ML20212D262

From kanterella
Jump to navigation Jump to search
Rev 1 to WCAP-14689, Farley,Units 1 & 2,Heatup & Cooldown Limit Curves for Normal Operation & PTLR Support Documentation
ML20212D262
Person / Time
Site: Farley  Southern Nuclear icon.png
Issue date: 04/30/1997
From: Christopher Boyd, Howell D
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20212D250 List:
References
WCAP-14689, WCAP-14689-R01, WCAP-14689-R1, NUDOCS 9710310051
Download: ML20212D262 (88)


Text

_ _

WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-14689, Revision 1 Farley Units 1 and 2 Heatup and Cooldown Limit Curves For Normal Operation and PTLR Support Documentation 4

E. Terek April 1997 Work Performed Unde.- Shop Order AWZP-2014 l

Prepared by the Westinghouse Electric Corporation for the Southem Nuclear Company Approved:

D. A. Howell, Manager Mechanical Systems Integration Approved: . Md C. H. Boyd, Man 6lger ^

Engineering & Materials Technology WESTINGHOUSE ELECTRIC CORPORATION Nuclear Services Division P.O. Box 355 Pittsburgh, Pennsylvania 15230-0355

@ 1997 Westinghouse Electric Corporation All Rights Reserved DR DO OO 348 P PDR a

1 1, ,

.. . PREFACE F -

This report has been technically reviewed and verifed by; P. A. Grendys -- /c - /-- 6 * -

v .-

+

l l1 4

i e

~ Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

11

._ TABLE OF CONTENTS .

LI ST OF tab:.Si S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii )

LI ST OF FIGU R E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1 I NTRODUCTI ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 FRACTUPE TOUGHNESS PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 l 3 CRITERIA FOR ALLOWABLE PRESSURE. TEMPERATURE R ELATION SH I P S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 CALCULATION OF ADJUSTED REFERENCE TEMPERATURE . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 HEATUP AND COOLDOWN PRESSURE. TEMPERATURE LIMIT CURVES . . . . . . . . . . . . . . . , , 19 6 R EFE R E NC E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

(

0 APPENDIX A- SURVEILLANCE CAPSULE DATA CREDIBILITY EVALUATION . . . . . . . . . . . . . . . . . . A.0 APPENDIX B- ENABLE TEMPERATURE CALCULATIONS AND RESULTO . . . . . . . . . . . . . . . . . B-0 APPENDIX C- PRESSURl7ED THERMAL SHCCK (PTS) RESULTS . . . . . . . . . . . . . . . . . . . . . . C 0 APPENDIX D- UPDATED SURVEILLANCE MATERIAL 30 FT LB TRANSITION TEMPERATURE SHIFTS AND UPPER SHELF ENERGY DECREASES . . . . . . . . . . . . . . . . . . . . . D-0 APPENDIX E- REACTOR VESSEL BELTLINE MATERIAL PROJECTED END OF UCENSE UPPER SHELF ENERGY VALUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E.0 APPENDIX F- UPDATED SURVEILLANCE CAPSULE REMOVAL SCHEDULES . . . . . . . . . . . . . . F-0

)

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

19 LIST OF TABLES 1- Cu and Ni Weight Percent and initial RT, Values for the Farley Units 1 and 2 Beltline Materials . . . 3 2 Farley Units 1 & 2 Chemistry Factors per Regulatory Guide 1.99, Revision 2, P osition 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . 4 3 Farley Unit 1 Chemistry Factors Using Surveillance Capsule Data per Regulatory Guide 1.99, Revision 2, Position 1.1, . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . 5

'4 Farley Unit 2 Chemistry Factors Using Surveillance Capsule Data per Regulatory Guide 1.99, Revision 2, Position 2.1. . . . . . . . . . . . . . . . . . . . . , , . . . . . . . . . . . . . . . . 6 l 5 Clad / Base Metal Interface Fluence (10" n/cm', E > 1.0 MeV) Projections for Uprated Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 11 6 Calculation of ART Values at 36 EFPY for the Umiting Farley Unit 1 Reactor Vessel Material . Lower Shell Plate B6919-2 . . . , , , , . . . . . , . . . . . . . . . . . . . . . . . . . , , . . . . . 13 p

,7 Farley Unit 1 1/4T & 3/4T ART Calculations at 36 EFPY . . . . . . . . . . . . . . . . . . . . . . , , , . , . . , ,14 8 Farley Unit 1 1/4T & 3/4T ART Calculations at 54 EFPY . . . . . . . . . . . . . . . . . . . . . , , . . . . . . . . 15 9 Farley Unit 21/4T & 3/4T ART Ca!culations at 36 EFPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . , , . . 16 10 Farley Unit 21/4T & 3/4T ART Calculations at 54 EFPY . . . . . . . . . . . . . . . . . . . . . . . , , . . , . . 17 11 Summary of the Farley Units 1 & 2 Adjusted Reference Temperatures at 36 & 54 EFPY , . . . . . . . 18 12 Farley Unit 136 EFPY Heatup Curve Data Points (Without Margins for Instrumentation Errors) . . . 37 13 Farley Unit 136 EFPY Cooldown Curve Data Points (Without Margins for Instrumentation Errors) . 38 14- Farley Unit 136 EFPY Heatup Curve Data Points (Without Margins fur instrumentation -

Errors; With Delta Pressure Margin of 25 psi for Temperatures < 110 F, 60 psi for Temperatures 2110'F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 15 - Farley Unit 136 EFPY Cooldown Curve Data Points (Without Margins for Instrumentauon Errors; Wrth Detta Pressure Margin of 25 psi for Temperatures < 110'F and 60 psi for Temperatures 2110 F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

iv LIST OF TABLES (CONTINUED) 16 _ Farley Unit 154 EFPY Heatup Curve Data Points (Without Margins for instrumentation Errurs) . . . 41 17 Farley Unit 154 EFPY Cooldown Curve Data Points (Without Margins for instrumentation Errors) . 42 18 - Farley Unit 154 EFPY Heatup Curve Data Points (Without Margins for Instrumentation Errors and With Deha Pressure Margin of 60 psi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 19 - Farley Unit 154 EFPY Cooldown Curve Data Points (Without Margins for instrumentation Errors and With Delta Pressure Margin of 60 psi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 20 Farley Unit 2 36 EFPY Heatup Curve Data Points (Wdht Margins for Instrumentation Errors) . . . 45 l

21 Farley Unit 2 36 EFPY Cooldown Curve Date Points (Without Margins for Instrumentation Errors) . 46 22 _ Ferley Unit 2 36 EFPY Heatup Curve Data Points (Wdhout Margins for instrumentation Errors; With Delta Pressure Margin of 25 psi for Temperatures < 110*F and 60 psi fer Temperatures 2 110'F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 23 Farley Unit 2 36 EFPY Cooldown Curve Data Points (Wahout Margins for Instrumentation Errors; With Delta Pressure Margin of 25 psi for Temperatures < 110'F and 60 psi for Ternperatures 2110*F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 24 - Farley Unit 2 54 EFPY Hea!up Curve Data Points (Without Margins for Instrumentation Errors) . . , . 49 25 Ferley Unit 2 54 EFPY Cooldown Curve Data Points (Wdhout Margins for Instrumentation Errors) . 50

26 Farley Unit 2 54 EFPY Heatup Curve Data Points (Wrthout Margins for instrumentation Errors and Wrth Dette P Margin of 60 psi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 27 Farley Unit 2 54 EFPY Cooldown Curve Data Points (Without Margins for instrumentation Errors and With Delta P Margin of 60 psi) . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

_____j

l

- v:  !

j

)

~. LIST OF FIGURES )

! t l

1 Farley Urets 1 and 2 Res.ctor Vessel Cross Sec4n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 I l

2 Farley Unit 1 Reactor Coolant System Heatup Umitations (Heatup Rates up to 100*F/hr)

Applicable to 36 EFPY (Without Margins for instrumentation Errors) .

Indudes vessel fiange requirements of 180*F and 621 psi per 10 CFR 50, Appendtx G. . . . . . . . . . . , . . . , . . . 21 -

3 Farley Unit 1 Reactor Coolant System Cooldown Umitations (Cooldown Rates up to 100*F/hr) Applicable to 36 EFPY (Without Margins for Instrumentation Errors) indudes vessel flange requirements of 180*F and 621 psi per 10 CFR 50. Apperdx G. . . . . . . . . . . . . . . . . . . , , , 22 4 Farley Unit 1 Reactor Coolant System Heatup Umitations (Heatup Rates up to 100*Fihr)

Applicable to 36 EFPY (Without Margins for Instrumentation Errors; With Detta Pressure Margin of 25 psi for Temperatures < 110 F,60 psi for Temperatures 2110*F) indudes vessel f ange requirements of 180*F and 561 psi per 10 CFR 50. Appendix G. . . . . . . . , . . . . . . . . . . . . 23 5 Farley Unit 1 Reactor Coolant System Cooldown Umitations (Cooldown Rates up to 100*F/hr) Applicable to 36 EFPY (Without Margins for Instrumentation; With Deha Pressure Margin of 25 psi for Temperatures < 110*F,60 psi for Temperatures 2110*F)

^y ~

indudes vessel flange requirements of 180*F and 561 psi per 10 CFR 50, Appendix G. . . . . . . . . . . . . . . . . . , . . 24 6 Farley Unit 1 Reactor Coolant System Heatup Umitations (Heatup Rates up to 100*F/hr)

Applicable to 54 EFPY (Without Margins for Instrumentation Errors)

Indudes vessel flange requirernents of 180*F and 621 psi per 10 CFR 50, Apperdx G. . . . . . . . . . . . . . . . . . . . . 25 7 Farley Unit 1 Reactor Coolant System Cooldown Umitations (Cooldown Rates up to 100*F/hr) Applicable to S4 EFPY (Without Margins for Instrumentation Errors)

Indudes vessel flange requirements of 180*F and 621 psi per 10 CFR 50. Appendix G. . . . . . . . . . . . . . . . . . . . . 26 8 Farley Unit 1 R3 actor Coolant System Heatup Umitations (Heatup Rates up to 100*F/hr)

Applicable to 54 EFPY (Without Mugins for Instrumentation Errors and Wrth Detta P essure Margin of 60 psi)

Indudes vessel flange requirements of 180*F and 561 psi per 10 CFR 50. Appendix G. . . . . . . . . . . . . . . . . , . 27 x -

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

i.,.

. vl .

2 LIST OF FIGURES (CONTINUED) 1 _ _ _

+

m -9 - : Farley Unit 1 Reactor Coolant System Cooldown Umitetions (Core!down Rates up to 100*FAr)

Appicable to 54 EFPY (Without Margins for lastrumentation Errors and With Delta Pressure Margin of 60 psi)

[ Irdudes vessel nenge requiremen's of 180*F and 561 pel per 10 CFR 50. Apperdx G, , . . . . . . . . . . . . . . . . . . 26 10' Farley Unit 2 Reactor Coolant System Heatup Umitations (Heatup Rates up to 100 FAr)

Appleable to 36 EFPY (Without Margins for instrumentation Errors) indudes veneet nony requwements d 1FF and 621 psi per 10 CFR 50, Apperdx G. . . . . . . . . . . . . . . . . . . . . 29 I 11 Farley Unit 2 Reactor Coolant System Cooldown Umitations (Cooldown Rates up to 100 FAr)

' ]

Applicable to 36 EFPY (Without Margins for Instrum3ntation Errors)  ;

indudes vessel flange requwements d 180*F at d 621 psi per 10 CFR 50. Appendix G. . , , . . . . . . . . . . . . . . . . . 30 -

12 Farley Unit 2 Reactor Coolant System Heatup Umitations (Heatup Rates up to 100*FAr)

Appicable to 36 EFPY (Without Margins for instrumentation Errors; With Delta Pressure Margia .

of 25 psi for Temperatures < 110*F,60 psi for Temperatures 2110*F)

Indudes vessel nenge requwoments d 1FF and 561 psi per 10 CFR 50. Apperex G. . . . . . . . . . . . . . . . . . . . . 31 '

13- Farley Unit 2 Reactor Coolant System Cooldown Umitations (Cooldown Rates up to 100*FAr)

Appicable to 36 EFPY (Without Margins for instrumentation; With Delta Pressure Margin of i 25 psi for Temperatures < 110'F,60 psi for Temperatures 2110'F)

Indudes vesent nany requwements d 1FF and 561 poi per 10 CFR 50. Apperex G. . . . . . . . . . . . . . . . . . . . . 32 14 Farley Unit 2 Reactor Coolant System Heatup Umitations (Heatup Rates up to 100*FAr)

Applicable to 54 EFPY (Without Margins for instrumentation Errors) -

Indudes vessel Range requwements d 180*F and 621 psi per 10 CFR 50. Apperdx Gc . . . . . . . . . . . . , . . . . . 53 15 Farley Unit 2 Reactor Coolant System Cooldown Umitations (Cooldown Rates up to 100'FAr)

Appicable to 54 EFPY (Without Margins for Instrumentation Errors)

- indudes veneet nony requwements d 1FF and 621 psi per 10 CFR 50, Apperdx G. . . . . . . . . . . . . . . . . . . . . 34 16 Farley Unit 2 Reactor Coolant System Heatup Umitations (Heatup Rates up to 100 FAr) -

Appicable to 54 EFPY (Without Margins for Instrumentation Errors and With Delta Pressure

~ Margin of 60 psi)

Indudes vessel nange requwements d 1FF and 561 psi per 10 CFR 50. Apperex G. . . . . . . . . . . . . . . . . . . . . 35 17 Farley Unit 2 Reactor Coolant System Cooldown Umitations (Cooldown Rates up to 100 FAr)

> Appicable to 54 EFPY (Without Margins for Instrumentation Errors and With Delta Pressure Margin of 60 psi)

. Indudes vesset aanga requwements d 180*F and 561 psi per 10 CFR 50, Apperdx G. . . . . . . . . . . . . . . . . . . . . 36 Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

1 l p

1 INTRODUCTION Heatup and cooldown limit curves are calculated using the adjusted RTm (reference nil-ductility temperature) corresponding to the limiting beltline region material of the reactor vessel. The adjusted RTa f othelimiting material in the core region of the reactor vessel is detemuned by using the unirradiated reactor vessel material fracture toughness properties, estimating the radiation-induced ART , and adding a margin. The unitradiated RTa is designated as the higher of either the drop weight nil-ductility transition temperature (NDTT) or the temperature at which the material exhibits at least 50 ft-lb of impact energy and 35-mit lateral expansion (normal to the mapr working direction) minus 60'F, RT, increases as the material is exposed to fast-neutron radiation. TN,rcbro, to find the most limiting RT, at any time period in the reactor's life, ARTa due to the radiation exoosure asso:iated with that time period must be added to the unirradiated rte (IRT,). The extent of the shift in RTc is increased by certain chemical elements (such as copper and nickel) present in reactor vessel r els. The Nuclear Regulatory Commission (NRC) has published a method for predicting radiation embrittlement in Regulatory Guide 1.99, Revision 2, ' Radiation Embrittleraent of Reactor Vessel Materials". Regulatory Guide 1.99, Revision i, is used for the calculation of Adj! sted Reference Temperature (ART) values (IRT, + ART, + margins for uncertainties) at the 1/4T and 3/4T locations, where T is the thickness of the vessel at the beltline region measured from the c'ad/ base metal interface.

The heatup and cooldown curves documer.ted in this report were generated using the most limiting ART values and the NRC approved methodology documented in WCAP 14040-NP A, Revision 2, ' Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Liniit Curves.

Fartey Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

2-

< 2  : FRACTURE TOUGHNESS PROPERTIES 4

.1 The fracture-toughness properties of the ferritic material in the reactor coolant pressure boundary are determined in accordance with the NRC Standard Review PlanA. The beltline material properties of the Farley Units 1 and 2

reactor vessel are presented in Table 1, 1

Best estimate Cu and Ni weight percent values were used to calculate chemistry factors in accordance with Regulatory Guide 1.99, Revision 2, and are provided in Table 2. Additionally, surwillance capsule data is available for four capsules (Capsules Y, U, X, and W) already removed from the Farley Unit I reactor vessel and three .

capsules (Capsules V, W, and X) already removed from the Farley Unit 2 reactor vessel. This surveillance capsule data was used to calculate chemistry factor (CF) values (Tables 3 and 4) per Position 2.1 of Regulatory Guide 1.99, Revision 2.

- The NRC Standard Review Plan and RepJiatory Guide 1.99, Revision 2 methodology used to develop the heatup and cooldown curves dccumented in this report is the same as that documented in WCAP 14040, Revision 2.

'}

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

3 Table 1 Cu and Ni Weight Percent and initial RT, Values for the F:rley Units 1 and 2 Beltline Materials 6eltline Material Cu weight % Ni weight % IRT, ('F) 1 Farley Unit 1 )

Closure Head Range - -

60 Vessel Range - -

60 inter. Sheu Plate B6903-2* 0.13 0.60 0 inter. Shell Plate B6903 3* 0 12 0.56 10 Lower Shed Plate B69191* 0.14 0.55 15 Lower Shet Plate B6919-2* 0.14 0.56 5 inter. Shell Longitudinal Weld 0.24 0.17 56 Seams19-894 A & B'"'(Haa! # 33A277)

Surveidance Weld 0.? t 0.17 56 Circumferential Weld 11894* 0.21 0.11 56 (Heat # 6329637)

Lower Shen Longitudinal Weld 0.20 0.20 - 56 Seams20-894 A & B5 (Heat # 90099)

Farley Unit 2 I Closure Head Range - -

60 L

l Vessel Range - -

60 Inter. Shell Plate B72031* 0.14 0.60 15 inter. Shell Plate B72121* 0.20 0.60 10 Lower Shet Plate B7210-1" 0.13 0.56 18 Lomt SheD Plate B7210-2* 0.14 0.57 10 inter. Shell Longdudinal Weld 0.02 0.96 56 Searn 19 923 A* (Heat # HODA)

Inter. Snell Longitudinal Weld 0.03 0.91 -60 Seam 19-923 B'"'(Heat # BOLA)

Surveillance Weld" 0.03 0.91 60 Circumferential Weld 11923* 0.14 0.07 -40 (Heat # SP5622)

. Lower Shes Longitudina! Weld 0.05 0.07 70 Seams20-923 A & B* (Heat # 83640)

NOTES-(a) The surveillance weld is representative of this intermediate shell longitudinal welds.

(b) WCAP 141973 (c) Genene Letter 92 01, Revision 1, Supplement 1 response N Farley Units 1 & 2.-leatup and Cooldown Limit Curves April 1997

4 l

)

l Table 2 Farley Units 1 & 2 Chemistry Factors per Flegulatory Guide 1.99, Hevision 2, Position 1.1 Beltline Material Chemistry Factor (*F)*) ,

Farley Unit 1 l Inter. Shell Plate BC903-2 91.0 Inter. Shet Plate B6903-3 82.2 Lower Sr. ell Plate B69191 97.8 Lower Shoh Plate B6919-2 98.2 inter. Shen LongitudinalWeld 118.6 Seams19-894 A & B (Heat # 33A277)

Surveillance Weld 118.6 CircumferentialWeld 11494 100.8 (Heat # 6329637)

Lower SheD LongitudinalWeld 104.0 Seams 20 694 A & B (Heat # 90099)

Farley Unit 2 l Inter. Shell Plate B7203-1 100.0 l

Inter. Shell Plate B72121 140.0 Lower Shen Plate B72101 89.8 Lower ShellI' tete B7210 2 98.7 Inter. Shell LorstudinalWeld 27.0 Seam 19-923 A (Heat # HODA)

Inter. SheD LongitudirrJ Weld 41.0 Seam 19-923 B (He'u # BOLA)

SurveiSance Weld 41.0 Circumferential Weld 11-923 67.3 (Heat # SP5622)

Lower Sheu LongitudinalWeld 34.05 Seams20-923 A & B (Heat # 83640) w e.

(a) Per Tabies 1 and 2 of Regulatory Guide 1.99, Revision 2 (Position 1.1) and the Cu

and Ni weight percent values given in Table 1 of this report.

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997 i

5 The chemistry factors were also calculated using surveillance capsule data (per Regulatoy Guide 1.99, Revision 2, Position 2.1). Note that the capsule fluence and EFPY vabes were obtair'ed from the recent Farley Units 1 and 2 Uprating Program fluence reevaluation ushg the ENDF/B VI scattering cross-section data set (WCAP-1468F).

Table 3 Farley Unit 1 Chemistry Factors Using Surveillance Capsule Data per Regulatory Guide 1.99, Revision 2, Fosition 1.1 FF' Material Capsule f*' FF*' ART,c, ART,c, FF' Lower Shell Plate Y 0.580 0.848 85 72.0 0.718 B6919-1 (Longtudinal)

U 1.69 1.14 105 1202 1.31 X 2.95 129 135 173.7 1.66 W 3.82 1.35 155 208.7 1.81 l Lower Shell Plate Y 0 580 0.848 55 46.6 0.718 B6919-1 (Transverse) l ,

U 1.69 1.14 90 103.0 1.31

)

X 2.95 1.29 105 135.1 1.66 W 3.82 1.35 145 1952 1.01 Sum: 1054.5 10.99 CF = I(FF

  • ART,cr) + I(FF') = 95.9 Weld Metal Y 0.580 0.B48 80 67.8 0.718 U 1.69 1.14 80 91.6 1.31 X 2.95 129 iOO 128.7 1.66 W 3.82 1.35 95 127.9 1.81 Sum: 415.9 5.50 CF = I(FF
  • ART,or) + I(FF') = 75.7 NOTES:

A (a) I = lluence (10 niem', E > 1.0 MeV)

(b) ' FF = fluence factor 1""*

=

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

1 6 l m

Table 4 Farley Unit 2 Chemistry Factors Using Surveillance Capsule Data per Regulatory Guide

'. 99, Revision 2, Position 2.1 musumummmmmy- mummmmmmmmm summmmmmum mummmmmmu -umummmmmumum . 1 FF' i Material Capsule f* FF*) ARTc ARTa FF' inter. Srell Plate B72121 U 0.579 0.847 103 87.2 0.718 (Longitudinal)

W 1.54 1.12 165 184.7 1.25 X 2.64 1.26 180 226.8 1.59 Inter. Shell Plate B72121 U 0.579 0.847 133 112.7 0.718 W 1.54 1.12 165 184.7 1.25 X 2.M 1.26 190 239.3 1.59 Sum: 1035.4 7.12 CF = I(FF

  • ART ) + I(FF') = 145.5 Weld Metal U 0.579 0.847 10 8.5 0.718 W 1.54 1.12 10 11.2 1.25 1

X 2.64 1.26 10 12.6 1.59 Sunt 32.3 3.56 CF = I(FF

  • ART ) + I(FF') = 9.1 NOTES:

m (a) I = fluence (jois /cm'.

n E > 1.0 MeV)

(b) FF = fluence factor = I""*

Fariey Units 1 & 2 Heatup and Cooldown Limit Curves Ar,ril 1997

s. - .

7 3  : CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS Appendix 0 to 10 CFR Part 50, ' Fracture Toughness Requirements'M specifies fracture toughness requirements for ferritic materials of pressure retaining components of the reactor coolant pressure boundary of light water nuclear power reactors to provide adequate margins of safety during any condition of normM operation, including anticipated operational occurrences and system hydrostatic tests, to which the pressure boundary may be subjected over its service lifetime. The ASME Boiler and Pressure Vessel Code forms the basis for these requirements.Section XI, Division 1, ' Rules for Inservice inspection of Nuclear Power Plant Components *M, Vessels, contains the conservative methods of analysis.

The i,SME approach Ior calculating the allowable limit curves ior various heatup and cooldown rates specifies that the total stress intensity factor, K,, for the combined thermal and pressure stresses at any time during heatup or cooldown cannot be greater than the reference stress intensity factor, K , for the metal temoerature at that time. K, is obtained from the reference fracture towhness curve, defined in Appendix G of the ASME Code, Section XIM, The K, curve is given by the following equation:

j K.-26.78 + 1.233

  • e *'"#'" (3) 0

) where, K, = - reference ctress intensity factor as a function of the metal temperature T and the metal reference nil-ductility temperature RT.,

Therefore, the goveming equation for the heatup cooldown analysis is defined in Appendix G of the ASME Code as follows:

C KgKfK, (2) i where, K= stress intensity factor caused by membrane (pressure) stress K, = stress intensity factor caused by the thermal gradients

.K = function of temperature relative to the rte 7 of the material C= 2.0 for Level A and Level B service limits C= 1.5 for hydrostatic and leak test conditions during which the reactor core is not critical Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

8 At any time during the heatup or cooldown transient, K, is determined by the metal temperature at the tip of a postulated flaw at the 1/4T and 3'4T location, the appropriate value for RT , and the reference fracture toughness curve. The thermal stresses resulting from the temperature gradients through the vessel wall are calculated and then the corresponding (thermal) strest intensity factors, K,,, for the reference flaw are computed.

From Equation 2, the pressure stress intensity factors are obtained and, from these, the allowable pressures are j calcutated.

Fo' the calculation of the alloweble pressure versus coolant temperature during cooldown, the reference flaw of Appendix G to the ASME Code is assumed to exist at the inside of the vessel wall. During cooldown, the controlling location of the flaw is always at the inside of the wall because the thermal gradients produce tensile stresses at the inside, which increase with increasing cooldown rates. Aliowable pressure-temperature relations are generated for both steady state and finite cooldown rate situations. From these relations, composite limit curves are constructed for each cooldown rat 6 of interest.

The use of the composite curve in the cooldown analysis is necessary because control of the cooldown l procedure is based on the measurement of reactor coolant temperature, whereas the limiting pressure is actually l dependent on the material temperature at the tip of the assumed flaw. During cooldown, the 1/4T vessellocation l is at a higher temperature than the fluid adjacent to the vessel inner diameter. This condition, of course, is not true fur the steady state situation, it follows that, at any given reactor coolant temperature, the AT (temperature) developed during cooldown results in a higher value of K, at the 1/41 location for firds cooldown rates than for cteady state operation. Furthennore,11 conditions exist so that the increase in K, exceeds (ine calculated

)

allowable pressure during cooldown will be greater than the steady state value.

The above procedures are needed because there is no direct control on temperature at the 1/4T location and, therefore, allowable pressures may unknowingly be violated 11 the rate of cooling is decreased at various intervak along a cooldown ramp. The use of the compostte curve eliminates this problem and ensures conservative operation of the system for the entire cooldown period.

Three separate calculations are required to determine the limit curves 'or finite heatup rates. As is done in the cooldown analysis, allowable pressure-temperature relationships are rieveloped for steady state conditions as v, ell as finite heatup rate conditions assuming the presence of a 1/4T defect aNe inside of the wall. The heatup results in compressive stresses at the inside surface that alleviate the tens:le stresses produced by intemal pressure. The metal temperature at the crack tip lags the coolant temperature; tnerefore, the K, for the 1/4T crack during heatup is lower than the K, for the 1/4T crack during steady state conditions at the same coolant temperature. During heatup, especially at the end of the transient, condtt.ons may exist so that the effects of compressive thermal stresses and lower K, values do not offset each other, and the pressure temperature curve based on steady state conditions no longer represents a lower 'oound of all similar curves for finite heatup rates when the 1/4T flaw is considered. Therefore, both cases have to be analyzed in order to ensure that at any coolant temperature the lower value of the allowable pressure calculated for steady state and finite heatup rates is obtained.

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

9 I The second portion of the heatup analysis concems the calculation of the pressure temperature limitations for the case in which a 1/4T flaw located at the 1/4T location from the outside surface is assumed. Unlike the situation at thi vessel inside surface, the thermal gradients established at the outside surface during heatup produce stresses which are tensile in nature and therefore tend to reinforce any pressure stresses present. These thermal stresses are dependent cn both the rate of heatup and the time (or coolant temperature) along the heatup ramp. Since the then+al stresses at the outside are tensile and increase with increasing heatup rates, each heatup rate must be analyzed on an individual basis.

Following the generation of pressure temperature curves for both the steady state and finite heatup rate situations, the final limit curves are produced by constructing a composite curve based on a point-by-point

comparison of the steady state and finite heatup rate data. At any given temperature, the allowable pressure is taken to be the lesser of the three values taken from the curves under consideration. The use of the composite curve is necessary to set conservative heatup limitations because it is possible for conditions to exist wherein, over the course of the heatup ramp, the controlling conddion switches from the inside to the outside, and the pressure limit must at all times be based on analysis of the most critical criterion.

10 CFR Part 50, Appendix 0 addresses the metal temperature of the closure head flange and vessel flange regions. This rule states that the metal temperature of the closure flange regions must exceed the material unirradiated RT, by at least 120*F for normal operation when the pressure exceeds 20 percent of the preservice hydrostatic test pressure, which is 621 psig for Farley Units 1 and 2.

The limiting unitradiated RT, of 60*F occurs in the closure head and vessel flanges of the Fariey Units 1 and 2 reactor vessels, so the minimum allowable temperature of this region is 180*F at pressures greater than 821 psig.

This limit (where the horizontal line indicates that the pressure shall not exceed 621 psig for temperatures less than 180*F) is shown as a notch in the curves, presented wherever applicable in Figures 2 through 17.

4 Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

10 4 CALCULATION OF ADJUSTED REFERENCE TEMPERATURE From Regulatory Guirk 1.99, Revision 2, the adjusted reference temperature (ART) for 6ach material in the beltline region is given by the following expression-ART =InitialRTwr+bRTw7+ Margin (3)

Inhial RTux is the reference temperature lor the unirradiated tr aterial as defined in paragraph NB 2331 of Section 111 of the ASME Boter and Pressure Vessel Code"M. If measured values of initial u RT m for the materialin question are not uallable, generic mean values for that class of material may be used if there are sufficient test results to establish a mean and standard deviation for the class.

ARTum is the mean value of the adjustment in reference ttmperature caused by irradiation and should be calculated as follows:

A RTwr= CF* f@^**'90 9y To calculate ARTux taany depth (e.g., at 1/4T or 3/47), the following formula must first be used to attenuate the

} uprated fluence at the specific depth.

fy =im= eVD'%

(5) where x (in inches) is the depth into the vessel wall measured from the vessel cla@ase metal interface. The Farley Unit 1 and 2 vesse: beltline thickness is 7.875 irches. The resultant fluence is then placed in Equation 4 to calculate the ARTum at the specific depth.

The Westinghouse Radiation Engineering and Analysis group evaluated the vessel fluence projections as part of M

the Farley Units 1 and 2 Upratrng Program and the results are presented in WCAP 14687 . The evaluation used the ENDF/B VI scattering cross sectbn data set. This in consistent with the methods presented in WCAP 14040-NP A, ' Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves'D4 Farley Units 18 2 Heatup and Cooldown Limit Curves April 1997

il

. Table 5 Clad / Base Metal Interface Fluence (10" n/cm', E > 1.0 MeV) Project!cns for Uprated Conditions EFPY O' 15' 15'"' 30' 30 * *' 45' Farley Unit 1 13.8 1.65 0 933 0.786 0.726 0.701 J t93 16 1.87 1.12 0.897 0 831 0.802 0.563 32 3.55 2.18 1.75 1.63 1.58 1.10 36 3.97 2.45 1.96 1.83 1.77 1.23 54 527 3.64 2.91 2.74 2.64 1.83 Farley Unit 2 11.3 1.27 0.738 0.590 0.546 0.527 0.3B3 16 1,73 1.02 0.814 0.761 0.735 0.536 32 3.35 1.99 1.59 1.51 1.46 1.07 36 3.75 2.23 1.78 1.70 1.64 1.20 54 5.57 3 32 2.66 2.54 2.45 1.80 NOTE:

(a) Indcates locations in octants with a 26' neutron pad span.

The chemistry factor values obtained from Tables 1 and 2 of Regulatory Guide 1.99, Revision 2 are presented in Table 2. The chemistry factor values were determined using the copper and nickel weight percent values reported in Table 1 of this report. Chemistry factors were also calculated using surveillance capsule data as shown in Tables 3 and 4.

Margin is calculated as, M = 2 fa,' + c,5. The standard deviation for the initial RTum margin term, o,, is O when the initial RTum is a measured value, and 17'F when a generic value of initial RTun is used. The standard deviation for the ARTux margin term, o,, is 17'F for plates or forgings, and 8.5'F for plates or forgings (half the value) when suweillance data is used. For welds, o, is equal to 28'F when surveillance capsule data is not used, and is 14*F (half the value) when surveillance capsule data is used. c3 need not exceed one half the mean value of ARTS 3 I All materials in the beltline region of the Farley Units 1 and 2 reactor vesse!s were considered in determining the limiting materials. Figure 1 presents a cross section of the Farley reactor vessels showing the locations of the neutron pads and surveillance capsules.

Farley Units 1 & 2 Heatup and Cooldown Lirnit Curves April 1997

12 nearten vensh #

- vesentaa j JM. Porte, meester Geometry ees . . . * *

  • M9 I

1 I f/bWl

  1. totVTRON PAD 1644 DE G. ICAPSULt$ UXY 101 P ARLEY 1 and UAV IN PARLEY Il P"

10.?! DI0. ICAPSULit W.VJ IN P ARLtY 1 and g g W,YJ IN P ARLEY 2) t 95* REACTORVESSSL i ASACTOR VtSttL

. e e

/ o /

me p ME m l j i- s' i

1

~

p '

l l,s l l<

'/

p' I s' l

p t

,- \

,s'

/ '

I s' s s' l / 4 n a  !

s

/

, a s' l #

lW M' k-------------------------- k--------------------------

,,,, ,,,, , A u.Per=,asean ose=ewv - ** % eaPod i- .

FIGURE 1 Farley Units 1 and 2 Reactor Vessel Cross Section Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997 1

13 Sample calculations to determine the ART values for the Farley Unit 1 Lower Shell Plate B6919 2 are shown in Table 6, 1

Table 6 Calculation of ART Values at 36 EFPY for the Limiting Farley l i

Unit 1 Reactor Vessel Material . Lower Shell Plate B6919 2 Parameter Operating Trne 36 EFPY Locaton 1/4T ART 3/4T ART Chemistry Factor, CF (T) 98.2 98.2 Uprated Fluence, f (10 nlcm')* 2.48 0.962 Fluence Factor, FF 1.24 0.989 ART,e, = CF x FF (T) 122 97 initial RT,e,, I (T) 6 6 Margin, M (T) 34 34 Adjusted Roterence Temperature (ART), (T) per 161 136

)

Regulatory Guide 1.99, Revision 2 NOTES:

(a) Fluence, I, is based upon f, (10* n/cm'. E>1.0 MeV) = 3.97 at 36 EFPY, (b) The Farley Und 1 reactor vessel wall thickness is 7.875 inches in the beltline region.

The complete 1/4T and 3/4T ART calculations for both Farley Units 1 and 2 at 36 and 54 EFPY are provided in Tables 7 through 10. The resulting ART values for all beltline materials at the 1/4T and 3/4T locations are summarized in Table 11. From Table 11, it can be seen that the limiting materials are Lower Shell Plate B6919 2 for Farley Unit 1 and Intermediate Shell Plate B72121 (using surveillance capsule data) for Farley Unit 2. Therefore, the 1/4T and 3/4T ART values for Lower Shell Plate B6919 2 for Farley Unit 1 and intermediate Shell Plate B72121 (using surveillance capsula data) for Farley Unit 2 wili be used in the generation of the heatup and cooldown curves.

(Note: When two or more credible surveillance data sets become available, the data sets may be used to determine ART values as described in Regulatory Guide 1.99, Revision 2, Position 2.1. If the ART values based on surveillance capsule data are larger than those calculated per Position 1.1, the surveillance data must be used. If the surveillance capsule data gives lower values, either may be used. The surveillance data credibility analysis is presented in Appendix A of this report.)

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

14 i Table 7 Farley Unit i 1/4T & 3/4T ART Calculations at 36 EFPY t036 114Tl IAatenal CF EFPY 3'4T I FF l IJ ARTc ART q.

1/4T Calculatons inter, Shell Plate B6903 2 91.0 3 97 2 48 1.24 0 34 113 147 Inter. Shell Plate B6903 3 82.2 3 97 2 48 1.24 10 34 102 146 Lower Shel Piate 97.8 3.97 2 48 1.24 15 34 122 171 B69191 using S/C data 95 9 3 97 2 48 1.24 15 17 119 151 l Lower Shet Plate 98.2 3.97 2 48 1.24 5 34 122 161 l B6919 2 inter. Shell Long. Weld Seams 118.6 1.23 0.767 0.926 56 66 110 120 19 894 A & B (Heat 8 33A277) usin9 SC data 75.7 1.23 0.767 0.926 $8 44 70 58 Circumferential Weld 11894 100.8 3.97 2.48 1.24 56 66 125 135 (Heat # 6329637)

Lower Shel Long Weld Seams 104.0 1.23 0.767 0.926 56 66 96 106 2H94 A & B (Heat # 90099) 3/4T Calculations inter, Shell Plate B6903 2 91.0 3 97 0.962 0.989 0 34 90 124 Inter. Shen Plate B6903 3 82.2 3 97 0 962 0.b89 10 34 81 125 Lower Shel Plate 97.8 3 97 0.962 0 989 15 34 97 146 B69191 using SC data 95.9 3 97 0.962 0.989 15 17 95 127 Lcwer Shell Plate 98.2 3.97 0.962 0.989 5 34 97 136 B6919 2 Inter. Shell Lo q Weld Seams 118.6 1.23 0.298 0.669 56 66 79 89 19-894 A & B (Heat # 33A277) usin9 SC data 75.7 1.23 0.299 0.660 56 44 51 39 Cac. Weld 11-894 100.8 3 97 0.962 0.989 56 66 100 110 (Heat # 6329637)

Lower Shet Long. Weld Seams 104.0 1.23 0.298 0.669 56 66 70 80 20-894 A & B (Heat 4 90099)

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

15 f Table 8 Farley Unit i tidi & 3/4T ART Calculations at 54 EFPY mmmmmmmmmme mmmmmmmmm - -mmmmmmma fC64 1/4Tl Matenal CF EFPY 3/4T f FF l M .iRT, ART 1/4T Catalations inter. Shell Plate B6903 2 91.0 5.87 3 66 1.34 0 34 122 166 inter. Shen Plate B6903 3 82.2 5 87 3 66 1.34 10 34 110 154 Lower Shell Plate 97.8 5.87 3.66 1.34 15- 34 131 180 B6919-1 using S/C data 95.9 5 87 3 66 1.34 15 17 128 160 Lower Shel Plate 98 2 6.87 3.66 1.34 5 34 132 170 B6919 2 Inter. Shell Long. Weld Seams 118.6 1.83 1.14 1.04 56 66 123 133 19 894 A & B (Heat # 33A277) using S/C data 75.7 1.83 1.14 1.04 56 44 79 67 Circumferential Weld 11894 100.8 5.87 3 66 1.34 56 66 135 145 (Heat # 6329637)

Lower Shen Long Weld Seams 104.0 1.83 1.14 1.04 56 66 108 118 2 20-894 A & B (Heat 0 90099:

3'4T Calculations inter. Shen Plate B6903-2 91.0 5 87 1.42 1.10 0 34 100 134 Inter. Shell Plate B6903 3 82 2 5 87 1.42 1.10 10 34 90 134 Lower Shel Pia'e 97.8 5.87 1.42 1.10 15 34 107 156 B69191 using SIC data 95.9 5.87 1.42 1.10 15 17 105 137 Lower Shel Plate 98 2 5.87 1.42 1.10 5 34 108 147 B6919 2 Inter. Shell Long Weld Seams 118.6 1.83 0 443 0.774 56 66 92 102 19 894 A & B (Heat # 33A277) using SIC data 75.7 1.83 0 443 0.774 56 44 59 47 Cire. Weld 11894 100.8 5.87 1.42 1.10 56 66 111 121 (Heat # 6329637)

Lower Shet Long. Weld Seams 104.0 1.83 0 443 0.774 56 66 81 91 20-894 A & B (Heat # 90099)

Farley Units 1 & 2 Heatup and Cooldown Lirnit Curves April 1997

16 Table 9 Farley Unit 2 il4T & 3/4T ART Calculations at 36 EFPY fC36 ildTl A Material CF EFPY 3'4T I FF l M Ri c ART 1/4T Calcuintons inter. Shell Plate B72031 100.0 3 75 2.34 123 15 34 123 172 Inter. Shell Plate B72121 149.0 3.75 2.34 123 10 34 183 207 usng SC data 145.5 3.75 2.34 1.23 10 17 179 186 Lower Shell Plate B72101 89.8 3 75 2.34 1.23 18 34 110 162 Lower Shel Plate B7210 2 98 7 3.75 2.34 1.23 10 34 121 165 Intei. Shell Longtdnal Weld Seam 27.0 1.20 0 748 0 919 56 42.1 25 11 19 923 A (HODA) inlet. Shell Longitudinal Weld Seam 11.0 120 0.748 0 919 60 37.7 38 15 19 923 B (BOLA) using Et data 9.1 120 0.748 0919 -60 B.9 8 44 Cucamferential Weld 11923 (Heat 8 67.3 3.75 2.34 1.23 40 56 83 99

$P5622)

Lower Snell Longitudinal Weld 34 05 120 0.748 0 919 70 31.3 31 7 Seams 20 923A&B (Heat eB3640) 3/4T Calculatons inter. Shell Plate B72031 100.0 3.75 0 909 0 973 15 34 97 146 inter. Shell Plate B72121 149.0 3.75 0.909 0 973 10 34 145 169 using SC data 145.5 3.75 0.909 0.973 10 17 142 149 Low $r S I Plate B72101 89.8 3.75 0 909 0.973 18 34 87 139 Lower Shet Plate B7210 2 98.7 3.75 0.909 0 973 10 34 96 140 inter. Shell Longitudinal Weld Seam 27.0 1.20 0.291 0 662 56 38 4 18 0 19-923 A (HODA)

Inter ShellLongnudinalWeld Seam 41.0 120 0291 0 662 40 27.2 27 -6 19 923 B (BOLA) using SC data 9.1 1.20 0.291 0 662 60 64 6 47 Cucumferential Weld 11923 (Heat # 67.3 3.75 0.909 0 973 40 56 65 81 SP5622)

Lobt Shell Longit 4nal Weld 34.05 120 0291 0.662 70 22.6 23 25 Seams20-923 A & B (Heat # 83640)

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

17 Table 10 Farley Unit 21/4T & 3/4T ART Calculations at 54 EFPY 1054 1/4T/ a Matenal CF EFPY 3'4T I FF l M RTc ART tidT Calculatons inter. Shell Plate B72031 100 0 5 57 3 47 1.32 15 34 132 181 Inter. Shell Plate B72121 149.0 5.57 3 47 1.32 10 34 197 221 using SC data 145.5 5.57 3 47 1.32 10 17 192 200 Lower Sheu Plate B72101 89.8 5.57 3 47 1.32 18 34 119 171 Lower Shel Plate B7210 2 98.7 5.57 3 47 1.32 10 34 130 175 inter. Shell Longitudinal Weld 27.0 1.83 1.12 1.03 56 44.0 28 16 Seam 19-923 A (HODA)

Inter. Shell Lorigitu$nal Weld 41.0 1.80 1.12 1.03 -60 42.3 42 25 Seam 19-923 B (BOLA) using SC data 9.1 1.80 1.12 1.03 60 10.0 10 40 Circumferential Weld 11923 67.3 6 57 3 47 1.32 40 56 89 105 (Heat # SP5622)

  • 34.05 1.80 1.12 1.03 70 35.1 35 0 Lower Shen Longitudinal Weld Seams 20 923A&B (Heat #83640) 3/4T Calcutations Inter. Shell Plate B72031 100.0 5 57 1.35 1.08 15 34 108 157 hier. Shell P: ate B72121 149.0 5.57 1.35 1.08 10 34 161 185 using SC data 145.5 5 57 1.35 1.08 10 17 157 165 Lower Shel Plate B72101 89.8 5.57 1.35 1.08 18 34 97 149 Lower Shel Plate B7210 2 98.7 5 57 1.35 1.08 10 S4 107 151 inter. Shell Longitudinal Weld 27.0 1.80 0 436 0.769 56 39.8 21 5 Seam 19 923 A (HODA)

Inter. Shell Longnu$nal Weld 41.0 1.80 0 436 0.769 60 31.5 32 3 Seam 19 923 B (BOLA) using SC data 9.1 1.80 0 436 0.769 -60 7.5 7 45 Circumferent;al Weld 11923 67.3 5.57 1.35 1.08 40 56 73 89 (Heat # SP5622)

Lohr Shel Longitu$nal Weld 34.05 1.80 0 436 0.769 70 26.2 25 18 Seams20-523 A & B (Heat # 83540)

Farley Units 1 & 2 Heatup and Cooldown Lirnit Curves April 1997

18 Table 11 Summary of the Farley Units 1 & 2 Adjusted Reference Temperatures at 36 & 54 EFPY Ad,usted Reference Temperature (;F)

Bettline Material 36 EFPY 54 EFPY Farley Unit 1 ildT 3'4T 1/4T 3/4T Intermediate Shell Plate B6903 2 147 124 156 134 Intermediate Shell Plate B6903 3 146 125 154 134 Lower Shell Plate B69191 171 146 180 156 using S/C data 151 127 160 137 Lower Shell Plate B6919 2 161 136 170 147 Intermediate Shell Longaud:nal Weld 120 89 133 102 Seams 19 894 A & B (Heat # 33A277) using S/C data 50 39 67 47 CircumferentialWeld 11894 135 110 145 121 (Heat # 6329637)

Lower Sheli Longdudinal Weld Seams20-894 A 106 80 118 91

&B (Heat # 90099)

Farley Unit 2 1/4T 3/4T 1/4T 3/4T inter. Sheli Plate B7203-1 172 146 181 157 Inter. Shell Plate B72121 207 169 221 165 using SIC data 186 149 200 165 Lower Shell Plate B72101 162 139 171 149 Lower Shell Plate B7210 2 165 140 175 151 Inter. Shell LongitudinalWeld 11 0 16 5 Seam 19 923 A (Heat # HODA)

Inter. Shell LongitudinalWeld 15 6 25 3 Seam 19 923 B (Heat # BOLA) using S/C data 44 47 -40 45 CircumferentialWeld 11923 99 81 105 89 (Heat # $P5622)

Lower Shell Longitudinal Weld Seams 20- 7 25 0 18 923A&B(Heat 883640)

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

.- -_----= - - .- -.- __.-._---..-.

19 5 HEATUP AND COOLDOWN PRESSURE TEMPERATURE LIMIT CURVES 3

Pressure terr.perature limit curves Ior normal heatup and cooldown of the primary reactor coolant system have been calculated for the pressure and temperature in the reactor vessel beltline region using the methods discussed in Section 3.0 and 4.0 of this report. This approved methodology a also presented in WCAP 14040-NP A, Revision 2, dated January 1996.

Figures 2 through 9 present the heatup and cooldown curves for Farley Unit 1. Figures 2 and 3 contain curves without margins for possible instrumentation errors using heatup and cooldown rates up to 100'F/hr. These curves are applicable to 36 EFPY for Farley Unit 1. Figures 4 and 5 present the 36 EFPY heatup and cooldown curves with a detta pressure correction for the static and dynamic head loss between the reactor vessel beltkne region and the RHR relief valves. These curves include a detta pressure correction of 25 psi"8 for temperatures j less than 110*F and 60 psi"O for temperatures greater than and equal to 110*F associated with operation of one and three reactor coolant pumps, respectively, Addrtionally, Figures 6 through 9 present the same cases applicable to 54 EFPY, however, they do not include the delta pressure correction associated with RCP operation.

Figures 10 through 17 present the heatup and cooldown curves for Farley Unit 2. Figures 10 and 11 contain curves without margins for possible instrumentation errors using heatup and cooldown rates up to 100'F/hr.

These curves are applicable to 36 EFPY for Farley Unit 2. Figures 12 and 13 present the 36 EFPY heatup and cooldown curves with a deha pressure correction for the static and dynamic head loss between the reactor vessel y beltline region and the RHR relief valves. These curves include a detta pressure correction of 25 psi"8 for temperatures less than 110'F and 60 psi"5 for temperatures greater than and equal to 110*F associated with operation of one and three reactor coolant pumps, respectively. Addnionally, Figures 14 through 17 present the same cases applicable to 54 EFPY, however, they do not include the detta pressure correction associated with RCP operation.

Allowable combinations of temperature and pressure for specific temperature change rates are below and to the right of the limit lines shown in Figures 2 through 17. This is in addition to other criteria which must be met before the reactor is made critical, as dacussed below in the following paragraphs.

The reactor must not be made critical until pressure temperature combinations are to the right of the criticality limit line shown in the heatup curve plots. The straight line portion of the criticahty limit is at the minimum permissible temperature for the 24B5 psig inservice hydrostatic test as required by Appendix G to 10 CFR Part 50. The goveming equation for the hydrostatic test is defined in Appendix G to Section XI of the ASME Codd5 as follows:

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

20 (6) 1.5Ka<K.

where, K, is the stress intensity f actor covered by membrane (pressure) stress, K,= 26.78 + 1.233 e #N ##"8, T is the minimum permissible metal temperature, and RTa is the metal reference nil-ductility temperature

- The criticality limit curve specifies pressure temperature limits for core operation to provide additional margin during actual power production as specifed in Reference 8. The pressure-temperature limits for core operation (except for low power physics tests) ere that the reactor vessel must be at a temperature equal to or higher than the minimum temperature required for the inservice hydrostatic test, and at least 40*F higher than the minimum permissible temperature in the corresponding pressure temperature curve for heatup and cooldown calculated as described in Section 3.0 of this report. The minimum temperatures for the inservice hydrostatic leak tests for the Farley Unit i reactor vessel at 36 EFPY is 289'F and 298'F at 54 EFPY Additionally, the minimum temperatures for the inservice hydrostatic leak tests for the Farley Unit 2 reactor vessel at 36 EFPY is 314'F and 328'F at 54 EFPY, The vertical line drawn from these points on the pressure temperature curve, intersecting a curve 40'F higher than the pressure temperature limit curve, constitutes the limit for core operation for the reactor vessel.

Figures 2 through 17 define all of the above limits for ensuring prevention of nonductile failure for the Farley Units 1 and 2 reactor vessels. The data points for the heatup and cooldown pressure temperature limit curves shown in Figures 2 through 17 are presented in Tables 8 through 16.

c

~

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

21 i

MATERIAL Pl".)PERTY BASIS

}

LIMITING MATERIAL: LOWER SHELL PLATE B6919 2 LIMITING ART VALUES AT 36 EFPY: 1/4T.161'F 3/4T,136'F 2500 1 ,,

......, ..... 1 i 1 i . , -,

i /u ; /. It i !!r- - -

, i LEAX 7:5T LIMIT  ? I iI T i i > Jf I. !i i :1 (

M .1 ' I I + - 1 i . I! i li II. I :I: i i , i i 1

~

' ' ' ' ' ' ' ' o' ' '

a '000 1

,,- i i .

r i /

1 _i i i .e + , .1 ,i,

! I_! I I i ! r i i J

_1 M  : . .

m 1/~h-f:

i 1'

g 1750 i . UNACCEPTABLE

/ I .i .; y ,

+ 3

! I i GPERAT!oN ilt I i li il I i  ! i ,

w '

I ,,1 . i / !

f;I I:  !/ i 4  ! ,

.; g

>i a

. Ii Ii . , . , . I i : i: 2 r

' ~ '~

3 1500 '

J'

,I ,J : h:-

m 1 +r 41- , , 1 r g- nT

= i  : . l; i +l . 4 1  :

i/!!/ /; l/ :

/=

l h  %-

o 1250 ,*

. / / ,

ACCEPTABLE ,-

/ _/j

) L , N !0 f/Nr. g T

~*/

/

l i oPERAT!oN- [

L

  • i i A 1 , I ,

,/ > i ,y Z 1000 maaTUr a47:  %', ,' , . j--

~,_ ,'.--

9-+--t- H , t-7 1- i , UF 70 100 F/Br. '3 hi/ - __ f 1 f ; it r i j  ;

T t ,  ! i , I  ! ir  ; ; , h' *tM- ~~~

TFIM !

~

g i i ! l ! i /NL /. . I i  ! I I iii i ! I i i

~T~~*- W

^

1 s i s 1 i s , ,r 7 . s ,,1 y ,

. ,,,,3 . . . / / .

~ fI i i I ! I I f l i ft '/!i I  ! ! 1 + 1 ,  ! I i

'  ! i , i 4 CC i !  ! I j,- J 9  ! i . .

I i , i ,

O

. 00  !  !! '

!  !, I

', ,-l l l-1

, , , , , ,i, 1  ! >i i e i e + i i ! 1 M i iii . . i j i! - i i

, t ] i _

i

!! l1  !

I i

  • i i

'!! '/ [!! I i i l i !

i 1 ,

!l i .

i 1 i ig_;,

I i !

e t ,

! .t .

250 4-CRITICALITY limit BABB9 ON ' ' ' '

INSERVICE TEST ' I  ! I 7 1' _ iI i i

! I I I TBNPERATUSBB Y D3 890.PS T APOR i 1' 8 TME C 1 ' ! I .

y SERVICE PERI D UP PO 89.8 BPPY  ! '

i j g l jp 1 ,I i+;

. . 0 . , , , ,

0 50 100 150 200 250 300 350 400 450 500 i Indicated Temperature (Deg.F) .

4 4

FIGURE 2 Farley Unit 1 Reactor Coolant System Heatup Limitations (Hoatup Rates up to 100*F/hr)

Applicable to 36 EFPY (Without Margins for Instrumentation Errors) induces vessel flange requwerneats of 180'F ard 621 e si per 10 CFR 50, Appendtx G.

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

22 1

s MATERIAL PROPERTY BASIS t

LIMITING MATERIAL: LOWER SHELL PLATE B6919 2 LIMITING ART VALUES AT 36 EFPY: 1/4T,161'F 3/4T,136'F 2500 ,

p' '

= -

j

z , ,

! s.p.

e c

% I ~

~

2000 l

, ,-. , - ,- _ . . ~

) f w / i i 1750 UNACCEPTABLE 1 i -

OPERATION _ I. ' ' I E 1, i

O / i i ,

' l ' '

6 1500

-.4 4-f M . ,

p f ,

m .

! 8. .! !  !

1

/.

4.

J!.. +.

i M ' !

i *  ! ' t /.,d ' t i L_.u M,....;y4;,,

o 1250 ~

'/ ,

ACCEPTABLE j k + 4 ./ >

OPERATION g _. L.- - -

4 l4 s.- -

-. -e. 4 '-. n1 1000 T -+

, j,;  ! b4 L- "t +4i-t*.)

i M7 W- '

i i

I !! l l 1  !!*

g

,i!!  !  !

IIl G 750 -- cootoova RATE $  :

' I*

M  !

.,I t  !

y F/Br.  !'!  ! ! / i!  !  ! '

! !!' ' 'I

!,  !.  !: ! II!

i! u #M  ! !I e 500 - - o

^ ' ' ' ' ' ' ' ' ' '

M f. M,;

c

~

a Io

.o  :

l '

i!, ',E,'i i

,i,! q .

i : u_

i too i i,i i i i' i . i i .ii, e 4 y;_

250 1

'l' 1

.-, g )

e

.--- -.-Q I t -

O

--tH  !  ;

i , i 0 50 100 150 200 250 300 350 400 450 500 Indicated Temperature (Deg.F)

FIGURE 3 Farley Unit 1 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100*F/hr) s Applicable to 36 EFPY (Without Margins for instrumeatation Errors)

Indudes vessel fiange reavirernents of 180*F and 621 psig per 10 CFR 50, Append:x G.

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997 1 4

f-23 j . MATERIAL PROPERTY BASIS LIMIT!NG MATERIAL: LOWER SHELL PLATE B6919 2 LIMITING ART VALUES AT 36 EFPY: 1/4T,161'F 3/4T,136'F i 2500 , ,

, I

,m t

.........Is . -

>  ! i i <! 1 1

l-  !

l .- . , i /^ H 1

\

u 2250 LEAE TEST L1MIT V-x' .It Vi il 2

/

il

~*

1 i

$ 2000 -

! 4 ,2  ;

l'.

!+/~1ll;i i l ". !  :

a ' '

w i

J

'Q/ y;

_ I _ m' .I I ie

+

r '

tr

' . I _.1 I I I_ i i < i~

O 1750 ,

i! .I 1

i UNACCEPTABLE OPERATION I

! fl. /[ [ '

! +

1 M:

ii*

y i i i >

__, .-  : I1 1. : 11 "*~) .

_i 1 i .

i , i i ! i ' i I: Il !I 17/ i i i I i i . t ii i 2 1500 ' ' ' ' ' ' '

m i i ? ,  ; i

', i

,; 4 . .

4 i/: !/

i/i;/

i

' i ~ i '

iHtt" l e i  ; i i i  ! T

  • _._g i  !

! i i 1_ I i II : i i ! i I i ,

i  !

4 i j; j q/; jj  ;

- i a 2_ 4

)

U 1250 , . . , . .

. . , , , . f. ,, c_1 ,, ,

AccEPTAnLE p

' N I!MEATUP EATE y. - _ _.y OPERATION r'k /

^ f i l p A i UP 70 00 F/Br. , i/ .__ 1  !

1000 y /. , ,i ,  :- , , , ,

. EEATUP RATE W / .

/ 4 i i i

, i i i _ ; , .

O, -

T i UP 70 100 F / iid r . ' f1 i /4 i e i i ; j i i i i j1 T O o I

'~

h/I 7 ' < i 4 e a i  ; i e

ii ,

I i i' 750 '.

^^ ' ' ' '

J i i

,  ! . +! .

i i /7i .

! i I > I !1 I ii a

i / 4 /!

!  ! ' i ! 1I 1. i i  !  !. I Cill ~ l - i !  ! . i i (i /t I I '  ! ! ! i ' i r i  ! I i I ~

500 '

- .i. . , , L:EEE-dl iii.

l . li; ij .  : , ii

--+ rH l r+-

g i i +

i a i . ! ! i ,! . pi . t i  !  ! I i! .

! I f ! l  ! i i  ! ! I I i ! I I  ! 6/ i ! I i i 1 l t ; i, i 1 i i.

c '250 ' ' ' '

"  ! i

' CRITICALITY' IMstRVICE BYDRobfAPIC LIMIT BastD 'EST OM i

' ' ' I

' t

  • I

! I ' '.

TEMPSRATURR (ROD F l POR TRS ' I i '  !

Q'.

BERVICE PERIOD UP PO 88.4 EPPY <

7 I i . . . i 0

0 5'O 60 150 200 250 300 350 400 450 600 Indi ated Temperature (Deg.F)

FIGURE 4 Farley Unit 1 Reactor Coolant System Heatup Limitations (Htatup Rates up to 100'F/hr)

Applicable to 36 EFPY (Without Margins for instrumentation Errors: With Delta Pressure Margin of 25 psi for Temperatures < 110*F,60 psi for Temperatures 2110*F) indudes vesset t!ay requirements of 180F and i,61 osi per 10 CFR $0, Appedx G.

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

84 l t

.. MATERIAL PROPERTY BASIS '

i LIMITING MATERIAL: LOWER SHELL PLATE B6919 2 1 LIMITING ART VALUES AT 36 EFPY: 1/4T,161*F i W4T,136*F 2500 , ,

~

........ ... 1_ .

~~l~l

/Il!

,nr . ,, l , i , i l' l . > l ll 2250 ., , ,: ; , .., ,

1

.+.

,lI l' ll

^

i; {i 1

.' fl - ,

u - --

, j ~

1 2000 ,

ll ., ,

W '

i i :I i i i < , ,

1 I  ! !! iI 5.  ! [ t I ' ' Iij! *

" 1750 -

' i UNACCEPTABLE ' L t >

i i  !+ OPERATION '

I >> iii  : 'T C)  ! +  ! l!  ! !/ t -

.! + b' - !*1 i i F ei ,

. i ,, i , i if. tii i i i i t 4 . I it t ,e i [ i i 500 e i I C , , __

,,; i ,,, .I , , , , . ,, ,

g  !  !! 1!!! .  ! i ;  ! '!  :/i i ii!  ! -> ' i! ii 1i i i lI i i *i  ! i j j  !

c 1250 ,

, .. /,.

7 ,, _

.I AccFPTABLE i i i i-

. 6 ii  ! i !! *

!!! . !/ i i i i OPERATION i  ! .

.} g y1 i i ii

- t ! ' '

!s </

!I '

I

!j

~

1 <

- y _f , , ,

H--

~+ , ,

, ; yt: - ;p y3

. ,, , , j, ,

, i i, . i m 750 5 '

o C09LDOWN sates

j

[

7

, l,;,

il

,3 N -t- p%,

F/Br. - 1 y,  !!!

gh +

  • ~ ' ' ' .

ll

)

, l 3+ N @M# l l i i  !!  !

i it WN i l ;l,i l li l t' -

250 ", ,

4 4 i . ,

j 1 . .

,i i j! I' t

_i f I l l

l1 I' I

! I I I Iii i i  !  !  !  ! ! !_

  • i ,

1 i t

i t !i i i ! 'y3 i I

{ _

0 0 5'O 100 t50 200 250 300 350 400 450 500 Indicated Temperature (Deg,F)

( FIGURE 5 Farley Unit 1 Reactor Coo' ant System Cooldown Limitations (Cooldown Rates up to 100*F/hr)

). Applicable to 36 EFPY (Without Margins for Instrumentation; With Delta Pressure Margin of 25 psi l for Temperatures < 110*F,60 psi for Temperatures 2110*F)

Indudes vessel flange requirements of 160*F and 561 psi per 10 CFR 50, Appendix G.

I Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

.__ _ . . _ . . - . __ _. . _ , _ __ _ .~ . .._ _._ .- . _ , _ _

25 MATERIAL PROPERTY BASIS UMITING MATERIAL: LOWER SHELL PLATE B6919-2 UMITING ART VALUES AT 54 EFPY: 1/4T,170'F l 3/4T,14TF 1

2500 , -

.......... 8. i , i g i <  !/ -*l ;i r "-W e 2250
;e_._._i i

~

'Trf ' i,I I,h[! i/

1 g,

,__. , ,1 l

4 -

1 i

LEAI TEST LIMlf :I !

g, _g Ii

,f- ~,1 i fi i -  !

t/)

2 0

-/ i/; I /!- /+ :+/+ , ,

n i '

i ,

.a . a w.

.2 -f i!/

,I fi

j

1 n i

= r ;j L _

1750 uNACCEPTAstE --

, --.< r qqq_.i;f

' .T OPERATION I

, l I

l l '[.

! r_

+

t i i i !

~)f j_ i ii ;ii y ,

1 i ,; a 00 s \

V3 i , i i  ! !  ! t/ /: g r i i i ii+ 1 ii ii ! ' i e i i-! i i Y_' t/ ii 'j i i1 - I I ;i! i i i i6 i i i i i ii t i/ J. ii i! i ~I U i ,

i i' il i ! > i' + i i i i i i !/i i/! i /. .

i.,_ _;_[y, y. _

o 1250 1 . ._ _

,/ ./;/ ,{ ' / . ACCEPTABLE

' I P YPiY PRATUP RATE .  ! <

l r/ l - - - l OPERATION g,,, UP T0 00 F/Er. +, " ~

1000 --- d g":4' ' ' "'f

. i 4

i

"""" " ~' i E

T

. j i i ERATUP RATE UP T0 100'F/EF. 'g 1 7 i f y i #

f.iji

['

^ l~

k ~

i d-j ll i

e 750

- 4

y ,. _...,_._ , ,

T Qy i !

i

,; 3 l l ,

a . ,

4 i

i u., u,!

i i

i i i

i i z CC i i 1 4 ,  !  ! Ji ~C!

  • i iii i i e i i i l i +

i *

  1. ! ! l.- i i ! 1i i 11 o ' ' '

i

    • a 500 . ,

jj -

~r -]q ;

h

' ' ' 'i ' '

-y-- 4--

g i , ! . . ii i

ii j

f i i I i i I i1 i i I if I !

7( "t%

! I 2 r i g i ; 7 i  ! . 7 i i . T'- ,~

'""" M-t - !b BITICALITY LIWIT 8488D OM NSBRVICS Y B O S T &1' l C TBtf 2

l  ! ! l I  !,

2  !

i i

  • I ! T8W BRATUS 398 F i F08 TBR T' ' 3 ! t  !

I I I I i i

!3 988 ICS PERI D UP 10 64.0.8FPY l I I e i i i<i T9~ ~

0

, , '. , , , m ,

0 50 100 150 20 250 300 350 400 450 500 Indicated Temperature (Deg.F)

F GURE 6 Farley Unit 1 Reactor Coolant System Heatup Limitations (Heatup Rates up to 100*F/hr)

Applicable to 54 EFPY (Without Margins for Instrumentation Errors) includes vessel flange requirements of 180'F and f41 psi per 10 CFR 50, Appendix G Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

l 26 )

.. MATERIAL PROFERTY BASIS UMITING MATERIAL: LOWER SHELL PLATE b6919 2 LIMITING ART VALUES AT 54 EFPY: 1/4T,170'F_ .

3/4T 147'F 2500 , ,

. ._ ___t-- .

t

............i4 -

___ . - - 1 L.- _

.'I. '

2250 i I '

'r ' ,.

^

, . 44. .

he Mf !l 1 1 i '_i~ **"*--

f i , [

- 2000 t/)

l  !

l'  ; , , [;,,' 'l 1 1 , ,  :

ir it ii I! i

' . i i i i it t i; 21

' i ! i

'i i ,

,p gh. I

!  !.!  :-!  : 1 wy _-

I Ati! *

' i j i! I i i ' - i i

__ yw 1 50 uMAcc PTAnLE 1 OPERA 7 ION _I _ . _ , , , i U J_ __ _a_ , , , , , __.

p < + I_ '1 , s n 1500 "

y/_

ii g i .

_I. i "!  ! ,

i i! i ii t i 'ii i !' !ii1

  • 1  ! Ii i f/3

o 1250  ; , , 1 l . f .

_ ; AccrPr Ant ';

6 i r iii !i i  ! i r i; li  ! OPERAfl0M i l i i i*i i i ! i  ! i !V ii i jii i

b i i!i i+ 1  ! i i II iI i i i1 i.. M

  • f~

~

' ' ' ' ' ' # ' ' ' i ' ' '

1000 i ij g-l I i ! ' '

i. I i

1 i

1_! !

e

!Xf El i

_1 I

i

!  ! ;, il Q.

i 3 9 ,_

O i_< i 1 .  ! > ,  ! +* Mi If  ! I1 4

!i i g Y*-i

  • i
yf
ii i J

i: . !ii ,

! , ; i

  • i
-+ - + -

i g7 ,

89 750 -- cootoova 77 , .

g aAtas F/ar. 4 J_  %'., . J .i  :

+-

lII

+ -H. -

i

    • =

, Q._;p 7 l5, j f li e 50-; yM g .; 1 ,_, . iq

,; j  ;  !

- ,4 , o o, e

w., m,,<. i; ~~

i i-

> i i, ,

i i, i

  • P

' ~

~'

1 i; j I i i I i "T*T*'I 250 , , , , , ,, , ,_ i , , , , i e

I  ! I i ii i i i I  ! ~

I 17*h i i i . i 'i ,

~! 1, ' :'

! lil  !! ii iis

. i ,! ,

!Y , , N ~ "! " -

0 50 100 150 200 250- 300 350 400 450 500

Indicated Temperature (Deg.F) ,

I i

. FIGURE 7 Farley Unit 1 Reactor Coolaat System Cooldo vn Umitations (Cooldown Rates up to 100*F/hr)

' Applicable to 54 EFPY (Without Margins for Instrumentation Errors) includes vessel flange requirements of 180*F and 621 psi per 10 CFR 50, Appendix G.

- Farley Units 1 & 2 Heatup and Cooldown Limit Curves - April 1997

_ __ . _ _ , _ . . . _ _ _ _,_ _ _ . . _ _ - - . _ . _ _ , _ _ . , . . ~ . . _ . . _ _ _ _ . , _ .

27 MATERIAL PROPERTY BASIS LIMITING MATERIAL: LOWER SHELL PLATE B6919 2 LIMmNG ART VALUES AT 54 EFPY: 1/4T 170'F 3/4T,147'F 2500 > > ,, , ,

i l

~ .. .......... ii to i 4 i - ti < . 1 i i All!

i' lill; . ' !- 'i

'"'2250 ' ' ' ' ' ' '

l !1 1i  ;' ,

triI 7: 7 i.ivif A i li:li .:

'l"lp/

, . , 4

"~ ~

c' H

iy; l ,!! -

r

' Li

' 2000 y  : u

-~

+-ilt /! :/t i 2 v i ri -

4' ' ' '

6 i . -

. .j _ .:._____. iI i '

. 2, _% I I ' I; - l' 1750 0 UNACCEPTABLE I. 1 11

_i,.i i 'i! OPERATION i i 2 / . V!1 V  !

& ii F*D l g 1 iii i +

1 i i/ iII_ I  !

! I I I ! I i l i . 1 I ' b. I I! III I! Ti! i

'~

2 1500 '

H-- l ,

i ;-~mi = f- -/ ! /i i ,%

i' m ll l1 ; i i

i >

-i - AH-t-en  ;

I'

, l

, /,/j /, ,! ,/ i i,

+4- -+ - . ~

..'.y

, 4 ,- i,

.. o 1250 , , i , ,

i ,,, 1

, 1 1 1 ,. ., f 1, , cACCEPTAntE r "j y i ! i . I i iii i e i i t I if I OPERATION I

i i i i/ ~I !I/i /i , /1 C,,, ERATUP s[4g // g

< l ' UP 70 R.0 A T EF/Mr. ,

/-l/a.g_fi. -

> ! I i i 1

  • T T

i 1

1 X1

./ .1. / : .

y i f i i h/~! i i

9 ; ii i

, i'~ii f i 1

ii i  ! IIATUP RATE i !ii/i / i  ! ! t i i g i I UP TO 100 F/Er. y"1 7i /i ii j i  ! i i i 1 1 3 750 " ' ' ' ' ' '

i l' ll l . ii ll ii M7 Ni i  ! '.!

!Y i i i Ctl i i i .I i i 1 1 i  ! i i i  !

a 500 i

' i

! WlAi i'

i +i-l '

l-4 -

!i

, , , .n i, , i i ,,

i ii

, - i i i t i s  !

i .
iii iT i~~ ~

g s e ! . . ' i  ! . i #: ~  !  : 1 i  !  ! ! !

I ii  ! ! 1 ! i i i i i ,j,! ! !/ i 'i  ! 1 1 i i ! i i i l i i i g i ii i i.i . i . i if i a i . i! I i e i i i i !

~ C.ITIC&LivY LIMIT .48B9 .W  ! ' ' '

$,.x, l!; ; I'

I  ; I'I

?

. .!!!,!!!!!.!."i iti ri l :. n' F .'i .!. -

. '.e ii.irer

i 1
g,!,

0 0 5'O 100 150 2d0 250 3d0 350 400 450 500 Indicated Temperature (Deg.F)

FIGURE 8 Farley Unit 1 Reactor Coolant System Heatup Limitations (Heatup Rates up to 100*F/hr)

.) - Applicable to 54 EFPY (Without Margins for Instrumentation Errors and With Delta Pressure Margin of 60 psi) beludes vesse flange requements of 180*F and 561 psi per 10 CFR $0. Appendix G.

Farley Units 1 & 2 Heatup anri Cooldown Umit Curves April 1997

28

.. - MATERIAL PROPERTY BAjg LIMITING MATERIAL: LOWER SHELL PLATE B6919 2 Ll!.tl TING ART VALU8iS AT 54 EFPY: il4T,170'F 3/4T,14TF 2500 , ,

, . i, ,._,_

............i.

.4 ,m ' i -

jg. ;;4  : . t. y! ---!g_

! 2250 - --

': l ll L ^

i me ^!!

_i!

i!l

.i4 4 l_

ii t !!l /

m 1 !!

, l,;i iiii lill l! '

1!

i i t i!ir' a,'.a L< ~

2000 i ,i -

i

,' i ! '

'1 i ' .

I-g iy l  ;

ls W 4 i ! 1.I i, 1 1 .'iii! f.!  ! , ; _l

' i ll ll i i . l .' .i  !!,' l 3 9 L

1750 , , unicer,,4,t _ ,,_t OPERATION I U

e i  !

i I.

.: t

'. i 1

6 - I- C ' '

4-

1500-i ,

T i. ~* '"

/

I; i.

i ii i i i M 1 ,i! I

! i

. i ! i i + ' I

! 1. i i i!i I1

'..I e

f/3 i .ii 1ii !i i i i i  !/. ! I i1 i. i '!I i i it U i . ii I i i i i  !. 1/ i ! . i' ii!

0 t t . . i ' i / ACCEPTa"LE *

~~~

L- i < 1! ii  ! - . i i I ,/ i OPERATlON [

.)_ A  !

I' ll l

l i  ! Il

, i i . 4 i ;r Ii:'

1000- '

  • c l' e .

l, l.'il,, ,

.li.',Y#!/l i l l I l-I i

4 ll

-H. oH a j  :  ; i; ll* JJr+

i ' 's ti,- '1

ll ,jT W#i C006DOWN / , "* *  ; ' l- ' I i l c

4 i

a tse F 3r.

r ~ - - -~

[j r  ; i ,  ; i ,-t-t-j

.. 7 ,

, , ji ,  ; j

'D 500 -

r 7m i

> zen . i i i e 4 i !,i

'/ 4 i i ie . I i ,

a 7 e -

. 7 , . . 1 i >  !, i ,

2 io. -

ll dM u l l E--

i t

i M ,-

w 20 i t i

_1 i

i

  • ii i li' l

l l I i

ii  ! 4 m >l 1

! ! I  ! !!  !' k i e i l

i - .

l !f Ilj-- ' ,

l4 l ,

I i! 1 ; , l 'c' 4W .i l i

,,i; l';i i 4 r i i i ,

0 i -

.0 50 100 150 200 250 300 350 400 450 500 Indicated Temperature (Deg.F)

FIGURE 9 Farley Unit 1 Reactor Coolant System Cooldown Umitations (Cooldown Rates up to 100*F/hr)

C

.A Applicu to 54 EFPY (Without Margins for instrumentation Errort and With Detta Pressure Margin of 60 psi)

Indudes vessel flange requirements of 180*F and 561 psi per 10 CrR 50, Appendix G.

Farley Units 1 & 2 Heatup and Cooldown Urnit Curves April 1997 x , _ __

29

- MATERIAL PROPERTY BASIS i

LIMITING MATERIAL: INTERMEDIATE SHELL PLATE B72121 (using sury, capsule data)

LIMITING ART VALUES AT 36 EFPY: 1/4T,186*F 3/4T,149'F 2500 , ,

t *

.I 14 i

_ 8804888888888 i 1 1 I

fi ..

I

/>

f 4 i :I f

. :/ i 1 i i

7~  !

^ _. > i  !

i

' i ' +

It 71 7.yI i i .

i -

LEAR TEST LIWlf

~

'I I II

, > I JV Jf

.

  • II i II ' '

yg . . .I >

CL 2000 - '

i i i 1:I.

!/ilt 1 1 e , i i 2 i JI il !I i l i i I W  !  ! I 1 I Ii n

  • ' i ~. .i_.-. - . . . , -

.Ii /: 1 i <

1750 UNACCEPTABLE i 11 . [I ,

M~~

U 1 1i 1 ,

! ' i i i i ' <

0PERATION ** /1 f! i/  !

6 ' ' ' 'f ' ' I i II ' !/ I ! ' 'i i i i 4 . . - i i , 'iId I /, i i .

3 1500 ' '

i

' i i s '

./ ./

/ii

, i , !

C/) i  ! i i i i 1 i i

! i. i  ! i/ /t i/ if ( , ,

1 i i>

! I ' i I i i i t i : ie i i !/ : /i i/ i i/  ! i  ! ! i M i i >

I i i i , I i i/! ; 1 /i/ 1 i i j ~ ~

~~

} c 1250 . ,

, , , ,'_ / 'l/; ,

a c cip r i , t E '~

L i i >

!/i * /.  !/ ' i i OPERATION ~~

! ERATUP RATE  ! +! /! y' vi i  !

y.

L  ;

i 4 UP T0 80 F/Br.  ! .ii

/' i/

v

/i 1.

i i .

1000 *

. ,j ,/ , .

< ! t ERATUP RATE  !/ if i . i i i i ! 1 l 6 i T i ' ' UP T0 100 F/Er. t

/ iiI  ! i k i  ! !  ! i iD y i ! s: /1 i / ! l ' i  !  ! ! t I .I I ;  ! t i J 750 I i 1 1 1 i f, ". 1 s

1 i i i ' i . i i sr - i; t i i . i ' i i j

CC i ! i ,!

Ip  !  ! !#! 7 i'  ! i . i i i  !  ! !

! ! i i . -  ! i # i / l  ! l ! i I i  ! ! l  ! I i 500 i:i --

~C .

i

(

l i

i ! Y li y  !! l l  :

i g 1 i i I i e t i i i i i t i /! I I

i I i i I

(

i i,i 4

c ' ' ' ' ' ~

250 CPITICALITT LIMIT 84589 ON --+- .

=

"  ! ' IM35BTSCB ETDROSTeilC TEST I -  !

F L FOR TBM saatic8 res gate

- .i ' ' I ftNPBB& TUBS  ! f I t  !  !

i 6 .

D or "O Se,o arrT i i

;; + 4 0 ;1 , , , ,

0 50 100 150 200 250 300 350 400 450 500 Indicated Temperature (Deg.F). I l

4 1

FIGURE 10 Farley Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rates up to 100*F/hr)  !

Applicable to 36 EFPY (Without Margins for instrumentation Errors)

Indudes ves.sl flange requirements of 160*F and 621 psi per 10 CFR 50, Append:x G.

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997 l

30 MATERIAL PROPERTY BASIS 4

LIMITING MATERIAL: INTERMEDIATE SHELL PLATE B72121 (using sury. capsule dat i)

LIMITING ART VALUES AT 36 EFPY:  ?!4T,186*F 3'47,149'F 2500 , .

j n e . . . . . . . . . . . Fr ,

-...). .' i_i

. . . . _ . . d  ! ' '

i p __

' .:.i u '

a. 11 l.

2250 ', ; i ,

n <! '

,y , . ;1 _ .

i 2000 .

D a .1. .t 0,

_ .; :1 I: ii i i l i i .

i'i

  • 1750 ' ' ' '

,, _ UNACCEPTABLE / 1 e i

.w L_p OPERATION J_1 >

, !  ! i.

O 1

3; i 4 ,

. .i 6  :/ 1  ! i i i ii

1500  :

, / '

m '

i.!

t 1 . '. : : !' ~

_/i '.

-; 4.e m

' s_ i ' u

'z : a I .m o 1250 u' ' '

, I ACCEPTABLE 6 ' i ,1. OPERATION !j'1 e . .

1 t ' .

..2

/ <

1 ;_y 1000 e

Q u g  !

.a

_../ .

1 i I

1, ii iI I 4 ,. .

]

,,1 i i j

j

- A

/_g/. -

1:

li ,

i i i !

Ijj!I "

~

[ ,

' -H+i

. . cMf;:

A ...,

i7. 4,. ;  ;;ll 4 , ,

il i i  ;; llij

g..,y . .

^^ - ^ . .

q _p, _,.

.- 4 i .

~

l 3 ll W#, . .,-4. l i 1: .; ,y  %.d,-i

- ,,ee ee - ,  !

i . ,,

,, , ; -g..

250 ' ' '

trf '

! , , , i i ,

iM li

^

a f1 i i i ii i i !i t ! ! i!' ;_ n_._ ;4 '

!!'  ! !ii  ! !i!  !! l 0

O 50 100 150 200 250 300 350 400 450 500 Ind'eated Temperature (Deg.F)

FlGURE 11 Farley Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100 F/hr)

Applicable to 36 EFPY (Without Margins for Instrumentation Errors)

Indades vessel flange requirement, of 180*F and 621 psi per 10 CFR 50, Appendix G.

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

31 MATERIAL PROPERTY BASIS LIMITING MATERIAL: INTERMEDIATE SHELL PLATE B72121 (using surv. capsule data)

LIMITING ART VALUES AT 36 EFPY: 1/4T,186'F 3/4T,149'F 2500 , ,

emessi fse. . 1 i -

1 1 H, i i . H ;;

l.  !

me 2 2 5 0 -4 , .

/. .,l, j! , .

! i a1 -  ! ' LEAR TEST LlWIT  ; 1 . I- I I I: . i

> 'i 1 . !I!I :Ill .

! t .

1 f/2 '

l

' I '

7  !%f. i  ! i

' 1

" . 4

. i

. A: 'li ,;,H, i i '

L, ,.

m

- . - _ . - . - _ . - I1 1. 1 .-

1750 UNACCEPTABLE (( [ [4_

. ~

I I ! !NN

- - i ii U M A/'!WI '!i- i : H--H F

! i i i OPERAT1ON +

f il! L il i

" -; l!  ; . i

- i 3 1500 i >

1 ~-

e i .

' i + ./ 1; ! /. /- > . .

f/J i  ! , I i i 3 i i ! ! i  ! ' i i t 1/ I' !/ I i l i !  !

i i l i i $

i ' ' l i + 1 I / /' i / 1/ i .I i i

j l 'l5 i > I f,  ;/ ! /i

/ i . j' Q L.L. .

_J ,.. _ !_L_ y o 1250 m , , , ,,,; , , , ,,, ./ m 1, ,

ACCrPTAatz Z

, L  ! ! !  ! ! ! i i .I I

' , i 73 i i . /. / 1 1V Ji OPERATION J u!' i/t !/ /

! j/' i C i '

EIATUP EATE I I ' ' ! Il '/ ' '

1000 UP 70 00 F/Nr. j ,/ I ' I ' ' ' ' i

, , , ; N .,/ ,' ' '

i +  ;~ +rH-

"T T 2 EIATUP RATE id / I- ' 1 . i .

y _1 , ,

UP 70 100 F/Br. i

, j / ljj  ! I .I l

' I

;[T 750. . . , , , , , _

lL@yY ce  ! l I i  !  ! I i l -

! I i  ! '

i i fr P'i I i  ! I ' *

.  ! i ~

O g, n g i i, i , y  : /; r , i i r .

  • Vv i 't #  ! t . i i i 1 1

!  !~ s # i i i i . i F i i i y i 7 i .

i I

i g i i 1 . -  ! 1 iiii i i ! ! #t 1 i i i i ~

a i f4 i i i g i i r i i i

" Mi

  • I '
SSR TEMPBB&TUtt R BYD (884 F 974 F

f!FOR !E!! TER '

I '

! I i

i  !!.!.

l J ! ! l  ! S5RVIC8 PEaIop UP 1' O 30.0 BFPY _  ;. l  ;' i i ! I I i t ,_

0 I I . ,

0 50 100 150 200 250 300 350 400 450 500 Indicated Temperature (Deg.F) 4 FIGURE 12 Farley Unit ? Reactor Coolant System Heatup Limitations (Heatup Rates up to 100'F/hr)

Applicable to 36 EFPY (Witbout Margins for Instrumentation Errors; With Delta Pressure Margin of 25 psi for Temperatures < 110'F. 60 psi for Temperatures 2110 F)

Indudes vessel flange requirements of 180'F and 561 psi per 10 CFR 50. Appenix G.

Farley Units 1 & 2 Heatup and Cooldown Lirnit Curvos April 1997

- - - - - -- - , -. -- .-. ~

j l jill;!! i!

\.

2 7 is 9 3 p 9 1

0 )r 5 i h 2 i r

0

,. ' ." _ [

.T r!~I' /

F o f p T ,y7)4 5 A

i I ,j'

,i

. a 0 ign

. ii* -I

.* j' ,

i;I'

)

0 lT -

,9;4 11 , 'j

. .l!; t^ ;1Ii ,jiii

+ .

.~- ] E jI i i i1I' !jji' 0F 5

1 oM r

a t

. i i LN 1' 4 , ' .!Ii iii -

4 p e

' . ,i ,  ; BO .' iiii ,

il! ;iI' ,ji g u ru

. a.

['

- AI s s l 4i , . . i j; i~ .  ;,  ! ;iI' e s

,l;}'

-~ TT 0 e ta e

!i' _ .

  • i' ,  ;'

ili>ili['

) r a PA -

0 RP t

a - ' .! t ER '  !

,[]' ,iii' 4 D

,[7,! i n a

iI' .

d CE (ii._' t G

. ' .' i  ; ii' ii !I'

( wt le l~ i!  ?!

CP i + (i  ! .

l;4 .iI' . jI ,

o e x i

u s _v , ,

AO i . 1 ' ;1 ii I ' ii .  ;'

0 d D d n

p loh e p

a 5 e oi t p

c A _ii i i~

i' 1ii i~ 3l;! '

t . i 3

r CW)

(

A u

y i i i 3 1;i 1l' . ii  !'

F 0.

f,l

- s n no 5 0'

r i! ,

i' I .

1 ,I  !

i ,l; -!' 1I u

I!'

u '

f I

0 oi R s I I !r

_ i' 1' ,7 1 . 1! t ' . i' it t

a 1 F

+a n g ,

/ 0t t 1 C

n = .i I I i !I ' j , ii ' . l - .

3 20 is u ' ,  !' 3 ,  ! _ e 6 a ime ms 1 r

(

/

I

./

4;i

! i~ .

r L

n r u e er p 1

.I~' if 0 wsn aup is 2 ,  ;!  ! .iii' t

- t 2 E .1I'I 5 e oi r 1

L  :' t]i  ! -i5 * - I '

2 ld e1 s 2

7 B ' . p o or p6 e of m$

. ,  ! =6 -

B ' / v tA W/;!

d r E

  • AN TO

' 2! -

f ii .

0 m C s ne n a u miT

, i C

_ i i T F F 0 e g r F A *6 '9 P

L 8 4 PI ET AMpVf i i 2

T t

s e

yMi r

af 0 o s

8 it m

3 i 1  ! i' !i; CA i I!

1 1 1 i

L CR

, ' _ i !f' !ii  ; ' i!ii S tu p lo L L T. T, n 0

n ho06s

!I iI ' . , ' iii!' t E / 4/ 4 AE 5 d a t

n w H 1 3 J;p-OAI i

NP t o

oWF, eem l

S - _i UO

! !i ' i i .

1 e o i a E

i i  ! ' iii ' iIi!'

C( Y0

' ld p t 1 iuq r

o o_

!i - _ i  ! ii  !' !i1 l!!'

T : r A YP i i; t 1 i i ' ri .

4

!:i' 0

a oP 1 e C c F <

I t r DF 0 aE e E E M 6 i

t!i

. ' .1  ; . I!ii ' i 1 ' iIi t 1

c R 3 e 6 e rn a s g d a

n S

'  !' iI;!'

N uf i R 3

" W i p I

S . .

.  ! . t ' ' i .i'  :!  !!!' - i  !!i' 2 o t E T . 7; O L t a r s le u

A

' l f t!> . , - t  ! ii! ' iii!'

0d it B T N A D8 nle ep sc t a

Y I

S .

p=

.  ! 1I ' 1!i , ,

~i . ,ii; ' LB" :le - !l!'

5 n Ub a m e e T E . 0T" .le y H eke iIi 1!! ,' ' i i ,{t!' .I!I' R L : U IAL

' !l' 1 '  ;,'  ! _i;  !'

0A CR" l

1!i' I l r pT d u 2 E

P R A p 7'-

!i i ' 1 . ,

i . i ,  !'

1 ii' a p r d F Af i o n &

O E V _2 a4 ~- 0 1 R T T O g s P AR 0 0 0 0 0 0 0 O it L MA 0 O 5 0 5 0 5 n 5 3 1

n

.A GG 5 L 7 5 2 0 3 2 E U NN 2 2 1 1 ' 1 R R y le I I E T T .

U T

A M

I MM I

L L I

I

- g~Mg~

  • 0uernMv6g yUsC U ; :c _ C G I

F F a

r g.

- , J

. . i1 !Il ,! ll l{' i(ll

l

. 33 l l

1 .

MATERIAL PROPERTY BASIS I

LIMITING MATERIAL: INTERMEDIATE SHELL PLATE B72121 (using sury, capsule data)

LIMITING ART VALUES AT 54 EFPV: 1/4T,200'F 3/4T.165'F 2500 , ,

............. i ,,

^ i >i i

- il . .

.ii ;

eiioi I_ I. : : I 11 -i "J

IP

  • T ^

1 i i

,,,, i f_  ! li l! ! !/ i _i i

~ ' '

LEAE TEST LIMIT E ~

w ~ f 1 I i t: )

  • I

% )000 I l il V I

+11]

V I

/ (_- .I i .

w I

/  ; /i i i 1

' ' ' '  :/ I  :/ / + ,

j-

l {} T['.Y.J.T U

1750 l {lI

! i uN4ccEPTAmtE I,1 OPERATION

/r q/i ii . M ,T "' i', m i  ! !  !  !

3, ,, f .' .

i !  ! ,

i i

i v i l: - ii i ! i i ' t /. !/1 1  !  !  !

2 1500 '

!/ ! V!

/i F ! ,

1 i

m 1. . . i ,

i

!!H/  : :,'

fiI:' c i I"7 H-i '

i*! i

  1. ! ' i i i'/ / i /. ~

~

-j l l

! i '

i > v

/

iil i o 250

, ,' i w . L-/-.a/QJ 7lii- . ! .j . .

'l

s. i ' ' ' '

ACCEPTA3LE Z i

I

/t -

7 OPERATIO14 4 ./

M 4-,_r..~Y'l i a -

NEATU? RATE 1000 vr to eo r/ar. N e

t J./

I /.

r.

/

f I i _ : __ _:

.:a '

~

i s i , i D '

MEATUP RATE d~ i c l UP 70 100 F/Er. y g [, ' i 3 50 1

o , ,,

_ . , sf, z . , , ,' Il{ l i  : I .

iI  ! > *  !  ! ! i > Ai / i . I ii ~~

Q '

Nl l

! [  ; f f-h  !

i i i 00 ' '

~ ' ' '

' ~' i~

3 +

i i ! l 'i 1 1 e t i i ! I i

s g .iit i

! i 3 i i i , I i i i

  • i ! V i i I I i i I ii 7~ ~3~~

i i ! , ii i c 250

=

i i i i

! i i  ! I i i 1 ,

'g 2  ! .

,i 4i .

i I.

e-I C1NR BRVICE .I T I C A LET980sT&Plc I T Y Llulf 9488D ON T3.T

'. ll iini!!'r!!d!'Or'Jo'!" i'irrT -- ! ' ..

M J.J ._  !

0 . . . i e i i ,:,- ++r +H t-0 50 100 150 200 250 300 350 400 450 500 Indicated Temperature (Deg,F)

FIGURE 14 Farley Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rates up to 100*F/hr)

Appheable to 54 EFPY (Without Margins for Instrumentation Errors)

Indudes vesset flange reqwenents of 180*F and 621 psi per 10 CFR 50, Appenda G.

Failey Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

34 I i

MATERIAL PROPERTY BA$lS i i e

LIMITING MATERIAL: INTERMEDIAir, SHELL PLATE B72121 (using sury. car .. le data)

LIMITING ART VALUES AT 54 EFPY: 1/4T,200*F 3/4T.165'F .

i 2500 . , ,

i

...,.........i: "--- f y '._ ; . ._ -J f

- - . _ .q p,

~ '

2250 ._

i

- i ! i :. . ! _r , ,,i i .

  • i . J , i
  • i i M .  !

i -I  ! i j ji.  !

A 2000 , .: ,

l fi

,', ;7 i I

! i  !! -

i  ! ,

i i i .I i i i i !i i g i  ! I i* .  ! i *  ! i  ! i l_ i *ii I i! i

[

t . !r 'i i i i i i..! . .

i l/:

i i . i ,

~ 1750 ' ' '

, UNACCEPTABLE _ _

I '

i t i i i! OPRRATION r i ;I ' ' 9 0 1 _! -

i/ , . t . .>  ;

g- 1i i!4 ' ' i I i 6 ,! 7

e 1500 s; i i / , . . .

.L44 :

, '. j).4, di

  • I i J t#3 . _

lll

(#3 i14: i ~! 4 .! ,

e 50 fI g( , j ,ee,,,,,t, 1 .

, ._ d b . i t i

' t i i  ! '/ ' i'i I OPERAYION k A i l- Ii i!'L  ! , i, , 4

-/tv .i l1 2 , ,, i D+

1 1000 ',

' ' ' ' 4 * '

, , i . .

1 i s 1 1 i

u~W ,

l F ' i. if

e i i i [ i ' i !
2 J '

I I iT f W t , i  ! .

2  ! i i ii i I *L i !i Ii i T i 3 2K/ I i i i  ! 1 . "t* Ii i I [-

. i g I I IM/ i i e ,

750 - eeegeo,,

4 i so , . .. ,, fy, . , , . , , , ,, , , ,

o INr' NO-

  • V/-N-  ;,' !ll' '
ll j'l[ ## ,

1

  1. j.#_-

e .

4 11 4 4 .

T,ii br r

)

500 i

  • e!

@hWM 4 x ,_i>

i i .,

,i  ;

i l'

i ll i

] gg!i g '

5 e I i e I i

! il 1

i 250 f it i 1

' Iii i i

'i 9 I i I } I I ' il l Ii1 i t i i

, i i 3 i l i , j

! _i i i i 8 i  !  ! I

44 i i i i , I

.0 50 100 150 - 200 250 300 .350 400 450 500 Indicated Temperature -(Deg.F)~

FIGORE 15 - Farley Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100*F/hr)

Applicable to 54 EFPY (Wahout Margins for Instrumentation Errors) i includes vessel hange requirements of 180*F and 621 psi per 10 CFR 50, Appendix 0.'

-- Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

35

-~ MATERIAL PRON.ATY BASIS l LIMITING MATERIAL: INTERMEDIATE SHELL PLATE B72121 (using surv, capsule data) l UMITING ART VALUES AT 54 EFPY: 1/4T,200*F 3/4T.165'F l

2500 , 1 i - i ui .

........... 4 t 1 . . , i  ! 1 i. >

>i >i

  • iI : sa i I_ f. ...1 m , a i i  ! I I I :  ! '

i . . > y 1 y ; p ,j;M .

7 thD 2250 f il e  !! l' 7 f!I !

, '

  • 1 I .  !"

i +i i ii  ! L it A E T '6 S T LIMt7 f7/ ! r I! ! i > > ! I

.ii i . 1 Y i J fi ', I r 4

i i i i gg i4 i

! I I  ! I_ l i  !

p.

' l 'I ' '

' '000 9

w i

! i i

+ii*

, ,,.i

' /: ,

h e'i

! ' I: I i i ! ! !

1

! .ii i i . 4

  • . +
  • i i I '. i i/j l  ! */ i f i I i 1 a

' y :/

i ( 7/

1750 i

O

, , , i UNACCEPTABLE 1 / > 1 / i/ : i , . ! ,

! .!  ! i i iI i OPERAT1ON 1

/i I i/! I i i

i , ! l Q  ! I e i i  ! [ t I. / I I.  ! i I  !

g q ' nnWv

! t

. 4

! i i i !

i i

/ il!

./; if i // y'Il

/i t

i ! I i i i i

6 i i . i .

' ' /I i ri / , , i to i i . . I !  !  ! i  : i -

i i I: I /1 !/  ! /! ! t i i i !  ! i . i i . I i ' i .  ! /ii/.i v i/ i i i ! .

c 1250  ! ,  !

lf ij'. T!' f f

  1. II' ' ' ' -E r ACCEPTABLE Z a '

i

, /

/

/i i ii OPERATION s

i ' ,

I-J_

! i , i t t / /t . i/ i !

  • L ' '

T 1000 EIATUP RATF.

if .i' F Ql I . i ' ' ' ' '" ' '

sor/Er,g+7 /t i/i;ff

--t-t 47 Ur to '-

f; ( '

l' T i . i i ,r i c I ERATUP RATE \! !# ! !#! ' I I
, r/Er. ; 4' , ' ', i a 750
ur To non ,;_ , ,

i i - i \ /! I ft i  ! i i i

i . i i ii 1 500 g

sii i i

'X Uf,! . ! !  ! l e lill i I i #t Lv i i

li l,'

i t i i

i e ii i I ! i1 i i i i i i i if I i . 1 l *

! I C ' ' ' ' ' ' '

250 ' '

CRITICALITY LIMIT BASED OP -!

" ' l I !

IN888TICE'EYDROST&"!C TEST .

1

! ! _I I

!i:i

!  ; li Mit';ilill'o,'co'!!.i'i,,, i j i i> l l

."T"'

0 O. 50 lb0 150 200 250- 300 350 400 450 500 Indicated Temperature (Deg.F)

FIGURE 16 Farley Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rates up to 100*F/hr)

. Apphcable to 54 EFPY (Without Margins for Instrumen'ation Errors and With Detta Pressure Margin of 60 psi) includes vessel flange requirements of 180*F and $61 psi per 10 CFR 50, Appendix G.

e Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

36 MATERIAL PROPERTY BASIS LIMITING MATERIAL INTERMEDIATE SHELL PLATE B72121 (using surv. capsule data)

LIMITING ART VALUES AT 54 EFPY: 1/47,200*F DT 165'F 2500 , , ,^

_ ...........ui _ 4 '

i i, 4 ..' ' '

I

..__d '

2250 . l' i i ,

I i i;,

! i 'l  ! f f ki }

t10 i ,

1 j i ,

~

g 2000 j ;

/ -- .. . _ . .

' ~~

c .lf. -

-+-+- _

_ 1750 UNACCEPTABLE l_ i .

P OPERATION ,_

I l O ,.

I i _,_

l 1, . . , i.

u .

= 1500

/ ' ' '

m

__ q,; -i; i
; g m . .  !/ ii p i H -[-

. / ;,'

e 1250 , , ,

ACCEPTABLE s _a

. . i _ . _ .,.  !- /_ 0PERATION l a ' '

-. +

,/ ._ i 3

._p_.7.

1000 m -.- ,. -n.

" ..!. , /,

ii  :, + -

-W r_-

, .~4 . i i -

i _. . 1 , , , ,

-~~'.~T~^~ _.

750 "' -

a -

gogCYN QI _,

' ii I i

., r/ur. , , , , , , i , ,

1

=

00 _

g

.s-x, s

l i ,

i 4

i r i

>,,i ii ,

i i..

6 i 1:

i i i - -r -

j ii t, T~

U ' ' ', , , j

~'- -

~ 4p ,i; 3 , , i ,,i; e ii i i

' ' ' ' ' ' ' ' *~

250 -2 _. l a1 '

. :_s i

, { q .Q.

. .' ,, i i

, , -t1 ,

im' 0 50 100 150 200 250 300 350 400 450 500 Indicated Temperature (Deg F)

FIGURE 17 Farley Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100*F/hr)

Applicable to 54 EFPY (Without Margins for Instrumentation Errors and With Delta Pres Jre Margin of 60 psi)

Induces vessel flange requirements of 180'F and 561 psi per 10 CFR 50. Appendix G.

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

37 TABLE 12 la Farley Unit 136 EFPY Heatup Curve Data Points (Without Margins for in5trumentation Errors)

Heatup 60F Crit. Umt 100F Crit. Umn Leak Test UmM T P T P T P T P T P 60 515 289 0 60 482 289 0 267 2000 65 515 289 540 65 482 289 541 289 2485 70 515 289 529 70 482 289 526 75 515 289 $22 75 482 289 514 80 515 289 517 80 482 289 504 85 515 289 515 85 482 289 496 90 515 289 516 90 482 289 490 95 515 289 518 95 482 289 486 100 515 289 521 100 482 289 483 105 516 289 526 105 482 289 482 110 518 289 533 110 482 289 483 115 521 289 540 115 482 289 484 120 526 f*1 548 120 482 289 487 125 533 289 558 125 483 289 492' 130 540- 289 569 130 484 289 497 135 548 289 581 135 487 289 503 140 558 289 594 140 492 289 511 145 569 289 607 145 497 289 520 150 581 289 623 150 503 289 529 1M 594 289 639 155 511 289 541 m 607 289 657 160 520 289 553 W. 621 289 677 165 529 289 566 '

'N 621 289 697 170 541 289 581 b T75 621 289 720 175 553 289 597 R: 621 289 744 180 566 289 615 180 677 289 770 185 581 289 634 185 697 289 798 190 597 289 655 190 720 289 828 195 615 289 677 195 744 289 860 200 634 289 701 200 770 289 895 205 655 289 728 205 798 289 933 210 677 289 756 210 828 289 973 215 701 289 786 215 860 289 1016 220 728 289 819 220 895 289 1062 225 756 289 854 225 933 289 1111 230 786 289 892 230 973 290 1165 235 819 290 932 235 1016 295 1222 240 854 295 976 240 1062 300 1283 245 892 300 1023

-245 till 305 1348 250 932 305 1073 250 1165 310 1418 255 976 310 1128 255 1222 315 1494 260 1023 315 1185 260 1283 320 1575 265 1073 020 1248 265 1348 325 1861 270 1128 325 1314 270 1418 330 1754 275 1185 330 1386 275 1494 335 1853 280 1248 335 1462 280 1575 340 1959 285 1314 3*O 1544 285 1661 345 2072 290 1386 345 1632

  • 90 1754

. 350 2180 295 1462 350 1726 295 1853 355 2293 30r 1544 355 1827 300 1959 360 2414 305 1632 360 1934

  • 305 2072 310 1726 365 2048 310 2180 315 1827 370 2171 315 2293 320 1934 375 2301 320 2414 325 2048 380 2440 330 2171 335 2301 340 2440 Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

38 TABLE 13

} Fuley Unit 136 EFPY C00ldown Curve Data Points (Without Margins for instrumentation Errors)

Cooldown Curves Steady State 20F 40F- 60F 100F T P T P T- P T P T P 60 533 60 496 60 459 60 421 60 342 65 537 65 -500 65 463 65 425 65 346 70 .541 70 504 70- 467 70 429 70 351 75 546 75 509 75 472 75 434 75 356 80 550 80 514 80 477 80 439 80 362 85 556 85 519 85 482 85 445 85 368 90 561 90 525 90 488 .90 451 90 - 374 95 567 95 531 95 495 95 458 95 382 100 574 100 538 100 502 100 465 100 390 105 581 105 545 105 509 105 473 105 398 110 -588 110 553 110 517 110 481 110 407 115 59G 115 561 115 526 115 490 115 417 120 605 120 570 120 535 120 500 120 428 125 614 125 580 125 545 125 511 125 440 130 621 130 590 130 556 130 522 130 453 135 621 135 601 135 568 135 535 135 467

! 140 621 140 613 140 581 140 548 140 482 145 621 145 621 145 594 145 562 145 498 150 621 150 621 150 609 150 578 150 515 155 621 155 621 155 621 155 595 155 534 160 621 160 621 160 621 160 613 160 554 4

165- 621 165 621 165 621 165 621 105 576 170 621 170 621 170 621 170 621 170 600 175 621 175 621 175' 621 175 621 175 621 180 621 180 621 180 621 180 621 180 621

'180 775 180 749 180 724 180 700 180 653 185 797 185 773 . 185 749 185 726 185 883 190 820 190 798 190 776 190 754 190 715 195 846 195 825 195 804 195 785 195 750 200 873 200 854 .200 835 200 818 200 787 205 902 205 885 205 868 205 853- 205 827 210 934 210 918 210 904 210 891 210 874 215 968 215 954 215 942 215 932 215 917 220 1004 220- 993 220 983 220 976 220 968 225 1043 225 1034 225 1028 225 1023 225 1022 230 1085 230 1079 230 1075 230 1074 230 1080 235 1130 235 1127 235 1126 235 1129 240 1179 240 1178 245 1231 250 1286 255 1346 260 1411 265 1480 F0 1554 275 1633 280 1716 285 1809 290. .1906 295- 2011 300 2122 305 2242 310 2369 Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

4 39:

4 -- i i .. t q

_ TABLE 14" 1 Farley Unit 136 EFPY Heatup Curve Data Points  !

(Without Margins for Instrumentation Enors)  !

, (With Delta Pressure Margin of 25 psi for Temperatures 4110'F and 60 psi for Temperatures > 110*F )

i T

Heat # ' '

00F

- Cell Umt = 100F. Cre. Umit P- Leak Test Ume T "

T P T P T P T P

, 90 400 200 0 00 457 200 0 207 2000 4 SS~ 400- - 200 400 65. 457 200 401 . 290 2406 l 70 - 490' - 200 400  : 70 457' 200 400 ,

75 400 - 200 - 402 - 75 457 200 4H to 490 - 200 457  : 80 - 467 200 444 AS 400 ' 200 465- 85 - 457 ' 200 436 to~ 400 200 450 -to' 457 200 430 96 -400 200 450 95 457 - 200 420

$- ~ 100L 400- 200 t

401 100 457 300 423

-106 401. 200 400 105 457 200 - 422

). -110 403 200 473 110 457 2F 423 110 450 : 200 400 - 110 422 200 424

,' 116 401' 200 400 -- 115 422 2W 427 120 400 200 490 120 422 200 432 l 125 473 200 000 125 423 200-i- 437 130 400 200 521 130:-- 424 200 443 135 400 200 534 - -135 427- 200 451 2 140- 400 ' 200 - 547 140 432 200 400

- 146 500-. 200 003 '
  • 145 437 200 400

' 150 521- 200 570- 150 443 200 401 156 534 200 507 156- 451 200 403 100 1 547 - 200 017 - .100 400 200 000 106 - 501 200 - 037 106 - 400 age 621 170 501 200 000 170 401 200 537

-175 ' 501 200- 004 - 175 493 200 555 t 100 - 501 200 710 100 506 200 ' 574 f 100 ' 017 200 ~ 730 106- $21. 200 - 006

[ 105 ' 037 ~ - 200 ' 700 100 537 - 200 017 1 100 000 - 200 - 300 ~ 196' 556 ~- 200' 041-

! 196 L 004 200 035 - 200 -574 200 000 l 200 .710 200 0731 206 506 - 200 000 j 206. 730 200 013 : 210 - 017 200 - 720 210. 700 200- 950 . 215' 041 - 200 700 215- 800 - 200 1002  ; 220 000 200 794-

, 220 036 200 1051c 225 000 200' 032 225 073 - 200 - 1106- 230 720- 200 072

230 913 206 .1102- . 235 750 206-- Die j 235 ' 900 300 -1223 240 794- 300 003

' 240- 1002 ' 300 1200 246 032 - 306 1013 246 1001 310- 1300 - 250 072 310 1000 -

250. 1106-- 315 1434 255 910 315 1125 4 255 1102 320 1515 200' 003 320 1100 l- ' 200 1223 325 _1901 206 1013 325 1254 206 1204 - 330- 1994 -270 1000 330 .1320 :

270 :1350 336 1793 275 1125 336 '1402' i.

275 - 1434 340 1000 200- 1100 - 340 . 1404-

- 200 1815- 346 2012 206 1254- J46 '1572 205 '1901- 300 2120 200 1320 ' 300 -1000 4

- 290 1 1994 306 2233 206 1402 - 306 1797-296 1793 300 2364 300 -1404- 300 1974-300 1000 305' 1572 306 1000 305 .2012 310 1986 370 2111 1 310- 2120- 315 1707- 375 2241 315 2233 320 1974 300 2300

320 2354 325 1900 j 330 2111 j 336~ 2241
340 2300

[ Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

-y , w --

.-wrrs w i-,yr- -- r r

.. ~. -- -- - - .- - --.- - - .

40

, TABLE 15 Farley Unit 136 EFPY C00ldown Curve Data Points (Without Margins for instrumentation Errors)

(With Delta Pressure Margin of 25 psi for Temperatures < 110*F and 60 psi for Temperatures1 3 10'F )

Cooldown Curves Steady State 20F 40F 60F 100F T P T P T .P T P T P 60 508 60 471- 60 434 60 396 60 317 65 512 65 475 65 438 65 400 65 321 70 516 70 479 70 442 70 404 70 326 75 521 75 484 75 447 - 75 409 75 331 80 525 80 489- 80 452 80 414 80 337 85 531 85 494 85 457 85 420 85 343 90 536 90 500 90 463 90 426 90 349 95 542 95 506 95 470 95 433 95 357 4

100 549 100 513 100 477 100 440 100 365 105 556 105 520 105 484 105 448 105 373

, 110 561 110 528 110 492 110 456 110 382

, 110 528 110 493 110 457 110 421 110 347 115 536 115 501 115 466 115 430 115 357 120 545 120 $10 120 475 120 440 120 368 1 125 554 125 520 125 485 125 451 125 380 4

130 561 130 530 130 496 130 462 130 393 135 561 135 541 135 508 135 475 135 407 140 561 140 553 140 521 140 488 140 422 145 561 145 561 145 534 145 502 145 438

-150 561 150 561 150 549 150 $18 150 455

. ,s 155 561 155 561- 155 561 155 535 155 474

~; 160 561 160 561 160 561 160 553 160 494 165 561 165 561 165 561 165 561 165 516 170 561 170 561 170 561 170 561 170 540 1

-175 561 175 561 175 561 175 561 175 561 180 561 180 561 180 561 180 561 180 561

180 715 180 689 180 664 180 640 180 593 185 737 185 713 185 689 185 666 185 623 3 190 760 190 738 190 716 190 694 190 655 195 786 195 765 195 744 195 725 195 690 200 813 200 794 200 775 200 758- 200 727 205 842 205 825 205 808 205 793 205 767 210 874 210 -858 210- 844 210 831 210 811
_ 215 908 215 894 215 882 215 872 215 857 220 944 220 933 220 923 220 916 220 908

! 225 983 225 974 225 94 225 963 225 962 230 1025 230 1019 230 1015 230 1014 230 1020 235 1070 235 1067 235 1066 235 1069 240 1119 240 1118 245 1171 250 1226

255 1286 a 260 1351 265 1420 270 1494 275 1573 280 1658 285 1749
- 290 1846 1' 295 1951 300 2062 305 2182
310 2309 Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

. . . .- - - - - , , - . - - - . ~. .- - .-

i 41 TABLE 16 I

Farley Unit 154 EFPY Heatup Curve Data Points -

(Without Margins for In5trumentation Enors) 3 Heatup 60F Crit. Umt 100F Crtt. UmN Leak Test Uma

-T P T P T P T P . T P 80 500 298 0 60 485 298 0- 276 2000 65 500 298 527 65 465 298 529' 298 2485 70 500 298 516 70 465 298 514 75 500 298 508 . 75 '465 298 501 4

80 500 298 503 80 465- 298 400 y 85 500 298 501 85 465 298 482 90 500 298 500 90 465 298 475-95 500 298 - 501 95 465 298 471

, 100 500- - 298 504 100- 465 298 467 105 500 298 507 105 465 298 486 110 501 298 512 110 465 298 485

, -115 504 298 518 115 465 298 486 120 507- 298 525 '120 465 - 298 468

? 125 512 298 533 125 465 298 471 130 $18 . 298 542 130 486 298 475 135 525 298 552 135 488 298 400 140 533' 298 - 563 140 471 298 486 145 .542 298 = 575 145 475 298 493 150 552 298 588 150 480 298 501 155 563 298 802 155 488 298 510 180 575 298 817 160 493 298 520 165 5C8 298 834 165 501 298 532 170 802 298 651 170 E10 298 - 544 175 817 298 871 175 520 298 557

L 100 621 298 - 891 180 532 298 572 180 634 298 713 185 544 298 588 185 651' 298 -737 190 557 298 806 190 671 298 -763 195 572 298 625 195 691 298 790 200 588 298 645 ,

200 713 298 820 205 6u6 298 888 205 737 298 851 -210 825 298 882 210 783 298 888 215 645 298 717

  • 215 790 298 922 220- 888 298 745 220 820 298 962 225 892 298 775-225 851 298 1004 230 717 298 807 230 886 298 1049 .235 745 298 - 842 235 922 298 1088 240 775 298 879' 240 . 962 -300 1151 245 807 300 919 245 1004 305 1207 250 842 305 982 250 1049 310 1267 255 879 310 1000 255 1098 315 1331 200 919 315 1058 260 1151 320 1401 265 962 320 1111

' 285 .1207 325 1475 270 :1008 325 1188 270 1267 330 1554  ?'S 1058 330 1229 275 1331 335 1839 EJO 1111 335 1294 200 1401 -340 1730 285 1188 340 1388 285 1475: 345 1828 290 1229 345 1440 290 1554 350 1932 295 1294 360 1520-295 1839 355 2043 300 1385 ' 355 1808 300 1730 - 380 - 216' 305 1440 380 1699 305 1828 385 2iu - 310 1520 385 1797 310 1932 370 2424 315 1806 370 1903 315 2043 320 1699 375 2016 320 2162 325 1797 380 2136

=325 2289 330 1903 385 2264 330 2424 335 2016 390 2401 340 2138 345 2264 350 2401 Farley Units 1 & 2 Heatup and Cooldown Umit Curves April 1997

42 q TABLE 17

) Farley Unit 154 EFPY Cooldown Curve Data Points (Without Margins for instrurnentation Errors)-

d Cooldown Curves Steady State 20F 40F 60F 100F T P T. P T P T P T P f0 527 60 490 60 452 60 413 60 333 65 530 65 493 65 455 65 417 65 337 70 534 70 497 70 459 70 420 70 341 75 538 75 501 75 463 75 425 75 345 80 542 80 505 80 467 80 429 80 350 85 547 85 510 85 472 85 434 85 356 4 90 551 90 515 90 477 90 439 90 361 95 557 95 520 95 483 95 445 95 368-100 562 100 526 100 489 100 451 100 374 105 568 105 532 105 496 105 458 105. 382 110 575 110 539 110 503 110 466 110 390 4

115 582 115 546 115 510 115 473 115 396 120 500 120 554 120 518 120 482 120 406 4

125 596 125 563 125 527 125 491 1 25 418 130 606 130 572 130 537 130 501 130 429 135 616 135 583 135 547 135 512 135 441 140 621 140 592 140 558 140 524 140 454 145 621 145 603 145 570 145 536 145 468

150 621 150 616 150- 583 150 550 150 483 155 621 155 621 155 597 155 565 155 500 160 621 160 621 160 612 160 580 180 418 165 '621 165 621 165 621 165 597 165 537

/ 170 621 170 621 170 621 170 616 170 557 175 621 175 621 175 621 175 621 175 580 180 621 100 621 180 621 180 621 100 604

  • 80 739 180 711 180 684 180 657 185 630 1C5 758 185 732 185 705 185 680 190 658 190 779 190 754 190 729 190 704 195 689 195 801 195 777 195 754 195 731 203 721 200 825 200 803 200 781 200 760 205 756 205 851 205 830 205 810 205 791 210 794 210 879 210 859 210 841 210 824 215 835 215 -909 215 891 215 875 215 860 220 879 220 940 220 925 220 let t 220 896 225- 927 71 3 975 225 962 225 950 225 940 230 978 230 1012 230 1001 230 992 230 965 235 1033

-235 1051. 235 1043 235 1037 235 1033 240 1092 240 1094 240 1088 240 1085 240 1064 245 1140 245 1137 245 1137 250 1189 255 1242 260 1296 265 1359 270 1424

< 275 1494 280 1569 285 1649 290 1735 -i 295 1828 '

300 1927 ,

305 2032

' 1 310 2146 )

315 2266 320 2396 Farley Units 1 & 2 Heatup and Cooldown Lirnit Curves April 1997

43

- - =

-L TABLE 18 b Farley Unit 154 EFPY Heatup Curve Data Points (Without Margins for Instrumentation Errors and With Detta Pressure Margin of 60 psi)

Hestup

- 80F Crit. U mt 1C'JF Cett umR 1.sak Test Umit

-T P T P T P T P 80 440 T P 298' O 80 ' 405 - 298 0-85 - 440- 275 2000 298 487 85 405 298 489 70 440' 298 20 8 2485 458 70 405. 298 454

75. - 440 - 298 - 448- 75 405- 298 441 to 440 298 443 80 405 298 430 85 440 298 441 85 405 298 422 90 440 298 440 90 - 405 - 298 415 95: 440 298 441 95 405 298 411_

100 440 298 444 100 405 298 407 105 440 298 ' 447 105 405 298 400 110 441 298 452 110- 405 298 405 115 444 298, 458 115 405 298 400 120 447 298 485 -120 405 298 400

! 125 452 298 473

' 125 405 298 411 130 458- 298 442 130 400 298 415

.135 485 298 492 135 400 298 420 140 473 ' 298 503 140 411 298 428 145 482 298 515 145 415 298 433

-150 492 298 528 150 420 298 441 155 503 298 542 155 428 298 450 100 515 298 $57 100 433 298 480 185 528 298 574 185 441 298 472 170 542 298 591 170 450 298 484

-- i 175 557 298 811 175 480 298 407 180 $61 298 831 180 472 298 512 180 574 298 853 185 484 298 528 185 591 298 877 190 497 298 $48 190 011- 298 703 195 512 298 585 195- 831 298 730 200 528 298 - $45 200 853 - 298 780 205 548 298 808 205- 877 298 791 210 585 298 832

'210 703 298 828 215 - 585 298 867 215 730 298 882 220 808 208 885 -

220 700 298 - 902 225- 832 298 715 225 791 298 944 230 867 - '298- -747

'230- 828 298 989 235 885 298 782 235 882 298 240 715 1038 -_. 298 819 240 902 300 .1091 245 747 300 888 i245 944 305 1147 250 782 305 902-250 989 .310 -1207 255 819 310 -948 255- 1038 315 1271 200 859 315 998 200 1001 320 1341 285 902 320 1061 285 1147 325 .1415 270 948 325 1100 270 1207 330, 1404 275 998 330 1189 275 1271 335 1579 200 1051 -335 1234 280 1341 340 1870 285 1108 340 1305 285 - 1415 345 -1788 290 -1189 345 1380 290- 1494 350 1872 295 1234 350 1480 295 1579 355 1983 300 1305 355 1548 300 1870 380 2102 305- 1380 300 1839 305 1788 385 2229 310 1480 385 1737

. "O 1872 370 2384 315 1548 370 1843

.15 1983 320 1839 375 1956 320 2102 325 1737 380 -2078 325 2229 330 1843 385 2204 u 330-'2384 - 335 1958 390 2341 340 2076 345 2204 350 2341 Farley Units 1 & 2 Heatup and Cooldown Limit Curves -

April 1997

44 TABLE 19 l Farley Unit 154 EFPY Cooldown Curve Data Points (Without Margins for Instrumentation Errors and With Delta Pressure Margin of 60 psi)

Cooldown Curvas Stenoy State 20F 40F 60F 100F T P T P T P T P T P 60 467 60 430 60 392 60 353 60 273 65 470 65 433 65 395 65 357 65 277 70 474 70 437 70 399 70 360 70 281 75 478 75 441 75 403 75 365 75 285 80 482 80 445 80 407 80 369 80 290 85 487 85 450 85 412 85 374 85 296 90 491 90 455 90 - 417 90 379 90 301 95 497 95 460 95 423 95 385 95 308 100 CT 100 486 100 429 100 391 100 314 105 508 105 472 105 436 105 398 105 322 110 515 110 479 110 443 110 406 110 330 115 522 115 486 115 450 115 413 115 338 120 530 120 494 120 458 '120 422 120 348 125 538 125 503 125 467 125 431 125 358 130 546 130 $12 130 477 130 441 130 369 135 556 135 522 135 487 135 452 135 381 140 561 140 532 140 498 140 464 140 394 145 561 145 543 145- $10 145 476 145 408 150 561 150 556 150 523 15C 400 150 423 155 561 155 561 155 537 155 505 155 440 160 561 160 561 160 552 160 $20 180 458 165 561 165 561 165 561 165 537 185 477 170 561 170 561 170 561 170 556 170 497 175 561 175 561 175 561 175 561 175 520 180 561 180 561 180 561 180 561 180- 544 180 679 180 651 180 624 180 597 185 570 185 698 185 672 185 645 185 620 190 SP6 190 719 190 694 190 669 190 644 195 629 195 741 195 717 195- 694 195 671 200 661 200 785 200 743 200 721- 200 -700 205 696 205 791 205 770 205 750 205 731 210 734 210 819 210 799 210 781 210 764 215 775 215 849 215 831 215 815 215 000 220 819 220 880 220 865 220 851 220 838 225 867 -

225 915 225 902 225 890 225 880 230 918 230 952 230 941 230 932 230 925 235 973 235 991 235 983 235 977 235 973 240 1032 240 1034 - 240 1028 240 1025 240 1024 245 1080 245 1077 245 1077 250 1129 255 1182 260 1238 265 1299 270 1364 275 1434 280 1509 285 1589 290 1675

. 295 1768 300 1867 305 1972 310 2006 315 2206 320 2336 Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997 1

l

- . .. - -~- . .-

45 TABLE 20 Farley Unit 2 36 EFPY Heatup Curve Data Points (Without Margins for Instrumentation Errors)

Heatup 60F Crtt. Umt 100F Crit. Uma Leak Test Uma T P T P T P T P T P 60 497 314 0 60 462 314 0 292 2000 65 49? 314 525 65 462 314 527 314 2485 70 497 314- 514 70 462 314 511 75 - 497 314 506 75 462 314 498 80 497 314 501 80 462 314 488 85 497 314 498 85 462 314 479 90 497 314 497 90 462 314 473 98, 497 314 498 95 462 314 468 130 497 314 501 100 462 314 465 105 497 314 504 105 462 314 463 110 498 314 509 110 462 314 462 115 501 314 515 115 462 314 463 120 504 314 522 120 462 314 464 125 509 314 529 125 462 314 467 130 515 314 538 130 463 314 471 135 522 314 548 135 464 314 476 140 529 314 558 140 467 314 482 145 536 314 570 145 471 314 488 150 548 314 582 150 476 314 496 155 558 314 596 155 482 314 505 160 570 314 611 160 488 314 515 165 582 314 627 165 496 314 526 170 $96 314 644 170 505 314 538 175 611 314 662 175 515 314 551 180 621 314 682 180 526 314 565

+

180 627 314 704 185 538 314 581 185 644 314 727 190 551 314 598 190 662 314 752 195 565 314 616 195 682 314 779 200 581 314 636 200 704 314 807 205 598 314 658 205 727 314 836 210 616 314 681 210 752 314 871 215 636 314 706 215 779 314 907 220 658 314 733 220 807 314 945 225 681 314 762 225 838 314 986 230 706 314 793 230 871 314 1030 235 733 314 827 235 907 314 1078 240 762 314 863 240 945 314 1129 245 793 314 902 245 986 314 1179 250 827 314 943 250 1030 314 1231 255 863 314 988 255 1078 315 1283 260 902 315 1036 260 1129 320 1333 265 943 320 1008 265 1179 325 1386 270 968 325 1143 270 1231 330 1443 275 1036 330 1203 275 1283 335 1505 280 1008 335 1266 280 1333 340 1570 285 1143 340 1335 285 1386 345 1640 290 1203 345 1400 290 1443 350 1716 295 1266 350 1486 295 1505 355 1796 300 1335 355 1570 300 1570 360 1882 305 1408 360 1659 305 1640 365 1974 310 1486 365 1755 310 1716 370 2073 315 1570 370 1858 315 1796 375 2178 320 1659 375 1968 320 1882 380 2291 325 1755 380 2005 325 1974 385 2411 330 1858 385 2210 330 20"3 335 1966 390 2343 335 2118 340 2005 395 2485 340 2291 345 2210 345 2411 350 2343 355 2485 Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997 m

. , - - - - - . - -..- - ... - - - - ~ - .- - - .- - . - -

46  :

'l TABLE 21

.e -

. Farley Unit 2 36 EFPY Cooldown Curve Data Points (Without Margins for instrumentation Errors) .

i p.

Cooldown Curves Steady State 20F 40F 60F 100F T. P T P- T P T P T P SO $17 60 480 60 441 60 402 80 321 l -- 65 520. 65 482 65 444 65 405 65 ' 323 '

70 523 70 485 70- 447 70 408 70 326 t _ 75 526 75 488 75 450 75 411 75 330

? 00 $30 80 492 . 80 453 80 414 80 333 i 85 533 85 496 - 85 457 85 418 85 - 337 i

90 537 90 499 90 461 90 422 90 342 l 95 - 541 95 504 95 465 95 427 - 95 346.

100 546 - 100 500 100 470 100 431 ~100 352 j 105 550 105 513 .105 475 105 437 .105 '357 p 110 556 110 519 110 481 110 442 110 363
115 561 115 524 115 487. 115 449 115 370 120 567 120 530 120 493 120 455 120- 377 125 574 125 537 - 125 500 125 462 125 385 130 581 130 544 130 508 130 470 130 394

-135 See 135 552 135 516 .135 479 135 403 a

140 586 140 560 140 524 140 488 140 413 j .. -145 806 145 569 145 534 145 498 145 424 150 614 150 579 150 544 150 508 -150 436 155 621 155 589 155 555 155 ' 520 155 449 ISO 621 160 601 160 567 160 532 160 463 165 621 165- 613 165 579 165 546 165. 478 i 170 621 170 621 170 $93 170 560 170 494 j 175 621 175 621 175 600 175 576 175 512 -

180 621 180 621 100 621 100 593 180 531 -

180 686 ' 180 655 180 624 185 611 185 551

185 - 701 185 671 185 641 190 630 190 573

[

190 718= 190 See 190 659 195 651 195 597 195 735 195 707 195- 679 200. 674 200 623 j- 200 754 200 727 200 700 205 698 205 851 ,

205 775 205 749- 205 723~ 210 725 210 681 210 797 210 772 210 748 215' 753 215 713 215 .820 215 797 215 775 220 783 220 748

-220 846 220 824 220 - 803 225 816 225 785-225-~ 513 225 853 225 . 834 230 852 230 -826 230 902- 230 884 230 867 . 235 000 235 See 235 934 235 918 235 903= 240 931 240 916 240 968 240 954 240 941 245 975 -245 967 245 -1004 245 992- 245 963 250 1022 250 1021 250 1043 250 '1034 250 1027 255 1073 255 1079 255 1085 255 1079 255- 1075 260 1128 260 1130 260 1127 200 1126 265 1179 265 1178 270 1231

'275 1286 280 1346' 285 1411 290 1480 295 1554 300 1633-305 1718 310 1809

. 315 1906 320 2011 325 2112 330 2242 335 '2369 Farley Units .1 & 2 Heatup and Cooldown Limit Curves April 1997

47 I

i

s. _ TABLE 22 I Farley Unit 2 36 EFPY Heatup Curve Data Points (Without Margins for Instrumentation Errors; With Delta Pressure Margin of 25 psi for Ternperatures < 110*F and 60 psi for Temperatures > 110*F )

Hestup 60F Crtt.Umt 100F CrtL Umit Leak Test Uma T P T- P T P T P T P 60 472 314 0 60 437 314 0 292 2000 65 472 314 465 65 437 314 467 314 2485 70 472 314 454 70 437 314 451 75 472 314 446 75 437 314 438 80 472 314 441 80 437 314 428 85 /72 314 438 85 437 314 419 90 472 314 437 90 437 314 413 95 472 314 436 95 437 314 408 100 472 314 441 100 437 314 405 105 472 314 444 105 437 314 403 110 473 314 449 110 437 314 402 110 438 314 455 110 402 314 403 115 441 314 462 115 402 314 404 120 444 314 469 120 402 34 407 125 449 314 478 125 402 314 411 130 455 314 488 130 403 314 416 135 462 314 496 135 404 314 422 140 469 314 510 140 407 314 428 145 478 314 522 145 411 314 436 150 488 314 536 150 416 314 445 155 498 314 551 155 422 314 455 160 $10 314 567 160 428 314 486 165 522 314 584 165 436 314 478 170 536 314 602 170 445 314 491

}.. -175 551 314 622 175 455 314 505 180 561 314 644 100 466 314 521 180 567 314 667 185 478 314 538 185 584 314 692 190 431 314 556 190 602 314 719 195 505 314 576 195 622 314 747 200 521 314 598 200 644 314 778 205 538 314 821 205 667 314 811 210 556 314 646 210 692 314 847 215 576 314 673 215 719 314 885 220 598 314 702 220 747 314 926 225 621 314 733 225 778 314 970 230 646 314 767 230 811 314 1018 235 673 314 803 235 847 314 1069 240 702 314 842 240 864 314 1119 245 733 314 883 245 926 314 1171 250 767 314 928 250 970 315 1223 255 803 315 976 255 1018 320 1273 260 842 320 1028 260 1069 325 1326 265 883 325 1083 265 1119 330 1383 270 928 330 1143 270 .1171 335 1445 275 976 335 1206 275 1223 340 1510 280 1028 340 1275 280 1273 345 1580 285 1063 345 1348 285 1326 350 1856 290 1143 350 1426 290 1383 355 1736 295 1206 355 1510 295 1445 360 1822 300 1275 380 1500

.300 1510 365 1914 305 1348 365 1895 305 1580 370 2013 310 1426 370 1798 310- 1656 375 2118 315 1510 375 1908 315 1736 380 2231 320 1590 380 2025 320 1822 385 2351 325 1695 385 2150 325 1914 330 1798 390 2283 330 2013 335 1908 395 2425 335 2118 340 2025 340 2231 345 2150 345 2351 350 22813 355 2425 Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

48 TABLE 23 i Farley Unit 2 36 EFPY C00ldown Curve Data Points (Without Margins 10r instrumentation Errors; With Delta Pressure Margin 0125 psi 10r Temperatures < 110*F and 60 psi for Temperatures 2 110*F )

Cooldown Curves Steady State 20F 40F 60F 100F T P T P T P T P T P 60- 492 60 455 60 416 60 377 60 296 65 495 65 457 65 419 65 380 65 298 73 498 70 460 70 422 70 383 70 301

-75 501 75 463 75 425 75 386 75 3C5 80 505 80 467 80 428 80 389 80 308 85 508 85 471 85 432 85 393 85 312 90 512 90 474 90 436 90 397 90 317 95 516 95 479 95 440 95 402 95 321 100 521 100 483 100 445 100 406 100 327 105 525 105 488 105 450 105 412 105 332 110 $31 110 494 110 456 110 417 110 338 110 496 110 459 110 421 110 382 110 303 115 501 115 464 115 427 115 389 115 310 120 507 120 470 120 433 120 395 120 317 125 514 125 477 125 440 125 402 125 325 130 521 130 484 130 448 130 410 130 334 135 528 135 492 135 456 135 419 135 343 140 536 140 500 140 464 140 428 140 353 1A5 545 145 509 145 474 145 434 145 364-150 554 150 519 150 484 150 448 150 376 155 561 155 529 155 495 155 460 155 389 160 561 160 541 160 507 160 472 160 403 165 561 165 553 165 519

  1. 165 486 165 418 170 561 170 561 170 533 170 500 170 434 175 561 175 561 175 548 I 175 516 175 452 180 561 180 561 180 f,61 180 533 180 471 180 626 180 595 180 564 185 551 185 491 185 641 185 611 185 581 I 190 570 190 513 190 658 190 628 190 599 195 591 195 537 195 675 195 647 195 619 200 614 200 563 200 694 200 667 200 640 205 638 205 591 205 715 205 689 205 663 210 665 210 621 210 737 210 712 210 688 215 693 215 653 215 760 215 737 215 715 220 723 220 688 220 786 220 764 220 743 225 756 225 725 225 813 225 793 225 774 230 792 230 766 230- 842 230 824 230 807 235 830 235 809 235 874 235- 858 235

! 843 240' 871 240 856 240 908 240 894 240 881 245 915 245 907 245 944 245 932 245 923 250 962 250 961 250 '983 250 974 250 967 255 1013 255 1019 255 1025 255 1019 255 1015 260 1068 260 1070 260 1067 230 1066 265 1119 265 1118 270 1171 275 1226 280 1286

-285 1351 290 1420 295 1494

. 300 1573 305 1658 310 1749 315 1846 320 1951 325 2062 330 2182 335 2309 Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

-. . .-- . _ . ..- - - -~ . - - - . - - -

a 49 TABLE 24 1 Farley Unit 2 54 EFPY Heatup Curve Data Points (Without Margins for instrumentation Errors)

Heatup 60F Crtl Umt 100F. Cr8. Um8 Leak Test Uma T _ P T P T P T P T P 60 479 326 0 60 441 328 0 306 2000 65 479 328 510 65 441 328 512 320 2485 70 479 328 498 70 441 328 497

- 75 479 328. 490 75 441 328 483 80 479 328 484 80 441 328 472 85 479 328 481 85 441 328 463 90 479 328 479 90 441 328 456 95 479 328 479 95 44i 328 450 100 479 328 480 100 441 328 446 105 479 .328 482 105 441 328 443 110 479 328 486 110 441 328 442 115 480 32P 400 115 441 328 441 120 442 328 495 120 441 328 442 125 486 328 501 125 441 328 443 130 400 328 507 130 441 328 445 135 495 328 515 135 442 328 448 140 501 328 523 140 443 328 452 145 SJ7 328 532 145 44b 328 457 150. $15 328 442 150 448 328 463 155 523 326 553 155 G2 328 470 160 532 *28

. 564 160 457 328 477 165 542 328 577 165 463 328 485 170 553 328. 500 170 470 328 46G 175 564 328 805 175 477 328 505 100 577 328 821 180 485 328 516 185 590 328 638 185' 495 328 528 190 805 328 656 190 505 328 541 195 821 328 675 195 516 328 555 200 838 328 89P 200 528 328 571 205 856 328 719 205 541 328 588 210 675 328 744 210 555 328 806 215 696 328 770 215 571 328 626 220 719 328 - 798 .220 588 328 647 225 744 328 829 225 '606 328 870 230 770 328 881 230 826 328 005 235 798 328 006 235 647 328 721 240 829 328 934 240 670 328. 750 245 tot 328 974 245 695 328 700 250 806 328 1017 250 721- 328 813 255 934 328 1064 255 750 328 843 260 974 328 1114 260 780 328 887 265 1017 328 1167 285 813 328 920 270 1064 328 1225 270 849 328 972 275 1114 330 1286 275 887 330 1019 280 1187 335 1344 200 928 335 1070 295 1225 -340 1398 285 972 340 1124 290 1286 345 1455 290 1019 345 1182 295 1344 350 1517 295 1070 350 1244 300 1398 355 1584 300 1124 355 1311 305 - 1455 360 1855 305 1182 300 1383 310 1517 365 1731 310 1244 345 1460 315 1584 370 1812 315 1311 370 1542 320 1655 375 1890 320 1383 375 1630 325 1731 380 1993 325 1460 380 1724 330 1812 385 2002 330 1542- 385 1825 335 1899 390 2199 335 1630 390 1932 340 1993 395 2313 340 1724 395 2047 345 ' 2092 400 2434 345 1825 400 2170

. 350 2199 350 1932 - 405 2300 355 2313 355 2047 410 2440 360 2434 380 2170 365 2300 370 2440 Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

2 50

, - -TABLE 25 Farley Unit 2 54 EFPY Cooldown Curve Data Points (Without Margins for Instrumentation Errors) s_.

Cooldown Curves Sloady State 20F 40F 60F 100F T P T P T P T P T P 60 511 60 473 60 434 60 394 60 . 312 65 513 . 65 475 65 - 436 65 396 65 314 70 515 70 477 70 438 70 398 70 318 75 518 75 480 75 441 75 401 75 319 80 521 80 482 80 444 80 404 80 321 85- $24 85 485 85 446 85 407 85 325 90 527 90 489 90 450 90 410 90 328 95 530 95 492 95 453 95 414 95 332 100 534 -100 496 100 457 100 417 100 336 105 538 105 500 105 461 105 422

' 105 340 110 542 110 504 '110 465 110 426 110 345 115 547 115 509 115 470 115 431 115 350 120 551 120 514 120 475 120 436 120 356 125 557 125 519 125 481 125 442 125 362 130 562 130 525 130 487 130 448 130 369 135 SC3 135 531 135 494 135 455 135 377 s

140 575 140 538 140 501 140 463 140 385

  • 145 582 145 545 145 508 145 471 145 394 150 590 150 553 150 516 150 479 150 403 155 596 165 562 155 525 155 486 155 413 160 606 160 571 160 $35 160 498 180 424 165 616 165 581 165 545 165 509 166 ' 437-170 621 170 591 170 556 170 521 170- 450 175 621 175 803 175 568 175 534 175 464 3

100 621 180 615 180 581 180 547 100 479 180 648 185 628 185 595 185 562 185 406 185 661 190 642 190 610 190 578 190 a

517 190 674 195 657 195 626 195 595 195 533 195 689 200 674 200 644 200 613 200 554 4

200 .704 105 692 205 662 205 633 205 576 205 721 210- 710 210 682 210 654 210 800 210 739 215 731 215 704 215 678 215 627 215 758 220 753 220 727 220 702 220 665 .

220 779 225 777 273 752 225 729 225 885 t 225 801 230 802 1

239 780 230 758 T30 718 230 825 235 829 235 809 235 789 235 754

'~

235 851 240 859 240 840 240 822 240 -732 240 879 245 890 245 874 245 858 245 833 245 909 250 925 250 910 250 897 250 877 250 940 255 961 255 949 255 939 255 925 255 975 260 1000 260 991 260 984 260 977 260 1012 265 1043 265 1036 265 1032 265 1032 265 1051 270 1088 270 1084 270 1083 270 1091 270 1094 275 1137 275 1136- 275 1139 5

275 1140 280 1189 285 1242 1 290 1298 225 1359 300 1424 305 1494 310 1569 315 1649 4

320 1735 325 1828 4_ 330 1927 335 2032 340 ~ 2146 345 2266 350 2396 Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

-. . = - - - . . - - . - . .- . ..

51 TABLE 26 Farley Unit 2 54 EFPY Heatup Curve Data Points (Without Margins for Instrumentation Errors and With Delta Pressure Margin of 60 psi)

Heatup 60F CitL Umt 100F CrtL Uma Leak Test Um8 T P T P T P T P T P 60 419 328 0 60 381 328 0 306 2000 65 419 328 450 65 381 328 452 328 2485 70 419 328 438 70 381 328 437 75 419 328 430 7C 381 328 423 80 419 328 424 80 381 328 412 85 419 328 421 85 381 328 403 90 419 328 419 90 381 328 396 95 419 328 419 95 381 328 390 100 419 328 420 100 381 328 386 105 419 328 422 1 35 381 328 383 110 419 328 426 110 381 328 382 115 420 328 430 115 381 328 381 120 422 328 435 120 381 328 382 125 426 328 441 125 381 328 383 130 430 328 447 130 381 328 385 135 435 328 455 135 382 328 388 140 441 328 463 140 383 328 392 145 447 328 472 145 385 328 307 150 455 328 442 150 388 328 403 155 463 328 493 155 392 328 410 160 472 328 504 160 397 328 417 185 482 328 517 165 403 328 425 170 493 328 530 170 410 328 435 175 504 328 545 175 417 328 445 180 517 328 561 160 425 328 456

}

185 530 328 578 185 435 328 468 190 545 328 596 190 445 328 481 195 561 328 615 195 456 328 495 200 578 328 636 200 468 328 511 205 596 328 859 205 481 328 528 210 615 328 884 210 495 328 544 21C 636 328 710 215 511 328 586 220 659 328 738 220 528 328 587 225 684 328 780 225 546 328 810 230 710 328 801 230 586 328 635 235 738 328 836 235 587 328 861 240 769 32a 874 240 610 328 880 245 801 328 914 245 635 328 720 250 836 328 957 250 861 328 753 255 274 328 1004 255 690 328 789 260 914 328 1054 280 720 328 327 265 957 328 1107 265 753 328 868 270 1004 328 1165 270 789 328 912 275 1054 330 1226 275 827 330 959 280 1107 335 1284 200 888 335 1010 285 1165 340 1338 285 912 340 1064 290 1226 345 1395 290 959 345 1122

'295 1284 350 1457 295 1010 350 1184 300 1338 355 1524 300 1064 355 1251 305 1395 380 1595 305 1122 380 1323 310 1457 365 1671 310 1184 ' 385 1400 315 1524 370 1752 315 1251 370 1482

- 320 1595 375 1839 320 1323 375 1570 325 1671 380 1933 325 1400 380 1864 330 1752 385 2032 330 1482 385 1765 335 1839 390 2139 335 1570 390 1872 340 1933 395 2253 340 1864 395 1987 345 2032 400 2374 345 1785 400 2110 350 2139 350 1872 405 2240 355 2253 355 1987 410 2380 360 2374 360 2110 365 2240 370 2380 Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

52

__ TABLE 27 1 i Farley Unit 2 54 EFPY C00ldown Curve Data Points 1

(Wdhout Margins for Instrumen'ation Errors and .  !

With D8tta Pressure Margin Of 60 psi)

Cooldown Curves Steady State 20F 40F 60F 100F T P T & T P T P T P 60 451 60 413 60 374 60 334 60 252 65 453 65 415 65 376 65 336 65 254 70 455 70 417' 70 378 70 338 70 256

, 75 458 75 420 75 381 75 341 75 259 80 461 80 422 80 384 80 344- 80 261 85 464 85 - 425 85 386 85 347 85 265 90 467 90 429 90 390 90 350 90 268 95 470 95 432 95 393 95 354 95 272 100 474 100 436 ;00 397 100 357 100 276 105 478 105 440 105 401 105 362 105 280 110 482 110 444 110 405 110 366 110 285 115 487 115 449 115 410 115 371 115 290 120 491 120 454 120 415 120 376 120 296 125 497 125 459 125 421 125 382 125 302 130 502 130 465 130 427 130 388 130 309 135 508 135 471 135 434 135 395 135 317 140 515 140 478 140 441 140 403 140 325 145 522 145 485 145 448 145 *t1 145 334

, 150 530 150 493 150 456 150 w 150 343 155 538 155 502 155 465 155 424 155 353 160 546 160 511 160 475 160 438 160 364 165 556 165 521 165 485 165 449 165 377 4

170 561 170 531 170 496 170 461 170- 390

, , 175 561 175 543 175 508 175 474 175 404

_J 180 561 180 555 180 521 180 487 180 419 180 588 185 568 185 535 185 502 185 436 185 601 190 582 190 550 190 518 190 453 190 614 195 597 195 566 195 535 195 473 195 629 200 614 200 584 200 553 200 494 I 200 644 205 632 205- 602 205 573 205 516 205 661 210 650 210 622 210 594 210 540 210 679 215 671 215 644 215 618 215 567

,. 215 698 220 693 220 667 220 642 220 595 220 719 225 717 225 692 225- 669 225- 625 225 741 230 742 230 720 230 698 230 658 230 765 235 769 235 749 235 729 235 694 235 791 240 799 240 780 240 762 240 732 240 819 - 24f 830 245 814 245 798 245 773 245 849' 250 865 250 850 250 837 250 817 250 880 255 901 255 889 255 879 255 865

< 255 915 260 940 260 931 260 924 260 917 260 952 265 983 265 976 265 972 265 972 265 991 270 1028 270 1024 270 1023 270 1031 270 1034 275 1077 275 1076 275 1079 275 1080 280 1129 285 1182 290 1238 295 1299 300 1364 305- 1434 310. 1509 315 1589

-320 1675 325 1768 330 1867-335 1972 340 2006 345 2206 350 2336 4

Farley Units 1 & 2 Heatup and Cooldown Lirnit Curves April 1997

53 q 6 REFERENCES l

1 . Regulatory Guide 1.99, Revision 2,

  • Radiation Embrittlement of Reactor Vesse' Materials', U.S. Nuclear Regulatory Commission, May,1988.

2 -- ' Fracture Toughness Requirements', Branch Technical Position MTEB 5 ' i, Chapter 5.3.2 in J.ta.ndard ta Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants, LWR Edition, NUREG-0800,1981. l

.3 WCAP 14197, ' Evaluation of Pressurized Thermal Shock for Farley Units 1 and 2', P. A. Peter, March j 1995.

l l 4 ' Joseph M. Farley Nuclear Plant Response to Generic Letter 92-01, Revision 1 Supplement 1, Reactor Vessel Structural Inteanty', Dave Morey, dated November 16,1995.

5 WCAP 14196, ' Analysis of Capsule W from the Alabama Power Company Farley Unit 1 Reactor Vessel Radiation Surveillance Program', P. A. Peter, et al, February 1995.

6 WCAP 11438, ' Analysis of Capsule W from the Alabama Power Company Joseph M. Farley Unit 2 Reactor Vessel Radiation Surveil'ance Program', R. P. Shogan, et al, April 1987.

7 WCAP 14687, ' Joseph M. Farley Units 1 and 2 Radiation Analysis and Neutron Dosimetry Evaluation *,

R. L Bencini, June 1996.

8 10 CFR Part 50, Appendix G, ' Fracture Toughness Requirements', Federal Register, Volume 60, No.

243, dated December 19,1995.

9 1989 ASME Boiler and Pressure Vessel Code,Section XI, Appendix G, ' Fracture Toughness Criteria for Protection Against Failure", Vessels.

10 1989 Section 111, Division 1 of the ASME Boiler and Pressure Vessel Code, Paragraph NB 2331,

'Materialior Vessels *,

11 WCAP 14040 NP A, Revision 2, ' Methodology used to Develop Cold Overp7ssure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves", J. D. Andrachek, et al, January 1996.

12 Farley Blanket Order Release, SNC REA/PCR No. PCR951109, W Blanket G.O. BH-22158, " Neutron Fluences & RCS Pressure & Temperature Limit Curves", prepared by Harry Bellas, dated 3/1/96.

13 Southem Nuclear Calculation SM-90-1706-001 NS, Revision 5, 'RHR Relief Valve Flow Capacity", J. N.

McLeod, June 8,1990.

Fariey Units 1 & 2 Heatup and Cooldown Lirnit Curves April 1997

- - . . - . - . . - . . ~ . - - . - . . . . _ . - . . . ~ . . ~ . . - .

. - - ~ . . . . ~ . . - _ - . . ~ . . - . . . ~ . .

. A-0 i

A a

a

~=

i _

4 r

APPENDIX A -

i i

SURVEILLANCE CAPSULE DATA CREDIBILITY EV/.LUATION -

i

$= ,

4 8

.h i

4

)

s

'I., 4, .

i, k-4 4

i i

l.

i 4

t-5 i'

4 4

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997 4..

. - , - . ,n,, . - -,. . . .

A1

, SURVEILLANCE DATA CREDIBILITY EVALUATION:

1 - c.

INTRODUCTION:

Regulatory Guide 1.99, Revision 2, describes genere.1 procedures acceptable to the NRC staff for calculating the effects of neutron radiation embrittlement of the low alloy steels curmntly used for light water cooled reactor vcasels. Position C.2 of Regulatory Guide 1.99, Revision 2, describes the methodology for calculating the aa?isted reference temperature and Charpy upper. shelf energy of reactor vessel beltline materials using surveillance capsule data. The methods of Positian C.2 can only be applied when two or more credible surveillance data sets become available from the reactor in question.

To date, there have been four wrveillance capules removed from the Farley Unit 1 reactor vessel and three capsule removed f om the Farley Unit 2 vessel. This capsule data must be shown to be credible. *a accordance with the discussion of Regulatory Guide 1.99, Revision 2, there are five requirements that must be met for the surveillance data to be judged credible.

The purpose of this evaluation is to apply the credibility requirements of Regulatory Guide 1.99, Revision 2, to the Farley Units 1 & 2 reactor vessel surveillance data and determine if the Farley Units 1 & 2 surveillance data is t

credible.

}

EVALUATION:

Criterion 1: Materials in the espsules should be those judged most likely to be controlling with I

regard to radiatio:4 embrittlement.

The beltline region of the reactor vessalis defined in Appendix G to 10 CFR Part 50,' Fracture Toughness Requirements', December 19,1995 to be:

"the reactor vessel (shell material including welds, heat affected zones, and plates or forgings) that directly surrounds the effecave height of the active core and adjacent regions of the reactor vessel that are predicted to experience suffeient neutron radiation damage to be considered in the selection c: the most limiting material with regard to radiation damage.'

Farley Units 1 & 2 Heatup sind Cooldown Limit Curves April 1997 s , , . . ...

A2

-_ FARLEY UNIT 1

)

"r. Farley Unit 1 reactor vessel consists Of the following beltline region ma'erials:

I a) Interme;'#e shell plates BM33-2 and B6903 3, i b) Lower shell plates B6913-1 and b3919 2, c) Intermediate shell longitudul we!d seams 19 894A & B, heat number 33A277,1092 flux, lot number 3889, d) Lower shell lon9udinal weld seams 20 894A & B, heat number 90099,0091 flux, lot number 3977, and e) Circumfere!. . weld 11894, heat number 6329637,0001 flux, lot number 3999.

Per WCAP@0, the Farley Unit 1 surveillance program was based on ASTM E185 73, ' Standard Recommended Practice for Surveillance Tests for Nuclear Fieactor Vessels', Per Section 4.1 of ASTM E185 73, 'The base metai 1 and weld metal to be inc!aded in the program should represent the material that may limit the operation of the reactor during its lifetime. The test material should be selected on the basis ofinitial transition temperature, uppe l l and estimated increase in transition temperature considenng chemical composition (copper (Cu) shell ens.;/ evel, and phosphorus (P)) and neutron fluence.'

(

Therefore, at the time the Farley Unit i surveillance car.,ule program was developed, lower shell plate B6919-1 was judged to be most limiting based on the above recommendations and was utilized in the surveillance progmm.

ine. surveillance program weld for Farley Unit .1 v as fabricated using the same heat of weld wire used to fabricate the middle shell axial seams 19-894A and B (heat 33A277). The results of mechanical property tests performed on the surveillance weld are considered to be representative of the property changes expected in the reactor vessel beltline seams.

Therefore, the materials selected for use in the Farley Unit 1 surveillance program were those judged to be most likely controlling with regard to radiation embrittlement according to the accepted methodology at the time the surveillance program was developed. The Farley Unit 1 survei!!ance progmm meets this criteria.

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

A3

_ FARLEY UNIT 2 I

The Farley Unit 2 reactor vessel consists of the following beltline region materials:

a) Intermedia'e shell plates B7203-1 and B72121, b)- Lower shell plates B72101 and B7210-2, and, c) - hiermediate shell longitudinal weld seam 19-923A, heat number HODA, d) Intermediate shell longitudinal weld seam 19 923B, heat number BOLA, e) l.ower shell longitudinal weld seams 20-923A & B, heat number 83640, Unde 0001 flux, flux Inl 3490, and f) Circumferential weld 11923, heat number SP5622, Linde 0091 flux, flux lot 1122.

Per WCAP 8956, the Farley Unit 2 surveillance program was based on ASTM E185-73,' Standard Recommended Practice fur Surveillance Tests for Nuclear Heactor Vessels'. Per Section 4.1 of ASTM E185-73, 'The base meta!

and weld metal to be included in ll's program should represent the material that may limit the operation of the reactor during its lifetime. The test materh! should be selected on the basis of initial transition temperature, upper

sheit energy level, and estimated increase in transition temperature considering chemical composition (copper (Cu) and phosphorus (P)) and neutron fluence.'

At the time the Farley Unit 2 surveillance capsule program was developed, intermediate shell plate B72121 was judged to be most limiting and was therebre utilized in the surveillance program.

The Farley Unit 2 surveillance program weld was fabricated using the sh%lded metal arc welding process and EBC18 stick electrodes, in a manner similar to ll.at used to fabricate miode sher alal seams 19-923A (heat HODA) and B (heat BOLA). These electrodes were not copper-coated and do not exhibit the chemical variability found in copper-coaled submerged are weld wire. Although the surveillance weld material does not represent the limiting reactor vessel beltline weld, the results of mechanical property tests performed on the surve91ance weld are considered to be representative of the property changes expected in the reactor vessel beltline seams. The NRC explicitly approved the selection of the Farley Unit 2 surveillance weld material on the basis that the limiting beltline material (i.e., intermediate plate B7212-1) was included in the surveillance program and conservative methods of analysis contained in Regulatory Guide 1.99 were available to predict the radiation characteristics of the limiting beltline weld. The NRC incorporated an exemption to the requirements of Appendix H to 10 CFR Part 50 in the Farley Unit 2 Operating Ucense, Futey Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

A 4-

- thereby approving the selected surveillance weld material based on the NRC evaluation provided in Section 5.2.1 l: 3~C -l

' of NUREG-0117.  ;

Although the Farley Unit 2 surveillance weld material does not meet the requirements of Criterion 1, conservative methods of analysis are available to predict the radiation characteristics of the limiting beltline weld. The limiting beltline plate materialis intermediate plate B72121 which is more limiting than any of the tr. actor vessel beltline _i j welds ar.d is included in the reactor vessel material surveillance pogram. Therefore, the Farley Unit 2 reactor vesss! material surveillance program provides assurance that the radiation damage to the vessel can be i ' adequately determined and the integrity of the Farley Unit 2 reactor vessel will be ensured during normal plant operations and anticipated coerational occurrences. Therefore, the Farley Unit 2 surveillance program meets this -

! . criteria. ,

a

).

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

A5 Criterlon 2: Scatter in the plots of Charpy energy versus temperature fer the Irradisted and

, unirtsdisted conditions should be small enough to permit the determination of the 30 ft-Ib temperature and upper shelf energy, unambiguously, FARLEY UNIT 1 Plots of Charpy energy versus temperature for the unirradiated condition are presented in WCAP 8810, 'Sou' hem Alabama Power Company Joseph M. Farley Nuclear Plant Unit No.1 Reactor Vessel Radiation Surveillance Program,' dated December 1976.

Plots of Charpy energy versus temperature for the irradiated conditions are presented in the WCAP reports for

Capsule , Y, U, X, and W.

Based on engineering judgement, the scatter in the data presented in these plots is small enough to determine the 30 ft lb temperature and the upper shelf energy of the Farley Unit 1 surveil;ance materials unambiguously.

Therefore, the Farley Unit 1 surveillance program meets this criteria.

FARLEY UNIT 2 Plots of Charpy energy versus temperature for the unirradiated condition are presented in WCAP-8956, ' Alabama Power Company Joseph M. Farley Nuclear Plant Unit No. 2 Reactor Vessel Radiation Surveillance Program,'

dated August 1977.

Plots of Charpy energy versus temperature for the irradiated conditions are presented in the WCAP reports for

. Capsules U, W, and X.

Based on engineering judgement, the scatter in the data presented in these plots is small enough to determine the 30 ft-lb temperature and the upper shelf energy of the Farley Unit 2 surveillance materials unambiguously.

Therefore, the Farley Unit 2 surveillance program meets this criteria.

l d

i Farley Units 1 & 2 Heatup and Cooldown Limit Cerves April 1997

A6 Criterion 3: When ll,ere are two or more sets of surveillance data from one reactor, the scatter of I ARTavalues about a best fit the drawn as described in Regulatory Posillon 2.1 normally should be less than 28'F for we!Js and 17'F for base metal. Even 11 the fluence range is large (two or more orders of magnitude), the scatter should not exceed twice those values. Even If the data fall this criterion for use in shift calculations, they may be credible for determining decrease in upper shelf energy if the upper shelf can be clearly determined, following the definitiots given in ASTM E185-82.

The least squares method, as described in Regulatory Position 2.1, will be utilizea in determining a t'est fit line for this data to determine if this criteria is met.

FARLEY UNIT 1 Table A 1 - Farley Unit 1 Surveillance Capsule Data Calculation of Best-Fit Line as Described in Position 2.1 of Regu!atory Guide 1.99, Revision 2 Material Capsule F* FF" ART. FF x ARTm FF' (x) (y) (ry) (x')

Lower Shell Y 0.580 0.848 85 72.0 0.718 Plate B6919-1 (Longitudnal) U 1.69 1.14 105 120.2 1.31 X 2.95 1.29 135 173.7 1.66 W 3.82 1.35 155 208.7 1.81 Y 0.580 0.848 55 46.6 0.718 Lower Shell U 1.69 1.14 90 103.0 1.31 Plate B6919-1 .

(Transverse) X 2.95 1.29 105 135.1 1.66 W 3.82 1.35 145 195.2 1.81 r,. 9.25 875 1054.5 10.99 Y 0.580 0.848 80 67.8 0.718 U 'f9 1.14 80 C 1.31 Weld Metal X 2.95 1.29 100 129.0 1.66 W 3.82 1.35 95 127.9 1.81 r,,, 4.62 355 415.9 5.50

~

NOTES:

(a) F = Fluence (10" n/ctn' E > 1.0 MeV)

(b) FF = Fluence Factor s F**"*

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

A7

--. Per the 272 Edition of the CRC Standard Mathematical Tables (page 497), for a straight line fit by the method of least I squares, the values b, and b, are obtained by soMng the normal equations n b,+ b, Ix, = Iy, and b, 4 + b,Ix,' = M yi These equations can be re-wf.len as follows:

n et

[y; - an + bE1 x; and n n n-

[ Xy =. R[X; + b[ X g 3 11 41 let Lower Shell Plate B6919-1:

Based on the data provided in Table A 1, these equations become:

i 875 m'8a + 9.2Sb -

and 1054.5 = 3258 + 10.99b -

Thus, b = 1452 and a = 58.5,'and the equation of the straight line which provides the best fit in the sense cf least squares is:

Y' = 1452 (X)

  • 58.5 The error in predicting a value Y corresponding to a given X value is:. e = Y - Y'.

4 Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

A8 Lower einell Plate ARTun Best Fit ARTun Scatter of B6919-1 FF (30 ft lb) ('F) ('F) ARTum (*F)

Orientation Lorsgitudir l' O.848 85 64.6 20.4 1.14 105 107.0 2.0 1.29 135 *28.8 6.2 1.35 155 137.5 17.5 Trs,sverse 0.848 55 64.6 9.6 1.14 90 107.0 17.0

_ 1.29 105 128.8 23.8 1.35 145 l 137.5 7.5 The scatter of ARTum values about a best fit line drawn, as described in Regulatory Position 2.1, should be less than 17'F for base metal. However, even if the fluencc ange is large, the scatter should not exceed twice this value (i.e. 34'F). As shown above, the error is within 34*F of the best-fit line. Therefore, this criteria is met for the Farley Unit 1 surveillance plate material.

.I Weld Metal:

Based on the data provided in Table A 1 the equations become:

355 = 4a + 4.62b 415.9 = 4.62a + 5.5b Thus, b = 35.6 and a = 47.625, and the equation of the straight line which provides the best fit in the sense of least squares is:

Y = 35.6 (X) + 4.625 The error in predicting a value Y corresponding to a *.Ivsn X value is: e = Y Y Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

A9 ARTun (30 ft Ib) Best Fit ARTun Scatter of ARTun FF ('F) ('F) ('F) 0.848 80 77.8 2.2 i 1.14 80 88.2 -8.2 1.29 100 93.5 6.5 1.35 05 95.7 0.7 The scatter of ART values about a best-fit line drawn, as described in Regulatory Position 2.1, is less than 28'F as shown above. Therefore, this cr;teria is met for the Farley Unit 1 surveillance weld material.

FARLEY UNIT 2 Table A 2 Farley Unh 2 Surveillance Capsule Data Calculation of Best-Fit Line as Described in Position 2.1 of Regulatory Guide 1.99, Revision 2 Material Capsule F* FF" ART. FF x ART, FF' (x) (y) (xy) (x')

Intermediate Sher U 0.579 0.847 103 87.2 0.718

Plate B72121 (Longitudinal) W 1.54 1.12 165 184.7 1.25 4

X 2.64 1.26 180 226.8 1.59 0 0.579 0.847 133 112.7 e ?lB

'~

Intermediate Shell Plate B72121 W 1.54 1.12 165 iB4.7 1.25 (Transverse)

X 2.64 1.26 190 239.3 1.59 r,, 6.45 936 1035.4 7.12 U 0.579 0.847 10 8.5 0.718 Weld Metal W 1.54 1.12 10 11.2 1.25 X 2.64 1.26 10 12.6 1.59 f, 3.23 30 32.3 3.56 NOTES-(a) F = Ruence (10 n/cm', E > 1.0 MeV)

(b) FF = Fluence Factor = F**"*

Farley Units 1 & 2 Heatup and Cooldown Lirnit Curves April 1997

A.10

.intermedir.te Shell Plate B72121:

Based on the data provided in Table A 2, the equations become:

936 = 6a + 6 45b and 1035.4 = 6.45a + 7.12b Thus, b = 156.0 and a = 12.5, sind he equation of the straight line which provides the best fit in the sense of least squares is:

Y' = 156.8 (X) 12.5 Tt,e error in predicting a va'ue ?l correspanding to a given X value is: e = Y Y'.

1 Inturmetilate Shell ART,,n Best Fit ARTun Scatter of .

I Plate B72121 FF (30 ft Ib) ('F) (*F) ARTun (*F)

Orientation w m summmmmmu---mumumummmmmmmum Lo. .cdmal _0,.,847 103 120.3 17.3 1.12 165 163.1 1.9 1.26 160 185.1 5.1 Tronsverse _ 0847 133 120.3 12.7 1.,12 165 163.1 1.9 1.26 190 185.1 4.9 The scatter c' ART,n values about a best fit line drawn, as described in Regulatory Position 2.1, should be less than 1/'F it; base metal. However even if the fluence rang is large, the scatter should not exceed twice this '

valwe (i.e. 34'F). As shown above, the error is within 34'F of the best fit line. Therefore, this criteria is met for the Farley Unit 2 turveillance plate materiat.

h I

~

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

A 11 w , Weld Metal:

Based on the data provided in Table A 2 the equations become:

30 = 3a + 3.23b 32.3 = 3.23a + 3.56b Thus, b = 0 and a = 10, and the equation of the straight line which provides the best fit in the sense of least squares is:

Y' = 0 (X) + 10 The error in predicting a value Y corresponding to a given X value is: 6 - Y Y' ART,,, (30 ft lb) Best Fit ART,,, Scatter of ARTm FF ('F) ('F) ('F) 0.847 10 10 0 1.12 10 10 0 1.26 10 10 0 The scatter of ART,e, values about a best fd line drawn, as described in Regulatory Position 2.1, is less than 28'F as shown above. Therefore, this enteria is met for the Farley Unit 2 surveillance weld material, l

l I

l Farley Valts 1 & 2 Heatup and Cooldown Limit Curves April 1997

A 18 Criterion 4: The Irradiation temperature of the Charpy specimens in the espsule should match the vessel wall temperature at the claddinghase mets! Interface within 425'F.

The Farley Units 1 and 2 capsule specimens are located in the reactor between the neutron t.hielding pads and the vessel wall and are positioned opposite the center of the core. The test capsules are in guide tubes attached to the neutron shielding pads. The location of the specimens with respect to the reactor vessel beltline provides assurance that the reactor vessel wall and the specimens experience equivalent operating conditions and we not differ by more than 2!'F.

Criterion 5: The surveillance data for the correlation monitor materls!In the capsule should IsII within the scatter band of the data base for that materlsl.

The Farley Unit 1 and Unit 2 surveillance programs do not include correlation monitor matenal. Therefore, this criterion is not applicable to Farley Unit 1 or 2.

CONCLUSION:

Based on the preceding responses to the enteria of Regulatory Guide 1M Revision 2, Section B, and the application of engineering judgement, the Farley Unit 1 and 2 surveillance data is credible.

+

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

B0 I

I APPENDIX R ENABLE TEMPERATURP. CALCULATIONS AND RESULTS I

l l

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

l B1

.. The following calculations were completed using the 36 EFPY curves without margins I documented in this WCAP report.

The enable temperature was determined using the methodology from the following document since the NRC has not yet approved the methodology of ASME Code Case N 514:

~

NRC Standard Review Plan, Secton $.2.2, Omrpressure Protection, NUREG-0B00, Revision 2 Noverrber 1988, Branch Technical Poslton RSB 5 2, Ontpressure Protection of Pressunted Water Reactors While Operating at low Temperatures, Revision 1, November 1968.

Enable Temperature = RT, + 90 + max (AT.), T where. RTm is alther the 1/4T Adjutted Reference Temperature (ART) or 3/4T ART AT is the temperature difference between RCS water and either the 1/4T or 3/4T metal temperature at the control"ag location i

l l

1 l

l l Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997 -

i

- ~ _ , . . - - _ . - _ . . , _ , - _ , . , -_m_., . . .... , _ .- _ . - _ , _ _ - .. _ _ _m.. , ___ _ , _ _ _ _ - . _ , . . , _ , _ - -

B2  ;

i i

FARLEY UNIT 1:

Per Figure 2 of this WCAP report, the Farley Unit 1 ART values are:

1/4T ART = 161'F 3/4T ART = 136'F >

From the OPERLIM computer code output for the Farley Unit 136 EFPY P.T limit curves without margins (Figures 2 and 3):

Cooldown Rate (Steady 4Mir4.v. Mown) (configuration #3571568588411):

max (AT,,,,,) at 1/4T = v P max (AT,,,,,) at 3/4T = 0'F Heatup Rate of 60'F/Hr (configuration #8392267756858):

max (AT,,,,,) at 1/4T = 15.472'F (at 28800 sec.,550'F water temp.)

max (AT,,,,,) at 3/4T = 32.303*F (at 28800 sec.,550'F water temp.)

Heatup Rate of 100'F/Hr (configuration #8392267756858):

max (AT,,,,,) at 1/4T = 25.347'F (at 17280 sec.,550*F water temp.)

mar (AT,,,,,) at 3/4T = 52.766'F (at 17280 sec.,550'F water temp.)

Enable Temperature (ENBT) = RT + 90 + max (AT,,,,,), 'F Cooldown Rate (Steady State Cooldown) :

ENBT at 1/4T = 161 + 90 + 0 = 251'F ENBT at 3/4T = 156 + 90 + 0 = 226'F Heatup Rate of 60*F/Hr:

ENBT at 1/4T = 161 + 90 + 15.472 = 266.472*F ENBT at 3/4T = 136 + 90 + 32.303 = 258.303'F

! Heatup Rate of 100'F/Hr:

ENBT at 1/4T = 161 + 90 + 25.347 = 276.347'F ENBT at 3/4T = 136 + 90 + 52.766 = 278.766*F Therefore, for Farley Unit 1, a conservative enable temperature of 280'F shall be used in determining the LTOP system setpoints since this value bounds all possible cases during

, heatup and cooldown.

4 Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

_ _ . - ~ . _ - . . - _ . _ _ . _ _ ~ . - . _ - - - _ _ -.. _ _ .-.__

B3 FARLEY UNIT 2:

Per Figure 10 of this WCAP report, the Farley Unit 2 ART values are:

1/4T ART = 186'F 3/4T ART = 149'F

From the OPERLIM computer code output for the Farley Unit 2 36 EFPY P T limit curves I without margins (Figures 10 and 11)

l Cooldown Rate (Steady State Cooldown) (configuration #1222405685884):

max (AT,,,..) at 1/4T = 0'F max (6T,,, .) at 3/4T = 0'F Heatup Rate of 60'F/Hr (configuration #2864568588392):

max (AT,,,, ) at 1/4T = 15.472'F (at 28800 sec.,550'F water temp.)

max (AT,,,, ) at 3/4T = 32.303'F (at 28800 sec.,550'F water temp.)

Heatup Rate of 100*F/Hr (configuration #2864568588392):

max (AT,,,, ) at 1/4T = 25.347'F (at 17280 sec.,550'F water temp.)

, max (AT,,,, ) at 3/4T = 52.766'F (at 17280 sec., 550'F water temp.)

Enable Temperature (ENBT) = RTa + 90 + max (AT,,, ), 'F Cooldown Rate (Steady State Cooldown) :

ENBT at 1/4T = 186 + 90 + 0 = 276'F .

ENBT at 3/4T = 149 + 90 + 0 = 239'F Heatup Rate of 60'F/Hr:

ENBT at 1/4T = 186 + 90 + 15.472 = 291.472'F ENBT at 3/4T = 149 + 90 + 32.303 = 271.303*F Heatup Rate of 100*F/Hr:

ENBT at 1/4T = 186 + 90 + 25.347 = 301.347'F ENBT at 3/4T = 149 + 90 + 52.766 = 291.766'F Therefore, a conservative enable temperature of 305'F shall be used in determining the

. LTOP system setpoints since this value bounds all possible cases during heatup and cooldown.

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

C0 APPENDlX C PRESSURIZED THERMAL SHOCK (PTS) RESULTS 1

i Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

C1 TABLEC1

-l RTn, Calculations at 36 EFPY for Farley Units 1 and 2 1936 Material CF EFPY FF l M ART, RTn, Farley Unit 1 inter. SheD Plate B6903 2 91.0 3.97 1.35 0 34 123.3 157 Inter. Shell Plate B6903 3 82.2 3.97 1.35 to 34 111.3 155 Lower Shen Plate B69191 97.8 3.97 1.35 15 M 132.5 M using S/C data 95 9 3.97 1.35 15 M 129.9 !N Lower Sheu Plate B6919 2 96.2 3.97 1.35 5 34 133.0 172 Inter. Shen LongitudinalWeld 118.6 1.23 1.06 56 66 125.4 135 Seams19-894 A & B (Heat # 33A277) _

using S/C data 75.7 1.23 1.06 56 44 80.1 68 CircumferentalWold 11894 100.8 3.97 1.35 56 66 136.5 147 (Heat # 6329637)

Lower Shen LongitudmalWeld 104.0 1.23 1.06 56 66 110.0 120 3

Seems 20 894 A & B (Heat #

90099)

Farley Unit 2 Inter. Shell Plate B72031 100.0 3.75 1.34 15 - 34 134.2 183 Inter. Shen Plate B72121 149.0 3.75 1.34 10 34 200.0 224 using S!C data 145.5 3.75 1.34 10 17 195.3 - 202 Lower Shel Plate B72101 89.8 3.75 1.34 18 34 120.5 173 Lower Sheu Plate 87210 2 98.7 3.75 1.34 10 34 132.5 176 Inter. ShoulongitudmalWold 27.0 1.20 1.05 56 44.3 28.4 17 Seam 19-923 A (Heat # HODA)

Inter. SheD LongitudnalWeld 41.0 1.20 1.05 60 43.1 43.1 26 Seam 19 923 B (Heat # BOLA) using S/C data 9.1 1.20 1.05 -60 9.6 9.6 41 CircumferentialWeld 11923 67.3 3.75 1.34 40 56 90.3 106 (Heat # SP5622)

Lower SheH LongitudmalWeld 34.05 1.20 1.05 70 35.8 35.8 2 Seams 20-923A&B (Hett #83640) __

Reference:

Taue 5.1.2 5 of the Farley Units 1 & 2 Uprating Prograrn Engineering Report

^

Y N kW h D>tvth5M f Y G b h 0 f h e' / h ) J Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

D0 5

APPENDIX D l

UPDATED S'JRVEILLANCE MATERIAL 30 FT LB TRANSm0N TEMPERATURE SHIFTS AND UPPER SHELF ENERGY DECREASES Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

_ ___ J

_ - _ _ .. . =. . _ . - - . _ _ _ _ _ - - _ .--_ -

D1 TABLE D 1

~

Comparison of the Farley Unit 1 Surveillance Material 30 ft lb Transition Temperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions i

30 ft-lb Transmon Upper Shell Ener1 y Temperature Shift Decrease Measured *' Pred.cted*' Measured

  • Matenal Capsule (10 ' r 8

Pred;cted*

E>1.0MeV)

IO IO IN IN Plate B69191 Y 0.580 83 85 20 9 (Longitudinal) l U 1.69 112 105 26.5 21 X 2.95 126 135 30 19 W 3.82 132 155- 32 22 Plate B69191 Y 0.580 83 $$ 20 0 (Transverse)

U 1.69 112 90 26.5 9 X 2.95 126 105 30 11 W 3 82 132 145 32 16 Weld Metal Y 0.580 101 80 34 13 U 1.69 136 80 44 28 X 2.95 153 100 49 23 W 3 82 160 95 52 26 0.580 - 60 - 11 HAZ Metal Y 0 1.69 - 120 - 26 X 2.95 - 125 - 19 W 3 82 - 110 - 14 NOTES:

(a) Based on Regulatory Guide 1.99, Revison 2, rnethodology.

Predsted ART, CF

  • FF, where FF = f """"

Capsule fluence values Iobtained from WCAP 14687 latest fluence evaluaton using ENDF/B VI.

CF ,,, = 97.8'F, CF Wald Metal = 118.6*F obtained from WCAP 14b89, Revison 0.

(b) Measured values from Capsule W repott, WCAP 14196.

(c) Based on Fgure 2 of Regulatory Guide 1.99, Revison 2.

Cu weight percent (B69191)=0.14; Cu weight percent (Weld Metal)=0.24 obtained from WCAP 14689, Revision 0.

Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997

I D2 l l

i

-. TABLE D 2 I C0mparison of the Farley Unit 2 Surveillance Material 30 ft lb Transition Temperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions a 30 ft Ib Transition Upper Shell Energy Temperature Shift Decrease )

repe ensure re$ded Wasured*

Matenal Capsule (10 nem'.

E>1.0MeV)

(O ('O (%) (*.)

Plate 872121 0 0.579 126 103 25.5 27.7 (Longu$nat)

W 1.54 167 165 32 21.5 X 2.64 188 180 37 27.7 j Plate B72121 U 0.579 126 133 25.5 . 27 (Transverse)

W 1.54 167 165 32 20 X 2.64 188 190 37 27 Weld Metal V 0.579 35 10 16.5 8.3 W 1.54 46 10 21 0 X 2.64 $2 10 24 0 _

HAZ Metal V 0.579 - $8 - 29.7 W 1.54 - 109 - 20.3 X 2 64 -

110 - 20.3 NOTES:

(a) Based on Regulatoy Gude 1.99, Remsson 2 methodology.

Pre $cted ART, , er . FF, where FF = f """'',

Capsule fluence values Iobtained from WCAP 14687. latest fluence evaluation using ENDF/B VI.

CF,w , = 149.0'F, CF Weld Metal = 41.0*F obtained from WCAP 146P9, Rewson 0.

(b) Measured values from Capsule X report, WCAP 12471.

(c) B:. sed on F9ure 2 of Regulatory Gude 1.99, Revisioi.2.

Cu weight percent (B72121) 0.20; Cu weight percent (Weld Metal)=0.03 obtained from WCAP 14689, Rewsion 0.

Farley Units 1 & 2 Heatup end Cooldown Limit Curves April 1997

E0 i

APPENDIX E REACTOR VESSEL BELTLINE MATERIAL PROJECTED END OF LICENSE UPPER SHELF ENERGY VALUES

~,

r 8-t Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997 ,

. . , , - - , , - - ., _...,A-.- -

, . . _ . . , , - . , y ,,_,..-, ,.. ...m_, w... , .,,- , _ _ _ . . _ - - , . -4 ..._,u . . - , y,,.c.

Attachment in NSD E M5197108 TABLE E 1 j Predicted End of License (36 EFPY) Upper Shelf Energy Values for the i Farley Unit i Reaktor Vessel Beltline Materials -

i i

Beltline Material Wt. 1/4T Fluence Unirradiated Decrease Projected

% Cu 8 (n/cm ) USE in USE EOL USE Inter. Shell Plate B6903 2 0.13 2.48 x 10" 99 ft lb 27 ft lb 72 ft lb Inter. Shell Plate B6903 3 0.12 2.48 x 10* 87 ft lb 23 ft lb 64 ft lb Lower Shell Plate B69191 0.14 2.48 x 10" 86 ft lb 24 ft lb 62 ft lb using S/C data -- 2.48 x 10 86 ft lb 20 ft lb 66 ft lb Lower Shell Plate B6919 2 0.14 2.48 x 10 86 ft lb 24 ft lb 62 ft lb Inter, Shell Longitudinal 0.24 7.67 x 10 149 ft lb 54 ft lb 95 ft lb Weld Seams19-894 A & B (Heat # 33A277) using S/C data - 7.67 x 10'8 149 ft Ib 34 ft lb 115 ft lb Circumferential Weld 11- 0.21 2.48 x 10 104 ft lb 46 ft lb 58ftlb 894 (Heat # 632%37)

Lower Shell Longitudinal 0.20 7.67 x 10 82.5 ft lb 27 ft lb 55 ft lb Weld Seams20-894 A & B (Heat # 90099) me.

NOTES:

1) Per Regulatory Guide 1.99, Revision 2.

Attschment to NSD.E MSI 97108 i

TABLE E 2 '

Predicted End of License (36 EFPY) Upper Shelf Energy Values for the i

Farley Unit 2 Reactor Vessel Beltline Materials -

Beltline Material Wt. 1/4T Fluence Unitradiated Decrease Projected 8

% Cu (n/cm ) USE in USE* EOL USS Inter. Shell Plate B72031 0.14 2.34 X 10 d 100 ft lb 28 ft lb 72 ft lb Inter. Shell Plate B72121 0.20 2.34 X 10" 100 ft lb 35 ft lb 65 ft lb

-l 4

using S/C data --

2.34 X 10" 100 ft lb 39 ft lb 61 ft lb Lower Shell Plate B7210-1 0.13 2.34 X 10 103 ft lb 28 ft lb 75 ft lb Lower Shell Plate B7210-2 0.14 2.34 X 10 99 ft lb 28 ft Ib 71 ft lb Inter, Shell Longitudinal 0.02 7.48 X 10 131 ft lb 23 ft lb 108 ft lb f Weld Seam 19 923 A

! (Heat # HODA) l Inter. Shell Longitudinal 0.03 7.48 X 10 148 ft lb 26 ft lb 122 ft lb Weld Seam 19 923 B (Heat # BOLA) using S/C data -- 7.48 X 10 148 ft lb 13 ft lb 135 ft lb Circumferential Weld Il- 0.14 2.34 X 10" 102 ft lb 35 ft lb 67 ft lb 923 (Heat # SP5622)

Lower 3 hell Longitudinal 0.05 - 7.48 X 10 126 ft lb 23 ft lb 103 ft Ib Weld Seams 20 923 A & B (Heat # 83640)

NOTES:

1) Per Regulatory Guide 1.99, Revision 2.

F4 l

l -

! }

l l

I l

l APPENDIX F I

UPDAMD SURVEILLANCE CAPSULE REMOVAL SCHEDULES

~

t l

J Farley Units 1 & 2 Heatup and Cooldown Limit Curves April 1997 o

Attachment ts NSD E41SI.97108  !

t TABLE F.1 Farley Unit i Surveillance Capsule Withdrawal Schedule Capsule Removal Fluence Capsule Location Lead Factor EFPY"' 3 (n/cm )

(Degree) .

l Y' 343 . 3.33 1.13 5.80 x 104 U 107 3.34 3.02 1.69 x 10" X 287 3.38 6.12 2.95 x 10

W 110 3.13 12.43 3.82 x 10" V"' 290 3.11 Standby ...

I Z'" 340 3.11 Standby ...

l NOTES:

(a) Effective full power years ,2FPY) from plant startup.

(b) Plant. specific evaluation (c) The current calculated fluence of the standby capsules is approximately equal to the projected 54 EFPY vessel surface fluence. Hence, it recommended that these capsules be removed and stored before the end of 1998.

1 I

- - . .J

Attachment 13 NSD E MSI.97108 i

TABLE F.2 Farley Unit 2 Surveillance Capsule Withdrawal Schedule Capsule Removal Fluence Capsule Location Lead Factor EFPY* (n/cm')

(Degree)

U*' 343 3.32 1.10 5.79 x 10

W*' i10 2.86 3.97 1.54 x 'l0

l X*' 287 3.40 6.41 2.64 x 10" V'" 107 3.09 16.7 5.57 x 10"

. Z 340 2.67 Standby ...

Y 290 2.67 Standby ..-

NOTES:

(a) Effective full power years (EFPY) from plant stanup, tb) Plant specine evaluation (c) Fluence is approximately equal to the projected peak 54 EFPY vessel surface Quence.

(d) The standby capsules will surpass the projected peak $4 EFPY vessel surface Quence at 19.6 EFPY, Hence, it recommended that these capsules be removed and stored Farley Unit 2 reaches 19.6 EFPY of operation.

O l

I