ML18064A412

From kanterella
Revision as of 17:27, 21 October 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Pressure-Temp Curves & Ltop Setpoint Curve for Max Reactor Vessel Fluence of 2.192 X 10^19 Neutrons/cm^2.
ML18064A412
Person / Time
Site: Palisades Entergy icon.png
Issue date: 08/22/1994
From: Pratt G, Wong J
CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.)
To:
Shared Package
ML18064A409 List:
References
EA-A-PAL-92-095, EA-A-PAL-92-095-01, EA-A-PAL-92-95, EA-A-PAL-92-95-1, NUDOCS 9410140202
Download: ML18064A412 (101)


Text

.@*' ~

cansumn Power PALISADES NUCLEAR PLANT EA-A-PAL-92-095-01 NWEallli 115 ......USS ENGINEERING ANALYSIS COVER SHEET Total Number of Sheets IL3

,_

Title Pressure-Tem[!erature Curves and LTOP Set[!oint Curve for Maximum Reactor Vessel Fluence of

.-

2.192 x 1019 Neutrons/cm2 INITIATION AND REVIEW Calculation Status Preliminary Pending Fin~ Superseded D D D Initiated I nit Review Method Technically Reviewed Revr Rev Appd Appd CPCo I Description By Detail Qual By Appd By Date Alt Cale Review Test By Date

.l(t.P 'fG,{)

0 Original Issue

  • GFPratt

&f11i111 1/zel,, v' Jlw<fYV g---~1? [(4,t; JCWong )

.,. -*

-

SU1\fl\'1ARY The revised pressure-temperature limit curves and LTOP setpoint curve developed in this engineering analysis should bound plant operations for about 3.8 EFPY following the start of cycle 12. The allowed cooldown rate below 170 °F was increased from 20 °F/hr to 40 °F/hr without lowering the LTOP setpoint curve in this temperature range. The higher allowed cooldown rate at low temperatures should make the transition from f~rced cooling with two primary coolant pumps to decay heat removal with the shutdown cooling system easier. '

The development of the LTOP setpoint curve includes an additional 10 percent allowed pressure in accordance with the AS:ME Code Case N-514. As a result, the LTOP setpoint curve will be higher than the corresponding pressure-temperature limit curve. The LTOP pre-trip alarm can be used to alert the operators that plant operating conditions are approaching the pressure-temperature limit.

'

'

I i

--941O140202 941005 PDR ADOCK 05000255 'I I p F'DR

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Shee_t _2_ Rev # --=--0_ __

Pressure-Temperature Curves for Maximum Reactor Vessel Fluence of 2.192 x 1019 1.0 OBJECTIVE This engineering analysis is written to document the development of revised pressure-temperature-limit curves for Section 3.1 of the Palisades Technical Specifications for maximum reactor vessel surface fluence of 2.192 x 1019 neutrons/cm.2. This analysis also includes the development of a revised Low Temperature Overpressure Protection (LTOP) limit curve for the Palisades Technical Specifications.

2.0 ANALYSIS INPUT 2.1 A-PAL-92-095 Revise/Update Pressure-Temperature Limits in Technical Specifications Sections , 3.2 and 3.3 2.2 CPC letter to NRC "Technical Specification Change - Fracture Toughness Requirements,"

January 6, 1977 (DCC 2510/0198) 2.3 American Society of Mechanical Engineers Boiler and Pressure Vessel Code 1992 Section ill Rules for Construction of Nuclear Power Plant Components, Division I - Appendices, Appendix G Protection Against Nonductile Failure 2.4 Mark's Standard Handbook for Mechanical Engineers, Eighth Edition, McGraw-Hill Book Company (ISBN 0-07-004123-7) 2.5 American Society of Mechanical* Engineers Boiler and Pressure Vessel Code 1992 Section Il Materials, Part D - Properties, Table Y-1 Section I, Section ill and Section Vlll, Division 2 Yield Strength Values SY for Ferrous and Nonferrous Materials (pp 522 - 525) 2.6 American Society of Mechanical Engineers Boiler and Pressure Vessel Code 1992 Section ill Rules for Construction of Nuclear Power Plant Components, Division I - Section NB-2330 Test Requirements and Acceptance Standards 2.7 U.S. Nuclear Regulatory Commission Regulatory Guide 1.99, Radiation Embrittlement of Reactor Vessel Materials, Revision 2, May 1988 CEN-189, Evaluation of Pressurized Thermal Shock Effects Due To Small Break LOCA'S with ss of Feedwater for the Combustion Engineering NSSS, Section 6.4 Initial Reference Temperature, Combustion Engineering, December 1981 (DCC 3642/2276) 2.9 CPC letter to.NRC "Reactor_Vessel Material Surveillance," May 23, 1978 (DCC 2512/1669)

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet _3_ Rev # -

2.10 CPC letter to NRC "10CFR50.61 Pressurized Thermal Shock - Revised Projected Values of RTPTS for Beltline Materials," June 5, 1992 (FSOl/1120 Restricted) 2.11 CPC letter to NRC "10CFR50.61 Pressurized Thermal Shock - Revised Information," February 23, 1994 (DCC F660/1886) 2.12 CPC letter to NRC "10CFR50.61 Pressurized Thermal Shock - Reactor Vessel Neutron Fluence -

Additional Information," June 10, 1993 (DCC F439/2343) 2.13 Title 10 - Energy, Code of Federal Regulation, Appendix G to Part 50 - Fracture Toughness Requirements (10CFR50 Appendix G), October 27, 1988 2.14 Palisades Technical Specifications - as amended through Amendment No. 160 2.15 Practical Stress Analysis in Engineering Design, Alexander Blake, Lawrence Livermore National Laboratory, Marcel Dekker, Inc.

2.16 Standardization of Ea Values for Commonly used Metals According to the ASME Boiler and essure Vessel Code, Section ill, T.J. Means, Combustion Engineering, October 6, 1972 7 NUREG-0800, U.S. Nuclear Regulatory Commission Standard Review Plan, Section 5.3.2 Pressure-Temperature Limits, Revision 1, July 1981 2.18 EA-A-PAL-92-095-02, Determination of the Reactor Beltline to Pressurizer Pressure Tap Differential Head, August 1994 2.19 SOP 1, Primary Coolant System, Palisades Nuclear Plant System Operating Procedure, Revision 28 (Section 4.2) 2.20 EA-A-PAL-89-098, Palisades Reactor Pressure Vessel Temperature Limits Determination, Sep~ember 5, 1989 (DCC D315/1871) 2.21 Case N-514 Low Temperature Overpressure Protection Section XI, Division 1, American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Code Cases - Nuclear Components, 1992 Edition, Supplement No. 4 2.22 Drawing E-232-112-7, Pressure Vessel Forming & Welding (950Y197*M1-B-A Sheet 112),

Combustion Engineering 2.23 ANF-88-107 Revision 1, Palisades LOCA-ECCS Analysis for 2530 Mwt Operations with Increased Radial Peaking and 29.3% Steam Generator Tube Plugging (DCC C679/1912)

'

4 J,>alisades Updated FSAR, Revision 16, December 1993 2.25 FC-809 Variable Setpoint Low Temperature Overpressure Protection, Installation completed during the 1989 refueling outage (DCC C202/1499)

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet _4_ Rev # _o~--

2.26 EA-FC-809-13 Revision 1, Pressure Response Effects of VLTOP with Replacement PORVs, September 19, 1989 (DCC C131/0076) 2.27 EA-D-PAL-91-130 Pressurizer Heatup Rate Evaluation, August 8, 1991 (DCC F293/2U3) 2.28 Updated Final Safety Analysis Report, Rev 16, Table 4-4, Steam Generator Parameters 2.29 LEDemick, l\1PR Associates, letter to JLTopper,

SUBJECT:

Computed Stroke Times for Palisades Replacement Power Operated Relief Valves, September U, 1989 (DCC C202/1965) 2.30 EA-A-PAL-90-049 Rev 0, Palis_ades HPSI and LPSI Minimum Flow Curve Basis, February 1, 1991 (DCC D311/0792) and Rev 1 (DCC C761/0975) 2.31 Final Report - Thermal Hydraulic Analysis of Pressurizer PORV Relief System (GW08304/FC791), NUS Corporation EI Division, October 15, 1990 Rev 0 (DCC C584/0349) and Rev 1 (DCC 584/0224) 2.32 Specification No. 80988-ICE-30100, Rev 01, General Specification for Variable Setpoint Low Temperature Overpressure Protection System, Combustion Engineering, May 24, 19S8~Page 32 Of 36 CC C203/1670) 3 EA-A-NL-89-14-1 LTOP - Heat Addition Pressure Overshoot, September 14, 1989 (DCC D144/0913) 2.34 EA-GCP-90-04 Verification of EA-A-NL-14-1 Conclusions for the Replacement Steam Generators, July 24, 1990 (DCC D255/1893) 2.35 RI-59 Basis Document Rev 6, Calibration of PCS Overpressure Protection System 2.36 1967 ASME Steam Tables Steam Tables Program for IBM PC Computers, Revision 1, BRGardner, January 1986 2.37 Wylie, E. Benjamin and Victor L. Streeter, Fluid Transients, 1983 Edition, FEB Press, ;\no Arbor, Michigan (ISBN 0-09610144-0-7) 3.0 ASSUMPTIONS 3.1 Reactor vessel data nominal inside radius = 172.5/2 = 86.25 inches (Reference 2.22) minimum wall thickness = 8.5 inches (Reference 2.22) vessel material = SA-302-B (Reference 2.9)

..

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet _5_ Rev # O

---=----

3.2 This analysis uses the beltline material properties and vessel fluence data submitted to the NRC for lOCFRS0.61, Fracture toughness requirements for protection against pressurized thermal shock events.

3.3 Reference 2.16 is acceptable for use in this analysis with out an additional technical review. The variance of the Ea values provided in the ASME B&PV code has no impact on the pressure-temperature limits calculation for pressures less than the PCS design pressure of 2700 psia.

3.4 No more than two PCPs will be operating when the PCS temperature is less than 300 °F (Reference 2.19). When two pumps are operating, they will be either in opposite cold legs or P-50C and P-50D. This assumption will be assured by proposed changes to the technical specifications incorporating the pressure-temperature curves developed in this analysis.

3.5 The automatic signals that start HPSI pumps and that open HPSI motor operated valves will be independently deactivated when the temperature of any of the PCS cold legs is less than 300 °F. This assumption will be assured by proposed changes to the technical specifications incorporating the pressure-temperature curves developed in this analysis.

  • .6 The maximum heatup and cooldown rates are given in the following table. This assumption will assured by proposed changes to the technical specifications incorporating the pressure-temperature rves developed in this analysis.

Rate Limits Temperature Range Heatup Cooldown

S 170 °F 20 °F/Hr 40 °F/Hr

> 170 °F and < 250 °F 40 40

> 250 °F and < 350 *°F 60 60

.~ JS(f'°F --., ' "'"c ' 100' °F/Hr 100-°F/Hf' *-" '

3.7 As approved in the ASME Code Case N-514, the LTOP system shall limit the maximum pressure in the vessel to 110% of the pressure determined to satisfy ASME Appendix G (Reference 2.3).

. "*'< ~

3.8 The minimum PCS volume is 10311.7 cubic feet, which corresponW;,to an average steam generator plugging of 29.3. percent of t_he original steam generators (Reference 2.23). The current tube plugging level is less than*ten-perceiit'(Reference 2.28). -

3.9 Inadvertent safety injection signal (SIS) will start all available charging pumps and HPSI pumps, isolates letdown and occurs coincident with maximum pressurizer and PCS heatup rates.

3.10 The PCS is water-solid at the beginning of the LTOP transient.

11 No reduction in HPSI ~~addition.rates are taken as the PCS pressure increases above the tial assumed pressure of the-expected LTOP setpoint minus about 80 psi. Reference 2.26 included e same 80 psi margin.

3.12 In the PCS volume calculation, both the pressurizer and the PCS water is assumed to be near saturation to maximize volume changes due to the heatup rates.

PALISADES NUCLEAR PLANT EA-A-PAL~92095-0l ANALYSIS CONTINUATION SHEET Sheet _6_ Rev # - O- -

3.13 Flow rate delivery by two HPSI trains from the SIRW tank is used in this analysis. Flow rates from the containment sump are not representative of a LTOP event.

3.14 The pressurizer is assumed to be filled with saturated liquid which produced the longest PORV full stroke opening time. PORV full open stroke times is substantially shorter if the valve contains subcooled water. (Reference 2.29).

3.15 No PORV flow is assumed to occur until the valve is full open. Energizing the solenoid opens the pilot valve which allows the valve upper chamber to depressurize. Once a sufficient differential pressure exists, the valve main disk begins to open.

3.16 The maximum heating rate for the pressurizer is 100 F/Hr. When the pressurizer is solid, this analysis will use a heating rate of 60 °F/Hr plus the PCS heatup rate when the total is less than 100 °F/Hr. This assumption is based on a calculated maximum heating rate of 57 °F/Hr (Reference 2.27).

3.17 The steam table computer in Reference 2.36 uses the equations from the 1967 AS:ME Steam Tables and provide accurate physical properties. This program has been used extensively and the culated results checked against the values in the printed steam tables.

3.18 The reactor vessel inside surface temperature is equal to the cold leg temperature.

4.0 ANALYSIS This engineering analysis develops replacement pressure-temperature limit curves for the Palisades plant technical specifications. Also, a replacement LTOP setpoint curve is developed in this analysis.

Operating margin is subtracted from the LTOP setpoint to account for PORV stroke time and mass additions to the PCS is calculated in the LTOP section of this analysis.

The major difference8'1>etween tliis*:aiialysis and the analysis' (Reference 2~20) supporting the current technical specifications are listed below.

- .

A. No automatic start of the HPSI pumps below 300 °F.

B. Allowed cooldown rate increased from 20 °F/Hr to 40 °F/Hr below 170 °F.

C. Incorporated AS:ME Code Case N-514 for the LTOP setpoint curve.

19 D. Neutron fluence limit increased from 1.8 to 2.192 10 neutrons/cm2

  • E. Determine membrane stress-to-stress intensity factor Mm as a function of the stress ratio (um/uy).

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet _7_ Rev # -O- - -

4.1 Pressure-Temperature Curves 4.1.1 Background The plant has revised the pressure-temperature curves several times as the fluence on the reactor vessel increased. Battelle Columbus Laboratories performed the analysis for the first revision of the pressure-temperature curves in 1976 (Reference 2.2). That analysis has been used extensively in the development of this engineering analysis. All of the analysis reimements developed in succeeding analyses will be incorporated in this analysis. Since the operating window at low temperatures is very small, several other reimements in the analysis procedure are included in this analysis. One such reimement is the development of a QBasic computer program to calculate both the pressure-temperature curves and the preliminary LTOP setpoint curve. The imal LTOP setpoint curve is developed using the Microsoft EXCEL spreadsheet program.

4.1.2 Methodology ASME B&PV Code Section ID, Appendix G (Reference 2.3) presents a procedure for obtaining the allowable loadings for ferritic pressure-retaining materials in Class 1 components. The procedure is based on the principles of linear elastic fracture mechanics. This analysis uses the equations given in preceding reference to calculate the pressure-temperature limits for the Palisades plant.

The reactor vessel is subjected to both pressure induced membrane hoop stress and thermal stress due to through-wall thermal gradients. The ASME Appendix G model uses the following relationship for calculating heatup and cooldown curves for a reactor vessel:

(4-1)

Where: K1r = reference stress intensity factor, ksi*inin K 1m = membrane stress intensity factor Kn = thermat*stress. intensity factor The following relationships *are -also found in AS:ME Appendix G reference.

Fig G-2214-1 Fig G-2214-2 ere: Mm = membrane stress-to-stress intensity factor Mi = thermal stress-to-stress intensity factor um = membrane hoop stress

@

  • ~IV'S consumers POwer flflWERlllli l'llO&KBS PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA-A-PAL-92095-01 Sheet _8_ Rev # O ~--

..1Tw = temperature difference through vessel wall, °F Now equation 4-1 can be rewritten as:

(4-2)

The values for~ and Mi are obtained from Figures G-2214-1 and G-2214-2 in Reference 2.3.

Determining ~ is straight forward for wall thickness of 8.5 inches and a crack depth equal to one-fourth of the wall thickness.

Mi= 0.34 To fmd ~' we must first evaluate the ratio of "m/ "y* From Reference 2.4, the membrane stress due to pressure for thin walled cylinders (86.25/8.2 > 10) may be estimated as: *

"m = p *r t

ere: P = operating pressure, psig r = average vessel radius, inches t =. vessel thickness, inches Using values given in Section 3:

"m *= (2100*- 14.7)

  • 90.5'r8'S
  • lilOOO :: 22.35 ksi The T1n1et LCO in the Technical Specifications (Reference 2.14) limits the maximum cold leg temperature to 543.16 °F plus 5 °F uncertainty. From Reference 2.S, the yield strength of SA-302-B at S50°F is 44.1 ksi. * - .-

'1mf'1y = 22.35/44.l = O':'S-Ajj~_1\1m =' i.-8 Using this membrane stress-to;.streSs=mtensity factor for the low temperature range of the pressure-temperature limit curves would be conservative since "m decreases as PCS pressure decreases while uy increases as the vessel wall temperature decreases. A smaller value of Mm would allow a higher PCS pressure at the same temperature. This value. for ~ of 2.8 would be nonconservative for the allowed pressures ( > 2100 psi) at the higher metal temperatures. This analysis will use the procedure illustrated in the Standard Review Plan 5.3.2 (Reference 2.17) to determine~ as a function of the stress ratio ('1m1'1y).

ccurate expression relating membrane hoop stress due to pressure for thick-walled cylinders (Reference 2.4) is given below.


~-*,.

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet _9_ Rev # 0

---=-----

am = ~;:____ (1 + ro2/X2) 2 (r/-r; )

By combining Equation 4-2 with the above expression with X=r, we get K1r ~ -1Mm P ri:_ (1 + r//r) + Mt .dTmax (4-3)

(r/-ri2)

Figure G-2210-1, Reference 2.3, is a curve showing the relationship that can be conservatively expected between the critical,. or reference stress intensity factor <K1r) and the temperature which is related to the reference nil ductility temperature (RTNDT) determined in NB-2331(Reference2.6).

The curve is based on the lower bound on static, dynamic and crack arrest critical K 1 values measured as a function of temperature on specimens of SA-533 Grade B Class 1 and SA-508-1, SA-508-2 and SA-508-3 steel. No available data points for static, dynamic or arrest tests fall below the curve. The reference stress intensity factor correlation may be used for ferric steels which meet the requirements of NB-2331 and which have a specified minimum yield strength at room temperature of 0.0 ksi or less. Since the structural material of the Palisades plant (SA-302-B) meets the uirements of NB-2331 and has a specified minimum yield strength of 50 ksi (Reference 2.5), the owing AS:ME Appendix G correlation is applicable for use in this analysis.

K 1r = 26.78 + l.233exp[0.0145(T - RTNDT + 160)] (4-4)

Where: T = temperature at which K 1r is permitted, °F RTNDT = reference nil ductility temperature Since RTNDT increases with' increased neutron exposure, the shift (ARTNDT) associated with projected fluence must be determined. Paragraph V.B of lOCFRSO Appendix G requires the effects of neutron radiation to be predicted from the results of pertinent radiation effects studies. Regulatory Guide 1.99, Revision 2 (Reference-2.7) provides such results in the from.of calculative procedures that are acceptable to the NRC. The Regulatory Guide 1.99 equations and the appropriate input values for the Palisades plant are given in the following paragraphs.

Since we do not have credible surveillance data, calculation of neutron radiation embrittlement of beltline materials will be based on the procedures in Regulatory Positions 1.1and1.2 within the limitations in Regulatory Position 1.3 of Regulatory Guide 1.99. The adjusted reference temperature ART) for each material in the beltline is.given by the following expression:

ART (or RTNDT) = Initial RTNDT + ARTNDT + Margin (4-5)

Initial RTNDT is the reference temperature for the unirradiated material as def"med in Paragraph NB-

-233rof Section m *of the ASME Boiler and Pressure Vessel Code @.ef~!'e~~~*2.6). Since measured

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 10 Rev # ---=----

0 values of initial RTNDT are not available, generic mean values will be used in this analysis. This approach is allowed by Regulatory Position 1 when there are sufficient test results to establish a mean and standard deviation for each class of beltline material. The following table contains the initial RTNDT data for the beltline reactor vessel materials.

Standard Material Class Initial RTNDT Deviation Reference Axial Welds -56 °F 17 °F 2.8 & 2.10

,_

Circ. Welds -56 °F 17 °F 2.8 & 2.10 Base Metal 1 0 °F -- 2.9 & 2.10 1 Limiting plate material The change in reference temperature (ilTNDT) is the mean value of the adjustment caused by diation and is calculated as follows:

(4-6)

The chemistry factor (CF, 0 F) is a function of copper and nickel content. CF is given in Table 1 for welds and in Table 2 for base metal (plate and forgings) of Regulatory Guide 1.99. Linear interpolation is permitted. In Tables 1 and 2, "weight-percent copper" and "weight-percent nickel" are the best-estimate values for the beltline materials. The following table contains the beltline material chemistry data.

Material - '

Chemistry

-.:.. -

Class Cu-Content Ni Content Factor Reference Axial Welds 0.20% 1.02% 225 2.11 Circ Welds 0.208 1.00 228 2.10 Base Metal 0.24 0.55 165 2.10

_.:::~tron fluence at any depth in the v~sel wall, f(lW n/cm 9 2

, E> 1 MeV), is determined as (4-7)

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 11 Rev # O

~---

where fsurf is the calculated value of the neutron fluence at the inner wetted surface on the vessel at the location of the postulated defect and x ( in inches) is the depth into the vessel wall measured from the vessel inner (wetted) surface. For this analysis, the presence of the vessel clad on the vessel inside surface will be not be included in this calculation. Therefore, this analysis will not include the small attenuation of the flux by the clad. The following table gives the calculated fluence at the end-of-cycle (EOC) 9 or the beginning-of-cycle (BOC) 10 which started on April 15, 1992. Reference 2.12 is the source for the data in this table. Although future cycles are expected to achieve additional flux reduction, the cycle 9 fluence rate is used in this analysis.

Location Fluence (EOC-9) Fluence Rate/EFPY 0 degree, axial weld 1.17 0.066 30 degree, axial weld 1.19 0.063 16 degree, peak 1.61 0.097 (plate and circumferential weld)

Margin is the quantity, °F, that is added to obtain_ conservative, ..upper-bound

. .- - values of adjusted reference temperature for the calculations required by Appendix G to 10 CFR Part 50 (Reference 2.13).

Margin = 2(ol + u,/)'h Here, u1 is the standard deviation for the initial RTNDT* The values used in this analysis are given in the table above equation 4-6. The standard deviation for ARTNDT (u4 ) is 28 °F for welds and 17 °F for base metal, except u4 need not exceed 0.50 times the mean value of ARTNDT* The following table contains the margins for*adjusted.J"~f~i:~p.ce temperature ,used in this ~nalysis ..

Material Class Margin, °F Axial Welds 66 Circ. Welds 66 Base Metal 34 analysis uses the same beltline material data used in the Pressurized Thermal Shock analyses contained in References 2.9, 2.10, 2.11 and 2.12.

(J PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 12 Rev # 0

---"'----

There are three limitations placed on using the relationships in Regulatory Guide 1.99. The first limitation is that the procedures apply to those grades of SA-302,336,533 and 508 steels having minimum specified yield strengths of 50,000 psi and under and to their welds and heat-affected zones.

The plate base metal is SA-302-B (Reference 2.9) and it minimum yield strength at room temperature is 50,000 psi (Reference 2.5). The Palisades base material meets the first criteria.

The second limit.ation is that the procedures are valid for a nominal irradiation temperature of 550 °F. Irradiations below 525 °F should be considered to produce greater embrittlement. During cycle 1 and the first half of cycle 2, the reactor vessel cold leg temperature was slightly less than 525 °F. Since the Palisades full power rating was increased from 2200 MWT to 2530 MWT, the cold leg temperature has been above 525 °F during power operations. The analysis in Reference 2.10 showed that the fluence weighted average irradiation temperature is significantly greater than 525 °F and concluded that no correction was necessary.

The third limitation is that application of the procedures to fluence levels or to copper or nickel contents beyond the ranges given in Figure 1 and Tables 1 and 2 should be justisified. Since the Palisades beltline materials and fluence are within the stated ranges, the equations in ~egulatory Guide 1.99 (Reference 2. 7) can be used in this analysis. ~1' of the variables in equation 4-3 have been defined and the maximum allowed pressure for a given ctor vessel metal temperature can be determined by rearranging equation 4-3 solving for the allowed operating pressure. The temperature used in the calculation is the temperature measured in the cold legs to the reactor vessel. This analysis assumes that the reactor vessel inside surface temperature is equal to the cold leg temperature.

P ~ (K1~ - M*4T...)

  • Cr/ - ri2) 2~(1 + ro2/r2)
  • ri2 p ~ <K1r. - M*4T"}
  • r2fro2 - ri~). (4-8) 2~ *rt (r2,+ r;/') ~**-*

0

, **

Reference 2.13 (G-2000) maximum postulated defect is a sharp, surface defect normal to the direction of maximum stress. For sections thicknesses of 4 inches to 12 inches, it has a depth of one-fourth of the section thickness. Due to the safety factors recommended in Reference 2.13, the prevention of nonductile fracture is ensured for some of the most important situations even if the defects were to be about twice as large in linear dimensions as the postulated maximum defect. Since the defect can be either on the vessel inside surface or the outside surface, this analysis will include calculations for both one-quarter and thee-quarter wall thickness locations.

r heatup, the pressure stresses at the 1/4 thickness location and at the 3/4 thickness location are eluded in this analysis. At the 1/4 thickness position the thermal stresses for heatup are compressive and the pressure stresses are tensile. A competing affect is the reduction of the stress intensity factor (K1r) as the vessel metal temperature decreases. Therefore, the calculated results must be reviewed to choose the correct pressure-temperature limit for each heatup rate.

cansumers POwer

~ N'WERlll&

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 W' ll'S NllfilUSS ANALYSIS CONTINUATION SHEET Sheet 13 Rev # O


"----

At the 3/4 thickness position, the thermal stresses and pressure stresses are tensile and therefore additive. As a result, the maximum thermal stresses for the particular heating rate are superimposed on the pressure stresses in order to develop conservative heatup curve. The limiting conditions of the 1/4 t and 3/4 t locations is selected to develop conservative heatup curves.

For cooldown cases, the pressure calculations need only be performed at the 1/4 thickness location since the pressure and thermal stresses are tensile and additive. The 3/4 thickness location will always be stressed to a lesser or equal value. Also, the allowed pressure will be higher at the 3/4 thickness location due to the higher metal temperature and lower neutron fluence. Therefore, -the 3/4 thickness location should never be limiting. The above discussion is summarized in the following table.

Stress Type 1/4 Thickness 3/4 Thickness Heatup Thermal Compressive Tensile Pressure Tensile less Tensile Cooldown Thermal Tensile Compressive

,_

Pressure Tensile less Tensile The reference stress intensity factor (K1r) calculation must also account for the thermal gradient across the vessel wall. Therefore, in equation 4-4 the temperature is adjusted for the thermal gradients to the 1/4 and 3/4 thickness locations. For heatup transients, it is conservative to use the thermal gradients at the specified heatup rate since the metal temperature at the 1/4 and 3/4 thickness locations for the same inside surface temperature will be higher for slower heatup rates.

The maxim.um thermal stress_ will be lower and the K1r values will be higher for slower heatup rates.

For cooldown events, the metal temperatures will be lower at the 1/4 and 3/4 thickness locations for the same inside surface temperature for slower cooldown rates. The resulting Kir values will be lower allowing lower PCS ,p~res while the lower thermal stress will have the opposite affect. Since these are competing effects, the maximum allowed pressure for each cooldown rate from an isothermal to the maximum allowed cooldown -is calculated. The minimum pressure is determined as a function of PCS temperature and printed in the LTOP output file.

Past analyses have used the thermal gradients for the allowed cooldown rate for this calculation.

Since the allowed pressure increases with decreasing cooldown rates for temperatures below 325 °F in Reference 2.20, the calculations are conservative due to the assumed maximum thermal stress. For peratures above 325°F, previous calculations may have been slightly non-conservative, but the tup limits were more limiting. For this analysis, only the limiting cooldown curve will be shown when the faster cooldown rates become less limiting as was done in Figure 2 of the Battelle analysis (Reference 2.2).

  • @)~

consumers Power JlllWE/llllfi PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 AHUIJIMN'S ~ ANALYSIS CONTINUATION SHEET Sheet 14 Rev # 0

~--

Another restriction placed on the analysis methods of ASME Appendix G is that the reactor vessel combined stress must not exceed the yield strength (Section G-2214.4). Since the reactor vessel can be analyzed as a thin-walled cylinder in the beltline region, the maximum hoop stress due to linear temperature gradient is -calculated using the following equation from Reference 2.15. Higher thermal stresses may exist near the vessel wall surfaces where the liner temperature gradient assumption does not apply, but the approximation will be good for the 114 and 3/4 thickness locations.

The product of the modulus of elasticity (E) and the mean coefficient of thermal expansion (am) is obtained from Reference 2.16 (Group C curves). Refl'rence 2.4, Table 3 Elastic Constants of Metals on page-5-5, give a range of PoiSson's ratio -(v) from 0.283 to 0.305 for several types of steel. A nominal value of 0.3 was selected for this analysis.

Since there is little or no bending forces in the rector beltline region, the combined stress is equal to the sum of the above thermal stress and the pressure stress for thin walled cylinders. The yield strength from Reference 2.5, which decreases with increasing temperature, can be approximated by the following straight line segments.

Temp Yield

°F ksi Linear Line Sement 100 so.

Uy = 52.S - 0.02ST 200 47.S Uy = 50.3 - 0.014T 300 46.1 Uy = 49.1 -- O.OOtT 400 45.1 Uy = 47.767 - 0.006667T 700 43.1 -. i ... :-- *-**";

  • - -- C>,. -

The following equatiolf iS usetl"'to"aetermin-e the reactor vessel pressure that causes the combined stress to equal the yield strength. -*-- *

- _...,... .

-~---

uY = Ea"mAT/2(1-v) + P'r/t P' = [uy - Ea"m.AT/2(1-v)]t/r (4-9) calculated maximum allowed pressure (P) from equation 4-8 exceeds the above pressure limit, set equal to the yield strength pressure limit (equation 4-9).

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 15 Rev # O

~--

The calculated pressure will be the pressure in the reactor vessel (psig) at the beltline elevation.

Since the control room indication of primary coolant system pressure is measured in the pressurizer, the calculated pressure must be adjusted to reflect the pressure near the top of the pressurizer. The pressure adjustment includes the static elevation head between the pressurizer tap and the beltline elevation and the pressure losses due to the primary coolant system flow. The analysis in Reference 2.18 shows that the maximum pressure difference between the measured pressurizer pressure and the reactor vessel beltline is less than 54 psid when more than two primary coolant pumps are running.

When the primary coolant temperature is less that 450 °F, no more than three primary coolant pumps can be operating (Reference 2.19). At a primary system temperature of 300 °F and below, only two primary coolant pumps can be operating (Reference 2.19). The analysis in Reference 2.18 shows that when one pump is operating in each loop or P-50C and P-50D are operating, the maximum pressure difference between the measured pressurizer pressure and the reactor vessel beltline is less than 35 psid.

  • When the core is critical (other than for the purposes of low-level physics tests), the temperature of the reactor must not be lower than 40 °F above the minimum permissible temperature given by equation 4-8 nor lower than the minimum permissible temperature for the inservice system hydrostatic pressure test (Reference 2.13). The minimum permissible temperature for the inservice stem hydrostatic pressure test is calculated using the pressure stress equation for thin wall
  • ders, equation 4-2 with membrane stress intensity factor coefficient of 1.5 and zero temperature ference through the vessel wall and the reference stress intensity factor equation 4-4. For hydro tests, the heatup and cooldown rates above the normal operating pressure will generally be less than 10 °F/hr. *In determining* minimum permissible temperature for the inservice system hydrostatic pressure test, the pressurizer pressure will be adjusted for head difference to the vessel downcomer, pressure measurement uncertainty and cold leg temperature measurement uncertainty.

K1r = 26.78 + 1.233exp[-0.0145(T- RTNDT + 160 + tc)]

Where: P = 1.1

  • P + head+

0 pc P0 = nominal operating pressure pc = pressure measurement uncertainty tc = temperature measurement uncertainty According to Palisades technical specification (Reference 2.14), Section 3.1.3, except during low-power physics ~est, th!. r~~~r ~ha!!_~~.. be made criti-:al if the ~rim~ry coolant temperature is below

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 16 Rev # -O- - -

525 °F. If the calculated minimum permissible temperature for the inservice system hydrostatic pressure test is less than 525 °F, then it will not be included in the Palisades pressure-temperature curves. Also, the reactor. is not made critical unless all three pressurizer safety valves are operable with their settings maintained between 2500 psia and 2580 psia ( +/- 1 %)

  • The pressurizer safety valves prevent the PCS pressure from exceeding the safety limit pressure of 2700 psia. Therefore, as long as the minimum permissible temperature for pressurizer pressure of 2700 psia is lower than 525

°F, the 40 °F adjustment to the pressure-temperature curves is not applicable.

4.1.3 QBasic Program The QBasic computer program PTCURVE.BAS calculates data points for the pressure-temperature limit curves and it provides an output file containing intermediate data required to determine the LTOP setpoint curve. The program generat~ the pressure-temperature data for the 1/4 and 3/4 thickness wall locations, several heatup and cooldown rates, all weld locations and the peak beltline base metal fluence location. Attachment 6.1, QBasic Program PTCURVE.BAS Summary Description, contains a brief description of the calculations in the program and a program listing.

4.1.3.1 Input Data program uses two sources of input data. It reads data from internal data statements and from a r supplied input data file. Internal data statements contain the reactor vessel temperature gradient data for both heatup and cooldown events. Reference 2.2 is the source of the data for reactor vessel temperature gradients for inside surface temperature change rates of 0 °F/hr, 20 F/hr, 40 °F/hr, 60 °F/hr, 80 °F/hr and 100 °F/hr. Attachment 6.2, PTCURVE Results, contains a listing of a user input file.

The name of the user supplied inp1:1t ~ta(tle js "P-tcm:YE.!*dat'.' *. This_file must be located in the same subdirectory as the source code for PTCURVE. QBasic's LINE INPUT statement reads the first line in the data file as the case title. LINE INPUT accepts input strings that contain commas and quotation marks. The program reads the remaining input data using the INPUT # statement. As the program executes each INPUT # statement, another value or set of values is input from the disk rtle.

Each input value must either be separated by a comma or a blank space or be on a new line. The following input variables are shown on line two of the input file shown in Attachment 6.2.

Variable Description yrs Effective Full Power Years (EFPYs) from the time the fluence of the beltline materials was calculated t Reactor vessel thickness in inches Reactor vessel inside radius in inches Reactor vessel outside radius in inches (Note: wall thickness could include the clad and be larger than r 0 - ri) mt Thermal Stress Intensity Factor

consumers Power PALISADES NUCLEAR PLANT EA-A-PAL-92095-01

~ JllllWElllll&

ANALYSIS CONTINUATION SHEET

- 11'5 PllOHBS Sheet 17 Rev # -O- - -

mm Membrane Stress Intensity Factor (initial guess - the code adjusts mm as a function of ul uY) tc Temperature measurement uncertainty factor in °F pc Pressure measurement uncertainty in psi kimfact Safety factor for primary membrane stress

= 2.0 for heatup and cooldowns

= 1.5 for hydro tests For each of the four beltline materials (i=l to 4), the following five input variables are read from the input file. Each set of data will normally appear on a separate line to make interpretation of the data easier for the user.

Variable Description a(i,1) Initial Reference Temperature (unirradiated data) a(i,2) Beltline material Chemistry Factor a(i,3) Calculated fluence referred to in the above definition for the variable "yrs" a(i,4)* Estimated fluence rate during the time interval "yrs" a(i,5) Adjusted Reference Temperature margin for the beltline material 4.1.3.2 Output Files The PTCURVE program provides output data in the following files in the same directory as the source code. The program will overwrite each output file every time the code performs the calculations. Therefore, the file names must be changed or moved to a different directory to save the calculated results.

File Name Description ptcurve.out printout of the user supplied data and results of the adjusted reference temperature for each beltline material ptcurve.csv calculated results for each beltline material for both heatup events and cooldown events in comma separated variable format lweld.csv summary results for the limiting weld for heatup and cooldown in comma separated variable format

  • PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 18 Rev # O~---

ltop.csv intermediate calculated results needed for the development of the LTOP setpoint curve in comma separated variable format 4.1.3.3 Validation of Results Engineering analysis EA-A-PAL-89-098 (Reference 2.20) determined the pressure-temperature limit curves currently_ in the Palisades technical specifications. From section 4.1.2, Kir is calculated from the following equation.

K1r = 26. 78 + 1.233exp[0.0145(T - RTNDT + 160)]

Where: T = temperature at which K 1 r is permitted, °F RTNDT = reference nil ductility temperature, °F Material temperature (T) is equal to the inside surface temperature plus vessel wall thermal gradient to the location of the postulated defect. From page 9 of Reference 2.20, RTNDT or the Adjusted eference Temperature (ART) for the circumferential weld at the 1/4 thickness location is equal to

.71 °F. Substituting this value into the above equation yields:

K 1r = 26. 78 + l.233exp[0.0145(T - 240. 71 + 160)]

or K 1r = 26. 78 + 1.233exp[0.0145(T - 80. 71)]

In Reference 2.20, page 26, the 80. 71 value was conservatively rounded up to 81.0 for an effective ART of 241 °F (-241 + 160 = -81). Since the Adjusted Reference Temperature is the sum of two input variables plus one calculated value in the following equation, the margin term can be adjusted so the validation analysis uses the same equation for K1r that was used in the analysis in Reference 2.20.

ART = Initial RTNDT + 4RTNDT + Margin Margin = 241 - ARTNDT - Initial RTNDT = 241 - 230.71 - (-56)

= 66.29 °F (The actual value is 66 °F)

A similar round up though much smaller was done for the circumferential weld at the 3/4 thickness cation. Using the data from Reference 2.20, the adjus,ted margin term is 66.03 °F (16.9 + 160 -

6.87 + 56). To obtain the validation results in one computer run, the beltline material number ur (normally base metal) is used to obtain comparison data for the circumferential data at the 3/4 thickness location. Attachment 6.3, Validation Case, contains a listing of the input data file and extracts from the output files. All of the remaining input data was obtained directly from Reference 2.20. A direct comparison of the results from PTCURVE.BAS and Reference 2.20 can not be made.

  • PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 19 Rev # O ~--

The new program gives results in terms of the Pressurizer pressure in psia while the previous analysis results are in psig. Also, the pressure head term was reduced from 54 psi to 35 psi (Reference 2.18) when the PCS temperature is less than 300 °F because no more than two primary coolant pumps can be operating.

The analysis in Reference 2.20 used a constant value of 2.80 for the membrane stress-to-stress intensity factor (Mm) and this analysis calculates the value as a function of the stress ratio (<Iml<Iy).

Therefore, a statement was added to the PI'CURVE program to set~ equal to 2.80 when the Effective Full Power Years input variable (yrs) is zero. Comparisons made in the following tables between the results in the PI'CURVE output files and the results in Reference 2.20 shows that the new computer program is correctly performing the pressure-temperature limit calculations.

HEATUP - Circumferential Weld Rate, Temp, Press, Result, Ref Press,

°F/hr OF psia Adjust psig psig 1/4 t 0 50 454.0 -33.7 420.3 420.3 60 250 629.4 -33.7 595.7 595.7 20 400 2397.5 -14.7 2382.8 2382.8 3/4 t 0 50 497.7 -33.7 466.0 466.0 60 250 585.1 -33.7 551.4 551.4 20 350 2657.9 -14.7 2643.2 2643.4 COOLDOWN - Circumferential Weld Rate;. Temp, Press, Result, Ref Press, OF/hr OF psia Adjust psig psig 1/4 t 60 250 555.3 -33.7 521.6 521.6 20 400 2670.0 -14.7 2655.3 2655.4 compare the calculated results, the output from PI'CURVE.BAS must be adjusted so both results e in psig and both use the same beltline pressure head of 54 psi. The adjustment term was calculated as follows.

Adjustment = hea<fuew - headRer - 14. 7 = 35 14. 7 = -33. 7 psi

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 20 Rev # -O

=---

When Temperature ~ 300 °F ( 3 or more PCPs operating) hearluew = 54 psi and Adjustment.= -14. 7 psi (psia to psig)

During the development of the PTCURVE program, additional print statements were added to the program to veri(y that the calculations were being performed correctly. Attachment 6.3 inclu~es copies of some of the special printouts.

4.1.4 Pressure-Temperature Limits - Peak Surface Fluence of 2.192 x 1019 n/cm2 This analysis is done for a plant operations of six Effective Full Power Years following the startup for cycle ten. The cycle length for cycle ten was 357 EFPDs and the projected cycle length for cycle eleven is 420 EFPDs. Results from this case will be valid for about 3.8 EFPYs (6 - (357 + 420)/365) foil owing the startup of cycle twelve.

4.1.5 Input Data le: EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o measurement uncertainties Variable Value -=R=e=fi=er=e=n=c=e_ _ _ __

yrs 6 User input t 8.5 Minimum beltline vessel wall DWG E232-112-7 r.

l 86.25 Nominal vessel ri = 172.5/2 = 86.25" Assumption 3.1 and DWG E232-112-7

.

~:- ~ . :.:~ _*; -.~ :--:...;.:~

mt 0.34:-: . .SectiOn' 4.1.2 of this analysis mm 2.8 Section 4.1.2-of this analysis (initial value}- . *** *- *** * -

tc 0. Assumption for limit curves pc 0. Assumption for limit curves kimfact 2.0 AS:ME Appendix G (Reference 2.3)

Section 4.2.1 contains all of the input data for the beltline materials. The data is also shown in the following table. Attachment 6.2, PTCURVE Results, contains a listing of the input f"de for this case.

consumers Power PALISADES NUCLEAR PLANT EA-A-PAL-92095-01

~ fllflWElllllfi ANALYSIS CONTINUATION SHEET

- N'S l'flOlilU55 Sheet 21 Rev # --=----

0 Welds Variable Base Metal 0° Axial 30° Axial 16° Cir. 16° Initial RT -56 -56 -56 0 CF 225 225 228 165 EOC9 fsurf 1.17 E19 1.19 E19 1.61 E19 1.61 E19 fsurf Rate 0.066 El9 0.063 E19 0.097 E19 0.097 E19 Margin 66 66 66 34 4.1.6 Results Revised technical specification curves are shown if Figure 1, Palisades Pressure-Temperature Limits for Heatup and Figure 2, Palisades Pressure-Temperature Limits for Cooldown. The limiting beltline terial for both heatup and cooldown events is the circumferential weld. Attachment 6.2 contains ings of the output files created by the PTCURVE computer code for this case.

The 1/4 thickness location is limiting during reactor vessel heatup for the following temperature and heatup rates.

I Temperature I Heatup Rate I 50 0 °F/hr 150 0

--____.. 200 0 ....... . "-1-';

250 ~ 20 300 ~ 40 350  ::S 60 400 ~ 80 450 < 100 500 < 100 °F/hr 200 °F, the isothermal heatup for the 1/4 thickness location is more limiting than the 20 °F/hr eatup limit at the 3/4 thickness location. Therefore, the pressure limit at the 1/4 thickness location is used for both heatup rates.

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 22 Rev # O

~--

For the 1/4 thickness limiting locations at temperatures of 250 °F through 350 °F, the isothermal heatup rate is limiting because the thermal stress (compressive) increases the pressure limit more than the reduction in the. K1r term due to the lower metal temperatures decrease the pressure limit.

Above 300 °F, the K1r term reduction is larger than the thermal stress term.

Output file "lweld.csv" contains summary pressure-temperature results for heatup and cooldown conditions. The. file also shows the identification of the limiting weld for each data point. Results in the file shows that the circumferential weld (material #3) is the limiting beltline material. At 500 °F, the axial weld at zero degrees (material #1) is shown as being the limiting material. At this temperature, the allowed pressure is limited by the yield strength. Therefore, the same pressure limit is calculated for all of t)J.e beltline materials.

The minimum permissible temperature for the inservice system hydrostatic pressure test is calculated using the following data.

P0 = 2100 psia Reference 2.14, Section 3.1.1.f pc= 30 psi Reference 2.35 head= 54 psi Reference 2.18 tc = -5 °F Reference 2.35 RTNDT = 255 °F (Circumferential weld at 1/4 t location)

Substituting this data into the appropriate equations, the minimum temperature is calculated in the foilowing section. This calculation will be performed only for the 1/4 t location since the pressure stress is less at the 3/4 t vessel wall location.

P = 1.1(2100) + 54_.-t 30-:-'"14.7 = 2379.3 psig Um = 2379.3 * (86.25)2 * (1 + 94. 752/88.3752) = 24. 73 ksi (94. 752 - 86.252) 1.5(2.8)(24.73) = 26.78 + 1.233exp[0.0145(T - RTNDT + 160 + tc)]

103.86 - 26.78 = 1.233exp[0.0145(T,- RTNDT + 160 - 5)]

4.1354 = 0.0145(T - RTNDT + 160 -5)

T = 130 + RTNDT = 130 + 255 = 385 °F

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 23 Rev # O---"-----

The adjusted reference temperature for the limiting beltline material is 255 °F resulting in a minimum permissible temperature for the inservice system hydrostatic pressure test of 385 °F. Since the calculated result is significantly less than 525 °F, the minimum permissible temperature for the inservice system hydrostatic pressure test is not reflected in the Palisades pressure-temperature curves.

The pressure-teqiperature results in Attachment 6.4, PTCURVE Results - Operating Curves, contain both the pressure uncertainty and temperature measurement uncertainty. From the results in the LTOP data table, the pressurizer pressure can exceed 2700 psia when the temperature is above 450 °F. Since the minimum temperature that the reactor is critical is 525 °F, the 40 °F margin for critical operations is not included in the Palisades pressure-temperature curves.

Output file "ltop.csv" contains the intermediate results required to develop the LTOP setpoint curve.

This file contains the pressure-temperature results including the additional ten percent pressure increase allowed by ASME Code Case Number N-514 (Reference 2.21). Above 340 °F, the limiting cooldown rate is less than the maximum allowed cooldown rate for the reasons discussed in section 4.1.2 following equation 4-8.

Low Temperature Overpressure Protection (LTOP) Curve 4.2.1 Background Modification FC-809 (Reference 2.25) added a microprocessor to each channel of the original LTOP system. The original installed LTOP system (FC-404) required manual setting of instruments to establish limiting setpoints during heatup and cooldown to ensure that the reactor vessel stress did not exceed the allowed lOCFRSO Appendix G limits. The current LTOP system contains a microprocessor unit that continuously monitors the temperature and pressure of the PCS and calculates a pressure setpoint based on cold leg temperature. Although the variable LTOP system was installed by FC-809, the final stage of revising the LTOP curve was not implemented until the NRC approved Amendment 131 to the technical specifications.

As part of FC-809, the LTOP setpoint curve was developed in Reference 2.26. Listed below are the major differences between that analysis and this analysis.

A. Incorporate ASl\tlE Code Case N-514 for the LTOP setpoint pressure.

B. Curve fit the primary coolant water bulk modulus of elasticity as a function of temperature.

C. Lower pressurizer heatup rates.

D. Lower HPSI flow rates based on the maximum ~wo HPSI train delivery curves developed for the Emergency Operating Procedures E. Use of the Microsoft Excel spreadsheet program to calculate the setpoint pressures using input data from the Qbasic computer program PTCURVE.BAS described in Section 4.1.3 of this analysis.

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 24 Rev # ---=----

O Starting a primary coolant pump when the secondary temperature is higher than the average primary system pressure may cause an increase in the PCS pressure. Section 3 .1.1.h of the technical specifications places restrictions on starting the first primary coolant pump to protect the 10CFR50 Appendix G limits. This analysis will determine if the new LTOP setpoints are consistent with the PCP start requirements.

4.2.2 Methodology The output file containing LTOP data from the PTCURVE program is based on the increased neutron fluence, maximum allowed heatup and cooldown rates and the ASME Code Case N-514. To ensure protection of the reactor vessel, the setpoints must be lowered to account for mass additions from the charging pumps and the high pressure safety injection pumps, volume increases due to PCS heatup rate and the stroke time of the PORV. All LTOP events are bounded by assuming that the PCS is in a solid condition when the LTOP event begins.

The technical specification LTOP setpoint curve represents the pressure at which the PORV must be actuated to provide low temperature overpressure protection of the reactor vessel considering the pressure overshoot during the time it takes for the PORV to open. The amount by which the setpoint must be reduced below this value to offset potential drift and measurement errors may vary under influence of calibration temperature and instrument sensitivity. The requirement is that the OP microprocessor setpoint be reached at the same time or before the technical specification limiting pressure is reached. With this approach, surveillance tests should never find an LTOP setpoint above the technical specification.setpoint curve.

The bulk modulus of elasticity (K) of any fluid is equal to the ratio of the pressure stress to the volumetric strain. Its dimensional units in this analysis will be lbf/in2. From Reference 2.28, the bulk modulus can be calculated using the following equation.

K= Ap - - Ap (4-10)

Aulu AVIV Where: p = pressure, psi*

a = density, lbm/ft3 V = volume; ft3 .5, Bulk Modulus of Elasticity, shows that the following third order equation for the Bulk Modulus of Elasticity predictions are higher than the reference data and is therefore appropriate for use in this analysis. Water properties in Attachment 6.5 and the following sections were obtained from the 1967 ASME Steam Tables (Reference 2.36).

K = 301521 + 738.196*T -4. 78282*1'2 + 0.005271 *T3 (4-11)

Rearranging equation 4-10, the pressurization rate of the PCS can be determined for an LTOP event.

The term AV is the rate of change of the volume due to the mass additions and the coolant density a

change due to the heatup. Since the PCS volume iS assumed to be in solid condition, Ai> is the

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 25 Rev # - -

pressurization rate required to maintain the same PCS volume. This equation is applicable to the PCS volume and the pressurizer volume assuming no mass transfer through the surge line.

Ap = - K * (- AV /V) = K

  • AV/V (4-12)

AV= Ai>* V/K For mass additions from the charging system and the HPSI system, AV is equal to the mass flow rate times the conversion factor to get cubic feet per second. PCS and pressurizer swell are calculated based on the specific volume increase as the PCS temperature increases using the following equation.

The term [.AT/heatup rate] is the-elapsed time for the temperature change in hours.

(4-13)

Where: " = specific volume, ft3 /lbm T = temperature, °F dT = heatup rate, °F/Hr V = 1503.7 ft3 for the pressurizer Reference 2.24 Table 4-8 V = 10311.7 - 1503.7 = 8808 ft3 for the primary coolant system The maximum HPSI flow rate curve in Reference 2.30 for two operating pumps is used to determine the HPSI flow rates in this analysis. Assumptions used in that analysis to calculate the HPSI flow rates are listed below *..

A. SIRW tank level was assumed to be at its High Level Alarm limit (99%) or an elevation of 665.7 feet.

B. SIRW . tank water was taken at the coldest temperature allowed by the technical specifications of 40 °F.

... ... -** .. -_.

- -:--:"

~ ,.: ~--:..

C. HPSI flow curves were revised to reflect the change in temperature.

The maximum values (Reference 2.30 Attachment 3, page 3 of 4) include a 5% uncertainty due to possible discrepancies between the FLOWNET model and the actual system performance. The PCS pressure values were rounded up to the nearest 5 psi and the flow rates were rounded up to the nearest 5 gpm in Reference 2.30 to obtain the values used in this analysis. HPSI flow rates used in e EXCEL spreadsheet were determined, using linear interpretation between the data points in the owing table.

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 26 Rev # --=----

0 PCS Pressurizer 2 HPSI Flow + 5%

Pressure, PSIA GPM 15 1405 150 1325 555 1075 915 780 1060 625 1165 450 1210 320 1225 0 This analysis uses the flow rate of 140 gpm for three charging pumps. The nominal total charging flow rate from Table 9-20 in Reference 2.24 is 133 gpm.

PCS pressurization rate is calculated by equation 4-12 using the sum of the volume rate of change due to the mass additions and the maximum allowed heatup rate. This procedure adds some conservatism to the LTOP setpoint curve at temperature below about 300 °F when cooldown events are more limiting than heatup events. For the PCS, saturation specific volumes are used to obtain maximum volume change for a solid system. Saturation specific volumes based on the expected LTOP setpoint are used in the pressurizer when the PCS temperature exceeds 210 °F. When the pressurizer saturation pressure exceeds 2285 psia, PCS heatup data is used to determine the volume change rate in the pressurizer. From Reference 2.27, the maximum pressurizer heatup rate due to the heaters is 57 °F/Hr. Other heat sources are heating the PCS and the charging system could be transferring some additional heat into the pressurizer. To provide a bounding analysis, the pressurizer heatup rate is assumed to be equal to the PCS heatup rate plus 60 °F/Hr when the pressurizer pressure is less than 2285 psia and the heatup rate is less than 100 °F/hr.

Flow rate relief capacity of one PORV flow path was analyzed in Reference 2.31 for facility change FC-791, PORV Replacement Project. A detailed model of the PORV system was used in the analysis performed by EI Division of NUS. The limiting case in Reference 2.31 for PORV mass flow rate was an LTOP transient with two HPSI pumps starting at a PCS temperature of 325 °F. EI determined that the capacity of the single PORV was adequate for relieving the required flow for an inadvertent SIS at 325°F with a pressurizer pressure limit of 465 psia. That analysis shows one PORV flow path can maintain the PCS pressure below 465 psia during an inadvertent SIS starting two HPSI pumps.

As long as the allowed PCS pressure is higher than 465 psia at the lowest temperature for two HPSI pump operation, the analysis in Reference 2.31 bounds plant operations.

PORV opened instantly when the setpoint was reached, there would be no pressure overshoot.

Since the maximum full stroke open time is 2.1 seconds [l.88 sec at 330 psia (Reference 2.29) plus 0.2 sec pressure signal process time (Reference 2.32) equal 2.08 sec] and a fully opened PORV can

consumm POwer JllflWERIN& PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 N'S ""'1lilUS5 ANALYSIS CONTINUATION SHEET Sheet 27 Rev # O

~---

pass more flow than required to end the pressure ramp, the pressure overshoot (psi) is equal to the pressurization rate (psi/sec) times 2.1 seconds. The Microsoft Excel spreadsheet program is used to determine the LTOP setpoint curve using the above procedure.

The response time for the Rosemount Model 1154GP9RB transmitter in the LTOP system is 0.2 seconds. Pages from the vendor manual are included in Attachment 6. 7, Additional Response Time Data. At 300 °F, both HPSI pumps are assumed to be available for automatic start and the PCS pressure ramp rate is about 63 psi/sec and the LTOP setpoint is 683 psia (EXCEL results in .6). This analysis assumes that the PORV opening time is 1.88 seconds. The figure in .7 shows the calculated PORV opening time from Reference 2.29. From the . 7 figure, the opening time at 680 psia is less than 1.68 seconds. Therefore, using a constant PORV opening times of 1.88 seconds plus the 0.02 second round-up bounds the combined PORV opening time of 1.68 seconds and pressure transmitter response time of 0.2 seconds which equals 1.88 seconds.

For PCS temperatures between 210 and 300 °F, the minimum LTOP limit is greater than 470 psia.

The saturation temperature at 470 psia is 460 °F. According to section 7.1.3 of SOP 1, the pressurizer is maintained between 80 and 100 °F above the PCS temperature. Therefore, the ominal pressurizer subcooling existing at the PORV valve is 60 °F (460 - 300 - 100). According to erence 2.29, the PORV opening time will be much than 1.88 seconds because the valve chamber depressurize very quickly. When the PCS temperature is below 210°F, the pressurizer temperature is nearly the same as the PCS temperature. Therefore, an additional delay time of 0.2 seconds for the pressure transmitter is bounded by the assumption that the valve is filled with saturated liquid at the time the PORV must open.

4.2.3 EXCEL Spreadsheet File PLTOP3.XLS is the EXCEL spreadsheet for this analysis. In this file there are two tabs that contain results used by this analysis. The tab names and descriptions are: LTOPCALC - pressure overshoot calculations and d TSLTOP6 -LTOP setpoint curve determination. Attachment 6.6, EXCEL Results, contains a listing of the two tabs showing the equations used to obtain the LTOP setpoint curve. Printed listings of the tabs showing only the calculated results are also contained in .6.

4.2.4 Validation of Results Validation of the results was done by reviewing the equations in each cell to ensure that the proper calculation was being performed. The results were then compared with the calculated results in the current LTOP analysis (Reference 2.26). Since the calculated overshoot values are similar in both analyses, the results in this analysis were judged to be correct.

19 2.4 LTOP Setpoint - Peak Surface Fluence of 2.192 x 10 n/cm2

.2.4.1 LTOP Setpoint Curve Figure 4, LTOP Tech Spec Limit Curve, shows the new LTOP setpoint curve. The discontinuities in the curve are described as follows. -*- * -*-**

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 28 Rev # o


Temperature Reason 200 °F Membrane stress-to-stress intensity factor decreases from 2.8 to 2. 73 250 °F Cooldown rate increases from 40 °F/hr to 60 °F/hr 300 °F Two HPSI pumps are now available for automatic start 350 °F Heatup rate increased from 60 °F/hr to 100 °F/hr. The transition from cooldown events being limiting to heatup events being limiting occurs near 300 °F.

The new LTOP setpoint curve is very similar to the current limit curve. The figure in Attachment 6.6 contains both curves. Some of the current operating restrictions have been relaxed without lowering the LTOP curve while extending the curve applicability out to a reactor vessel fluence for about an additional 4 EFPYs *

. 4.2 PCP Start Starting a PCP when the PCS is solid could also cause a LTOP event. The calculated maximum PCS pressures in Reference 2.33 for a 100 °F secondary to primary temperature difference are compared with the isothermal pressure-temperature limit in the Figure 3, Isothermal Pressure-Temperature Limit with Measurement Uncertainties. Since the starting PCS pressure in the analysis in Reference 2.33 did not include pressure measurement uncertainty, the acceptance criteria must account for possible measurement uncertainties. Therefore, the pressure-temperature limit data was obtained from the computer results in Attachment 6.4. Since the new LTOP operating curve is very similar to the current curve, the starting pressure used in Reference 2.33 are acceptable and the analysis remains valid for future plant operations.

The purpose of the engineering analysis in Reference 2.34 was to verify that the conclusions in Reference 2.33 are applicable for the replacement steam generators. The previous analysis assumed 29.3% of the steam generator tubes were plugged. The results in Reference 2.34 shows that there is sufficient margin in the previous analysis to accommodate the increased heat transfer rate and that the changes between the previous steam generators and the current steam generators have no significant impact on the previous calculated results. Since the plotted data points in Figure 3 are below the isothermal pressure-temperature operating curve, starting the first PCP with the secondary temperature 100 °F higher than the primary temperature is shown to be acceptable by this analysis.

The plant must be near steady state isothermal conditions before the first primary coolant pump is started when the secondary temperature is higher than the primary temperature.

  • 4.3 PCS Vent Size Section 3.1.8.2 of the Palisades technical specifications requires a PCS vent path capable of relieving 167 gpm at a PCS pressure of 315 psia when the two PORV flow paths are inoperable. The required flow rate is calculated below using data at 220 °F in the EXCEL spreadsheet in Attachment 6.6.

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 29 Rev # - -

After calculation the total volume change rate, the flow rate is determined by converting ft3/sec to gpm.

PCS at 40 °F/Hr 0.04317 ft3/sec PZR at 60 F/Hr 0.04098

  • 60/100 = 0.02459 Chg Pmps _133 gpm 0.31194
  • 133/140 = 0.29634 Total = 0.3641 ft3/sec = 163.4 gpm When the PCS is vented, no primary coolant pumps can be running. Therefore, only the elevation head exists between the reactor beltline and the pressurizer top pressure tap. Since the elevation head is about 42 feet (18 psi). Since the pressure-temperature limits include a head term of 35 psi for temperature below 300 °F, the pressure limits in Appendix 6.2 contains 17 psi (35-18) margin. For an uncontrolled heatup of 40 F/hr when the PCS temperature is SO °F, the maximum allowed pressure is equal to 319.8 psia plus 17 psi which equals 336.8 psia. For PCS temperatures below 170 °F, the maximum allowed heatup rate is 20 °F/Hr and the maximum allowed pressure would be 427.9 psia (410.9 + 17). For PCS temperatures at or above 170 °F, the maximum allowed heatup rate is 40 °F/Hr and the pressure-temperature limit would be 419.6 psia using linear interpolation ween data points. This result is higher than the pressure limit for 40 °F/Hr heatup at 50 °F.

ce the flow rate through a vent path will be higher at a higher PCS pressure, requiring a flow rate of 167 gpm at a PCS pressure of 315 psia is a conservative requirement using the new pressure-temperature curves. Therefore, the references in the technical specifications vent path flow rates are not affected by the new pressure-temperature curves.

4.2.4.3 Single PORV Flow Rate The lowest temperature at which the HPSI pumps will auto-start is 300 °F. At 300 °F, the minimum allowed pressurizer pressure for 60 °F/hr heatup is 823 psia and for 60 °F/hr cooldown is 738 psia.

Since both values are higher than 465 psia used in Reference 2.31, one PORV train can provide LTOP protection for the reactor vessel.

5.0 CONCLUSION

S 5.1 The limiting beltline material for both heatup and cooldown events is the circumferential weld.

5.2 At 500 °F and above, the allowed pressure is limited by the material yield strength. The gross fallure criterion is more limiting than the non-ductile failure criterion.

5.3 The minimum permissible temperature for the inservice system hydrostatic pressure test is 85 °F. This temperature limit is sometii;nes referred to as the minimum criticality temperature.

ce the calculated result is significantly less than the technical specification limit of 525 °F for "ticality, the minimum permissible temperature for the inservice system hydrostatic pressure test is not reflected in the Palisades pressure-temperature curves.

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 30 Rev # --=-----

0 5.4 The calculated pressurizer pressure can exceed 2700 psia when the temperature is above 450 °F.

Since the minimum temperature that the reactor is critical is 525 °F, the 40 °F shift of the pressure-temperature limits above. the minimum temperature for criticality to provide additional margin for critical operations is not included in the Palisades pressure-temperature curves.

5.5 The new LTOP setpoint curve is very similar to the current limit curve. Some of the current operating restric.tions have been relaxed with out significantly lowering the LTOP. The new limit curves are applicable for about an additional 4 EFPYs of plant operation after the cycle 12 startup.

5. 7 Requiring a PCS vent flow rate of 167 gpm at a PCS pressure of 315 psia is a conservative requirement using the new pressure-temperature curves. Therefore, the references in the technical specifications vent path flow rates are not affected by the new pressure-temperature curves.

5.8 Since the plotted data points in Figure 3 are below the isothermal pressure-temperature operating curve, starting the first PCP with the secondary temperature 100 °F higher than the primary temperature is shown to be acceptable by this analysis.

5.9 The development of the LTOP setpoint curve includes an additional 10 percent allowed pressure

  • accordance with the AS1\.1E Code Case N-514. As a result, the LTOP setpoint curve will be higher n the corresponding pressure-temperature limit curve. The LTOP pre-trip alarm can be used to rt the operators that plant operating conditions are approaching the pressure-temperature limit.

5.10 Conservatisms included in the LTOP setpoint curve analysis are:

A. Minimum PCS volume based on 29 percent steam generator tube plugging instead of the current licensing limit of 15 percent.

B. Used a charging flow rate of 140 gpm instead of the nominal value of 133 gpm.

C. HPSI nominal flow rates were increased by 5 percent.

- ., ~;.

6.0 Attachments 6.1 QBasic Program PTCURVE.BAS Summary Description 6.2 PTCURVE Results - Limit Curves 6.3 Validation Results 6.4 PTCURVE Results - Operating Curves

- Bulk Modulus of Elasticity 6.6 EXCEL Results

6. 7 Additional Response Time Data

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 31 Rev # 0

____::;_ __

6.8 QA Review Forms Engineering Analysis Checklist - Form 3698 Tech Review Checklist - Admin Proc. 9.11, Attachment 5 NOD Document Review Sheet(s) - Form 3110 Safety Review Form - Admin Proc. 3.07, Attachment 1

  • 112\\

~~

Figure 1 Palisades Pressure-Temperature Limits for Heatup

,

.................. ......................... .

IPf 2500 - ....... .

  • r:-*******  !

'

2250 +. ..... ***********. .!. ......................

                  • -- ****r**********f*:'......... ***.. 1*******************.************************

I i *!

I )>

z 2000 -!*************************************** ......... 'j... ***i :J>-o

      • -****************************'!**:!....* .,._OF/Hr  ! r-l>

i:  ! -<*

1.*~:* .....

(I) ......

(/)

-20F/Hr  ;' (I) )>

1750 .......................... 1.. *:, .... ............. _. ....... !.. ************* ............ . C">JTl 0

! i

! _.,_40F/Hr OVl

~ I z

-t:z

!

~ 1500 Cl) J*******-*********************t ~ .,I .... ~60F/Hr

.................... i................

..... c:

zn C:r-

..

I

-BOF/Hr

!

l> JT1

-tl>

..... ;:o

=!!

': 1250 ~******* ......................... .........................,...... , ~100 F/Hr j l;

"!"'"'"'""

0 Z-o I

(I))>

j j :c:z

  • ~:I  ! i l"l'I -l i 1000 ~-* *-********** ...........

i

....................... ****************i*************

!

i i!. ...  !

        • 1*************** .,.. ~

!

i

!

..............*.........................................! ............... . I 750

. I +**"'

!

i ................. .

!

f

(/) l'TI 500  ::r ctl

> I I~

ctl rl"

-0 250 Z- I '

-*-* * -. * * ......... ***I*******

. iii'4 *i*

w

)>

I N I~

N C>

l.O 0 ---* ---------i----------+--------*---r------------.------- --,---- - -- -----*---..,  ;:o I~

-*

50 100 150 200 250 300 350 400 450 I ctl

<

~

Temperature Degrees F C>

~1 Figure 2 Palisades Pressure-Temperature Limits for Cooldown 11 1 2500

'

2250 ****i**; .. ***************** .............

!;

):lo z

2000  ;..................... -~ ...... . >-u

~OF/Hr I)>

-<r-c.n .....

I -20F/Hr

..... (/)

VI )>

.. ;i................... .

0 17501 ............** .

...,_40F/Hr

                        • *******-** nm ocn z

I -t:z

~ i

-e-ao F/Hr  ;

..... c:

zn

'

~ 1500 ~ . ......... L.. c:r-

..

.; l' -80F/Hr >rn

-t)>

ll ..... :::0 i

~

1250 ..... *********1**

! ~100F/Hr 0

z-u c.n )>

r-

c :z
  • ~ .. f l'T1 -I l'T1
ll  !  ; -t

~ 1000 ~ . . ...... }............................ . ******i***

.........................

I I 750

(/) IT1

r )>

500 CD I I~

CD c-+

"U

)>

250 r-w w I~

N 0

l.O I~

0 -;-------** -------r---** ------;-- - -*---* --** - --------**  :::0 CD 50 100 150 200 250 300 350 400 450 <

=It:

Temperature Degrees F 0

~

3500 ----*----

Figure 3. ISOTHERMAL PRESSURE-TEMPERATURE LIMIT with Measurement Uncertainties


*-- -**--------

11 1 1

3000 -- -----*-

)>

z

>-u r- )>

-<*

V> ,_..

..... Vl 2500 _..... LTOP Limit V>)>

0 nm OV>

...

~:z

!!

I/)

D.

  • ..... c:

zn C::r-

)>rn

...ai

I 2000 - -

~)>

..... ;o Cll Cll 0

!!! :z ""'O D. I

...

Cll V>)>

~:z N

  • c: ITI -I
I 1500 ---- --- ITI Cll ~

Cll f

D.

1000 -- --- - - - - - - - - -- *- *-*----

Vl IT1

~ )>

(!) I I~

(!)

c-t-500 --- --- --- ----------*****- - -*-*---* -

  • *
  • w I

"'U

)>

I~

""" N 0

l..O

o I~

0 (!)

250 300 350 400 450 <

100 150 200

II

Temperature, Dregrees F Cl

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 35. Rev # ......:O~--

Cl LD M

Cl Cl M

D

...:>

=

"'

.....

u I.&.

D u*

11:1.

en  ::s

-=

u D

Cl LD N

ca

.E I-Q.

Cl

....u

-

....I-

...

D

=

=

i.i:

Cl Cl N

Cl LD Cl Cl Cl LD Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl LD Cl LD Cl LD N N YISd 'aJRUald JIZ!JRISaJd

I-

@ consumers POwer PALISADES NUCLEAR PLANT EA-A-PAL-92095-01

.....:::= ANALYSIS CONTINUATION SHEET Sheet 36 Rev # ---=----

O Appendix 6.1 QBasic Program PTCURVE.BAS Summary Description (6 un-numbered pages attached)

@ consumers Power

.--= PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA-A-PAL-92095-01 Sheet 37 Rev # O


Pressure-Temperature Limit Curve Program - PTCURT05.BAS

1) Read Input Data (ptcurve.dat) and echo to output file (ptcurve.out).
2) Calculate Adjusted Reference Temperature (ART) for each beltline material (Subroutine ART).
3) Calculate Appendix G Heatup and Cooldown limits:

k = 1 heatup k = 2 cooldown i = 1 to 4 beltline material number m = 1 for Y4t m = 2 for 31..t vessel wall thickness temp = 50 to 500 step 50 (10 values)

Calculate allowed reactor vessel downcomer pressure in PSIG (Subroutine PTCURVCALC)

Apply pressure measurement uncertainty (pc), pressurizer to reactor vessel downcomer pressure head due to elevation and affect of PCP operation (head) and units conversion from PSIG to PSIA.

Print detailed' results (ptcurve.csv) CSV filename extension indicates that the file format is Comma Separated Values that can be read by the EXCEL program.

Determine limiting Appendix G pressure as a function of RV inside surface temperature (temp) and rate of change (q) for heatup and cooldown.

Print summary* table of results - limiting pressures and beltline material number for both heatup and cooldo\.V)l plant operations (file lweld.csv).

4) Calculate LTOP results (Subroutine LTOP) for beltline material number three (i = 3). Must confi.rm that circumferential weld at the sixteen degree location is the limiting material for both heatup and cooldown (file lweld.csv).

temp = 50 to 500 step 10 (45 data points plus four additional data points at 169.9, 249.9, 299.9 and 349.9 deg Fahrenheit at ~reak points).

k = 1 heatup and k = 2 cooldown m = 1 for Y4t m = 2 for 3/4t vessel wall thickness

consumm Power J/lflfll/EIUllG PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 m&A#"S l'fllllilU5J ANALYSIS CONTINUATION SHEET

  • Sheet 38 Rev # 0

~---

Calculate allowed reactor vessel downcomer pressure in PSIG (Subroutine PTCURVCALC)

Increase pressure limit by 10 percent (ASME Code Case N-514) and apply pressure measurement uncertainty (pc), pressurizer to reactor vessel downcomer pressure head due to elevation and affect of PCP operation (bead) and units conversion from PSIG to PSIA.

5) Print interme~ate LTOP results (ltop.csv) - need adjustment for PORV stroke time, pump mass additions and etc.
  • FILE: PTCURVE.BAS Created: 08/16/94 1 PAGE: 1 of 6 Length: 18930 bytes. Queued: 08/17/94
                                                    • Lines 1 to 110 ***************** *****

REM This program calculates the Appendix G Pressure-Temperature limits INPUT #1, yrs 'Gets Effective Full Power Years REM for the Palisaded plant. DDCrabtree developed the general program INPUT #1, t 'Gets vessel thickness, inches REM and the format of the output files used to transfer data to the EXCELL INPUT #1, ri 'Gets vessel inside radius, inches REM program. GFPratt finalized the program for engineering analysis INPUT #1, ro 'Gets vessel outside radius, inches REM EA-PAL-92-095-01. The equation numbers included in the remards for this INPUT #1, mt 'Thermal stress intens. factor REM program refer to equations in that analysis. INPUT #1, mm 'Membrane stress intens. factor INPUT #1, tc 'Temp measurement error DECLARE SUB ltop (title$, for$) INPUT #1, pc 'Pressure measurement error DECLARE SUB ptcurvecalc Ci!, M!, trmp!, K!, press!, q!) INPUT #1, kimfact 'Safety factor on primary membrane stres DECLARE SUB kircalc (q!, K!, d!, temp!, ii, kir!) ' = 2.0 for heatup/cooldown DECLARE FUNCTION log10! Cf!) ' = 1.5 for hydro test DECLARE SUB art Ci, b(), ftot()) FOR i = 1 TO 4 'Increments weld number COMMON SHARED yrs, *tc, pc, ri, ro, kimfact, mt,* mm FOR j = 1 TO 5 '!nit RT, CF, EOC9 fluence, fl~ence rate, ART margin COMMON SHARED a(), c(), depth(), delta,t(), pts()' INPUT #1, a( i, j)

NEXT j CLS NEXT i DIM deltat(6, 3, 2) REM print the input data to the output data file DIM pC10), pmin(10, 6), weldC10, 6), depth(2)

DIM a(4, 5) PRINT #2, DIM bC4, 2) PRINT #2, "Pressure Temperature Curve Analysis Program" DIM c(4, 2) PRINT #2, title$

DIM ftot(4), pts(4) PRINT #2, REM RPV TEMP GRADIENT FOR PROGRAM VARIABLE deltat() PRINT #4, PRINT #4, "Pressure Temperature Curve Analysis Program" Heatup Data Cooldown Data PRINT #4, title$

.I*

1/4t 3/4t Max 1/4t 3/4t Max PRINT #4, DATA o, 'o, o, o, o, 0 PRINT #4, "Temperature Measurement Error (Deg F):", tc DATA -6.3, -13.3, -14.2, 4.4, 9.5, 10.1 PRINT #4, "Pressure Measurement Error (PSID):", pc DATA -12.4, -26.3, -28.0, 9.0, 19.2, 20.5 PRINT #4, "Safety factor primary membrane stress:", kimfact DATA -18.2, -38.6, -41.1, 13.9, 29.8, 31.8 PRINT #4, DATA -24.3, -51.4, -54.7, 18.5, 39.6, 42.2 DATA -30.0, -63.2, -67.3, 23.6, 50.6, 54.0 PRINT #2, "Effective Full Power Years:", yrs PRINT #2, "Vessel thickness:", t, " inches" PRINT #2, "Vessel inner radius:", ri, "inches" FOR i = 1 TO 6 *Increments rate PRINT #2, "Vessel outer radius:", ro, "inches" FOR j = 1 TO 3 'Increments depth PRINT #2, "Thermal stress to stress intensification factor:", mt READ del tat( i, j, 1) 'Heatup values PRINT #2, "Membrane stress to stress intensification factor:", mm NEXT j PRINT #2, "Temperature Measurement Error (Deg F):", tc FOR j = 1 TO 3 PRINT #2, "Pressure Measurement Error (PSID): 11 , pc READ del tat( i, j I 2) 'Cooldown values PRINT #2, "Safety factor primary membrane stress:", kimfact NEXT j PRINT #2, NEXT PRINT #2, "*************Axial weld zero degree data follows **************II PRINT #2, "Initial RTndt:", a(1, 1)

PRINT #2, "Chemistry Factor:"; a(1, 2)

OPEN "ptcurve.dat" FOR INPUT AS #1 'opens input data file PRINT #2, "Accumulated Fluence:"; a(1, 3)

OPEN "ptcurve.out 11 FOR OUTPUT AS #2 'opens output data file PRINT #2, "Neutron Fluence rate per EFPY:"; a(1, 4)

OPEN "ptcurve.csv" FOR OUTPUT AS #3 'opens csv file for excel PRINT #2, "RG 1. 99 Adjusted Reference Temperature margin:"; a( 1, 5)

OPEN 11 lweld.csv11 FOR OUTPUT AS #4 'opens output - limiting weld PRINT #2, OPEN 11 ltop.csv11 FOR OUTPUT AS #5 'opens output - ltop data PRINT #2, "*************Axial weld 30 degree data follows**************"

REM OPEN 11 l toptst. csv" FOR OUTPUT AS #6 'opens output - debug data PRINT #2, "Initial RTndt:", a(2, 1)

PRINT #2, "Chemistry Factor:"; a(2, 2)

PRINT #2, "Accumulated Fluence:"; a(2, 3)

LINE INPUT #1, title$ 'Case title string input w/ commas PRINT #2, "Neutron Flence rate per EFPY:"; a(2, 4)

FILE: PTCURVE.BAS Created: 08/16/94 PAGE: 2 of 6 Length: 18930 bytes. Queued: 08/17/94

                                                    • Lines 111 to 220 ***************** *****

PRINT #2, "RG 1.99 Adjusted Reference Temperature margin:"; a(2, 5) PRINT #2, "Surface fluence:"; ftot(i)

PRINT #2, PRINT #2, "PTS Adjusted Reference Temperature:"; pts(i)

PRINT #2, "*************Circumferential weld 16 degree data follows*********** PRINT #2, "At one quarter wall thickness ....... "

PRINT #2, "Initial RTndt:", a(3, 1) PRINT #2, "Delta RTndt:"; b(i, j); "and the adjusted RTndt:"; c(i, j)

PRINT #2, "Chemistry Factor:"; a(3, 2) j =2 PRINT #2, "Accumulated Fluence:"; a(3, 3) PRINT #2, "At three quarter wall thickness ...... "

PRINT #2, "Neutron Fluence rate per EFPY:"; a(3, 4) PRINT #2, "Delta RTndt:"; b(i, j); "and the adjusted RTndt:"; c(i, j)

PRINT #2, "RG 1.99 Adjusted Reference Temperature margin:"; a(3, 5) PRINT #2, PRINT #2, PRINT #2, "***The following results are for the circumferential weld" PRINT #2, "*************Plate Metal 16 degree data follows**************" i =3 PRINT #2, "Initial RTndt: 11 , a(4, 1) j =1 PRINT #2, "Chemistry Factor:"; a(4, 2) PRINT #2, "Surface fluence: 11 ; ftot(i)

PRINT #2, 11 Acc1.111ulated Fluence:"; a(4, 3) PRINT #2, "PTS Adjusted Reference Temperature:"; pts(i*)

PRINT #2, "Neutron Fluence rate per*EFPY:"; a(4, 4) PRINT #2, "At one quarter wall thickness ....... "

PRINT #2, "RG 1.99 Adjusted Reference Temperature margin:"; a(4, 5) PRINT #2, "Delta RTndt:"; b(i, j); 11 and the adjusted RTndt:"; c(i, j)

PRINT #2, j =2 PRINT #2, "At three quarter wall thickness ...... "

PRINT #2, CHR$(12) 'printer page feed character PRINT #2, "Delta RTndt:"; b(i, j); 11 and the adjusted RTndt:"; c(i, j)

PRINT #3, 'add blank line to top.of first page PRINT #2, PRINT #2, "*** The following results are for the plate base metal" depth(1) = .25

  • t i =4 depth(2) = .75
  • t j =1 PRINT #2, "Surface fluence: 11 ; ftot(i)

REM calculate the RT shift for each weld at each location and PRINT #2, "PTS Adjusted Reference Temperature:"; pts(i)

REM pass results to b() PRINT #2, "At one quarter wall thickness ....... "

REM calculate the ART and pass to c() PRINT #2, "Delta RTndt: 11 ; b(i, j); 11 and the adjusted RTndt:"; c(i, j) j =2 FOR i =1 TO 4 PRINT #2, "At three quarter wall thickness ...... "

CALL art(i, b(), ftot()) PRINT #2, "Delta RTndt:"; b(i, j); 11 and the adjusted RTndt:"; c(i, j)

NEXT i PRINT #2, PRINT "Completed Adjusted Reference Temperature Calculations" PRINT titl$ : II Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 Fl for$ = " ####.# ###### * # I######"# I######"# I######"# I######"# I######"

PRINT #2, intg$ : II ## ##, ##, ##, ## ##

PRINT #2, "Pressure Temperature Curve Analysis.Program" PRINT #2, title$ FOR K TO 2 '1=heatup, 2=cooldown PRINT #2, IF K THEN PRINT #2, 11 **** The results for adjusted Reference Temperatures fol low .... PRINT 11 starting heatup curve calculations" PRINT #2, hu$ = 11 heatup 11 PRINT #2, 11 *** The following results are for the zero degree axial weld" ELSE i =1 PRINT 11 starting cooldown curve calculations" j =1 hu$ 11 cooldown11 PRINT #2, "Surface fluence: 11 ; ftot(i) END IF PRINT #2, "PTS Adjusted Reference Temperature:"; pts(i)

PRINT #2, "At one quarter wall thickness ******. " FOR Ntemp = 1 TO 10 'initalize array needed to PRINT #2, "Del ta RTndt:"; b( i, j); 11 and the adjusted RTndt:"; c( i, j) FOR j j =1 TO 6 'find limiting weld(s) j =2 pmin(Ntemp, jj) 20000!

PRINT #2, 11 At three quarter wall thickness ...... " weld(Ntemp, jj) = 0 PRINT #2, "Delta RTndt:"; b(i, j); 11 and the adjusted RTndt: 11 ; c(i, j) NEXT jj PRINT #2, NEXT Ntemp PRINT #2, 11 *** The following results are for the thirty degree axial weld" i 2 FOR i = 1 TO 4 'increments weld j = 1

FILE: PTCURVE.BAS Created: 08/16/94 PAGE: 3 of 6 Length: 18930 bytes. Queued: 08/17/94

                                                    • Lines 221 to 330 ****************

IF i = 1 THEN CALL ptcurvecalcCi, M, temp, K, press, q) weld$= "The following results are for the zero degree axial weld," p(q) = press+ pc - head+ 14.7 'Pressurizer pressure, PSIA PRINT " zero degree axial weld" NEXT q ELSEIF i = 2 THEN weld$= "The following results are for the thirty degree axial weld," PRINT #3, USING for$; temp; p(1); p(2); pC3); pC4); pCS); p(6)

PRINT " thirty degree axial weld" ELSEIF i = 3 THEN FOR q = 1 TO 6 'Determine Limiting Appendix G pressures weld$= "The following results are for the circumferential weld," IF pCq) < pminCNtemp, q) THEN 'as* a function of RV inside temperature PRINT " circumferential weld" pminCNtemp, q) pCq) '(temp) and rate of change Cq) for ELSEIF i = 4 THEN weld(Ntemp, q) = i 'heatup Ck=1) and cooldown Ck=2) weld$= "The following results are for the base metal," END IF PRINT " base metal" NEXT q END IF savtemp(Ntemp) = temp Ntemp = Ntemp +

FOR M= 1 TO 2 'increment depth m = 1 f.or 1/4t and m = 2 for 3/4t NEXT temp PRINT #3, IF CCM = 2) AND Ci 4) AND CK 2)) THEN PRINT #3, "Pressure Temperature Curve Analysis Program" GOTO nonewpg PRINT #3, title$ END IF PRINT #3, PRINT #3, "Temperature Measurement Error (Deg F):", tc IF M = 2 THEN 'heatup and cooldown results PR I NT #3, "Pressure Measurement Error CPS ID) : 11 , pc PRINT #3, CHR$(12) on the same page with PRINT #3, "Safety factor primary membrane stress:", kimfact ELSE no trailing blank page PRINT #3, PRINT #3, PRINT #3, PRINT #3, IF M = 1 THEN END IF depth$ "one-quarter wall thickness" ELSE nonewpg:

depth$ "three-quarter wall thickness" END IF NEXT M NEXT PRINT #3, weld$

PRINT #3, "At "; depth$; 11 for "; hu$ ' print Limiting weld information PRINT #3, "Total accumulated fluence of "; ftot(i) PRINT #4, PRINT #3, PRINT #4, "Limiting Weld for"; hu$; "**Pressurizer Pressure, psia" PRINT #3, titl$ PRINT #4, PRINT #3, PRINT #4, titl$

PRINT #4, Ntemp = 1 'counter for Limiting pressure and weld calc FOR Ntemp = 1 TO 10 FOR temp = 50 TO 500 STEP 50 *temp, 50 to 500 inc 50 PRINT #4, USING for$; savtemp(Ntemp); pminCNtemp, 1); pminCNtemp, 2); pminCNte NEXT Ntemp head = 54! 'PZR to RV head due to 4 PCPs operating IF temp < 300! THEN head = 35! 'PZR TO RV head due to 2 PCPs operating PRINT #4, PRINT #4, q=1 11 0 deg F per hour."

q=2 11 20 deg F per hour." FOR Ntemp = 1 TO 10 q=3 11 40 deg F per hour . 11 PRINT #4, USING intg$; weldCNtemp, 1); weld(Ntemp, 2); weld(Ntemp, 3); weld(Nt q=4 11 60 deg F per hour." NEXT Ntemp q=5 11 80 deg F per hour."

q=6 "100 deg F per hour." IF K = THEN FOR q = 1 TO 6 PRINT #4, CHR$(12)

FILE: PTCURVE.BAS Created: 08/16/94 1 AGE: 4 of 6 Length: 18930 bytes. Queued: 08/17/94

                                                  • Lines* 331 to 440 ***************** *****

PRINT #4, "Pressure Temperature Curve Analysis Program" PRINT #4, title$ SUB kircalc Cq, K, M, temp, i, kir) 'Cale KIR per RG 1.99 PRINT #4, PRINT #4, "Temperature Measurement Error (Deg F):", tc ' global variables: tc, c(), deltat()

PRINT #4, "Pressure Measurement Error (PSID):", pc PRINT #4, "Safety factor primary membrane stress:", kimfact tempx = temp+ tc + deltat(q, M, K) 'metal temperature at 1/4 or

. PRINT #4, ' 3/4t locations END IF kir = 26.78 + 1.233

  • EXP(.0145 * (tempx - c(i, M) + 160)) '(eq 4)

END SUB NEXT K

'***************************************************************************

CALL ltop(title$, for$) '***************************************************************************

CLOSE #1 FUNCTION log10 (f) 'calculated base 10 logarithms CLOSE #2 log10 = LOG(f) I LOG(10#)

CLOSE #3 END FUNCTION CLOSE #4 CLOSE #5 '***************************************************************************

REM CLOSE #6 '***************************************************************************

'*************************************************************************** SUB ltop (title$, for$) 'Calculation of limit curves for LTOP

'*************************************************************************** DIM p(4)

SUB art (i, b(), ftot()) 'calc RT shift, ART and fluence ' global variable: pc, tc, kimfact

' global variables: yrs, a(), c(), depth(), pts() PRINT PRINT 11 ltop data calculations" margin= a(i, 5) fsurf = a(i, 3) + (a(i, 4) *yrs) 'calc total surface fluence PRINT #5, title$

ftot(i) fsurf PRINT #5, PRINT #5, "Temperature Measurement Error (Deg F):", tc FOR M = 0 TO 2 PRINT #5, "Pressure Measurement Error (PSID):", pc PRINT #5, "Safety factor primary membrane stress:", kimfact IF M 0 THEN x = O! PRINT #5, IF M > 0 THEN x = depth(M) i =3 ' circ weld fbig = fsurf

  • EXP(-.24
  • X) 'fluence function of wall depth PRINT #5, 11 Limiting weld for LTOP is the Circumferential weld (weld #3) 11 f = fbig I 1E+19 '(eq 7) PRINT #5, rtndt = a(i, 2)
  • f ~ (.28 - (.1
  • log10(f))) 'delta RTCNDT) (eq 6) artemp = a(i, 1) + rtndt +margin 'ART or RT(NDT) (eq 5) PRINT #5, II ** LTOP ** Pressurizer Pressure - psia" PRINT #5, II Heat up Cool down Rate" IF M > 0 GOTO metal PRINT #5, II temperature, 1/4 t, 3/4 t, 1/4 t, Heatup, Cooldo pts(i) = artemp forx$ = 11 ####.# ######.# ,######.# ,######.# * ###### ' ###### ' II metal: FOR temp = 50 TO 500 STEP 10 b(i, M) rtndt c(i, M) = artemp IF (temp= 180.1) THEN 'IF statemewnt added to obtain the extra temp = 180 'data point at the three break points GOTO nexttemp NEXT M END SUB ELSEIF (temp= 260.1) THEN temp = 260

'*************************************************************************** GOTO nexttemp

'***************************************************************************

FILE: PTCURVE.BAS Created: 08/16/94 --*'*48 AGE: 5 of 6 Length: 18930 bytes. Queued: 08/17/94

                                                  • Lines 441 to 550 ***************** ****

ELSEIF (temp= 309.9) THEN ELSEIF temp > 250 AND temp < 350 THEN temp = 300 q =4 GOTO nexttemp ELSEIF temp >= 350 THEN q =6 ELSEIF (temp= 359.9) THEN END IF temp = 350 q2 = q GOTO nexttemp END IF END IF IF K = 1 OR CK = 2 AND M 1) THEN IF (temp= 180) THEN press = 5000!

temp= 170.1 FOR qq = 1 TO q ELSEIF (temp = 260) THEN CALL ptcurvecalc(i, M, temp, K, pressx, qq) temp= 250.1 IF pressx <= press THEN qsave qq ELSEIF (temp= 300) THEN 'HPSI pumps enabled IF pressx <= press THEN press pressx temp = 299.9 NEXT qq ELSEIF (temp= 350) THEN ELSEIF K = 2 AND M = 2 THEN temp = 349.9 press= 1.1 * (head - pc - 14.7) 'dunmy value END IF END IF p(aa) 1.1 *press+ pc - head+ 14.7 'ASME CODE CASE N-514 next temp:

aa = aa +

head = 54! 'PZR to RV head due to 4 PCPs operating NEXT M IF temp< 300! THEN head= 35! 'PZR to RV head due to 2 PCPs operating NEXT K aa =1 PRINT #5, USING forx$; temp; p(1); p(2); p(3); q1; qsave FOR K TO 2 ' 1 = heatup, 2 cooldown NEXT temp FOR M TO 2 ' 1/4 t and 3/4 t END SUB q=1 11 0 deg F per hour. 11 '***************************************************************************

q=2 11 20 deg F per hour." '***************************************************************************

q=3 11 40 deg F per hour."

q=4 11 60 deg F per hour." SUB ptcurvecalc (i, M, temp, K, press, q) *calcs allowable pressur q=5 11 80 deg F per hour."

q=6 11 100 deg F per hour." ' global variables: ri, ro, mt, nm, kimfact, depth(), deltat(), yrs IF K 1 THEN 'heatup x = depth(M)

IF temp <= 170 THEN CALL kircalc(q, K, M, temp, i, kir) q =2 ELSEIF temp> 170 AND temp <= 250 THEN walldt = ABS(deltat(q, 3, K))

q =3 sign 1!

ELSEIF temp> 250 AND temp < 350 THEN IF K 1 AND M 1 THEN sign -1! 'Compressive thermal stresses for q =4 IF K 2 AND M 2 THEN sign -1! 'heatup at 1/4t and cooldown at 3/4t ELSEIF temp>= 350 THEN q =6 rx = x + ri END IF pnum = ((kir - (sign* mt* walldt)) * ((rx 2) * ((ro 2) - (ri A A A 2))))

q1 = q pnum = pnum

  • 1000 pdem = (kimfact
  • nm * ((ri A 2) * ((rx 2) + (ro 2))))

A A ELSEIF K = 2 THEN 'cool down press = (pnum I pdem) 'Rx Vessel Downcomer Pressure, psig (eq 8)

IF temp<= 250 THEN IF K THEN tempmax temp 'heatup highest temp at ri q = 3 IF K > THEN tempmax temp+ deltat(q, 3, K) 'cooldown highest temp at ro

    • FILE: PTCURVE.BAS Created: 08/16A 16:48
    • PAGE: 6 of 6 . Length: 18930 bytes. Queued: 08/17 11:48
                                                          • Lines 551 to 579 ************** *********
  • yield= 43.1 IF tempmax > 400 THEN yield= 47.767 - 2
  • tempmax I 300!

IF tempmax <= 400 AND tempmax > 300 THEN yield= 49.1 - tempmax I 100!

IF tempmax <= 300 AND tempmax > 200 THEN yield= 50.3 - 1.4

  • tempmax I 100!

IF tempmax <= 200 AND tempmax > 100 THEN yield = 52.5 - 2.5

  • tempmax I 100!

IF tempmax <= 100 THEN yield = 50 yield = 1000!

  • yield ratio = press
  • ri A 2 * (1 + ro A 2 / rx A 2) / (ro A 2 - ri A 2) / yield IF ratio> .7 THEN mmp = 3! 'SRP 5.3.2 IF ratio <= .7 AND ratio > .5 THEN nmp = 2.~5 IF ratio<= .5 AND ratio> .1 THEN nmp = 2,8 IF ratio <=
  • 1 THEN rrmp = 2. 73 *. . *' ,,.

IF yrs = 0 THEN mmp = 2.8 'reqd fo~ comparison with EA-A-PAL-89-098 pdem = (kimfact

  • rrmp * ((ri A 2) * ((rx*A 2) + (ro A 2))))

press = (pnum / pdem) 'Rx Vessel Downcomer Pressure, psig (eq 8) tempave =(temp+ deltat(q, 3, K) I 2!) I 100!

earn= -.00047961#

  • tempave A 2 + .0063306
  • tempave + .17707 thermal =*earn* ABS(deltat(q, 3, K)) / 1.4
  • 1000!

press2 = (yield - thermal) * (ro - ri) I ri 'combined stress can not exceed yi IF press > press2 THEN press = press2 END SUB

consumn Power

~ JlllWEIUll&

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01

~ 11"5 NOfillB5 ANALYSIS CONTINUATION SHEET Sheet 39 Rev # - -O- = - - -

Appendix 6.2 PrCURVE Results - Limit Curves (10 un-numbered pages attached)

FILE: PTCURVEL.DAT PAGE: 1 of 1 . Length: 247 bytes.

Created: 07/08/94 Queued: 08/17/94

-c*24 6

, ************************** Lines 1 to 6 ***************** *****

  • EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID 6 8.5 86.25 94.75 .34 2.8 0 0 2.0

-56 225 1.17E19 0.066E19 66

-56 225 1.19E19 0.063E19 66

-56 228 1.61E19 0.097E19 66

-0 165 1.61E19 0.097E19 34

'f I

  • 1,:
  • ILE: PTCURVEL.OUT Created: 08/16/94 13*

AGE: 1 of 1 . Length: 3107 bytes. Queued: 08/17/94

                                                  • Lines 1 to 81 *****************' ****

-

Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID Effective Full Power Years: 6 Vessel thickness: 8.5 inches ........ The results for adjusted Reference Temperatures follow ....

Vessel inner radius: 86.25 inches Vessel outer radius: 94.75 inches ***The following results are for the zero degree axial weld Thermal stress to stress intensification factor: .34 Surface fluence: 1.566E+19 Membrane stress to stress intensification factor: 2.8 PTS Adjusted Reference Temperature: 262.8889 Temperature Measurement Error (Deg F): 0

  • At one quarter wall thickness .*.....

Pressure Measurement Error CPSID): .0 Delta RTndt: 221.1239 and the adjusted RTndt: 231.1239 Safety factor primary membrane stress: 2 At three quarter wall thickness ..... .

Delta RTndt: 157.9838 and the adjusted RTndt: 167.9838

                          • Axial weld zero degree data follows**************

Initial RTndt: -56 ***The following results are for the thirty degree axial weld Chemistry Factor: 225 Surface fluence: 1.568E+19 Accumulated Fluence: 1.17E+19 PTS Adjusted Reference Temperature: 262.9667 Neutron Fluence rate per EFPY: 6.6E+17 At one quarter wall thickness ...... .

RG 1.99 Adjusted Reference Temperature margin: 66 Delta RTndt: 221.2044 and the adjusted RTndt: 231.2044 At three quarter wall thickness ...... *

                          • .Axial weld 30 degree data follows************** Delta RTndt: 158.0592 and the adjusted RTndt: 168.0592 Initial RTndt: -56 Chemistry Factor: 225 ***The following results are for the circumferential weld Accumulated Fluence: 1.19E+19 Surface fluence: 2.192E+19 Neutron Flence rate per EFPY: 6.3E+17 PTS Adjusted Reference Temperature: 286.5368 RG 1.99 Adjusted Reference Temperature margin: 66 At one quarter wall thickness ...... .

Delta RTndt: 245.4305 and the adjusted RTndt: 255.4305

                          • Circumferential weld 16 degree data follows ************** At three quarter wall thickness ..... .

Initial RTndt: -56 Delta RTndt: 180.6528 and the adjusted RTndt: 190.6528 Chemistry Factor: 228 Accumulated Fluence: 1.61E+19 ***The following results are for the plate base metal Neutron Fluence rate per EFPY: 9.7E+17 Surface fluence: 2.192E+19 RG 1.99 Adjusted Reference Temperature margin: 66 PTS Adjusted Reference Temperature: 234.1253 At one quarter wall thickness ...... .

                          • Plate Metal 16 degree data follows************** Delta RTndt: 177.6142 and the adjusted RTndt: 211.6142 Initial RTndt: 0 At three quarter wall thickness ..... .

Chemistry Factor: 165 Delta RTndt: 130.7356 and the adjusted RTndt: 164.7356 Accumulated Fluence: 1.61E+19 Neutron Fluence rate per EFPY: 9.7E+17 RG 1.99 Adjusted Reference Temperature margin: 34

,

  • FILE: LWELDL.CSV Created: 08/16/94 - 3*40
  • AGE: 1 of 1 Length: 3853 bytes. Queued: 08/17/94
                                                  • Lines 1 to 70 ***************** ****

Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID Temperature Measurement Error (Deg F): 0 Temperature Measurement Error (Deg F): 0 Pressure Measurement Error (PSID): 0 Pressure Measurement Error (PSID): 0 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 Limiting Weld for heatup ** Pressurizer Pressure, psi a Limiting Weld for cooldown **Pressurizer Pressure, psia Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 462.9 410.9 319.8 234.0 145.5 63.9 50.0 462.9 403.1

  • 341.6 274.8 213.5 143.9 100.0 462.5 437.5 I 341.8 I 252.4 160.8 76.8 100.0 462.5
  • 415.8 355.2 289.5 229.1 160.8 150.0 I 486.6 479.4 387.1 I 290.3 192.3 I 103.4 150.0 486.6 442.2
  • 383.4 319.7 261.5 195 .6 200.0 536.3 589.7 468.3 368.7 257.4 I 158.2 200.0 536.3 483.7 441.6 382.2 328.2 267.4 250.0 639.1 I 704.6 656.8 ~16.7 I 391.7 271.5 250.0 639.1 593.2 I 547 .1 497.8 453.8 415 .8 300.0 832.2 879.2 928.1 I 823.4 633.0 473.2 300.0 832.2
  • 800.3 769.8 738.3 712.3 684.6 350.0 1270.2 1279.0 1294.0 1313.3 1191.5 943.9 I 350.0 1270.2 1267.2
  • 1268.9 1274. 1 1285.0 1301.4 400.0 2135.8 2104.5 I 2049.6 2007.9 I 1973.3 I 1915.8 400.0 2135.8 2191.3 I 2258.3 2338.0 2423. 7 2528.9 450.0 3769.8 3552.2 3366.3 3210.0 I 3064.4 2944.6 I 450.0 3769.8
  • 3937.4 4076.1 3912.5 3761.8
  • 3590.7 500.0 4339.7 I 4143.1 3952.3 I 3771.5 3583.9 3410.4 I 500.0 4339.7 4193.1 4042.1 3877.9
  • 3726.6
  • 3554.9 3 3 3 3 3 3 3 3
  • 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1
  • 1 1 1 1 1 1 1

~------ ----

  • FILE: LTOPL.CSV Created: 08/16/94 *
  • 4 0 PAGE: 1 of 1 . Length: 4020 bytes. Queued: 08/17/94 2
                                                    • Lines 1 to 61 ***************** *****
  • EA-PAL-92-095-01 EOC9 plus 6 EFPY W/O uncertainties & Ref vessel ID 450.0 3243.0 3796.9 3953.6 6 6 460.0 3618.5 , 3788.5 3945.7 6 6 Temperature Measurement ~rror (Deg F): 0 470.0 3780.1 3780.1 3937.8 6 6 Pressure Measurement Error (PS!D): 0 480.0 , 3771.8 3771.8 3929.9 6 6 Safety factor primary membrane stress: 2 490.0 3763.5 3763.5 3922.1 6 6 500.0 3755.3 3755.3 3914.3 , 6 6 Limiting weld for LTOP is the Circumferential weld (weld #3)
    • LTOP ** Pressurizer Pressure - psia Heat up Cool down Rate temperature, 1/4 t, 3/4 t, 1/4 t, Heatup, Cool down 50.0 511.2 454.1 377.8 2 3 60.0 513.1 458.3 380.0 2 3 70.0 515.3 463.3 382.5 2 3 80.0 517.9 I 469.0 385.5 I 2 3 90.0 I 520.9 475.6 388.9 2 3 100.0 510.7 483.2 392.8 2 3 110.0 I 514.6 I 492.1 397.3 2 3 120.0 I 519.1 502.3 402.6 2 3 130.0 524.3 I 514.1 408.7 2 3 140.0 I 530.3 527.7 415.7 2 3 150.0 I
  • 537.2 I 529.4 423.8 I 2 3 160.0 545.3 I 547.2 433.2 I 2 3 170.0 554.5 I 567.7 444.0 I 2 3 170.1 I 554.6 460.6 444.1 3 3 180.0 565.3 I 480.6 456.5 I 3 3 190.0 577.7 503.9 471.0 3 3 200.0 592.0 517.1 487.7 3 3 210.0 608.5 I 547.5 493.9 I 3 3 220.0 627.7 582.7 515.7 3 3 230.0 649.8 623.3 541.0 3 3 240.0 675.4 670.2 570.1 3 3 250.0 I 705.0 724.5 603.8 3 3 250.1 705.3 570.9 550.0 I 4 4 260.0 739.2 I 622.9 591.4 I 4 4 270.0 I 778.7 683.6 639.8 4 4 280.0 I 824.4 753.8 695.7 4 4 290.0 I 877.3 I 834.9 760.3 4 I 4 299.9 '937.7 927.7 834.3 4 4 300.0 919.4 I 909.7 816.1 I 4 4 310.0 990.0 1018.1 902.4 4 I 4 320.0 I 1071.6 1143 .4 1002.3 4 4 330.0 1166.0 1288.3 1117.7 4 4 340.0 1275 .1 1455.8 1251.2 I 4 I 4 349.9 1399.8 1647.3 1396.4 I 4 2 350.0 I 1401.2 1042.2 1397.8 6 2 360.0 1543.9 1198.9 1547.0 I 6 1 370.0 1690.0 1380.0 1715 .5 I 6 1 380.0 1833.2 1589.4 1910.4 6 1 390.0 1979.4 1831.5 2135.6 6 1 400.0 2148.0 2111.3 2353.3 I 6 1 410.0 2342.8 2434.8 2649.0 6 1 420.0 2522.3 2758.8 2990.9 6 1 430.0 2778.2 3183.6 3214.9 6 1 440.0 3073.9 , 3488.9 3649.0 6 1

FILE: PTCURVEL.CSV Created: 08/16/94 - 3 :40*

PAGE: 1 of 4 . Length: 20151 bytes . Queued: 08/17/94 0

.************************** Lines 1 to 105 ***************** *****

-

Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID Temperature Measurement Error (Deg F): 0 Temperature Measurement Error (Deg F): 0 Pressure Measurement Error CPSID): 0 Pressure Measurement Error (PSID): 0 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the zero degree axial weld, The following results are for the thirty degree axial weld, At one-quarter wall thickness for heatup At one-quarter wall thickness for heatup Total accumulated fluence of 1.566E+19 ... Total accumulated fluence of 1.568E+19 Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 6Q F/hr, 80 F/hr, *100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 467.6 537.0 616.4 I . 691.9 I 770.3 I 843.1 50.0 467.6 537.0 I 616.4 691.9 770.3 843.0 100.0 472.0 552.2 630.3 704.6 782.0 853.8 100.0 472.0 552.1 630.3 704.6 782.0 853.8 150.0 506.3 583.5 658.9 I 731.0 I 806.1 876.0 150.0 506.2 583.4 658.9 730.9 806.0 875.9 200.0 577.1 648.1 I 718.1 I 785.3 I 855.9 921.8 200.0 576.9 647.9 I 717.9 785.2 855.8 921.7 I 250.0 723.3 781.5 840.2 I 897.6 I 958.6 1016.4 I 250.0 722.9 781.2 839.9 897.3 958.4 1016.2 300.0 1006.0 1037.9 1073.3 I 1110.4 I 1151.8 I 1192.8 I 300.0 1005.4 1037 .3 1072.7 1109.9 I 1151.3 , 1192.3 ,

350.0 1629.1 I 1606.6 1593.9 1589.0 1589.8 I 1596. 1 I 350.0 1627.7 I 1605 .3 , 1592.7 1587.9 1588.9 1595.1 400.0 2863.8 2731.3 2621.2 I 2531.2 I 2449.9 2385.5 400.0 2861.0 2728. 7 , 2618.8 , 2529.0 , 2447.9 2383.6 450.0 4372.5 I 4176.9 I 3987.1 3807.2 I 3620.7 I 3448.2 I 450.0 4372.5 4176.9 , 3987 .1 3807.2 , 3620.7 3448.2 500.0 I 4339.7 I 4143.1 3952.3 3771.5 I 3583.9 3410.4 I 500.0 4339.7 4143. 1 , 3952.3 , 3771.5 3583.9 3410.4 Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel JD Temperature Measurement Error (Deg F): 0 Temperature Measurement Error (Deg F): 0 Pressure Measurement Error (PSID): 0 Pressure Measurement Error (PSID): 0 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the zero degree axial weld, The following results are for the thirty degree axial weld, At three-quarter wall thickness for heatup At three-quarter wall thickness for heatup Total acciinulated fluence of 1.566E+19 Total accumulated fluence of 1.568E+19 Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 503.9 420.6 327.8 240.7 I 151.1 , 68.6 50.0 503.9 420.6 , 327.8 , 240.7 151.0 68.6 100.0 I 547.5 457.5 358.4 I 266.2 , 172.3 86.5 100.0 547.4 457.4 , 358.3 266.2 172.2 86.5 150.0 637.4 I 519.7 421.4 I 319.0 216.1 123.4 150.0 637.3 519.6 , 421.2 318.9 216.0 123.3 200.0 823.2 672.9 537.2 427.8 , 306.5 199.6 200.0 822.8 I 672.6 , 536.9 427.6 306.3 199.4 250.0 1206.7 , 989.1 , 799.1 I 635.? , 480.3 I 356.9 250.0 1205.9 988.5 , 798.5 , 635.3 479.9 356.6 300.0 1979.5 I 1623. 1 1320.9 I 1069.2 837.1 645.2 300.0 1977.9 1621. 7 , 1319.7 , 1068.2 836.3 644.5 350.0 3370.9 2918.5 I 2394.0 2003.4 , 1613.1 1299. 1 350.0 3367.7 I 2915.7 , 2391. 7 , 2001.4 1611.4 1297. 7 ,

400.0 4405.3 4210.9 4022.3 3667.4 , 2998.2 , 2602. 1 400.0 4405.3 I 4210.9 , 4022.3 3663.6 2995.0 , 2599.3 450.0 4372.5 4176.9 , 3987.1 3807.2 3620.7 3448.2 450.0 4372.5 4176.9 , 3987.1 , 3807.2 3620.7 3448.2 500.0 4339.7 , 4143.1 I 3952.3 3771.5 I 3583.9 3410.4 , 500.0 4339.7 4143.1 , 3952.3 3771.5 3583.9 3410.4 ,

FILE: PTCURVEL.CSV Created: 08/16/94-* :40 PAGE: 2 of 4 . Length: 20151 bytes. Queued: 08/17/94 10

                                                    • Lines 105 to 209 **************** *****
  • Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID Temperature Measurement Error (Deg F): 0 Temperature Measurement Error (Deg F): 0 Pressure Measurement Error (PSID): 0 Pressure Measurement Error (PSID): 0 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the circumferential weld, The following results are for the base metal, At one-quarter wall thickness for heatup At one-quarter wall thickness for heatup Total accumulated f luence of 2.192E+19 Total accumulated fluence of 2.192E+19 Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 462.9 532.8 612.5 I 688.3 767.1 840.1 50.0 472.8 541.7 620.7 695.8 773.9 846.4 100.0 462.5 543.4 622.3 697.3 I 775.3 847.6 100.0
  • 482.5 561.8 639.1 712.7 789.4 860.6 150.0 486.6 565.4 642.4 715.8 I 792.2 863.2 150.0 528.0 603.3 677.1 747.7 821.4 890.1 200.0 536.3 610.8 684.0 754.0 827.2 895.4 200.0 622.0 689.0 755.6 819.8 887.4 950.9 250.0 639.1 704.6 769.8 832.9 899.4 961.9 250.0 815.9 866.0 917.6 968.8 1023.8 1076.4 300.0 832.2 879.2 928.1 976.9 1029.6 1080.2 300.0 1197 .4 1212.5
  • 1233.2 1257 .3 1286.3 1316.6 350.0 1270.2 1279.0 1294.0 1313.3 I 1337.5 1363.8 350.0 2024.2 1967.2 1923.9 1892.4 1867.6 1851.8 400.0 2135.8 2104.5 2049.6 2007.9 1973.3 1949.1 400.0 3480.0 3287.7 3124.2 2987.4 2860.7 2904.2 450.0 3769.8 3552.2 3366.3 3210.0 3064.4 2944.6 I 450.0 4372.5 4176.9
  • 3987 .1 3807.2 3620.7 3448.2 500.0 4339.7 4143.1 3952.3 3771.5 I 3583.9 3410.4 500.0 4339.7 4143. 1 3952.3 3771.5 3583.9 3410.4 Pressure Temperature Curve Analysis Progra.m Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID Temperature Measurement Error (Deg F): 0 Temperature Measurement Error (Deg F): 0 Pressure Measurement Error (PSID): 0 Pressure Measurement Error (PS!D): 0 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the circumferential weld, The following results are for the base metal, At three-quarter wall thickness for heatup At three-quarter wall thickness for heatup Total accumulated f luence of 2.192E+19 Total accumulated fluence of 2.192E+19 Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 492.4 I 410.9 319.8 234.0
  • 145.5
  • 63.9 50.0 505.9 422.3
  • 329.2 241.9 152.0 69.4 100.0 523.8 437.5 341.8 252.4 160.8 76.8 100.0 551.6 I 460.9
  • 361.2 268.6 174.3 88.2 150.0 588.6 479.4 387.1 290.3 192.3 103.4 150.0 645.9 526.7 I 427.3 323.9 220.2 126.9 200.0 722.3 589.7 I 468.3 I 368.7 257.4
  • 158.2 200.0 840.6 687.2 I 549.0 438.0 314.9 206.7 250.0 998.4 817.3 656.8 516.7 391.7 271.5 250.0 1242.6 I 1018.7
  • 823.6 656.2 497.3 371.6 300.0 1549.4 1268.4 1027 .1 823.4
  • 633.0 473.2 300.0 2053.6 1684.2
  • 1371.5
  • 1111 . 5 872.3 674.8 350.0 2677.8 2238.9 1830.9 1495.9 1191.5 943.9 350.0 3513.6
  • 3042.3 2496.6 2090.7 1685 .6 1360.3 400.0 4405.3 3957.3 3255.1 2833.1 2303.0 1915.8 400.0 4405.3 4210.9
  • 4022.3 3835.8 3138.0 2726.1 450.0 500.0 4372.5 4339.7 I 4176.9 4143.1 3987.1 3952.3 I 3807.2
  • 3620.7 3771.5 3583.9 3448.2 3410.4 450.0 500.0 4372.5 4176.9 4339.7
  • 4143.1 . 3987 .1
  • 3807.2 3952.3 3771.5 3620.7 3583.9 3448.2 3410.4
  • FILE: PTCURVEL.CSV Created: 08/16/94-* :40 PAGE: 3 of 4 . Length: 20151 bytes. Queued: 08/17/94 10
                                                    • Lines 209 to 313 **************** *****
  • Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID Temperature Measurement Error (Deg F): 0 Temperature Measurement Error (Deg F): 0 Pressure Measurement Error (PSID): 0 Pressure Measurement Error (PSID): 0 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the zero d~gree axial weld, The following results are for the thirty degree axial weld, At one-quarter wall thickness for cooldown At one-quarter wall thickness for cooldown Total accumulated fluence of 1.566E+19 Total accumulated fluence of 1.568E+19 Temp deg F, O F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 467.6 408.2 347.0 280.7 219.7 150.6
  • 50.0 467.6 408.1
  • 347.0 280.6 219.7 150.6 100.0 I 472.0 426.3 366.4 301.5 242.0 174.6
  • 100.0 472.0 426.3 366.4 301.4 241.9 174.5 150.0 506.3 451. 7 406.5 '344.5 287.9 224.1 150.0 506.2 451.6 406.4 344.4 287.8 224.0 200.0 577.1 527 .1 476.5 433.3 382.9 326.3 I 200.0 576.9 527.0
  • 476.3 433.1 382.7 326.1 250.0 723.3 682.9 643.0 600.8 563.9 523.5 250.0 722.9 682.6 642.6 600.4 563.5 523.0 300.0 1006.0 985.6 967.9 I 950.9 939.6 I 929.4 300.0 1005.4 984.9 967.1 950.1 938.7
  • 928.4 350.0 1629.1 1649.7 1677.8 I 1713.2 1754.4 I 1806.7 350.0 1627.7 1648.2 1676.2 1711 . 5 1752.5 1804.7 400.0 2863.8 2817.0 2931.5 3065.2 3205.0 3374.4 400.0 2861.0 2814.1 2928.4 3061.9 3201.5 3370.6 450.0 I 4372.5 4226.6 4076.1 3912.5 3761.8 3590.7 I 450.0 4372.5 4226.6
  • 4076.1 3912.5 3761.8 3590.7 500.0 4339.7 4193.1 4042.1 3877.9 3726.6 I 3554.9 500.0 4339.7 4193.1
  • 4042. 1 3877.9 3726.6 3554.9 Pressure Temperature curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID Temperature Measurement Error (Deg F): 0 Temperature Measurement Error (Deg F): 0 Pressure Measurement Error (PSID): 0 Pressure Measurement Error (PSID): 0 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the zero degree axial weld, The following results are for the thirty degree axial weld, At three-quarter wall thickness for cooldown At three-quarter wall thickness for cooldown Total accumulated f luence of 1.566E+19 Total accumulated fluence of 1.568E+19 Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 503.9 571.9 642.8 721.2 794.6 879.6
  • 50.0 503.9 571.9 642.8 721.1 794.5 879.5 100.0 547.5 621.9 700.4 788.3 872.0 970.3 100.0 547.4 I 621.8
  • 700.3 788.1 871.8 970.1 150.0 637.4 725.2 819.2 926.9 1031. 7 1157.7 150.0 637.3 725.0
  • 819.0 926.6 1031.4 1157.3 200.0 823.2 938.4 1064.6 1213.0
  • 1361.5 1544.5
  • 200.0 822.8 937.9
  • 1064. 1
  • 1212.4 1360.8 1543.7 250.0 1206.7 1378.5 1571 . 2 1803.8 2042.5 2301.8 250.0 1205.9 1377.6
  • 1570.2 1802.5 2041.1 2300.2 300.0 1979.5 2268.3 2552.0 2951.2 3198.4
  • 3706.0 300.0 1977.9 2266.4
  • 2549.8 2948. 7 3195.6 3702.8 350.0 3370.9 3865.8 4155.0 3989.4
  • 3836.9 3664.8 350.0 3367.7 3862.1 4155.0
  • 3989.4 3836.9 3664.8 400.0 4405.3 4260.2 4110.5 3947.7 3797.7
  • 3627.3 400.0 4405.3 4260.2 4110.5
  • 3947.7 3797.7 3627.3 450.0 3912.5 3761.8 3590.7 500.0 4372.5 4339.7 4226.6 4193. 1 4076.1 4042. 1 3912.5
  • 3761.8 3877.9 3726.6 3590.7 3554.9 450.0 500.0 4372.5 4339.7 4226.6 4193.1 4076.1 4042.1 . 3877.9 3726.6 3554.9
  • FILE: PTCURVEL.CSV Created: 08/16/94 1 PAGE: 4 of 4 . Length: 20151 bytes. Queued: 08/17/94
  • ************************** Lines 313 to 416 ***************** *****

Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID Temperature Measurement Error (Deg F): 0 Temperature Measurement Error (Deg F): 0 Pressure Measurement Error (PSID): 0 Pressure Measurement Error (PSID): 0 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the circumferential weld, The following results are for the base metal, At one-quarter wall thickness for cooldown At one-quarter wall thickness for cooldown Total accumulated f luence of 2.192E+19 Total accumulated fluence of 2. 192E+19 Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, ~o F/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 462.9 403.1 341.6 I 274.8 213.5 143.9 I 50.0 472.8 413.7 I 353.0 287.1 I 226.5 158.0 100.0 462.5 415.8 355.2 289.5 I 229.1 160.8 100.0 I 482.5 437.8 378.7 314.7 256.1 189.8 150.0 486.6 442.2 383.4 319.7 261.5 195.6 150.0 528.0 474.9 431.9 I 371.8 317.1 255.5 200.0 536.3 483.7 441.6 I 382.2 328.2 267.4 200.0 622.0 575.0 527.6 476.9 431.5 391.1 250.0 639.1 593.2 547.1 497.8 453.8 415 .8 250.0 815.9 781.7 748.6 714.1 685. 1 653.9 300.0 832.2 I 800.3 769.8 738.3 712.3 684.6 300.0 1197 .4 1189.5 I 1185 .9 1185.0 1189.8 1198.8 350.0 1270.2 1267.2 I 1268.9 1274.1 1285.0 1301.4 350.0 2024.2 2070.8 2128.0 I 2157.2 2230.5 2320.9 400.0 2135.8 2191.3 2258.3 2338.0 2423.7 2528.9 400.0 3480.0 3628.5 3798.9 3947.7 3797. 7 3627.3 450.0 3769.8 3937.4 4076.1 I 3912.5 3761.8 3590.7 I 450.0 4372.5 4226.6 4076.1 3912.5 3761.8 3590.7 500.0 4339.7 4193 .1 4042.1 I 3877.9 3726.6 3554.9 500.0 4339.7 4193.1 I 4042. 1 3877.9 3726.6 3554.9 Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID Temperature Measurement Error (Deg F): 0 Temperature Measurement Error (Deg F): 0 Pressure Measurement Error CPSID): 0 Pressure Measurement Error (PSID): 0 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the circumferential weld, The following results are for the base metal, At three-quarter wall thickness for cooldown At three-quarter wall thickness for cooldown Total accumulated f luence of 2.192E+19 Total accumulated fluence of 2.192E+19 Temp deg F, O F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 492.4 558.8 627.7 703.5 774.2 855.7 50.0 505.9 574.2 645.4 724.2 798.1 883.7 100.0 523.8 594.8 669.1 751.8 I 829.9 921.0 100.0 551.6 I 626.6 I 705.8 794.5 879.2 978.8 150.0 588.6 669.1 754.7 851.6 944.9 1055 .9 150.0 645.9 734.8 I 830.3 939.8 1046.6 1175 .2 200.0 722.3 822.5 931.3 I 1057. 5 1182.4 I 1334.4 200.0 840.6 958.3 I 1087.5 I 1239.8 1392.4 1580.7 250.0 998.4 1139.4 1296.0 1482.8 1672.6 I 1909.4 250.0 1242.6 1419.7 I 1618.6 I 1859.0 2106.2 2375.2 300.0 1549.4 1774.6 I 2030.0 2300.2 I 2618.3 3022.9 300.0 2053.6 2311.3 I 2648.1 I 3063.3 3321.1 3718.4 350.0 2677.8 .3069.8 I 3343.2 I 3875.4 3836.9 3664.8 350.0 3513.6 4029.6 I 4155.0 I 3989.4 3836.9 3664.8 400.0 4405.3 4260.2 4110.5 3947.7 3797.7 3627.3 400.0 4405.3 4260.2 I 4110.5 3947.7 3797.7 3627.3 450.0 4372.5 4226.6 4076.1 3912.5 I 3761.8 3590.7 450.0 4372.5 4226.6 I 4076.1 3912.5 3761.8 3590.7 500.0 4339.7 4193.1 I 4042.1 3877.9 3726.6 3554.9 500.0 4339. 7 I 4193. 1 4042. 1 3877.9 3726.6 3554.9

p

~------------------------------------------------------------

LTOP Tech Spec Curve 2500 -,-------.------,-------,--------.--------,-------,r--------r------.-~--~--,

2000 +-------+-------+-------+-------+-------+------+------+-~~~----"

<

! ---New ff 1500 +-------+-------+------i I= --+-- Existing

..

I!?

i:a..

!:!

"§ 1000 +-------+-------+-------+-------+-------t---------=---..V-------ir-----------j I

I!?

i:a..

0 +-------+-------+-------+-------+------+------+------

50 100 150 200 250 300 350 400 450 Temperature, F

'------------------------------------------------------------


~-~l Gary Pratt TSL TOP6 Chart 4 8/16/94

  • 400 LTOP Setpoint Limit Change I

I I

350 I I

' i 300 ,,,

I 250

~

tJ'J a.

PI:::s 200 l \-

  • (I)

(I)

~

a.

...

Cl)

N

s 150
  • r-.J J II I

(I)

(I)

...

Cl) a.

  • 100

,

-- . J I I

'

~

T 'F' 50

~

'

  • j 0 -- . -- - - -

-50 50 100 150 200 250 300 350 400 450

  • PCS Temperature, F

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 40 Rev # - O

-'°---

Appendix 6.3 Validation Results (14 un-numbered pages attached)

FILE: PTCURVE.DAT Created: 06/14/94 PAGE: 1 of 1 Length: 256 bytes. Queued: 07/08/94

                                                    • Lines 1 to 6 ****************

Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties ..

0 8.5 86.125 94.625 .34 2.8 0 2.0

-56 229 1.180E19 0.097E19 66

-56 229 1.185E19 0.097E19 66

-56 225.8 1.8E19 0.097E19 66.29

-56 225.8 1.8E19 0.097E19 66.03

FILE: PTCURVE.OUT Created: 07/08/94 4 AGE: 1 of 1 Length: 3122 bytes. Queued: 07/08/94 0

                                                    • Lines 1 to 81 ***************** *****

Pressure T~erature curve Analysis Program Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties Pressure T~erature Curve Analysis Program Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties Effective Full Power Years: 0 Vessel thickness: 8.5 inch~s *****..* The results for adjusted Reference T~eratures follow ....

Vessel inner radius: 86.125 inches Vessel outer radius: 94.625 inches ***The following results are for the zero degree axial weld Thermal str-ess to stress intensification factor: .34 Surface fluence: 1.18E+19 Ment>rane stress to stress intensification; factod' 2.8 PTS Adjusted Reference Temperature: 249.5773 T~rature Measurement Error <Deg F.>;V:;:'.' 1'.r'J?_];f~: At one quarter wall thickness ******.

Pressure Measurement Error (PSID): " _ *. 0'" :J..;c'** Delta RTndt: 206.8745 and the adjusted RTndt: 216.8745 safety factor primary lllellDrane stre~~:*:..,* *y

" :*.0.

i. '. ,(\ '*

~-:_-,__,, At three quarter wall thickness ****.*

Delta RTndt: 144.1433 and the adjusted RTndt: 154.1433

                          • Axial weld zero degre~_ _-:~ta folloli!S:***************

Initial RTndt* -56 .,,~;:,q * . 'k)'.*:; *** The following results are for the thirty degree axial weld Chemistry Factor: 229 _:*,:x; 1 >)i! Surface fluence: 1.185E+19 AccU11Jlated Fluence:

  • 1.18E+19 *: ** 1

~-~.:r:~:* PTS Adjusted Reference Temperature: 249.8464 Neutron Fluence rate per EFPY: 9.7E+17  ::;:; At one quarter wall thickness *******

RG 1.99 Adjusted Reference Temperature margin: 66<'. Delta RTndt: 207.1456 and the adjusted RTndt: 217.1456

' . *:0.1 At three quarter wall thickness ****.*

                          • Axial weld 30 degree data foHows '*"************ Delta RTndt: 144.3863 and the adjusted RTndt: 154.3863 Initial Rlndt: -56 ill Chemistry Factor: 229 *** The following results are for the circunferential weld AccUIUlated Fluence: 1.185E+19 Surface fluence: 1.8E+19 Neutron Flence rate per EFPY: 9.7E+17 PTS Adjusted Reference Temperature: 272.5209 RG 1.99 Adjusted Reference Temperature margin: 66 At one quarter wall thickness ******.

Delta RTndt: 230.7113 and the adjusted RTndt: 241.0013

                          • Circ1.1nferential weld 16 degree data follows ************** At three quarter wall thickness *.****

Initial RTndt: -56 Delta RTndt: 166.88 and the adjusted RTndt: 177.17 Chemistry Factor: 225.8 AccUIUlated Fluence: 1.8E+19 ***The following results are for the plate base metal Neutron Fluence rate per EFPY: 9.7E+17 Surface fluence: 1.8E+19 RG 1.99 Adjusted Reference Temperature margin: ~.29 PTS Adjusted Reference Temperature: 272.2609 At one quarter wall thickness *******

                          • Plate Metal 16 degree data follows************** Delta RTndt: 230.7113 and the adjusted RTndt: 240.7413 Initial RTndt: -56 At three quarter wall thickness ******

Chemistry Factor: 225.8 Delta RTndt: 166.88 and the adjusted RTndt: ~

AccUIUlated Fluence: 1.8E+19 Neutron Fluence rate per EFPY: 9.7E+17 RG 1.99 Adjusted Reference Temperature margin: 66.03

FILE: PTCURVE.CSV Created: 07/08/94 PAGE: 1 of 4 . Length: 20275 bytes. Queued: 07/08/94

                                                    • Lines 1 to 105 ****************

Pressure T~erature Curve Analysis Program Pressure T~rature Curve Analysis Program Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties T~rature Measurement Error (Deg F): 0 :*. T~rature Measurement Error (Deg F): 0 Pressure Measurement Error CPSID): 0 Pressure Measurement Error CPSID): 0 Safety factor primary ment>rane stres~: 2 Safety factor primary ment>rane stress: 2 The following results are for the zerq ~Qf,e~axial weld, The. following results are for the thirty degree axial weld, At one-quarter wall thickness for heat1,1p, * *:.;./ *n *:

  • At one-quarter wall thickness for heatup Total accllll.llated f luence of 1. 18E+1f' ' . Total accllll.llated fluence of 1.185E+19 T~ deg F, 0 F/hr, 20 F/hr.,

'

~o F/~r, ,,60 F/hr, 80 F/hr, 100 F/hr, Teq> deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr,

,.,

50.0 100.0 459.7 I 480.1 458.0 '

476.7 I .;.:~::.:~ 455.2

{t70.9 454.0 468,3 I 452.9 466.1 50.0 100.0 459.6 480.0 457.9 476.5 456.4 473.5 455.2 470.8 453.9 468.2 452.9 466.0 150.0 522.3 515.2 I . 508.9 ~. 503.3 I 498~0 I 493.5 150.0 I 522.0 51lt.9 508.6 503.1 497.8 493.2 200.0 609.5 594.7 ' 581. 7 I . 570.3 559.3 549.9 200.0 608.8 594.1 I 581.1 569.8 558.8 549.4 250.0 789.5 759.0 732.0 I.; 708.5 685'.8 666.4 250.0 788.1 757.7 730.9 707.5 684.9 665.5 300.0 1161.0 ' 1098.1 1042.4 .. , 993.9 947.0 906.9 300.0 1158.2 1095.5 1040. 1 991.7 945.1 905.0 I 350.0 1909.2 1779.3 1664.4 1564.1 I 1467:4 I 1384.4 350.0 1903.4 1n4.o 1659.5 1559.6 1463.3 1380.7

  • 400.0 3493.3 I 3225.1 2987.8 2780.8 2581.0 2409.7 400.0 3481.2 3214.1 29n.1 2771.5 2572.6 2401.9 450.0 500.0 4378.9 I 4346.0 I 4183.0 I 4149.2 3992.9 3958.1 I 3812.7 3m.o ,

3626.0 3589.2 3453.2 3415.4 450.0 500.0 4378.9 4346.0 4183.0 4149.2 3992.9 3958. 1 3812.7 3777.0 3626.0 3589.2 . 3453.2

  • 3415.4
  • Pressure T~rature curve Analysis Program Pressure T~rature Curve Analysis Program Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties Test Case #1 EA*PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties T~rature Measurement Error (Deg F): 0 T~rature Measurement Error (Deg F): 0 Pressure Measurement Error (PSID): 0 Pressur*e Measurement Error CPSID): 0 Safety factor primary ment>rane stress: 2 Safety factor primary menbrane stress: 2 The following results are for the zero degree ax*i al weld, The following results are for the thirty degree axial weld, At three-quarter wall thickness for heatup At three-quarter wall thickness for heatup Total accllll.llated fluence of 1.18E+19 Total accllll.llated fluence of 1.185E+19 Teq> deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Teq> deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 ' 513.8 I 417.8 325.9 239.8 151.4 I 70.2 50.0 513.6 I 417.6 325.7 I 239.7 I 151.3 70.1 100.0 567.1 I 461.7 362.3 270.2 I 176.7 I 91.5 100.0 566.8 ' '461.4 362.0 270.0 176.5 91.4 150.0 6n.3 I 552.5 437.5 333.2 I 228.9 I 135.6 150.0 676.5 I 551.9 I 437.0 332.7 228.6 135.3 200.0 904.6 I 740.0 592.8 463.1 I 336.8 I 226.5 200.0 903.1 I 738.7 591.7 462.2 336.1 225.9 250.0 1374.1 1127 .1 913.4 731.3 I 559.6 414.2 250.0 1370.9 I 1124.5 I 911.2 729.5 558.1 413.0 300.0 2343.3 1926.4 1575.3 1285.1 1019.6 801.9 300.0 2336.7 1920.9 1570.8 1281.4 1016.5 799.3 350.0 4325.6 I 3557.7 2923.1 I 2409.6 I 1950.4 I 1583.3 350.0 4312.0 I 3546.4 2913.8 2401.8 1943.9 1577.9
  • 400.0 4411.8 I 4217.0 I 4028.1 I 3849.2 I 3663.7 I 3236.0 400.0 4411.8 I 4217.0 4028.1 3849.2 I 3663.7 3224.7 450.0 4378.9 I 4183.0 I 3992.9 I 3812.7 I 3626.0 I 3453.2 450.0 4378.9 I 4183.0 3992.9 3812.7 3626.0 3453.2
  • 500.0 4346.0 I 4149.2 I 3958.1 I 3777.0 I 3589.2 I 3415.4 500.0 4346.0 I 4149.2 3958. 1 3777.0 I 3589.2 3415.4
  • FILE: PTCURVE.CSV Created: 07/08/94
  • PAGE: 2 of 4 Length: 20275 bytes. Queued: 07/08/94
                                                      • Lines 105 to 209 ****************

Pressure Tl!IJl>erature Curve Analysis Program Pressure Tl!IJl>erature Curve Analysis Program Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties Tl!IJl>erature Measurement Error (Deg f): 0 Tl!IJl>erature Measurement Error (Deg f): 0 Pressure Measurement Error (PSID): 0 Pressure Measurement Error (PSID): 0 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the circumferential weld, The following results are for the base metal, At one-quarter wall thickness for heatup .** * ,. At one-quarter wall thickness for heatup Total accU11Jlated fluence of 1.BE+19. .,,. ** ', .~ Total accllllUlated fluence of 1.8E+19 Temp deg F, 0 F/hr, 20 F/hr, . 40 F/hr~ ,6o F/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr,

\ :!~

50.0 454.0 452.8 451.8 ... 450.9 I 450.0 449.2 50.0 454.1 I 452.9 451.8 450.9 450.0 449.3 100.0 468.4 466.0 463.8 I t:f\461. 9 I 460.1 458.6 100.0 468.5 466.1 463.9 462.0 460.2 458.6 150.0 498.2 I 493.1 I 488°07 I <484.8 I 481.0 , 477.8 150.0 498.4 , 493.3 488.9 485.0 481.2 478.0 200.0 559.6 I 549.2 540.0 I 532.0 I 524.2 517.6 200.0 560.0 549.6 540.4 532.3 524.5 517.9 250.0 686.4 I 665.0 646.0 629.4 613.4 , 599.7 250.0 687.4 , 665.8 , 646.7 630.1 614.0 600.3 300.0 I 948.3 I 904.0 864.7 83o.5 797.5 769.2 I 300.0 950.2 I 905.7 866.3 832.0 798.9 770.4 350.0 1470.0 1378.5 1297.5 1226.8 1158.6 1100.2 350.0 1474.0 1382.1 1300.8 1229.9 1161.4 1102. 7 400.0 2586.5 2397.5 2230.2 2084.3 , 1943.5 1822.8 400.0 2594.6 , 2404.9 2237.0 2090.6 1949.3 1828.1 450.0 4378.9 4183.o 3992.9 3812.7 3564.1 3314.8 450.0 4378.9 *I 4183.0 3992.9 3812.7 3576.0 3325.8 500.0 I . 4346.0 , 4149.2 3958.1 I 3m.o , 3589.2 3415.4 500.0 4346.0 , 4149.2 , 3958.1 3m.o 3589.2 3415.4 Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties Temperature Measurement Error (Deg f): 0 Temperature Measurement Error (Deg F): 0 Pressure Measurement Error CPSID): 0 Pressure Measurement Error CPSID): 0 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the circumferential weld, The following results are for the base metal, At three-quarter wall thickness for heatup At three-quarter wall thickness for heatyp Total accumulated f luence of 1.8E+19 Total accumulated fluence of 1.8E+19 Temp deg FI 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Tl!IJl> deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 499.6 , 406.0 316.1 231.6 , 144.6 , 64.5 , 50.0 499.7 , 406.1 316.2 231. 7 144.7 64.6 100.0 537.8 437.5 342.2 253.5 , 162.7 79.8 100.0 '"5'38T, 437.8 342.4 253.6 162.9 79.9 150.0 616.6 , 502.6 396.1 298.5 , 200.2 111.3 150.0 617.2 , 503.0 396.5 298.9 200.4 111. 5 200.0 779.5 , 636.8 507.3 391.6 , 277.4 176.4 200.0 780.6 , 637.8 508.1 392.2 , 278.0 176.9 250.0 1115.6 , 914.0 , 736.9 583.7 , 437.0 310.9 250.0 1118. 1 916.1 738.6 , 585.1 , 438.1 311.9 300.0 1809.8 1486.4 1210.9 980.3 766.4 588.5 300.0 1814.9 1490.6 , 1214.4 983.2. 768.8 590.5 350.0 , 3224.0 , 2649.2 2170.7 1780.2 , 1427.6 1142.7 350.0 3234.5 , ~65z.9 2177.9 1786.2 1432.6 1146. 9 400.0 4411.8 , 4217.0 4028.1 3471.0 , 2832.0 2326.3 400.0 4411.8 , 4217.0 , 4028.1 3483.4 2842.3 2334.9 450.0 4378.9 , 4183.0 3992.9 , 3812.7 , 3626.0 3453.2 450.0 4378.9 , 4183.0 3992.9 3812.7 3626.0 3453.2 500.0 4346.0 , 4149.2 3958.1 , 3777.0 , 3589.2 3415.4 500.0 4346.0 , 4149.2 3958. 1 3777.0 3589.2 3415.4

  • Pressure T~erature Curve Analysis Program Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties FILE: PTCURVE.CSV PAGE: 3 of 4 Length: 20275
                                                      • Lines bytes.

Created: 07/08/94 Queued: 07/08/94 209 to 313 ****************

Pressure T~rature Curve Analysis Program Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties T~rature Measurement Error (Deg f): 0 T~erature Measurement Error (Deg F): 0 Pressure Measurement Error CPSID): 0 Pressure Measurement Error (PSID): 0 Safety factor primary menbrane stress: 2 Safety factor primary menbrane stress: 2 The following results are for the zero degr~e axial weld, The following results are for the thirty degree axial weld, At one-quarter wall thickness for cool~** At one-quarter wall thickness for cooldown Total accumulated f luence of 1.18E+19 Total accumulated fluence of 1.185E+19

,.

T~ deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60' F/hr, 80 F/hr, 100 F/hr, T~ deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 459.7 401.9 342.4 277.9 , 218.7 151.6 50.0 459.6 401.8 , 342.3 277.8 218.6 151.5 100.0 480.1 423.6 I 365.7

  • 302.9 245.4 180.4 100.0 480.0 423.5 365.5 302.8 245.2 180.2 ,

150.0 522.3 468.6

  • 413.8 I 354.6 , 300.6 239.8 150.0 522.0 468.3 , 413.5 354.2 , 300.2 239.4 200.0 609.5 561.5 513.1 I 461.2 414.6 , 362.6 200.0 608.8 , 560.8 , 512.4 460.4 413.8 361.6 250.0 789.5 753.4 718.2 681.3 650.0 616.0 250.0 788.1 751.9 716.6 679.7 648.2 614.0 300.0 1161.0 1149.4 1141.5 1135.9 1135.8 1139.1 I 300.0 1158.2 1146.4 , 1138.3 1132. 4 1132. 1 1135. 2 350.0 1909.2 1948.1 1996.7 2055.4 2120.1 2200.4 350.0 1903.4 1941.9 1990.0 2048.3 2112.5 2192.2 400.0 3493.3 3636.5 3801.5 3974.4 , 3831.0 , 3668.1 400.0 3481.2 3623.7 3787.8 3974.4 3831.0 3668.1 450.0 4378.9 4239.4 4095.6 3939.2 3795.1 , 3631.4 450.0 , 4378.9 4239.4 4095.6 3939.2 3795. 1 3631 .4 500.0 4346.0 4205.9 4061.5 , 3904.5 3759.9 , 3595.7 500.0 4346.0 4205.9 4061.5 3904.5 3759.9 3595.7 Pressure T~rature Curve Analysis Program Pressure T~rature Curve Analysis Program Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties T~rature Measurement Error (Deg f): 0 T~erature Measurement Error (Deg F): 0 Pressure Measurement Error CPSID) £ 0 Pressure Measurement Error (PSID): 0 Safety factor primary menbrane stress: 2 Safety factor primary menbrane stress: 2 The following results are for the zero degree axial weld, The following results are for the thirty degree axial weld, At three-quarter wall thickness for cooldown At three-quarter wall thickness for cooldown Total accumulated fluence of 1. 18E+19 Total accumulated fluence of 1.185E+19 T~ deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 f/hr, T~ deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 513.8 , 459.1 403.9 345.5 , 293.3 236.2 50.0 513.6 458.9 , 403.7 345.2 293.0 235.8 100.0 567.1 520.3 , 474.4 427.6 388.0 347.3 100.0 , 566.8 519.9 I 473.9 , 427 .1 387.4 346.5 150.0 677.3 646.7 619.8 597.3 , 583.6 576.6 150.0 676.5 645.9 618.8 596. 1 582.2 575.1 200.0 904.6 , 907.7 920.2 947.5 , 987.3 1050.2 200.0 , 903.1 I 905.9 , 918.1 945.1 984.6 1046.9 250.0 1374.1 , 1446.4 1540.3 1670.7 , 1820.9 , 2027.9 250.0 1370.9 1442.8 1536. 1 1665.7 1815.2 2021.3 300.0 2343.3 2558.9 , 2820.7 3163.8 3542.0 , 3500.1 300.0 2336.7 2551.3 2812.0
  • 3153.6 3530.3 3500. 1 350.0 4325.6 4323.4 , 4181.3 4026.7 3884.1 3705.8 350.0 4312.0 , 4323.4 4181.3 4026.7 3884.1 3705.8 400.0 4411.8 4273.1 4130.1 3974.4 , 3831.0 3668.1 400.0 4411.8 4273.1 4130.1 3974.4 3831.0 3668.1 450.0 4378.9 4239.4 , 4095.6 3939.2 3795.1 3631.4 450.0 4378.9 4239.4 4095.6 3939.2 3795.1 3631.4 500.0 4346.0 4205.9 , 4061.5 3904.5 3759.9 3595.7 500.0 4346.0 4205.9 4061.5 3904.5 3759.9 3595.7
,*

FILE: PTCURVE.CSV Created: 07/08/94 PAGE: 4 of 4 . Length: 20275 bytes. Queued: 07/08/94

                                                    • Lines 313 to 416 ****************

..

Pressure Teq>erature Curve Analysis Program Pressure Teq>erature Curve Analysis Program Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 W/o measurement uncertainties Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties Teq>erature Measurement Error (Deg F): 0 Teq>erature Measurement Error (Deg F): 0 Pressure Measurement Error CPSID): 0 Pressure Measurement Error CPSID): 0 Safety factor primary ment>rane stress:_ 2 Safety factor primary ment>rane stress: 2 The following results are for the circL111ferential weld, The following results are for the base metal, At one-auarter wall thickness for coolijiin"*: *-.- ,;;- At one-quarter wall thickness for cooldown Total accllll.llated f luence of 1.8E+19'(:'.:_\': "' ;*::<; Total acclllUlated f luence of 1.8E+19 Teq> deg F, O f/hr, 20 F/hr,\,4o:F/hr~ 69 F/hr, 80 F/hr, 100 F/hr, Teq> deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 100.0 454.0 468.4 ,

395.8 411.2

  • . 336.0 >
  • 352.4 * .2~.6 ,

-.211.Q , 211.3 230.1 143.6 163.9

,

,

50.0 100.0 454.1 468.5 395.9 411.3 336.0 352.5 I 271.1 288.8 211.4 230.3 143. 7 I 164. 1 150.0 498.2 442.9  ;, 3Q6~3. ,.i.;,325.0 , 269.0 205.8 , 150.0 498.4 443.1 386.5 325.3 269.3 206. 1 200.0 559.6 508.4 ,; 456~3 -; ( '400.2 , 349.4 292.3

  • 200.0 560.0 508.8 456.8 400.7 I 350.0 292.9 250.0 , 686.4 643.6 , . 600.8 * ~~-~ , 515.2 , 470.9 , 250.0 , 687.4 644.5 601.9 , 556.5 516.5 472.2 300.0 948.3 , 922. 7 , 899.2 * * , 857.7 , 839.6 300.0 I 950.2 924.7 901.4 , 878.0 860.2 842.3 350.0 1470.0 1480.0 1496.3 1518. 1 1545.8 1582.0 350.0 1474.0 1484.2 1500.8 1523.0 1551.0 1587.6 400.0 2586.5 , 2670.0 2768.3 2883.9 3005.7 3154.0 400.0 , 2594.6 2678.7 2777.7 , 2893.9 3016.4 3165.5 450.0 4378.9 4239.4 4095.6 3939.2 3795.1 3631.4 450.0 4378.9 4239.4 4095.6 3939.2 3795.1 3631.4
  • 500.0 , . 4346.0 4205.9 , 4061.5 , 3904.5 , 3759.9 3595.7 , 500.0 4346.0 4205.9 4061.5 3904.5 I 3759.9 . 3595. 7
  • Pressure Teq>erature Curve Analysis Program Pressure Teq>erature Curve Analysis Program rest Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties Teq>erature Measurement Error (Deg F): 0 Teq>erature Measurement Error (Deg F): 0 Pressure Measurement Error CPSID): 0 Pressure Measurement Error CPSID): 0 Safety factor primary ment>rane stress: 2 Safety factor primary ment>rane stress: 2 The following results are for the circunferential weld, The following results are for the base metal, At three-quarter wall thickness for cooldown At three-quarter wall thickness for cooldown Total accllll.llated f luence of 1.8E+19 Total accllll.llated fluence of 1.8E+19 Teq> deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Teq> deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 499.6 442.8 385.1 323.6 268.1 206.6 , 50.0 499.7, 443.0 385.3 323.8 268.3 206.9 100.0 537.8 486.6 , 435.6 382.4 335.9 286.1 , 100.0 538.1 , 487.0 435.9 382.8 336.4 286.7 150.0 616.6 577.2 539.8 503.9 475.9 450.4 , 150.0 I 617.2 , 577.8 540.5 I 504.8 477.0 451.6 I 200.0 779.5 764.0 754.8 754.7 , 765.1 789.5 , 200.0 780.6 765.4 756.4 I 756.5 767.2 792.0 I 250.0 1115.6 1149.9 1198.9 , 1272.6 , 1362.0 1489.7 , 250.0 I 1118.1 , 1152.7 1202.2 1276.4 1366.4 1494.8 300.0 1809.8 , 1946.5 2115.9 , 2341.9 , 2594.6 2935.4 300.0 1814.9 , 1952.3 2122.6 2349.7
  • 2603.6 2946.0 350.0 3224.0 3572.4 , 3990.2 4026.7 , 3884.1 3705.8 350.0 3234.5 3584.4 4004.0 I 4026.7. 3884.1 3705.8 400.0 4411.8 4273.1 , 4130.1 , 3974.4 I 3831.0 3668.1 400.0 4411.8 , 4273.1 4130.1 I 3974.4 , 3831.0 3668. 1 4239.4 , 4239.4 ,

450.0 500.0 4378.9 I 4346.0 I 4205.9 I 4095.6 4061.5 3939.2 3904.5 I

I 3795.1 3759.9 3631.4 3595.7 450.0 ,

500.0 4378.9 ,

4346.0 I 4205.9 4095.6 4061.5 . 3939.2 ,

3904.5

  • 3795.1 3759.9 3631.4 3595.7
  • FILE: LWELD.CSV Created: 07/08/94 PAGE: 1 of 1 Length: 3871 bytes. Queued: 07/08/94
                                                    • Lines 1 to 70 ***************** *****

Pressure T~rature Curve Analysis Program Pressure TE!Rf>erature Curve Analysis Program Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties Test Case #1 EA-PAL-89-098-01 fluence of 1.8E19 w/o measurement uncertainties T~rature Measurement Error (Deg f): 0 TE!Rf>erature Measurement Error (Deg F): 0 Pressure Measurement Error CPSID): 0 Pressure Measurement Error (PSID): 0 Safety factor primary menbrane stress;. 2 Safety factor primary menbrane stress: 2 Limiting Weld for heatup ** Pressuriz~r:P.r~~sure; psia Limiting Weld for cooldown ** Pressurizer Pressure, psia

\* :'

"~~t~*.~r~. .~.\*. :~p::.*t.i.

Temp deg F, 0 F/hr, 20 f/hr, .~Q:'F/hi!~* ~-~~,'if/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 f/hr, 60 F/hr,. 80 F/hr, 100 F/hr,

. *:*:' * .: }.. :-: ~** 1::'.r~*~;.?:~;

  • 50.0 454.0 406.0 , \)16. ,. , :'/~231.6 , 144.6 64.5 50.0 454.0 395.8 336.0 271.0 211.3 ' 143.6 100.0 468.4 I 437.5 I */~42.i* I ::::,~53.5 162.7 ' 79.8 100.0 I 468.4 411.2 ' 352.4 288.6 230.1 163.9 150.0 498.2 I 493.1 ~* :3~~ 1 I ,.:-:'298.5 I 200.2 111.3 150.0 498.2 442.9 ' 386.3 325.0 269.0 205.8 200.0 559.6 549.2 , . '~01.. 3. <'Y:;s91.6 2n.4 176.4 I 200.0 559.6 508.4 456.3 400.2 I 349.4 292.3 250.0 686.4 665.0 I , 6#.Q *i '; 583. 7 437.0 310.9 250.0 686.4 643.6 600.8 555.3 515.2 470.9 300.0 948.3 904.0 86/f.7 ~*. ' ..830.5 766.4 588.5 300.0 948.3 922.7 899.2 875.7 857.7 839.6 350.0 1470.0 I 1378.5 '1297.5 I 1226.8 I 1158.6 1100.2 350.0 1470.0 1480.0 ' 1496.3 1518.1 1545.8 I 1582.0 400.0 2586.5 2397.5 2230.2 2084.3 1943.5 I 1822.8 ' 400.0 2586.5 2670.0 , 2768.3 2883.9 3005.7 3154.0 450.0 4378.9 4183.0 3992.9 3812.7 3564.1 3314.8 450.0 4378.9 4239.4 4095.6 3939.2 3795.1 3631.4 500.0 4346.0 I 4149.2 I 3958.l I 3777.0 I 3589.2 I 3415.4 500.0 4346.0 4205.9 I 4061.5 3904.5 3759.9 3595.7 3 3 3 3 3 ' 3 3 3 3 3 3 3 3 , 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ' 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 I 3 3 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 ., 1 1 1
  • Validation Case Purpose: Verify that the code correctly calculates the maximum allowed pressure to maintain the reactor vessel stress less than the yield strength (AS:ME App G equations are based on lineat elastic fracture mechanics). Higher thermal stresses may exist near the vessel wall surfaces where the liner temperature gradient assumption does not apply, but the approximation will be good for the 114 and 3/4 thickness locations.

The product of the modulus of elasticity (E) and the mean coefficient of thermal expansion(~) is obtained from Reference 2.16 (Group C curves). Reference 2.4, Table 3 Elastic Constants of Metals on page 5-5, give a range of Poisson's ratio (v) from 0.283 to 0.305 for several types of steel. A nominal value of 0.3 was selected for this analysis.

Hand Calculations:

heatup at 410 °F and 100 °F/hr 4tmax = -67.3 °F Tave = 410 - 67.3/2 = 376.35 tempave = Tave/100 = 3.7635 from Figure if Reference 2.16 Eam = 0.1942 kips/in2-°F O'T = 0.1942

  • ABS(-67.3)/(2(1-.3)) = 9.3307 kips/in2 = 9330.7 psi cooldown at 430 °F and 60 °F/hr
  • 4tmax = 31.8 °F Tave = 430 + 31.8/2 = 445.9 tempave = Tave/100 = 4.459 from Figure if Reference 2.16 Eam = 0.1958 kips/in2- °F O'T = 0.1958
  • ABS(31.8)/(2(1-.3)) = 4.447 kips/in2 = 4447 psi
  • Results:

heatup (k=l) performed at maximum allowed rate q=6 (100 °F/hr) first line: 114 thickness location second line: 3/5 thickness location calculate the same value at both locations because procedure uses the average wall temperature to calculate the product of Eam and the procedure uses the

. maximum wall ..1t to calculate the thermal stress cool down (k = 2) performed from q = 1 to the maximum allowed rate for that temperature at the 1/4 thickness location 1 RV downcomer temperature 2 q heatup/cooldown rate 3 k = 1 for heatup and k = 2 for cooldown 4 average RV metal temperature/100 5 product of Eam 6 thermal stress

)

  • Created: 07/01/94 ~2
.,

FILE: LTOPTST.CSV PAGE: 1 of 1 Length: 1376 bytes. Queued: 07/01/94 3

                                                    • Lines 1 to 32 ***************** *****

410. 6 410. 6 1

1 3.7635 3.7635 0.1941 0.1941 9330.8 9330.8 +-

410. 1 2 4.1000 0. 1950 0.0 410. 2 2 4.1505 0.1951 1407.4 410. 3 2 4.2025 0.1952 2858.3 410. 4 2 4.2590 0.1953 4436.8 410. 5 2 4.3110 0.1954 5891.4 410. 6 2 4.3700 0.1956 7543.6 420. 6 1 3.8635 0. 1944 9343.6 420. 6 1 3.8635 0.1944 9343.6 420. 1 2 4.2000 0.1952 o.o 420. 2 2 4.2505 0.1953 1409.0 420. 3 2 4.3025 0.1954 2861.6 420. 4 2 4.3590 0.1956 (~441.8

.*'

420. 5 2 4.4110 0. 1957 5897.8 420. 6 2 4.4700 0.1958 7551.7 430. 6 1 3.9635 0.1946 9356.0 430. 6 1 3.9635 0.1946 9356.0 430. 1 2 4.3000 o. 1954 0.0 430. 2 2 4.3505 0.1955 1410.6 430. 3 2 4.4025 0.1956 2864.8 430. 4 2 4.4590 0.1958 4446.6 ~

430. 5 2 4.5110 0.1959 5904.0 430. 6 2 4.5700 0.1960 7559.4 440. 6 1 4.0635 0.1949 9367.9 440. 6 1 4.0635 0.1949 9367.9 440. 1 2 4.4000 0.1956 0.0 440. 2 2 4.4505 0. 1957 1412.2 440. 3 2 4.5025 0. 1959 2867.8 440. 4 2 4.5590 0.1960 4451.2 440. 5 2 4.6110 0. 1961 5909.9 440. 6 2 4.6700 0.1962 7566.7

  • Validation Case Purpose: Verify that the limiting pressures are calculated and printed in the LTOP.CSV output file.

Results: The PTCURVE program was changed to delete the effect of the AS.ME Code Case N-514 so a direct comparison of the data in the PTCURVE.OUT file could be compared directly with the data in the LTOP.CSV file. The following two output listings show that the correct minimum values are printed in the LTOP file.

  • , .... :

FILE: LTOP.CSV Created: 08/18/94 17*

AGE: 1 of 1 Length: 4020 bytes. Queued: 08/18/94

                                                  • Lines 1 to 61 ***************** *****

EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID 450.0 2944.6 3448.2 3590.7 -- ____ __!!.. ...... _~* .... 6 460.0 3286.0 I 3440.5 3583.4 ' 6 6 ~

Temperature Measurement Error (Deg F): 0 470.0 3432.9 3432.9 3576.2 6 6 Pressure Measurement Error CPSID): 0 480.0 I 3425.3 3425.3 3569.1 6 6 Safety factor primary membrane stress: 2 490.0 3417.8 3417.8 3562.0 6 6 500.0 3410.4 3410.4 3554.9 6 6 Limiting weld for LTOP is the Circumferential weld (weld #3)

    • LTOP ** Pressurizer Pressure - psia Heat up Cool down Rate temperature, 1/4 t, 3/4 t, **-114 t, ,. Heatup, Cool down

~O.Q 462.9 410.9 341.6 ,*: 2 I 3 60.0 464.6 414.8 '343.6 2 3 70.0 466.6 419.3 345.9 2 3 80.0 469.0 424.5 348.6 2 3 90.0 471.7 430.5 '351.7 2 3 JQQ,Q 462.5 437.5 I 355.2 2 3 110.0 466.0 445.5 ,. 359.4 2 3 120.0 470.1 454.8 I ,' 364.1 2 3 130.0 474.8 I 465.5 369.7 2 3 140.0 480.2 I 477.9 376.0 2 3

]50.0 486.6 479.4 383.4 2 3 160.0 493.8 I 495.6 391.9 2 I 3 170.0 502.3 514.3 401.8 I 2 3 170.1 502.4 416.9 401.9 3 3 180.0 512.0 I 435.1 413.2 I 3 3 190.0 523.3 456.3 426.3 3 3 200.0 536.3 468.3 441.6 3 3 210.0 551.4 495.9 447.2 3 3 220.0 568.8 I 527.8 467.0 3 3 230.0 588.9 I 564.8 489.9 3 3 240.0 612.2 607.5 516.4 3 3 250.0 639.1 656.8 547.1 3 3 250.1 639.4 517.1 498.1 4 4 260.0 670.2 I 564.4 535.8 4 4 270.0 706.1 619.6 579.8 4 4 280.0 747.6 I 683.4 630.6 I 4 4 290.0 795.7 757.2 689.4 4 4 299.9 850.6 I 841.5 756.6 4 4 300.0 832.2 823.4 738.3 4 I 4 310.0 896.4 I 922.0 816.8 4 I 4 320.0 970.6 I 1035.9 907.6 4 4 330.0 1056.4 I 1167.6 1012.6 I 4 4 340.0 1155.6 I 1319.9 1133.9 4 4 349.9 1269.0 I 1494.0 1265.9 I 4 2 350.0 1270.2 943.9 1267.2 6 2 360.0 1400.0 1086.3 1402.8 6 1 370.0 1532.7 1251.0 1556.0 6 1 380.0 1662.9 I 1441.3 1733.1 I 6 1 390.0 1795.9 1661.4 1937.9 6 1 400.0 1949.1 1915.8 2135.8 6 1 410.0 2126.3 2209.9 2404.6 6 1 420.0 2289.4 2504.4 2715.4 6 1 430.0 2522.0 2890.6 2919.1 6* 1 440.0 2790.9 3168.~ 3313. 7 I 6 1

    • FILE: PTCURVEL.CSV Created: 08/16/94 13:16:40 AGE: 2 of 4 Length: 20151 bytes. Queued: 08/17/94 1 0 ~ I
                                                  • Lines 105 to 209 ***************** ****

Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID Temperature Measurement Error (Deg F): 0 Temperature Measurement Error (Deg F): 0 Pressure Measurement Error (PSID): 0 Pressure Measurement Error (PSID): 0 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the circumferential weld, The following results are for the base metal, At one-quarter wall thickness for heatup At one-quarter wall thickness for heatup Total accumulated fluence of 2.192E+19 Total accumulated fluence of 2.192E+19 Temp deg F, 0 F/hr, 20 F/hr, 40 ~/hr, 6.0 f/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 462.9 , 532.8 50.0 472.8 541. 7 I 620.7 695.8 773.9 846.4 100.0 462.5 , 543.4 100.0 482.5

  • 561.8, 639.1 712.7 789.4 , 860.6 150.0 41J6.6, 565.4 150.0 528.0 603.3 677.1 747.7 821.4 890.1 200.0 -rn:!'" I 610.8 .0 200.0 622.0 689.0 , 755.6 819.8 , 887.4 , 950.9 250.0 -m:;-, 704.6 769.8 250.0 815.9 866.0 I 917.6 968.8 , 1023.8 1076.4 300.0 ~. 879.2 928.1 300.0 1197 .4 1212.5 , 1233.2 1257.3 , 1286.3 , 1316.6 350.0 i27ci:'2' , 1279.0 1294.0 , 350.0 2024.2 1967.2 , 1923.9 1892.4 , 1867.6 , 1851.8 mn, 2904.2 400.0 450.0 500.0 I

3769.8 ,

4339.7 I 2104.5 3552.2 4143.1 2049.6 3366.3 3952.3

. 400.0 450.0 500.0 3480.0 4372.5 4339.7 3287.7 3124.2 4176.9 , 3987.1 4143.1

  • 3952.3 2987.4 3807.2 3771. 5

,

2860.7 3620.7 3583.9

,

,

3448.2 3410.4 Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID Temperature Measurement Error (Deg F): 0 Temperature Measurement Error (Deg F): 0 Pressure Measurement Error (PSID): 0 Pressure Measurement Error (PSID): 0 Safety factor primary membrane stress: 2 Safety factor primary menbrane stress: 2 The following results are for the circumferential weld, The following results are for the base metal, At three-quarter wall thickness for heatup At three-quarter wall thickness for heatup Total accumulated fluence of 2.192E+19 Total accUITlulated fluence of 2.192E+19 Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 492.4 410.9 , 50.0 505.9 422.3 , 329.2 241.9 152.0 69.4 100.0 , 523.8 ~. 100.0 551.6 460.9 , 361.2 268.6 174.3 88.2 150.0 200.0

  • 588.6 722.3 rn..

589.7 468.3 ,

150.0 200.0 645.9 840.6 526.7 687.2 I

,

427.3 549.0 ,

323.9 438.0 220.2 314.9 126.9 206.7 250.0 , 998.4 817.3 656.8

  • 250.0 1242.6 , 1018.7 I 823.6 656.2 497.3 371.6 300.0 350.0
  • 1549.4 2677.8 1268.4 2238.9 mrr.

1830.9 300.0 350.0 2053.6 3513.6 1684.2 3042.3

,

,

1371.5 2496.6 1111.5 2090.7 872.3 1685.6 674.8 1360.3 400.0 , 4405.3 3957.3 3255. 1 400.0 4405.3 4210.9 , 4022.3 3835.8 3138.0 2726.1 450.0 , 4372.5 4176.9 3987 .1 450.0 4372.5 4176.9 I 3987. 1 3807.2 3620.7 3448.2 500.0

  • 4339.7 4143. 1 3952.3 500.0 4339.7 4143. 1 , 3952.3 3771.5 3583.9 3410.4
    • FILE: PTCURVEL.CSV Created: 08/16/94 13:16:40 AGE: 4 of 4 Length: 20151 bytes. Queued: 08/17/94 1
                                                  • Lines 313 to 416 ***************** ****

Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9*plus 6 EFPY w/o uncertainties & Ref vessel IO EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID Temperature Measurement Error (Deg F): 0 Temperature Measurement Error (Deg F): 0 Pressure Measurement Error (PSID): 0 Pressure Measurement Error (PSID): 0 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the circumferential weld, The following results are for the base metal, At one-quarter wall thickness for cooldowg At one-quarter wall thickness for cooldown Total accumulated fluence of 2.192E+19 ** Total accumulated fluence of 2.192E+19 Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr:, 60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 462.9 403. 1 341.6 I 50.0 472.8 413.7 353.0 287.1 226.5 158.0 100.0 462.5 415.8 ~. 100.0 482.5 437.8 378.7 314.7 256. 1 189.8 150.0 486.6 442.2 383.4 I 150.0 528.0 474.9 431.9 371.8 317. 1 255.5 200.0 536.3 483.7 ~. 200.0 622.0 575.0 527.6 476.9 431.5 391. 1 250.0 639.1 593.2 ..fil:.l.., 250.0 815.9 781.7 748.6 714. 1 685. 1 653.9 300.0 832.2 300.0 1197 .4 1185. 9 1185.0 1189.8 1198.8 350.0 400.0 1270.2 2135.8

. 800.3

  • 1267.2 I 2191.3 769.8 1268.9 2258.3 350.0 400.0 2024.2 3480.0 1189.5 2070.8 3628.5 2128.0 3798.9 2157.2 3947.7 2230.5 3797.7 2320.9 3627.3 450.0 3769.8 3937.4 4076.1 450.0 4372.5 4226.6 4076. 1 3912.5 3761.8 3590.7 500.0 4339.7 4193.1 4042. 1 500.0 4339.7 4193.1 4042.1 3877.9 3726.6 3554.9 Pressure Temperature Curve Analysis Program Pressure Temperature curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY w/o uncertainties & Ref vessel ID Temperature Measurement Error (Deg F): 0 Temperature Measurement Error (Deg F): 0 Pressure Measurement Error (PSID): 0 Pressure Measurement Error (PSID): 0 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the circumferential weld, The following results are for the base metal, At three-quarter wall thickness for cooldown At three-quarter wall thickness for cooldown Total accumulated f luence of 2.192E+19 Total accumulated fluence of 2.192E+19 Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 492.4 558.8 . 627.7 703.5 774.2 855.7 50.0 505.9 574.2 645.4 724.2 798.1 883.7 100.0 523.8 594.8 669.1 751.8 829.9 921:0 100.0 551.6 626.6 705.8 794.5 879.2 978.8 150.0 588.6 669.1 754.7 851.6 944.9 1055.9 150.0 645.9 734.8 830.3 939.8 1046.6 1175 .2 200.0 722.3 822.5 931.3 1057.5 1182.4 1334.4 200.0 840.6 958.3 1087.5 1239.8 1392.4 1580.7 250.0 998.4 1139.4 1296.0 1482.8 1672.6 1909.4 250.0 1242.6 1419.7 1618.6 1859.0 2106.2 2375.2 300.0 1549.4 1774.6 2030.0 2300.2 2618.3 3022.9 300.0 2053.6 2311.3 2648.1 3063.3 3321. 1 3718.4 350.0 2677.8 3069.8 3343.2 3875.4 3836.9 3664.8 350.0 3513.6 4029.6 4155.0 3989.4 3836.9 3664.8 400.0 4405.3 4260.2 4110.5 3947.7 3797.7 3627.3 400.0 4405.3 4260.2 4110.5 3947.7 3797.7 3627.3 450.0 4372.5 4226.6 4076. 1 3912.5 3761.8 3590.7 450.0 4372. 5 4226.6 4076.1 3912.5 3761.8 3590.7 500.0 4339.7 4193. 1 4042.1 3877.9 3726.6 3554.9 500.0 4339.7 4193. 1 4042.1 3877.9 3726.6 3554.9

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 41 Rev # ......:O~--

Appendix 6.4 PTCURVE Results - Operating Curves (8 un-numbered pages attached)

  • ILE: PTCURVE.DAT Created: 06/20/94 10*

AGE: 1 of 1 . Length: 249 bytes. Queued: 08/17/94

                                                  • Lines 1 to 6 ***************** ****
  • EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID 6 8.5 86.25 94.75 .34 2.8 30 2.0

-56 225 1.17E19 0.066E19 66

-56 225 1.19E19 0.063E19 66

-56 228 1.61E19 0.097E19 66

-0 165 1.61E19 0.097E19 34

    • FILE: PTCURVE.OUT Created: 08/16/9
  • PAGE: 1 of 1 . Length: 3110 bytes. Queued: 08/17/~
                                                        • Lines 1 to 81 *************** *******
  • Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID Effective Full Power Years: 6 Vessel thickness: 8.5 inches ........ The results for adjusted Reference Temperatures follow ....

Vessel inner radius: 86.25 inches Vessel outer radius: 94.75 inches ***The following results are for the zero degree axial weld Thermal stress to stress intensification factor: .34 Surface fluence: 1.566E+19 Membrane stress to stress intensification factor: 2.8 PTS Adjusted Reference Temperature: 262.8889 Temperature Measurement Error (Deg f): -5 ' At one quarter wall thickness ...... .

Pressure Measurement Error CPSID): -30' Delta RTndt: 221.1239 and the adjusted RTndt: 231.1~39 Safety factor primary membrane stress: 2 ', At three quarter wall thickness ..... .

Delta RTndt: 157.9838 and the adjusted RTndt: 167.9838

                          • Axial weld zero degree data' 'fol l~ws **************

Initial RTndt: -56 , , ' ***The following results are for the thirty degree axial weld Chemistry Factor: 225 Surface fluence: 1.568E+19 Accumulated Fluence: 1.17E+19 PTS Adjusted Reference Temperature: 262.9667 Neutron Fluence rate per EFPY: 6.6E+17 , At one quarter wall thickness ...... .

RG 1. 99 Adjusted Reference Temperature margin:*' 66 Delta RTndt: 221.2044 and the adjusted RTndt: 231.2044 At three quarter wall thickness ..... .

                          • Axial weld 30 degree data follows************** Delta RTndt: 158.0592 and the adjusted RTndt: 168.0592 Initial RTndt: -56 Chemistry Factor: 225 ***,The following results are for the circumferential weld Accumulated Fluence: 1.19E+19 Surface fluence: 2.192E+19 Neutron Flence rate per EFPY: 6.3E+17 PTS Adjusted Reference Temperature: 286.5368 RG 1.99 Adjusted Reference Temperature margin: 66 At one quarter wall thickness ....*..

Delta RTndt: 245.4305 and the adjusted RTndt: 255.4305

                          • Circumferential weld 16 degree data follows************** At three quarter wall thickness ..... .

Initial RTndt: -56 Delta RTndt: 180.6528 and the adjusted RTndt: 190.6528 Chemistry Factor: 228 Accumulated Fluence: 1.61E+19 ***The following results are for the plate base metal Neutron Fluence rate per EFPY: 9.7E+17 Surface fluence: 2.192E+19 RG 1.99 Adjusted Reference Temperature margin: 66 PTS Adjusted Reference Temperature: 234.1253 At one quarter wall thickness ...... .

                          • Plate Metal 16 degree data follows************** Delta RTndt: 177.6142 and the adjusted RTndt: 211.6142 Initial RTndt: 0 At three quarter wall thickness ..... .

Chemistry Factor: 165 Delta RTndt: 130.7356 and the adjusted RTndt: 164.7356 A1ccumulated Fluence: 1.61E+19 Neutron Fluence rate per EFPY: 9.7E+17 RG 1.99 Adjusted Reference Temperature margin: 34

FILE: LWELD.CSV Created: 08/16/94-6:12 PAGE: 1 of 1 . Length: 3857 bytes. Queued: 08/17/94 8

                                                    • Lines 1 to 70 **************** *****
  • Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID

-5 Temperature Measurement Error (Deg F): -5 Temperature Measurement Error (Deg F): -30 Pressure Measurement Error (PSID): -30 Pressure Measurement Error (PSID):

2 Safety factor primary membrane stress: 2 Safety factor primary membrane stress:

Limiting Weld for heatup ** Pressurizer Pressure, psi a Limiting Weld for cooldown ** Pressurizer Pressure, psi a 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 33.1 50.0 432.1 372.2

  • 310.7 243.9 182.5 112 .8
  • 50.0 432.1 379.2 288.4 202.8 114.5 I I 45.1 100.0 430.9 384.1 323.4 257.5 197.0 128.5 100.0 430.9 403.9 I 308.8 219.9 128.7 I 160.9 158.0 69.8 150.0 453.3 408.6 349.6
  • 285.6 227 .1 150.0 453.3 I 454.8 351.0 255.2 I I 227.7 I

328.1 218.5 120.8 200.0 499.6 446.5

  • 403.7 343.7 289.2 200.0 499.6 544.7 I 438.1 I I 450.7 405.6 365.7 601.2 465.3 343.5 226.1 250.0 595.1 548.3 I 501.2 250.0 I 595.1 I 661.9 I 644.6 614.1 823.0 874.0 749.2 566.3 412.2 300.0 773.4 739.6 I 707.0
  • 673.1 300.0 I 773.4 I I I 1171.2 1171. 5 1177.4 1187.7 1180.8 1194.8 1214.4 1237.7 1085.8 850.0 350.0 1180 .8 1173.9
  • 350.0 I I I I I 2070.4
  • 2091.0 2160.6 2236.1 2329.3
  • 400.0 2022.0 1962.5 1917.1 1883.7 I 1857. 1 1754.0 I 400.0 2022.0 I I I 2761.7 450.0 3503.5 3655.5
  • 3829.9 3882.5 3731.8 3560.7 450.0 3503.5 3306.5 3138.9 I 2998.5 I 2868.3 I

3553.9 3380.4 500.0 4309.7 4163.1 4012. 1 3847.9 3696.6 3524.9 500.0 I 4309.7 I 4113.1 3922.3 3741.5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 I

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 1 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 I

    • FILE: LTOP.CSV Created: 08/16/.6:12

.

    • PAGE: 1 of 1 . Length: 4022 bytes. Queued: 08/17/ 9:18
  • ***************************** Lines 1 to 61 ************** ********

EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID 450.0 3044.8 3718.8 3860.8 6 1 Temperature Measurement Error (Deg F): 460.0 3394.0 3758.5 3915.7 6

-5 6 Pressure Measurement Error 470.0 3750.1 3750.1 3907.8 6 (PSID): -30 I 6

Safety factor primary membrane stress: 480.0 3741.8 , 3741.8 3899.9 6 6 2 490.0 3733.5 3733.5 3892.1 6 6 Limiting weld for LTOP is the Circumferential weld (weld #3) 500.0 3725.3 3725.3 3884.3 6 6

    • LTOP ** Pressurizer Pressure - psia Heat up Cool down Rate temperature, 1/4 t, 3/4 t, 1/4 t, Heat up, 50.0 Cool down 480.3 422.1 I 346.8 2 3 60.0 482.1 426.1 348.9 I 2 70.0 3 484.2 I 430.7 351.2 2 3 80.0 486.6 I 436.0 354.0 2 3 90.0 I 489.4 442.2 I . 357.1 2 3 100.0 I 479.0 449.3 360.8 I 2 3 110.0 I 482.6 457.5 365.0 2 120.0 3 486.8 467.0 369.9 I 2 3 130.0 491.6 I 478.0 375.5 I 2 140.0 3 497.2 I 490.6 382.0 2 3 150.0 503.6 505.3 389.6 2 3 160.0 511. 1 508.0 398.3 2 170.0 3 519. 7 I 527.1 408.4 I 2 3 170.1 I 519.8 I 421.6 408.5 3 180.0 3 529.7 440.2 420.0 I 3 3 190.0 541.2 461.9 433.5 3 200.0 3 554.6 486.9 449.1 3 3 210.0 570.0 501.8 454.1 I 3 220.0 3 587.8 534.4 474.4 I 3 3 230.0 608.4 572.2 497.9 3 240.0 I 3 632.2 615.9 525.0 3 3 250.0 659.7 I 666.4 I 556.4 I 3 250.1 3 660.0 I 517.3 501.2 I 4 4 260.0 691.5 I 565.7 539.8 4 270.0 4 728.3 I 622.2 584.7 I 4 4 280.0 770.8 687.4 I 636.7 4 290.0 4 819.9 I 762.9 696.9 I 4 4 299.9 876.1 I 849.1 765.6 4 300.0 4 857.7 I 831.1 747.3 4 4 310.0 I 923.4 931.9 827.7 4 320.0 4 999.3 1048.5 920.6 4 4 330.0 1087 .1 I 1183 .2 1027.9 4 340.0 I 4 1188.5 1339.0 1152.0 4 4 349.9 1304.6 I 1517.1 1293.8 I 4 350.0 3 1305.8 942.0 1295.2 I 6 3 360.0 I 1441.4 1087.7 1441.4 6 1 370.0 1587.0 , 1256.2 1598.2 6 380.0 1 1732.1 , 1450.9 1779.4 , 6 1 390.0 1873.9 1676.0 1988.9 6 400.0 1 2030.6 1936.3 2231.1 6 1 410.0 2211. 9 2237 .2 I 2465.8 6 420.0 1 2377. 7 2538.5 2783.8 6 1 430.0 2615.6 I 2933.5 3100.2 6 2 440.0 2890.7 3217 .2 3394.1 6 1
    • FILE: PTCURVE.CSV Created: 08/1.26:12
    • PAGE: 1 of 4 Length: 20183 bytes . Queued: 08/1 .09:51
                                                          • Lines 1 to 105 ************** **********

Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID Temperature Measurement Error (Deg F): -5 Temperature Measurement Error (Deg F): -5 Pressure Measurement Error (PSID): -30 Pressure Measurement Error (PSID): -30 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the zero degree axial weld, The following results are for the thirty degree .axial weld, At one-quarter wall thickness for heatup At one-quarter wall thickness for heatup Total accumulated fluence of 1.566E+19 Total accumulated f luence of 1.568E+19 Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr,; 60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 1

50.0 436.5 I 506.0' I 585.5 , 661.1 739.6 812.4 50.0 436.5 506.0 585.5 661 .0 739.5 812.3 100.0 I 439.8 520.1,: ., 598.4' ,,. 672.9 750.4 822.3 100.0 439.7 520.1 598.4 672.9 750.4 822.3 150.0 I 471.7 549.5,' 625.Q, I 1, 697.4 772.8 843.0 150.0 471.6 549.1 625.0 697.3 772.8 842.9 200.0 537.5 609.3 I 680.0'. ~. 748.0 819.1 885.6 200.0 537.3 609.2 679.9 747.9 819.0 885.5 250.0 673.4 733_4,,,; 793.6 ;:.1. 852.4 I 914.7 973.6 250.0 673.1 733.1 793.4 852.1 914.5 973.4 300.0 I 935.1 9705*:, 1009

  • 1 . 1*: 1049
  • 0 ,

I 1093.0 1136.3 . 300.0 934.5 970.0 I 1008.6 1048.5 1092.6 1135.9 350.0 I 1514.6 1499 .5: I 1493.3 i l 1494.1 I 1500.4 1511.4 350.0 1513.3 1498.3

  • 1492.2 1493.0 1499.5 1510.5 400.0 I 2662.4 2544.9 '; 2448.0 Ii 2369.5 2299.4 2244.5 400.0 2659.7 2542.5 2445.7 2367.5 2297.5 2242.8 450.0' ' 4342.5 I 4146.<<i!:' 3957.1 I .c3777.2 3590.7 3418.2 450.0 4342.5 4146.9 I 3957. 1 3777.2 3590.7 3418.2 500.0 I 4309.7 I 4113.1 I 3922.3 3741.5 I 3553.9 3380.4 500.0 4309.7 4113.1 I 3922.3 3741.5 3553.9 3380.4 Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID Temperature Measurement Error (Deg F): -5 Temperature Measurement Error (Deg F): -5 Pressure Measurement Error CPSID): -30 Pressure Measurement Error (PSID): -30 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the zero degree axial weld, The following results are for the thirty degree axial weld, At three-quarter wall thickness for heatup At three-quarter wall thickness for heatup Total accumulated fluence of 1.566E+19 Total accumulated fluence of 1.568E+19 Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 471.1 388.2 295.8 209.0 I 119. 7 37.5 50.0 471.0 388.2 295.8 209.0 119.7 37.4 100.0 511.6 I 422.5 324.2 232.8 ' 139.4 54.1 100.0 511.5 I 422.4 I 324.2 232.7 139.4 54.1 150.0 595.2 479.7 382.8 281.8 I 180. 1 88.4 150.0 595 .1 479.5 I 382.7 281.7 180.0 88.3 200.0 I 768.0 622. 1 490.0 383.1 I 264.2 159.3 200.0 767.6 621.8 I 489.7 382.8 264.0 159.1 I 250.0 1124.7 916.2 733.6 576.0 425.6 305.6 250.0 1123.9 I 915.6 I 733 .1 575.6 425.3 305 .3 300.0 1842.2 I 1504.5 1217.5 977.8 I 756.2 I 572.3 300.0 1840.6 1503.3 1216.5 976.9 755.4 571.6 350.0 I 3134.0 I 2708.8 2215.2 1846.7 I 1477.8 1180.4 350.0 3131.0 2706.2 2213. 1 1844.8 1476.3 1179.1 400.0 I 4375.3 4180.9 3992.3 3393.3 2914.6 2392.2 400.0 4375 .3 4180.9 I 3992.3 3389.8 2911. 5 2389.6 450.0 500.0 4342.5 4309.7 I 4146.9 4113
  • 1 I 3957.1 3922.3 3777.2
  • 3590.7 3741.5 I 3553.9 3418.2 3380.4 450.0 500.0 4342.5 4309.7 4113.1 .

4146.9

  • 3957.1 3922.3 3777.2 3741.5 3590.7 3553.9 3418.2 3380.4
  • FILE: PTCURVE.CSV Created: 08/16/94.:12 PAGE: 2 of 4 Length: 20183 bytes. Queued: 08/17/94 1
                                                    • Lines 105 to 209 **************** *****

.*

Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID Temperature Measurement Error (Deg F): -5 Temperature Measurement Error (Deg F): -5 Pressure Measurement Error CPSID): -30 Pressure Measurement Error (PSID): -30 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the circumferential weld, The following results are for the base metal, At one-quarter wall thickness for heatup At one-quarter wall thickness for heatup Total accumulated f luence of 2.192E+19 Total accumulated fluence of 2.192E+19 Te~degF, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, O F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 432.1 502.1 581.9 657.7 736.5 809.6 50.0 441.4 510.3 589.5 664.7 742.9 815.4 I 100.0 430.9 512.0 591.0 I 666.1 744.2 816.6 100.0 449.6 529.0 I 606.6 680.4 757.3 828.7 I 150.0 453.3 I 532.4 I 609.7 I

  • 683.3 759.9 I 831.1 150.0 I 491.9 567.7 I 641.9 712.9 787.0 856.1 200.0 499.6 574.7 I 648.4 718.8 792.5 861.1 200.0 579.2 647.4 I 714.9 780.0 848.5 912.6 250.0 595.1 661.9 728.2 I 792.2 859.6 I 922.9 I 250.0 I 759.6 812.0 865.6 918.6 975.3 1029.4 300.0 773.4 I 823.0 874.0 I 924.8 979.4 I 1031.6 300.0 I 1113.1 1133.0 1157.8 1185.6 1218. 1 1251.5 350.0 1180 .8 1194 .8 1214.4 I 1237.7 1265.8 I 1295.3 I 350.0 I 1882.1 1834.8 I 1800.2 I 1776.3 1758.8 1749.2 400.0 2022.0 1962.5 I 1917. 1 1883.7 1857. 1 1839.7 400.0 3233.9 3060.5 I 2913.7 2791.4 2823.4 2727.0 450.0 3503.5 I 3306.5 3138.9 I 2998.5 2868.3 I 2761.7 I 450.0 4342.5 4146.9 3957. 1 3777.2 3590.7 3418.2 500.0 4309.7 4113.1 I 3922.3 3741.5 3553.9 3380.4 500.0 4309.7 4113 .1 3922.3 3741.5 3553.9 3380.4 Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID Temperature Measurement Error (Deg f): -5 Temperature Measurement Error (Deg f): -5 Pressure Measurement Error (PSID): -30 Pressure Measurement Error CPSID): -30 Safety factor primary membrane stress: 2 Safety factor primary membra~e stress: 2 The following results are for the circumferential weld, The following results are for the base metal, At three-quarter wall thickness for heatup At three-quarter wall thickness for heatup Total accumulated fluence of 2.192E+19 Total accumulated fluence of 2.192E+19 TelJ¥l deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 460.4 I 379.2 I 288.4 202.8 114.5 33.1 50.0 I 472.9 389.8 I 297.1 210.1 120.6 38.2 100.0 489.6 403.9 308.8 219.9 128.7 45.1 100.0 515.4 425.7 I 326.9 235.0 141.2 55.6 150.0 549.8 454.8 351.0 255.2 158.0 I 69.8 150.0 603.1 486.1 I 388.3 286.4 183.9 91.6 200.0 674.1 544.7 I 438.1 I 328.1 218.5 120.8 200.0 784.2 635.4 501.0 392.5 272.1 165.9 250.0 930.9 756.5 601.2 465.3 343.5 226.1 250.0 1158.0 943.7 I 756.4 I 595.1 441.5 319.3 300.0 1442.1 I 1174 .6 944.3 I 749.2 566.3 412.2 300.0 I 1911.0 1561.3 1264.6 1017.2 788.8 599.8 350.0 2491.0 2077.3 I 1691.9 1374.7 I 1085.8 850.0 350.0 3266.7 2824.0 I 2310.6 1927.9 1545.3 1237.3 400.0 4375.3 3673.6 3015.1 I 2618.1 2158.4 1754.0 400.0 4375.3 4180.9 3992.3 3549.9 3051.5 2507.6 450.0 4342.5 4146.9 I 3957.1 3777.2 3590.7 3374.4 450.0 4342.5 4146.9 I 3957. 1 3777.2 3590.7 3418.2 500.0 4309.7 4113.1 3922.3 3741.5 3553.9 3380.4 500.0 4309.7 I 4113.1 I 3922.3 I 3741. 5 3553.9 3380.4
    • FILE: PTCURVE.CSV -
  • Created: 08/16/.:12
  • PAGE: 3 of 4 Length: 20183 bytes. Queued: 08/17/ :51
                                                        • Lines 209 to 313 *************** ********

Pressure Temperature curve Analysis Program Pressure Temperature curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID Temperature Measurement Error (Deg F): -5 Temperature Measurement Error (Deg f): -5 Pressure Measurement Error (PSID): -30 Pressure Measurement Error (PSID): -30 Safety factor primary membrane stress: 2 Safety factor primary membrane stress:* 2 The following results are for the zero d~gree axial weld, The following results are for the thirty degree axial weld, At one-quarter wall thickness for coo~down At one-quarter wall thickness for cooldown

  • ,

Total accumulated fluence of 1.566E+19 '.'

Total accumulated fluence of 1.568E+19

"  :-i_!.\Tt.*

Temp deg F, *Of/hr, 1 20 F/hr,

  • 40 F/hr, '. :60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, O F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr,

'.* :*\l.!

50.0 I 436.5 377.0 315.7 ,*::) 249.3 I 188.2 119.0 50.0 436.5 I 376.9 315 .7 249.3 188.2 119. 0 100.0 439.8 393.8 333.8

.

  • I['

':\ 268. 7 208.9 141.3 100.0 439.7 393.8 333.7 268.6 208.9 141.3 150.0 471. 7 416.7 371. t ., .[ 308. 7 251. 7 I 187.4 150.0 I 471.6 I 416.6 371.0 308.6 251.6 187.3 200.0 537.5 I 486.9 435~5 :~I' 391.3 340.0 I 282.5 200.0 537.3 I 486.7 435.4 391.1 339.8 282.2 250.0 673.4 631.8 590.4 ~:1.i 546.5 508.0 465.5 250.0 673.1 631.5 590. 1 546.2 507.6 465.1 300.0 I 935.1 912.0 I 891.2 : 870.9 1 I 856.1 I 841.8 300.0 934.5 I 911.3 890.5 870 .1 855.2 I 840.9 350.0 1514.6 1529.7 I 1551.5 ' 1579.8 I 1613.9 1657.7 350.0 1513.3 1528.3 1550.0 I 1578.2 1612.2 1655.9 iI 400.0 I 2662.4 2754.6 2862.5 2836.0 2962.1 3115.1 400.0 2659.7 I 2751.8 2859.5 2832.9 2958.8 3111. 5 450.0 *, 4342.5 I 4196.6 4046.1 I

  • 3882.5 3731.8 I 3560.7 450.0 4342.5 I 4196.6 4046.1 3882.5 3731.8 3560.7 500.0 I 4309.7 4163.1 4012. 1 I : 3847 .9 I 3696.6 I 3524.9 500.0 4309.7 I 4163.1 4012. 1 3847.9 3696.6 3524.9 I;

Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID

'I Temperature Measurement Error (Deg F): -5 1* Temperature Measurement Error (Deg F): -5 Pressure Measurement Error (PSID): -30 1 Pressure Measurement Error (PSID): -30 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the zero degree axial weld, The following results are for the thirty degree axial weld, At three-quarter wall thickness for cooldown ' At three-quarter wall thickness for cooldown Total accumulated fluence of 1.566E+19 Total accumulated fluence of 1.568E+19 Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, O F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 471.1 538.6 609.1 I 686.7 I 759.5 I 843.6 50.0 471.0 I 538.6 609.0 686.7 759.4 843.5 100.0 I 511.6 585.2 I 662.6 I 749.2 831.5 I 928.0 100.0

  • 511.5 I 585.1 662.5 749.0 831.3 927.8 150.0 595.2 681.2 773.1 878.1 I 980.0 I 1102.3 I 150.0 595.1 I 681.0 772.9 877.8 979.7 1101.9 200.0 768.0 879.4 1001.3 I 1 1144.2 I 1286.8 1462.1 I 200.0 767.6 I 879.0 1000.8 1143.6 1286.1 1461.3 250.0 1124.7 1288.8 1472.5 I 1693.7 I 1920.2 I 2205.0 250.0 1123 .9 I 1288.0 I 1471.5 I 1692.5 1918.8 2203.4 300.0 I 1842.2 2115.1 2382.6 2758.7 2990.4 I 3467.3 300.0 1840.6 2113.3 2380.6 2756.3 2987.8 3464.2 350.0 3134.0 3598.3 4125.0 I 3959.4 I 3806.9 I 3634.8 350.0 3131.0 I 3594.8 4125.0 I 3959.4 3806.9 3634.8 400.0 4375.3 4230.2 4080.5 3917.7 I 3767. 7 I 3597.3 400.0 4375.3 I 4230.2 4080.5 3917.7 3767.7 3597.3 450.0 I 4342.5 4196.6 4046.1 I 3882.5 3731.8 I 3560.7 450.0 I 4342.5 I 4196.6 4046.1 I 3882.5 3731.8 3560.7 500.0 4309.7 4163.1 I 4012.1 I 3847.9 I 3696.6 I 3524.9 500.0 4309.7 I 4163.1 I 4012. 1 3847.9
  • 3696.6 3524.9
  • FILE: PTCURVE.CSV Created: 08/16/94-:12 PAGE: 4 of 4 . Length: 20183 bytes. Queued: 08/17/94 51
                                                    • Lines 313 to 416 **************** *****
  • Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID Temperature Measurement Error (Deg F): -5 Temperature Measurement Error (Deg F): -5 Pressure Measurement Error CPSID): -30 Pressure Measurement Error (PSID): -30 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the circumferential weld, The following results are for the base metal, At one-quarter wall thickness for cooldown At one-quarter wall thickness for cooldown Total accumulated fluence of 2.192E+19 Total accumulated fluence of 2.192E+19 Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 432.1 372.2 310.7 243.9 182.5 112.8 50.0 441.4 382.1 321.3 255.2 194.6 125.9 100.0 I 430.9 384.1 323.4 257.5 I 197.0 128.5 I 100.0 449.6 404.5 345.2 280.9 222.1 155.5 150.0 I 453.3 408.6 349.6 285.6 227.1 160.9 I 150.0 I 491.9 I 438.3 394.7 334.0 278.8 216.6 200.0 499.6 446.5 403.7 I 343.7 289.2 227.7 I 200.0 579.2 531.4 483.1 431.3 396.0 342.7 250.0 595.1 548.3 501.2 450.7 405.6 365.7 250.0 759.6 723.7 688.6 652.0 620.7 586.9 3DO.O 773.4 739.6 707.0 673.1 I 644.6 614.1 300.0 1113.1 I 1101.6 1094.0 1088.6 1088.8 1092.3 350.0 1180.8 1173.9 1171.2 I 1171.5 1177.4 1187.7 I 350.0 I 1882.1 1921.3 1970.2 I 2029.3 2094.4 2135. 7 400.0 2022.0 2070.4 2091.0 I 2160.6 2236.1 2329.3 I 400.0 3233.9 3368.2 3522.7 3702.2 3767. 7 3597.3 450.0 I 3503.5 I 3655.5 3829.9 3882.5 3731 .8 3560.7 I 450.0 4342.5 4196.6 4046.1 3882.5 3731.8 3560.7 500.0 4309.7 4163.1 4012. 1 I 3847.9 I 3696.6 3524.9 500.0 I 4309.7 4163.1 4012.1 I 3847.9 I 3696.6 3524.9 Pressure Temperature Curve Analysis Program Pressure Temperature Curve Analysis Program EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID EA-PAL-92-095-01 EOC9 plus 6 EFPY with uncertainties & Ref vessel ID Temperature Measurement Error (Deg F): -5 Temperature Measurement Error (Deg F): -5 Pressure Measurement Error (PSID): -30 Pressure Measurement Error (PSID): -30 Safety factor primary membrane stress: 2 Safety factor primary membrane stress: 2 The following results are for the circumferential weld, The following results are for the base metal, At three-quarter wall thickness for cooldown At three-quarter wall thickness for cooldown Total accumulated fluence of 2.192E+19 Total accumulated fluence of 2.192E+19 Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, Temp deg F, 0 F/hr, 20 F/hr, 40 F/hr, 60 F/hr, 80 F/hr, 100 F/hr, 50.0 460.4 526.4 595.0 670.3 I 740.6 821.4 50.0 472.9 I 540.8 611.5 689.6 762.8 847.4 100.0 489.6 559.9 633.5 715.3 I 792.4 882.1 100.0 515.4 I 589.5 667.6 I 755.0 838.2 935.9 150.0 549.8 629.0 713.1 808.0 899.3 1007.6 150.0 603.1 690.2 783.5 890.1 993.9 1118.6 200.0 674.1 I 771.7 877.3 999.6 I 1120.2 1266.6 200.0 784.2 I 898.0 1022.7 I 1169.1 1315.5 1495.7 I 250.0 930.9 1066.4 1216.5 1395.2 1576.1 I 1801 . 4 250.0 1158.0 I 1327 .1 I 1516.6 I 1745. 1 1979.4 2274.5 300.0 1442.1 1655.9 1897.9 2192.9 I 2453.4 2834.7 300.0 1911.0 I 2194.1 2472.0 2862.9 3104.5 3601.2 350.0 2491.0 I 2859.9 3116.4 3615.9 3806.9 3634.8 350.0 3266. 7 I 3750.6 4125.0 I 3959.4 3806.9 3634.8 400.0 I 4375.3 I 4230.2 4080.5 3917.7 I 3767. 7 I 3597.3 400.0 4375.3 I 4230.2 4080.5 3917.7 3767.7 3597.3 450.0 4342.5 I 4196.6 4046.1 3882.5 3731.8 3560.7 450.0 4342.5 I 4196.6 4046.1 I 3882.5 3731.8 3560.7 500.0 4309.7 4163.1 4012.1 3847.9 3696.6 3524.9 500.0 I 4309.7 I 4163.1 4012. 1 3847.9 3696.6 3524.9

l PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 42 Rev # ----=----

0 Appendix 6.5 Bulk Modulus of Elasticity (1 un-numbered page attached)

  • 301521 738.196 -4.78282 0.005271
  • a b c d

- - f---

TEMP P1 P2 ROE1 ROE2 K Curve Fit Difference 50 330 38Q "62.4792 62.4893 309302.9703 327132.59 17829.6197 100 340 390 62.0605 62.0699 330109.0426 332783.12 2674.07745 150 370 420 61.26 61.2695 322421.0526 322425.63 4.57736852 200 440 490 60.1946 60.2047 297993.0693 300013.16 2020.09069 250 500 55,0 s8*:eo75 58.9185 267761.3636 269498.75 1737.38636 300 700 750 5,7.454 57.4663 233552.8455 234835.44 1282.59447 350 900 950 5_5;8056 55.8197 197892.1986 199976.27 2084.07142 400 1650 1700 54.1238 54.1399 168086.3354 168874.28 787.944596 450 2950 3000 52.4661 52.4844 143350 145482.51 2132.51 500 3750 3800 50.4654 50.4874 114694.0909 133754 19059.9091 ---

PCS Coolant Bulk Modulus of Elasticity

- Curve Fit =a + bT + cTA2 + dT"3

=*~---- --------~  !------- - - -i-------j------}-- ..----

250000 -----*-*[-- ---r-------+---~----- I *- r------------r-----------

l

~

200000


1 --- 1----*-*----i------ ----f- ---- ---

1soooo ------ - i----------i------

1 ~=  :-_::::*r_*------*** 1 O+---i~--~

1 -- r* ----r-**

...

...........

- --r -- 1 1 -----

~-.-~...---1~--~......,....----1

-- *--------1--- *----

--r-- -----1------------1--- ---*---.. -~

  • -*:*r* - r ----r: _: - - r* +* .*t-- *---*

i---------r---*

g § ~ ~ ~ ~ ~ ~ ~ ~ 1 - - - - - + - - - - - - - t - - - - - - - - -**------*------- - * - - -

1 - - - - - t - - - - - - - - t - - - - - - ---------+------!

Temperature, F 1 - - - - - t - - - - - - - - t - - - - - - - - - - - - -------+--------

BULKMOD.XLS Page 1

PALISADES NUCLEAR PLANT EA-A-PAL-92095-01 ANALYSIS CONTINUATION SHEET Sheet 43 Rev O

  1. ---=----

Appendix 6.6 EXCEL Results (10 un-numbered pages attached)

.*-. -.-.

..

G PLTO PCALCI B/17/94

.

Tumoaraturu Socoific Volumu Hoatup Rate PCS Volume dv PCS CHG Row dv Charging PZR Hoatuo Rate PZRVolume PZR Torno Spec. Vol. dvPZR HPSI Head HPSI Flow dv HPSI dv TOTAL Equiv GPM - ---

50 0.01B023 20 BBOB 0.00305394 140 0.31194296 BO 1503.7 50 0.016023 0.0020B547 0 0 0.3170B23B 142.306571 ----

- -----

BO 0.016033 20 0.00516847 140 0.3119429B BO 60 0.016033 0.0035431 0 0 0.32067452 143.918724 70 0.01605 20 0.00B70737 140 0.3119429B BO 70 0.01605 0.0045B033 0 0 0.32323066 145.065919 * - -

BO 0.01B072 20 O.OOB22051 140 0.3119429B BO BO 0.016072 0.005613B1 0 0 0.3257770B 146.208754 * -

90 0.018099 20 0.00942253 140 0.3119429B BO 90 0.016099 0.00843445 0 0

-- 0.32779994 147.116614 - -

100 0.01613 20 0.010B179 140 0.31194298 BO 100 0.01613 0.00725074 0 0 0.3298116 148.019444* - -

110 0.01B1B5 20 0.01180575 140 0.3119429B 80 110 0.016165 0.00BOB19 0 0 0.33181062 148.916604 ----*

120 0.016204 20 0.0129B527 140 0.3119429B BO 120 0.016204 0.00BB6737 0 0 0.3337956 149.807466 * - - -

130 0.01B247 20 OD136!i44B 140 0.3119429B 60 130 0.016247 0.0094B092 0 0 0.33525833 150.46394 140 0.016293 20 ,. 0.01501687 140 0.31194296 BO 140 0.016293 0.01025457 0 0* 0.33721421 151.341736 150 0.016343 20 0.01556956 140 0.3119429B BO 150 0.016343 0.010B3213 0 0 0.33B14465 151.759319 lBO 0.01B395 20 0.01671404 140 0.31194296 BO 160 0.016395 0.01141367 0 0 0.34007067 152.623715 170 0.018451 20 . 0.0297449 140 0.3119429B 60 170 0.018451 0.02031217 0 0 0.36200003 162.465614 170.1 0.018452 40 0.03485040 140 0.3119429B 100 170.1 0.018452 0.01467417 0 0 0.36166762 162.316428 180 0.01651 40 *.* . 0.113875187. 140 0.31194296 100 180 0.01651 0.0156B568 0 0 0.38438051 163.533971 * -

  • 190 0.016572 40 j 0.03838803 140 0.31194296 100 190 0.016572 0.01638314 0 0 0.3BB71213 164.5B0404 200 0.01BB37 40 0.0400008 140 0.3119429B 100 200 0.01BB37 0.01707232 0 0 0.36901608 165.814418 210 0.016705 40 0.04100988 140 0.3119429B 100 210 0.016705 0.02943827 0 o 0.3B23B89 171.B1614 220 O.D1B775 40 0.04317218 140 0.3119429B 100 465 0.019707 0.04097745 o 0 0.39609259 177.766354 230 0.016849 40 0.04472511 140 0.31194296 100 471 0.019B23 0.04179122 0 0 0.3984592B 17B.628527 240 0.016926 40 0.04625825 140 0.3119429B 100 477 0.019942 0.04258911 0 0 0.40078832 179.873799 250 0.01700B 40 0.05754B32 140 0.31194298 100 483 0.020084 0.04163821 0 0 0.41112748 184.514015 250.1 0.017007 BO 0.07149522 140 0.3119429B 100 483.1 0.020088 0.04378544 o 0 0.42722362 191.73796 260 0.017089 BO 0.07387B7B 140 0.31194298 100 4BB 0.020127 0.04427294 0 0 0.43009266 193.025587 270 0.017175 80 0.07B07103 140 0.31194298 100 489 0.020191 0.04482216 0 0 0.43283617 194.256874 280 0.017284 80 0.081B3114 140 0.31194298 100 492 0.02025B 0.04538571 0 0 0.43893981 196.996185 290 0.0173B BO 0.0785B307 140 0.31194298 100 495 0.020322 0.0453B012 0 0 0.435BB615 195.625703 299.9 0.017452 60 0.08411843 140 0.31194296 100 497.9 0.02038B 0.04097856 0 0 0.43703795 196.142632 300 0.017453 80 0.08158827 140 0.31194298 100 498 0.020388 0.04712072 583 1052 2.34402852 2.79488046 1249.76459 310 0.01755 80 0.0920114 140 0.31194298 100 508 0.020572 0.04872966 642 1004 2.23707665 2.68976067 1207.16459 320 0.01786 BO 0.08312571 140 0.31194298 100 514 0.020794 0.050793B1 700 958 2.1301247B 2.57598705 1156.10299 330 0.0177B 60 0.09092342 140 0.3119429B 100 522 0.0209BB 0.05254551 78B BBB 1.9741533 2.4295B519 1090.3BB86 340 0.017B7 BO O.ll9874458 140 0.3119429B 100 530 0.021177 0.05467783 855 829 1.94714795 2.31251332 1037.85598 349.9 0.017989 60 0.08160543 140 0.31194298 100 537.9 0.02139B 0.05B5BB24 B55 B29 1.64714795 2.2992B25B 1031.90904 350 0.01799 100 0.1B32017Q 140 0.31194296 100 538 0.021399 0.0584279 997 692 1.5418B948 2.07546212 931.467401 3BO 0.01811 100 0.16212038 140 0.3119429B 100 553 0.02184B 0.0B372733 112B 512 1.14081996 1.67B61063 753.3B0452 370 0.01823 100 0.17447431 140 0.3119429B 100 5BB 0.02234B 0.06977772 1272 0 0 0.55619499 249.B20313 3BO 0.0183B 100 0.1B8565 140 0.31194296 100 563 0.022908 0.0771B875 0 0 0.5756967 25B.37268 390 0.01B5 100 0.1B515315 140 0.3119429B 100 59B 0.023543 0.0BB69B11 0 0 0.58379422 2B2.00B845 400 0.01B84 100 0.18378252 140 0.3119429B 100 B13 0.02427B 0.09B07457 0 0 0.5937B005 26B.4B84B6 410 0.0187B 100 0.2064487 140 0.31194298 100 B27 0.025074 0.1125B365 0 0 0.63295532 284.070346 420 0.01894 100 0.1937B98 140 0.3119429B 100 841 0.02B02 0.133B1174 0 0 0.B395245 2B7.018596 430 0.01909 100 0.217BB022 140 0.31194298 100 855 0.027187 0.03719847 0 0 0.56701964 254.478416 440 0.01928 100 0.21595708 140 0.31194298 0.03BBBB15 0 0 0.58476B19 253.467962 450 0.01943 100 0.22B659B 140 0.31194298 0.03BB9532 0 0 0.57729808 259.091378 I U*o PCS heatup data 480 0.01981 100 0.23705502 140 0.31194298 I 0.04047014 0 0 0.58946902 264.553697 - -

Jbecau;a saturation pressure 470 0.0198 100 0.24713805 140 0.31194296 I 0.04219138 0 0 0.60127236 269.851037 480 0.02 100 0.24488B87 140 0.31194296 \ > 2285 p1ia I 0.04178944 0 0 0.59837907 268.552527 490 0.0202 100 0.2785808B 140 0.31194298 0.04755927 0 0 0.63808309 286.371689 500 0.02043 100 0.2874204B 140 0.31194206 0.04908836 0 o

- -- 0.64843178 291.016184 510 0.02087 - - - - - - - - -- -*----- r--~----- *--

520 0.02089 ------*- - - - - - - - -*---- - -

530 0.02117 Pago 1

  • K. Bulk Modulu* Press. Rise, p*ilsec Overshoot Coefficianta for K 327132.625 10.05925213 21.124429 301521 329733.144 10.25406202 21.533572 736.196 331566.655 10.39329614 21.625926 4.76262 332665.384 10.50966271 22.070754 0.005271 333060.357 10.567696 22.234166 332763.4 10.84361472 22.352011 331668.139 10.87661221 22.425508 330340.2 10.89330041 22.455931 326237.209 10.67176639 22.410751 325566.792 10.84743805 22.359616 322426.575 10.57311602 22.203548 318762.184 10.51315205 22.077819 314867.245 11.04733384 23.199401 314644.1273 11.03567725 23.174922 310173.384 10.96047542 23.016998 305272.227 10.85631166 22.798254 300015.4 10.73639726 22.548434 1::,

294434.529 10.91851941 22.928891 266581.24 11.08420228 23.278825 262427.159 10.91340184 22.916143 276063.912 10.72966918 22.532725 269503.125 10.74506972 22.584666 269436.6266 11.16301781 23.442337 262778.424 10.96019201 23.018403 255915.435 10.74211403 22.558439 248951.784 10.59717096 22.254059 241917.097 10.22808412 21.474777 234913.6322 9.9582684 75 20.906206 234843 83.41946605 133.18062 227761.119 59.41046576 124.78198 220703.06 55.13429176 115.78201 213700.509 50.35050643 105.73608 206785.032 46.37384146 97.385087 200055.5511 44.60760515 93.675971 199968.275 40.2521495 94.529514 193341.864 31.47354063 66.094435 186877.425 10.0798402 21.167664 180626.584 10.08428569 21.177 174620.967 9.666120714 20.760654 166692.2 9.725342954 20.42322 163471.909 10.03427309 21.071973 158391.72 9.823344911 20.629024 153683.259 6.450733301 17.74654 149378.152 6.161366914 17.160917 145506.025 6.146232265 17.107066 142104.504 6.123413512 17.059166 '

139199.215 8.116667581 17.045002 136623.784 7.939766347 16.673509 135009.637 6.354344421 17.544123 133769 6.413066627 17.667444 Page 2

  • GFPratt PL TOP3.XLS (TSL TOPS) 8/17/94
  • Temperatu IHU .25 HU .75 CD .25 i Minimum Press, psig IOvershoot New curve, psia Existing Limit, psia 50 511.2 454.1 377.8 ! 377.8 21.1244295 356.6755705 357 60 513.1 458.3 380 380 21.5335722 358.4664278 358 70 515.3 463.3 382.5 382.5 21.8259261 360.6740739 360 80 517.9 469 385.5 385.5 22.0707537 363.4292463 363 90 520.9 475.6 388.9 388.9 22.2341658 366.6658342 366 100 510.7 483.2 392.8 392.8 22.3520109 370.4479891 369 110 514.B 492.1 397.3 397.3 22.4255056 374.8744944 374 120 519.1 502.3 402.6 402.6 22.4559309 380.1440691 379 130 524.3 514.1 408.7 408.7 22.4107514 386.2892486 385 140 530.3 527.7 415.7 415.7 22.3596157 393.3403843 392 150 537.2 529.4 423.8 423.8 22.2035478 401 .5964522 401 i6D 545.3 547.2 433.2 433.2 22.0776193 411.1223807 410 170 554.5 567.7 444 444 23.1994011 420.8005989 366 170.1 554.6 460.6 444.1 444.1 23.1749222 420.9250778 366 180 565.3 480.6 456.5 456.5 23.0169984 433.4830016 378 190 577.7 503.9 471 471 22.7982545 448.2017455 395 200 592 517.1 487.7 487.7 22.5464342 465.1535658 411 210 608.5 547.5 493.9 493.9 22.9288908 470.9711092 433 220 627.7 582.7 515.7 515.7 23.2768248 492.4231752 457 230 649.8 623.3 541 541 22.9181434 518.0818566 486 240 675.4 670.2 570.1 570.1 22.5327253 547.5672747 518 250 705 724.5 603.8 603.8 22.5646884 581.2353116 509 250.1 705.3 570.9 550 550 23.4423374 526.5576626 509 260 739.2 622.9 591.4 591.4 23.0164032 568.3835968 388 270 778.7 683.6 639.8 639.8 22.5584395 617.2415605 442
  • 280 290 299.9 300 310 320 824.4 877.3 937.7 919.4 990 1071.6 753.8 834.9 927.7 909.7 1018.1 1143.4 695.7 760.3 834.3 816.1 902.4 1002.3 695.7 22.2540591 760.3 21.4747766 834.3 20.9082058 816.1 133.180921 902.4 124.761978 1002.3 115.782013 673.4459409 738.8252234 813.3917942 682 .9190793 777.6380219 886.5179873 505 563 615 615 715 785 330 1166 1288.3 1117.7 1117.7 105.736063 1011.963937 866 340 1275.1 1455.8 1251.2 1251.2 97.3850671 1153.814933 960 349.9 1399.8 1647.3 1396.4 1396.4 93.6759708 1302.724029 967 350 1401.2 1042.2 1397.8 1042.2 84.529514 957.670486 967 360 1543.9 1198.9 1547 1198.9 66.0944353 1132.805565 1091 370 1690 1380 1715.5 1380 21.1676644 1358.832336 1238 380 1833.2 1589.4 1910.4 1589.4 21.177 1568.223 1401 390 1979.4 1831.5 2135.6 1831.5 20.7608535 1810.739146 1602 400 2146 2111.3 2353.3 2111.3 20.4232202 2090.87678 1799 410 2342.8 2434.8 2649 2342.8 21.0719735 2321.728027 2017 420 2522.3 2758.8 2990.9 2522.3 20.6290243 2501.670976 2270 430 2778.2 3183.6 3214.9 2778.2 17.7465399 2760.45346 2560 440 3073.9 3468.9 3649 3073.9 17.1809167 3056.719083 450 3243 3796.9 3953.6 3243 17.1070878 3225.892912 460 3618.5 3788.5 3945.7 3618.5 17.0591684 3601.440832 470 3780.1 3780.1 3937.8 3780.1 17.0450019 3763.054998 480 3771.8 3771.8 3929.9 3771.8 16.6735093 3755.126491 490 3763.5 3763.5 3922.1 3763.5 17.5441233 3745.955877 500 3755.3 3755.3 3914.3 3755.3 17.6674441 3737.632556
  • Page 1

.

GFPratt PL TOP3.XLS (L TOPCALC) 8/17194

  • A 8 c D E F 1 Temperature ISpceific Volume Heatup Rate PCS Volume dv PCS i 2 50 0.016023 20 8808 - ((83-82)/82) *($ D$2/(((A3-A2)/C2)
  • 3600)) I J 60 0.016033 20 -((84-83)/83)*($D$2/(((A4-A3)/C3)*3600)) i 4 70 0.01605 20 - ((8 5-84)/84)*($ 0$2f(((A5-A4)/C4)
  • 3600)) i 5 BO 0.016072 20 -((86-85)/85)*($0$2/(((A6*A5)/C5)*3600))

6 90 0.016099 20 -((87*86)/86)*($0$2/(((A7-A6)/C6)*3600)) I 7 100 0.01613 20 -((88*87)/87)*($0$2/(((AB*A7)/C7)*3600))

a 110 0.016165 20 -((89-88)/88)*($0$2/(((A9-A8)/C8)*3600)) I 9 120 0.016204 20 -((810-89)/89)*($0$2/(((A 10-A9)/C9)*3600)) l 10 130 0.016247 20 -((811-810)/810)*($0$2/(((A 1l*A1OJ/Cl0)*3600))

11 140 0.016293 20 -((812*811)/811)*($0$2/(((A 12*A 11)/Cl 1)*3600))

12 150 0.016343 20 -((813-812)/812)*($0$2/(((A 13-A 12)/Cl 2)*3600))

13 160 0.016395 20 -((814-813)/813)*($0$2/(((A 14-A 13)/Cl 3)*3600))

14 170 0.016451 20 -((815*814)/814)*($0$2/(((A 15-A 14)/C14)* 3600))

15 170.1 0.016452 40 -((816-815)/815)*($0$2/(((A 16-A 15)/C15)*3600))

16 180 0.01651 40 -((817-816)/816)*($0$2/(((A 17-A 16)/Cl 6)*3600))

17 190 0.016572 40 -((818-817)/817)*($0$2/(((A 18-A 17)/Cl 7)*3600))

18 200 0.016637 40 -((819*818)/818)*($0$2/(((A 19-A 18)/Cl 8)*3600))

19 210 0.016705 40 -((820*819)/819)*($0$2/(((A20-A 19l/C19)*3600))

20 220 O.D16775 40 - ((8 21-820)/820)* ($0 $2/(((A21-A20)/C20)* 3600))

21 230 0.016849 40 -((822*821 )/821 )* ($0$2J(((A22-A21 l/C21)*3600))

22 240 0.016926 40 -((823-822)/822)*($0$2/(((A23-A22)/C22)*3600))

23 250 0.017006 40 - ((824-823)/823)*($0 $2/(((A24-A23)/C23)*3600))

24 250.1 0.017007 60 - ((825-824)/824)*($0 $2/(((A25-A24)/C24)*3600))

25 260 0.017089 60 - ((826*825)/825)*($0$2/(((A26-A25)/C25)*3600))

26 270 0.017175 60 -((827*826)/826)*($0$2/(((A27-A26)/C26)*3600))

  • 27 280 0.017264 60 -((828*827)/827)*($0$2/({(A28-A27J/C27)*3600))

28 290 0.01736 60 - ((829*828)/828)*($0$2/(((A29-A28J/C28)*3600))

29 299.9 0.017452 60 -((830-829)/829)*($0$2/(((A30-A29)/C29)*3600))

30 300 0.017453 60 -((831-830)/830)*($0$2/(((A31-A30)/C30)*3600))

31 310 0.01755 60 -((832*831)/831)*($0$2/(((A32-A31)/C31)*3600))

32 320 0.01766 60 - ((833-832)/832)*($0$2/(((A33-A32)/C32)*3600))

33 330 0.01776 60 - ((834-833)/833)*($0$2/(((A34*A33)/C33)*3600))

34 340 0.01787 60 -((835-834)/834)*($0$2J(((A35-A34)/C34)*3600))

35 349.9 0.017989 60 - ((836-835)/835)*($0$2J(((A36-A35)/C35)* 3600))

36 350 0.01799 100 -((837-836)/836)*($0$2/(((A37-A36)/C36)*3600))

37 360 0.01811 100 - ((838-837)/837)*($0$2/(((A38-A37)/C37)* 3600))

38 370 0.01823 100 - ((839-838)/838)*($0 $2J(((A39-A38)/C38)*3600))

39 380 0.01836 100 - ((840-839)/839)*($0 $2J(((A40-A39)/C39)*3600))

40 390 0.0185 100 - ((841-840)/840)*($0 $2J(((A41-A40J/C40)*3600))

41 400 0.01864 100 -((842-841)/841)*($0$2/(((A42-A41 J/C41)*3600))

. *"

0.01878 100 .' -((843-842)/842)*($0$2/(((A43-A42J/C42)*3600)) .

42 410 43 420 0.01894 100 -((844-843)/843)*($0$2/(((A44-A43J/C43)* 3600))

44 430 0.01909 100 - ((845-844)/844)*($0 $2/({(A45-A44)/C44)*3600))

45 440 0.01926 100 -((846-845)/845)*($0$2/(((A46-A45)/C45)*3600))

46 450 0.01943 100 -((847 -846)/846)*($0$2/(((A47-A46)/C46)*3600))

47 460 0.01961 100 -((848*847)/847)*($0$2/(((A48-A47)/C47)*3600))

48 470 0.0198 100 - ((849-848)/848)*($0$2/(((A49-A48)/C48)*3600))

49 480 0.02 100 - ((850-849)/849)*($0$2/(((A50-A49)/C49)*3600))

50 490 0.0202 100 -((851-850)/850)*($0$2/(((A51-A50)/C50)*3600))

51 500 0.02043 100 -((852*851l/851)*($0$2/({(A52-A51)/C51)*3600))

52 510 0.02067 53 520 0.02089 54 530 0.02117

  • Page 1

.

6FPratt PL TOP3.XLS (L TOPCALC) 8/17/94 G H I J K L M 1 CHG Flow dv Charging PZR Heatup Rate PZR Volume /PZR Temp Spec. Vol.

2 140 - 62/(60' 7.48) 80 1503.7 50 10.016023 J 140 1- G3/!60' 7.48) 80 60 0.016033 4 140 -64/(60'7.48) 80 70 I0.01605 5 140 l-65/(60'7.48) 80 I 80 0.016072 6 140 - 66/(60' 7.48) 80 90 0.016099 7 140 i -67/(60'7.48) . 80 100 0.01613 B 140 '-68/(60'7.48) 80 110 0.016165 9 140 - G9/(60' 7.48) 80 120 0.016204 10 140 -Gl0/(60*7.48) 80 130 0.016247 11 140 - G11/(60*7.48) 80 140 0.016293 12 140 -612/(60'7.48) 80 150 0.016343 13 140 - G13/(60* 7.48) 80 160 0.016395 14 140 - 614/(60* 7.48) 80 170 0.016451 15 140 -615/(60*7.48) 100 170.1 0.016452 16 140 -616/(60*7.48) 100 180 0.01651 17 140 -617/(60*7.48) 100 190 0.016572 18 140 -618/(60*7.48) 100 200 0.016637 19 140 -619/(60*7.48) 100 210 0.016705 20 140 -620/(60*7.48) 100 465 0.019707 21 140 -621/(60*7.48) 100 471 0.019823 22 140 -622/(60.7.48) 100 477 0.019942 23 140 - 623/(60* 7.48) 100 483 0.020064 24 140 -624/(60*7.48) 100 483.1 0.020066 25 140 -625/(60* 7.48) 100 486 0.020127 26 140 - 626/(60* 7.48) 100 489 0.020191

  • 27 140 -627/(60*7.48) 100 492 0.020256 28 140 -628/(60*7.48) 100 495 0.020322 29 140 -G29/(60*7.48) 100 497.9 0.020386 30 140 - G30/(60* 7.48) 100 498 0.020388 31 140 -G31/(60*7.48) 100 506 0.020572 32 140 -632/(60* 7.48) 100 514 0.020764 33 140 - G33/(6o* 7.48) 100 522 0.020966 34 140 -634/(60*7.48) 100 530 0.021177 35 140 -635/(60*7.48) 100 537.9 0.021396 36 140 -636/(60*7.48) 100 538 0.021399 37 140 -637/(60*7.48) 100 553 0.021848 38 140 -638/(60*7.48) 100 568 0.022348 39 140 -639/(60*7.48) 100 583 0.022908 40 140 - 640/(60* 7.48) 100 598 0.023543 41 140 -641/(60*7.48) 100 613 0.024276

.. ...

42 140 - 642/(60*7.48t:~. ,. lliil 627 0.025074

-643/(60*7.48) ... '-**

43 140 100 641 0.02602 44 140 -644/(60*7.48j .. *** *100 655 0.027187 45 140 - 645/(60* 7.48) 46 140 -646/(60*7.48)

Use PCS haatup data 47 140 -647/(60*7.48) because saturation 48 140 - 648/(60* 7.48) pressure > 2285 psia 49 140 -649/(60*7.48) 50 140 -650/(60'7.48) 51 140 -651/(60*7.48) 52 53 54 Page)

GFPratt PL TOP3.XLS (L TDPCALC) B/17/94

  • N 0 p a R s 1 dv PZR HPSIHead HPSI Flow dv HPSI dv TOTAL 2 -(M3-M2)/M2*($K$2/(((L3-L2)/J2)*3600)) 0 -P2/(7.48*60) -Q2+N2+H2+E2 J -(M4-M3)/M3*($K$2/(((L4-L3)/J3)*3600)) 0 -P3/(7.48*60) -Q3+N3+H3+E3 4 -(M5-M4)/M4*($K$2/(((L5-L4)/J4)*3600)) 0 -P4/(7.48*60) -U4+N4+H4+E4 5 -(M6-M5)/M5*($K$2/(((l6*L5)/J5)*3600)) 0 -P5/(7.48*60) -Q5+N5+H5+E5 6 -(M7-M6)/M6*($K$2/(((L7-L6)/J6)*3600)) 0 -P6/(7.48*60) *Q6+N6+H6+E6 7 -(M8-M7)/M7*($K$2/(((l8-L1')/J7)*3600)) 0 -P7/(7.48*60) -Q7+N7+H7+E7 8 - (MS-M 8)/M8*( $K $2/(((L9-L8)/J8)* 3600)) 0 -P8/(7.48*60) -Q8+N8+H8+E8 9 -(M 1O-M9)/M9*($K$2/(((L1 O-L9)/J9)*3600)) 0 -PS/(7.48*60) -Q9+N9+H9+E9 10 -(M11-M10)/M10*($K$2/(((l 1H10)/J10)*3600)) 0 -P10/(7.48*60) -Q10+N10+H10+E10 11 -(M12-M11)/M11*($K$2/(((l12-L 11)/Jl 1)*3600)) 0 -Pl 1/(7.48*60) -U11+N11+H11+E11 12 -(M13-M12)/M 12*($K$2/(((l13*l 12)/J12)*3600)) 0 -P12/(7.48*60) -Q12+N12+H12+ E12 13 -(M14-M13l/M13*($K$2/(((l 14-l 13)/J13)*3600)) 0 -P13/(7.48*60) -Q13+N13+H13+E13 14 -(M15-M14)/M14*($K$2/(((l 15-l 14)/J14)*3600)) 0 -P14/(7.48*60) -Q14+N14+H14+E14 1li -(Ml 6-M15)/M15*($K$2/(((l 16*l15)/J15)*3600)) 0 -P15/(7.48*60) -Q15+N15+H15+E15

. 0. - -

16 -(Ml 7-M16)/M16*($K$2/(((l 17-l16)/J16)*3600)) -P16/(7.48*60) -Q16+N16+H16+E16 17 -(M18-M1n/M17*($K$2/(((l18-l 17)/J17)*3600)) 0 -P17/(7.48*60) -017+N17+H17+E17 18 -(M19-M18)/M18*($K$2/(((l 19-l 18)/J18)*3600)) 0 -P18/(7.48*60) -018+N18+H18+E18 19 -(M20-M19)/M19*($K$2/(((l20-l 19)/J19)*3600)) 0 -P19/(7.48*60) -019+N19+H19+E19 20 -(M21*M20)/M20*($K$2/(((l21*L20)/J20)*3600)) 0 -P20/(7.48*60) -020+N20+H20+E20 21 -(M22-M21l/M21 *($K$2/(((l22-L21 )/J21 )*3600)) 0 -P21/(7.48*60) -021 +N21 +H21 +E21 22 -(M23*M22)/M22*($K$2/(((L23-L22)/J22)*3600)) 0 -P22/(7.48*60) -022 + N22 + H22 + E22 23 -(M24*M23)/M23*($K$2/(((L24*L23)/J23)*3600)) 0 -P23/(7.48*60) -023+ N23+ H23+ E23 24 -(M25*M24)/M24*($K$2/(((L25*L24)/J24)*3600)) 0 -P24/(7.48*60) - 024+ N24+ H24+ E24 25 -(M26-M25)/M25*($K$2/(((L26-L25)/J25)*3600)) 0 -P25/(7.48*60) -025+N25+H25+E25 26 -(M27*M26)/M26*($K$2/(((L27-L26)/J26)*3600)) 0 -P26/(7.48*60) -026+N26+H26+E26 27 -(M28-M27)/M27*($K$2/(((L28-L27)/J27)*3600)) 0 -P27/(7.48*60) -027+N27+H27+E27 28 -(M29-M28)/M28" ($K$2/(((l29-L28)/J28)* 3600)) 0 -P28/(7.48*60) -028+N28+H28+E28 29 -(M30-M29)/M29*($K$2/(((L30-L29)/J29)*3600)) 0 - P29/(7.48*60) - 029 + N29 + H29 + E29 30 -(M31-M30)/M30*($K$2/(((l31-L30)/J30)*3600)) 583 1052 - P30/(7.48*60) -030+N30+H30+E30 31 -(M32-M31)/M31*($K$2f(((L32*L31)/J31)*3600)) 642 1004 -P31/(7.48*60) -031 +N31 +H31 +E31 32 -(M33-M32)/M32* ($K $2/(((L33-L32)/J32)*3600)) 700 956 -P32/(7.48*60) - 032 + N32 + H32 + E32 33 -(M34-M33)/M33*($K$2/(((L34-L33)/J33)*3600)) 786 886 -P33/(7.48*60) - 033 + N33 + H33 + E33 34 -(M35-M34)/M34"($K$2/(((L35-L34)/J34)*3600)) 855 829 -P34/(7.48*60) - 034+ N34+ H34+ E34 35 -(M36-M35)/M35*($K$2/(((L36-L35)/J35)*3600)) 855 829 -P35/(7.48*60) - 035 + N35 + H35 + E35 36 -(M37-M36)/M36*($K$2/(((L37-L36)/J36)*3600)) 997 692 -P36/(7.48*60) -036+N36+H36+E36 37 - (M38-M37)/M37*($K$2/(((L38-L37)/J37)*3600)) 1128 512 - P37/(7.48*60) -037+N37+H37+E37 38 -(M39-M38)/M38*($K$2f(((L39-L38)/J38)*3600)) 1272 0 *P38/(7.48*60) -038+N38+H38+E38 39 -(M40*M39)/M39*($K$2/(((l40-L39)/J39)*3600)) 0 -P39/(7.48*60) -039+N39+H39+E39 40 -(M41-M40)/M40*($K$2/(((L41-L40)/J40)*3600)) 0 -P40/(7.48*60) -040+N40+H40+E40 41 -(M42-M41)/M41 *($K$2/(((l42*L41)/J41)*3800)) 0 -P41/(7.48*60) -041 +N41 +H41 +E41 42 -(M43-M42)/M42*($K$2/(((l43-l42)/J42)*36DO)j .- 0 -P42/(7.48*60) -042+N42+H42+E42 43 -(M44-M43)/M43*($K$2/(((l44-L43)/J43)*3600)) 0 -P43/(7.48*6Dl -043+N43+H43+E43 44 -((845-844)/844)*($K$2/(((A45-A44)/C44)*3600)) 0 -P44/(7.48*6Dl -044+N44+H44+E44 45 -((846*845)/845)*($K$2/({(A46-A45)/C45)*3600)) 0 -P45/(7.48*60) -045+N45+H45+E45 46 -((847-846)/846)*($K$2/(((A47-A48)/C46)*3600)) 0 -P46/(7.48* 60) -046+N46+H46+E46 47 -((848-847)/847)*($K$2/(((A48-A47)/C47)*3600)) 0 -P47/(7.48*60) -047+N47+H47+E47 48 -((849-848)/848)*($K $2/(((A49-A48)/C48)*3600)) 0 -P48/(7.48*60) -048+N48+H48+E48 49 -((850-849)/849)*($K$2/(((A5D*A49)/C49)*3600)) 0 -P49/(7.48*60) -049+N49+H49+E49 50 -((851-850)/850)"($K$2/(((A51-A50)/C50)*3600)) 0 -P50/(7.48*60) -050+N50+H50+E50 51 -((852-851)/851)*($K$2/(((A52*A51)/C51)*3600)) 0 -P51/(7.48*60) -051 +N51 +H51 +E51 52 53 54 Page 3

  • GFPratt PL TOP3.XLS (l TOPCALC) 8/17194
  • 4 1

2 3

5 T

Equiv GPM

-S2*7.48*60

-S3*7.48*60

-S4*7.48*60

-S5*7.48*60 u

K, Bulk Modulus v

!-$AA$2+$AA$3*A2+$AA$4*A2*A2+$AA$5*A2*A2*A2

-$AA$2+$AA$3*A3+$AA$4*A3*A3+$AA$5*A3*A3*A3

-$AA$2+$AA$3*A4+$AA$4*A4*A4+$AA$5*A4*A4*A4

-$AA$2+$AA$3*A5+$AA$4*A5*A5+$AA$5*A5*A5*A5 I

w x Press. Rise, psi/sec

-S2*(V2/($K$2+$0$2)) .

-S3*(V3/($K$2+ $0$2))

-S4*(V4/($K$2+ $0$2))

l-S5*(V5/($K$2+$0$2))

6 -S6*7.48*60 -$AA$2+$AA$3*A6+$AA$4*A6*A6+$AA$5*A6*A6*A6 -S6*(V6/($K$2+ $0$2))

7 -S7* 7.48*60 ~$AA$2+$AA$3*A7+$AA$4*A7*A7+$AA$5*A7*A7*A7 -S7*(V71($K$2+ $0$2))

B -S8*7.48*60 -$AA$2+$AA$3*A8+$AA$4*A8*A8+$AA$5*A8*A8*A8 -S8*(V8/($K$2+ $0$2))

9 -S9*7.48*60 -$AA$2+$AA$3*A9+$AA$4*A9*A9+$AA$5*A9*A9*A9 -S9*(V9/($K$2+ $0$2))

10 -Sl 0*7.48*6 -$AA$2+$AA$3*A10+$AA$4*A10*A10+$AA$5*A10*A10*A10 -S10*(V10/($K$2+ $0$2))

11 -Sl 1*7.48*6 -$AA$2+$AA$3*A11+$AA$4*A11*A11+$AA$5*A11*A11*A11 -S11 *(V11/($K$2+ $0$2))

12 -S12*7.48*6. -$AA$2+$AA$3*A12+$AA$4*A12*A12+$AA$5*A12*A12*A12 -S12*(V12/($K$2+ $0$2))

13 -S13*7.48*6 -$AA$2+$AA$3*A13+$AA$4*A13*A13+$AA$5*A13*A13*A13 -S13*(V13/($K$2+ $0$2))

14 -S14*7.48*6 -$AA$2+$AA$3*A14+$AA$4*A14*A14+$AA$5*A14*A14*A14 -S14*(V14/($K$2+ $0$2))

16 -815* 7.48* s -$AA$2+$AA$3*A15+$AA$4*A15*A15+$AA$5*A15*A15*A15 -Sl 5*(V15/($K$2+ $0$2))

16 -S16*7.48*6 -$AA$2+$AA$3*A16+$AA$4*A16*A16+$AA$5*A16*A16*A16 -816*(V16/($K$2+ $0$2))

17 -817*7.48*6 -$AA$2+$AA$3*A17+$AA$4*A17*A17+$AA$5*A17*A17*A17 -817*(V17/($K$2+ $0$2))

18 -S18*7.48*6 -$AA$2+$AA$3*A18+$AA$4*A18*A18+$AA$5*A18*A18*A18 -S18*(V18/($K$2+ $0$2))

19 -S19*7.48*6 -$AA$2+$AA$3*A19+$AA$4*A19*A19+$AA$5*A19*A19*A19 -S19*(V19/($K$2+ $0$2))

20 - s20* 7.48* 6 -$AA$2+$AA$3*A20+$AA$4*A20*A20+$AA$5*A20*A20*A20 -S20*(V20/($K$2+ $0$2))

21 *S21 *7.48*6 -$AA$2+$AA$3*A21+$AA$4*A21*A21+$AA$5*A21*A21*A21 -S21 *(V21/{$K$2+ $0$2))

22 -S22*7.48*6 -$AA$2+$AA$3*A22+$AA$4*A22*A22+$AA$5*A22*A22*A22 -S22*(V22/($K$2 +$0$2))

23 -S23*7.48*6 -$AA$2+$AA$3*A23+$AA$4*A23*A23+$AA$5*A23*A23*A23 -S23*(V23/($K$2+ $0$2))

24 -824*7.48*6 -$AA$2+$AA$3*A24+$AA$4*A24*A24+$AA$5*A24*A24*A24 -S24*(V241($K$2+ $0$2))

25 -S25*7.48*6 -$AA$2+$AA$3*A25+$AA$4*A25*A25+$AA$5*A25*A25*A25 -825*(V25/($K$2+ $0$2))

  • 26 -S26*7.48*6 *$AA$2+$AA$3*A26+$AA$4*A26*A26+$AA$5*A26*A26*A26 - 826*(V26/($K$2 +$0$2))

27 -S27*7.48*6 -$AA$2+$AA$3*A27+$AA$4*A27*A27+$AA$5*A27*A27*A27

  • S27*(V27/($K$2+ $0$2))

28 -S28*7.48*6 -$AA$2+$AA$3*A28+$AA$4*A28*A28+$AA$5*A28*A28*A28 -828*(V28/($K$2+ $0$2))

29 -S29*7.48*6 -$AA$2+$AA$3*A29+$AA$4*A29*A29+$AA$5*A29*A29*A29 -829*(V29/($K$2 +$0$2))

30 -S30*7.48*6 -$AA$2+$AA$3*A30+$AA$4*A30*A30+$AA$5*A30*A30*A30 -830*(V30/($K$2+ $0$2))

31 -S31*7.48*6 -$AA$2+$AA$3*A31+$AA$4*A31*A31+$AA$5*A31*A31*A31 -S31 *(V31/{$K$2 +$0$2))

32 -S32*7.48*6 -$AA$2+$AA$3*A32+$AA$4*A32*A32+$AA$5*A32*A32*A32

  • 832*(V32/($K$2+ $0$2))

33 -S33*7.48*~ -$AA$2+$AA$3*A33+$AA$4*A33*A33+$AA$5*A33*A33*A33 -S33*(V33/($K$2+ $0$2))

34 -S34*7.48*6 -$AA$2+$AA$3*A34+$AA$4*A34*A34+$AA$5*A34*A34*A34 -S34*(V34/($K$2+ $0$2))

35 -S35*7.48*6 -$AA$2+$AA$3*A35+$AA$4*A35*A35+$AA$5*A35*A35*A35 -S35*(V35/($K$2+ $0$2))

36 -S36*7.48*6 -$AA$2+$AA$3*A36+$AA$4*A36*A36+$AA$5*A36*A36*A36 -S36*(V36/{$K$2+ $0$2))

37 -S37*7.48*6 -$AA$2+$AA$3*A37+$AA$4*A37*A37+$AA$5*A37*A37*A37 -S37*(V37/($K$2 +$0$2))

38 -S38*7.48*6 -$AA$2+$AA$3*A38+$AA$4*A38*A38+$AA$5*A38*A38*A38 -S38*(V38/($K$2+ $0$2))

.39 - S39* 7.48*6 -$AA$2+$AA$3*A39+$AA$4*A39*A39+$AA$5*A39*A39*A39 -839*(V39/($K$2+ $0$2))

40 -S40*7.48*6 -$AA$2+$AA$3*A40+$AA$4*A40*A40+$AA$5*A40*A40*A40 -S40*(V40/($K$2 +$0$2))

41 -S41*7.48*6 -$AA$2+$AA$3*A41+$AA$4*A41*A41+$AA$5*A41*A41*A41 -S41 *(V41/($K$2+ $0$2))

42 -842*7.48*6 -$AA$2+$AA$3*A42+$AA$4*A42*A42+$AA$5*A42*A42*A42 -842*(V42/($K$2+ $0$2))

43 -843*7.48*6 -$AA$2+$AA$3*A43+$AA$4*A43*A43+$AA$5*A43*A43*A43 -S43*{V43/($K$2 +$0$2))

44 -S44*7.48*6 -$AA$2+$AA$3*A44+$AA$4*A44*A44+$AA$5*A44*A44*A44 -S44*(V44/($K$2+ $0$2))

46 -S45*7.48*6 -$AA$2+$AA$3*A45+$AA$4*A45*A45+$AA$5*A45*A45*A45 -S45*(V45/($K$2+ $0$2))

46 - S46*7.48*6 -$AA$2+$AA$3*A46+$AA$4*A46*A46+$AA$5*A46*A46*A46 - S46*(V46/($K$2+ $0$2))

47 -S47*7.48*6 -$AA$2+$AA$3*A47+$AA$4*A47*A47+$AA$5*A47*A47*A47 -S47*(V47/($K$2 +$0$2))

48 -S48*7.48*6 -$AA$2+$AA$3*A48+$AA$4*A48*A48+$AA$5*A48*A48*A48 -S48*(V48/($K$2 +$0$2))

49 -S49*7.48*6 -$AA$2+$AA$3*A49+$AA$4*A49*A49+$AA$5*A49*A49*A49 -S49*(V49/($K$2+ $0$2))

50 -S50*7.48*6 -$AA$2+$AA$3*A50+$AA$4*A50*A50+$AA$5*A50*A50*A50 -S50*(V50/($K$2+ $0$2))

61 -S51*7.48*6 -$AA$2+$AA$3*A51+$AA$4*A51*A51+$AA$5*A51*A51*A51 -S51 *(V51/($K$2+ $0$2))

62 63

  • 64 Pago 4

GFPratt PLTOP3.XLS (LTOPCALC) 8/17/94

  • z y AA 1 Overshoot Coefficients for K 2 -x2*2.1 301521 3 -X3*2.1 738.196 4 -X4*2.1 -4.78282 5 -X5*2.1 0.005271 6 -X6*2.1 7 -X7*2.1 8 -x0*2.1 9 -X9*2.1 10 -x10*2.1 11 -x11*2.1 12 -x12*2.1 13 -X13*2.1 14 -X14"2.1 15 -X15*2.1 16 -X16*2.1 17 -X17*2.1 18 -X18*2.1 19 -X19*2.1 20 -X20*2.1 21 -x21 *2.1 22 -x22*2.1 23 -X23*2.1 24 -X24*2.1 25 -X25*2.1 26 -X26*2.1 27 -X27*2.1 28 -x20*2.1 29 -X29*2.1 30 -X30*2.1 31 -X31*2.1 32 -X32*2.1 33 -X33*2.1 34 -X34*2.1 35 -X35*2.1 36 -X36*2.1 37 -X37*2.1 38 -X3B*2.1 39 -X39*2.1 40 -X40*2.1

- .. --------

41 42

-X41*2.1

-X42*2.1

.. .. - ... ~ - -

43 -X43*2.1

..

44 -X44*2.1 45 -X45*2.1 46 -X46*2.1 47 -X47*2.1 48 -X4B*2.1 49 -X49*2.1 50 -X50*2.1 51 -X51*2.1 52 53

  • 54 Page 5

- . . -~--- -~-*.----~*~:_-~.!...

=-~~~-~~~'~S;~~ :"??::.::::::~--- -~2~~;~:~~;~~ ~-> ::~.-

r GFPratt PLTOP3.XLS (TSLTOP6) 8117194

  • 3 4

1 2

5 50 60 70 80 A

Temperature HU.25 511.2 513.1 515.3 517.9 B

HU.75 454.1 458.3 463.3 469 c

CD .25 377.8 380 382.5 385.5 D E IMinimum Press, psig

- MIN(B2,C2,D2)

- MIN(B3,C3,D3)

- MIN(B4,C4,D4)

- MIN(B5,C5,D5)

F 6 90 520.9 475.6 388.9 - MIN(B6,C6,D6) 7 100 510.7 483.2 392.8 -MIN(B7,C7,D7) 8 110 514.6 492.1 397.3 - MIN(B8,C8,D8) 9 120 519.1 502.3 402.6 - MIN(B9,C9,D9) 10 130 524.3 514.1 408.7 -MIN(B1O,C10,010) 11 140 530.3 527.7 415.7 -MIN(B11,C11,D11l 12 150 537.2 529.4 423.8 -MIN(B12,C12,012) 13 160 545.3 547.2 433.2 -MIN(B13,C13,D13l 14 170 554.5 567.7 444 -MIN(B14,C14,D14l 15 170.1 554.6 460.6 444.1 - MIN(B15,C15,015) 16 180-- *- .:- 565.3

. ;i A80:6 :~ ': -, ~ - , 456:5:: . .. -MIN!B16,C16,016) 17 190 577.7 503.9 471 -MIN(B17,C17,D17l 18 200 592 517.1 487.7 -MIN!B18,C18,018) 19 210 608.5 547.5 493.9 -MIN(B19,C19,019) 20 220 627.7 582.7 515.7 - MIN(B20,C20,020) 21 230 649.8 623.3 541 - MIN(B21,C21,021 l 22 240 675.4 670.2 570.1 - MIN(B22,C22,022) 23 250 705 724.5 603.8 - MIN(B23,C23,023) 24 250.1 705.3 570.9 550 - MIN(B24,C24,024) 25 260 739.2 622.9 591.4 - MIN(B25,C25,025l 26 270 778.7 683.6 639.8 - MIN(B26,C26,026l 27 280 824.4 753.8 695.7 - MIN(B27 ,C27 ,027) 28 290 877.3 834.9 760.3 - MIN!B28,C28,028l 29 299.9 937.7 927.7 834.3 - MIN!B29,C29,029) 30 300 919.4 909.7 816.1 - MIN!B30,C30,030) 31 310 990 1018.1 902.4 -MIN(B31,C31,031) 32 320 1071.6 1143.4 1002.3 - MIN(B32,C32,032) 33 330 1166 1288.3 1117.7 - MIN(B33,C33,033) 34 340 1275.1 1455.8 1251.2 - MIN(B34,C34,034) 35 349.9 1399.8 1647.3 1396.4 - MIN(B35,C35,035) 36 350 1401.2 1042.2 1397.8 - MIN(B36,C36,036) 37 360 1543.9 1198.9 1547 - MIN(B37 ,C37 ,037) 36 370 1690 1380 1715.5 - MIN(B38,C38,038) 39 380 1833.2 1589.4 1910.4 - MIN(B39,C39,D39) 40 390 1979.4 1831.5 2135.6 - MIN(B40,C40,040) 41 400 2148 2111.3 2353.3 - MIN(B41,C41,041) 42 410 2342.8 2434.8 2649 - MIN(B42,C42,042l 43 420 2522.3 2758.8 2990.9 - MIN(B43,C43,043) 44 430 2778.2 3183.6 3214.9 - MIN(B44,C44,044) 45 440 3073.9 3488.9 3649 - MIN(B45,C45,045) 46 450 3243 3796.9 3953.6 - MIN(B46,C46,046) 47 460 3618.5 3788.5 3945.7 - MIN(B47,C47 ,047) 48 470 3780.1 3780.1 3937.8 - MIN(B48,C48,048) 49 480 3771.8 3771.8 3929.9 - MIN(B49,C49,049) 50 490 3763.5 3763.5 3922.1 - MIN(B50,C50,050) 51 500 3755.3 3755.3 3914.3 - MIN(B51,C51,051 I 52 Page 1

GFPratt PL TOP3.XLS (TSL TOPS) 8/17/94 G H I 1 Overshoot New curve, psia Existing Limit, psia 2 -[Pl TOP3.XLSJLTOPGALG!Y -F2-G2 357 3 -[PlTOP3.XLS)lTOPGALG!Y -F3-G3 358 4 -[PlTOP3.XLS)LTOPGALG!Y -F4-G4 360 5 -[PlTOP3.XLS)l TOPGALG!Y -F5-G5 363 6 -[Pl TOP3.XLSIL TOPGALG!Y -F6-G6 366 7 -[PlTOP3.XLSJL TOPGALG! Y -F7-G7 369 8 -[PlTOP3.XLSJLTOPGALG!Y -F8-G8 374 9 -[PlTOP3.XLSIL TOPGALG!Y -F9-G9 379 10 -[Pl TOP3.XLS)lTOPGALGIY -F10-G10 385 11 -[PlTOP3.XLSJLTOPGALG!Y -Fl 1-611 392 12 -[P.l TOP3.XLS)LTOPGALG!Y -F12-G12 401 13 -[PLTOP3.XLS]LTOPGALCIY -F13-G13 410 14 -!PL TOP3.XLS]LTOPCALC!Y -F14-G14 366 15 -[PL TOP3.XLSJLTOPCALC!Y -F15-G15 366 16 - [PLTOP3.XLS]LTOPCALCI Y -F16-G16 378 17 -[PLTOP3.XLSJLTOPCALCIY -F17-G17 395 18 -!PLTOP3.XLS]LTOPGALC!Y -F18-G18 411 19 -[PLTOP3.XLSJLTOPCALCIY -F19-G19 433 20 -[PL TOP3.XLS]LTOPCALCIY -F20-G20 457 21 - [PLTOP3.XLS)LTOPCALC!Y -F21-G21 486 22 -[PLTOP3.XLS)LTOPCALC!Y -F22-G22 518 23 -[PlTOP3.XLS]LTOPCALC!Y -F23-G23 509 24 -[PlTOP3.XLS]LTOPGALC!Y -F24-G24 509 25 -[PLTOP3.XLS)LTOPCALC! Y -F25-G25 388 26 -[PLTOP3.XLSJLTOPGALCIY -F26-G26 442

  • 27 -[PLTOP3.XLSJLTOPGALC!Y -F27-G27 505 28 - [PLTOP3.XLS)LTOPGALC! Y -F28-G28 563 29 -[PLTOP3.XLSJLTOPCALCIY -F29-G29 615 30 -[PLTOP3.XLS]lTOPCALCIY -F30-G30 615 31 -[PlTOP3.XLSJLTOPGALCIY -F31-G31 715 32 -[PLTOP3.XLSJLTOPCALCIY -F32-G32 785 33 -[PLTOP3.XLS]LTOPCALC!Y -F33-G33 866 34 -[PLTOP3.XLSJLTOPCALCIY -F34-G34 960 35 -[Pl TOP3.XLS]LTOPCALC!Y -F35-G35 967 36 -[PLTOP3.XLS]L TOPCALC!Y -F36-G36 967 37 -[PLTOP3.XLSJLTOPCALCIY -F37-G37 1091 38 -[PLTOP3.XLS]LTOPCALCIY -F38-G38 1238 39 - [PLTOP3.XLSJLTOPCALCIY -F39-G39 1401 40 - [PLTOP3.XLSJLTOPCALCIY -F40-G40 1602 41 -[Pl TOP3.XLSJLTOPCALC!Y -F41-G41 1799 42 -[PLTOP3.XLS]LTOPCALCIY -F42-G42 2017 43 -[PLTOP3.XLS]LTOPCALCIY -F43-G43 2270 44 -!PLTOP3.XLS]LTOPCALCIY -F44-G44, 2560 45 -[PLTOP3.XLSJLTOPCALCIY -F45-G45 46 -[PLTOP3.XLSJLTOPCALCIY -F46-G46 47 - [PLTOP3.XLS]LTOPCALCIY -F47-G47 48 -[PLTOP3.XLSJLTOPCALCIY -F48-G48 49 -[PL TOP3.XLSJLTOPCALCIY -F49-G49 50 - [PLTOP3.XLS)LTOPCALCIY -F50-G50 51 -[Pl TOP3.XLS]lTOPCALC!Y -F51-G51 52 Page 2

,. @--"* consumers Power l'llWEIUllG PALISADES NUCLEAR PLANT EA A-PAL-92095-01 ICBl&AN'S l'fCOlilU5.5 ANALYSIS CONTINUATION SHEET Sheet 44 Rev # _o__

Appendix 6.7 Additional Response Time Data (8 un-numbered pages attached)

.9/94

  • PORV Calculated Full Opening Time

)

---

..............

1.8 --+--+--+--t--+--l----+---,l--+----11--+---"'o;i'....~-+---+--+---+--+---+--+--+--+----l--+----l--+--l--l--l--__J'-----l---1-- - - - - ----

"-i.....

1.7 0

w ...........

t---+--+----+--+-+----+---+---+-l---+----l--+--ll---+--+--+--+-+----+---+--~"'-.~1----+----1---1----1--+--+---l-----l--l---4-------

Cl) ai r---t---t----t---t----t---+----t--+--+---t----t---+---lf---+--l----+--t----+--+---+---t--f'.__-t----+---+---+--+---lf---+---l----+----~~--f----

E ..............

i= 1.6 +--+--t--t-+---+--+--!--l--1--l---+---+-+--t---t--t-+---+--+--l'-----l--l--f'.__+--+-+--l---+--l----l--+---+--~-~~~

CJ c 1----t--+---+-+--+-+--l--+---+--+---i,--l--l--l---+--+-+--l---+--+--+--+--+---l~-l----,l--l---l--l--+---+--~-I----~- "i-....

  • 2 Cll Cl.

' .......

0

"'I'..

r---t---t----t---t----+--+----t--+--+---t----t---t---lf---+--l----+--t----+--+---+---t--+---t----+---+---+---+---"'-l---t---l---+---lf---+--1-----

1.5 -r---r--+---+-t---t---t----t---1-+--+--+--+-+---t---l--+-+----+----l--+--lf--+--+----+--+-+---t---+------~--l-1-~----- "'-

r--+--+---t--t----t----t---lr--+-+--l--+---+--l~t--+---t--t--1----t-~f--+-+--l--+---+--I~+--+--+-~"-+--+- - --

i-----t--i-----t--t---t---t--t--+--l---t--+--+--!--t--il--l--l--+-+---+-+--l--+----+--+--+--+--1--1---lr-~-I~----~

1.4-1---+---+--+---t----+---+---t--l----'f---+--t----+--+--+---t---+--t----+---+---+--+----lf----I--+--+--+---+--+--+--+--+--+-

"" ""-*--


~---

.... ......_.

t--l--t--l--l--t---+---+-+--l--+---+--+--l---t--lf----l--l--+-+---+-+--l----l--+--+--+--+--t--+---1--l-__J~-------~-

1----+--l----+--+--+---l---+--+--+--+---+---+---+--+----lf----l--l--l----l----l---+--+--+---+--+---+---+---+--+-----l---+---l--~---

1.3-t-____.....___.._......_~_ _.____._ _,__,__-+-"'"--'---'-----+---'--'---'-_.__--lf----'--'---'--...__-+--"'"--'---'----'--+----'---'---L--'-~

300 400 500 600 700 800 900 1000 Pressureizer Pressure, PSIA Page 1

S2ptember 98-108-07 12, 1989 Mr. Juies L. Topper Consumers Power Company 1945 West Parnall Roid Jackson, Ml 49201

Subject:

C<>tlf)uted Stroke*TI11es for Pal1s~des Replacement Power Operated Relief Valves

Reference:

GWO 8304, F1le -011, -317.0

Dear Mr. Topper:

    • J In accordance with our telephone conversation of September 12, 1989 and my subsequent discussion w1th Hr. Ashworth of CPCo, we have computed the expected opening stroke times for the Palisades replicement Target Rock Power Operated Relief Valves (PORV) for sever~l LTO~ set points assuming saturation cond1t1ons in the pressurizer. These computations included the effects of the RCS pressure r~ rates that have been calculated by CPCo personnel at these LTOP set po1nts. The following sunnarizes the results of the computations and ident1f1es the conditions analyzed.

Co11 Pressure PTessur1 zer Energize DepressL.ar1za Slew Total Sot Point TetlP Ramp R1t1 Tim T1* Time T1me (psid) (*f) (ps1/sec) (sec) {sec) (sec) (sec) 330.0 426.l 93.0 0.23 1.45 0.20 1.88

> 500.0 467.l 93.0 0.26 1. 41 0.16 1.83 1000.0 544.6 63.0 0.32 0.97 0 .10 I. 39

.. -: . ~ .. * .... ,*,. .~ :*:'~>;,;..~"' '** \!""'"-.*~* :f.. -~~.,..,--*:,u*:. '-di'~('.-~ . . ***.**. *- - . * -~ .,-~-. *--

. *. 'Thesa"'analy*ses *assu..*~no subCoo11ng in the fluid at the LTOP s*et point and, therefore, represent an upper 1;*it on the temperature conditions of the pressurizer when the satpoint pressure is ruched. W~ consider this assuMJ)tfon to be very conservative yet the analyses indicate that the valve will open ~1th1n 2 s~co"ds. As indicated in prior analyses any subcooling of the flu1dw111reduct the total Vilve response time.

This 1nfo~t1on w111 be included 1n the final report. if you have any questioNs or require further infor11at1on please give me a call.

J'ir~

L. E. De111tck 1050 CONNCCTICUT AVtNUt N.W. WAGMIN~TON. 0. C. ~0038

MANUAL4514 January,1988

._;:..,

.. :.:: *...~

.. ...;.:*  :  :-...* . /*

~*r **~*~}-- .-:h ~

.*."_"

v

      • <>;:, ..'~*-

-. . .~** *.

' ;';':~:~: ~~)t~~* -*' -_ :;:;',_*.

. .. .*1":

-**.

i ' ' ..

Model';~11sn~>-~:>, - -

Alplt~ti!l~e~;f ' .'Y ,~ *.*.*. . .

  • Pressure- Ttafislilitters For Nl.l~I~ar Service Instruction Manual
  • *Rosemount

MODEL 1154 ALPHALINE PRESSURE TRANSMITTERS FOR NUCLEAR SERVICE CAUTION:

TO A VOID POSSIBLE WARRANTY INVALIDATION, READ THIS MANUAL BEFORE ATTEMPTING INSTALLATION OR MAINTENANCE Rosemount Model 1154 Pressure Transmitters may be protected by one ormoreofthe following U.S. Pal Nos. 3,618,390; 3,646,538; 3,793,885; 3;800,413; 3,975,719; and Re. 30,603. Canada Patented (Brevete) 1974, 1975, 1976, and 1979. May Depend on Model. Other Foreign Patents Issued and Pending.

Publication Number 4514

©Rosemount Inc., 1984, 1988 Printed in the United States of America Rosemount inc.

12001 TECHNOLOGY DRIVE EDEN PRAIRIE, MINNESOTA 55344 U.S.A.

-~PHONE: (612)941-5560 TELEX: 4310024, 4310012 CABLE: ROSEMOUNT

l Section II

    • INTRODUCTION OPERATION The block diagram in *Figure 2-1 illustrates the operation of the transmitter.

The Rosemount Model 1154 Alphaline Pressure CAPACITOR PLATES Transmitters have a variable capacitance sensing element, the 8-Cell (Figure 2-2). Differential capacitance between SENSING the sensing diaphragm and the capacitor plates is con- DIAPHRAGM verted electronically to a 2-wire 4-20 mA de s"ignal.

1.1~it====--s1LICONE OIL Where: 1154DP, HP, GP p is the process pressure.

K1 is a constant.

cl is the capacitance between the high pressure side and the sensing diaphragm.

c2 is the capacitance between the low pressure Figure 2-2. THE 8-CELL side and the sensing diaphragm.

1..r Where:

Where:

1..r is the current source. ldill' is the difference in current between C1 and Cr Vfw *is the peak-to-peak oscillation voltage.

is the oscillation frequency. Therefore:

P = Constant x ldilf = 1..r CURRENT SENSOR ~ Q~C>pULATOR; -f~_

  • ~~- *. . '.- ... DETECTOR CURRENT LIMITER

+ \

SIGNAL '

VOLTAGE REVERSE REGULATOR POLARITY PROTECTION CURRENT CONTROL Figure 2-1. ELECTRICAL BLOCK DIAGRAM 2-1

Rosemount Manual

. T H E 8-CELL SENSOR' The sensing element capacitance is variable. There-Process pressure is transmitted through an isolating fore, the frequency is variable about a nominal value of diaphragm and silicone oil fill fluid to a sensing dia- 32kHz.

phragm in the center of the 8-Cell. The reference pressure An integrated circuit amplifier is used as a feedback is transmitted in like manner to the other side of the sensing control circuit and controls the oscillator drive voltage diaphragm. such that:

The position of the sensing diaphragm is detected by the capacitance plates o_n both sides of the sensing dia- fV pp =

phragm. The capacitance between the sensing diaphragm and either capacitor plate is approximately 150 pf. The sensor is driven through transformer windii:igs, by an oscillator at roughly 32 kHz and 30 Vpp. VOLTAGE REGULATOR The transmitter uses a zener diode, transistor, and DEMODULATOR resistors to provide a constant voltage of 6.4 V de for the reference and 7 V de to supply the oscillator.

The demodulator consists of a diode bridge which rectifies the ac signal from the sensor cell to a de signal.

The oscillator driving current, r,.r (the sum of the de ZERO AND SPAN ADJUSTMENTS currents through two transformer windings) is controlled Zero adjustment components consist of a potentiome-to be a constant by an integrated circuit amplifier. ter and resistor which develop a separate adjustable cur-The de current through a third transformer winding is rent that sums with the sensor current. The coarse zero a current directly proportional to pressure; i.e., switch switches resistors into the circuit as needed.

  • Idiff = fV PP (C2 - C1) Span adjustment is performed with a potentiometer which determines the amount of loop current which is The diode bridge and span temperature compensating sensed and fed back to the current control amplifier.

thermistor are located inside the sensor module. The effect of the thermistor is controlled by resistors located in the electronics housing. CURRENT CONTROL The current control amplifier consists of an integrated LINEARITY ADJUSTMENT circuit. two transistors and associated components. The IC reference voltage is established at the junction of a resistor Linearity is adjusted by a variable resistance network, network. The current control amplifier drives the current capacitor, and diodes. The currents generated through this control to a level such that the current detector feeds back part of the circuit are summed into the inputs of the a signal equal to the sum of the zero current and the oscillator control circuit. This provides a programmed variable sensor current correction which raises the oscillator peak-to-peak volt-age to compensate for first order nonlinearity of capaci-tance as a function of pressure. CURRENT LIMIT A current limiter prevents the output current from OSCILLATOR exceeding 30 mA in an overpressure condition.

The oscillator has a frequency determined by the capacitance of the sensing element and the inductance of REVERSE POLARITY PROTECTION the transformer windings. Reverse polarity diode protected.

2-2

...

Model 1154 Alphaline Pressure Transmitter PHYSICAL SPECIFICATIONS ALL Range Code 0: +/-(1.13% Upper Range Limit +0.5% span)

MODELS per 100 °F (55.6 °C) ambient temperature change.

Materials of Construction Overpressure Effect Isolating Diaphragms and Drain/Vent Valves Model 1154DP: Maximum zero shift after 2000 psi (13.8 316 SST MPa) overpressure: +/-0.25% of Upper Range Limit Process Flanges (Range Code 4); +/-1.0% of Upper Range Limit (Range 316 SST Code 5); +/-3.0% ofUpper Range Limit (Range Codes 6, 7);

6% of Upper Range Limit (Range Code 8).

Process 0-Rings 316 SST Model 1154GP Maximum zero shift after 2000 psi (13.8 Electronics Housing 0-Rings MPa) overpressure: +/-0.25% of Upper Range Limit Ethylene Propylene (Range Code 4); +/-1.0% of Upper Range Limit (Range Codes 5, 6, 7, 8); maximum zero shift after 4500 psi (31.0 Fill Fluid MPa) overpressure: +/-0.5% of Upper Range Limit (Range Silicone Oil Code 9); maximum zero shift after 6000 psi (41.34 MPa)

Flange Bolts overpressure: +/-0.25% of Upper Range Limit (Range Code Plated Alloy Steel, per ASTM A-540 0).

Electronics Housing Model l 154HP: Maximum zero shift after 3000 psi (20.68 316 SST MPa) overpressure: +/-1.0% of Upper Range Limit (Range Code 4); +/-2.0% of Upper Range Limit (Range Code 5);

Process Connections

+/-5.0% of Upper Range Limit (Range Codes 6, 7).

3/8 in. Swagelokt compression fitting, 316 SST. (1.4 in.-

18 NPT optional). Static Pressure Effect Electrical Connections Model 1154DPZeroEffect: +/-0.2% ofUpperRange Limit per 1000 psi (6.9 MPa) (Range Codes 4, 5); +/-0.5% of 112-14 NPT conduit with screw terminals UpperRangeLimitper lOOOpsi (6.9MPa)(RangeCodes Weight 6, 7, 8).

24 pounds, (10.9 kg) including mounting bracket Model 1154HP Zero Effect: +/-0.66% of Upper Range Limit per 1000 psi (6.9 MPa) (all Range Codes).

Span Effect t Swagelok is a trademark of Crawford Fitting Co.

Is systematic and can be calibrated out for a particular pressure before installation. Correction uncertainty:

+/-0.5% of reading/1000 psi.

PERFORMANCE SPECIFICATIONS Power Supply Effect (Zero-based ranges,

Reference:

<;onditions)'..,

Less than 0.005% of output span/volt.

Accuracy Load Effect

+/-0.25% of calibrated span. Includes combined effects of No load effect other than the change in voltage supplied to linearity, hysteresis and repeatability.*.

the transmitter.

Dead band Mounting Position Effect None. No span effect. Zero shift of up to 1.5 inHp (372 MPa)

Stability (Range Codes 4, 5) which can be calibrated out. For higher ranges, effect is superseded by Accuracy Specifications.

+/-0.25% ofUpperRangeLimitforsix months. (+/-0.38%of Response Time Upper Range Limit for Range Code 0.)

Fixed time constant (63%) at 100 °F (37.8 °C) as follows:

Temperature Effect 0.5 sec. for Range Code 4, 0.2 sec. for all other Range Range Codes 4 through 9: +/-(0.75% Upper Range Limit Codes.

+0.5% span) per 100 °F (55.6 °C) ambient temperature change.

4-3

--. -*

Rosemount Manual

  • I MODEL 1154 Table 4-1. TRANSMITTER DESIGN SPECIFICATIONS ALPHALINE PRESSURE TRANSMITTERS FOR NUCLEAR APPLICATIONS PRESSURE MEASUREMENT

(

CODE DP Differential Pressure, 2000 psig, ~13.8 MPa) Static Pressure Rating HP Differential Pressure, 3000 psig, 20.62 MPa) Static Pressure Rating GP Gage Pressure SERIES Stainless Steel Housing; qualified per IEEE Std. 323-1974, 344-1975 PRESSURE RANGES MODEL 1154DP MODEL 1154HP MODEL 1154GP CODE (DIFFERENTIAL) (DIFFERENTIAL) (GAGE) 4 0-25 to 0-150 inH 20 0-25 to 0-150 inH 20 0-25 to 0-150 inH 20 (0-6.22 to 0-37.50 kPa) (0-6.22 to 0-37.50 l<Pa) (0-6.22 to 0-37.50 kPa) 5 0-125 to 0-750 inH20 0-125 to 0-750 inH20 0-12S to 0-750 inH20 (0-31.08 to 0-186.50 kPa) (0-31.08 to 0-186.50 kPa) (0-31.08 to 0-186.50 kPa) 6 0-17 to 0-1 00 psid 0-17 to 0-100 psid 0-17 to 0-100 psip (0-0.12 to 0-0.69 MPa) (0-0.12 to 0-0.69 MPa) (0-0.12 to 0-0.69 M a) 7 0-50 to 0-300 psid 0-50 to 0-300 psid 0-50 to 0-300 psig (0-0.35 to 0-2.07 MPa) (0-0.35 to 0-2.07 MPa) (0-0.35 to 0-2.07 MPa) 8 0-170 to 0-1 000 psid N/A 0-170 to 0-1000 psig (0-1.15 to 0-6.89 MPa) (0-1.15 to 0-6.89 MPa) 9 0

NIA N/A N/A NIA 0-500 to 0-3000 psig (0-3.45 to 0-20.62 MPa) 0-1 000 to 0-4000 psig c

(0-6.89 to 0-27.56 MPa)

CODE OUTPUT R 4-20 mA CODE FLANGE OUTPUT A Welded 3/8" Swagelok Comwession Fitting Process Connection and Vent/Drain Valve Welded to lange B* 1/4"-NPT Process Connection, (Vent/Drain Valve Welded to Flange)

C* 1/4"-NPT Process Connedion and Drain Hole (Vent/Drain Valve Not Supplied)

J* Welded 3/8" Swagelok Compression Fitting Process Connection/

- 1/4"-NPT Drain Hole

,, n ,, ~'

,,

I 1154 DP 4 R A

  • TYPICAL MODEL NUMBER
  • NOTE: Customer assumes responsibility for qualifying process interfaces-on these options. Contad Rosemount Inc. for details .
  • 4-4