ML17145A286

From kanterella
Revision as of 03:50, 30 October 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Licensing Document Transmittal - Fermi 2 Technical Requirements Manual, Vol. 1, Rev. 111
ML17145A286
Person / Time
Site: Fermi DTE Energy icon.png
Issue date: 05/03/2017
From:
DTE Electric Company, Detroit Edison
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML17145A286 (31)


Text

DETROIT EDISON - FERMI 2 AUTOMATED RECORD MANAGEMENT DISTRIBUTION CONTROL LIST 05/03/17 To: 00935 US NRC PAGE 1 DOCUMENT CNTRL DESK WASHINGTON, DC 20555 Media: 8 1/2 x 11 Number Cnt Issue DTC Doc. Serial Number Page Rev Copies Lvl Date Sec Status

====================================================================

TMTRM TRM VOL I 111 1 IR 05/03/17 AFC Please destroy or mark all revised,*superseded, or cancelled documents as such. CONTROLLED stamps must be voided by lining through and initialing.

====================================================================

Detroit Edison EF2, C/0 Info Mgmt 140 NOC, 6400 North Dixie Highway, Newport MI 48166. (734) 586-.4338 OR (734) 586-4061 for questions or concerns.

Ref: ul8400

LICENSING DOCUMENT TRANSMITTAL FERMI 2 TECHNICAL REQUIREMENTS MANUAL- VOL I

  • Revision 111 dated 05/03/2017 Immediately, upon receipt of the item(s) below, please insert and/or remove the pages indicated.

Destroy the removed pages. Be sure that Revision 110 has been inserted prior to inserting these pages.

SECTION REMOVE and DESTROY INSERT In Front of TRM Manual Title Page Rev 110 11/20/2015 Title Page Rev i 11 05/03/2017 Immediately following List of Effective Pages List of Effective Pages Title Page LEP-1 through LEP-4 Rev 110 11/20/15 LEP-1 through LEP-4 Rev 111 05/03/2017 Core Operating Limits Cycle 18, Revision 1 Cycle 19, Revision 0 Report 24 pages 24 pages END

  • Technical

_Requirements Manual

  • Volume I DTE Electric I
  • ARMS-INFORMATION DTC: TMTRM ---'-------1----~---1--------1 File: 1754 DSN: TRM VOL I Rev: 111 Date 05/03/2017 _ _ _ _ _ _ _, _ _ _ _ _ . . . _ _3 Recipient --S-

-<--..::=-=---------'

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES

ii iii iv Revision Revisidm 106 Revision 107 Revision 105 Revision'106 TRM TRM TRM TRM 3.3-31 3.3-32 3.3-33 3.3-34 Revision Revision Revision Revision Revision 31 31 31 31 TRM v Revision 107 TRM 3.3-34a Revision 106 TRM vi Revision 31 TRM 3.3-35 Revision 60 TRM 1.0-a Revision 31 TRM 3. 3-36 Revision 104 TRM 1.0-1 Revision 31 TRM 3.3-37 Revision 72 TRM 2.0-1 Revision 31 TRM 3.3-38 Revision 31 TRM 3.0-a Revision 31 TRM 3.3-39 Revision 31 TRM 3.0-1 Revision 63 TRM 3.3-40 Revision 56 TRM 3.0-2 Revision 72 TRM 3.3-41 Revision 56 TRM 3.0-3 Revision 54 TRM 3.3-42 Revision 45 TRM 3.0-4 Revision 72 TRM 3.3-43 Revision 62 TRM 3.1-a Revision 31 TRM 3.3-44 Revision 72 TRM 3.1-1 Revision 31 TRM 3.3-45 Revision 31 TRM 3.2-1 Revision 31 TRM 3.3-46 Revision 31 TRM 3.3-a Revision 31 TRM 3.3-47 Revision 31 TRM 3.3-b Revision 31 TRM 3.3-48 Revision 31 TRM 3.3-c Revision 106 TRM 3.3-49 Revision 31 TRM 3.3-d Revision 31 TRM 3.4-a Revision 31 TRM 3.3-1 Revision 106 TRM 3.4-1 Revision 36 TRM 3.3-2 Revision 106 TRM 3.4-1a Revision 71

  • TRM 3.3-3 Revision 31 TRM 3.4-1b Revision 71 TRM 3.3-4 Revision 31 TRM 3.4-2 Revision 31 TRM 3.3-5 Revision 31 TRM 3.4-3 Revision 31 TRM 3.3-6 Revision 31 TRM 3.4-4 Revision 31 TRM 3.3-7 Revision 31 TRM 3.4-5 Revision 31 TRM 3.3-8 Revision 106 TRM 3.4-6 Revision 31 TRM 3.3-9 Revision 31 TRM 3.4-7 Revision 31 TRM 3.3-10 Revision 106 TRM 3.4-8 Revision 31 TRM 3.3-11 Revision 31 TRM 3.4-9 Revision 31 TRM 3.3-12 Revision 67 TRM 3.4-10 Revision 31 TRM 3.3-13 Revision 74 TRM 3.5-1 Revision 31 TRM 3.3-13a Revision 67 TRM 3.6-a Revision 70 TRM 3.3-14 Revision 67 TRM 3.6-1 Revision 60 TRM 3.3-15 Revision 31 TRM 3.6-2 Revision 67 TRM 3.3-16 Revision 31 TRM 3.6-3 Revision 31 TRM 3.3-17 Revision 31 TRM 3.6-4 Revision 109 TRM 3.3-18 Revision 100 TRM 3.6-5 Revision 87 TRM 3.3-19 Revision 31 TRM 3.6-6 '- Revision 33 TRM 3.3-20 1 Revision 31 TRM 3.6-7 Revision 31 TRM 3.3-21 Revision 59 TRM 3.6-8 Revision 31.

TRM 3.3-22 Revision 31 TRM 3.6-9 Revision 85 TRM 3.3-23 Revision 31 TRM 3.6-10 Revision 31 TRM 3.3-24 Revision 31 TRM 3.6-11 Revision 31 TRM 3.3-25 Revision 31 TRM 3.6-12 Revision 31 TRM 3.3-26 Revision 31 TRM 3.6-13 Revision 71

  • TRM 3.3-27 Revision 31 TRM 3.6-14 Revision 31 TRM 3.3-28 Revision 76 TRM 3.6-15 Revision 31 TRM 3.3-29 Revision 76 TRM 3.6-16 Revision 31 TRM 3.3-30 Revision 31 TRM 3.6-17 Revision 31 TRM Vol. I LEP-1 REV 111 05/03/2017

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES

  • TRM TRM TRM TRM 3 .. 6-18 3.6-19
3. 6-20 3.6-21 Revision Revision Revision Revision Revision 31 31 31 31 TRM TRM TRM TRM 3.8-12
3. 8-13 3.8-14 3.8-15 Revision Revision Revision Revision Revision 31 61 46 31 TRM 3.6-22 Revision 31 TRM 3.8-16 Revision 31 TRM 3.6-23 Revision 31 TRM 3.8-17 Revision 43

' TRM 3.8-18 Revision 33 TRM 3.6-24 Revision 58 TRM 3. 6-25 Revision 31 TRM 3. 9-a Revision 31 TRM 3.6-26 Revision 31 TRM 3.9-1 Revision 31 TRM 3.6-27 Revision 31 TRM 3.9-2 Revision 65 TRM 3.6-28 Revision 31 TRM 3.9-3 Revision 80 TRM 3.6-29 Revision 31 TRM 3.9-4 Revision 88 TRM 3.6-30 Revision 31 TRM 3.9-5 Revision 31 TRM 3.6-31 Revision 31 TRM 3 .10-1 Revision 31 TRM 3.6-32 Revision 70 TRM 3.11-a Revision 31 TRM 3. 6-33 Revision 31 TRM 3.11-1 Revision 31 TRM 3.6-34 Revision 31 TRM 3.12-a Revision 31 TRM 3.6-35 Revision 31 TRM 3 .12-1 Revision 75 TRM 3.7-a Revision 107 TRM 3.12-2 Revision 31 TRM 3.7-1 Revision 60 TRM 3.12-3 *Revision 31 TRM 3.7-2 Revision 107 TRM 3.12-4 Revision 102 TRM 3. 7-3 Revision 70 TRM 3.12-5 Revision 108 TRM 3.7-4 Revision 73 TRM 3.12-6 Revision 53

  • TRM 3.7-5 Revision 31 TRM 3.12-7 Revision 31 TRM 3.7-6 Revision 31 TRM 3.12-8 Revision 57 TRM 3.7-7 Revision 31 TRM 3.12-9 Revision 40 TRM 3.7-8 Revision 31 TRM 3.12-10 Revision 31 TRM 3.7-9 Revision 31 TRM 3.12-11 Revision 49 TRM 3.7-10 Revision 44 TRM 3.12-12 Revision 31 TRM 3. 7-11 Revision 31 TRM 3.12-13 Revision 75 TRM 3.7-12 Revision 72 TRM 3.12-14 Revision 31 TRM 3.7-13 Revision 31 TRM 3.12-15 Revision 31 TRM 3.7-14 Revision 31 TRM 3.12-16 Revision 75 TRM 3.7-15 Revision 98 TRM 3.12-17 Revision 31 TRM 3.7-16 Revision 31 TRM 3.12-18 Revision 75 TRM 3.7-17 Revision 31 TRM 3.12-19 Revision 31 TRM 3.7-18 Revision 77 TRM 3.12-20 Revision 75 TRM 3.7-19 Revision 31 TRM 3.12-21 Revision 31 TRM 3.7-20 Revision 79 TRM 3.12-22 Revision 31 TRM 3.8-a Revision 31 TRM 3.12-23 Revision 31 TRM 3;8-1 Revision 31 TRM 3.12-24 Revision 31 TRM 3.8-2 Revision 31 TRM 3.12-25 Revision 31 TRM 3.8-3 Revision 96 TRM 3.12-26 Revision 75 TRM 3. 8-4 Revision 96 TRM 3.12-27 Revision 31 TRM 3.8-5 Revision 31 TRM 3.12-28 Revision 31 TRM 3.8-6 Revision 50 TRM 3.12-29 Revision 78 TRM 3.8-7 Revision 50 TRM 3.12-30 Revision 31 TRM 3.8-8 Revision 50 TRM 4.0-1 Revision 31
  • TRM 3.8-9 Revision 50 TRM 5.0-a Revision 105 TRM 3.8-10 Revision 50 TRM 5.0-1 Revision 105 TRM 3. 8-11 Revision 50 TRM 5.0-2 Revision 105 TRM Vol. I LEP-2 REV 111 05/03/2017

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES

  • Page TRM TRM TRM TRM Bl.0-1 B2. 0-1 B3.0-1 B3.0-2 Revision Revision Revir:;ion Revision Revision 31 31 63 63 Page TRM TRM TRM TRM B3.6.2-1 B3.6.3-1 B3.6.4-1 B3.6.5-1 Revision Revision Revision Revision Revision 67 87 31 31 TRM B3.0-2a Revision 72 TRM B3.6.6-l Revision 70 TRM B3.0-2b Revision 72 TRM B3.6.7-1 Revision 31 TRM B3.0-2c Revision 72 TRM B3.6.B-1 Revision 31 T_RM B3. 0-3 Revision 31 TRM B3.7.1-1 Revision 31 TRM B3. 0-4 Revision 31 TRM B3.7.2-1 Revision 107 TRM B3.0-5 Revision 54 TRM B3.7.3-l Revision 73 TRM B3.0-6 Revision 72 TRM B3.7.4-1 Revision 31 TRM B3. 0-7 Revision 72 TRM B3.7.4-2 Revision 31 TRM B3. l-1 Revision 31 TRM B3.7.5-l Revision 31 TRM B3.2-1 Revision 31 TRM B3.7.6-1 Revision 31 TRM B3.3.l-1 Revision 31 TRM B3.7.7-1 Revision 99 TRM B3.3.1-2 Revision 31 TRM B3. 7. 8-1 Revision 31 TRM B3.3.2-l Revision 31 TRM B3.7.9-1 Revision 79 TRM B3.3.2-2 Revision 31 TRM B3.B.1-l Revision 31 TRM B3.3.3-1 Revision 67 TRM B3.B.2-1 Revision 31 TRM B3.3.4-l Revision 31 TRM B3.B.3-1 Revision 96 TRM B3.3.4-2 Revision 84 TRM B3.8.4-l Revision 31 TRM B3.3.5-l Revision 31 TRM B3.B.5-1 Revision 31 TRM B3.3.5-2 Revision 31 TRM B3.B.6-1 Revision 43
  • TRM B3.3.6-l Revision 31 TRM B3.9.1-l Revision 31 TRM B3.3.6-2 Revision 31 TRM B3. 9. 2-1. Revision 65 TRM B3.3.6-3 Revision 31 TRM B3.9.3-1 Revision 31 TRM B3. 3. 6-4 Revision 31 TRM B3.9.4-1 Revision 31 TRM B3.3.6-5 Revision 76 TRM B3.10-1 Revision 31 TRM B3.3.6-6 Revision 76 TRM B3.11.1-1 Revision 31 TRM B3.3.7-1 Revision 31 TRM B3.12.1-1 Revision 31 TRM B3.3.7-2 Revision 31 TRM B3.12.2-l Revision 44 TRM B3.3.7-3 Revision 106 TRM B3.12.3-l Revision 31 TRM B3.3.8-1 Revision 31 TRM B3.12.4-l Revision 31 TRM B3.3.9-1 Revision 31 TRM B3.12.5-1 Revision 31 TRM B3.3.10-1 Revision 56 TRM B3.12.6-1 Revision 31 TRM B3.3.11-1 Revision 45 TRM B3.12.7-1 Revision 31 TRM B3.3.12-1 Revision 62 TRM B3.12.8-l Revision 31 TRM B3.3.13-l Revision 31 TRM B3.3.14-l Revision 31 TRM B3.4.1-1 Revision 31 TRM B3.4.1-2 Revision 71 TRM B3.4.1-3 Revision 71 TRM B3.4.1-4 Revision 71 TRM B3.4.1-5 Revision 71 TRM B3.4.2-1 Revision 31 TRM B3.4.3-l Revision 31 TRM B3.4.4-l Revision 31 TRM B3.4.5-1 Revision 31
  • TRM B3.4.6-l Revision 31 TRM B3.4.7-l Revision 31 TRM B3.5-1 Revision 31 TRM B3.6.1-1 Revision 31 TRM Vol. I LEP-3 REV 111 05/03/2017

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES

  • CORE OPERATING LIMITS REPORT COLR 19, Revision 0 Page Revision Notation Page 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0
  • 18 19 20 21 22 23 0

0 0

0 0

0 24 0

  • TRM Vol.. I LEP-4 REV 111 OS/03/2017
  • COLR - 19 Revision 0 Page 1 of24 FERMI2 CORE OPERATING LIMITS REPORT

.CYCLE 19

' ..

. REVISION *o

  • 1h~/:7

~

Prepared by:

Paul R. Kiel ,

  • Principal Technical Expert, Reactor Engineering Reviewed by:

. Approved by: ;i.//11/i2 Michael A. Lake Date Supervisor, Reactor Engineering April2017

  • COLR- 19 Revision 0 Page2 of24
  • TABLE OF CONTENTS 1.0 IN"TRODUCTION AND

SUMMARY

.....................................................................................4 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE ............................................. 5 2.1 Definition .............................................*........................... :........................................ 5 2.2 Determination of MAPLHQR Limit ....................................................................... .5 2.2.l Calculation ofMAPFAC(P) ........................................................................ ?

2.2.2 Calculation ofMAPFAC(F) ........................................................................ 8 3.0 MIN"IMUM CRITICALPOWERRATI0 ................................................................................ 9

  • 3 .1 Definition ................................................................................................................. 9 3 .2 Determination of Operating Limit MCPR ............................................................... 9 3.3 Calculation ofMCPR(P) ........................................................................................ 11 3.3.1 Calculation of KP ....................................................................................... 11 3.3.2 Calculation of 't .......................................................................................... 13 3.4 Calculation ofMCPR(F) ......................................................................................... 14 4.0 LIN"EARHEATGENERATIONRATE ................................................................................ 15 4.1 Definition ............................................................................................................... 15
  • 4.2 Determination ofLHGR Limit ............................................................................. .15 4.2.l Calculation ofLHGRFAC(P) .................................................................... 17 4.2.2 Calculation of LHGRFAC(F) .................................................................... 18 5.0 CONTROL ROD BLOCK IN"STRUMENTATION .............................................................. 19 5 .1 Definition ...................................*............................................................................ 19 6.0 BACKUP STABILITY PROTECTION REGIONS ....... ."...................................................... 20 6.1 Definition ...............................................................................................................20

7.0 REFERENCES

....................................................................................................................... 23

  • COLR- 19 Revision 0 Page 3 of24
  • TABLE 1 LIST OF TABLES FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS ............................. 6 TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS ............... :................... 8 TABLE 3 OLMCPR10011os AS A FUNCTION OF EXPOSURE AND 't ................................. .10 TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS ........................................ .14 TABLE 5 STANDARD LHGRLIMITS FOR VARIOUS FUEL TYPES ............................... 16 TABLE 6 FLOW-DEPENDENT LHGR LIMIT COEFFICIENTS ........................... ~ .............. 18 TABLE? CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FILTER .................................................................................................................... 19
  • LIST OF FIGURES

. FIGURE 1 BSP REGIONS FOR NOMINAL FEEDWATER TEMPERATURE ............. 21 FIGURE 2 BSP REGIONS FOR REDUCED FEEDWATER TEMPERATURE ............. 22

  • COLR - 19 Revision 0 Page4 of24

1.0 INTRODUCTION

AND

SUMMARY

This report provides the cycle specific plant operating limits, which are listed below, for Fermi 2, Cycle 19, as required by Technical Specification 5.6.5. The analytical methods used to determine these core operating limits are those previously reviewed and approved by the Nuclear Regulatory Commission in GESTAR Il (Reference 7).

The cycle specific limits contained within this report are valid for the full range of the licensed operating domain.

-

OPERATING LIMIT TECHNICAL SPECIFICATION APLHGR 3.2.1

  • MCPR LHGR RBM 3.2.2 3.2.3 3.3.2.l BSPREGIONS 3.3.1.1 APLHGR = AVERAGE PLANAR LINEAR HEAT GENERATION RATE MCPR MINIMUM CRITICAL POWER RATIO LHGR = LINEARHEATGENERATIONRATE RBM ROD BLOCK MONITOR BSP = BACKUP STABILITY PROTECTION
  • COLR - 19 Revision 0 Page 5 of24
  • 2.1 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE Definition TECH SPEC IDENT OPERATING LIMIT 3.2.1 APLHGR The AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) shall be applicable to a specific* planar height and is equal to the sum of the LINEAR HEAT GENERATION RATEs (LHGRs) for all the fuel rods in the*specified bundle at the specified height divided by the number of fuel rods in the fuel bundle at the height.

2.2 Determination of MAPLHGR Limit The maximum APLHGR (MAPLHGR) limit is a function of reactor power, core flow, fuel type, and average planar exposure. The limit is developed, using NRC approved methodology

  • described in References 7 and 8, to ensure gross cladding failure will not occur following a loss of coolant accident (LOCA). The MAPLHGR limit ensures that the peak clad temperature during a LOCA will not exceed the limits as specified in 10CFR50.46(b)(l) and that the fuel design analysis criteria defined in References 7 and 8 will be met.

The MAPLHGR limit during dual loop operation is calculated by the following equation:

MAPLHGRuu/T= MIN (MAPLHGR (P), MAPLHGR (F))

where:

MAPLHGR(P)=MAPFAC(P)xMAPLHG&ro MAPLHGR (F) =MAPFAC (F) xMAPLHGRsro Within four hours after entering single loop operation, the MAPLHGR limit is calculated by the following equation: ,.

MAPLHGRuM/T=MIN (MAPLHGR (P), MAPLHGR (F))

where:

MAPLHGR (P) =MAPFAC (P) xMAPLHGRsro MAPLHGR (F) =MAPFAC (F) xMAPLHGRsro MAPFAC (P) andMAPFAC (F) are limited to 0.80

  • The Single Loop multiplier limit is 0.80 (Reference 2) based on assuring a Loss of Coolant Accident (LOCA) while in single loop will be bounded by the two loop LOCA (Reference 12).

COLR- 19 Revision 0 Page 6 of24

  • MAPLHGRsw, the standard MAPLHGR limit, is defined at a power of 3486 MWth and flow of 105 Mlbs/hr for each fuel type as a function of average planar exposure and is presented in Table
1. (Reference 2) When hand calculations are required, MAPLHGRsw shall be deteni:iined by interpolation from Table I. MAPPAC(P), the core power-dependent MAPLHGR limit adjustment factor, shall be calculated by using Section 2.2.1. MAPPAC(P), the core flow-dependent MAPLHGR limit adjustment factor, shall be calculated by using Section 2.2.2.

TABLE 1 FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS GE14 Exposme GE14 MAPLHGR GWD/ST kW/ft 0.0 -12.82 19.13 12.82 57.61 8.00 63.50 5.00

  • 2=

3=

4=

5=

Fuel Types GE14-PlOCNAB381-4G6.0/11G5.0-100T-150-T6-4372 GE14-PlOCNAB381-4G6.0/9G5.0-100T-150-T6-4371 GE14-PlOCNAB381-15G5.0-lOOT-150-T6-4373 GE14-PlOCNAB381-6G6.0/9G5.0-lOOT-150-T6-4374 11 = GE14-PlOCNAB375-13G5.0-100T-150-T6-3339 12 = GE14-PlOCNAB376-15G5.0-100T-150-T6-3340 13 = GE14-PlOCNAB375-14G5.0-lOOT-150-T6-3338 14 = GE14-P10CNAB376-4G6.0/9G5.0/2G2.0-100T-150-T6-4061 15 = GE14-PlOCNAB373-7G5.0/6G4.0-lOOT-150-T6-4064 16 = GE14-PlOCNAB376-15GZ-lOOT-150-T6-4063 17 = GE14-PlOCNAB379-14GZ-lOOT-150-T6-4259 18 = GE14-Pl OCNAB381-4G6.0/l 1G5.0-1OOT-l50-T6-4260 19 = GE14-P10CNAB381-4G6.0/12G5.0-100T-150-T6-4261 20 = GE14-PlOCNAB379-15GZ-lOOT-150-T6-4262 21 = GE14-PlOCNAB383-8G6.0/5G5.0-100T-150-T6-4478 22 = GE14-PlOCNAB383-8G6.0/7G5.0-lOOT-150-T6-4479 23 = GE14-PlOCNAB383-2G6.0/11G5.0-lOOT-150-T6-4480

  • 24 = GE14-PlOCNAB383-lOG6.0/5G5.0-lOOT-150-T6-4481
  • COLR - 19 Revision 0 Page? of24
  • 2.2.l Calculation ofMAPFAC(P)

The core power-dependent MAPLHGR limit adjustment factor, MAPFAC(P) (Reference 2, 3, 11

& 15), shall be calculated by one of the following equations:

ForO ~P<25:

No thermal limits monitoring is required.

For25~P<29.5:

With turbine bypass OPERABLE,.

For core flow~ 50 Mlbs/hr, MAPFAC (P) === 0.604 + 0.0038 (P-29.5)

For core flow> 50 Mlbs/hr, MAPFAC (P) === 0.584 + 0.0038 (P-29.5)

  • With turbine bypass INOPERABLE, For core flow~ 50 Mlbs/hr, MAPFAC (P) === 0.488 + 0.0051 (P-29.5)

For core flow > 50 Mlbs/hr, MAPFAC (P) === 0.436 + 0.0051 (P-29.5)

For 29.5~p~100:

MAPFAC (P) === 1.0 + 0.005233 (P-100) where: P = Core power (fraction ofrated power times 100).

Note: This range applies with pressure regruator in service and, for power >85%, it also applies with the pressure regulator out of service

  • COLR- 19 Revision 0 Page 8 of24
  • MAPFAC(P) for Pressure Regulator Out of Service Limits With one Turbine Pressure Regulator Out of Ser\rice and Reactor Power Greater Than or Equal to 29 .5% and Less Than or Equal to 85% and both Turbine Bypass and Moisture Separator Reheater Operable:

For 29.5 :::; P < 45 MAPFAC (P) = 0.680 + 0.00627 (P- 45)

For 45 :::; P < 60 MAPFAC (P) = 0.758 + 0.0052 (P- 60)

For 60 :::; P :::; 85 :

MAPFAC (P) = 0.831 + 0.00292 (P - 85) where: P =Core power (fraction of rated power times 100).

  • 2.2.2 Calculation of MAPFAC(F)

The core flow-dependent MAPLHGR limit adjustment factor, MAPFAC(F) (Reference 2 & 3),

shall be calculated by the following equation:

WT MAPFAC(F)=MIN(C,Apx-+ BF) 100 where:

WT = Core flow (Mlbs/hr).

AF = Given in Table 2.

BF = Given in Table 2.

. '- C = 1.0 in Dual Loop and 0.80 in Single Loop.

TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS Maximum Core Flow*

"(Mlbs/hr) 110 0.6787 0.4358

  • As limited by the Recirculation System MG Set mechanical scoop tube stop setting .

COLR - 19 Revision 0 Page9 of24

  • 3.0 MINIMUM CRITICAL POWER RATIO TECH SPEC IDENT OPERATING LIMIT 3.2.2 MCPR

. 3.1 Definition The MINIMUM CRITICAL POWER RATIO (MCPR) shall be the smallest Critical Power Ratio (CPR) that exists in the core for each type of fuel. The CPR is that power in the assembly that is calculated by application of the appropriate correlation(s) to cause some point in the assembly to experience boiling transition, divided by the actual assembly op~rating power.

3.2 Determination of Operating Limit MCPR The required Operating Limit MCPR (OLMCPR) (Reference 2) at steady-state rated power and flow operating conditions is derived from the established fuel cladding integrity Safety Limit MCPR and an analysis of abnormal operational transients. To ensure that the Safety Limit

Three different core average exposure conditions are evaluated. The result is an Operating Limit MCPR which is a function of exposure and 'C. 'C is a measure of scram speed, and is defined in Section 3.3.2. Cycle 19 operating limits are based on the Dual Loop SLMCPR of 1.08.

The OLMCPR shall be calculated by the following equation:

OLMCPR = 'MAX(MCPR(P), MCPR(F))

MCPR(P), the core power-dependent MCPR operating limit, shall be calculated using Section 3.3.

MCPR(F), the core flow-dependent MCPR operating limit, shall be calculated using Section 3.4.

In case of Single Loop Operation, the Safety Limit MCPR (Reference 2) is increased to account for increased uncertainties in core flow measurement and TIP measurement. For Single Loop Operation, the OLMCPR is increased by 0.03 from the Two Loop Operation OLMCPR.

  • COLR- 19 Revision 0 Page 10 of24
  • In case of operation with one Turbine Pressure Regulator out of service, OLMCPR limits are bounding when reactor power is less than 29.5% or greater than 85%. When reactor power is greater than or equal to 29.5% and less than or equal to 85%, then operation with one Turbine Pressure Regulator out of service is permitted if both Turbine Bypass Valves and the Moisture Separator Reheater are operable. (Reference 2 and 11)

TABLE 3 OLMCPR10011os AS A FUNCTION OF EXPOSURE AND 't (Reference 2 and 11)

EXPOSURE CONDITION CMWD/ST) OLMCPR100110s BOTH Turbine Bypass Valves AND Moisture Separator Reheater Two Loop Single Loop OPERABLE BOC to EOR-4003 't'= 0 1.28 1.29

't' = 1 1.42 1.45 EOR-4003 to BOC 't'=O 1.32 1.35

  • ONE Turbine Pressure Regulator Out of Service AND Reactor Power between 29.5% and 85%

't'=l AND BOTH Turbine Bypass Valves and Moisture Separator Reheater Operable 1.49 1.52 BOC to BOC 't' =O 1.32 1.35

't'= 1 1.49 1.52 Moisture Separator Reheater INOPERABLE BOC to BOC 't'=O 1.34 1.37

't'= 1 1.51 1.54 Turbine Bypass Valve INOPERABLE BOC to BOC 't'=O 1.36 1.39

't'=l 1.53 1.56 BOTH Turbine Bypass Valve AND Moisture Separator Reheater INOPERABLE BOC to BOC 't'=O 1.39 1.42

't'=l 1.56 1.59 BOC = Beginning of Cycle BOC = End of Cycle EOR =End of Rated Conditions. EOR is defined as 100% power, 100% core flow, and all

EOR-4003 means 4003 MWD/ST before End of Rated Conditions .

COLR - 19 Revision 0 Page 11 of24 3.3 Calculation of MCPR(P)

MCPR(P), the core power-dependent MCPR operating limit (Reference 2, 3, 11, & 15), shall be calculated by the following equation:

MCPR(P) = KP x OLMCPR1ooms KP, the core power-dependent MCPR Operating Limit adjustment factor, shall be calculated by using Section 3.3.1. OLMCPR10011os shall be determined by interpolation on 't from Table 3 (Reference 2), and 't shall be calculated by using Section 3.3.2.

3.3.l Calculation of KP The core power-dependent MCPR 'operating limit adjustment factor, KP (Reference 2, 3, 11, &

15), shall be calculated by using one of the following equations:

Note: P =Core power (fraction ofrated power times 100) for all calculation ofKp 0

For 0 ::: P < 25 No thermal limits monitoring is required.

  • For 25::: P < 29.5 When turbine bypass is OPERABLE,

( KBrP + (0. 032 x (29 .5 - P)))

Kp=-'-~~~~-----'-~~-----'-~

. OLMCPR 1001105 For two loop operation, where: KBYP = 2.18 for core flow::: 50 lY.Ilbs/hr

= 2.46 for core flow > 50 Mlbs/hr For single loop operation, where: KBYP = 2.21 for core flow ::: 50 lY.Ilbs/hr

= 2.49 for core flow > 50 lY.Ilbs/hr When turbine bypass is INOPERABLE,

( KBYP + (0.076 x (29.5-P)))

Kp=-'-~~~~-----'-~~--'-~

. OLMCPR1001105 For two loop operation, where: KBYP = 2.65 for core flow,:::: 50 lY.Ilbs/hr

= 3.38 for core flow> 50 lY.Ilbs/hr

= 2.68 for core flow,.:::: 50 Mlbs/hr

  • For single loop operation, where: KBYP

= 3.41 for core flow> 50 Mlbs/hr

COLR- 19 Revision 0

  • Page 12 of24 For 29.5 ::; P < 45 :

KP = 1.28 + (0.0134 x (45-P))

For 45 ::; P < 60 :

KP= 1.15 + (0. 00867 x (60- P))

KP for Moisture Separator Reheater Operable and Turbine Bypass Valves Operable or Inoperable For 60 ::; P < 85 :

Kp == 1.065+(0.0034x(85 - P))

For 85 ::; P :;: 100 :

Kp = l.0+(0.004333x(JOO - P))

K:P for Moisture Separator Reheater Inoperable and Turbine Bypass Valves Operable or Inoperable

  • For 60 ::;P < 85:
  • For 85::; P :;: 100 :

Kp == l.076+(0.00296x(85 - P))

XP = l.0+(0.00507x(JOO -P))

KP for Pressure Regulator Out of Service Limits With one Turbine Pressure Regulator Out of Service, Reactor Power greater than 29.5%, and both Turbine Bypass and Moisture Separator Reheater Operable:

For 29.5 ::; P < 45 :

Kp=l.52+(0.01193x(45-P))

For 45,:::: P < 60 Kp=l.362+(0.01053x(60-P))

For 60 ::; P :;: 85 :

Kp=l.217+(0.0058x(85-P))

For 85 :;: P:;: 100 :

For Reactor Power > 85%, the Pressure Regulator Out of Service condition is not limiting (Reference 11 ). Calculate Kp using the applicable equations above based on Moisture Separator Reheater and Turbine Bypass Valve operability.

L

COLR- 19 Revision 0 Page 13 of24

  • 3.3.2 Calculation of 't The value of 't, which is a measure of the conformance of the actual control rod scram times to the assumed average control rod scram time in the reload licensing analysis (References 4 & 24),

shall be calculated by using the following equation:

where:  !'A = 1.096 seconds TB ~ 0.830 + 0.019 x 1.65 ~ seconds

!'ave= ~i=~t_ _

fM f=I n = number of surveillance tests performed to date in cycle, N; = number of active control rods measured in the ith surveillance test,

!'i = average scram time to notch 36 of all rods µieasured in the ith surveillance test, and N1 = total number of active rods measured in the initial control rod scram time test for the cycle (Technical Specification Surveillance Requirement 3.1.4.4).

The value of 't shall be calculated and used to determine the applicable OLMCPR10011os value from Table 3 within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> of the conclusion of each control rod scram time surveillance test required by Technical Specification Surveillance Requirements 3.1.4.1, 3.1.4.2, and 3.1.4.4 .

  • COLR- 19 Revision 0 Page.14 of24
  • 3.4 Calculation of MCPR(F)

MCPR(F), the core flow-dependent MCPR operating limit (Reference 2 & 3), shall be calculated by using the following equation:

  • For Two Loop Operation MCPR(F)= MAX(l.21, ( bX WT+ BF))

100 WT For Single Loop Operation MCPR(F)= MAX(l.24,( AFx-+ BF))

100 where:

WT = Core flow (Mlbs/hr).

AF = Given in Table 4.

BF = Given in Table 4.

TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS

  • Two Loop Operation Maximum Core Flow*

(Mlbs/hr) 110 -0.601 1.743 Single Loop Operation 110 -0.601 1.773

  • COLR- 19 Revision 0 Page 15 of24
  • 4.0 LINEAR HEAT GENERATION RATE TECH SPEC IDENT OPERATING LIMIT 3.2.3 LHGR 4.1 Definition The UNBAR HEAT GENERATION RATE (LHGR) shall be the heat generation rate per unit length of fuel rod. It is the integral of the heat flux over the heat transfer area associated with the
  • unit length. By maintaining the operating LHGR below the applicable LHGR limit, it is assured that all thermal-mechanical design bases and licensing limits for the fuel will be satisfied.

4.2 Determination of LHGR Limit The maximum LHGR limit is a function of reactor power, core flow, fuel and rod type, and fuel rod nodal exposure. The limit is developed, using NRC approved methodology described in References 7 and 8, to ensure the cladding will not exceed its yield stress and that fuel thermal-mechanical design criteria will not be violated during any postulated transient events. The

  • LHGR limit ensures the fuel mechanical design requirements as defined in References 1 & 21 will be met.

The LHGR limit during dual loop operation is calculated by the following equation:

LHGRwar = MlN (LHGR (P), LHGR (F))

where:

LHGR (P) = LHGRFAC (P) x LHGR.srn LHGR (F) = LHGRFAC (F) x LHGRsm Within four hours after entering single loop operation, the LHGR limit is calculated by the following equation:

LHGRw11T = MlN (LHGR (P), LHGR (F))

where:

LHGR(P)=LHGRFAC(P)xLHGRsrv LHGR (F) = LHGRFAC (F) x LHGR.srv LHGRFAC (P) and LHGRFAC (F) are limited to 0.80

  • The Single Loop multiplier limit is 0.80 (Reference 2) based on assuring a LOCA in single loop will be bounded by the two loop LOCA (Reference 12).

COLR- 19 Revision 0 Page 16 of24

  • LHGRsm, the standard LHGR limit, is defined at a power of 3486 MWth and flow of 105 Mlbs/hr for each fuel and rod type as a function of fuel rod nodal exposure and found in the Table 5 reference. When hand calculations are required, LHGRsm shall be determined by interpolation from the Table 5 reference. LHGRFAC(P), the core power-dependent LHGR limit adjustment factor, shall be calculated by using Section 4.2. 1. LHGRF AC(F), the core flow-dependent LHGR limit adjustment factor, shall be calculated by using Section 4.2.2.

TABLES STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES For GE14 fuel listed below, the most limiting LHGR for Uranium Only fuel rod is found in NEDC-32868P Revision 6 Table D-2 (References 1 & 21).

For GE14 fuel listed below, the most limiting LHGR for Gadolinia Bearing fuel rods is found in NEDC-32868P Revision 6 Table D-4 (References 1 & 21). Utilize the row for 6% Rod/Section wt-%

Gd203

  • 2=

3=

4=

5=

Fuel Types GE14-PlOCNAB381-4G6.0/llG5.0-lOOT-150-T6-4372 GE14-PlOCNAB381-4G6.0/9G5.0-100T-150-T6-4371 GE14-PlOCNAB381-15G5.0-lOOT-150-T6-4373 GE14-PlOCNAB381-6G6.0/9G5.0-100T-150-T6-4374 11 = GE14-PlOCNAB375-13G5.0-lOOT-150-T6-3339 12 = GE14-PlOCNAB376-15G5.0-lOOT-150-T6-3340 13 = GE14-PlOCNAB375-14G5.0-lOOT-150-T6-3338 14 = GE14-PlOCNAB376-4G6.0/9G5.0/2G2.0-lOOT-150-T6-4061 15 = GE14-PlOCNAB373-7G5.0/6G4.0-lOOT-150-T6-4064 16 = GE14-PlOCNAB376-15GZ-lOOT-150-T6-4063 17 = GE14-PlOCNAB379-14GZ-100T-150-T6-4259 18 = GE14-PlOCNAB381-4G6.0/11G5.0-100T-150-T6-4260 19 = GE14-P10CNAB381-4G6.0/12G5.0-100T-150-T6-4261 20 = GE14-PlOCNAB379-15GZ-lOOT-150-T6-4262 21 = GE14-PlOCNAB383-8G6.0/5G5.0-100T-150-T6-4478 22 = GE14-PlOCNAB383-8G6.0/7G5.0-100T-150-T6-4479 23 = GE14-PlOCNAB383-2G6.0/l 1G5.0-100T-150-T6-4480 24 = GE14-PlOCNAB383-lOG6.0/5G5.0-lOOT-150-T6-4481

  • COLR- 19 Revision 0 Page 17 of24
  • 4.2.1 Calculation of LHGRFAC(P)

The core power-dependent LHGR limit adjustment factor, LHGRFAC(P) (Reference 2, 3, 11,&

15), shall be calculated by one of the following equations:

For 0 :::;P <25:

No thermal limits monitoring is required.

For 25:::; P < 29.5 : .

With turbine bypass OPERABLE, For core flow :::; 50 Mlbs/hr, LHGRFAC (P) = 0.604 + 0.0038 (P-29.5)

For core flow> 50 Mlbs/hr, LHGRFAC (P) = 0.584 + 0.0038'(P-29.5)

  • With turbine bypass INOPERABLE, For core flow:::; 50 Mlbs/hr, LHGRFAC (P) = 0.488 + 0.0051 (P-29.5)

For core flow > 50 Mlbs/hr, LHGRFAC (P) = 0.436 + 0.0051 (P- 29.5)

For 29.5:::; P:::; 100:

LHGRFAC (P) = 1.0 + 0.005233 (P -100) where: P =Core power (fraction ofrated power times 100).

Note: This range applies with pressure regulator in service and, for power >85%, it also applies with the pressure regulator out of service

  • COLR - 19 Revision 0 Page 18 of24
  • LRGRFAC(P) for Pressure Regulator Out of Service Limits With one Turbine Pressure Regulator Out of Service and Reactor Power Greater Than or Equal to 29.5% and Less Than or Equal to 85% and both Turbine Bypass and Moisture Separator Reheater Operable:

For 29.5::;: P < 45 :

LHGRFAC (P) = 0.680 + 0.00627 (P-45)

For 45 ::;: P < 60 LHGRFAC (P) = 0. 758 + 0.0052 (P - 60)

For 60 ::;: P ::;: 85 :

LHGRFAC (P) = 0.831 + 0.00292 (P - 85) where: P =Core power (fraction of rated power times 100).

4.2.2 Calculation of LRGRFAC(F)

  • The core flow-dependent LHGR limit adjustment factor, LHGRFAC(F) (Reference.2 & 3), shall be calculated by the following equation:

LHGRFAC(F)=MIN(C,AFx-+ BF)

WT 100 where:

WT = Core flow (Mlbs/hr).

AF = Given in Table 6.

BF = Given in Table 6.

C = 1.0 in Dual Loop and 0.80 in Single Loop.

TABLE 6 FLOW-DEPENDENT LRGR LIMIT COEFFICIENTS Maximum Core Flow*

(Mlbs/hr) 110 0.6787 0.4358

  • As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR- 19 Revision 0 Page 19 of24

  • 5.0 CONTROL ROD BLOCK INSTRUMENTATION TECH SPEC IDENT SETPOINT 3.3.2.l RBM 5.1 Definition The nominal trip setpoints and allowable values of the control rod withdrawal block instrumentation are shown in Table 7. These values are consistent with the bases of the APRM Rod Block Iecbnical ,Specification Improvement Program (ARTS) and the MCPR operating limits. (References 2, 5, & 10).

TABLE 7 . CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FILTER

  • Setpoint Low power setpoint Intermediate power setpoint High power setpoint Trip Setpoint 27.0 62.0 82.0 Allowable Value 28.4 63.4 83.4 Low trip setpoint 117.0 118.9 Intermediate trip setpoint 112.2 114.1 High trip setpoint 107.2 109.1 Downscale trip setpoint 94.0 92.3
  • For Cycle 19, the analyzed high trip setpoint of 111 % bounds the setpoints in Table 7. The OLMCPR associated with the RBM setpoint of 111 % is 1.26 for dual loop operation.

COLR- 19 Revision 0 Page20 of24

  • . 6.0 BACKUP STABILITY PROTECTION REGIONS TECH SPEC REFERENCE OPERATING LIMIT 3 .3 .1.1 Action Condition J Alternate method to detect and suppress thermal hydraulic instability oscillations TRM REFERENCE OPERATING LIMIT 3.4.1.1 Scram, Exit, and Stability Awareness Regions 6.1 Definition The Backup Stability Protection (BSP) *Regions are an integral part of the Tech Spec required alternative method to detect and suppress thermal hydraulic instability oscillations in that they identify areas of the poyver/flow map where there is an increased probability that the reactor core could experience a thermal hydraulic instability. The BSP Regions are required if the Oscillation Power Range Monitors are inoperable. Regions are identified (refer to Figures 1 and 2) that are either excluded from planned entry (Scram R~gion), or where specific actions are required to be taken to immediately leave the region (Exit Region). A region is also identified where operation is allowed provided that additional monitoring is performed to verify that the reactor core is not exhibiting signs of core thermal hydraulic instability (Stability Awareness Region). (Reference
2) .

The boundaries of these regions are established on a cycle specific basis based upon core decay ratio calculations performed using NRC approved methodology.

The Cycle 19 BSP boundaries defined in Figure 1 are. applicable when final feedwater temperature is near the optimum range as illustrated in 20.107.02, Loss of Feedwater Heating Abnormal Operating Instruction. Figure 2 is applicable to operation with Feedwater Heaters Out-Of-Service (FWHOOS) or with Final Feedwater Temperature Reduction (FFWTR) or when final feedwater temperature is below the optimum range .

  • COLR-19 RevisionO Page 21 of24
  • 1--***1 Figure 1" BSP Regions for Nominal Feedwater Temperature
        • _* *r-~: -l~----- =*~.-~:--r~ *:-*.-r*- -: r* * * ** * :*** -**-* -****** ** 1-*-** * **1-*** *-**-r .

.;.*_ 0 _... J 80 Rat!~~!r~L;:'ow: ~~~~~%~hr -~- **-*- .*.: ~. : l~

, , . MEI-'-"' Ro ine I

_~ _* ~- j *___:*.*~ . . . -- -1~. . ..".:.*_

I I  ; -

70 i

~60-t-~'<+----+---=--=-'----+---r'-t----'---'----,~---i-----1---'----+----+--l--~+-I J , -- ~;,;i  :~ - ~~t::~?'.".1,1*_~.---=~:~--1~-.*:~*-- --.-*:*I.~~~~~~~~\-*.::*.**:*:11.:*:*..-.-*111~~-:

!so

  • j* .. -*j .. !!i: **-7/....... \ ... , * *I * .Re;lon *** \ 1*

L. - - -~- - ~,_1~:-1_~~t~§f:::~r~::, ~=~1-~- ~* 10-;¥~:~l-~ ~

+ ---

t~ *:**--t_~.,~~,*:(-*_:**-_I .. :*: ..... : 1* .. i~**_::J j* . ~-**1'- *--- j. *:-.*J-_*: -**: .-.-

1 - ""'<l :.-l --.-* *- . *f- J.-. -* I *. ! - -*. :j_*_:

  • _-J_ _ -

so+-~-,__I.-~._-_-__~_;_-~----.-~L_-_-__-_~J- ....-__ -__ _-_l---~:--~;----1-i--~,---1--~;--.~i--+j----'l'---~


~' -*-**-~ .-.-:-:~. **::::r:_-- *::f-:~~~=:r:~-_:-.-*: .:::~:::~:-T::=.~-- J~~-~~1.- -~- _-_-=1=*:~ -:_:_= ~-:~**_

. -- - --*-- . - 1. -- - -- . - .. *: *.

__ / .... J 20 "---1----+--+---+---+---+--1--~-1---1---+--+---t---+-~1--~+-----'

      • -\ .. - . 1. -* *-*!*- *- -**!**--**** .... **-*+--**--*L ____ J_ --**-- -**- -- --

so 40 - so 60 Percent(%) of Rated Core Flow Nominal feedwater heating exists with all feedwater heaters in service, the moisture separator reheaters in service, and reactor water cleanup in or out of service. Nominal Feedwater temperature is determined with the Loss ofFeedwater Heating Abnormal Operating Procedure, 20.107.02. Iffeedwatertemperature is less than 15 degrees Fahrenheit below the Optimum Line of the Feedwater Inlet Temperature vs. Reactor Power gi;aph of Enclosure A of20.107.02, Loss of F eedwater Heating, then Figure 1 can be used.

  • COLR-19 Revision 0 Page22 of24
  • *-~~-L~.:-~~:-t~

Figure 2 - BSP Regionsfor Reduced Feedwater Temperature

-l---.. ~-1~: -::~ "~-::*:r*-* *:-.r::~**

I "1. * - " 1 *: * -- ..-: _:_~:.._ ::~t:~*---*l::* . :- *1 * ... * *1 so 100%CLTP = 3486MWt

- Rated CoreFlow=lOO.OMlb/hr *- ..... *-* * .... ,

!

    • *MELLlf Rod Lile..

I *

- -

i

  • *-'- .... *
  • i * * * *l1 I .
  • .... /* __ ..._ - ...

i ::

~

~{i~J~;~~;-~:-;:1:-:~1<~1;~~~f~~~~~=~--

..:---------,---*I*. L. -L-~-. . L. . . .. st+mt\'  !--* .... Ii_ ...

1+- - - - -"- ;>!,_~-_,_~ .:_-:_;~_~;. ,.-r. . .,-:-~. "_*-~_: ~ -+:r_1i7'~"'- - ~- lJ- ~- ~ _2_~-+-r_ -_- *- ~+-i -~_" ;_:4,~-~ -~-*es-:si -:~- -

I ..... *)* ... 11 . . . . .

50 ____

__

+-f "--i*r_* __ *__ -+-:__*_:_

.. . :__-_----+1_-_-_*-I-_._..__ -_  :.__  ::__:-----+r_*--1--I to ~~1~ ~=;~f~-= ~i~1-:~~:f ~~;~1~~i~~~8~~:;~t~;

I I :_../ i I I I I

~

. . *I : L,.-,,:.1,_._. -* 1 I

I i II i,.._ ..._. i I . l' I

I.

30 ~* ,~ _-:~-;. .~ - - -*_* .-. ;.*_ ~* _- -~-

._ ... ....i ___.!_-*-*--'-*

  • ~-*-l--1*_* ,.......1_

,_:___;...i"_  :-.,_ j*-. :_.:~- ~-

...... *_** __L..l_ *.!""----- . . . .:.~*~- *.:._*-*- +- *I- *_*

_._...* I -. I

.. ___t_ ____ L ___ ! ......!... ... _J _____J _______ J__ __ ----*** i. ..........J __J ____ j_ ____ _

-. ---~-~j-~-.~:~>l~- *: :.*: i.. .... r:* :.:-.:1 _:-~*::-._-t:~~---*_:~I~- :*: ~--:*_-*-_:t. ~~*:::=:l-=:.*:_-.::_*:'*-~~-:-*_-,.~. :-:.:- *_---:

  • 20 so 40 Percent (%) of Rated Core Flow 50 60 Reduced feedwater temperature is analyzed for a 50 degree Fahrenheit reduction in feedwater
  • temperature. If feedwater temperature is more than 15 degrees Fahrenheit below the Optimum Line of the Feedwater Inlet Temp_erature vs. Reactor Power graph of Enclosure A of20.107.02, Loss ofFeedwater Heating, then Figure 2 can be used .
  • COLR- 19 Revision 0 Page 23 of24

7.0 REFERENCES

Core Operating Limits Report references are cited for two purposes. Many references are used as the basis for information, numbers, and equations found in COLR. These references tend to be fuel type or cycle specific. Other references are listed as basis information for the content and structure of COLR but are not Cycle specific.

1. "Fuel Bundle Information Report for Enrico Fermi 2 Reload 18 Cycle 19," Global Nuclear Fuel, DRF 002N683 l, Revision 0, December 2016 (LHGR Limits), DTC: TRVEND, DSN:

Cycle 19 FBIR

2. "Supplemental Reload Licensing Report for Enrico Fermi 2 Reload 18 Cycle 19," Global Nuclear Fuel, DRF: 002N6830, Revision 0, December 2016 (MAPLHGR Limits, SLO Multiplier, MCPR Limits, SLMCPR, Off-Rated Limits, Backup Stability Regions, OPRM setpoints, RBM setpoint), DTC: TRVEND, DSN: Cycle 19 SRLR
3. "GE14 Fuel Cycle-Independent Analyses for Fermi Unit 2, GE-NE-0000-0025-3282-00 dated November 2004 (ARTS Limits equations, RR Pump Seizure) *
4. Letter from Greg Porter to B. L. Myers, "Scram Times for Improved Tech Specs." GP-99014, October 22, 1999 containing DRF A12-00038-3, Vol. 4 information from G. A.

Watford, GE, to Distribution,

Subject:

Scram Times versus Notch Position (TAU

  • Calculation), Edison File No. Rl-7242
5. NUMAC Power Range Neutron Monitoring System (PRNM) Surveillance Validation, Design Calculation DC-4608 Volume 1, Revision G (RBM A and B Setpoints), DTC:

TDPJNC, DSN: DC-4608 VOL I

6. Detroit Edison Fermi-2 Thermal Power Optimization Task T0201: Operating Power/Flow Map, Edison File No. Tl3-050, (P-F Map for BSP figures)
7. "General Electric Standard Application for Reactor Fuel (GESTAR II)," NEDE-24011-P-A, Revision 23 with amendments
8. "The GESTR-LOCA and SAFER Models for the Evaluation of the Loss-of-Coolant Accident - SAFER/GESTR Application Methodology," NEDE 23785-1-PA, Revision 1, October 1984
9. "Fermi-2 SAFER/GESTR-LOCA, Loss-of-Coolant Accident Analysis," NEDC-31982P, July 1991, and Errata and Addenda No. 1, April 1992
10. "Maximum Extended Operating Domain Analysis for Detroit Edison Company Enrico Fermi Energy Center Unit 2," GE Nuclear Energy, NEDC-3 l 843P, July 1990
  • COLR- 19 Revision 0 Page24 of24
  • 11. Fermi 2 Pressure Regulator Out of Service Evaluation - Verified Final Report, Letter 1-2LHRMS-4 dated Febniary 10, 2011. DTC: TRVEND, DSN: l-2LHRMS-4 Edison File Number: Rl-8100 (PROOS Limits)
12. DTE Energy Enrico Fermi 2 SAFER/PRIME-LOCA Loss of Coolant Accident Analysis" DRF: OOON1319-RO dated March 2015
13. Letter from T. G. Colburn to W. S. Orser, Fermi Amendment No. 87 to Facility Operating License No. NPF-43 (TAC NO. M82102)," September 9, 1992
14. Letter from J. F. Stang to W. S. Orser, "Amendment No. 53 to Facility Operating License No. NPF-43: (TAC No. 69074)," July 27, 1990
15. "Fermi 2 TRACG Implementation for Reload Licensing Transient Analysis", Revision 1, 0000-0128-8831-Rl, June 2014, Edison File No. Rl-8124.
16. Methodology and Uncertainties for Safety Limit MCPR Evaluations, NEDC-32601P-A, August 1999
17. Power Distribution Uncertainties for Safety Limit MCPR Evaluation, NEDC-32694P-A, August 1999
18. R-Factor Calculation Method for GEl 1, GE12, and GE13 Fuel, NEDC-32505P-A, Revision 1, July 1999
19. "Turbine Control Valve Out-Of-Service for Enrico Fermi Unit-2," GE-Nuclear Energy, GE-NE-Jll-03920-07-01, October 2001
20. Letter from David P. Beaulieu (USNRC) to William T. O'Connor, Jr. (Detroit Edison),

"Fermi Issuance of Amendment RE: Changes to the Safety Limit Minimum Critical Power Ratio (TAC NO. MC4748)," dated November 30, 2004 (SLMCPR Limit)

21. "GE14 Compliance with Amendment 22 ofNEDE-24011-P-A (GESTAR II), NEDC-32868P, Revision 6, March 20l6 (LHGR Limits), Edison File No: Rl-7307
22. "Fermi 2 - Issuance of Amendment Re: Measurment Uncertainty Recapture Power Uprate (TAC.No. MF0650)" Letter from Thomas Wengert, NRC, to Joseph Plona, DTE Electric dated February 10, 2014.
23. Qualification of the One-Dimensional Core Transient Model for Boiling Water Reactors -

Volume 1, NED0-24154-A, August 1986, Edison File No. Rl-7389.

24. Letter from G. G. Jones to A. D. Smart, "Fermi 2 Technical Specification Changes,"

February 17, 1989 * .