ML17256A402

From kanterella
Revision as of 13:52, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Analysis of Plant Response During 820125 Steam Generator Tube Failure at Re Ginna Nuclear Power Plant.
ML17256A402
Person / Time
Site: Ginna Constellation icon.png
Issue date: 11/22/1982
From: VOLPENHEIN E C
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML17256A400 List:
References
3274Q:1-111782, NUDOCS 8211290429
Download: ML17256A402 (91)


Text

ATTACHMENT AANALYSISOFPOTENTIAL ENVIRONMENTAL CONSEQUENCES FOLLOWING ASTEAMGENERATOR TUBEFAILUREATR.E.GINNANUCLEARPOWERPLANTNOVEMBER1982Preparedby:K.RubinE.Volpenhein Westinghouse ElectricCorporation NuclearEnergySystemsP;0.Box355Pittsburgh, Pennsylvania 15230Preparedfor:Rochester GasandElectric89EastAvenueRochester, NewYork14649ggffg+O4PP 821122PDRADOCK05000244PPDR TABLEOFCONTENTSSectionPageABSTRACT~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1LISTOFTABLESLISTOFFIGURES....................

~....,..ivI.INTRODUCTION

.....~1II.MASSRELEASESII.lDesignBasisAccident.II.l.lSequenceof,EventsII.1.2MethodofAnalysisII.2GinnaEvent.~~~2~~~2~~~2~~~510III.ENVIRONMENTAL CONSEQUENCES ANALYSISIII.lDesignBasisAccidentIII.2GinnaEventAnalysis.~~~~~~~27~~~~~~027~~~~~~o4DIV.SUMMARYANDCONCLUSIONS

~~~~~~o56'REFERENCES

i~~~~~~~~57 ABSTRACTThepotential radiological consequences ofasteamgenerator tubefailureeventwereevaluated fortheR.E.Ginnanuclearpowerplanttodemonstrate thatstandardlimitations oninitialcoolantactivityareacceptable.

Massreleasesfollowing adesignbasistuberupturewerecalculated forboth30minuteand60minuteoperatorresponsetimes.Thesiteboundaryandlowpopulation zoneexposures wereconservatively calculated forthesereleases.

'naddition, thestandardtechnical specification limitoninitialcoolantactivityandrealistic meteorology wereappliedto"bestestimate" mass"releaseduringtheJanuary25,1982tubefailureeventatGinna.Resultsshowthattheconservative assessment oftheenvironmental consequences arewithinacceptable limitsandthatthepotential exposurefromamorerealistic eventisminimal.

LISTOFTABLESTABLEII.1.2-1DESIGNBASISACCIDENTSEQUENCEOFEVENTSTABLEII.1.2-2.MASSRELEASESDURINGADESIGNBASISSGTR:30MINUTERECOVERYTABLEII.1.2-3MASSRELEASESDURINGADfSIGNBASISSGTR:60MINUTfRECOVERYTABLEII.2-1TABLEII.2-2GINNASEQUENCEOFEVENTSBESTESTIMATEMASSRELEASESDURINGGINNASGTREVENTTABLEIII.1-1PARAMETERS USEDINEVALUATING THERADIOLOGICAL CONSEQUENCES OFASTEAMGENERATOR TUBERUPTURETABLEIII.1-2IODINEAPPEARANCf RATESINTHEREACTORCOOLANTFORA,DESIGNBASISSGTRTABLEIII.1-3REACTORCOOLANTIODINEANDNOBLEGASACTIVITYTABLEIII.1-4SHORT-TERN ATMOSPHERE DISPERSION FACTORSANDBREATHING RATESFORACCIDENTANALYSISTABLEIII.1-5ISOTOPICDATATABLEIII.1-6RESULTSOFDESIGNBASISANALYSISTABLfIII.2-1PARAMETERS USEDINEVALUATING THERADIOLOGICAL CONSEQUENCES OFTHfGINNAEVENTTABLEIII.2-2IODINEAPPEARANCE RATESINTHEREACTORCOOLANT LISTOFTABLES(Continued)

TABLEIII.2-3SHORT-TERM ATMOSPHERIC DISPERSION FACTORSANDBREATHING RATESFORACCIDENTANALYSISTABLEIII.2-4RESULTSOFGINNAEVENTANALYSIS111 LISTOFFIGURESFIGUREII.1.2-1FAULTEDSTEAMGENERATOR WATERVOLUME~~FIGUREII.1.2-2REACTORCOOLANTSYSTEMPRESSUREFIGUREII.1.2-3FAULTEDSTEAMGENERATOR PRESSUREFIGUREII.l.2-4REACTORCOOLANTAVERAGETEMPERATURE FIGUREII.1.2-5PRESSURIZER WATERVOLUMEFIGUREII.1.2-6FAULTEDSTEAMGENERATOR STEAMFLOWFIGUREII.l.2-7PRIMARY-TO-SECONDARY LEAKAGEFIGUREII.1.2-8BREAKFLOWFLASHINGFRACTIONFIGUREII.2-1CALCULATED FAULTEDSTEAMGENERATOR WATERVOLUMEDURINGTHEGINNAEVENTFIGUREII.2-2REACTORCOOLANTSYSTEMPRESSUREDURINGTHEGINNAEVENTFIGUREII.2-3FAULTEDSTEAMGENERATOR PRESSUREDURINGTHEGINNAEVENTFIGUREII.2-4CALCULATED BREAKFLOWFLASHINGFRACTIONDURINGTHEGINNAEVENTFIGUREIII.l-lBREAKFLOWFLASHINGFRACTIONFORTHEDESIGNBASISEVENTDOSEANALYSISFIGUREIII.1-2'TTENUATION FACTORFORFLASHEDCOOLANTFORTHEDESIGNBASISEVENTDOSEANALYSIS

'ISTOFFIGURES(Continued)

FIGUREIII.1-3FAULTEDSTEAMGENERATOR PARTITION FACTORFORTHEDESIGNBASISEVENTDOSEANALYSISFIGUREIII.2-1BREAKFLOWFLASHINGFRACTIONFORTHEGINNAEVENTDOSEANALYSISFIGUREIII.2-2ATTENUATION FACTORFORFLASHED.COOLANTFORTHEGINNAEVENTDOSEANALYSISFIGUREIII.2-3FAULTEDSTEAMGENERATOR PARTITION FACTORFORTHEGINNAEVENTDOSEANALYSIS I.INTRODUCTION Potential environmental consequences ofasteamgenerator tuberuptureeventattheR.E.Ginnanuclearpowerplanthavebeenevaluated toverify.thatthestandardtechnical specification limitonprimarycoolantactivityisadeuateforGinna.Massreleaseswerecalculated usingthecomputercodeLOFTRANwithconservative assumptions ofbreaksize,condenser availability, andvariousoperatorresponsetimes.Theeffectofsteamgenerator overfillandsubsequent waterreliefthroughsecondary sidereliefvalveswasalsoaddressed.

Conservative assumptions concerning coolantactivity, meteorology, andpartitioning betweenliquidandvaporphaseswereappliedtothesemassreleasestodetermine anupperboundonsiteboundaryandlowpopulation zonedoses.BestestimatemassreleasesduringtheJanuary25,1982tubefailureeventatGinna,were alsocalculated basedonanalysespresented inreference 2.Thesereleaseswereusedtoestimatepotential doseswhichcouldhaveresulted, iftheaccidenthad.occurred withcoolantactivitylimitsestablished inthe'standard technical specifications.

II.MASSRELEASES'assreleasesduringadesignbasissteamgenerator tuberuptureeventwerecalculated usingestablished fSARmethodology assumingvariousoperatorresponsetimes.ReleasesduringtheGinnaeventwerealsoestimated.

Contributions fromboththeintactandfaultedsteamgenerators wereevaluated aswellasflowtothecondenser andatmosphere.

Thesemassreleasesarepresented forvarioustimeperiodsduringtheaccident.

Theassumptions andmethodology whichwereusedtogeneratetheresults+redescribed inthefollowing sections.

II.lDesignBasisAccidentTheaccidentexaminedisthecompleteseverance ofasinglesteamgenerator tubeduringfullpoweroperation.

Thisisconsidered acondition IVevent,alimitingfault,andleadstoanincreaseinthecontamination ofthesecondary systemduetoleakageofradioactive coolantfromtheRCS.Discharge ofacti-vitytotheatmosphere mayoccurviathesteamgenerator safetyand/orpoweroperatedreliefvalves.Theconcentration ofcontaminants intheprimarysystemiscontinuously controlled tolimitsuchreleases.

II.1.1SequenceofEventsIfnormaloperation ofthevariousplantcontrolsystemsisassumed,thefol-lowingsequenceofeventsisinitiated byatuberupture:A.Thesteamgenerator blowdownliquidmonitorand/orthecondenser airejectorradiation monitorwillalarm,indicating asharpincreaseinradioactivity inthesecondary system.B.Pressurizer lowpressureandlowlevelalarmsareactuatedandchargingpumpflowincreases inanattempttomaintainpressurizer level.Onthesecondary sidesteamflow/feedwater flowmismatchoccursasfeedwater flowtotheaffectedsteamgenerator isreducedtocompensate forbreakflowtothatunit.

C.ThedecreaseinRCSpressureduetocontinued lossofreactorcoolantinventory leadstoareactortripsignalonlowpressurizer pressureorovertemperature delta-T.Plantcooldownfollowing reactortripleadstoarapiddecrease, inpressurizer levelandasafetyinjection signal,initi-"atedbylowpressurizer

pressure, followssoonafterreactortrip.Thesafetyinjection signalautomatically terminates normalfeedwater supplyandinitiates auxiliary feedwater addition.

D.Thereactortripautomatically tripstheturbineand,ifoffsitepowerisavailable, thesteamdumpvalvesopenpermitting steamdumptotheconden-ser.Intheeventofcoincident stationblackout, asassumedintheresultspresented, thesteamdumpvalvesautomatically closetoprotectthecondenser.

Thesteamgenerator pressurerapidlyincreases resulting insteamdischarge totheatmosphere throughthesteamgenerator safetyand/orpoweroperatedreliefvalves.E.Theauxiliary feedwater andboratedsafetyinjection flowprovideaheatsinkwhichabsorbsdecayheatandattenuates steamingfromthesteamgene-rators.F.Safetyinjection flowresultsinincreasing pressurizer watervolumeataratedependent upontheamountofauxiliary equipment operating.

RCSpressureeventually equilibrates atapressuregreaterthantheaffectedsteamgenerator pressurewheresafetyinjection flowmatchesbreakflow.Theoperatorisexpectedtodetermine thatasteamgenerator tuberupturehasoccurredandtoidentifyandisolatethefaultysteamgenerator onarestric-tedtimescalein'ordertominimizecontamination ofthesecondary systemandensuretermination ofradioactive release.totheatmosphere fromthefaultyunit.Sufficient indications andcontrolsareprovidedtoenabletheoperator.tocompleterecoveryprocedures fromwithinthecontrolroom.Highradiation indications orrapidlyincreasing waterlevelinanysteamgenerator providesymptomsofthefaultedsteamgenerator whichensureidentification beforethewaterlevelincreases abovethenarrowrange.Forsmallertubefailures,

samplingofthesteamgenerators forhighradiation mayberequiredforpositiveidentification.

However,inthatcaseadditional timewouldbeavailable beforewaterlevelincreases outofnarrowrange.Onceidentified, thefaultedsteamgenerator isisolatedfromtheintactsteamgenerators tominimizeactivityreleasesandasanecessary steptowardestab-lishingapressuredifferential betweentheintactandfaultedsteamgenera-tors.TheMai'nSteamline Isolation Valves(NSIV)providethiscapability.

IntheeventofafailureoftheMISVforthefaultedsteamgenerator, theNSIVfortheintactsteamgenerator andtheturbinestopvalveensurearedundant meansofisolation.

Auxiliary feedwater flowisterminated tothefaultedunitinanattempttocontrolsteamgenerator inventory.

Thereactorcoolanttemperature isreducedtoestablish aminimumof50Fsubcooling marginattherupturedsteamgenerator pressurebydumpingsteamfromtheintactsteamgenerator.

Thisassuresthattheprimarysystemwillremainsubcooled following depressurization tothefaultedsteamgenerator pressureinsubsequent steps.Ifthecondenser isavailable, thenormalsteamdumpsystemisusedforthiscooldown.

Isolation ofthefaultedsteamgenera-torensuresthatpressureinthatunitwillnotdecreasesignificantly.

Ifthecondenser isunavailable oriftheMSIVforthefaultedsteamgenerator fails,theatmospheric reliefvalveontheintactsteamgenerator providesanalternative meansofcoolingthereactorcoolantsystem.Theprimarypressureisreducedtoavalueequaltothefaultedsteamgenera-torpressureusingnormalpressurizer spray.Thisactionrestorespressurizer levelassafetyinjection flowinexcessofbreakflowreplacescondensed steaminthepressurizer, andmomentarily stopsprimary-to-secondary leakage.Ifnormalsprayisnotavailable, thepressurizer PORVsandauxiliary spraysystemprovideredundant meansofdepressurizing thereactorcoolantsystem.lTermination ofsafetyinjection flowisrequiredtoensurethatbreakflowisnotreinitiated.

Previousoperatoractionsaredesignedtoestablish suffi-cientindications ofadequateprimarycoolantinventory andheatremovalsothatcorecoolingwillnotbecompromised asaresultofSItermination.

Thissequenceofrecoveryactionsensuresearlytermination ofprimary-to-secondary leakagewithorwithoutoffsitepoweravailable.

Thetimerequiredtocompletetheseactionsareeventspecificsincesmallerbreaksmaybemoredifficult todetect.Intheseanalyses, operatoractiontimeshavebeentreatedparametrically, rangingfrom30minutestoamaximumof60minutestocompletethekeyrecoverysequence.

II.1.2MethodofAnalysisMassandenergybalancecalculations wereperformed usingLOFTRANtodetermine primary-to-secondary massleakageandtheamountofsteamventedfrom'each ofthesteamgenerators priortoterminating safetyinjection.

Inestimating themassreleasesduringrecovery, thefollowing assumptions weremade:A.Reactortripoccursautomatically asaresultoflowpressurizer pressureorovertemperature delta-T.Lossofoffsitepoweroccursatreactortrip.B.Following theinitiation ofthesafetyinjection signal,allsafetyinjec-tionpumpsareactuated.

Flowfromthenormalchargingpumpsisnotcon-sideredsinceitisautomatically terminated onasafetyinjection signal.C.Thesecondary sidepressureisassumedtobecontrolled atthesafetyvalvepressurefollowing reactortrip.Thisisconsistent withlossofoffsitepower.D.Auxiliary feedwater flowisassumedthrottled tomatchsteamflowinallsteamgenerators tocontrolsteamgenerator level.Minimumauxiliary feedwater capacityisassumed.Thisresultsinincreased steamingfromthesteamgenerators.

E.Individual operatoractionsarenotexplicitly modeledintheanalysespresented.

However,itisassumedthattheoperatorcompletes therecoverysequenceonarestricted timescale.Thistimeistreatedpara-metrically.

F.Forcaseswheresteamgenerator overfilloccurs,waterrelieffromthefaultedsteamgenerator totheatmosphere isassumedequaltoanyaddi-tionalprimary-to-secondary leakageafteroverfilloccurs.Steamline volumeisnotconsidered incalculating thetimeofsteamgenerator over-fil1.Priortoreactortripsteamisassumedtobereleasedtothecondenser fromthefaultedandintactsteamgenerators.

Steamfromallsteamgenerators isdumpedtotheatmosphere afterreactortripsincethecondenser isunavailable asaresultofstationblackout.

Extendedsteamreleasecalculations, i.e.afterbreakflowhasbeentermina-ted,reflectexpectedoperatoractionsasdescribed intheMestinghouse OwnersGroup'sEmergency ResponseGuidelines

.Following isolation ofthefaultedsteamgenerator, itisassumedthatsteamisdumpedfromtheintactsteamgenerator toreducetheRCStemperature to50'Fbelowno-loadTavg.Fromtwotoeighthoursaftertubefailure,theRCScoolanttemperature isreducedtoResidualHeatRemovalSystem(RHRS)operating conditions viaaddi-.tionalsteamingfromtheintactsteamgenerator.

Furtherplantcooldowntocoldshutdown, iscompleted withtheRHRS.Ifsteamgenerator overfilldoesnotoccur,thefaultedsteamgenerator isdepressurized byreleasing steamfromthatsteamgenerator totheatmosphere.

Analternate cooldownmethod,suchasbackfillintotheRCS,isconsidered ifthefaultedsteamgenerator fillswithwater.Inthatcaseadditional steamingoccursfromtheintactsteamgenerator.

Theextendedsteamandfeedwater flowsaredetermined fromamassandenergybalanceincluding decayheat,metalheat,energyfromoneoperating reactorcoolantpump,andsensibleenergyofthefluidintheRCSandsteamgenerators.

Thesequenceofeventsforthedesignbasisaccidentarepresented inTableII.1.2-1.Theprimary-to-secondary carryoverandsteamandfeedwater flowsassociated witheachofthesteamgenerators areprovidedinTablesII.1.2-2andII.1.2-3forrecoverytimesof30and60minutes,respectively.

Sinceindividual operatoractionswerenotmodelled, thesystemresponseisthesameforbothcases.Mith30minuteoperatoractiontoterminate breakflow, TABLEII.1.2-1DESIGNBASISACCIDENTSEQUENCEOFEVENTSEventManual(0)Time(Sec)Automatic (A)30MinRecovery60MinRecoveryTubeFailureReactorTripCondenser LostSISignalFeedwater Isolation AFWInitiation AFWThrottled toFaul.tedSGIsolation ofFaultedSGSteamDumpRCSDepressurization SGOverfillSITerminated BreakFlowTerminated RHRCooling27271271341871871800(1)lsoo(1).1800(1)1SOO<<)1800(1)28800272712713418718736oo(1)3600(1)3600(l)2S103600(1)3600(1)28800\(1)Theseeventsarenotactuallymodeledbutareassumedtooccurwithinthetimeindicated.

TABLEII.1.2-2MASSRELEASESDURINGADESIGNBASISSGTR:30MINUTERECOVERYFlow(ibm)0-TTRIPTimePeriodTTRIP-TTBRK TTBRK-22-TRHRRupturedSG:-Condenser

-Atmosphere

-Feedwater 278200.0326050.0326400.00.00.00.00.02148021480IntactSG:-Condenser

-Atmosphere

-Feedwater 273800.0371700.023050133700.01446502062000.0470000487600BreakFlow33251006480.00.0TTRIP=27.0sec=TimeofreactortripTTBRK=1800,sec=Timetoterminate breakflowTRHR=28800sec=Timetoestablish RHRcooling ITABLEII.1.2-3MASSRELEASESDURINGADESIGNBASISSGTR:60MINUTERECOVERYFlow(ibm)TimePeriod0-TTRIPTTRIP-TMSEP-TSGOF-TTBRK-22-TRHRTMSEPTSGOFTTBRKRupturedSG:-Condenser 27820-Atmosphere 0.0-Feedwater 326050.0335700.00.048300.00.00.00.00.0431710.00.00.00.0IntactSG:-Condenser 27380-Atmosphere 0.0-Feedwater 371700.023370137000.0139013900.00.00.039067970501100380129600518700BreakFlow332510774248070431710.00.0TTRIP=27.0sec=TimeTMSEP=1930sec=TimeTSGOF=2810sec=TimeTTBRK=3600sec=TimeofreactortriptofillSGtomoistureseparators tofillSG(w/osteamline volume)toterminate breakflowTRHR=28800sec=Timetoestablish RHRcooling9 liquidlevelinfaultedsteamgenerator remainsbelowthebottomofthemois-tureseparator, FigureII.1.2-1.

Hence,forthiscase,partitioning betweenthevaporandliquidphaseseffectively reducesradiological releasesforthedurationoftheaccident.

Fordelayedrecovery, case2,themoisturesepara-torbeginstofloodat32minutes.Thefaultedsteamgenerator iscompletely filledby47minutes.Duringthistime,liquidentrainment withinthesteamflowwouldincreasesothattheeffectiveness ofpartitioning wouldbereduced.Beyond47minutes,i.e.steamgenerator

overfill, waterrelieffromthefaultedsteamgenerator isassumedequaltobreakflow.Thefollowing isalistoffiguresofpertinent timedependent parameters:

FIGUREII.1.2-1FAULTEDSGWATERVOLUMEFIGUREII;1.2-2REACTORCOOLANTSYSTEMPRESSUREFIGUREII.1.2-3FAULTEDSGPRESSUREFIGUREII.1.2-4REACTORCOOLANTSYSTEMTEMPERATURE FIGUREII.1.2-5PRESSURIZER WATER.VOLUMEFIGUREII.1.2-6FAULTEDSGSTEAMFLOWFIGUREII.l.2-7BREAKFLOWFIGUREII.1.2-8BREAKFLOWFLASHINGFRACTIONII.2GINNAEVENTAdetailedthermal-hydraulic analysisoftheGinnaeventisdescribed inreference 2.Theresultsofthatanalysisformthebasisforthecalculation ofthepotential environmental consequences.

ThegeneralsequenceofeventsduringtheGinnaaccident, TableII.2-1,wassimilartothedesignbasis10 7000.06000.05000.0S.G.VOLUf1E~i000.0I~~3000.0I2000.01000.00.0ClCDEDCDC)EDCDCDEVTINK(MIN)CDCDC7C)C)CDCDCDCDCD40IFIGUREII.1.2-1.FAULTEDSTEANGE)lERATOR HATERVOLU)1E.11

2300.02250.02000.01750.01500.0a.1250.01000.0CL750.00500.00300.00ClClClClAJClmTIN'E(MlN)CDClClCDClCDI@1CDCDCDClCOFIGUREII.1.2-2.REACTORCOOLAilTSYSTEhPRESSURE.

12 1200.01000.0800.00-600F00~<u0.00200.000.0C7CDCDCDAJCDClmTIHE(HIM>CDCDCDC7CDCDC)CDI/ICDCDCDFIGUREII.1.2-3.

FAULTEDSTEAHGENERATOR PRESSURE.

13

700.00500.00F00.00Cl~300.00I~200.00100.000.0C)CDCDCDCDC4CDCDT1ME(M1H)CDCDCDCDCDCDCDlPICDCDCDcoFIGUREII.l.2-4.REACTORCOOLANTAVERAGETEi1PERATURE.

800.00?00.00500.00auF00.00XF00.00100.000;0CICICICICICICIAJCImTlNE(MlN)CICIFIGUREII.1.2-5.

PRESSURIZER HATERVOLUtlE.15

0.20000.17500.1500OQ0.12500.1000CD0.0750CD0.05000.02500.0CICDCD8CDCDmTIME(HIM)CDCDCDCDlACDCDCDCOFIGUREII.1.2-6.

FAULTEDSTEANGENERATOR STEANFLOW.16 150.00125.00100.00l5.000~50.00025.0000.0CDCDCDCDAJCDmTIME(MIN)CDCDCDCDCDIClCD0EDFIGUREII.l.2-7.PRIl1ARY-TQ-SECONDARY LEANGE.17

0.20000.17500.15000.1250I-0.10000.05000.0250'0.0CDCDCDCDflJCDmTIME(MIN)CDCDCDCDCDVlCDCDCD\FIGUREII.1-2-8.

BREAKFLOllFLASHINGFRACTION.

18 Jt TABLEII.2-1GINNASE()UENCE OFEVENTSEventManual(0)Automatic (A)ActualTime(sec)SimulatedTubeFailureReactorTripCondenser Lost'ISignalFeedwater Isolation AFWInitiated AFWThrottled toFaultedSGIsolation ofFaultedSGSteamDumpRCSDepressurization SGOverfillSITerminated BreakFlowTerminated RHRCoolingAAA00000.000182450019019222041089077027004310108007758001824500198198..2394105305302700313043101080077580includessteamline volume19

eventdescribed insectionII.l.l.Breakflowinexcessofnormalcharging-flowdepletedreactorcoolantinventory andeventually resultedinreactortriponlowpressurizer pressure.

Asafetyinjection signalfollowedsoonaftertrip.Normalfeedwater flowwasautomatically terminated onthesafetyinjection signalandauxiliary feedwater flowwasinitiated.

Thesteamdumpsystemoperatedtocontrolsteamgene-ratorpressurebelowthesafetyvalvesetpointandestablish no-loadreactorcoolanttemperature.

Auxiliary feedwater and'afety injection flowsabsorbeddecayheatandtemporarily stoppedsteamreleasesfromthesteamgenerators.

Emergency recoveryactionswerequicklyinitiated tomitigatetheconsequences oftheaccident.

Pre-tripsymptomsofthefaultedsteamgenerator, including steamflow/feed flowmismatchandsteamgenerator leveldeviation alarms,providedtentative indications ofthefaultedsteamgenerator whichwerecon-firmedsoonafterreactortripbyrapidlyincreasing steamgenerator levelandhighradiation indications.

Auxiliary feedwater flowwasreducedtothefaultedunitinanattempttocontrolinventory.

Isolation ofthefaultedsteamgenerator wascompleted within15minutesoftubefailurebyclosingtheassociated MSIV.Continued auxiliary feedwater flowtotheintactsteamgene-ratoreffectively reducedtheprimarysystemtemperature toestablish 50Fsubcooling margin.Normalspraywasunavailable sincereactorcoolantpumpsweremanuallytrippedsoonafterreactortripasdirectedbyemergency proce-dures.Consequently, onepressurizer PORVwasusedasanalternative meansofdepressurizing theprimarysystemtorestorepressurizer levelandreducebreakflow.Thiswascompleted within45minutes.Safetyinjection flowwassubsequently terminated after72minutes.Continued chargingflowandreini-tiationofsafetyinjection flowresultedinadditional primary-to-secondary leakageuntilapproximately 3hrsaftertubefailure.MassreleasesduringtheGinnaeventarepresented inTableII.2-2.LOFTRANresultsindicatethatthefaultedsteamgenerator andsteamline filledwithwaterafterapproximately 52minutes,FigureII.2-1.Beyondthistimewaterrelieffromthefaultedsteamgenerator wasassumedequaltoanyadditional primary-to-secondary leakage.Themeasuredprimaryandfaultedsteamgenera-torpressures andcalculated breakflowflashingfractionduringtheaccident20

TABLEII.2-2BESTESTIMATEMASSRELEASESDURINGGINNASGTREVENTFlow(ibm)TimePeriod0-TTRIPTTRIP-TMSEP-TSGOF*-22-TTBRKTTBRK-TMSEPTSGOF*TRHRFaultedSG:-Condenser 162100-Atmosphere 0-Feedwater 16340016900046800013044200105684,0~0IntactSG:-Condenser 160100-Atmosphere

.0-Feedwater 1717002880025200145000.02387052300089700054743530080978387983292BreakFlow103005433099170130442105684TTRIP=182.0sec=TimeofreactortripTMSEP=1335sec=TimetofillSGtomoistureseparator TSGOF=2192sec=TimetofillSGTSGOF*=3131sec=TimetofillSGandsteamline TTBRK=10200sec=Timetoterminate breakflowTRHR=77580sec=Timetoestablish RHRcooling21 7000.06000.0S.G.ANDSTEAr>LINE VOLUWE5000.0S.G.VOLUtlEF000.0I~)3000.0I2000.01000.00.0CDCDCDCDIAAJCDCDCDCDCDi/IPeaCDCDCDTlHE<HlN)CDCDV1AJCDCD"tAOOG)D~~AO(QFIGUREII.2-1.CALCULATED FAULTEDSTEAHGENERATOR MATERVOLUt1EDURINGTHEGINNAEVENT.22 2300.02250.02000.01750.01500.0C1250.0GGGG1000.0,0.GGG750.00500.00300.00CIEDCDItlAJC)EDIAClDOO~~If)Q(oTlME(MlN)FIGUREII22REACTORCOOLANTSYSTEi~'1 PRESSUREDURIHGTHEGIHHAEYEHT.23 1200.01000.0cc800.00~600.00~F00.00CL200.000.0ClClClClCllAAJClCDClClCDClCII/ITIME(MIN)ClCDCDClCDClIllAJCDClIClOOOO~~IOOFIGUREII.2-3.FAULTEDSTEAhGENERATOR PRESSUREDURINGTHEGINNAEVENT.

0.20000i)50005000.025000CITENTtNttllFIGUREII.2-4.CALCULATED BREAKFLOliFLASHI(HG FRACTIONDURINGT)lEGIN(iAEVEiPT.25 arepresented inFiguresII.2-2thruII.2-4.Theseresultsshowthatapproxi-mately236,000ibmofmasswerereleasedafterthefaultedsteamgenerator andsteamline wascalculated tofillwithwater.Approximately 130,000ibmofthiswerereleasedinthefirst2hrs.Steamflowtocondenser wasterminated atapproximately 75minutes.Massreleaseswereterminated whentheRHRSwasplacedinserviceafter21.5hrs.\26

III.ENVIRONMENTAL CONSEQUENCES ANALYSISIntroduc.ti onFortheevaluation oftheradiological consequences ofasteamgenerator tuberupture,itisassumedthatthereactorhasbeenopertingwithasmallpercentofdefective fuelforsufficient timetoestablish equilibrium concentrations ofradionuclides inthereactorcoolant.Hence,radionuclides fromthe'rimarycoolantenterthesteamgenerator, viatherupturedtube,andarereleasedtotheatmosphere throughthesteamgenerator safetyorpoweroperatedreliefvalves.Theradioactivity releasedtotheenvironment, duetoaSGTR,dependsuponprimaryandsecondary coolantactivity, iodinespikingeffects,primarytosecondary breakflow,timedependent breakflowflashingfractions, timedependent scrubbing offlashedactivity, partitioning oftheactivityfromthenonflashedfractionofthebre'akflowbetweenthesteamgenerator liquidandsteamandthemassoffluiddischarged totheenvironment.

Alloftheseparameters wereconservatively evaluated foradesignbasistubefailure,i.e.doubleendedruptureofasingletube,asdescribed inSectionII.1.ThemassreleasesduringtheGinnaeventwerealsoestimated inSectionII.2.Theenvironmental consequences attheseeventswerecalculated andarediscussed inthefollowing sections.

III.lDESIGNBASESANALYTICAL ASSUMPTIONS Themajorassumptions andparameters usedintheanalysisareitemizedinTableII.l-landaresummarized below.27

SourceTermCalculations Theconcentrations ofnuclidesintheprimaryandsecondary system,priortotheaccidentaredetermined asfollows:a.Theiodineconcentrations inthereactorcoolantwillbebaseduponpreaccident andaccidentinitiated iodinespikes.i.Preaccident Spike-Areactortransient hasoccuredpriortotheSGTRandhasraisedtheprimarycoolantiodineconcentration to60pCi/gramofDoseEquivalent I-131.ii.AccidentInitiated Spike-Thereactortriporprimarysystemdepressurization associated withtheSGTRcreatesaniodinespikeintheprimarysystemwhichincreases theiodinereleaseratefromthefueltotheprimarycoolanttoavalue500timesgreaterthanthereleaseratecorresponding tothemaximumequilibrium primarysystemiodineconcentration oflpCi/gram ofDoseEquivalent (D.E.)I-131.Thedurationofthespikeisassumedtobe4hours.Iodineappearance ratesinthereactorcoolantarepresented inTableIII.1-2.Dosesarecalculated forbothcasesofspiking.b.Thenoblegasactivityinthereactorcoolantisbasedon1percentfueldefects,asprovidedinTableIII.1-3.Theassumption of1percentfueldefectsforthecalculation ofnoblegasactivity, isconservative, sincelpCi/gram D.E.I-131and1percentdefectscannotexistsimultaneously.

Iodineactivitybasedon1percentdefectswouldbegreaterthantwicetheStandardTechnical Specification limit.c.Thesecondary coolantactivityisbasedontheO.E.of0.1pCi/gramofI-131.d.Iodineattherupturepointisassumedtoconsistof99.9percentelemental and0.1percentorganiciodine.28

'IDoseCalculations Thefollowing assumptions andparameters areusedtocalculate theactivityreleasedandtheoffsitedosesfollowing aSGTR.a.Themassofreactorcoolantdischarged intothesecondary systemthroughtheruptureandthemassofsteamand/orwaterreleasedfromtheintactandfaultedsteamgenerators, totheenvironment ispresented inTablesII.1.2-2and3.b.Thetimedependent fractionofrupture'flow thatflashestosteamandisimmediately releasedtotheenvironment isshowninFigureIII-l-l.c.Thetimedependent elemental iodineattenuation factorforretention ofatomizedprimarydropletsbythemoistureseparators anddryersandforscrubbing ofsteambubblesastheyrisefromtheleaksitetothewatersurfaceispresented inFigureIII.1-2.Retention bymoistureseparators andscrubbing areeffectedbydifferential pressure(aP)acrosstherupturedtubeandwaterlevel.,Specifically forthefirst4minutesdPisassumedtobe.high(>1000psi)andwaterlevellow(justabovetopoftubebundle).Forthisperiod,neitherretention norscrubbing isassumedandtheoverallfactoris1.0.Fortimesgreaterthan4minutes,theaPdecreases toapproximately 300psiandremainsconstant.

fortimesgreaterthan4butlessthan32minutes,retention bytheseparators isconstantandatamaximum.At32minutestheseparators begintofloodandat47minutesthegenerator isfilled.Retention bytheseparators decreases fromthemaximumat32minutestozeroat47minutes.Scrubbing increases withrisingwaterlevel.d-The1gpmprimarytosecondary leakisassumedtobesplitevenlybetweenthesteamgenerators.

29

e.Allnoblegasactivityin.thereactorcoolantwhichistransported tothesecondary systemviathetuberuptureandtheprimary-to-secondary leakageisassumedtobeimmediately releasedtotheenvironment.

f.CaseIassumes30minuteoperatoractiontoteminatebreakflow.TheliquidlevelinthefaultedSGremainsbelowthemoistureseparator.

Case2assumes60minuteoperatoraction.Themoistureseparator beginstofloodat32minutesandthegenerator isfilledat47minutes.g.Theelemental iodinepartition factorbetweentheliquidandsteamoftheintactSGisassumedtobe100.Thetimedependent partition factorforthefaultedSGispresented inFigureIII.1-3.h.Offsitepowerislostfollowing reactortrip.i..Eighthoursafter.theaccident, theRHRsystemisassumedtobeinopera'tion

'tocooldowntheplant.Thus,noadditional steamreleaseisassumed.j.Neitherradioactive decay,duringreleaseandtransport, norground~~~~~~~~deposition ofactivitywasconsidered.

k.Short-term atmospheric dispersion factors(x/g's)foraccidentanalysisandbreathing ratesareprovidedinTableIII.1-4.1.Decayconstants, averagebetaandgammaenergiesandthyroiddoseconversion factorsarepresented inTableIII.1-5.30

OFFSITETHYROIDDOSECALCULATION MODELOffsitethyroiddosesarecalculated usingtheequationwhereTh(IAR)integrated activityofisotopeireleased*

duringthetimeintervaljinCiandbreathing rateduringtimeintervaljinmeter/secondoffsiteatmospheric dispersion factorduringtimeintervaljinsecond/meter (DCF).thyroiddoseconversion factorviainhalation forisotopeiinrem/Cithyroiddoseviainhalation inremsOFFSITETOTAL-BODY DOSECALCULATIONAL MODELAssumingasemi-infinite cloudofbetaandgammaemitters, offsitetotal-body dosesarecalculated usingtheequation:

DTB025Z5;g(IAR);.(XID).ij31 whereIntegrated activityofisotopeireleased*

duringthejtimeintervalinCiandoffsiteatmospheric dispersion factorduringtimeintervaljinsecond/meter E-conservatively assumedtobethesumofthebetaandgammaenergyfortheiisotopeinmev/dis.'TBtotal-body doseinrems*Nocreditistakenforclouddepletion bygrounddeposition.

andradioactive decayduringtransport totheexclusion areaboundaryortotheouterboundaryofthelow-.population zone.ResultsThyroidandTotal-Body dosesattheSiteBoundaryandLowPopulation Zonearepresented inTableIII.1-6.Alldosesarewithintheguidelines of10CFR100.

32 I

TABLEIII.1-1PARAMETERS USEDINEVALUATING THERADIOLOGICAL CONSEQUENCES OFASTEANGENERATOR TUBERUPTURE(SGTR)SourceDataa.Corepowerlevel,MWtb.Steamgenerator tubeleakage,gpmc.Reactor-coolantiodineactivity:152011..Accident Initiated SpikeInitialactivityequaltothedoseequivalent of1.0pCi/gmofI-131withanassumediodinespikethatincreases therateofiodinereleaseintothereactorcoolantbyafactorof500.SeeTablesIII.1-2and3.2.Pre-Accident SpikeAnassumedpre-accident iodinespike,whichhasresultedinthedoseequivalent of60pCi/gmofI-131inthereactorcoolant.d.Reactorcoolantnoblegasactivity, bothcasesBasedon1-percent failedIfuelasprovidedinTableIII.1-3.33 TABLEIII.1-1[Sheet2)e.Secondary systeminitialactivityDoseequivalent ofO.lpCi/gmofI-131f.Reactorcoolantmass,gramsg.Steamgenerator mass(each),grams1.27x103.39x10h.OffsitepowerLosti.Primary-to-secondary

!1eakagedurationj.Speciesofiodine99.9percentelemental 0.1percentorganicCase1-30minCase2-60minII.Atmospheric Dispersion FactorsIII.ActivigReleaseDataSeeTableIII.1-4a.Faultedsteamgenerator 1.Reactorcoolantdischarged tosteamgenerator, lbs.SeeTableIII.1.2-2 or32.Flashedreactorcoolant,fractionSeeFigureIII.1-13.Iodineattenuation factorforflashedfractionofreactorcoolantSeeFigureIII.1-2I34 TABLEIII.1-1(Sheet3)4.Totalsteamrelease,lbsSeeTableIII.1.2-2 or35.IodinepartitionfactorforthenonflashedfractionofreactorcoolantthatmixeswiththeinitialiodineactivityinthesteamgeneratorSeeFigureIII.1-3t6.LocationoftuberuptureTopofBundleb.Intactsteamgenerator 1.Primary-to-secondary 1ca/age,1bs/hr1802.Flashedreactor.coolant,fraction3.Totalsteamrelease,lbsSeeTableIII.1.2-2 or34.Iodinepartition factor1005.Isolation time,hrs35 TABLEIII.1-2IODINEAPPEARANCE RATESINTHEREACTORCOOLANT{CURIES/SECOND)

FORADESIGNBASISSGTRI-131I-132I-133I-134I-135EquilibriumAppearance RatesduetoTechnical Specification Fueldefects1.88x104.44x103.48x106.14x104.68x10Appearance RatesduetoanIodineSpike-500X equilibriumrates0.942.221.743.072.34 TABLEIII.1-3.REACTORCOOLANTIODINEANDNOBLEGASACTIVITYNuclide*IodineActivitybasedon1pCi/gramofDoseEquiv.I-131I-131I-132I-133I-134I-1350.785pCi/gram0.3441.010.2040.787NobleGasActivityBasedon1percentFuelDefectsXe-131mXe-133mXe-133Xe-135mXe-135Xe-138Kr-85mKr-85Kr-87Kr-881.8pCi/gram152400.417.980.4542.046.91.183.58*Secondary coolantiodineactivityisbasedon0.1pCi/gramofDoseEquivalent I-131andistherefore 10percentofthesevalues.37 TABLEIII.1-4'HORT-TERN ATt10SPHERIC DISPERSION FACTORSANDBREATHING RATESFORACCIDENTANALYSISTimeSiteBoundary~j(hours)x/g(Sec/m

)LowPopulation

~jZonex/g(Sec/m

)3Breathing

~jRate(m/Sec)0-20-848x1043x10~3.47x1043.47x1038 TASLEIII.1-5ISOTOPICDATADecayConstant~Isotoe(UHr)EY(Mev/dis)

E~(Mev/dis)DCF~8j(R/ci)I-131I-132I-133I-134I-1350.003590.3010.0330.8000.1031.49(6)1.43(4)2.69(5)3.73(3)5.60(4)Xe-131mXe-133m0.002450.01280.00290.0200.1650.212Xe-1330.005480.030.153Xe-135mXG-135Xe-1382.670.07532.450.430.251.20.0990.320.66Kr-85mKr-85Kr-87Kr-880.1580.00000735 0.5470.2480.160.00230.793,2.210.250.2511.330.2539

TABLE111.1-6RESULTSOFDESIGNBASISANALYSISDoses(Rem)Case1Case21.AccidentInitiated IodineSpikeSiteboundary0-2hr.)ThyroidTota1-body2.90.3191.50.5LowPopulation Zone(0-8hr)ThyroidTota1-body0.190.025.70.032.Pre-Accident IodineSikeSiteboundary(0-2hr)ThyroidTota1-body22.30.312730.5LowPopulation Zone(0-8hr)ThyroidTota1-body1.40.0217.10.0340 FIGURE:III.1-1O.)0000.08000.0600OI-'K4.0.0400ID.O.ozooTIMEINTERVALIMINUTES)0IS)5-3D30-505D-60)60FRACTION0.0550.020'0.0I0.0030.00.000000000000000P)00000000IA00000000000IflTIME(MIN)BREAKFLOWFLASHINGFRACTION

FIGURE:l~

1>2ZO30AO5060TIMEtMINUTES)ATTENUATION FACTORFORFLASHEOREACTORCOOLANT42 l0050O40a30020l0NORMALLEVEL3047TOBOTTOMS.G.OFMOISTUREFILLEDSEP.TIME(MINUTES)

FAULTEDS.G.PARTITION FACTORFORNONFLASHEDREACTORCOOLANT43

III.2BestEstimateAnalytical Assumptions Themajorassumptions andparameters usedintheanalysisareitemizedinfaoleIII.2-1andaresummarized below.SourceTermCalculations

)heconcentrations ofnuclidesintheprimaryandsecondary system,priortotheaccidentaredetermined asfollows:a.Theiodineconcentrations inthereactorcoolantwillbebaseduponpreaccident andaccidentinitiated iodinespikes.L~i.Preaccident Spike-Areactortransient hasoccurredpriortotheSGTRandhasraisedtheprimarycoolantiodineconcentration to8pCi/gramofDoseEquivalent I-131.(Thebasisforthespikingfactorsispresented inRef.9.)ii.AccidentInitiated Spike-Thereactortriporprimarysystemdepressurization associated withtheSGTRcreatesaniodinespikeintheprimarysystemwhichincreases theiodinereleaseratefromthetueltotheprimarycoolanttoavalue30L~timesgreaterthanthereleaseratecorresponding tothemaximumequilibrium primarysystemiodine.concentration oflpCi/gram ofDoseEquivalent (O.E.)1-13l.Thedurationoftnespikeisassumedtobe4hours.Iodineappearance ratesinthereactorcoolantarepresented inTable2.Dosesarecalculated forbothcasesofspiking.b.Thenoblegasactivityinthereactorcoolantisbasedon1-percent fueldefects,asprovidedinTable3ofPartIII.l.c.Tnesecondary coolantactivityisbasedontheO.E.ofO.luCi/gramofI-131.d.Iodineattherupturepointisassumedtoconsistof100percentelemental iodine.

Theassumption of1-percent fueldefectsforthecalculation ofnoblegasactivityisconservative sincelgCi/gram D.E.I-131andIpercentdefectscannotexistsimultaneously.

IodineactivitybasedonIpercentdefectswouldbegreaterthantwicetheTechnical Specification limit.DoseCalculations Thefollowing assumptions andparameters areusedtocalculate theactivityreleasedandtheoffsitedosesfollowing aSGTR.a.Themassofreactorcoolantdischarged intothesecondary systemthroughtheruptureandthemassofsteamand/orwaterreleasedfromtheintactandfaultedsteamgenerators, totheenvironment ispresented inTableIII.2-2.b.Thetimedependent fractionofruptureflowthatflashestosteamandisimmediately releasedtotheenvironment isshowninFigureIII.2-1.c.Thetimedependent elemental iodineattenuation factorforretention ofatomizedprimarydropletsbythemoistureseparators anddryersandforscrubbing ofsteambubblesastheyrisefromtheleaksitetothewatersurfaceispresented inFigureIII.2-2.Retention bymoistureseparators andscrubbung areeffectedbydifferential pressure(aP)acrosstherupturedtubeandwaterlevel.Specifically forthefirst5minutessPisassumedtobehigh(550psi)andwaterlevellow(topoftubebundle).Forthisperiod,retention andscrubbing areassumedandtheoverallfactoris1.45.Fortimesgreaterthan5minutestheaPdecreases toapproximately 450psiandisassumedconstantforthedurationoftheflashingperiod.fortimesgreaterthan5butlessthan22minutes,retention bytheseparators isassumedconstantandatamaximum.At22minutestheseparators begintofloodandat52minutesthegenerator andsteamlinearefilled.Retention bytheseparators decreases fromthemaximumat5minutesto.zeroat36minutes.Scruobing increases withrisingwaterlevel..

d.TheIgpmprimarytosecondary leakisassumedtobesplitevenlybetweenthesteamgenerators.

e.Allnoblegasactivityinthereactorcoolantwhichis"transported tothesecondary systemviathetuberuptureandtheprimary-to-secondary leakageisassumedtobeimmediately releasedtotheenvironment.

f.Themoistureseparator beginstofloodat22minutesandthegenerator andsteamlinearefilledat52minutes.g.Theelemental iodinepartition factorbetweentheliquidandsteamoftheintactSGisassumedtobe5000.Thetimedependent partition factorforthefaultedSGispresented inFigureIII.2-3.h.Offsitepowerisavailable.

i.21.5hoursaftertheaccident, theRHRsystemisassumedtobeinopera-tiontocooldowntheplant.Thus,noadditional steamreleaseisassumed.~~~~~~j.Neitherradioactive decay,duringreleaseandtransport, norgrounddeposition ofactivitywasconsidered.

k.Short-term atmospheric dispersion factors(X/g's)foraccidentanalysisandbreathing ratesareprovidedinTableIII.2-3.l.Decayconstants, averagebetaandgammaenergiesandthyroiddoseconver-sionfactorsarepresented inTable5ofPartIII.1.OffsiteThyroidandTotal-8ody DoseCalculational ModelsSeePartIII.1ResultsThyroidandtotal-body dosesatthesiteboundaryandlowpopulation zonearepresented inTableIII.2-4.Alldosesarewithintheguidelines of10CFR100.

46

TABLEIII.2-1PARAMETERS USEDINTHEBESTESTIMATEEVALUATION THERADIOLOGICAL CONSEQUENCES OFTHEGINNAEVENTI.SourceDataa.Corepower1evel,MNtb.Steamgenerator tube1eakage,gpmc.Reactorcoolantiodineactivity:152011.AccidentInitiated SpikeInitialactivityequaltothedoseequivalent of1.0pCi/gmofI-131withanassumediodinespikethatincreases therateofiodinereleaseintothereactorcoolantbyafactorof30.SeeTablesIII.2-2,III.1-3.2.Pre-AccidentSpikeAnassumedpre-accident iodinespike,whichhasresultedinthedoseequivalent of8pCi/gmofI-131inthereactorcoolant.d.ReactorcoolantnoblegasactiviBasedon1-percent failedfuelAsprovidedinTableIII.1-3ofSectionIII.1e.Secondary systeminitialactivityf.Reactorcoolantmass,gramsg.Steamgenerator mass(each)gramsh.OffsitepowerDoseequivalent of0.1pCi/gmofI-131.1.27x1083.39x10Available 47 TABLEIII.2-1(Continued)

Primary-to-secondary leakagedurationj.Speciesofiodine185min100percentelemental II.Atmospheric Dispersion FactorsSeeTableIII.2-3III.ActivityReleaseDataa.Faultedsteamgenerator 1.Reactorcoolantdis-chargedtosteamgenerator, lbs.SeeTableII.2-22.Flashedreactorcoolant,fraction3.Iodineattenuation factorforflashedfractionofreactorcoolant4.Steamandwaterreleases, lbs5.Iodinepartition factorforthenonflashedfractionofreactorcoolantthatmixeswiththeinitialiodineactiviginthesteamgenerator 6.LocationoftuberuptureSeeFigureIII.2-1SeeFigureIII.2-2SeeTableII.2-2SeeFigureIII.2-34inchesabovetubesheetb.Intactsteamgenerator 1.Primary-to-secondary leakage,lbs/hr180

TABLEIII.2-1(Continued) 2.Flashedreactorcoolant3.4~fractionTotalsteamrelease,lbsIodinepartition factorIsolationtime,hrsSeeTableII.2-2500021.55c.Condenser 1.Iodinepartition factor500049

TABLEIII.2-2IODINEAPPEARANCE RATESINTHEREACTORCOOLANT(CURIES/SECOND)

I-131I-133I-134I-135EquilibriumAppearance RatesduetoTechnical Specification fuelDefects1.88x104.44x103.48x106.14x104.68x10Appearance RatesduetoanIodineSpike-30X equilibriumrates5.64x101.33x101.04x101.84x101.4x10 TABLEIII.2-3SHORT-TERM ATMOSPHERIC DISPERSION FACTORSAND8REATHINGRATESFORACCIDEWTANALYSESTime(hours)SiteBoundaryx/q(Sec/m)LowPopulationZonex/g(Sec/m)Breathing Rate(m/sec)0-24.8x103.47x100-83x103.47x108-243x101.75x10Note:x/g'sare10percentoftheR.G.1.145values.51

TABLEIII.2-4RESULTSOFGINNAEVENTANALYSES1.AccidentInitiated IodineSpikeDoses(Rem)Siteboundary(0-2hr)ThyroidTota1-body2.90.5LowPopulation Zone(0-8hr)ThyroidTotal-body1.40.0482.PreAccidentSikeSiteboundary(0-2hr)ThyroidTota1-body8.50.5LowPopulation Zone(0-8hr)ThyroidTota1-body1.50..04852 P

FIGuRE:III21O.ZOOOO.l750O.l500O.IZ50OO.IOOOCDK0.07504xCA0.05004.O.OZ50IIIIITIMEINTERVAL(MINUTES) 06Sl70'7FRACTION0.!60.0280.00.0OlAEV0OlAolA0OtAAl0OlA0olAO~rCOTIME(MIN)BREAKFLOWFLASHINGFRACTIONFORTHEGINNAEVENT53 1098IOI520Tll4EIMlNUTES)30ATTENUATION FACTORFORFLASHEDREACTORCOOLANTFORTHEGlNNAEVENT54

5000a:1000OfOf-.F-100IIIIIIIIIIIIIIIIIIIIIIIII10ZO3060TIMEIMlNUTES)FAULTEDS.G.PARTIT10N FACTORFOR'HEGINNAEVENT,I55

IV.SUMMARYANDCONCLUSIONS Thepotential environmental consequences ofasteamgenerator tubefailureattheR.E.Ginnanuclearpowerplantwereevaluated inordertodemonstrate

~~~~~~~thattheStandardTechnical Specifications limitonprimarycoolantactivityisacceptable.

Themassreleasesduringadesignbasisevent,i.e.adoubleendedruptureofasingletube,wereconservatively calculated usingthecom-putercodeLOFTRAN.Fortheseanalyses, thesequenceofrecoveryactionsinitiated bythetubefailurewereassumedtobecompleted onarestricted timescale.Twocaseswereconsidered:

a)30minuterecovery, andb)60min'uterecovery.

Theeffectofsteamgenerator overfil1onradiological

'eleaseswasalsoconsidered.

Massreleasesduringthedesignbasiseventwereusedwithconservative assumptions ofcoolantactivity, meteorology, andattenuation toestimateanupperboundofsiteboundaryandlowpopulation zoneexposures.

ThemassreleasesfromtheJanuary25,1982steamgenerator tubefailureatGinnawerealsocalculated fromresultspresented inreference 2.ThesereleaseswereusedwiththeStandardTechnical Specification limitoninitialcoolantactivityandamorerealistic meteorology toevaluatepotential dosesonamorerealistic basis.Resultsofthedesignbasisanalysesindicatethattheconservative siteboundaryandlowpopulation zoneexposures fromasteamgenerator tubefailurearewithin10CFR100limitations withtheStandardTechnical Specification limitoninitialcoolantactivity.

Estimates ofthepotential radiological releasesfromamorerealistic eventwiththesameinitialcoolantactivitydemonstrate thatthedesignbasisanalysisisveryconservative.

Conse-quently,theStandardTechnical Specification limitoncoolantactivityaresufficient toensurethattheenvironmental consequences ofasteamgenerator tubefailureattheR.E.Ginnaplantwillbewithinacceptable limits.56 REFERENCES 1.L.A.Campbell, "LOFTRANCODEDESCRIPTION",

WCAP-7878 Rev.3,January(1977).2.E.C.Volpenhein, "ANALYSIS OFPLANTRESPONSEDURINGJANUARY26,1982STEANGENERATOR TUBEFAILUREATTHER.E.GINNANUCLEARPOWERPLANT",Westinghouse ElectricCo.,October(1982).3.WESTINGHOUSE OWNERSGROUPEMERGENCY RESPONSEGUIDELINES

SElfINAR, September 1981.4.NRCStandardReviewPlan15.6-3,Rev.2,"Radiological Consequences ofaSteamGenerator TubeFailure",

Ju'ly,1981.5.NRCNUREG-0409, "IodineBehaviorinaPWRCoolingSystemFollowing aPostulated SteamGenerator TubeRuptureAccident",

Postma,A.K.,Tam,P.S.,Jan.1978.6-NRCRegulatory Guide1.145,"Atmospheric Dispersion ModelsforPotential

.AccidentConsequence Assessments atNuclearPowerPlants",August,1979.7.-NRC.Regulatory-Guide 1.4,Rev.2,"Assumptions UsedforEvaluating thePotential Radiological Consequences ofaLOCAforPressurized MaterReactors",

June1974.8.NRCRegulatory Guide1.109,Rev.1,"Calculation ofAnnualDosestoManFromRoutineReleasesofReactorEffluents forthePurposeofEvaluating Compliance with10CFRPart50AppendixI",Oct.1977.9.Lutz,R.J.,"IodineandCesionSpikingSourceTermsforAccidentAnalysis,"

MCAP-9964, Rev.1,July1981.57