPTHLOCATIONBerw<<ks>>-SURFACEKLKV.674'9sCASINGSAMPLERCOREBAR.DRILLINGFINISHDRILLINGSTART11/17/83TYPESITEI.D.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"DATEI+noKyVESTQgVCD4SAMPLEECBLOWSPER6IN.ONSAMPLER(FORCEONTUBE)BOT.0-6I2-IB6-I2gIg0CSEA,SOILDESCRIPTIONANDREMARKS2024'0'9625870PILL(DarkgrayfinetocoarseSANDandcrushedstone).40465059222SS24'0'037I35417.0'eddishgrayfinetocoarseSAND,gradingwithsmallboulders.1030242.067694061iiiI~I207167275SS2422.01313141925811200306SS2427.01213121727.0'OULDERS.30.0'OOING:U.S.C.S.*UNIFIEDSOILCLASSIFICATIONSYSTEMH.S.A.=HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERVD*UNDISTURBEDSAMPLE'=THINWALLV=VANESHEARNOTES:USEDIN.CASINGTOFT.,THENINCASING.TO'T.I~~

0OK!JJl&.H8tHi~90~~<<IEI4)P.I1II1CJtIlkHWAPAIWMPW~A CLIENTCONTRACTORGibbs8Hill,inc;C'GQINCCTCSOSSIQ'SIAS,COFGSZAUCTOASROJECTNo.44547GORINGNo.~SHEET2OF2BORINGLOCATION:FOREMAN-DRILLERJ.R.TriodePROJECTNAMEacilitiesINSPECTORT.C.ShiehLOCATIONBerwick,Pa.SURFACEELEV.WATERLEVELDATEHOURSCASINGDEPTHCASINGSAMPLERCOREBAR.TYPESI2EI.D.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL1B"30"TIMEDATEDRILLINGSTART.DRILLINGFINISHXIWWo4.lO<cnoZ3:CA.CF)OC5vco4NoSAMPLEWo.BOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)I2-IB0-66-12pllOOOXCA,CO0OCclcri~%coSOlLDESCRIPTIONANDREMARKS301174136ReddishbrownfinetocoarseSAND,tracesilt,tracegravel.3513012716124ll37.2630395637.3'0DarkgraySILTSTONE7.3'47.REC~~9747.3'ottomofholels47.3'060NOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.CODING:U.S.C.S.~UNIFIEOSOIL'CLASSIFICATIONSYSTEMH.S.A.HOLLOWSTEMAUGERA=AUGERSSRSPLITSPOONSAMPLERUD4UNDISTURBEDSAMPLET=THINWALLV=VANESHEAR E-c~M!J.ll~~Hc.>H,CB'i&i%"'DGW"<>4lll0'I nnPower6LihtCo.CLIENTCONTRACTORoxsanGibbs8Hill.Inc.IVviFAEERS,DfSIGFEI<$.COFSST<VCTORSROJECTNo.44547GORINGNo.~SHEET2OF2BORINGLOCATION:FOREMAN-DRILLERJ.R.TrudeINSPECTORT.C.ShiehI'ROJECTNAMELOCATIONBerwick,Pa.aciities341360.752402.84SURFACEELEV.671.00'ATERLEVEL17.0'5.9'ATE'~1683AFTER'OURS~C1NGCASINGDEPTHRVCCASINGSAMPLERCOREBAR.TYPESIZEI.D.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"TIMEDATEDRILLINGSTARTDRILLINGFINISH11/16/83I2l-o.CEU0I-C2ecnOZgbEYEQO'2WcJcloNoSAMPLEBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)6-I212-IB06EYE0vi+SOILDESCRIPTIONANDREMARKSFILL'(YellowishbrownfineSAND,tracesilt).501SS31703.0'7563136403.0'eddishandgrayishbrownfinetocoarseSANDandGRAVEL,withsmallboulders.10791103SS4ls12.'0272739'991251614SS24ss7.0'6293146201201305SS20'.7'537460/2'001196SS24'.01926313030300'OTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.CODING:U.SCS.~UNIFIEDSOILCI.ASSIFICATIONSYSTEMH.S.A.~HOLLOWSTEMAUGERAAUGERSS=SPI.ITSPOONSAMPLERUD>UNDISTURBEDSAMPLET=THINWALL'=VANESHEAR Cl*Wf(l)J)Pi.~~VIIrIr,r.CI1SJ'44%4 CLIENTGibbs8Hill,Inc.KAY",iEERS(5'QFESSS,COFG5ZRUCiORSCONTRACTOR'OJECTNo.4547GORINGNo.~SHEET2OF2BORINGLOCATION:FOREMAN"ORILI.ERJ.R.TrudePROaECTNAMFactieINSPECTORT-C.ShiehLOCATIONBerwxck,Pa.SURFACEELEV.WATERLEVELOATEHOURSCASINGOEPTHCASINGSAMPLERCOREBARTYPESIZELD.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"DATEDRILLINGSTARTDRILLINGFINISHZXUJWUJO30IoocnoKglLQH50COELSAMPLE'LOWSPER6IN.ONSAMPLER(FORCEONTUBE)I2-IB6-l2BOT.0-6IIPoE5PICWEhOoclvi>~)SOILOESCRIPTIONANOREMARKS1014948ReddishbrownfinetocoarseSANDandGRAVEL,withsmallboulders.351201178SS24'.030293641401379SS24'.02928404716110SS0"45.050045.0'6.0'"-BOULDERS5546.0-56.56.0'ottomofhole656.0'yNOTES:USEDIN.CASINGTOFT~THENIN.CASINGTO'FT,CODING:U.S.C.S.UNIFIEDSOILCL'ASSIFICATIONSYSTEMH.S.A.*HOLLOWSTEMAUGERAAUGERSS>SPI.ITSPOONSAMPLERUO>UNOISTURBEOSAMPLET=THINWALLY=VAHESHEAR 1RiA.fi40 Penn.Power&LightCo.'LIENTGibbe8Hill.Inc.E4uIFTIIRSDISCGFSfCCS,COSCSTCCVCZOCCSBORINGNo.6SHEET1OFZINSPECTORT.C.ShiehLOCATIONBerwick,Pa.CONTRACTOR.ROJECTNcs,44547FOREMAN-DRILLERJ.R.TrudeIROJECTNAMEac'litiesBORINGLOCATION:N41451.00E2442450.00SURFACEELEY.673-31'ATERLEVEL23~5'ATE11~2383HOURS0CASINGDEPTHCASINGSAMPLERCOREBAR.TYPESIZELD.HAMMERW.T.300lbs.140lbs.BITHAMMERFALI18"30"TIMEDRILLINGSTARTDRILLINGFINISH11/22/8311/23/83TIIwccccccc.ICl<coOKycc,COCFgoI)cc.NoSAMPLEQBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)I2-IB6-l20-6CLCIOKC0csccccfJO~C)cri>~)SOILDESCRIPTIONANDREMARKSt50394102MFILI(DarkgrayfinetocoarseSAND,somecrushedstone)'.1061714046502SS24ss.0'051707.0'rownishgrayfinetocoarseSANDwithgravel,gradingwithcobblesandboulders.11015160809721224T7.0'93847611772117135160417911612113025.0PGREC.30.0'OTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.CODING:U.S.C.E,'UNIFIEOSOILCLASSIFICATIONSYSTEMH.S.A.*HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBEDSAMPLET=THINWALLY=YANKSHEAR

~~~II~~~marraaaMMMAAeeameermeeaememesmRSQQOSAAAMMMRQSSQLRMRRRRR55$55%%%%%%ERSRRRWW~KRHKHKELQKRBKRlRW@RMSRRRLLMWMWWMQItIIARRAAA.,amaarrAAAAAA'aarrraeraaaSHR%88PII~R%RSR5555~ALLLLMMMMMMAIQIIAAAAAR.A1%88AAAAAAaarLLMMMMMMAISIEAAAAAAARRILAAAAAAaararAAAAAA.AararAAAAAAMEE&HLHK~SQRKIEKKRQLQQIRRAHKRESWQQQR&&MMMM&RRSIA&AAAAARRLIAAAAAAALOLLWRAAAAALRLLMAAAMRAISiRIAAAAAWAIXIIAAAAAA.,maarrwmmmma Penn.PowerGLightCo.CLIENTCONTRACTORsanGibbs8Hill,inc;f4GINEERS.OC5IGFGCRS,CODES'CRIICTORSROJECTNos44547SORIIIGNo.~SHEET1OF2BORINGLOCATION:FOREMAN-DRILIERJ.R.TrudePROJECTNAMEacitic442450.00INSPECTORT.C.ShiehWATERLEVEL286'ATE1~122/83HOURS0CASINGDEPTHLOCATIONBezwick,Pa.CASINGSAMPLERCOREBAR.TYPESIZEI.D.HAMMERW.T.300lbs.140lbs.BITHAMMERFAII18n30nSURFACEELEV.672.55'RILLINGSTARTDRILLINGFINISHTIMEDATE11/21/83'l/22/83XIIAIIIIII.IO>cnOKQIZIFIOgCJIEICLSAMPLEIAIIBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)l2-IB0-66-I2MII0&ISCOOOCI)CO)SOILDESCRIPTIONANDREMARKS376000212790SS8"SOn1.5'.0'70/0'0PILL(ReddishbrownaDarkgraymediumtocoarseSANDandCINDERStracecrushedstone.Gradingwithboulders.12102SS4n2.0'59.0'ellowishbrownsiltyfineSANDwithsomecrushedstone.Gradingwithsmallbouldersbetween19.5'nd23.0'.2925S247.0'3~~~lo31'0'70SS2n0.2'0/21156923.0'eddishbrownmediumtocoarseSANDwithsomegravel,tracefinesand.10127.021302946COOING:U.SC.S.=UNIFIEDSOILCLASSIFICATIONSYSTEMH.S.A.=HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBEDSAMPLET=THINWALLV=VANESHEAR30NOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.

lSCLIENTGibbs8Hill,Inc.IFSGIFGIETES,OjSIGFEE45,COFSST<UCTORSBORINGNo.SHEET~OF~CONTRACTOR'OJECTNo.544547FOREMAN-DRILLERJ-R-TrudePROJECTNAMEa'tisBORINGLOCATION:INSPECTORT.C.ShiehLOCATIONBerwick,Pa.SURFACEEI.EV.IWATERLEVELDATEHOURSCASINGDEPTHCASINGSAMPLERCOREBAR.TYPESIEE1.0.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18ss30"DATEDRILLINGSTARTDRILLINGFINISHXlutwLLIOegoZalaNo.SAMPLESBOT.SLOWSPER6IN.ONSAMPLER(FORCEONTUBE}12-186-I20-6SOlLDESCRIPTIONAHDREMARKS304039101211301417SS4Ts20'04'62937ReddishbrownmediumtocoarseSANDwithsomegravel,tracefinesand.33.4s40.0'arkgraySZLTSTONE.450.0'50~REC.~9650RQD~8150.0'ottomofhole850.0'loCODING:U.S.C.S.*UNIFIEDSOILCLASSIFICATIONSYSTEMH.S.A=HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERUD"-UNDISTURBEDSAMPLET=THINWALLV"-VANESHEARNOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.

'5~pCIl.

SSFS-PSARpoggoI}gycoJ;vj,goNCgCZNIQCQR-~~~-"~~FsgSisdesignedtoa}SupplycoolinqwatertotheRHRpuapsandtheirassociatedrooacoolersduringtheseveralnon-emergencyandesofRHRpuepo'perationsuchasfuelpoolcooljnq,normalshutdovn,andhotstandbyb)Supplycoo)ingvatertothevariousdieselqeneratorheatexchanqors,RHRpuaps,rooacoolersRBCCQandTBCCtrboatexchanqersduringeaerqencyshutdovn.conditionssuchasaLOCh.TheESvspumpsare1ocatedintheESSESpurghouseviththeRHPSNpumpsThPRSvSpuwphouseisdesignedasSeisaicCategoryIand!hepsvsconsistsof+vnredundantloops.(denotedAandB)eachcapableofprovidirq100percentofthecooling,vaterrequiredbyallt.ho,FSFequipaen!ofbothUnits1and2siaultaneously.Thesystemisdesiqnedsothatnosingleactiveorpassivecoaponentfai)urevillperon!i!froaachieringitssafetyrelatedoh)ective.1'hesystesstar+sautoaatica)lyonadieselstartsignal.Foradditionaldiscussion~seeSubsection925dieselQeaer~kazs*~glThefourdieselgeneratorsarehousedinaSeisaicCategoryIstructure.Theyareseparatedfromeachotherbyconcretevallsvhichprovideoissi)eprotection.Lossofonedieselgeneratorvil)notiwpairthecapabilxtytosafelyshutdovnbothunits,since.thiscanbedonevi!hthreedieselgenerators.Pgrpddi+iona)djsyusyion>ye~QbsejtiynJ~3~~14+/>+1~>+~+~j++++J>orlesErkptxonsof'hef)dieselGeneratorPuelOil'Systea,CcrolinqQatarSyst'ea,hirStartinqSystemLubeOil'ystem,andthe.-En!akeandKxhaustSysteasseeSubsections9~54,9.5.5,95;6,9.5.7,and9.5.8respectively..Poraissi)oprotectionseeSubsection35SeparationisdiscussedinSections312and83'I~>"~Q~ggmiaHgfs$ng$$2KyxPgx}gl,ThespraypondprovidesthevaterforboththeESlfSsysteaandtheRHRSIsytees.XtistheultimateheatsinkforbothUnits1and2.The.returnlinesfroatheESSESandtheBHRSVarecosbinedandthetotalquantityofvaterfroaboththesesysteesisdischarq~dthrouahspraynetvorks,vhichdissipatetheheathack'85HVjtt3~1-71I f SSES-FShPfol]ovjnqa)o..s-of-coolantaccidenttoassurethatcorecocling,y,maintain~d.Provisionsshal]be'ncludedtominimizetheprobabilityoflosinqelectricpoverfromanyoftheremainingsuppliesasaresultof.,nrcoincidontvith,thelosscfpovex'generatedbythlossofpoverfromthetransmissionnetvork,ozthelossofpoverfromtheonsiteelectricpoversupplies.A)g)CPTvooffsitepovertransmissionsystemsandfouronsitestandbydieselqonerato."sviththeirassociatedbatterysystemsareprovided.Eitherofthetvooffsitetransmissicnpoversyste)Isoranythreeofthefouronsitestandbydieselgeneratorsystemshavesufficientcapability"tooperatesafetyrelatedequipmentforcoolinq.hereactox'oreandmaintaininqprimarycontainmentinteqritvandothervitalfunctionsintheeventofapostulatedaccidentinoneun'vithasafeshutdovnoftheotherunit.~(Agyru~az7"/c'"mme-mCZa~~>')~Thetvoindependentoffsitepoversystemssupplyelectricpovertotheonsitepoverdistributionsystemviathe230kVtransmissionarid.Eachoft'eoffsitepoversourcesissuppliedfromatransmissionlinevhichtexminates'insvitchyards(orSabstations)notcommontotheothertransmissionline.Thetvo'ransmissionlinesareonseparaterights-of-vay.Thesetvotransmissioncircuitsarephysicallyindependentandaredesignedtominiaiz)thepossibilityoftheirsimultaneousfailureunderoperatinqandnostulatedaccidentandenvironmentconditions.Fach~ffsitepoversourcecansupplyallEngineeredSafetyFeature(ESF)busesthrouqhtheassociatedtransformers.PoverisavailabletotheFSFbusesfromtheirpreferredoffsitepoversourcedaringnormaloperationandfromthealternateoffsite.+~p~poversourceifthepreferredpaverisunavailable.Eachdiesel(Ai+)qenexatorsuppliesstandhypovertooneofthefourESPbusesineachunit.LossofbothoffsitepoversourcestoanESFbasresultsinautomaticstartinqandconnectionoftheassociatedyP,'~giC4P)sequentiallyaddedtoavoidqenexatorinstabilities.Therearefourindependentacloadgroupsprovidedtoassureindependenceandredundancyofequipmentfunction.Thesemeetthesafetyr~quirementsassuainqasinqlefailuresinceanythree-ofthefourloadqroupshavesufficientcapacitytosupplythe.minimumloadsrequiredtosafelyshutdovntheunit.Independentnu~inqoftheprefer.edandalternateoffsitepoversourcecircuit..toheFSFbusesareprovidedtomeetthesinglefailuresafetyrequirements.Rev.31-18 \~j'ISE/~7IC.(>f~~~,/-g<:.CA,8,~D).D~CCa~~g~~l

Lilt:<!niIh<'atI'I.ulnoi).cifculatiiiIp<tnp+nil~sc1st.lIII10.Ilftlvstcin/nlplnnantvalve-fcondovnn\rca~nfti!iln'ovlnnmapfcssordis-charuntnen<II!icsk1d."ipinntii)valvi~,nthnfsllff~~i'<Ivcrsrnapco'sfe<)t".Id>clotcn<>llnqv!I~icplpinq/CoolInnItckntvat<.fhna'ti!rCni!II!otIacketvat<;chcatcc.put<nAir1nt.itn4rthao::IpiplnqIovrctitnufflees.!ndnvpao!<Itngniot)DirtVlul.<!oildr.nt<tnkUbdllns<.Z<btjlnbdn51j,tIgg)jljnnjid<iutbbye/<'<-~p/.-.pPe/r/ee-PNAntherNONEnntherNlCr.,f,5r5r<.,~5ZZZ3~other831.1.01/ZZZ-3ntlrcrNi,otherb31,1otherNLntherNl)ZZZ-3r$5ncg/~5Cc<Snrr>.~nr..r"NAr</<CDr~~SNA'\ntbcrN0Nv<Ijj!i..C,i5ClNl1NlNANlNl1NYNNNNYNAYNA<NIfANI/~~j7~r<nlr01..".NCINCN1~1~I-rnnt<ilcoonCCnnputorRoonIIVAC.J/Wntnr.".e"cbNA3-=NANNANGIZCKF.-)t!1/323Ncv.~D-~~Refertoth<nun<catNotesat:theendofthistabLR.

"0~~~~CESAR"bhdi<)a1'u!li!ySourcc.<~1ilufiofinca-rl.l>>oi.-S<afnty111j90fjrv)ll~bflLf)rPrdnc)n11Cosntruc-tdonCo<)osandSkah<)LIJNQua)ltISetsslcLsouranc<!fa1.<<<)EggRs~gfgbbbbl~!il1'<.1!:!rincina)c.lsponi!ntnila~)(I)4.12)~i3)s(4)4.(S)4is<)~l7)4pusnantnrs,funlnilsystesDieseli!cni!r4turn~lrctric1lsndulnsv)th<safetyfunction>>Catle,vlthsaf<tyfunctlonsnicselfui!lstoraqi!tanksI<)c"cllui<.olf~yntesplplnq4nilva1vcs+Healearhanqcmt1seLitvater'n)lut<<!nilyll1'ec'ousinnsLut<!ni1hiia1<rhuhnoi)-.i-.icculatin<>pusp~ni<sulss'lstinq.!ir!systemsgnip)ni!.1<i)va)v<<ufron4ovnntreasoft<!<fn'lovioqrnsnressnr4ln-ch4rutnanni!<eshl4i".i)>inn1<iivalv<~i',nth<!rsAirci~<"ivcrr.rnsnre:Silrn41C)u'1nill1ngV!'1~<rp1pinqrCool)nil1.!Ctnlvat<~1'ua'tw!rCo<!iini!1.!eketvaI<rheater,pusnAirfnt.<i<!E<shan>>tp)p)nqfocc<!it~Ilfflem.1n<lnsp.ln!<l-!ngnint>>)Dirtylul,c.oi)4r'ntantUCL))0<)~.)<0)ll~baLaddit--rnid+)jn<<)p~jSu)EINp/CA'/CsfP//L.wp./<LG~Q5Nln~'G,~v5CG,r5'p/.-p/~G4rc5r,,c,gr..-,5ri,.95CNAnr.pPp/!"4PP"'.P0,45nGr<gSCG,4$nr-r'5.NlriicCDCries/!llp/Isl/igO,G,$5NAP/Pgri~d~5NlP/iCG,65Nl4IREE-32')/314IREE-3875311)<!therntherIII-7/TEELCVIII/OlNONENLOtherlnt)cer.otherothernther)III-3'3)~1,0111-3NLb31~1NLNL111-3otherNON+IEER-279/323IREE-279/323/3b3')---IXE-3--.-Nl1NlNANlill1NrNNNNyNArN)fiNiur<<))f0).-NG)<)CR9~4~1rnn/t<<)ponsCCnsputorRoonIIVAC,.'untorn/g..nov~n7!<utP'CSNElllNG11IREE-344/323~Refertoths<'<n<'ralNosesattheen4nfthistable. Y t~ikSSVS-FSARTABI,E3.2-!!Continued)Pae22!'SARSeclolSour">>of~Su~iLcca-tionequalityGroup'assi-ficationSafeteClassPrincI)a1Construc-tionCodesandStandardsSeismicCatecLo~rQuali'tyAssurance-'lleuvres'entCommentsPrice:"a!Ccmporen.-I3'~)I2)'3)~Il)'5)'6)'istu..cnta'tlonAssociatedvtioterrPiteousIles::ireirior~sfi.'.6Spentfuelpcolangcoolsngs:.stemFuelhandlingareaventilationisolatxonsystemControlroompanelsccalinstrumentracksassocatcdvithsafetyreaacedecuipmentInstrumentationAssociatedwithPPR:InRNACSNAALLNnIEEE-274IIEEE279IIEEE-279IIEEE-279IYY'stemsotReuvreorSaetSeismtcinstrumentationbrearadiationmonitorirg.LeakDetectionZnstrumentatior.~~7PPALINAALLNhOtherNhotherNhINhTemperatureelemensDifferentialtemperatureswitchDifferertialflo~indicatorPressureswitchDifferentialpressureindicatorsmitchDifferentialflo~sunimerProcessRadiationNonitorsGEGEGECEGEGECSCSNANhC,R,TNh2C,ANh~2CSNA'C,RHA2IEEE-323IREE-323,IEEE-323IEEE-323IEEE-323IEEE-323IYIYIYIY,YY393939393939Electricalmodules,mainsteamlineandreactbrbuildingventilation'monitorCable.mqlnstcamlineandreactorbuildingventIlaIronmonitorsElectricSstemsGEAPRNhIEEE-323I=IEEE-279/Hh323/38315mP'~KnineeredSafetFeaturesAC~illIIIIIlit4.16kvswitchgear/BIDRev.~+RH-8.3+eP/$/IQO!45HAIEEE-308/I323/344AefertotheCeneralNotesattheendofthistable, ' SSES-FSARTABLE3.2-1(Continued)Pae23SourceFSAR-ofSection~no~tLoca-tionQualityGroupClassicsSafetyficationClassPrincipalConstruc-tionCodesandStandardsQualitySeismicAssurance~Cetoor~neotrsnentCoementnPrincipalComponents(34~)12)'3)'4)'5)'6)a(7)'80Vloadcenters480Vmotorcontrolcenters4,g,Kv'-<a~'!)/,w)ssojfv/.'-/z.-"::):EnineeredSafetFeaturesDC~Eauxment125Vand250Vstationbatteriesandrocks,batterychargers8.3125Vs)"itchgearanddistributionpanels~aa~]j)5VMayajf.Cou7gnLCC/P-/A-D/SE74PP~"HA/PS/'njS!SA//jj)PCS/$5NAP/4aICS)l5HA2.222IREE-308/IY323/344IEEE/308/IY323/344IEEE-308/I323/344IEEE-308/-I323/344120VVitalACSstemEuimentStaticinverters120Vdistributionpanels8.3CSNACS,RNAIEEE"308/NA323/344IEEE-308/I323/344ElectricCablesforESFEuimen.35kVpoR)ercables600VpowercablesControlandinstrumentationcablesNi,scellaneousElectricalP/4H~P)S//ALLNAALLHAALLHA2.IEEE-323/NA383IEEE-323/NA383IEEE-323/Nh383151515PrimarycontainmentbuildingelectricalpenetrationassembliesConduitsupports,safetyrelated~ggTraysupports>safetyrelatedEmergencylightingsystemsEmergencycommunicationssystemsDieselgenerator77~/5fEPPr)/-'l-L5DPE'~+wArjojJCj!/u~gup'p'ev.~}~/qgPCP)$//ALLP)/m)HALLP))5//ALLP))5//=ALL'PLG)4505<s'efertotheNANhHANhNhHhNh4/AGeperal222Other2?2NotesatIEEE-317/I344/383IREE-344IIEEE-344-IIEEE-344INONENhIEEE"387Imrs/."Jzf/344/X+ECd823/JffXtheendofthisYYYHYtable1515 SSES-FSARTABLE3.2-1(Continued)Pae,26Principal.Components(34')-FSARSectionSourceofLoca-~Su~1tion(1)"(2)*QualityGroupClassi-fication(3)"SafetyClass(4)*PrincipalConstruc-tionCodesandStandards(5)'eismicC~ar.eor(6)'ualityAssurance~nenirementComments(7)'emineralizedWaterHakeuSstem9.2.9TanksPumpsMotorsPipingandvalves~BnildinReactorBuildingPressureresistantdoorsWatertightdoorR.B.EquipmentdoorPrimaryContainmentAccesshatchesjlocks/doorsLinerplatePenetrationassembliesVacuumreliefvalvesDowncomersDowncomerBracingDieselgeneratorbuildingControlstructureRadwasteandoffgasbuildingTurbinebuildingAdministrationbuildingCirculatingwaterpumphouseESSWpumphouseLowLevelRadwasteMoldingFacilityDIE.S6LCj6t46RAToR'E.~l<&44StructuresRoofScuppersandParapetOpeningsSpraypondaEmergencySpillwayCondensatestoragetankSpentfuelpoolSpentfuelpoollinerRefuelingwaterstoragetankPipeWhipRestraintsPPPPPPPPPPPPPP~RHCWCWCWALLRRCCCCCCCGCSRW,T0000Dc'e,',CS,G00RR0R,CDD88888,8888NANANANANANANANANANANADNANADNAOther0herOtherOther22222222OtherOtherOtherOther3Other23Other22Other3VIII-1831.1.0/Nyd.INEMAMG1831.1.0ACI/AISCASTH/AWSAISCASTH/AWSASTH/AWSACI/AISC/IIIIII-HCIII-MCIII-HCIII-2III-2AISCACI/AISCACI/AISCACI/AISCACI/AISCACI/AISCACI/AISCACI/AISCACI/AISC/UBCAt:yqrcd.ACI/AISCACID100ACI/AISCACI/AISCD100AISCNANANANAIIIIIIIIINANANANAINANAINAIINAIYYYYYYYYYYYNNNNY~NYYNYYNY2427,3029442221Rev.35,07/84*RefertotheGeneralNotesattheendofthistable.

SSES-PSARTABLE3.2-1(Continued)Pae27PS:..SectionSourceof.Loca-~Sui~itionQualityGroupClassi-ficationPrincipalConstruc-tionSafetyCodesandSeismicClassStandardC~ateorQual,ityAssurance~aenirementCommentsPrincipalComponents(34">(1)'2)'3)*(4)*(5)*(6)*(7)*rHissileBarriersforsafetyrelatedequipmentBiologicalshieldingwithinPrimarycontainment,reactorBuildingandcontrolbui.ldingSafetyrelatedmasonrywallsC,R,NACS,SH,GC,R,NACSR,G,NACS0herACI/AISCIOtherACI/AISCOtherACI/UBCRev.35,07/84RefertotheGeneralNotesat,theendofthistable. ~~SSES-FSARTABLE3.2-1SSESDESIGNCRITERIASUMMARY(Continued)Pae29GeneralNotesandComments1)GE~GeneralElectricPL~PennsylvaniaPoweraLightp~BechtelasagentsforPennsylvaniaPoweraLightNA~NotApplicableseecommentsgy=yegg(euyncsAws~rsrcP~syc.~~aP~~aagu+gp2)LocationCPartoforwithinprimarycontainmentRReactorBuildingTTurbineBuildingCSControlStructureRadwasteandOffgasBuildingg)gGgQDieselGenerators)BuildingIntakeStructure.AdministrationBuildingCWCirculatingWaterPumphouse.SWEngineeringSafeguardsServiceWater(ESSW)PumphouseCAChlorineandAcidStorageBuilding0Outdoors.Onsite,pied/l.4hdDCA7'3)A,B,C,D-QualitygroupclassificationasdefinedinRegulatoryGuide1.26.TheequipmentshallbeconstructedinaccordancewithcodeslistedinTables3.2-2,3.2-3,and3.2-4.NA-Notapplicabletoqualitygroupclassification4)l,2,3,4,other=safetyclassesdefinedinANSI-N212andSection3.2.3.NA-Notapplicabletosafetyclassification SSES-FSARTABLE3.2-1SSESDESIGNCRITERIASUMMARY(Continued)GeneralNotesandComments1)GE=GeneralElectricPL=PennsylvaniaPower&Light,Pae29P=BechtelasagentsforPennsylvaniaPower&LightQINtH=Gi&SSAHiLL,Mc.Ii>rurrNA=NotApplicable,seecomments2)LocationCPartoforwithinprimarycontainmentRReactorBuildingTTurbineBuildingCSControlStructureRWRadwasteandOffgasBuildingG,DieselGeneratorBuildingDq'aDias~~4~weRAvoR'6,'IntakeStructureAAdministrationBuildingCWCirculatingWaterPumphouseSWEngineeringSafeguardsServiceWater(ESSW)PumphouseCAChlorineandAcidStorageBuilding0Outdoors,Onsite3)A,B,C,D-QualitygroupclassificationasdefinedinRegulatoryGuide1.26.TheequipmentshallbeconstructedinaccordancewithcodeslistedinTables3.2-2,3.2-3,and3.2-4,NA-Notapplicabletoqualitygroupclassification4)1,2,3,4,other=safetyclassesdefinedinANSI-N212andSection3.2.3.NA-NotapplicabletosafetyclassificationRev.35,07/84 'I04 SS>S-FSAP3~3QT"IDAFDTORNADOLOAO~RGS33"VTNDTOADX~1GS89AllexposeRstructuresaredesignedformindloading.3.').11Des'adValor+v~KGfThedesignvindvelocityforallstructuresis80mphat30ftaboveqroardfora100-yearrecurrenceinte"val.TheResignvin9velocity'sbaseRonFigure5ofReference3.3-1.(Refeencesare1'stedinSubsection3.3.3).TheverticalvelocitydistributionisbaseRonTable1(a)ofReference'.3-2.Thevelociydistribat'onistabalatedinTable3~3-1AqustfactorofasgiveninPeference3.3-2,isu.oR.~heprocedu"eusedtotransformthewindvelocityintoaneffectivepressureapoliedtoexposeRsurfacesofstructuresisasRescribedinPeference3.3-2and'ssummarizeRasfollovs:Thedynamicpressueisgivenby:cr=0.002558V~vhere,a=Dynamicpessa"einpsfV=Rindvelocityinmph(desiqnwindvelocityxgustLac'~Thelocalpressureatanypointonthesarfaceofabuildingis.qualto:gxCpwhereCn=pressurecoefficientRev.35~07/803~3 SSZS-FSaR.he.otalpressureonabuildingisequal+o:qxCDwhee,CD-~Shapecoefficient.TheSusquehannaSESstructureshaveslopingroofswithapitchlessthan20degrees.ThefollowinqarevaluesforCpandC(SeeReference3.3-2~p.1151andPiqure7)Cpforwindwardwall~0.8(pressure)Cpforleewardwall~-0.5(suction)Cpforwindwardslope=0'CpforLeewardslope~-0.6(suction)C~1.3(pressure).Dwindloadsonstructuresaretabulatedin'able3.3-1ExposedtanksaredesignedtoresistaminimumwindLoadof30psfontheverticalpro1ection~basedonReference33-3.ForcvlindricaLtariks,windisconsideredactingonsix-tenthsofthevrticalnro1ection.VoincreasesinallovanlevorkingstressesarepermittedforthesestructuresforLoadingconditionsinvolvinqwind.3~/~/TOQNQDOLOAQENGQTable3.3-2liststhesYstemsthatareprotectedagainsttornadoesandtheenclosureswhichprovidethisprotection.ThistableisbasedonNRCRegulatorYGuide1.11'7(Reference3-3-4)33*3~.hPPliQRbkeQeMKRQRather+>XsThefollowingdesignparametersareusedforthedesignoftornado-resistantstructuresandarebasedonReference3.3-5:a)~~icFjordQgg5i)Lg(FoRS7'R,ucyvReso7'HeR,1'HAHbIeseLGEHERR7oR~f8tlirtg)IMg)Tangentialspeed:300mphTranslationalspeed:'0mphRev~35,07/843~32 SSZS-PSARb)PressareDifferentialBetweentheZnsideandOgtsgdeofgBuigggngQFoR>l'RocTOR6SOTHBgTHAW5g<sRAApressuredrop,of3psi.attherateof1psiprsecond.c)oggaQo-QggegatingQgg.ig'~egThesearediscussedinSubsection3.5.1.4.IMsgra7'<>g.Q.g~pQeteggi))gtggg~fZogr2sogStgucfuregThefollovinqproceduresareusedtotransformthetornadoloadinqsintoeffectiveloadsonstructures:a)DgngmgcwoundJ,o~dgggAprocedurethesameastheoneutilizedtotransformthewindvelocityintoaneffectivepressure,asdescribedinSubsection3.3.1.2,isusedvith.hefollowinqexceptions:1)Velocityandvelocitypressureareassumednotto-varyvithheight.2)-Thegastfactoristakenasunity.AsshovninFigure5ofReference3.3-5,andasexplainedtherein,theequivalentaniformtornadowindvelocityonthebuildingduetoatangentialcomponentof300mphandatranslationalcomponent.of60mphis220mph.OnSusquehannaSEStheprssueloadsarecalculatedonthebasisofauniform300mphwindvelocityandareasfollowsspygSygdcpeg,Ego7HER,7ahH')ESEL+ENERAToN'O'QILDINq.IEi8Mindwadp'ressureonwalls:185sfLeewardsuctiononvalls:115psfl66pc/Totaldesignpressure:Suction(uplift)onroof:300psf140psf.gyp@STI90~~/<Theturbinebuildingisdesignedtoresistthetornadoloadinqassaminq2/3ofthemetalsidingandtheroofdeckbeingblownaway.However,alltheframesaredesignedforthefulltornadoloadinq.Themetalsidingand'heroofdeckofalls.ructaresarenotdesignedtoresistfulltornadoloading.<Rev.35,07/8433-3 b)Dgff~geggjal>ges~ug~~odin'ifferentialpressureloadingiscalculatedusingthefollovingpressure-timefunction:Thedifferentialpressureisassumedtovaryfromzeroto3psiattherateof1psi/sec,remainat3psifor2secondsandthenreturntozeroat1psi/sec.r~/BlowoutpanelsareusedasnecessaryonsafetyrelatedlN~<<T+structurestominimizedifferentialpressure.c)~oMQQ-game~~54ggQSsTornado-generatedmissilesareclassifiedasiveninTable&35-4AHpThebarrierdesignproceduresaredescribed'nSubsection3.5.Z'.Load'ngsa),b),andc)arecombinedinthefollowingmannertoobtainthetotaltornadoloading:Cii)(iii)(iv)(v)(vi)Q~~VpV~=ffmWv+0.5RpW~=Qv+QmR~~Rv+0.5Qp+Wmwhere,TotaltornadoloadWw~TornadovindloadRp=Tornadodifferentialpressureload,andMm~Tornadomissileload3.3.23EffectofFailureofStructuresorComponentsNotDe2493eifoX<<RMQo<MCRStructuresnotdesignedfortornadoloads'a"echeckedtoensurethatduringatornadotheyvillnotgeneratemissilesthathavemoresevereeffectsthanthoselistedinTable3.5-4.Rev.35,07/843.3-4 SSES-FSAREThemodesoffailureofthesestructuresareanalyzeRtoverifythattheyvillnotcollapseonsafetyrelatedstructures.33~QRg~B~C~S33-1.3.3-23~33~3.3-4~H.C.S.Thos,>>NevDistributionsofExtremeRindsintheUnitedStates",gouryagoftheS~tuctugalgiyision,ASCE,(July1968}~pp1787~>>RindForcesonStructures",ASCZPaperNo.3269,Transactions,Volume126,PartII(1961),p1124."SteelTanks,Standpipes,Reservoir,andElevatedTanksforRaterStorage>>,AWRAStandard,0100-73."TornadoDesignClassification>>,USNRCRegulatoryGuide,1.117,(June1976).3.3-5.J.A.DunlapandKarlRiedner,"NuclearPoverPlant*TornadoDesignConsiderations",JournalofthePoverDivision,ASCE,(Aarch1971).Rev.35,07/843~3-5 I!IIlH1' d)Dynamicelandloading(forDieselGenerator'E'uilding).'TangentialSpeed:360mphTranslationaLSpeed:70mph~1~~~~~')>'"<ssul.g.,I'"".'v'ni'.,i3',";l,':.*;'n1;hoinsit!cAndoutside0,'.dies+1generatoruilding.Apressuredropof3psiattherateof2psipersecond.INSERThedifferentialpressureisassumedtovaryfromzeroto3psiattherateof2psi/sec,remainat3psifor2secondsandthenreturntozeroat2psi/second.(p~p~sssL,gagaRhTog'c'ulL.Dlgg) ~, SSES'"FSARTABLE3.3-2TORNADOWINDPROTECTEDSYSTEMSANDTORNADORESISTANTENCLOSURES(Pg.lof2)ProtectedSstemTornadoResistantEnclosureReactorcoolantpressureboundaryReactorBuilding3.ReactorcoreandreactorvesselinternalsISystemsorportionsofsystemsrequiredforReactorBuildinga)Reactorshutdownb)ResidualHeatRemovalReactorBuildingReactorBuildingc)CoolingthespentfuelstoragepoolReactorBuildingd)MakeupwaterforprimarysystemReactorBuildinge)Systemsnecessarytosupportservicewater,coolingwatersource,andcomponentcoolingESSWPumphouseandReactorBuilding4.ReactivitycontrolsystemsReactorBuildingandControlBuilding5.ControlroomControlBuilding6.Monitoiing,actuating,andoperatingsystemsimportanttosafetyReactorBuildingandControlBuilding7.ElectricandmechanicaldevicesandcircuitrybetweentheprocesssensorsandtheinputterminalsoftheactuatorsystemsinvolvedingeneratingsignalsthatinitiateprotectiveactionReactorBuilding,DieselGeneratorBuilding,andESSWPumphouseCgggalEAA7~SIP(LDl~8tRev.35,07/84 ~, SSES-FSARTABLE3.3-2(Continued)(Pg.2of2)8.ProtectedSstemLong-termemergencycorecoolingsystemClass1EelectricsystemsTornadoResistantEnclosureReactorBuilding,DieselGeneratorBuilding,andESSWPumphousepjgZELg~4f+~7o86uIc.A(44AllSeismicCategoryIstructures.Rev.35,07/84

SSP.S-FSAR3~4MATjQLgVQLggLOODQDESIGNAsdiscus,edinSection2.4,allSeismicCategoryIstructuressncuroagainstfloodinqdue>oprobablemaximumflood(PNF)oftheSusauchannaRiverorprobablemaximumprecipitation(PNP)ontheareasurroundinqtheplant.Therefore,specialfloodprotec+ionmeasuresareunnecessary.TheSeismicCateqoryIstructureshave,how~ver,beendesiqnedforhydrostaticloadsresultingf=omgroundwater,asdiscussedinSection3.8.Thegroundwatertableisatelevation665NSLinthemainplantarea.Aoostulatedbreakinthecoolingtowerbasinscrofthewaterdeliverypinos+othebasincouldresultinabuild-upofwateragainstthewallsofeithero"bothoftheESSMpumphouseandthe+urbinebuilding.Intheeventofsuchwaterbuild-upbreachingtheturbinebuildinqwall,waterthatwouldnotbeinterceptedhythefloordrainsorqrillesandthuswouldflowthrough+heturbinebui'.dingto+hereactorbuildingwouldbepreventedfromendangeringeguipmen+inthelatterbymeansofwatertiqhtdoors.Floodwaterh>>ildinqupagainsttheESSMpumphousewouldalsobepreventedfromenteringthehuildinqbymeansofwatertightdoors.ImpactforcesandwaterpressureduetofloodwaterwillnotendangertheintegrityoftheESSMpumphouse.Allsafe~y-relatedsystemsarelocatedintheReactozBuildingDieselGeneratorBuilding,ControlStructureandtheEngineeredSafequardS~rviceMater(ESSM)Pumphousep~gggg,gggggpfygBASIL&Sufficientphysicalseparationbetweenthesebuildinqsisprovidedtopreven+internalspreadinqofanyfloodsfromonebuildingtoanother.RedundantEngineeredSafetyFeatures,pumpsanddrives,heatexchangersandassociatedpipes,valvesandinstrumentationinthereactorbui'dingsubjecttopotentialflccding,arehousedinseparatewatertiqhtrooms,withtheexcep+ionofHPCIandRCICroomsin(tnit2.SeismicCateqoryIleveldetectorstripalarmsin,the-.inconir.=lroomwhen"'.!:ewaterlevelinanyroomexceedsthesetpoint.Isolationofthefloordrainagelinesfromtheseroomsisprovidedbyoutsid'emanualvalves.Allotherroomsin+hereactorbuildingandcontrolstruc+urecontaininqsafetyrelatedequipmentwhicharesubjecttopotentialfloodinqbyprocessfluidleakageorfireprotectionwaterareprovidedwithatleastoneopenfloordrain.FloodsinexcessoftheapproximatelyROqpmfleerdraincapacityincreaseth~waterlevelintheaffectedareaandarereleasedthroughth~door-to-floorclearanceoftheserocms.3.4-1 SSES-PSARRefertoSubsection9.3.3foradetaileddescriptionofthereactorbuilding.andcontrolstructuredrainaqesystem.Thefourdieselgeneratorsetsarehousedinindividualvatertiqhtcompartmentswithinthedieselgeneratorbuilding.Ploordrainlinehranchesfromeachofthesecompartmentsareequippedwithcheckvalvestopreventbackfloodinqfromthecommonsump.TheESS'Rpumphouseisdividedintotvoredundantcompartments,Ploodinqfrominternalleakaqewould,therefore,onlyaffectoneoft.heredundantpumpsets.Thecontrolandelectricalpanelsaremountednnminimum4inchhighconcretepadsorstructuralsupports.nperatinqflooropeningsallovdrainaqeofanyleakaqetotheESSVpumpsuctionspacebelovortoareservesumpspacethatcouldbeemptiedvit.haportahlepump.TheHPCTandRCXCroomsinUnit2areinterconnectedthroughaventplenumvhichleadstothecommonblowoutpanel.Ploodinqineitherroomcouldpotentiallyspillovertotheotherviatheventpath.Theven.pathis10'-8"abovethefloor.A'oderateenerqypipebreakineachroomhasbeenpostulatedandanalyzedinconsi.toncewithBTPAPCSB3-1.Itisconservativelyestimated,withouttakingcreditforfloordraincapacity,thatitvilltakeapproximately13'oursforthemaximummoderateenergy.pipecrackleakageintheRCZCroomtooverflovintotheHPCIroom,and5hoursfromHPCIroomtoRCICroom.Themaximummoderate,o.nerqypipecrackleakagethatcannotbeisolatedfromoutsidethese.pumproomsvilltakeapproximately23hourstooverflowfromRCICroomtotheHPCIroomand6hourstooverflowfromHPCXroomtoRCZCroom.Thereissufficienttime'toidentifythepipefailureandtakeappropriateactiontomitigatetheconsequenceofpipefailurepriortooverflewoccurredhetveenthesetvointerconnectedrooms./N7//S9SZnFb/SS~/.Cr~rRA7o4EFu//-4//4fCOOL+04/45.4y'L~Cgg-g4gfEg4l/pPZDHIT//CACO@VAL7opR~~supSic/AoobA/gFRohfT~f~o//b/44'~MP.AgeFZoo4toF7pf4/CSEE6EH<Rh7OQE5U/Cp///$WA'/C'ffA8F+~@<+7~oPo7<N7/aLFaceJ/4PSP'/RfPA7sc7/okAt~7~<QI7//+Cook+RAIAIS,Rev.35,07/843.4-2 SSES-FShRcgg@eXggalhiXgLgft,TnV-23218~000movementsx012x10-<~/mi~x~04mi~.Oqx10-6peryear.TnV-106.3,000movementsx1.9x10-<</mimx.04mi~.23x10-8oeryear.ThesumoftheseeventprobabilitiesattheSusquehannaSESsiteisabout9.3x10-6.5~31QisggleggotegtjonQesggngQgggsoghgSystemsthatarereviewed-formissileprotectionarelistedinSubsectionI.12.2.Forinto.mallyqeneratedmissiles,protectionisprovidedthroughbasicstationcomponentarranqementsothat,ifequipmentfailureoccurs,+hemissiledoesnotcausethefailureofaSeismicCateqoryIstructureoranysafetyrelatedsystem.Whereitisimpossibletoprovide.protectionthroughstationlayout,suitablephysicalbarriesareprovidedwhosefunctioniseithertoisolatethemissileortoshieldthecriticalsystemor'omponent.Znaddition,redundantSeismicCategoryIcomponent~aresuitablyprotectedsothatasinglemissilecannot'simultaneo>>slydamageacriticalcomponentanditsbackupsystem.3~5.2~)S'guet>>~esDegiggegdtoMiggstagd/lissyleEffectsSeismicCaoqo.yIstructuresaredesiqnedtowithstandpostulatedexternalorinternalmissileswhichmayimoac+tho.m.Tahle-'-2isaiistofthestructuresdesignedtowithstandexternaltornadogeneratedmissiles,andthesafetyrelatedequipmentwhichtheyprotect.ThemissilesarelistedinTableS3-5-4aNp8.5'-4o,PSIv~~o~the~3)jagg~~~'E.'et4ldQ&Not0hcDtcscA.g~~ftrv'~((.y(gqv~353OARPIE>DESIGNPROCPDURES,.t.L2.hestructuresandbarriersaredesignedinaccordancewiththeproceduresdeta'edinReference3.5-5.Theproceduresinclude:Rev.35,07/843'-33 SSES-FSARa)Predictionoflocaldamaqe(penetration,perforation,andspallinq)intheimpactareaincludingestimationofthedepthofpenetration))Fstimationofbarrierthicknessrequiredtoprevent-perforationc)Predictionoftheoverallstructuralresponseofthibarrierandportionsthereoftomissileimpact.Thouseofaduct'lityratiohiqherthan10butlessthantheallowablesqiveninReference3.5.5willbeqovernedbythefol3cwinqconditions:(1)ReinforcedconcretebarriersTheallowabledisplacementofreinforcedconcre"eflexurememberscanbebasedonanupperlimitforplastichinqerotationr6asfollows:dr&=0.0065-<0.07whered=distancefromcompressionfacetocentroidoftensilesteelreinforcement(inch)c=distancefromcompressionfacetotheneutralaxisat~'ltimatestrenqth(inch)ThisconditionisqiveninsectionC.5ofAppendixCandcommntarytoAppendixCofACI349g>(2)St~elbar"iersTcins>>retheabi1ityofasteelbeamtosustainful).yplasticbehaviorandthustopossesstheassumedd>>ctilityatnlastichinqeformation,itisnecessarythattheelementsofthebeamsectionmeetminimum>hickn=ssrenuirementssufficienttopreventlocalhucklinqfailure.TheconditionstoprecludelocalbucklingasgiveninAI~Cmanualaresatisfied.Rev.35,07/8435-34 SSES-FSAR3~~/~EfgRQPCgg3.5-1.3.5-2.3.5-3.35-4GFNemoReport"HypotheticalTurbineNissileData-38,inchLastStageBucketUnits<<(Narchf6,f973).GENemoReport"HypotheticalTurbineNissiles-GeneralDiscussion>>(Narch13,1973).GENemoReport"HypotheticalTurbineNissilesProbabilityofOccurrence"(Narch14,1973).D.C.Gonyea,"AnAnalysisoftheEnergyofHypotheticalwheelNissilesEscapinqfromTurbineCasinqs",GETechnicalInformationSeriesNo.DP73SL12(February1973).3.5-5.<<DesiqnofStructuresforMissileImpact<<,BC-TOP-9A,Rev.2,BechtelPoverCorporation,SanFrancisco,California(September1974).3~5"6.3~5-735-83.5-93.5-103.5-11U.S.Army,"StructurestoResisttheEffectsofAccidentalExplosions>,Dept.oftheArmy,Navy,andAirForce,(1969).NuclearRegulatoryCommission,<<StandardRevievPlanSection3.5.1.6<<,NUREG-751087,(24Nov.1975).Solomon,K.A.,"HazardsAssociatedvithAircraftandNissiles>>,presentedatAmericanandCanadianNuclearSocietyNeetinq,Toronto,Canada,(June,1976).Solomon,K.A.,"EstimateofprobabilitythatanAircraftvillimpactthePVNGS",NUS-1416,NUSCorp.,(June1975).NationalAirTransportationSafetyBoard,>>AnnualPevievvf:AircraftAccidentData",Published1972andannuallythereafter.Chelapati,C.V.,Kennedy,R~P.,andSall,I.B.~ProbabilisticAssessmentofAircraftHazardforNuclearPoverPlants,Nuc.Eng.Design19,336(1972).3.5-123.5-13Barber,R.B.,SteepgoggCgngggfeSggbImpactTeytggggeggmen+ggSggg],afford),Bechte1Corp.,(October,1973)Vasallo,F.A.,fissileIntactgestjngofgej,ngorced.Concge+epanels,PreparedforBechtelCorp.,CalspanCorp.,(January,1975)-Rev.35,07/843.5-35 SSES-FSAB3~5-143.5-15NationalDefenseBeseatchCoaaittee,gffecgNof~ffactaddggglosion,Suleary.echnicalReportofDivision2,'olume1,Washington,DC,1946Gvaltnet',R.C.~QisggleGegez;agio'adggcgyctionig.LgQhg-Wates;-Cog],edPgvgg~eyggogg,ORNLNSIC-22,OakRidgeHationalLaboratory,OakRidge,Tennessee,fortherr.s.A.z.c.,(septcaber,1968).05.hlOCL8AR.BEAULAToR'tfCoW<<SS>d<~7AHQAkgReviewPt.AH3-5~I~'+~<v~NDNECa,-oSoo(JuaYlDBl)35'-l7V.g.,NuC~eARRocUL,AToay~TMDARD8KV)<NPLAQ3.F.gVffCt-OSOo(tvhMip8i)goHhhISS(odVRev.IBev.35,07/843'-36 TABLE3.5-4aTornado-GeneratedMissileParametersforDieselGenerator'E'uilding.11issiie!>4~s1/'1t(lb}T!tlj>sIs~t11~1A)Woodplank,4in.v12in.x12ft.,travelingend-on108440B)Steelpipe,3in.dia.,Schedule40,10ft.long,travelingend-on72147C}Steelpipe,6in.dia.,Schedule40,15ft.long285170D)Steelpipe,12in.dia.,~HCOua.a4o,E)Steelrodl-a.nchdia.x3ft.long7508'55317F)Automobileflyingthroughtheairatnotmorethan25ft.abovethegroundandhavingcontactareaof20sq..'t.4000195G)Utilitypole13.5in.dia,35ft.long1490211Note:Thovcr".ical:~toestiesi~sl.l'.~1~const."'.eredoa::alto80:~~~!cen"theho-1zontagi~1ocitiesme'o'LOnedabove.

SSES-PSARP7XENIX3~5=4.TORNADO-GENERATEDEMISSILEPARANETERS/gagGYROSft3gGS0TH6RTHhHDiesELgeweRATog.PQuJgy~~q)Hi~sileMoodplank,4in.r12in.r12ft,travelingend-onSteelpipe,3in.dia.,Schedule40,10ftlong,travelinqend-onAutomobileflyinqthroughtheairatnotsorethan25ftabovetheqroundandhavingcontactareaof20sqft.1083001004000MeiqhtVelocityAlber./mphilSteelrod1-inchdiameterx3feetlongDtilitypole13-1/2inchdiameter,35feetlongactinqnotmorethan30feetabovetheqround1490216144'OTETheverticalvelocitieswillbeconsideredequalto80%ofthehorizontalvelocitiesmentionedabove.Bev.35,07/84 00 IrTff~~~erI~-)t!JJ-))ettr>>fLI>>NLeoel,,I~fI)I~ILNNe'I/12IIN<<LNOO<<f~3toeeN~e>>ftefo4LONoo>>NL<<fe58ee>>eNe>>4>>N<<t~7toeloeI>>NON<<tg8910t.>>~4<<Tl~~~LoL12131415'7<<o~QN<<e>>I>>eee19fteON<<OO<<>>feNfNOOff<<etNOLI4ff<<e>>OI>>eeeONIoet~ebeetllIOgc.~)/II'Ie=>>OeOOht<<<<OOINO>>NN4'l>>leWNe<<\>>f~~Pf54<<>>I<<OIO4~0e>>Ot~lOQtfNWtfl>>feONIfM>>4e>>fIRev.35,07/84SUSCUEHANNASTEANELECTAICSTATIONUNITSIANP2FINALSAFETYANALYSISAE.ORTteeG'KRALARRANCESanA'VDPATROLROADFICUAE3.5-8 'ie SSES-FSAR$~7bSEISMICQESZGQ~Thissectiondescri.bestheseismicdesignrequi.rementsandmethodsusedforSusquehannaSESandtheseismicdesignandanalysisofnon-hSSSequipmentSeismicdesiqnofNSSSequipmentisdescribedinSection3.7a.IIXL~e~M-'y,~'7b.1SEIS.'fICINPUTp=~~WefccccXi(cccPcccgpf~~j.pc37h.1.4DesianRosaonse'Spectraoi.)r";,~n>~i~qb-N5i.~ThesitedesignresponsespectraforrockfoundedstructuresAareillustratedonFiqures3.7b-1.and3.7b-2forthehorizontalcomponentsoftheOperatinqBasisEarthquake(OBZ)andSafeShutdownEarthquake(SSE)respectively.eesxgnearthquakeisasumedtobethe.freefield.motionatthebasematofthestructurewithouttheeffectofthestructure.ForallseismicCategoryIstructurefoundedonrockthehorizontalground..*accelerationvaluesare5and10percentofgravityforOBEandSSErespectively(refertoSubsections2.5.2.6and2.5.2.7).However,SeismicCategoryIstructuresfoundedonsoil,andthespraypondhavebeendesiqnedforgroundaccelerationsof8percent(OBE).;and15percent(SSE)ofqravity.Themaximum'qrounddisplacementistakenproportionalto.themaximumground.accelerationand.isset.a't40in~foragroundaccelerationof1.0.qravitv.','~3/i'(4Dga/~le)IThebasediaqra'mofalldesiqnspectraconsistsofthreeparts:'.themaximumqroundaccelerationlineontheleftpart,themaximumqounddisplacementlineontherightpart,andthemiddlepartdependsonthemaximumpseudo-velocity.etcqForvariousdampingvalues,thenumerical'valuesofdesigndisplacementsandaccelerationsforthehorizontalcomponent.desiqnresponsespectraareobtainedbymultiplyingthevaluesofthemaximumqrounddisplacementandaccelerationbythy,correspondi>gfactorsgiveninTable.3.7b-1.~~>4<P"~~'~'+v~~'jMcja~~<y>~P~lMeTheaccelerationlin~softheesignresponsespectraaredrawnparalleltothemaximumqroundaccelerationlinebetweenthefrequencylinesof6.67cps(controlpointBofFigures3.7b-1and3.7b-2)and2cps(controlpointC).Theaccelerationlinesconverqeat.the)unctionofthemaximumqrcundaccelerationlineandthe33cpsfrequencyline(controlpointh).Forfrequencieshigherthan33cps,themaximumqroundaccelerationlinerepresentstbedesiqnresponsespectra.Thedisplacementlines'*:-Rev.35,07/843.7b-1g&f~lP~~cc~~~~C.ccat~c.~c'rpCr~~r' SSES-PSARlaredrawnparalleltothemaximumqrounddisplacementline.maximumpseudo-velocityisassumedtobeconstantLinesweredrawnparalleltotheconstantvelocitylinesconnectingtheaccelerationlines.atcontrolpointtŽandthedisplacementlines.~~pe~~Q@g,~g~//.CO~g/bM/m/It/2~,~pesiqnresponsespectrava'luesfortheverticalcomponentofo~PCarthquahe,aretakenas2g3ofth.correspondinqvaluesofthehorizontal:,componentof'the'earthquake.~~gg'~'~yg.~+esitedesiqnspectradevratefromthosesugqestedinequlatorvGuide1.60.piqures3.7b-102through3.7b-105provideqo,.>'0/;-'ttcomparisonofthetao,Thedampinqvaluesforthe'RRGspectra.(~ry/'rethosespecifiedhyRegulatoryGuide1.61forreinforcedCP':.concre'ti.structures./rvL.~/Pcv~"~/G~~f'da/db8./~da/.6/~Av.oa3.7Q.1.gDegjggTggeHisgogy~mffScud~/c.~2:>~/~4Acefttke.D6&I=~(i'QzAsynthetictimehistorymotion>isgeneratedbymodifyingtheactualrecordsofthe1952TaftearthquakeaccordingtothetechniquesproposedinReference3.7b-1.Figure3.7b-3showsthe:normalizedsynthetictimehistorymotion.'hedurationofthetimehistoryis20sec.The.timeintervalofthetimehistoryis0.005sec.Fiqures3.7b-0:,and3.7b-5showacomparisonofthetimehistoryresponsespectraandthedesiqnresponsespectrafor2,3,5,and7percentdampinqvalues.Thespectraarecomputedatthefollowinqfrequencyvalues(incps):Ik0;2to1.0(incrementof0.05)a1.0to10.0(incrementof0.1)'10.0+o30.0(incrementof1.0)Figure3.7b-6howsacomparisonofthetimehistoryresponsespectraandthedesignresponsespectrafor2and5'ercentdampinqvaluesforafrequencyrangebetween0.2and1.0cps,'ithintervalsof0.0125cps.Alltheabovefiguresshowthatthetimehistoryresponsespectraenvelopthedesignresponsespectra.y/'/GeW~liQ,W~PM~a~A'M~P~~cfogw376/oy~3.70/oI+6~TM~~~JfXXI~~~~~,o/P'~~+Amrpp7~/ee~~,Q~9~~pi,i,~.~/o~-pr-~-m~s-.mcp-'~m~~~,v~~~~~pM~c'f~'~Jm~4JgSaS~~g~~)l~ SSZS-PSAP.3~7h.1.3CggtgcalDamogngValues/Non-HSSSlTable3.7b-2summarizesthedampingvaluesusedonSusquehannaSESTheyareexpressedasapercentageofcrit'caldampinqandarebaseRonRference3.7b-2.P~$'6EP~JrMgap'y~~3~767aTheESswpumphouse,pipingtothereactoroui.ldingac@3thesprayponaretheonlYSeismicCategoryIstructuresandsystemsoundednnscil.TheequivalentspringconstantsandthesoilRampirqcoefficintsusedintheanalysisoftheESSQpumphouseareshowninTable3.7b-3.Thesevaluesarebasedonformulae.containWinTable3-2ofReference3.7b-3.Alumpedrepresentationofsoilstructureinteractionwasused.g.g.<l.Soilstructureiriteactionisalsoconsideredin'hegenerationof'theresponsespectraforthecontainment..AsintheESSVpumphouse,a.lumpedrepresentationofthosoilstructureinteractionis'onsidered.Table3.7b-3showstheequivalentsprinqarRdampinqcoefficientsusedintheconta'mentmodel.$~7b~1~4$uggogtinaNediaforSeismicCategoryIStructuresAll.SoismicCategoryIstructures,'.withtheexceptionofZSSMpumphouseandthespraypond,and-itspipesupportsarefoundedcnrock.Forthestructuralanalysisoftherockbasedstructures,soilstructureinteractionisconsideredtobenegligibleduetothehighstiffnessoftherockwhichhasamodulusofelasticityofapproximately3.0x10~psi.However,theresponsespectraofthecontainmertarederivedfromamodelthatconsiderstheflexibilityoftherock.Theproperties,.oftherockandsoilsupportingtheESSMpumphouseareshowr.inTable3.7b-4.Discussionoftheembedmentofstructuresinsoilw'llbelimitedtotheES5Hpumphouse,sincealltheotherstructuresarefoundedonrock.TheESSPpumphousei59fthighandrestsona64ft'x112ftreinforcedconcretomat,foundation.Theembedmentdepth'fthe-foundationi."'qft.Thedepthofsoilbelowthematfoundationvariesfrom35'to60ft.Thesoilispredcminantlysand,gravel.cobbles,andboulders.Near.hesurface,thesoilisprimarilysandandsandyqravel.Withincreasingdepth,thesoilchanqe'stomorecobblesandboulders.Hearbedrock,thesoilismostlycobbles.andboulders.ThesitegeologyisdiscussedindetailinSection2-5~IRev.35,07/843.7b-3yi~z/I~~I'L

SSES-PSAR3,7b.2S-ISilICSYSTEMANALYSISSection3.2identifiesSeismicCateqoryIstructures,systems,andcomponents.SeismicCategoryIstructuresareconsideredseismicsystemsan1arediscussedhere.SeismicCategoryIsystemsandcomponentsaeconsideredseismicsubsystemsandarediscusodinSubsection3.7b.3.SeismicsystemsareanalyzedforboththeOBEandSSR.Theresponsespectrummethod,asdescribediii'ection4.2.1ofReference3.7b-3,isusedforseismicanalysisofSeismicCategoryIstructures.Separatelateralandverticalanalysesof.structuresareperformed.Theresponsesarethencombinedtopredictthetotalresponseofthestructure.,AtimehistoryanalysisoftheSeismicCategoryIstructuresisdonetogeneratethereponse:spectraatthevarious.masspointsofthe.model.Themathematicalmodelsusedfortheseanalysesarelumpedmass,stickmodels.Thesamemodelswereusedforboththeresponsespectrumandtimehistoryanalyseswiththeexceptionofcontainment..In'thiscase,'hetime.historyanalysisusedtheflexiblebase'modelsshovninFigures3.7b-7and3.7b-8~whereasthestructuralanalysisusedafixedhasemodel.Thefixedhasemodeldiffersfromtheflexiblebaseonlyinthatthesoil"sp'rinqsanddampersareassumedtobeinfinitelyriqid,vhichresultsinafixedbase.TheequivalencyofthetvomodelsdeterminedbycomparinqtheirdynamiccharacteristicsisdiscussedinansvertoNRCQuestion130.20inVolume16ofPSAR.ThemathematicaLmodelsofthereactorandcontrolbuildingareshownonFigures3.7b-9through3.7b-11."Forallmodels,themassesarelocatedatelevationsofmassconcentrations,suchasfloorsandroofs.Hovever,inthecaseofthecontainment.whichisastructureofcontinuousmassdistribution,massesare.lumpedatapproximately15ftintervalsalonqthecont.ainmentshellandreactorpedestal.ThesemethodsofmasdistributionareinaccordancewiththeproceduresofSection3.2ofReference3.7h-3toprovideanadequatenumberof.masses.E~Thereactorandcontrolbuildinqsactasasinglestructureduetothemonolj.thicconstruction.TheentirereactorandcontrolRev.35,07/843.7b-4 'IIL5 SSES-FSARbuildingstructureisshownasasingleunitinpiguze3.7b-12.Boththecontrol'uildinqandtheline29wallofthereactorbuildinqareconnectedtotheP-linevali,vhichiscommontoboththereactor'ndcontrolbuildings.Intheeast-westdirection,thecontrolbuildingandtheline29wallareconsideredtorespondasasingleunit.ThehorizontalmathematicalmodelsareshownonPiguzes3.7b-9and3.7h-l0.Thesticksrepresentshearwallslocatedatthebasemateleva.ioninthereactorbuildinqinthedirectionoftheearthquakem'otion.Intheeast-vestmodel(Figure3.7b-.9)thecontrolbuildinqislumpedentirelyontheline29'stick.Theentrecontrolbuildin'qisconsideredtocontributetothestiffnessof'heline29stick.Inthenorth-,southdirection,thecontrolhuildinqhasitsovnstickccnnectedtotheP-linewallbysprings.rJThesprinqsbetween'hesticksrepresenttheflexibility'of.thefloorslabconnectinqeachstick.Sincethesesprinqsact'nthedirectionoftheearthquakemotion,themodelallovsrelativedisplacemortbetveensticks.Fiqure3.7b-11shovstheverticalearthquakemodelofthereactorardcontrolbuildings.Theleftstickrepresentsthesteelcolumns.Therightstickrepresentstheshearvallsofboththereactorandcontrolbuildin'gs.Thefloorsarerepresentedbylumpedmassesandbeamelementsviththeappropriatestiffnesstocapturetheoutofplaneflexuralvibration.Vertical~translatioralcouplinqsprinqsazeprovidedtorepresentthecouplinqstiffnessofthefloorslabbetveenthevaliandcolumnsticks.Massnumbers8,55~and57representthe.fuelpoolqirdermasses.Massnumbers34;35,41,43,44,46,53and.54representthefloorsbetveen.thefuelpoolgirdersandcolumns/walls.Figure3.7h-13showsthecorrelationbetveenthemodelmass'ointsandtheactualstructure.Tomoreaccuratelydeterminethedyramiccharacteristicsofthemathematicalmodelsthemodulusofelasticityforconcreteusedirtheanalysis,isdeterminedbasedontest.resultsofconcretesamplesobtainedfromtheplant.site.Themodulusvalueusedism5~720,000ksf.TheseismicanalysisoftheSeismicCategoryIstructuresconsidersallmodeswhosefrequenciesarelessthan-33cps.However,if-atructurehasonlyoneortwomodesvithanaturalfrequencybelow33cps,thenthethreelowestmodesareused.If'structurehasthreeorlessdeqreesoffreedom,thenallmodes'reconsideredintheanalysis.Dq.e"BM~~~M,.~~A~c~~'reRev.35'7/S43.7b-5Iq~l~~l Ie pz07ADANMcz4a374-!Iffy~'3-7L-ll95)~~~.~7WZ~+Mgm,~..~~~~~~~.~.~~.aIA~IMRD4-II'l~.>ac~'~~g~~.....,..~I'*II[~~g<<~)'k<<A*I~~A~II4~~D@a'P~~~Q~Sl~aI~(~~K.7L-tZO)~~~.)~~~,~3~~~p~IIII+'~~3',gggoV~~ SSES-FSARTheSeismicCategoryIstructuresaresupportedbycontinuousbasemats;therefore,relativedisplacementofsupportsconsideration.NonlinearresponsesarenotconsideedsincetheSeismicCategoryIstructuresaredesiqnedtoremainelastic.$~7b~2,$Natura/ggeguggciesag~ResnogseLoadsThenest;>>ra1frequencies...ofthecontainmentandthereactorandcontrol-buildingbelow33cpsareshovninTables3.7b-5and3~7b-6respectively.Thefirstsevenfrequenciesofthereactor'ndcontrolbuildingintheeast-vestdirectionaredePendentuponthelocationofthereactorbuildingcranes.ThesignificantmodeshapesofthecontainmentandthereactorandcontrolbuildingareshownonFigures3.7b-14throuqh3.7b-43.Themodeshapesforcontainmentarefc"thehorizontalandverticaldirections.Thereactorandcontrolbuildingmodeshapesareforeacho'.thethreeprincipaldirections:east-west,noth-south,andvertical.Aswiththefrequenci'es,thefirstsevenmodeshapesofthereactorandcontrolbuildingintheeast-.west'.rectiondependonthelocationofthecranes.Figures3.7b-20throuqh3.7b-26-shovthatitisthesuperstructureofthereactorbuildingthatisexcitedattheselovfreguoncies.Thelocationofthecranesisnotedonthefigures~Fiqures3.7b-44through3.7h-57shovtheresponse(i.e.,displacements,accelerations,shearforces,bendingmoments,andaxialforces)ofthecontainmentforbothOBEandSSE.TheresponseofthereactorandcontrolbuildingisshownonFigures3.7b-58through3.7b-79.ResponsespectraatcriticallocationsareshovnonFigures3.7b-80through3.7b-101.Thecurvesareshovnforeachofthethreeprincipal'directionsatthedampingvaluesusedforeachdesiqnearthquake(seeSubsection3.7h.2.15forfurtherdiscussionofdampinqvalues}.Abriefdescriptionofthelocationofeachseriesofcurvesisprovidedbelovviththecorrespondinqfigurenumbers.Fiqures3.7h-80throuqh'3.7b-83RPVPedestalFigures3.7h-04throuqh3.7h-89Figures3.7h-90throuqh3.7h-95RefuelinqbreaA-DDieselGenerator>Pedestals,Rev.35,07/843.7b-6 Cl SSESPSARPiqures3.7h-96through3.7b-10'lOperatingFloorofESSWpumphouseSeismic.systemsandsubsystemsveedefinedinSubsection3.7b.2.EAllequipment,components,andpipingsystemsazelumpedintothesupportirqstructuremassexceptforthereactorvessel,vhichisanalyzedusinq'acoupledmodelofthecontainmentstructureandthereactorvessel(refertoFigures3.7b-7and3.7h-8).SeeSanction3.2ofreference3.7b-3forthecriteriaoflumpingtheequipment,componentsandpipinqsystemsintothesupporting'tructuremass..AdequacyofthenumberofmassesanddegreesoffreedomisdiscussedinSubection3.7b.2.1.EachSeismicCategoryIstructureisconsideredtobeindependentbecauseofaqapbetveenadjacentstructures.Forexample,thereisa2in.horizontalqapbetveenthereactorandcontrolbuildingandthecontainmenabovethefoundationmat.Toformtheseqapsrodofoammaterial(Ref.3.7b-12)vasused.~Rodofoamvasleftinplaceinthefollovingareas:(1)Jointsvhezetheprovidedactualqapis0-5inchgreaterthanthatoriginallyspecifiedonthecivildzavings.(2)Jointsvheretheinteractionforcesbetveenstructuresduetopresenceofrodofoamcauseinsignificanteffectonshearandmoment.I'llSeismicCateqoryIstructures,excepttheESSNpumphouseandspraypond,arefoundedonrock.Theseismicanalysisofthesestructuresisdoneassuminqafixedbase.AsstatedinSubsection3.7b.2.1,thecontainmentresponsespectrumcurvesaregeneratedfromaflexiblehasemodel.Therockisassumedtobeahomoqeneousmaterialcomprisinqanentireelastichalf-space.ThesoilspringsanddampersusedtorepresenttheeffectofthesoilarediscussedinSubsection3.7b.1.3.Rev.35,07/8437b-7

0na.WM~cu~~~~~)M~P%<B~~~p~~M~~~~7~~~Z.7L-PZ'7k-9'Igr-~~&vl~~to%/,p~.I.,BSS~.~~+jg~2-~3~+.~S.~~~OE~.r~~~'L'/tI*IIIIP>>) SSESFSAR40TheESSMpumphnuseissupportedbynaturalsoilformation;consequently,soilstructureinteractionhasbeenconsideredintheanalysisofth,.pumphouse.Informationregardingsoilcharacteristics,foundationembedment,etc.,iscontainedinSubsection3.7b.1.4.Theoilstructureinteractionanalysisisperformedusinqthelumpedspringapproach.Thesoilisconsideredahomoqeneousmaterial.TheequivalentspringconstantsandthesoildampingcoefficientsarediscussedinSubsection3.7b.1.3.Theseismicanalysisofthespraypondisdiscussedi'nSubsection2.5.5.g.7h.7,,5'evelopmentoffloorresponseSpectraAtimehi..toryanalvsisisusedtodevelopth'efloorresponsespectra.'hemathematicalmodelsusedforthisanalysisarediscuss~cdinSubsections3.7b.2.1,3.7b.2.3,and3.7b.2.0.eThefloorresponsespectraarecalculatedatthe.frequencieslistedinTable5-1ofReference3.7b-3.Structuralfreguencies'upto'33cpsareused."17<'RI-~li'r'p/~,~(eZZI'p$,7ba2,6TheaComuonenhsoEgarthguakeSation~j.I,~yEIa8:Rev~35,07/BQ3.7b-8Independentanalysesare,donefortheverticalandtwohcrizcntalfeast-vest'andnorth-south)directions.Fordesignpurposes,theresponsevalueusedisthemaximum'valueobtainedbyaddingthe'responseduetoverticalearthquakewith'helargervalueoftheresponse'du'.tooneofthehorizontalearthquakesbytheabsoluteSummethcdafathePSeEsca'/ltE,ZE~~r~NoZ~,~~A~etof-~~.3.7127CombinationofNodalHosoonseg~2~natNThemodalresponses,i.e.,shears,moments,deflections,acceleration,andinertiaforces,arecombinedbyeitherthesumoftheabsolutevaluesmethodorbythesquarerootofthesumofthesquaresmethodsMhenthelattermethodisused,theabsolutevaluesofcloselyspacedmodesforeachgroupareaddedfirstandthencombinedwiththeothermodesorgroupsofcloselyspacedmodeshythesquarerootofthesumofthesquaresmethod.Twoconsecutivemodesaredefinedascloselyspacedwhentheir~frequencesdifferfromeachotherby0.5,cpsorless.Ims~ c/Q~lk~e="-<<-/,.....-o-~~AI""CIC~'~~~1I7~.'II'~II'I<4*,P

SSES-PSAR37b28InteractionofNon-CategoryIStructureswithSeismicCateaorvIStructurestfon-CategoryIstructuresthatareclosetoSeismicCategorystructures,'iz.,theturbineandradwastebuildings,havebeendesignedtowithstandanSSE.Dynamicanalysesoftheso'.structuresweredonebytheresponsespectrummethod.ITheremainingnon-CategoryIstructuresveredesignedforseismicloadsaccordingtotheUBC(Ref.3.7b-4).Thecollapseofanyoftheseremainingnon-CategoryIstructureswillnotcausethefailure-ofaSeismicCateg'oryIstructure.~~structuralseparationshavebeenprovidedtoensurethatinteractionbetweenCategoryIandnon-CategoryIstructuresdoesnotoccur.Theminimumseparationatanypointismaintainedatoneandahalftimestheabsolutesumofthepredictedmaximumdisplacemertsofthetwostructures.Therodofoammater'alwhichwasusedtoformtheseparationgapswaslefinplaceinsomeareasasmentionedinSection3.7b.2.3.3.7b.2.9FffectsofParameterVariationsonFloorResponseSpectraToaccountforvariationsinthestructuralfrequenciesowinqto'uncertaint'esinthematerialpxopertiosofthestructureandtoapproximat'onsinthomodelinqtechniauesusedintheseismicanalysis,thecomputedfloorresponsespectraaresmoothedandpeaksassociatedwitheachofthestructuralfrequenciesare.broadened.Theparameters,whichareconsideredvariable,arethomasses,themodulusofelasticityofthematerial,andthecross-soctionalpropertiesofthemembers.Xn.addition,.'ariationinthestructural.frequencyisalsotakenintoaccountbecausethebaseofthestructuresmaynotbefullyfixedasassumedintheanalysis.Rev.35,07/843'h-9 SSES-PSAP.getnf=NaturalfrequencyofthebuildingatapeakvalueofthefloorresponsespectrahnfhnfmTotalvariationinnf'Variationin'fduetovariationinthemass5nfeVariationinnfduetovariationinthemodulusofelasticityofthematerialVari.ationinnfduetovariationinthecross-sectionalpropertiesofthemembersfactorof0.05isusedtoaccountforthedecreaseinnfdue'othepossibilitythatthebaseofthest'ructuresmaynotbefullyfixed.Sine'.eitishiqhlyimprobablethatthemaximumvariationsinthe~individualparametersmouldoccursimultaneously,bnfisdeterminedbvthe.squarerootofthesumofthesquar'esoftheindividualvariationsasfollows:V'hemaximumincreaseinnfi.sgivenby:+conf=(~)+(~)+(~)2mes-hnf=(~)+(~)+(~)+(0.05)5+~~~~~'V'gQ-md/5c>~i~I-I'ES,thefollovinqvaluesofi5nfareused:+deaf=012nfLhf=-0.14nf3~7b.2~10UseofConstantVertgcalStaticFactorsConstantverticalstaticfactors'renotusedintheseismicdesignofSeismicCateqoryIstructures.Themethodologyusedfortheverticalseismicanalysisissimilartothehorizontalanalysis.~~pc~ePz~'$~~erma>~~'ix.~MBP~dp~~~~~~0/+~~M..aev.,35,07l843.7b-10(+

SSES-PSAR3~7b./~11methodsUsedToAccountforTorsionalEffectsTorsionaleffectsforthedieselqeneratorbuildingandESSQpumphouseareaccountedasfollovs:Astaticanalysisvasdonetoaccountfortorsiononthesetvostructures.FortheESSMpumphousetheeccentricityvasdeterminedbytheditancebetweenthecenterofmassandthecenterofrigidityofthestructure.Theinertiaforcefromtheresponsespectrumanalysisvasappliedatthecenterofmass.TheresultinqtorsionalmomentisequaltotheinertialforcetimesMeeccentricity.The~shearforcesduetcthetorsionalmomentverethendistributedtothewalls.-The.,torsionalshearforcesaredistributedaccordinqto.themethoddescribedinSection3..4ofRefeence3.7b-5.lnthedieselqeneratorbuildinq,torsionisconsideredduetotheeccentricitycausedbythedifferenceinrigiditiesof,theeastandvestshear,valls.'hetorsional.shearforcesareassumedtobetakenentirelybyeastandvestwallsonly.ATorsionaleffectsareneqliqibleforthe.containmentbecauseofthesymmetryofthestructure.Th'ereactor/controlbuildingismodeledforhorizontaldynamicanalysisasmultiplestickscoupledbysprirqsrepresentingthe.shearstiffnessofthefloorslab.Eachstickrepresentsa~.ma]orstructuralshearvali.Themassandstiffnessdistribution.ofthestructuralvallsissuchthattorsionaleffectsareproperlyrepresentedinthedynamicanalysis'.Torsionaleffectfothedieselgeneratorbuilding,ESSMpumphouse,andreactor/controlbuildingarealsodiscussedinresponsetoHBCquestions130.21and130.22.~~Q63.7h.2~12CoragagisonofgeryonsesFigures3.7b-4through3.7b-6shovthattherespcnsespectraofthetimehistoryenvelop/thedesignresponsespectraatallfrequencies.Thetimehistoryhasbeenusedtoqenerateresponsespectra,inthestructuresbuthasnotbeenusedtocalculateforceinthestructures.Responseincontainment;atypicalCategoryIStructure,obtainedfromtheresponsespectrumanalysiscomparecloselyviththoseobtainedfrcmtimehistoryanalysisbasedonstudiescomparingdisplacementsand.accelerationsobtainedbythetvomethods.,pnMph8R'~,~p+~~Ccnp~~~~~,W~37~"I/d.Rev.35,07/043.7b-11 ~~I'W II~lp~pi~DRaB~>~,~A~~<<~~~~L~5~~'s.7$~aP~SSFS-FSARa-~~~y~~*3,7b.2~13methodsforSeismicAnalysisofDamsDam..'renotprovidedonSusquehannaSES.3.7b.2.1QDeterminationofSeismicCateqcryIStructureovert.ugnj,ngNomegtsTheoverturninqmomentsforSeismicCategcryIstructuresgisthesumof.themomentsatthebaseofe'achstickofthemathematicalmodel.'oreach@tick,th'emomentatthebaseisdeterminedbycombininqthemodplovezturninqmo'ments.The.momentsarecombinedhythemethodsdescribedinSubsection3.7b2.7.Thecomponentsoftheearthquakemotior.usedarethesameasthosediscussedinSubsection3.7b.2.6.Subsectic..3.8.5discussesthefactorofsafetyagainstoverturninqforseveralloadinqswhichincludeseismicloads.Thestructuresconsistofreinforcedconcreteandwelded/boltedst"ucturalsteel.DampinqvaluesforthesematerialsareshcwninTable3~7b-2.~Hoever,.jntheseismicanalysisofthestructures<,'ampfnqvafu~es4f2and5percentareusedfor(.BEandSSF.respectiv'elyforreinforcedconcrete,aswellawelded/boltedstructuralsteel.-Therefore,.analysisofcompositemodeldampinqisnotnecessary.AllSeismicCato.qoryIstructuresexcepttheESSMpumphouseandspraypondanditspipesupportsarefoundedonrock.Consequently,soildampinqvaluesare.calculatedfortheESSMpumphouseasdescribedinAppendixDofReference3.7b-3.TheinteractiondampinqvaluesforthetimehistoryanalysisofthecontainmentarealsocalculatedbythemethoddescribedinAppendixDofpreference3.7b-3.P.ev.35,07/803.7b-12 SSES-PSARForriqidequipmenthavingafundamentalfrequencygreaterthan33Hz,thedynamicloadconsistsofastaticloadobtainedastheequipmen~~weiqhttimestheaccelerationcorrespondingto33Hz.Forstructurallycomplexequipment:,whichcarnotbe.classif'edasstructurallysimnlorriqid,theequipmentisidealizedbyamathematicalmodelanddynamicanalysiisperformedusinqstandardanalyticalprocedures.Analternativemethodusedforverifvinqstructuralintegrityofmembersphysicallysimilartobeamsandcolumnsisthestaticcoefficientmethod..?nthismethodnodeterminationofnaturalfrequencyismade.Dynamicforcesarecalc~ilateda"productoftheweightandpeakaccelerationofresponsespectramultipliedbyastaticcoefficientof1.5.'sanninevalupsuseda"euiveninTable3.7b-2/en',/$Dynamictestinqisperfomedwhenanalysisisinsufficienttodetermineeitherthestructuralorfunctionaladequacyoftheequinmentorboth.Typicaltestmethodsusedareasfollows:a)Sinqlefrequencysinebeattestb)Sinqlefrequencydwelltestc)t".ultiffrequencytest'IAL1seismicqualificationtestssubjecttheequipmenttoexcitationforatleast30seconds.Q~7Q~QQ,1gCombj,ra+jogofQnalysjsandgyngmgcJestinghCertainequinmentisaualifiedbya.combinationofanalysisanddynamictestinme3,7h~g~1.2pipinqSystemmsRP-TOP-l,Rev.3(Ref.3.7b-6)describesthemethodsusedforseismicanalysisofpipinqsystems.Reference3.7b-6isfollowedonSusquehannaSESwiththefollowinqexceptions:3.7b-14 SSES-FSARPorrigidequipmenthavingafundamentalfrequencygreater33Hzthedynamicloadconsistsofastaticloadobtainedasth>equipment~sweighttimestheaccelerationcorrespondingto33Hz.Forstructurallycomplexequipment,whichcannotbeclassifiedasstructurallysimpleorrigidtheequipmentisidealizedbyamathematicalmodelanddynamicanalysisisperformedusinqstandardanalyticalprocedures.Analternativemethodusedforverifyingstructuralintegrityofmembersphysicallysimilartobeamsandcolumnsisthestaticcoefficientmethod..Inthismethodnodeterminationofnaturalfrequencyismade.Dynamicforcesarecalculatedasproductoftheweightandpeakaccelerationofresponsespectra.multipliedbyastatic'oefficientof1.5.'DampinqvaluesusedaregiveninTable3.7b-2~37h2~12~2QYnnia~afiaaDynamicbeestingispe'rformedwhenanalysisisinsufficienttodetermineeitherthestructuralorfunctionaladequacyoftheequipmentorboth.Typicaltestmethodsusedareasfollovs:a)Singlefrequencysinebeattestb)Singlefrequencydwelltestc)pultifrequenrytestAllseismicqualificationtestssubjecttheequipmenttoexcitationforatleast30seconds.22h21..l2GamhirntionuXk,naXZair.~UnSYaaUmc~eCertainequipmentisqualifiedbyacombinationofanalysisanddynamictestina..3a7b~3ilaZPiRRMSYsXQH~fi8~an+Pdd)~o2;<((ck~('(("~~)RP-TOP'-l,Rev.3(Ref.3.7b-6)hdescribesthemethodsusedforseismicanalysisofpipingsystemsReference3.7b-6isfollovedonSuquehannaSESwithvinqexceptions:'L'I(~g~~~'~Q,IgW~~~E~AyRev.35,07/843'b-10

SSES-PSARTnseismicanalysisthemodalresponsesarecombinedbySRSSandlow~rdamoinqvaluesthanspecifiedinReference3.7b-6areused.SeeSubsection3.71.3.7.$.7)..3.1.3ClassIP.CableTraysThecabletraysareseismicallyqualifiedbythecapacityevaluationmothodwhichconsistsofthefollowing:a)~-Calculationofthefundamentalfrequencyofthecabletray'asedonthetraypropertiesobtainedfromstatictestsc)Seismicloadcomputationbaseduponthetrayfrequency,.thepossiblesupportfrequenciesandthedesignspectraCalculationofthetrayallowablecapacityd)EvaluationofthetraycapacitybyinteractionformulaeC"3.7.3.1.4'uort~fS'sm'cCatISc5PartiallycrackedsectionanalysisisbasedonthefollowinqAC1I318(Ref.10AofTable3.8-1)formulagggggglorylHVACDuctsThesupportsofHVACductsareanalyzedbytheresponsespectrummethod.3,7h~3~1,5Cogcgeg~BlockNasongyStructuresQBlockwalgsg.'IThedynamicanalysisofsafetyrelatedconcretemasonryCLa,blockvalls'nClass.Istructures.isperformedbytheresponsepectrummethod.Responsespectrumforthelowerfloorhasbeen.usedforverticalmotionandforwalls,cantileveredfromthefloor.Forhorizontalmotion,theaccelerationofthelo~erfloororaverageofthe'loverandupperfloor,whicheverisqreater,isusedindetermininginertialoads.PrequencycalculationsforblockwallssupportingclassIattachmentsorLJlocatedinareasofclassIequipmentarebasedone'thercrackedIsection,partiallycrackedsection,oruncrackedsectionClproperties;whicheverrepresentstheconditionbaseduponthecalculatedloads.3.7b-15 SSES-CESARt=(i/Nl>T<(l-(t'5)~)e'ra'cracrwhere,=effectivemomentofinertiaofcrackedSectionIcr=momentofinertiaofcrackedSection=bendinqmomentappliedtotheblockwall=Grossectionmomentofinertia(uncracked)gcrackinqbendinqmoment=ytfr=mo<)ulusofruptureformasonry=50psimodulusnfruptureforconcrete=6f'psiYt=distancefromcentroidarisofqrosssectiontothe~extremefiberintension.Forassessinqtheeffectsoffrequencyvariationsonthe,responses,t,hevariableitemssuchasboundaryconditions,mass,modulu'f<<lasticity,crackinqmomentareconsidered.Dampingvaluesusedareir.accordancewithTable3.7b-2.Theresponseofattachmentstoblockwallsisdetermiredasdescribed.inSubsection3.7b.3.1.l.l.ThethreecomponentsofearthquakemotionarecombinedinaccordancewithSubsection3.7b.2.6.3.7b.3.1.6SupportsofSeismicCateqoryIElectricalRaceway~~Xw~M-.<<issectior.defines+heproceduresuedfcrthedes'qnofthe=-'>>oportsofelect.icalracewaysystems;i.e.,cabletray,con<)uit,andwire~ayauttersystems,subjecttotheseismicandotherapplicableloads.Theracewaysupportsystemusuallyconsistsofraceways,horizontalardverticalsupportmembersandlateralandlonqitudinalbracinqmembers.gev.3)~07/R43.7h-16 SSFS-PSARs~wXvtao,~dxcD~QG~.~E'5eadequacyofracewaysystemstowithstandseismicandotherapplicablestaticloadsisdeterminedaccordinqtotheloadingcombinationsandallowableresponsesqirenbelow:EauationCondj,tropLoadCombinationhlgowgblegesponeNotes:NormalD4LNormal/SevereD+L+E(Eauation2appliesonlytoconnectionsforfatiqueconsiderations.)Abnormal/ExtremeD+Ei1..Fornotations,seeTable3.8-2.F-Seenote4SeeNotes264SeeNotes2,3,642.Thefollowinqequationisapplicableforbendinginoverheadconnections:5'BESSEl.owhere:"EQOBESSETotalnumberofload/stresscyclesperearthquake.Allowab3enumberofload/stresscyclesperOBF.event.Allowablenumlerofload/stresscyclesperSSEevent.3.-Thefollowinqcriteriaareusedforcheckinqthemembers.Innocas~shalltheallowablestressexceed0.90Finbendinq,0.85Finaxialtensionorcompression,and0.50Finshear.Wherethedesiqnisqovernedbyrequirementsofstability'localorlateralbucklinq),theactualstressshallnotexceed1.5F.Allowableshearandnormalloadsinconnectionsaredo.~erminedfromthemanufacturers'ataorfromcodeallovablestresseswhicheverisapplicable.Bev.>5,07/H43.7b-17

SSRS-FSAqheallowablevaluesareincreased50%forload~cnmbi.na~ionequation3.ASSR77b2162AM1YtiQRLXRGhGiK>>QR~~~~I~fVX'~~~~Fith~roftwomethodsofanalysisisused.method1isasimplifi~dmethodofanalysisvhichdeterminesthefundamentalfrequencyofbracedsupportsusingtvodimensionalanalysis.Frequenciesaredeterminedineachofthreeprincipaldirections.Thenloadsaredeterminedbytakinqthespectralaccelerationstimestheweight;andstressesaredeterminedfromstaticanalysis.Allmembersandconnectionsarecheckedusingstresscriteria.method2usedathreedimensionalcomputeranalysisandincludesspringstorepresentjointstiffnesses.Responsespectrumanalysesaredonetodeterminestressesanddeformations.Thenumberofstresscyclesisdeterminedbymultiplyingthetimeofmaximumearthquakemotionhythenaturalfreguencyofthesystem.TheallovablenumberofcyclesistakenfromReference3.7b-8for,thejointrotationscalculated.Onlyoverheadconnectionsarecheckedforfatiquesincethetestresults{ref.3.7b-8,pg.7-19)demonstratethatfailuresoccuronlyinoverheadconnections.Thebasisforthedesiqncriteriaandanalysismethod2isthe"CableTrayandConduitRacevayTestProgram"(references3.7b-7throuqh3.7-10).tl~seaTe7Qg1,6gDqmplngI~Is~~,~~c4O~ePg~~~'~"~t)ampingof7%ofthecriticalisusedforthe'esignofakk-racevaysystems.Thetestprogramdemonstratesthatforcabletraysystemsdampinqis,ingeneral,muchhiqherthan7'%.Ref~rene~3.7h-7recommendsusinq20%butvaluesupto50%arereported.Therecommendeddampinqvalues,developedfromthe~stproaramandbasedonloverboundvalues,aresho~ninFigure).7b-106.Damagingisamplitudedependent,i.e.,itincreasesvithinc'casingamplitudeof'nputmotion.Forconduitsystemsthedampinqincreasesvithincreasinqamplitude,butismuchlowerthanforcabletraysystems.This7'JtisarealisticvalueforinputmotionexceedingO.lqforconduitsystems.Mirevaygutterswerenottested;hovever,themannerinvhichtheyareconstructed-withmorebo]tedconnectionsandmorecablesthanconduit-'providesmoredampinqmechanismsthatarepresentinconduitsystemssothat7%isaconservativelylovdampinqvalue.4laJECA'N>R87a448tll<DAIfADWMPratgVW<~EFPogO8ECoHDly'IqQ8<3>%FOR$4FCo+DITiygIausFD3.7b-18yg4)ISyPP'ORTS./W~4Eoia+D~<7S"P'P4~7$k%h4APrefabISuSCD~OROBZAHbirioaPD/oahQPIA4P'ogStECe/DIJ'/oQ.6/+/+FRTog++g+Efff+77+Epgs]gy(gcoNSERvh7IvE DIESEL'E<Eg,4fo+ESOIL/)r'~Cy.

IPSEA7pgAE4EC.gdAZgA7oCEGcJ/C.Nr&y,~/pc'ct~cda~p~~l.(4d~~a/CLEtii~a~p>~g./mA.CCc4cs.<caivCac4p4r..~)~~lief>'n+celiac876b~/,g.J7g'~+~~Cop'Cct.pe/g~J/cf)o(<.<4>ikpp,~~,~e*.'mg~. SSES-FSARVbS,g6<gger~Xjnglna<allnzihamh~AMJ1.(s<<~><~'<~~<~@)TheOBEisconsideredintheloadcombinationsonlyfortheoverheadconnectionswhicharecheckedforfatigue.TheOBEstressesarenotcheckedduringdesignfortworeasons:first,racewaysystemsdonot.failinabrittleorcatastrophicmodeasdemonstratedbythetestproqraminwhichsuchfailuresdidnotoccurandtheelectricalsystemswereabletocontinuetofunctioninallcases.Thus,thereisnoneedtolimittheOBEstressestothelowlevelsusuallyusedtoprecludesuch,failures.Second,theOBEstresseswillalwaysbelessthantheSSEstressesasdemonstratedbelow.InallcasestheZPAvaluesarehiqhenoughtouse7$dampinqbasedonFiqure3.78-106sincethey'allexceedO.lq.AcomparisonofresponsespectraforcorrespondinqdampinqvaluesdemonstratesthatforallresponsespectratheOBEaccelerationvaluesarelessthanthecorrespondinqSSEaccelerationvalues.(SeeReferences3.7b-8and3.7b-10)Thus,theOBEaccelerationresponseandstressesarebelowtheSSEaccelerationresponseandstresses.3.74*3~3.De+eZmiQagionofNgmherofgagtQguakecycles.Inaeneral,thedesiqnoftheequipmentisnotfatiquecontrolledbecausetheequipmentiselasticandthenumberofcyclesinanearthauakeislow.Equipmentthatisqualifiedbyanalysisisdesignedtoremainelasticduringtheearthquake.Anyfatiqueeffectsintestedequipmentareaccountedforbyperforminqextendeddurationtestonselectedspecimen.Consequently,thenumberofcyclesofthemarthauakehasheenaccountedfor.Tncdertoron<luctafatiaueevaluationfornuclearClassIpipina,>h<numberofcyclesforaqivenloadsetisobtained.Thisis<!or~hycon~iderina<<enmaximumstresscyclesperearthquakeandfiveOBE'sandoneSSEtooccurwithinthelifeoftheplant.37b.33ProcedureUsedforNodelinaP.,<hemodels'ro.developedtorepresenttheeauipment.Twoor<<hreedime~sinnalmodelsareuseddependinqonthecomplexityoftheeauipm~:rt.Theboundaryconditionsaremodeledtoreflee+Rev.35,07/B43.7b-19

SSFS-FSARthein-plantmountinqconditions.Theequipmentisrepresentedbylumpedmassmodels.masslesselasticmembersareusedtoco'nnectthemasses.SuooortsforHVACductsaremodeledastvodimensional,lumpedmass,planeframemodels.Themassesarelumpedatthecenteroftheducts.Thecabl~traysupportanalyticaltechniquesarediscussedinSubsection3.7b.3.1.6.2.Thecabletraypropertiesaredeterminedfromtheloaddeflectiontests(seeReference3.7b-ll).Sections2.0and3.0ofReference3.7b-6discussthetechniquesandoroceduresusedtomodelpipingotherthantheburiedtype.3~7h,3~4BasgsforSelecfgo)lgfggeguenc~esThenaturalfrequenciesofcomponentsarecalculated.Ifthenat.uralfrequencyofthecomponentfallswithinthebroadenedpeakoftheresponsespectrumcurve,thenitisdesignedtoMithstandtleooakacceleration.Theequivalentstaticloadmethodofanalysisisusedwhenthenaturalfrequencyoftheequipmentisnotdetermined.Iftheequipmentcanbeadequatelyrepresentedbyasingledegreeoffreedomsystem,thentheappliedinertiaload-isequaltotheweightoftheequipment-timesthepeakvalueoftheresponsespectrumcurve.Iftheequipmentrequiresmorethanonedegreeoffreedomforanadequaterepresentation,thenafactorofl.5isaooliidtot.hepeakoftheresponsespectrumcurve-Section7.l.2andAno~ndixDof.Reference3.7h-6discusstheuseofeguival~n.staticloadmethodofanalysisasapplicabletooipina.Foreciuioment,cabletrays,andsupportsforcabletraysandHVACducts,thethreesoatialcomoonen+softheearthquakeareconsideredinthesamemannerasforstructures(describedinSubsection3.7h.7.6).Fev.35,07/04').7h-20

SSFS-CESARThecriteriausehdforcomhininqtheresultsofhorizontalandverticalseismicresponsesforpipinqsystemsaredescribedinSection51afReference3.7b-6~e~4rnn"e-kaig.'~25~aaahiaaCiaa~fSaCaLXemuaaaa(~~<4~tP~w.~b~G~~F.f~ThemodalresnansesofequipaentharecoibinedbythesquarerootofthesumofthesquaresmethodTheabsolutevaluesoft<<o-closelypacedmodesareaddedfirstbeforecombininq<<iththeothermohasbvthesquarerootafthesumofthesquaresmethod.Twaconsecutivemodesaredefinedascloselyspaced<<hentheirfre~cenciesSiff~efron~echotherby10nercintorless.I;f2iTAeOf~frAe"g"tea,~~>~chNf.gem~~~CriProceduresqiveninRequlataryGuide1.92forcombiningmodalresponses,<<henclosoly-spacedmodesarepresent,arenotcomplied<<ithintheseismicresponsespectraanalysisforppnq>hllmodalresponsesarecombinedbysquarerootof'umofsquares(SRSS)in.theresponsespectramethodofmodalanalysisforseismicloadinq(OBEandSSE).Seismicresponsesoectrausedinthepipinqanalysiscorrespondstoconservativeampinqvaluesof1/2%fprOBEandJ.%forSSE~6arnni'novcducf.mW~"E."ee:ibga.C'Ct'-Vpf'ndta~5~-~<SknMisB+uhC@~Guide/nb/,Theproceduresuedinevaluatinqthepipinqsystemforhydrodynamicloads(SFVandLOCA)byresponsespectramethodisincompliance<<i+hRequlatoryGaMe1~92.Themodalresponsesin+hiscasearecombinedinaccordance<<ithsection5~2ofBP-TOP-1,Pev.3,<<hichhasbeenacceptedbytheIRCstaff,pertheletterdatedSeptember29,1976~framKarlKniel,ChiefLightRaterReactorsBranchNo.2,DivisionofProgectHanaqeaenttoBurtanL.Lex,DechtelPo<<erCorporation.TherriteiausedforpipinqsystemsaredescribedinSections5.1and5.2ofReference3.7b-63~753Bhnakxian3,2Xucehuz~aXurRimmedTheResiqncriteriaandtheanalyticalproceduresapplicabletopipinqsystemsareasdescribedinSectian2.0ofReference3.7b-6.ThemethodsusedtoconsiderdifferentialpipinqsupportmovementsatdifferentsupportpointsareasdescribedinSection4.0ofReference3.7b-6~'ev.35,07/8437b-2f I0 SSESFSAR3.7b.3.9NultiplySupportedEguipmentandComponentsvit49'a.'isn'tXaamForcab!.etraysandductsvhosesupportshavetvodistinctinnu~s,aresponsespectrumcurveisusedthatenvelopesthecurve:attletvolocations.~Section4.0ofReference3.7b-6discusses~hemethod'susedfor,theanalysisofmultiplesupportednipinosvstems.g~1y~g~>n-o;.~g~gggggyggyQxgigy~~g~kggoalConstantv~."ticalstaticfactorsarenotusedintheseisaicdesignofsubsystems.3<71.3~1>:-aa'aiaaaLZffaalauXXaaaufZia3~N~ThetorsionaleffectsofvalvesandothereccentricmassesareconsideredintheseismicanalysisofpipingbythetechniquesdiscussedinSection3.2ofReference3.7b-6.$L7b~)~1?Pqs;j,0~4sg~gC'atggQggT7i~~~g>Z~g~ms~lieZ~ull~g~PuriedSeism'cCateaoryIpininghasbeenanalyzedanddesigredforseismiceffectsinaccordancevithSection6.0ofReference3~7h"lq<<n6RAc'~oce<.7b-I8k~.-ice.~"E."Fc.iilig,~hema1ori+vnfth~anticinatedsettlementduetnstaticloadingoftheE."SMPumpho>>savillhaveoccurredpriortoconnectingthepipingtothhuilding.DuringaSSEevent,thedifferentialsettlementhdtv"rr.th~:pumphouseand~hesurroundingsoilvhichsupports>hevining,villhelessthanoneinch(seeSubsection2.5.0.7forfurtherdiscussionofsettlement).~hismovementvillheaccommodatedbythepipingvithoutexceedingcodeallcvab'les.ress~s.~unnelsontheSusen~hannaSESarenon-SeismicCategoryZ.~Rev.35,07/<<53.7b-22 SSRS-FSilP.3.7b-12Ic<fofoxmIImarufac"ureQb7W.8~GraceCt:o.oreauivalcn~equal.87bIs-H.8XgInsln-n'a~g,~sess'PIen~&n1ynje~sf'~+/Zne/'IVneJnnp/~f.~yg,c)f.at~Q/~stan~~Voce~~Jf>5>>g,s~,<-ppnsysser-pipit,5psr6nepi>>A/usleciw~Qyssn~/M~TS3++sSOR)P~&g~~p~gPlM>ZnsAe'ick.isuform:(~oneIqgI)Bev.35,07/RO3.7b"28

D~pt~gIIALu&sfbEN<<-+sssQAT~iALspLDg&p~<<>7p'(PercentofCriticalDamping)StructureazComponentOperatingBasisEarthquake(OBE)<SafeShutdownEarthquake(SSE)Equipmentandlazge-diameterpipingsystemsa,pipediametezgreatsthan12Small-diametezpipingsystems,diameterequaltoorlessthan12in~~,~'o~~~~~~~SWe1.dedsteelstructures2BoltedsteelstructuresReinforcedconcetestructures'I~InthedynamicanalysisofactivecomponentsasdefinedinU.S.NRCRegulatoryGuide1.48,thesevaluesshouldbeusedfortheSSE.~Includebothmaterialandstructuraldamping.Ifthepipingsystemconsistsofonlyoneortwospanswithlittlestructuraldamping,usevaluesforsmall-diameterpiping.sIfthemaximumcombinedstressesduetostatic,seismic,andotherdynamicloadingaresignificantlylowerthantheyield'stressand1/2yieldstressforSSEandOBE,respectively,inanystructureorcomponent,dampingvalueslowerthanthosespecifiedabov'eshouldbeusedforthatstructureorcomponent,toavoidunderestimatingtheamplituideofvariationsordynamicstresses. QOQAQPZS9uEA/</8'SMPPM+apR7jo4Pbo-~M+R,Pi~~g~~~o&~PO/Lg/~5'+5M/c.WoP~O~'k.lh4Jdl-....u~Am/MOJO'/"N/t=~gg(H).7./7..P'.7$zr.2go...,3f.3$,..g.x.gg6/.Oz--a./o.<<(5'e2/O.dg-o.zg.8'0D~OSO.2/-/~52.-0.6g5:72....O$4..-o.)o-o./III-oa3do03I-o.~g0~op-o.s(f+,02I0.03d~d3.-/S'36.,.O.I/-.o.yf7eo(a/0-.o.o(f-Z.s3./~Q~~o.0,02oo0&.Ogo.o/.O~07Os03o.iI.,-o.oS'.$2.-o.I'(t~aOOg...o.agO.a/O.D2.~-"7/7-'"...f.75/g.ogm.8s.,aspic30.$'0:....33.Q.;,g6./7....3//.//'..S.ggg.ot/03.2oi/3.'t43~/o-o.Sh/2..704m+/D./0..'.oo+3.,$~'3$'.boo.S'75o.o'FoedSo.oS-n.>Fg~d.Z'2-+,02~a.g4../~o~$'>..Oe37d

055es-/5+87~5&3-jb-Pgm~~c,m~o~oP~PM71wP+Po+~P<~EIp~~c~~r'>'~~"~~~'g.CHp)ggyg27.8'/gyp'Pz.if+o,gg7y.sc+.)ol,o7/2,f,4g%.5/5'O,o7+/g3,o3ZSP.P72..t/Bog.>2.../3$-47r.00~o.30o.l7d0O0.QO.O0ddip-a.7$0...0O-2.450-ov/Oo.M/dy5I'en~I/~/g/Uop~:,~>~,~~ewe<<p('n/-s)gy~~tio~fpp'venric~~)aC~-~)

1C)CQC)C)CZmXIco2,1lm>~R>mK0m~mnCOmnCO037OzCUZo+0CCCalcuQJOLLJiCCC)IC30.003.256.509.751'3.00TIHE(SECQNDS)16.2519.5022.7526.00 oD(DoD~@aojyahgCZAlXcoZZ~zcnzz+0~BunthImnoDI0ZL3hl~DCt:CC(UQJOLIJICC'3ooIo10.003.256.509;7513.0016.25TIHE(SECGNDS)19.5022.7526.00 C)CIaCOC)e)+Ab(~nCZmXCcoZ'llmZcn~--I<~mCnZ%Oman~wn332mCOOOZ(DC)~(DDOI-CCCCQJOLLjoCLC)AJClC)C)C3.0.2001.000.FREQUENCY(HZ)~\10.003Q.0 C3COC)R'NWg.lh4~hQ+CmXrCOZllZCo>>mZrZmr<OmC"mOCllCllCO03)O?CD~CDCIOI-.Ct:CCWCDQJoCCC)MC)(DC3CD0.2001.000FREQUENCY(HZ)10.00 C)C)CUP)C)e)s~~It'g<gAlCmXrNZmm<~mCOzr.>~mrZr<Um~ssoCAmocn0OZ~AJQOI-CC'CC~(OLLjoCCCOC)C3C)CD0.2001;000FREQUENCY(HZj10.0034.0

AJP)C)tnQAlu))+Ac$1~~mQCZmXlthZ'llmH--ICZm~Om~mOCAflloD0Z~CUCIO.CCCCW<hJnCCCOC)C)C)C3C)0.200j..000FREQLIENCYtHZ)10.00C" C)C7AJP)C)vt)+6s$~'OqCZmXCllZr'llmZcoH--IZm<Om"'wACOXI-2mnCll0O'Z~NDOI-QJCDMoC3C)C)C)C3C)C)0.2001.000FREQUENCY(HZ)10~0030.0

oCOO~~~)+A~$~8Om'XrcoZZllmZcn--c<~~mZ~2lZr<Omc"wnCllmncnOOZz~QOCCCCQJOMoCCOMoooo0.200'1.000FREQUENCY(Hz)~~10.003Q.0w)

CILAC)C)a')~5+h~RClW~~to~C2fflXrCI1Zm~~C/fCmCOffl+0mf~mOCAmCnO0zCDC)~CA+OI-CZCCLLjo~CULUnCL0oC)C)0.200':-1;000FREQUENCY(HZ)10.003Q.0 o~oCUo'Crent~t\to~CztflXrvlz>c2C/lzzIll<O~BenCAmno~QzzCUQol-CCCt:QJCD43oCCIooooo0.200~~1.000=-"'FBEGUENCY(HZ)10.00

C)C)P)C)~5+Cgg>cn~my~>~~8~~W~~to~C'ZmXrthZ2ZllmZ~COZ3g+~mmKOgnHwACAmcn033OZzCUI-CCCCQJ(DLLjoCECOC3C)C)tDC)0.2001.000FREQUENCY(HZj'10.00 C)C)0PCUP)C3gh~~q,ul)+A>s$ooCZIllXrEhZZZCA<~rnC/IZ+~mrzr<Oml"rOnCll2CAoOZ~CDQOl-CCQ:QJCOUJaCCoC)C)o.aOO1.000FREQUENCY(Hz)10.00

fX7zgo-@~op'-aELcps'.Uu@pc~cwo~~,ii~iSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTggesaL~P~poeagwLJi~HoCr&o~ctL.An/DYEE77cAL.5+>>Mi~Haec.s'~R,w'3.7b-IIf 33C7SUSQUEHANNASTEAMELECTRICSTATIONUNITS1ANO2FINALSAFETYANALYSISREPORT~g0\~glMeLQEnl~poRm~+sr'e75elc.HoPeL SSFS-PSALM'1.8.3.6.5.2WeldinqandNondestructiveExamination~gfWe~dqMeldingandnondestructiveexaminationisperformedinaccordancewithAWSD1.1.).Q~3~6~$,'3PgectjogTogepqgcesErectiontolerancesforthedrywallplatformsareinaccordancewithAISCSpecification(Ref.2HofTable3.8-1)38366gugggtXcogggolpualitycontrolrequirementsforconstructionarediscussedinAppendixDandamendmen+stothePSAR.83.7.1PreooerationalTestina~44~!e~pQ~Thedrywel1flooristestedto1.15timesthedesigndownwarddifferentia1prossure.SeeSubsection3.8.1.7.1.1fora'descriptionofthestructuralacceptancetests.VDeflection..andstrainsofthedrywellfloormeasuredduringthettnit1tes+werelessthanthepredictedvalues.Thus,thedesiqnof+hedrywellfloorprovidesanadequatesafetymarginaqainstinternalpressure.Piqure3.8-79showsacomparisonhotweenmeasuredandpredicfeddeflectionsforthedrywellflooratp'"~differen-:.ialpressure.3.8.3~7~1~$g~akByte<eggj,ggPreoperationalleakrate'testinqisdiscussedinSubsection6.2.6.Rev.35,07/843~8-.51 SSPS-.~SAR38372.In-serviceLeakRateTestincIn-serviceleakratetestinqisdiscussedinsubsection6.2.6.Thissectionqives'nformationonallSeismicCategoryItructuresexcepttheprimarycontainmentanditsinternals.Italsodescribessafetyrelatednon-SeismicCategoryIstructures.Thestructuresincludedinthissectionareasfollows:ReactorBuildinaControlBuildinqDieselGeneratorBuildinqEngineeredSafeguardsService'RaterPumphouseSprayPond.y)g.sG.LQgt46kAToR6.SulL5>86pop-SeismicCategoryI~SgfegxRegatedStguctgrosTurbineBuildingPadwasteBuildinqTheqenealarranqementofthesestructures'sshownonFigures3.8-80throuqh3.8-103.Amp89-tO5'Tgpooqg38-lo6.Reac',-"Bui1.-"."..RefertoFigures3.8-80throuqh3.8-89.Thereactorbuildingenclosestheprimarycontainment,andprovidessecondarycontainmentwhentheprimarycontainmentisinservicedurinqpowerop~ration.It-alsoservesas.containmentdurinqreactorrefuelinqandmaintenanceoperations,whentheprimarycontainmentisopen.Ithousestheauxiliarysystemsof'henucleasteamsupplysystem,newfuelstoraqevaults,therefuelingfacility,andequipmentessentia1tothesafeshutdownof~hereactor.Rev.35,07/8Q3.8-52 SSFS-PSARThereactorbuilding,uptoandincludingtheoperatinqfloor,ofreinforcedconcreteonamatfoundation.Thebearingwallsareofreinforcedconcreteandaredesignedasshearvallstoresistlateralloads.Thefloorsareofreinforcedconcretesunportedbyasteelbeamandcolumnfraainqsystemandaredesiqnedasdiaphraqmstoresistlateralload.Theframingrunsinbotheast-vestandnorth-southdirections,viththeexteriorendsofthebeamssupportedbyeitherthebearingvallsorsteelcolumns.Thesteelcolumnsaresupportedbybaseplatesonthematfoundation.Thereinforcedconcretevallsandfloorsaeetstructuralaswell'asradiationshieldingrequirements.Rherestructurallypemissible,concreteblockmasonrywallsareusedatcertainlocationstoprovidebetteraccessforerectionandinstallationofequipmen+.Theblockwallsalsomeettheradiationshieldinqrequirements.Thereactorbuildingsuperstructureabovetheoperatinqfloorissteelstucture..hestructuralsteelframingsupportstheroof,metalsidinq,andoverheadcranes.Theframinqconsistsofaseriesof.riqidframesconnectedbyroofandvalibracingsystems.~heroof.consistsofbuilt-uproofingonmetaldeck.Therefuelinqfacilityislocatedabovethecontainmentstruc+ure.Itcons'tsof'spentfuelpool,fuelshippingcaskstoraqepool,s+eamdryerandseparatorstoragepool,reactorcavity,skimmersurqetankvault,andloadcenterroom.Thefacilityissupportedbytworeinforcedconcretegirdersrunningnorth-south,spanningoverthecontainment.Thegirdersaresupportedattheendsbyconcretevallsandatintermediatepointsbysteelboxcolumns.Aqapisprovidedbetweenthebottomofthegirdersandthetopofthecontainmenttoensurethatloadsfrom+herefuelinqfacilityarenottransferredtothecontainment.Thewallsandslabsofthespentfuelpool,thefuelshippinqcaskstoragepool~thereactcrcavity,andthesteamdryerandseparatorstoragepoolarelinedontheinsidevi+hastainlesssteellinerplate.Thefacilitymeetstheradia+ionshieldinqrequirements.Thereactorbuildinqisseparatedfromtheprimarycontainmentbyqap,oxcopta+thefoundationlevel,vhereacoldjointis.pro~idedbetveenthetvoaa's.Aqapisalsoprovidedattheint.faceofthereactorbuildinqviththedieselgeneratorand+urbinebuildinqs.contqo],Buif'ggRefertoPiqures3.8-80throuqh3.8-88.Thecontrolbuilhinqhousesthecontrolroom,thecablespreadingrooms,computerandrelayronm~thebatteryroom,HGVequipmentroom,off-qastreatmentroom,andthevisitors'alleryforthecontrolroom.Fev.35,07/843.8-53~>>I~>,~i~~c~1~\~\g~~,s'>>qtnbvAtL>>4>> Thecontrolbuildingisstructurallyinteqratedwiththereactorbuildinq.Itisareinforcedconcretestructureonamatfoundation.Thebearingwallsareofreinforcedconcreteandaredesiqnedasshearwallstoresistlateralloads.Thefloorsandroofareofreinforcedconcretesupportedbysteelbeams,andaredesiqnedasdiaphragmstor~sistlateralloads.Thebeamsspanintheeast-westAirctionandaresupportedbythebearingwallsattheends.Theeinfo'reedconcretewallsandfloorsmeetstructuralasveilasradiationshieldingrequirements.Wherestructurallypermissible,concreteblockmasonryvallsareusedatcertainlocationstoprovidebetteraccessforerectionandinstallationofequipment.Theblockwallsalsomeettheadiationshieldinqrequirements.~.Thecontrolbuildinqisseparatedfromtheturbinebuildingbyaqap,exceptatthefoundationlevel,vhereacold)ointisorovidedbetveenthetvomats.Qge59$GeoggagogBuilgjggPefertoPiqures.3.8-92and3.8-93.Thedieselgeneratorbui1dinqhousesthedieselgeneratorso.ssentia1forsafeshutdownoftheplant,.Thedieselgeneratorsareseparatedfromeachoherbyconcretevalls.Aconcreteoverhanqontheeastsideofthebuildingservesasanairintakeplenum.Aconcreteplenumfordieselexhaustislocatedontheroof.I.isareinforcedconcretestructureonamatfoundation.Thehearingvallsareofreinforcedconcreteandaredesignedasshearwallstoresistlateralloads.Thefloorsandroofareofreinforcedconcretesupportedbysteelbeams,andaredesignedasdiaph"aqmstoresistlateralloads.Thesou..hsideofthebuildinqin>erfacesviththereactorbuilding;there,areinforcedconcretevaliisprovidedfromfoundationuptothedesianhiqhvatert'ablelevelandthenasteelframeisprovideduptotheroof.Wherestructurallypermissible,concreteblockmasonryvallsareusedatcertain'ocationstoprovidebetterace~";forerec-.ionandinsta~lationofequipment.Thedieselgeneratorsaresupportedbyreinforcedconcretepedesta1s.Thenedestalsareseparatedfromtheoperatinqfloorbvaqaptoallowfortheirindependentviht'ation.3'-54 SSES-FShRgggj,peepedSafeggygdgSerg~>l(y~eggSQVJgumppguseRefertoFigure3.8-94.TheESSQPumphousecontainstheemergencyservicevater(ESM)andresidualheatremoval(RHR)pumpsandtheweiranddischargeconduit.forthespraypond.Itisatvo-storyreinforcedconcretestructureonamatfoundation.Thebearingwallsareofreinforcedconcreteandaredesjqnedasshearvallstoresistlateralloads.Theoperatingfloorandroofareofreinforcedconcretesupportedbysteelbeamsandaredesignedasdiaphragmstoresistlateralloads.hmezzaninefloorcomposedofqratinqoversteelbeamsisprovidedtnsupporttheheatinqandventilatingequipment.SPXaZpQpdRefertoF'qures3.8-q5throuqh3.8-98.Thespraypondisareservoir,freeforminshape,vhichholdsapproxima+ely2Rmilliongalofwa~erduringnormaloperation.Thavatersurfaceareaisapproximatelyeiqh+acresandhasadepthofapproximately10ft6in.Itisdesignedsothatnormaloperatinqvaterisretainedinexcavationalone,ie,notbyconstructedembankments.Embankmentsareprovidedtoensureaminimumfreeboardnf3ftandtodirectfloodwateravayfromsafetyrelato.dfacilitiesinacontrolledmanner.heESSWpumphouseislocatedatthesoutheastcornerofthespraypond.AreinforcedconcretelinercoverstheentirespraypondandisintegratedwiththeoutervallsnftheESSMOumphouse.The'waterlevel.inthepondiscontrolledbyavei"housedintheFSSM.pumphouse.Purinqnormaloperation,excessvater'sdischarqedintotlesusquehannariverviaacorduitfromtheESsMpumphouse.Anemerqencyspillvayisprovidedattheeastendofthepond.he'lyarticioateduseofthisspillvayvillbeeitherduringamalfunctionof'.hedischargeconduitleadinqoutoftheESSMpumphouseordurinqcertainpostulatedfloodconditions.ThisisdiscussedinSuhsec~ion2.4.8.'rhe'SSWandPHPpipesenterthesouthsideofthepondandtraversetothespraybankareasburiedin18in.ofcorcrete,providedasmissileprotection.Concretecolumnssupporttheriserpipesinthespraybankareas.Rev.35,07/8438-55 SSES-PShHTurbjggBgj,gdgjqRefertoPiqures3.9-80through3.8-84,3.8-88'.8-90,and38-q~.Theturbinebuildingisdividedintotwounitswithanexpansionjointset>aratinathetwounits.Ithousestwoin-lineturbineqenerato"unitsandauxiliaryequipmentincludingcondensersgcondensatepumps,moistureseparators,airejectors,feedwaterheaters,reactorfeedpumps,motor-generatorsetsforreactorrecirculatingpumps,recombiners,interconnectingpipingandvalves,andswitchqears.Two220-tonoverheadcranesareprovidedabcvetheoperatingfloorforserviceofboth-tubinegeneratorunits.Twoeinforcedconcretetunnels,oneforeachunit,areprovidedfortheoff-qaspioelineatthefoundationlevelbe~weentherecomhinersandtheradwastebuilding.Reinforcedconcretetunnelsarealsoprovidedforthemainsteamlines.belowtheoperatingfloorfromthereactorbuildingtothecondenserareasoftheturbinegenerators.Theturbinebuildinqrestsonareinforcedconcretematfoundation.Th~superstructureisframedwithstructuralsteelhardreinforcedconcrete.Riqidsteelframessupportthetwo220-.oncranes.Th~yalsoresistalltransverse(east-west)lateralloads.Stoelhracinqsresistlongitudinal(north-south).lateralloadsabovetheoperatinqfloor.Belowthislevel,reinforcedconcreteshearwallstransferalllateralloadstothefoundations.Aseismicseparationgas,alsoservingasanexpansion)oint,isorovidednearthecenterofthebuildinqbetweenthetwounits.~eismicseparationqapsarealsoprovidedattheinterfaceofturtincbuildingwiththereactor,control,andradwastebuildinqs.Thefloorsoftheturbinebuildingareofreinforcedconcreteonstructuralsteelbeams.Theyaredesignedasdiaphragmsforlate~1loadtransfertothe".hearwalls.Theroofisbuilt-uproof;,.qonmetaldeckinq.Pxteriorwallsareprecastreinforcedconcetepanelsexceptfortheupper30ft,whicharemetalsiding.Interiorwallsrequiredforradiationshieldingorfireprotectionareconstructedofreinforcedconcreteblock.Thesewallsarenotusedaselementsoftheloadresistantsystem~Theturbineqeno.ratorunitsaresuppor.edonfreestandingreinforcedconcretepedestals.Themat-foundationsforthenedes+alsarefoundedonrockatthesamelevelasthebasematRev35'7/843.8-56 SSLS-PSARfortheturbinebuildinq.Separationpointsareprovidedbetweenthepedestalsandtheturbinebuildingfloorsandwallstopreventtransferofvibrationtothebuilding.'heoperating-floorofthebuildingissupportedonvibrationdampingpadsatthe%opedgeofthepedestal.gOQw5sgQpuj,lgXQQRefer.toPiqures3.8-99through3.8-103.Theradwastebuild'nqhousessystemsforreceiving,processing,endtemporarilystorinqtheradioactivewasteproductsqenerateddurinqtheoperationoftheplant.Xtisareinforcedconcretestructureonamatfoundation.Thebearingwa.llsareofreinforcedconcreteandaredesignedasshearwallstoresistlateralloads.Thefloorsandroofareofreinforcedconcretesupportedbyabeamandcolumnframingsystemandarede.iqnedasdiaphraqmstoresistlateralloads.Thecolumns.aresupportedbybaseplatesonthematfoundation.Thereinforcedconcretewallsandfloormeetstructuralaswellasradiationshieldinqrequirements.Mherestructurallynermissible,concreteblockmasonrywallsareusedatcertainlocationstoprovidebetteraccessforerectionandinstallationofequipment.Theblockwallsalsomeettheradiationshieldingrequirements.Theradwastebuildingisseparatedfromtheturbinebuildingbyazap.IN5KLTThecodes,standards'ndspeci'ficationsusedinthedesign,fabrication,andconstructionofthestructureslistedinSuhsection3.8.4aresho~ninTable3.8-1an4includereferencenumbers10A,18,1H,2H,3H,1J,2K,3K,and1L.l2A8,'..3Loads.;"dLoadComb.nationsn.hefollowinqloadsandloadcombinationsareconsideredinthedesiqnofSeismicCategoryIstructures(otherthanthe.ontainment).Rev.35'7/843.8-57 SSFS-FSARO7384,31Descriotionof.Loads~24,Forageneraldescriptionofloads,seeSubsection3.8.1.3.2.Table3.8-8describestheloadrombinationsapplicabletothereartorhuildinq.TableS3.8-9'ontainptheloadcombinationsapplicabletoSeismicCategoryIstructuresotherthanthereactorbuilding.Table3.8-10describestheloadrombinationsusedinthedesiqnoftheturbineandtheradvastebuildings..hestructuresdescribedinSubsection3.8.4.1aredesignedtomaintainelasticbehaviorundervariousloadsandtheircombinations.Theloadsandtheloadcombinationsarefullydesrribedin'Subsection3.8.4.3.Allreinforcedconcretecomnen+ofthestructurearedesignedbythestrengthmethodqp.'cI~yperACI318(Reft.10AofTable3.8-1.Allstructuralsteecomponentsaredesiqney.eworkingstressmethodperAISCspecification(ReflHofTable3.8-1).cay>>ADet'erminationof.windandtornadoloadsisdescribedinSection3.3Seismicdeianofs+ructuresisdescribedinSection3.7.Thebuildinqsareanalyzeddvramically.Desiqnofstructureformissileprotectioni"coveredinSubsection3.5.3.ComputerprogramsSTRESSandICFSSTRIJDL-II(Ref1and2respectivelyofSubsection3.R.4.8)areusedtoanalyzestrn:..~ural"..":-"'raminq.Therefuelinq'acili'yofthereactorbuildinqisdesiqnedbasedonfiniteelementanalysisbyuseofcomputerprogramNRI/STARDYNE3(Ref3ofSubsection3.8.4.8).47hesoraypondisbasicallyaconcrete-linedsoilstrurture.ItsdesiqnisdiscussedinSubsection2.5.5.ConcretemasonryblockvallsinallSeismicCateqory,T.structureshavebeenanalyzeddynamicallyasdescribedinSection3.7b.3.1.5.Theyaredesiqnedforout-of-planeandin-planeiner+iaforcesgeneratedbythemassoftheblockwallandRev.35,0718438-58~- j+58g.7CQa"'IESELGENERATORUILDINGReferto-Figures3.8-l05and3.8-l06rhedieselgenera'o!.i'.bu1ldinchousesthediesel<i,"no,-at<ir,wnicnwillbeusedasareplacement'oranyoneofthe.ou;uxi:;tin>>;dz.eselgenerators.Themainpurposeofthedieselgenerator'E'stoallowmaintenancetobeperformedonanyoneofthefourexistingdieselgeneratorswithoutthenecessityforaunitoutage.Thedieselgenerator'E'uildingisatwo-storystructurewithabasementconsistingprimarilyofreinforcedconcrete.Agapisorovidedbetweenthepedestalandthefloorslabatgradelevelsothatnovibrationsfromthedieselgeneratoraretransmittedtothebuilding.Theouterreinforcedconcretewallsandroofofthedieselgenerator'E'uildingaredesignedtoresisteffectsoftornadomissiles.Aportiono'ftheouterwallisremovabletofacilitatedieselgeneratorinstallationand/or"emergencyremovalandmaintenanceoperation.Thisremovablewallportionisalsodesignedtoresisttheeffectsoftornadomissiles. 0 SSES-PSARattachmentloads,combinedwithotherloadsasdescrihedinTables3.8-8and38-9.MailsintheturbineandradvastebuildingshavebeendesignedforseismicloadsperUBC(Ref.1LofTable3.8-1).gg4QS+guctugg1~pepggceggjtegj,aRe2,gfogcedCo))QXQiehupA4%309ThereinforcedconcretestructuralcomponentsaredesignedbythestrengthmethodperACI318~(ReQ.10AofTable3.8-1forloadsandloadcombinationsdescribedinSusection3.8.4.3.StJ:Zc.uralSter,lAuPl'LAThes+ructuralsteelcomponentsaredesignedbythevorkingstressmethodperAISCspecification(Ref1HofTable3.8-1)forloads.andloadcombinationsdescribedinSection3.8.4'.Theallowablestes.esfordifferentloadcombinationsareindicatedtherein.Allmasonryblockvallsarereinforcedwallsanddonotactasshearvalls.MasonryblockvallsaredesignedbytheworkingstressmethodperUBC(Ref.1LofTable3.8-1).TheallovableloadsperUBCTables24-Bor24-H(specialinspection)aremodifiedasdescribedinTables3.8-8,3.8-9and3~8-12,exceptasnotedbelow.Fordoublevythcwallsdesignedascompositesectionsandhavingconcreteorgroutinfillthicknessof8inchesormore,theallowableshearortensionbetveenmasonryblock'andinfillis1.1f~i.e.43p.s.i.However,theactualdesignstressdoesno+exceed15p.s.i.Forotherdoublevythewalls,allowable."-hear/tensionstressisassumedtobezeroattheinterface.3.8.~.6Haterials,Qual'ityControl,andSpecialCogsfgugtiogTecggj,guss38461ConcreteandPeinforcinaSteelc----~9TheconcreteandreinforcingsteelmaterialsarediscussedinAppendix3.RP.ConcretedesigncompressivestrengthsaregiveninTable3.8-11.MaterialsforconcreteblockmasonrywallsarediscussedinAppendix3.RC.Rev.35,07/843.8-59 SSHS-PSAR'Thevariousstructuralsteelcomponentsconformtothefollowinqspecifications:ItemReams,qirder,andplatesPoxcolumnsincludinqbaseplato.sandcapplatesStructuraltubinqHiqhstrenathboltsStudsSpeciQ,gyt2,onASTNA36andASTIA588AST<A588ASTIA500andASTHA501AST".lA325andASTIA490ASSD1~1d>8~4~6~ZaZHuldinaaalu2aadsizuctivaeatinqMeldinqandnondestructivetestinqisperformedinaccordancewitheitherAMSD1.1(Ref.10ofTable3.8-1)orSectionEXoftheASIDECede(Ref.1JofTable3.8-1).Rev.35,07/843.8"60 SSES-FSARg8467,gfabZgglfgonMdgKQ~$29ThefabricationanderectionofstructuralsteelconformstotheAISCspecification(Ref.1H,28and3HofTable3.8-1).13~8~4~6~g~4pug],gyContgolgualitvcontrolofstructuralsteelfortheconstructionphaseisdiscussedinAppendixDofthePSABandamendmentstothePSAR.4$g'gycgglConsgpgctgongecgpiguegTechniquesinvolvedintheconstructionofSeismicCategoryIstructuresarestandardconstructionprocedures.g,8~4~7TestingyndI))-gepyiceInypectionpegui~emgnfsTestingandin-serviceinspectionarenotrequiredforSeismicCategoryIstructures(otherthan+hecontainment).3.8.4.8ComputerProgramsUsedintheDesiqnandAnalysisofOtherSggsmgcCgtggo~~Stgug~gQsSTRESS,DepartmentofCivilEngineering,massachusettsInstituteofTechnology2)ICESSTRUDL-II,DepartmentofCivilEngineering,massachusettsInstituteofTechnology3)NRI/STABDYNE(Version3),ControlDataCorporation.Forrthercomouterprograms.efertoSubsection2.5.5andSection3'3~85FOUNDATIONSThissubsectiondescribesfoundationsforallSeismicCategoryIstructuresexceptthospraypond.ThespraypondisbasicallyasoilstructureenditsdesignisdiscussedinSubsection2.5.5.Descriptionsoffoundationsforsafetyrelatednon-SeismicRev.35,07g8438-61 SSES-PSARQucateqoryIstructures,suchastheturbinebuildingandtheradvastebuilding,arealsoincludeRinthissection.3~/~5~/pyscgfptionofthegogndgtigggTypicalRetailsofthefoundationsforvariousstructuresareshovnonFiqure'.8-104.Reinforcedconcretematfoundationshavebeenprovidedforallstructures.ThematsrestonsoundrockexcepttheESSWpumphousematissupportedbynaturalsoil.Allbearingvallsofthestructuresarerigidlyconnectedtothefoundationmat.Wheresteelcolumnsareprovided,theyareattachedtothematbybaseplatesandanchorbolts.Thebearingwallsandthesteelcolumns,carryalltheverticalloads.fromthestructuretothemat.Horizontalshearsduetowind,tornado,andseismicloadsaretransferredtotheshearvallsbytheroofandfloordiaphragms.Theshearvallstransferthehorizontalshearstothefoundationmatandfromtheretothefoundationmediumthroughfriction.Also,asshownonFigure3.8-104,the.idesofthebasematsofallthestructuresexcepttheESSWpumphousearekeyed+o<<hefoundationrockallaroundbypouredconcrete,vhichhelpsintransferrinqthehorizontalshearstothefoundationrock.TheedqesoftheESSWpumchousebasematarepoureddirectlyaqainsttheexcavatedslopesofthenaturalsoilformation.Amudmat(unreinforcedconcretelayer)isprovidedbetweenthebaseofthefoundationmatandthefoundationmedium.ExceptfortheESSWpumphouse,avaterpoofingmembraneisprovidedinthemudmatardontheoutsidefaceofperipheralsubterraneanwallsperforatedpipesareprovidedaroundtheperipheryoftheb'uildinqstocollectgroundvaterseepageanddrainittothesumps.WaterproofingmembraneurdertheESSWpumphousefoundationmatisnotconsiderednecessaryasthepredictedgroundwater,tableatthepumphousesiteiswellbelovthefoui".tionmat-refertoSubsection2.5.5).Peripheralsubterraneanvallsaredesignedtoresistlateralpressuresduetobackfill,qroundvater,andsurchargeloads,inadditiontodeadloads,liveloads,andseismicloads.Cd@<<gj,ggapg:ThecontainmentfoundationisdescribedinSubsection3.8.1.gyagtogBuild/I)gandCogtgolQuilting:Thefoundationmatsofthereactorandcontrolhuildinqsarepouredmonolithically.Rev.35,07r843~8-62 SSES-PSARThereactorbuildingfoundationmatisapproximately4ft9in~thick-.andisreinforcedtypicallywithf11barsat12in.centers.attopandbottominboththenorth-southandeast-vestdirections.Thematsurroundsthecontainmentmat,withacoldjointseparatingthetvo.Thecontrolbuildingfoundationmatisabout2ft6in.thickandisreinforcedtypicallywith48barsat12in.centersattopandbottominthenorth-southdirectionandf11barsat12in.centersattopand$8barsat12in.centersatbottomintheeast-westdirection.Acoldjointisprovidedbetveenthecontrolandtheturbinebuildingmats.Oping~],GogegagogBujlaqnq:Thefoundationmatofthe.dieselaeneratorbuilding'isapproximately2ft6in.thickandisreinforcedtypicallywith49barsat12in.centersattopandbottominboth+henorth-southandeast-vestdirections.hcoldjointisprovidedbetveenthedieselgeneratorpedestalmatandthedieselgeneratorbuildingFSSQgum@house:ThefoundationmatoftheFSSMpumphouseisabout3ftthickandisreinforcedtypicallyvith09barsat12in.centersat+opandbottominboththenorth-sout'handeast-vestdirections.guqbineBuilding:Theturbinebuildingmatisapproximately2ft6in.thickandisreinforcedtypicallyvith06barsat12in.cent'ersattopandbottominboththenorth-southandeast-westdirections.Acoldjointisprovidedbetveentheturbinepedestalmatandtheturbinebuildingmat.gagvasggBujgging:Theradvastebuildingmatisabout3ftthickandi..reinforcedtypicallyvith49barsat12in.centersattopandbottominboth-thenor+,h-southandeast-westdirections.II4$6Rihecodes,standards,andspecificationsusedinthedesign,fabri.".ation,andconstructionoffoundationsofstructuresarelist..inTable3.8-1.TheloadsandloadcombinationsusedinthedesignofthecontainmentfoundationaredescribedinSubsection3.8.1.3.TheloadsandloadcombinationsusedinthedesignoffoundationsofotherSeismicCategoryIstructuresarediscussedinSubsection3.8.4.3.Inaddition,thefollowingloadcombinationsareBev.35,07/843~8-63 SSES-FShRconsideredtodeterminethefactorsofsafetyagainstslidingandoverturningduetowinds,tornadoes,andseismicloads,andaqainstflotationduetogroundwaterpressure:a)D+H+Wb)c)D+H+W'RDe~+eS,D+,H+'Ed)D+H+8')D+Pwhere:D,W,W',S,andE'reasdescribedinSubsections3.8.1.3and3.8.4.3andHandPareasfollows:H=LateralcarthpressureF=Buoyantforceduetoqroundwaterpressure.g~g~g~4PepingpdggalgsgsPgocedugesThefoundationsareqenerallydesignedtomaintainelasticbehaviorunderdifferentloads-andtheircombinations.TheloadsandtheloadcombinationsaredescribedinSubsection3.8.5.3.ThedesignandanalysisofthereinforcedconcretematfoundationshavebeencarriedoutinaccordancewithACE318A<oAcZ549(Refs.10A~fTahie3.8-1).-AwDI>AThehearingwallsandthesteelcolumnscarryallthevertical,loadsfromthestructuretothefoundationmat.The-lateralloadsaretransferredtotheshearwallsbytheroofandfloordiaphragms,whichthentransmitthemtothefoundationmat.Doterminationofoverturningmomentdue,toseismicloadsisdisc'issedinSubsection37."..14.%bFxceptforESSWpumphouse,settlementofthefoundationsofSeismicCategoryIstructuresisconsiderednegligibleasthefoundationsaresupportedhysoundrock.ThesettlemenoftheHSSWpumphousematisconsideredinthedesignandisdiscussedinSubsection2.5.4.As~xplainedinSubsection3.8.5.1andshowninFigure3.8-104,thesidesofthefoundationmats(exceptfortheKSSWpumphouse)arekeyedtotherockbypouredconcrete,whichresistsslidingofthemats.StabilityaqainstslidinqfortheESSWpumphouseisRev.35,07/8438-64 XNSERT'D'XESELGENERATORUXLDXNGMATThefoundationofthedieselgenerator'E'uildinisa3'-10"thickandzsreinforcedtyllhcentersattopandbottominboththenorth-ypicaywith59barsadirections.oenort-southandeast-west

SSFS-FSARmaintainedbythefrictionontheundersideofthebasematandpassiveresistanceofthesoilagainsttheedgeofthemat.DetaileddescriptionofthefoundationrockandsoiliscontainedinSubsections2.5.4and2.5.5.Pordesignpurposes,thea'llowablebearingpressuresofrockandsoilare40and2.5tons/sq-ftrespectively.ThecalculatedbearingpressuresforloadsandloadcombinationsdescribedinSubsection3.8.5.3donotexceedtheseallowablevalues.'JThedesignandanalysisofthecontainmentfoundationmatarediscussedindetailinSubsection3.8.1.4.3~8~5~)Stggcgugy1QccgpfggeeQ$teggaThefoundationsofallSeismicCategoryIstructuresaredesignedtomeetthesamestructural'cceptancecriteriaasthestructuresthemselves.ThesecriteriaarediscussedinSubsections.3.8'.5and3.84.5.Inaddition,fortheadditionalloadcombinationsdelineatedinSubsection38.5.3,theminimumallorablefactorsofsafetvagainstoverturning,sliding,andflotationareasfollows:I.ggdComggngtj,anOyertuggiggSlidingFloatationa)b)c)d)e)D+H+I1.5D~H~W~~aD+H+W~s1.1D+H+81~5D+H+P.i11D+P1~51~11.51~1Thecalculatedfactorsofsafetyexceedtheaboveminimumfactorofsafetv.4ev.35,07/843~8-65 SSES-PSAR3~8~5~6Haterials,'ualityControl,andSpecialconstructionTaahnlm~aThefoundationsofSeismicCategoryIstructuresareconstructedofreinforcedconcrete.Theconcreteandreinforcingsteelmateria.lsarediscussedinAppendix3.8B.ConcretedesigncompressivestrenqthsareqiveninTable3.8-11.Techniquesinvolvedintheconstructionofthesefoundationsarestandardconstructionprocedur'es.ThecontainmentfoundationisloadtestedduringthestructuralacceptancetestasdescribedinSubsection3.81.7Anin-servicesurveillanceprogramtoaonitorthesettlementoftheESSIpumphousefoundationhasbeeninstituted.DetaileddiscussionoftheproqramiscontainedinSubsection2.5.I.Testinqandin-serviceinspectionisnotnecessaryforfoundationsofallotherSeismicCategoryIstructures.pev,35,07g803.8-66 SSES~LRXhl(52+9=1LISTOPAPPLICABLECODESSTANDARDSRECORRENDATIONS~LNDSPECIFICATIONSPage1of6ReferenceNuahecDesiqnationTitleEditloniQg'6,ELDER.(A)hnariaaacaaararazaifirafBLCI2111ACI21qACI301Lcy304BecoaaendedPracticeforSelectingProportionsforNocaalaadHeavyveiqhtCoacreteRecoaaendedPracticefocEvaluationofCoapressionTestResultsofPieldCoacreteSpecificationsforStructuralConcreteforBuildingsRecoaaendedPcacti.ceforBeasurinqiBiringgTransporting,andPlacingConcrete197019651972197319()977)98l(9787A10A12L13lACI305LCI306ACI307ACI308ACT309ACI318ACI3q7LCI399ACISP2RecoaaendedPracticeforHotNeatherConcretingRecoaaende4PracticeforColdQeatherConcretingSpecification.fortheDesignan4ConstructionofReinforcedConcreteChi.aneysRecoaaundedPracticeforcuringconcreteRecoaaendedPracticeforConsolidationofConcreteBuildinqCodeRequireaentsforReinforcedConcreteBecoaaendedPracticefo'rConcretePocavorkCciteciafocReinforcedConcreteNuclearPaverContainaentStructures(includedinACIannualofStandar4Practice,Pact2,1973)RanualofConcreteInspectioa19721966(1972)1969197'11972197119681975(917)$78l98((077(978)$8l(8)hn~ricdnMeldingRaaintx18LNSDl1StcuctucalNeldinqCode1972(Generallyallvock)19a~1975,1980,1981(SoaevockafterJune1975)28ANSD121RecoaaendedPracticeforNe14ingBeinforcingSteelan4connectionsinReinforcedconcreteconstruction1961Ciprinciplp//ditionsusedarelisted;laterppditionsmaybeapplied,forspecificcases>clhSp16SECcz<ekAToR~8uicAl4$.Rev.35,07/84 ReferenceNuaberDesianationSSES-PSakkKALI@1B-1iConlin004).Title-EditioniP~ae2of6bQCBLDG,.(C)q5HRQl.Bif.BBBRlRCBfYCQRBiM1MICBG110Bschaaical{Cadveld)SplicesiaRei.nforciagBarsofCategoryIConcreteStructuresRevision\Jaa19732C3C4CSC6C7CSCRG1~15BGI~IBRGI19BGI54RGI~SSBG1~57BG1kSBTestingofReinforciagBarsfocCategoryICoacrsteStructuresStcucturalAc"sptaacaTestforCoacretsPciaaryReactorContainaentsIloadsstructiveExaaiaatioaofPriaaryCoataiaasatLinerRsl4sQualityAssucaaceReguireaentsforProtectiveCoatingsAppliedtoRater-Coole4PovsrPlantsCoaccstsPlaceaeatiaCategorylStructuresDesignLiaitsandLoadingCoabinationsforBetalPriaacyReactorCoatainasatSysteaCoaponeatsrQualificationofRuclsarPovsfPlantZaspectionrExaainationrandTestingPsrsonaelRevision1Dec1972Revision1Dec.1972Revision1Aug.1972June1973June1973June1973Aug.1973CoacreteRadiatioaShieldsforNuclear-PoverPlantsBGI~69RG1~94QualityAssuranceBsquireaeatsforIastallationrInspection,andTestingofStructuralCoacretean4StcuctucalSteelDuciagtheConstructionPhaseofNuclearPoverPlaats10CC~<fIASf/LPE~lklkkrirkk-.kkiktxoikkkkiikkkkkckkkkiklkDsc1973Apr1975AP/t.I976,102030ASTIAS)9ASTBA615ASTBC29ASTBC31SeaalesaCacbonaadAlloySteelNechaaicalTubiagDsforsedaa4PlainBilletsteelBarsforconcreteReinforcsaentUnitVsightofAggregatellakiaqandCuciagCoaccsteTestSpeciasnsinthePisid19711974,19751972r1974r1975'I9711969I983C~g.kI5ABATOR~principl)/Xjditionsusedarelisted>laterjj(ditionsmaybeappliedforspecificcases>SOC))ASDI<eO)l.yIQQ.Rev.35,07/B4 SSES-FSLRspill,gia-1gcookkRH94l.Page3of6ReferenceNuabarDesignationTitleEditionoDO'Cl3t.OC,.7Danqn10o11D12D13D14n15O16DLSTNC33LSTNC39LSTNC40LSTNC87ASTNC88LSTNC94ASTNC109ASTNC117ASTNC123LSTNC127ASTNC128,ASTNC131ConcrataiqqragatasCoapraasivaStrengthofCylindricalConcreteSpeciaansOrganictapuritiesinSandsforConcreteEffectofOrganicZapuritiesinFineAggregateonStrengthofNortarSoundnessofAqgraqatesbyUseofSodiuaSulfateorNaqnasiuaSulfateReady-NixadConcretecoaprassivastronqthofHydrauliccaaeatNortarsNaterialsFinerthanRo.200SieveinNineralAqqraqatesbyMashingLiqhtvaiqhtPiecesinAggregatespecificGravityan4AbsorptionofCoarseLgqragataSpecificGravityandlbsorptionofPineLgqregateIResistancetonebraskanofSaallSizeCoarseAggregatebyUsaoftheLos.AngelesNachine1971r197419721966'97319691971'9731973~19741973,1975196919691968,19731968,19731969tgeli979>)7619SBi98ol98olg&3<)8Il919l)SI17D18020n22D23DASTNC136ASTNC138LSTNC142LSTNC143lSTNC150LSTNC215ASTNC231SieveorScreenAnalysisofFiaean4CoarseAggregatesUnitMakqht~yieldsan4lircontentofConcreteClayLuapsan4FriableParticlesinlgqraqatasSluapofPortlan4CaaantConcretePortlandCaaaatFundaaantalTransverse,Lonqitudinalian4Torsional-FraquanciasofConcreteSpeciaansLirContentofFreshlyNixadConcretebythePressureNathod19711973'974'97519711971,19741973~1974r1976+1978'9601973~1974~1975(ps3itsl>9781978l980>yP4A-+>ylgS6i,l48l4SC,ATOL6*PrincipldZjfditionsusedarelisted;laterNditionsmaybeappliedforspecificcasespli'OitSl46Rav.35,07/84 ReferenceNuabecDesignationSSES-PSLHThQl,a)5=}}coafiaaailPage4of6EditionvDg'SLDQ.24D25n26027028D29n3nn31D32n3'10ASTHC235'ASTHC260ASTHC289LSTHC295ASTHC311ASTHC330LSTHC469LSTHC494ASTHC566ASTHC618ASTHC637ScratchHardnsssofCoarseLqqregateParticlesAirEntrainingLdaixturesfocConcretePotentialReactivityofLqqregatesPetrographicExaainationofLqgregatesforConcreteSaaplingandTestingPlyLshforUseasaaLdaixtureinPoctlandCeaentConcreteLiqhtveiqhtAggregatesforStructuralConcreteStatl.cHodulusofElasti.cityandPoisson'sRatioofConcreteinCoapcessioncheaicalAdaixturesforConcretetotalHoistureContentofLggcegatebyDcyinqPly.LshandRavorCalcinedHaturalPoxxolansforUseinPortlan4CesentConcreteLqqreqatesforRa4iationShiel4ingConcrete19681973'9741971196519681969m197519651971196719731973198II)7glg82.f978(E)hREKicaahaaaQiakiaaofuatalliahMRY404XXaaramlaliaa~UakaliLASH'TOT26AASHTOT150AASHTOT161[plLt5hfaYcnL'BaofEaaiaaal'aQualityofHatertobeUsedinConcreteParcentaqeofParticlesofLessThan1.95SpecificOravityinCoarseAggregateResistanceofConcreteSpeciaenstoRapidPreexinqan4thavinginRater1970194919701P2PCRDC36CRnc39TostforTharaalDiffusivityofConcreteTestfocCoefficientofLinearThecaalExpansionofConcrete197319553PCRDC1194FCRJ)G572+PrinciplgypditionsusedarelistedgTestfocPlatan4ElongatedParticlesinCoarse1953Lqqreqate5pgclFlCA/If'ORPolVVI<VLclLOkl>aHgTLRSgoP1970iaterpdditionsmaybe,appliedforspa.cificcasesy50CHhSDl6$EL.Ca<~<4~oR~L>i<4PCgRov.35,07/84

0ReferenceHuaberDesiqaationSSES-PSAhThh))lys=llcanlinna4).Tit.leEdition+Page5of6QG,'a)L<yq.(G)haaxjnaannziannlQlaadax{laIaaajhnln10LHSIHu'5~2~5SupplesentacyQLRequireaentsforInstallationtInspectionandTestingofStructuralConcreteandStructuralSteelDucingtheConstcuctionPhaseofHucleacPoverPlants.1972)$7'dSfa.TFAHSIH1016ConcreteRadiationShields(H)daarjnaaInnljlnjaaf5lnnlQanajrncljon19721HLISCSpecificationfortheDesign,Pabricstion,andErectionofstructuralSteelforBuildingsandSupplesentHos.1~2and3196907s2HAISCCodeofStaadardPracticeforSteelBuildingsandBridges1970(Soaevorkbefore))0761972(Generallyallvock)1976(SoaeworkaftecSept1976)3H4HAISCAISCSpecificationforStructuralJointsUsingASTIA325orl490BoltsSpecificationforthedesign~fabricationanderectionofStructuralSteel.forbuildiags1966,1972and197&1978(SoaevorkafterJuly1977))f75(J)dan@jean50njntXafnachanjgajhagjaaacaASHEASHEBoilerandPcessureVesselCode,SectionsII,III,V,VIII'ndIX1971vithAddendathcoughSusaer1972{K)gacb)ejpnHRICDIaolaljnn~dnagKangjanaiCnjjfnKnja~,goajcaj))apogean1K2K3KBC-TOP-1DC-TOP-4-lDC-TOP-9AContainaentBuildinglinerPlateDesignReportSeisaicAnalysesofStructuresandEquipaenttorHuclearPoverPlantsOesiqnorStructuresforHissileIspactRevision1Dec1972Revision3Hov1974Revision2Sept1974(L)IntngndjjnnaiCnnfefaacaoft)ajjgjngOffjcjajsA8<eg&nhloP-c~Principlpfgpfditionsusedarelisted>later+ditionsmaybeappliedforspecificcases>~VC.HA>SuLDIIJQ.Rev.35,07/84 .ReferenceIlnaherDesiqnationSSES-PSLa.~ggl,g3S-1ICoatinue41.TitleBditionePage6of6UniforaQuildinqCode1973,1976Principljjfj(ditionsusedarelistedslaterpgditionsmaybeappliedforspecificcasesSVCn4><4al6RAToREWIt>~<0.Rev.35,07/84 12CINSERTQQktgOoooSTaADhRPRGVJGQpCAQFOL1'l<a~~~>>~oF~+Fa~~AiALgstsQgp>pygFoRHvccbhRPoplck1.28QualityAssuranceProgramRequirements2/79(DesignandConstruction)1'fC1.60Rev.1DesignResponseSpectraforSeismicDesignof12/73NuclearPowerPlantsACl.61Rev.0DampingValuesforSeismicDesignofNuclear10/73PowerPlants15C1.76Rev.0DesignBasisTornadoforNuclearPower':;Plants4/74lgC1.92Rev.1AC1.117Rev.CombiningModalResponsesandSpatialComponentsinSeismicResponseAnalysisTornadoDesignClassification2/764/781PC1.132Rev.1SiteInvestigationsforFoundationsofNuclear3/79PowerPlants)ACl.142Rev.1Safety-RelatedConcreteStructuresforNuclearPowerPlants(otherthanReactorVesselsandContainments)10/81 IH5ERQpZcFGR~WC~ao.9a'ipHATipseANSIN45.2TITLEQualityAssuranceRequirementsforFacilities,Rite%ProgramNuclearSb>T>Oul977ANSIN45.2.2Packaging,Shipping,Receiving,StorageandHandlingofItemsforNuclearPowerPlants,i)78N45.2.5SupplementaryQualityAssRequirementsforlation,InspectioTestingofSalConcreteandtructuraelDuringtheConstructionPhaseearPowerPlants,1974ANSIN45.2.6QualificationsofInspection,ExaminationandTestingPersonnelfortheConstructionPhaseofNuclearPowerPlants,i)78,IIANSIN45.2.9RequirementsforCollection,Storage,andMaintenanceofQualityAssuranceRecordsforNuclearPowerPlants,ANSIN45.2.10QualityAssuranceTermsandDefinitions,sqANSIN45.2.11QualityAssuranceRequirementsfortheDesignofNuclearPowerPlants,ANSIN45.2.12RequirementsforAuditingofQualityAssuranceProgramsforNuclearPowerPlants,l)7IIANSIN45.2.13QualityAssuranceRequirementsforControlofProcurement=ofItemsandServicesforNuclearPowerPlants,I<76lipANSIN45.2.23QualificationsofQualityAssuranceProgramAuditPersonnelforNuclearPowerPlants,l)78E9'i71045ARE05t'.'II SSES-FSARTABLE3-a-8(P~1<>~4)Q6LOADCOHBENATZONSAPPLICABLE703:-ACOHBUELDINr,W~s,=<<Ta,P~o'KIHIT/Missla.6Iop>NotationsIfs=Fs=Fy=Ho=Ha=DsD's.v'indloadTornadowindloadCalculatedstressinstructurals"e1AllovablestressforstructuralsteelYieldstrengthofstructu"alseelForceonstructuredueto..hermalexpansionofpipesunderope"atingconditions"-orceonstructureduetothermaliexpansionofpipesunderacciden+,,condi.ionsForceonblockvallduetostorydriftunderoperatingBasisEarthquakeLoadingForceonblockwallduetostorydriftunderSafeShutdownEarthquakeLoadingAllowablestressforreinorcedcon"retemasonryperUBC,Table24-H(specialinspec..ion)forglobalwallanalysis;orallovablestressorunreinforcedconcretemaonryperUBCTable24-3(specialinspection)fo=localvalianalysisasaresultoa.+achments.Allovablevorkingstressintens'onfo"reinforcingsteel(asspecifiedinUBC).Yieldstrengthofreinforcing-teel.Forallothernotations,seeTable3.8-2.A>einorcedConcreteNormaloperatingloads:U=1.4=.--:1.7L+1.0T+25H00Normaloperaingloadsvi.hSevereenvironmentalloads:U=0~75[14D+1~7L+1~7(1~1)E]+1~OTO+1~25HHU=075(14D+17L+17H)+1OTO+'25HoWhereoverturningforcescausenettens'onintheabsenceofliveload,thefollovingloadcombinationsareconsidered:U=0~9D+13{11)E+1~OTo~1~25U='090+139+1OTO+125HoRev.35,07/84

SSES-.".SARTABLe3.8-8~Continue+)(p82ofn)Pors"ucuralshearwallscarryingse'smi"orces,thefollowingloadcombinationisalsoconsidered:U=1.0D+1.0I+1SE+1OTo+1.25HoNormaloperatingloadswithExtremeenvironmentalloads:7=1OD+1.0L+1.0T+1.0W'1.0HNormaloperatingloadswithAbnormalloads:U=1.05D+105L+10(To+T)+1.0P+l.5P+1.0HoaNormaloperatingloadswithSevereenv'ronmentalandAhnormalloads:rU=1OSD+105L+1~0(TO+T)+1~OR+125.+125E+10HoWhereoverturningforcescause,nettension'ntheabsenceoliveload,thefollowingload,combinationisconsidered:U=0e95D+125E+10(To+T)+1~OR+10HoNormaloperatingloadswithExtremeenvironmentalandAbnormalloads:U=1.0D+1OL+1e0(To+T)+1.0-'+1~OP+1OR+1.0U=1OD+1OL+1OTo+1Sc,'+1-OR+1.25HaRev.35.07/84 SSZS-FSARTABLE3.8-8~Continue"..)(Pg3of4)B.StructuralSteelConditionLoadCombingionAllowableStressIncreaseNormaloperatingloads:NormaloperatingloadswithSevereenvironmentalloads:NormaloperatingloadswithExtremeenvironmenta1loads:NormaloperatingloadswithExtremeenvironmental'andAbnormalLoads:D.+L+T+00D+L+To+5+HoD+L+T+N+H00D+L+T+-.l~.+H00D+L+R+T+"+P+HD+L+R+(T+T)+P+~'Hl.25Fs>.33FASeenotebelo~Seeno.ebelo~Seenotebelo~Note:;heallowablestressinstructuralsteeldoesnotexceed,O.gFyinbending,0.35Fyinaxialtensionorco~pression,and0.5Fyinshear.<<hereZsisgovenedbyrequirementsofstability(localorlateralbuckling},fsdoesnotexceed1.5Fs.Rev.35,07/84 SSES-...SAP.TILB~E3.~8-8ContgnuEB)(u8uuf8)QzqC.Conc"ete<ason~rStructures~31ockralieLSafety"elatedblockwallsincategory.".stucturesothe"than"hereactorbuildingaredesignedforthefollowingloadcombinationsandallowablestressincrease.Theload"ombinationsapplytoout-o-planeloadingassellasin-planeloading.AcceptancecriteriaisinaccordancevithSubsection3.8.4.5.ConditionLoadCombinationAllovab1eStresIncreaseNormalNormal/SevereNormal/ExtremeAbnormalAbnormal/Severe.Abnorma1/ExtremeD+L+T+HoaD+L+T+H+E+D00sD+L+T+H+o0D+L+(T+T}+q+0oa.aD+L+(T+T)+3!+H+1~25E+Doa"'a"sD+L+(T+T)+2+2+E'+D'a-"asNoincreaseNoincreaseSeeTable3.8'SeeTable3,8SeeTable3.8SeeTable3.8Rev. SSES-FSARTABLE389(pgIpf3)LOACCOMBINATIONSAPPLICABLETOSEISMICCATEGORYISTRUCTURESOTHERTHANCONTAINMENT~M4REACTORBUILDINGSLABSCl"QEAGRATOR.~6Sett.DtdNotations:SeeTables3.8-2and38-8A.ReinfocedConceteNormaloperatinqloads:U=14'D+17L+1~OTp+1.25HpNormaloperatingloadswithSevereenvironmentalloads:YU=075(1>>4D+17L+17(1~1E))+1OTo+125"oU075(14D+17L+17W)+10Tp+125HpWhereoverturninqforcescausenettensionintheabsenceofliveload,thefollowingloadcombinationsareconsidered:\UO~9D+13(,11E)+1~Of()+125HUO~9D+13W+1~OTp+125HForstructuralelementscarryingmainlyseismicforces:U1~0D+1~OL+18E+1OTp+125H'ormaloperatinqloadswithExtremeenvironmentalloads:U=1'DC+1OL+1OW'+1~OTp+1.0HpNormaloperatingloadwithSevereenvironmentalandAbnormalloads:U='.-05Dt1.05L+1~<5E+1~0(Tp+Ta)>1.0R+1.0HWhereoverturningforcescausenettensionintheabsenceofliveloa<i,thefo1lowinqloadcombinationisconsidered:0=0>>95D+l>>25E+1~0(Tp+Ta)+1>>OR+1>>0HaNormaloperatingloadswithExtremeenvironmentaland'bnormalloads:U10D10L1E10To10R12HoU100+10L+1"DE+10(To+T)+10R+10HRev.35,07/84

SSES-PSARTABLE3.8-9QContinuedg<pg~B,StgucturalSteelConditionrNormaloperatingloads:NormaloperatingloadswithSevereenvironmentalloads:NormaloperatingloadswithExtremeenvironmentalloads:NormaloperatingloadswithExtremeenvironmentalandAbnormalloads:LoadCombinationD+L+To+D+L+To+E+QD+L+To+M+HoD+LiTp+N'+HgD+L+R4To+F'+NoD+L+R+To+Ta48'+HaAllowableStressPs1.25Fs33PsSeenotebelowSeenote'elowSeenotebelowNote.Theallowablestressinstructuralsteeldoesnotexceed0.9Fyinbending,0.85Fyinaxialtensionorcompresion,and0.5Pyinshear.%herePsisgovernedbyrequirementsof.stability(localorlateralbuckling)~fsdoesnotexceed1.5Ps.Rev.35,07/84 SSES-FSARTABLE3.8-9Continued(pg.3of3)C.ConcreteMasonrStructuresBlockwallsSafetyrelatedblockwallsinthereactorbuildingaredesignedforthefollowingloadcombinationsandallowablestressincrease.Theloadcombinationsapplytoout-of-planeloadingaswellasin-planeloading.AcceptancecriteriaisinaccordancewithSubsection3.S.4.5.ConditionNormalNormal/SevereNormal/ExtremeAbnormalAbnormal/SevereLoadCombinationD+L+T+HooD+L+T+H+E+DoosD+L+T+H+W'00D+L+(T+T)+R+1.25P+8aD++(To+a)++1o25P+Ha+1~25E+DsAllowableStressIncreaseNoincreaseNoincrease.SeeTable3.8-12SeeTable3.8-12SeeTable3.8-12Abnormal/ExtremeD+L+(To+Ta)+R+P+Ha+D's+E'eeTable3.8-12Rev.35,07/&4

TAUIE3.8-9aLoadCombinationsforDieselGenerator'E'uilding(Seetables3.8-2and3.8-8fordefinitionsofloadsandothernotations)TheDieselGenerator'E'uildingisdesignedforthefollowingloadcombinations:A.ReinforcedConcreteServiceLoadCombinations:a.U=1.4D+1.7Lb.U=1.4D+1.7L+1.9Ec.U=1.4D+1.7L+1.7Wd.U='.2D+1.9Ee.U=1;2D+1.7WWheresoilorhydrostaticpressuresarepresentandhavebeenincludedinLandD,z.nadditiontoalltheprecedingcombinations,therequirementsofSections9.2.4and9.2.5ofACl318.77havebeensatisfied.FactoredLoadCombinations:a.U=1.0D+1.0L+l.OE'.U=1.0D+1.0L+1.0Wc.U=1OD+1.0L+1.0WmsRegardingprecedingloadswhicharevariabl~,thefullrangeofvariationhavebeenconsideredinorderto'eterminethemostcriticalcombinationofloading. PAgf2.OE23HB.StructuralSteelThefollowingcombinationsofloadingshavebeenconsideredinthedesignofstructuralsteelseismicCategoryIstruc-tures.Sistherequiredsectionstrengthbasedontheelas-ticdesignmethodsandtheallowablestressesdefinedinPartIofAmericanInstituteofSteelConstruction(AISC)Specifi-cationfortheDesign,FabricationandErectionofStructuralSteelforBuildings,November,1978,exceptthatthe33-percentincreaseinallowablestressesforseismicorwindloadingshasnotbeenpermitted.Indeterminingthemostcriticalloadingconditiontobeusedindesign,theabsenceofaloadorloadshasbeenconsideredasappropriate.ServiceLoadCombinationsa.S=D+Lb.S=D+L+Ec.S='+L+WFFactoredLoadCombinationsa.1.6S=D+L+E'.1.6S=D+L+Wtc.'.6S=D+L+Wms SSES-FSARTABLE3,8-11CONCRETEDES1GNCONPRESSXVESTRENGTHS8tgnctu~e>urbinegeneratorpedestalAllotherSeismicCategoryIandsafety-related,non-SeismicCateqoryIstructuresandtheirassociatedfoundationmatsincludinq:a)Containment(includinqitsinternalstructures)b)ReactorBuildingr)ControlBuildingd)DieselGeneratorBuildinge)ESSVPumphouseE)SprayPondq)TurbineBuildingh)RadwasteBuildingA.)g($,56446~KNATO~ConcreteDesignCompressiveStrength,f'c(osis30004000Rev.35,07/84 SSES-FSARQscAPPENDZX388CONCRETE,CONCRETEMATERIALS'UALITYNaterials,workmanship,andqualitycontrolarebasedonthecode,standards,recommendationsandspecificationslistedinTable3.8-1.Thesedocumentsaremodifiedasrequiredtosuittheparticular'conditionsassociatedwithnuclearpowerplantdesignandconstructionwhilemaintaininqstructuraladequacy.Extentofapplicationandprincipalexceptionsare-indicatedherein,andasfollows:ACX221=72a).ProvisionsofACI301-72,Chapter12~CuringandProtection,shallbemodifiedasfollows:')gagggggph1g.2~1shallberevisedtoreadasfollows:~"Forconcretesurfacesnotincontactwithforms,oneofthefollowingproceduresshallbeappliedimmediatelyaftercompletionofplacementandfinishinqexceptthatthecuringprocessmaybeinterruptedasnecessarynottoexceed8hoursprovidinqrequirementsforweatherprotectionaremaintained.Suchcuringprocessmaynotbeinterruptedmorethantwicewithaminimumof8hourselaosinqbetweeninterruptions.Ifthecurinqi"interruptedforupto8hours,thecurinatimeshallbeextendedtoprovideatotalof7dayscurinq.ii)gyggggggQ1g,2~/shallberevisedtoreadasfollows:<Curinginac"ordancewithSection12.2-.1and12.2.2shall',becontainedforatleast7daysinthecaseofallconcreteexcepthigh-early-.'trenqthconcreteforwhichtheperiodshall,beatleast3days.Alternatively.,iftestsaremadeofcylinderskeptadjacenttothe'tructureandcuredbythesamemethods,moistureretentionmeasuresmaybeter'minafedpriorto7dayswhentestresultsindicatethattheaveragecompressivestrength,hasreached70percentofthespecifiedstrength,f'c.Requiredperiodofinitialcuringneednotbeqreaterthanthelesserofthetwoperiods.IfoneofthecuringproceduresofSection12.2.1.1through12.2.1.0isusedinitially,itmaybereplacedbyoneoftheotherRev.35'7y803~88-1

SSES-PSARQpinterpretationofthesedetaildrawingsinerectingthereinforcinqsteel.WhilethisisalsotrueofBechtelfieldoperation~wedohavetheadditionalhelpandquidanceofthefieldenqineersbothduringthe"installationphaseandfinallyattheinspectionphasenriortofinalsiqn-offonthereportcard.Thefieldenqineershavetheaddedbenefitofbeinqabletoplanandwitnesstheactualinstallationandcan,therefore,.betterforeseeanydi.fficultiesinmeetinqtheintendeddesiqnrequirements.TheirassessmentofthesituationisfurtherassistedbyrequlartelephonecommunicationwiththedesiqnenqineerswhoalsoperiodicallyvisittheJobsite.Theaboveprocedureofdelegationofthedesiqnengineeringoffice'sresponsibilitytothefieldpersonnelandperi.odicmonitorinqhytheenqineerinqofficeensurescorrectnessandconformanceoftheshopdrawingstothedesigndrawingsand-thereforemeetsthe-intentofRequlatoryGuide1.55(gsELg~hlENAbR8c(ILb/AAfAyeR]Al.s~WO((l4H~NSHh'e8~oA(.(v'yCoarwoLQ4E'%7oRS4u(Cbldg4'Mgccoggg~cc>I7qg~'gCDES~s7x~dhass,SpE'cl+icnrrW~us4WcRaw(((.4rozyCozogs,4uc)AQUI.boc.uHE<7$LlsTFP<<f~&.'e38-/.Ro.v.35,07r8((38B-17 sjPII.I+INI~.-IyD+~liV~i~~-CGA:=~I~-~0T840WU~T(ueRCIVWRCECOI4CCA'fCRg040l/V~il=~~I-QQ'=M'-=~Ilgy+I=WWI~ICWL.,I=OLIWUWIlOI~')'=IWII!~I:AC7OHCONTRQIVII-SI=IBI=%I-RAIOfhDl~szc<i~~eresRmalnw~II=~luwel!MI=Hullc)IIRG-~)rR.aACKF>t>-III~Jza2/)~MrIIU~-V='3I~-.0OO4gXi=Fil~.c~P.~tv=.~~=ZI=:i.RGOVCc.J.0'oc.J.~04Mn'LL~~U~ri~W(vhlRPwFopCBDCoNC.LAYER)I=OUIIC)WIle'VC)~I'll~ST~ialm,~i-IDLYI=Rev.35,07/84SUSOUEHANNASTEAIIELECUNITS1ANO2FINALSAFETYANAL'IQUIIEXO-104}}