ML20092J128

From kanterella
Jump to navigation Jump to search
Nonproprietary WCAP-13139, Steam Generator Tube Support Plate Alternate Plugging Criteria Summary
ML20092J128
Person / Time
Site: Farley  Southern Nuclear icon.png
Issue date: 12/31/1991
From:
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML19344C366 List:
References
WCAP-13139, NUDOCS 9202240072
Download: ML20092J128 (183)


Text

{{#Wiki_filter:4 _j 50 ?/ ;g m w; p +;pgl w;1~'- % yJg q q % ;-p _e:ff _g __ g tWwggfgygp 4ggiw r Ane A ge ggg gg. W 'I shkhi}f5bh@NNf*< hNhfj%y[h }@%N&#@ 6/2 r* @k)Y@ b kd@tn%%y Nh)&uggQn[h% ,hi h d $ fd% N 5% "L NNk ;Id~ ?$t9Qlf7WWg9y]hhNg flity M ipEig kY$ [Nb d !,4QRhdi MfW$@$lfG5~ } h@j Nai jdfyp WN $S$0 1 ( hhhh $eph hh d e s s a d w~ a g'46 14ms a n, w)QN N0.w~ ;. "f. hk $[g, fl[ $b h fr[ ' -,f$I h NA @ gp ~ % ? ' Wf (( t' m %,) - m ).. igl@s ~ ; 3' ~ W $ " a-- s ?6 e s i j Rf. _. ig v'

s. "

S? 0; N{ . e J k ) o 9202240072 920213 q a PDR ADOCK OS000348 4: y P PDR - 2 g e - -. ' j! 2 -s_ manaavrem wnsmenfea m w!*ns Jinet -., C u ra

WESTINGHOUSE CLASS 3 WCAP-13139 FARLEY UNITS 1 AND 2 r STEAM GENERATOR TUBE / TUBE SUPPORT PLATE ELEVATION ALTERNATE PLUGGING CRITERION

SUMMARY

DECEMBER 1991 WESTINGHOUSE ELECTRIC CORPORA 110N Nuclear and Advanced Technology Division P.O. Box 355 Pittsburgh, Pennsylvania 15230 (C) 1991 Westinghouse Electric Corporation All Rights Reserved E' b!. - i

i A meeting was held on November 20,1991 between Southem Nuclear Corporation, Westinghouse, and the NRR staff at the Bank of Maryland Building, Bethesda, Md., to resolve a series of NRR questions related to the implementation of a steam generator tute plugging criterion for tube support plate elevation outer diameter intiated stress corrosion cracking at Farley Units 1 and 2. The meeting agenda included discussions on: 1. Summary of the Bobbin Probe Signal Amplitude Stearn Generator Tube Plugging Criterion. 2. Steam Generator Tube Structural Integrity upon Implementation of the Plugging Criterion. 3. Steam Line Break Primary to Secondary Leakage Considerations. 4. Farley Units 1 and 2 Steam Generator Eddy Current Inspection Results. 5. Pulled Tube Examinations. All aspects of the proposed criterion with the exception of radiological consequences and systems review were presented to the NRR staff at this meeting. 9 0

FARLEY APC FOR ODSCC AT TSPS NRC HEETING, NOVEMBER 20, 1991 DISCUSSION TOPICS AGENDA PRESENTATION FORMAT e APPROXIMATELY ORGANIZED BY SECTIONS OF WCAP-12871, REV. 1 e

SUMMARY

OF WCAP SECTION RESULTS e

SUMMARY

OF NRC QUESTION RESPONSES APPROXIMATE TOPIC PRESENTER TIME SECTIONS 6, 12, 1,-2 PITTERLE 90 MINUTES SECTIONS 4, 7, 9.1 TO 9.5, 9.8, 10 BEGLEY 60 MINUTES SECTIONS 5, 8, APP. A HALINOWSKI 90 MINUTES SECTIONS 9.6, 9.7, 11, 12.5 HOUTMAN 60 MINUTES SECTION 11.3 WHITEMAN 15 MINUTES AC,1APC 11/91

ALTERNATE PLUGGING CRITERIA FOR ODSCC AT TSPS OBJECTIVES t OBTAIN TUBE PLUGGING CRITPIRIA TNAT RELATE NDE MEASUREMENT TO TURE INTEGRITY (BURST, LEAKAGE) CRITERIA 0F R.G. 1.121 CONTINUE-TO MAINTAIN SAFETY MARGINS AND MINIMAL POTENTIAL FOR SIGNIFICANT OPERATING LEAKAGE i 4 ELIMINATE NEED TO ASSESS NDE MEASUREMENTS NEAR THRE5NOLD OF DETECTABILITY (40% DEPTH) 0 ENNANCED PROBES AND EC ANALYSIS SKILLS NAVE MOVED DETECTION TO LIMITS OF DETECTABILITY 0 PLUGGING CRITERIA INITIATED FOLLOWING UNDETECTED INDICATION OF SNORT CRACK WITis 62% MAXIMUM DEPTN AT FARLEY-1 0 NEED FURTNER DEMONSTRATED BY EXTENDED OUTAGE AT TROJAN WNERE TURE PULLS NAVE DEMONSTRATED TURE INTEGRITY FOR INDICATIONS MARGINALLY DETECTABLE EXTEND OPERATING PERIOD OF S/G5 WITH LIMITED TURE PLUGGING AND/OR SLEEVING

0 l

a e l ..m-,-,--.........-,.-,......,...,. ,,_m.,%.,,,,,,,...,m.y..,,,... ,m,..m.,.,..,___r, .w., .,.,,.,,i.-.,,-,..__.,_-,,_w...-. _.-.,~,c~,-,.<v---

6 i GENERAL APPROACH TO PLUGGING CRITERIA l I FOR 00S0C AT TSP 5 SPECIFYING CONSERVATIVE BURST CORRCLATIONS BASED ON FREE (UNCOVERED)-SPAN DDSCC UNDER ACCIDENT CONDITIONS TO DEMONSTRATE STRUCTURAL INTEGRITY. CONSERVATIVELY ASSUMING OPEN CREVICE CONDITIONS TO MAXIMIZE LEAKAGE POTENTIAL. SATISFYING THE R.G. 1.121 STRUCTURAL GUIDELINE 5 FOR TURE BURST-MARGINS BY ESTABLISHING A CONSERVATIVE STRUCTURAL LIMIT ON VOLTAGE AMPLITUDE THAT PROVIDES l, TIMES NORMAL OPERATING PRESSURE DIFFERENTIAL FOR TURE i FOR TIMES NORMAL OPERATING PRES 5URE DIFFERENTIAL FOR TUBE l BURST CAPABILITY. i t i I 4 E Att$APCt10/91 II _. - - - _ _.. _ _ _ _ _. _,,.. _ _ _ _ _. _. _ _. _, _... _ _.. _ _ ~ _ _ _ _ _. _ _ _ _. _ _ _ _ _ _ _ -.

GENERAL APPROACH TO PLUGGING CRITERIA FOR 00S00 AT TSPS (CONT'D.) SATI5FYING THE FSAR REQUIREHENTS FOR ALLOWABLE LEAKAGE UNDER ACCIDENT CONDITIONS BY DEMONSTRATING THAT THE DO5E RATE ASSOCIATED WITH POTENTIAL LEAKAGE FROM TURES REMAINING IN SERVICE IS A SMALL FRACTION OF 10 CFR 100 LIMITS. i INCLUDING CONSIDERATIONS FOR CRACK GROWTH AND NDE - UNCERTAINTIES -IN BOTH THE STRUCTURAL ASSESSMENT AND LEAKAGE ANALYSIS. SPECIFYING A REQUIREMENT TO PERFORM 100% BC INSPECTION FOR ALL HOT LEG TSP INTERSECTIONS AND ALL COLD LEG INTERSECTIONS DOWN TO THE LOWEST COLD LEG TSP WHERE ODSCC INDICATIONS HAVE BEEN IDENTIFIED. 9 ACR$APCliD/91-i ,-cn, ,sy--,y,-,.- y~,,*,e. ,,,,e., ,.w,, 1+ rwy,. -r w-y- ...r -,,w-,-,-----

Table 6.3 Field Experience: Suspected Tube Leakage for ODSCC AT TSPs(1) Bebb% ceil PJr.1 IMeettu .YC.!!s Depth Comments -g Netes: 1 Field experience notard is for nominal 0.750' OD tubing with 0.043' wall thickness. No data are known to be available for tubes with 0.875" 00. 2 Reported voltages were adjusted (values given in parentheses) to the normalization in this report of 2.75 volts for 20% ASME flaw and 400/100 kHz mix. lne adjustment factor was developed based on voltage ratios measured between a metric calibration standard es used to obtain the original data and the reference ASME standard of this report. This adjustment provides an order of magnitude conversion to make these data roughty comparable to other data in this report. However, any conversion factor is disputable because it depends on the proceduraVenvironmental conditions and thus may vary from case to case.

POTENTIAL FOR TSP DISPLACEMENT i AND TURE BURST AT SLB ACCIDENTS POTENTIAL FOR TSP DISPLACEMENT e SLB ANALYSIS FOR MODEL 51 S/G TSP DISPLACED RELATIVE TO NORMAL OPERATING POSITIONS UNDER ASSUMPTIONS OF OPEN CREVICES AND ZERO FRICTION INCLUDING WEDGES AT TSP TO WRAPPER INTERFACE o TSP DISPLACEMENT PREVENTED BY TURE DENTING, TSP CORROSION LEADING TO INCIPIENT DENTING OR SMALL -Sc TUBE TO TSP GAPS EVALUATIONS COMPLETED FOR FARLEY-1 AND .g INDICATE No TSP DISPLACEMENT WHICH PRECLUDES TUBE BURST EXPECTED THAT ANALYSES COULD BE PERFORMED FOR FARLEY-2 AND OTHER HODEL 51 5/G5 e ACatAPC 10/91

4 i POTENTIAL Fon TSP DISPLACEMENT AND TusE BURST AT SLB ACCIDENTS (CONT'D.) i THROUGHWALL CRACK LENGTH FOR BURST AT SLB GREATER THAN TSP THICKNESS . ), e e TusE sun 5T FOR 2650 PSI SLB CONDITION AT e TSP THICKNESS = 0.75" e Tust suRsT AT ACCIDENT CONDITIONS NOT EXPECTED FoR 00S0C AT TSPs LOW PRosAsILITY (~10-6/ CYCLE) 0F CRACK GR0wTH FROM 4.0 VOLT PLUGGING LIMIT TO VOLTAGE FOR BURST AT SLB-CONDITIONS e CONSERVATIVE FARLEY S/G GROWTH RATES o VOLTAGE /sURST CORRELATION APPLIED FOR PLUGGING LIMITS i AcesAPC 10/91 / . ~ -, _ _ - _ - -,. - -. _ _.. _ _ ~ _. _ _ _. _, _ -... _,

) i. L i-TUBE SUPPORT PLATE ELE /AiiON SG TUBE ALTERNATE PLUGGING CRri.R 0N. i 10.0. th. l I.0. PLUG 0.0. 1-i

tou, u.

wt,wg PUJGGNG UWT 4.0 vota 6'0L3) u ( I MAXMAl WTH IIAK u a as suen wr u wrm.crum l tEbKhnEtRETWN N H N 1.0 l 0 10 20 30 40 M to 70 00 to 100 i WOMh Whtt 1M00ER # 15 RPPW Punt l I i: -,.-...,.....,w_._

FARLEY S/G PLUGGING CRITtRIA FOR ODSCC AT TSPs TumE PLUGGING CRITERION 0 TUBE 5 WITH BOBBIN COIL INDICATIONS EXCEEDING 4.0 VOLTS WILL BE PLUGGED OR REPAIRED i SLB LEAKAGE CRITERION O PREDICTED SLB LEAK RATES FROM TURES LEFT IN SERVICE MUST BE LESS THAN 55 GPM FOR EACN S/G, INCLUDING CONSIDERATIONS FOR NDE UNCERTAINTIES l AND ODSCC GROWTH RATES i INSPECTION REQUIREMENTS 0 A 100% BOBBIN COIL INSPECTION SHALL BE PERFORMED FOR ALL HOT LEG TSP INTERSECTIONS AND ALL COLD i LEG INTERSECTIONS DOWN TO THE LOWEST COLD LEG TSP I WITH ODSCC' INDICATIONS 0 ALL TUBES WITH B0BBIN COIL INDICATIONS >l.5 VOLT 5 AT TSP INTERSECTIONS SNALL BE INSPECTED USING RPC PROBES. THE RPC RESULT 5 SHALL BE EVALUATED TO SUPPORT.00 SCC AS THE DOMINANT DEGRADATION MECHANISM I a i 9

FARLEY S/G PLUGGING CRITERIA FOR ODSCC AT TSP 5 (CONT'D.) OPERATING LEAKAGE LIMITS e PLANT SNUTDOWN WILL BE IMPLEMENTED IF NORMAL OPERATING LEAKAGE EXCEED 5 150 GPD PER S/G EXCLUSIONS FROM TUBE PLUGGING CRITERION e TUBE 5 WITN RPC INDICATION 5 NOT ATTRIBUTABLE TO ODSCC AND CIRCUMFERENTIAL INDICATIONS SilALL BE EVALUATED FOR TUBE PLUGGING BASED ON A 40% DEPTH i LIMIT. ACatAPC 10/91 .._._.~.-

OPERATING LEAKAGE FOR ODSCC AT TSPS l. NO OPERATING LEAKAGE OCCURRENCES IN DOMESTIC S/GS THREE OCCURRENCES REPORTED IN EUROPEAN UNITS 0 LEAK RATES NOT QUANTIFIABLE FOR INDICATIONS AT TSPs LEAKAGE AT NON-TSP LOCATIONS CONTRIBUTCD TO t LEAKAGE TOTAL LEAK RATES OF 63-140 GPD i NO REPORTED LEAKAGE IN FRENCH UNITS l 0 OPERATION AT HIGHER EQUIVALENT INDICATION VOLTAGES THAN PROPOSED FOR FARLEY l ...Att$APCt10/91 (i' i

f Tube Plugging Limits to Settsfy Structural Requirements fte m Vo'ts _, 9 Basis Maximum Voltage Limit to

Burst Pressure vs. Voltage Satis? Tube Burst Correlation at 95%

/ Structural Requirement confidence level. i Allowance for NDE 10% uncertainty increased to Uncertainty 15% pending field experience with probe wear procedure and conservatively increased to 20% to establish plugging limits. Allowance for Crack Overall average growth / cycle Growth Between of 37% and 29% for Units 1 Inspections and 2. Allowance increased to 50% of Tube Plugging Umit to provide conservative margin for variations in future cycles. Tube Plugging Voltage 4.0 Umit e/ 4 O a ., ~,

RESPONSES To GENERAL-CONCERNS \\ BURST AND LEAK TEST DATA BASE (PAGES 1-2) BURST: 41 POINTS (27 MB, 14 FIELD) e WAS 13 MB, 4 FIELD LEAK RATE: 28 -POINT 3. (24 MB, 4 FIELD) e WAS 6 MB, 4 FIELD PULLED TUBES < 10v MODEL BOILER SPECIMENS e CRACK MORPHOLOGIES SIMILAR TO PULLED TURES e EMPHASIZED > 8 Y TO DEFINE STRUCTURAL LIMITS 4 AND' LEAK RATES EXTENDED DATA BASE PERMITS USE OF UNCERTAINTY BOUNDS FOR VOLTAGE / BURST CORRELATIONS LOWER 95% UNCERTAINTY 5AND-USED TO DEFINE PtJiGGING LIMITS ELIMINATES NEED FOR "ADDED MARGINS" IN DEFINING PLUGGING LIMITS AS APPLIED IN REV. 0 Act$APCg11/91 i 4

PULLED TUBE DATA BASE FOR APC 31 PULLED l TUBES,-58 INTERSECTIONS TO CHARACTERIZE-VOLTAGE RESPONSE AND CRACK MORPHOLOGY-e '00 SCC WITH MINCR OR NO IGA -37 INTERSECTIONS 5 FROM FARLEY S/GS OF 14 INTERSECTIONS EXAMINED ,3 6 FROM e IGA / SCC OR IGA -19 INTERSECTIONS 3 FROM 13 FROM-FRENCH UNITS 2 FROM NON-WESTINGHOUSE UNITS 14 TUBE INTERSECTIONS OF 7/8" DIAMETER WITH BURST PRESSURE TESTS e 3 FROM FARLEY -9 e 7 FROM -SUPPLEMENTAL DATA: FOR APC OBTAINED FROM LABORATORY SPECIMENS O3TAINED IN MODEL BOILERS UNDER PROTYPIC CONDITIONS ACR$APC 11/91

Table 6.2 Pulled Tube Leak Rate and Burst Pressure Measurements Bettn Cel DertW Eram Leak Afe'IM Burst E!fint Prw'Cel LS D, h Depth MALOetth LemetN(1) Nemat Orer. ELS, P'er sure (n) (Psi) 9 i M:Llt% 1. Crack network length for burst crack with through wall crack length gNen in parentheses. 2. Negligible leak rate evaluated as no leakage for this report. 3. Measurements were not made and values are estimated based upon crack morphology obtained from destructka examination. 4. Leakage not detected as pressure increased to indicated burst pressure. 5. Depth not determinable from phase angle. 6. Field measurement using 550/100 kHz mix for 0.75 inch diameter tubing. l l l-

VOLTAGE-AMPLITUDES FOR PULLED TUBES AMPLITUDE CORRELATED WITH BURST PRESSURE FOR APC AMPLITUDES FOR IGA / SCC TEND TO BE AS HIGH OR HIGHER THAN FOR SCC ONLY e IGA INVOLVEMENT TENDS TO INCREASE AMPLITUDE e IGA / SCC TENDS TO OCCUR WITH MULTIPLE CRACKS OF COMPARABLE DEPTHS WHICH INCREASE AMPLITUDE EARLY ODSCC DEVELOPMENT OCCURS AS SHORT (0,1-0.2") MICR0 CRACKS WHICH CAN BE NEAR DETECTION THRESHOLD e A FEW OCCURRENCES OF-INDICATIONS TO 60-70% MICR0 CRACK DEPTHS g DiETECTED, IN FIELD INSPECTIONS L l l I i Act1D C 11/91

3 i 4 ? Pulled Tube Destructive Exstn Data including Frersch Dats 3 t 2 . 7; t-l ~ Maximum Depth From Destructive Exam Plant D-

  • Plant L l

- O Farley : Plant B-A Plant C + O 4 I

  • Plant M

- E Plant N. X Plant P e French Pulled - Tubes t L l,. Note: Solid symbols represent tubes with IGNSCC Indications. l-All other symbols represent tubes with SCC indications only. l: l~ l ,. s% p, ,,e,.,.--+- y-yy y,e,e y -- =rev-m,-..,-, ..v---.- ---,w-,y-w....e.--.-w+, --w.,-,,-,,-,,.v.,- w. 1 -v-,- ,-w,-

RESPONSES TO GENERAL CONCERNS IGA AND CIRC. ODSCC AT TSPS- (PAGE 3) CIRCUMFERENTIAL ODSCC NOT FOUND AND NOT EXPECTED IN FARLEY S/GS e-CIRC. ODSCC ASSOCIATED WITH SIGNIFICANT DENTING AT TSPS HISTORICALLY, AXIAL PWSCC HAS BEEN A PREDECESSOR TO CIRCUMFERENTIAL CRACKING e NEGLIGIBLE DENTING IN FARLEY S/GS SIGNIFICANT IGA NOT FOUND IN FARLEY S/GS e 8 TUBES, 14 TSP INTERSECTIONS-0VER 1986-1990 e MINOR IGA INVOLVEMENT FOUND AT CRACK FACES SLIGHTLY GREATER (~ 15 MILS WIDE) IN ~ PREVIOUSLY PLUGGED TUBE (R21C22) THAN ACTIVE TURE (6 MILS WIDE IN R4C73) IGA OCCURRENCE AT TSPS DOMINANTLY IGA / SCC. e; SCC EXPECTED IN TUBES STRESSED BY OPERATING PRESSURE DIFFERENTIALS BASED ON LABORATORY-EXPERIENCE o SLOWER GROWTH FOR IGA THAN SCC AVAILABLE DATA SUPPORTS DETECTABILITY OF IGA / SCC-e VOLTAGE RESPONSES AS HIGH OR HIGHER THAN FOR SCC ONLY ACRSAPC311/91' l,- e

TYPES OF DEGRADATION AT TSPS -CRACK INDICATIONS r ODSCC 0 INITIATES AS MULTIPLE MICR0 CRACKS OF ~0,1" TO 0.2" LENGTH ,9 EXAMPLES ARE R29C70, R30C64, FARLEY_-2 g R38C46 AND FARLEY-1 R20C26 CAN BE NEAR THRESHOLD OF DETECTABILITY WITH A LOCALLY DEEP MICR0 CRACK OF UP TO 70% DEPTH TYPICALLY LOWER-VOLTAGES AND HIGH BURST STRENGTH 0 GROWTH' OCCURS AS-ADDITIONAL MICROCRACK$ AND ~ CORROSION OF LIGAMENTS BETWEEN MICROCRACKS WITH L INCREASING DEPTH EXAMPLES ARE FARLEY-2 R4C73, R21022 TYPICALLY NO. OPERATING LEAKAGE AND HIGH EURST l PRESSURES 0 MIN 0N IGA AT CRACK FACES SEEN IN SOME TUBES L L s L. n r

RESPONSES TO NRC QUESTIONS ODSCC OUTSIDE TSP BOUNDARIES (P. 4) NO ODSCC OUTSIDE TSPS KNOWN TO HAVE BEEN DETECTED BY NDE e HECHANISM OF MULTIPLE INITIATION SITES AND GROWTH LINKING INITIATION SITES REQUIRES CREVICE OR SLUDGE PILE CONDITIONS WITH CONCENTRATION OF CNEMICAL CONTAMINANTS IDENTIFIED CRACKS EXTENDING OUTSIDE TSP ARE RESULT OF PWSCC IN SIGNIFICANTLY DENTED TUBES e CONDITIONS NOT APPLICABLE TO FARLEY S/GS FARLEY PULLED TUBE R20C26 9 BAND OF MICR0 CRACKS (< 0.1" LONG) UP TO 0.27" ABOVE TSP e DEPTHS UP TO 10% e ONLY PULLED TUBE OF 58 INTERSECTIONS WITH ODSCC REPORTED OUTSIDE TSP INSPECTION FOR CRACKS OuTSIDE TSPS e 100% sOBBIN INSPECTION FOR DETECTION OUTSIDE TSP e WHERE RPC APPLIED, ALSO ASSESSED FOR CRACKS OuTSIDE TSP e INDICATIONS OUTSIDE TSP PLUGGED TO 40% TECH SPEC LIMIT O ACRSAPC:11/91

TYPESLOF DEGRADATION AT TSPS CRACK INDICATIONS (CONT'D.) ~. IGA / SCC 0 TYPICALLY-IGA FINGERS-AND SCC WITH SOME VOLUMETRIC IGA PATCHES OF VARYING AZIMUTHAL EXTENT -0 COMMONLY MANY CRACKS AZIMUTHALLY AROUND TUBE -s O EXAMPLES ARE R12C8 (PREVIOUSLY PLUGGED) AND FRENCH D TA O LIMITED DATA ON BURST (R12C8, TSP #3) sur LOCAL IGA NOT-EXPECTED TO.STRONGLY INFLUENCE BURST CAPABILITY t. - I t e

TYPES OF DEGRADATION OF TSPS VOLUMETRIC INDICATIONS ~ CORROSION O PITTING NOT FOUND TO DATE AT TSPS 0 COLD LEG THINNING IDENTIFIED AT SOME LOWER COLD LEG TSPS, IN MODEL 51 S/Gs EASILY DETECTABLE (HIGH VOLTAGES, RPC CHARACTERIZATION) AND LIMITED IN EXTENT 0 WASTAGE INSIGNIFICANT WI'.d AVT CHEMISTRY WEAR 0 NOT FOUND IN FEEDRING S/GS AT TSPS VOLUMETRIC INDICATIONS CHARACTERIZED BY HIGH VOLTAGES 0 READILY CHARACTERIZED BY RPC INSPECTION O . INDICATIONS LESS THAN ABOUT 2 VOLTS ARE NOT A CONCERN FOR TURE INTEGRITY RPC CHARACTERIZATION REQUIRED BY APC FOR INDICATIONS ABOVE 1.5 VOLTS 4

il, [! Sket

  • t' hest c - s e u, Macrocrack Length = 0.50 inches Throughwall Length
  • 0.15 inches Numeer of Microcracks = 4 (two Itgaments with intergranular features, one witn cuctile overloaa ' eat.res)

Morphology Intergranular SCC with significant !GA characteristics (width of !GA 0.030 inenes) 0.75 inenes -- - SP top I 0.25 inches - SP bottom 0.0 inches 8 1800 1808 2700 00 90 Sketch of Crack Distribution - Desenption of 00 origin oormston at the Arzt support plate crevee region of tube R21<,22. >a 4 w e e e, 4 y ,me-rw r, - y g r-t wiew, = & --

  • +,,w~,~,a

l l 0* 65% 1005 90' Figure 4-9. Sketch of crack distribution and depth within the first support plate crevice region in tube R21 C22.

I i >R? *,',' '.? hf.

  • 'S.

n. sl.......$..g : }; "R b r*~ '. N \\ ,....,~..A ... w'**' cyn m. 4 '.' nh". @s. .T. c - y xw 4.d,M. s 1%ggi 9 'e p - < ~ .r.'.1:V~._{ ....,p j.W}%.g' *. ylR'. 'l.

  • [?g

. )Y ;';.. ll l:,, j y.& ' ' . f~ Q,

  • ?.['

3 s-Q ' t'?, k.~g.~ **f. [g \\ t::.. S C h ;ip,, +g g :*: M y~.h., e - ^ l j .a . v;n, ,~;.,. ! ~ ~_,g.,%. r.l..R... p.m '4. 64 n.A. g'.* . W~ = 4 ETn..

  • y$ 3
  • W Q,a..'i

..( .y ?..' a.3.', y ~4r~y~ %, s, s.. - A. ' c.% 9 l

3....,g.a.e.a4

,.j *y?**n. y' . e.,- t+ m..- $2':';:. 62.:c.q n l*.Q %.yy. .;.4: we.;. .,~p*$t?,.,s.. - c.: a,. 9

. l.

e i.J.1.1 'l .NJ'I L'*Jkx3 Wu. SCI Wg. 200I l I >3 ~f.t n n e,%, 4 . At* py,.- y 1-. t.w', y. t . s ; ~,, h 4 10CI hh aa.Au$ Top micrographs are from a transverse section through one half of the main burst cra::k. The morphology is that of IGSCC with significant IGA characteristics (width of IGA is 0.015 inch on one side of the crack). Bottom micrograph is from a transverse section through the only other crack found in the crevice region. Its morphology is more that of IGSCC. (Note: crack has been opened wide by tube deformation). 7-.

f e, \\ L a\\( 4 Ske"% 0 # o est Casek u Macrocrack length = -0.75 inch Throughwall Length = 0.59 inch ( :mbined through. wall _ler;;1' Nu.mber of Microcracks = at least 6 (ligaments have ecs ! f Intergranular features). Morpho!ogy = IGSCC 4 0.75 inches - SP top 0.5 inches - 1I i jj I(( l] I l I i 1 jlp }I 0.2 inches - j f c 'O.0 inches - i SP bottom -180 _2700 0 0 0 0 50 1800 Sketch of Crack Distribution 4 Sumary of the burst crack and overall crack distribution in the crevice region of tube 532 2. e g

4 I 100'. 3.. 1;;.', 2 0*. 100*. E ~. 7.... 100". 6 C*. 1 A 6 0*'. t> V S 0*. ~ n- ~ 4 y _ .s ~ .( 4 . r.. a s r t ,6 ..e ~ f. ~ . ',- /* ~ 'o %

  • r.

'g ...-s + ( a. 9.',.. ,,~ y 3 4 e Crack distribution as revealed by a metallograonic cross section through the center of the crevice of tube 532 2 a*: photomieregraphs of secondary cracxs A and B. Mag. 00X F 0 _----------------.-----u-, .w,- w ,,,r, e,--

RESPONSES TO NRC QUESTIONS CRACK GROWTH ALLOWANCE (P. 3) VOLTAGE GROWTH METHOD MODIFIED FOR REVISION 1 e %-GROWTH.NOW APPLIED - PREVIOUSLY ABSOLUTE VOLTAGE CHANGE e CHANGE BASED ON EVALUATING FRENCH DATA AT HIGHER AMPLITUDES THAN DOMESTIC DATA - e CONSERVATIVE ALLOWANCE OF 50% VOLTAGE GROWTH PER CYCLE AVERAGE GROWTH RATES APPLIED TO MEET 3 AP .O. BURST N LIMIT e AVERAGE ! GROWTH RATES LEAD TO LARGE MARGINS AGAINST BURST AT SLB CONDITIONS .o ESTIMATED PROBABILITY-OF BURST AT SLB < 10-6 FACTORS' CONTRIBUTING TO ODSCC AND CRACK GROWTH L e DOMINANTLY INFLUENCED BY; CREVICE CHEMISTRY l'- CONDITIONS l e-LOCAL, OPERATING ANO RESIDUAL STRESSES OF SECONDARY IMPORTANCE'TO CREVICE ENVIRONMENT ODSCC OCCURS IN UNDENTED TSP CREVICES AND SLUDGE PILES e FARLEY ODSCC INITIATION PRINCIPALLY IN PERIODS OF CHEMICAL IMBALANCE PRIOR TO 1986 MODEST GROWTH SINCE-1986 e INCREASES IN TUBE PLUGGING DUE TO'(" INSPECTION -TRANSIENTS") GREATER' KNOWLEDGE ON INTERPRETATION OF-BOBBIN SIGNALS CHANGES'IN INSPECTION GUIDELINES SUCH E-- AS' ELIMINATING 1.75 VOLT CRITERION e-UTILIZATION OF RPC PROBE L ACRSAPC:11/91 -y y r,a. + +, n

i a VOLTAGE GnoWTH RATES -ALLOWANCE FOR GROWTH INCLUDED IN PLUGGING LIMITS DEVELOPED FROM-FARLEY S/G HISTORICAL INSPECTION RESULTS CONSERVATIVELY APPLIED % GROWTH INDEPENDENT OF AMPLITUDE O ENVELOPES DATA FOUND IN SOME EUROPEAN PLANTS FARLEY DATA SHOWS DECREASING % GROWTH WITH O I L' HIGHER INITIAL AMPLITUDE l-' i ALLOWANCE FOR 50% AVERAGE GROWTH IN AMPLITUDE PER CYCLE APPLIED-FOR PLUGGING LIMITS 1~ i;

  • ACR$APC 10/91

Table 6.4 Comparisons of Voltage Ampl4udes Between U.S..ASME and European Standards U. S. ASME Standard French Beiglan U.S. 4 hole. 4 hole.

4. hole 1mm 1.25 mm 33 mil
dia, dia, d:a.

Support holes holes holes Channel 20 % dfl% EQ% EQ% 100% M 10P1% E E U.S. Calibration Procedure Q 400/100 mix 2.75 2.8 5.3 5.6 8.7 <0.6 10.7 18.96 6.4 400 kHz 4.0 3.5 5.5 5.5 7.8 8.2 9.8 17.19 5.4 240 kHz 6.3 5.4 7.9 7.3 9.5 17.4 12.4' 21.15 " 7.6 200 kHz 5.9 4.9 7.1 6.3 8.0 17.5 10.9 18.08 100 kHz 5.9 2.8 3.6 3.1 3.8 14.5 5.4 8.5 5.2 French Calibration Procedure 240 kHz 0.66 0.56 0.82 0,76 0.99 1.8 1.3' Gelgian Calibration Procedure 240 kHz 0.59 0.51 0.74 0.68 0.90 1.64 2.0" O U.S. procedure involves setting up the signal for 20% ASME holes at 4 volts for 400 kHz differential channel or 2.75 volts for 400/100 kHz differential mix and then using the 'Save/ Store" functions of the Zetec DDA 4 software for carrying over the calibration to all other channels. When using the U.S. calibration procedures, the French 4 hole standard gives 12.4 volts at 240 kHz and 10.7 volts with the 400/100 kHz mix. It is 1.3 volts for the French calibration. Thus U.S. values at 240 kHz/ French values at 240 kHz equals -9.5. U.S. values at 400/100 mix / French vclues at 240 kHz equals -8.2. When using the U.S. calibration procedures, the Belgian 4 hole standard gives 21.15 volts at 240 kHz and 18.96 volts with the 400/100 kHz mix, it is 2.0 volts for the Belgian calibration. Thus U.S values at 240 kHz/ Belgian _ values at 240 kHz equals -10.6. U.S. values at 400/100 kHz mix / Belgian values at 240 kHz equals -9.5. For general data comparisons, Belgian and French data can be reasonably compared without adjustment: or by multiplying the Belgian data by -0.9 to obtain French volts.

10 A. ' ) 3 M' 4-8- ) x 1 N ,n .A. n 'X s .g-z N 6- ~v:; w i k 0 'A. N 4 h o E o P< a: 2-0 i i i i 0 20 40 60 80 100 240 kHz PHASE ANGLE, DEGREES E FRENCH PROSE A _ U.S. PROSE .* MB SAWLE, FR PROBE 10.3040666* PHASE


10.7540000* PHASE Figure 6 5.

Ratio of U.S. to French Volts

l 1 i Distribution of TSP Indications for Plant H 1 (1986 to 1990) 10c U S VOLTAGE NCAMAUZATCN [ go. f go. W yo-.. 30 k so-I 84 i ) E i ......g. .j 30 J M l M l j ... m ..,...,l g -- i u I j W I u 1 o-- - = --P a p / rm. C s M i i i 01 12 23 34 46 58 67 78 >8 N ##UTLCE. VOLTS \\ E1&1m pc Fiem W Wim n 7/1980 8C U.S. VOLTAGE NOFDAAUZAT1CN 7o... f so- = - = - go. n u j 4o m E N N N 3o ! n !I' m. I N u u j - ~ ~~ - ~ ~ "-~~ -- ~ - - ~ ~ ~ ~ - + 1C v I fl. 3 0 m s. 01 12 2-3 34 45 07 78 >8 N MMURDE.VOLl3 5 9 s

Comparison of Voltage Indicakns at TSPs Between U.S. and European Plants FAENCH VOLTAGE NOAMALlZABCN 45-3 E-4

t

. 0, e i e. .g.. I" i = ~ m y ~ 35-t - pl: l i p .j .q i h 25- -l-l {

l

$ 20-l l l i l l 2 15- 'i I u = 1 u e 4-d~ 10- ~ll "t,l -O-l l ~; M" l ~ ;- 5-Am M QB a : a I : 0 i i i i i i i i i i <.1 .2 3 .45 .6.T .8.9 >1. .1 2 .3 4 .S. 8 .7 8 91. BOSSN AAFUTUDE. VOLTS igg FAR.EY 1 + FAMLEY-2 X PLANT F g PL. ANT H 1 C Pt. ANT J 1 3;E PLANT K 1 100 FAENCH VOLTAGE NCNNAUZATION go... go 70- ~ 80-h so-8 g -2 y ~2 ~ d 20- ^ "~~""""" 10-i- m 0 f":l A A i i i i <.S 1 1.5 225 >3 .51 1.5 2 253 BOSBN AAFUTLCE VOLTS = w

Figure 610 TSP Indication Voltage Growth Rates for Plant H 1 \\ 4 O ) ECO-C o 8 a = a a o 8 O E C C C Cb C = a B B 00 a e3c 8 a m E E= o o i EPas a @ c @e o a go o 4. g pa a ao

8 o

. o... M., .. 7.-- - ..a - - Q 0 250 450 8E0 060 1 Coo 1200 NTW. AMPLm>OE, AALINCLTS l M l l c 200-O a \\ o is - o e a t Boo a l 100-OC tib cP a o 8@c j i a a$ C o R a cB o B o a so-61%o e g o_....a... a. o g O o 0 260 a0 e60 as 1000 t200 l NTIAL AMPUTUDE, h4LLNOLTS l

t ,i r Figure 511 Scatter Plot of Voltage Growth in Farley 2 for Last Two Cycles - 300 e m i j v 600.'- 4

  • @.i $ vcL7 as t up

-%e C$ 1 i -~ e 400 + m t .I i .h + b 200

  • . p g

e *...s. v t..'.'..,*..' v, e. .o. s.. +e g 0 y.".e. j _, v V -200 0 0$ 1 1.5 2 mw es 1987 Eccy Current Signet Ampi;tuce J 300 i 8 250 e e.n. - m g ;00 . -j.. ... f.. . j., .....t.,,.. m i m 3 --s-~4,..-.,.,;-. 1:... ,1so - a 4 o e I ' - - -.11 s goo -~;;,;,g, -. f.. -. ~ ~~.. w

  1. f.*.. %*p 4" v j"

~6 50 " v *i "i -e t " " + " - a a ~ ~ - ...... ~ y. e., y. = ~rw-8 0 r; r

6..'t

.'. g. l.i - %= h"..,. y

  • w s

C -50 s"..- '""r~a" g/ +-- -- ~ *" -e- + -c i i l i i -100 0 0 0.5 1 1.$ 2 2.5 1989 Ecoy Current Signal Amolitude ru moom 6 as p.+-=& =--c--.-et-'

  • -w'n-w'tr-

It-vvtNw-vr e e-r w i wm. F-g = v vre-s e te--r' w

  • -FM-+-94t-T-

""?- ' * ' T "-vov'-NP- 'Mw-evy-~s--T-7=T EfFrf T' FT p-r- 7' y'*t-c'" y

h O k i b h l 1-4 O w O j i 0 E i E o ? O 3 'b 9 I u.i 3 O o O 3 C l 0 0 w Q -, k i O" 5 g ' 0 X'! <l n ~~t

2 !

a E Ji 'i -l i O l-l }1 I g 1 O ~ 0 I li .1 I I 1 N~# l ~ x;<,l _'yp_ O x a 4 ( reams =wmm:ue sonw Growth Rste Data for Fariey, Plant F and Plant H-1 j l -u , -. ~

t-80 i U 8. VOLTAGE NCAMAUZATCN i I W -J 70-O i O l N 60-j 9 i zwO CH l u cc w i 0-40....g O 30 0 ye 20-w +

. _ _ _.a O

10-O i 0 1 2 3 4 5 6 INITIAL BOBBIN AMPUTUDE, VOLTS O-FMBEY1 E FAFE2Y-2 A PLANTF X PLANT P.1 i: Average Percent Voltage Growth Rates for Farley, Plant F and Plant H 1

Figure S 13 Histogram and CumulatNe Probacility of Voltage Growth in Farley 2 for Last Two Cyc!es J. M. FARLEY UNIT 2 87 -89 SUPPORT PLATE DEGRADATION PROGRESSION 60 i g, g g 100 4 / mh ca 50-8 l l i g -70 40< -!i+ 4- + - !.+. g g + 5 1 i -60 g j -50 $ 30-t E l 0 -40 , i O g 20 -30. m2 S 10-r- o ~ i) -10 2 EE. 8 0 106 '-60' 20 2 60 '100 '14d '18d $200 s -80 40 0 40 80 120 160 200 UPPER RANGE OF PERCENTAGE CHANGE l. J. M. FARLEY UNIT 2 89 - 90 SUPPORT PLATE DEGRADATION PROGRESSION 70 100 90 t -'-t -r - b 60-7-- -r 4 -80 z = i i o l l g> g_ +---- -70 zO i bg l ]._.4. ; t.+- + d -+ -- ~N b j p.-- i 50 $ g 30 &._ L.. 4 ; g ! 2c 2-e--- - -4 -3o W r-5 B l i 20 10 +d i g p-+ -10 Z 300 '.60 '.20 '20' EE ele _i_a 8 a o ' e0' 300 i46 iB6 ;2m 40 -40 0 40 80 120 160 200 UPPER RANGE OF PERCENTAGE CHANGE r e

[ } Table 12.3 Estimated Probab!!!ty of Tube Burst at SLB Conditions ~ h Faney-2 M Probabl% M Preb1bWtv Indication at Plugging 4.0V 1.0 4.0V 1.0 Limit Maxirnum NDE Uncertainty 15 % <0.1(1) 15% <0.1(1) -i GrowtiVCycle at 99% 180% 0.01 172 % 0.01 ' Cumulative Probabi!!!y Based on Last Operating Cycle Maximum EOC Indhation(2) 12.9V <10 3 12.5V <10 3 Tube Burst Voltage at 12.9V 3x10-3 12.9V 3x10 3 Lower 99.7% Lirnit Estimated Probability of <3X10 6/ cycle <3X10-6feycte Tube Burst at SLB Conditions Notes: 1. From Figure 819, even assuming a wom probe (0.02" wear) the 15% uncertainty corresponds to >1.5 standard deviations or <10% probability. 2. Obtained as product of indication voltage, NDE uncertainty and grow 1h. b e

RESPONSES TO NRC QUESTIONS CIRCUMFERENTIAL BRANCHING OF ODSCC CRACKS MINOR CIRCUMFERENTIAL BRANCHING OF ODSCC IS FOUND IN MODEL BOILER AND PULLED TUBES e ACCEPTABLE WITHIN TUBE PLUGGING CRITERION i e BRANCNING CAN INCLUDE SOME IGA EFFECTS AS WELL AS ODSCC BRANCHING HAS NO SIGNIFICANT INFLUENCE ON BURST PRESSURES WITHIN VOLTAGE RANGE OF TUBE PLUGGING CRITERION e BURST TESTS OF-TUBES IN >20 VOLT RANGE ARE j COMPARABLE WITH AND WITHOUT PRESENCE OF BRANCHING e BURST TESTS AT VERY HIGH AMPLITUDES (>100 VOLTS FOR MODEL BOILER SPECIMENS) INDICATE BRANCHING 1 MAY RESULT IN REDUCED BURST CAPABILITY NO CIRCUMFERENTIAL CRACKS HAVE BEEN.FOUND AT FARLEY e EXTENSIVE RPC PERFORMED FOR RESOLUTION OF INDICATIONS AT TSPs RPC FOR >1.5V s088'IN INDICATIONS-IS ADEQUATE FOR FARLEY TO MONITOR FOR LOW LIKELIMOOD CIRCUMFERENTIAL CRACKS t e RPC RESOLUTION ADEQUATE TO DEFINE CLEAR CIRCUMFERENTIAL CRACKING- /, e INITIAL IDENTIFICATION ON WELL DEFINED i CIRCUMFERENTIAL INDICATION AS-CONTRASTED TO L INADEQUATE RPC RESOLUTION =.,- ACR$APC311/91-t w m

Table 12.4 Examples of Circumferential Branching for ODSCC at TSPs Burst Pressure Deeuctive P'antTebe B C.VMMe Eg!!ed Tubes Fram Ficuren CircumfereMint Br whha Deterdion Pulled Tubes ~ ~ A 2;R38C46 g 411 to 413 Numerous microcracks of axial ard circumferential onentaten A 2:R31C40 41 to 4 2 Minor circumferential branching 01:R4C61 4 3 to 4-4 Stort cira;mferential cracks wnh IGA patches Model Boller Specimens $28 2 1018 to 10 21 Bure* opet.. - ; includes circumf erentially orienteu ligaments 532 1 10 22 to 10 25 Burst opening includes minor circumferential orientstion 532 2 10 26 to 10 29 Inegular burst cpening involving tearing of interconnecting lignments 535 1 10 30 to 10-31 Example of minor branching wnhin tube wau $55 3 10 32 to 10 34 Butst involves inegular pattem wnh tum connecting ledges between cracks P e O t 4 ,,,_,r- .v.,_,, ,,,n. e..

00 p 's ID A Sketch of Burst Crack Macrocrack length. 0.52 inch Throughwall Length = 0.02 inch Number of Microcracks. at least 3 i Horphology. !GSCC with moderate IGA components O S 0.75 inches. sp top i i 01 jd () i-a 0.0 inches - SP bottom 160 2700 0' 90 1800 0 0 Sketch of Crar.k Otttribution

1 S-Figure 41.

Summary of crack distribution and morphology observed on the first support i plate crevice region of tube R31 C46. Farley Unit 2. i- .,-,--v ,,,.,-,.,...-.,.m_.,____,,.,,m_,m.m_,.y,_.,..,m,, ,.,._,,..,__,-,.,,,____m,_,__ _.mm_,.m.

r 00 ) i y/ / 10 Sketch of Burst track Macrocrack Length = 0.4 inch Throughwall Length = 0.01 inch Numcer of Microcracks. 7 (all ligaments have predominantly intergranular features) Morphology = IGSCC with some IGA aspects pircumferential cracking has more IGA characteristics) 0,75 inches - - SP top t-2 l l{31 /J 0.0 inches - SP bottom 1 180 2700 0 0 00 90 1800 Sketch of Crack Distribution Figure 4 3. Description of OD origin corrosion at the fifth support plate crevice region of tube R4 C61. Plant B 1 .,-.-...,_n

l 00 b.\\bf ll ] f f l 4J wP w 4 i Sketch of euett Crack Macruerack length = 0.37 inches Throughwall length = 0 (78?. throughwall) Number of Microcracks numerous (ligaments have intergranular features) Morphology = Intergranular SCC with minor IGA features (Unusual spider shaped crack distribution) burst opening location SP top 0.75 inches.

  1. 4

{ .i W,, <, j u [ g /d l- ) 4 SP bottom 0.0 inches. t 0 0 2700 00 900 180 180 Sketch of Crack Distribution Figure 411. Description of OD origin corrosion at the first s'.:pport plate crevice g region of tube R38-C46.

l 1 i s !D Sketch of Berst Crack Macrocrack Length

  • 0.67 inch Throughwall Length =

0.50 inch Number of Microcracks

  • at least 6 (ligaments have intergranular features)

Morphology = IG5CC 0.75 inches - SP top k) 0.6 inches - f> I f 1} e11 ( ) I /j' ~ l 0.2 inches l 0.0 inches - SP bottom 0 2700 00 900 1800 180 Sketch of Crack Distribution Figure 10-21 Sumary of overall crack distribution and morphology observed on tube 528 2. e

P P'

w ,y--e-i ,.-w -i-- r yy, r __._-__w-g- +---,,,,

C"~ \\\\ \\ \\\\ \\ \\\\ VV \\ l \\\\ Sket:5 e' n ett C uk u Macrocrack Length = 0.75 inch Throughwall length = 0.42 inch Number of Microcracks = 2 (separated by ductile ligaments) Horphology = IGstt 0.75 inches - SP top \\' ~ 0.6 inches - O.2 inches i l 0.0 inches - i[ SP bottom 0 180 2700 00 900 1800 l Sket:5 of Crack Distr 4bution l: figure 10-34 Summary of burst crack observations and the overall crack cistribution observed at the crevice region of tube 555 3. ..~ ~ _

L STRUCTURAL INTEGRITY KEY ISSUES SATISFY REG. GUIDE 1.121 DEMONSTRATE A FACTOR OF SAFETY OF 3 AGAINST TUBE BURST UNDER NORMAL OPERATING CONDITIONS. DEMONSTRATE ADEQUATE MARGIN BETWEEN ACCIDENT CONDITION-LOADINGS AND THE CRITICAL LOAD-TO CAUSE RAPID PROPAGATION TO RUPTURE. ESTABLISN A LEAKAGE RATE LIMIT DURING NORMAL OPERATION THAT IS LESS THAN THE LEAK RATE OF A TUBE WITH THE LARGEST PERMISSIBLE CRACK. ESTABLISH LEAKAGE INTEGRITY DURING POSTULATED ACCIDENT CONDITIONS. L 8 Effis1UE 10/91 o.

_._.7_._-.._. i MARGINS TO BURST l NORMAL OPERATION 3 AP (4380 PSI) ESTABLISHED AT 95%g o q CONFIDENCE LEVEL TO BE J. ACCIDENT CONDITIONS e SLB (OR FLB) MOST LIMITING FOR BURST (2650 PSI). e -VOLTAGE MARGIN OF 31.0 VOLTS VER5us 6.85 VOLT 5 AT END OF CYCLE (EOC) USING CONSERVATIVE AVERAGE GROWTH. e PROBABILITY OF 3*10-6/ CYCLE ESTABLISHED s WITH BURST VERSUS VOLTAGE-PROBABILITY OF 3*10-3 FOR MAXIMUM E00 VOLTAGE OF 12.9 VOLTS. { l l s FAELI @ $CCill/91 1: -my,, ,w...,..~,ep..-.


e----..--.<m-m,.yww-,,-.-,~,--

.r-.,,,,wc,,- ..w.m.,,,,~,,, ,,,ym we.m -w ....-,%,,.-m. ,m - v vm .-v--

BURST PRESSURE - BOBBIN VOLTAGE REGRESSION ANALYSIS SECOND ORDER REGRESSION SOLUTION e BURST PRESSURE VERSUS LOG (VOLTS) e FORTY DATA POINTS FROM PULLED TUBES AND MODEL BOILER SAMPLES - ROOM TEMPERATURE TESTS e THE MEAN CORRELATION: BP = 8.93-2.37 LOG (V)-0.29(LOG (V))2 e THE -95% CONFIDENCE PREDICTION INTERVAL: BP.93g = BP - T-95%*S*H WHERE T-95% = STUDENTS T VALUE S = 0.957 N = PREDICTION INTERVAL FACTOR e THE -95% CONFIDENCE CURVE WITH 1.0WER TOLERANCE LIMIT (LTL) STRENGTH PROPERT ES AT OPERATING TEMPERATURE IS OBTAINED BY SCALING BY 0.857. fARLEY00$CC 11/91

Burst Pressure Versus Bobbin Vollago i g ~ (7/8x0.050 Inch Tubino) Tox m 3 m M E a. t a E D to i t J Bobbin Voltoge. Volts s .v-- - - - - - - - - - - - ~- 7,-, -w -e-,----~ -y ,,a-.- , -,,, -,r-r - -- -,-- -- - -. - -c

r Bobbin Voltage Versus Probability 1 For SLB Surst Ccpobi l i ty 40 8 6 k il i E / 4,a 2 S 10 -[ m a d s C 4 o i i b I' .5 S e 1.000 -0.995 -0.990 -0.985 -0.980 0.975 -0.970 -0.965 -0.960 -0.955 0.950 Prebobiiity (One-Sided) t 1* s l -. _ _.. ~.,

Burst Prosauro Yorsuo Bobbin Vollago (7/8.x0.060 Inch Tubina) -9 To .X i B B E a. Y B e Bobbin Volicge, Volts A e

OPERATING LEAKAGE RATE LIMIT 1 LEAK BEFORE BREAK ASSUMING 0.1 GPM LEAK RATE LIMIT AND BELGIAN BURST CAPABILITY NOMINAL LEAKAGE VS CRACK LENGTH e 3 AP BURST CAPABILITY IS ASSURED; ~ BURST VS LEAK. -95% CONFIDENCE LEAKAGE VS CRACK LENGTH e. SLB BURST CAPABILITY IS ASSURED; g BURST VS-LEAK. T s FARLEY0DSCC 11/91 e w,.-- + -- ~ w

^ l l 3 -S. 4 , 10- '

r G

u i om L = i. E i n. i. y uam i u l' S l.. d Hi i i j E i, mo e z I 4 i ( Normalized Crack Length (1) 1 Comparison of Several Tube Burst Test Correlations Along with i l [ Lower Bound Tube Rupture Equation (Ref. EPRI NP-6864-L) l i t . ~. . ~ -.. -..

h e BLRST PRESSURE VERSUS CRACK LENGTH 7/8X0.050 INCH TUBING 9 h g s g .s a i AXIAL CRACK LENGTH, INCH j 4 9

LEAKAGE RATE CALCULATION 'JNCERTAINTY ANALYSIS MEASURED VER5US PREDICTED VALUES (M v5. P) ARE FIT BY LINEAR REGRESSION AND A STANDARD DEVIATION (SD) DETERMINED THE LINEAR REGRESSION FIT IS ON A LOG-LOG PLOT OF THE VALUES IT THEREFORE RESULTS IN A FACTOR TO BE APPLIED TO THE PREDICTED VALUE s NORMAL OPERATION LOG-LOG SD = 0.4614 N 10 *0.4614*T M (OR ACTUAL) = P

  • 9.ERE T = STUDENTS T VALUE AT SPECIFIED CONFIDENCE LEVEL (95%)

N = PREDICTION INTERVAL FACTOR 1 s f AtttYODSCC111/91 -.~.~. _. ~.. _.,..... _ _. _ _. _... _,, _ _ _. - _........ -. _ _.. _ - _. _, _.,. _, _ - _.. -. -. _. -,.,

CRACKFLO CODE ERROR ANALYSIS a MERSURED VS PREDICTED LERK RATES i Js v s u E l '{ l ~ PREDICTED LERK RATE CGPM) i ........-...---s

NORMAL CPERATING CCNDITIONS i LERK RATE VS RXIRL CRACK LENGTH 7/8" TUBING RT 600F RND 1457 PSI 4

n h

4 Si 5 "i ~ RXIRL CRACK LENGTH. INCH <s 4 .,__m-. r.. ...m., .___-_-_,y_

ALLOWABLE AXIAL CRACK LENGTH ~ i I COMBINED ACCIDENT EVALUATION I e SSE PLUS SLB/FLB PRIMARY STRESS AT TOP TSP j i e PRESSURE DIFFERENTIAL NORMAL OPERATION (1457 PSI) SLB/FLB (2650 PSI AFTER BLOWDOWN) o CROSS-SECTION BENDING STRESS SSE + SLB/FLB ( 19800 PSI) CROS5-SECTION BENDING STRESS IS WELL BELOW THE MAGNITUDE REQUIRED TO HAVE AN EFFECT ON BURST PRES 5URE-(WCAP 7832-A) e 19800 PSI VERSUS YIELD STRENGTH (35500 PSI) L ALLOWABLE AXIAL CRACK LENGTH DETERMINED ON THE l BASIS OF INTERNAL PRE 55URF, ONLY 15 JUSTIFIED ? I i m tvec$cc:11/91 t - -r-,n--v,-rr----, --,-r----m .-,,-m,.- ,--,,-,------r--.cw. r ,--c

COMBINED BENDING AND IN'TERNAL PRESSURE B ON TUBES Wl1H THROUGH WALL SLOTS j Is c r t l i t i i 1 1 j t i I I t P/7 P/2 i +2" = = 3" 2% I U U - ( \\ Q L, - f x-y 1 H l i P/2 3 1 2 P/2 Externally Applied Bending Load and Locations of Through Wall Penetrations s t n, ,.~-..m.. p, w-w.n.,.,,--.-. -.,,-,,,,-~, r ,,. ~

CALCULATION OF POTENTIAL LEAKAGE DURING A POSTULATED SLB PROBABILISTIC HETHODOLOGY TNE LEAK RATE VER5US BOBBIN VOLTAGE CORRELATION AND POPULATION OF VOLTAGE SIGNALS AT TSP INTERSECTION 5 TO BE LEFT IN SERVICE ARE EVALUATED USING MONTE CARLO TECNNIQUES ACCOUNTING FOR VARIATIONS IN TNE FOLLOWING PARAMETERS: o B0ss%N VOLTAGE UNCERTAINTY e GROWTH ALLOWANCE UNCERTAINTY e LEAK RATE-VOLTAGE VARIATION WITHIN TNE PREDICTION INTERVAL TNUS, AN END OF CYCLE VOLTAGE DISTRIBUTION I5 ASSESSED FOR ITS POTENTIAL FOR LEAKAGE DURING A POSTULATED SLB. e THE METHOD HAS BEEN APPLIED TO THE FARLEY 2 VOLTAGE DISTRIBUTION. IN 1990 FOR EACN STEAM GENERATOR. e THE MAXIMUM CALCULATED LEAK RATE IS 0.34 GPM PER STEAM GENERATOR. 1 .s l .Et7185Ut:10/91

) i i SLI krAK RATE - B0BBIN VOLTAGE I RronessroN ANALYSIS l r FinsT Onosn ResnessroN -s i. i P t [ .i .y l l 1 i fARLEYOD$CC 11/91 i ~_~ .. _.,, _ _ _ _ _ _ _ _. _ -. _,,.... ~.. _ _..., _ _.. _. _ _ _. _,, _ _ _ _. _, _.,......_ __..

SLD Look Rat.o Versus Bobbin Voltage (7/8X0.060 Inch Tubingl S s 3 Bobbin Voltoge. Volts S e w m.-

COMBINED LOCA + SSE ACCIDENT CONDITION ANALYSIS COMBINED ACCIDENT HAS POTENTIAL IMPACT ON USE OF ALTERNATE CRITERIA e YIELDING OF TSP ADJACENT TO WEDGE GROUPS e DEFORMATION OF TUBES e LOSS OF FLOW AREA e OPENING OF PRE-EXISTING CRACKS / PROPAGATION OF EXISTING-CRACKS THR0 UGH WALL WITH SUBSEQUENT IN-LEAKAGE WHICH CAN EFFECT CORE PCT s ANALYSIS RESULTS e NO TusE5 Wouto REACH COLLAP5E A D THRESHOLD j e NO TusEs WITH SIGNIFICANT DEFORMATION e NO Tuses ExCLuotD FROM ALTERNATE PLUGGING CRITERIA s Ltfit M 10/91 g2-, ,-w w m e. - -. - + ~m. v-w-- p.,, .s...- ,---ryw,,w w,+ ,-y,-, v--ys-r- , -- y e. y 5 < %,--w. w

COMBINED LOCA + SSE ACCIDENT CONDITION ANALYSIS-ANALYSIS HETHOD j SSE ANALYSIS a. c-LOCA ANALYSIS 4.c 4 1 j 1 EtTllmA 310/91 ~ y .s.- 7., -,_...,,.4

e,t,s l I i i 1 l, h I t i i 1 i SERIES 51 SErsM!c FINITE ELEMENT H0 DEL GEOMETRY DISE 82 Poa04 10/3/O

A68 [ 1 l i i f i 1 i i 9 1 I i i i FINITE ELEMENT N00tLS FOR s-STRUCTURAL LOCA TIME HrsToRY ANALYSIS O l u B2

  • Pot M
  • i O /1/ 91

o Col r w I I ~ l i i 1 L For TSP 1. Wedge Groupe Rotated 36'From Possons Shown Above TSP 16: Wedge Qroup Widt1 = 6 h. TSP 7: Wedge Onxp Wk:Mh = 10 h. Wroct Gnoup ORIENTATION Lo0 KING DoWN ON TSP DIst 82 Poe04+90/3/91

COMP (NED LOCA + SSE ACCIDENT CONDITION ANALYSIS / ANALYSIS HETHOD (CONT'D.) ~ r '[ '7*0RMATION/ COLLAPSE 3 TO CAUSE COLLAPSE BASED ON COLLARED TusE ic GTs ^sD RESULTING FROM TSP LOADS BASED ON RECENTLY a +0HPLETED CRUSH Tears FOR SERIES 51 PLATES foUR PLATE GEOMETRIES TEsTEo THREE WEDGE ORIENTATIONS /TWO WEDGE-WIDTHS tests MEASURED FORCE VERSUs DEFLECTION & dsD VERSUs LOAD I' KIT!53UE:10/91 r

ALLOWABLE COLLAPSE PRESSURE VS ID DEFORMATION WCAP 8429 CATA CCOLLAR A) - 4e ~ Ex c. e ou y d 5o i ~ CHANGE IN 10. INCH e

.. ~. SERIES 51 CRUSM 7EST RESULTS FORCE _VERSt,5 CE*LEC7 ION pg i e r- ) e 4 1 e 4 i I t t i 1 e-

t SER:ES 51 CRUSM 'EST RESULTS NLMBER Cr DEF3RMEC TUSES VERSUS FORCE hoc 7 e t t i V c C i a ba 1 I t i i t t e-ronce.ts 9

- -. ~...- SuMMAnyohWEostLoAos CoMBINEo LOCA + SSE LoAnzNas STEAM GENERATOR INLET BREAK ANGLE LOAD TSP 1-TSP 2 6 TSP 7 LOA 0iNo CONomON (DEO) FACTOR I (Opg) (Qpg) (4pg} LOCA Rarefaccon ~ h, C ~ LOCA Shaking ' Combined LOCA Setsmic

Combined LOCA + Seismc I

_ Wedge Load

a. LOCA
b. Seemic -
a. LOCA + Seismic i

I . edge Load W

a. LOCA
b. Soornic i a. LOCA + Seesmic :

Wedge Load

a. LOCA
b. Seemic
a. LOCA + Sesamic 2

l .i.___._...... __ m ANotas ron Tap 1 o DISE 82*Pon04 10/3/91 q a 4 m

SUMMARY

OF WEDGE LOADS CoMsINED LOCA + SSE LoAOINGS .s AccuMutATom LINE BREAK l ANGLE LoAo i TSP 1 TSP 24 TSP 7 l1,_LoADNo CoNomoN (DEo) FAcrom (WPs) (ces) (eps) l LOCA Rarefaccon ' ), C LOCA Shaking i I Combined LOCA l

Seismic i

= Combined LOCA + Seesmic !,,,,,t,,, a.LOCA i j W

b. Seismic -

i

a. LOCA + Sommic jWedge Load f
a. LOCA i

l

b. Seemic
a. LOCA + Sommic l'

i Wedge load [

a. LOCA ll
b. Seisme i:

l

a. LOCA + Seinme b

-I 1 .o

  • ANGLES Fon TSP 1 s

Olst 82.Poe06 10/3/N

- Numern or. DaronMao Tusas As A FUNCTION OF LoAo Senzas 51-STEAM GENERATon 6' WEDGE GROUP { n'gllNTATION F .I <m O 'E 9 .) i 4 cIst 32 Mxot 10/3/91 , a.- -r ~

o LEAKAGE-RATE CALCULATION-LOCA IN-LEAKAGE ASSUMING 0.1 GPM NORMAL OPERATING LIMIT O IN-LEAKAGE FROM SECONDARY TO PRIMARY A P DURING LOCA IS LESS TNAN 0.1 GPM SECONDARY TO PRIMARY A P IS STEAM PRESSURE MINUS AMBIENT (778 PSI) SECONDARY TO PRIMARY A P CAUSES MUCH LESS: LEAKAGE TNAN PRIMARY TO SECONDARY.6 P-0F-SAME MAGNITUDE (WCAP-9659) i a i: c - FARLEY00$CC111/91

FARLEY 1 AND 2 STEAM GENERATOR INSPECTION RESULTS November 20,1991 E =- MC5CD tDOM!72

Table 5.1 Summary of EC Indications in Last inspection of Farley SGs SG A _SG-B SG.C i 1 bl. 1 1 1 UNIT 1 (MARCH 1991) Bobbin Signals <20% Depth 0 0 0 1 0 0 20 29% - 0 0 0 2 0 1 30 39% 0 0 0 0 0 1 40-49% 0 0 0 0 0 0 50-59% 2 0 2 0 0 0 60-69% 2 0 1 0 1 0 70 79% 2 0 2 0 1 0 80 89% 4 0 0 0 0 0 90 100% 0 0 0 0 0 0 Distorted 180 0 126 0 208 0 RPC Results Degradation Verified - 72 0 24 0 20 0 Tubes Plugged for ODSCC Indication 55 24 18 UNIT 2 (OCTOBER 1990) Bobbin Signale <20% Depth 3 2 2 4 1 0 20 29 % 7 2 0 2 1 1 30 39% 3 2 5 0 4 1 40-49% 1-0 1 .0 6 0 50 59% 1 0 4 0 11 0 ,60-69% 1 0 8 0 17 0- .70-79% 4 0 9 0 23 0 80-89 % 1 0 4 0 8 0 90-100 % 0 0 0 0 0 0 ' Distorted 40 0 54 2 114 0' RPC Results Indications Probed 48 0 81 2 179 0 Degradatien Verified 31 0 66 0 151 0 Tubes Pluggoc (vr is; ODSCC Indicateen 29 64 147

oL c,

n.

Figure 5 8 Farley 1 RPC Characterization (November 1989) R1;;C3 2H SIG 21 R12C3 5H S/G 21 8' Ja==== *ES tus q _" m,, EE S as .%E 2 m ~ R = +a NO&. 'A 20% . iW' y:' :"J' J. = .1

4 J ;

-= e "e R31C50 2H S/G 21 R20c31H J* k ne 1* %. E"en7 S ass E*n Z " 3. l 4 'k"==4,. ';I lOS *; "n

  • f"JL*.!

00EE. a L:_1 ; 1 i

Figure 5 9 Farley 2 RPC Characterization (November 1990) R40C43 S/G 31 R38C65 SIG 31 4.s 300 0.11 l t R21C22 S/G 21 R4C73 S/G 21 D 1 !I 'l 1 '. Q l, .,.. _ - _. ~.

Figure 51 Distened Indication Signal Amplitudes in Farley 1 S/Gs (March 1991) l-J. M. FARLEY UNIT 1 4/91 INSPECTION DISTORTED INDICATION VOLTAGE DISTRIBUTIONS 1 N-e i S/G A - r l 2 l- = i 0 y g 4 ) g u a W 5 2 5 o" !~ S/G C Z L ~ l i = g . - -{ ,j i a i ~- 4, ~ u 12 3 U E/C StG N AL AM PL.lTU DE WOb.TS) I N ) J p 4 ,c.. .,_y..y. ..__..s.

Figure 5 2 Axial Distribution of Distorted Indication Signals in Farley.1 S/Gs (March 1991) [ s'. v d j 160 .i d t j jQ...........................................y.........9.. .........d............2.................... l g i o 120--------

i

- - - - - + -


+----4---------

F 2 6100- - ----- d-- i---- l QZ 80 .......................q............ g..........,...........- 1 i O cc 60 .. +.. g..........,.................... uJ (D g 40_............... )....................... z j 6. .i, .p.. ..y..................... M 0 i i i i i i 1H 2H 3H 4H SH 6H 7H El.EVATION psesumew en=ei l i I i I I I - 4. I I 1 I ] 1

Figure 5-4 Axial Distribution of TSP Indications in Farley 2 S/Gs (October 1990) 180 cn 160-zO 140-o__ 120- @ 100- ~ 80-60-i aa2 40-a EE M E," 0 i i i i i i 1H 2H 3H 4H SH 6H 7H 7C. ELEVATION S/G A I l S/G B S/G C L e

_. _. - _ _ _ _. _. _ _...... _ _. _. ~ _.. _ _ _ _ _ _.. _ _ _ _ _.. _ _ _ _.. _ _ _ _. _. - Fk;ure 5 5 . Distribution of TSP Indication Amplitudes in Fariey 2 S/Gs (October 1990) J. M. FARLEY UNIT 2 10/90 INSPECTION DISTRIBUTION OF TSP INDICATION AMPLITUDES =_ l O "; h 5l !!,, E S/G B i u. E o 0 5 ,2 b mas y u-u o W = l e gg g tJ 3 u 3 4 4 E/C SIGNAL AM PLITUDE (VOLTS) l l l t i i w--- =,,,-- r.

= I Figure 5 6 Support Plate Indication Progression in Farley.2 SGs 50 .ng 4 h,y. ......................................w............................................................ Ny .....................m, h.,o...- -- - -.--.. -....--...--.-..........-. -. -. - -..-... - --. O - - - - - - - ~ ~ - - - - - - - - - - - - - - - - - - - - - - - - ~ ~ ~ - - - - - - - E-.g .g .4 ...... =................................. -......................... 50 85 to 86 ' 86 to 87-87 to 89 - 89 to 90 INSPECTION INTERVAL -*- AVERAGE (ALL Sra'S) -+- UPPER SIGMA -*- LOWER SIGMA f., I ( '.e o 1 .n r-

Figure 5 3 Average Growth in Depth for Farley 1 S/Gs Over Last 2 Cycles y _ g 30-h. c. WO W O 1 [ 10- ^ Z 0 b o-W: 10= M N 20-30 i i 1988 TO 89 1989 TO S1 .. OPERATING CYCLE -e-AVERAGE - -*- UPPER SIGMA-LOWER SIGMA + g g ,.a..,.

. _ _.. - _ _. _. _. _. ~ _. _ _ _ _ _ _ _. _ _ _. _ _ _.... Figure 512 Histogram and Cumulattve Probability of Voltage Growth in Fariey.1 for Last Two Cycles T 4 J. M. FARLEY UNIT 1 88 - 89 HISTOGRAM AND CUMULATIVE PROBABluTY 80: 100 k a-- u "90 70 h _l _.a O 60 y. ...............p. s e pw.o m 70 z 50- -' d -+- - W 2 i 'M W i j fe i j .50 $ b ,5 i !!I i 40 3 5 ijll 30 g 20 4 i a'" 20 g I IIIIJ ~ l 100' -80 ' 20' '20' '80' 100 '140 '186 5200 ~ l. 80 -40 0 40 80 120 100 200 l' PERCENTAGE CHANGE OF FJC SGNAL VOLTAGE J. M. FARLEY UNIT 1 89 - 91 HISTOGRAM AND CUMULATIVE PROBABlUTY L 100 100' r I l l le. lm ll I g g =, 11 15._l / Ii ,o 7c - l l g l ! l ! i! - w -- 70 l l lll u. 80 80 l l l l l! %6 !l l l I i I y g gg II =E N E Ii ~ @ ac y -30 3 !l, !!h ! l l!! L 20 20 2 M. g E 10 10 i . sr.,.,.,_ l 0 0 -100 M -20 '20' '80' 100 '140 '180 5200 -80 -40 0 40 80 120 100 200 PERCENTAGE CHNGE OF EC SIGNAL VOLTAGE l ~ L

l Figure 5,13 Histogram and Cumulative Probability of Vottage Growth in Fariey.2 for Last Tv o Cycles J. M. FARLEY UNIT 2 87 -89 SUPPORT PLATE DEGRADATION PROGRESSION 60 100 I E 5:1 . + --

  • f -a-- J- - - -- - --- --

i: / I!l l i 2 l 70 t __ j...j. 4.......{..[ g 40 . ; L l' s0 g 2 - d - - - - r - -+ f 30-50 o 40 g j j gn . _ : 7.. _ S 10-U -b" a i ~' 3 E._' E aE o { -106 '-60' '2d ' 20' ' 60' '10C '14d '18d $200 -80 -40 0 40 80 120 100 200 UPPER RANGE OF PERCENTAGE OMNGE J. M. FARLEY UNIT 2 89 - 90 SUPPORT PLATE DEGRADATION PROGRESSION -100 70 a { 90 ~----,e l ec e e gsc ---q -70 g _4._.[ 60 r-g, e 3 a-w ae n O ., C I 20- ~ T~~ ~~ p g 20 5 0 - $'lEEkE__m .jo $ z 10 " ~ ~ ~ ~ ~ ~ ~ " ' 8 o 106~*-s0 -20 '20' ' e0' '106 146 '186 s200 l- -80 -40 0 40 80 120 180 200 UPPER RANGE OF PERCENTAGE CHANGE

l 1 Figure 514 Cumulative Probability of Voltage Growth per EFPY for Farley Units 1 and 2 L J. M. FARLEY UNIT 1 SUPPORT PLATE DEGRADATION PROGRESSION 100 h ..._[............... 909........ -... W // 80- / 70--- a - - -- u- !--~~~>------- i 60- ------;-------------- 1- /: i 50- - - - - - - - - - - - - l n 4o. O i i i l g. _...._q. a.__._q a ] I i I i i i 20-i i j i i f 10-i i i I i j. i l l l do-1.8161!4-1!21.0d8 0.64.4-0.2 0.0 0.2 0.4 0.6 0.81'.01.21.4 ~ CHANGE IN SIGNAL AMPUTUDE (VEFPY) g t J. M. FARLEY UNIT 2 SUPPORT PLATE DEGRADATION PROGRESSION 100 . 7i i! _ _ _i.. i i I ~ i se i 1 i e 1 1 1 i 80 i h f h f l ~ j -l I i i // l I I I I i i I70 l! 80 i l I/f i l l i I i I i i i i i !//t i i i i i i i sc / / ^: i i i i 5 l l i./,/ li! l l i y l. i i//i i i 20 l/ 10 ' I' / ! i i i l l -l 4 i k I I I l i I i O o0 - -0.6 -0.2 0.2 0.6 1.0 1.4 1.8 -1. (* ' 0.8 4.4 0.0 0.4 0.8 1.2 1.6 2.0 CHANGE IN SIGNAL AMPUTUDE (VE.FPY) l M T W T W -D=1 M aTM l I IL l l L l

L Figure 515 - Historical Average Voltage Growth Trends in Farley SGs 1 90 ? I 80 - N., 70 l

  • c 0: w 60 +

g _ g 5 0 <l-U E s~~~.,,, 5 g 4o. ~ 3c,!30 k ( 20 10 +


a 0

1984-1985 1986 1987 1988 1989 1990 Beginning of Cycle. Year 0 Average Growth Over Total BOC Voltage Range: Fariey 1 c.

Average Growth For BOC Volts < 0.75
Farley 1 C

'Avera0e Growth For BOC Volts > 0.75 : Farley 1 --e-- Average Growth Over Total BOC 'toltage Range: Fariey 2 --* -- Average Growth For BOC Volts < 0.75 : Farley 2 -- m --- Averace Growth For BOC Volts > 0.75 : Farley 2 i: l-1 L y ,,,,, -.e rE

' Figuro 510 Scatter Plot of Voltage Growth in Farley.1 for Last Two Cycles AW FARLEY UNIT 1 SUPPORT Pt. ATE IN0iCATION P40CPESS10N !*3. I m e2 m g 600 so S. 5 ADO a. ~.. 5 i Q 6 200

  • 5-

.3-0 E N I f 9 i 1 -200 -05 0 0.5 1 i.5 2 25 t ru mn.ea SICNAL WPUTUDE 1985 A W FARLEY UMT I SUPPCRT PLATE INDICATION PROGRESSION LEAST SQUARES AT 400 l m t l ' i4-i- 300 +- i m + a2 ++ ' i-4-o$ 200 +- 4 i z w p . 6 j v. :\\,.. 4....,..... -g jgg . 4 4 . 7.. A l

  1. .</
  • - ' T +--

'4-+- a 0 w-fD.4.1.(.

  • g
't l

.l ...i = E ioo 4....... M i t + i' -200 l 0 0.5 - 1 1.5 2 2.5 rurymn SICNAL AMPUTUDE 1989

i Figure 511 Scatter Plot of Voltage Growth 1n Farley.2 for Last Two Cycles . g -- 500 m e i O ] 4 T M *lll,'" " s 8 - g 400 I 2 200 .,. f,. M'.....g. u ^.<.g- '...-t ;.h,, ',.y.g j 0 o 200 0 0.5 1 1.5 2 is ru ' vent 1987 Eddy Curreat Signei Amp 6tuce 300 t R 250 Nadsrcew_Ganp@ asi in e i defined as,100 (V(90]-V{89])/V(89) g i ! 200 g m 4 i l* l l. . s- ^ 150 I l 2 1 '00 5

  • ss..

8 s .y i j 50 ,. Qff**h.t. ^ r v. s..- .NAS[- 0 .[,., I*f* 'fy,. I..;* r

a. ~ - 50 9 Y.

,. 7 .i j t. i j-l 100 l~ l 0-0.5 1 1.5 2 2,5 1989 Eddy Current Signot Amplitude l j-. i T' +er y .i~+ e-. up

l '. \\ I NDE EVALUATION OF TUBE SUPPORT PLATE ODSCC November 20,1991 l 4 j l t 9 NQSCDtODMitt ' ~ y + ,m, ye-' w-4 r

.s

s. ' &

/'O

e a e

IMAGE EVAL.UATION /[,, a v, , v. 4' t <[ s %[r TEST TARGET (MT-3) ^ 'j ':

  1. y,

\\[O '0' '\\'\\s#$>fe JQ ~ %+ 4g 6'8 g$j# gg. l.0 0 '" 3

a. ~

m if M-~i 1 i-2 3 l,l f_?P L I!!!A% 1.25 g i.4 iki.6 (== 4-150mm 4 6" Ap*> a%\\. .> A sp#fe, M Ag u' r% ' ::.: s. ~' ~~~'~" \\ Sk\\ "

'i,Y

/y ~ >gei

j g,

,( 'y Oy j, 4;> y qq i, u.

u.

e[. 4 ,M

  • ,q 4

/ g, 4, y / \\f7 IMAGE EVALU ATION j m s1 1 ee1 <m1.s, 7 k/ gg+ V. s I.o z " !s !: [" Ju u ' :? h.h ^ -m Wl I.8 lit:ww l.25 r i\\a=4,\\\\.lLL \\

==

= 4 150mm 4 6" p cy &,,y%r .f, y.,o Ap 4, 4,, p yM oy IN

m..

a 4. ty- //pg0 + % +, A A '4 e g gy .sj,- O ':, C, IMAGE EVALUATION 'i ~ % g / 'q *^ <[ TEST TARGET (MT-3) ,4 A N ^ sh g/[g a Yg Y $$F \\\\// pp g 10 P. 7 " , en 2 s -. .y 20 p$f5Ni llil! l.8 l&am 1.25 f I.4 11.6 J ss= m== 4 150mm d 6" gOi% /k .t;, f. 4' +49 g ,/ qG% 7 . w.. L-

NDE EVALUATION OF TSP ODSCC MAJOR CONSIDERATIONS Bobbin aroae vo tage sensitive to crac< length, crac< death, 3resence of iga-ments, mu tiale aara lel cracks, oxic e coating on crac< face 2 Variation o" resaonse " rom different aro3es from ciferent manufacturers 3 n"luence of TSP crevice concition on aobbin response. Possible concitions are open crevices, packed crevices, inciaient denting, and fully develo 3ec denting. 4 Sensitivity of 3 robe response to probe wear during inspections. 5 Variability among caliaration standarcs, and normalization to frequency mix. 6 Use of RPC to augment bobain aro3e inspections. e

NDE CONSIDERATIONS 's Identification of ODSCC Eddy Current Indications Bobbin Coil Testing Guidelines Four (4) frequency testing for 7/8" 0.050" tubing 400 kHz - prime test frequency 200 kHz - enhanced detection frequency 100 kHz - support plate mixing frequency 10 kHz - Sludge and st:pport plate characterization ~ Support plate suppression mix 400 kHz/100 kHz eliminates carbon steel, magnetite, much of copper interference but not tube deformation Calibration Field ASME standard with drilled holes lab-tested with standard used for EPRI Alternate Repair Limits program 4 Flat-bottomed 207o holes give 2.75 volts 4 Through-wall drilled holes give 6.4 volts Amplitude Measurement Flaw-like signal voltage determined from peak-to-peak displacement including multiple crack segments uuscacom

F-i s 400 kHz Primary Analysis Channel a

a m, :c - 2 m

n .j \\\\ s i s \\ l \\ M' f / 7 / i i \\ d N %NNM i . n c.: m >+ a ! $1= t_ N t ' t, l* I (400/100) kHz Mix An%' sis Channel I oo. W= sae. to n se t t. v i %. 44 Nf Y l 84 ,,g.i. < u r i 3 L Figure A 1. ODSCC at TSP - Bobbin cod Amplitude Analysis

s 46 CM 1 V CM I N 4.64 til Mit i 204 15.21 em ths CM i 2M C _a: i i i.i e / r,gr."'.i LT U s v., . 6i um iu a v is.n as in m \\ g ,r-A M \\ 2 w + w ~ e.64 til MIR 1 7ee 15.N ese De CM i 2M { %N g m... us-1. =ni m. ,, i.n a se na wim as is = = = i' * **i=i c.a ) ( ( ene i s [_ l [ I Figure A 6. Exarnple of Bobbin Coil Field Data Flaw Signals for ODSCC at Dented TSP Intersection

33 CM l e mia 2 Y I 6.H e N tha CM 1 248 0.22 26 RLE 2 42 l S C - s-9 % -s i COL aws ! 4 N 400/100 Absolute gg l+0.Mlsf.56.43i] 3 [ 1H (ITEXT KC ] (MD I setto .....h u 4 y i eW [ vee 3.31 MC 13e la veo 2.16 xG 211 ta ~ x x ~ 7 Os;i._ A A9 f l b ( 5 -~ [ 4.16 1:5 mit 3 252 19..$ 2ee Kha CM 3 35 9 400/100 Differential i. G 1 u r I l i + v 2.n xs in a v., i. xc is u w.- $ st eso> im

c...

I E [ } l / ( { ii.ii l 7 [. W ^ -E l M., s w w e s l i i. j 3 } } i l l l 1:

o Figure A.4.

Example of Bobbin Coil Field Data

RPC CHARACTERIZATION Indications identified with bobbin coil as exhibiting significant amplitude (e.g.,2.1.5 vos) will be examined with RFC to characterize degradation. Contour plots which contain axially-oriented linear arrays suggestive of ODSCC without circumferential, linear elements will be regarded as confirmatory of the mechanism. Crack signals not confined to the support plate dimensions and signals resulting from pitting, thinning or wear will be disposed of in accordance with existing Tech. Specs. s 04145CO DDM/7J

3 l l 1 o mi, as, i..s as r= oi s a 4 us. [ i mmi, t WMies SIG (1

m. e acas testa a

. - mmm, runi.um, t. i m1,1 g i.j l ,,,,, 7 mm =l .I

c...

7 nism cree una Mt*

  • ** * *i wa**

b-I i-i 3 ,l l. e.a as = ul l + .m I l r ) i una vm j. casuarnaarris rat. es us I ..n b jl %s rQ- [- l 3A I j-- L ula fama t i uns esti e.m in 1 i._ i ?- [ I \\ c Figure A.14. Axial ODSCC Indications (MAI) at TSP - Fariey Unit 1

J.MoFARLEY 18/0&/90 ENRET UNITI 02 SC: 8 REEL: _81,PR2 g!! s ! ) I Y ~ j ! :5 Y $ ,1 a .t d if w$ A y I. I 1 at a WAiRE d E E g n jf U y* as j il f& h

  1. "*;Celll Y

g y,g I ('", gg y v PlfM o 0 C E l 5 o I A '% N $J k 5 ? - ^^ ell!! li = 5 s AUG 2 '91 14: 04

"ea e. 2.i.,i i n,. Figure 4 1 Description of 00 Origin Corrosion at the First Support Plata Crevice Regiongf Tu3eggC73 cc .l?9,e e 's' /' r y a ? l r v e y l lN lly {' l

/~1
.i 10

's Sketch of Burst Crack .s Macrocrack Length = 0.42 inches Throughwall Length = 0.18 inches Number of Microcracks = 4 (all ligaments with intergranular features) 1 ~ Morphology Intergranular SCC with. setze !GA characteristics (width of IGA 0.012 inches) 0.75 inches - - SP top 0.6 inches - } l l o1 .fi l[I I i 0.2 inchas 0.0 inches - SP bottest s 0 900 1800 1800 2700 0 Sketch of Crack Distribution CUG 2 '91 14: 01 12 256 1348 PAGE.2:1

NDE EVALUATION OF TSP ODSCC TYPICAL EDDY CURRENT SIGNAL AMPLITUDES Type o" Jegradation Voltage Examp es Wastage 4.5 to 7.5 V @ 60% Claracterizec by de at1 machined rectangu-lar " laws Fretting ~ 0 V @ 60% c e ati ~ Characterizec ay machinec. tapered " laws Pitting ~7.5 volts for 60 mil Single c rilled hole dia.,100% deea simulation ~5.3V for 109 dia., 60% ceea ~2V for 30 mil dia., 100% deep Pitting ~2V multiple indica-Multiple pits tions "or multiole pits up to 60 mils dia., and 64% c eep

.NDE EVALUATION OF TSP ODSCC AXIAL SLOT TEST DATA 1 Both bobbin and RPC voltage amplitudes increase sharply with axial crack length to ~ one inch,100% deep slots 2 Voltage increase is much smaller for partial depth OD axial slots. Voltage does not increase signifi-cantly with length for slots >1/4" long. 3 Signal amplitude dominated by 100% deep por-tion of slot 4 Bobbin coil voltage function of spatial separation of parallel axial slots. Closely spaced slots show insignificant voltage increase over single slot 5 Correlation exists between RPC and bobbin volt-ages for single slots. However, bobbin voltage increases with multiple slots; RPC voltages can be isolated on single slots 6 Presence of ligament between axial slots reduces signal voltage 7 Signal amplitude responses to degradation, on the order of the voltage plugging limits, are not j significantly dependent upon location of crack within TSP 8 Slot data represents upper bound on signals expected from cracks of similar length and depth. 3 l

Figure 81 5= Voltage Sensitivity to Crack Network Morphology F l 1,93V 3.83V l e i I r i i 2. 4.21V l ' ( 3, l 1.97V "N :. 3.09V 'masu -i nummui uummis i i W W k l suseum summum 3, 2.09V f ,imummus ummmma l F ,( { 4.40 V r- - r _I ,l l ll 2.54 V l l l m--mm i (; i g 4 9 2.30 V ) 6.34 V IunumI l l ummmes sammme i samuses i r o 3.59 V i 0'75' 0.75* v' 4 i w, w v. on. v-.,--, ,.e-- -e -~ ---m-. -,e--,- n

Figure a.2 Beebin Ceil Voliage Cepencence en S!ct Lengm and Depm s f lo &- en &8-

s

} l .l .J l 5 - THRU WALL A 80% DEEP ' X 80% DEEP O 50% DEEP W TAPERED l i:. ,s l , _,.. ~, - -., _,..

t; Figure d 3 Bobbin Coil Voltage increase due to Tacers at Ends of Through Wa!! Axial Slots - .t - b,c -R3 a: o s-g j l L j n i i .l l: l ~ THROUGH WALL SLOT LENGTH, INCH 'v e ~v. ,,~w - -=-, ,w...,. ---,r.u-,... ,---,e..w-w, <,w,...e.+,,. 4., 32-5-.c ,,,w.,,,.. -,,.,..r_-xw,-.,,.r ,w-- -,,w, ~.

Figure 8 6 Voltage Dependence on Ugament Size Between Axial Slots N, - b, e a vH) d> a u .i, H i- - ow - t I L LENGTH OF UGAMENT, INCH - s-BO88lN,400/100 kHz A RPC,400 kHz .( 4 -+em-----* s ,-,n,-e an ,,w..,--a n.,, e-, ,,--,n a w,, m-- + ,w,- 7,

-. ~ ~.... ., - - -. -...-..--.. -.... ~ _. i EiOUhe 8 7 Bobbin Coil Voltage Dependence on Ci'eumferential Spacing Between Axial s;.

  • b,e i

i CIRCUMFERENTIAL SPACING, INCH e -G-Treu WALL -G 50% DEEP L l,*. - l l i-l l l -.

s Figure 8 8 g Burst Pressure vs. Voltage for EDM Slots Burst Pressure Vs Bobbin Voltage -.-c s;- s exc.:s q$ l i i i 3 e c s b m_-e.n vei to;.. vo n. Burst Pressure Vs Bobbin Voltage PcrticI wall Slots p ( 7/ex0.05' R. mg) g. 3 .x 3 $s = s ~' Scce i r.cl toge. vo i to n ~n

i Figure 8 9 Typical Bebein Coil Voltage vs Depth for Simulated Volumetric Tube Degradat:en -s H !O-dOo E g E m l l l l 1 l L .J MAXIMUM DEPTH, % l l 5 0.25' LONG O O.125' LONG W TAPERED u l I* 1* l l % 1 1 +, -- n ..--n. -n-. .,,,,+,..-,,-.-n.,-. - - - - ~. ~ '. - - -

Figure 8 10-- y. Bobbin. Coil Voltage Depencence on Olameter of Thtcugh Wall Holes - Ac c,n 8>- 3 I c 1 l L HOLE DIAMETER, INCH ~ \\ l 9 s i l o i r _m,.. _ - -. --ym,..- ..-,,,,--.,_.._,=m __m,-

Percent of Indications Detected Metallographically Found by Bobbin Probe a a 8 8 8 8 8 E U1 \\ .'\\ sh. V) \\ ag g s.e, 8 MNE'x'O%'NSSS'SSSN&': s s c \\ N ER s i u I M'$RRs'RN ' SRJS' i 8 N E Q' 8 c R's'S$'$'\\'RM N' II o-to S b 'N '$s h s o w. O 7N hk b \\\\ '\\ f .\\ xx 'N Nx x 7-3. Nk$$'N'bNNk yh['NNN$'k)k'M$$N5 ee u_ e @ l(('- N)Yx s\\x Q('-(((l)s'[k\\($NhYs.$ I v-k _..)

Figure 8 4 RPC Voltage Cependence on Slot Length and Cepth s _4 enbo> uJ O 4 O n. cc ~ J ~ SLOT LENGTH, INCH E THRU WALL O 50% DEEP TAPERED

-. -. =.. - Figure 8 5 Correlation of Bobbin Coilto RPC Voltage _g j q S. t 0 f RPC AMPLITUDE, VOLTS .E TWIUwALL O 50% DEEP M TAPID4ED X ODEf4 1: o t l l 1 y r w -.~ u + -, - as... .m.

Detection Probaailities sl5 8l8 4/4 7/7 100' x,- x,- , '/ ll // 7lg /j /s // // 6p l/,/ /,/ /,/ /, U 77 /,/ //

l.,/

// D / h QQ / /l // /l' ~' / O // // , / /, / ', /, ,-./ // // /,/ l/. / /: QO l,/ ',/[, /, / oD 6 / C /. / E8 60 '? _Og /, /, /, e ,/, /, Q> '/ / / // ,/ ' .O =Q / D O /,/ Note: n/m denotes n irdcations fourd by RPC aA of / _Cy /,, m eracAs idenufied metallograpNcafy / ',/, O. /,/ /,/ ,/ // ,/ /,/ /, Om .s 1/4 /,/ // // '/ /,/ e O C // /- /, '/ / O f' 77 '/ ',/ '/ Gh QQ , '/ / // // O@ /,/ // /,' /,/ '/ // / O-Q // '/,/ /,, /,/ // /, /,/ /, ',/ /,i / i ,/, i !,/ /, '/ 'l Ofs 0/4 // l / ,/ 0 5 15 25 35 45 55 65 75 85 95 Midpoint of Range of Indication Size (% depth) as Determined Metallographically

IGA DETECTION - HISTORICAL IGA was first noted by tube pull in the s tubesheet crevice of( [ tubes. Deep IGA was found in the entire tubesheet crevice It was not reported in the field by E.C. inspection. A review of the 100 kHz absolute data produce " drift" indicative of IGA along the entire tubesheet crevice. 9 . At ? IGA detection at the top of the tubesheet was complicated because of presence of dent at the top of tubesheet. j A review of 100 kHz absolute data showed indications of tube degradation at the top of tubesheet future tubes. Detection of IGA in the tubesheet crevices at ,e _ plant is routinely performed using the absolute bobbin mode. --mu

7 j ,1 IGA DETECTABILITY Field and Lab. experience shows that the threshold of detectability of volumetric IGA in the support plate intersection using bobbin probe is in the range of 20% depth. 4 Examples: _3 - detected at ~25% depth ,9 i-detected at ~15% depth The 400/100 diff. mix channel was used for this detection although 400 kHz differential-channel alone was enough for the case of _,which has egg crate supports. u In cases where both SCC and volumetric IGA are present, SCC is ~often found to extend -beyond the IGA--and the SCC signal may dominate. 0441SGD AM1

7 l s Work on samples with Lab, induced IGA confirms that the detection threshold in ~20% depth. . The Lab. samples had ~4"long sections with uniform IGA and one had to use absolute mode for this work. . The absolute mode data is easily convertible to differential mode data for comparison purposes. 1 i. t.. ca41sonAsas l

ea,ain-a-s4+ama..m+M.&-amom.A s- - ---obb-Ytm^-4-R& A'WM-*L-- AM-Er h e 64 4a---"L-AL.J4-4di:J;+.e4-M+ ' - Asn=LaL A e 2 u'4-tw e ned,=-- -ow&---6K 4 Jn sae+seds&&4-a e44A6 b-" S344-aHew-xA-4.0-n6an ? I 8 i g g asP s g I ge 1 I e a g '9 < <2 y f l l a n g l 4 0 I. E 8'I $ 1 n ?y 81 I l! 32 l = e $3 I e 1 a me

I.I g

$l ! -a g j I C % *g 5 6 a a O2 ep p ~3 h go E14 ~3CYufleNW M9906 i l ~ 3 e s,. ? l.. h*

  • f

.4' y

L+. x;.,

a l=~, n ' y *t' e l 'V. n y. s .= e t.. fj f+ hi 9 f l 4 o e m g-t e; I ea y llg O I

  • ,f 0

h !l$ a m I .a gg

2..

(OC .C h AV f~

' G';.l;0. t, y;;f 1i"

~ ~ =awwww =um .'.N$0.a


,,--,------,..----.,..----.-..-.-..,-n-

,-,..n,w,, aa , -, - -., -, - --..w,

t ? i I i I l .~, a A V. V i Y p y.,,' t.. 'g. 44 3~ j

  • *ee,,

%. s,, / 7 / l p i 1 g cre, Q%,#

  • em, to.a,
    • .e I

/ N%~.

  • s i

/ I ) l / y *%.,% / l ?. 7' x. / Q~, l 1 / %r% N, ~ as as i g. yt**'** i 7 = s. . m.se s% e e. l i i 1 f Figure 8-13a. NDE Results for a Type 1 (IGA) Sample Figure 8-13b. f4DE REsuits los Type I (IGA) Darnsge (Dye Penetrant and X-Ray) (Eddy Current) q I i i 1 i Figure 8-13. - Inspection Results for Labosatory IGA Samples teom LPHI Psogram i i i 1 ?

l l 1 Pulled Tubes With IGA i %be Ikstructive F:s Number intion 400/100 Mix (Dirt.) Examin: tion Hemarks -1 R29C46 1C 1.8V/2G% 26% Vclumetric IGA 360* arvund 3/4' long sectiow L59R95 III (Crate) 0.4Vg>6% 5'20 Max. Depth Volumetric IGA with 20% IGA Depth figures,5CC 07 ~ ~ 07 211 (Crate) 0.6VrEIL 13% Volumetric IGA s07 07 1 1 Lab IGA Samples Mill Annealed %bes 400/100 (abs) mix 4.5 volt 20% Uniform IGA 360* around the 4* long section 9 voit 40% Uniform IGA 3G(r around the 4' long section unnas e v-

Figute 8 14 Voltage Compansen of Indications Found With Two Eddy Current Prebes g (400/100 kHz Mix) PROBE 1 VOLTAGE VERSUS PROBE 2 VOLTAGE _,.3 1 l vt o ,u,i

s

>J o ~ u. E c. c. I i i VOLTS PROBE 2 VOLTAGE, n ,n

l l i Figure 3 15 -I i Comparison of 400/100 kHz Mix Amplitude Response from Two Probes (Model Boiler Sartp!e) i i 4 EDDY CURRENT PROBE CO3fPARISON PRODR t/Pn0BR I I so. 80 - 70 = 0- / 8 ,/ so - E , / l e ay / 8 r se - l t I-i i 7 ,/ 7 l' to ~1 t .i A 0.6

0. 6 '

O. T - 0.0 0.0 t t.1 1A t.3 f.4 1,4 MMS $6NO l ) f: L p .i s- -r-. ,.eie.m,in. ,_,+,r .w <,.,,----.-r.- w ..-.w ---r.- -,-.v-- -,- m, ,,,-,.e,,--vy,-,,.-..E,w--.,,wm-.,,,wm,~,-c.,

Filure 8 16 Comparison of 400/100 kHz Mix Phase Response form Two Probes (Model Boller Sample) 1 EDDY CURRENT PROBE COMPARISON

    • ^0** 2~!!03I 1

,y__.___ \\ 24 - N i N 22 - N \\ 20 - N \\ \\ is - N \\ \\ N It ~ r8 r8 r i r\\j 9 /\\ /\\ '/ at i en it - /\\ \\ /% /\\ /7 E /\\ \\ /\\ /\\ /N h 12 - 7 /\\ \\ /\\ /\\ /\\ O i / 7 /\\ \\ /\\ /\\ /\\ 9 'O - / N /\\ \\ /N /N /N N 1 8 -l / \\ /\\ \\ /N /\\ /\\ \\ / \\ /\\ \\ /\\ /\\ /\\ 7% 7 5 / PN /\\ 7N /\\ /\\ /\\ /\\ / \\ / /\\ /\\ /\\ /\\ /\\ /\\ /\\ 7-7 / 7\\ / /\\ /N /\\ /\\ /\\ /\\ /\\ / / d- / /\\ / /\\ /\\ /\\ /\\ /\\ /\\ /\\ / / I"/ 8-l / /N /5 /N /\\ /\\ /\\ /\\ /\\ /\\ /T'/ i / /\\ /\\ /\\ /N /\\ /\\ /\\ /\\ /\\ 7 <\\ / / 19 /9/N/\\/\\ /\\ /\\ /N /\\ /\\ /\\ /9 /\\ /9 /9 P1 'i ~ o i ~4 -7 -0 4 ~4 ~3 -8 -t 0 t 8 3 4 6 6 7 8 Q Plast IDRCARR) . DEPTR t\\lt WAL.lJ t + b a-,,, .n.

i Figure 8. t 7 Comparison of Tight and Open Crevice Indication Response i VOLTAGES RELATIVE TO DRILLED CARBON STEEL SUPPORTS .a l l l l l Oustrofoil I' { y Drilled g,o.. O-- v Carbon v - - - - - w v yv ,v y Steel ~~ 08-Drilled i Stainless Eggerate e,e. We 4 g o,7 d For bobbin voltages there is at most a y,,,, 5% correction for different types of tube support conflourations and materials. 4 o.s- .JwC o,,.. o.3- - 0. 2-

  • o.g..

o.o l l l l l o a 4 e s to na 34 is to SPECIHEN NUMBER 8 43

,,5 0 ' 3 Figure 8 18 -?!- Probe Wear Calibration Standard Ss i: .a - \\ w w 90' typ s / xs g 4 S I db 4 4 6 e 8 t 'h l k. I s t 4se e s.* a 4 - s 4 g 4 4 4 4

  • . 4 e i r i

4 L .e e 4 4 4 A i 4 If l 4 4 I e 4 4 e t .**',.ae6**,e',..i+++*m. y ,8 4 '* ..g.e.,e***e' 'e 4 l-t i I i t I - f T l ' I L e --t-.ve-w-,-m,- y"yw-.,*, -=-se,=, w,,- -e w vmA e,-t, y -r=>-tt-r. gee. vwn-g-,-=<irpw n m - ,e wei ye y-w rm.,prmy-.-w,+ ee p y. i,a,9+ e e n-ye y g wn wm. ev --*v., -, = + i

LDDY CURRENI SIGNAL DLGRADAllON DUE TO PROBE WEAR 14 r -- - - o a 5 12 a n i V) ~ __J OD 10 8 w l o 3 o a y l n 2 9 "[ 8 l 0 Y 8 z g AVG== 8.29 AVG = 8.34 AVG e 8.48 o STD. DEV = 0.38 SID. DEV = 0.54 SID.PEV + 082 g 6 '~ o e .~ AVC =- 8. 73 S I D. DC/ :- 2. 71 4 ,(4 +*** t 3 1 -0.01 0 0.G 1 0.02 0.0.5 -I - o n.i n tat-tan AI>

1 Figure 8 21 Signal Arnplitude (Arbitlary Units) vs. Center to Conter Cell Spacing 10 9 f f I l 8 1 l l l i i 1 i, 7 i j i l l l I i I ;120 mils ; 1 I I i i S i 6 b i i ! ' l j l ', I i I l l 5 5 -4 i l 1 l l l I lIi,; l I! = 4 = i }; , i, i o i - { i 'I i [ j } V 'O 3 L i If r 60 mH colt seeth i

  • b i

4 I I i 1 I -s-n=n.n omni. 4:o mn. i ll 0 ( i 10 100 1000 Center.to Canter Coll Spacing (d) Chart Amp vs Coil Spacing 10/10 91

NDE EVALUATION OF TSP ODSCC GUIDELINES - FIELD CONSIDERATIONS 1 4 hole ASME standard with.033 inch dia. holes place 90 deg a3 art should be used for field volt-age normalizat ons. Hole diametral tolerance should be.001 inch rather than.003. 2 Additional standard should be used in line with ASME standard to limit effect of arobe wear (i.e. 3 robe centering) on field data. This standarc will lighlight data uncertainties from arobe wear, identifying when variation exceecs acc?ptable limits for tube plugging criteria, requiring use of new probe 3 Calibration should be normalized to 6.4V for 400/100KHz mix for 100% 4 hole ASME standard to eliminate de ath uncertainties in the standards, calibration to 4V for 400KHz channel, and carry-ing over conversion factors to mix channels. 4 WCAP-12871 Rev.1, Aapendix A data acc uisi-tion / analysis guidelines m alemented to en wnce consistency and repeatabiity of inspection data. z l 4 ,m.. ,-,---,-r-.-

l Table 8,9 Variables influencing NDE Voltage and Burst Correlation Uncertaintles 2 NCE Voltage Uncertainties (Voltage Repeatability) o Proce centenng: probe diameter and wear considerations (i) o Cahbration standards: dimensional tolerances (2) o Probe design d,fferences(3) Burst Correlation Uncertainties o Crack morphology (;ength, depth, ligaments, multiple cracks, IGA involvement) vanability for same voltage amplitude o Tubing dimensional tolerances (4) o Human factors affecting voltage repeatability that are not adequately controlled by data analysis guidelines o Variations in field crevice conditions (open, packed, deposits, TSP corrosion, smad dents, etc.)($) o Effects of tube pull forces on crack morphology and associated burst pressures (6) o Utillration of voltage measurements for pulled tubes obtained iorto implementing voltage measurement standards of this report ( 11:1101: 1. Minimized in the field during APC implementation by use of a 4. hole probe wear standard. a

2. The influence of dimensional tolerances of the calbration standards on voltage normalization is eliminated by calibrating the field standards to the laboratory reference standard.
3. Uncertainty minimized by specifying coil to coil spacing (coll centers are separated by 120 mils).

4. The influence of tubir@ dimensional tolerances as they affect burst pressure are inherentty included in the spread of burst pressures from pulled tubes argt laboralory specimena.

5. The influerce of field crevice conditions as they affect burst pressure are inherentfy included in the spread of burst pressures from pulled tubes,
6. Results as pre pull field measured voltages rather than post pv% voltages are used in burst correlation.

I

7. The use of field voltage measurements for pulled tubes obtained prior to implementing the voltage calibration requirements contributes to the spread or uncertainty contained in the burst Correlation,

NDE EVALUATION OF TSP ODSCC CONCLUSIONS 1 No difference observed between Zetec and Echoram probes on data acquisition for tube plugging criteria 2 Presence of support plate causes only small changes in indication response (for responses > 2V) for ODSCC specimens. 3 Smallindications, with amplitude of response approaching size of mix residual, can be influenced by presence of support plate 4 Packed TSP crevice has little influence on eddy cur-rent response 5 Large amplitude cracks, with oxide coating on crack curfaces, are detectable by ECT in presence of minor denting; small amplitude cracks, and oxide-free cracks e are masked by dent signal. 6 Probe centering characteristics, related to probe wear, can contribute to uncertainty of eddy current signal. 7 Use of ASME standard for voltage calibration, and call-bration of 400/100 KHz channel are recommended for tube plugging criteria. Calibration at mix frequency recommended to minimize effects of variation of fre-quency responses between probes 8 NDE uncertainties contribute to uncertainty in voltage vs. burst pressure, and tend to lower structurallimit for tube burst, which is based on lower 95% confidence bound.


i-er.-

,.. - ~.,. - ~.. .----,-r . - -. - -.., - -. - -.n--s....-,__ s_..r-. ,--m ,-,--v-

SUMMARY

OF WCAP-12871 SECTIONS 4,7,9/2,10 8 e i e,, ., -... - - -... -,.. -.. -.., -. ~.. - - -.,-.._..,,._,-...,..,,_,...,,-,.,,,_,,,...,._-a

PULLED TUBE EXAMINATIONS LABORATORY SPECIMEN PREPARATION LEAK AND BURST TESTING f

) i N Area of Froctographic Specimen O s s A l m; l> c ~ I M D a t 1 l V s ,fk g. 2.. j i I I Wag. 3.05% i 1, i l h!L Y 5..',

.'.[.;. >

I ,,d b.,- 5' ..$..,b. L f[.i-. .m

:..?*

' p x :: .,..,,,,.4. L. ,1{ e,Q t. c ( 2. . w

  • 4, s

..v ~; '. t .:4. ,8hrst Opening. .~- *. ,g g.. g...,. : l 4'. ;. l P*J',~7 'y..-,.j' I '; c,..,~ k.;- f',facture ... 4 ;' k a; i - 9.,~.,t. - %r. - ;.. + t . d.. ([;:. n ....n

1. '

v' l s 3 j ,.. s q.m.; m[. ), ,9. ua s~nd: r

- :d,idhi.
1. -

{ g, -W l J e t i Area A Vag. 50X i, i. Figure 4-5. Vetallegraphic cross section through center of the first f support plate intersection of Tube R4-C73. Locations r l examined are indicated by Area A through 5. Area A is sho<c in the loner phote:icregraph. W.264 _J

/ 5 g \\ SP Top l ( U L r i 1 l SP Dettem I i l s i 10 -20 40 l . ;. i c' r I i i Figure 3-1. Appearance of the burst opening in Tube R4-073 at the first 'i support plate region; mag. 3.05X [ f i ? i VQ. le74 i -~ m.- w-m---. - - -

O' 100% 69% \\ 34% 10% 15% 90 i i \\ 27% e 00% i t l. 1 3 Figure 4-16. Sketch of crack distribution and depth within the center ,i of the first support plate intersection in Tube R4-73.

- _ -. ~. - -.. - -. - - - l OD / l i t s bqs i l il'/ i

l f

'/ 10 j Sketch of Burst Crack Macrocrack length = 0.42 inches Throughwall Length = 0.18 inches Number of Microcracks = 4 (all ligaments with intergranular features) i Morphology = Intergranular SCC with sorpe IGA characteristics (width of IGA 0,012 inches) l i i 0.75 inches-l SP top I 0.6 inches - } l-Il { fl 1 hl i i 0.2 inches I 0,0 inches SP bottom 0 1800 0 0 0 0 90 180 270 Q, Sketch of Crack Distribution f l $1 Figure 4-4, Description of OD origin corrosion at the first support l plate crevice region of Tube R4-C73, I I 'I --,.y,w,----w-wy,- .m-r -,,,,m,, .+~.....-e.._.,-w-m m-.- .w.-

il,C 1-y lt i r.I g,r.. 4 2. ../ %, ~ W.. , v. +- i * ..),., .s ... '. 4 g!.,....,! n m s r.a. s,., (Sht,.. %.

13. g.

- m , \\,,:, &. / f qs- - _U % g*- l \\ ,,~

d. ;'

f s. 3.. N..4. l l Q 'y SQk. .e '+ A 4 j r .ye.r >-,; - T,i A et i t 1

y
y. v ~,

p - j e.. ly g,'g ,,N _ .J

  • C 2.

e @1%..,... $ } C'.._ ,t 4 ee-

9. c -

s ?. f \\ -s.<g ,,s. l 7 m. 1 ,. s 2;$' < : .,;s..4E ,, $,Q. -. + - u@ g,Ti' {.. l_ I r i i freen. B 3."sl m?g". - rr.u I i l m,- L $: t. .gf ,u ..t.w I [" ..'.' D A. ',, ..n

-., =

I l' l T .p.Y ~ I b s ,, t %',:.. c o ,..g ,a .l Yl  %. 3_.;;. > y f;- 4 h'$,.>f ;.;,.,o.:.- .w.., -, g,6... .S, _ m g;,..,e +. # v _ 3 kcom 5 y;F....p%::. ;lj,,1.. _.7%.. %,.p;s.;-. s'.. -l' '1 3K n . i. :. 1. ,,..r .s.,.._.. +,'.t .-ems. ...n I !~ Figure 4-6. Vetallographic details seen in Areas B and C (Figure 4-5). i o Ru.n 4 84 m. Wy.....TWgTM'NwfWg WWYS'-*-%'T"9-P'. ..'sy,.

  • v"e*'Fsv.ms.

'M9'Wu'*w=*"**et*M-ers'---"-'---"*-97* v --N'"'--- v"'". N'- ~ *" ' * - - ' - ' ' ' ' ' - * - ' " ' ' " " ' * - ~

I; awr i . d.: -,,.. r.,u g n... y. eu44% c+.g ~ q7 p.. <.;:... .. m.g g g a. i j j sv % : ~' .. n

J,. 7,,a*

.q g1: g :s .y \\ .s -L, ^ ty... l l kd ~ ~ ' - ..:s. m., ~ 45 ,y Q 3it 'f 1 Figure 4-1. Fractographic features seen on the large crack near 20* after burst testing. Areas marked were examined in greater detail; Tube R4-C73, first support plate intersection. i i i E L a-c.. w .u..

t ( i I a , I y; 'c: ' h i* 1 t 1, .,y v, 11 "{ 6 t .t m J} l ' t, (

i )

U'4 i i .i t I l ai l p r. 'y i .i@ ',ii;- .$$T4495%l[ N .Eh If,u r, N' ll l.. .i 4l 2 h ll t I q s, f ! -k, : t'

, o i \\

,. l

E{l t

. nj j k !Y ! y, _ p. 9: ..i 4, Area Bf^#'.'W..' 44_M. D i @ a'54I.t'3} d W'* 'W?:M Figure 4-2. Tractographic details seen in Areas A and B. Areas are those marked in previous figure. f f RW-2(461 a u. l

_4 p ~ -u n. m.a. n., uz j e.u c i o ra m.r 73 g ) \\ N~ = e c J.p..t J <= 2 k ,,. -..,...m,, n. 7 / { k s u -v E. '7 s=, 1 /

c., /

) i._ ) ii.. ...i i l i I 4 E Y. mm es ' v ro o m .., e o. n.-- " Fras'r " : ( l I L 9,j; 'lT.'Tl'! ~ ha

n,,.

_i4 E-_ t l g i f , em i i 1: a) Bobbin Probe ,,,i.. e ,, ErsumHun _ 't. an m6> = gn=E ',";a* 'l* n D *ra '--J ~ ~.-, .. r:n.r m tanwrF i. I i. g p stias (i.C eat.L fit f3 MIS A* * *l t w.** j i, 1, i ( r d =- p -l = 5, =- . % ~ %g. \\ 3 m ... in N awm,n. ui, nm j 'S x Y 4.,. h = ;n j y i o m..., u,s us. lf 3 s' K b) RPC [ Figure 2-30. Bobbin probe and RPC eddy current data from the f.b October-November 1990 field inspection of the first support plate intersection of Tube R4-073. The bobbin probe data shows a 2.94 volts amplitude Q'" signal and an indicated crack depth of 81% 'h throughwall. The RPC data shows one large axial indication (0.43 in). !q a 5 n

e..- a ,_._t*' u v. J u. _ J~ ~. s L..J e.., =,&_ . t.* - %, P t a i ~ t L. v l -...e e p u .ti [.g., f.(,.,,l 4 +a ~. + a. i.o,e

  • * *.l e <*tr e

~~ 's ,es s e,.a.i.s. t s.a ias f in H e SP8 8 % e ( + 1 ' g yg a. g f, * ~ + "* *i i- ' 1-l. . - p.e.-. d ',. l


.n..

I ._.de 7, g f,'. e'?, y%;. L*") j M,cy*.Q' Q,4 -,.,v, gr.y-., ** ' 3 w i ., q ; (,s.-s .~ el M6 (ie m atates is, 1 '4' s .t f I ~ ~ ~ ~ a66 ' 4' es

m.. t a j

t l l ,.... i.o e u i. ..s ~ j .j' a) Bobbin Probe

r. _ ir. 3 -
.- e m 1

r . _.._, o. _-- 7_7 3.. ._.1. _..... f*.1 ,.w u n. -f J.*.L' I titia' p.. ll L ' M

  • g'

- \\ l i.eie [ t...;.w!.*.". 4 ,.g ..\\ 't I s (i t. ,I v. EY ^ me . puuu ..s <j i l i I, 1 e 4 -. ,.,.l.,-. l u,, 'l / I u.i .... ~ a. i .i i5... Y. 1 '\\ i .s / \\, '. < s .4 \\\\ I i / Q, i r ~ ~ l' ' .... mu ..... te ... w' n n l I i -.., _ ~ .y l l l f ( } .l i .f. . T r~~ b) RPC Figure 2-32. Bobbin probe and RPC eddy current data from the October November 1990 field inspection of the l first support plate intersection of Tube R21-C22. The bobbin probe data sho,s a 10.4 volts e.2plitude l signal with an indicated crack depth of 115%. RPC i l data shows one axial crack indication whose length l ras estimated a 0.51 inches. I I l k g ,----s,.,,v---.-n,, -,.. -- ,,-,,.,---,.--,,..n_,.-,,--,-~- ,w,,,-e,,, ,,~,,,n. -w, ww c .-n.--------------------~w~~

I l e 1 1 I l i-4 I. 3 s. SP Top. !'i / l P s l r i j. l l i j i SP Bottom 1 ~ i .j

  • s i,

l t l 330* 60* ~ Figure 3-2, Appearance of the burst opening at the first support plate ~, l l region in Tube R21-022; mag. 3.25I L l l r = i i I i ( I 1 i = l. t ( i l I j PV.2647! l t I,- i ~ _ _ ~ -,y, ww w w w,,e

l g?~. 1 3, i l 00 ) LJV I \\ / "/ \\ / R Nf ',/ 10 6 Hetch of Burft. Crack Macrocrack length 0.50 inches i Throughwall length = 0.15 inches Number of Microcracks = 4 (two ligaments with intergranular j features, one with ductile overload features) Horphology. Intergranular SCC with significant IGA ~' characteristics (width of IGA 0.030 inches) l l t f 0.75 inches - SP top j t 0.25 inches - 0.0 inches SP bottom l i 0 0 0 0 0 l 180 270 0 90 180 Sketch of Crack Distribution f' P Figure 4-21. Description of OD origin corrosion at the first support plate crevice region of Tube R21-022.

'1 /, ( l. i l l i \\l 5 4 'A s 1. s l p. e t g t l )\\ t a r .._.c n.__.n . - t.:e,,u. x403 30kV is ' 3 0 g, 1 i a g ll i 9 i 4

l

}t . + w - ' i k 1 s .Q,,i \\ A'. ~ .'3 ,U1\\ ') g y 1 _; ^ :', e,74.22 b. 1.,3 ~ ~, "a. wig <2,a 1 ~- L' 2 ,.ib2L. 's l ~~ ~ l ? ' I i 80309 102 30kV r Tube Figure 4-19. Fractographic details of Area C in Figure 4-17. R21-C22. I 8 e .O s 1 """"*-"we e,

i l 4 l gi l m l l l I q: ; I u i l [) I l l + i j-j t

  • l l

9 l j l o s \\ I = 1 i 1,4 r 7

  1. II I

gy .i r .J l ~. -. '20* W ay,. 3.25I 310 Was;. 3,051 ll r .f i 3 w I f l j o i l' .,\\ ,U. j o I i g i i ,1 (, 4 l i i as I 3 o i 4 sw. .w 1 . bO k 3 /,. U.25X 10' V,.s.. 9 2T;X i

e-

, _ - a: A. : 3r .ts ~ q_ i e e a r i a o i k-a ~- _.--,..nn-...

l t I ,s. .. ;.,s.+.;& uec. *,,,, -v,dp .a s.

-7. w y(1-Sf * -

J ' ;. Q.p ** - ^ % 9 t'.c-- l s

  • ,~;

v it! / l, .,j g" e s.- e w 4 i .+ g. u.- y .s ta . 5 6.. s , ' - j M r l ,. $. #, h-':l ?. ."4' '. $}, *, 4 " s t.e-%. J g .r ~~G Wr.M.. < ]

  • s f.'.*jg.,, _

} i \\ 5 W'& 'U,,5W-blf'..h.'~. ^' ., o h..,..-., . v', yi.'. ; "' " j,3 . -..1% u. .A4 c, vw f.n.k.w /.stA p. '

m. ar.

sr .g. h* Figure 4-17. Fractographic features seen on the opened burst crack at 330*, at the first support plate intersection in Tube R21-C22. Areas mar' sed were further examined in greater detail. i i ), k k e ? 1 c 4 I ) m #.

  • te._ I*?*%
  • A *D, _#l3 4

'C-1

.y ; f I r 00 ) ,.y s) , 7 10 4 i Sketch of Burst Craq.h { i i 'i Macrocrack Length = 0.37 inches Throughwall length = 0 (78% throughwall) Number of Microcracks = numerous (ligarnents have intergranular features) i I,j: i Morpholog" = Intergranular SCC with minor IGA features e f. (Unusual spider-shaped crack distribution) burst opening k, L location

j

%f SP top ft O.75 u ches - il i 1 9 5 li ( -oI' i ')<' 4 L , t e / i 'l l (- s 4 j i i I i, . :r.- SP bottom 7 0.0 inches, l 0 0 S 1800 2700 00 90 180 i k Mch o' Crack Distribution ef Figure 4-28, Description of OD origin corrosion at the first support L plate crevice region of Tube R38-C46, ( h t,

F I \\ f 1 i 1 ,.,, 'k. r.~~.,... ', e 3, - -r_ l. s . : 7.. ,e 7 g n. s x.* .,... <fg \\,,. g av rs. ~. s t _., p,/ z a ~ j \\. !n. '.rr p' [ a .~ i %s /, I 3 r 8 iP + '.f ~t t g y-O i g I s _-(;.&j'\\_ y .,- ( '. p y ...J ,s (d*x r 7 .,1 'Ldr b c 'l '.; ^ ' < T, ...,d %:,i;h'd.'f.> 'i - r, g s. 3 . -. f )_ ) \\,. i_ f j , <'?.,,. - -.. - *. -@S. .q' ,?.. J.- s y. - o f ..fg.. ....,. 4 ? ; l . 1. ) W! 3 f, t - . ' - Ij. ;. C,j.e } }g-w't,, w.. s t ~ \\ r i

af h t : ' 31 - n g g.

.t. 4., l +-w,.., .'ilt' = s>; J i t I I i I Figure 4-27. Appearance of the OD surfar.e at burst opening in Tube P.38 - C46. l l 1 l I 1 l l 1 l l l I I E I m

E/ I l l l + i + hr gk'.

  • l

, s g.~? ' 'qf

  • k i
\\ ;;'

j . G.t y r s. u j y.. y o a .g-- ; - m y s l :l o l ?

  • i e.3 k

GA ,~ 1 Ad j'. o 6. f: j OA i 4 i C D \\ s ,a 6g t !l -o U i .no$ j un I ]CC o. D we d ',? I i = ' N, i 4 g j .N, t 4 .,J D V .i j i as,, l e Y' E $ sts. l i d PM-26501 m ~~ - -......_._,...,,,._...,..._.. _ _._ __ _ _ ___ _

c.r.. nsss.s i Max Depth Max Depth Near 90' Near 270* I % Throughulli (O L 25 ts i;, Minor 0D < 10 9 Axial Cracts t l 5 10 7 'q j,I SP Top 42 22

  • a 75,,,

i s

  • 47

$E50 62 ,, 't ,j i, i r 32 45 l = ,I 8 E a 25 g I 1,,' 5 52 U ' '. a0 SP Bottom 25 40 l l -a 5 l l i 0* 97 180* 270* 360* l l Figure 417. . Crack network location at first support plate region on tube R20-C26 HL l l _.

i 00 IGA PATCH ICA PATCH 1 d 1 1;. ,y 3 k 3 1.. ' b. ~ I 20X I IGA PATCH IGA PATCH g 00 l

c:

.g.' 'i w v. y. '? %? ' ) 3 . 1 s,1.. h;;.,,. m .t .'g - .y .I ,.,w. i $0X 4 4 i Figure 4-21. Transverse optical micrographs obtained just below the circumferential fracture at the conter of the support plate. The circumferential location is that where the deepest corrosion was found. The deepest axialIGSCC is 85% through wall and three IGA patches are observed: one 43% through wall and i 0.015 inch long, one 33% through wall and 0.05 inch long, and one 28% through wall and 0.015 inch long. The axial IGSCC had IGA aspects to t individual cracks. These aspects can be characterized by ratios comparing t the cra$. length (depth from OD surface) to IGA width at the mid< rack location. lAV ratios vary from 6 to 18. Plant L. R12C8 i

n a s. n


~+~---~-a.---~~~---

-. ~.---n- ~.---~~~.- _~ l i S I I i j 1 >, r). ; n l.. .,.s'. > n. ..s. 2.... c,- 1.'...,,;.. y > }., i ,g d s.. 0 1 r 1 s e il / / M / l h N. .a f q l-S) l~ p J4,q,y rd ~ < o dJ ox;a us d vv ncf suns, Mr, i 9"" i <w f${ lU

QA=2._ee-ip_A.,.,,4. - - -5me-. 4 gema= .-,6.4h4A-.-- .a,-.---msL

  • 4Aen.A=

SiMe' W4==-64-s4-==*-*i.*M->tJa62,e. 4 e. do iE8de Jhd.<--m-ew-i%#<-J e asse a e h4-m&==msA.a.-Au%-d-en.4a.-e.am.s.- u semD pyww 5 e ,+ g i 4 4 6 4 a 34 ~e 44* \\, 4 w. -,/* , I. Vg ',t :s .. ** g. p. w g- ' =. 4 2 f g,

*J'O '**

8 ^'

  • 6.*

' ' i'

  • 4 1

- f"*. f **

  • 7..g A s* '.#*7..

,V. .3 ,,i ] k? t J l - * ,,S .,,e0 ~. ..,f. ". ' '..,. *, - i ~ .. lj,.' '. f z f. m..i. ,. y.,. ..o, ., e r,, - -,. i c.,.

p..

s j,, -. j. .s. i - g.- sk r,%,.., - s. m *. ". .*.. ',.r..

  • ~ ;p

-V j ,+ =,- %D M '88*. a % L. .n= .s T*" 9 b 9 \\ i / ~ .2 l 7 p .,,i. -. v t j q g gT 3 J c. ^Yk . I -~ - b., 1 5

z. tra)

T. .a W,., j '1 MA c. s,.. m .:s. 1 f '. .4'...,y ...,2,,.v.;4, - hyp,'t J., ".'f t - +%." ;;, $.. .r G ?i' i .f, e * !.*' a.. v, s %., t. ~ s ' i .e t. n." f 'P(, ';'-y > *.'*...; A s.4 .l +.g..c,) v -;4 g *.s

4. q. 4 E,:

e.~. . w e$+*.n < (c ,.. s.-w -.,..._ -.. s,. ?,,. ;, c l<a. . =, - <>,4.~. c. i,... e c. ' -- O W,, e.-* .f. ( r. 4 .. t .g.,- s% =n ..ea 4ep*, as m 4 1 h# i i / d I t l 4 ElfWM f () W ] c-w. ^

4-A,_.m. e e a m 4,n a Ja s D-Aum-s.-a m.d an -4 J+--&*--.%=r.aamheEmm-J4-md4-*- " 44 -MJ.----4m=8E-Md.5 .,W=a-*Aheen-ele-Wi,D 4. d e A h. J w44+,Jhee+-e.a-me-w-m.dA*D en_hdJ Ma+4-24&&W44J a4_d_A a 1 O e q M g c e 0 I e s 4 s ~ wesW SIC s...a a 6 e g,g w w.d.a w.qia% % % % % %.,p g47.r-*"J:;ws,%,< Q#, s sgxx %...p,. 4. w+2 - -,... .,y i l ( l g g %*4 g v: i ?,~. v s ' <,*. a..y A., d,. 4 s i l l pp 946. oWA FOM of,4 p o&ws 50/ 2 2 W S 1 l / )

' F i I l l l l l l i 1 i 4, t, d. 1 l l l l 1 I i i r i l l l l 0 Fgure 7-1. Schematic of Model Boiler Facility i C.

Table 61 THERA %!. AND HYDRAUUC SPECIFICATIONS Primary loop temperature 4, C, 6 n Primary loop pressure Primary boiler inlet temperature Primary boiler outlet temperature Secondary T at 5.5 MPa (800 psi) 33, Steam bleed Blowdown Nominal heat flux WI 9 S 4 e

J-AM4WfM,,4_a_Ar-2 2*ht.ai. A-4 p-+6bM--me5-hed $ 4 + Wh.4 A N 2 4 M M+ w 4 M A4 +44,4=mmeb+4-MWs-44-,-e.J4-'**44m -4 r Md4.Ja+ -- swh

  • JL Ahha 4 M D 7+4n#a A s.

g4.hu'sa 6da b .J,.5h -4 .=4.M.44 ._AA-re AJ. .Y Obd ' N. 's 3 5 ', :-;% ~ i Q ~;..S ",. ag*{p .,.'.. g. ~ a ,A S M '* gym + ~ - $4!renrF ! i !3s t eg. N .,4 Y'. ..n.. 1k... } h 'M $ k h,h$ k !'1 M, i h h ( s % Qg,. ; i. g M, he A @v st 1 L L em v ~~ a, -s, c-IN N1b. ,o 9 2 M; y,.. %~ d 1 ~ ~ k .yY. Wit *v 05 ? $$ Z .~ s y s osa b SGw Mwu /bh. op 19 7. -p-n-

. _.. - ~. - -. - -. i ,~ 4 ., a, . Ji ,6 d%: ] h

(-

iI i-i + i .k, 1 - k. .. C 6 p

w. :

...w y,.m ,x 5 LG 6. - ~~ ~,, 'q i^ .,l .~.:,

W ~ *. + ' -~

vn A :. . '.',~. m. 3* - g.' j e4 A.y.,' A. % ~ v.' ' {,5 i:5' g I,I a.:'- pi-q ys g :'a-M.:' f 3 ^ W ,;<s.g g ' * ~,W.R I YL; .) ~

  • tw*

~ Ry " a _a ~ q.... d.. f , 'N aff %,d'4 -: ov.d%?CM y.M g, .p, w +v; .u ;.m.,..,.. w *?.3.:. 7% 42 v 7. Fi; ;:. e croecs i i j,f ' 9 ep&ws v pfume ~

_a. -am.- w,- m__m.--------+-assi.-4maa=--am.m-.a- - ara m-m assa-w- ..-u,44aMe-- mJum-.m-me..ms.haMnams.F h Jew e e.*' ympg, e l l r b o \\ s 4 d _ pf W ~ \\ f e)3,. 4v t/ SrM ~ 47"1(%yN_f,vp.7 sprem

y A.

' '~ f \\

c l

y .s 4 N 1 7 ) Ai i g W ~l s. t 5 a e g l -.. ' (s g v 1i 0,, 3 r. s ~ '} l .. As ) p l I-sf //0 M .' f x t "RlM O T ~ ' J l 1 %d_ -- ( s l~ s, N 1 Il p g \\

  • \\

' / 3,9 gji 4p%. Qg4-.#,, ; 1 f ws. e.;.p...ms :w.w. _ ;,,.,.g 1 s s s- .N l s g f I E .,2, hpI g g 8 4 [ f l SEM FnnrocrupWC *F L qier cnacks i;, wo srew*> s7n caem e i. $1AGt%. %vbt*4 set?ChhtD1 $"D W \\ ) $ 6/ w tet? T V S E. i .. -... - -. -. --..-... -. - - i

,4 -"M me.4W w w 'J.L. s dd,ey wed.w--- p__-.--A-- w.-wey. ,_are,., l l I l l-i ca w )1t*kVN I i e i gia# M4 i. wm 1 ... N. % 4.:* T N p %, q:w,:,,,,. l .,s. . +. #,s... w.m.,,..... ',,. s.. t e h, y.. yg;. ~ e-gg w- 'N l -: 3 ' l "M g L e j

.e.

4 e ~ do MxoPn) { (co<cAc ykc i

_m 44kmJJ.m. net.,m A w 3E. Jipad.4 4 4 4d.2 .h-44*F_NW.w _ apanammish-wWm-.P-w--. mea-vism-m,='4-.a-rss h p-wsw--rw---- = - - - - - - - - J o> Tv M.. i

  • - N I

[. i ~ x l a.. l i '\\ l 4 7l l gess-x =. . ~... n .s s l t l WW 5 ).: .s i. .g -. Nr- % ge;;g*g w., + sp ..a + y..- . Q ,3 s,-. c-r- s t.4. - K - I jl f ',; 'N &,I { } r. 'u j 4 '1 ?[p N'4s / i,- g kd' .I - f f e

ww; '.v..

4 Aa4.' f ',.,.m'. - t l / p'i4; O!n.: 7:. n...' "?i... +. - ,,v. ~g

?

7 o. , g fr MMM ~ i .D:. w:@~ ; - t g [ w.-. 't i a /, g. ! Je,, .A a s . m el?? l ) l s 4 I } ?' ' ^ # a l J e rurGy 3% e 46 4 a ....-. -.~ -..- - -

li, l 6 l ,1 Table 9.1 Summary of Leak and Durst Test Results 9 } J a i l 14 I I .5 f l I I s I i i hWEmWF 4 -- -emen.

~ 1 t Figure 91 Burst Pressure Test Results versus Bobbin Voltage g; ~ 1 .o %~, 4 e. L., J 'i s- h 0 .t 7 1 4: h fx r_ lc 1 1 P 4 e' D v I l 4 L I eminui 4 1 ..e. C

Figure 9 3 SLB Leak Rate Correlation With Bobbin Voltage i ase -4 a tj s [ l 2 e bei MI On

Tcble 3-Sumary of Dented Specinrens Specimen Dent Average Radial Exposure Friction if/75 Identification Voltage Dent (inches) Time (hours) Force (Ibs.) 4+rc -S Trial _1 FAT _1

7. 3 0.00037 24 FAT _2 6.09 0.00030 24 FAT _3_

12.11 0,00061 48 FAT _4 12.0 0.00061 48 FAT _5 4.55 0.00023 6 -FAT _6 0.00 0.0 6 FAT _7 9.43 0.00047 24 FAT _8 17.42 0.00087 48 FAT _9 3.40 0.00017 6 FAT _10 2.50 0.00012 6 FAT _11 2.75 0.00014 6 FAT _12 BW 1 14.67 0.00073 24 BW 3 6.27 0.00031 24 BW 9 6.38 0.00032 48 BW 14 7.03 0.00035 48 4 9 4 =m

Table 12.1 Model Boller Specirnens: Test Data Summary i Model Burst Destructive Exam. Boiler Bs5Nn Coil RPC (nakRait h

Press, lencth inch th, W y.g!!s % Doo$ h # Crn&s N. On AP SLB AP d

h ThnwaH i ~ ~ 1 500-1 2 509-2 3 509-3 4 510 1 5 525-1 6 528-1 7 528 2 8 532 1 9 532-2 3 10 533-4 j 11 535 1 12 536-1 13 542-4 14 543-1 15 543-2 16 5434 . I 1 17 555-3

18. 557 1 19 557 2 20 557 4 31 558-1
j, 22 568 1 ll 23 568-2 1

24 568-4 j 25 568-6 26 571 1 1 27 574-4 28 576-2 29 576-4 For specimens without throughwal penetration, maximum depth of penetration is listed, Destructive examination and review of RPC data shows that only 1 crack has a significant response that contnbutes to the bobbin signal. Tubs not burst tested due to physicallimitation of specimen. I s

l i 00 l A N \\ \\ '\\ \\/ \\, ID \\ '\\ ' Sketch of Burst Crack Macrocrack length = 0.44 inches Throughwall Length. 0.35 inches Number of Microcracks = 1 to 4 Morphology - IGSCC l SP top 0.75 inches - l T 0.6 inches - 1 f O.2 inches - SP bottom 0.0 inches - 180 270 0 90 1800 0 0 0 0 Sketch of Crack Distribution l t Figure 10-10 Sumary of crack distribution and morphology observed on Tube 571-1. i-mii--

00 [ 10 Sketch of Burst Crack Macrocrack Length = 0.70 inch Throughwall Length = 0.52 inch Number of Microcracks = 5 (ligaments have intergranular features) Morphology = IGSCC b SP top 0.75 inches - n y( [ I 0.6 inches - ) j g 't y ( l l i f ri Ik lI l J 6 I a O.2 inches - ( l ( g { I 0.0 inches - SP bottom 0 0 0 0 0 180 270 0 90 180 Sketch of Crack Distribution I l Figure 10-25 Summary of overall crack distribution and corphology observed on tube 532-1. g

~. - -.. -. - - - - _ - CD 4 ID T 0 Sketch of Burst Crag _( f.' r 4 Macrocrack Length = 0.75 inch Throughwall Length = 0.42 inch Number of Microcracks = 2 (separated by ductile ligamentf) Morphology = IG5CC i ?, t;o h 0.75 inches - sp top l1 ( l O.6 inches - e d f If T j h L, i 0.2 inches t \\ 0.0 inches - SP bottom 0 0 00 0 90 1800 180 270 Sketch of Crack Distribution ) i 1 i Sumary of burst crack observations and the overall cra, Figure 10-34 distribution observed at the crevice region of tube 555 l

  • d i

w l

00 's ID Sketch of Burst Crack q N Macrocrack Length = 0.30 inch Throughwall Length = 0.22 inch Number of Microcracks = 1 (no ligaments) j ,] Morphology - IGSCC .,j i s. 0.75 inches - SP top 0.6 inches - { b ? O.2 incl. s y k 0.0 inches - - SP bottom 180 2700 0 0 900 0 0 180 Sketch of Crack Distribution Sumary of burst crack observations and the overall crack; Figure 10-36 distribution observed within the crevice region of tube 576-2. j

00 f '). l / D 10 i $_ ketch of Burst Crack Macrocrack Length = 0.4 inches Throughwall Length = 0 (90% throughwall) Number of Microcracks - 5 (ligaments have mostly ductile features) l Morphology - IGSCC ( SP top 3 0.75 inches. 4 0.6 inches - f'; q. j l' a .i

\\

I '.i' 0.2 inches - ] 0:0 inches - SP bottorr 's 0 0 0 0 0 180 270 0 90 180 Sketch of Crack Distribution 4 c Figure 10-8 Summary of crack distribution and morphology observed on L, -e' Tube 536-1. , _ -..., - - -. _ - _... _.. -.. ~ _ _

GSLEAKBURST4 19-NOV-91 10: 33 Page i NORMALIZED BURST PRESSURE VERSUS NORMALIZED CRACK LENGTH -S 4 CD Q. LU CD I (n in til E I t-i I (n ' El si O! O! W: Ni 4, I '. E' O' Z t D l ~ NORMALIZED CRACK LENGTH, LAMBDA O

i ll l? .GB03 CRACK 2 19-NOV-91 10: 30 Pcgo 1-BOBBIN VOLTAGE VERSUS CRACK LENGTH -S AS~~ 40-- 4 N J O> Ld 0 <C HJ O Z H CD - CD O (D NORMALIZED ~ CRACK. LENGTH. IN.

GIGA 4 18-OCT-91 16:37 Page i LATIVE BURST PRESSURE' VERSUS RELATIVE DEGRADATION DEP 3 e C 3 v1 a.' t c' m; E! mi C' D' CD : -) 4 E x; I f i i e J ~ ~ RELATIVE DEGRADATION DEPTH. h/t ifak; kid 0$s? S?cCM/ ?NS ~hyne 4 yrekke MpaA>?o M34 3

GIGA 3 17-OCT-91 12: 21 Page i BURST PRESSURE VERSUS UNIFORM IGA DEPTH .- 1 9 H U) O. LU CD U) U3 E a. I-E2, (D 'l I i 1 h, i UNIFORM IGA DEPTH, % 89ae [yy y & S;5;~utke h55US J a n r=e w w.

i 1 I e I r l i l [iguro 9-4 i Durst Pressurer.ons'ation With Bobbin Vottage

  • l, I

I4 IGA Specins.i lgrst Test Results Indoded l 4, M i l, W f q c I s ,1 = h + .X l B E! l E l 1 = ll. 3 O 4 a 1q .i l i ~ ~ ( i 1 l' i ll a

hJ>,e. .a h-4,--.4 A---mm.->=-W.h heb44+4*.A J44.,e- ,-am..4--->% a ma--A - e 4 ase s- - - - M mn_h--d--AaAJJMdaamM .*-4m.m_. l \\ D ~.. ---- 1 F-i* LD \\ Z W J - U M c T E o m G. E o (f) v i r~ w l W l Z I-O -a D H _J i W x e r a w u l W C h Z Z u 1 0 C o w N F-- O w- ] l C \\ D e CD o l z l 0 W N H ._J EZT t i O 28nSS28d.LS8n8 OBZIhidW80[ Z CSid8 d)

I UJ d r- ] W W LL' 3 CC M O_ m E5 F-d CI mw

  • E e

J g' w co N n i ]C i {b UY a F- !E ct C5 d ._.Jw u Dx d Ut __J '" C O U@ W> (f) L L1J IS>i '5BnSSB8d 15808 1531 F-- I

ll 1!1 )l c i k j. t 1i E' R US S ER I S P K E E TT R ~ U SO S L RS SE UH R T P BP ~ 2 E T 6 D S R e OL U r ug B EL iF U ~ F D TM ET D R fLE LU LH CL CT R I C LW IF 00 C6 1 SV ~ jb S E ~ ~ x UED)U Dm Um3m Uw& n L u}}