ML20114B501
| ML20114B501 | |
| Person / Time | |
|---|---|
| Site: | Farley |
| Issue date: | 08/31/1992 |
| From: | Whiteman G WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
| To: | |
| Shared Package | |
| ML19303F046 | List: |
| References | |
| WCAP-13465, NUDOCS 9208280282 | |
| Download: ML20114B501 (89) | |
Text
{{#Wiki_filter:f*kh"%a$Mhyt482Le h $mspMh$p$)A e n n W64 id$
- pnL,
" "ggggg% l%$e$e$p#2$w&e%w$$d8M* l1 M%A @dbf m$$1pp%@%$h wa f@w{ f ? J iaa 9 %p[g 1* f'3 j$j f dh: a A[hi 4 r" sp% 9: Thl Ajf %;@hM L % g 6} }'4@$ W # Sqp 3 -44 lk9 e b[ED{ MUD l{5fQ jQ f'N ?$hf hfYh hr k @hhkkh Sjh.o,h[I 'l 3 'f ,j e "Y }f,,:p.j y j Wljj b k g 7PWy a f f 4 m l. M Q 'e.u + (M ' armp >.i i 1 d [ N 2 g g'l 4]N ma i ~ g[ M -y j gt -l1 kN 9 1" i
- %I--
~ tp > 3. ? $g I L e; l s w w* N IL!4 I hN bi l l }'[ u .l b jk "i si,.s kN. 4eJ I f. ^ s (. L Kt. l 7J 2:s l %$l 'h 1 @ $@& "' 4, ,j l N {f{ [ T ', a 1 I i g !} z.p M v $1 Q
- f..
o- - --,-- -- ;1 b 9g& tgf 8 ~ "g e a g g gjw, - pfg; 2- ,!I!. 1 s .j C p.. y m [ O @$$$h L( 920828028,$' 9goe2 Ac5000349 ?>,. ppR ADOC PDR d -mann:w?3?
PaE Wlh,fp@g$ 8 4 h p gp lt r7 a 1 yl)#ghNil f + i eg Peg -4 <e,pk'h_..( t l[,};# g s 4,,, ,{ a n }gf* ;; s h @? % . ;in ), ; - gg-d 4 s 2 r -m 'hI i 2.56 '~m"e[a79 ^ g,. a n ru gii o 3 j f s 1 : I =
- .+}f g
g ,i k b4 ) a q I-r i .I' ' l, l l' h ,k ' ~ I 4[
- j g
'? hh; lik2[ f >g. e .1-y g. -E. p 'A
- g882es!!M8)he
~ ___,m
aggg# $$$3C * 'C l Q4[%{glktg$ife : Ml??)fikkll lid l> s m W t! j je1 g 1 eu i g e x b j p 1; m-I l k-q Ig_ gi ^ j{ns=gl e .w m e "I y u. k l 4 j 4 i i <W n gjp q t + z.. _l A J y } y s 'e J.d3 yp 1 2. A w" ~, j h a s k I 0, caosu a 05N p,4 9 DR
WESTINGHOUSE CLASS 3 (NON-PROPRIE1ARY) WCAP-13465 RESPONSE TO NRC QUESTIONS ON FARLEY STEAM GENERATOR TUBE ALTERNATE PLUGGING CRITERIA PRESENTATION MATERIALS G. W. WHITEMAN AUGUS1 1992 i Westinghouse Electric Corporation Nuclear and Advanced Technology Division P.O. Box 355 Pittsburgh, Pa. 15230 (c) 1992 Westinghouse Electric Corporation All Rights Reserved 1
A meeting was held on July 27,1992 Westinghouse, and the NRC staff to discuss additiona ny, based attemate plugging cnterion for the tube suppon plate e age initiated stress corrosion cracking occurring on the Farley Unit e er The presentation materials are included within. rator tubes. The following topi s were discussed by Westinghouse: 1. alternate steam generator tube pl6gging criterion i e 2. An interim plugging criterion for Farley Unit 1. Above 1. j steam generator between 1.0 and 2.0 vo e volts will be plugged or repaired. A status of the evaluation of 3/4" tube diameter data and the imp burst and leaktightness database was provided to the NRC existing tube e handout. s PAGE 1 ,__---=CW*"## ,. _. _. - - - - - ~ ~ ~ ~
l JULY 27, 1992 INTERIM PLUGGING CRITERIA ISSUES INTRODUCTION BRAD MOORE e STEAM LINE BREAK LEAKAGE tom PITTERLE e INTERIM PLUGGING CRITERIA tom PITTERLE e RICK MULLINS CONCLUSION BRAD MOORE e l PAGE 2
- 1.,
WESTINGHOUSE CLASS 3 (NON-PROPRIETARY) WCAP-13465 RESPONSE TO NRC QUESTIONS ON FARLEY STEAM GENERATOR TUBE ALTERNATE PLUGGING CRITERIA PRESENTATION MATERIALS G. W. WHITEMAN AUGUST 1992 Westinghouse Electric Corporation Nuclear and Advanced Technology Division P.O. Box 355 Pittsburgh, Pa. 15230 (c) 1992 Westinghouse Electric Corporation All Rights Reserved __a
I I A meeting was held on July 27,1992 between Southem Nuclear Operating Comp Westinghouse, and the NRC staff to discuss additional inform
- any, initiated stress corrosion cracking occurring o age e er The presentation materials are included within.
u es. The following topics were discussed by Westinghouse: 1. ahernate steam generator tube p10gging criterion. 2. An interim plugging criterion for Farley Unit 1. Ab s 1.0 volts, hobbin probe signals having confirmed RPC indications shall be linuud to steam generator between 1.0 and 2.0 volts. All bobbin probe indicati volts will be plugged or repaired. burst and leaktightness database was provid e out. PAGE 1
i 1 JULY 27, 1992 INTERIM PLUGGING CRITERIA ISSUES INTRODUCTION BRAD MOORE STEAM LINE BREAK LEAKAGE tom PITTERLE INTERIM PLUGGING CRITERIA tom PITTERLE RICK MULLINS CONCLUSION BRAD MOORE l l I PAGE 2
4 i 1 i SLB LEAK RATE ANALYSES QUESTIONS 21, 22 AND ATTACHMENT 4 DISCUSSION TOPICS ATTACHMENT A ISSUE
SUMMARY
MEAN LEAK RATE MEAN OF LOG NORMAL VS ARITHMETIC AVERAGE MEA e " EXPECTED" " AVERAGE" 0F ATTACHMENT A v5 REAL e LIKELIHOOD OF OCCURRENCE CONVERGENCE OF MONTE CARLO EXAMPLES FOR SAMPLING OF LEAK RATE CORRELA e FORM OF LEAK RATE CORRELATION CONCERNS ON ATTACHMENT A CORRELATION e BASIS FOR FARLEY/EPRI-CORRELATION e SENSITIVITY ASSESSMENT OF CORRELATION e e CONCLUSIONS l l ALTERNATE SLB LEAK RATE ANALYSIS METHODS e MONTE CARLO e DETERMINISTIC PROBABILITY OF LEAKING' TUBES PAGE 3 unu:mm r ...,,,,-m...,,,o,-4,,,-..,,,,,,,a,,.,,.,,,,,,,,.-.w,._,-, ,..,,,,,,.,.,.,m...,. ...y,,,,,, ,.m. o.w .,y..,,,.,y,. g.--%..-r9y,w,.,,,p-.,-%,-,,r e.~c~.- .. <,,n
CRACK LENGTH CONSIDERATIONS FOR CRACK LENGTH FOR BURST = ;Lc ~ 3eiP CRACK LENGTH THRUWALL (>0. 75" TSP) e R.G.1.121 CRITERfA FOR CRACK LENG e EXCESSIVE MARGINS AGAINST BURST AT SLB CRACK LENGTHS (PART-THRUWAL PRESSURES >9000 PSI TSP ODSCC CRACV LENGTHS OFTEN AP e THICKNESS BUT HAVE MODEST AVERAGE OCCASIONALLY LOCAL, (MICR0 CRACKS) SHORT AND DEEP CRACKS RPC GROWTH RATES CANNOT BE OBTA REPAIR BASIS OF PLUGGING ALL RPC INDICA CANNOT DEVELOP A CRITERIA BEF e APPLIED LEAK RATE ANALYSES BASED ON RP CONSERVATIVE DUE TO CURRENT NEED TO TO LIMITED ACCURACY ON DEPTH CALLS RUWALL DUE WOULD NEED RPC VOLTAGE FOR 9 GROWTH DATA) COULD REQUIRE EXCESSIVELY CONSER INS ~ECTION OF ALL TSP INTERSECTIONS OR P ON CRACK LENGTH IN SCREENING CONCLUSIONS CRACK LENGTHS WOULD LEAD TO EXCE e CONSERVATIVE REPAIR CRITERIA DUE t TO POSTULATE AS THRUWALL NEED ACCURATE DEPTH VS LEN e i HOT WITHIN CURRENT OR NEAR T 1 W D82:0F2292 PAGE 4
I SLB LEAK RATE ANALYSES ATTACHMENT A ISSUE
SUMMARY
4 i Ii UTILIZATION OF PROBABILITY 0F LEAKAGE PROPOSED IN ATTACNMENT e NOT CURRENTLY PART OF APC e FORM OF LEAK RATE CORRELATION UTILIZATION OF NON-LEAKING DATA IN CO e DEFINITION AND-INTERPRETATION OF "MEA 0F DISTRIBUTION APPLICABILITY OF AVERAGE OF DISTRIBUTIO 4-e CONVERGENCE OF MONTE CARLO NUMBER OF SAMPLES REQUIRED e PAGE 5 wrostsonm e ,r ca- -,e e, e =r e ,,w,-es- .- ' v r me w w + e w* r-9- W4*-+*--ww s-w w- =*e-*vre---w-w w we's re w-ie wWw werW -F'$ PN*-? # # T t-#wN T-'C *Tw"3*T t+W"'WT"Tf4'FT'-'D-*
i i I l SLB' LEAK RATE ANALYSES "MEAN" LEAK RATE DEFINITIONS i l DEFINITION OF "MEAN" 0F LOG NORMAL DISTRIBUTION "MEAN" DEPENDENT ON COORDINATE SYSTEM: 9 LOG OR LINEAR SYSTEM B LOG / LOG COORDINATES LOG OF DISTRIBUTION APPROACHES NORMAL MEAN (AVERAGE OF LOG VALUES) AND MEDIAN ARE BEST EST1 HATE VALUE IN LOG COORDINATES { LOG NORMAL IN LINEAR COORDINATES' 9 MEDIAN UNCHANGED MEAN (AVERAGE OF ' ABSOLUTE OR LINEAR - VALU SNIFTS TO LARGER-VALUE AS A STRONG FUNCTION j OF STANDARD' DEVIATION i MEAN IS DIRECT HUMERICAL AVERAGE OVER TOT j i DISTRIEUTION AND CAN BE DOMINATED BYLUPPER TAIL OF THE DISTRIBUTION j NUMERICAL AVERAGE ("MEAN") 0F LOG NORMAL DIST i IS NOT AN EXPECTED VALUE j 9 INCREASES ABOVE MEDIAN-OR EXPECTED VALUE'0F j CORRELATION AS-STANDARD DEVIATION: INCREASES' FOR LEAK RATE CORRELATION, -AVERAGE: NUMBERS OF 4 DIFFERING BY A ' FEW DECADES SUCH THAT LARGEST DISTRIBUTION VALUES DOMINATE AVERAGE AVERAGE ~ + 90% ON'ONE-SIDEDEPREDICTION' INTERVAL MONTE CARLO ANALYSIS RESULT AT 90%; CUMULATIVE PROBABILITY (TWO-SIDED) ON DISTRIBUTION SHOULD BE L THAN NUMERICAL-AVERAGE MONTE CARLO' ANALYSIS ARE CONSISTENT WITH 4 VALUES PA'.E 6 - AP20M:072292 .~ ~,_..
NORMAL & LOGNORMAL DISTRIBUTIONS SIGMA = 0.2
- 0. 8 4
1 .i
- 0. 6-p " " ~ i. "" ". " "
~ ~ " " " " ", " " " " " " " " ~ ~ -3.5 o
- 0. 4 -
""" : ~ ~:. ~""-"v""s ~"
- " ~ ~ ~ r. " " " ".:.. ~ ~ " " :." " " " ".: "
-3 5 g 7
- 0. 2-
.t.......... >.. - <t:. -2. 5 a ,s Q.......... <..........s.... ..g..........>.........g........4...........).......... 2 D .Q. 2.........J..........a.........:........ 4..... ...........;........ 4......... 4.......... 1,5 t
- N :.
m: .Q,4...... $...... 4..........: a..........;.........J.........:.......... .'........ 4...........j a __s -0. 6 - ~ ~.: ~ ~ r. ~ ~ ~.: " " " " v.: " -.:: " " " " - - ~. ~ " -0. 5 -08 i i i i i i i i 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 f PAGE 7
P NORMAL & LOGNORMAL DiSTRIBUT10NS SIGMA = 1.465 1000 d-0,- ~ ~ ~.6 - ~ ~ 4. ~ ~ ~ ~ 4. ~ ~ ~ n a.l - a a - 4.~ " " ~ ~.I " a -- 4. " " a ~ 4 " ~ ~ ~ -900 3- ~~~~: ~~~~.l"~ ~ ~4.-~~ ~i. ~~ ~~.:l ~~~ 4.~~"- i ~~~~4. ~"~~4.~ ~~~- -800 o
- i I
3 i 4
- 4
- 4--
2-4- 5* 6 s -700 N. 1 ........4........>..c...4.......4......:.....,. 5 . 4.... 4. 4. ...... -600 e 0-4. .l + 4. .s 4. i. .-+. - -5% 4 4~ ~4-~ ~4~ ~~~:6-~~:- 1- - - 4- ~ ~~4-~~~4-~~e-- -400 2-1. t. t 1 t + +. 4 -300 - ~ ~ : ~ ~ ~ ~ : -- +: -' ~ ~ t ~ ~ t - ~ ~ e: - ~ ~ ~ t - ~ ~ + - ~ ~ ~ e: " ~ ~ ~ t -200 , ~~~e-~~~t--. t - ~ t - - ~ c: ~ ~ ~ ~ t ~ ~ ~ + -- ~ 4~ ~ ~ -100 5 .A .a u a .a .i 0 0.05 0.1 0.15 0.2 0.25 0.3 0.36 0.4 OAS 0.5 .i a 0-i f e =, .L_..__ (* .,y .\\. ., g r- \\s ,t, _.o i L I e t i e .ig y = .L 4 tes 65 416 44 45 44 45 E. 98 48. 8 PAGt 8 1
_g a Figure 3 Comparison of Expected t.eak Rates as a F Voltage for the Attemate and Westinghouse Leak unction of o ea PAGE 9
h l MONTE CARLO CONVERGENCE SAMPLING OF LEAK RATE CORRELATION PERFORMED FOR 2.0 AND 6.2 VOLT INDICATIONS TO e SPAN REGION OF INTEREST PERFORMED WITH AND WITHOUT GROWTH + HDE e UNCERTAINTY EVALUATED AT CUMULATIVE PROBABILITY e 90% CUM. PROB. <+90% ONE-SIDED CONFIDENCE CONCLUSIONS CUMULATIVE PROBABILITY CONVERGENCE e WITHIH ~5% OF THEORETICAL ON LEAK RATE AT 10,000 SAMPLES ESSENTIALLY NO DIFFEREHrE P'OM THEORETICA AT 100,000 SAMPLES NUMERICAL AVERAGE OF PREDICTED DISTRIBUTION e MORE DIFFICULT TO CONVERGE DUE TO SENSITIVITY TO A FEW LARGE SAMPLES VARIATIONS BY FACTORS OF 2-4 BETWEEN 10,000 AND 1,000,000 SAMPLES PAGE 10 1AP2082:072292 . - -. - - - - - ~ " - - - " ' - - ' - ~ - ' ' ' - - - -
EXAMPLES OF MONTE CARLO CONVERGENCE i NO. MONTE SPM WITHOUT GROWTH OR NDE UNC. {AR_LO SAMPLEJ REDIAN AVERAGE 10%-CUM. 2.0 VOLT INDICATION 1,000 2.0E-6 1.9E-3 2.8E-4 10,000 2.4E-6 2.5E-2 2.3E-4 THEORETICAL 2.3E-6 ~1.2E-3* 2.4E 6.2 VOLT INDICATION 5,000 1.6E-4 7.6E-2 1.4E-2 10,000 1.8E-4 1.3E-1 1.5E-2 50,000 1.8E-4 1.2E-1 1.6E-2. 100,000 1.7E-4 6.1E-1 1.6E-2 200,003 1.7E-4 4.6E-1 1.6E-2 500,000 1.7E-4 3.6E-1 1.6E-2 1,000,000 1.7E-4 3.3E-1 1.6E-2 THEORETICAL. 1.7E-4 ~6.2E-2* 1.6E-2
- THEORETICAL OF ATTACHMENT 2 ASSUMES NORMAL DI (LARGE POPULATION).
UTION (LIMITED' POPULATION). CORRELATION BASED ON T-D PAGE 11 TAP 20&h072292
CONCERNS ON ATTACHMENT-A CORRELAT STATISTICAL 1 FIT TO PART OFLDATA WITHOUT ANY CO TO BE CONSISTENT WITH PHYSICS OF-LEAKAGE IGNORES THRUWALL CRACKS WITHOU 4 OF DATA BASE INCONSISTENT WITH KNOWLEDGE REQUIR 4 LEAKAGE AT LOW VOLTAGES AND LARGE' LE HIGH VOLTAGES SLOPE OF FIT INCONSISTENT WITH KNO e DEPENDENCE ON CRACK SIZE COMPARISON OF LEAK RATE CORRELATIONS FARLEY/EPRI CORRELATION e m3 J ALTERNATE CORRELATION e L. R. oc V. 70 0 , 32082 0F2292 PAGE 12
e I i 8 1 c 4l, '1 ; 3$ 1 1 N PAGE 13
[ ) i s FORM OF LEAK RATE CORRELATION I BASIS FOR FARLEY AND EPRI APC TA CORP. ELATION MUST SATISFY KNOWN i STATISTICS SHOULD BE USED ONLY TO D e CORRELATION WITHIN BOUNDING PHYSICS ^ LEAKAGE LEAKAGE SHOULD BE 7g e ALL PULLED TUBE ~ AND MODEL BOILE INDICATES'NEGLIGIBLELIKELIH0gDOF THRUWALL CRACKS FOR l ( EVENIF-THRUWALLCRNCKOCCURkED, { LENGTH WOULD BE TOO SHORT (<0.15") TO HAVE-MEASURABLE LEAKAGE EXPONENT OF VOLTAGE SHOULD' BE e 9 p k u ~ LEAK RA}E VS CRACK-LENGTH HA l 0F
- 0N CRACK-LENGTH VO$TAGk INCREASES APPROXIMA WITH CRACK LENGTH FOR THRUWALL i
LEAKING) CRACKS' RESULTS IN LARGE LEAKAGE AT HI (LARGE - CRACK LENGTHS) LEAK RATE CORRELATION IS INDEPE LEAKAGE AS A FUNCTION OF VOLTAGE A SIGNIFICANT'THRUWALL CRACKi o CORRELATION CONSISTENT WITH LEA L PROBABILITY 0F LEAKAGE VS1 VOLT e LIKELIHOOD'0F_VARIOUS MORPHOLOG VOLTAGE VALUE AND HAVINGLA SIGNIF ) E-CRACK 1AP?082:072292 PAGE 14
100:. N E 5E RE Rectangular Axial Slot E c" E 10: .~ A g 3L " E - {'x, ~ / Tapered Axial Slot Tute/ X Wd X E I" O O O 'O O O q C O a TE NCH Ch4ETER 900 SIN COL AT 4XF1 0.1 ; i i 0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1 i i i i SLOT LENGTH, INCH 5 T)fp#AU. A 40% DEEP O 50% DEEP X eh OEEP ~ M TAPERED Figure 5 2. Bobbin Coil Voltage Dependence on Slot Leqth and Depth 0 PAGE 15 i
0.875 INCH OD 50 MIL THICK l-600 TUBING 100- _-0.720 NCH DIAMETER BOBBN COL AT 400f100 kHe 90 _ _.o g 80-H d> 7& r W E i {h 50-43 m a-b 3 r, 2& g a 10- { A a on "O." f 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -r a AX1AL SLOT LENGTH, INCH a Tsat> watt A 80% oEEp -x eoseeEp D 50% DEEP W TAPERED PAGE 16
Leak Rate vs Crack Length from CRACKFLO Steam Line Break 7/8" Tubing -.g i s E o. s O) v ~m E[ -. x m s t s ( Crack Length (inches)
FORM OF LEAK RATE--. CORRELATION BASIS FOR FARLEY AND EPRI'APC N 4 NONLEAKERS WITH THRUWALL CRA ABOUT LABORATORY THRESHOLD OF LEAKA APPROXIMATELYr TION e \\ i-APPLYING NONLEAKERS AT e J-r
- g/HR RESULTS IN L
t. 3 STEEPER' SLOPE AND LARGER UNCERT RATE CURVE - JUDGED-CONSERVATIVE EAK INDICATIONS MAY NOT BF CONSERVATIVE AT SMAL VOLTAGES (INTERIM APC) FOR WHICH LEAK RATES ARE VERY SMALL COMPARE TO CALCULATED ALLOWABLE LIMITS PENDIWG ADDITIONAL DATA ON NON t
- CRACKS, LIMITED DATA'ON-NON_THRUWALL CRA UWALL TO ANCHOR CURVE ATr
\\ 9 BE USED L LEAKAGE INDICATIONS SHOULD BE >90% D J EXAM TO PROVIDE VOLTAGES REPRESEN THRUWALL-CRACKS OF SHORT VOLTAGE INTERCEPT - AT ~ZERO : 9 ACCEPTABLE L 082:072292 PAGE 18 c.. -. -a ~
LEAK RATE CONSIDERATIONS FOR SELECTED S k HODEL BOILER SPECIMENS _ 543-1, 543-2 SPECIMENS PART OF INITIAL TESTS e UTILIZED EXISTING MODEL BOILER SPECIMENS UTILIZED EXISTING LEAK TEST FACILITY LIMITED TO ~6 L/HR LEAK RATE CAPACITY 9 SPECIMENS FOUND TO HAVE 6 L/HR LEAK' RATE e VISUAL EXAMINATION OF BURST CRACK INDICA LEAK RATE SHOULD HAVE BEEN >6 L/HR SPECIMENS THEREFORE NOT INCLUDED IN LEAK R e 4 CORRELATIONS LEAK RATE FACILITIES SUBSEQUENTLY MODIFIE e INCREASE LEAK RATE CAPACITY FARLEY PULLED' TUBE R31046 NOT LEAK TESTED BUT SMALL THROUGHWALL CRA e (0.02") INDICATED NO LEAKAGE WOULD BE-EXP EVALUATION OF DESTRUCTIVE EXAMINATION' F e FACE INDICATED CRACK WOULD NOT OPEN SUFFI (>0.1") TO LEAK AT SLB CONDITIONS THEREFORE INCLUDED AS NON-LEAKER AT e IN LEAK RATE CORRELATION 102082:072292 PAGE 19
t l ) l l t l i
- rga:
L*' r g. / m e,. ,t u.6, i.c.. 4 ..<ei- .,, g. j t i i t j f w ,j. .s. w. ?* ... f, j ' i;. } ~ ~c f.. ]-~ t . a$ s {. ,s a -.. 'e ,,,,., f, t.r, i-3 ...t. ', 's i m.
- a
,,.n ...o 3 Figure 3.2 .SEM fractography of the opened first support plate crevice crack montage starts 0.2 inches above the crack bottom and extends 0 32 inches ab The The *L' marks intergranular ledges where smaller cracks have joined together t ove this. 0.52 inch macro-crack. corrosion region and the shear area where the materials was torn in the labThe o form the Area A shows an enit:gement of the intergranular corrosion region oratory. enlargesent of the shear area. and aren B shows an i = .-w-m.w. 4
l 4 i SENSITIVITY ASSESSMENT OF SLB LEAK RATE i-SENSITIVITY TO MODELING WITHIN 7/8" TUBING D DEFINITION OF ~0 LEAKAGE FOR NON-LEAKE 9 t 0F DETECTION DELETION OF NON-THRUWALL TUBES AT ~0 LEA o i 1 i 1 i TRENDS FORM 3/4" TUBING DATABASE (SOME 5 RATE DATABASE TNAN 7/8" DATA) i DATA FROM INCOMPLETE, ONGOING EVALUATION OF 3 e TUBING '(PRELIMINARY) j e 3/4" VOLTAGES INCREASED BY 1.36 FACTOR FO COMPARISONS WITH 7/8" DATA 3/4 LEAK RATES DECREASED BY 20% FOR C 9 WITH 7/8" DATA COMPARISON OF SLOPES AND ~0 LEAKAGE I 9 TRENDS FROM COMBINED 3/4" AND 7/8" DATABASE e -PRELIMINARY DATA COMPARISON OF SLOPES AND ~0 LEAKAGE-I e I PAGE 21 TAP 2062:072292 n -m --n,--rr-n~c, e e e ewm-m-e m-e ,e-- --g-y-sw---, --.,wa w+* -r-r---,+,e n-
._-.--.. - - - -~~^'~~~~'~ i SENSITIVITY OF SLB LEAK RATE CORRELATIO AND DATA RATro 0F Ave. No 31 DESCRIPTION ZERO POINTS $0NSTANT EXP0tiEt(I {0EFF. . ERROR _ L. R... TO CORR. STD. NOMINAL 8" DATA r 1 FARLEY 4 (7/8"'ONLY) -t g i 2 CASE 1, MODIFIED ZERO 3 CASE 2, TW DATA i ONLY 4 CASE 3, MODIFIED zsRO 2* m + 4" ' DATA
- m
~ Al REFERENCE EVAL. p B"+3/4" D ra* 19 A B1-RFERENCE Evat. C1 CASE S1, DELETE ZERO DATA, All[HOM fLTERNATE J COMsINATION (3/4"M. B. ) RELIMINARY EVALUATION i 1
l SLB LEAK RATE EVALUATION COMPARISON OF REGRESSION LINES _, 9 b \\ G< CC 4 y i s m A BOBBIN AMPUTUDE, VOLTS ~ s O MB SPEOMEN I PULLED TUBE - CASE 1 "" - CASE 2 --- CASE 3 ~ CASE 4 PAGE 23 s e .me s
t SLB LEAK RATE EVALUATION-CASE A1: W4' OD DATA 9 9 us w 4 sw BOBBIN AMPUTUDE, VOLTS - ~ A MS SPEOMEN W PULLED TUSE REGR. FIT . PAGE 24 +w y,-,u-c y-g ,,,,y w 3 w.... .,,,.,69 py.9 y,q. 9y9,,, 9,, g.gg-4 y-9- --y+ye,.y-9 g,
FORM OF LEAK RATE CORRELATION CONCLUSIONS INCREASED DATABASE FROM 3/4" TUBING SUPPORTS (SLOPE, ZERO LEAKAGE INTERCEPT) 0F SLB LEAKAGE CORRELATION SENSITIVITY STUDIES INDICATE VARIABILITY ON Sl8 LEAK RATE CORRELATION IS ABOUT A-FACTOR OF,,g VOLTS BASED ON 7/8" DATA ONLY. CHANGES WHiCH INCREASE ~ THE HOMINAL. LEAK RATE TEND TO REDUCE THE CORRE ~ STANDARD ERROR. INCORPORATING NON-LEAKERS AT ~ZERO LEAKA STANDARD ERROR (CONSERVATISM) COMPARED T0 FORC ~ZERO LEAKAGE DATA. A PRELIMINARY COMBINATION OF THE 3/4" AND TUBING INDICATES A TREND TOWARD. GREATER LEA 3/4" TUBING.g THE' COMBINED DATA.THEN RESULTS IN-UP T FACTOR OF INCREASE IN THE LEAK RATE CORRELATION COMPARED t0'THE 7/8" DATA ONLY. I PAGE 25 unu:onm
1 i. ALTERNATE SLB LEAK RATE ANALYSIS P 7 ~ MONTE CARLO ANALYSIS 3 e ADVANTAGES l 1 CAN READILY ACCOMMODATE ANY TYPE 1 DISTRIBUTION (DIRECT MEASUREMENT, NORMAL, i-ETC.) PRESCRIBED FORMULA OR CUM T, PROBAB!LITY DISTRIBUTION i 0UTPUT YIELDS CUMULATIVE PROBABIL DISTRIBUTION OF-LEAK RATES.WHICH CA I EVALUATED AT THE DESIRED CONFIDEN (90%) j S DISADVANTAGE REQUIRES COMPUTER PROGRAM DETERMINISTIC ANALYSIS o ADVANTAGE SIMPLICITY IN APPLICATION 9 DISADVANTAGE i REQUIRES' ASSUMPTIONS.ON UNCE TO BE APPLIED FOR EACH-VARIABLE (NDE, GROWTH, LEAKAGE) i t .1 i PAGE 26 fAP2082:072292 a 4 -,--e-m ,-.~.=rr +w r wee-er., ,,w c-e-e-r-,$- ,+-r-e- g .m --p we <r-r- r -umy-vi m er -r--m-<+-ety*a--=4 'vvv=9-tW y y y-gr Wryr v w
ALTERNATE SLB LEAK RATE ANALYSIS METH DETERMINISTIC MODEL EVALUATED E0C VOLTAGE = BOC VOLTS + NDE UNC. e + GROWTH NDE UNC. AND GROWTH EACH ADDED AT 90 CUMULATIVE PROBABILITY LEAK RATE FOR EOC v0LTs EVALUATED AT:- 9 90% CONFIDENCE ON MEAN OF SLB LEAK R CORRELATION 90% PREDICTION INTERVAL Or SLB LEAK R CORRELATION COMPARISON FOR BOC 2.0 VOLTS MONTE CARLO SLB LEAK RATE = 2.3X10-( e DETERMINISTIC GPM e FARLEY 1,2 GROWTH / CYCLE AT 90% cum. PROB.-= 0.6 VOLTS ~ NDE UNCERTAINTY AT 90% = 16% = 0.32 EOC YOLTS = 2.92 v0LTs ~ LEAK RATE! 90% ON MEAN =., S 90% ON PRED. ,3 MONTE CARLO RESULT CONSERVATIVELY INTERVAL = e = DETERMINISTIC METHODS APPLYING 90% P ~ INTERVAL 90% ON MEAN IS MORE REPRESENTATIVE COLLECTIVELLEAKAGE FROM ~A LARGE POP PAGE 27 U2082 072292 ir
PROBABILITY OF SLB LEAKAGE ASSESSMENT BASED ON PULLED TUBE AND COMBINED 7/8" AND 3/4" DATA e 167 INDICATIONS' EVALUATED AS PERCENT OF INDICATIONS o AS A FUNCTION GS VOLTAGE 8 EVALUATED FOR: LEAKAGE >0.0 L/HR LEAKAGE >1.0 L/HR = 0.0044 GPM i 225 INDICATIONS ~1 GPM e i CONCLUSIONS \\ THRESHOLD FOR LEAKAGE ->0.0 L/HR e _3-FARLEY PULLED TUBE TUBE R4C73 9 THRESHOLD FOR'LEAKAGEPLANT R-1 ( g o PLANT E-4 (3/4"Y R33C96 -(1.5 L/HR) hT 4.8-7.2 VOLTS DEPENDENT ON CURRENT RENORMALIZATION UNCERTAINTY IMPLICATIONS FROM-LEAKAGE EXPERIENCE e LEAKAGE F_0R _EgCLIhDICATIONS <2.5 VOLTS WOULD BE LEAKAGE 50REOCINpgCATIONSOF2.5-4 VOLTS WOULD-BE. ~2f5EOCINDICATIONSOF2.5-4v0gTS e WOULD HAVE SLB LEAK RATE PAGE 28-AP2082:072292
PRosasILITY or SLB LEAK -
SUMMARY
DATA BASE E .IYPE OF-SOLTAGE DIRECT MEASUREMENTS INFERRED FROM MORPHOLOGY g-SPECIMEN RANGE No LEAg <1.0L/nR* >1.0L/HR No LEAK [ gas 9 MooEL 0.1 - 11 BOILER 10 .80 6.5 - 140 PULLED 0.2 - 10 TUeEs 2.8 - 34 18 - 44 0.2 - 2.8 7.0 36 s MooEL 0.6 - 6** i s BOILER d4 - 9' i R 4.2 - 65 3-PULLED 0.4 - 2 TueES 1.8 3.5 - 10 i 0.2 - 1.2 i. 1 l TOTAL' INDICATIONS = 167 e MooEL SoILER.=- 74 e PutLEn TueES = '93 1.0 LITER /HR =.0.0044 GPM oR ~225 InoICATIoMS AT L/HR PER'GPM. DIRECT 3/4" VOLTAGES WITHouT 1.36 FACroR FOR COMPARING WITH 7/8" DATA. 1 i i i
e SLB LEAKAGE - MB SPECIMEN DATA _ g. 8 s 5 1 PAGE 30
i SLB LEAKAGE - PULLED TUBE DATA ,t 1 s 1 4 BOBBIN AMPUTUDE RANN, VOLTS y WITH LEAK l lWITHOUT LEAK PAGE 31
. -__ _ - - - -- - ~ SLB LEAKAGE PROBABlUTY .4 b I a is I i" BOBBIN AMPLITUDE RANGE, VOLTS PAGE 32
4 8 WKAGE PROBA81UTY i i l 8 h l k 2 e i d 223 OATA - tooisic nr 4 4. i PAGE 33
"a AA..> 4 - - a_ __.v a-_.c -aam -a__ ,m .a__ e o j SLB LEAKAGE - MB SPECIMEN DATA ,9 l I i e I l .I i i .i 9 4 i 4 4 9 h d 1 9 PAGE 34 i e
- y
-Aai i_-___.u.u_* .aa g_, SLB LEAKAGE - PULLED TUBE DATA q l e I PAGE 35 t ~
.-Ja_.Aa ._2.- L A 6 .!m,_ m. up-A--wea d w,--m .A. .w.A.A> A-mea. M- _J A a_,._, u,. 5 em.m. w ._%,aa i ) i ,i 4 i g j SLB LEAKAGE PROBASluTY ... 9 1 J i 5 i i A b a 6 i 4 i PAGE 36 ..~._,..._.. ... ~.. . ~..
~ SLB LEAKAGE PROBABlUTY -9 A b ae h I d DATA -.- LOGtSTC fit PAGE 37 --___ - - - - - - - - ^ - - - - ' ~ "
OVERALL CONCLUSION SLB LEAK RATETHE FORM (SLOPE, ZERO LEA CORRELATION IS SUPPORTED BY EXP 3/4" TUBING DATA. LEAKAGE BEHAVIOR G UNCERTAINTY ON NOMINAJ. CpRRELATION A 0 BE ABOUT A FACTOR OF ABOUT 2 AND 10 v0LTs> ~'ON LEAK RATES BET MONTE CARLO ANALYSES FOR SLB LEAK RATE ACCEPTABLY i CONVERGE IN ABOUT 10,000 SAMPLES. THE MEAN OR NUMERICAL AVERAGE RATE DISTRIBUTION REPRESENTS A LOW PROBABILITY OCCURRENCE (AT ABOUT + 90% PREDICTION INTERVAL) i L STRONGLY INFLUENCED BY TP.E UPPER T I DISTRIBUTION. RATE RATES EXCEEDING A DETER CONFIDENCE-ON THE MEAN ON 90% LEAK RATE EXPECTEDLY LESS THAN BASED ON-- THE +90% PREDICTION CORRELATION WHILE INTERVAL. EVALUATION OF THE FIELD AND MODEL BOILER DATA FOR THRESHOLD FOR NO LEAKAGEESTIMATED PRO IS ABOUT 0LTAGE SIGNIFICANT LEAKAGE (> 1 LITER /HR) i'IS ABOUT ",) AND s I -PAGE 3B .~m,e e. ,w,w w.e r, eew-,--mm.-, eve -aw ue-v e r,mm e, ,-r,-w e r - en-~ww,,,,e,--. ~e,w,-we,-.e -p-mr-n.-,- e,,w,,e,m,-,v-,,,ew +--e~.,rv.- .c N n-a
1 i i 1 INTERIM PLUGGING CRITERIA FOR UNIT 1, FARLEY NUCLEAR PLANT 3 ( o 100% BOBBIN COIL INSPECTION OF j TUBES i o i NO MORE THAN 200 INTERSECTIONS WITH I BOBBIN VOLTAGES BETWEEN 1 AND 2. VOLTS06SCCCONFIRMED BY RPC,AS A RESULT i OF
- FLAWS, WILL BE LEFT IN SERVICE i
j o AUGMENTED INSPECTION PROGRAM 1 I J it PAGE 39' b .. ~, -..... ~..... _... _, _
i INTERIM PLUGGING CRITERIA BASIS o 4.5 volts 3/4 7/8 INCH STRUCTURAL LIMIT (WCAP-13237) o 1.0 v0LT 99% CUMULATIVE PROBABILITY FOR GROWTH OVER LAST UNIT 1 AND 2 CYCLES o 0.7 VOLTS 25% NDE UNCERTAINTY b 2.8 v0LTS PLUGGING LIMIT o i PROPOSED INTERIM PLUGGING LIMIT 2.0 VOLTS 1 PAGE 40 1 ...-..~.-
\\ i j DASIS FOR INCREASED INTERIM APC VOLTAG 1 4 1 ( INCREASED' TUBE BURST AND SLB LEAKAGE DATA l e 3/4" HODEL BOILER e 3/4" BELGIAN AND PLANT R PULLED TUBES i i e 7/8" FRENCH DATA ENHANCEDDATABASETODEFINgSLBLEAKAGETHRESHOLD e THRESHOLD FOR ZERO LEAKAGE e THRESHOLD 4-FOR NEGLIGIBLE LEAKAGE 1.0 LITER HR. = 0.0044 GPM ADDITIONAL SUPPORT FOR NDE UNCERTAINTY J HISTORICALLY (1985-1992) UNITS 1 AND 2 SMALL GROWTH RATES F0e FARLEY CONSERVATISMS IN SLB BURST ANALYSES LARGE MARGINS AGAINST BURST FOR VOL NEGLIGIBLE SLB LEAKAGE e 7/8" DATABASE PRELIMINARY COMBINED 7/8" AND 3/4" e DETERMINISTIC AND PROBABILISTIC M e ntoshonnt PAGE 41-i
i ( 9 l i DATABASE APPLIED FOR INTERIM APC ASSESSMENT I l i i i I j VOLTAGE / BURST CORRELATIONS e 7/8" TUBING: FARLEY CORRELATION i I i e 7/8" + 3/4": EPRI (~FARLEY) + TOTAL 3/4" DATABASE 4 t i i SLB LEAK RATE CORRELATIONS i e 7/8" TUBING: FARLEY CORRELATION j l e 7/8" + 3/4": CONSERVATIVE EPRI (~FARLEY) + 3/4" ~ l MODEL BOILER j e I t I ~, 1 i l i 4 3 1 i d 4 PAGE 42 V2062s0?2292 e-eve-e,-1*-wa+ y e--. cg---- -m--m-t.
w-
--,-mevy.., ,w---,,,,.,,%y%..'-w=wa - *et rw- "=re-w-
- -www-=e-'es*.-
we++-wvv+--++-e--=-- - ** mee--H+"
- -'M-'
-=r-** Mew---n
l Fgure 9 2 e Burst Pressere Correlatbn With Bothh Voltage i B 6 em PAGE 43 w -_..._-,6 ~.- -,y.- .-w
i i t Burst Prossure Vorsus Bobbin Vol tage -e i m m Lam mo 6c. a m Ls to mnio. a bbbin VoIto9e. YoIts PAGE 44 4
4 r~ .- l O CB C .G _O O = 0 I ^ CD a 3 e3 .c T N e a _J T 75 L (8H/l)601 J t 4 9 PAGE 45 ---_.___m______m_.., _ _
ADDITIONAL HDE UNCERTAINTY EVALUATIONS CHANNEL HtAD MOCKUP TESTS WITH PROBE WEA PURPOSE COMPARE VOLTAGE VARIABILITY FOR WORN e ZETEC PROBES ASSESS PROBE REPLACEMENT CALLS FOR VARIOU e LOCATIONS OF WEAR STANDARD ASSESS HDE UNCERTAINTY PRIOR TO PROBE e BASED ON REQUIRING REPLACEMENT IF VOLTAG HOLE CHANGES BY-15% FOR WORN-PROBE COMPARE THAT FOR THE NEW PROBE CONCLUSIONS UNCERTAINTY FOR PROBE WEAR ESSENTIALL e PR0sF REPLACEMENT AT A 15 -e VOLTS 26 RESULTS IN AN NDE UNCERTAINTY ST DEVIATIO*3 0F 7% FOR ALL MEASUREMENTS PRIOR TO PROBE REPLACEMENT 90% CHANCE OF PROBE REPLACEMENT A WEAR WHEN STANDARD DEVIATION PEAKS AT 1 PROBES CAN BE PREMATURELY REPLACED e OF LEADS - DEPENDENT ON LOCATION OF WEA AND EC FIXTURE TUBE LOCATION tutost:ortret PAGE 40 __.___..._____..__j
Floure 8 18 Probe Wear Calibration Standard \\nwx l Y'n y'* c im. 6 h a 8 s u \\: o_ R t ~.s.......... n a S @J u s-'- Y.......,.,s'J.......N ~~ 44 \\ PAGE 47 l
St 39Vd 5~# .R= '*a y T ". =g f.on N^ a.[' e m..o8co8'Ioog- \\ o q, _ x' .2 I Q e '~ 8 I b I l:ll;- / -80 5 I T 8ag*8 ~l _gg N ~87 r ge -8s I y .1 1 3 45 8 = g 84 h, I' -83 82 gj g: -\\ -- 8 1 g
- ii p~
i g acos,lx 2 1 y._ n; 1 x 78 7s ~~-~ at i l!
- /*
i 88 'x ~ y 73 mIlg1, 7eT U
- n;n ;?
g f N nn 68 ocoo
- H ki p({.
i ' lE \\ %p^ 3 es .-- 6 3 1 : i i o8o i i g1 62 ~6I ~ O~ I ~ -Se
- o t
c, -50 ll: -+- 5 8 ggg i - 4 50 -57 1 1 1 1 1 : 1 i 1 1 1
- t ana r
-55 Frr { i i i.. i +54 t S2, $3 h t t ' ; 1 1 : > 51 IEI n ll: -+ s o
- 'l
! E: -+ 4 3 y ~49 i.:i~i M 46 47 FEE r :':
- "l 1.,. 4 4 1
q 45 4 t 1 ,. 4 42 43 EEE r - {.+ 4 e -41 N .r - i, m _j_ 3 3 -so r i: 37 1 +- 3 e; 3 5 g g.34 - +- 3 2 33 y 3 "N~N 1 29 UNMZ { g 7 h 30 ~ I Sl W, ocoo as q -27 - - - -,o 26 2-3 / -25 PPP 2 I 888-{T ) M :i; i; . 8
- j 22 o4 i
24 r -23 i H r 8: ee __21 GoU I z. 3 2 a '8 ,g te o y ^1-ti:l i l N $ h" iir i i. !. i;;; 008go ~I7 ESE 16 i 15 g 3 1 1 1 1 < 1 33 r i-. i i L i 1 8,g 4 !2_ 99 222 8 m 10 777 m li;'!!; ~g ljgoe l e 111 r i 3 x
- 1 i
7 i W.., goo 5 6 t- ~~~ d, I ~ i l 0o00o08ookIS r y O t 2 -l. i L-1 O o l il r % N A Q CD -~ ~ ~ - NN N N N W W W W W A A A C O - ciN A c a c N A c @ c N A c c c N A 3 C I 1 Z M-WmJc-----NNNNNWWWWWAAA M i l WmJC-WdJC-WWNO-WW 1
F%ure 8 20 Bobbin Coll Amplitude Dependence on Probe Woat Echoram Probe Wow Siandwd b Vwtcal T6be irr= tion u -- t g y.............p.............t.*..........t.*I.....*.....t..*.........tt...*.........t.... i g..............t.....~ _l a m %.su 6 ...... 4.......
- u...............
__. s....... 1.........._......q........j.....g....... { gl .......l...............'3 iv........ t-4 ,........g ..u b......... 7.. t ..T..........!...'j.m.. ............g..............L 2 p ........ r. ............t....o...... 4 o..........I.... ~.......... v.............;...........................g....................* ........................,.............g.....R.... ........... 4 ........&'.............t... p u...........g.............g......o.....!.............!.............4.............(f.... 3 t b-I ..........!.............A............. I kaus i l .o..........g.............. 0 ODus OM Ohts t e== w n ene 95 _i Om$ Om Echorarn Pde Want Stardud Horuordal e i Channehead st ...............;!.............p.t.............g.t.............;t...~........;t...... u
- u..............ho.......
........:..............t .............1............(.............(.........~..+. I,g3 ..1.............1.............1.............l.............$............. I ',.............p;..............I..............t............. ,,.............y .............!.i e % a y w o-6.u .s............ 4.............. e.. m o m %...e -............'............. 1..............t..... s.u p........i-s.M e.n s.n
- * " + * " *.
s.u ' I I*"* ew.u a.n .....!..........".."..t.........*...".4*""**.*' y............. I.............. p............................... t $ous I o5s ein this t I o Pete wer pov oe oms im Zrlec Probe u. Wear StanonAl Horttartal b Channehood I tv .............g............t.............g.i..............!........-.
- u...............&.............;............ 4..............?.......... m t....g.............j............._.t I
Iu. ........J %a _>....j............. ............ 4............. so..........- su.e e e -u .............t.............q!.............. 6 u.. ..............t..............t.............<... v........ 3 Js y...... g e es } g n .. t............ 7............. t o n o m. u o.g g 6 Ir......... 'M .....i............ 4...... .ono-oo. s.n .....I..............t............l........................... .....s...... t e.u ......t............I e.............. t i .... 4...............t..............;............ g.............. 4...... m... i cas .....g.............;. .............j*..............>............. 6 oms I em ems e=e.weeows om ehs os PAGE 49 I i 1 -r-..--- , -..a ,s.-. g .v,
j i i Table 8 8 j Channethead Mockup Probe Wear Standard Test Results i i i i 4 i Difference > 15% Number of occurrences of i i Number No. Probe
f rom New Probe (2 )
Tube Test Replacement - hances(1) Echoran Probo(3) Location Repeats C .005.0075 .01 Zatec Probe (3)
----1
.0025.005 .00 ---75 i R8C92 10 100 0 0 0 0 82 96 1 R2C88 2 4 0 0 0 0 2 4 R33C47 10 100 0 0 3 0 0 88 I l R3C45 2 4 0 0 0 0 0 4 i { R10C45 2 4 0 0 0 0 0 4 4 i. R23C44 10 100 0 0 0 0 40 100 R30C36 2 4 0 0 0 0 0 4 4 R3C16 .i 2 4 0 0 0 0 0 4 R20C15 10 100 0 0 1 0 0 80 Notes 1.- worn and new probes. Number of tests permitting comparisons of ages between 2. An occurrence of volta absolute ((Vworn-Vnew)ge difference > 15% is each occurrence that / Vnew) is 15% for at least one of the 4 holes. 3. Dimensions the probe ce(ntering devices.0.005, etc.) are reductions in radius (inc1 PAGE 50
Fgure 8 21 Vohage Variability Due to Bobbitt Probe Wear w ~aws~eM W $ yen w z f to esee i '8 ~ s ] ir ,e t- ,g is 3J j (5& 4
- l
,{ i 1* ) 4 jr 4 e / 3 .ao i. ,a 9.: h a v,e, w.esw w*snMMoDuna wi = 2 _,co e , iw O-l% e 3 le te q }* / t,. w )e / / e < -_.L .? _\\ L 4. 44 SS 1A w*=EEMMoDuarw m = ,e este.summe an o.ans Em l$ / to R el J. / I. 3e / S g o I .s ? e Onsemos e M PAGE 51 ,p.. ,,n._
i ADDITIONAL NDE UNCERTAINTY EVALUATIONS I 4 l EDDY CURRENT ANALYST VARIABILITY l i ) i
SUMMARY
EVALUATION IN WCAP-12871, REY. 2 i e ANALYST VARIABILITY: 10% AT 90% CUMULATIVE PROB. EVALUATION FOR PLANT l 592 LARGEST BOBBIN INDICATIONS (0.6 TO >3 VOLTS) e e 6 ANALYSTS FOR EACN INDICATION ASSESSED ANALYST VARIABILITY AS DIFFERENCE FROM e THE MEAN OF THE 6 ANALYSTS (592*6 = 3552 POINTS) i e AT 90% CUM. PROB., ANALYST VARIABILITY IS 0.13 VOLTS OR 9.2% OF 1.41 AVERAGE YOLTAGE 1 1 4 i I l i .I t p PAGE 52
rigve s.22. Exemses of Anavst venabitry kw Fadey.1 vorme Me:nnemenn i 2 i FARLEY UNIT 1 EVALUATOR SENSITIVITY 21% Population,32 Readings V(>1.50) j 14 T-- -- 100 90 h MEAN A1182 Deerence M Vohs g 10-1 E MEAN A2 1.81 M*an 0.01 ~ i W 8a 60 j g sid. Dw. 0.15 50 l g 6-40 4) I h '~ 2 i g 20 M' s i s s & E ~; 4 0.30 -0.15 -0.05 0.05 0.15 0.30 I 0.20 0.10 0.00 0.10 0.20 0.50 DIFFERENCE BETWEEN ANALYSTS (VOLTS) FARLEY UNIT 1 EVALUATOR SENSITNITY 100% Population,151 Readings I B0. \\ 73 100 70 '90 60- . MEAN A1 1.15 Deerence in Volts !2 j MEAN A21.14 Mean 0.J2 70 vs @ 40-Std. Dw. 0.11 8 50 30 40 a s 20-30 S 10-to 20 7 4 5 4 10 0-i"' E E i .1.50) }i 12 i 100 I 14 90 h Mean A1 1.902 san Drff Vons 4 06 E i j 8' 70 wmAp
- 3. gar su DevosVoes o.2114 j
6-50 8 4' Jo 30 20 !,5,!,0.5, . 7 ,B, ,E, o_ 4.5 0.15 -0.05 0.05 0.15 i ) 0.25 4.1 0 0.1 0.25 0.9 DLFFEABCE BETWEEN#W.YSTS (VOLTS) I { FARLEY UNIT 2 EVALUATOR SENSITMTY 100% Populatkm,263 Readngs i 140- -100 ^ l 120< go Mean A1.898 Mean D(Vota 4012 80 i Mean A2.910 Std Dw Of Vots CL1386 E 80-l '00 i 8* 50 \\ 40 so-1 30 20-20 0-EE"= i i i i 0.5 0.15 i i i i i 0.05 0.05 0.15 0.5 0.25 4.1 0 0.1 0.25 0.9 l DIFFERBCE BE1 WEEN ANALYSTS MX.T3) PAGE 54 v.~ .,.~..,,,._,..,,_,..-..,.,m,, ,,,,,y,-,, ,_,-,..,_..m y=sv-,
9 Disttfbutbn ot{} Voltage Indications Used for EC Ana%t PLANT L MEAN OF ALLSIX ANALYSTS 120-110
- r.
-100 1@ 101 ] @ 94 I - j% ( A n rae. volt o.. t 85 h 1.41 -80
- t4 cov G -
o.48 J 7Q g t' 8 so-l p so -so 8 l 30 g{e a 40 g as 8 3 1 ' as ) 20-8 / y 91s l $1 Bl A.2_ 2 o_' L 1 8 10 o.e6 i.06 i.4 i.86 h.26 3.e6 5.o6 5.46 5.80 oly o.80 1.20 1.so 2.00 2.40 2.80 a.20 a.eo VOLTAGES i PAGE 55 4 A, g .q c ,._m. .,,_,y.,.. ..,y y ,y-, -...,.m,. .,,w, m.,
4 i i Distribution of Voltage Differences Between Individual An s s and Mean Values PLANT L i DISTRIBUTION OFALL DIFFEREN 1000-g@ 9@ -100 c j g -90 6 w) BOO-Differweet la Volte m (r b o.oo i gtd tev 0.146 w Avstnge Voltages 7& L
- u..
1.43 -80 J sts tev 0.48 E ) J 5 }/ -70 SOE 50 u.0 400-ct 415 50 300-3 40 e z 200-30 a 171 100-107 109 120 20 t 4 10 g 7472 10 t 4 ,gll37 -1.0b O.5b M.26 M.1O b 0b b.1b b.2b 1 -0.75 4.25 0.15 -0.05 0.05 0.15 0.25 0.75 VOLTAGE DIFFERENCES 1.30 PAGE 56
i 1 1 i FARLEY GROWTH RATES t i 1 1 100% BOBBIN INSPECTIONS SINCE 1986 i I INDICATIONS AFTER EACH INSPECTI e i INSPECTIONS TO UPDATE. GROWTH HISTORIES j GENERALLY OECREASING VOLTAGE GROW i SIMILAR TREND FOR BOBBIN COIL DEPTH e \\ SIMILAR GROWTH RATES AND TRENDS FO i i 4 SMALL AVERAGE GROWTH (<0,2V SINCE 1989) PER i i GROWTH RATES FOR BOC VOLTS >0.7 } THAN SMALLER INDICATIONS i i FARLEY-2 REPRESENTS FIRST USE OF CALIBRATED TO LABORATORY STANDAR NARROWER DISTRIBUTION, FEWER NEGATIVE GR e VALUES AND FEW LARGE GROWTH CHANGES-1 J i Mtostionm PAGE 57 . - ;,c _ a,...u:_,... -., - - ,_.._._.,___,,...-_._.-,._.~a,,._,_.._...-_--_,,_.._&,-,-.,_.-_
VOLTAGE GROWTH PER CYCLE FOR FARLEY UNITS BOC No AVERAGE AVERAGE AVERAGE UNIT / CYCLE INDICATIONS. VOLTAGE OROWTH M ORIH FARLEY-1 1985-1986 123 0.45 0.20 45% j 1986-1987 274 0.48 0.28 59%- i 1988-1989 431 0.62 0.22 36% 1989-1991 499 0.70 0.16 23% i BOC <0.75v 306 0.51 0.24 48%- 1 I BOC >0.75v 193 1.01 0.08 8% FARLEY-2 1986-1987 291 0.55 0.13 24% 1987-1989 316 0.49 0.20 34% 1989-1990 326 0.71 0.10 15% BOC <0.75v 207 0.52 0.16 30% BOC >0.75v 119 1.04 -0.13 -13% 1990-1992 308 0.73 0.11 15% BOC <0.75v 233 0.58_ 0.13 22% BOC >0.75v 75 1.19 0.04 <4% 4 PAGE 58 tutoatsottret .-.a_,_,,_.__._ ...-__.-._,..-.._..........__.._....____._._..._.:_...._,._~...__-..~.,..__....,__
I Fgure 516 Historbal Average Vohage Growth Trends in Farley SGs 90-D0 ,y, 70 5160-u e g g 50 - g ~~,' U E 40-c ~ h30- . o. ~ N C 10- -F- ---s 0^ 1984 1985 1986 1987 1988 1989 1990 / fili Beginning cf Cycle. Year e Average Growth Over Total BOC Voltage Range: Farley 1 4. - Average Growth For BOC Volts < 0.75 : Farley 1 O-Average Growth For BOC Volts > 0.75 : Farley.1 -- o -- Average Growth over Total BOC Voltage Range: Farley 2 Average Growth For BOC Volts < 0.75 : Farley 2 -- m -- Average Growth For BOC Volts > 0.75 : Farley 2 PAGE 59 a
Fdure56 Support Plate Indcation Progressicn in Farley 2 SGs 50-g^ q............ + .u q g......... _. M4gg g.30 W D_ n - z 1 -.g.g................. .g m ...................m g4 .........3... ...m........................................................... -50 85 to 86 86 to 87 to 89 - INSPECTIONINn (NAL 89 to 90 = -*- AVERAGE (ALL Sra'S) M - UPPER SIGMA u -*- L.OWER SGMA PAGE 60
i i Figure 515 CumulatNe Probability of Vettage Growth per Cycle for Fariey ( J. M. FARLEY UNIT 2 90 89 100% POPULATION,327 READINGS 60- -100 $ 50 i b h ? ,/ DJFERENCE IN VOLT 3 l h 40' 1 36 DEV # g { $ 30' a,- voLiso 074 750 $ j 23 i vottee 071 b40 a g 20-17 1 m 2 { 2 -30 g 10-8 20 2 6 j 55 3o 8 { 0-E' i 1.00 0.25.00 8.20 0.40 .6d 0.80 '2' -0 j -0.50 0.10 0.10 0.30 0.50 0.70 1 2.6 DIFFERENCES IN VOLTS J. M. FARLEY UNIT 1 91 - 89 100% POPULATION,499 READINGS 100- _Ta \\ $n ../ b r l g 70- voltae o.70 68 D(FFERENCE N VOLTS .66 60-m3 70 y STD DEV o.29 60 50-47 40-50 $ 36 40 g 30-30 $ 3 20-17 1212 -20 $ z a 0 0 l -0.80 0.25 0.00 0.20 0.46 .6 6.80 '1' -0.50 o.10 0.10 0.30 0.50 0.70 0.s 1.6 DIFFERENCES IN VOLTS PAGE 61
l l i Fburo 5-14 Cumulative Probabmty of Voltage Growth 06; MPY tor Farley Units 1 ~ i J. M. FARLEY UNIT 1 SUPPORT PLATE DEGRADATION PROGRESSION 100 6 !iII I I.[ _l-- I ! I_ i N I I !1 --m-p k . ]. _1 j-1--l!!L!,f ll 80 l l l l l l l -l iIl l l i i i 50- -li i L~i T iTi i IIIT R ll l l l l' l l l-[I l I ,! Il l
- - l-
- + +. 'g so-I I I I I i l I l !/i i i !lI 1 I._ l. _l I i i J I 1. 3,./ 3 t l l .! fi l.Iil I IIi m. l; --l !l l i l l i l l 20 10-c! ! III I. 1JA!II Il 11 i j ,g o,,,g,,7 4,1,,7 0,,,0,C,,0.0 0, 0.4 ., 0,1.01, L4 CHANGE N SIGNAL. AMPUTUDE(VMPY) i } c - _. . y i J. M. FARI.EY UNIT 2 SUPPORT PLATE DEGRADATION PROGRESSION g too e 1 II i 1 l v.- = 1 j i i I i i i i i l 1//A -i i i I II i e i.
- i. y i
i i i_y I i i i. i
- e. i
.,e 1._! I I I //{! l I/ l i ) i i i i j-! . lill I i a[ i!l I i i i ) I Al l i i i1 I i1 4 5 h'hl ~i /# I I I i j i i I h l /// l $fe-!ff.2 i i ?- i i ~ f.IIiT~l # # 1 lI I I I! I I I !I i !MFIlili i i j IIl j -{0 ' 0.6 4.2 01 0.'G - 1'0 1'4 E8 - 0.8 0.4 00-0.4 0.0 1.2 to 2.0 CHANGE NSIGNAL AMPUTUDE(V&cV) [-up. w. ms ao m ruse g PAGE 62 I t A 9- -*e n .i,-w -w ,-.,m'nr.- e .-,ww w e s rn, ew-ec w --m =>ww,m=<
~ ~ Figure 2, 1992 Farleyo2 Total Indications Founs and L.efti in ser i v ce J.M.FARLEYUNIT2 Alls.G/s All 1992 Botbn hicaticos 50 o Y h, h 37 $[ 29 DEE4s 31 2I 24 3 5c* l 7 ~ n 3 j1E 1.,dg f. N x, lflfljf,i(3&,l;'3(a332 0 0.3 '05 '0.7' '0.9' 't.1' ' t.3' '1.5' '1.8' '2.2' 2.6' 3A4 0.4 0.6 0.8 1.0 t.2 1.4 1.6 2.0 2.4 2.6 Botbn votage J.M.FARLEYUNIT2 ALLS.G!s 1992 Botbn h$cabons leftin seMoe 50 47 4& M h 3 i / veampme g $ h 31 o N# k N$ 3 Y [Nq jit k g/'
- ).,
2 5 I 10-9 4 3 4 3 00k 00@0d0 y ^ 0.3 05 0.7 OA 1.1 1.3 15,,,,, ,2.6 344 1A 2.2 0.4 0.6 OA t.0 1.2 1.4 1.6 2.0 2.4 2A Botte voaage PAGE 63 \\
4 Figure 4 Farley-2 Voltage BrowW)W"Cytre f rom 1990 to 1992 Las beadnNiese Si to N e a M / I M % v, .go / d Vp l fj L ,e = M M N di 1 i 49 ' 4 3' '00' '02' ' 0.d ' '0 8 ' '08' ' 1.5 ' 45 4.1 01 03
- 0. 7 to 2.1 j
gg x = O y 3 / Da p "M J, suomem $0- / e.e.n..- 30 ~30 Awd 6 d A A A.2. 1 49' ' 42 ' ' 0.0 ' '02' '0d' ' 0.8 ' 'a8' ' 1.5 ' 48 4.1 0.1 0 47 1.0 2.1 "MMilllF"* =
i. 20-el e.- kneesvg 90 l0 0 = l }/
- l f
2d S< b dddbo o 48' ' 42' ' 0A ' '02' ' 0.4 ' 'AS' ' 0.8 ' ' t.8 ' aatemyeauge oome PAGE 64 i<*-r e-* - - - <v ,yr, -i,.,, -.-w.,
80 i i w U.S. VOLTAGE NomMUZATCN J .70-O>c s 60-w O 50----C-4 mw CL s, 40-....f g 30 e we 20-g _-3-- a0 10-O i 0 1 2 3 4 5 6 INITIAL BOBBIN AMPUTUDE, VOLTS O FARLEY-1 E FARLEY 2 A PUWTF X PLN# H-1 Fgure 612. Average Percent Voltage Growth Rates for Farley, Plant F and Plant H 1 PAGE 65 I
4 CONSIRVATISMS IN SLB BURST ANALYSFS i / b ~ SLB A P = 2650 PSI APPLIED COMPARED TO ACTUA i l SLB A P OF 2560 PSI ASSUMES NO OPERATOR AC l MINUTES BURST CAPABILITY EVALUATED AT LOWER 95% i i MATERIAL PROPERTIES FOR ALL TUBES IN THE BUNDLE ALL TUBES ASSUMED TO BE UNCOVERED BY TSP i CORROSION OF TSPS EXPECTED TO. PREVEN e ANALYSES REQUIRE ZERO FRICTION AND SIGN e k l TUBE TO TSP GAP FOR UNACCEPTABLE TUBE DI EVEN WITH ZERO FRICTION, e ONLY PERIPHERAL TUBES ON UPPER PLATES ARE UNCOVERED DURING -EVENT - BURST PRESSURE VERSUS CRACK LENGTH CO i j , o,c A THRUWALL CRACK 0F REQUIRED FOR TUBE BURST EXCEEDS TSP THICKNESS OF 0.75" i i ? i s TAP 2062:072292 PAGE 66
SUMMARY
OF SLB LEAK RATES AND MARGI 1 i EVALUATED BOC ~2.0 AND 2.5 VOLTS.MiAINST
SUMMARY
EVAL'JATIoN BASED ON PRELIMI AND 3/4" DATABASES LARGER MARGINS BASED ON 7/8" DATABASE o i j BURST MARGINS o AGAINST 34 P EVALUATED AT 90% c8!M. PROB. ON EOC VOLTS (2.92 3.5 VOLTS) BOC =,2.0v: MARGIN OF ]g i BOC = 2.5v: MARGIN'0F ~ ]8 o AGAINST SLB i EVALUATED AT 99% CUM. PROB. ON EOC VOLTS (3.5, 4.12 VOLTS)- AND -99% PREDICTION INTERVAL FOR BURST AT SLB BOC = 2.0v: MARGINOF[ ~g M.C. PROB. = 4x10-6', BOC = 2.5v: MARGINOFT H. C. PROB.' = 5x10-s~, i PAGE 67 i .~.- - _ _... -,. -. _...... _... _ ~ -
SUMMARY
OF SLB LEAK RATES. AND MARGINS AGAINST SLB LEAKAGE e BOC = 2.0v: MONTE CARLO = 2.3X10-4 GPM PER INDICATION r DETERMINISTIC =,. ,9 ,S MINIMUM OF ~220 INDICATIONS FOR f MONTE CARLD ~4000 INDICATIONS FOR 1 GPM e BOC = 2.5v: MONTE CARLO = 5.2X10-4 GPM PER. INDICATION r DETERMINISTIC = 9 i J MINIMUM OF ~105 INDICATIONS FOR .3 MONTE CARLO ~1900 INDICATIONS FOR 1.0 GPM ~ DETERMINISTIC AT +90% PREDICTION INTERVAL 9 EXPECTED TO BOUND MONTE CARLO WITH POTENTIAL FUTURE INCREASES IN SLB, LEAK RATE CORRELATION toros 2:enm PAGE 68 -. -... -. - -. - - - - - - - - ~ ~ - - - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
I FARLEY UNITS 1 AND 2 DEPENDENCE OF SLB LEAK RAT MONTE CARLO ANALYSES 4 3 SLB LEAK RATE (GPM)E0C VALUES i BOC VOLTAGE 7/8"+3/4" (~7/8") DATA BURST PROBABILITY i 7/8" DATA 7/8"+3/4" DATA (3) 1.0 9-i 1 1.5 i 2.0 2.5 i 3.6 1 i A 4 NOTES: 1) SLB-LEAK RATE AT 90% CUMULA ~ 104 HONTE CARLO SAMPLES. 2) ZERO REPRESENTS NO OCCURRENCES 5 gonyg CARLO SAMPLES.- Z V2082:072N2 PAGE 69 4 % +.,,.. -,. - -, + ,,,.w ,,,a,, ,-,rgry,,n,,,,,,,,g7-m -se,, ,-,mr+
q i DETERMINISTIC SLB LEAK RATE AND BURST EVAL I' 7/8" DATAsASE PRELIMINARY-7/8" + 3/4" DATABASE BOC VcLTs 2.0 2.5 2.0 2.5 I GRowm AT 90% { 0.6 0.6 0.6 0.6 Cun. Pros. (1) NDE UNC. AT P 0.32 0.4 0.32 0.4 90%-Cun. Pros.
- g EOC volts m
2.92 3.5 2.92 3.5 a SLB LEAK RATE (GPM) e +90% ON MEAN 0 9 4 +90% oN PRED. INT. volts FOR 3A P t 'AT -95% PRED. i INTERVAL i NOTE 1. FARLEY UNIT-2 FOR 1989-1999. i In.LAsr 5 UNIT 1 AND 2 cycles. LARGEST GROWTH AT 90% i 2 I
DETERMINISTIC SLB BURST MARGIN EVALUATION 7/8" DATA _ PRELIMINARY 7/8 + 3/4" DATABASE BOC volts 2.0 2.5 2.0 2.5 GROWTH AT 99% 1.0* 1.0* cum. Pros. 1.0* 1.0* NDE UNC. (25%) 0.5 0.62 A 99% CoM. 0.5 0.62 Prom. EOC volts 3.5 4.12 3.5 4.12 VOLTS FOR SLB burst -i 9 AT -99% PREo. INT. EVEN APPLICATION OF 100% v0LTAGE HISTORICAL FARLEY DATA WOULD NOT $1GNIFICANT anoWTH OF MARGINS. AFFECT suRST \\ d PAGE 71
PROPOSED INTERIM APC BOBBIN INDICATIONS TURE REPAIR. LESS TNAN OR EQUAL TO 1.0 v0LT 00 NOT REGUIRE AB0VE 1.0
- v0LTS, BOBBIN FLAW SIGNALS NAVING CONFIRMED RPC INDICATIONS SHALL BE LIMITED TO 200 INDICATIONS PER S/G B AND 2.0 v0LTS.
ALL BOBBIN FLAW INDICATIONS ABOVE 3.6 VOLTS WILL BE R EOC SLB LEAK RATE ANALYSIS IS NOT REQUIRED LIMIT ON NUMBER OF INDICATIONS CONSERVATIVELY LIM 0 LEAK RATE TO < l.0 GPM IN LOOP WITH POSTULATED PIPE RUPTURE. PAGE 72
SCREDULE IPC IPC Submittal Meeting-to NRC FNP Unit 1 outage start 27th 28th 25th 7/27 8/3 8/10 8/24 8/31 9/7 9/14 9/21 Ea' W SG EC. SG Repair / Starts Plugging starts 8th 9/28 10/5 10/12 10/19 1E /16 11/2 11/9 I I
~ \\ INTERIMPLdGGINGCRITERIA BASED ON: WCAP-13237, PRELIMINARY DATA ON VOLTAGE / BURST / LEAKAGE OF 3/4 INCH DIAMETER TUBING FOR ODSCC AT TSPs WCAP-12871, FARLEY APC REv. 2, PRESENTATION WCAP PAGE 74
QUESTION 4 STATUS OF EVALUATION FOR 3/4" TUBE D MODEL BOILER DATA COMPLETE PULLED TUBE EVALUATION IN PROCESS 3 PLANTS (BELGIAN E-4, R, B1) e 10 BURST INDICATIONS e 9 SLB LEAK RATE INDICATIONS e PRINCIPAL ISSUES TO BE FINALIZED e VOLTAGE RENORMALIZATION OF BELG VOLTAGES T^ APC NORMALIZATION AT 550/130 KHZ mix ADJUSTMENT OF BELGIAN ROOM TEMP RATES TO OPERATING TEMPERATURE CONDI BELGIAN MODEL FOR ADJUSTMENTS BE e REVIEWED ACTIONS TO COMPLETE RESOLVE BELGIAN VOLTAGE NORMALIZA e RATE ADJUSTMENT EPRI TASK TEAM REVIEW e fU2082:072292 PAGE 75
l 1 m SLB Leak Rate Versus Bobbin Voltage 9 I t M PAGE 76 + -~y r4. e .. i
1 l BELGIAN VOLTAGE.RENORMALIZATION-i; i i BELGIAN FIELD-EVALUATION i EVALUATION OF 53 INDICATIONS INCLUDING 1992 e PULLED. TUBES f HEASUREMENTS AT 300 KHZ WITH BELGIAN PRO e EQUIPMENT AND BELGIAN.. NORMALIZATION e MEASUREMENTS AT 550/130 KHZ WITH APC i NORMALIZATION AS WELL AS 300 KHZ WITH BELGIAN { PROBE AND ZETEC EQUIPMENT VOLTAGE RENORMALIZATION FOR BELGIAN PROBE i e DETERMINED BY CORRELATING 550/130 KHZ WITH [ 300 KHZ SLOPE OF 4.93 i e [ FIELD DATA INDEPENDENTLY REVIEWED BY WE WITH EXCELLENT AGREEMENT WITH BELGIAN VOLTAGE CALLS I i PRINCIPAL ISSUE OF VOLTAGE RENORMALIZATION l e RATIO OF 550/130 KHZ To 300 KHZ-OBTAINED W U.S. PROBES IS FACTOR OF-1.5 To 1.75 HIGHE OBTAINED WITH BELGIAN PROBE BASED ON ASME STANDARDS i e U.S.. PROBE AND LABORATORY-TRANSFER STA [ PROVIDED TO LABORELAC FOR INDEPENDENT EVAL i l l 4 I to:ochom92 PAGE 77 . ~ ~_..,_,..____._._._.____..___._._.,.._...m__._..,
Q' -uo 4 d i A. G 2 i 6 i i 5 I.~.f j %s a <-o RRo
- al A
i$A isA R i i i ty' E%G Wde c i C 2R2 323 l3 y' JAs JAs C i i i s S. R. R. 4 -~e + i a l %53 E02 3%C GSk 8 2 2 C JJi 4J& JJi ada i b J u a J G I o 1 I 023 C'% CES tat t 3 S B m 4Ja JJi JJa Add c J J 4 4 re i
- m g
gl E54 E *. E EII I. E. ~ ~.E .E .E .E U ~- ~m i e 1 ~= CSS CSS 32% Ce* 8 3 2 E x ~44 446 -444 444 3 o A 4 J 4 to s 'i F em A D! i 6 J 5 a 3 5 4 4 { a -w g 1 2 1., 1, w O A o 4 "= .2 cc .w s 3 .i 't g = 4 y 8 k .t i 4 d. s 4 g a o ?, I2 o I I -j 1II 2 1 I 3 i i -5 I i ~S. 3 8 - ! i j' -3 2 4 2 A c' A R m i .E %g R R R ~ CR.-{ erg CR CR Rg RRg R 3 2 E 1 + e 3 e. PAGE 78 1 /
FIGURE A2-1 3, S/G: 3 Evalustion of 1992 Voltage Ind. at TSPs 18' 16-r No. Data Points 53 EC Equipment-MlZ18 ag 14-L l 3 g 12-E5 g 2 ] g 8-( Unear Regression) <C Slope 1.00 i p 6-Intercept 0.07-M Std Dev. 0.004 g 4-( R Squared 0.999) C8 2-to 0, 0 2 4 6 8 10 12 14 16 550/130 KHz, APC Mix Norm, Belgian Eval k.
m FIGURE A2-2 _, S/G: B Evaluation of 1992 Voltage Ind. at TSPs 16- = To 14-( No. Data Points 45 h c. -$12-EC equipment m 55 550/130- MlZ18 CD " 300 - Belgian E ( J =5 oz 8- = ( Unear Regression] g y = O 6-m" Slope 4.93 Q-m <:t m Intercept -0.75 a m 4-I m Std Dev. 0.21 N E 2-R Squared 0.927 Y J m C 0------- --- - g to -21 0 0.5 1 1.5. 2 2.5 3 ~ j 300 KHz, Belgian Norm., Belgian Eval.
FIGURE A2-3 ?. 3 L - S Evaluation of 1992 Volt $ge/G 3In5. at T 16 Tu 14-(No. Data Points 53 3 c $ 12-EC equipment ~65 m 550/130- MlZ18 10-300 - MlZ18 Q Y = E o Z 8-(' (Jnear Regression ) .2s m A 2 o 6_ o_ Slope 4.67 = intercept -0.64 4- -y Std Dev. 0.06 x ( R Squared 0.991 o 2-mc Om 0_.. m -21 i 0 0.5 1 1.5 2 2.5 3 3.5 1 300 KHz, Belgian Norm., Belgian Eval.
et.- - - - - ' ^ - - - - ^ -~ ~ ~ ~ ,9 , S/G: B Evaluation of 1992 Voltage Ind. at TSPs 10 (U.S. Probes3 NIE LinearRegression Slope .061 O Intercept 2.94 O 8- [ Behian Ph O Std Dev.003 Belgian Eval. Linear Regression uard. E a ,X 550/130 MlZ18 Equip Slope .029 2 300 KHz Belgian Equip Inter pt 2.34 7_ g Std Dev.001 a LinearRegression ( Sqwred.997 R Slope .027 j SE N 6-Intercept 2.37 R I Std Dev.009 O O M m (R Squared.183 O O O 5-O k r- \\ B g a O in to 4-o o O 'o %a o [- o qb oo O 3-o O O 5 O 0 O o 25 O 10 20 30 40 50 60 70 80 90 100 DEPTH (%).
~.. i-i i ) Preliminary ) Correlation APC 550/130 to Belgian 300 kHz (3/4' Tubing) to i i- ~1, i t$14' i r 3 c Field beta Points e 45 m I, I2" 30 esi)nent - 3 $50/130. act18 300 . salgias I e Delgian trsM { ( ) i z ,g j 3 S-2 a r 3 m. j. Ve d.e.* y p5 ", ( 3 t,taear a s m... ton ..... m g. 000 has) 8 m 1atercept =0.15 I g 8 std 11ev. 0 31 J R. 4" is
- A@ ared 0.927
( ) I i J = C 1 0 0'.5 1 1'5 2 2'.5 3 300 kHz, Belgian Norrn., Belgian Eval. 1 i Correlation APC 400/100 to French 240 kHz (7/8' Tubing) 3 70 i m -W r ai i { Model Boiler Data Pc10ts = 10 g IC7,18 E0 equipment } g 50-E x' I $ 40' y .( 2 -1,inear Regression A } g 30" slope 'd.c Slope 7.82 = latercept 0 Intercept ~3.11 h h Range 0-0.40 volta Std Dev, 0.34 i 20-(240 ui 3 3 ;,.ared 0.985 t ,a k J v, f 3 g a 10- = 1 I i C 0 1 2 3 4 .5 6 7 8 -9 i Volts 240 kHz French Norm, i Figtire 6-5 Voltage Re. normalization Correlations for French / Belgian 7/B" Data and Belgian-3/4" data i PAGE 83 i
i CONSIDERATIONS:FOR' COMBINING 1 VOLTAGE ADJUSTMENTS. [ ADJUSTMENT (1.36. FACTOR) FOR SCA e { ASSESS WNETHER APPROXIMATELY EQ e EQUAL CRACK LENGTHS ARE OBTAINED' AF i FACTOR ADJUSTMENT FOR BURST CORRELATION e ADDITIONAL ADJUgTHENT' FOR: NORMALIZE l LENGTH = (R+t) - i INCREASES 3/4 v0LTAGES SY ADDITI i FACTOR i TOTAL VOLTAGE ADJUSTMENT FOR BURST COMPARISONS = 1.59 i FOR LEAK RATE CORRELATION e SCALING FACTOR OF l'.-36 BURST PRESSURE ADJUSTMENTS e ADJUSTMENTS FROM 3/4" FLOW STRESS (154 KSI). 70 - 7/8" FLOW STRESS (147 KSI) o REDUCES 3/4" BURST PRESSURES BY FA i ., g SLB LEAK RATE ADJUSTMENTS a O TEST AND ANALYSIS INDICATES 3/4" LE GREATER THAN '//8" LEAK RATES FOR EQU LENGTHS 3/4" LEAK RATES REDUCED BY o _,g ANALYSIS RESULTS FACTOR BASEDEON i i i
- 1AP2082
- 072292 I
PAGE 84 t l i
VOLTAGE NORMALIZATION FOR 7/8" AND 3/4" TUBING 4 i VOLTAGE CALIBRATION e 4.0 v0LTS ON 20% DEEP, 0.187" 4 TW HOLE ASME STANDARD AT 400 (550)* KHZ o 2.75 VOLTS ON 20% DEEP, 0.187", 4 TW HOLE ASME STANDARD AT 400/100 (550/130)* xHZ ) 7/8" TUBING AT'400 KHZ, 3/4" TUBING AT i 550/130 KHZ 9 BOTN STANDARDS USE SAME, UNSCALED NOLE SIZE i SCALING CONSIDERATIONS' o TUBE SIZE; FREQUENCIES AND PROBE DIAMETERS ARE { APPROPRIATELY SCALE PROBE COIL SIZE AND SPACING NOT SCALED - NOT o i EXPECTED TO BE ESSENTIAL SIGNIFICANT LOES OF SCALING BY USING SAME HOLE e j SIZE 4 ADJUSTMENT TO 3/4" VOLTAGES FOR HOLES SCALED FROM 7/8 -STANDARD VOLTAGE PROPORTIONAL TO HOLE DIAMETER SQUARED 4 CONFIRMED BY VOLTAGES MEASURED FOR SCALED TW HOLES e 7/8" TO 3/4" DIAMETER: RATIO - .17 3/4" VOLTAGE ADJUSTMENT = 1.17 = 1.36 FOR e COMPARING 3/4" AND 7/8" DATA i l 192002:072292 PAGE 85 d ,w 7 -.,'y ~ %,,v,w.. ,--,..w.v,..,c.mm..-,_ .~m, w. ,-m-+ ,ce%,,, v.-,
i oc 4 j 1 i j e 5 n. S 3 4 i C x< i I l l 1 a 4 1 s 1 .a i CR ACK LENGTH (in.) Fi gure 3.5-11. Leak Rate Versus Crack Length at AP = 12'50 psi for Nominal and Thinned Tubing l 4 PAGE 86 6955B:1b/082283 I tr ,,._..,c ,4...., .ru ,w
SLB LEAK RATE COMPARISONS CRACKFLO CALCULATIONS i i TUBE AVERAGE UPSTREAM UPSTREAM B/ 'X MEAN TUBE TUBE WALL NOMINAL NOMINAL SIZE STRENGTH
- TEMPERATURE PRESSURE PRESSURE RADIUS THICKNESS IIN.)
(KSI) (DEG. F) (PSIA) _(PSIA)_ (IN.) (IN.) 7/8" 68.8 577 2650 15 0.4125 0.050 3/4" 77.7 577 2650 15 0.3535 0.043 i 7/8" 3/4" a CRACK ' LEAK LEAK LENGTH RATE RATE DI"FERENCE ^ _(IN.)_ IGPM) IGPM)_ _(PEkOENT)_ i 0.1 g 0.2 - 6.38. a i. 0.3 -14.40 I i 0.4 -21.02 0.5 -21.55 -20.95 i l i
- ONE-HALF OF FLOW STRESS I.
4 4 ....)}}