ML18059A480
| ML18059A480 | |
| Person / Time | |
|---|---|
| Site: | Palisades |
| Issue date: | 10/19/1993 |
| From: | CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.) |
| To: | |
| Shared Package | |
| ML18059A477 | List: |
| References | |
| EA-SC-93-087-03, EA-SC-93-087-03-R00, EA-SC-93-87-3, EA-SC-93-87-3-R, NUDOCS 9311030058 | |
| Download: ML18059A480 (32) | |
Text
PALISADES NUCLEAR PLANT ENGINEERING ANALYSIS COVER SHEET EA-SC-93-087-03 Total Nl.llber of Sheets 29 Title Structural Analy§i§ of Temgerature Nozzle Weld Modifications for Consumers Power Palisades Pressurizer INITIATION AND REVIEW Calculation Status Preliminary Pending Final Superseded a
a a
D Initiated I nit Review Method Technically Reviewed Revr Rev Appd Appel CPCo I
Description By Detail Qual By Appd Bv Date Alt Cale Review Test Bv Date io.
Jc:.c.N J~c.. /0-1'1-13 J~
0 Original Issue 10/19/93
~
v W<FJ
-f-1""
ss~-:;;L 1~i>t.
M~~
,.... _1 ~
1.0 OBJECTIVE This Engineering Analysis (EA) is written to document the adequacy, from an ASME code standpoint, of the structural analysis of the Palisades Pressurizer Temperature Nozzle weld modification, SC-93-087.
This EA is also written to incorporate the above analysis, which was performed by ABB/Combustion Engineering, Chattanooga, Tennessee, into the Palisades administrative filing system.
2.0 ANALYSIS INPUT 2.1 Vendor Supplied Calculation ABB/Combustion Engineering Calculation No. CR-9417-CSE93-1121, Rev 1, dated 10/18/93 - Attachment 1.
3.0 ASSUMPTIONS None.
4.0 ANALYSIS The attached analysis was performed for Consumers Power Company by ABB/Combustion Engineering, Chattanooga, Tennessee (ABB/CE). has been prepared and approved by ABB/CE in accordance with the ABB/CE quality assurance program using checklist 2 of ABB/CE procedure QAM-101.
This anaJ_y_s_Ls__,_d_oc_ument_s_the owner's review of the ABB/CE design calculation.
(
9311030058 -931027
. \\I I
PDR ADOCK 05000255
.__J
- .J'
?f.
1*'
1 p
c l
PALISADES NUCLEAR PLANT ANALYSIS CONTINUATION SHEET EA-SC-93-087-03 Sheet _2_ Rev # _....::.o __
5.0 CONCLUSION
The analysis detailed in Attachment 1 to this EA demonstrates the adequacy of the modification design to the Palisades Pressurizer Temperature Nozzles in meeting the ASME Boiler and Pressure Vessel Code stress and fatigue allowables.
Reference/C011111ent
EA-SC-93-087-03 REPORT:
27 Pages APPENDICES:
0 Page OTHER ATTACHMENTS:
0 Pages STRUCTURAL ANALYSIS of TEMPERATURE NOZZLE WELD REPAIRS for CONSUMERS POWER PALISADES PRESSURIZER CR-9417-CSE93-1121, REV. 1 This document is the propeny of ABB/Combustion Engineering, Chattanooga, Tennessee, and is to be used only for the purposes of the agreement with ABB/CE pursuant to which it is furnished.
PREPARED BY: _J_._w_. _6_1::;..._s_:s _ _,~'+---*
--- DATE: 10/*Bfq,3 VERIFICATION STATUS:
COMPLETE The Safety-Related design information contained in this document has been verified to be correct by means of Design Review using Checklist(s) 2...
of QAM-101.
Name.G. A-. ~B..'-
Signature lf?.c.~ 8~ Date,..o/nt/?.J Independent Reviewer APPROVED BY: J.).,4,nil!Jfl.4 <f12t2L DATE: /l)/;e//9.5 ABB COMBUSTION ENGINEERING CHATTANOOGA, TENNESSEE
NUMBER DATE 0
10/15/93 1
10/18/93 I
CR-9417-CSE93-ll21, REV. 1 Page 2
of 27 RECORD OF REVISIONS PARAGRAPH ( s)
PREPARED INDEPENDENT APPROVED INVOLVED BY REVIEWER BY J.W.Bass a.A.Bell J.A.Amburn Original Issue 10/15/93 10/15/93.
10/15/93 J.W.Bass a.A.Bell 4*~
Pg 11,25-27
~
Y.~~
/0 'i'/~.J itl ~t!/f° J I i CSE-93-379 I
I i
- 1. 0 2.0 3.0 4.0 5.0 6.0 CR-9417-CSE93-ll21, REV. 1 Page 3
of 27 TABLE OF CONTENTS
SUMMARY
4 REFERENCES 5
GEOMETRY 6
METHOD OF ANALYSIS 8
EVALUATION OF HEAD NOZZLE 5.1 PRIMARY STRESS EVALUATION 9
5.2 PRIMARY PLUS SECONDARY STRESS EVALUATION 9
5.3 FATIGUE USAGE FACTOR EVALUATION 15 EVALUATION OF VESSEL NOZZLE 6.1 PRIMARY STRESS EVALUATION 17 6.2 PRIMARY PLUS SECONDARY STRESS EVALUATION 17 6.3 FATIGUE USAGE FACTOR EVALUATION 23 CSE-93-379
1.0
SUMMARY
CR-9417-CSE93-1121, REV. _
Page 4
of 27 This report documents the structural integrity of repaired Consumers Power pressurizer temperature nozzles.
The temperature nozzles in the top head and. lower vessel shell were found leaking and the proposed repair was to apply a weld built-up pad to seal the nozzle at the 0. D. of the pressurizer.
The,,stresses were determined for all specified conditions and evaluated against allowables of the ASME Code,Section III for Class I Components, Reference 1.
The analysis was performed using a classical two-body interaction procedure.
Alternative designs were considered for (1) severing the nozzle between the leaking weld and the weld pad to relieve thermal stresses or (2) leaving it unsevered, as stresses would allow.
Conservative assumptions were made to allow use of original stress report models (References 3 and 4) with the addition of thermal stresses induced by the added restraint induced by the weld pad for the unsevered nozzle option.
Results of the analysis showed the lower vessel shell nozzle repair was acceptable without severing the nozzle.
The top head nozzle was also acceptable, however, it does require that the head nozzle be severed to relieve thermal stresses.
For these alternatives, ASME Code requirements were met for all stress and fatigue allowables to allow operation until the next scheduled outage.
CSE-93-379
2. 0 REFERENCES CR-9417-CSE93-1121, REV.
- Page 5
of 27
- 1.
ASME Boiler and Pressure Vessel Code,Section III, 1965 Edition with Addenda through Winter, 1966.
- 2.
CE Drawings:
D-9417-C093-019, "Pressurizer Head Temperature Nozzle Temporary Repair" D-9417-C093-021,. "Pressurizer Vessel Temperature Nozzle Temporary Repair"
- 3.
CE Report No. CENC 1114, Analytical Report for Consumers Power Pressurizer, dated March 1969.
- 4.
CE Report No. CENC 1214, Addendum to the Analytical Report for Consumers Power Pressurizer, dated October
~.
(q 73 J C.l.,J to-<1-93 CSE-93-379
3.0 GEOMETRY CR-9417-CSE93-1121, REV. l Page 6
of 27 Dimensions of the pressurizer and nozzles were taken from Reference 2 as shown in Figure 1 and Figure 2 for the head and vessel nozzle, respectively.
Figure l - Head Temperature Nozzle Repair THERMOWELL -
SST TYPE 316 SA-182 TYPE F-316 R.18 MIN
- BREAK CORNER 4.12 REF.
019-01.
MIN MAX
____,. 019-02 :
__.50 MIN.
.62 MAX.
EXISTING !'
TEMPERATURE NOZZLE THICK WELD BUILD uP (JNCONEL 182)
PT FIN.Al SURF ACE UT FIN.Al BUILD UP
-HEAD MAT~RIAL.:
JT.MT BASE MATERIAL -
BEFORE WELDING SA-533 Gr 3 C: :
-"-~
" ~.
- APPROX
- CSE-93-379
- 3. 0 GEOMETRY (Continued)
CR-9417-CSE93-1121, REV.
~
Page 7
of 27 Figure 2 - Vessel Temperature Nozzle Repair
.50 MIN
.62 MAX THICK WELD BUILD-UP (INCONEL 182)
PT FINAL SURF ACE UT FINAL BUILD-UP
- ..;T, MT BASE MAT'L BEFORE WELDING~
-R.18 MIN
\\.'
- -BREAK CORNER
'I
(
,,I./ 02.5 I;/ ;04.0
---r MIN MAX
.-SA-182, TYPE F-.3'.
-THERMO WELL SST TYPE 31 EXISTING
--L-----------------------~------------*------------:---~--
~
I ~, "
~~
~
' 'l
. 1 I
i I
)
~
. L,_
- ~
" 986-07
-SB-166 021-01
-EXISTING P-3 WELD BUILD-UP
-SHELL MATERIAL:
SA-533 G.- B Cl 1 CSE-93-379 EXISTING : '
"'."EMPERATU NOZZLE
4.0 METHOD OF ANALYSIS CR-9417-CSE93-1121, REV. 1 Page 8
of 27 A detailed structural evaluation of the nozzles and I.D. weld was originally performed in Reference 3.
Analysis of the head nozzle for revised pressure and temperature loadings was performed in Reference 4.
These analyses were performed using classical elastic methods.
The nozzle and the weld/pressurizer were separated into two bodies as shown in Figure 3.
Displacements for known loads (pressure and temperature) and for unknown loads (redundant edge forces) were equated to satisfy structural continuity and solved for the redundants.
The two-body interaction model considered the nozzle to be rigidly attached to the pressurizer, thus, the weld/pressurizer displaced only as a function of local flexibilities.
This conservative assumption allows use of the same nozzle-weld model and stresses to evaluate the O.D. weld pad for the severed nozzle opcion, i.e., the weld location is justifiably ignored.
Furthermore, this assumption 0
I I
- i.
~,
- ~
I i
~
conservatively ignores the added support provided against pressure and interaction loads by the weld pad, i.e.,
considers the original (leaking) weld to be totally ineffective.
For evaluation of the unsevered nozzle optional repair, the nozzle was conservatively assumed to be totally restrained against differential thermal axial growch.
Stresses due to differential temperatures and material crcoerties between the nozzle and oressurizer were calcula~
~nd~superimposed on the pressure and radial interaction induced stresses as calculated using the original model.
. CSF.-93-379
5.0 EVALUATION OF HEAD NOZZLE 5.1 PRIMARY STRESS EVALUATION CR-9417-CSE93-1121, REV. 1 Page 9
of 27 Primary stresses were conservatively taken from Reference 3, page A-336:
Pm= 6.6 ksi < Sm= 23.3 ksi Pl + Pb = 12.3 ksi < 1.5 Sm = 34.9 ksi 5.2 PRIMARY PLUS SECONDARY STRESS EVALUATION For the severed nozzle the Pl+Pb+Q stresses are conservatively taken from Reference 4.
These are repeated below for convenience.
Both inside and outside surface stresses were considered.
Total Stress (ksil Stress Int. (ksi)
TRANSIENT Sx So Sr Sx-So Sx-Sr So-Sr HYDRO TEST
-2.60 12.40
-3.10
-15.00 0.50 15.50 LEAK TEST
-2.10 9.90
-2.50
_, 2.00 0.40 12.40 H.U@5.73 3.69 1.85
-2.25 1.84 5.94 4.10 C.D.@2.865
-3.15 4.72
-0.25
-7.87
- 2.25
-1.41 4.51 5.92 LOADING 5%
2.88 3.24
- 2.38
- 0.36 5.26 5.621 UNLOADING 5 %
1.82 4.01
-2.18
-2.19 4.00 6.191 LOADING 15%
3.44 2.85
-2.48 0.59 5.92 5.33!
UNLOADING 1 5 %
1.54 4.24
-2.13
-2. 70 3.67 6.37 STEPINCR 2.90 3.18
-2.36
-0.28 5.26 5.54 STEP DECR @20 2.43 3.53
-2.28
-1. 10
- 4. 71 5.81 STEP DECR @120 2.06 3.83
-2.22
-1. 77 4.28 6.05 REACTOR TRIP 0.19 5.28
-1.90
-5.09 2.09 7.181 LOSS OF FLOW 0.19 5.28
-1.90
-5.09 2.09 7.181 LOSS OF LOAD 0.19 5.28
-1.90
-5.09 2.09 7., 8 SV OPER @20 6.29 0.04
-2.77 6.25 9.06 2.81 j SV OPER @200 0.19 5.28
-1.90
-5.09 2.09 7.181 Si. :.JNE RUPTURE
-19.63 25.82. -0.40 I
-45.45
-19.23 26.221 C.:J @1 58
-25.96 33.53
-0.25
-59.49
-25. 71 33.781 CSE-93-379
5.0 EVALUATION OF HEAD NOZZLE CR-9417-CSE93-1121,
~EV. l Page 10 of 27 5.2 PRIMARY PLUS SECONDARY STRESS EVALUATION (Continued)
For the outside surface of the head nozzle (Ref 4, pg A-338):
Total Stress (ksi)
Stress Int. (ksi)
TRANSIENT Sx So Sr Sx-So Sx-Sr So-Sr HYDRO TEST 6.50 15.10 0.00
-8.60 6.50 15.10 LEAK TEST 5.20 12.10 0.00
-6.90 5.20 12.10 H.U@5.73
-0.88 0.51 0.00
-1.39
-0.88 0.51 C.D.@2.865 3.46 6.69 0.00
-3.23 3.46 6.69 STEADY ST A TE 0.55 3.17 0.00
-2.62 0.55 3.17 LOADING 5%
0.08 2.42 0.00
-2.34 0.08 2.42 UNLOADING 5 %
0.89 3.75 0.00
-2.86 0.89 3.75 LOADING 15%
-0.34 1.74 0.00
-2.08
-0.34 1.74 UNLOADING 1 5 %
1.12 4.12 0.00
-3.00 1.12 4.12 STEP INCR 0.05 2.35 0.00
-2.30 0.05 2.35 STEP DECR @20 0.41 2.96 0.00
-2.55 0.41 2.96 STEP DECR @ 1 20 0.71 3.46 0.00
-2. 75 0.71 3.46 REACTOR TRIP 2.18 5.90 0.00
-3.72 2.18 5.90 LOSS OF FLOW 2.18 5.90 0.00
-3. 72 2.18 5.90 LOSS OF LOAD 2.18 5.90 0.00
-3. 72 2.18 5.90 SV OPER @20
-2.84
-2.64 0.00
-0.20
-2.84
-2.64 SV OPER @200 2.18 5.90 0.00
-3. 72 2.18 5.90 ST. LINE RUPTURE 21.33 37.92 0.00
_, 6.59 21.33 37.92 C.D @158 26.27 49.22 0.00
-22.95 26.27 49.221 The maximum stress intensity range for the severed nozzle
~epair alternative is Sn= 49.2 + 2.6 = 51.8 ksi which is less than the Code allowable, 3 Sm = 6~.9 ksi.
CSE-93-379 J
CR-9417-CSE93-1121, REV.
l Page 11 of 27 5.0 EVALUATION OF HEAD NOZZLE 5.2 PRIMARY PLUS SECONDARY STRESS EVALUATION (Continued)
For the unsevered nozzle, differential thermal axial restraint stresses are calculated by imposing axial continuity between the nozzle and the pressurizer/pad determining the redundant load, V~.
~~-~A.I-
',~" "~m
- . "~
~-. **,, ~
..,.1 --~--C, (i-.=~~~,._,._
T
-:;/:----:;,,~. ci"Zg~/;---:----.=;::===~- Vt..
iit.,!i. ---
and z 1 = Axial deformation of pad due to temperature:
t 1 = thickness of pressurizer
=t1a1CT1-70)
T1 =mean temperature of pressurizer a 1 = coefficient of thermal expansion Z2 = Axial deformation of nozzle due to temperature:*
T2 = mean temperature of nozzle
=t:.a2(T2-7 0l a 2 =coefficient of _thermal expansion 2 1 = Axial deformation of pad due to redundant load V~:
= o (Conservatively assumed rigid) z, = Axial
-=-L deformation of nozzle due to redundant load V~:
(Cylinder under axial :oad)
AE F = Axial force =
27rR2V~
L = Length = pressurizer thickness = t 1 A = Area = nozzle area = 27rR2t 2 R, = Nozzle radius t, = Nozzle thickness E- =Young's Modulus = E~
Equating pad and nozzle axial deformat~ons for continuity:
Total deformation of pad = Total ieformation of nozzle
.:.. ~z.. =Z... -z-.
- .. a.. \\~
.. --c)= ':.o-:.,.c.a_
=-
CSE-93-379
5.0 EVALUATION OF HEAD NOZZLE CR-9417-CSE93-1121, REV. 1 Page 12 of 27 5.2 PRIMARY PLUS SECONDARY STRESS EVALUATION (Continued)
Axial stress:
v s
=~
xca t
1 Using temperature data and material properties from Reference 4, the additional thermal axial stress, Sxta, for each load condition become:
TRANSIENT T1 al a1T1 T2 a2 a2T2 c:>.,T,*d..,i~ E2 Vto.
Sxta H.U@5.73 566 7.33 4149 583 7.95 4635
-486 29.1
-3536 -14.14 C.D.@2.865 51
-361 29.1
-2630 -10.52 LOADING 5%
583 7.33 4273 591 7.95 4698
-425
- 29. 1
-3092 -12.37 UNLOADING 5 %
583 7.33 4273 577.5 7.95 4591
-318 29.1
-2312
-9.25 LOADING 15%
583 7.33 4273 598 7.95 4754
-481
- 29. 1
-3497 -13.99 UNLOADING 1 5 %
583 7.33 4273 574 7.95 4563
-290 29.1
-2109
-8.44 STEP INCR 583 7.33 4273 591 7.95 4698
-425 29.1
-3092 -12.37 STEP DECR @20 583 7.33 4273 585 7.95 4651
-377
- 29. 1
-2745 -10.98 STEP DECR @120 583 7.33 4273 580.5 7.95 4615
-342 29.1
-2485
- 9.94 REACTOR TRIP 583 7.33 4273 557 7.95 4428
-155 29.1
-11 26
-4.50 LOSS OF FLOW 583 7.33 4273 557 7.95 4428
-155 29.1
-1126
-4.50 LOSS OF LOAD 583 7.33 4273 557 7.95 4428
-155 29.1
-1126
-4.50 SV OPER @20 583 7.33 4273 632 7.95 5024
-751 29.1
-5464 -21.85 SV OPER @200 583 7.33 4273 557 7.95 4428
-155 29.1
-1126
-4.50 ST. LINE RUPTURE 583 7.33 4273 343 7.70 2641 1632 30.0 12242 48.97 C.D @1.58 572 7.33 4193 267 7.60 2029 2164 30.2 16335 65.34 CSE-93-379
5.0 EVALUATION OF HEAD NOZZLE CR-9417-CSE93-ll21, REV. 1 Page 13 of 27 5.2 PRIMARY PLUS SECONDARY STRESS EVALUATION (Continued)
Superimposing stresses from pressure, _radial, and axial redundants gives total primary plus secondary stresses and stress intensities:
For the inside surface of the head nozzle:
(Sx = Sx + Sxta; So = So; Sr = Sr)
Total Stress (ksil Stress Int. (ksil TRANSIENT Sx So Sr Sx-So Sx*Sr So-Sr HYDRO TEST
-2.60 12.40
-3.10
-15.00 0.50 15.50 LEAK TEST
-2.10 9.90
-2.50
-12.00 0.40 12.40 H.U@5.73
-10.45 1.85
-2.25
-12.30
-8.20 4.10 C.0.@2.865 4.30 4.72
-0.25
-0.42 4.55 4.97 STEADY ST A TE
-8.26 3.67
-2.25
-11.93
-6.01 5.92 LOADING 5%
-9.49 3.24
-2.38
-12. 73
-7.11 5.62 UNLOADING 5 %
-7.43 4.01
-2.18
-11.44
-5.25 6.19 LOADING 15%
-10.55 2.85
-2.48
-13.40
-8.07 5.33 UNLOADING 1 5 %
-6.90 4.24
-2.13
-11.14
-4.77 6.37 STEPINCR
-9.47 3.18
-2.36
-12.65
-7.11 5.54 STEP DECR @20
-8.55 3.53
-2.28
-12.08
-6.27 5.81 STEP DECR @1 20
-7.88 3.83
-2.22
-11.71
-5.66 6.05 REACTOR TRIP
-4.31 5.28
-1.90
-9.59
-2.41 7.18 LOSS OF FLOW
-4.31 5.28
-1.90
-9.59
-2.41 7.18 LOSS OF LOAD
-4.31 5.28
-1.90
-9.59
-2.41 7.18 SV OPER @20
-15.56 0.04
-2.77
-15.60
-12. 79 2.81 SV OPER @200
-4.31 5.28
-1.90
-9.59
-2.41 7.18 ST. LINE RUPTURE 29.34 25.82
-0.40 3.52 29.74 26.22 C.D @1.58 39.38 33.53
-0.25 5.85 39.63 33.78 CSE-93-379
5.0 EVALUATION OF HEAD NOZZLE CR-9417-CSE93-1121, REV. 1 Page 14 of 27 5.2 PRIMARY PLUS SECONDARY STRESS EVALUATION (Continued)
For the outside surface of the head nozzle:
(Sx = Sx + Sxta; So = So; Sr = Sr)
Total Stress tksi)
Stress Int. (ksi)
TRANSIENT Sx So Sr Sx-So Sx-Sr So.Sr HYDRO TEST 6.50 15. 10 0.00
-8.6 6.5
- 15. 1 LEAK TEST 5.20
- 12. 10 0.00
-6.9 5.2
- 12. 1 H.U@5.73
-15.02 0.51 0.00
-15.5
-15.0 0.5 C.D.@2.865 10.91 6.69 0.00 4.2 10.9 6.7 STEADY ST A TE
-9.97 3.17 0.00
-13.1
-10.0 3.2 LOADING 5%
-12.29 2.42 0.00
-14.7
-12.3 2.4 UNLOADING 5 %
-8.36 3.75 o.oo
-12.1
-8.4 3.8 LOADING 15%
-14.33 1.74 0.00
-16. 1
-14.3
- 1. 7 UNLOADING 1 5 %
-7.32 4.12 0.00
. 11.4
-7.3
- 4. 1 STEP !NCR
-12.32 2.35 0.00
-14.7
-12.3 2.4 STEP DECR @20
-10.57 2.96 0.00
~
. 13.5
-10.6 3.0 STEP DECR @120
-9.23 3.46 0.00
-12. 7
-9.2 3.5 REACTOR TRIP
-2.32 5.90 0.00
-8.2
-2.3 5.9 LOSS OF FLOW
-2.32 5.90 0.00
-8.2
-2.3 5.9 LOSS OF LOAD
-2.32 5.90 0.00
-8.2
-2.3 5.9 SV OPER @20
-24.69
-2.64 0.00
-22. 1
-24.7
-2.6 SV OPER @200
-2.32 5.90 0.00
-8.2
-2.3 5.9 ST. LINE RUPTURE 70.30 37.92 0.00 32.4 70.3 37.9 C.D @1.58 91.61 49.22 0.00 42.4 91.6 49.2 The maximum Pl + Pb + Q stress intensity range for the unsevered nozzle repair alternative is Sn= 92.1 +24.7 =
116.8 ksi which is greater than the Code allowable, 3 Sm=
69.9 ksi.
CSE-93-379
5.0 EVALUATION OF HEAD NOZZLE CR-9417-CSE93-1121, REV.
L Page 15 of 27 5.3 FATIGUE USAGE FACTOR EVALUATION For the inside surface of the head nozzle, the stress concentration factor, SF, is 1.0.
Therefore, peak stresses are the same as primary plus secondary stresses.
For the outside surf ace of the head nozzle the stress concentration factor, SF, is conservatively assumed to.be 5.0.
Peak stresses and stress intensities are:
Total Stress (ksil Stress Int. (ksi)
TRANSIENT S'Sx So Sr Sx'*So Sx'-Sr So-Sr HYDRO TEST 32.5
- 15. 1 o.o 17.4 32.5
- 15. 1 LEAK TEST 26.0 12.1 o.o 13.9 26.0 12.1 H.U@5.73
-75.1 0.5 0.0
-75.6
-75.1 0.5 C.D.@2.865 54.6 6.7 0.0 47.9 54.6 6.7 STEADY STATE
-49.8 3.2 0.0
-53.0
-49.8 3.2 LOADING 5%
-61.4 2.4 0.0
-63.9
-61.4 2.4 UNLOADING 5 %
-41.8 3.8 0.0
-45.5
-41.8 3.8 LOADING 15%
-71.6
- 1. 7 0.0
-73.4
-71.6
- 1. 7 UNLOADING 1 5 %
-36.6 4.1 0.0
-40.7
-36.6 4.1 STEPINCR
-61.6 2.4 o.o
-63.9
-61.6 2.4 STEP DECR @20
-52.9 3.0 0.0
-55.8
-52.9 3.0 STEP DECR @120
-46.2 3.5 0.0
-49.6
-46.2 3.5 REACTOR TRIP
-11. 6 5.9 0.0
-17.5
-11.6 5.9 LOSS OF FLOW
-11.6 5.9 0.0
-17.5
-11.6 5.91 LOSS OF LOAD
-11. 6 5.9 0.0
-17.5
-11.6 5.9 SV OPER @20
-123
-2.6 0.0
-120.01 -123.51
-2.6 SV OPER @200
-11.6 5.9 0.0
-17.5
-11 ~ 6 5.9 ST. LINE RUPTURE 351.5 37.9 0.0 313.6 351.5 37.9 C.D @1.58 458 49.2 0.0 408.81 458.0I 49.2 Sp= 460.S + 123.5 = 584 ksi Sa = 292 ksi CSE-93-379
CR-9417-CSE93-1121, REV.
l Page 16 of 27 5.0 EVALUATION OF HEAD NOZZLE 5.3 FATIGUE USAGE FACTOR EVALUATION Since Sn = (Pl + Pb + Q)=~ exceeds 3 Sm and most of the Sn value results from thermal expansion, the Code simplified elastic-plastic method is used to evaluate Sa:
K =1+
1-n
( Sn -1) 9 n (m-1) 3Sm
=1+
1-.3 (116.4_1)=3.22
.3(1.7-1) 69.9 Sa' =Kesa= 3.22(292) = 940 ksi From Figure I-9.2, Reference 1, N = O.
Therefore, the head temperature nozzle must be severed.
Note that the severed nozzle is acceptable because the fatigue usage factor can conservatively be taken to be the same as that calculated in Reference 4, i.e., U =.85 < 1.0 allowable.
CSE-93-379
CR-9417-CSE93-1121, REV.
l Page 17 of.27 6.0 EVALUATION OF VESSEL NOZZLE 6.1 PRIMARY STRESS EVALUATION Primary stresses were conservatively taken from Reference 3, page A-345:
Pm= 6.6 ksi < Sm= 23.3 ksi Pl + Pb=.13.4 ksi < 1.5 Sm= 34.9 ksi 6.2 PRIMARY PLUS SECONDARY STRESS EVALUATION For the severed nozzle the Pl+Pb+Q stresses are conservatively calculated using equations in Reference 3.
These were recalculated using revised temperatures and pressures for each transient in the same way that the head nozzle was reanalyzed in Reference 4.
Thermal differential growths were calculated using equations from Reference 3, page A-344.*
Temp!=ratures were 10°F higher than those shown as discussed in Reference 4.
TRANSIENT E2 T1 al E~2T1 T2 a2 EaR2T2 E~~,.~,\\
H.U@5.73 29.1 556.5 7.33 63209 583 7.95 71820 8611 C.D.@2.865 31.5 55 6.13 5655 10 7.60 1275 -4380 STEADY STATE 29.1 583 7.33 66219 583 7.95 71820 5601 LOADING 5%
29.1 583 7.33 66219 570 7.95 70219 4000 UNLOADING 5 %
29.1 583 7.33 66219 577 7.95 71081 4862 LOADING 15%
29.1 583 7.33 66219 570 7*.95 70219 4000 UNLOADING 1 5 %
29.1 583 7.33 66219 574 7.95 70712 4492 STEP !NCR 29.1 583 7.33 66219 580.5 7.95 71512 5293 STEP DECR @20 29.1 583 7.33 66219 583 7.95 71820 5601 STEP DECR @1 20 29.1 583 7.33 66219 580.5 7.95 71512 5293 REACTOR TRIP 29.1 583 7.33 66219 557 7.95 68618 2398 LOSS OF FLOW 29.1 583 7.33 66219 557 7.95 68618 2398 LOSS OF LOAD 29.1 583 7.33 66219 557 7.95 68618 2398 SV OPER @20 29~ 1 583 7.33 66219 578 7.95 71205 49851 SV OPER @200 29.1 583 7.33 66219 55T 7.95 68618 23981
- ST. LINE RUPTURE 30.0 583 7.33 68267 343 7.70 42192 -2607611 CSE-93-379
6.0 EVALUATION OF VESSEL NOZZLE CR-9417-CSE93-1121, REV. l Page 18 of 27 6.2 PRIMARY PLUS SECONDARY STRESS EVALUATION (Continued)
Stresses were calculated using the equations from Reference 3, page A-345.
Pressures were taken from Reference 4.
For the inside surface of the vessel nozzle:
DUE TO PRESSURE DUE TO THERMAL TOTAL STRESS (ks1l TRANSIENT p
ED Sx So Sr Sx So Sr Sx So Sr HYDRO TEST 3.13 0
-3.5 13.6
-3.1 0.0 0.0 0.0
-3.5 13.6
-3.1 LEAK TEST 2.5 0
-2.8*
10.8
-2.5 0.0 0.0 0.0
-2.8 10.8
-2.5 H.U@5.73 2.25 8611
-2.5 9.8
-2.3 6.4
-8.1 0.0 3.8
- 1. 7
-2.3.,
C.D.@2.865 0.25 -4380
-0.3 1.1
-0.3
-3.2 4.1 0.0
-3.5 5.2
-2.5 9.8
-2.3 4.1
-5.3 0.0 1.6 4.5
-2.3' LOADING 5%
2.38 4000
-2.7
- 10.3
-2.4 3.0
-3.8 0.0 0.3 6.5
-2.4 UNLOADING 5 %
2.18 4862
-2.5 9.4
-2.2 3.6
-4.6 0.0
- 1. 1 4.9
-2.2 LOADING 15%
2.48 4000
-2.8 10.8
-2.5 3.0
-3.8 0.0 0.2 7.0
-2.5 UNLOADING 15%
2.13 4492
-2.4 9.2
-2.1 3.3
-4.2 0.0 0.9
-5.0
-2.1 STEP INCR 2.36 5293
-2.7 10.2
-2.4 3.9
-5.0 0.0 1.3 5.3
-2.4i STEP DECR @20 2.28 5601
-2.6 9.9
-2.3 4.1
-5.3 0.0 1.6 4.6
-2.31 STEP DECR @120 2.22 5293
-2.5 9.6
-2.2 3.9
-5.0 0.0 I
1.4 4.7
-2.21 REACTOR TRIP 1.9 2398
-2. 1 8.2
-1.9 1.8
-2.3 0.0
-0.4 6.0
-1.9i LOSS OF FLOW 1.9 2398
-2. 1 8.2
-1.9
- 1. 8
-2.3 0.0
-0.4-6.0
-1 _9*
1 LOSS OF LOAD 1.9 2398
-2. 1 8.2
-i.9 1.8
-2.3 0.0
-0.4 6.0
-1.9 SV OPER @20 2.77 4985
-3.1 12.0
-2.8 3.7
-4.7 0.0 0.6 7.3
-2.8 SV OPER @200 1.9 2398
-2. 1 8.2
-1.9 1.8
-2.3 0.0
-0.4 6.0
-1.9 ST. LINE RUPTURE 0.4 -26076
-0.5
- 1. 7
-0.4
-, 9.3 24.5 0.0
-19. 7 26.2
- 0.4 CSE-93-379
6.0 EVALUATION OF VESSEL NOZZLE CR-9417-CSE93-1121,
~EV. 1 Page 19 of 27 6.2 PRIMARY PLUS SECONDARY STRESS EVALUATION (Continued)
For the outside surface of the vessel nozzle:
DUE TO PRESSURE DUE TO THERMAL TOTAL STRESS (ks1I TRANSIENT p
ED Sx So Sr Sx So Sr Sx So HYDRO TEST 3.13 0
7.4 16.8 0.0 0.0 o.o 0.0 7.4 16.8 LEAK TEST.
2.5 a
5.9 13.5 a.o 0.0 o.o a.o 5.9 13.5 H.U@5.73.
2.25 8611 5.3 12.1 0.0
- 6.4
- 11.9 0.0
-4.1
-7.7 0.0 1.2 4.4 LOADING 5%
2.38 4000 5.6 12.8 0.0
-3.0
-5.5 0.0 2.7 7.3 UNLOADING 5 %
2.18 4862 5.2 11.7 0.0
-3.6
-6.7 0.0 1.6 5.0 LOADING 15%
2.48 4000 5.9 13.4 0.0
-3.0
-5.5 0.0 2.9 7.8 UNLOADING 15 %
2.13 4492
- 5. 1.. 11.5 0.0
-3.3
-6.2 0.0 1.7 5.3 STEPINCR 2.36 5293 5.6 12.7 0.0
-3.9
-7.3 0.0
- 1. 7 5.4 STEP DECR @20 2.28 5601 5.4 12.3 0.0
-4.1
-7.7 0.0 1.3 4.5 STEP DECR @120 2.22 5293 5.3 12.0 a.o
-3.9
-7.3 0.0 1.4 4.7 REACTOR TRIP 1.9 2398 4.5 10.2 0.0
-1.8
-3.3 0.0 2.7 6.9 LOSS OF FLOW 1.9 2398 4.5 10.2 0.0
-1.8
-3.3 0.0 2.7 6.9 LOSS OF LOAD 1.9 2398 4.5 10.2 0.0
-1.8
-3.3 0.0 2.7 6.9 SV OPER @20 2.77 4985 6.6
, 4.9 a.a
-3.7
-6.9 a.o 2.9 8.0 SV OPER @200
,.9 2398 4.5 10.2 0.0
-1. 8
-3.3 0.0 2.7 Ei.9 ST. LINE RUPTURE 0.4 -26076 a.9 2.2 0.0
, 9.3 36.0 0.0 20.2 38.1 The maximum stress intensity range for the severed nozzle repair alternative is Sn= 38.1 + O = 38.1 ksi which is less chan the Code allowable, 3 Sm= 69.9 ksi.
CSE-93-379 Sr a.o a.o 0.0 a.o 0.0 0.0 0.0 0.0 0.0 a.o a.o 0.0 a.o a.o, a.o a.01 0.01 0.01
6.0 EVALUATION OF VESSEL NOZZLE CR-9417-CSE93-1121, REV. 1 Page 20 of 27 6.2 PRIMARY PLUS SECONDARY STRESS EVALUATION (Continued)
Using temperature data and material properties from Reference 4, the additional thermal axial stress for each load condition were calculated using the same equations as previously developed for the head nozzle in section 5.2:
TRANSIENT T1 al a1T1 T2 a2 a2T2 a,T, **"T'"
E2 v~
H.U@5.73 557 7.33 4079 583 7.95 4635
-556 29.1
-4043 C.D.@2.865 55 6.13 337 10 7.60 76 261 31.5 2057 STEADY ST A TE 583 7.33 4273 583 7.95 4635
-361 29.1
-2630 LOADING 5%
583 7.33 4273 570 7.95 4532
-258 29.1
-1878 UNLOADING 5 %
583 7.33 4273 577 7.95 4587
-314 29.1
-2283 LOADING 15%
583 7.33 4273 570 7.95 4532
-258 29.1
-1878 UNLOADING 1 5 %
583 7.33 4273 574 7.95 4563
-290 29.1
-2109 STEPINCR 583 7.33 4273 580.5 7.95 4615
-342 29.1
-2485 STEP OECR @20 583 7.33 4273 583 7.95 4635
-361 29.1
-2630 STEP DECR @120 583 7.33 4273 580.5 7.95 4615
-342 29.1
-2485 REACTOR TRIP 583 7.33 4273 557 7.95 4428
_, 55 29.1
_, 126 LOSS OF FLOW 583 7.33 4273 557 7.95 4428
-155 29.1
-, 126 LOSS OF LOAD 583 7.33 4273 557 7.95 4428
-155 29.1
_, 126 SV OPER @20 583 7.33 4273 578 7.95 4595
-322
- 29. 1
-2340 SV OPER @200 583 7.33 4273 557 7.95 4428
-155
-29.1
-11 26 ST. :..INE RUPTURE 583 7.33 4273 343
- 7. 70 2641 1632 30.0 12242 CSE-93-379 Sxta
-16.2 8.2
-10.5
-7.5
-9.,
-7.5
-8.4
-9.9
-10.5
-9.9
-4.5
-4.5
-4.5
-9.4 I
-4.. 51 49.0i
6.0 EVALUATION OF VESSEL NOZZLE CR-9417-CSE93-1121, REV. 1 Page 21 of 27 6.2 PRIMARY PLUS SECONDARY STRESS EVALUATION (Continued)
Superimposing stresses from pressure,.radial, and axial redundants gives total primary plus secondary stresses and stress intensities:
For the inside surface of the vessel nozzle:
(Sx = Sx + Sxta; So = So; Sr = Sr)
Total Stress (lcsil Stress Int.
TRANSIENT Sx So Sr Sx-So Sx-Sr HYDRO TEST
-3.5 13.6
-3.1
-17.1
-0.4 LEAK TEST
-2.8 10.8
-2.5
-13. 7
-0.3 H.U@5.73
-12.3
- 1. 7
-2.3
-14.0
-10. 1 C.0.@2.865 4.7 5.2
-0.3
-8.9 4.5
-2.3
-13.4
-6.7 LOADING 5%
-7.2 6.5
-2.4
-13.8
-4.9 UNLOADING 5 %
-8.0 4.9
-2.2
-12.8
-5.8 LOADING 15%
-7.3 7.0
-2.5
-14.3
-4.9 UNLOADING 1 5 %
-7.5 5.0
-2. 1
-12.5
-5.4 STEPINCR
-8.7 5.3
-2.4
-13.9
-6.3 STEP DECR @20
-8.9 4.6
-2.3
-13.5
-6.7 STEP DECR @120
-8.5 4.7
-2.2
-13.2
-6.3 REACTOR TRIP
-4.9 6.0
-1.9
-10.9
-3.0 LOSS OF >=LOW
-4.9 6.0
-1.9
-i0.9
-3.0 LOSS OF LOAD
-4.9 6.0
-1.9
-10.9
-3.0 SV OPER @20
-8.8 7.3
-2.8
-1 6. 1
-6.0 SV OPER @200
-4.9 6.0
-1.9
-10.9
-3.0 ST. LINE RUPTURE 29.2 26.2
-0.4 3.0 29.6 (lcsil So-Sr
- 16. 7 13.3 3.9 5.5 6.7 8.9 7.0 9.5 7.1 7.6 6.9 6.9 7.9 7.9 7.9
- 10. 1 7.9 26.61 CSE-93-379
5.0 EVALUATION OF VESSEL NOZZLE CR-9417-CSE93-1121, REV.
l Page 22 of 27 6.2 PRIMARY PLUS SECONDARY STRESS EVALUATION (Continued)
For the outside surface of the vessel nozzle:
(Sx = Sx + Sxta; So = So; Sr = Sr)
Total Stress lksil Stress Int.
TRANSIENT Sx So Sr Sx-So Sx-Sr HYDRO TEST 7.4 16.8 0.0
-9.4 7.4 LEAK TEST 5.9 13.5 0.0
-7.5 5.9 H.U@5.73
-17.2 0.2 0.0
-17.4
-17.2 C.D.@2.S65 12.1 7.4 0.0 4.7
-9.3 4.4 0.0
-13.7
-9.3 LOADING 5%
-4.8 7.3 0.0
-12. 1
-4.8 UNLOADING 5 %
-7.6 5.0 0.0
-12.6
-7.6 LOADING 15%
-4.6 7.8 0.0
-12.4
-4.6 UNLOADING 1 5 %
-6.7 5.3 0.0
-12.0
-6.7 STEPINCR
-8.3 5.4 0.0
-13. 7
-8.3 STEP DECR @20
-9.3 4.5 0.0
-13.8
-9.3 STEP DECR @120
-8.6 4.7 0.0
-13.2
-8.6 REACTOR TRIP
-1.8 6.9 0.0
-8.7
-1.8 LOSS OF FLOW
-1.8 6.9 0.0
-8.7
-1.8 LOSS OF LOAD
-1. 8 6.9 0.0
-8.7
-1.8 SV OPER @20
-6.5 8.0 0.0
-14.5
-6.5 SV OPER @200
-1.8 6.9 0.0
-8.7
-1. 8 ST. LINE RUPTURE 69.2 38.1 0.0
- 31. l 69.2 (ksi)
So-Sr 16.8 13.5 0.2 7.4 4.4 7.3 5.0 7.8 5.3 5.4 4.5 4.7 6.9 6.9 6.9 8.0 6.9 38.1 The maximum stress intensity range for the unsevered nozzle repair alternative is Sn= 69.2 + 17.2 = 86.4 ksi which is greater ~han the Code allowable, 3Sm = 69.9 ksi.
CSE-93-379
6.0 EVALUATION OF VESSEL NOZZLE CR-9417-CSE93-1121, REV. 1 Page 23 of 27 6.3 FATIGUE USAGE FACTOR EVALUATION For the inside surface of the vessel n0zzle, the stress concentration factor, SF, is 1.0.
Therefore, peak stresses are the same as primary plus secondary stresses.
For the outside surf ace of the head nozzle the stress concentration factor, SF, is conservatively assumed to be 5.0.
Peak stresses and stress intensities are:
Total Stress (ksi)
Stress Int. (ksi)
TRANSIENT 5"Sx So Sr Sx*So Sx-Sr So-Sr HYDRO TEST
- 37. 1 16.8' 0.0 20.3
- 37. 1 16.8 LEAK TEST 29.7 13.5 0.0 16.2 29.7 13.5 H.U@S.73
-86.0 0.2 0.0
-86.21 -86.oj 0.2 C.0.@2.865 60.3 7.4 0.0 52.9 60.3 7.4 STEADY ST A TE
-46.6 4.4 0.0
-51.0
-46.6 4.4 LOADING 5%
-24.2 7.3 0.0
-31.4
-24.2 7.3 UNLOADING 5 %
-37.8 5.0 0.0
-42.8
-37.8 5.0 LOADING 15%
-22.9 7.8 0.0
-30.7
-22.9 7.8 UNLOADING 1 5 %
-33.5 5.3 0.0
-38.8
-33.5 5.3 STEPINCR
-41.3 5.4 0.0
-46.7
-41.3 5.4 STEP DECR @20
-46.3 4.5 0.0
-50.8
-46.3 4.5 STEP DECR @120
-42.9 4.7 0.0
-47.6
-42.9 4.7 REACTOR TRIP
-8.8 6.9 0.0
-, 5.8
-8.8 6.9 LOSS OF FLOW
-8.8 6.9 0.0
-, 5.8
-8.8 6.9 LOSS. OF LOAD
-8.8 6.9 0.0
-, 5.8
-8.8 6.91 SV OPER @20
-32.4 8.0 0.0
-40.4
-32.4 8.0 SV OPER @200
-8.8 6.9 0.0
-15.8
-8.8 6.9 ST. LINE RUPTURE 346. 1 38.1 0.0 307.91 346. 11 38.1 The maximum peak stress intensity range is Sp = 430.2 ksi.
The alternating stress intensity, Sa = 215.1 ksi.
CSE-93-379
CR-9417-CSE93-ll21, REV. :
Page 24 of 27 6.0 EVALUATION OF VESSEL NOZZLE 6.3 FATIGUE USAGE FACTOR EVALUATION Since Sn = (Pl + Pb + Q) range exceeds 3 Sm and most of the Sn value results from thermal expansion, the Code simplified elastic-plastic method is used to evaluate Sa:
K =1+
1-n
( Sn -1) e n(m-1) 3Sm
=1+
1-.3 (86.4_1)=1.77
.3(1.7-1) 69.9 Sa' = Kesa = 1.77(215) = 381 ksi From Figure I-9.2, Reference 1, N = 30 cycles.
Therefore the vessel temperature nozzle does not need to be severed.
Note that the major contributor to t~e stress range is the steam line rupture transient.
Elimination of this emergency transient from consideration drops the Sn and Sa value to ksi and the allowable cycles are very high, i.e.,
Sn = 11.3 + 17.3 = 28.6 ksi < 3Sm = 69.9 Sp= (57.6 + 86.4) = 143 ksi Sa = 71.5 ksi N = 50,000 cycles CSE-93-379
CR-9417-CSE93-1121,
~EV.
~
Page 25 of 27 7.0 SVALUATION OF REQUIRED PAD THICKNESS Because the stresses are functions of weld thickness sauared for moments and weld thickness for forces and because the fatigue usage factor evaluation is a non-linear simplified elastic-plastic calculation, the stresses must be calculated rather than using a simple ratio of previous results.
The calculations use moment and force equations from Reference 3 and loadings from previous pages in this analysis to calculate Sx, which is the controlling stress.
The calculation was perfo:rmed iterating with the weld pad thickness as a variable until the alternating stress equaled the maximum value allowed by the fatigue curve in Reference 1, i.e., Sa= 650 ksi where N =10 cycles.
tw :=.219 value for iteration of minimum weld thickness The calculation considers the two worst case loadings:
(1) heatup@ 5.73 hr (2) steam line rupture For heatup (case 1)
Pl := 2.25 ksi, pressure From section 6.2 8611 E<5211. -
(page 17) 1000
-4043 Vt al. -
(page 20) 1000 From Reference 3, page A-343 Hl. - -.24619*Pl +.l0406*E<5211 Ml. - -.01824*Pl +.0077l*E<5211 k/in k/in Vpl. -
.l5592*Pl k/in axial load due redundant radial 2..oad redundant: moment:
t:o pressure (Page A-331)
CSE-93-379
CR-9417-CSE93-1121, REV. 1
?age 26 of 27 7.0 EVALUATION OF REQUIRED PAD THICXNESS (Continued)
Vl. - Vpl + Vt al k/in total axial load.
Ml Vl Sxl. - -6*- +
Sxl = -20 ksi, axial stress 2
tw tw For steam line rupture (case 2)
P2 := 0.4 ksi, pressure From section 6.2
-26076 E6212 :=
(Page 17) 1000 12242 Vta2.-
(Page 20) 1000 From Reference 3, page A-343 H2.- -.24619*P2 +.10406*E6212 k/in redundant radial load M2.- -.01824*P2 +.0077l*E6212 k/in redundant moment Vp2 :=.15592*P2 k/in axial load due to pressure (Page A-331)
V2 := Vp2 + Vta2 k/in total axial load M2 V2 Sx2.- -6*- +
Sx2 = 82.248 ksi, axial stress 2
tw tw CSE-93-379
CR-9417-CSE93-1121, REV. 1 Page 27 of 27 7.0 EVALUATION OF REQUIRED PAD THICKNESS (Continued)
The range of primary plus secondary stress becomes Sn.- Sx2 - Sxl Sn= 102.3 ksi, stress intensity The simplified elastic-plastic evaluation becomes n. -
.3 1
Ke.-
1 +
n* (m Sn Sa.- Ke*S*-
2 m.- 1. 7 Sm. - 23.3 n [Sn i]
1). ~
Ke = 2.544 Sa = 651 ksi, alternating stress Therefore the minimum thickness te = 0.219 to meet the Code allowable Sa = 650 ksi for N = 10 cycles.
CSE-93-379
TEQlll CA&, BEY JEX QtEqu fi EA
- SC* ct1-Og-,. 0.1 REV. __...0~-
r'rocNo9.11 At ticnment S Revision s Page l of l This checklist provides guidinc1 for th* r1v1ew of 1ng1n.. ring 1nalys1s.
Answer questions Yts or No, or N/A 1f th1y do not apply.
OocU111nt ill conaents on a 3110 Forti. Sitisfictary resolution of COllllnts ind c~ltt1on of this checklist is noted by th1 Technically Reviewed signature on the Initiation ind Review record block of Fa,.. 3519.
, N, N/A}
- 1.
HiYI the proper input codes, standards ind design principles b11n specified?
- 2.
HiYI the input codes, stindards ind design principles been properly ipplitd?
- 3. Are all inputs and assumptions valid and the basis for y
th1tr USI dOCUlllntld?
- 4.
Is Vendor inforwation used as input addressed co1T1Ctl1 1n
'\\
the anal1sts?
- 5. If the analysts arg.-nt departs fro. Ytndor N/Pi Infon1ation/R1C01111ndattons, ts the departure Justtftcation docUlllftted?
I. Are ass&111pttons accur1t1l1 described and r11sonable?
y
- 7.
Has the use of 1ng1neer1119 Judg-t -.. doc-ted and
'(
Justtftld?
- a. Are all constants, var1ab111 and fo,.lu Cornet ud y
properl1 applied!
- 9. Have.,., *1nor (tnstptft,cant) '""°"._ tdMttftldt If
'(
yes; ld111ttf7
- tM 3110 Fon1 ancl Justt'1 tMtr 1nstgatftcanca. *
(
- 10. Does an1l11t1 tnvolve *ldfngl If Yes; vlrifJ tM fo11a.1nt tnfon11tt* t1 ICCU1'1t1l1,..,,... w °" tile
'(
an1l1111 dl'-1111 (Outpn +tnmat).
- Type of V.141
- Stzaof 11111* *
- Miii *1al letnt Jot....
- Ta' t 111 of ltatlr11l 111119 Joined
- L*rH* of Veld(*)
- '***11rtata 1111141 s,....1..,
- 11. H11 tJle olajldtve of tM 111111111 bl9 m?
\\(
- 12.
H*ave ldlltatstrattve requtwts sucll 11 1"rt1r1111.,..
for111t belll s1tt1ft~
.. I.
- ..-*n* c ""
Document Title NUCLEAR OPERATIONS DEPARTMENT Document Review Sheet
~,...l"'"LA.C..Tt * *~-.1.
~~!::';--s; o.f Te ft;lpe n:cf""° AJo-z...J~
L\\JetJ tJ,. J I
Document Number 5,4-Sc -Cf 3 -DS 7-03 I Rev1s1on Number I O
PaQe I of *1 Item Page and/or Number Section Number Comments Response or Resolution I
nl1t
-riv.. bo'M\\Ja,..y ~J*,-t:~.s ~1~e..l 'lr-e. ~11 ~~oC'YAi~'
~c5ns-e 'fl41 {A ':'NL 91 1/1.....:>
l L
I.~.
/tnf'DJe"-
ci4'f~-t:-~ --re A
..... 0 1-a,,-t~ k-tiv~
--l&te n.o-z.~e ~ --1-k V~-SS,t!!.f) waiU.. ~
a-Jrr.'c~
t/..p-p "('>> A cl,
""ts ft.. qe.iN2-vd ~~e rve... :-t.. ve.,
~ *.Q. *
-,,., c.. (IA._/)~
- J c,c,.J
<if-ea~
~
t =#: g, ::t: ~ -0 1.~ ~re or{c I
I v
°":"&.\\
-flu.
p"" -+ R -t (9..
_fJ '$ :'".!'
I I
- l..
l~
5n - 4 ~~ -t l2..~,s::::: ~p, t.r-
--fl-: s
~ 4 f\\\\ ~t\\.D V" IA.Cl
'N...'i~~~ Y'-4..-7 CA ~cf I
-t-~u.~~""'1 eYf°"O'i" 7"'~02 '9~"'-\\,-.J..
~ -tL
~*,.J-y~~ ~5t.c.l+s.
3
'2.- ?:>
s p ::::
~32- *I
-t.... ~ "'- c:..,;;t.......... "I
~~
f'Q~Oh.~ ~1CA~.:(
""'"* n.o r
-e.YYVY
-;-II\\ ~<;4!!ej~ -t-:J -to
~J..y,.. >
re~u.M-S' tf kl<
Cob
/l~(-:-C4.... C.R
"""~. J.J.h: i"$
.C:. ;"'JA..M (.'-/.. ~ e..coA.
{
e(~st:-c. - p/4t;f;-c
~~4"*'s w~ '>1...
arre>r~
L w~th.
/GB As.M. b=
Vt-t-e~oo(
s e.cz. a:/:ta._rf.n a/
--r~~ Jcc.V (3 -oo<:?
Relwer u)~
I Organization )JG CC) I Date I
Review Coordinator I
Date IDWJent~
I Date
\\._~ c ro-rr-r3 10~1q-G,:.r l -
l 7
/
O" Form 3110 10-91
To From EA-SC-93-087-03 File, "Structural Analysis of Temperature Nozzle Weld Repair for Palisades Pressurizer" JC Wong, Pali sades Jt-J Date October 19, 1993 Subject NUCLEAR ENGINEERING AND CONSTRUCTION ORGANIZATION REVIEW COMMENTS cc J Bass (Fax: 615-752-2499)
=---
~
=- -
~..,.--
CONSUMERS POWER COMPANY Internal Correspondence JCW93*004 Mr. Jim Bass responded via telecon my,two questions regarding the subject analysis.
- 1.
The code compliance analysis was performed in accordance with ASME I.Ii 1965 with Addenda through Winter 1966.
Since the 1965 code does not give specific acceptable method for elastic-plastic analysis for primary plus secondary stresses exceeding 3 Sm,the method given in 1968 Edition was used.
The applied method is in conformance with the current standards.
- 2.
The Reference 4 of the subject analysis (CENC 1214, dated October 1973) is based on higher pressure and temperature rating than the original design specification. The application of the Reference 4 stress results is conservative.