ML20197H665

From kanterella
Revision as of 08:12, 23 November 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Nonproprietary WCAP-12764, Steam Generator Tube Collapse Considerations Presentation Matls
ML20197H665
Person / Time
Site: Farley Southern Nuclear icon.png
Issue date: 11/30/1990
From: Whiteman G
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML19310C887 List:
References
WCAP-12764, NUDOCS 9011200036
Download: ML20197H665 (43)


Text

- _ _ _ _ _

WEST!NGHOUSE CLASS 3 WCAP-12764 Steam Generator Tube Collapse Considerations Presentation Materials Preparea by Gary Whiteman November 1990 Westinghouse Electric Corporation Pittsburgh, PA 01990 Westinghouse Electric Corporation. All Rights Reserved 9011200036 901158 PDR ADOCK 05000364 P PDC /

N

A meeting was held on November 8,1990, between the Alabama Power Company, Westinghouse, and the NRR to discuss stcam generator tube collapse considerations using seismic /LOCA loading combinations.

1 The following topics were discussed:

l~ 1) Analysis methodology

2) Load combinations
3) Effect on LOCA peak clad temperature
4) Farley-specific results E

E

l PRESENTATION OVERVIEW l

l e

ANALYSIS METN000 LOGY FOR CALCULATING PLATE LOADS e DETAILED PLANT SPECIFIC ANALYSIS e SCOPING ANALYSIS FOR FLOW AREA REDUCTION ESTIMATE e Discussion OF LIMITING LOCA CONDITION e PEAK CLAD TEMPERATURE VERSUS '

max STEAM GENERATOR LOADS e REVIEW oF PLATE CRULd tests e CALCULATION OF FL0w AREA REDUCTION e IN-LEAKAGE CONSIDERATIONS FOLLOWING LOCA 1

ANALYSIS METHODOLOGY FOR CALCULATING PLATE LOADS DETAILED PLANT SPECIFIC ANALYSIS ,

l o TSP LOADS RESULT FnoM THREE LOADING MECHANISMS

_ a., c.

l

l. 1 L

l:

1 l' _

l:

L 2

l' L

ANALYSIS METHODOLOGY 1

! SEISMIC ANALYSIS t

e NON-LINEAR FINITE ELEMENT ANAL 0VERALL STEAM GENERATOR L

L o

TSP / WRAPPER / a,c SHELL GAPS M0cELE -

l e

ACCELERATION r

TIME HISTORY LOAoING

, a,c e

MAJORITY OF STRUCTURE ta,c -

N00ELEo j

e TUsEsMooELEo[

yie.

o STIFFNESS MATRIcEsINTERFA'C e

ANALYSIS OUTPUT IN TERMS OF TUR PLATE IMPACT FORCE TIME HISTORIES 3

L

\

=

. /'

3, l

C 3cg g

5 ,

c , .

i ,

$5s , ,

r ,, u ,

T; __

_ _ o,c il M J l

' Ill El lli ill El lli lll El'lli L

l L

I ll I' Il l '

I ll I Il l 1ll I Il l '

? !!  !  !! !

P TYPICAL SEISMIC MODEL MODEL F STEAM GENERATOR 4

L_________________._.______..______.__.-_.______._..._ , _..-.

i ANALYSIS METHODOLOGY LOCA RAREFACTION WAVE ANALYSIS e LINEAR DYNAMIC ANALYSIS OF THREE TusE RADII e FINITE ELEMENT MoDEL CONSIDERS TUsE U-BEND DOWN TO SECONO TusE SUPPORT PLATE BELOW U-BEND e PRESSURE WAVE GENERATED FROM TRANSIENT l- THERMAL-HYDRAULIC ANALYSIS

_ .-- o. , c.

l: e e

e e THREE SUPPORT CASES RUN AT TOP SUPPORT PLATE TO ACCOUNT FOR TUsE / TSP INTERFACE AsC e

e i e 5

I:

e r .

E '

E E

m' M

E

. OUTER R0W BEAM N00EL LOCA RAREFACTION ANALYSIS 0

6

ANALYSIS METHODOLOGY l i

l LOCA SHAKING ANALYSIS l l

e DYNAMIC ANALYSTS USING SErsMIC M0oEL i

l-e LOADS APPLIED TO STEAM GENERATOR IN FORM '

f 0F DrsPLACEMENT TIME HrsTORrts AT SUPPORT LOCATIONS e DrsPLACEMENT TIME HrsTORIEs OBTAINED As FOLLOWS:

a,c e

l e.

1..

l L

I 7

I 7

l 1

-y-,..-n, , y=ws<--,

ANALYSIS METH0DOLOGY CONBINED PLATE LOADS l

~

e OsTAIN MAXIMUM PLATE LoAos Foa -

- a ,c e

CoMsI3E ,

INEARLY e CoMsINED LOCA AND SEISMIC' loads USING SQUARE Ro0T OF THE SUM 0F THE SouAREs l

G 8

___.____ _ _______ _ __ __ _ _ _ ._______________________J_

DISCUSSION 0F LIMITING LOCA LOADS PEAK CLAD TEMPERATURE VERSUS MAX STEAM GENERATOR L0 ADS I

e PEAK CLAD TEMPERATURE LIMITING LOCA LOADS l e BREAK LOCATION - PUMP OUTLET e REsULTING STEAM GENERATOR LOADS SMALL e IMPACT ON FLOW AREA REDUCTION MINIMAL L

e max STEAM GENERATOR LOADS e- BREAK LOCATION - STEAM GENERATOR OUTLET e IMPACT ON PCT NOT As SEVERE As PUMP OUTLET BREAK o FL0u AREA REDUCTION CONCERN Is IMPACT ON PCT L

e- FLOW AREA REDUCTION BASED ON LOCA LOADS FROM LIMITINe LOCA FOR PCT e TSP LOADS REDUCE TO SEISMIC LOADS ONLY 1

~

~ '

, 1 t

a. S ,. '

[e$ \ x l

t a , .

utg l

}: : G . Jo ,* p e, i

L

/ .

9 @1 l8* ,

o e i 1. , $

g jy ,

i. . @t, ,

3 e e-i  !

y , t l'I ,.

r

. m l

j 4

t el L Q N i .

A -

\

i fy : o

. l t

@'~ V i e l l

), e y . ,

&~'

I t

g- '

L. I @

l4 4 ,

$ e 1lIi s

i i ,  : f

  • t f y '

I'

. I ,i C .,I .

e ei *1 1.

' . ll O ' @l F h * @ *' f. l

}

p .

6).  ! .. , ,

g 4 l

- -=- .sm-s t 6 m 1 M

M '. ,,

w M W

-@ l e . l l ,/ \ i e- 1 i

g w 10 1

y' Q F

c(i pp o

eius (7M/J J/M' ONt y) g -

N ,

N. '

.a & I

/

i M

%,/

r

/ ,

/ b -

."s

/

[ f go i

/

/ / @- ,

l p N

/Q w ', '

pp~ y. -

,, y '

/ ~. . ..

,/.,A ,

/

QL+

a +- /  %

k /

I.: ~

Vr@89 .;

as,.#

pQ/p4.  ! -

%,J '

-J' 1 "s '

\

99et G

~

SECT so u ' 9.S S_9' l 11

REVIEW 0F PLATE CRUSH TESTS I

e Tw0 TEsr Pn0GaAMs l

e ROUND AND QuArnEF0xt HOLES '

i i L e UTILIZE SzMztAn TEsr SET-UP AND PROCEDURE e 43C e >

l L e l

- a,c e

l e

MEAsunE [ I A;C e

o P0sT-Tisr NEAsunEMENTs e CHANGE IN TusE/ HOLE Cnoss-SECTION.

1 o

DEVELOP RELATIONSHIP sETWEEN PLATE LOAD AND LOSS IN FL0w AREA ACCOUNTING F0n' COLLAPSED L

TusEs DuE TO P0sT-ACCz0ENT SECONDARY-TO-PazMany Patssunt Dn0P 12

'ww-- .-. gn

=

m 3

J 7

E

-w

_ PLATE CRUSH TEST SET-UP 13

  1. ~ ~ ~~

Ty .j. 9,,g.,

j 2 .

2e 5 4Rf=p6%%pT4 MWNMJ m -

7;

~TH

~

-..=

lt:.

q-k

^

14

CALCULATION OF FLOW AREA REDUCTION

_ _ a c.

O CALCULATE 0 ASSUME ~ "

A,C (TYPICALLY 6, 8, OR 12 WEDGE GROUPS LOCATfD SYMETRICALLY AROUND PLATE CIRCUMFERENCE)

O CALCULATE 0 CALCULATE Ass 0CIATED Flow AREA I. EDUCTION 0 _ CALCULATE TOTAL Flow AREA REDUOTION BY a,c 15

ANALYSIS METHODOLOGY FOR. SCOPING ANALY FLOW' AREA REDUCTION ESTIMATE 0.

UTILIZE EXISTING DETAILED-ANALYSIS AS A O

' COMPARE KEY PARAMETERS FROM-SEISMIC 0 -- a ,e 0

0

~

.0' ' COMPARE 4,c 0 DEVELOP a,c O

t. STIMATE Flow AREA REDUCTION

% A,C

_ _ a.,c 0 APPLY FACTOR FOR ANALYSIS. UNCERTAINTIES 16

FVX AREA REDUCTION RESULTS FOR FARLEY

_9 8 _

a (MooEL D) UsED AS A BASIS

e. DETAILED ANALYSIS HAs Nor BEEN PERFORMED FoR SERIES 51 STEAM GENERATORS e- COMPARISON.OF KEY SEISMIC PARAMETERS-a., c e

e ~#'

COMPARE

~

s SERIES 51-/ Moont D STIFFNESS RATIO a _ _

i i

17

FLOW AREA REDUCTION RESULTS FOR F o DEVELOP p g , a., t.

e YrELD POINT -

a.,c u

o PLATE INELASTre RESPc.aSE APPROXIM Two METHODS

- c. , e e -

ESTraATE Flow AREA4 RaoucTroN ,c ._

NuMsER OP-COLLAPS,Eo TusES_-

e SERIES 51 9' ,

-e: _

FARLEY - 41 (ASSUME 5. FOR CONSERVATIS

"' CORRESPONDS To TuaES DIREcTLY BEN K eFLOW AREA REDUCTION SERIES 51-E

~

^^' PER WEDGE LOCATION 1 e FARLEY - 0.15 %

FL0w o' ARF.A REDUCTION PER STEAM GENERATO e SERIES 51 -[ C"A" FARLEY - 0.44 %

i 1B

~

FLOW AREA REDUCTION RESULTS FOR FARLEY (CONT'D.)

_ a,c

- APPLY FACTOR OF __

FOR ANALYSIS UNCERTAINTIES

=

Flow AREA REDUCTION Resutis _ a,g,c

.o SanIas 51 - ~

g e FARLEY - 0.b % OR 41.0 %

f, 9

E.

[1 M

19

A B .

9 e[.

. u...: ,

]g =!

& 8aatgy 6- ffi

.iI

) ,

a , , 1

[ n-l l l

+

l ,

l

, ,i! !g l

i  ;

j' ,

=< -

I '

(

. i; I

\

l, -

/ -

'g

,I \ ,e t 1 I- MI j >y {

I I

I  ! k I

/

I u a g l'

/ .,

o i-

/ g p T r-LN,

~ <

_ , , , . =ss a < * ~8 s,

'8'i \ . =. . .. .

FW M att . asett Ted M

SEISNIC SPECTRA COMPARIS0N 20

" -'-- ~~ ' '


mi----- - - - e e i

4 IUBE-COLLAPSE CONSIDERATIONS WCAP-9659 LOCA IN-LEAKAGE ROUND OR OVALIZED TUsES 8 m IN-LEAKAGE IS LESS THAN NORMAL OPERATION LEAKAGE PRESSURE DIFFERENTIAL IS LESS THAN NORMAL PRIMARY TO SECONDARY: AP SECONDARY TO PRIMARY?tiP-CAUSES LESS-

' LEAKAGE- THAN PRIMARY TO SECONDARY A P OF SAME. MAGNITUDE THE. PRESENCE OF A SUPPORT PLATE (COLLAR) REDUCES LEAKAGE.

21

,cA.,b',C.

1

(

'+

1 l.'

l 1,  !

l~,

e t

1 memo . .

J FIGURE.10.

DIW1.E0 Tutt$ WITH FATIGUE CRACKSSECOMO F

22

D

. U, .

~-.h, . e 0

M W

Cr.

%d N

G

>W 6

m B

h

.=.

M

'f E a

5 8

m W

>=

4 E

W C

w ase e

w

(

.n.o.

b I

I t 23

- as ,4W.u ,--... M 1 JR. A

- ,. a A O

4 r

.h:

w.

4

-~1

- l

>e i

O E

1 a

.1 -

M

!! M V

E s; i. CE .

V W

' l '. W

.C, -

' 1' m ,l-N

k. l 2:

l n e.e 2

i

\.i m.

W 8-i'., -.

j'. O,

, c: W N

w. .

1 w

5 i

I- p W

W w

w-e eam

(

24

_ _ _ _ _ _ _ _ _ m MEElmm e iEMME I E w remdhblul slukuguu ae Emu Ifim ME IMEIElDDIllA I IIE E -J :1: : - : ': " - ' : ' -

i

?

D 4

u; v

^

C

' ~

k C

e

'E w

3

%"o N

e C

O a

1 m

5 W

E u.

b a

l 25

M a

F

'l 4 E

g m I

P 95

-- ,9 a

M M

m

. .E .

,' \2

.C O

E m-S i

= .oe i-Y

+

+ 8 m

.Eh.

ti: p s

26 0

TUBE COLLAPSE CONSIDERATIONS WCAP-8429 COLLAPSE CAPABILITY ROUNo TUsES WITH"THROUGH WALL EDN StoTS

_ _ my e .-COLLAPSE PRESSURES EXCEED _ _

EVEN WITH 10 PARALLEL 1.5 INCH THROUGH WALL SLOTS WITH: PART'THROUGH WALL EDN SLOTS e-

, _ ,y COLLAPSE PRESSURES EXCEED FOR PARTIAs. PENETRATIONS'EXCEEE .MG L1.25 INCH LENGTHS T i

i i~,

27

_=__ uni---n- im m mei iii um .. isi -- . i. ..

1 j1 6

- TABLE 51 TUBE COLLAPSE TESTS (PART AND THROUGH WALL FLAWS)

/

.. s i i

- ('

~

l*W W A87" 00 by 0.048" Well)

  • Penetrah(s) u 28 i

T

' ( -t

  • M A 8

~

>==

T.

a w . v-a eWas -

i

  • 8w E g' s g 5* {

w3 8 a

U r O.

C )

Sg

% w g, ,~ t' d i E

e 8

M i

E a $

~ x 8 y-4 == 3 Pa==a _-- l

[ -

a x

M

  • e O w -* 8 .e - i
  • d 5

% =

w g-e 1 d= =

m , -h d .:

  • l i 2 8 y \ .$ .

w 5 k

1r, I

  • g a\ $ g- ['

_i w

  • W g u .i 4g. . ~t e f 4 ~]

4 -= E "". I

$ if- , D W

" 8 l

J M e n

E> l

'j >i

  • O N l

e l

I i

g_ p g

u e

n

-(

a s a e

$ N

- - , e o- B n_ e

k .i,

'tl ,' q

~

29 e

ik-M' f

____ _.,-----.-.--.w Tues COLLAPSE-CONSIDERATI0W-WCAP-8429 COLLAPSE CAPABILITY OvaLIzEn TusES

+

PARTIAL PENETRATION EDM SLITS IN TUBES OVALIZED

- d.,b,C TO _  ; HAVE LITTLE EFFECT ON COLLAPSE PRESSURE.

l 30 '

a:

~

^ ' '

,, ..u . . .

=-

~

=  ;

c CCJillit100$ CRACK '

9 i j k lgl 7.50" I

C8ACKE9 $ECTfell . M U U V

..~ 1 y ...- =; ,0.00,.

h -

fffff ) ) ~,

CROSS SECilen 5800milIG LOCAT1001 0F C8 ACES TUDE INSIDE WAR

'CSACE

- Figure 5 27 Diagram Showmg the Conimuous Ceached Tube Specimen Seuausi orid in toca.o..

._,,..aJ.L4 . 'd' r  ?

TABLE 510 STRAIGHT OVAL FULL WALL TUBES COLLAPSE DATA t=0.043",{ _] % *, c.

o,. *

j f

-i t

- I i

1. _.j

.\

1 32

-F

~ ' K , 6, C.

1 Figure 6 28. (R Collapaa Pressure venus Ovality hw Straight Ovellaed Tubes m=0.378", a 41,600 y pel, t=0.063")

33

TUsE COLLAPSE CONSIDERATIONS ~

WCAP-8429 COLLAPSE CAPABILITY DENTED TUBES o

PLATE DEFORMATION UPON CONTACT WITN TH CAUSES TUBE OVALIZATION AND-REDUCES THE COLLAPSE PRESSURE VS ROUND TUBES e

PRESENCE OF PLATE ENHANCES COLLAPSE PR 4 OF UVALIZED TUBES-e COLLAPSE PRESSURES WITH COLLARS EXCEED LOAD WITH DIAMETRAL DEFORMATION EQUAL TO r a, b, c.

e h y 34 ii

jl:) l TABLE 512

_ DENTED TUBE 8 MECHANICAL TEST PLAN o ,C f:

e N

i 35

TABLE 513 (Con't.)

DENTED TUBES MECHANICAL TEST PLAN

~

ct,c' n.

a

=mm Ef

=

- i i

(

4 36 1

1

t TABLgig.13 DENTED TUBES MECHIANICAL 7337 RESULTS

- cA. , b, C.

I N

37

7 i

t E

1 L

.a A , C.

=.

=

_ 2

?

' 's

-i M

Figure 6 37 Effeet of Denting on Collapse Pressure 38

[

TUBE. COLLAPSE CONSIDERATIONS

+

3 LOCA IN-LEAKAGE

[ MULTIPLE AND LONG , 900GN WALL CRACKS DO NOT LOWER COLLAPSE CAPABIL'ITIES TO MARGINAL LEVELS (NIGN CAPABILITY)

~

WITHOUT COLLAPSE SECONDARY TO: PRIMARY PRESSURE

=

FOLLOWING LOCA RESULTS IN LOWER LEAKAGE THAN

_ DURING= NORMAL. OPERATION

_ -INE PRESENCE OF-PARTIAL PENETRATION CRACKS DO NOT t

SIGNIFICANTLY AFFECT COLLAPSE PRESSURES

, , , SIGNIFICANT CRACK EXTENSION OR PENETRATION IS NOT F

EXPECTED Td OCCUR AS A RESULT OF TUBE COLLAP!it t;i

~

I

- o. ,b, c.

TO CREATE THE POTENTIAL FOR TUBE COLLAPSE i

/

39

TUBE COLLAPSE-CONSIDERATIONS FARLEY 2 j< LOCA IN-LEAKAGE

] - IN-LEAKAGE-IS .'XPECTED TO BE LESS THAN NORMAL OPERATION LEAKAGE IN THE POSTULATED EVENT OF A LOCA 0 ' PLATE DEFORMATION'IS EXPECTED TO BE LESS THAN THAT REQUIRED TO INDUCE TUBE COLLAPSE a.,s ,c.

i 10 . TUBE LEAKAGE IS REDUCED IF COLLAPSE DOES NOT. OCCUR-

- - - a. ,c, c.

2 Ea m

E e

40 m.