ML20092M947
ML20092M947 | |
Person / Time | |
---|---|
Site: | Farley |
Issue date: | 02/29/1992 |
From: | Whiteman G WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
To: | |
Shared Package | |
ML20034D266 | List: |
References | |
WCAP-13222, NUDOCS 9202280246 | |
Download: ML20092M947 (73) | |
Text
{{#Wiki_filter:...._:..~..,. -...._..:_.... _ _. .9 1 -W'~ 4 ' .'*s = ~. c. ... _ ".., f t..s .4'.,. s,,. s , l f.. ,4
- .,';. =,,
.g. g _g4 ',, '. ' -' yB,.
- Q, A..
=,... } 6, .c q _ ;.......,; : [ 4. .:.- t 1 j ;, d.- 3,., .. '. p, A[,,.,,.a
- 4.
- ,-,
...,'..,s '. 9'/,f, 4. ',$ *:. a
- .. -, e, r,
1,.. ,,.....(
- f.,
.;..* i g.. * :, : s. .t,* *..,..':',.. - ..y t ^. ,t . - 3,:.,,,.,. ; - ; .l,' s. ,,,j'.,
- e y
4'.,.. \\_,,A e * .i .,'J .s. E 1 4 e ,l_ + i.. + y-S, '. h.' ',* ", $3,'
- I a, V /,, # :., *, '. p 'e *.*.
'5 9;. ..,,l,.,s. -i 4, i_.:,. - v a. ,'1. *, /, *, J, * ' a g'.y*,. g. 7 g
- . ~ l. c ;.s r " i. '. ;.
- ,'c.?-
.s ..e } 4., (n.,, Vi p.,,2 J.g a,.3...9 i)s ' y ' c),- r.:- s *ef.*,f y. w..- 5 t..,., c. &. ;. ;
- 91.,. c,
. 4 **,,1 g 1..A,a,s.. -...."~.n.:,,, c.. -* :' 3... s,. =,. - ;; '. - 1 $ *.<' Q,s*, - , sy .}.; .3 :, 9,. s 4 's.e .'w y +. ,3 s r s 4 4 -f .......x f n, ,4 2..-.* : ; s,. :........t.i. .-.s .r
- vs,',.
,, 4 .'.s q .q --R< 'p. - g* d4, .i f,
- ,, b,y h,.
.e I
- .:. ".';;;. p a y.. e.q f
,';"i *:.. l, ' 3* '+,...k,- ...'r a h. .,' ' ' ; #,[ *.. y,.E !- { .O.Y., y ' 'r ( Yb.;f yNQ /,; ?,,$.g.;3
- [. -
9,, ',,,, -' s. .,A.'.'., .-..'.s .,.. l.J *., ;..j<..' %.b.R l, ?; ' }'. .s Ss..,;* ..e ., -.. 4 %.. -.. - 4,,,. ",','., ( '.. ',. q,,'.f :.f.' ;, lf ', y :c ll,.]3 4 [ y,p ?.
- f s.
3 , *.. "_L-q,, ,\\ y,.,. .,.. ; ; g,
- A;)4,
', ;. c P*, p;,',, f.g: 'i v. .,3 ,1 s.,*>- ,e .=;,.., ..,.t.. ,, 4*. . g.- W.....e ~ .,z ,. /* {. *...,,,,,.,.., . ; ', q.,f* i d;. *.
- f,*
., %, c 'e ., a '. ~, s, 5.f. .'....i',. ; / ;;s..
- e. <
,.." +... : t...e......., ...n. ,ag '. ..p,. m j, 9 : : }q,,* n ..,n........ .j s t,. -.,4.-- g, g .,.-,,, <.., ;. g. r J.w n .= - 5: c...<. c p,{ g,3 m, ,,..,o.i. y. s.v T..i.; a..
- v.......a.
.s s y ' ). .,o+ b g,...... .. -g .,~ ; < e,. - ). _b; ?. .,e '.~:e,..; n,; + .$\\.v.".., .w.
- .\\
... si. b u. .....,, c ;j,,+ A.;ib ..~.._., 77- ,,,,g ..G!, r ..-.. ~.:....,.,,',...:e,. y i,.. .4 j . i.
- -. y 3.,. -3b.,
N<'r,, y. c. 1 s 2.
- 3.,.7,.3 g
,.,. - :. - :. ; y >,. :...:. ; 3..., :..%.. - ~ p:,..,.3.,;. .;.'.......,. g .c 7 e-n. ..t,....$,.( i,3-s.:~.- ,,.; o ..4 ... *....1.r 4;, ,? ' s..S t. g ,7 A .g.,..... e... ..%.,,. -,s. f.s. .. n.... a.... 4 m ac,.ag w,.. w. e, l.. l f. ..r- { y l., L l . _l ',, . s.-. -t :,.... j .r . q;. '.g _.,,.9, .. o. f;s.. y. c.w,. ?, . - u:. 1. y;g,my. >: 2 [.1 . 7, f,,;... ::.t..* *.,,:.' f.:.'.,..'. _. ::.:n.W. % ;@,,, ~.,3;..l,;f.,.l&.%....,. 4,. a,f.%y ;. y,y, q. z; t u g. ;..: 'l>;;;,'..;;_'.y_",,L.;,.' .... m. '.1 ?.'..' ,b. % f::. '. J.3.. a.m. ',=f.'.,','- n.. ....e.,,..:. .. e, !/... ; ', }.+.,, s s i..,'4.- $;,..',, ' f;*J j '* u ? '**{ f,;,.,.
- ' _ F. ;.,.,., 4
"-., r c.x
- }'
S.'- , '..,,. =, - .i
- ,f',-
l.- -,9. *'
- ..',.--.i s,
.,, { ',, i.g
- z.,,':.
y, L r' '4 ,,. w-s ....,,g),\\..',
- S.
f..p s.- - s.. ...'.o,.., );. ;..'.., -.7,., q;.-.'.1., 4 - :.. f. -,.J...j.... .g.. ' a c i. -. '+ ;, .s ...,g c,.. ^i 7, /, ' f...,s : :, - -.. <=...>.....i,,, L,.;. V,. c .s' .,.,.~:.,.s -,,a g.
- s 4
- .3+
.m.'.-,, - F (, -. ',. ' '....-...;. -, ., =. y,
- y/;,,..
,...',.a,.; .g ...t. -.... ~.
- g ;' #, y.,...
..e - - s: t 'e. p .1. ....-.,;..-.',.g
- . -,..
- +
,y .-..... y t.' n:. t . i. ?, r '. _ *. :..~ m
- s-. v
..s L. .?
- . ~
.k..?.... ~.f., ; ? . - v .r. e. ',,,s.y> f}.*. 7 .. -,. ~. f. i... ..,1 .....r ,, f, 2, ;. :,,. ,7. .{., -..,o,- ,. 7. ; '.s.N.-}- '. ' ;.. i. J. k j ' ',. ',',. J... -.. i. g,o..$..'.,s [.. ' '. ..T '. * ,1 :.. [." I (,l 1, . s .l:. c s .o
- f y,..
s. r v. .%... ~ _.. :- 7 c...... s... I s. .?.. l
- ... > L.. ;
,,t... :. ;;. * ' }f * ,g... ,t ,l. '. :*,.,.;. Q. .,..., S c.. 2 3 ... ; s '... ,.;. 't' - ;.- - 9 ) .z '_ [.. \\., f. '. : *.. y
- 7-
.' :. [ - /. ; ~ ', f. _' '-l,.' ^ .m,.,, ...- / .p, 9 i,.., .,.n
- 3.,.. '.. -
- ~ * . '. _.: '. ',...:. *.). l. j, '..
- l.. ' [j.. -'.',,* ie _ l ' '.-...,....
~ e R' .'i
- '?
4,- /,. ., _ y... I.. ~i- ~ ;
- . ;..?.....y.
w a..... -. ; O. ; 7. . e ~
- ='
- ,..; y.!-
....,.. -. ; ~*_. ..,.. e, ..y' ,s -, - : *; ; -.... y..'.. -s. .s .c ,w s e.... ..g,; ; ,.O _ '... - <- *,l:'
- i.-.y I
-.,.{.5, ' '.,,: f., {s-2 :;. -'. )./. )..j4., 5.y f f. j.,.; ** /. 'g -s r,f.:,.. o,-. ,, g.) g .^ ,.1.... e *- ..w : ?, _.. .v..[ 3 ^ ' ' - - ^ . _-. t g .l? x d' h. +. '. '/. y - \\; y
- n.
'..,*.:o -.-,. u... ;. i,: t'l..;.,...s A '. '. :.
- &,l;.
- W
. y.. n.':2 ,l. ;) +. . y fy. 1 '.- .e . t ,_'..,.:,r',.,,
- p
? ..e )
- ll:l. f.,., z ll...,~,;'. :
\\.'..... i-l ; *;) b y i. :lf. ;, ;.. _ ; F ~'.;4... y.
- j. ^':..,....'; ' '
q ' - '. ?L u.... ...a; *5.. ..e,- .p, o... ,m. .t.,,.. .,s.7= : j.m....,,.,.....,..,s..,/,
- c.....,
g.. 3 g ....,.... g. s
- y A. n.,..'h.,..-
,,pe -
- 'r-c.....
i... -..,. 0 4 '-... . '. ' '.-.. ', f ..%.......(...13. :, 7 y . ; P:,., '.. j. *. I < ... g..,:.;...:. :... : 7. s. 'y. v;.... @ j.. : , j ..'.p > y. ? m:. d>> '. - ::.? g .e,*.. p. .,.....7,7..,,',n....,,....,,... x '. . ( y,,.3 .y
- w. y. g. - Je
,.,.s,,.-w,..,.
- j,3 '\\..; (-
- r.;'.
- g.pl u._ c ']. ;n..<,Q;. ' la. i L:' Q.},
3 \\ ..,..i..y+.,. M,g .-.. -, Y. ......G..... ; r ;.
- (. '.tv l;
- ,.fl\\' ' '.li..
g: .,s...- r fl'.[u.. j: _...
- l,'._ 5.
k' y Qf L g l l-Q ;- ),
- ? l L 9 ;s. q m_p; W.y; R <. q g,.'.
, ll'Q:.I} g,. a ap; n.c '1.M,-}1.l.Y),Q:a g, h.,; e.-. ..,. :...Q;.
- z. - YlO..w&. c.
'; _. f', s ..'? . ;! c.. , q..y 7,...".u. :;,_ e:;..,, e... g. -l......, y,._,.. r.!9 r.... n e. *, L ...g ug. f.p. c. %,.j ; ;o. '. "... f.,. g, :. 47 .q; ... +. pg; );c.n ~. u.- c. f. .3 s ..... o,s ' ? n.
- n..
e.. .v g Qfyyj;gg.iQ qVQg(z zQ_ ry 9;f 3.g;3.p. ;. ~. y,,,?t:. gy.( v.r g ... \\.:: y.qY .t .j .'q.?j;.g;y..%.Y.,;.gg,_ g:: ) i.Q j:.;, .,y. Wq!![:m:%.g, +.:pgfW Q.. n a.,., ,, 9 s q.a., 4 m p w a g., 4 a w y m.v.g,. p.;.c. w s y n.:: .: un
- m. g
e . e. 1
- w
--WEC -PROPRIETARYECLASSH3!, ~ ~ l 1 l ,q m my v 2 T s- ,. 2 - g e '^ .g.
WESTINGHOUSE CLASS 3 WCAP 13222-STEAM GENERATOR TUBE ALTERNATE PLUGGING CRITERIA PRESENTATION MATERIALS FEBRUARY, 1992 o G. W. WHITEMAN Westinghouse _ Electric Corporation Nuclear and -Advanced Technology Division P.O. Box 355 Pittsburgh, PA 15230 4 O 1992 Westinghouse Electr.ic Corporation, All' R10 hts Reserved 5 a. - - - -~ - ,,,,,,,,-.nn.- ,,e.e,...n_.. ..,s 0 .o,,,-n.,ar .m,,,,,,,,,, ,,m,
-A meeting was held on FcSmary 6,-1992 in Rockville,- Md. between Southem Nuclear Operating Company, Westinghouse and the NRR staff. An interim steam generator tube - plugging criterion (1 cycle) for tube support plate elevation outer diameter stress corrosion. cracking (OD SCC) for application at Farley Unit 2 was proposed at the meeting. Westinghouse presemations at this meeting included discussions on: 1. Steam Line Break (SLB) Primary to Secondary Leakage Limit Radiological Analysis. 2. ' Steam Generstor Pulled Tube Destructive Examinations. 3. Steam Generator Nondestructive Examinations (NDE) Topics and Considerations. 4. Probability of Tube Burst Under SLB. 5. SLB Leak Rate Versus Bobbin Probe Signal Amplitude Voltage. A copy of the Westinghouse presentation material is provided herein. 1 0 ~~,-e ,c
STEAM LINE BREAK PRIMARY TO SECONDARY LEAKAGE LIMIT RADIOLOGICAL ANALYSIS 'I a L .-r
4 muu .~45%4rA-4-e+-J. --J-++M-
n-e.---_d
-+J--.-,6--4-~-pd -rM, r MWieen Alam4_A-^ Asie
64-se&
era-- +,. 4 ea.,- +m E e i i RADIOLOGICAL ANALYSIS ASSUMPTIONS RESULTS CONSERVATISM y. O t -,v.. - - _.m
RADIOLOGICAL ANALYSIS ASSUMPTIONS INITIAL PRIMARY COOLANT IODINE ACTIVITY 1% FUEL DEFECTS (3.9-uCI/GM D.E. I-131) INITIAL SECONDARY COOLANT ACTIVITY 0.1 UCI/GM D.E. I-131 -(TECH SPEC LIMIT) STEAM RELEASED TO THE ENVIRONMENT (0 TO 2 HOURS) 2 SG'S IN INTACT LOOPS - 479,000 LBM SG?IN RUPTURED LOOP -91,000 LBM
IODINE PARTITION C0EFFICIENTS INTACT LOOPS STEAMING 0F BULK WATER - 0.1 PRIMARY-TO-SECONDARY LEAKAGE - 1.0 LEAKAGE ASSUMED TO BE ABGVE MIXTURE LEVEL NO MIXING OR PARTITION ASSUMED RUPTURED LOOP STEAMING 0F BULK WATER - 1.0 PRIMARY-TO-SECONDARY LEAKAGE - 1.0 SG ASSUMED TO STEAM DRY - NO MIXING, PARTITION OR RETENTION ASSUMED
't ATMOSPHERIC DISPERSION FACTOR 7.6E-4 SEC/CU M THYROID DOSE CONVERSION FACTORS - ICRP 2 1.48E6 REM / CURIE FOR I-131 l' l l BREATHING RATE - 3.47E-4 CU M/SEC l STANDARD SHORT-TERM RATE, R.G. 1.4 l
RESULTS OFFSITE DOSE ACCEPTANCE CRITERIA 30 REM THYROID (2 HR SITE BOUNDARY) (SMALL FRACTION OF PART 100) CONTRIBUTION TO 2 HR THYROID DOSE INITIAL SG IODINE ACTIVITY - 2.4 REM P/S LEAKAGE - 0.5 REM / GAL / MIN ALLOWABLE LEAK RATES INTACT LOOPS - 0.2 GPM TOTAL (PROPOSED TECH SPEC LIMIT) RUPTURED LOOP - 55 GPM i L . - _... - _ _ _, _,, _ _... _. _ ~. _, _ -. _.. _ ... ~.... -. --4
E.QRSERVATISM WITH RESPECT TO FSAR ANALYSIS THE FOLLOWING ARE THE CONSERVATISM OF THE ALLOWABLE LEAKAGE ANALYSIS (ALA): 1. RUPTURED LOOP P/S LEAKAGE ALA: DIRECT RELEASE TO ENVIRONMENT i NO PARTITION OR RETENTION OF IODINE FSAR: RETENTION FACTOR OF 0.1 2. INTACT LOOP P/S LEAKAGE 4 ALA: LEAKAGE AB0VE MIXTURE LEVEL DIRECT RELEASE TO ENVIRONMENT y NO PARTITION OR RETENTION OF IODINE FSAR: COMPLETE MIXING WITH SECONDARY COOLANT - PARTITION OF 0.1 l _,.,-:__,_<..-._m.._,,......,.m. ,7 -.r.,,..,.. m.,--,-. ,------,.-,.-x,..erv,--.c,--www-~5'+++ .. - -,,... -,.. - -.. -. ~. - _
3. DOSE ACCEPTANCE CRITERIA ALA: 30 REM THYROID (10 PERCENT OF 10 CFR 100 GUIDELINE) FSAR: LESS THAN 10 CFR 100 ACTUAL DOSE LIMIT IS NOT SPECIFIED 4 =
i P t l l l i i l l l 1 I U,"'" i ',,8',.,, ', " t,. *
- 1 t
e r l i e cm, ~ ~. s' e, . v. 'N .~. x .N c, s s g s h. .. ~.. ' 4e, S) 1 o.n-su 3-Bfa<cw!J, A 6 s /4 >s,0 + ,p,, 2 3 a n,d us 7;c< / f 6(:.44%A p?fM/N'W
<w .g
- y e p., y ~~ * ~
l 2.2 % (h'.*!~ t &z & as- >-x*. ,A A y.. + ..s r. 1. s .s \\' 'g*,,.' h l V ,p.-e s r n * *' l?.+ ~r~ m N'. a , o1 f._ sq ,, t. . ?,.%,' 4 l
- s a.
e,A'4.5
- ~4,.
w e
- s. f.. ',., j v '. f. * =t
. s,~..: tl*'.ts;s .. y.e I,*.'b:. I'6 ] 4 t- . se e .t. ~ # f',d;9), ;; }< '. -i' ' ) .I? d' / t. j ' ' '.... ;,.," i ~ ' 8
- ; R u. a ? ? )% c
..g. .I ,,..6\\... ' <,, f... ,a
- s..,. -
. ~ .o, o... ..u. ,. t. n... w. .,) ~~. 3.,.. q. r.. f :.' a o x w. ,\\ %em n ~. 3 _ _ =s. m . a._. s - i 4 \\ i l .a, I j ~3 p ~ 1 1 t. 1 4 f,~'Wj..%5xv-'M h fggh ,.I.'h i 4 .~:d.m.n... g.m...1. 0 T+/.p* -; q. w, 9:+i, by ~; .,7.y*, / u., a f.... 5 , %t;. e >; 2 e .. w. '. ' ' '...*
- e s,',* 3, g *.
V '. T# g .1
- y ?
't ' /. 8-l. ,g k*Yk$%$ir:l L'
- .ni$h $ Y I
J l { st i l I 'W' S Tut?r vsw.
i 00 19 PATCll !GA PATCH I 4 g.h.i.,. ? * : 'Yl' ,. ' ' ;. \\. .t .o..-.,' 20X = IGA PATCH IGA PATCH 00 a ? ? :.' l ,) .[.. ?g' . \\.. . y, .I..,... .. i.*, *.
- -{,,,we l
.s g l 501 a : 'I Figure 4-4 Transverse optical micrographs obtained just below the I senter of the support plate where the deepest corrosion was found at the 1st TSP of R12C8 (Tube plugged in 1989 and removed in 1991 and not representative of tubes left inservice). The deepest axial IGSCC is 85% through wall and three IGA patches are observed; one 43% through wall and 0.015 inch long, one 33% through wall and 0.05 inch long, and one 28% through wall and 0.015 inch long, The axial IGSCC had IGA aspects to individual cracks. 4 37 I
i I i l 3'O 4 + ,u h1 YA* I[y,,il.f,;$e :.' ;.ff iii 4ihp[N'a F6
- a.:c
- E,, p >
... f..JM.'t ") : ri 0D ..~g. l j \\ g.,'t,j yA7 'i i 'he ' h, I I%., '.N d' i i . ;'./s;FJ ,1 J.c ,,; %'is > i 1 i . j' a fWQ c,j ^,. O ? !,
- x p't h ag Q.' 'J i";(ir :.h,8' F-
.G6 i-sQ VW
- P 1{..~
{' 20X OD ..b' .f ',[. I i 'n,$ d~' ' ' v/'i 1 ,s. ,4., y s w w p. .4 4,b .g e s I . e< - ?* . m., n r. 7,% s. ,s 4
- e 7..
c . _ *3 .a. j - y.,..9 I f i g u r e.'. - f hial opt ical micrographs or tainen f rm the center of the l support plate crevice regler, to ite bottor edge of the crevice at a location where the deepest (Orrosien is believed to exist. A unifore corrosicr' f ront, apprcachir g hal f way through wall,15 cbserved within the crevice region. The section is believed to cut thr ough a regicn composed of nurerous ax ial nit recrac ks. 4 39 - 1
i s 1 \\ I ii j l <. 5P 10P j ] i. i l t l i-t i l l l <. 5P CENTER & T(NSILE I PACTURE j f i I l i figure 4-5 SEM photograph of axial fracture face from the first support $r eve t ha e ce st co ros on 0 nt rg a dydua$Icro L dg er cl obse e at s. 1he depth of corrosion ranged from 41% through wall at the top edge of the crevice to 55% through wall 0.1 inch below the top edge of the crevice. 4 38
I hl' ik I \\ Li\\';l' ;jW 'i 10 i $}(gish of Burst Crack l i\\ Macrocrack length = 0.42 inches I l Throughwall Length = 0.18 inches fiumber of Microcracks = 4 (all ligaments with intergranular features) p Morphology = Intergranular SCC with some IGA characteristics (width of IGA 0.012 inches) 8 SP top 0.75 inches - I l 0.6 inches k l l1 l il j I j jl I i 0.2 inches 0.0 inches - - SP bottom 180 270 0 90 1800 0 0 0 Sketch of Crack Distributipa Figure 4-4. Description of OD origin corrosion at the first support plate crevice region of Tube R4-C73. 4-13
i l i l l l t l ~ l i j .N l s l 7 a:,.: 1 Y-l i t i ~ l 0.* y j l h } I' l SP Top. ~ 's l i } 4 t I 1 i ,+ a .k.- l Ts A-l w ? l-84 { .t l 4 T t. r l SP Bottom e h >c r f-i ? e 1-x_ 330 60" Y- ,g. i 4 i Figure 3-2. Appearance of the burst opening at the first support plate region in Tube R21-022; mag. 3.251 7 e s. [ J. 1 f ~? f-l 5 5 i I l c. 3-8 A RU+2647: I \\ F ~e==-ww.e---w-. -ww. rwa-ww.---.-
- - - ~ - - - - - _ .'f l ] a '.i ~ of t.. 1 ,l. ~ l .c a,. 'Q i .V Wg Y)
- el N ')
'i ,oe 9 - jd 7 k$ ' '.- l-f3 aN -{ i8f ,)9 agQ a
- gw.o 7
-} car W
- o b0 5
a %.a 3.,..sg,; N he .( e ! %,' % V 45 .f! g cd >A
- p i,s
. W tt, Ej jj 4 .Q P* mH p .p .O
- ?,9
,k 4Ed. .3. .y a "i ) g*~ oaa -( q e.o e ~ W aT rj t 3 t. u l L,e Cea y ok n (b Y. a i; G G H t *. c *) u + r a te e.e v e.c }. e l k.'.*. ., e. : ~ aa n g m. y a( um .\\ k f:_ '.% n % a ;; 4, n o, a v3 ::(w,.:- V-y ua 5d b.f] {M r "* f .u n 'M q c n nu ,,a en v f *I
- i f a
.a
- n. a a W
- s. ma 4
'f4, OC* ,Wr te h a y c $ k o e ( { A 0,E y y ^ 'A J' Es. J > . o. h A,~ m N] ii. 7.~75 D ),'? W (g 4 i Qf e ($1 y s'h u*..?!2 3i~, 14 C, 5 j, 7 .(y ,) te .? t'
- l:
E r.5 y y, J.'JlY-ri
- ,f : ;
? - w . -P.'[*h, ,.o _ - --- I.l4 -J( 5 4 M. a, ,71
- 4.,
- 1; y -y,I ).f.- ,s, p F y 2 4-06 Rt/.76dH I 4 h -,.-.-,--,,,,,.--,--,--_,.____.,__.,,,,_-n.,,-.,..._..._,-n,.,,,,,.,.,,-n.,--,--,,--,--
,,,,,,,--,,-,n,.--,..
I t 00 Ml l t 27 m 10 Sketch of Burst Crack Macrocrack length - 0.37 inches n,.) Throughwall Length = 0 (78". throughwall) p.j Number of Microcracks - numerous (ligaments have intergranular I features) Q Morphology = Intergranular SCC with minor IGA features (Unusual spider-shaped crack distribution) s T burst opening f,);, location i';; SP top [Q 0.75 inches - k N o, T l (y [;1 /, {. il l- [ 4 j 4 j$p i SP bottom
- 51 l
0.0 inches - i 4 0 0 0 0 0 l 180 270 0 90 180 Sketch of Crack Distribution t Figure 4-28. Description of OD origin corrosion at the first support plate crevice region of Tube R38-046. 4-37 h
l l l l l l l 1 l l 0 /" KJA-h~ M 1hgf' ? l .M d y iI,3, y g),- ' f ~ '.. e- ? f G ' ' ".e! , /_,, ,l ~ ' [ ~: ,g ,, b eG \\& ~ . J, *L. w ,! m', [ A 3 (' ' A 3 e f?d. ~ g s {'? f I [* 20Pli 21KV 03 038 s l l 6400 WS 50% casnc /z'4Co.,0, 7#'F j
~ -} g % y r-yy.* 5 ~.=p.. r. ~ ~ [ '- s. Tf ~~' ~f^j., ^ t , f - w, ) )- . a.
- 6 3
,.a.
- =
~ : \\. Q /.. 34
- g., {
- 4 ,.1..)...' ~ u h -$ ~ ct - h. ~$ ( ~._ 3 y \\ s (. -~ ) --- t. k,' ',[; Y M) M
- 2. /' ' '
e.. ).l J k . K ,( ';* C 2 ^ ^ -f (* ]M ~ ~. _ g t. 3 y e 2...., d g.I i ~ , ~'- s f.. ei . L,N -f f i e - f,.,, .,-T-f**, .f .s .)r .j_yh>, 2/ 4' 3. s .: -r-si - ' ?..% ^.l ^ , ~ ' s1?'$.f*.. ;-, ...iL5 --~ .. y. ~ q. _p - .r . %>y.3 k. e '. l 4 ..' p- ~~ l$ ^ ~ ~ ~ ' ~ ~ ' ZI M11s Deep gag,33,5I 4 Mtis Deep, 11 Mlls Deep ) Axf al Direction Figure 4-11 Photomicrographs of radial Eetallography performed en a region with axial and circumferential degradation on tube R16-C74, support plate 1. Cellular IGA was found with little change in the cell shape and cell wall thickness at depths of 4, II and 21 mils below the 00 surface. Note that the cut section was flattened, preferentially opening the circumferential wall of the cells.
. ~ _. 1 s 1 i i , g.' ), [ 4.V. 'l,{,i ' g .y 2' ['1 y ,. & r.?:.~','u '.%c i il ' }[i , :['., M,q.p.,,,>>,yy;..'>.o N.t ' '$,3 *b (', ,('. e. .*i ,,f.,< ...; n q n ti
- . 4,., s..g.,
- j..4 4
, 4. I*-[ I- ',. h.' .e. . c[, '
- I
.. c. t y
- 4,,,, 4,
^ j I g.%.,.},i.Q,,. ... ~ ,,1.,..',"',,.., s c- 'i ; g 4 7 . ~.a. , W l : ;,.. ,y > g[L,y y.. .s ';.. ~ $),.M.. _.,: t. ' : ,,s., a
- '.,s '... J b.'.. j....
. p ",
- ... ' ~
,'g %, ; g [(' W.,,, i ' $ h, ;j., ' ", ' ~, >,..... > 4; M,'., { 4, g' l.. ,..,* [i f .a g.,,,,,. 3. .t a g r i i i !l ~ ~., _, p.y g.. L. g a t J$" d.r. [,., i i .. y, i j w s Q,,,t ' '.
- t l 4
4 ,,,. t.1" .}.- /
- L-
- .f.k ~.
Gl.'. ,y x. ;,,, ^ ' _ _ S:.g-
- ', c ;.
- (-
s s
- 7
- .!(
1 .4 .-l '.s + n .' g 1 , -) :; i ti e . v 3,
- ,,,, v.
1$e- .r,'*'_.. .. :- k k. m w i m. p, , c.t I I <.R
- ...rf. ;.~ 'N g g,.he g Figure 4 12 Higher magnification photomicrographs of the radial section shown in the previous figure.
Top photo 50X, bottom 200X 4-46
-em Wms.mHamm g - -m I i i i i 1 1 l i l 1 4 Y l ^ 9 l 1.y;e f\\. i I ...t n l e 4 9 J i 1 t e 9 5 ] 4 772dN.SVEfzE O2oG5Ec7/oN t met l l l l
l 1 i I .e l 'i f 9 /' 6 s I i i I e I e i s ..l l 1 I l l l.,^. l l 4 i \\ 1 Sect /ou ( i I 'N I i e 1 f f i ? r ',f.' g/9CaC + f { 0 6 MN* 4 4. o O **m, [ eo e i s .g l l i l ______.,_~....~.__m,._m._...-,_
-e. .?,[. 4... },.'. ha ( ak*. ){ :...A. g,. .c. t al Ii M.'1*",Q,*' G#*",* ..e .i , ~m..... y
- 3.. -
... y l ::;..'..... .. y..y
- e t,,,,.. -
c.., - . j,,,. :. e.. s.. r, m..
- c.. m.
e s j', y...:.,;2. ',...;.. .,..p. -,,. y. :c. f. t. e A. e-3... i, .p. s s,, . ~, . w . :*...a v :, .p. r
- .a m.
.e . u., s ,\\. ..y...... p <. r, i a4...... .u
- v..... r.
..<.,......<....t;. 4 .- j .,...a, Y ', ' N,. d ' g,.'., q.,' $.,.. .. e.,,.. [,* .4 ,, t 1 ,,{ j D,,. ' J ,. 4... ~ .y
- m. '. e-~. s.:
7, <h,.,,. '..., e, ~ 3 zg a f* '. ,1.. , w*t, g e*
- k. * *.,I r
[.' .g / M.,. .] U. c. +
- 4
- e. p
.a ,.,.. p ',0 .;-s ~
- y j
. f el* ii ',% o r, ' t* .g.*. ,oi' . k. 't . t t- . t.
- t..
- 1
/ ' j, ',,. ]..',:, - ' (,4.,., h,,.' t 1 .a l .e,. ..
- 4 i
'8 s O ,'* ' /, '? ... q'. g ', ',f i. * ' ' *,, ',....#$,**** .= M*-. .. !.* i' GT A',5.*r *., '.);. Y,! .*.,. ~ ......d, ..h.'. .,i. .,.i... W... m...,,ml.. y*',%. '[
- '. ; :i: M.,;...
, 4 M7 .....;g,- ..,g -l' g. 4 ,., i e V
- y4 s.
, g'* 4.! f 4' g, O .' t. # g. .s
- r et
, g, pe m.o s
- y
. g....,y . v.,.. Q. .\\ s. e a .i
- a ', yg<,
t \\ lr . g,,'(1 $ - C.p (CI k.,. 6,, i j.p.$.L',ghl g' r % '.., Q y5 ?. r's si'b-
- Q Y' k
? ? ',. ?. *. . * ' p. ',/. '.'..).,3. a ,c D :.*) J - ' ' '
- i t,.
,( J , f" - L,. ' <,. f . g '. e ]. e g,e
- .f,y. s >.t A ;-
'ie. i 4 ,"j f ,, f.g j a
- t. 7,..
s. .j. .se, 4,, I 1.t. .J g M g ' ' 'ed I. **. ' *v..) 4 ..N.j J. e ? e.. L ,.**' 4 e (.. pf.,,f=. + r. ( ',,,, f ' ',e 1,8 1,, g - '7 an.
- l g
g v m. 'h. *, ' f.h (' .NY *[. g., '*<'1s'.! %. lfsfy.,lll'.QQ,y.Q. ll tem,iit'll'. b'-Q<t }.),'q 4T s m. n
- p.,9,, n, rg.wa
.;k 44 ~ lb.1 +, ..<.n x. ..g-. m,<1 ,Tp. :t,*:g u. f q )4 -s. t.. <4 s s y g f a, n. 4; b -)j'?.],.f,i ~jp.f. l
- m.e...
.,...: o. j w 1. ; !. . c ,'[/ '(Y.'!A k [i / 6.< ?,l 8. M _l.l.i..' ? $,:,gl.- 98 46,...T.y N TL)El ,y
- . ',' f
-l: /.h... '.. 7.. I..r. I *. N*. ~, 4
- k.. '.
....g}
- 7.. ','f $ k L'+4..r'
- /.
- 1).*
' ' %v ' l 'l I.. gr.Y +,', t'** t j*. 4 ..'.*c*'*., i-
- . .s ' [",'. ' [{- &. Jij. -
1,.
- '.h h f
1 e N'5.7'i '3 [f
- fgf, h.,p.-N;.n%,4.0
- c. w,c; p,n.Mq in
- ~i.;!.QQJ
.c .i. a, - .,, s.v[. '1 f' ..e.*f *f,% h %, %. 'C,.:. I%. } f.'bQ}Q,f,.; .',.a -.w .. +* ?d. 3,,e$[ '.. n ~- ~ * * ' N ~ h.,,7 / ,4 e q 7,: %.h '.',. p,n.$.k.[ 7.% U-fj *(..fr ^ / h: jf4 99? w. m.., A J m. y,.. y.. v.. 4
- d, gg.- N }ir g,u se.-,
,,.. * / e e. s, ., '..'*'~.\\.,,,,, / ". '.,, g t *,'.,/ 1, M1T y70 '4, p. f *
- NY.hlyh e;h.$.ii 'l:%h
'*: t..Q.W 4, ....w. !,Y*, fg..;(nk,:= n .:,r a : w y'
- r.,* '/,. ' p efy..
. i, s
- c..- v.~
,io.' t.p v s a +
a m a _mm. 1 l d-Ae,. .s_.m..ua ) W: w s*.;l'.
- q..: q'%: %' %?^%
%g, J e-e e ....':: n. c,y;b ,,a v.- . ;.:.y ~e s
- yh,,,,,.' 9..
r.. ;.:.4 't. N*c.. .s.
- g.
,.? - e
- q't
- ..,.,*g.-.
,.g yv %;/Mg'+.3.. g ','.9,*,. .S,;. 'tf % (;' M., i qc~ s. ?
- 4 uW. 3.,.;.".,:c.,+. f ' ;",,. 't.",C, ' *.;. < y J..,.,; h
- u...
y. w.. ~
- n,
g... c.; s,, .\\* j': - j 3** Q*;<*', Q*.s .\\ - qa gy . :.. >.. ;,u w N,h; .r s \\. .k,% s , '*4 + g, ,.U
- .,.g
, 'k '\\.,,*..',- 6 ***4,
- g.
,.,5, og f j#* ['N f a 3- ,4 .>-x. 4k,- ..n4;- a ..<: P.q.h ;y t;... -l 3.%.'.lu..',[:; }.,.f f f...&. fj 0 w.s ...c'.. '. ) s~. :. ;s N,. j.. * * ', }* * *#*,. ;~ m. ,. r h.x x.... u l;., ;,,, % A., - i i.' / : as. *, + t.' 7, ', ~
- , ~
.,.1,,,,- .s 5% Q: 5/MU ' W ~ T ' , ] % g-I ; M'7, r m ,,1 %. 1 ti.<., i.j 9 Y % %l.po.;:&fh; ' i..'? {w}dy$ f @m.,M..h, 9..e &. l ^ 1 LLJRWINK 0 i.,,, g.
- p.. '
][ yng, et u,k,' gg" g. 8 h.h:)@.Ykkfh{..^ k.4.Eff mmm s. N.... f*5 kWh ?'.k. b,.;I~Uh.,4 9 d,i.t. M.J J~ ' *,,0. ' J t.<- e ' N..,3 h.'k.) < kh.' { h: fm B5 h'. w. 4.* ~ / / (. - J. DOEL
es. -m l i a v A 4 s .\\ ) y. Q vf,, f / V e . 9; .,. g.;.g - =. s-9 r 3 l '., w,7 e r> ' i .) g ' f7'jI $.i l I N, /: l c/. - a 4n 5 1 ' :i ' b' qplQ 9 ' ',3 [fi, 1i.,A, l' t,,,.\\ 1 . %, /fli f 17}f ( "$,,[2.Hz C4-l [~ I [ ')J1/i f '/. !h f, .f i 1 d
- y$.i, v.
k ..i'/j 'T)oEL - 9 4 l 4 .,i i w ~. s z. 5';37X 1,q( f p IN st se 4 p' e p g [ .i3.<)i. , /) { i l 14 4.gd. a. g ~, ? ) h.~ Y s'.' \\;y f ..gp!A f
- f) 3.
- r
+ c 4-l WQ l >s 3, I i..._.,..._.._,_...___.._.__..__.___.,_.
9 I 1 i 7B1MsI/mase ca.ossccrron syv9mo e/ eras wo/cMm i nv7eeGRAn/UUY/E JCA/k'ryze m d'/ PEA & Mice l g ' t. l R42 C49 072 F4 4 + f2AcTUBtD i DU/2SG ~Pula /MG OPE?A7 ion] i R06 Chi s 9 A32 F3 i 1 t l + 1 l l l ,. _ _ _, _ ~.. -,,...,.. -,,.,.,. _ _, _ _., _,, -,, - _. , - - - - _ ~,. -..,.......
.l t y i 00 ~ ,I I y I \\ -~ \\ /}-_ ,~, y ? NA ID Sketch of Burst Crack l l Macrocrack Length 0.50 inches Throughwall Length = 0.15 inches Number of Microcracks 4 (two ligaments with intergranular features, one with ductile overload features) Morphology Intergranular S'.C with significant IGA characteristics (width of IGA 0.030 inches) I 1 i .[ SP top 0.75 inches - I + I 0.25 inches - .l SP bottom 0.0 inches - 0 0 0 0 180 2700 0 90 180 Sketch of Crack Distribution 4 l Figure 4-21. Description of OD origin corrosion at the first support l plate crevice region of Tube R21-022. t 4 30 h
^ .r. j I* t 1 6 j
- F,
- SP Top e y l o' ! .,, ~. gN'., .' ' 4 - r 1 r, r :. 3 T-e .k .s. R u. I
- h. 5
.%l ny? ' C. * - e g -SP Botte: . y, l f d 4 .' 7,'. f j? 'y f ^ .;n '.Y ' '; ; N l r ) f 10'-20' 40 l {@&!di$$$J7%"i'.. 7 ' ; -RFf' %[ i f.s no? Figure 3-1. Appearance of the burst opening in Tube R4-C73 at the first support plate region; ::ag. 3.25X 3-7 l l kN+Ih4I4
Figure 10 6 TEST VS CALCULATED BURST P.R...ESSURF M k(r D U) U) k1J(r D. W m W U1 LU F- -J 1 10 25
FARLEY STEAM GENERATOR NDE TOPICS AND CONSIDERATIONS 2-6-92 1
NDE 9ETECTABILITY FOR BELGIAN INDICATIONS DOEL-4 TUBE PULL FOR TSP OD INTERGRANULAR CORROSION REPORTED COEXISTENCE OF 60% " IGA" AND SCC. DETECTABILITY OF THIS CONDITION PRIOR TO TUBE EXAMINATION RAISED QUESTIONS ABOUT ADEQUACY OF BOBBIN PROBES TO RESPOND TO SIMILAR CONDITIONS WITHIN THE PARAMETERS FOR THE APC ASSUMPTIONS. DIFFERENCES BETWEEN BELGIAN AND U.S. APPROACHES TO IDENTIFICATION OF POTENTIAL FLAW SIGNALS CENTER ON RELATIVE CALIBRATION PROCEDURES. BELGIAN METHOD ESTABLISHES VOLTAGE RESPONSE TO 4-100% DRILLED HOLES AT 2.0 VOLTS USING 300 KHz. NORMALIZATION TO U.S. CALIBRATION GIVES 18.96 VOLTS FOR 4-100% DRILLED HOLES USING 400/100KHz TSP SUPPRESSION MIX. BELGIAN DETECTION SCHEME REQUIRES THAT SIGNALS EXCEED 0.2 VOLTS (EQUIVALENT TO ~2 VOLTS ON U.S. SCALE; THIS EFFECTIVELY FILTERS OUT 95% OF ALL TSP ODSCC CALLS MADE IN U.S. DDM0841 020492 l
TABLE U.S. - ASME Standard french Belgian. i Signal Amplitude in Volts Four 1 mm Four 1.25 mm Support Oiameter Holes Diameter Holes Channel ZH' 15 13 RB 1M P1 ate 100%_ '1001 Voltage Calibration Set According to U.S. Convention' 400/100 mix 2.75 2.8 ~ 5.3 RS.6 8.7 <0.6 10.7 18.96 240 kHz 6.3 5.4 7.9 7.3 9.5 17.4 12.4* 21.15** 200 kHz 5.9 4.9 7.1 6.3 8.0 17.5 10.9 18.08 i 400 kHz 4 3.5 5.5 5.5 7.8 8.2 9.8 17.19 100 kHz 5.9 2.8 3.6 3.1 3.8 14.5 5.4 8.5 i Voltage Calibration Set According to French Convention 240 kHz 0.66 0.56 0.82 0.76 0.99 1.8 1.3* 200 kHz 0.69 0.58 0.84 0.74 0.95 2.09 1.3 400/100 0.33 0.34 0.64 0.67 1.04 -0.1 1.3 Voltage Calibration According to Belgian Convention 240 kHz 0.59 0.51 0.74 0.68-0.90 1.64 2.0** 200 kHz 0.62 0.53 0.76 0.67 0.85 1.87 2.0 400/100 0.29 0.29 0.55 0.59 0.91 -0.1 2.0 400 0.46 0.41. 0.63 0.63 0.91 0.95 2.0
- At 240 kHz, the French 4-hole standard gives 12.4v when using our calibration procedures.
It is 1.3 volt according to French calibration. Thus U.S. values at 240 kHz/ French values at 240 kHz -9.5. U.S. values at 400/100 mix / French values at 240 kHz ~8.2
- At 240 kHz the Beligian 4-hole standard gives 21.15 volt when using our calibration procedure.
It is 2 volt according to Belgian calibration. 'Thus, US values at 240 kHz/ Belgian values at 240 kHz -10.75 U.S. values at 400/100 mix / Belgian values at 240 kHz -9.5 4
BELGIAN TUBE PULL
SUMMARY
ALL TSP INTERSECTION (EXCLUDING FDB) SHOW CRACKING. AFFECTED AREAS ARE LOCATED ENTIRELY WITHIN THE TSP INTERSECTIONS, MAINLY AT - MID-HEIGHT. CIRCUMFERENCE AFFECTED IS SMALL -AT l- -SHALLOW
- DEPTHS, REACHES ALMOST 360 l
DEGREES IN STRONGLY AFFECTED INTERSECTIONS. MANY-INITIATION SITES WITH MULTI- . DIRECTION CRAC;(ING FOR SHALLOW ATTACK. STRONGLY-AFFECTED AREAS EXHIBIT A DOMINANCE OF AXIAL
- CRACKING, WITH
-ASSOCIATED' SHALLOW IGA. BURST CRACKS ARE-AXIAL IN DIRECTION, SHOWING-- 100% DEEP INTERGRANULAR-PENETRATION. SECTIONS WHIC.H BROKE UPON PULLING SHOWED MAXIMUM 60% CORROSION PENETRATION, IN A-L ARRAY OF PREDOMINATELY-AXIAL DENSE C P.A C K S, WITH: SHALLOW IGA-IN SOME PLACES. - =. ,_.--y m y .,..m.,,.. ,%~,s..p,,,,.,,. y e y w y -wr F mrrew----
BELGIAN NDE PRACTICES EXAMINATION OF BELGIAN DOCUMENTATION FOR TSP ODSCC EVALUATION CONFIRMS THAT THE REPORTING THRESHOLD FOR FLAW SIGNALS IS 0.2 VOLTS. THE COMPUTERIZED ANALYSIS SYSTEM EMPLOYED IS CAPABLE OF IDENTIFYING SIGNALS SMALLER THAN 0.2V; THESE ARE MOSTLY l OBSERVED AT 300 KHZ AND 120KHz. l l PHASE ANGLE IS MEASURED AT 700 KHZ; THIS SUPPRESSES MANY OF THE OD SIGNALS SINCE THE EC FIELD STRENGTH IS l OPTIMIZED FOR ONLY THE DEEPEST PENETRATIONS. AMPLITUDE IS MEASURED AT 300 KHZ, NEAR THE OPTIMUM DETECTION FREQUENCY. DOEL-4 TUBES ARE PILGERED IN MANUFACTURING, LEAVING A LARGE, PERIODIC BACKGROUND NOISE OVER THE ENTIRE TUBE LENGTH (SEE R19C35 - 2H DATA). FLAWS MEASURED IN THE TSP SUPPRESSION MIX (300/120 KHz) DO NOT. APPEAR APPRECIABLY DIFFERENT AT 2.0 VOLTS FROM THEIR APPEARANCE (LISSAJOUS FIGURES) IN THE 300 KHZ AND 700 KHZ CHANNELS; THIS CONFIRMS THAT LARGE AMPLITUDE SIGNALS - BY U.S. STANDARDS - ARE BEING VIEWED. 00MOS41:020492 l
[ ( h( 32 s a gs-( f J s ;r e ? ( 1 A 7 ~. 9 1 7 4.. g- /5l os 5 Q s$
- n
/ e' / 2, 't / s f f /. /. / ) ~ 1 i .i 01 qi s\\ 5 e> ( ,8 cx 6 if / l f i13 %Ge t s ,$(- I }. s i / h 'a
- l
'?p tg e a a El c N s ^ I
- v.,
a ) S=., =i? S.s 3 ~.:., J ) 0j fl A I MR 9 l a t_= c3 k 3,/ m i g / \\ / 2 i c? =, ' i g. c! >.5' c>3 .f-I 7 .4. 8 QR.~ 0 ? ~ ~ t ~ 9 ? E a: '? ~ ~: c ~ ~ e s'.: G d s O d f cs L7 i 1 m .2! :: ,s
- : : d' s; E
- : : ~;
j M O. g ? U a: : : 9R $. f/ . s./m+"s.< r O F o 'f i o-6 ,V s; q t e.C N ~ W w m. 8 'O P. l \\ N i n '. = A c C 5 P o 3 ,6 d: W E n. M ?. i g Vi U!
1 i IGA DETECTION - HISTORICAL-e xIGA WAS FIRST NOTED BY' TUBE PULL IN THE TUBESHEET LCREVICE OF L POINT BEACH TUBES. i .o ' DEEP = IGA WAS FOUND IN THE ENTIRE TUBESHEET-CREVICE: O -IT WAS NOT REPORTED IN THE FIELD BY E.C. INSPECTION. j er A REVIEW OF THE 100 KHZ ABSOLUTE DATA PRODUCE " DRIFT" ~ INDICATIVE OF IGA ALONG THE ENTIRE TUBESHEET CREVICE. O AT SAN ONOFRE IGA' DETECTION AT THE TOP OF THE TUBESHEET WAS COMPLICATED BECAUSE OF PRESENCE OF DENT AT THE TOP-OF-TUBESHEET. e NEVERTHELESS ~400 TUBES WITH IGA AND/OR CIRCUMFERENTIAL CRACKING WERE DETECTED BY THE INITIAL BOBBIN-EXAMINATION. O-DETECTION OF IGA IN THE TUBESHEET CREVICES AT GINNA PLANT IS ROUTINELY. PERFORMED USING THE ABSOLUTE BOBBIN MODE. l l-Dom 0841:020492'
IGA DETECTABILITY 0 FIELD AND LAB. EXPERIENCE SHOWS THAT THE THRESHOLD OF DETECTABILITY OF VOLUMETRIC IGA IN THE SUPPORT PLATE INTERSECTION USING BOBBIN PROBE IS IN THE RANGE OF 20% DEPTH. EXAMPLES: S POINT BEACH #1'- DETECTED AT ~25% DEPTH ST. LUCIE #1 - DETECTED AT ~15% DEPTH e THE 400/100 DIFF. MIX CHANNEL WAS USED FOR THIS DETECTION ALTHOUGH 400 KHZ DIFFERENTIAL CHANNEL ALONE WAS ENOUGH FOR THE CASE OF ST. LUCIE #1 WHICH HAS EGG CRATE SUPPORTS. e IN CASES WHERE BOTH SCC AND VOLUMETRIC IGA ARE PRESENT, SCC IS OFTEN FOUND TO EXTEND BEYOhJ THE IGA--AND THE SCC SIGNAL MAY DOMINATE. Dtc0841:020492 I
Pulled Tubes With IGA 'Ibbe Destructive Plant Number location 400/100 Mix (Diff.) Examination itemarks Point 13each #2 1129C46 IC 1.8V/26% 2G% Volumetric IGA (1987) 360" around 3/4" long section St. Lucia #1 IE9R95 III (Crate) 0.4V/6G% 52% Max. Depth Volumetric IGA with 1985 20% IGA Depth figures / SCC 0.3" 0.7*g 21I (Crate) 0.GV/29% 13% Wlumetric IGA < 0.3* 0.7 g Lab IGA Samples ' Mill Annealed Tubes 400/100 (abs) mix 4.5 volt 20% Uniform IGA 360' around the 4" long section 9 voit 40% Uniform IGA 360* around the 4* long section ...u oa.
a 4 a_ -mW.,A.M ---~ha.4n,an AM.2+ m a N4 e % h %W.Aa-ed- .eM. ---AA&mism_, I e i-s N
- n o
( 3 t \\ u t L g l s b E. 1 ~ k e \\. 4 Q g 1 5 3' g \\ )\\ n 3 i w \\ I 1 s QW {k \\ l \\ s 3 i ' \\ t-3 i t 3 4 s e e \\ \\ N D 4 \\ o \\ e c. g \\ 3, + 3 a t 1 g f. G g s 2 l ', i 1 it s
- *t
- o j-h *- ).
' e. y,. hu . *. :}:f', - 3 "a h 3 \\ N E l a g 1 es e .*,,'.*e \\ g e' \\ , > 't .. 1 3 s s ,. w Qs.: h y 4 \\ ene e i i 9-
Figure 8-12a Figure 6-12b Bobtxn Data and Typical Metallo2raphic Sections of Simulated i IGA Specimens using Sensitized Alloy 600MA Tubing B bbin Data from Simulated IGA Spcomens j Using Non-Sensitized A5oy 600MA Tutung j i r I l _J t m l ..l..- 'E' _,[g - l 5 5,i:-- 4l*i*ya. k' y*(- {$$ ,,.. ), '! f M s. am n $51*s -
- -~ -T5 g
l (
- q T
k i =- \\ 4 t i
== st - = i (, e ett escH 00, as an une nanean l eseries een asst es m meane i 4as vron seema aa waoss asmasasnouse i t, a. auers nas IGA PENEiTRA TKW. % Wait i saviasiamisimweoaa w msir i a e aan reasma% e emana 6 i Figure
- 2. Botten Cost Hasults for 1 aboratory IGA Specimens n
tn
INFLUENCE OF DENTING ON_ DETECTION OF TSP ODSCC SEVERE-TUBE DEFORMATION TYPICAL OF DENTING OBSERVED AT SURRY AND_IURKEY POINT PLANTS IN THE 1975-82 PERIOD EFFECTIVELY MASKS TUBE DEGRADATION FROM BOBBIN COIL DETECTION. EXTENSIVE DENTING INCLUDED 100% OF TSP INTERSECTIONS AFFECTED, TUBE I.D. RESTRICTIONS, TSP LIGAMENT FAILURE / HOURGLASSING OF FLOW SLOTS, AND REPEATED TUBE LEAKAGE INCIDENTS. FARLEY-1 STEAM GENERATORS EXHIBIT APPROXIMATELY <1% OF TSP ELEVATIONS WITH DENTS, WITH TYPICAL VOLTAGE ~3 VOLTS, MEASURED PEAK-TO-PEAK. FARLEY-2 STEAM GENERATORS EXHIBIT ONLY RANDOM DENTS ATTENDANT TO HANDLING-AND ASSEMBLY PROCESSES. DETECTION OF ODSCC SIGNALS ~1.5 VOLTS IN THE PRESENCE OF DENTS IS'UP TO 10 VOLTS PEAK-TO-PEAK IS EXPECTED TO BE STRAIGHTFORWARD WITH BOBBIN PROBES. l l DOM 0841:020492
i . VECTOR'CCMBINATION OF FLAW ANDEDENT SIGNALS i VECTOR COMBINATION OF FLAW SIGNALS OF 1.5 VOLTS WITH' 5 LVOLT (ONE LOBE OF 10V PEAK-TO-PEAK-SIGNAL)~ DENTS IN THE RANGE.0F-400 (100% TWD) TO 1100.(40% TWD) WILL PRODUCE. RESULTANT SIGNALS WITH A PHASE ANGLE OF
- l
~ APPROXIMATELYt1650 l ALL SUCH SIGNALS FALL WITHIN THE FARLEY GUIDELINES FLAW l - REPORTING PHASE ANGLE WINDOW - >00 TO <1800 ALLOWANCE MUST BE-MADE FOR PHASE ANGLE VARIATION OF DENY / PROBE MOTION. S IF OBSERVED SIGNAL PHASE ANGLE. LIES WITHIN P 100 - 0F 1800, LARGER AMPLITUDE DENTS WILL BE= INDISTINGUISHABLE FROM COMBINED FLAW-WITH: DENT RESULTANTS. FARLEY EC INTERPRETATION GUIDELINES WILL IDENTIFY TSP SIGNALS IN THE 100-1700 RANGE FOR RPC TESTING IF THEY: EXCEED 1.5 VOLTS; DENT-SIGNALS EXCEEDING 13 VOLTS l PEAK-TO-PEAK WILL BE SAMPLED WITH RPC TO VERIFY THE ABSENCE OF CIRCUMFERENTIAL CRACKS. Dom 0841:020492 -- l ...~....;......,_..--_.,_,,_i__.,.-.,,.m.,.., _,... _. _....
1 i I NUMBER OF OBSERVATIONS r a a N A G m O N O O O O O O O f 1 1 i f I i i M to l s..............>........ -.............e..............<..............<.............. M T i.n O ..............,..............e.......................... 4............................. b) ..............>..............i..............i............. 4...... <P O ..........i...............i.............. 4............. 4.............., ..............L I A ){.A l ["""' g i i i i i Qm ..............!..............i..............i..............j...............'.............< @D m m i m m ..............g..............g......... Q g....j.......... "...O Q ..............[..............j..............!......... p< 'h.... <i I-m- m m 4..............g......... g c y H. g ..............}..............j..............j......... ....j........... y O. 03 a m
;--i--i------
N -4 o 0 m l l l <8 ....,i D IT1 Zm _...............!..............!...............i........... (f) g -{ v f b
- m I"""
_.s. O _...............:. V v -.a. t O i 1 i i i i i 6 i a m a 4 m os s m e a O O O O O O O O O O O CUMULATIVE DISTRIBUTION FUNCTION l
CALIBRATION AND PROBE CENTERING UNCERTAINTY THE 4-HOLE STAGGERED STANDARD IS USED TO OBTAIN AVERAGE BOBBIN SIGNAL AMPLITUDE AT THE BEGINNING OF A PROBE'S USE. t THE-UNCERTAINTY INDUCED BY PROBE WEAR IS MONITORED BY PERIODIC INSERTIONS OF THE PROBE INTO THE STANDARD. COMPARISON OF'THESE READINGS WILL PERMIT DETERMINATION OF UNACCEPTABLE CENTERING (EXCESSIVE WEAR)'. IT IS NOT NECESSARY TO CONTROL THE RESPONSE OF INDIVIDUAL PROBES TO A CONSTANT INITIAL VALUE. MANUFACTURING TOLERANCES MAY BE DISREGARDED SO LONG AS THE PROBES' RESPONSES ARE REFERRED TO THE SAME STANDARD FOR THEIR USEFUL LIFE.
? -l 1 1 4 Figure 8 13 Probe Wear Calibration Standard t \\ mx ~ 90' typ / e ,f M. t N I Mk 4 e 6 e a e t 6 eK lf a' g 4 e g (.* dk. i e 4 .~. \\9 i f n N *, g e J L e 4 4 e a e t e 4 4 4 ..*..,.-...,'s
- '...,.*..,' g l
~ \\ 8 44
- - - - - - - - ~ - - - - - - - - - - - - - - TSP ODSCC DETECTION OF GROWTH OUTSIDE THE TSP CRACKS EXTENDING BEYOND THE TSP ARE DETECTED WITH THE SAME PROBABILITY AND ACCURACY ASSOCIATED WITH FREE SPAN TUBING. FOR CRACKS STILL INFLUENCED BY THE TSP SIGNAL UNCERTAINTY ASSOCIATED WITH THE COVERED (TSP) SPAN IS EXPECTED. TO THE EXTENT THAT EDGE EFFECTS COMPROMISE DETECTION OF CRACKS, NO MORE THAN 0.2" AXIAL LENGTH OUTSIDE THE TSP IS AFFECTED. SIGNALS WITH LOW VOLTAGE ONLY. SEE TABLE 8.1 FOR INFLUENCE OF FLAW LOCATION ON BOBBIN COIL MEASUREMENTS. (WCAP-12871, REV. 1) OM0841 020492 - - - - ~
Table 8.1 Effect of Flaw Location on Bobbin Coll Measurernents' 50% Deep Sbt 100% Deep Sbt paw location VoftMe Depth Vettre Depth
- 1. Slot centered in TSP 0.95 43 %
47.4 100 %
- 2. Sbt extending from 0.95 72%
48.1 100 % TSP edge inside TSP
- 3. Slot extending from 1.07 36%
49.3 99 % TSP edge outside of TSP
- 4. Slot without a TSP 1.07 49%
48.7 99 %
- Measurements for 0.25 inch bng EDM sbt in 0.75 inch diameter tubing.
'T
EDDY CURRENT RELIABILITY THE DETECTION OF AXIAL ODSCC AT TSP'S WITH BOBBIN COIL HAS BEEN SHOWN TO HAVE 100% DETECTION PROBABILITY FOR FLAWS IN EXCESS OF 40% TWD. ANALYST INTERPRETATION GUIDELINES HAVE CLOUDED THE CERTAINTY OF THIS FACT, 50 THAT INSPECTION SYSTEMS INCLUDING DETECTOR, DELIVERY SYSTEM, ANALYSIS RULES AND ANALYST MAY PRODUCE PERFORMANCE WHICH FALLS SHORT OF THE PROBE CAPABILITY. SIGNIFICANT FLAWS IN THE AXIAL ODSCC CATEGORY MAY BE DEFINED AS SINGLE 100% TWD CRACKS OR ARRAYS OF ALIGNED 100% TWD MICR0 CRACKS WHOSE COMPOSITE LENGTH AND AMPLITUDE AS MEASURED COMBINED WITH ANTICIPATED GROWTH AND DUE ALLOWANCE FOR MEASUREMENT ERROR WOULD NOT WITHSTAND PRESSURE TRANSIENTS TO 3e6P FOR NORMAL' OPERATION OR TO THE STEAM LINE BREAK zip, I.E. WOULD EXCEED THE CRITICAL CRACK LENGTH. FOR 7/8" 0.050" ALLOY 600 TUBING THE CRITICAL CRACK LENGTH FOR FARLEY STEAM GENERATOR TUBING IS 0.84" FOR SLB AND 0.42" FOR 3dL P. l
- DDM0841
- 020492
DETECTION OF SIGNIFICANT FLAWS BOBBIN RESPONSE T0-SIGNIFICANT FLAWS, I.E. THOSE WITH -THROUGHWALL (100% TWD) DEPTH OF LENGTH APPROACHING H CRITICAL LENGTHS: IN THE ABSENCE CH: MAJOR INTERFERENCES, FOR CRACKS -WITH-SIGNIFICANT LENGTH (>0.02") 100% TWD, BOBBIN AMPLITUDES GREATER THAN 1.5 */0LTS - ARE EXPECTED. l FLAW IDENTIFICATION OF SIGNALS WITH AMPLITUDES >0.5 VOLTS IS ROUTINELY-ACHIEVED, AND FLAW SIGNAL AMPLITUDES > 1.5 VOLTS ARE DETECTABLE WITH NEAR 100% CERTAINTY UNDER FARLEY GUIDELINES EVEN WITH DENTS dP TO 13 VOLTS PEAK-TO-PEAK. L I DDM0841:020492 w...-q.---,<.-vr ,m i wy ---y -,n.- - -w. e e-e
- -,m-s 1----
'r-*
~. DETECTION OF CRITICAL LENGTH FLAWS BOBBIN AMPLITUDES CORRESPONDING TO SIGNIFICANT FLAWS ARE BOUNDED BY SLOT LENGTH V5 BOBBIN V0LTAGE DATA FIG. 8.2 WCAP-12871, REV. 1-AMPLITUDE OF 0.4" RECTANGULAR SLOT 0.006" WIDE AT 400/100 KHz ~70 v0LTs AT 100% TWD. ODSCC RESULTING-FROM SINGLE-CRACK 100% TWD WILL LE LOWER, SINCE EFFECTIVE WIDTH - HENCE VOLUME - IS SMALLER. BOEBIN SAMPLE AMPLITUDE % TW LENGTH MB#576-4 8.4 VOLTS 0.43"
- 555 22.6 VOLTS
-0.42"
- 558-1 6.5 VOLTS 0.32"
- 571-1 10.7 v0LTs 0.35" FARLEY 2-R4C73 2.6-5.0 VOLTS 0.18" R21C22-.
7.7-14.2 VOLTS 0.15" c R38C46 1 4 v0LTS 0.00 R31C46 -7,2 VOLTS-0.02" THROUGH-WALL. CRACKS DOMINATE THE EC BOBBIN RESPONSE GENERATED BY TUBING WITH SEVERAL PARALLEL CRACKS. f i 00M0841:030492
Percent of-Indications Detected Metallographically Found by Bobbin Probe o 8 8 8 8 8 a g. U \\ HI$ 0 hd \\ \\ \\ \\\\\\\\\\\\\\\\\\\\\\\\ \\\\N $ e a gJ e A NN % NNw Ia n % % xN s i o ym[ a M'%K%N llSN%%NN%S i j 1,8a AN%%NN l @&RAXM s i m. \\ \\\\N \\\\ \\ $ (R&a h%\\%M I @ x'NN % % % ' u_ i G \\ \\ i i
n -6) PROBABILITY OF-TUBE BURST UNDER-SLB O USE MONTE CARLO TECHNIQUES TO ESTABLISH EOC SLB PROBABILITY OF TUBE BURST FOR EACH STEAM GENERATOR ACCOUNTING FOR THE VOLTAGE GROWTH - RATE,-THE EDDY CURRENT UNCERTAINTY - AND THE REVISED BURST PRESSURE VS VOLTAGE CORRELATION, THE PARLEY 2 VOLTAGE DISTRIBUTIONS OF 1990 WOULD HAVE A PROBABILITY OF 1 x 10-3 or i - HAVING1 BURST CAPABILITY < 2650' PSI (SLB) 4 0 COMPARE TO THE-LEVEL GIVEN IN NUREG-0844. A SINGLE TUBE RUPTURE EVENI SHOULD.HAVE A PROBABILITY OF < 2.5 x 10-4 THE CALgULATED PROBABILI 1 x 10-3, IS < 2.5 x 10-1 y I OCONCERN/ SUGGESTION -RESPONSE v c., ,.me -- -,....r .._.-,4s . -. -.. - - -, - ~. - -. - - ,.-e.~.r
i o... Calculation of Burst Pressure a,e 4 L l' i' + W
I 4 0.C ] 1 I I l 5 0 i l \\ t I l 0 L {
A _w... 4.2.__*m., A 4... _.4< m e a .As .w 4orua 2 44 w. ,_C a= - a oaa. m -.r;_.2 n. s ~ [ Pas s e s 4c 4 P i t i. l + 1 l l - W l l-l' l 4-
f 1 F*.At.EY 89-90 TSP / ALTERNATE PLUGGING CRITERIA BURST PRESSURE 7/8 SG A MINIMUM BURST PROBABILITY PRESSURE ~ 3.1 3.7 l 4.0 4.2 I 4.4 4.5 I 4.8 I 4.C 5.o 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 1.2 7.3 7.4 7.5 7.6 7.7 i i l i I l
7) BOBBIN COIL VOLTAGE - LEAK RATE CORRELATION O THE DATA BASE IS VERY SMALL. PREDICTIONS OF LEAKAGF MAY BE SIGNIFICANTLY IN ERROM. THE DATA BASE HAS BEEN INCREASED FROM 28 DATUM TO 34, 3 PLANT L PULLED IUBES 3 MODEL BOILER SAMPLES STATISTICAL ANALYSIS OF THE PREDICTION INTERVAL ACCOUNTS FOR SAMPLE SIZE MODEL BOILER DATA CONSERVATIVELY REPRESENTS PULLED IUBE POPULATION LARGE SCATTER OBTAINED BY MERGING MODEL BOILER AND PULLED TUBE DATA CONSERVATI',ELY WIDENS THE PREDICTION INTERVAL LACK OF DATA IN THE J. TO 0.1 L/HR l RANGE COULD BE A SOURCE OF ERROR. INCLULING NON-LEAKERS WITH 90% OR HIGHER CRACK PENETRATION Is JUDGED t TO MINIMIZE THE POTENTIAL FOR SIGNIFICANT ERROR. OCONCERN/ SUGGESTION -RESPONSE
SLB Leak Rate Comparisons CRACKFLO Calc's Crack . eak Rate L Strenath T_erpperature Lenoth (ksi) (deg F) (in) (gpm) -9 68.8(typ) 577(hot) 0.1 O.2 l 0.3 0.4 { t 0.5 i L J ]9 75.5(typ) 70(cold) 0.1 0.2 } 0.3 { 0.4 I, 0.5 } Crack Cases Len_Ath Difference Compared (in) (%) .g 0.1 !l i 0.2 i 0.3 { 0.4 0.5 [ J ~ - - - - - - _ _ - ' " - ~ - - - - _ _ _ _ _, _ _
SLB LEAK RATE - BosBIN VOLTAGE REGRESSION ANAL,YSIS d FInst OnoER REGRESSION d'C l 7 I f v ? t P k 1 5 i 4 i I a i r I i i I I I t-l 4 .) I-I I l t h L t sye --- ~. -, -,. - -.....,,, -... ....--_-,,,..,.,...---..-,...-r-. - - - -. - -. ~. - -. - - .,-v - ~, -
SLB Look Rato Versus Bobbin Vol tago ~ ~ ( 7/8XO. 050 Inch _Luttloo) 1 2 i 3 l 5 i 3 i e e
SLB Look Rote Versus Bobbin Voltag'e 9 (7/8X0.060 Inch Tublog) .5 1 i Ex 0 3 5 m i i mm. m e midl
l SLO Look Rat.e Voraus Bobbin Vol tage LlLO L OSO Inch Tubing) 1 '3 1 I 1 m ~ 5
I ta= i a n Calculation of Leak Rate , o,c I l i t i l t t 6 i l i i 4 ..i g
3 i,o,.. a,e l l t i i i i i i e l I I 1 I s i l I i h K .m____.. ____.___._________.___.m_______m.
oe 9
n-----i. .. --i-. i.i i i i-M' FARLEY 89-90 TSP /ALTERHATE PLUGGINd CRITERI A LEAKAGE SLO 7/8 SG C LEAK RATE (GMP) CUMULATIVE PROBABILITY 9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1 1.1 l 1.2 1.3 1.4 1.5 1.6 1.7 1.9 2.4 2.5 3 3.1 1 3.2 3.3 } 3.4 3.6 1 3.8 4.7 5.1 7.0 7.1 7.5 9.5 11.2 11.5 l 16.3 72.6 j
SLB Look Roto Versus Bobbin Voitage (7/8X0.060__8 3/4X0.043 Inch T_ubjng) -9 Ih c3 ^6 a: .S
SLB Leak Rato Comparisons CRACKFLO Cale's Crack Tube Sizo Stronnth Temperaturo Lennth Leak Rato (in) (ksi) (do0 F) (in) (gpmf~ 7/8 60.8(typ) 577(hot) 0.1 O.2 i 0.3 0.4 0.5 ~9 ~ 3/4 77.7(typ) 577(hot) 0.1 0.2 0.3 i 0.4 0.5 L Cases Crack Cornpared Lennth Difference (in) (%) -E r 0.1 0.2 O.3 0.4 l 0.5 i
SLB LEAKAGE RATE Cul4ULATIVE PROBABILITY FARLEY 2, SG C o 7/8 ItacH DATA 0.3 GPl4 AT 90% o 7/8 AtlD 3/4 IlicH DATA 0.5 GPl4 AT 90%}}