ML18026A222: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:REGOLAT'ORYINFORMATIONDISTRIBUTIONSYSTEM(RIDS)ACCESSIONNBR:8103230429"OOC~DATE:81./03/20NOTARIZED:HOFACIL:50SusquehannaSteamElectricStation<UnitirPennsy'lva388usEruehannaSteamElectricStationiUnit2rPennsylvaAUTHOR'FFILIATIONPennsylvaniaPower8LightCo~RECIPIENTAFFILIATIONLicensingBranch1DOCKET&#xb9;0500038705000388
{{#Wiki_filter:REGOLAT'ORY INFORMATION DISTRIBUTION SYSTEM(RIDS)ACCESSION NBR:8103230429 "OOC~DATE:81./03/20 NOTARIZED:
HOFACIL:50Susquehanna SteamElectricStation<UnitirPennsy'lva 388usEruehanna SteamElectricStationiUnit2rPennsylva AUTHOR'FFILIATION Pennsylvania Power8LightCo~RECIPIENT AFFILIATION Licensing Branch1DOCKET&#xb9;0500038705000388


==SUBJECT:==
==SUBJECT:==
ForwardsrevisedpagestoFSAR~0ISTRISOTIONCOOS:ROOTSCOPIESRECEIVESILTR3,ENCLlgSIZE:I+8'~TITLE:PSAR/FSARANDTSandRelatedCorrespondenceNOTES:SendI8,E3cooiesFSAR8allamends'endI8E3copiesFSAR8allamends'500038705000388RECIPIENTIDCODE/NAMEACTION:A/DLICENSNGRUSHBROOKgtvI~INTERNAL:ACCIDEYALRR26CHKHENGBR08CORKPERFBR10K%ERGPREP22GEOSCIKNCES14HYD/GEO3R15I8,E06LICQUALBRMECHKNG8R18NRCPOR02OPLICBRPROC/TSTREV20RADASSESSRR22I&#xc3;FIL01CYNGBR25COPIESLTTR'ENCL1010111,111011223311111111111111RECIPIENTIOCODE/NAMEYOUNGBLOODEBSTARKgR~04dUXSYSSR07CONTSYS8R0'?EFFTRSYSBR12EQUIPQUALBR13PULIFACTENGBRI8CSYSBRieLICGUIDBR'LIATLKNGBR17MPAOELDPOWERSYSBR1?QABR21REACSYSBR23SITANALBR2aSYSINTERACBRCOPIESLTTRENCL1011111111331111110101111111EXTERNAL:ACRSNSIC2705161611LPDR0311TOTALNU'vIBEROFCOPIESRFQUIREO:LTTR57ENCL51 TWONORTHNINTHSTREET,ALLENTOWN,PA.18101PHONEs(215)770-5151NORMANW.CURTISVicePresirtent.Engineering8Construction-Nuclear770.5381March20,1981Mr.B.J.YoungbloodLicensingProject:Branch81DivisionofProjectManagementU.S.NuclearRegulatoryCommissionWashington,DC20555SUSQUEHANNASTEAMELECTRICSTATIONFSARCHANGESER100450FILE841-2PLA-662Enclosedplease'indforty(40)copiesofchangestotheSusquehannaSteamElectricStationFinalSafetyAnalysisReport.EffectedFSARSectionsarelistedontheattachmenttothisletter.Verytrulyyours,N.W.CurtisVicePresident-EngineeringttConstruction-NuclearTEG/mksEnclosureyooI5I/goPENNSYLVANIAPOWER8LIGHTCOMPANY8~Psgg0489 SSES-FSARTABLE3.2-1(Continued)Pae30NANoneApplicableXManufacturer'sStandards6)I-TheequipmentshallbeconstructedinaccordancewiththeseismicrequirementsfortheSafeShutdownEarthquake,asdescribedinSection3.7.NA-TheseismicrequirementsfortheSafeShutdownEarthquakearenotapplicabletotheequipmentorstructure.7)Y-Requirescompliancewiththerequirementsof10CFR50,AppendixBinaccordancewiththequalityassuranceprogramdescribedinChapter17.N-NotwithinthescopeoflOCFR50,AppendixB.8)TheclassificationofthecontrolroddrivewaterreturnlinefromthereactorvesselthroughthethirdisolationvalvewillbeGroupA.BeyondthethirdvalvewillbeGroupD,exceptasnotedinTable3.2-1.9)Thefollowingqualificationshallbemetwithrespecttothecertificationrequirements:Themanufactureroftheturbinestopvalves,turbinecontrolvalves,turbinebypassvalves,andmainsteamleadsfromturbinecontrolvalvetoturbinecastingshallusequalitycontrolproceduresequivalenttothosedefinedinGeneralElectricPublicationGEZ-4982A,"GeneralElectricLargeSteamTurbine-GeneratorequalityControlProgram".2.Acertificationshallbeobtainedfromthemanufacturerofthesevalvesandsteamleadsthatthequalitycontrolprogramsodefinedhasbeenaccomplished.10)1.Instrumentandsamplingpipingfromthepointwheretheyconnecttotheprocessboundaryandthroughtheprocessshutoff(root)valve(s),isolationvalve(s),andexcessflowcheckvalve,whenprovided,willbeofthesameclassificationasthesystemtowhichtheyconnect.2.AllinstrumentlineswhichareconnectedtothereactorcoolantpressureboundaryandareutilizedtoactuatesafetysystemsshallbeGroupBfromtheprocessshutoff(root)valve(s),isolationvalve(s),orexcessflowcheckvalve,whenprovided,tothesensinginstrumentation.3.AllinstrumentlineswhichareconnectedtothereactorcoolantpressureboundaryandarenotutilizedtoactuatesafetysystemsshallbeequalityGroupCfromthe8103230429 SSES-FSARTABLE3.2-1(Continued)Pae31processshutoff(root)valve(s),isolationvalve(s),excessflowcheckvalves,whenprovided,tothesensinginstrumentation.4.Otherinstrumentlines:.a)ThoseconnectedtospecialequipmentorGroupDsystempressureboundariesandutilizedtoactuatesafetysystemswillbeGroupCfromthesystempressureboundarythroughtheprocessshutoffvalve(s)tothesensinginstrumentation.b)ThoseconnectedtoGroupBandGroupCsystemsandutilizedtoactuatesafetysystemsshallbeofthesameclassificationastheprocesssystemtothesensinginstrumentation.c)ThoseconnectedtoGroupBandGroupCsystemsandnotutilizedtoactuatesafetysystemswillbeofGroupDclassificationexceptforthoseGroupCsystemsbyGEutilizingcapillary(filledandsealed)instrumentlines.d)ThoseconnectedtoGroupDsystemsandnotutilizedtoactuatesafetysystemswillbeofGroupDclassification.5.ForGroupA,B,andCsystems,thesamplelinebeyondtheprocessshutoff(root)valve(s)orisolationvalve(s)willbeGroupBthroughthepenetrationandGroupDfromtheisolationvalvetotheshutoffvalveoutsideofthesamplestation.ll)TheHPCIandRCICturbinesdonotfallwithintheapplicabledesigncodes.Toensurethattheturbineisfabricatedtothestandardscommensuratewiththeirsafetyandperformancerequirements,GeneralElectrichasestablishedspecificdesignrequirementsforthiscomponent.12)Thehydrauliccontrolunit(HCU)isaGeneralElectricfactoryassembled,engineeredmoduleofvalves,tubing,piping,andstoredwaterwhichcontrolsasinglecontrolroddrivebytheapplicationofpreciselytimedsequencesofpressuresandflowstoaccomplishslowinsertionorwithdrawalofthecontrolrodsforpowercontrol,whileprovidingrapidinsertionforreactorscram.Althoughthehydrauliccontrolunitisfieldinstalledandconnectedtoprocesspiping,manyofitsinternalpartsdiffermaikedlyfromprocesspipingcomponentsbecauseofthemorecomplexfunctionstheymustprovide.Thus,althoughthe THISFIGUREHASBEENINTENTIONALLYLEFTBLANKREV.22,4/81SUSQUEHANNASTEAINELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTTHISFIGUREHASBEENINTENTIONALLYLEFTBLANKFIGURE3.6-9 SSES-FSARTABLE39-2INDEXLOADINGCOMBINATIONS~STRESSLIMITSAiNDALLO@ABLESTRESSESaReactorVesselPressureandShroudSupportAssemblyb.ReactorVesselInternalsandAssociatedEquipmentc.ReactorRaterCleanupHeatExchangersdClass1MainSteamPipinge.Class1RecirculationLoopPipingf.Thisitemintentionallyleftblankq.Safety/ReliefValves(MainSteam)h.MainSteamIsolationValvei.RecirulationPumpReactorRecirculationSystemGateValves(Suction/Discharge)k.Thisitemintentionallyleftblank1.StandbyLiquidControlPumpm.StandbyLiquidControlTankn.ECCSPumpo.RHRHeatExchangerpR'ACUPumpq.RCICTurbineSeRCICPumpNewFuelStorageRackst.HighPressureCoolantInjectionPumpuThisitemintentionallyleftblankv.ControlRodDriveHousingJetPumpsaa.ControlRodGuideTubeabIncoreHousingacReactorVesselSupportEquipmentCRDHousingSupportRev.22,4/81 SSES-FSABTABLE39-2ZNDEX-Continuedad.Thisitemintentionallyleftblankae.HPCZTurbine.DesignCalculationsaf.HighDensitySpentFuelStorageRacksRev.22,4/81 TABLE3.9-2(s)-(page1of2)NEWFUELSTORAGERACKSCRITERIA1.NEWFUELSTORAGERACKSLOADINGFAULTEDCONDITION"A"LOCATIONALLOWABLESTRESS(.7ULT)CALCULATEDSTRESSStressduetonormalupsetoremergencyloadingshallnotcauseafailuresoastoresultinacriticalarray.l.2.3.4.DeadLoadsFullFuelLoadinrackS.S.E.Thermal(notappli-cable)1.Beam(Axial)l.26,0008/in222.Beam(Trans.)'2.'6,000/I/in>3.Combined=3.26,0008/in1.18,9058/ig22.7,005///in2.25,9108/in2.SOURCEOFALLOWABLESTRESS(.7ULT)a~b.C~d.e.ASTMB308Alloy6061-T6ASMECode-BoilersandPressureVessels,Sect.III,NAProductSafetyStandardsforBt&-6-MarkIII,Sect.VI,A.(3)ASME-PressureVesselsandPiping:DesignandAnalysis,VolumeOne,Page69.ASTHcodeforBoilersandPressureVesselswasselectedonthepremisethatdatausedfromthissourcewouldnecessarilybeontheconvervativesideasappliedtothefuelstoragerackcalculations.Rev.22,4/81 TABLE3.9-2(se2of2)S-S.S.E.loadsderivedbydynamicanalysis.=Totalstressreferstocombinedearthquakeandthermalloadathighestexpectedpooltemperature.Earthquakestressesobtainedbysquarerootofthesumof-thesquaresmethodforaresponseduetotri-axialexcitation.Stressgivenisthehighestinthetotalstructuralarray.4.NEWFUELSTORAGERACKSFAULTEDCONDITION"B"Stressesduetonormalupset(SeeBelow,Par.~)oremergencyloadingshallnotcauseafailuresoastoresultinacriticalarray.(Location-SeePar.6,Below)NotApplicableNotApplicableFAULTEDCONDITION"B":Condition"B"isanemergencyconditioninwhichthestresslimitisequaltotheyieldstrengthat0.2%offset.Theracksweretestedtodeterminetheircapabilitytosafelywithstandtheaccidental,uncontrolled,dropofafu'elbundlefromitsfullyretractedpositionintotheweakestportionoftherack.6.METHODOFTESTING:Four(4)rackcastingsweresubjectedtoimpactloadsrangingfrom1908ft.lbs.to4070ft.lbs.whichweregeneratedbydroppingsimulatedfuelbundlesweigh-ing660lbs.fromheightsvaryingfrom3.0'nd6.17'.Rackswerealignedinpairsandsimulatedbundlesweredroppedonbothracksattheflangearea.Both.centerimpactandendimpacttestswereconducted.(Two(2)oftherackswereX-Rayexaminedpriortotesting.Straingagesweremountedonrackstoascer-tainmax.strainandaccelerometersweremountedonbundlestodetermine"G"loads.)7.TESTRESULTS:Atotalofnineteen(19)testswereperformedwithdropheightincreasedateachtest.FirstfailureoccurredduetoacentralimpactonrackNo.3fromamax.heightof6.17',(Test813).Racks81andi02bothfailedfromacenterimpactcausedbyaloaddroppedfromaheightof5.33',(Testf/19).Accelerometerreadingsarenotavailableduetotheinabilitytoadequatelyaffixtheaccel-erometertothesimulatedfuelbundle.Rev.22,4/81 SSES-FSARTABLE3.9-2(af)e1of2HIGHDENSITYSPENTFUELRACKSTYPESOFANALYSISPERB3MEDDYNAMICANALYSIS:Adynamicmodalanalysisusingtheseismic,SRV,andDX'Aresponsespectrawasperformedonasimplifiedmodelconsistingof6racks(1quadrant).'Iheresultingloadsonthecornermodulewereextractedandamoredetailedanalysisperforned.STATICANALYSIS:Adetailedfiniteelement(1364elanents)modelofthecornermodulewasdevelopedandastaticanalysisperformedusingtheloadingresultsofthedynamicanalysis.Thesectiondescriptions,allowablestressesandstressratiosforthedetailedmodelaregivenonpage2ofthistable.FUELRA'ITLINGANALYSIS:Atimehistoryanalysiswasperformedtodeterminelocalimpactloadsduetofuelrattling.Acanparisonofthesupportloadsfromthefuelrattlinganalysiswiththoseoftheresponsespectrumanalysisshowedthatthefuelrattlingresultsarelessthanorequaltotheresponsespectrumresults.Analysisofthepoisoncanwascompletedusingthelocalimpactloads.MODELIMPACTANALYSIS:Anequivalentstaticloadwasdeterminedforthefollowingdropconditions:1)18"fueldroponcorneroftopcasting2)18"fueldroponmiddleoftopcasting3)fueldropfulllengththroughthecavityimpactingbottomcastingatthemiddle.Forthefirst2casestheequivalentstaticloadscalculatedwerecombinedwithdeadloadandappliedtothedetailedmodel.Forthe3rdcase,theultimateloadofthebundleshearingoutofthefuelseatwasdeterminedandcombinedwithdeadload.Thiscombinedloadwasthenappliedtothedetailednadel.Rev.22,4/81 SSES-FSARTABIE3.9-2(af),page2of2HIGHDENSITYSPENTFUELRACKSUMMARYOFRESUL'LSFORTHEDETAIIZDMODELELEMENTSNORMALAUlMABLESTRESSESNORMALOPERATINGCONDITIONDESIGNACCIDENTANDEKTREMEENVIRONMENTALCONDITIONSSECT.NO.SECTIONDESCRIPTIONFaFbyFbxfafbfbxFbxSTRESSRATIO(1)fbxFbyMAXSTRESSRATIO(l)4BottomGridInnerSect.8550BottcmGridOuterSectionNearLeg96501TopGridOuterSection99412TopGridInnerSection94203BottomGridOuterSect.88301576015760.0261576015760.0571576012120.0621576012120.0051576012120.047.009.055.248.831.249.747.78.813.93.108.42.013.85.269.57.018.040.062.005.047.006.715.74.039.766.85.248.108.42.831.013.85.249.269.57BottomGridInnerSectionNearLeg95301576012120.046.508.248.80.046.508.248.807BottomGridFoot8BottanGridFoot91/2"Plate107/8"Plate(1)StressRatio10250110203320173701576012120.1321418014180.161Fv=1390F=10970abvfbxFa+%'FbxxRev.22,4/81(2)PlateStressRatio=f>fx+.001.13.003.1699(2)92(2).160.1950.003.160.006.2076(2).92(2)NOZEAllowablestressesarefactoredupperTable9.1-7aoftheSSES-FSAR.
ForwardsrevisedpagestoFSAR~0ISTRISOTION COOS:ROOTSCOPIESRECEIVESILTR3,ENCLlgSIZE:I+8'~TITLE:PSAR/FSAR ANDTSandRelatedCorrespondence NOTES:Send I8,E3cooiesFSAR8allamends'end I8E3copiesFSAR8allamends'5000387 05000388RECIPIENT IDCODE/NAME ACTION:A/DLICENSNGRUSHBROOKgtvI
SSES-FSAH4.4.6INSTHH:.5ENTATI0NREQ0IHEiJENTSThereactorvesselinstrumentationmonitorsheKeyreac.orvesseloperatinqparametersduringplannedoperations.Thi-ensuressuffi"ientcontroloftheparamete=s.ThefollowinqreactorvesselsensorsarediscussedinSubsection7.7.1.l.(1)ReactorVesselTemperatu"e(2)ReactorVessel~r,'aterLevel(3)ReactorVesselCoolantFlowHatesandDifferen=ialPressures(4)ReactorVesselXntmalPressure(5)Neutron.'lonitoringSystem4.4.61LoosePa"tsilonitoringTheLoosePartsMonitoringSystemforSusquehannaSESisdiscussedinSubsections7.7.1.12and7.7.2.12.
~INTERNAL:
ACCIDEYALRR26CHKHENGBR08CORKPERFBR10K%ERGPREP22GEOSCIKNCES14HYD/GEO3R15I8,E06LICQUALBRMECHKNG8R18NRCPOR02OPLICBRPROC/TSTREV20RADASSESSRR22I&#xc3;FIL01CYNGBR25COPIESLTTR'ENCL 1010111,111011223311111111111111RECIPIENT IOCODE/NAME YOUNGBLOODEB STARKgR~04dUXSYSSR07CONTSYS8R0'?EFFTRSYSBR12EQUIPQUALBR13PULIFACTENGBRI8CSYSBRieLICGUIDBR'LIATLKNGBR17MPAOELDPOWERSYSBR1?QABR21REACSYSBR23SITANALBR2aSYSINTERACBRCOPIESLTTRENCL1011111111331111110101111111EXTERNAL:
ACRSNSIC2705161611LPDR0311TOTALNU'vIBEROFCOPIESRFQUIREO:LTTR57ENCL51 TWONORTHNINTHSTREET,ALLENTOWN, PA.18101PHONEs(215)770-5151NORMANW.CURTISVicePresirtent.
Engineering 8Construction-Nuclear 770.5381March20,1981Mr.B.J.Youngblood Licensing Project:Branch81DivisionofProjectManagement U.S.NuclearRegulatory Commission Washington, DC20555SUSQUEHANNA STEAMELECTRICSTATIONFSARCHANGESER100450FILE841-2PLA-662Enclosedplease'ind forty(40)copiesofchangestotheSusquehanna SteamElectricStationFinalSafetyAnalysisReport.EffectedFSARSectionsarelistedontheattachment tothisletter.Verytrulyyours,N.W.CurtisVicePresident-Engineering ttConstruction-Nuclear TEG/mksEnclosure yooI5I/goPENNSYLVANIA POWER8LIGHTCOMPANY8~Psgg0489 SSES-FSAR TABLE3.2-1(Continued)
Pae30NANoneApplicable XManufacturer's Standards 6)I-Theequipment shallbeconstructed inaccordance withtheseismicrequirements fortheSafeShutdownEarthquake, asdescribed inSection3.7.NA-Theseismicrequirements fortheSafeShutdownEarthquake arenotapplicable totheequipment orstructure.
7)Y-Requirescompliance withtherequirements of10CFR50,AppendixBinaccordance withthequalityassurance programdescribed inChapter17.N-NotwithinthescopeoflOCFR50,AppendixB.8)Theclassification ofthecontrolroddrivewaterreturnlinefromthereactorvesselthroughthethirdisolation valvewillbeGroupA.BeyondthethirdvalvewillbeGroupD,exceptasnotedinTable3.2-1.9)Thefollowing qualification shallbemetwithrespecttothecertification requirements:
Themanufacturer oftheturbinestopvalves,turbinecontrolvalves,turbinebypassvalves,andmainsteamleadsfromturbinecontrolvalvetoturbinecastingshallusequalitycontrolprocedures equivalent tothosedefinedinGeneralElectricPublication GEZ-4982A, "GeneralElectricLargeSteamTurbine-Generator equalityControlProgram".
2.Acertification shallbeobtainedfromthemanufacturer ofthesevalvesandsteamleadsthatthequalitycontrolprogramsodefinedhasbeenaccomplished.
10)1.Instrument andsamplingpipingfromthepointwheretheyconnecttotheprocessboundaryandthroughtheprocessshutoff(root)valve(s),
isolation valve(s),
andexcessflowcheckvalve,whenprovided, willbeofthesameclassification asthesystemtowhichtheyconnect.2.Allinstrument lineswhichareconnected tothereactorcoolantpressureboundaryandareutilizedtoactuatesafetysystemsshallbeGroupBfromtheprocessshutoff(root)valve(s),
isolation valve(s),
orexcessflowcheckvalve,whenprovided, tothesensinginstrumentation.
3.Allinstrument lineswhichareconnected tothereactorcoolantpressureboundaryandarenotutilizedtoactuatesafetysystemsshallbeequalityGroupCfromthe8103230429 SSES-FSAR TABLE3.2-1(Continued)
Pae31processshutoff(root)valve(s),
isolation valve(s),
excessflowcheckvalves,whenprovided, tothesensinginstrumentation.
4.Otherinstrument lines:.a)Thoseconnected tospecialequipment orGroupDsystempressureboundaries andutilizedtoactuatesafetysystemswillbeGroupCfromthesystempressureboundarythroughtheprocessshutoffvalve(s)tothesensinginstrumentation.
b)Thoseconnected toGroupBandGroupCsystemsandutilizedtoactuatesafetysystemsshallbeofthesameclassification astheprocesssystemtothesensinginstrumentation.
c)Thoseconnected toGroupBandGroupCsystemsandnotutilizedtoactuatesafetysystemswillbeofGroupDclassification exceptforthoseGroupCsystemsbyGEutilizing capillary (filledandsealed)instrument lines.d)Thoseconnected toGroupDsystemsandnotutilizedtoactuatesafetysystemswillbeofGroupDclassification.
5.ForGroupA,B,andCsystems,thesamplelinebeyondtheprocessshutoff(root)valve(s)orisolation valve(s)willbeGroupBthroughthepenetration andGroupDfromtheisolation valvetotheshutoffvalveoutsideofthesamplestation.ll)TheHPCIandRCICturbinesdonotfallwithintheapplicable designcodes.Toensurethattheturbineisfabricated tothestandards commensurate withtheirsafetyandperformance requirements, GeneralElectrichasestablished specificdesignrequirements forthiscomponent.
12)Thehydraulic controlunit(HCU)isaGeneralElectricfactoryassembled, engineered moduleofvalves,tubing,piping,andstoredwaterwhichcontrolsasinglecontrolroddrivebytheapplication ofprecisely timedsequences ofpressures andflowstoaccomplish slowinsertion orwithdrawal ofthecontrolrodsforpowercontrol,whileproviding rapidinsertion forreactorscram.Althoughthehydraulic controlunitisfieldinstalled andconnected toprocesspiping,manyofitsinternalpartsdiffermaikedlyfromprocesspipingcomponents becauseofthemorecomplexfunctions theymustprovide.Thus,althoughthe THISFIGUREHASBEENINTENTIONALLY LEFTBLANKREV.22,4/81SUSQUEHANNA STEAINELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTTHISFIGUREHASBEENINTENTIONALLY LEFTBLANKFIGURE3.6-9 SSES-FSAR TABLE39-2INDEXLOADINGCOMBINATIONS~STRESS LIMITSAiNDALLO@ABLESTRESSESaReactorVesselPressureandShroudSupportAssemblyb.ReactorVesselInternals andAssociated Equipment c.ReactorRaterCleanupHeatExchangers dClass1MainSteamPipinge.Class1Recirculation LoopPipingf.Thisitemintentionally leftblankq.Safety/Relief Valves(MainSteam)h.MainSteamIsolation Valvei.Recirulation PumpReactorRecirculation SystemGateValves(Suction/Discharge) k.Thisitemintentionally leftblank1.StandbyLiquidControlPumpm.StandbyLiquidControlTankn.ECCSPumpo.RHRHeatExchanger pR'ACUPumpq.RCICTurbineSeRCICPumpNewFuelStorageRackst.HighPressureCoolantInjection PumpuThisitemintentionally leftblankv.ControlRodDriveHousingJetPumpsaa.ControlRodGuideTubeabIncoreHousingacReactorVesselSupportEquipment CRDHousingSupportRev.22,4/81 SSES-FSAB TABLE39-2ZNDEX-Continued ad.Thisitemintentionally leftblankae.HPCZTurbine.DesignCalculations af.HighDensitySpentFuelStorageRacksRev.22,4/81 TABLE3.9-2(s)-(page1of2)NEWFUELSTORAGERACKSCRITERIA1.NEWFUELSTORAGERACKSLOADINGFAULTEDCONDITION "A"LOCATIONALLOWABLE STRESS(.7ULT)CALCULATED STRESSStressduetonormalupsetoremergency loadingshallnotcauseafailuresoastoresultinacriticalarray.l.2.3.4.DeadLoadsFullFuelLoadinrackS.S.E.Thermal(notappli-cable)1.Beam(Axial)l.26,0008/in2 22.Beam(Trans.)'2.'6,000/I/in>
3.Combined=3.26,0008/in1.18,9058/ig 22.7,005///in 2.25,9108/in 2.SOURCEOFALLOWABLE STRESS(.7ULT)a~b.C~d.e.ASTMB308Alloy6061-T6ASMECode-BoilersandPressureVessels,Sect.III,NAProductSafetyStandards forBt&-6-Mark III,Sect.VI,A.(3)ASME-PressureVesselsandPiping:DesignandAnalysis, VolumeOne,Page69.ASTHcodeforBoilersandPressureVesselswasselectedonthepremisethatdatausedfromthissourcewouldnecessarily beontheconvervative sideasappliedtothefuelstoragerackcalculations.
Rev.22,4/81 TABLE3.9-2(se2of2)S-S.S.E.loadsderivedbydynamicanalysis.
=Totalstressreferstocombinedearthquake andthermalloadathighestexpectedpooltemperature.
Earthquake stressesobtainedbysquarerootofthesumof-thesquaresmethodforaresponseduetotri-axial excitation.
Stressgivenisthehighestinthetotalstructural array.4.NEWFUELSTORAGERACKSFAULTEDCONDITION"B" Stressesduetonormalupset(SeeBelow,Par.~)oremergency loadingshallnotcauseafailuresoastoresultinacriticalarray.(Location-See Par.6,Below)NotApplicable NotApplicable FAULTEDCONDITION "B":Condition "B"isanemergency condition inwhichthestresslimitisequaltotheyieldstrengthat0.2%offset.Theracksweretestedtodetermine theircapability tosafelywithstand theaccidental, uncontrolled, dropofafu'elbundlefromitsfullyretracted positionintotheweakestportionoftherack.6.METHODOFTESTING:Four(4)rackcastingsweresubjected toimpactloadsrangingfrom1908ft.lbs.to4070ft.lbs.whichweregenerated bydroppingsimulated fuelbundlesweigh-ing660lbs.fromheightsvaryingfrom3.0'nd6.17'.Rackswerealignedinpairsandsimulated bundlesweredroppedonbothracksattheflangearea.Both.centerimpactandendimpacttestswereconducted.
(Two(2)oftherackswereX-Rayexaminedpriortotesting.Straingagesweremountedonrackstoascer-tainmax.strainandaccelerometers weremountedonbundlestodetermine "G"loads.)7.TESTRESULTS:Atotalofnineteen(19)testswereperformed withdropheightincreased ateachtest.FirstfailureoccurredduetoacentralimpactonrackNo.3fromamax.heightof6.17',(Test813).Racks81andi02bothfailedfromacenterimpactcausedbyaloaddroppedfromaheightof5.33',(Testf/19).Accelerometer readingsarenotavailable duetotheinability toadequately affixtheaccel-erometertothesimulated fuelbundle.Rev.22,4/81 SSES-FSARTABLE3.9-2(af)e1of2HIGHDENSITYSPENTFUELRACKSTYPESOFANALYSISPERB3MEDDYNAMICANALYSIS:
Adynamicmodalanalysisusingtheseismic,SRV,andDX'Aresponsespectrawasperformed onasimplified modelconsisting of6racks(1quadrant).
'Iheresulting loadsonthecornermodulewereextracted andamoredetailedanalysisperforned.STATICANALYSIS:
Adetailedfiniteelement(1364elanents) modelofthecornermodulewasdeveloped andastaticanalysisperformed usingtheloadingresultsofthedynamicanalysis.
Thesectiondescriptions, allowable stressesandstressratiosforthedetailedmodelaregivenonpage2ofthistable.FUELRA'ITLING ANALYSIS:
Atimehistoryanalysiswasperformed todetermine localimpactloadsduetofuelrattling.
Acanparison ofthesupportloadsfromthefuelrattlinganalysiswiththoseoftheresponsespectrumanalysisshowedthatthefuelrattlingresultsarelessthanorequaltotheresponsespectrumresults.Analysisofthepoisoncanwascompleted usingthelocalimpactloads.MODELIMPACTANALYSIS:
Anequivalent staticloadwasdetermined forthefollowing dropconditions:
1)18"fueldroponcorneroftopcasting2)18"fueldroponmiddleoftopcasting3)fueldropfulllengththroughthecavityimpacting bottomcastingatthemiddle.Forthefirst2casestheequivalent staticloadscalculated werecombinedwithdeadloadandappliedtothedetailedmodel.Forthe3rdcase,theultimateloadofthebundleshearingoutofthefuelseatwasdetermined andcombinedwithdeadload.Thiscombinedloadwasthenappliedtothedetailednadel.Rev.22,4/81 SSES-FSARTABIE3.9-2(af),page2of2HIGHDENSITYSPENTFUELRACKSUMMARYOFRESUL'LSFORTHEDETAIIZDMODELELEMENTSNORMALAUlMABLESTRESSESNORMALOPERATING CONDITION DESIGNACCIDENTANDEKTREMEENVIRONMENTAL CONDITIONS SECT.NO.SECTIONDESCRIPTION FaFbyFbxfafbfbxFbxSTRESSRATIO(1)fbxFbyMAXSTRESSRATIO(l)4BottomGridInnerSect.8550BottcmGridOuterSectionNearLeg96501TopGridOuterSection99412TopGridInnerSection94203BottomGridOuterSect.88301576015760.0261576015760.0571576012120.0621576012120.0051576012120.047.009.055.248.831.249.747.78.813.93.108.42.013.85.269.57.018.040.062.005.047.006.715.74.039.766.85.248.108.42.831.013.85.249.269.57BottomGridInnerSectionNearLeg95301576012120.046.508.248.80.046.508.248.807BottomGridFoot8BottanGridFoot91/2"Plate107/8"Plate(1)StressRatio10250110203320173701576012120.1321418014180.161Fv=1390F=10970abvfbxFa+%'FbxxRev.22,4/81(2)PlateStressRatio=f>fx+.001.13.003.1699(2)92(2).160.1950.003.160.006.2076(2).92(2)NOZEAllowable stressesarefactoredupperTable9.1-7aoftheSSES-FSAR.
SSES-FSAH4.4.6INSTHH:.5ENTATI0NREQ0IHEiJENTSThereactorvesselinstrumentation monitorsheKeyreac.orvesseloperatinq parameters duringplannedoperations.
Thi-ensuressuffi"ient controloftheparamete=s.
Thefollowinq reactorvesselsensorsarediscussed inSubsection 7.7.1.l.(1)ReactorVesselTemperatu"e (2)ReactorVessel~r,'aterLevel(3)ReactorVesselCoolantFlowHatesandDifferen=ial Pressures(4)ReactorVesselXntmalPressure(5)Neutron.'lonitoring System4.4.61LoosePa"tsilonitoring TheLoosePartsMonitoring SystemforSusquehanna SESisdiscussed inSubsections 7.7.1.12and7.7.2.12.


==44.7REFERENCES==
==44.7REFERENCES==
4.4-1GeneralElectricThermalAnalysisBasis(GETAB):Data,Cor"elationandDesiqnApplication,GenealElectricCompany,January1977,(N"D0-10958A).4.4-2Co"FlowDisributioninaModernBoilingMaterReactora-MeasuredinlJonticello,Auqus"1976,(NFDO-10722A).4.4-3H.C.NartinelliandD.F..Nelson,"PredictionofPressureDropsDuinqForcedConvectionBoilinqof:Hater,"ASHZTrans.,70,pp695-702,1948.44-4C.J.Baroczy,"ASystematicCorrelationforTwo-PhasePressureDrop,"HeatTran"ferConference(LosAngeles),AECLE,PreprintNo.37,1966.44-5Jens,R.H.,andLottes,P.A,AnalysisofHeatTransfer,Burnout,PressureDrop,andDensityDataforHighPressuredater,USAECReport-4627,1972.4.4-6Neal,LG.,andRivi,S.il.,"TheStabilityofBoiling-cfaterReactorsandLoops,"Nuc1earScienceandEngineerinq,30p.25,1967.Rev.22,4/814.4-27 1.6TOTALCORESTABILITY1.41,0ULTIMATEPERFORMANCELIMITOIL00.80.6NATURALCIRCULATION105'%ODLINE0.40200204080120PERCENTPOWERSUSQUEHANNASTEAMfLECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCOREREACTXVITYSTABILXTYFIGURE44 SSES-TSAR.separatedhousing,givesaforceofapproximately35,000lb.Thisforceismultiplidbyafa"torof3forimpact,conservativelyassumingthatthehousingtravelsthroughal-in.gapbeforeitconta"tsthesupports.Thetotalforce(105,0001b)isthentreatedasastaticloadindesign.AllCRDhousingsupportsubassembliesarefabricatedofcommonlyavailablestructuralsteel,exceptforthediscsprings,whichareSchnorr,TypeBS-125-71-8.6.2~EvaluationsoftheCRDSThissubjectiscoveredundernuclearsafetyandoperationalanalysis(NSOA)inAppendix15A,Subsection15A.6.5.3.4.6.2.3Safety-Evaluat.iou-Safetyevaluationofteecontrolrods,CRDS,andcontrolroddrivehousingsupports.isdescribedbelow..Purtherdescriptionof"ontrolrodsiscontainedinSection4.2.4.6.2.3.1-ControlRods4.62..3;1.1HaterialsAdequacy-Thro~uhoutDesignlifetimeTheadequacyofthematerialsthroughoutthedesignlifewasevaluatedinthemechanicaldesignofthe"ontrolrods.Theprimarymaterials,84"powderand304austeniticstainlesssteel,havebeenfoundsuitableinmeetingthedemandsoftheBQRenvironment.,Rev.22,4/8146-20 SSES-FSARthatareautomaticallyactuatedcanalsobemaauallyactuatedfromthemaincontrolroom.Asinglefailureiaanyelectricalsystemisanalyzedregardlessofwhetherthelossofasafetyfunctioniscausedbyeithercomponentfailingtoperformarequisitemechanicalmotion,orcomponentperforminganunnecessarymechanicalmotion.6.2.4.4TestsandInsectionsThecontainmentisolationsystemispreoperationallytestedinaccordancewiththerequirementsofChapter14.Thecontainmentisolationsystemisscheduledtoundergoperiodictestingduringreactoroperation.Thefunctionalcapabilitiesofpoweroperatedisolationvalvesaretestedremotemanuallyfromthecontrolroom.Byobservingpositionindicatorsandchangesintheaffectedsystemoperation,theclosingabilityofaparticularisolatioavalveisdemonstrated.Adiscussionoftestingandiaspection,includingleaktightnesstesting,pertainingtoisolationvalvesisprovidedinSubsection6.2.6andiaChapter16.Table6.2-12listsallisolationvalves.Instrumentswillbeperiodicallytestedandinspected.Testand/orcalibrationpointswillbesuppliedwitheachinstrument.Excessflowcheckvalves(EFCV)shallbeperiodicallytestedbyopeningatestdrainvalvedownstreamoftheEFCVandverifyingproperoperation.WiththeexceptionoftheCRDinsertandwithdrawallines,thepenetrationslistedinTable6.2-12areTypeCtested.ThetestmethodsandacceptancecriteriaarelistedinSubsections6.2.6and3.9.6.2.6.2.5COMBUSTIBLEGASCONTROLINCONTAINMENTThecombustiblegascontrolsystemisprovided,inaccordancewiththerequirementsofGeneralDesignCriterion41ofAppendixAto10CFR50,tocontroltheconcentrationofhydrogenwithiathecontainmentfollowingaloss-of-coolantaccident(IOCA).Rev.22,4/816.2-4S SSES-ESARTABLE6.2-22LEAKAGERATETESTLISTPenetrationDescriptionInboardIsolationBarrierTypeBarrierDescription/TestValveNo.Notes*OutboardIsolationBarrierBarrierDescription/ValveNo.Notes*ExemptiontoIOCFR50AppendixJRequiredX-IX-2X-2X-2X-2X-3AX-3BEquip.accesshatchBEquip.accesshatchuithpersonnellockPersonnellockbarrelBPersonnellockinnerdoorBPersonnellockouterdoorBSparePrimaryContainmentPressureInst.(2)Double0-ringDouble0-ringInnerdoor/barrelDouble0-ringCap1>21,310Outerdoor/barrelDouble0-ring1>21,310,11X-3CX-3DX-4X-5X-6X-7ASpareSpareDry@oilheadaccessmanholeDryuellheadSpareCRDremovalhatchMainsteamACapACapDouble0-ringDouble0-ringCapDouble0-ringHV-IF022A4>5,17HV-IF028A>HV-IFOOIB,PTIN06IB,~I10514>19YesX-78X-7CX-7DHainsteamHainsteamHainsteam~CHV-IF022BCIW-IF022CCIAf-IF022D4,5,174,5,174,5,17HV-IF028B>HV-IFOOIFPT-IN061F,PT-IN051FHV-1E028C>HV-IFOOIKPT-IN061K>PT-IN051KHV-IF028D>HV-IFOOIPPT-IN061P>PT-IN05IP4>194>194,19IIYesYesX-8X-9ARev.,4/81HainsteamlinedrainFeeduaterCHV-IF016CIFOIOA17>1814>18HV-IF019HV-IF032A>IN-IF013,HV-IF042,HV-1F1041914,19 SSES-FSARTABLE6.2-22ContinuedPa8c6PenetrationDescriptionInboardIsolationBarrierTypeBarrierDescription/TestValveNo.Notes*OutboardIsolationBarrierBarrierDescription/ValveNo.Notes*Exemptionto10CFR50,AppendixJRequiredX-58AX-58BX-59hX-59BX-60AX-60AX-60AX-60BX-61AX-61AX-61AX-61BX-62AX-62BX-63AX-63BX-64AX-64BX-65AX-65BX-66AX-66BX-72AX-728Mainsteam,RWCUinst(4)AHainsteam,RWCUinst(2)hReactorlevelinstReactorlevelinst0sample0sample0sampleReactorWaterSampleDemin.WaterFlowInstrumentationAhCSY-15740BCSV-15776BCSV-15750BCIN-IF019C1-41-018hMainsteaminst(2)Mainsteaminst(2)Mainstcaminst(2)Hainsteaminst(2)Hainstcam,RWCUinst(3)Hainsteaminst(2)Prcssureinst(3)ReactorlevelinstReactorlevelinstReactorlevelinstReactorlevelinstLiquidradwasteLiquidradwaatehh.hAAhhCliV-16116hlCUV-16108A1ILRTLeakVeriiicationC1-57-1931010101018l81817>18181018101010101010101010101017,1817,18SV-15742BSV-15774BSV-15752BUV-1F0201-41-0171-57-195HV-16116A2UV-16108A210,1110,1110,1110>1111>1911>1911,1919191910~1110,1110>1110>1110,1110,1110,1110,1110,1110>1110>1111,1911,19Rev.22,4/81 SSES-FSARTABLE6.2-23IVITIALA'.EDBOUNDAHYCONDITIONSFORIVADVERTENTSPRAYACTUATIONSTIJDY-00Tz.meZerotoDrvwellVolume(&#x17d;t~)Pressure(PSIA)Temperature(F)RelativeHumidity(n)SprayRate(GPN/TRANS)Metwell23960014.81501000/023960034.8325910010700/1Volume-VaporRegion(Ft~)SuppressionPool(Ft~)Pressure(PSIATemperature(F)RelativeHumidity(K)SuppressionPoolFreeSurfaceArea(Ft~)>letwegl-to-DrvwellVacuumBreake."-NumberofValveAssembliesFlowAreaPerAssembly(Ft~)FlowCoefficientAssumedVacuumBreakerLiftingPressureRHRSystem-DrgwellSprayModeServiceMaterFlowHate(GPM)ServiceMaterTemperature(F)HeatExchangeEffectiveness14859013155014.8501005277(puid)14590013155030.28501005277of52.050.3539000320.245Rev.22,4/81 SSES-FSAR6.3.5INSTRUMENTATIONREUIREMENTSDesigndetailsincludingredundancyandlogicoftheECCSinstrumentationarediscussedinSection7.3.AllinstrumentationrequiredforautomaticandmanualinitiationoftheHPCI,CS,LPCIandADSisdiscussedinSubsection7.3.2andisdesignedtomeettherequirementsofIEEE279andotherapplicableregulatoryrequirements.TheHPCI,CS,LPCIandADScanbemanuallyinitiatedfromthecontrolroom.TheHPCI,CS,andLPCIareautomaticallyinitiatedonlowreactorwaterlevelorhighdrywellpressure.(SeeTable6.3-2forspecificinitiationlevelsforeachsystem.)TheADSisautomaticallyactuatedbysensedvariablesforreactorvessellowwaterleveland',drywellhighpressureplustheindicationthatatleastoneLPCIpumporbothCSpumpsinthesameloopareoperating.TheHPCI,CSandLPCIautomaticallyreturnfromsystemflowtestmodestotheemergencycorecoolingmodeofoperationfollowingreceiptofanautomaticinitiationsignal.TheCSandLPCIsysteminjectionintotheRPVbeginwhenreactorpressuredecreasestosystemdischargeshutoffpressure.HPCIinjectionbeginsassoonastheHPCIturbinepumpisuptospeedandtheinjectionvalveisopenedsincetheHPCIiscapableofinjectingwaterintotheRPVoverapressurerangefrom150psigto1145psig.6.3.6NPSHMARGINANDVORTEXFORMATIONAFTERAPASSIVEFAILUREINAWATERTIGHTECCSPUMPROOMNPSHcalculationsforECCSpumpshaveshownadequatemargintoassurecapabilityofproperpumpoperationafterapoolleveldropduetoaworstcasepassivefailureinanECCSwatertightpumproom.ThiscapabilitywillbeverifiedduringpreoperationaltestingassumingapassivefailureintheECCSpumproomresultinginthelowestpoollevelwithsubsequentoperationoftheECCSpumpwiththesmallestNPSHmarginaboveNPSHrequired.ECCSpumpdataispresentedinFigures6.3-75thru6.3"78.ThepoolleveldrophasbeendeterminedassumingapassivefailureinaECCSwatertightpumproomwithoperatoraction10minutesafteranalarmintheroomindicatinghighwaterlevel.ThislowestsuppressionpoolwaterlevelwillalsobeusedduringpreoperationaltestingtoverifytheabsenceofvortexformationintheflowapproachingthesuctionstrainersinthepoolduringECCSpumpoperation.Pumpperformanceandpumpnoisewillbemonitoredduringtheseteststodetermineifpumpsaresensitivetosuctionflowconditionsinthesuppressionpool.Rev.22,4/816.3-32 SSES-FSAR7.3.1.1b.8.5.3.7ActuatedDevicesRefertoSubsection9.4.8.7.3.1.1b.8.5.3.8SearationTheinstrumentation,controls,andpowersupplyoftheESSWpumphousearedivisionallyseparated.TwobaysprovidephysicalandelectricalseparationbetweenDivisionIandDivisionII.7.3.1.1b.8.5.3.9SuortinSstemsTheinstrumentationandcontrolsoftheESSWpumphouseventilationsystemarepoweredfromClass1E125Vdcand120Vacsystems.TheseelectricalsystemsarediscussedinChapter8.TheESSWpumphouseunitheaterssupporttheventilationsystemasdiscussedinSubsection9.4.8.7.3.l.lb.8.5.3.10SstemPartsNotReuiredforSafetThepartsoftheESSWpumphouseventilationsystemnotrequiredforsafetyareasfollows:a)Allelectricunitheaters,seeSubsection9.4.8b)InstrumentationformonitoringairflowfromtheESSWpumphouseventilationsystemc)Instrumentationforalarminginthemaincontrolroomofhigh-highandlow-lowtemperaturesintheESSWpumphouse7.3.1.lb.8.5.4ESFSwitchear(SWGR)RoomsCoolinSstemForthedescriptionofoperationoftheabovesystemrefertoSubsection9.4.2.2.Rev.22,4/817.3-101 SSES-FSARonegroupwillnotinterferewithproperoperationoftheredundantportionsofthesysteminSection8.1.I7.3.2a.5.4.3IEEEStandard338(1975)ThecapabilityfortestingthesuppressionpoolcoolinginstrumentationandcontrolsystemisdiscussedinSection7.3.2.6.4.1.9and7.3.2.6.3.1.10.7.3.2a.5.4.4IEEEStandard379(1972)aThesinglefailurecriterionofIEEE279(1971),paragraph4.2asfurtherdefinedinIEEE379(1972),"ApplicationoftheSingleFailureCriteriontoNuclearPowerGeneratingStationProtectionSystem,"ismetasdescribedinSection7.3.2a.5.4.1.2.7.3.2a.5.4.5IEEEStandard384(1974)IndependenceofsuppressionpoolcoolingequipmentisdemonstratedintheSectiononConformancetoIEEE279(1971)paragraph4.6andIEEE308(1974).SeeSections7.3.2a.5.3.1.6and7.3.2a.5.3.2.7.3.2a.6throuh7.3,2a.llTheseSubsectionnumberswerenotused.7.3.2a.12AdditionalDesinConsiderationsAnalses7.3'a.12.1GeneralPlantSafetAnalsisITheexaminationofthe'subjectESFsystemattheplantsafetyanalyseslevelispresentedinChapter15andAppendix15A.Rev.22,4/817.3-196 SSES-FSAR7.6.1b.1.1.8EnvironmentalConsiderationThepressuretransmitterslocatedoutsidetheprimarycontainmentaredesignedandqualifiedtowithstandallanticipatedenvironmentalconditionsinaccordancewithIEEE-323-1974andIEEE-344-1975.7.6.1b.1.2PrimaryContainmentandSuppressionPoolTemperatureMonitoringSystem7.6.1b.1.2.1SystemIdentificationTheSuppressionPoolsystemsaredesignedtomonitorthetemperatureintheprimarycontainmentandsuppressionpoolduringnormalplantoperationsandafterLOCA.7.6.1b.1.2.2SafetyEvaluationTheindicationofcontainmenttemperaturesinthecontrolroomisrequiredforpostaccidentmonitoringandissafetyrelated.Theinitiatingcontactsfortheautomaticstartofthedrywellfansarederivedfromelectronicswitchesinthetemperaturesensingloop.Thisfunctionissafetyrelated.Thesystemdesignconformstoallapplicablecriteriaforphysicalseparationanddivisionalization.RefertoSubsection7.3.l.lb.Thehardcopytimeplotofthecontainmenttemperaturesisoperatinghistoryonlyandisnotsafetyrelated.However,redundantsystemsareprovided.iOTheindicationofsuppressionpooltemperatureinthecontrolroomisrequiredtoensurethattheplantisalwaysoperatingwithinthetechnicalspecificationlimits.Manual,operatoractionisrequiredtomaintaintheplantwithinthespecifications.Suppressionpooltemperatureisalsorequiredforpostaccidentmonitoring.Bothofthesefunctionsaresafetyrelated.Thesystemdesignconformstoallapplicablecriteriaforphysicalseparationanddivisionalization.Refertosubsection7.3.1.lb.Thehardcopytimeplotofsuppressionpooltemperatureisoperatinghistoryonlyandisnotsafetyrelated.However,redundantsystemsareprovidedandaredevisionalized.TheprimaryContainmentandsuppressionchambertemperatureelementsandtemperatureindicatorswillbequalifiedtooperatefollowingaDBA.IRev.22,4/817.6-57 SSES-FSAR7.6.1b.1.2.3PowerSourcesThesafetyrelatedinstrumentationispoweredfromdivisionalizedpowersources.DivisionIClassIEbus(120Vac)powersLoopA,DivisionIIClassIEbus(120Vac)powersLoopB.FourdualelementRTDsperredundantsystemarelocatedintheprimarycontainmenttosensethetemperatureatthefollowingelevations:a)Reactorpressurevesselheadb)Upperplatformc)Lowerplatformd).Drywell(belowreactorpressurevessel).Tworedundanttemperatureelementsarelocatedinthesuppressionchamber.Theselectedlocationforthetemperaturesensorshelpstheoperatortodefinetheareaoftheheatsourcewithintheprimarycontainment.ThesignalfromtheRTDelementsareamplifiedbyelectronictemperaturetransmitterstodrivemeters,recorderchannels,andalarmswitchesinthecontrolroom.Tworedundantindicators,fortheprimarycontainmentarelocatedinthemaincontrolroom.Theinitiatingcontactsforthehighspeedstartofthedrywellcoolingfans(refertosystemdescriptioninSection9.4)andderivedfromthetworedundanttemperaturesensingelementslocatedintheserviceareaofthefans.Ifhightemperatureisdetectedtheelectronicswitcheswillinitiatethehighspeedstartofthedrywellcoolingfans.Electronicsignalconverterswithfullelectricalinput-outputisolationareplacedbetweensafetyrelatedinstrumentationandtheinputchannelstotherecorders.!TworedundantmultipointrecordersfortheprimarycontainmenttemperaturemonitoringsystemprovideapermanenthistoryofallRTDmeasurementstotheoperatorinthecontrolroom.Eachtemperaturesensingcircuitisequippedwithalarmswitchesandinitiateonecontrolroomalarmperredundantchannel.Rev.22,4/817.6-58 SSES-FSAROnetemperatureindicatorfortheprimarycontainmentislocatedontheremoteshutdownpanel.RefertoSubsection7.4.1.4forsystemdescription.InstrumentrangesaredefinedinSection7.5.7.6.lb.2.4bEquipmentDesign-Su~pressionPoolTemperatureThesuppressionpooltemperatureismonitoredbytworedundantsystems,eachofwhichperformsasdescribedbelow.EightRTD'sperredundantsystemarelocatedinthesuppressionpoolapproximatelysixinchesbelowtheminimumpoolwaterlevel.Thesesensorsarelocatedaroundthepoolinordertoprovideagoodspatialdistributionofpooltemperature.RefertoTable7.6-9fortheexactlocationofthesesensors.Thesignalsfromthesenosrsareprocessedbyanelectronicunitlocatedinthecontrolroom.ThiselectronicunitconvertstheRTDsignalsintodegreesFahrenheitandcomputestheaverageoftheeighttemperatures.IfoneoftheRTDsfails,anerroralarmisgenerated,andthefailedRTDmayberemovedfromthecalculationoftheaveragebyoperatoraction.Theaveragevalueisdisplayedbydigitalindicatorslocatedbothontheelectronicunitandonthemaincontrolboard.Akeyboardallowstheoperatortodisplayanyindividualtemperatureinput.Ahightemperaturealarmisgeneratedbycomparingtheaveragetemperaturetoseveralinternallystoredsetpoints.Thealarmconditionisdisplayedbystatuslightslocatedbothontheelectronicunitandonthemaincontrolboard.Electricallyisolatedoutputsinterfacewithanannunciatorlocatedonthemaincontrolboard.Adigitalprinterlocatedontheelectronicunitperiodicallyprintstheaveragetemperature,plustheindividualtemperatures,plusthecurrentdateandtime.Trendinginformationmayalsobeprintedattheoperator'srequest.Alarmconditionsareprintedalongwiththetemperature.Electricallyisolateddigitalandanalogsignalsareprovidedtointerfacewithotherplantinformationsystems.Theelectronicunithasaselfcheckingdiagnosticsystemthatprovidesanerroralarmifafailureisdetectedinanypartofthesystem.Inadditiontotheeighttemperaturesensorsmentionedabove,therearefouradditionalsensorsassociatedwithDivisionI.Thesesensorsarelocatedinthesuppressionpool,sixteenfeetbelowminimumwaterlevel.Theyareusedfordisplayonlyandarenotusedinthecalculationofaveragetemperatureandarenotredundant.InstrumentrangesandaccuraciesaredefinedinTable7.5-3.Rev.22,4/817.6-59 SSES-FSAR7.6.-1h-12.5--Redundancy-Redundantinstrumentationisprovidedforthecontainmentandsuppressionpooltemperaturemonitorinqsystem7~6;1b-1.2.6--SeDaration-JPhysicalandelectricalseparationisprovidedforthesafetyrelatediastrumentatioa.Nonsafetycircuitsareisolatedbyelectronicconvertersvith.fullinput-output.isolation.7,6Pb,-12~7-genatiooaZ..Consideration-ThesystemisdesignedtofunctionduringnormalplantoperationandafteraDBA.7611.-1.28--Zn~ironmental-Consideration-Alltemperatureseasingelementslocatedinsidethecontainmentaredesiqned.tooperate.inthenormaloperatingenvironment,durinqandafteraLOCA.Allelectroniceguipmentandindicatingdevicesarelocatedwithinthecontrolstructure..Expectedenvironmenta1coaditionsaredefinedinChapter3.7-,6~4k.,~1-Q--~ggesgigg.Qoo3.-Wage~Level-monitoringSystem.7.6ilb=-l3=-1--System-Tdentification-Theinstrumentatioaforsuppressionpoolwaterlevelmonitoringisdesiqnedtoprovideindicatioaandarecordinthecontrolroomofthesuppressionpool'leveldurinqnormalplantoperationandinaccidentconditions,includingaLOCA.,Rev.22,4/817.6-59a SSES-FSARTABLE7.6-9SuressionPoolTemeratureSensorLocationsAzimuth36030'8o100o30'02o141o30'43o179o18030'16o30'18o268o30'70o318o319030'4830'50oRadius34'-6"34I6II44'4'4I6ll34'-6"44'4'4'-6"34I6ll44'4'4I6ll34I6ll44'4'ev.22,4/81 SSES-FSARI77CONTROLSYSTEMSNOTREQUIREDFORSAFETY7.71DESCRIPTION-Thissubsectiondiscussesinstrumentationcontrolsofsystemswhosefunctionsarenotessentialforthesafetyoftheplantandpermitsanunderstandingofthewaythereactorandimportantsubsystemsarecontrolled.Thesystemsinclude:(1)Reactorvessel-instrumentationVLSSS(2)Reactormanualcontrolsystem-instrumentationandcontrols,NSSS(3)Recirculationflowcontrolsystem-instrumentationandcontrolsNSSS{0)Reactorfeedwatersystem-instrumentationandcontrolsNSSS(5)Pressureregulatorandturbine-qeneratorsystem-instumentationand.controlsnon-NSSS(6)Neutronmonitoringsystem-TIP(7)Processcomputersystem-instrumentationNSSS(8)Neutronmonitoringsystem-traversingin-coreprobeNSSS(9)Reactorwatercleanupsystem-instrumentationandcontrolsNSSS(10)Refuelinginterlockssystem(ll)NuclearPressureReliefSystem-instrumentation5controls(12)Rodblockmonitorsystem(13)Loosepartsmonitoringsystem7.7.~~.ReacgogVessel-InstrumentationthosesysteRev.22,4/817&71Figures5.1-3aand5.1-3bshowtheinstrumentnumbers,arrangementsofthesensors,andsensingequipmentusedtomonitorthereactorvesselconditions.Becausethereactorvesselsensorsusedforsafetysystems,engineeredsafeguards,andcontrolsystemsaredescribedandevaluatedinotherportionsofthisdocument,onlythesensorsthatarenotrequiredformsaredescribedinthissubsection.
SSES-FSAR7.7.1.11.1.5Testability0Therodblockmonitorchannelsaretestedandcalibratedwithproceduresgivenintheapplicableinstructionmanuals.TheRBMsarefunctionallytestedbyintroducingtestsignalsintotheRBMchannels.7.7.1.11.2EnvironmentalConsiderations(SeedescriptionforAPRM,Subsection7.6.la.5.6.2)7.7.1.11.3OperationalConsiderationsWhenincreasingpower,theset-uppermissivelampwilllightatwhichtimetheoperatormustevaluateconditionsbeforemanuallychangingtothenexthigherrodblocksetpointline.7.7.1.12LoosePartsMonitorin~SystemTheLoosePartsMonitoringSystemwillmonitor,alarmandrecordtheReactorVesselacousticsforthepresenceofinternalloosepartsinaccordancewithR.G.1.133Draft-2Rev.1.Thesystemwillmonitorthepointslistedbelow.Whenanimpacteventsignalexceedsaselectableamplitude,analarmwilloccurandpeakimpactandimpactrepetitionwillautomaticallyberecordedandtimedsequentially,foreachselectedchannel.EightpiezoelectricaccelerometersareattachedexternallytotheReactorVessel:a.Twomountedapprox.180apartonornearthemainsteamlinestomonitortheupperheadregions.b.Twomountedapprox.180oapartonornearthefeedwaterlinestomonitortheuppervesselregions.c.Twomountedapprox.180apartandat90rotationfromtheuppervesselsensorsmountedonorneartherecirculationsuctionlinestomonitorthevesselcoreplateregion.Rev.22,4/817.7-62 SSES-FSARd.Twomountedapprox.90apart,oneonaCRDHousingandtheotherontheRPVdrainpiping,tomonitorthelowervesselregions.7.7.1.12NuclearPressureReliefSystem7.7.1.12.1SystemIdentificationTheNuclearPressureReliefSystem,consistingofsafetyreliefvalvesandassociatedcircuitry,isdesignedtolimitnuclearsteamsupplysystempressureundervariousmodesofreactoroperation.7.7.1.12.2EquipmentDesignTheNuclearPressureReliefSystemcontrolsandinstrumentationconsistofmanualcontrol/pressuresensorchannelseachdedicatedtoitsrespectivesafetyreliefvalveandassociatedvalveoperator(solenoidoperatedairpilotvalve).Thepilotvalvecontrolsthepneumaticpressureappliedtotheaircylinderoperator.Uponenergizingthepilotvalve,pneumaticpressureisdirectedfromtheaccumulatortoactontheaircylinderoperatorcausingthesafetyreliefvalvetoopen.Uponagainde-energizingthepilotvalve,airintheaircylinderisexhaustedandtheaccumulatorisonceagainisolatedviathede-energizedpilotvalve.Anaccumulator,oneforeachvalve,isincludedwiththecontrolequipmenttostorethepneumaticenexgyforsafetyreliefvalveoperation.Safetyreliefvalvesareautomaticallyinitiatedbyhighreactorpressureconditions.CablesfromthepressuresensorsforvesselpressureareroutedRev.22,4/Sl7.7-62a SSES-FSAR10"-FR50-AppendixA.Criteria-24-TheRBMprovidesaninterlockingfunctioninthecontrolrodvithdravalportionofthe"RDreactormanualcontrolsystem.Thisdesignisseparatedfromtheprotectivefunctionsintheplanttoassuretheirindependence.ThRBHisdesignedtopreven'tinadvertentcontrolrod.vithdravalgivenanimposedsinqlefailurevithintheRBN.OneofthetvoRBHchannelsissufficienttoprovideanappropriatecontrolrodvithdravalblock.Enaddition,theRBNhasbeendesignedtomeet"appropriateprotectionsystemcriteria....acceptabletotheRegulatoryStaff."(Reference7.7-2)7.7.2.12LoosePartsHonitorin~SystemTheLPNSisnotasafety-relatedsystem.TthasbeendesignedinaccordancewithRegulatoryGuide1.133,Rev.1,Draft2.7.72;l2-NuclearPressureRelief--System-Igstgumentationand-gotltrols-)@7$~12Q.--General-Fuactioaai-BeguirementsConformanceTheNuclearPressureReliefSystemisdesignedtoprovidethenu"learsteamsupplypressurerelieffunctionvithoutjeopardytothesafety-relatedADSfunction,dis"ussedinSection7.3.7,42~4,22--Specific"RegulatoryRequirements(1)10CPR50AppendixA-"riterion10.TheNuclearPressureReliefSystemprovidesadditionalmeansforminimizingtheprobabilityofabnormalreactorcoolantpressureboundaryleakage.(2)10CPR50AppendixA-"riterion15.TheNuclearPressureReliefSystemisdesignedtoaffordadeguateadditionalmarqintoassurethatthedesignconditionsofthe"eactorcoolantpressureboundaryarenotexceededduringanyconditionofnormaloperation,includinganticipatedoperationaloccurrences.(3)10CPR50AppendixA-"riterion30.ThecomponentsoftheNuclarPressureReliefSystemaredesigned,selected,fabricated,erectedandtestedtothehighest,practical,currentindustrialstandards.TheSystemisRev.22,4/817.7-78 lvt~z,loge~~ll~',IIr--Ilvsfsceoosese>>4~efcesfsliIIII,I+ALJL~.SONV>>ICOSAlt(SIDIC)loxK.J,ecosr<<teI~leseO<<(TN)tftfIIfI~~~~oT~1lo4c>~aRITs(NOIR.AlcsotSSISNT-DssSV(stCDC)tslaefvor(tKlNNvsol)Ql~TsecosscNNcoa~OTCNTSALA.llxvassocsossscrccr----iI(STNLNcceecs4Il~4SI1~tltIvIIIIIIIIsl~JX-ltfeeSotf((l--@J'rSAIIIIt.soxvtlceoASDSCKICACKSllhCWONTSCSSSCIAflRCDNTTssr(fscoefCSISCSSAONSCS\~0'fCSSTSSLIlI~DAlI~~AC~'IICTsOOO>>NCSS<<ffoeefSAL(CCCRCSc~)~NColPAAIllSCVDCVKCTASLCDCSCNOTsevNCNICNsSNo)4re(i(oecSTAcxeee~lteleSTANLOADCC>>SCCSTe>>CAPCCDCSDeeceuertxrfSCLATo4pccocslovcAceseescllfNCLATeccDSReeceteeoeotlesetoevcscsteecrfNSLAYsofcICSCWLSSetlcSIclfcOlCOVS~seooeepoocrewNSLA'fsee>>e~osoC~KoeveopccDIRst>>DKNIlcOCLAY(TNKSOTS~~cooefcdoe>>N~SoOeeelNg@aa~~C.fsWeWPdsSPCPOSSCitoosocefIt~OCOOOtepeecc4I@a~e5it@O>>reerAloceeeelCNvelc4voltsecTCScrsfcrVOL'leecTelrecxscoo~Ll>>s'lIf~llCIISS~IIIIII5II'N<<PSOtesorcofo(Dccel)(scCtsOSS-C)vrfsIIIIIlfIQC5~IsesI~~oeoWooi&olrfX.,II~l)<<>>~llfllflI'IlIIIIIIIIIfOeeloIITccsesssocs<<tvfONTSSLI>>N>>~ee>>l>>ICsoo~CSCSf)(Neerxxccsc)(fceplot)$IIl(5(f)5ls,ace.JIIIIIIIIr-IsllI~tte>>APTSOCeKPOaSAre*TIISSSltl(OXSOl)lueasO5-c)IIIIIlsIf,''I.'SKAAbcsNLLKOCAI~steercALcretroIleeelxCKCI0Cele<<teesc)(ONRlOSTC)cftectxcseoesefrfeesTWII~II,IIIIIIIslII~ilIlIIICCCL.JIIIIIIIIeIAeosOPSOC*(CKSOS)CKSOSA(eoel4ACCec)CSCNacCDC)(esca~Nf)lIllllSSI~N()TecpcoToDcvsccsxACl(lITesteACCOCSATCDC>>SclorSASCASCCKc.Tsseo'(ance>>AcxsfALLcsecsssf~cxsscRCCONNCCTCDTDl'NCSLSL.~tees<<AIcIAIt%0>>ooteeoccscotsssoLsssoAsetpeeso4s>>soececooseeatecceceesAlter>>eATssoorfsejeol~IALsolocoeeorclecotsTKpolQoceefoo~eoeesegteKI~Neer>>lfep<<~pLA~LcoesorlN~N4.elclATco>>erectclolcoAToogsssoe>>4seoeecfolcPDSAsstoSTARTDeCKLKDTlvc%teeepApsLoeoo~.SefskssssecsCP(stcxtso)sssTKINCPCK,tKpsLoseclccltfesoeeoeocecrfA<<pooseooAtlococoessctetesopeaeosaefe<<saoso.SooxtoeKepfocTees~oLATrAssrf>>>>sfocfIcoscocrowfoKxseopSLToALTCKNATDsccacoAoNAseesDNccv.srlttco~COAXItxteteeesDCTICCW4>>CSTCSC>>CANCSNSTtocfeccccacvoLTIcArtssu.KArcDLDADtokcNKscxccrsfsoLccxsooweecs.locowlTswIssxcfKctlxreKollcloloovDDccscxcofcsc'f)~.SoosteoplaflrAsffcofsorsopoateKop<<eseeaeocafooooooelse>>so4IttsehSA.KTostoee<<os(SolAfDOAN~pss(AflowepoeesosseaeefsscfexfcoINopsKATseeeeroscATSKStAN'oeooA4O<<CILALIASpeRAAoseor~oeitoseeaexsooDriesLLseoeeooreeat>>eeoc%TINeeetfCNOKACSSIstol>>NetPesxfsltloSavTKAteopeowosLsocorcwcfresttster~exefsoelOPSteoCeOeaeete<<AD%NOLANONLYOeaCATSSAooxpeolosATelTsssDeooAC4>>tNesrse4~cLNDess~Kvcellooper>>IceoooiIINNNL+tfe1%,cerovLeefooTDSSea.sstoloctoowxa.setoslkesopofL,CKAcxsossteaNelecvecossNetsfsosfcoostoolcASLCosoNotLsoeeKTessAlso<<oe5)scfcsINCCLIoovteecPI~stslo(SACOK)IOSSAADSWX4leKVSSOOA$SNthqmalAlCAoPP4~Ij;"eDhE4sCBSLlI.coeetctoeoosa((39RtLfsCCCCSlCAIIIIJo~Ceca(4SOKreNODAl(~~e~lwxsessaNets)l)>*IL~J~~soalcloSllosSsofs8&~ccoortcfCoIseoctpoetf4softfcoefccssovfccsuwAFAT(tooocvtecsKNAICCAcol,osssec(Dolsssstfsosfooeeoseotsfco(,tevesslcoetlSSNTOTSCATOSN~tOOLCOi'OSSICSCCSCCNSOos(CDOOSATDOOTSTDSCTSCNgVSOLID~eotlxsefotssATDCNScseccsaeecoSCOO-OrtsACSCgeaoleasfceC4DDAOSovD'scssesoocooNSLSfovoc(I,ONO<<COlofIIf~IfIjsIbmjIIIsIIIIIfo<<lIIV.ICsc4r-III~ISfI~JIseerqIONL4lesIflflfIIIbad'IIIII1IIlfs>>AIIII~'ItolIIII~esseIII.Cs,II,elIsll,~~sIIlslIITS(I-'IJ~IIll4IIllfIIliatoIIIIICwosIIII&#xb9;Nf.IREV.22,4/81E4SHT.1SUSQUEHANNASTEAMELECTRICSTATlONUNITS1AND2FINALSAFETYANALYSISREPORT~NOOoecrolcl(CKCPS)ltsocS(Cotf>>OL&4)ccecscassosefg~gflcoscerectctsooetcOTtSPAADNsseo4'pcoooslcsoo(eepcLAOCSS)(occPtcOS5)~~t~~1S1lONAXXLsNtfe&fSATDC)sr<<oscxvscccr4CAPCO)tsovNceresTlsoDLSONflPSOO~TCANSCOICCCCN>>WCCNCCOKsootleoo(oioos)NclocoRSSPItsoc(ccctssos>>OctsewsxoN)(loesvcxcsCC)o>>eospoo)sAexprregstesssSsoc>>scc~elf>>eel(oxlol)opfoocJspseec(locPSSD5-1)PNSSeO1KtfIl~~4~~1~~se(oxoos)OKsscA(OCCPSRODC)fP//JJJJI/JS/EJ/J///JteL,ILLcoostocssfDNteleeesstee>>Neollccocolccxcst(LJ//J//JJ//J/J/J//J/i%AestereoUNlT'I.4.16KVPOWERSYSTEMFIGURE8~I


TRICsOKR.TCSTYOSN(vastclwsuc<<(DIN(cLoSETRAN\OX(OILO(KOUfk(LA'I(4(LL)OPOSLLCO>>LOCKOUTRCC.AVmColOLRoftkYOSN'5ck)cCwYvlll(Dou'ICtosc4Kklst2cuofoilcNCKR(LtCOKN)oreNMAICKCocil)CLOlt'ecLKtkSteCfecAMATCNCIACLCAONeODOR/gffcCNORMAArtCLO<<I.OOOISLQK1-ooSN*(I'I)WtUCNCLNCtklklaOxOLLockoufkek'LIKO~LLV.eic<<<<5OKAOstkOOCNaf<<flatccw'YULNCOns"KLIC<<ucelC\'TAI~CNSOOO'21A42-(oo1CIC+CTAlfOkfCOKNMATCNC)ACLC52SAS)C)LTeCEAOLLSEAts'llaasoloi(oetolp,ul<<eI)Laeeeu)NDAI)NoaN*~eMN~seseoIOI)OLlol2t(LLIOS)524O)OC42tOCOC)CL.LOOO0IELSCLLCNt<<ISILLCNDit\CLCetNDICCCLlatMOi4DI.COt.oOo.f(Ocecols)(OCLSOK)(OOEOLO)(O!'eloco)Q~IA(~RA)Cle<<aXaueEN<<toesICONLc-)MWIO-NNsaoesIClsloe)~lkcoi}TaacocfIeloe)~oecoe)4240200SDCOCOC42LOCOC)lttOeoALIS<<CDLNM,C<<ooootoasCSAEIVed(TVANfoNotleat(NoseolcvfcIN'YLISNPsescfooileeo)CSW<<~eOON0ETA~Kk(LtloelCLOScfAsrteaTLtoffc<<D~SSASLE(eENODCFINCTIOKQA~TRN~tNKACLloelo<<CN0<<s(LAIOYIVOLlolet5CSTAlol)cf'e'octfklleeoeaeLL44ICAvcoO'OOOAUSYALleOkkfafee'Td'NOILIeaisu'oce))sA5)CA)2io)uivilifYEAI.ARMO'D)2)PUTRfIINARa)ARTIL<<eveeeefoeAICCoiNkvfckIASN.AANLIolsot4KVosoetIECC<<EAISECICTAastEY045ICLaeftkfSLDOCIITAAI)~Kv005LClftCK<<)Loot:CIAECIocvCVLrcvotkeckfeocICIAE))aolt<<eeesissNKNCfuL)AICSele~a~I.>>~EVOISICSOUA(eCLoaf(ILA<<LLAotj.we62)C)ClAt(pff)2(()ff))4",BREAKERTot.taf())UN)Tf(ESSTRAN~lfSC<<IWINOlSENC.SOl<<eIf<<0Mfkfeesus~fauc0emef<<iIf(40CASekoak52IceoeIAONlovesKoYoLiesccvksp~p~a-efaLO<<LVlusgee<<I0N52IousDestosl.<<LNONnlACCANROTOACA(IsOICDILSISCQCCKOKAIN).ALIC)~Icsee("-4(sefec(OCAIN~ILV'essI'OYKCJOkNOTceucfufcoOSCTIP(tKLAYoulkurCkslffIINCNNLv<<filllAktYkcltNToelfaeifless)see<<CNINY~KYOTelYACSCNToulfuf'ltisr'sw<<LNletLNYCITICNOTYACC(NTRCD~C'Lo\CAAMC(koCIACN4DLL)COSfkikfe4LA4to'\ECNortlpoktcNS'Aurofklo-IILNOLLLYOetksftoOtle(4(CCNIASLSYNTtk,fso<<00CISK)CONYC)TCRCNtufOVTYVTCXIST\YOLLovveaCAVLNCOCLAYISICkTININIOIISCoeefssfeoulsvA~NCacaifYLITCILLSLve<<CNlealaeAIf)5NOTYACSCNYtl'A~ILLYceetSILL<<))O,NLIAECACCAIA0LSNIILKieeLOOClose024OSOIe)000014<<S<<NLI~<<Ovosiaosceealooiolas<<4CcoeolYilaoIas~I000<<~oooiee<<01COI~)CteceoSlave'ivessveevco<<IILNoeitpcocK-NaeckoeuI~sitesIeaeNolff~>v~IaafoaktsiLLIL<<ecocswoacaftkLocal<<NNecaue<<1LI42eoII=20)IOslCa)oeLl-4'IIoeLItoeoeIaI2)eNsoto<<iSt.tseaeLlCOSYO~I.0404Litaap~LNVf~\LastOVNL<<ICKECLL'IOltali,+lingSILL'(Ocltl0III)A4ca'ESCANloltoef04AlioOs.lCoalcsa40222>toke~CIOIOO)I202~IAlotKosDSSIOI~004)11'2$)os2vs;Io)LIL202NOe.tSIL4044>&#xc3;2)AeeltLac$$2040I0$4$$toecLOlic)tcAIN40eof0(45)toiO'SIt'20eof\ILtooIKOIr.~IAAOINOI.C~Orts20)oo1020P0)saltSOALIVACLoeeascoooSaavu<<allACLAeaslesos<<clANINLlllooleois~CINE<<eELLLeCT24iCATtlClfaecta$$CKTSJCTC)I~Cfl42bettCC2PSCal51CcfttCfai)CICSJCETSS4427)Ca)asCessCT21ICTIetaEISSCttt)CattpCEY4)fflstCTC0$cta$244225CETttiranCSCfSO)aI)aaCSCISef)I)I)fa1$CSI2)IsISfs5$tfl~Iifrrtr4Cal)I4Cal)54Ccfa)4(TtSl~212ff~(ET~1~CtiSS~40271~ocros~CTISCtCTCes~OVSS~CCCSS0lal~I~Ccf4$~ill1)~4flff4CE1SS4Ctat)4ICat)4~EYCI4214740ffaIs4Ccrta$CCISC4241st0beff0CICSS~424244~)ISOA<<22ClCl4241CSc)24)454)NNeSEIIC)4)ffl)PINf4ff~EII.OetoefTNICOCLAV~CYCcelffufClllffYv<<INTNC-OefufISYACCINTAMOsooia<<itsSoceosvfoALresetAffok1NCoesfICCLSC()~2()T5,aeccEE(4cctveo)fee<<sn)cctc<<4404oosufcctv<<LeteeIT5eo<<Nae2<<escacefe<<oessecaeNvvf<<4atsfccflecRECEKccscocaurecvASALNC,-t,fokCINCILtLINCHETERANDRCLATOikcekk)IStokC.vokuaeYC.'SCCDWCeOOSOt4'2ORCAKCftCONfAOLCWITCNC'\WVeNCNPII(LCCTOUT'SMALLDCCCONNCCTALLRCCIOTCCONfkotCIACL)ITC~.)Nf(KCOIYOLV<<eeeoekl4t-COOC452.(OKYSWAL4(NOYCALTSOKONLY)VIINl<<litOKklINOACAATLNCeLtolefioif-S,PCN04)isfcotfRCCAT(4444SCCVIO-44$4CSI~sec0cArcsctfeforakpteorcvecuar2ctuforcc-E4)SHTSSCCA)(iOO-5Ia~C5Seat+Se~L44c<<tressfgOILSLL<<24'resLa'IRE)ERERCEf)WCI$.2oatolLL400<<Iocoo4220)00aes<<O4240200S240e<<ILLN4Ooois~ee<<OONIN<<a000<<Lola)ao000eeol<<YSICL0leseso100No<<IOOI<<4OesetLLlakestse"Iol424)(LAICillsioe4C'Coils~ALDsocleslIoeae2L~IIIAICEILlaCocoo.CSAItoaol0C45$1~4'W5LIEtolO<<OLoioeocloessIIAtoe~$Tc2)tct00e(Icos1ACLI~CCCSOCOIN42$0IolaCokNDLCioaeCOCOI14costsSlS4NNLCL42I~Ce'1CS40Ctaciata141744II$14140~CETCSCac)4CrassCKT$041474CfatoCCY40cactt44204CCY424f2)0t)4ctfptrCdatt4Ciata0CC1$44CIISI1Claeo0Illfa0)CCSC~442540CETSatCICSC4~seps414144)NISCYJe)S~Tltl0Clr400CCCtttgatffo447424412050SUSQUEHANNA.STEAMELECTRlQSTATION,.UNlTS1AND47-.,--.-'.FINALSAFETY'NALYS/S.RFsPOET'4.16KVBUs.)QcolvllNG'fhofRQR&ggR,LOGIC.OIAGRale--FIGURE'.3.15 I~
4.4-1GeneralElectricThermalAnalysisBasis(GETAB):Data,Cor"elation andDesiqnApplication, GenealElectricCompany,January1977,(N"D0-10958A).
SSES-"SARtoneselectorswitch,areaselectorswitch,messagetaperecorder,riverwarningspeakers'andmonitors,andanoutdoorroofsiren.Thissystemsupplements"heradiationmonitoringsystemsdescribedinChapter12.Duringemergen"yconditionstheplantoperatorac+ivatesthesystembyselectingthedesignatedalamandareatobecovered.The.alarmsandinstructionsarebroadcastedv'ahePAsystempagelinestoallspeakersinselec+edareasthroughouttJeplant.Durincanemergencythenighttimemutefunctionofoutdoorspeakerswillbeoveridden.Ther'erwarningspeakershaveindependentamplifierswithoutputmonitorncinthecontrolroom~Theoperatorswitchesthesystemtoof,afterconfirmationofnormalconditions.ThepreferredpowerfortheEVACsystemissuppliedfromUnit1vi..alacbus,andthealterna+epowerisfedfromUnit2vitalacbus.DuringUnit1opera+ionwhileUnit2isunderconstruction,powertotheEVACsystemisfedfromheUnit1computerUPSbus.ThepreferredpowerfortheroofsirenissuppliedfromUnit1plant125VdcbusandthealternatepowerisfedfromUnit2plant125Vdcbus.DuringUnit1operationwhileUnit2isinconstructionstage,thealternatepowertotheroofsirenisfedfromaseparate125VdcbusofUnit1.{refertoSubsections8.3.1.8and8.3.2.1.1.1).9.5.2.2.5SecurityCommunicationand.AlarmSystemRefertotheSuscuehannaSESSecurityPlanForadescriptionoftheSecurityCommunicationsSystem.9.52.2.6.PortableCommunicationSystemOnsiteportableradiocommunicationsystemsaredescribedintheSusquehannaSESSecurityPlanandintheSusquehannaSESEmergencyza~.95.2.2.7SystemEvaluationSystemdesignconsiderationsincludediversityandoperationalreliability.Thein-PlantcommunicationsystemsareprovidedwithreliableandredundantpowersuppliesforuninterruptedcommunicationsbetweenallareasofthePlant.Rev.22,4/819.5-30  
4.4-2Co"FlowDisributioninaModernBoilingMaterReactora-MeasuredinlJonticello, Auqus"1976,(NFDO-10722A).4.4-3H.C.Nartinelli andD.F..Nelson,"Prediction ofPressureDropsDuinqForcedConvection Boilinqof:Hater,"ASHZTrans.,70,pp695-702,1948.44-4C.J.Baroczy,"ASystematic Correlation forTwo-Phase PressureDrop,"HeatTran"ferConference (LosAngeles),
AECLE,PreprintNo.37,1966.44-5Jens,R.H.,andLottes,P.A,AnalysisofHeatTransfer, Burnout,PressureDrop,andDensityDataforHighPressuredater,USAECReport-4627, 1972.4.4-6Neal,LG.,andRivi,S.il.,"TheStabilityofBoiling-cfaterReactorsandLoops,"Nuc1earScienceandEngineerinq,30p.25,1967.Rev.22,4/814.4-27 1.6TOTALCORESTABILITY1.41,0ULTIMATEPERFORMANCE LIMITOIL00.80.6NATURALCIRCULATION 105'%ODLINE0.40200204080120PERCENTPOWERSUSQUEHANNA STEAMfLECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCOREREACTXVITY STABILXTY FIGURE44 SSES-TSAR
.separated housing,givesaforceofapproximately 35,000lb.Thisforceismultiplidbyafa"torof3forimpact,conservatively assumingthatthehousingtravelsthroughal-in.gapbeforeitconta"tsthesupports.
Thetotalforce(105,0001b)isthentreatedasastaticloadindesign.AllCRDhousingsupportsubassemblies arefabricated ofcommonlyavailable structural steel,exceptforthediscsprings,whichareSchnorr,TypeBS-125-71-8.
6.2~Evaluations oftheCRDSThissubjectiscoveredundernuclearsafetyandoperational analysis(NSOA)inAppendix15A,Subsection 15A.6.5.3.4.6.2.3Safety-Evaluat.iou-Safetyevaluation ofteecontrolrods,CRDS,andcontrolroddrivehousingsupports.isdescribed below..Purtherdescription of"ontrolrodsiscontained inSection4.2.4.6.2.3.1
-ControlRods4.62..3;1.1Haterials Adequacy-Thro~uhout DesignlifetimeTheadequacyofthematerials throughout thedesignlifewasevaluated inthemechanical designofthe"ontrolrods.Theprimarymaterials, 84"powderand304austenitic stainless steel,havebeenfoundsuitableinmeetingthedemandsoftheBQRenvironment.,
Rev.22,4/8146-20 SSES-FSAR thatareautomatically actuatedcanalsobemaauallyactuatedfromthemaincontrolroom.Asinglefailureiaanyelectrical systemisanalyzedregardless ofwhetherthelossofasafetyfunctioniscausedbyeithercomponent failingtoperformarequisite mechanical motion,orcomponent performing anunnecessary mechanical motion.6.2.4.4TestsandInsectionsThecontainment isolation systemispreoperationally testedinaccordance withtherequirements ofChapter14.Thecontainment isolation systemisscheduled toundergoperiodictestingduringreactoroperation.
Thefunctional capabilities ofpoweroperatedisolation valvesaretestedremotemanuallyfromthecontrolroom.Byobserving positionindicators andchangesintheaffectedsystemoperation, theclosingabilityofaparticular isolatioa valveisdemonstrated.
Adiscussion oftestingandiaspection, including leaktightness testing,pertaining toisolation valvesisprovidedinSubsection 6.2.6andiaChapter16.Table6.2-12listsallisolation valves.Instruments willbeperiodically testedandinspected.
Testand/orcalibration pointswillbesuppliedwitheachinstrument.
Excessflowcheckvalves(EFCV)shallbeperiodically testedbyopeningatestdrainvalvedownstream oftheEFCVandverifying properoperation.
Withtheexception oftheCRDinsertandwithdrawal lines,thepenetrations listedinTable6.2-12areTypeCtested.Thetestmethodsandacceptance criteriaarelistedinSubsections 6.2.6and3.9.6.2.6.2.5COMBUSTIBLE GASCONTROLINCONTAINMENT Thecombustible gascontrolsystemisprovided, inaccordance withtherequirements ofGeneralDesignCriterion 41ofAppendixAto10CFR50,tocontroltheconcentration ofhydrogenwithiathecontainment following aloss-of-coolant accident(IOCA).Rev.22,4/816.2-4S SSES-ESAR TABLE6.2-22LEAKAGERATETESTLISTPenetration Description InboardIsolation BarrierTypeBarrierDescription/
TestValveNo.Notes*OutboardIsolation BarrierBarrierDescription/
ValveNo.Notes*Exemption toIOCFR50AppendixJRequiredX-IX-2X-2X-2X-2X-3AX-3BEquip.accesshatchBEquip.accesshatchuithpersonnel lockPersonnel lockbarrelBPersonnel lockinnerdoorBPersonnel lockouterdoorBSparePrimaryContainment PressureInst.(2)Double0-ringDouble0-ringInnerdoor/barrel Double0-ringCap1>21,310Outerdoor/barrel Double0-ring1>21,310,11X-3CX-3DX-4X-5X-6X-7ASpareSpareDry@oilheadaccessmanholeDryuellheadSpareCRDremovalhatchMainsteamACapACapDouble0-ringDouble0-ringCapDouble0-ringHV-IF022A 4>5,17HV-IF028A>
HV-IFOOIB, PTIN06IB,~I1051 4>19YesX-78X-7CX-7DHainsteamHainsteamHainsteam~CHV-IF022BCIW-IF022C CIAf-IF022D 4,5,174,5,174,5,17HV-IF028B>
HV-IFOOIF PT-IN061F, PT-IN051F HV-1E028C>
HV-IFOOIK PT-IN061K>
PT-IN051K HV-IF028D>
HV-IFOOIP PT-IN061P>
PT-IN05IP 4>194>194,19IIYesYesX-8X-9ARev.,4/81HainsteamlinedrainFeeduater CHV-IF016CIFOIOA17>1814>18HV-IF019HV-IF032A>
IN-IF013, HV-IF042, HV-1F1041914,19 SSES-FSAR TABLE6.2-22Continued Pa8c6Penetration Description InboardIsolation BarrierTypeBarrierDescription/
TestValveNo.Notes*OutboardIsolation BarrierBarrierDescription/
ValveNo.Notes*Exemption to10CFR50,AppendixJRequiredX-58AX-58BX-59hX-59BX-60AX-60AX-60AX-60BX-61AX-61AX-61AX-61BX-62AX-62BX-63AX-63BX-64AX-64BX-65AX-65BX-66AX-66BX-72AX-728Mainsteam,RWCU inst(4)AHainsteam,RWCU inst(2)hReactorlevelinstReactorlevelinst0sample0sample0sampleReactorWaterSampleDemin.WaterFlowInstrumentation AhCSY-15740B CSV-15776B CSV-15750B CIN-IF019C1-41-018hMainsteaminst(2)Mainsteaminst(2)Mainstcaminst(2)Hainsteaminst(2)Hainstcam,RWCU inst(3)Hainsteaminst(2)Prcssureinst(3)ReactorlevelinstReactorlevelinstReactorlevelinstReactorlevelinstLiquidradwasteLiquidradwaatehh.hAAhhCliV-16116hl CUV-16108A1 ILRTLeakVeriiication C1-57-1931010101018l81817>18181018101010101010101010101017,1817,18SV-15742B SV-15774B SV-15752B UV-1F0201-41-0171-57-195HV-16116A2UV-16108A2 10,1110,1110,1110>1111>1911>1911,1919191910~1110,1110>1110>1110,1110,1110,1110,1110,1110>1110>1111,1911,19Rev.22,4/81 SSES-FSAR TABLE6.2-23IVITIALA'.EDBOUNDAHYCONDITIONS FORIVADVERTENTSPRAYACTUATIONSTIJDY-00Tz.meZerotoDrvwellVolume(&#x17d;t~)Pressure(PSIA)Temperature(F)RelativeHumidity(n)SprayRate(GPN/TRANS)Metwell23960014.81501000/023960034.8325910010700/1Volume-VaporRegion(Ft~)Suppression Pool(Ft~)Pressure(PSIATemperature (F)RelativeHumidity(K)Suppression PoolFreeSurfaceArea(Ft~)>letwegl-to-Drvwell VacuumBreake."-NumberofValveAssemblies FlowAreaPerAssembly(Ft~)FlowCoefficient AssumedVacuumBreakerLiftingPressureRHRSystem-DrgwellSprayModeServiceMaterFlowHate(GPM)ServiceMaterTemperature (F)HeatExchangeEffectiveness 14859013155014.8501005277(puid)14590013155030.28501005277of52.050.3539000320.245Rev.22,4/81 SSES-FSAR 6.3.5INSTRUMENTATION REUIREMENTS Designdetailsincluding redundancy andlogicoftheECCSinstrumentation arediscussed inSection7.3.Allinstrumentation requiredforautomatic andmanualinitiation oftheHPCI,CS,LPCIandADSisdiscussed inSubsection 7.3.2andisdesignedtomeettherequirements ofIEEE279andotherapplicable regulatory requirements.
TheHPCI,CS,LPCIandADScanbemanuallyinitiated fromthecontrolroom.TheHPCI,CS,andLPCIareautomatically initiated onlowreactorwaterlevelorhighdrywellpressure.
(SeeTable6.3-2forspecificinitiation levelsforeachsystem.)TheADSisautomatically actuatedbysensedvariables forreactorvessellowwaterleveland',drywell highpressureplustheindication thatatleastoneLPCIpumporbothCSpumpsinthesameloopareoperating.
TheHPCI,CSandLPCIautomatically returnfromsystemflowtestmodestotheemergency corecoolingmodeofoperation following receiptofanautomatic initiation signal.TheCSandLPCIsysteminjection intotheRPVbeginwhenreactorpressuredecreases tosystemdischarge shutoffpressure.
HPCIinjection beginsassoonastheHPCIturbinepumpisuptospeedandtheinjection valveisopenedsincetheHPCIiscapableofinjecting waterintotheRPVoverapressurerangefrom150psigto1145psig.6.3.6NPSHMARGINANDVORTEXFORMATION AFTERAPASSIVEFAILUREINAWATERTIGHTECCSPUMPROOMNPSHcalculations forECCSpumpshaveshownadequatemargintoassurecapability ofproperpumpoperation afterapoolleveldropduetoaworstcasepassivefailureinanECCSwatertightpumproom.Thiscapability willbeverifiedduringpreoperational testingassumingapassivefailureintheECCSpumproomresulting inthelowestpoollevelwithsubsequent operation oftheECCSpumpwiththesmallestNPSHmarginaboveNPSHrequired.
ECCSpumpdataispresented inFigures6.3-75thru6.3"78.Thepoolleveldrophasbeendetermined assumingapassivefailureinaECCSwatertightpumproomwithoperatoraction10minutesafteranalarmintheroomindicating highwaterlevel.Thislowestsuppression poolwaterlevelwillalsobeusedduringpreoperational testingtoverifytheabsenceofvortexformation intheflowapproaching thesuctionstrainers inthepoolduringECCSpumpoperation.
Pumpperformance andpumpnoisewillbemonitored duringtheseteststodetermine ifpumpsaresensitive tosuctionflowconditions inthesuppression pool.Rev.22,4/816.3-32 SSES-FSAR 7.3.1.1b.8.5.3.7 ActuatedDevicesRefertoSubsection 9.4.8.7.3.1.1b.8.5.3.8 SearationTheinstrumentation,
: controls, andpowersupplyoftheESSWpumphouse aredivisionally separated.
Twobaysprovidephysicalandelectrical separation betweenDivisionIandDivisionII.7.3.1.1b.8.5.3.9 SuortinSstemsTheinstrumentation andcontrolsoftheESSWpumphouse ventilation systemarepoweredfromClass1E125Vdcand120Vacsystems.Theseelectrical systemsarediscussed inChapter8.TheESSWpumphouse unitheaterssupporttheventilation systemasdiscussed inSubsection 9.4.8.7.3.l.lb.8.5.3.10 SstemPartsNotReuiredforSafetThepartsoftheESSWpumphouse ventilation systemnotrequiredforsafetyareasfollows:a)Allelectricunitheaters,seeSubsection 9.4.8b)Instrumentation formonitoring airflowfromtheESSWpumphouse ventilation systemc)Instrumentation foralarminginthemaincontrolroomofhigh-high andlow-lowtemperatures intheESSWpumphouse 7.3.1.lb.8.5.4 ESFSwitchear(SWGR)RoomsCoolinSstemForthedescription ofoperation oftheabovesystemrefertoSubsection 9.4.2.2.Rev.22,4/817.3-101 SSES-FSAR onegroupwillnotinterfere withproperoperation oftheredundant portionsofthesysteminSection8.1.I7.3.2a.5.4.3IEEEStandard338(1975)Thecapability fortestingthesuppression poolcoolinginstrumentation andcontrolsystemisdiscussed inSection7.3.2.6.4.1.9 and7.3.2.6.3.1.10.
7.3.2a.5.4.4 IEEEStandard379(1972)aThesinglefailurecriterion ofIEEE279(1971),paragraph 4.2asfurtherdefinedinIEEE379(1972),"Application oftheSingleFailureCriterion toNuclearPowerGenerating StationProtection System,"ismetasdescribed inSection7.3.2a.5.4.1.2.
7.3.2a.5.4.5 IEEEStandard384(1974)Independence ofsuppression poolcoolingequipment isdemonstrated intheSectiononConformance toIEEE279(1971)paragraph 4.6andIEEE308(1974).SeeSections7.3.2a.5.3.1.6 and7.3.2a.5.3.2.
7.3.2a.6throuh7.3,2a.ll TheseSubsection numberswerenotused.7.3.2a.12 Additional DesinConsiderations Analses7.3'a.12.1GeneralPlantSafetAnalsisITheexamination ofthe'subjectESFsystemattheplantsafetyanalyseslevelispresented inChapter15andAppendix15A.Rev.22,4/817.3-196 SSES-FSAR 7.6.1b.1.1.8 Environmental Consideration Thepressuretransmitters locatedoutsidetheprimarycontainment aredesignedandqualified towithstand allanticipated environmental conditions inaccordance withIEEE-323-1974 andIEEE-344-1975.
7.6.1b.1.2 PrimaryContainment andSuppression PoolTemperature Monitoring System7.6.1b.1.2.1 SystemIdentification TheSuppression Poolsystemsaredesignedtomonitorthetemperature intheprimarycontainment andsuppression poolduringnormalplantoperations andafterLOCA.7.6.1b.1.2.2 SafetyEvaluation Theindication ofcontainment temperatures inthecontrolroomisrequiredforpostaccidentmonitoring andissafetyrelated.Theinitiating contactsfortheautomatic startofthedrywellfansarederivedfromelectronic switchesinthetemperature sensingloop.Thisfunctionissafetyrelated.Thesystemdesignconformstoallapplicable criteriaforphysicalseparation anddivisionalization.
RefertoSubsection 7.3.l.lb.
Thehardcopytimeplotofthecontainment temperatures isoperating historyonlyandisnotsafetyrelated.However,redundant systemsareprovided.
iOTheindication ofsuppression pooltemperature inthecontrolroomisrequiredtoensurethattheplantisalwaysoperating withinthetechnical specification limits.Manual,operatoractionisrequiredtomaintaintheplantwithinthespecifications.
Suppression pooltemperature isalsorequiredforpostaccidentmonitoring.
Bothofthesefunctions aresafetyrelated.Thesystemdesignconformstoallapplicable criteriaforphysicalseparation anddivisionalization.
Refertosubsection 7.3.1.lb.
Thehardcopytimeplotofsuppression pooltemperature isoperating historyonlyandisnotsafetyrelated.However,redundant systemsareprovidedandaredevisionalized.
TheprimaryContainment andsuppression chambertemperature elementsandtemperature indicators willbequalified tooperatefollowing aDBA.IRev.22,4/817.6-57 SSES-FSAR 7.6.1b.1.2.3 PowerSourcesThesafetyrelatedinstrumentation ispoweredfromdivisionalized powersources.DivisionIClassIEbus(120Vac)powersLoopA,DivisionIIClassIEbus(120Vac)powersLoopB.FourdualelementRTDsperredundant systemarelocatedintheprimarycontainment tosensethetemperature atthefollowing elevations:
a)Reactorpressurevesselheadb)Upperplatformc)Lowerplatformd).Drywell(belowreactorpressurevessel).Tworedundant temperature elementsarelocatedinthesuppression chamber.Theselectedlocationforthetemperature sensorshelpstheoperatortodefinetheareaoftheheatsourcewithintheprimarycontainment.
ThesignalfromtheRTDelementsareamplified byelectronic temperature transmitters todrivemeters,recorderchannels, andalarmswitchesinthecontrolroom.Tworedundant indicators, fortheprimarycontainment arelocatedinthemaincontrolroom.Theinitiating contactsforthehighspeedstartofthedrywellcoolingfans(refertosystemdescription inSection9.4)andderivedfromthetworedundant temperature sensingelementslocatedintheserviceareaofthefans.Ifhightemperature isdetectedtheelectronic switcheswillinitiatethehighspeedstartofthedrywellcoolingfans.Electronic signalconverters withfullelectrical input-output isolation areplacedbetweensafetyrelatedinstrumentation andtheinputchannelstotherecorders.
!Tworedundant multipoint recorders fortheprimarycontainment temperature monitoring systemprovideapermanent historyofallRTDmeasurements totheoperatorinthecontrolroom.Eachtemperature sensingcircuitisequippedwithalarmswitchesandinitiateonecontrolroomalarmperredundant channel.Rev.22,4/817.6-58 SSES-FSAR Onetemperature indicator fortheprimarycontainment islocatedontheremoteshutdownpanel.RefertoSubsection 7.4.1.4forsystemdescription.
Instrument rangesaredefinedinSection7.5.7.6.lb.2.4bEquipment Design-Su~pression PoolTemperature Thesuppression pooltemperature ismonitored bytworedundant systems,eachofwhichperformsasdescribed below.EightRTD'sperredundant systemarelocatedinthesuppression poolapproximately sixinchesbelowtheminimumpoolwaterlevel.Thesesensorsarelocatedaroundthepoolinordertoprovideagoodspatialdistribution ofpooltemperature.
RefertoTable7.6-9fortheexactlocationofthesesensors.Thesignalsfromthesenosrsareprocessed byanelectronic unitlocatedinthecontrolroom.Thiselectronic unitconvertstheRTDsignalsintodegreesFahrenheit andcomputestheaverageoftheeighttemperatures.
IfoneoftheRTDsfails,anerroralarmisgenerated, andthefailedRTDmayberemovedfromthecalculation oftheaveragebyoperatoraction.Theaveragevalueisdisplayed bydigitalindicators locatedbothontheelectronic unitandonthemaincontrolboard.Akeyboardallowstheoperatortodisplayanyindividual temperature input.Ahightemperature alarmisgenerated bycomparing theaveragetemperature toseveralinternally storedsetpoints.
Thealarmcondition isdisplayed bystatuslightslocatedbothontheelectronic unitandonthemaincontrolboard.Electrically isolatedoutputsinterface withanannunciator locatedonthemaincontrolboard.Adigitalprinterlocatedontheelectronic unitperiodically printstheaveragetemperature, plustheindividual temperatures, plusthecurrentdateandtime.Trendinginformation mayalsobeprintedattheoperator's request.Alarmconditions areprintedalongwiththetemperature.
Electrically isolateddigitalandanalogsignalsareprovidedtointerface withotherplantinformation systems.Theelectronic unithasaselfcheckingdiagnostic systemthatprovidesanerroralarmifafailureisdetectedinanypartofthesystem.Inadditiontotheeighttemperature sensorsmentioned above,therearefouradditional sensorsassociated withDivisionI.Thesesensorsarelocatedinthesuppression pool,sixteenfeetbelowminimumwaterlevel.Theyareusedfordisplayonlyandarenotusedinthecalculation ofaveragetemperature andarenotredundant.
Instrument rangesandaccuracies aredefinedinTable7.5-3.Rev.22,4/817.6-59 SSES-FSAR 7.6.-1h-12.5--Redundancy-Redundant instrumentation isprovidedforthecontainment andsuppression pooltemperature monitorinq system7~6;1b-1.2.6--SeDaration-JPhysicalandelectrical separation isprovidedforthesafetyrelatediastrumentatioa.
Nonsafety circuitsareisolatedbyelectronic converters vith.fullinput-output
.isolation.
7,6Pb,-12~7-genatiooaZ..
Consideration-Thesystemisdesignedtofunctionduringnormalplantoperation andafteraDBA.7611.-1.28--Zn~ironmental
-Consideration-Alltemperature seasingelementslocatedinsidethecontainment aredesiqned.
tooperate.inthenormaloperating environment, durinqandafteraLOCA.Allelectronic eguipment andindicating devicesarelocatedwithinthecontrolstructure..
Expectedenvironmenta1 coaditions aredefinedinChapter3.7-,6~4k.,~1-Q--~ggesgigg.
Qoo3.-Wage~Level-monitoring System.7.6ilb=-l 3=-1--System-Tdentification-Theinstrumentatioa forsuppression poolwaterlevelmonitoring isdesiqnedtoprovideindicatioa andarecordinthecontrolroomofthesuppression pool'level durinqnormalplantoperation andinaccidentconditions, including aLOCA.,Rev.22,4/817.6-59a SSES-FSAR TABLE7.6-9SuressionPoolTemeratureSensorLocations Azimuth36030'8o100o30'02o 141o30'43o 179o18030'16o30'18o 268o30'70o 318o319030'48 30'50oRadius34'-6"34I6II44'4'4I6ll34'-6"44'4'4'-6" 34I6ll44'4'4I6ll34I6ll44'4'ev.22,4/81 SSES-FSARI77CONTROLSYSTEMSNOTREQUIREDFORSAFETY7.71DESCRIPTION-Thissubsection discusses instrumentation controlsofsystemswhosefunctions arenotessential forthesafetyoftheplantandpermitsanunderstanding ofthewaythereactorandimportant subsystems arecontrolled.
Thesystemsinclude:(1)Reactorvessel-instrumentation VLSSS(2)Reactormanualcontrolsystem-instrumentation andcontrols, NSSS(3)Recirculation flowcontrolsystem-instrumentation andcontrolsNSSS{0)Reactorfeedwater system-instrumentation andcontrolsNSSS(5)Pressureregulator andturbine-qenerator system-instumentation and.controls non-NSSS(6)Neutronmonitoring system-TIP(7)Processcomputersystem-instrumentation NSSS(8)Neutronmonitoring system-traversing in-coreprobeNSSS(9)Reactorwatercleanupsystem-instrumentation andcontrolsNSSS(10)Refueling interlocks system(ll)NuclearPressureReliefSystem-instrumentation 5controls(12)Rodblockmonitorsystem(13)Loosepartsmonitoring system7.7.~~.ReacgogVessel-Instrumentation thosesysteRev.22,4/817&71Figures5.1-3aand5.1-3bshowtheinstrument numbers,arrangements ofthesensors,andsensingequipment usedtomonitorthereactorvesselconditions.
Becausethereactorvesselsensorsusedforsafetysystems,engineered safeguards, andcontrolsystemsaredescribed andevaluated inotherportionsofthisdocument, onlythesensorsthatarenotrequiredformsaredescribed inthissubsection.
SSES-FSAR 7.7.1.11.1.5 Testability 0Therodblockmonitorchannelsaretestedandcalibrated withprocedures givenintheapplicable instruction manuals.TheRBMsarefunctionally testedbyintroducing testsignalsintotheRBMchannels.
7.7.1.11.2 Environmental Considerations (Seedescription forAPRM,Subsection 7.6.la.5.6.2) 7.7.1.11.3 Operational Considerations Whenincreasing power,theset-uppermissive lampwilllightatwhichtimetheoperatormustevaluateconditions beforemanuallychangingtothenexthigherrodblocksetpointline.7.7.1.12LoosePartsMonitorin~
SystemTheLoosePartsMonitoring Systemwillmonitor,alarmandrecordtheReactorVesselacoustics forthepresenceofinternalloosepartsinaccordance withR.G.1.133 Draft-2Rev.1.Thesystemwillmonitorthepointslistedbelow.Whenanimpacteventsignalexceedsaselectable amplitude, analarmwilloccurandpeakimpactandimpactrepetition willautomatically berecordedandtimedsequentially, foreachselectedchannel.Eightpiezoelectric accelerometers areattachedexternally totheReactorVessel:a.Twomountedapprox.180apartonornearthemainsteamlinestomonitortheupperheadregions.b.Twomountedapprox.180oapartonornearthefeedwater linestomonitortheuppervesselregions.c.Twomountedapprox.180apartandat90rotationfromtheuppervesselsensorsmountedonorneartherecirculation suctionlinestomonitorthevesselcoreplateregion.Rev.22,4/817.7-62 SSES-FSAR d.Twomountedapprox.90apart,oneonaCRDHousingandtheotherontheRPVdrainpiping,tomonitorthelowervesselregions.7.7.1.12NuclearPressureReliefSystem7.7.1.12.1 SystemIdentification TheNuclearPressureReliefSystem,consisting ofsafetyreliefvalvesandassociated circuitry, isdesignedtolimitnuclearsteamsupplysystempressureundervariousmodesofreactoroperation.
7.7.1.12.2 Equipment DesignTheNuclearPressureReliefSystemcontrolsandinstrumentation consistofmanualcontrol/pressure sensorchannelseachdedicated toitsrespective safetyreliefvalveandassociated valveoperator(solenoid operatedairpilotvalve).Thepilotvalvecontrolsthepneumatic pressureappliedtotheaircylinderoperator.
Uponenergizing thepilotvalve,pneumatic pressureisdirectedfromtheaccumulator toactontheaircylinderoperatorcausingthesafetyreliefvalvetoopen.Uponagainde-energizing thepilotvalve,airintheaircylinderisexhausted andtheaccumulator isonceagainisolatedviathede-energized pilotvalve.Anaccumulator, oneforeachvalve,isincludedwiththecontrolequipment tostorethepneumatic enexgyforsafetyreliefvalveoperation.
Safetyreliefvalvesareautomatically initiated byhighreactorpressureconditions.
CablesfromthepressuresensorsforvesselpressureareroutedRev.22,4/Sl7.7-62a SSES-FSAR 10"-FR50-AppendixA.Criteria-24-TheRBMprovidesaninterlocking functioninthecontrolrodvithdraval portionofthe"RDreactormanualcontrolsystem.Thisdesignisseparated fromtheprotective functions intheplanttoassuretheirindependence.
ThRBHisdesignedtopreven'tinadvertent controlrod.vithdraval givenanimposedsinqlefailurevithintheRBN.OneofthetvoRBHchannelsissufficient toprovideanappropriate controlrodvithdraval block.Enaddition, theRBNhasbeendesignedtomeet"appropriate protection systemcriteria....acceptable totheRegulatory Staff."(Reference 7.7-2)7.7.2.12LoosePartsHonitorin~
SystemTheLPNSisnotasafety-related system.Tthasbeendesignedinaccordance withRegulatory Guide1.133,Rev.1,Draft2.7.72;l2-NuclearPressureRelief--System-Igstgumentation and-gotltrols-
)@7$~12Q.--General-Fuactioaai-BeguirementsConformance TheNuclearPressureReliefSystemisdesignedtoprovidethenu"learsteamsupplypressurerelieffunctionvithoutjeopardytothesafety-related ADSfunction,dis"ussedinSection7.3.7,42~4,22--Specific" Regulatory Requirements (1)10CPR50AppendixA-"riterion 10.TheNuclearPressureReliefSystemprovidesadditional meansforminimizing theprobability ofabnormalreactorcoolantpressureboundaryleakage.(2)10CPR50AppendixA-"riterion 15.TheNuclearPressureReliefSystemisdesignedtoaffordadeguateadditional marqintoassurethatthedesignconditions ofthe"eactorcoolantpressureboundaryarenotexceededduringanycondition ofnormaloperation, including anticipated operational occurrences.
(3)10CPR50AppendixA-"riterion 30.Thecomponents oftheNuclarPressureReliefSystemaredesigned,
: selected, fabricated, erectedandtestedtothehighest,practical, currentindustrial standards.
TheSystemisRev.22,4/817.7-78 lvt~z,loge~~ll~',IIr--Ilvsfsceoosese>>4
~efcesfsliIIII,I+ALJL~.SONV>>ICOSAlt(SIDIC)loxK.J,ecosr<<teI~leseO<<(TN)tftfIIfI~~~~oT~1lo4c>~aRITs(NOIR.AlcsotSSISNT-DssS V(stCDC)tslaefvor(tKlNNvsol)Ql~TsecosscNNcoa~OTCNTSALA.llxvassocsossscrcc r----iI(STNLNcceecs4Il~4SI1~tltIvIIIIIIIIsl~JX-ltfeeSotf((l--@J'rSAIIIIt.soxvtlceoASDSCKICACKSllhCWONT SCSSSCIAflRCDNTTssr(fscoefCSISCSSAONS CS\~0'fCSSTSSLIlI~DAlI~~AC~'IICTsOOO>>NCS S<<ffoeefSAL(CCCRCSc~)~NColPAAIllSCVDCVKCTASLCDCSCNOTsevNCNICNsSN o)4re(i(oecSTAc xeee~lteleSTANLOADCC>>SCCSTe>>CAPCCDCSDeeceuertxrf SCLATo4pccocslovcAceseescllf NCLATeccDSReeceteeoeotleseto evcscsteecrf NSLAYsofcICSCWLSSetlcSIclfcOlCOVS~seooeepoocrew NSLA'fsee>>e~osoC~KoeveopccDIRst>>DKNIlcOCLAY(TNKSOTS~~cooefcdoe>>N~SoOeeelNg@aa~~C.fsWeWPdsSPCPOSSCitoosocefIt~OCOOOtepeecc4I@a~e5it@O>>reerAloceeeelCNvelc4voltsecTCS crsfcrVOL'leecTelrecxscoo
~Ll>>s'lIf~llCIISS~IIIIII5II'N<<PSOtesorcofo(Dccel)(scCtsOSS-C)vrfsIIIIIlfIQC5~IsesI~~oeoWooi&o lrfX.,II~l)<<>>~llfllflI'IlIIIIIIIIIfOeeloIITccsesssoc s<<tvfONTSSLI>>N>>~ee>>l>>ICsoo~CSCSf)(Neerxxccsc)
(fceplot)$IIl(5(f)5ls,ace.JIIIIIIIIr-IsllI~tte>>APTSOCeKPOaSAre*TIISSSltl(OXSOl)lueasO5-c)IIIIIlsIf,''I.'SKAAbcsNLLKOCAI~steercALcretroIleeelxCKCI0Cele<<teesc)(ONRlOSTC)cftectxcse oesefrfeesTWII~II,IIIIIIIslII~ilIlIIICCCL.JIIIIIIIIeIAeosOPSOC*(CKSOS)CKSOSA(eoel4ACCec)CSCNacCDC)(esca~Nf)lIllllSSI~N()TecpcoToDcvsccsxACl(lITesteACCOCSATCD C>>SclorSASCASCCK c.Tsseo'(ance>>AcxsfALLcsecsssf~cxsscRCCONNCCTCD TDl'NCSLSL.~tees<<AIcIAIt%0>>ooteeoccscotsssoLsssoAsetpeeso4s>>soececooseeatecceceesAlter>>eATssoorfsejeol~IALsolocoeeorclec otsTKpolQoceefoo
~eoeesegteKI~Neer>>lfep<<~pLA~Lcoesorl N~N4.elclATco>>erectclolcoAToogsssoe>>4seoeecfolcPDSAsstoSTARTDeCKLKDTlvc
%teeepAps Loeoo~.SefskssssecsCP(stcxtso) sssTKINCPCK,tKps LoseclccltfesoeeoeocecrfA<<pooseoo Atlococoessctetesopeaeosa efe<<saoso.SooxtoeKepfocTees~oLATrAssrf>>>>sfocfIcoscocrowfoKxseopSLToALTCKNATD sccacoAoNAseesDNccv.srlttco
~COAXItxteteees DCTICCW4>>CSTCSC>>CAN CSNSTtocfecccc acvoLTIcArtssu.KArcDLDADtokcNKscxccrsfsoLccxsooweecs.locowlTswIssxcfKctlxreKollcloloo vDDccscxcofcsc'f)~.SoosteoplaflrAsffcofsorsopoateKop<<eseeaeocafoo ooooelse>>so4IttsehSA.K Tostoee<<os(
SolAfDOAN~pss(Aflow epoeesosseaeefsscfexfcoINopsKATseee eroscATSK StAN'oeoo A4O<<CILALIASpeRAAoseor~oeitoseeaexsoo DriesLLseoeeooreeat>>eeoc%TINeeetfCNOKACSSIstol>>NetPesxfsltloSavTKAteopeowosL socorcwcf resttster~exefsoelOPSteoCeOeaeete<<AD%NOLANONLYOeaCATSSAooxpeolosATelTsssDeooAC4>>tNesrse4
~cLNDess~Kvcellooper>>IceoooiIINNNL+tfe1%,cerovLeefooTDSSea.sstoloctoowxa.setoslkesopofL, CKAcxsossteaNelecvecossNetsfsosfcoostoolcASLCosoNotLsoeeKTessAlso<<oe5)scfcsINCCLIoovteecPI~stslo(SACOK)IOSSAADSWX4leKVSSOOA$SNthqmalAlCAoPP4~Ij;"eDhE4sCBSLlI.coeetctoeoosa((39RtLfsCCCCSlCAIIIIJo~Ceca(4SOKreNODAl(~~e~lwxsessaNets)l)>*IL~J~~soalcloSllosSsofs8&~ccoortcfCoIseoctpoetf4softfcoefccssovfccs uwAFAT(tooocvtecsKNAIC CAcol,osssec(Dolsssstfsosfooeeos eotsfco(,
tevesslcoetlSSNTOTSCATOSN~tOOLCOi'OSSICSCCSCCNSOos(CDOOSATDOOTSTDSCTSCNgVSOLID~eotlxsefotssATDCN Scseccsaeeco SCOO-OrtsACSCgeaol easfceC4DDAOSovD'scssesoocooNSLSfovoc(I,ONO<<COlofIIf~IfIjsIbmjIIIsIIIIIfo<<lIIV.ICsc4r-III~ISfI~JIseerqIONL4lesIflflfIIIbad'IIIII1IIlfs>>AIIII~'ItolIIII~esseIII.Cs,II,elIsll,~~sIIlslIITS(I-'IJ~IIll4IIllfIIliatoIIIIICwosIIII&#xb9;Nf.IREV.22,4/81E4SHT.1SUSQUEHANNA STEAMELECTRICSTATlONUNITS1AND2FINALSAFETYANALYSISREPORT~NOOoecrolcl(CKCPS)ltsocS(Cotf>>OL&4)ccecscassosefg~gfl coscerectctsooetcOTt SPAADNsseo4'pcoooslcsoo(eepcLAOC SS)(occPtcOS5)~~t~~1S1lONAXXLsNtfe&f SATDC)sr<<oscxvscccr4CAPCO)tsovNceresTlsoDLSONflPSOO~TCANSCOICCCCN>>WCCNCCOKsootleoo(oioos)NclocoRSSPItsoc(ccctssos>>OctsewsxoN)(loesvcxcsCC)o>>eospoo)sAexprregstesssSsoc>>scc
~elf>>eel(oxlol)opfoocJspseec(locPSSD5-1)PNSSeO1KtfIl~~4~~1~~se(oxoos)OKsscA(OCCPSRODC)fP//JJJJI/JS/EJ/J///Jte L,ILLcoostocssf DNteleeesstee>>Neollccocolccxcst(L J//J//JJ//J/J/J//J/i%
AestereoUNlT'I.4.16KVPOWERSYSTEMFIGURE8~I
 
TRICsOKR.TCSTYOSN(vastclwsuc<<(DIN(cLoSETRAN\OX(OILO(KOUfk(LA'I(4(LL)OPOS LLCO>>LOCKOUTRCC.AVmColOLRoftkYOSN'5ck)cCwYvlll(Dou'ICtosc4Kklst2cuofoilcNCKR(LtCOKN)oreNMAICKCocil)CLOlt'ecLKtkSteCfecAMATCNCIACLCAONeODOR/gffcCNORMAArtCLO<<I.OOOISL QK1-ooSN*(I'I)WtUCNCLNCtklklaOxOLLockoufkek'LIKO~LLV.eic<<<<5OKAOstkOOCNaf<<flatccw'YULNCO ns"KLIC<<ucel C\'TAI~CNSOOO'21A42-(oo1CIC+CTAlfOkfCOKNMATCNC)ACLC52SAS)C)LTeCEAOLLSEAts'llaasoloi(oetolp
,ul<<eI)Laeeeu)NDAI)NoaN*~eMN~seseoIOI)OLlol2t(LLIOS)524O)OC42tOCOC)CL.LOOO0IELSCLLCN t<<ISILLCNDit\CLCetNDICCCLlatMOi4DI.COt.oOo.f(Ocecols)
(OCLSOK)(OOEOLO)(O!'eloco)Q~IA(~RA)Cle<<aXaueEN<<toesICONLc-)MWIO-NNsaoesIClsloe)~lkcoi}TaacocfIeloe)~oecoe)4240200SDCOCOC42LOCOC)lttOeoALIS<<CDLNM,C<<ooootoasCSAEIVed(TVANfoNotleat(NoseolcvfcIN'YLISNPsescfooileeo)
CSW<<~eOON0ETA~Kk(LtloelCLOScfAsrteaTLtoffc<<D~SSASLE(eENODCFINCTIOK QA~TRN~tNKACLloelo<<CN0<<s(LAIOYI VOLlolet5CSTAlol)cf'e'octfkll eeoeaeLL44ICAvcoO'OOOAUSYALleOkkfafee'Td'NOILIeai su'oce))sA5)CA)2io)uivilif YEAI.ARMO'D)2)PUT RfIINARa)ARTIL<<eveeeefoeAICCoiNkvfckIASN.AANLIolsot4KVosoetIECC<<EAISEC ICTAastEY045ICLaeftkfSLDOC IITAAI)~Kv005LClftCK<<)Loot:CIAECI ocvCVLrcvotkeckfeoc ICIAE))aolt<<eeesissNKNCfuL)AICSele~a~I.>>~EVOISICSOUA(eCLoaf(ILA<<LLAotj.we62)C)ClAt(pff)2(()ff))4",
BREAKERTot.taf())
UN)Tf(ESSTRAN~lfSC<<IWINOlSENC.SOl<<eIf<<0Mfkfeesus~fauc0emef<<iIf(40CASekoak52IceoeIAONlovesKoYoLiesccvksp~p~a-efaLO<<LVlusgee<<I0N52IousDestosl.<<LNONnlACCANROTOACA(IsOICDILSIS CQCCKOKAIN).ALIC)~Icsee("-4(sefec(O CAIN~ILV'essI'OYKCJOkNOTceucfufco OSCTIP(tKLAYoulkurCkslffIINCNNLv<<filllAktYkcltNToelfaeifless)see<<CNINY~KYOTelYACSCNToulfuf'ltisr'sw<<LNletLNYCITICNOTYACC(NTRCD~C'Lo\CAAMC(koCIACN4DLL)COSfkikfe4LA4to'\EC NortlpoktcNS'Auro fklo-IILNOLLLY OetksftoOtle(4(CCNIASLSYNTtk,fso<<00 CISK)CONYC)TCR CNtufOVTYVTCXIST\YOLLovveaC AVLNCOCLAYISICkTININIOIISCoeefssfeoulsv A~NCacaif YLITCILLSLve<<CNlealaeAIf)5NOTYACSCNYtl'A~ILLYceetSILL<<))O,NLIAECACCAIA0LSNIILKieeLOOClose024OSOIe)000014<<S<<NLI~<<Ovosiaosceealooiolas<<4CcoeolYilaoIas~I000<<~oooiee<<01COI~)CteceoSlave'ivessveevco<<IILNoeitpcocK
-NaeckoeuI~sitesIeaeNolff~>v~IaafoaktsiLLIL<<ecocswoacaftkLocal<<NNecaue<<1LI42eoII=20)IOslCa)oeLl-4'IIoeLItoeoeIaI2)eNsoto<<iSt.tseaeLlCOSYO~I.0404Litaap~LNVf~\LastOVNL<<ICKECLL'IOltali,+lingSILL'(Ocltl0III)A4ca'ESCANloltoef04AlioOs.lCoalcsa40222>toke~CIOIOO)I202~IAlotKosDSSIOI~004)11'2$)os2vs;Io)LIL202NOe.tSIL4044>&#xc3;2)AeeltLac$$2040I0$4$$toecLOlic)tcAIN40eof0(45)toiO'SIt'20eof\ILtooIKOIr.~IAAOINOI.C~Orts20)oo1020P0)saltSOALIVACLoeeascoooSaavu<<allACLAeaslesos<<clANINLlllooleois~CINE<<eELLLeCT24iCATtlClfaecta$$CKTSJCTC)I~Cfl42bettCC2PSCal51CcfttCfai)CICSJCETSS4427)Ca)asCessCT21ICTIetaEISSCttt)CattpCEY4)fflstCTC0$cta$244225CETttiranCSCfSO)aI)aaCSCISef)I)I)fa1$CSI2)IsISfs5$tfl~Iifrrtr4Cal)I4Cal)54Ccfa)4(TtSl~212ff~(ET~1~CtiSS~40271~ocros~CTISCtCTCes~OVSS~CCCSS0lal~I~Ccf4$~ill1)~4flff4CE1SS4Ctat)4ICat)4~EYCI4214740ffaIs4Ccrta$CCISC4241st0beff0CICSS~424244~)ISOA<<22ClCl4241CSc)24)454)NNeSEIIC)4)ffl)PINf4ff~EII.OetoefTNICOCLAV~CYCcelffufClllffYv<<INTNC-OefufISYACCINTAMOsooia<<its SoceosvfoALresetAffok1NCoesfICCLSC()~2()T5,aeccEE(4cctveo)fee<<sn)c ctc<<4404oosufcctv<<LeteeIT5eo<<Nae2<<escacefe<<oessecaeNvvf<<4atsfccflec RECEKccscocaurec vASALNC,-
t,fokCINCILtLINCHETERANDRCLATOikcekk)IS tokC.vokuaeYC.'SCCDWCeOOSOt4'2ORCAKCftCONfAOLCWITCNC'\WVeNCNPII(LCCTOUT'SMALLDCCCONNCCT ALLRCCIOTCCONfkotCIACL)ITC
~.)Nf(KCOIYOLV<<eee oekl4t-COOC452.(OKYSWAL4(NOYCALTSOK ONLY)VIINl<<litOKklINOACAATLNCe Ltolefioif-S,PCN04)isfcotfRCCAT(4444SCCVIO-44$4CSI~sec0cArcsctfeforakpteor cvecuar2ctuforcc-E4)SHTSSCCA)(iOO-5Ia~C5Seat+Se~L44c<<tressfgOILSLL<<2 4'resLa'IRE)ERERCEf)WCI$.2oatolLL400<<Iocoo4220)00aes<<O4240200S240e<<ILLN4Ooois~ee<<OONIN<<a000<<Lola)ao000eeol<<YSICL0leseso100No<<IOOI<<4OesetLLlakestse"Iol424)(LAICillsioe4C'Coils~ALDsocleslIoeae2L~IIIAICEILlaCocoo.CSAItoaol0C45$1~4'W5LIEtolO<<OLoioeocloessIIAtoe~$Tc2)tct00e(Icos1ACLI~CCCSOCOIN42$0IolaCokNDLCioaeCOCOI14costsSlS4NNLCL42I~Ce'1CS40Ctaciata141744II$14140~CETCSCac)4CrassCKT$041474CfatoCCY40cactt44204CCY424f2)0t)4ctfptrCdatt4Ciata0CC1$44CIISI1Claeo0Illfa0)CCSC~442540CETSatCICSC4~seps414144)NISCYJe)S~Tltl0Clr400CCCtttgatffo447424412050SUSQUEHANNA
.STEAMELECTRlQSTATION
,.UNlTS1AND47-.,--.-'.FINALSAFETY'NALYS/S
.RFsPOET'4.16KVBUs.)QcolvllNG'fhof RQR&ggR,LOGIC.OIAGRale--
FIGURE'.3.15 I~
SSES-"SAR toneselectorswitch,areaselectorswitch,messagetaperecorder, riverwarningspeakers'and
: monitors, andanoutdoorroofsiren.Thissystemsupplements "heradiation monitoring systemsdescribed inChapter12.Duringemergen"y conditions theplantoperatorac+ivates thesystembyselecting thedesignated alamandareatobecovered.The.alarmsandinstructions arebroadcasted v'ahePAsystempagelinestoallspeakersinselec+edareasthroughout tJeplant.Durincanemergency thenighttimemutefunctionofoutdoorspeakerswillbeoveridden.Ther'erwarningspeakershaveindependent amplifiers withoutputmonitorncinthecontrolroom~Theoperatorswitchesthesystemtoof,afterconfirmation ofnormalconditions.
Thepreferred powerfortheEVACsystemissuppliedfromUnit1vi..alacbus,andthealterna+e powerisfedfromUnit2vitalacbus.DuringUnit1opera+ion whileUnit2isunderconstruction, powertotheEVACsystemisfedfromheUnit1computerUPSbus.Thepreferred powerfortheroofsirenissuppliedfromUnit1plant125Vdcbusandthealternate powerisfedfromUnit2plant125Vdcbus.DuringUnit1operation whileUnit2isinconstruction stage,thealternate powertotheroofsirenisfedfromaseparate125VdcbusofUnit1.{refertoSubsections 8.3.1.8and8.3.2.1.1.1)
.9.5.2.2.5 SecurityCommunication and.AlarmSystemRefertotheSuscuehanna SESSecurityPlanForadescription oftheSecurityCommunications System.9.52.2.6.Portable Communication SystemOnsiteportableradiocommunication systemsaredescribed intheSusquehanna SESSecurityPlanandintheSusquehanna SESEmergency za~.95.2.2.7SystemEvaluation Systemdesignconsiderations includediversity andoperational reliability.
Thein-Plantcommunication systemsareprovidedwithreliableandredundant powersuppliesforuninterrupted communications betweenallareasofthePlant.Rev.22,4/819.5-30  
'  
'  
..gifagI~Ilt)OtlalgV>>4~>>Elaraoaa\tt~Will\Tl>>1001E40alIruatCvCf4+CO%SO)IICrl>>C~41rJg,,~4+-8h~w04'stsa4r0LC'WILKIWIMa>>El>>44~4440aw~lao+aatt(Katlow~4O'I10~IIfL>>r44O+CEIC~%+E,'sa~~'~~IJOG~IIJta1~~'JILaa.ltI0)RA0LJNIgOCIVLWIr>>ao4!OIP040EIOC+C~~a>>Ir~~'~rIKO)atl4ICJh44$ruatIIIIIIIIIIIIIIIIIIIIIIIIICgEl)a.g5C>>44.~4taaa)l~,.3~a)I)OWC'g(vgO)05Q-hQ4r~t~~~04\>>C>>~&'104'n/.4C~4c'IIIJ~cargear~futfOPOtc)O~I$IOCSC~~~+0W~~JLOC10106h0\F4viawaltta)00~l.MOlOEOall)laAletaatl0%>01fataL~IISII0IUStgltlatlwTC4J%gtatiL~~nLaoII~~I~I~IIOCjulIttr&CO$$lvIS~u~~ttCCOCIklKOt>OtA~!WJJalalr--Ch=W-A,arIIll041)l'Itlt~vsaallWTOTt4Ol~SeeeaEJOWtttMIOOMICOatMltl%42~Jtt'ISEO~ltNt~lICO~4t)0'actl02Jest0eatiO2Cattllat2MOSI22Kata!N4~1~NCttl2Ld<<at4CS+420)O)140atttatKCCkkWN4$OCR)0EgEC'hLIOltSlktt4AIO+fCtOAIKelw'a~LV4OcOC>0)0POO)ECOOl;-4000)0I~0(101/Af')44CC>010IA;/+t$44!I=IIIIIII+II~~I~I~IrcfIIIIIIII,IIIII4~nrarar'II0%CRITIII~.ttlIIag)0)II4I)lt~4altllttCiOOCIO)Alttt4flLTIO~~TCWAO~L.JOO,.,ICaIEIC.4'EOOOI~COlt~0)4Oa2!IJE1)41YOOCCOCI~4Oa114!rSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYStSREPORTREV.22,O/S>.M-162Sht,rakco.tCONOIOILICpa4CtratiP6XDLIQUIDRADNASTEPROCESSINGFIGURE11.2-10  
..gifagI~Ilt)OtlalgV>>4~>>Elaraoaa\tt~Will\Tl>>1001E40alIruatCvCf4+CO%SO)IICrl>>C~41rJg,,~4+-8h~w04'stsa4r0LC'WILKIWIMa>>El>>44~4440aw~lao+aatt(Katlow~4O'I10~IIfL>>r44O+CEIC~%+E,'sa~~'~~IJOG~IIJta1~~'JILaa.ltI0)RA0LJNIgOCIVLWIr>>ao4!OIP040EIOC+C~~a>>Ir~~'~rIKO)atl4ICJh44$ruatIIIIIIIIIIIIIIIIIIIIIIIIICgEl)a.g5C>>44.~4taaa)l~,.3~a)I)OWC'g(vgO)05Q-hQ4r~t~~~04\>>C>>~&'104'n/
.4C~4c'IIIJ~cargear~futfOPOtc)O~I$IOCSC~~~+0W~~JLOC10106h0\F4viawaltta)00~l.MOlOEOall)laAletaatl0%>01fataL~IISII0IUStgltlatlwTC4J%gtatiL~~nLaoII~~I~I~IIOCjulIttr&CO$$lvIS~u~~ttCCOCIklKOt>OtA~!WJJalalr--Ch=W-A,arIIll041)l'Itlt~vsaallWTOTt4Ol~SeeeaEJOWtttMIOOMICOatMltl%42~Jtt'ISEO~ltNt~lICO~4t)0'actl02Jest0eatiO2Cattllat2MOSI22Kata!N4~1~NCttl2Ld<<at4CS+420)O)140atttatKCCkkWN4$OCR)0EgEC'hLIOltSlktt4AIO+fCtOAIKelw'a
~LV4OcOC>0)0POO)ECOOl;-4000)0I~0(101/Af')44CC>010IA;/+t$44!I=IIIIIII+II~~I~I~IrcfIIIIIIII,IIIII4~nrarar'II0%CRITIII~.ttlIIag)0)II4I)lt~4altllttCiOOCIO)Alttt4flLTIO~~TCWAO~L.JOO,.,ICaIEIC.4'EOOOI~COlt~0)4Oa2!IJE1)41YOOCCOCI~4Oa114!rSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYStSREPORTREV.22,O/S>.M-162Sht,rakco.tCONOIOILIC pa4CtratiP6XDLIQUIDRADNASTEPROCESSING FIGURE11.2-10  
 
SSES-FSAR 135PLANTPROCEDURES135.1ADNINISTRATIVZ PROCEDURES Allsafety-related operations atSusquehanna SteamElectricStationUnits162areconducted inaccordance withdetailed, writtenandapprovedprocedures.
Plantpersonnel receivetrainingintheuseofappropria teprocedures andtheprocedures aremadeavailable tothematalltimes.135.1.1Procedure Conformance Procedure topicsfollowtheguidancespecified byapplicable portionsofRegulatory Guide133,Revision1andprocedures aropreparedfollowing theguidanceprovidedbyANSIV18.7-1976.
13-51.2Pre~aration ofProcedures Procedures arepreparedbytheplantstaff,supportorganizations orcontractorganizatio'ns underthedirection oftheSupevisorofOperations, Supervisor ofMaintenance, Technical Supervisor, HealthPhysicsSupervisor, QualitySupervisor, Personnel andAdministrative Supervisor, andSecuritySupervisor.
Theplant!procedure categories andatypicalscheduleforprocedure preparation areshownonFigure13.5-1-Reviewofsafety-related procedures useandchangesthereto,isperformed bythePlantOperations ReviewCommittee (PORC}andapprovedbytheSuperintendent ofPlantasdescribed.
inSection13.4.Inaddition, functional'nit procedures willbereviewedbyNuclearQualityAssurance.
Procedures areperiodically reviewedtodetermine ifchangesarenecessary ordesirable Applicable procedures arereviewedaftersignificant systemorequipment modification, andfollowing anunusualincident,"such asahazardous condition, anunexpected transient, asignificant operatorerror,orequipment malfunction wheretheprocedures contributed tothecauseoftheincident, orwereinadequate inmitigating theeffectsoftheincident.
Whenanoperation istemporarily alteredinsuchamannerthatportionsofanexistingprocedure donotapply,thentheexistingprocedure maybetemporarily changed.Temporary changestoRev.22,4/81135-1 QRgPxjHH0zlmzmDmxzza2zcomzm0rMAOOzPROCEDURES ADMIHISTRATIVE ALARMRESPONSECHEMISTRY EMERGENCY EMERGEHCY PLAHENVIRONMENTAL SURVEILLAHCE FUELNAHDLIHGGEHERALPLAHTHEALTHPHYSICSIHSTRUMEHTATIOH ACONTROLMAINTENANCE MATERIALCOHTROLOFF-HORMAL OPERATING GUALITYRADWASTEMAHAGEMEHT REACTOREHGINEERIHG RECORDSRELAYCALIBRATION SECURITYSPECIALEVENTSSURVEILLAHCE TESTTRAIHIHGMOHTNSPRIORTOFUELLOADING343230282624222018161412108642CDCD SSES-FSAR condition arise,theplantoperating staffshalltakewhateveractionisnecessary including, butnotlimitedto,stoppingthetestinordertorestoresafeplantconditions.
Duringstartuptesting,theplantoperating staffisspecifically responsible forcompliance withoperating technical specifications, andcompliance withtheprovisions oftheoperating license.14.2'.2TestPrereuisitesSpecifictestprerequisites areidentified ineachpreoperational testprocedure.
Thetestdirectorverifiesthateachprerequisite iscompleted andproperlydocumented priortosignoffintheofficialtestcopyoftheprocedure.
Ifaprerequisite inapreoperational testcannotbesatisfied, thetestdirectorwilllisttheprerequisite asatestexception tothePreoperational Test.Asaprerequisite topreoperational testing,properoperation ofeachalarmloopisverifiedandlistedinanappendixtothetest.Duringthepreoperational test,systemparameters arevariedandinterlocks aretestedwhichcausealarmstoactuate.Thosealarmswhichareactuatedduringthecourseofthetestwillbedocumented inthebodyofthepreoperational test.14.2.4.3Procedure Hodifications Testsareconducted inaccordance withapprovedprocedures.
Zfnecessary, theseprocedures maybemodifiedtocompletetesting.Suchprocedure modi-fications aredocumented onatestchangenoticeform.Xnadditiontogeneration ofatestchangenoticeform,thetestdizectormarksuptheofficialtestcopyoftheprocedure andinit:als/dates thechange.Reviewandapprovalfortestchangenoticesonpreoperational testprocedures isprovidedbytheTRB.Testchangenoticesforstartuptestprocedures shallbeinitialed/dated byanon-shiftlicensedsenioroperatorinadditiontothetestdirector.
Reviewandapprovalfortestchangenoticesonstartuptestprocedures isprovidedbythePORC.Preparation, reviewandapprovalactivities azeaccomplished beforeorafterperformance ofassociated testingbasedonthefollow'ng criteria:
a)Non<<Intent ChangesiRev.22,4/81Forprocedure modifications thatdonotchangeacceptance criteriaanddopreservetheintentofthetest,thetestchangenoticemaybeapprovedafterperformance ofassociated testing.4b)IntentChangesForprocedure modifications thataltertheacceptance criteriaortheintentofthetest,thetestchangenoticeisapprovedbeforeperformance ofassociated testing.14.2-12 SSES-FSARinformation willbesortedandreportedforaperiodoftwoyearspriortofuelloadonthefirstunit.TheManager-Nuclear Supportisaddressed inSubsection 17.2.1.14.2.9TRIALUSOFPLANTOPERATING ANDEMERGENCY PROCEDURES TheadequacyofPlantOperating andEmergency Procedures willbeconfirmed bytrial-use duringtheInitialTestProgram.Thoseprocedures thatdonotrequirenuclearfuelareconfirmed adequatetotheextentpracticable duringthePreoperational TestProgram.Thoseprocedures thatrequirenuclearfuelareconfirmed adequatetotheextentpracticable duringtheStartupTestProgram.Theplantoperating staffisresponsible forconfirmation ofoperatinq andemergency procedures.
TheSuperintendent ofPlantisresponsible forensuringthatcomments/changes identified duringconfirmation areincorporated infinalized procedures.
Itisnotintendedthatpreoperational testprocedures explicitly incorporate orreferenceplantoperating andemergency procedures.
Thesetestsareintendedtostandontheirownsincetheyarenotnecessarily compatible withconfigurations andconditions requiredforconfirmation offacilityoperating andemergency procedures.
Startuptestprocedures will'ncorporate andreference plantoperating andemergency procedures totheextentpractical.
14-2-10~INITIAL-FUEL-LOADINGANDINITIALCRITICALITY Initialfuelloadingisaccomplished inaccordance withstartuptestprocedure, ST-3FuelLoadingInitialcriticality isaccomplished inaccordance withstartuptestprocedure ST-4,PullCoreShutdownMargin.Theseprocedures complywiththegeneralguidelines andregulatory positions contained inRegulatory Guide1.68(Revision 1,January1977).Testabstracts establishing theobjectives, prerequisites, testmethod,andacceptance criteriafortheseprocedures arepresented inSubsection 14.2.12.142-11T>STPROGRAMSCHEDULEcdRev.22,4/8114.2-19ThePreoperational TestProgramisscheduled for15monthsdurationontheUnit1andCommoncomponents andfor12monthsdurationontheremaining Unit2components..(See Figure14.2-4a~'
SSES-FSAR (P30.1)ControlStructure HSVSstemPreperational TestStructure HavSystemanditsinterlocks insidethecontrolstructure buildingtodemonstrate thissystem'sabilitytomaintainapositivepressureaboveatmospheric duringnormaloperation andhighradiation signalwhentheemergency outsideairsupplymodeisrunning.Todemonstrate theabilityoftheControlStructure HGVtoisolatebeforechlorinereachestheisolation damperswhenchlorineisdetectedintheoutsideairintake.overtotheISG.Requiredinstruments arecalibrated andcontrolsareoperable.
TheControlStructure ChilledWaterSystem,Instrument AirSystemandturbinebuildingventareavailable.
Required'lectrical powersupplysystemsareavailable.
TestMethod-Thesystemoperation isinitiated manuallyandfanperformance, damperoperations andheatingelementoperation aredetermined.
Thedifferential pressures withrespecttooutsideatmosphere
.aremeasured.
Requiredcontrolsareoperated'or simulated signalsareappliedtoverifytheemergency filteroperation onhighradiation signal,automatic recirculation onhighchlorinesignal,systemmanualisolation andothersysteminterlocks andalarms.AccetanceCriteria-Thesystemperformance parameters areinaccordance withtheapplicable designdocuments.
(P30.2)ControlStructure ChilledWaterSstemPreperational TestStructure ChilledWaterSystemtoprovidechilledwaterflowtoControlStructure Heating/Ventilating UnitsandControlroomfloorandcomputerroomfloorcoolingunits.toperformthistestandthesystemisturnedovertotheISG.Requiredinstruments arecalibrated andcontrolsareoperable.
TheServiceWaterSystem,Emergency ServiceWaterSystem,andInstrument AirSystemareavailable.
Requiredelectrical powersupplysystemsareavailable.
TestMethod-Thesystemisoperatedtodemonstrate chilleroperation andchilledwaterpumpperformance.
Requiredcontrolsareoperatedorsimulated signalsareappliedtoverifyautomatic alignment ofthesystemunderemergency conditions (startofemergency condenser waterrecirculation pump)andothersysteminterlocks andalarms.Rev.22,4/8114.2-3l, SSES"FSAR TestMethod-Thebatteryperformance testismanuallyinitiated byconnecting thebatterybanktotheResistorI.oadBankanddischarging thebatteries ataconstantcurrentforaspecified periodoftime.TheBatteryServiceTestismanuallyinitiated byconnecting thebatterybanktotheResistorLoadBankandsimulating, ascloselyaspossible, theloadthebatteries willsupplyduringaDesignBaseAccident.
Thenthebatterychargerisconnected tothebatteries andthedistribution panelstoverifythattheycanequalizechargethebatteries whilesimultaniously providing powertothenormalplantloads.Thebatterychargerisalsoconnected totheResistorIoadBankandcurrentisincreased toitsmaximumratingwiththechargerisolatedfromitsassociated batterybank.Alarmsaresimulator andverifiedtooperateproperly.
AccetanceCriteria-Thebatteries cansatisfactorily deliverstoredenergyforthespecified amountoftimeasrequiredfortheperformance andservicetests.Thebatterychargerscandeliverratedoutput,also,thattheycanchargetheirassociated batterybankfromminimumvoltagetoafullychargedstateinaspecified amountoftimewhilesimultaneously supplying normalplantloads.Thealarmsoperateattheirengineered setpoints andannunciate inthecontrolroom.(P76.1)PlantLeakDetection SstemPreperational TestTestOb'ective
-'Todemonstrate theoperability ofthePlantIeakDetection System.toperformthistestandthesystemisturnedovertotheISG.Requiredinstruments arecalibrated andcontrolsareoperable.
Requiredelectrical powersupplysystemsareavailable.
TestMethod-Sumplevelswillbevaried(ifpracticable) orsimulated signalsareappliedtolevelsensorstoverifytheleak'etection systemalarms'cce tanceCriteria-Thesystemperformance parameters areinaccordance withtheapplicable designdocuments.
Rev.22,4/8114.2-49 SSES-FSAR 3)Thatallwarningsignalsareworkingperdesignintent.4)Thecapability ofthecranetooperateinadesignated areainaccordance withdesignrequirements.
overtotheISG.Requiredelectrical powersupplysystemsareavailable andcontrolsareoperable.
Requiredloadsareavailable toperformloadtestingofthiscrane.TestMethod-Thelightingsystemforthecraneisenergized andobservedforproperoperation.
Thebridgeandthetrolleyarespeed-tested inbothdirections.
Currentandvoltagereadingsaretakeninbothdirections.
Theproximity switchesaretestedforboththebridgeandthetrolleyincluding trolleymovementrestriction switchesinzonesA,B,andC.Themainhoistandtheauxiliary hoistarespeed-tested traveling upandtraveling down.Currentandvoltagereadingsaretakeninbothdirections.
Alllimitswitchesaretested.Alossofpowersituation iscreatedforbothhoiststocheckthebrakesabilitytoholdwithoutpower.Anoverspeed testissimulated foreachhoist.Themainhoistloadlimitswitchisalsotested.Theabovelistedtestsarerunfromthependantpushbutton controlsystem.Operability ofthecraneisalsodemonstrated fromthecabandby'radiocontrol.Theanticollision systemistestedandthecranepowersourceisverified.
AccetanceCriteria-Thesystemperformance parameters areinaccordance withthe'pplicable designdocuments.
(P100.1)ColdFunctional Testcapableofoperating onanintegrated basisinnormalandemergency modes,todemonstrate thatadequatepowersuppliesfortheclassIEequipment willexist-completed andplantsystemsarereadyforoperation onanintegrated basis.TestMethod-Emergency CoreCoolingSystems(RHR6CoreSpray)arelinedupintheirnormalstandbymode.Theplantelectrical systemislineduppernormalelectrical systemlineup(ForUnitlthislineupmaybedifferent thanthelineupfortwounitoperation).
Lossofcoolantaccidentsignalsareinitiated withandwithoutalossofoffsitepower.VoltagesandloadsareRev.22,4/8114.2"55 SSES-FSAR UESTION021.01Providethefollowing additional information forthesecondary containment:
(1)Showanappropriate plantelevation andsectiondrawings,
,thosestructures andareasthatwillbemaintained atnegativepressurefollowing aloss-of-coolant accidentandthatwereconsidered inthedosecalculation model;(2)ProvidetheTechnical Specification limitforleakagewhichmaybypasstheStandbyGasTreatment SystemFilters,(e.g.,valveleakageandguardpipeleakage);
and,(3)Discussthemethodsoftestingthatwillbeusedtoverifythatthesystemsprovidedarecapableofreducingtoandmaintaining anegativepressureof0.25",e.g.,withinallsecondary containment volumes.RESPONSE1)Following aloss-of-coolant-accident, allaffectedvolumesofthesecondary containment willbemaintained atnegativepressure.
Allthesevolumesareidentified onFigures6.2-24thru6.2-43asventilation zonesI,IIandIII.AlsoseeSubsection 6.5.3.2foradiscussion ofthereactorbuildingrecirculation system.2)SeeTechnical Specification 3/4.6;.5.3 forthelimitingconditions foroperation andthesurveillance requirements fortheSGTS.Allleakageintothesecondary containment istreatedbytheSGTS.Refertosubsection 6.2.3.2.3 foradiscussion ofcontainment bypassleakage.3)TheStandbyGasTreatment System(SeeSubsection 6.5.1.1)inconjunction withthereactorbuildingrecirculation system(seeSubsection 6.5.3.2)andthereactorbuildigisolation system(seeSubsection 9.4.2.1.3) isprovidedtoproduceandmaintainnegativepressurewithinaffectedvolumesofthesecondary containment.
Actuation andoperation oftheabovesystemswillbeusedtoverifythatthenegativepressureisestablished andmaintained.
Eachventilation zoneisprovidedwithredundant negativepressurecontrollers.
I,owpressuresideinputs(lowpressuresensingelements) tothesecontrollers arelocatedasfollows:Ventilation ZoneI-Ventilation ZoneII-AccessareofEL749'-l(SeeFigure6.2-28)AccessareaofEL.749'-l" Rev.22,4/81021.01-1 SSES-FSAR Ventilation ZoneIII-Refueling Floor,E1.818'-1" (SeeFigures6.2-30and6.2-40).Thequantityofairexhausted fromthesecondary containment willbesuchthatineachaffectedventilation zonethenegativepressurewillbemaintained.
Theinterconnecting ductworkoftherecirculation systemwillequalizethenegativepressurethroughout eachzone.Rev.2,9/78021.01"2 SSES-FSAR UESTION021.10Withrespecttocontainment steambypassforsmallbreaks,indicateyourcompliance withourproposedBranchTechnical Position"SteamBypassforMarkIIContainments,"
whichisenclosed.
RESPONSEAcomparison oftheSusquehanna SESdesignwithyourproposedBTP"SteamBypassforMKIICoatainments" ispresented below.Theitemnumberscorrespond withtheitemsintheBTP.l.a.BassCaabilitContainment WetwellSrasThewetwellspraysystemelectrical instrumentation andcontrolssuppliedbyGEmeetthesameESFstandards ofquality,redundancy andtestability astheRHRsystem,ofwhichitisapart.Thesystemismanuallycontrolled andactuated.
Theconsequences ofactuation ofthewetwellsprayonECCSfunctionareaddressed intheresponsetoQuestion211.13.l.b.Transient BassCaabilitAnalsesThecalculation ofmaximumallowable steambypassleakageforsmallsteambreaksaspresented inSection6.2.1oftheSusquehanna FSARcomplieswiththeintentoftheproposedbranchtechnical position; althoughitdoesnotassumeanormalplaatdepressurization/shutdown timeof6hours.Thecalculation assumesthatthesteamleakageisterminalted bysomeoperatoractioa(containment sprays,ADS)within15minutesafteranabnormally highsuppression chamberpressureisobserved(830psig).Themaximumsuppression chamberpressureexpectedduringaIOCA,assumingalldrywellairhasbeencarriedoverandnosteamleakagehasoccurred, is25psig.Significantly exceeding thispressure(to&30psig)indicates aleakagesituation andnecessitates operatoraction.Further,thecalculation conservatively neglectsanycontainment heatsinks(poolsurface,containment walls,etc.).Themethodemployedtocalculate themaximumallowable steambypasslakageflowcharacteristic (A/rgb)hasbeenpreviously described insomedetailinsubmittals toNRCquestions ontheHatchlnuclearplaat.Briefly,itsimplyinvolvesanendpointtypecalculation ofthemassofsteamwhichcanbeaddedtothesuppression chamberabove30psigtogivedesignpressure(45psig),conservatively assumingalldrywellairhasbeencarriedoverthethesuppression Rev.22,4/81021.10-1 SSES-FSAR chamberandtakingnocreditforsuppression chamberheatsinks/condensation.
KnowingthismassofsteamQMandassumingthattheoperatoractionwillbedelayed10minutesafterobservin'g the30psig,andthattheactionwillrequire5moreminutestotakeeffect(5t=15min.total),theallowable lakeageratem=Am/Atcanbecalculated.
Theflowcharacteristic A/~kcanthenbecalculated fromM=A/lvpschp"(gwherebPis'thepressuredifference betweenthedrywellandsuppression chamberatquasi-steady flow(equalP<g/gH,whereH=ventsubmergence).
TheresultisanA/~k=.06ft~forSusquehanna.
2.a.FSARSubsection 6.2.6.5'.1addresses thisitem.2.b.FSARSubsection 6.2.6.5.1.2 addresses thisitem.2.c.FSARSubsection
'6.2.6.5.1.2 addresses thisitem.3.a.TheSusquehanna designmeetstheintentofthisitem.SeeSubsection 6.2.1.1.3.2.
Withrespecttocompliance withtheproposedBranchTechnical Position"SteamBypassofMarkIIContainments,"
thefollowing Susquehanna SRPpositionstatement isrespectfully provided:
IssuanceoftheStandardReviewPlans(SRP)post-dates theSusquehanna construction permitbymorethan2years.Therefore, noattemptwasmadetodesigntheplanttotherequirements oftheSRPs.TheSusquehanna FSARwaspreparedusingRevision2ofRegulatory Guide1.70asmuchaspractical foraplantofitsvintage,withassurance fromNRCmanagement thatcompliance withthisRegulatory Guideassuredsubmittal ofallnecessary licensing information.
Asdocumented inaletterofAugust5,1977fromG.G.SherwoodtoE.G.CaseoftheNRC,theSRPsconstitute asubstantial increaseintheinformation requiredjusttodescribethedegreeofcompliance ofvarioussystems.Thisincreaseinturnrepresents asubstantial resourceexpenditure whichisunjustified andwhichcouldcauseprojectdelaysifrequiredoftheseprojects.
Asstatedinthe,reference letter,GeneralRev.22,4/Sl021.10-2 SSES-FSAR Electric(andPPM)believesthatSRPsshouldbeappliedtoFSARsonlytotheextentthattheywererequiredintheFSARs.PPGLandGeneralElectricbelievetheaboveposition, whichistheessenceofadirective fromBenC.Rusche,DirectorofNuclearReactorRegulation, totheNRCstaffdatedJanuary31,1977,istheappropriate procedure forreviewoftheSusquehanna FSAR.Rev.22,4/81021.10-3 SSES-FSAR UESTXON021.21Heareawarethatrevision3totheDFFRistobesubmitted tothisSummerandthatRevision2whichisnowreferenced isout-of-date,asitdoesnotadequately reflectthestatusofcurrentpooldynamicloads.DiscusshowtheDARwillbeupdatedtoreflectthisstatusanddiscussanyotherreportsyouintendtosubmittodocumentyourplantdesign.RESPONSE:
PPGLisworkingwiththeotherMarkIIownerstodevelopmethodologies, analytical programsandtestdatawhichwillprovideimproveddefinitions ofhydrodynamic loads.ThisefforthasresultedinRevision3totheDFFR,andisexpectedtoresultinfurtherrevisiontothatreport.ltispresently beingrevisedtoreflectthecurrentpositionoftheMarkXIowners.Futurerevisions totheDFFRareexpectedtohavenoeffectontheSSESDAR,sinceplantspecifics aswellasgenericMarkXImethodologies applicable toSSESwillbeincorporated intotheDAR.TheDARhasbeenupdatedtoreflectthecurrentdesignassessment methodologies usedatSSES.Rev.22,4/81021.21-1 SSES-PSAR Identifyallopeningsprovidedforgainingaccesstothesecondary containment, anddiscusstheadministr'ative controlsthatwillbeexercised overthem.Discusstheinstrumentation tobeprovidedtomonitorthestatusoftheopeningsandwhetherornotthepositionindicators andalarmswillhavereadoutandalarmcapability inthemaincontrolroom.RESPONSE:
1)Secondary Containment AccessOpenings:
DoorNos.Elev.Col.Coordinates SecurityMonitored 101102103-0104-0119A120A571-0670670670670676676818U/29U/37.4U/20.6U/29P/20.6P/37.4P/32YesYesYesYesYesYesYesRoofHatch8Elev.872,coordinates:
P/37.4(Security Monitored) 2)Doors5119A,120Aand571-0provideaccessintothesecondary containment throughtheuseofcardreader/cipher keyboardcontrol.Doors101,102,108-0,104-0andtheroofhatch(54001)willnotnormallybeusedtogainaccessintothesecondary containment.
Alltransactions willbeloggedintotheSecurityDataandManagement System(SDMS).Allalarmsgenerated willannunciate atboththeSecurityControlCenter(SCC)andAlternate SecurityControlCenter(ASCC).Theplantcontrolroomwillnothaveareadoutoralarmcapability.
BoththeSCCandASCCare,however,mannedcontinuously 24hoursaday.Instrumentation tocontrolandmonitorthestatusofsecondary containment isdescribed inChapter7.0oftheSusquehanna SESPhysicalSecurityPlan.Rev.22,4/81021.31-1 SSES-FSAR Subsection 4.2.2.2oftheDARstatesthat,thechuggingloadsonsubmerged structures andimpartedonthedowncomers willbeevaluated later..Providethepresentstatusoftheseevaluations andthescheduleforyoursubmission ofthecompleted evaluation.
 
===RESPONSE===
Thecalculation ofsubmerged structure loadsduetochuggingwillusetheimprovedchuggingloadmethodology developed underMarkIZOwnersGroupTaskA16.Theappropriate designsourceswillbeusedwiththeGreen'sfunctionsolutionfortheSSESannularcontainment toprovidethepressuredistribution inthesuppression pool.Thepressurearoundastructure willbeintegrated todetermine thenetpressureloadonthestructure.
Adescription ofthismethodology andverification willbeincludedintheDAR.Thechuggingsourcesusedwillbedeveloped fromthepressuretimehistories providedbyKWUforthedesignassessment (seeSSESDAR,Section9.5.3).Thedowncomer hasbeenassessedforthechuggingloadsandtheresultswillbeincorporated intotheDAR.Theothersubmerged structures arenowbeingevaluated.
Weexpectcompletion'f thisevaluation inAprilof1981.Rev.22,4/81021.71-1 SSES-FSAR Providetheinformation previously requested in020.44regarding loadsresulting frompoolswellwavesfollowing thepoolswellprocessorseismicslosh.Discusstheanalytical modelandassumptions usedtoperformtheseanalyses.
 
===RESPONSE===
Theanalytical methodofcalculating theloadsresulting fromseismicsloshandtheassumption usedaredescribed inawriteuptobeincludedintheOAR.Thisinformation willbesubmitted inApril1981.Rev.22,4/81021.73-1 SSES-FSAR Discusstheapplicability ofthegenericsupporting
: programs, testsandanalysestoSSESdesign(i.e.,FSIconcerns, downcomer stiffners, downcomer
: diameter, etc.)RESPONSE:
Acompletedescription oftheGKM-IIMtestprogram,testresultsandevaluation ofthetestdataisprovidedinChapter9.0oftheSusquehanna SESDAR.TheGKM-IIMtestswerestructured tobeasprototypical oftheSusquehanna SESplantconfigurations aswaspractical.
Assuch,concernsrelatedtoFSI,downcomers stiffnessg downcomer
: diameter, etc.,arefullyaddressed.
Rev.22,4/Sl021.75"1 SSES-FSAR Providethetimehistoryofplantofresponses ofplantstructures, components topooldynamicloads.modifications resulting frompoolspecificloadsandassessment piping,equipment andIdentifyanysignificant plantdynamicloadsconsiderations.
 
===RESPONSE===
Timehistoryinformation forLOCAloadscanbefoundinSSESDAR,Section4.2.Similarinformation duetoSRVactuation canbefoundinSSESDAR,Section4.1.Inaddition, theplantspecificLOCAandchuggingloaddefinition developed fromtheGKMII-MtestprogramcanbefoundinSubsection 9.5.3.Thisloaddefinition willbeusedtoevaluatetheconservatism oftheDFFRLOCAloaddefinition developed fromtheGKMII-MtestprogramcanbefoundinSubsection 9.5.3.Thisloaddefinition willbeusedtoevaluatetheconservatism oftheDFFRLOCAloaddefinition andisscheduled forsubmittal inRevision5oftheSSESDAR(March,1981).Assessment ofthepipingtopooldynamicloadsisnotcompleted.
PPGLinterprets thisquestionasrequiring:
a)Responseofpipinginthewetwelltopooldynamictimehistoryloads.b)Responseofpipinginthedrywell,wetwellandreactorbuildingtoresponsespectraduetoSRVandLOCAloads.SummaryoftheresultsofpipinganalysiswillbeprovidedintheDARuponcompletion ofpipinganalysisinMayof1981.Modification ofplantdesigntodatea)Additionofquenchers b)Designchangesinplatform, vacuumbreakers, andrecombiner Supportbeamsbyraisingthemoutofthepoolswellzone.c)Redesignofdowncomer bracingsystemd)Added60reinforcing barsineachsuppression chamnber.
e)Addedembedments andanchorboltsinsuppression chamberwallsanddiaphragm slab.f)Diaphragm slabreinforcements changedfrom'5to90toincreaseupliftloadingsacceptance.
g)Significant numberofpipesupportsaddedormodified.
Rev.22,4/81021.76-1 SSES-FSAR Providefiguresshowingreactorpressure, quenchermassfluxandsuppression pooltemperature versustimeforthefollowing events:(1)Astuck-open SRVduringpoweroperation assumingreactorscramat10minutesafterpooltemperature reaches110FandallRHRsystemsoperable; (2)Sameasevent(1)aboveexceptthatonlyoneRHRtrainavailable; (3)Astuck-open SRVduringhotstandbycondition assuming120Fpooltemperature initially andonlyoneRHRtrainavailable; (4)TheAutomatic Depressurization System(ADS)activated following asmalllinebreakassuminganinitialpooltemperature of120FandonlyoneRHRtrainavailable; and(5)Theprimarysystemisisolatedanddepressurizing atarateof100Fperhourwithaninitialpooltemperature of120FandonlyoneRHRtrainavailable.
Provideparameters suchasservicewatertemperature, RHRheatexchanger capability, andinitialpoolmassfortheanalysis.
 
===RESPONSE===
TheSusquehanna uniqueSRVmassandenergyreleaseanalysisispresented inAppendixIoftheDAR.Rev.22,4/81021'7"1 SSES-FSAR Withregardtothepooltemperature limit,providethefollowing additional information:
(1)Definition ofthe"local"and"bulk"pooltemperature andtheirapplication totheactualcontainment andtothescaledtestfacilities, ifany;and(2)Thedatabasethatsupportanyassumeddifference betweenthelocalandthebulktemperatures.
 
===RESPONSE===
Theterms"Local"and"bulk"temperature areusedasdefinedinSubsection III.C.l.a ofNUREG0487,"MackIIContainment LeadPlantProgramLoadEvaluation andAcceptance Critera",
UnitedStatesNuclearRegulatory Commission, October1978.Becauseofthedesignfeaturesofquenchers andtheirorientation inthesuppression pool(asdiscussed intheSSESDAR,Subsection 8.5.5),thedifferences between"local"and"bulk"pooltempoeratures areexpectedtobesmall.Therefore, thedifference shouldnotexceedthevaluewhichwaspreviously derivedforramsheaddischarge devicesinMarkIplants(10').Itisintendedtoverifythenumbersusingdatafromin-planttestswhicharepresently underpreparation forLaSalleandZimmer.Rev.22,4/81021.78-1 SSES-FSAR uestion021.79:Forthesuppression pooltemperature monitoring system,providethefollowing additional information:
(1)Type,numberandlocationoftimperature instrumentation thatwillbeinstalled inthepool;and(2)Discussion andjustification ofthesamplingoraveraging technique thatwillbeappliedtoarriveatadefinitive pooltemperature.
 
===RESPONSE===
(1)PleaserefertorevisedSection7.6.1b.l.2.
Susquehanna SEShascompleted evaluation ofthesuppression poolmonitoring criteriaasdefinedinNUREG-0487 andhasdeveloped abasicsystemasfollows:oNumberandLocationofTemeratureInstruments:
20remotetemperature detectors (seefigure021.74-35) ineachsuppression pools-16remotetemperature detectors locatedjustbelowthemin.waterlevelandarrangedtoprovide2eachon8locations aroundthepool.-4remotetemperature detectors (seeFigure021.74-35-TE's 15769,15761,15756, 15751)distributed aroundthepoolat"Q"center-linelocationo~Te:ClassIEInstrument-Divisionalized withonefromeachlocationineachdivision, exceptfor4remotetemperature detectors atthe"g"centerline.
Allsensorswillberedundant, SeismicCategoryIandsuppliedfromonsiteemergincy power.(2)Thetechnique issuedtoarriveatanaverage,orbulk,pooltemperature isconservative duetotheplacement ofthe16pooltemperature detectors.
These16detectors areevenlydistributed nearthepoolsurface,wherethehottestwaterwillriseRev;22'.4/81021.79-1 SSES"FSAR Table7.2-4,DesignBasisSetpoints, wasdeletedinRevision11.Severalsectionsstillrefertodatacontained inthattable.Severalreferences aremadetodesignbasissetpoints previously listedinTable7.2-4.Thistablehasbeenintentionally leftblank.Pleaseclarifythisdiscrepancy.
 
===RESPONSE===
Table7.2-4wasdeletedbecausetheinformation thereonhasbeenincorporated intheplantTechnical Specifications.
Someinformation fromTable7.2-1andalltheinformation fromTables7.2-5and7.2-6hasbeendeletedfromSection7.2andisalsocontained intheTechnical Specifications astheappropriate singlepointofreference forthisdata.Variousdiscussions inSection7.2havebeenrevisedbyappropriately referencing theTechnical Specifications ratherthanthedeletedtables.Rev.22,4/81032.52"1 SSES-FSAR Discussion oftheEmergency CoreCoolingSystemsandtheassociated tablesareincomplete andinconsistent.
Correctandclarifythefollowing:
1)Thesameinstruments areusedforReactorVessellowwaterlevelandPrimaryContainment highpressureformanyESFsystems.Thespecification shownfortheseinstruments inTables7.3-1through7.3-5arenotconsistant.
Correcttripsettings, ranges,andaccuracies shownfortheseinstruments.
2)Thesetableshaveallottedcolumnsforinstrument responsetimesandmargins(oftripsetting)tomeetrequirements ofIEEE279-1971Section3,butmostdatahasbeenomitted.Responsetimesshouldindicateminimumand/ormaximumwhereapplicable.
3)Table7.3"1hasomittedallspecifications fortheTurbineoverspeed instrument.
4)Figure7.3-5hasseveralerrors:oItdoesnotshowtwoADSlogicsasindicated in7.3.l.la.,1.4.4.
oReferenced Figure7.3-16doesnotexist.oItdoesnotshowlowpressureinterlocks toLPCIandCSrequiredtoinitiateADSasindicated in7.3.l.la.l.4.4.
5)Table7.3-2indicates onlyonereactorwaterlevelsetpoint(-149inches)fortheADS.Section7.3.1.1a.l.4.4 indicates twolevelsetpoints, alowandalowerwaterlevel.6)Useoflevelswticheswitharangeof-150"/0/+60" toinitiateADSandCSactionwithtripsettingsat-149doesnotseemlikeconservative design.Justifytheuseofthisrangeforthisapplication.
Discussaccuracyofthetripsettingandhowitisaffectedbynormalandaccidentenvironmental conditions andlongtermdrift.7)WhyaretworangesshownforLPCIpumpdischarge pressure(10-240psigand10-260psig).Rangeshownforthisinstrument inTable7.3-4is10-240psigonly.8)Section7.3.1.1a.l.4.5 onADSBypassesandInterlocks indicates thatitispossiblefortheoperatortomanuallydelaythedepressurizing actionandstates"ThiswouldresetRev.22,4/Sl032.54"1 SSES-FSAR thetimerstozerosecondsandpreventdepressurization for105seconds."
Table7.3-2,Figure7.3-8Sht.3andTable6.3-2allindicateatimedelayof120seconds.Howisatimedelayof105secondsachieved?
9)Explainwhytworanges(50-1000psigand50-1200psig)arelistedfortheReactorVesselLowPressureinstrument inTable7.3-3.10)Instrument rangesforpumpdischarge flow,Table7.3-3,andpumpminimumflowbypass,Table7.3-4,arespecified ininchesofwaterbuttripsettingsareingpm.Supplyrangesfortheseflowinstruments ingpm.Table7.3-9HPCISystemMinimumNumbersofTripChannelsRequiredforFunctional Performance doesnotagreewithTable7.3-1HPCIInstrument Specifications.
Table7.3-8doesnotlistHPCIpumphighsuctionpressureorTurbineOverspeed asshowninTable7.3-1.Table7.3-8liststwoitems,HPCIpumpflowandHPCIpumpdischarge flow,notshowninTable7.3-1.12)Table7.3-4LowPressureCoolantInjection
-Instrument Specifications doesnotagreewithTable7.3-10LowPressureCoolantInjection SystemMinimumNumberofTripChannelsRequiredforFunctional Performance.
Table7.3-10doesnotlistReactorlowpressureorPumpdischarge pressureasshowninTable7.3-4.Table7.3-10listsseveraltripchannelswhicharenotshowninTable7.3-4.TheseincludeReactorvessellowwaterlevelinsideshroud,Reactorvessellowflow,Primarycontainment highpressure, andReactorvessellowwaterlevel(Recirculation Pumps).13)Table7.3-11CoreSpraySystemMinimumNumbersofTripChannelsRequiredforFunctional Performance isincomplete.
ItdoesnotlistPumpDischarge FlowasshowninTable7.3-1.RESPONSE:
Tables7.3-1thru7.3-4havebeenrevisedtoincludeallappropriate instrument functions andthenumberofchannelsprovided.
Thetripsettingsandresponsetimeinformation hasbeendeleted,andisprovidedintheTechnical Specifications.
Tables7.3-8thru7.3-11aredeleted,withappropriate numberofchannelinformation incorporated intoTables7.3-1thru7.3-4.Revisions toTable7'-5havebeensubmitted withtheresponsetoQuestion032.55.2.Theinstrument responsetimesandmargins(oftripsettings) areincludedintheTechnical Specifications.
ThedatainRev.22,4/Sl032.54"2 SSES-FSAR theTechnical Specifications isintendedtoalsosatisfytherequirements ofIEEE279-1971, Section3.3.TheHPCIturbineoverspeed tripisawhichisintegralwiththeturbine.discussion oftheHPCIturbine.Theandaccuracyinformation isprovidedSpecifications.
mechanical device,SeeSection6.3,foroverspeed tripsettingintheTechnical 4,Figure7.3-5isrevisedtoshowasimplified pictureoftheADSandLPCI/CSinitiation logic.The"ADSdivisionIandIILogics,discussed inrevisedSubsection 7.3.l.la.l 4-4andshownindetailbyFigure7.3-8sheet3,areidentical andenergizing eitherwillinitiateADS.Therefore theyareshowntwiceinFigure7.3-5.Relatingthesimplified pictureinFigure7.3-5tothedetailedonein'Figure 7.3"8,theleftbranchcorresponds tologicAinDiv.I(orBinDiv.II)andtherighttologicCinDivisionI(orDinDiv.II).Anotehasbeenadded,toFigure7.3-5toclarifytheseparatelogicsforDiv.IandDiv.II.Thereference toFigure7.3-16contained onFigure7.3-5iserroneous.
Thecorrectreference FigureforLPCIlogicisFigure7.3-10,RHRFCD.Thelowpressureinterlocks forpumps(CSandRHR)havebeenaddedtoFigure7.3-5.5.TherevisedTable7.3-2includesanappropriate entryfor.ADSinitiation, withactioncausedbytwosignals,oneeachfromthereactorwaterlevelLl,andreactorwaterlevelL3.BothsignalsarerequiredbeforeADSisautomatically initiated.
ThesetpointforthisactionisprovidedintheTechnical Specifications.
6.Theinstrument tripsettingshavebeenremovedfromthetablesofChapter7andincludedintheTechnical Specifications'he levelswitchtripsettingof-149inchesforADSandCSwillbechangedandwillbewithintheproperaccuracyandrangeoftheinstrument.
Thetripsettingaccuracyrelatedtoabnormaloperating temperature withinthedrywellisdiscussed intheresponsetoquestion032.59.Instrument driftisincludedindeveloping theinstrument setpoints.7./8.TheLPCIpumpdischarge pressurepermissive fortheADShastworedundant channelsprovidedforeachLPCI(RHR)pump.Howevertheinstruments haveidentical ranges,soTable7.3-2hasbeenrevisedtoagreewithTable7.3-4.TheADStimersetpointfoundinTable6.3-2isanupperlimit.Thecorrectsetpoints (including margin)areprovidedintheTechnical Specification.
Thepropertimedelaytimeisbymechanical adjustment ofpneumatically operatedtimedelayrelay.ThetextofSubsection Rev.22,4/81032.54-3
.SSES-FSAR 7.3'.1a.l.4.5 hasbeenrevisedtodeletetheactualnumerical value.The105secondtimevalueisnominal,andwasusedtoallowforthemarginandtolerance ofthedevice.ThepropervalueisprovidedintheTechnical Specification.
9.ThetwotripsystemsforCShavediverseinstruments specified forreactorvesselandthesameinstruments areusedinLPCIlowpressure.
Tables7.3-3and7.3-4,asrevised,givetheinstrument rangesforbothtripsystems.ThetripsettingvaluesareprovidedintheTechnical Specifications.
10.TheCSandLPCI(RHR)pumpminimumflowbypassrangesareconverted fromdifferential pressuretoflowontherevisedTables7.3-3and7.3-4.11.Table7.3-1hasbeenrevisedtoincludeHPCIpumpminimumflowbypassandtheHPCIpumpflowcontroller signaling theHPCIturbine.Theturbineoverspeed tripisamechanical devicethatisintegralwiththeturbine,seeSection6.3.Theturbineoverspeed instrument rangehasbeenaddedtoTable7.3-1.ThenumberofchannelsprovidedisaddedtoTable7.3-1,andTable7.3-8isdeleted.TheminimumnumberoftripchannelsrequiredhavebeenaddedtotheTechnical Specifications.
12.TheLPCITable7.3-4hasbeenexpandedtoincludetheinstruments oftheactualdesignandthenumberofchannelsprovided.
ThemarginandtripsettingofTable7.3-4aswellasTable7.3-10havebeendeleted.13.TheCSTable7'-3hasbeenrevisedtoaddthenumberofinstrument channelsprovided, andmargin,responsetime,andtripsettingshavebeendeleted.Table7.3-11hasbeendeleted.Rev.22,4/81032.54-4 SSES-FSAR UESTION040.2Thestaffrequiresthatthefollowing qualification testprograminformation beprovidedforallClass1Eequipment:
(1)Identification ofEquipment including, (a)Manufacturer (b)Manufacturer's typenumber(c)Manufacturer's modelnumber(2)Equipment designspecification requirements, including, (a)Thesystem"safetyfunctionrequirements (b)Anenvironmental envelopewhichincludesallextremeparameters, bothmaximumandminimumvalues,expectedtooccurduringplantshutdown, normaloperation, abnormaloperation, andanydesignbasisevent.(c)Timerequiredtofulfillitssafetyfunctionwhensubjected toanyoftheextremesoftheenvironmental envelopespecified above.(3)Testplan,(4)Testset-up,(5)Testprocedures, (6)Acceptability goalsandrequirements, (7)Testresults,(8)Identification ofthedocuments whichincludeanddescribetheaboveitems.(9)Theinformation requested aboveshallbeprovidedforatleastoneitemineachofthefollowing groupsofClass1Eequipment.
(a)Switchgear (b)Motorcontrolcenters,(c)Valveoperators (incontainment)
(d)Motors(e)Iogicequipment Rev.22,4/81040.2-1 SSES-FSAR (f)Cable(g)Dieselgenerator controlequipment (h)Sensors(i)Limitswitches(j)Heaters(k)Fans(1)Controlboards(m)Instrument racksandpanels(n)Connectors (o)Penetrations (p)Splices(q)Terminalblocks(10)Inaccordance withtherequirements ofAppendixBof10CFR50,thestaffrequiresastatement verifying:
(a)thatallClass1Eequipment hasbeenqualified totheprogramdescribed above,and(b)thatthequalification information isavailable foranNRCaudit.RESPONSE:
Thequalification testprograminformation forClasslEequipment isprovidedintheSusquehanna SESEnvironmental
(}ualification ReportForClasslEEquipment submitted underseparatecover.Rev.22,4/81040.2-2 SSES-PSABstartontheautostart signalandoperateonstandbyforfiveminutes.(d)Verifying thatonlossofoffsitepowerinconjunction withasafetyfeaturesactuation signalthedieselgenerators startontheautostart signal,theemergency busesareenergized withpermanently connected loads,theauto-connected emergency (accident) loadsareenergized throughtheloadsequence, andthesystemoperatesfozfiveminuteswhilethegenerators areloadedwiththeemergency loads.(e)Verifying thatoninterruption oftheonsitesourcestheoadsareshedfromtheemergency busesinaccordance withdesignrequirements andthatsubsequent loadingoftheonsitesourcesisthroughtheloadsequencer.
(4)Thevoltagelevelsatthesafety-related busesshouldbeoptimized forthefullloadandminimumloadconditions thatareexpectedthroughout theanticipated rangeofvoltagevariations oftheoffsitepowezsourcebyappropriate adjustment ofthevoltagetapsettingsoftheintervening transformers.
Merequirethattheadequacyofthedesigninthisregardbevezifiedbyactualmeasurement andbycorrelation ofmeasuredvalueswithanalysisresults.Provideadescription ofthemethodformakingthisverification; beforeinitialreactorpoweroperation, providethedocumentation requiredtoestablish thatthisverification hasbeenaccomplished.
RESPONSEI.RefertoFigures8.3-1,83-2,8.3-3and8.3-15forthefollowing discussion onundervoltage detection andtransferlogic.Theprimarybustransferonlossofoffsitepowerisinitiated atthe13.8kVstartupswitchgear.
Eachclass1E4.16kVswitchgear busesprovidethebackupundervoltage transfer.
RefertoSubsection 8.3fordiscussion onbusarrangement andtheinterconnection oftheoffsitepowersuppliesandtheon-sitedistribution system~~Rev.22,4/81040.6-3 SSES-ZSAR(1)Each13.8kVstartupbusisprovidedwithanoffsitepowersupplyandthecapability ofconnecting tothesecondoffsitepowersupplybytheclosingofthel3.8kVtiebreaker(breaker52-10502)
.Theundervoltage detection systemateach13.8kVswitchgear busconsistsof(1)incomingfeeder(offsitepowersupply)undervoltage
-clays-device27AI,(2)busundervoltage relay-device27A2,and(3)tiebusundervoltage relay-device27A1.{a)Device27AX-initiates trippingoftheincomingfeeder.Device27AIisaninstantaneous plungertyperelaywithpickupsettingat93.6volts(78%oftherate120volts).Twoindependent singlephaserelaysareusedtomonitortheA-Band0-Cphasevoltages.
Theincomingbreakeristrippedoncoincidence logicofthetwoundervoltage relaysat917voltswith30cycletimedelay.(b)Device27A1-Provides thepermissive forclosingoftiebreakerDevice27A1isalongtimeinduction disctypeundervoltage relaysetat82volts(68%ofrated)andtimedial1/2.Twosinglephaserelayareprovidedformonitoring theavailability ofthealternate offsitepowersupplyatthe13.8kVlevelandprovideacoincidence logicfortheclosingofthetiebreaker(c)Device27A2-initiates thebustransfer)Device27A2isa3phaseinstantaneous plungertyperelaywiththreefullwavebridgerectifiers.
Therelayissettodropoutat30volt(25%ofrated).Bustransferiscompleted bytheclosingofthetiebreaker(permissive bydevice27A1).2.Each4.16kVclass1Eswitchgear busisprovidedwithapreferred andanalternate (offsite) powersupplyandonedieselgenerator feederasdiscussed inSubsection 83.1.3Theundervoltage detection andbackupbustransferonlossofoffsitepowerorsustained degradedvoltageonthebusisprovidedby(1)incomingfeederundervoltage relay-device 27',(2)busundervoltage relay-device27A,and(3)degradedvoltageprotection relays-devices 27B1,27B2,27B3,and27B4.ThedevicesettingsfortheClassIEbusundervoltage protection aresummarized inthefollowing Table40.6-1.Rev.22,.4(83>040.6-4 SSES-FSAR Device27AI-providesthepermissive forclosingoftheincomingbreakerDevice27AIisasinglephaseinduction disctyperelaysetat92voltsandtimedial1/2.Thisrelayisusedtomonitortheavailability of'theoffsitepowersupplyattheclasslE4.16ivlevel.(b)Device27A-initiates thebustransferDevice27Aisa3phaseinstantaneous plungertyperelaywiththreefullwaverectifiers.
Therelayissettodropoutat18voltor15%ofratedbusvoltage.The4.16kVbustransferisinitiated withatimedelayof10cyclesbytrippingofthepreferincomingfeederbreaker.Thetransferiscompleted ifthealternate offsitepowersupplytothis4.16kVbusisavailable (permissive bydevice27AI).Incasethealternate offsitepowerisnotavailable, thestandbydieselgenerator isinitiated tostartwitha0.5seconddelay.(c)Devices27B1,27B2,27B3,and27B4-initiatebustransferandundervoltage alarm.Theseundervoltage relaysaresolid-state,singlephasewithdefinitetimedelay(ITE27Dtypedefinitelongtime).Theadditional levelvoltageprotection foreach4.16kVClassIEbusisprovidedtoassurethatvoltagelevelsatallClassIEdistribution busesmeettheminimumrequirement ofallsafetyrelatedequipment.
Intheeventoflossofvoltageonthe4.16kVClassIEbus,thebusundervoltage relay(27A)initiates bustransferperparagraph (b)above.Inaddition, relays27Bl,27B2,27B3,and27B4providebackupprotection foralarmsandinitiating bustransfer.
Ifadegradedvoltagecondition occursonthe4.16kVClassIEbus,withnoLOCAsignalpresent(seeFigure8.3-15),whichisbelowthesettingofrelays27B1and27B2,analarm(coincidence logic)willbeinitiated after10seconds.Thesamerelayswillinitiatethebustransferafter30minutesLOCAsignalswillbypassrelays27B1and27B2orbustransferwillbeblockedbyLOCA.The10secondtimedelayisprovidedtoprecludespuriousalarms.The30~inutes timedelayisprovidedforoperators toinitiatecorrective actions.Theserelaysprovidepre-alarm toalerttheoperatorthat"abnormal" voltagecondition existsattheClassIEbus.Rev.22,4/81040.6-5 SSES-FSAR Inaddition, relays27B3and27B4willinitiateanalarmandbustransferafter17secondswhenthebusvoltageisdegradedbelowthesettingcoincident withanLOCAcondition.
Thesetworelaysarealsoconnected inacoincident logicwithtimedelayrelaystoprecludespurioustrippingoftheoffsitepowersources.Thisprotective schemewillforcealossofoffsitepoweronthe4.16kVClassIEbusondegradedbusvoltage.Ifthealternate offsitepowerisnotavailable, theemergency dieselgenerator willbestartedautomatically witha0.5seconddelayandconnected totherespective buswithin10secondspersection8.3.1.4.1.
Allbusundervoltage relayswillinitiatebustransfer, onlywhenthebusisfedfromtheoffsitepowersupplies.
However,theserelayswillinitiateundervoltage alarmevenwhenthebusisenergized byemergency dieselgenerator.
II.(1)Selection ofallvoltagerelaysettingsisbasedontheon-sitedistribution systemloadflowstudyandisverifiedbypreopezational tests.Thecontinuous operating voltageateachdistribution voltagelevelismaintained at,+10%oftheratedvoltagelevelovertheentiretransmission gridoperating range.Trippingoftheoffsitepoversupplyatthe13.8kVlevelisaccomplished byacoincidence logicoftvoindependent'ingle phaseundervoltage relays.ThebackuptrippingofthesameoffsitepowersupplytotheClass1E416kVsvitchgear isprovidedbya3phasefullwaverectifiers typeundezvoltage relayforminimizing nuisancetrippingsuchaslossofa-..single controlfuseinthedetection circuit..
Thetotaltimedelayallowedbyrestarting
{starting) ofclasslEequipment afteraDBAis13secondsasshownon'able8.3-1.10secondsisreservedfordieselgenerator starting.
Therefore, 3secondsisallocated forvoltagesensingandbustransfer.
Pze-operating testsvillverifythatthetimedelayonthebustransferdoesnotexceedtheallowable time.Asdiscussed in(I)ofabove,offsitepowersupplyzsautomatically disconnected atthe13.8kVlevel.Ifthetransferisnotcompleted withinthetimedelayoftheClass1E416kVbustransfercircuit,theoffsitepowersupplyisalsodisconnected atthe4.16kVlevel.Theundervoltage detection sensorsandcircuitsaredesignedinaccordance withIEEEstd279-1971Rev.22,4/81040.6-6 SSES-FSAR 4)4((2)Allloadsoneach4.16kVClass1Eswitchgear busexceptthe480voltloadcentercederareshedonlossofpowertothebus.Oncethebusisre-energized, the4.16kVClasslEloadsareloadedinaccordance withthepre-settimedelay.Loadsheddingandreloading of4.16kVclasslEloadsarerepeatedasdiscussed abovewheneverthebusbecomesde-energized.
(4)RefertoChapter16forTechnical Specification.
Transformer tapsettingsaceselectedforoptionaloperating voltagelevelsfora11loadingconditions undertheanticipated voltagevariation oftheoffsitepowersupplies.
Thecontinuous operating voltageateachlevelismaintained within+10%orated.Pre-opeationaltestsverifytheactualvoltagelevels.III.RelaySettings:
Thefunctionandsettingsofundervoltage relaysaredetermined inconsideration ofthefullload,minimumload,andthelargestmotorstartingconditions thatareexpectedthroughout theanticipated rangeofvoltagevariations fortheoffsitepowersources.Thefollowing designcriteriaareused:(1)Themaximumallowable voltageatnoloadortheminimumloadcondztxons is110%ofthemotorratedvoltage.(2)Theminimumvoltageunderthemaximumrunningloadcondition xs90/ofthebusratedvoltage.(3)Theminimumstartingvoltageis80%ofmotorratedvoltage.SeeTable40.6-1.Rev.22,4/81040.6-7 SSES-FSAR TABLE40.6-1SETTINGTABLE(4KVBUS)DeviceNo.27AI(preferred)
FunctionPermissive toclosethepreferred powerincomingBreaker.AlarmYesVoltage~nettin95%Time~nettin8sec.27AI(alternate)
Permissive toclosethealternate powerincomingBreakerYes95%8sec.27A59/27Initiatebustransfer.
Triptheincomingclosedbreaker.Busover/under voltage(alarmonly&locatedinloadcenter)YesYes15%110%/90%10cycles10sec.27Bl27B2Undervoltage alarmandinitiatebustransferwithtimedelayrelays.Yes95%10sec.27B1X27B2XTimedelayrelayswith27B1&27B2toinitiatebustransfer.
No30min.27B327B4InitiatebustransferonLOCAcondition No93%17sec.Rev.22,4/81 SSES-FSAR QUESTION040.32:Insection9.5.2.2youdescribetheplantcommunications systemprovided.
Itisnotedthatuseofradio(portable andfixed)communications hasbeenexcluded.
Aspartoftheplantdefense-in-depthconcept,intheeventofanaccidentorfireinanareawherefixedcommunications systemscannotbeused,werequire(asaminimum)thatportablecommunications equipment beprovidedatstrategic workstationsintheplantforusebypersonnel undersuchconditions.
 
===RESPONSE===
RefertorevisedSubsection 9.5.2andtheresponseprovidedtoquestion281.13.Rev.22,4/81040.32-1 SSES-FSAR UESTION40.951.Provideatablethatlistsallequipment including instrumentation andvitalsupportsystemequipment requiredtoachieveandmaintainhotand/orcoldshutdown.
Foreachequipment listed:a.Differentiate betweenequipment requiredtoachieveandmaintainhotshutdownandequipment requiredtoachieveandmaintaincoldshutdown.
b.Defineeachequipment's locationbyfirearea,c.Defineeachequipment's redundant counterpart, d.Identifyeachequipment's essential cabling(instrumentation, control,andpower).Foreachcableidentified:
(1)Describethecablerouting(byfirearea)'fromsourcetotermination, and(2)Identifyeachfirearealocationwherethecablesareseparated bylessthanawallhavingathree-hour fireratingfromcablesforanyredundant shutdownsystem,ande.Listanyproblemareasidentified byiteml.d.(2)abovethatwillbecorrected inaccordance withSectionIII.G.3ofAppendixR(i.e.,alternate ordedicated shutdowncapability).
 
===RESPONSE===
Themethodofverifying safe-shutdown capability suggested inQ40.95wasconsidered.
However,amoreefficient andlesstime-consuming butequallyeffective methodofreviewbasedonexamination ofeachfirezonewaschosen.First,alistofsystemsrequiredtoshutdowntheplantwasdeveloped.
Criteriaincludedalossofoffsitepower,allsystemsshouldbesafety-related,nosinglefailure(otherthanasinglefireanditseffects),
andthatmanualoperation andcontrolpost-fire wereacceptable.
SeeTable40.95-1.Toshowtheredundant equipment anddifferentiate betweenequipment requiredtoachieveandmaintainhotshutdownandequipment requiredtoachieveandmaintaincoldshutdown, Table40.95-1isdividedintothreegroupsofsystems,categorized bytheirfunctions, asdescribed below.GroupIconsistsofthosesystemsrequiredforbothhotandcoldshutdown.
Anexampleisthecontrolroddrivemanualscramcircuits.
GroupIsystemsarefurtherdividedintotwoindependent subsystems designated DivisionIandDivisionII.Divisions inanyoneGroupIsystemmustbesingle-fire isolated*
fromeachother.Rev.22,4/8140.95-1 SSES-FSAR GroupIIconsistsofthosesystemsrequiredforhotshutdown.
Severalsystemsarelistedt;ogether becauseoftheinterdependency ofthesesystems,e.g.dieselgenerators andauxiliaries.
Again,thesesystemsarefurtherdividedintoDivisions IandII.Allequipment andcablesessential forGroupII,DivisionI,mustbesingle-fire isolatedfromallessential cablesforGroupIIDivisionIIsystems.Hence,asanexample,RCIC(Division I)andHPCI(Division II)mustbesingle-fire isolated*
fromeachother.GroupIIIconsistsofthosesystemsrequiredforcoldshutdown.
Again,DivisionImustbesingle-fire isolated*
fromDivisionII.Thosesystemswithcontainment isolation valveshaveacross-divisonal circuit.Thisisnecessary fordiversecontainment isolation function.
Ifthesystem,sayHPCI,isDivisionII,thecross-division isolation valvecircuitswouldberoutedintheirownseparated conduits.
: Likewise, theRCICsystem,DivisionI,thecross-divisional circuitswouldberoutedintheirownconduits.
Thecrossdivisional circuitsofthesetwosystems,willbesingle-fire isolatedfromeachotherandfrombothDivisions IandIIuptothebreaker.Table40'5-2isaspecificcomponent listingofthosedevicesessential tothefunctioning ofthesystemsinTable40.95-1.Firezonelocationforeachdeviceisalso-listed.Unit2equipment fornon-common systemsdifferonlyinthattheprefix1ischangedto2forbothequipment numberandfirezone.Thespecificmethodofcablereviewisdescribed below.TheFireProtection ReviewReportanalysis(Section4.0)verifiesthatfireswillbecontained withinthezoneoforigin.Eachfirezoneisreviewedindividually.
First,aracewaylayoutdrawingismarkedtoshowthedivisionalization ofthesafety-related raceway.Theminoritydivisionisidentified anditsracewayislisted.Theterm"minority division" referstotheelectrical divisionwhichhasfewerofitsracewaysroutedthroughthefirezoneinquestion.
: Actually, eitherdivisioncouldbechosenforfurtherexamination, buttheminoritydivisionrepresents theleasteffort.Thecablesinallthelistedminorityracewaysarechecked,andanynotconnected toasafeshutdownsystemasgiveninTable40.95-1ortoanyofthecomponents listedinTable40.95-2aredeleted.Allcableleftisreviewedforitssupportofthesystem'ssafeshutdownfunction(s) andfortheeffectsoffailurecausedbyfire.Thisstepleavessafeshutdowncablingthatviolatesfirezoneseparation.
Eachcableorcomponent isthenreviewedforapplicable fireprotection measures.
Thecableistheneitherreroutedorseparation barriersand/orsuppression anddetection systems,asnecessary, areprovided.
*Single-fire isolatedmeanseitherinseparatefirezonesorhavingthefollowing fire-protection measures:
a)Fire/smoke detection isprovidedinallfirezonescontaining essential minoritydivisionsafeshutdownraceway..Rev.22,4/8140.95-2 FSAR-SSESTABLE40-95-1SystemsRequiredForShutdownGROUPI-SystemsRequiredforHot6ColdShutdownControlRodDrive-ManualScramCircuitsonlyMainSteamIsolation Valves(manualclosurefunctionsonly)Suppression PoolTemperature Mcnitorinq ReactorPressureVesselInstrumentation GROUPII-SystemsRequiredforHotShutdownDivisionIRCICADSESHESSWPumphouse HVACDieselGenerators andAuxiliaries DieselGenerator HVACContainment Instrument GasDivisionIlHPCIplusallDivisionIIofthesesystemsunderModeII,DivisionexceptRCIC.GROUpIII-SystemsRequiredforColdShutdownDivisionIRHRRHRSMESQESSMPumphouse HVACDieselGenerators andAuxiliaries DieselGenerator HVACDivisionIIAllDivisionIIofaboveRev.22,4/Sl SSES-FSAR 2.ProvideatablethatlistsClass1EandNon-Class IEcablesthatareassociated withtheessential safeshutdownsystemsidentified in,item1above.Foreachcablelisted:a.Definethecables'ssociation tothesafeshutdownsystem(commonpowersource,commonraceway,separation lessthanRegulatory Guide1.75guidelines, cablesforequipment whosespuriousoperation willadversely affectshutdownsystems,etc.))b.Describeeachassociated cablerouting(byfirearea)fromsourcetotermination, andc.Identifyeachlocationwheretheassociated cablesareseparated bylessthanawallhavingathree-hour fireratingfromcablesrequiredfororassociated withanyredundant shutdownsystem.RESPONSE:
a.Affiliated circuitsareusedinSSESinplaceof"associated" circuitswhicharedefinedinSection8.1.6.lnparagraph 4)and5).Theseparation/isolation betweenClassIEandnon-ClassIEcablesaredesignedtominimizeanyfailureinthenon-Class IEequipment fromcausingunacceptable influences intheClassIEsystem.b.Theaffiliated circuitsaresubjected tothesamerequirements asClassIEcircuits.
RefertoSections3.12.3.4and8.3.1.11.4 andTable8.3-10forcableroutingrequirements.
c.Theaffiliated cablesareroutedwiththeirrespective ClassIEcablesasdescribed inTable8.3-10.Therefore, theseparation betweentheaffiliated cablesandtheredundant ClassIEcables,including thosecablesrequiredforsafeshutdown, isinaccordance withRegulatory Guide1.75.The.responsetoQuestion40.95addresses thecableseparation betweenredundant shutdownsystems.Rev.22,4/8140.96-1 SSES-FSAR UESTION3.Provideoneofthefollowing foreachofthecircuitsidentified initem2.cabove:aTheresultsofananalysisthatdemonstrates thatfailurecausedbyopen,ground,orhotshortofcableswillnotaffectit'sassociated shutdownsystem,b.Identifyeachcircuitrequiring asolutioninaccordance withsectionIII.G.3ofAppendixR,orIdentifyeachcircuitmeetingtherequirements ofsectionIII.G.2ofAppendixR(i.e.,three-hour wall,20feetofclearspacewithautomatic firesuppression, orone-hourbarrierwithautomatic firesuppression).
 
===RESPONSE===
a.Anaffiliated circuitmayaffectitsassociated shutdownsystemintwoways:Affiliated circuitroutedwithshutdowncircuitorinsameenclosure:
A~nalaie:Anopencircuitofaffiliated cablewillnotaffectshutdownsystembecausetheClassIEcableandaffiliated cablehavethesamequalified cableinsulation.
(seeTable9.5-1).Forshortingorgrounding ofaffiliated
: circuits, refertoSection8.1.6.lnparagraph 5)forthebasisandmethodsforseparation/isolation ofNon-Class IEandClassIEcircuits.
Theworstcredibleeventwhichcouldaffectoneoftheredundant shutdowntrainsthroughtheaffiliated circuitisafireinvolving aracewaycontaining bothaffiliated cableanditsassociated shutdownsystemcables.Assumeintheworstcasewherethesecablesareallshortedtogetherwith120Vac,125Vdc,250Vdc,or480Vaccableduetoafire.(4kVandhighervoltagecablesareroutedintheirownconduit).
Theprotective device(s) ofthefaultedcircuitsshouldbetrippedtopreventfurtherdamageintotheshutdownsystem.IftheClasslEprotective devicedoesnottrip,theshutdownequipment maybedamaged,andtherefore preventtheequipment fromperforming itsshutdownfunction.
However,failureofaClasslEdevicetotripmustbeconsidered asinglefailure,whichisbeyondthefireprotection designbasis.Inorderforthisshutdowntrain,asdesigned, tofailduetofire,thesemultiple, independent, lowprobability eventsmusthappensimultaneously.
Thisisconsidered extremely unlikely.
Rev.22,4/8140.97-1 SSES-PSAR (2)Affiliated circuitsharingthesamepowersupplyoftheassociated shutdowncircuits:
A~nalsis:Sameasdescribed inSection8.1.6.1.n forseparation/isolation ofnon-Class IEandClassIEcircuits.
b.Rc.Theaffiliated circuitsaresubjected tothesamerequirements asClassIEcircuits.
Theresponsetoquestion40.95addresses thiscondition.
Rev.22,4/8140.97-2 SSES-FSAR 5~Theresidualheatremovalsystemisgenerally alowpressuresystemthatinterfaces withthehighpressureprimarycoolantsystem.ToprecludeaLOCAthroughthisinterface, werequirecompliance withtherecommendations ofBranchTechnical PositionRSB5-1.Thus,thisinterface mostlikelyconsistsoftworedundant andindependent motoroperatedvalveswithdiverseinterlocks inaccordance withBranchTechnical PositionICSB3.Thesetwomotoroperatedvalvesandtheirassociated cablemaybesubjecttoasinglefirehazard.Itisourconcernthatthissinglefirecouldcausethetwovalvestoopenresulting inafire-initiated IOCAthroughthesubjecthigh-lowpressuresysteminterface.
Toassurethatthisinterface andotherhigh-lowpressureinterfaces areadequately protected fromtheeffectsofasinglefire,werequirethefollowing information:
a~Identifyeachhigh-lowpressureinterface thatusesredundant electrically controlled devices(suchastwoseriesmotoroperatedvalves)toisolateorprecluderuptureofanyprimarycoolantboundary.
b.Identifyeachdevice'sessential cabling(powerandcontrol)anddescribethecablerouting(byfirearea)fromsourcetotermination.
C.Identifyeachlocationwheretheidentified cablesareseparated bylessthanawallhavingathree-hour fireratingfromcablesfortheredundant device.d.Fortheareasidentified initemcabove(ifany),providethebasesandjustification astotheacceptability oftheexistingdesignoranyproposedmodifications.
 
===RESPONSE===
Wehavereviewedthemajorreactorpressureboundaryhighpressure/low pressureinterface valvesperBranchTechnical PositionRSB5-1.Usingthesecriteria, checkvalvesinserieswithmotoroperatedvalves(MOVs)areacceptable.
AfirecouldopenonlytheMOV.Manyoccurrences ofthiscombination ofcheckandMOVexistatSSESintheCoreSpray,Feedwater, andResidualHeatRemovalSystems,amongothers.Usuallyassociated withthecheckvalveisapneumatic operator.
Thisoperatorisfortestingpurposesonlyandcanneitherunseatnorpreventfromseatingthevalveflapperwhenadifferential pressureexistsacrossthevalve.Hence,afire-caused failureofthesolenoidactuators forthepneumatic operators onthesecheckvalvescannotcausethevalvestoopeninadvertently andthuscannotdegradethereactorcoolantpressureboundary.
Rev.22,4/Sl40.99"1 SSES-FSAR Inadditiontotheabove,threepairsofvalvesperunit(sixpairstotal),allassociated withtheRHRSystemashigh/lowpressureinterface valves,consistoftworemotelyoperatedvalvesinseries.Onepairofthesevalvesperunitintheshutdowncoolingsuctionline.TheotherpairareinthelinestoeachRHRheatexchanger foruseinthesteamcondensing mode.Thevalvenumbersaregivenbelow:Unit1HV-E-11-1F008/HV-E-ll-l F009ShutdownCoolingMode(motoroperated)
PV-E-ll-1F051A/PV-E-ll-l F052ASteamCondensing Mode(airoperated)
PV-E-ll-1F051B/PV-E-ll-l F052BSteamCondensing Mode(airoperated)
Unit2HV-E-11-2F008/HV-E-ll
-2F009ShutdownCoolingMode(motoroperated)
PV-E-ll-2F051A/PV-E-11
-2F052A'team Condensing Mode(airoperated)
PV"E-11-2F051B/PV-E-ll
-2F052BSteamCondensing Mode(airoperated)
Theshutdowncoolingsuctionvalvesareinseparatedivisions andaresubjecttothenormalseparation criteria.
Also,theinboardvalveislocatedinsidetheinertedcontainment whereafirecannotbepostulated.
Acable-by-cable separation reviewwasconducted; cablesfrombothvalvesarenotroutedinanysinglefirezoneotherthanthemaincontrolroomandtheRemoteShutdownPanels(RSP).Areactorpressurevesselinterlock preventsashutdowncoolingvalveswitchinthemaincontrolroomfromopeningitsvalvewheneverthevesselpressureexceedsthedesignratingofthedownstream RERpiping.Adesignchangeisunderwaytorelocatethepressureinterlock contactbetweentheMCRandtheRSP.Therelaypanelscontaining thepressurecontactsarelocatedinseparated relayrooms.Hence,afireoranoperatormistakeineithertheMCRorRSPwillnotcauseanoverpressurization.
Thesteamcondensing modevalvesareinterconnected bydesignforcoordinated steamadmission andpressurecontrolandhencearenotseparated nordivisionalized.
Shouldbothvalvesbedrivenopenbyfire,adequateoverpressurization protection existsviaPSV-Ell"F055A 8Btopreventruptureofthedownstream RHRpiping.Rev.22,4/8140.99-2 SSES-FSAR Figures3.6-1through3.6-9and3.6-14areindicated as"Later".Provideaschedulefortheirinclusion intheFSAR.RESPONSE:
Seerevisedfigures3.6-1through3.6-8.Figure3.6-9hasbeenintentionally leftblank.Figure3'-14willbeprovidedinthesecondquarterof1981.Rev.22,4/81110.29-1 SSES-FSAR Asrequiredby10CFR50.55a(g) werequestthatyousubmityourpreservice andinitial20monthinservice testingprogramforpumpsandvalves.Enclosure 110-3providesasuggested formatforthissubmittal andadiscussion ofinformation werequiretojustifyanyreliefrequests.
 
===RESPONSE===
Thepreservice andinitial20monthinservice testingprogramforpumpsandvalveshasbeensubmitted underseparatecover.Rev.22,4/81110.47-1 SSES-FSAR Areviewofthedesignadequacyofyoursafety-related electrical andmechanical equipment underseismicandhydrodynamic loadingswillbeperformed byourSeismicQualification ReviewTeam(SQRT).Asitevisitatsomefuturedatewillbenecessary toinspectandotherwise evaluateselectedequipment afterourreviewofthefollowing requested information.
TheSQRTeffortwillbeprimarily focusedontwosubjects.
Thefirstistheadequacyoftheoriginalsingle-axis, single-frequency testsoranalysesofequipment qualified perthecriteriaofZEEEStd.344-1971.
Thesecondsubjectisthequalification ofequipment forthecombinedseismicandhydrodynamic vibratory loadings.
Thefrequency ofthisvibration mayexceed33hertzandnegatetheoriginalassumption ofacomponents rigidityinsomecases.AttachedEnclosure 110-4describes theSQRTanditsprocedures.
SectionV.2.Arequiresinformation whichyoushouldsubmitsothatSQRTcanperformitsreview.SeveraloftheBNRHarkZIOLapplicants havestatedintheirClosureReportsthatequipment willbequalified fortheSRSScombination ofthehydrodynamic andseismicrequiredresponsespectra(RRS).Similarly, whenqualified byanalysis, thepeakdynamicresponses oftheequipment tothehydrodynamic andseismicloadswillbecombinedbySRSS.Thecombining bySRSSofeithertheRRSorpeakdynamicresponses forhydrodynamic andseismicloadingsisnotacceptable atthistime.Toaidthestaffinitsreview,provideacompilation oftherequiredresponsespectralistedbelowforeachflooroftheseismicCategory1buildings atyourplant.(1)theRRSfortheOBEorSSE,whichever iscontrolling.
lftheOBEiscontrolling, explainwhy.(2)thecontrolling hydrodynamic RRS(3)items(1)and(2)combinedbySRSS(4)items(1)and(2)combinedbyabsolutesum.RESPONSE:
Theconcernsraisedbythisquestionhavebeenaddressed intheSRQTsubmittals ofDecember, 1980,January,1981andFebruary, 1981.Rev.22,4/81110.50-1 SSES-PSAR QUESTION121.8:~ewillrequirethatyourinspection programforClass1,Zand3components beinaccordance withthe=evise'ules in10CEHPdr50,Section50.55a,paragraph (g)publ'shed inthePebruary12,1976issueofthe."-EDERAL REGISTER.
Toevaluateyourinspec-ion p"ogram,"hefollowing minimuminformation isnecessary rorourreview:(1)Apreservice inspection plantoconsis-oftheapplicable ASllECodeEditionandtheexceptions totheCoderequirements.
(2)Aninservice inspection plansubmitted withinsixmonthsofanticipated commercial operation.
Thepreservice inspection planwillberevi..wed tosupportthesafetyevaluation reportfindingoncompliance withpreservice andinservice inspection requirements.
Thebasisforthedetermination willbecompliance with:(1)TheEditionofSectionXIoftheASl}ECodestatedinyourPSARorlaterEdit'onsofSectionXI=eferenced intheFEDERALREGISTERthatyoumayelecttoapply.Allaugmented examinations established bytheCommission whenaddedassurance ofstructural reliability wasdeemednecessary.
Examplesofaugmented examination requirements canbefoundinNRCpositions on(a)highenergyfluidsystemsinSRPSection3.2,(b)turbinediskintegrity inSRPSection10.2.3,and(c)feedwater inletnozzleinnerradii.Yourresponseshoulddefinetheapplicable SectionXIEdition(s)andsubsections.
Ifanyexamination requirements ofthe"-ditionofSectionXIinyourPSARcannotbemet,areliefrequestincluding completetechnical justificationtosupportyourconclusion mustbeprovided.
Theinservice inspection planshouldbesubmitted forreviewwithinsixmonthsofanticipated commercial operation todemonstrate compliance with10CFRPart50,Section50.55a,paragraph (g).Thisplanwillbeevaluated inasafetyevaluation reportsupplement.
Theobjective istoincorporate intotheinservice inspection programSectionXIrequirements ineffectsixmonthspriortocommercial operation andanyaugmented Rev.22,4/81121.8-1 examination requirements established bytheCommission.
Yourresponseshoulddefineallexamination requirements thatyoudetermine arenotpractical withinthelimitations ofdesign',geometry, andmaterials ofconstruction ofthecomponents.
Attachedaredetailedguidelines forthepreparation andcontentoftheinspection programsandreliefrequeststobesubmitted forstaffreview.RESPONSE:
Theinspection programforClass1,2and3components hasbeenprovided(PLA-619, N.W.CurtistoB.J.Youngblood dated1/27/81).Rev.22,4/81121.8-2 SSES-FSAR UESTION123.1PursuanttoGeneralDesignCriterion 2,safety-related structures, systemsandcomponents aretobedesignedforappropriate loadcombinations arisingfromaccidents andseverenaturalphenomena.
Withregardtothevibratory loadsattributed tothefeedbackofhydrodynamic loadsfromthepressuresuppression poolofthecontainment, thestaffrequiresthatsafety-related mechanical, electrical, instrumentation andcontrolequipment bedesignedandqualified towithstand effectsofhydrodynamic vibratory loadsassociated witheithersafetyreliefvalve(SRV)discharge ofLOCAblowdownintothepressuresuppression containment combinedwiththeeffectsofdynamicloadsarisingfromearthquakes.
Thecriteriatobeusedbythestafftodetermine theacceptability ofyourequipment qualification programforseismicanddynamicloadsareIEEEStd.344-1975assupplemented byRegulatory Guides1.100and1.92,andStandardReviewPlanSections3.9.2and3.10.Statetheextenttowhichtheequipment inyourplantmeetstheserequirements andtheaboverequirements tocombineseismicandhydrodynamic vibratory loads.Forequipment thatdoesnotmeettheserequirements providejustification fortheuseofothercriteria.
 
===RESPONSE===
I.BOPForSusquehanna Project,allBOPSafetyrelatedmechanical, electrical, instrumentation andcontrolequipment locatedinsidePrimaryContainment, ReactorandControlbuildings, isbeingqualified forSeismicloadsincombination withhydrodynamic vibratory loadsassociated withSRVdischarge andLOCAblowdown.
AlthoughtheSRSSmethodofcombination ofseismicandhydrodynamic loadsisacceptable, fortheprojecttobeconservative, theloadsarecombinedbyabsolutesummethod.Thecaseswhichhavedeviations fromtheabsolutesummethodofcombination willbeidentified inthequalification reports.Thecriteriaforthequalification ofBOPequipment forseismicloadsisdescribed inSection3.7b.3oftheFSAR.Thecriteriaforloadcombinations andmethodology forthedesignassessment andqualification ofSafetyrelatedBOPequipment forseismicandhydrodynamic loadshavebeendescribed inSections5'and7.1.7oftheDesignAssessment Report(DAR)Rev.2.Basically therequirements ofIEEEStd.344-1975asSupplemented byRegulatory guides1.100and1.92andSRPSections3.9.2and3.10arecoveredinthecriteriawiththefollowing exception forspatialcombination ofthreecomponents ofdynamicmotionasstatedinSection7.1.7.1.3 oftheDAR.Thecriteriastates"theresponseatanypointisthemaximumvalue~Rev.22,4/81123.1"1 SSES-FSAR obtainedbyaddingtheresponseduetoverticaldynamicloadwiththelargervalueoftheresponses duetooneofthehorizontal dynamicloadsbytheabsolutesummethod."AllSusquehanna BOPequipment isbeingqualified forthecriteriadiscussed above.II.NSSSLOADCOMBINATIONS:
Theseweretransmitted totheNRCon8/28/80asPage3ofAttachment NtoPLA-536.ThiswasinresponsetoNRCQuestion110.42.IMPLEMENTATION OFLOADCOMBINATIONS:
TheGESQRTProgramusesoutputsfromtheGEEquipment AdequacyEvaluation ProgramwhichcombinesdynamicloadsbySSESasacceptedbytheNRCinNUREG-0484.
Theindividual itemsassociated withtheloadcombinations areaddedasdescribed below:SteadyStateEvents(e.g.,DeadLoad,Pressure)
-AbsoluteSumTimeVaryingComponents (e.g.,MaximumSeismic,MaximumHydrodynamic)
-SRSSComponents ofEvents(e.g.,MaximumX-LoadDuetoY-Earthquake)
-SRSSModalResponse-SRSS, exceptforcloselyspacedmodeswhereeffectsarecombinedbyAbsoluteSum,DoubleSum,orGrouping.
Detailsforeachitemofequipment arecontained inthatequipment's DesignRecordFilewhichisavailable foraudit.Rev.22,4/81123.1"2 SSES-FSAR Providethefollowing information:
Twosummaryequipment lists(oneforNSSSsuppliedequipment andoneforBOPsuppliedequipment).
Theselistsshouldincludeallsafetyrelatedmechanical components, electrical, instrumen-tation,andcontrolequipment, including valveactuators andotherappurtenances ofactivepumpsandvalves.Inthelists,thefollowing information shouldbespecified foreachitemofequipment.
(1)Methodofqualification used:a)Analysisoftest(indicate thecompanythatpreparedthereport,thereference reportnumberanddateofthepublication).
b)Ifbytest,describewhetheritwasasingleormulti-frequency testandwhetherinputwassingleaxisormulti-axis.
c)Ifbyanalysis, describewhetherstaticordynamic,singleormultiple-axis analysiswasused.Providenaturalfrequency (orfrequencies) ofequipment.
(2)Indicatewhethertheequipment hasmetthequalification requirements.
(3)Indicatethesysteminwhichtheequipment islocatedandwhethertheequipment isrequiredfor:a)hotstand-byb)coldshutdownc)bothd)neither(4)Locationofequipment, i.e.,building, elevation.
(5)Availability forinspection (Istheequipment alreadyinstalled attheplantsite?)Rev.22,4/81123.2-1 SSES-FSAR (ii)Anacceptable scenarioofhowtomaintainhotstand-byandcoldshutdownbasedonthefollowing assumptions:
(1)SSEorOBE(2)Lossofoffsitepower(3)Anysinglefailure(iii)Acompilation oftherequiredresponsespectra(RRS)forallapplicable vibratory loads(individual andcombinedifrequired) foreachfloorofthenuclearstationunderconsideration.
 
===RESPONSE===
Theresponsetothisquestionwassubmitted viaPLA-627(CurtistoYoungblood) datedFebruary5,1981.Rev.22,4/81123.2-2 SSES-FSAR UESTION123.3Identifythoseitemsofnuclearsteamsupplysystemandbalance-of-plant equipment requiring reevaluation andspecifywhyreevaluation isnecessary (i.e.becausetheoriginalqualification usedthesinglefrequency, singleaxismethodology, becauseequipment isaffectedbyhydrodynamic loads,orbecausebothoftheaboveconditions werepresent)foreachitemofequipment.
 
===RESPONSE===
Originally almostallSafetyrelatedBOPequipments forSusquehanna hadbeenqualified foronlySeismicloads.Thisequipment hasbeenre-.evaluated duetotheinclusion ofnewhydrodynamic (SRV6LOCA)loads,andarebeingre-qualified withrespecttothecriteriadescribed inDARSection7.17.Thequalification programfortheBOPSafetyrelatedequipment isbeingexecutedinthefollowing fourphases.Phase-I:uglification ofEuimentforOnlSeismicLoads:qrempecxfx.ed xnFSARSubsectx.on 3.7b.3.Phase>>II:
Evaluation forCombinedSeismicandHdrodamic(SRV8LOCA)Loads:Theonlyknowndynamicloadatthetimeofexecution ofthisphaseoftheprogramwasSeismicloads.Duringthisphase,thevendorssupplying theequipment wererequiredtoqualifytheequipment inaccordance withthereuientssThisphasewasundertaken toevaluateiftheexistingSeismicqualification ofallSafetyrelatedBOPequipment couldbeextendedtothecombinedSeismicandhydrodynamic loads.Thecriteriausedforthere-evaluation isdescribed inDARSection7.1.7.Thegeneralproblemareasidentified duringthisevaluation andtheproposedactiontomitigatetheseproblemsareshownbelow.Rev.22,4/81123.3-1 SSES-FSAR PROBLEMACTIONAdditional Hydrodynamic LoadsFlexibility ofEquipment Supportnotconsidered oRetestand/orReanalysis.
oModifications toequipment ortheirSupportsifrequired.
oProvideresponsespectreconsidering supportflexi-bility.Inadequate Modelling Inadequate TestingoIncludeSupportConditions duringanalysisortesting.oCorrectduringreanalysis.
oRetestoQualification byanalysis.
PhaseIII:Reuglification Efforts:Specifically, theProblemareasidentified inthepreviousphaseareresolvedduringthisphasebytakingappropriate actions.There-qualification reportsdemonstrate thatthecriteriaofDARSection7.1.7havebeencompliedwith.PhaseIV:Modifications toEuimentorEuimentSuorts:Equipment ortheirSupportsneedingmodifications identified duringtheregulations effortsofPhaseIIIareexecutedduringthisphase.Thefollowing areNSSSequipment:
SYSTEMSafetyReliefValveMSIVFlowElementRecirc.PumpMotorGateValveHCUCRDValvesSLCStorageTankSLCAccumulator SLCPumpSLCExplosive ValveMPLijB21F013B21F022/F028 B21N051/52/53/54 B31C001B31F023/31/32 C12D001C12F009/10/ll/12 C41A001C41A003C41C001C41F004Rev.22,4/81123.3-2 RHRHeatExchanger RHRPumpFlowOrificeAssemblyLPCSPump6MotorFlowOrificeAssemblyMSIVHeaterMSIVBlowerHPCIPumpHPCITurbineFlowOrificeAssemblyRCICPumpRCICTurbineFlowOrificeAssemblyFuelPrepMachineGen.PurposeGrappleDryerSSeparator SlingHeadStrongBackControlRodGrappleRefueling PlatformInVesselRackDef.FuelStorageCont.FuelStorageVaultSSES-FSAR CONTROLROOMPANELSE11B001E11C002E11N012/N014 E21C001E21N002E32B001E32C001/C002 E41C001E41C002E41N007E51C001E51C002E51N001E18E001F18E011F19E008F19E009F20E002E21E003F22E006F22E009F22E012ReactorCoreCoolingBBPowerRangeMonitoring CabinetRPSDiv.1and2LogVBRPSDiv.2and3LogicalVBNSSSTemperature RecorderVBFeedwater 8Recirculation Instrument PanelNSSSProcessInstrument PanelDiv1RHR/HPCIRelayVBDiv2RHR/HPCIRelayVBADSChARelayVBMSIVLeakageControlDiv2VBHPCIRelayVBRCICRelayVBInboardValveRelayBoardOutboardValveRelayVBDiv1CSRelayVBDiv2CSRelayVBADSChBRelayVBMSIVLeakageControlDiv1VBRadiation Monitoring Instrument PanelARadiation Monitoring Instrument PanelBOperating BBH12-P601H12-P608H12"P609H12-P611H12-P614H12-P612H12-P613H12-P617H12-P618H12-P628H12"P654H12-P620H12-P621H12"P622H12-P623H12-P626H12-P627H12-P631H12-P655H12-P606H12"P633'12-P680 Rev.22,4/8l123.3-3 SSES-FSAR Termination CabinetsPlantOperation Benchboard Condensing ChamberCondensing ChamberCondensing ChamberCondensing ChamberCondensing ChamberCondensing ChamberNUCLEARBOILERLOCALPANELSH12-P700SeriesH12-P853B21-D002B21-D004AB B21-D006AD B21-D007AD B21"D008AD B21-D009AD ReactorWaterClean-UpReactorVesselIevelandPressure(A)ReactorVesselLevelandPressure(B)Recirculation PumpAJetPumpBHighPressureCoolantInjection BReactorCoreIsolation CoolingAResidualHeatRemovalChannelAResidualHeatRemovalDiv.2ChannelBRecirculation PumpsDrywellPressureLocalPanelADrywellPressureLocalPanelBMainSteamIsolation ValveIeakageControlCoreSprayLocalPanelAStandbyLiquidControlMainSteamFlowA/BHighPressureCoolantInjection LeakDet.CoreSprayChannelBMainSteamFlowC/DHighPressureCoolantInjection ReactorCoreIsolation CoolingLeakDet.MainSteamFlowA/BMainSteamFlowC/DMainSteamIsolation ValveLeakageCon.HighPressureCoolantInjection Div.1AReactorCoreIsolation CoolingDiv.2BSRM/IRMNUCLEARBOILERTemperature ElementTemperature ElementTemperature ElementH23-P002H23-P004H23"P005H23-P009H23-P010H23-P014H23-PoljH23-P018H23"P021H23-P022H23"P057H23-P058H23"P074Div.2H23-P001H23-P011H23-P015H23-P016H23"P019H23-P025H23-P036H23-F038Div.2(B)H23-P041H23-P042H23-P073Div.1H23"P034H23-P037H23-P030/31/32/33 B21-N004B21"N010AD B21-N014AD Rev.22,4/81123.3-4 SSES-FSAR Transmitter Transmitter Transmitter Transmitter Transmitter Transmitter PressureSwitchTemperature ElementTemperature ElementVacuumSwitchTemperature ElementDifferential PressureTemperature ElementDifferential PressureLevelSwitchI,evelSwitchTemperature SwitchPressureTransmitter PressureIndicator Valve,GuideTubeMiscellaneous PartsPressureSwitchPressureSwitchLimitSwitchLimitSwitchI,evelTransmitter Temperature ElementDifferential PressureDifferential PressureDifferential PressurePressureSwitchSwitchPressureSwitchLevelSwitchLevelSwitchTemperature ElementTemperature ElementFlowIndicating SwitchDifferential PressureSwitchPressureSwitchFlowMeterLevelSwitchLevelSwitchLevelSwitchIevelSwitchIevelSwitchTemperature ElementTemperature ElementTemperature ElementTemperature Indicator I,evelSwitchTemperature ElementB21"N015AD B21-N016AD B21-N017B21-N056AD B21-N064B31-N014CD B31-N023AB B31-N024AB C12-N013AD C12-N013EF C41-N003C41-N004C41"R003C51-J004AE C51-5110001 C72-N003AD C72-N005AD C72-N006AD C72-N008AD Ell-N008AB Ell-N009AD Ell"N013Ell-N015A Ell-N015B Ell-N018Ell-N021AB Ell-N022AB Ell-N023AB Ell-N024Ell-N029AD Ell-N030AD Ell"N033AB E21-N003AB E21-N006AB E21-N007AB E32-N006E41-N002E41-N003E14-N014E41-N015AB E41"N018E41-N024AB E41-N025AH E41-N028AB E41-R002E51-N010E51-N011AB thruE41-N030AB Rev.22,4/81123.3-5 SSES"FSAR Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature SwitchElementElementElementElement.Indicator ElementElementElementE51-N021AB E51-N022AB E51-N023AB E51-N025AD thruE51-N027AD E51-R005G33-N016AF G33-N022AF G33-N023AF G33-N044A Rev.22,4/81123.3-6 SSES"FSAR QUESTION123.4:Describethemethodsandcriteriausedtodetermine theacceptability oftheoriginalequipment qualification tomeettherequiredresponsespectraofitem2.(iii).-123.2(iii).RESPONSE:
I.BOPForcases.wheretheoriginalspectraforwhichanequipment wasqualified enveloped thecombinedSeismicandhydrodynamic loadspectraofItem123.2(iii),theequipment isconsidered qualified.
Otherwise (whichistrueformostcases)theequipment, isrequalified forthecombinedspectratomeetthecriteriadiscussed inresponsetoQuestions 123.1.Thesecriteriaaredescribed inSection7.1.7oftheDesignAssessment Report.II.NSSSThemethodsandcriteriausedtodetermine theacceptability oftheoriginalequipment qualification maybefoundinGeneralElectricCompany's Proprietary reports:NEDE-24788, "SeismicQualification ReviewTeam(SQRT)Technical ApproachforRe-Evaluation ofBWR4/5Equipment";
andNEDE-25250 "GenericCriteriaForHigh-Frequency CutoffofBWREquipment".
Rev.22,4/81123.4-1 SSES-FSAR Describethemethodsandcriteriausedtoaddressthevibration fatiquecycleeffectsontheaffectedequipment duetorequiredloadingconditions.
 
===RESPONSE===
I.BOPAsdescribed inSubsection 3.7b.3.2ofFSAR,ingeneral,thedesignofequipment isnotfatiguecontrolled sincethenumberofcyclesinanearthquake islow.ForcombinedSeismicandhydrodynamic loadsforequipment qualified byanalysis, thefatigueeffectsareimplicitly considered sincethestressesduetoSRV(whicharegenerally controlling forfatigue)areasmallcontribution totheoverallequipment stresses.
FatigueeffectsinBOPequipment qualified bytestingareaccounted forbyrepetition ofthetests.Typically testsaredonefor5OBE(or5upsetconditions, i.e.,OBE+SRV+LOCA)followedby1SSE(or1faultedcondition, i.e.,SSE+SRV+LOCA)ineachoffront-to-back/vertical andside-to-side/vertical biaxialconfigurations.
Inaddition, onsomeselectedpiecesofequipment, vibratory tabletestingiscarriedoutforanextendeddurationoftime(suchas30to60minutes)beyondthecombinedloadingtest.Theinputmotionsfortheextendeddurationtestswillbesuchthatthegenerated testresponsespectraforanysegmentoftheextendeddurationtestswillenvelopetheSRVspectra.Furthermore, itwillbeascertained thattheequipment performsitsintendedfunctionbefore,duringandafterthevibratory tabletests.Theresultsoftheextendeddurationtestswillbedocumented intherespective qualification reports.II.NSSSVibration fatiguecycleeffectsforNSSSequipment designedtoASMEcoderequirements wasreviewedatGEbyNRCconsultants fromBattellePacificNorthwest Laboratories onOctober7,1980.Theconsultants statedsatisfaction withtheGEapproachwhichencompasses OBE,SRV,thermalandpressurecycles.NonASMECodecomponents qualified bytestaddressthe"strongmotion"phaseofseismicandSRVdynamicmotionsufficient togeneratemaximumequipment response.
Theseloadsarecontrolling.
GEtestinggenerally consistsof5upsetand1faultedtestof30secondseachwhichisabout50$greaterthanrequiredtoaddressstrongmotionvibration.
Rev.22,4/81123.5-1 SSES-FSAR NonASMECodecomponents qualified byanalysisgenerally havenot,inthepast,hadtoaddressvibration fatiguecycleeffects.Inmostcases,sucheffectsarenotnowpartofthequalification record.Rev.22,4/Sl123.5-2 SSES-FSAR Basedonthemethodsandcriteriadescribed initems4and5,providetheresultsofthereviewoftheoriginalequipment qualification withidentification of(1)equipment whichhasfailedtomeettherequiredresponsespectraandrequiredrequalification, and(2)equipment whichwasfoundacceptable, togetherwiththenecessary information tojustifytheadequacyoftheoriginalqualificatioa.
RESPONSEI.BOPForcaseswheretheoriginalseismicreportscanbeextendedtoqualifyanequipment forcombinedseismicandhydrodynamic loadsbyinspection andsubsequent concurrence byvendor,suchdocuments formapartofthequalification package.Thefollowing piecesofequipment boughtundertheindicated purchaseorder(P.O.)fallintothiscategory:
(1)Coolingandchilledwaterpumps(P.O.gM-327)(2)Expansion TanksandAirSeparator Taaks(P.O.AM-302)(3)NitrogenGasAccumulators (P.O.j/M-156)TherestoftheBOPequipment isbeingqualified forthecriteriadescribed inSection7.1.7oftheDesignAssessment Report.Thequalification reportsforthisequipment willprovidetheappropriate documentation.
II.NSSSRefertotheResponsetoQuestion123.3forthelistofequipment reevaluated byGEoatheSusquehanna SQRTProgram.Alloftheequipment listedinqualified toSQRTCriteriawiththeexception ofthefollowiag:
B21"F022/F028 B31-F031/F032 C12>>F009/F010 F011/F012 C41-A003C41-F004E32-B001MSIVGateValveCRDValveSLCAccumulator SLCExplosive ValveMSIVHeaterDatarequiredfromvendorOperability deflection analysisrequiredOperability deflection analysisrequiredA/Epipeaccelerations requiredA/Epipeaccelerations requiredTestrequiredRev.22,4/81123.6-1 SSES-FSAR E41-C002E51-C002F22-E006F22-E009H12-P608H23-P030"P031"P032-P033163C1158272A8005272A8006HPCITurbineRCICTurbineInvesselRackDef.FuelStorageCont.PowerRangeMonitoring CabinetSRM/IRMPanelsFlowTransmitter onH23-P074SwitchonH12-P853SwitchonH12-853TestrequiredAnalysisoflubeoilpipingrequiredAnalysisrequiredAnalysisrequiredTestrequiredTestrequiredTestrequiredTestrequiredTestrequiredInformation tojustifyqualification oftheequipment selectedbytheNRCfortheSiteAuditwillbeavailable atthesiteforNRCinspection.
Information tojustifyqualification oftheremainder oftheequipment isavailable forNRCauditatGE-SanJose.Rev.22,4/Sl123.6-2 SSES-FSAR Describeprocedures andscheduleforcompletion ofeachitemidentified initem6.(1)123.6(1)thatrequiresrequalification.
 
===RESPONSE===
I.BOPTypically, thequalification programisexecutedinthefollowing steps.oDetermine Qualification AwardsRequestVendor(orConsultant)
QuoteReceiveandEvaluateQuotePlacePurchaseOrderoPerformQualification REviewTestProcedure ReviewAnalysisMethodology BeginAnalysisorTestingoFinalCompletion ReceiveandreviewRequalification ReportsFinalApprovaloftheReportThescheduleforthecompletion ofthequalification programisshownintheattachedTable123.7-1.II.NSSSTheresponsetoQuestion123.6liststheequipment foundbyGEtorequirerequalification alongwithastatement definingtheworktobeperformed.
Allrequalification willbecompleted onaschedulesufficient topermitNRCreviewpriortofuelload.Rev.22,4/Sl123.7-1 TABLE123.7-1SCHEDULEFORCOMPLETION OFEUIPMENTREQUALIFICATION Page1of6SQRTFormNo.E-109-1E"109-2E-112E"117-1E-118E"119A"1E-119A-2E-119A-3E-119BCE-120-1-120"2E-121-1E-121"2E-135-1E-135-2E-136E"151E-152E-155J-038AE~niment4kVSwitchgear 4kVSwitchgear Sub-Components ESW8RHRPumpMotors480VSafe-Guard LoadCenterUnitSubstations 480VMotorControlCentersBatteryMonitorsBatteryFuseBoxeseBatteryChargers24Vdc,125VdcS250VdcBatteryCells6Racks125VdcDistribution Panels24VdcDistribution Panels125V6250VdcIoadCenters250VdcControlCentersElectrical Penetration (MediumVoltage)Electrical Penetration (LowVoltage)ACInstrument Transformers MotorGenerator Sets8ControlCabinetAutomatic TransferSwitchesControlSwitchesFieldMountedElectronic PressureTransmitters No.ofItems/2Units12122420162216121232144Sets4432Completion Date3-13-815-15-81Complete3-27-814-17-813-27-813-27-813-27-815-29"813-20-814-10-813-27-814-10-815-15-815-15-813-27-81CompleteComplete6-15-81CompleteRev.22,4/81 SQRTFormNo.J-03B-1thruJ-03B-14E~nimentPanel-MountedInstruments No.ofItems/2Units242Page2of6Completion Date4thquarter1981J-05A-14,31,33,37, ControlPanels6Devices10A6B,43,47,49, 92,93,95697315-30-81(panels)6-15-81(devices)
J-05B-1RemoteShutdownControlPanel5-30-81(panels)6-15-81(devices)
J-27J-31J-59-1thruJ-59-10ReactorCoolantPressureBoundaryLeakDetection SystemAnnubarFlowElementsRTD's54Complete(panels)6-15-81(devices)
Complete5"22-81J-65-1thruJ-65-4ControlValvesinNuclearService283-27-81J-65B-1thruJ-65B-llControlValvesinNuclearService863-27-81J-69-162J-69B-1thru6J-70-1J-70-2J-92-1thruJ"92-5PilotSolenoidValvesPilotSolenoidValvesPressureRegulating ValvesProcessSolenoidValvesExcessFlowCheckValves74762385-15-815-15-815-15-815-15-815-1-81J-98CarrierModulator (Isolator) 6"15-&1M-llM"12M"22-162M-30(78forms)M-30(6forms)M-55ESWPumpsRHRSuctionWaterPumpsReactorBuildingCranesDieselGenerator DieselGenerator ReactorVesselTopHeadInsulation SupportSteel4Sets4SetsCompleteComplete4-3-81Complete2"27-81CompleteRev.22,4/81 SQRTFormNo.E-58M-60M-87-1M-87-2M-90M-149M"151M-156E~nimentDieselOilTransferPumpsBuriedDieselGenerator FuelOilStorageTanksContainment HydrogenRecombiners HydrogenRecombiner PowerSupplyFuelPoolSkimmerSurgeTanksContainment VacuumReliefValvesSuppression PoolSuctionStrainers Containment NitrogenGasAccumulators No.ofItems/2Units203260Page3of6Completion DateComplete3-27-815-15-81Complete4-27-815-22-81CompleteCompleteM-159-1thruM-159-21NuclearSafety8ReliefValves585-1-81M-160ACSRVDischarge Line8,RHRReliefValveF055Discharge LineVacuumBreakers685-15-81M-164-192CRDVentValvePlatformHighDensitySpentFuelPoolRacks48ModulesCompleteCompleteM"302M-307-1thruM-307-3Expansion Tanks6AirSeparators Centrifugal FansComplete3-13-81M-308"1M-308"2VaneAxialFans,ReactorBuildingVaneAxialFans,Diesel'enerator Building5-1"81CompleteM-308-364M-309-1thruM>>309-4VaneAxialFans,ESSWPumphouse AirHandlingUnits12Complete4-17-81M"310M"315M-317'-320"1Centrifugal WaterChillersReactorBuildingUnitCoolersDrywellUnitCoolersChlorineDetectors 24125-22-815-29-813"27-816-15-81Rev.22,4/81 SQRTFormNo.M-320-2-1A 61BM-320-2-2A M-320-3M-320-4M-370-5A65BM-320-6-1A 61BM"320-6-2A M-320"6-3A 67M-320-8M-320-9M-320-10M-321"1M-321-2M"321-3~EnimentFlowSwitchesFlowSwitchesLevelGaugePressureDifferential SwitchesTemperature SwitchesTemperature SwitchesTemperature SwitchesTemperature SwitchesPressureDifferential Transmitter Temperature DetectorUnitLevelSwitchesStandbyGasTreatment System-HousingStandbyGasTreatment System-DelugeDrainValvesStandbyGasTreatment System-ControlPanelsNo.ofItems/2Units282410184Page4of6Completion Date6-15-816-15-816-15-816-15-816-15-816-15-816-15-816-15-816"15-816-15"816-15-812-20-815-1-813-6-81M"323C-1M-323C-2M-325M-327-1M"327-2M-334-1thruZ-334-5AirFlowMonitoring UnitSGTSExhaustVentFlowCondition-ing8SamplingProbeSystemHighEfficiency Ventilation FiltersChilledWaterPumpCoolingWaterPumpHVACControlPanels6Devices123"13-813-13-81CompleteCompleteComplete5-30-81(panels)6-15-81(devices)
M-336AM-362M"365P"10A-1HVACDampersSGTSCentrifugal FansChilledWaterReliefValvesMotorOperatedGateValves,6008195Units5-8-81Complete5-1-816-15-81Rev.22,4/81 SQRTFormNo.-10A"2P-10A-3E~nimentMotorOperatedGateValves,9008MotorOperatedGlobeValves,900886008No.ofItems/2Units15Page5of6Completion Date6-15-816-15-81P-10BMotorOperatedStopCheckValves,90086-15-81P-11A-1P-11A-2MotorOperatedGateValves,900'irOperatedTestableCheckValves,90086-15-816"1-81P"12A-1P12A-2P12A-3P-12A"4MotorOperatedGateValves,150j/MotorOperatedGlobeValves,300j/MotorOperatedGateValves,300j/GearOperatedGate8GlobeValves,300jj24206-15-816-15-816-15-816-1-81P-12B-1P-12B"2-12B"3MotorOperatedGateValves,150jj63008AirOperatedGateValves,150j/GearOperatedGate8GlobeValves,150jj14136-15"816-1-816-1-81P-14AP-14BP-15AP15B-1P-15B-2P-16A-1MotorOperatedGlobeValves,15008MotorOperatedGlobeValves,1500//MotorOperatedGlobeValves,15008MotorOperatedGateValves,15008AirOperatedGateValves,1500'otor OperatedButterfly Valves,150jj18286-15"816-15-816-15-816-15-816-1-816-15-81P16A-2P-16A-3AirOperatedButterfly Valves,1500GearOperatedButterfly Valves,150jj126-1-816-1-81P"17A-1-17A-2MotorOperatedGateValves,900j/MotorOperatedGlobeValves,90086-15-816"15-81Rev.22,4/81 SQRTFormNo.P-17A-3P"17A"4P-17BP-18AP-31AE~nimentAirOperatedTestableCheckValves,9008GearOperatedGateValves,900//AirOperatedTestableCheckValves,90017GearOperatedGateValves,1508AirOperatedButterfly Valves,1508No.ofitems/2UnitsPage6of6Completion Date6-1"816-1-816-1-816-1-816-1-81Rev.22,4/81 SSES-FSAR UESTION123.8Describeplansforaconfirmatory in-situimpedance testandanin-plantSRVtestprogramorotheralternatives tocharacterize theabilityofequipment toaccommodate hydrodynamic loading.RESPONSE:
In-Situtestsarebeingperformed forthedetermination ofstructural dynamiccharacteristics oftheequipment forin-service condition.
Thisin-situinformation isbeingusedassupporting evidencefor(a)validating amathematical modelforqualification byanalysis, or(b)simulating thein-service condition onthevibratory tabletestsforqualification bytesting.Theresultsandtheusageofin-situtestingwillbedescribed intherespective qualification reports,wheneversuchtestsareperformed.
AllsafetyrelatedBOPequipment foSusquehanna projectisbeingqualified forcombinedseismicandhydrodynamic loadsforthecriteriadescribed inSection7.1.7ofDAR.Susquehanna hasnoplanstoperformanin-plantSRVtestforequipment qualifications,per se.Anairbubbletestwasconducted inthesuppression poolinanattempttosimulatetheeffectsofanSRVairclearingtransient load.Thedatafromthistestarebeingstudiedinanefforttodetermine theextentofconservatisms intheanalytical prediction ofappliedhydrodynamic loads.Rev.22,4/81123.8-1 SSES-FSAR Toconfirmtheextenttowhichthesafetyrelatedequipment meetstherequirements ofGeneralDesignCriterion 2,theSeismicQualification ReviewTeam(SQRT)willconductaplantsitereview.Forselectedequipment, SQRTwillreviewthecombinedrequiredresponsespectra(RRS)orthecombineddynamicresponse, examinetheequipment configuration andmounting, andthendetermine whetherthetestoranalysiswhichhasbeenconducted demonstrates compliance withtheRRSiftheequipment wasqualified bytest,ortheacceptable analytical criteriaifqualified byanalysis.
Thestaffrequiresthata"Qualification SummaryofEquipment" asshownontheattachedpagesbepreparedforeachselectedpieceofequipment andsubmitted tothestafftwoweekspriortotheplantsitevisit.Theapplicant shouldmakeavailable attheplantsiteforSQRTreviewallthepertinent documents andreportsofthequalification fortheselectedequipment.
Afterthevisit,theapplicant shouldbepreparedtosubmitcertainselecteddocuments andreportsforfurtherstaffreview.RESPONSE:
Susquehanna SQRTpre-visit information requiredforhasbeensubmitted forallBOPandNSSSequipment.
ofEquipment" andthepertinent documents, reports,necessary information asrequiredareavailable fortheSQRTsitereview"Qualification SummaryvendorprintsandallSQRTreview.Rev.22,4/81123.9-1 SSES-FSAR TheSusquehanna FSARSection3.7b.2.1indicates thatbothaflexiblebasemodelandafixedbasemodelwereutilizedfortheseismicanalysisofthecontainment building.
Discussandexplaintherationale forusingtwodifferent modelsfortheseismicanalysis.
Demonstrate theequivalency ofthetwomodelsbycomparing theirdynamiccharacteristics ontheresultsfromthetwoanalyses.
 
===RESPONSE===
Afixedbasemodelcanbejustified sincethecontainment isfoundedonhard,competent rock.Theminimumshearwavevelocity, Vs,fortherockis6200fps(reference:
Subsection 2.5.4.2.1).
Therefore, structural designofthecontainment wasbasedonthefixedbaseresults.Aflexiblebaseanalysis, whichtakesintoaccountsoilstructure interaction effects,wasusedtogeneratestructural responsespectraforevaluation ofequipment, pipingsystems,etc.SeeattachedFigures130.20-15 through130.20-18 forcomparative responsespectraatthetopofthereactorpedestalforbothfixedandflexiblebaseresults.Thestructural accelerations, shearforces,bendingmomentsandaxialforcesforthefixedandflexiblebaseanalysesgenerally differbylessthan20%withthemajorityofvalueswithin10-15'his isshownintheattachedFigures130.20-1through130.20-10.
Therefore, thetworesultsareconsidered comparable.
SinceseismicforcesfortheSusquehanna siteaccountforlessthan20%ofthetotalmaximumreinforcing steelstressforthegoverning loadcombination, the20%maximumincreaseinseismicresponsefortheflexiblebaseresultswouldresultinonlya4%increaseinstress.Thisincreaseinstressiswellwithintheexistingdesignmargin.Theflexiblebasedisplacements arelargerthanthefixedbasedisplacements byapproximately 20-50%.ThisisshownintheattachedFigures130.20-11 through130.20-14.
Theselargerdisplacements fortheflexiblebaseanalysiswereusedtodetermine therequiredseparation betweenthecontainment andthesurrounding reactorandcontrolbuildings.
Rev.22,4/81130.20-1 SSES-FSAR InTorsional AnalysisofDieselGenerator BuildingandESSNpumphouse:
Justifytheuseofstaticanalysisforadynamicphenomenon.
 
===RESPONSE===
Subsection 3.7b.2.11 states"Astaticanalysiswasdonetoaccountfortorsion...".
Thisstatement pertainstothedistribution ofseismicforces.Duringthedynamicanalysisstagetheinertiaforceateachmass.However,sincethecenterofrigiditydoesnotcoincidewiththecenterofmass,thereistorsion.Theinertiaforceobtainedfromthedynamicanalysiswasusedbymultiplying itwiththeeccentricity (thedistancebetweenthecenterofmassandthecenterofrigidity) toobtainthetorsional moment.Thismomentwasthendistributed tothestructural wallsforassessment.
Aminimumexcentricity of5%wasconsidered.
Rev.224/81130.21-1
.136-~0.128-FlexibleBaseModelResultsFixedBaseModelResults,~228I~3,0.220~caIo.2ooI/9'5'0.175II./8/0.154Ii~/so0.137l~/2Ij~/080.109I.oeqI1011~os'u~>77/I,052120.046I22(.ZS80.24023~8'830.614.~sos0.446IIj~345'0.294Ij~2/g0.183I'~/360.128II1524I~/97I~/8Io.128'7./~/2180.108Ij~ot30.09126~078I190.071III.o~tfIIRev.22,4//81UNITS:G's13.0320.021~a210,020SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENT HORIZONTAL ACCELERATIONS OBEFIGURE130.20-1 56789101213'~Z'Ml0.251I~83/,0.215I~zo30.189Ij~gzo0.169i~/50.152'(~/48~0.137l~/36Il0.126~/z5i~/o30.092IjlloBo(,0.067II~o520.0342214.390.33123II24~Z7oJ520716P.lt170.161~,/S457180.140I~/320.12126II~/2o190.100I~iot200.073l~//Z70,751I~5540.545I,I~I(~4410.360Ii~zBZ0.225I.(z+0.161UNITS:G'sRev.22,4/81,d5SUSQUEHANNA STEAMELECTRICSTATION210.034UNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENT HORIZONTAL ACCELERATIONS SSE.136-FlexibleBaseModelResults0.128-FixedBaseModelResults.FIGIIHE.130.20-2
.0400.059I~040>O.OS9l~03'PI.'iO.O58Ij~03S0.055Ii~0360.051I,~0340.047I~o3z0.043~O300.0391415161718~ocr0.062II.o65~0.061II~o~o0.057QP222425./030.103lII~ioo0.101.a%40.094f~os'.084I.a670.05420.032101213~2728.uz00.024l~0200,0153pI2926II19I~osI0.0122pIl~Oiafo.oovfII21~o~o0.0250.028I~Cnfj~o4o0.035l~o0.026Il~o20.017Il.j~o>O.OI77UNITS:G'sRev.22,4/81SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTo.136-FlexibleBase'odel Results0.128-FixedBaseModelResultsCONTAINMENT
: VERTICAL, ACCELERATIONS OBElFIGIJRE130.20-3 9~0500.059101213~ops0.112I~O7O0.111'~is50.162II~tpo0.158tI22II~o~s0.109140.098III~fl1240.096II~IO80.089I~0690.10340.14715f4~~lB30.131/0.0850.097~OS20.089I16'Idio0.085~oII80.070~os80.08217~os@0.073.062~0570.0450.046.0050&I/~070.055t~osq0.041I~os0.027UNITS:Q'g42728I,CoOg0.050I~osv0.02930I4I~oso0.01242926I19~os~0.02220III21Ii~&i0.011IRev.22,4/81SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSIS'EPORT
~~~~~I136-.Flexible BaseMode'1Results0.3.28-FixedBaseModelResultsCONTAINMENT VERTICALACCELERATIONS
%REFIQURE~130.20-4 46~44164~(97260IM2~'1431232562g102~104~1,>>0l300423gag2883t51,440I&207,770~IRIDO1524264~$1g25eee~e'735~10>>2,070~2'LQO2,220~14)02,550QtI02,720ZERO3,62040003,830'tZI0161718261924e~ek1$~646~5958970'7ss1~>ag36455817766f99$4UNITS:KIPS124.010~44l0204O2~WOa13274,100~$55Q2127424$35Rev.22,4/SlD.136-FlexibleBaseMo'delResults0.128-FixedBaseModelResultsFIGURE130.20"5SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENT SHEARFORCESOBE se~4e201~25536648I010~573311261+014231,380I6$0010~654ese~4Il41.7so~2l302,180Z550e,sso~Z4l50151617440~4193404f449242517ceo~8qg014~Italo1028503ggg3.110[335l0e,eeo~3801826011~85l.7209I2.'430SZSQ194,68o5590404444447~485UNITS:KIPS12204,91o53004ee~54913'7210,040~kola 27see~6O7Rev.22,4/81II*..136-FlexibleBaseModelResults0.128-FixedBaseModelResultsFIGURE130.20-6SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENT SHEARFORCESARE 1022020.50~O.QS24,22~W.S/140222.ss~Z.pg42162'5~158.33F.'74242.42P.ag54o.s~6.061,0~6l~01615.4~IS~/2516.8~III.Z81.2~f/0171832I317~108//.28.8~3'7.I10105~ll5124~/'37145I~l149tgy1826173ZD,224.8ZV.519623,2so1~2.221916.6~242.62UNITS:10'.FT12256m32014.9l7.813214~34lo2115.s~l7.527222~@/22718.0/'7.IRev.22,4/81SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORT'0.136-FlexibleBaseModelResults.0'28-FixedBaseModelResults.CONTAINMENT MOMENTSOBEFIGURE130.20-7 1'22020.630.7/oss.ss~6.3&140232.873,2Co4.2s.g~3z.s249.14'1510.2l2.Is4g,g~6is.3sss~RO.6ioo~Ill1617251s.s~~Z3520.5~246S5.149.g10.iss~i5li52~f7178208183QJg182621.2263SOS38224.0304]UNITS:10sK-FT24s~ZOO~19so.s~Z5.512sis~3720is.s~z3.o13sss~4532112.7~Z'Z.727~~136-FlexibleBaseModelResults0.128-FixedBaseModelResults4~~53S22220qg,+Rev.22,4/81SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORT.CONTAINMENT MOMENTSs'c'CFIGURE130.20-8 2'2sv~4&ieo~~f2I1423131JrO10ees~IZED>'I4ss~SISsos~eJRQs7s~+72ese~Sg(7'Z792015161718-26so~@9~oet!04se~<7l491503396Q'26242517ee4~233ees~5361,010<>s~$4.gUNITS:KIPS'2131,070307120214es~$65Rev.22,4/811,090136-FlexibleBaseModelResults0.128-FixedBaseModelResults'31 SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINEMNTAXIALFORCESOBEFIGURE130.20-9 6I>>~+'2126Jg6777256~24026r5232os~Zan150~1085951&1oso~15<12so'~367145o~911590lQIG~lSI't1720161718261o2~l<~164~f41I719gQ764BOO614~7602517966~g(g525~4465UNITS:KIPS1219002010f12'0642~7i'll662~3544'13~t70l.2050126136-FlexibleBaseModelResults~~~0.128'FixedBaseModelResults.21669D5Rev.22,4/81.SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAlNMENT AX(ALFORCESSSEFIGURE'30..20-10 136-FlexibleBaseModelResults~~0.128-FixedBaseModelResults31.662396127I10Itc,C.'.8130.0i~aSI27.7I~3'I,2IiIj~~o,S21.4I~<<.918.7j)i~.~l>16.5j~2.(.0144I~j3,814151617182619t~18.9IjCn3l11.77.06II~~,SIUNITS:10FTI,~I411923ItIS6I.SiMi<<'399l83.5I,~so.ar53.94th32.4~1213'.69~4'.oe1.89't.t820213.54II'.10Rev.22,4/81SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENT HOBIZONTALDISPLACENIENTSOBEFIGURE130.20-11 D136-FlexibleBaseModelResults0.128-FixedBaseModelResultsS5I38.636.6i~vs.aI33.8I~s.i.zI~s.i~29.6IiE~M26.1Ii~os,z22.81415162223II24)48.8~7o4I551.~z<q189Ii~(145Ij~flII789101112i~si.si20.1'isa.s'7.5I'3.6!~lc..oIiI~la,4,i5.75II~a,ss132.32~<.sv17I'ns>>'+5'182.126j2<8'4.3UNITS:10~FT1920~I%1)8.65I4.37II3.'ti1.3721Rev.22,4/8iSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2'INALSAFETYANALYSISREPORT,CONTAINMENT HORIZONTAL DISPLACEMENTS SSEFIGURE130.20-12 151617d,649.34101213~o.f980.812Ij~o,89>2~0.804II~o,as+3,0,79114I'~o,see40.752.d.g2t5.'.703II~o,7'9260.648.~0,75670.594I.d,7l780.53518'~o.st@~omit~~0.4300.4460.658I2728'926j~o.5<770.329,19IIl~u~z300.21520II~a.slh0.090211.57II1.55II1.47I~no1.41I~/.481.16~I0.896I~d.974,0.667IIaazs0.427IIg,+700.181'223242517~Z.W72.69II1~2.i'22.64II1~21(2.47II,~2.5'2.22UNITS:104FTRev.22,4/81~d,Z95'~0,%9S~AZ'FS.$36-FlexibleBaseModelResults0.128-FixedBaseModelResultsSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENT VERTICA'L DISPLACEMENTS OBEPIGIIRE,130.20-13
~ll.s~s101.53I1.51IIj~l.&O1.49II~r,ss1.41Ij~l.so1.321415l~l.4'31..2216It1.1217j~i.so'IS'.00l.J2'90e[,cg,OX'0.7750.754Ie22I.Ij~SDAp42.40II~s.t~"2.233.oS2.1917~41.80I!~i~1.395-514.18I.S.~I4.10I.~~asI3.44/ot.2.19UNITS:104FT12132728f29;~o<j0.616~II~O,RSL300.364jIj~o.aa0.170II~5Kb5,'5%>26Ij~l.7419i1.04I.~I.'L'9200.663Ij~o.ass21I0.282O.S3oRev.22,4/81SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORT.136-FlexibleBaseModelResults0.128-FixedBaseModelResultsCONTAINMENT VERTICALDISPLACEMENTS SSEFIGURE.130.20-14 1.8001.6001.4001.200zOcc1.000.800Pk~'hieWse..600.400.200.0000.1'0.20.40.61.02.04.06.010..20.FREQUENCY (HZ)40.60.100.LOCATION:
RPVPEDESTALDIRECTION:
HORIZONTAL EARTHQUAKE:
OBEDAMPING:0.005Rev.22,4/SlI.SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMAT'RPVPEDESTALHORIZONTAL OBEFIGURE130.20-15 0
/3.0002.7002.4002.100i.sooz0I-a1.5001.200F(ex''ltl bd$8900600~300.0000.1'.20.40.61.02.04.06.010.FREQUENCY (HZ)20.40,60.100.LOCATION:
RPVPEDESTALDIRECTION:
HORIZONTAL EARTHQUAKE:
SSEDAMPING:0.010Rev.22,4/SlSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMATRPVPEDESTALHORIZONTAL SSEFIGURE130;20-16 kix'eelhase0.10.2OA06102.04.06.010.FREQUENCY (HZ)20.40.60.100..LOCATION.'PV PEDESTALDIRECTION:
VERTICALEARTHQUAKE:
OBEDAMPING:0.005Rev.22,4/B1SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMATRPVPEDESTALVERTICALOBEFIGURE130.17 2.0001.8001.6001.4001.200OI-cc1.000.800/legibleb~seri~Frxed!~b~t~600~400~200~0000.1~0.20.40.61.02.04.06,010.FREQUENCY
{HZ)20.40.60.100LOCATION:
RPVPEDESTALDIRECTION:
VERTICALEARTHQUAKE:
SSEDAMPING:0.010Rev.22,4/81~SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMATRPVPEDESTALVERTICALSSEhFIQURE130.'20-18
>IIIIIIIIIIIIIIIII)IIIIItttllll>llll.llllll'm IIIIII<IIIf~II~s~~~~~~~~~'FI~~~~~~~0.~~'I/LI~IMCNABle/4r/v/tICA4i4ftt6/At,c~L/.//rt/cae//esm~~~Jt~4/Ot/~A4C5CCAVOlOeV4W/ttl~!o/ktIIi/p)~.~f4"J'.C.\1tvRev.22/4/81SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTFINALPLANTGRADES,7.FIGURE2~5.-.24
 
SSES-FSAR QUESTION130.22:rExplainwhytheanalysisforthetorsional effectwasnotdonefortheReactorBuilding.
RESPONSE':
Thetorsional effectinthereactor/control buildingwasconsidered inthedynamicanalysis.
Units1and2wereconsidered simultaneously.
IntheN-Sdirection theeccentricity islargerthan5%.TheN-Sdynamicmodelpresented onFigure3.7b-10ofFSARconsistsof3sticksateachfloorandthestiffness distribution ofthestructural wallsaresuchthatproperrepresentation oftheeccentricity isobtained.
Therefore, thetorsional effectisproperlyaccounted forinthedynamicanalysis.
Thecomputeddynamicmemberforcesandmodelpaintresponses wereusedfortheassesment ofstructure andequipment.
IntheE-Wdirection (seeseismicmodelonFigure3.7b-9)theeccentricity islessthan5%.However,amiriimumeccentricity of5%wasconsidered byredistributing themasses.Thiswasdonefortheassesment ofwalls.Rev.224/81130.22-1 SSES-FSAR InFigure7-6whichshowsdowncomer bracingsystemdetails,itappearsthatthebracingisweldedtothelinerplatethroughtheuseofanembeddedplatewithoutanyanchorage tothecontainment concretewall.Sincethesteellinerplateisnotastructural component, indicatehowthepullingforcesfromthebracingcanberesistedandhowtheleaktight integrity ofthelinercanbemaintained.
 
===RESPONSE===
Downcomer bracingforcesareresistedbyembeddedanchorages inthecontainment concretewall.Thisdesignassurestheleaktight integrity ofthelinerplateismaintained.
Rev.22,4/81130.23-1 SSES-FSAR Itappearsthatportionsoftherecirculation pumpsealcoolingwaterarenotseismicCategoryI(Regulatory Guide1.29).Thestaffrequiresadditional information toshowthatacompletelossofpumpsealcoolingwaterwouldnotleadtounacceptable consequences.
 
===RESPONSE===
TwononseismicCategory1sourcesofcoolingareavailable totherecirculation pumpseals:recirculation pumpsealcoolingwatersuppliedbyRBCLCWandrecirculation pumpsealinjection watersuppliedbytheCRD-system.GeneralElectric's Licensing TopicalReport,NED0-24083, Recirculation PumpShaftSealLeakageAnalysis, provides:ananalytical basisforrecirculation pumpsealleakage,assumingafailureofbothcoolingwatersystems.Thisgenericanalysispredictsaboundingleakageratewellunder100gpm.Thegenericanalysisisapplicable toSusquehanna.
Thereportalsodocuments testresults,demonstrating thatpumpsealintegrity willbemaintained ifanyoneofthetwocoolingwatersystemsisoutofoperation atagiventime.Rev.22,4/81211.1-1 SSES-FSARQUESTION211.8TheSRP54.7statestheresidualheatremovalsystem(RHRS)shouldmeettherequirements ofGeneralDesignCriterion (GDC)34ofAppendixAto10CFRPart50.TheRHRbyitselfcannotaccomplish thcheatremovalfunctions asrequiredbyGDC34.Tocomplywiththesinglefailurecriterion theFSARdescribes analternate methodofachieving coldshutdowninSection15.2.9Insufficient information isprovidedtoallowanadequateevaluation ofthisalternate method.Inparticular, wehaverecentlyapprovedRevision2toSRP5.4.7(containinq BranchTechnical PositionRSB5-1)whichdelineates accceptable methodsformeetingthesinglefailurecriterion.
ThisBranchTechnical Positionrequirestestinqtodemonstrate theexpectedperformance ofthealternate methodforachievinq coldshutdown.
Youshoulddescribeplanstomeetthisrequirement.
Inaddition, werequirethatallcomponents ofthealternate systembesafetygrade(seismicCateqoryI).Asaresultofthisrequirement, theairsupplytotheautomatic depressurization system(ADS)valves,including thesystemupstreamoftheaccumulators, mustbesafetygrade.Thisairsupplymustbesufficient toaccountforairconsumption necessary forvalveoperation plusairlossduetosystemleakageoveraprolonged periodwithlossofoffsitepower.RESPONSE.
Asdiscussed inSubsection 93.1.5.1,thegassupplytotheADSvaluesandthebackupqassupplytotheADSaccumulators issafetygrade.Codescoveringthedesignandconstruction ofthesecompon'eats arediscussed inSubsection 9.3.1.5.1 Allcomponents thatareapartofthealternate shutdownloop(seeSd>section 15.2.9&Figs.15.2-14 and15,2-15areroutinely testedasrequiredbytechnical specifications.
Testingofthetotalalternate shutdownsystemwouldnotprovideanyadditional pertinent information andwouldresultinintroducing lowerquality(suppression pool)waterintothevessel.Bsedontheabove,wedonotfeelthattestingofthetotalloopisnecessary ordesirable.
Thisissuewastentatively resolvedwiththeNRContheShorehamdocket(BWR/4)byanagreement totestonesafetyreliefvalveinSanJosesimulating thealternate shutdowncondition.
Therationale foracceptance ofthisplanwasthattheSRVistheonlycomponent intheloopwhichhasnotbeendemonstrated tobesuitableforalternate shutdownconditions.
Thistest.wassuccessfully completed inDecember1979.Rev,224/812118-1 SSES-PSARGeneralHlectricinconjunction viththeThreeMileIslandOwnersGroupisplanninqfurtherSRVtestinqinresponsetoTMIrelatedissues.Thistestinq.villincludeconditions similartothealternate shutdovn-conditions andwillincludeavalveofCrosbyManufacture asisusedintheSusquehanna plant.Itisexpectedthatthesetestswillfurtherconfirmthatanin-planttestisnotrequiredtodemonstrate alternate shutdownconditions capability.
REV18,1$/802118-2 SSES-I'SAR QUESTION21185:Provideassurance thatadequateNPSHexistsforanECCSpassivefailureinawater-tightpumpcoom.Addressthepossibility ofvortexfomationatthesuctionoftheremaining ECCSpumpswiththeloweredpoollevel.Discusspreoperational teststobeperformed todemonstrate thatthereisnotimpairment ofECCSfunctionduetoloweredsuppression poollevel.RESPONSESeeSubsection 6.3.6fordiscussion ofNPSHavailability withECCSpassivefailureandofvortexformation inthesuppression pool.Testingforpumpoperation atminimumNPSHmarginisprovidedbypreoperational tests.Rev.22,4/8121185-1 SSES-FSAR Itisnotevidentthattheassumeddropof100Finfeedwater temperature 0givesaconservative resultofthistransient withmanualrecirculation flowcontrol.Forexample,afeedwater temperature dropofabout150FoccurredatonedomesticBWRresulting fromasingleelectrical component failure.Theelectrical equipment malfunction (circuitbreak-trip ofamotorcontrolcenter)causedacompletelossofallfeedwater heatingduetototallossofextraction steam.Accordingly, either(1)submitasuf-ficiently detailedfailuremodesandeffectsanalysis(FMEA)todemonstrate theadequacyofa100Ffeedwater temperature reduction relativetosingleelectrical malfunctions or(2)submitcalculations usingalimitingFWtemperature dropwhichclearlyboundscurrentoperating experience.
Also,temperature dropsoflessthan100Fcanoccurandinvolvemorerealistic slowchangeswithtime.Assumingallcombinations resultinslowtransients withthesurfaceheatfluxinequilibrium withtheneutronfluxattheoccurrence ofscram,asmallertemperature dropthan100FthatstillcausesscramcouldresultinalargerQCPR.Pleaseevaluatethistransient andjustifythattheassumedvaluesofthemagnitude andtimerateofchangeinthefeedwater temoerature areconservative.
 
===RESPONSE===
Nosingleelectrical component failurewillcausethelossofmorethanonetrainoffeedwater heatersasseparatepowersourcesaresuppliedtoeachofthefeedwater controlpanels.Eachfeedwater heatertrainconsistsoffivefeedwater heatersplusadraincooler.SSESdoesnothaveafeedwater heatertrainbypassline.TheGEfeedwater heatersystemdesignspecification requiresthatthemaximumtemperature decreasewhichcanbecausedbybypassing feedwater heater(s) byasimplevalveoperation willbelessthanorequalto100oF.Thisisthebasisoftheassumeddropof100Finfeedwater temperature intheanalysis.
Lossofonefeedwater heatertrainatSSESwillactuallyresultinsignificantly lessthana100Ftemperature drop.Itshouldbepointedoutthatasteadystate(i.e.,thesurfaceheatfluxinequilibrium withtheneutronflux)isassumedindetermining theMCPRduringthetransient.
Therefore, atemperature losssmallerthan100Fisnotexpectedtoresultinamymoresevereatransient thanthatanalyzedRev.22,4/81211.116-1 SSES-FSAR QUESTION211.120:Fortherecirculation pumpseizureaccidentwenoteinTable15.3-3thatcreditistakenfornonsafety-grade equipment toterminate thisevent.Section15.3.3oftheStandardReviewPlan,Revision1,rewuiresuseofonlysafety-grade equipment andthesafetyfunctions beaccomplished assumingtheworstsinglefailureofanactivecomponent.
Reevaluate thisaccidentwith theabovespecificcriteria, andprovidetheresulting CPRandpercentage offuelrodsinboilingtransition.
 
===RESPONSE===
Therecirculation pumpseizureenent,assumingtheoperation ofspecificnon-safety gradeequipment, hasamildimpactinrelationtothedesign-basisdouble-ended recirculation lingbreakinSectouns6.3and15.6.Failureofsuchequipment wouldnotmakethecoreperformance and/orradiological consequences ofthishighlyimprobable pumpseizure(rapidcoreflowdecrease) eventmorelimitingthanthemaximumDBA-LOCAaddressed intheFSAR.Therefore, noadditional evaluations areconsidered necessary.
TheFSARtexthasbeenrevisedregarding frequency classification bydeletingreferences toinfrequent incidentclassification inSubsection 15.3.3.1.2 and15.3'.1.2,recirculation pumpseizureandrecirculation pumpshaftbreakrespectively Rev.22,4/81211.120-1 SSES-FSAR Operation ofSusquehanna withpartialfeedwater heatingmightoccurduringmaintenance orasaresultofadecisiontooperatewithlowerfeedwater temperature nearendofcycle.Justifythatthismodeofoperation willnotresultin(1)greatermaximumreactorvesselpressures thanthoseobtainedwiththeassumption usedinSection5.2.2,or(2)amorelimiting5MCPRthanwouldbeobtainedwiththeassumptions usedinSection15.0.Thebasisforthemaximumreduction infeedwater heatingconsidered intheresponseshouldbeprovided(e.g.,specificturbineoperational limitations).
 
===RESPONSE===
Lowerfeedwater temperature increases thecoreinletsubcooling andresultsinacorresponding decreaseinboththecoreaveragevoidfractionandthesteamproduction.
Thefeedwater temperature of250oFisconsidered asthelowerlimitbasedontheconclusion thatplantswithimprovedinterference fitspargerscanberuninthismode(250FFFVZ)withoutadverseconsequences.
Typically, thecoreaveragevoidfractionisreducedby-16$whenthefeedwater temperature isreducedfrom420Fto250F.Thelowersteamproduction ratereducesthepeakpressures whichoccurduringatransient (Table211.125).
Theuseoffeedwater temperature reduction toextendthecyclebeyondnormalEOCisnotexpectedtoresultinmoreseveretransients.
Thelowervoidfraction("16$lowerat250FFFWT)reducesthedynamicvoidcoefficient andtheseverityofthetransient (i.e.,theACPRduetothetransient) isless.Table211.125providesthetypicalACPRnumbersfortwotransients analyzed.
Althoughthescramreactivity responseissomewhatdegradedduetothelessbottompeakedpowershape,theoverallresponseisdominated bythevoidfeedbackeffectsandtheresulting transient islesssevere.Reducingthefeedwater temperature beforeEOCwillnotresultinmoresevereplanttransient either.Thepeakpressures willbelessduetothereducedsteamproduction.
TheACPRwillbelessduetothesmallervoidcoefficient.
Duetothepresenceofasignificant numberofcontrolrodsinsertedintothecoreforthiscondition, thescramresponseisnotappreciably affectedbythefeedwater temperature reduction.
Inaddition, thetransient responseatpointsinthecycleotherthanEOCisconsistently lessthanEOC.Ifoperation inthereducedfeedwater temperature modeisutilized, priortooperation ananalyseswillbeperformed toshowthismodeofoperation willnotviolateMCPRsafetylimits,giventheeventsinChapter15.Rev.22,4/81211.125-1 TABLE211.125TRANSIENT ANALYSISRESULTSReactor~CeleTransient ExposurePointPeakVesselPressureCPRBWR4251"764Evil.cycleLoadrejection w/obypassRatedEOC(104.2/power)1235.17(ReducedFeedwater)
ExtendedEOCHeating(100$power)12190.16Feedwater Controller failureRatedEOC(104.2$power)12020.12(Reduced'eedwater)
ExtendedEOCHeating(100$power)10600.05*ODYNANALYSISRESULTSRev.22,4/81 SSES-FSAR Intheevaluation ofthe"generator loadrejection" transient, afull-stroke closuretimeof0.15secondsisassumedfortheturbinecontrolvalves(TCV).Section15.2.2.3.4 statesthattheassumedclosuretimeisconservative comparedtoanactualclosuretimeofmorelike0.20seconds.However,inFigure10.2-2,TurbineControlValveFastClosureCharacteristic, anacceptable TCVclosuretimeof0.08secondsisimplied.Explainthisapparentnon-conservative discrepancy andtheeffectithasonanalysesinChapter15requiring TCVclosure.RESPONSE:
The0.08secondsshowninFigure10.2.2isanacceptable valuewhereasthe.07secondsTCVclosuretimeinTables15.2-1and15.2-2istheboundingvalue.SeeresponsetoQuestion211.117forfurtherclarification tothisquestion.
Rev.22,4/81211.161-1 SSES-FSAR Thenarrative onpage15.4-13discussing the"abnormal startupofanidlerecirculation pump"transient states,"Thewaterleveldoesnotreacheitherthehighorlowlevelsetpoints."Table15.4.3.indicates alowleveltripoccurs22.0secondsafterpumpstart.Figure15.4-6indicates alowleveltripoccursapproximately 23.5secondsafterpumpstart.Further:a)Table15.4-6indicates alowlevelalarm10.5secondsafterpumpstartwhileFigure15.4-6indicates thisalarmoccursabout11.5secondsafterthepumpstarts.b)Table15.4-6indicates vessellevelbeginning tostabilize 50'secondsafterthepumpstarts.Figure15.4-6showsnosuchindication.
Resolvethesediscrepancies.
 
===RESPONSE===
ThesequenceinTable15.4-3startsoutwithascramat10secondsfollowing theimproperpumpstart.Figure15.4-6confirmsthis.At23.5seconds(ratherthan22)levelfallstoL3whichalsoissuesaredundant scramsignaltoasystemwhichhasalreadyscrammed.
ItistheintentofTable15.4-3hasbeenmodified.
a)Table15.4-4indicates L4nearllseconds.ThisisverifiedbyFigure15.4-6,b)Table15.4-4indicates thatvessellevelisbeginning tostabilize at50seconds.Thisappearstobecorrect.Actually, levelrecovered fromL3atabout41secondsandfrom30to40secondslevelischangingattherateof2.5in/sec.From50to60secondslevelrateisdefinitely flattening outundernormalfeedwater levelcontrol.Rev.224/81211.180-1 SSES-FSAR QUESTION211.210:Expandthediscussion inSection6.3todescribethedesignprovisions thatareincorporated tofacilitate maintenance (includinq draininqandflushing) andcontinuous operation oftheECCSpumps,seals,valves,heatexchangers, andpipingrunsinthelong-term LOCAmodeofoperation considering thatthewaterbeingrecirculated ispotentially veryradioactive.


SSES-FSAR135PLANTPROCEDURES135.1ADNINISTRATIVZPROCEDURESAllsafety-relatedoperationsatSusquehannaSteamElectricStationUnits162areconductedinaccordancewithdetailed,writtenandapprovedprocedures.Plantpersonnelreceivetrainingintheuseofappropriateproceduresandtheproceduresaremadeavailabletothematalltimes.135.1.1ProcedureConformanceProceduretopicsfollowtheguidancespecifiedbyapplicableportionsofRegulatoryGuide133,Revision1andproceduresaropreparedfollowingtheguidanceprovidedbyANSIV18.7-1976.13-51.2Pre~arationofProceduresProceduresarepreparedbytheplantstaff,supportorganizationsorcontractorganizatio'nsunderthedirectionoftheSupevisorofOperations,SupervisorofMaintenance,TechnicalSupervisor,HealthPhysicsSupervisor,QualitySupervisor,PersonnelandAdministrativeSupervisor,andSecuritySupervisor.Theplant!procedurecategoriesandatypicalscheduleforprocedurepreparationareshownonFigure13.5-1-Reviewofsafety-relatedproceduresuseandchangesthereto,isperformedbythePlantOperationsReviewCommittee(PORC}andapprovedbytheSuperintendentofPlantasdescribed.inSection13.4.Inaddition,functional'nitprocedureswillbereviewedbyNuclearQualityAssurance.ProceduresareperiodicallyreviewedtodetermineifchangesarenecessaryordesirableApplicableproceduresarereviewedaftersignificantsystemorequipmentmodification,andfollowinganunusualincident,"suchasahazardouscondition,anunexpectedtransient,asignificantoperatorerror,orequipmentmalfunctionwheretheprocedurescontributedtothecauseoftheincident,orwereinadequateinmitigatingtheeffectsoftheincident.Whenanoperationistemporarilyalteredinsuchamannerthatportionsofanexistingproceduredonotapply,thentheexistingproceduremaybetemporarilychanged.TemporarychangestoRev.22,4/81135-1 QRgPxjHH0zlmzmDmxzza2zcomzm0rMAOOzPROCEDURESADMIHISTRATIVEALARMRESPONSECHEMISTRYEMERGENCYEMERGEHCYPLAHENVIRONMENTALSURVEILLAHCEFUELNAHDLIHGGEHERALPLAHTHEALTHPHYSICSIHSTRUMEHTATIOHACONTROLMAINTENANCEMATERIALCOHTROLOFF-HORMALOPERATINGGUALITYRADWASTEMAHAGEMEHTREACTOREHGINEERIHGRECORDSRELAYCALIBRATIONSECURITYSPECIALEVENTSSURVEILLAHCETESTTRAIHIHGMOHTNSPRIORTOFUELLOADING343230282624222018161412108642CDCD SSES-FSARconditionarise,theplantoperatingstaffshalltakewhateveractionisnecessaryincluding,butnotlimitedto,stoppingthetestinordertorestoresafeplantconditions.Duringstartuptesting,theplantoperatingstaffisspecificallyresponsibleforcompliancewithoperatingtechnicalspecifications,andcompliancewiththeprovisionsoftheoperatinglicense.14.2'.2TestPrereuisitesSpecifictestprerequisitesareidentifiedineachpreoperationaltestprocedure.Thetestdirectorverifiesthateachprerequisiteiscompletedandproperlydocumentedpriortosignoffintheofficialtestcopyoftheprocedure.Ifaprerequisiteinapreoperationaltestcannotbesatisfied,thetestdirectorwilllisttheprerequisiteasatestexceptiontothePreoperationalTest.Asaprerequisitetopreoperationaltesting,properoperationofeachalarmloopisverifiedandlistedinanappendixtothetest.Duringthepreoperationaltest,systemparametersarevariedandinterlocksaretestedwhichcausealarmstoactuate.Thosealarmswhichareactuatedduringthecourseofthetestwillbedocumentedinthebodyofthepreoperationaltest.14.2.4.3ProcedureHodificationsTestsareconductedinaccordancewithapprovedprocedures.Zfnecessary,theseproceduresmaybemodifiedtocompletetesting.Suchproceduremodi-ficationsaredocumentedonatestchangenoticeform.Xnadditiontogenerationofatestchangenoticeform,thetestdizectormarksuptheofficialtestcopyoftheprocedureandinit:als/datesthechange.ReviewandapprovalfortestchangenoticesonpreoperationaltestproceduresisprovidedbytheTRB.Testchangenoticesforstartuptestproceduresshallbeinitialed/datedbyanon-shiftlicensedsenioroperatorinadditiontothetestdirector.ReviewandapprovalfortestchangenoticesonstartuptestproceduresisprovidedbythePORC.Preparation,reviewandapprovalactivitiesazeaccomplishedbeforeorafterperformanceofassociatedtestingbasedonthefollow'ngcriteria:a)Non<<IntentChangesiRev.22,4/81Forproceduremodificationsthatdonotchangeacceptancecriteriaanddopreservetheintentofthetest,thetestchangenoticemaybeapprovedafterperformanceofassociatedtesting.4b)IntentChangesForproceduremodificationsthataltertheacceptancecriteriaortheintentofthetest,thetestchangenoticeisapprovedbeforeperformanceofassociatedtesting.14.2-12 SSES-FSARinformationwillbesortedandreportedforaperiodoftwoyearspriortofuelloadonthefirstunit.TheManager-NuclearSupportisaddressedinSubsection17.2.1.14.2.9TRIALUSOFPLANTOPERATINGANDEMERGENCYPROCEDURESTheadequacyofPlantOperatingandEmergencyProcedureswillbeconfirmedbytrial-useduringtheInitialTestProgram.ThoseproceduresthatdonotrequirenuclearfuelareconfirmedadequatetotheextentpracticableduringthePreoperationalTestProgram.ThoseproceduresthatrequirenuclearfuelareconfirmedadequatetotheextentpracticableduringtheStartupTestProgram.Theplantoperatingstaffisresponsibleforconfirmationofoperatinqandemergencyprocedures.TheSuperintendentofPlantisresponsibleforensuringthatcomments/changesidentifiedduringconfirmationareincorporatedinfinalizedprocedures.Itisnotintendedthatpreoperationaltestproceduresexplicitlyincorporateorreferenceplantoperatingandemergencyprocedures.Thesetestsareintendedtostandontheirownsincetheyarenotnecessarilycompatiblewithconfigurationsandconditionsrequiredforconfirmationoffacilityoperatingandemergencyprocedures.Startuptestprocedureswill'ncorporateandreferenceplantoperatingandemergencyprocedurestotheextentpractical.14-2-10~INITIAL-FUEL-LOADINGANDINITIALCRITICALITYInitialfuelloadingisaccomplishedinaccordancewithstartuptestprocedure,ST-3FuelLoadingInitialcriticalityisaccomplishedinaccordancewithstartuptestprocedureST-4,PullCoreShutdownMargin.TheseprocedurescomplywiththegeneralguidelinesandregulatorypositionscontainedinRegulatoryGuide1.68(Revision1,January1977).Testabstractsestablishingtheobjectives,prerequisites,testmethod,andacceptancecriteriafortheseproceduresarepresentedinSubsection14.2.12.142-11T>STPROGRAMSCHEDULEcdRev.22,4/8114.2-19ThePreoperationalTestProgramisscheduledfor15monthsdurationontheUnit1andCommoncomponentsandfor12monthsdurationontheremainingUnit2components..(SeeFigure14.2-4a~'
===RESPONSE===
SSES-FSAR(P30.1)ControlStructureHSVSstemPreperationalTestStructureHavSystemanditsinterlocksinsidethecontrolstructurebuildingtodemonstratethissystem'sabilitytomaintainapositivepressureaboveatmosphericduringnormaloperationandhighradiationsignalwhentheemergencyoutsideairsupplymodeisrunning.TodemonstratetheabilityoftheControlStructureHGVtoisolatebeforechlorinereachestheisolationdamperswhenchlorineisdetectedintheoutsideairintake.overtotheISG.Requiredinstrumentsarecalibratedandcontrolsareoperable.TheControlStructureChilledWaterSystem,InstrumentAirSystemandturbinebuildingventareavailable.Required'lectricalpowersupplysystemsareavailable.TestMethod-Thesystemoperationisinitiatedmanuallyandfanperformance,damperoperationsandheatingelementoperationaredetermined.Thedifferentialpressureswithrespecttooutsideatmosphere.aremeasured.Requiredcontrolsareoperated'orsimulatedsignalsareappliedtoverifytheemergencyfilteroperationonhighradiationsignal,automaticrecirculationonhighchlorinesignal,systemmanualisolationandothersysteminterlocksandalarms.AccetanceCriteria-Thesystemperformanceparametersareinaccordancewiththeapplicabledesigndocuments.(P30.2)ControlStructureChilledWaterSstemPreperationalTestStructureChilledWaterSystemtoprovidechilledwaterflowtoControlStructureHeating/VentilatingUnitsandControlroomfloorandcomputerroomfloorcoolingunits.toperformthistestandthesystemisturnedovertotheISG.Requiredinstrumentsarecalibratedandcontrolsareoperable.TheServiceWaterSystem,EmergencyServiceWaterSystem,andInstrumentAirSystemareavailable.Requiredelectricalpowersupplysystemsareavailable.TestMethod-Thesystemisoperatedtodemonstratechilleroperationandchilledwaterpumpperformance.Requiredcontrolsareoperatedorsimulatedsignalsareappliedtoverifyautomaticalignmentofthesystemunderemergencyconditions(startofemergencycondenserwaterrecirculationpump)andothersysteminterlocksandalarms.Rev.22,4/8114.2-3l, SSES"FSARTestMethod-ThebatteryperformancetestismanuallyinitiatedbyconnectingthebatterybanktotheResistorI.oadBankanddischargingthebatteriesataconstantcurrentforaspecifiedperiodoftime.TheBatteryServiceTestismanuallyinitiatedbyconnectingthebatterybanktotheResistorLoadBankandsimulating,ascloselyaspossible,theloadthebatterieswillsupplyduringaDesignBaseAccident.Thenthebatterychargerisconnectedtothebatteriesandthedistributionpanelstoverifythattheycanequalizechargethebatterieswhilesimultaniouslyprovidingpowertothenormalplantloads.ThebatterychargerisalsoconnectedtotheResistorIoadBankandcurrentisincreasedtoitsmaximumratingwiththechargerisolatedfromitsassociatedbatterybank.Alarmsaresimulatorandverifiedtooperateproperly.AccetanceCriteria-Thebatteriescansatisfactorilydeliverstoredenergyforthespecifiedamountoftimeasrequiredfortheperformanceandservicetests.Thebatterychargerscandeliverratedoutput,also,thattheycanchargetheirassociatedbatterybankfromminimumvoltagetoafullychargedstateinaspecifiedamountoftimewhilesimultaneouslysupplyingnormalplantloads.Thealarmsoperateattheirengineeredsetpointsandannunciateinthecontrolroom.(P76.1)PlantLeakDetectionSstemPreperationalTestTestOb'ective-'TodemonstratetheoperabilityofthePlantIeakDetectionSystem.toperformthistestandthesystemisturnedovertotheISG.Requiredinstrumentsarecalibratedandcontrolsareoperable.Requiredelectricalpowersupplysystemsareavailable.TestMethod-Sumplevelswillbevaried(ifpracticable)orsimulatedsignalsareappliedtolevelsensorstoverifytheleak'etectionsystemalarms'ccetanceCriteria-Thesystemperformanceparametersareinaccordancewiththeapplicabledesigndocuments.Rev.22,4/8114.2-49 SSES-FSAR3)Thatallwarningsignalsareworkingperdesignintent.4)Thecapabilityofthecranetooperateinadesignatedareainaccordancewithdesignrequirements.overtotheISG.Requiredelectricalpowersupplysystemsareavailableandcontrolsareoperable.Requiredloadsareavailabletoperformloadtestingofthiscrane.TestMethod-Thelightingsystemforthecraneisenergizedandobservedforproperoperation.Thebridgeandthetrolleyarespeed-testedinbothdirections.Currentandvoltagereadingsaretakeninbothdirections.TheproximityswitchesaretestedforboththebridgeandthetrolleyincludingtrolleymovementrestrictionswitchesinzonesA,B,andC.Themainhoistandtheauxiliaryhoistarespeed-testedtravelingupandtravelingdown.Currentandvoltagereadingsaretakeninbothdirections.Alllimitswitchesaretested.Alossofpowersituationiscreatedforbothhoiststocheckthebrakesabilitytoholdwithoutpower.Anoverspeedtestissimulatedforeachhoist.Themainhoistloadlimitswitchisalsotested.Theabovelistedtestsarerunfromthependantpushbuttoncontrolsystem.Operabilityofthecraneisalsodemonstratedfromthecabandby'radiocontrol.Theanticollisionsystemistestedandthecranepowersourceisverified.AccetanceCriteria-Thesystemperformanceparametersareinaccordancewiththe'pplicabledesigndocuments.(P100.1)ColdFunctionalTestcapableofoperatingonanintegratedbasisinnormalandemergencymodes,todemonstratethatadequatepowersuppliesfortheclassIEequipmentwillexist-completedandplantsystemsarereadyforoperationonanintegratedbasis.TestMethod-EmergencyCoreCoolingSystems(RHR6CoreSpray)arelinedupintheirnormalstandbymode.Theplantelectricalsystemislineduppernormalelectricalsystemlineup(ForUnitlthislineupmaybedifferentthanthelineupfortwounitoperation).Lossofcoolantaccidentsignalsareinitiatedwithandwithoutalossofoffsitepower.VoltagesandloadsareRev.22,4/8114.2"55 SSES-FSARUESTION021.01Providethefollowingadditionalinformationforthesecondarycontainment:(1)Showanappropriateplantelevationandsectiondrawings,,thosestructuresandareasthatwillbemaintainedatnegativepressurefollowingaloss-of-coolantaccidentandthatwereconsideredinthedosecalculationmodel;(2)ProvidetheTechnicalSpecificationlimitforleakagewhichmaybypasstheStandbyGasTreatmentSystemFilters,(e.g.,valveleakageandguardpipeleakage);and,(3)Discussthemethodsoftestingthatwillbeusedtoverifythatthesystemsprovidedarecapableofreducingtoandmaintaininganegativepressureof0.25",e.g.,withinallsecondarycontainmentvolumes.RESPONSE1)Followingaloss-of-coolant-accident,allaffectedvolumesofthesecondarycontainmentwillbemaintainedatnegativepressure.AllthesevolumesareidentifiedonFigures6.2-24thru6.2-43asventilationzonesI,IIandIII.AlsoseeSubsection6.5.3.2foradiscussionofthereactorbuildingrecirculationsystem.2)SeeTechnicalSpecification3/4.6;.5.3forthelimitingconditionsforoperationandthesurveillancerequirementsfortheSGTS.AllleakageintothesecondarycontainmentistreatedbytheSGTS.Refertosubsection6.2.3.2.3foradiscussionofcontainmentbypassleakage.3)TheStandbyGasTreatmentSystem(SeeSubsection6.5.1.1)inconjunctionwiththereactorbuildingrecirculationsystem(seeSubsection6.5.3.2)andthereactorbuildigisolationsystem(seeSubsection9.4.2.1.3)isprovidedtoproduceandmaintainnegativepressurewithinaffectedvolumesofthesecondarycontainment.Actuationandoperationoftheabovesystemswillbeusedtoverifythatthenegativepressureisestablishedandmaintained.Eachventilationzoneisprovidedwithredundantnegativepressurecontrollers.I,owpressuresideinputs(lowpressuresensingelements)tothesecontrollersarelocatedasfollows:VentilationZoneI-VentilationZoneII-AccessareofEL749'-l(SeeFigure6.2-28)AccessareaofEL.749'-l"Rev.22,4/81021.01-1 SSES-FSARVentilationZoneIII-RefuelingFloor,E1.818'-1"(SeeFigures6.2-30and6.2-40).Thequantityofairexhaustedfromthesecondarycontainmentwillbesuchthatineachaffectedventilationzonethenegativepressurewillbemaintained.Theinterconnectingductworkoftherecirculationsystemwillequalizethenegativepressurethroughouteachzone.Rev.2,9/78021.01"2 SSES-FSARUESTION021.10Withrespecttocontainmentsteambypassforsmallbreaks,indicateyourcompliancewithourproposedBranchTechnicalPosition"SteamBypassforMarkIIContainments,"whichisenclosed.RESPONSEAcomparisonoftheSusquehannaSESdesignwithyourproposedBTP"SteamBypassforMKIICoatainments"ispresentedbelow.TheitemnumberscorrespondwiththeitemsintheBTP.l.a.BassCaabilitContainmentWetwellSrasThewetwellspraysystemelectricalinstrumentationandcontrolssuppliedbyGEmeetthesameESFstandardsofquality,redundancyandtestabilityastheRHRsystem,ofwhichitisapart.Thesystemismanuallycontrolledandactuated.TheconsequencesofactuationofthewetwellsprayonECCSfunctionareaddressedintheresponsetoQuestion211.13.l.b.TransientBassCaabilitAnalsesThecalculationofmaximumallowablesteambypassleakageforsmallsteambreaksaspresentedinSection6.2.1oftheSusquehannaFSARcomplieswiththeintentoftheproposedbranchtechnicalposition;althoughitdoesnotassumeanormalplaatdepressurization/shutdowntimeof6hours.Thecalculationassumesthatthesteamleakageisterminaltedbysomeoperatoractioa(containmentsprays,ADS)within15minutesafteranabnormallyhighsuppressionchamberpressureisobserved(830psig).ThemaximumsuppressionchamberpressureexpectedduringaIOCA,assumingalldrywellairhasbeencarriedoverandnosteamleakagehasoccurred,is25psig.Significantlyexceedingthispressure(to&30psig)indicatesaleakagesituationandnecessitatesoperatoraction.Further,thecalculationconservativelyneglectsanycontainmentheatsinks(poolsurface,containmentwalls,etc.).Themethodemployedtocalculatethemaximumallowablesteambypasslakageflowcharacteristic(A/rgb)hasbeenpreviouslydescribedinsomedetailinsubmittalstoNRCquestionsontheHatchlnuclearplaat.Briefly,itsimplyinvolvesanendpointtypecalculationofthemassofsteamwhichcanbeaddedtothesuppressionchamberabove30psigtogivedesignpressure(45psig),conservativelyassumingalldrywellairhasbeencarriedoverthethesuppressionRev.22,4/81021.10-1 SSES-FSARchamberandtakingnocreditforsuppressionchamberheatsinks/condensation.KnowingthismassofsteamQMandassumingthattheoperatoractionwillbedelayed10minutesafterobservin'gthe30psig,andthattheactionwillrequire5moreminutestotakeeffect(5t=15min.total),theallowablelakeageratem=Am/Atcanbecalculated.TheflowcharacteristicA/~kcanthenbecalculatedfromM=A/lvpschp"(gwherebPis'thepressuredifferencebetweenthedrywellandsuppressionchamberatquasi-steadyflow(equalP<g/gH,whereH=ventsubmergence).TheresultisanA/~k=.06ft~forSusquehanna.2.a.FSARSubsection6.2.6.5'.1addressesthisitem.2.b.FSARSubsection6.2.6.5.1.2addressesthisitem.2.c.FSARSubsection'6.2.6.5.1.2addressesthisitem.3.a.TheSusquehannadesignmeetstheintentofthisitem.SeeSubsection6.2.1.1.3.2.WithrespecttocompliancewiththeproposedBranchTechnicalPosition"SteamBypassofMarkIIContainments,"thefollowingSusquehannaSRPpositionstatementisrespectfullyprovided:IssuanceoftheStandardReviewPlans(SRP)post-datestheSusquehannaconstructionpermitbymorethan2years.Therefore,noattemptwasmadetodesigntheplanttotherequirementsoftheSRPs.TheSusquehannaFSARwaspreparedusingRevision2ofRegulatoryGuide1.70asmuchaspracticalforaplantofitsvintage,withassurancefromNRCmanagementthatcompliancewiththisRegulatoryGuideassuredsubmittalofallnecessarylicensinginformation.AsdocumentedinaletterofAugust5,1977fromG.G.SherwoodtoE.G.CaseoftheNRC,theSRPsconstituteasubstantialincreaseintheinformationrequiredjusttodescribethedegreeofcomplianceofvarioussystems.Thisincreaseinturnrepresentsasubstantialresourceexpenditurewhichisunjustifiedandwhichcouldcauseprojectdelaysifrequiredoftheseprojects.Asstatedinthe,referenceletter,GeneralRev.22,4/Sl021.10-2 SSES-FSARElectric(andPPM)believesthatSRPsshouldbeappliedtoFSARsonlytotheextentthattheywererequiredintheFSARs.PPGLandGeneralElectricbelievetheaboveposition,whichistheessenceofadirectivefromBenC.Rusche,DirectorofNuclearReactorRegulation,totheNRCstaffdatedJanuary31,1977,istheappropriateprocedureforreviewoftheSusquehannaFSAR.Rev.22,4/81021.10-3 SSES-FSARUESTXON021.21Heareawarethatrevision3totheDFFRistobesubmittedtothisSummerandthatRevision2whichisnowreferencedisout-of-date,asitdoesnotadequatelyreflectthestatusofcurrentpooldynamicloads.DiscusshowtheDARwillbeupdatedtoreflectthisstatusanddiscussanyotherreportsyouintendtosubmittodocumentyourplantdesign.RESPONSE:PPGLisworkingwiththeotherMarkIIownerstodevelopmethodologies,analyticalprogramsandtestdatawhichwillprovideimproveddefinitionsofhydrodynamicloads.ThisefforthasresultedinRevision3totheDFFR,andisexpectedtoresultinfurtherrevisiontothatreport.ltispresentlybeingrevisedtoreflectthecurrentpositionoftheMarkXIowners.FuturerevisionstotheDFFRareexpectedtohavenoeffectontheSSESDAR,sinceplantspecificsaswellasgenericMarkXImethodologiesapplicabletoSSESwillbeincorporatedintotheDAR.TheDARhasbeenupdatedtoreflectthecurrentdesignassessmentmethodologiesusedatSSES.Rev.22,4/81021.21-1 SSES-PSARIdentifyallopeningsprovidedforgainingaccesstothesecondarycontainment,anddiscusstheadministr'ativecontrolsthatwillbeexercisedoverthem.Discusstheinstrumentationtobeprovidedtomonitorthestatusoftheopeningsandwhetherornotthepositionindicatorsandalarmswillhavereadoutandalarmcapabilityinthemaincontrolroom.RESPONSE:1)SecondaryContainmentAccessOpenings:DoorNos.Elev.Col.CoordinatesSecurityMonitored101102103-0104-0119A120A571-0670670670670676676818U/29U/37.4U/20.6U/29P/20.6P/37.4P/32YesYesYesYesYesYesYesRoofHatch8Elev.872,coordinates:P/37.4(SecurityMonitored)2)Doors5119A,120Aand571-0provideaccessintothesecondarycontainmentthroughtheuseofcardreader/cipherkeyboardcontrol.Doors101,102,108-0,104-0andtheroofhatch(54001)willnotnormallybeusedtogainaccessintothesecondarycontainment.AlltransactionswillbeloggedintotheSecurityDataandManagementSystem(SDMS).AllalarmsgeneratedwillannunciateatboththeSecurityControlCenter(SCC)andAlternateSecurityControlCenter(ASCC).Theplantcontrolroomwillnothaveareadoutoralarmcapability.BoththeSCCandASCCare,however,mannedcontinuously24hoursaday.InstrumentationtocontrolandmonitorthestatusofsecondarycontainmentisdescribedinChapter7.0oftheSusquehannaSESPhysicalSecurityPlan.Rev.22,4/81021.31-1 SSES-FSARSubsection4.2.2.2oftheDARstatesthat,thechuggingloadsonsubmergedstructuresandimpartedonthedowncomerswillbeevaluatedlater..Providethepresentstatusoftheseevaluationsandthescheduleforyoursubmissionofthecompletedevaluation.RESPONSE:ThecalculationofsubmergedstructureloadsduetochuggingwillusetheimprovedchuggingloadmethodologydevelopedunderMarkIZOwnersGroupTaskA16.TheappropriatedesignsourceswillbeusedwiththeGreen'sfunctionsolutionfortheSSESannularcontainmenttoprovidethepressuredistributioninthesuppressionpool.Thepressurearoundastructurewillbeintegratedtodeterminethenetpressureloadonthestructure.AdescriptionofthismethodologyandverificationwillbeincludedintheDAR.ThechuggingsourcesusedwillbedevelopedfromthepressuretimehistoriesprovidedbyKWUforthedesignassessment(seeSSESDAR,Section9.5.3).ThedowncomerhasbeenassessedforthechuggingloadsandtheresultswillbeincorporatedintotheDAR.Theothersubmergedstructuresarenowbeingevaluated.Weexpectcompletion'fthisevaluationinAprilof1981.Rev.22,4/81021.71-1 SSES-FSARProvidetheinformationpreviouslyrequestedin020.44regardingloadsresultingfrompoolswellwavesfollowingthepoolswellprocessorseismicslosh.Discusstheanalyticalmodelandassumptionsusedtoperformtheseanalyses.RESPONSE:TheanalyticalmethodofcalculatingtheloadsresultingfromseismicsloshandtheassumptionusedaredescribedinawriteuptobeincludedintheOAR.ThisinformationwillbesubmittedinApril1981.Rev.22,4/81021.73-1 SSES-FSARDiscusstheapplicabilityofthegenericsupportingprograms,testsandanalysestoSSESdesign(i.e.,FSIconcerns,downcomerstiffners,downcomerdiameter,etc.)RESPONSE:AcompletedescriptionoftheGKM-IIMtestprogram,testresultsandevaluationofthetestdataisprovidedinChapter9.0oftheSusquehannaSESDAR.TheGKM-IIMtestswerestructuredtobeasprototypicaloftheSusquehannaSESplantconfigurationsaswaspractical.Assuch,concernsrelatedtoFSI,downcomersstiffnessgdowncomerdiameter,etc.,arefullyaddressed.Rev.22,4/Sl021.75"1 SSES-FSARProvidethetimehistoryofplantofresponsesofplantstructures,componentstopooldynamicloads.modificationsresultingfrompoolspecificloadsandassessmentpiping,equipmentandIdentifyanysignificantplantdynamicloadsconsiderations.RESPONSE:TimehistoryinformationforLOCAloadscanbefoundinSSESDAR,Section4.2.SimilarinformationduetoSRVactuationcanbefoundinSSESDAR,Section4.1.Inaddition,theplantspecificLOCAandchuggingloaddefinitiondevelopedfromtheGKMII-MtestprogramcanbefoundinSubsection9.5.3.ThisloaddefinitionwillbeusedtoevaluatetheconservatismoftheDFFRLOCAloaddefinitiondevelopedfromtheGKMII-MtestprogramcanbefoundinSubsection9.5.3.ThisloaddefinitionwillbeusedtoevaluatetheconservatismoftheDFFRLOCAloaddefinitionandisscheduledforsubmittalinRevision5oftheSSESDAR(March,1981).Assessmentofthepipingtopooldynamicloadsisnotcompleted.PPGLinterpretsthisquestionasrequiring:a)Responseofpipinginthewetwelltopooldynamictimehistoryloads.b)Responseofpipinginthedrywell,wetwellandreactorbuildingtoresponsespectraduetoSRVandLOCAloads.SummaryoftheresultsofpipinganalysiswillbeprovidedintheDARuponcompletionofpipinganalysisinMayof1981.Modificationofplantdesigntodatea)Additionofquenchersb)Designchangesinplatform,vacuumbreakers,andrecombinerSupportbeamsbyraisingthemoutofthepoolswellzone.c)Redesignofdowncomerbracingsystemd)Added60reinforcingbarsineachsuppressionchamnber.e)Addedembedmentsandanchorboltsinsuppressionchamberwallsanddiaphragmslab.f)Diaphragmslabreinforcementschangedfrom'5to90toincreaseupliftloadingsacceptance.g)Significantnumberofpipesupportsaddedormodified.Rev.22,4/81021.76-1 SSES-FSARProvidefiguresshowingreactorpressure,quenchermassfluxandsuppressionpooltemperatureversustimeforthefollowingevents:(1)Astuck-openSRVduringpoweroperationassumingreactorscramat10minutesafterpooltemperaturereaches110FandallRHRsystemsoperable;(2)Sameasevent(1)aboveexceptthatonlyoneRHRtrainavailable;(3)Astuck-openSRVduringhotstandbyconditionassuming120FpooltemperatureinitiallyandonlyoneRHRtrainavailable;(4)TheAutomaticDepressurizationSystem(ADS)activatedfollowingasmalllinebreakassuminganinitialpooltemperatureof120FandonlyoneRHRtrainavailable;and(5)Theprimarysystemisisolatedanddepressurizingatarateof100Fperhourwithaninitialpooltemperatureof120FandonlyoneRHRtrainavailable.Provideparameterssuchasservicewatertemperature,RHRheatexchangercapability,andinitialpoolmassfortheanalysis.RESPONSE:TheSusquehannauniqueSRVmassandenergyreleaseanalysisispresentedinAppendixIoftheDAR.Rev.22,4/81021'7"1 SSES-FSARWithregardtothepooltemperaturelimit,providethefollowingadditionalinformation:(1)Definitionofthe"local"and"bulk"pooltemperatureandtheirapplicationtotheactualcontainmentandtothescaledtestfacilities,ifany;and(2)Thedatabasethatsupportanyassumeddifferencebetweenthelocalandthebulktemperatures.RESPONSE:Theterms"Local"and"bulk"temperatureareusedasdefinedinSubsectionIII.C.l.aofNUREG0487,"MackIIContainmentLeadPlantProgramLoadEvaluationandAcceptanceCritera",UnitedStatesNuclearRegulatoryCommission,October1978.Becauseofthedesignfeaturesofquenchersandtheirorientationinthesuppressionpool(asdiscussedintheSSESDAR,Subsection8.5.5),thedifferencesbetween"local"and"bulk"pooltempoeraturesareexpectedtobesmall.Therefore,thedifferenceshouldnotexceedthevaluewhichwaspreviouslyderivedforramsheaddischargedevicesinMarkIplants(10').Itisintendedtoverifythenumbersusingdatafromin-planttestswhicharepresentlyunderpreparationforLaSalleandZimmer.Rev.22,4/81021.78-1 SSES-FSARuestion021.79:Forthesuppressionpooltemperaturemonitoringsystem,providethefollowingadditionalinformation:(1)Type,numberandlocationoftimperatureinstrumentationthatwillbeinstalledinthepool;and(2)Discussionandjustificationofthesamplingoraveragingtechniquethatwillbeappliedtoarriveatadefinitivepooltemperature.RESPONSE:(1)PleaserefertorevisedSection7.6.1b.l.2.SusquehannaSEShascompletedevaluationofthesuppressionpoolmonitoringcriteriaasdefinedinNUREG-0487andhasdevelopedabasicsystemasfollows:oNumberandLocationofTemeratureInstruments:20remotetemperaturedetectors(seefigure021.74-35)ineachsuppressionpools-16remotetemperaturedetectorslocatedjustbelowthemin.waterlevelandarrangedtoprovide2eachon8locationsaroundthepool.-4remotetemperaturedetectors(seeFigure021.74-35-TE's15769,15761,15756,15751)distributedaroundthepoolat"Q"center-linelocationo~Te:ClassIEInstrument-Divisionalizedwithonefromeachlocationineachdivision,exceptfor4remotetemperaturedetectorsatthe"g"centerline.Allsensorswillberedundant,SeismicCategoryIandsuppliedfromonsiteemergincypower.(2)Thetechniqueissuedtoarriveatanaverage,orbulk,pooltemperatureisconservativeduetotheplacementofthe16pooltemperaturedetectors.These16detectorsareevenlydistributednearthepoolsurface,wherethehottestwaterwillriseRev;22'.4/81021.79-1 SSES"FSARTable7.2-4,DesignBasisSetpoints,wasdeletedinRevision11.Severalsectionsstillrefertodatacontainedinthattable.SeveralreferencesaremadetodesignbasissetpointspreviouslylistedinTable7.2-4.Thistablehasbeenintentionallyleftblank.Pleaseclarifythisdiscrepancy.RESPONSE:Table7.2-4wasdeletedbecausetheinformationthereonhasbeenincorporatedintheplantTechnicalSpecifications.SomeinformationfromTable7.2-1andalltheinformationfromTables7.2-5and7.2-6hasbeendeletedfromSection7.2andisalsocontainedintheTechnicalSpecificationsastheappropriatesinglepointofreferenceforthisdata.VariousdiscussionsinSection7.2havebeenrevisedbyappropriatelyreferencingtheTechnicalSpecificationsratherthanthedeletedtables.Rev.22,4/81032.52"1 SSES-FSARDiscussionoftheEmergencyCoreCoolingSystemsandtheassociatedtablesareincompleteandinconsistent.Correctandclarifythefollowing:1)ThesameinstrumentsareusedforReactorVessellowwaterlevelandPrimaryContainmenthighpressureformanyESFsystems.ThespecificationshownfortheseinstrumentsinTables7.3-1through7.3-5arenotconsistant.Correcttripsettings,ranges,andaccuraciesshownfortheseinstruments.2)Thesetableshaveallottedcolumnsforinstrumentresponsetimesandmargins(oftripsetting)tomeetrequirementsofIEEE279-1971Section3,butmostdatahasbeenomitted.Responsetimesshouldindicateminimumand/ormaximumwhereapplicable.3)Table7.3"1hasomittedallspecificationsfortheTurbineoverspeedinstrument.4)Figure7.3-5hasseveralerrors:oItdoesnotshowtwoADSlogicsasindicatedin7.3.l.la.,1.4.4.oReferencedFigure7.3-16doesnotexist.oItdoesnotshowlowpressureinterlockstoLPCIandCSrequiredtoinitiateADSasindicatedin7.3.l.la.l.4.4.5)Table7.3-2indicatesonlyonereactorwaterlevelsetpoint(-149inches)fortheADS.Section7.3.1.1a.l.4.4indicatestwolevelsetpoints,alowandalowerwaterlevel.6)Useoflevelswticheswitharangeof-150"/0/+60"toinitiateADSandCSactionwithtripsettingsat-149doesnotseemlikeconservativedesign.Justifytheuseofthisrangeforthisapplication.Discussaccuracyofthetripsettingandhowitisaffectedbynormalandaccidentenvironmentalconditionsandlongtermdrift.7)WhyaretworangesshownforLPCIpumpdischargepressure(10-240psigand10-260psig).RangeshownforthisinstrumentinTable7.3-4is10-240psigonly.8)Section7.3.1.1a.l.4.5onADSBypassesandInterlocksindicatesthatitispossiblefortheoperatortomanuallydelaythedepressurizingactionandstates"ThiswouldresetRev.22,4/Sl032.54"1 SSES-FSARthetimerstozerosecondsandpreventdepressurizationfor105seconds."Table7.3-2,Figure7.3-8Sht.3andTable6.3-2allindicateatimedelayof120seconds.Howisatimedelayof105secondsachieved?9)Explainwhytworanges(50-1000psigand50-1200psig)arelistedfortheReactorVesselLowPressureinstrumentinTable7.3-3.10)Instrumentrangesforpumpdischargeflow,Table7.3-3,andpumpminimumflowbypass,Table7.3-4,arespecifiedininchesofwaterbuttripsettingsareingpm.Supplyrangesfortheseflowinstrumentsingpm.Table7.3-9HPCISystemMinimumNumbersofTripChannelsRequiredforFunctionalPerformancedoesnotagreewithTable7.3-1HPCIInstrumentSpecifications.Table7.3-8doesnotlistHPCIpumphighsuctionpressureorTurbineOverspeedasshowninTable7.3-1.Table7.3-8liststwoitems,HPCIpumpflowandHPCIpumpdischargeflow,notshowninTable7.3-1.12)Table7.3-4LowPressureCoolantInjection-InstrumentSpecificationsdoesnotagreewithTable7.3-10LowPressureCoolantInjectionSystemMinimumNumberofTripChannelsRequiredforFunctionalPerformance.Table7.3-10doesnotlistReactorlowpressureorPumpdischargepressureasshowninTable7.3-4.Table7.3-10listsseveraltripchannelswhicharenotshowninTable7.3-4.TheseincludeReactorvessellowwaterlevelinsideshroud,Reactorvessellowflow,Primarycontainmenthighpressure,andReactorvessellowwaterlevel(RecirculationPumps).13)Table7.3-11CoreSpraySystemMinimumNumbersofTripChannelsRequiredforFunctionalPerformanceisincomplete.ItdoesnotlistPumpDischargeFlowasshowninTable7.3-1.RESPONSE:Tables7.3-1thru7.3-4havebeenrevisedtoincludeallappropriateinstrumentfunctionsandthenumberofchannelsprovided.Thetripsettingsandresponsetimeinformationhasbeendeleted,andisprovidedintheTechnicalSpecifications.Tables7.3-8thru7.3-11aredeleted,withappropriatenumberofchannelinformationincorporatedintoTables7.3-1thru7.3-4.RevisionstoTable7'-5havebeensubmittedwiththeresponsetoQuestion032.55.2.Theinstrumentresponsetimesandmargins(oftripsettings)areincludedintheTechnicalSpecifications.ThedatainRev.22,4/Sl032.54"2 SSES-FSARtheTechnicalSpecificationsisintendedtoalsosatisfytherequirementsofIEEE279-1971,Section3.3.TheHPCIturbineoverspeedtripisawhichisintegralwiththeturbine.discussionoftheHPCIturbine.TheandaccuracyinformationisprovidedSpecifications.mechanicaldevice,SeeSection6.3,foroverspeedtripsettingintheTechnical4,Figure7.3-5isrevisedtoshowasimplifiedpictureoftheADSandLPCI/CSinitiationlogic.The"ADSdivisionIandIILogics,discussedinrevisedSubsection7.3.l.la.l4-4andshownindetailbyFigure7.3-8sheet3,areidenticalandenergizingeitherwillinitiateADS.ThereforetheyareshowntwiceinFigure7.3-5.RelatingthesimplifiedpictureinFigure7.3-5tothedetailedonein'Figure7.3"8,theleftbranchcorrespondstologicAinDiv.I(orBinDiv.II)andtherighttologicCinDivisionI(orDinDiv.II).Anotehasbeenadded,toFigure7.3-5toclarifytheseparatelogicsforDiv.IandDiv.II.ThereferencetoFigure7.3-16containedonFigure7.3-5iserroneous.ThecorrectreferenceFigureforLPCIlogicisFigure7.3-10,RHRFCD.Thelowpressureinterlocksforpumps(CSandRHR)havebeenaddedtoFigure7.3-5.5.TherevisedTable7.3-2includesanappropriateentryfor.ADSinitiation,withactioncausedbytwosignals,oneeachfromthereactorwaterlevelLl,andreactorwaterlevelL3.BothsignalsarerequiredbeforeADSisautomaticallyinitiated.ThesetpointforthisactionisprovidedintheTechnicalSpecifications.6.TheinstrumenttripsettingshavebeenremovedfromthetablesofChapter7andincludedintheTechnicalSpecifications'helevelswitchtripsettingof-149inchesforADSandCSwillbechangedandwillbewithintheproperaccuracyandrangeoftheinstrument.Thetripsettingaccuracyrelatedtoabnormaloperatingtemperaturewithinthedrywellisdiscussedintheresponsetoquestion032.59.Instrumentdriftisincludedindevelopingtheinstrumentsetpoints.7./8.TheLPCIpumpdischargepressurepermissivefortheADShastworedundantchannelsprovidedforeachLPCI(RHR)pump.Howevertheinstrumentshaveidenticalranges,soTable7.3-2hasbeenrevisedtoagreewithTable7.3-4.TheADStimersetpointfoundinTable6.3-2isanupperlimit.Thecorrectsetpoints(includingmargin)areprovidedintheTechnicalSpecification.Thepropertimedelaytimeisbymechanicaladjustmentofpneumaticallyoperatedtimedelayrelay.ThetextofSubsectionRev.22,4/81032.54-3
TheSusquehanna eguipment forlong-term coolinqfcllowing apostulated LOCAincludestwoccmpletecozespraysystemsandtwoRHRsystems.Thesetvosystemsconsistofatotalofeightpumpscapableofpzovidinq watertothereactorpressurevessel.Thepipinqandinstrumentation diagramsofthesesystemsareshowninFigures6.3-4and5.4-13.Lonq-term coolingvatercanbeprovidedtothecorebyoneRHR(LPCXmode)pumporoneCSloop(bothpumps),whileheatcanberejectedtotheultimateheatsinkviaeitherofthetwoRHRheatexchangers usingoneoffourRHRpumps.Thusamaximumofthreepumpsvouldberequiredforpost-LOCA corecoolinq.Allofthesecomponents aredesiqnedtoremainoperableduringandfollovinq aLossofCoolantAccident, andtheredundancy providedissuchthatmaintenance isnotexpectedtoberequiredduringthelong-tera corecoolingperiodfollowinq aLOCA.Hovever,theRHRandCoreSpraysystemsaredesignedwithprovisions forflushingasshovninFigures6.3-4and5.4-13.Rev.224/81211210-1 SSES-FSAR gDESTXON211.211:Severewaterhammeroccurrence intheECCSdischarge pipingduringstartupoftheECCSpumpsisavoidedbyensuringthatthedischarge pipesaremaintained fullofwater.Thecondensate transfersystemiusedtoachievethisfunctionforallECCSpiping.Sincethecondensate transfersystemalsosupplies~atertonumerousothersystems,thefollowing areasrequireclarification:
.SSES-FSAR7.3'.1a.l.4.5hasbeenrevisedtodeletetheactualnumericalvalue.The105secondtimevalueisnominal,andwasusedtoallowforthemarginandtoleranceofthedevice.ThepropervalueisprovidedintheTechnicalSpecification.9.ThetwotripsystemsforCShavediverseinstrumentsspecifiedforreactorvesselandthesameinstrumentsareusedinLPCIlowpressure.Tables7.3-3and7.3-4,asrevised,givetheinstrumentrangesforbothtripsystems.ThetripsettingvaluesareprovidedintheTechnicalSpecifications.10.TheCSandLPCI(RHR)pumpminimumflowbypassrangesareconvertedfromdifferentialpressuretoflowontherevisedTables7.3-3and7.3-4.11.Table7.3-1hasbeenrevisedtoincludeHPCIpumpminimumflowbypassandtheHPCIpumpflowcontrollersignalingtheHPCIturbine.Theturbineoverspeedtripisamechanicaldevicethatisintegralwiththeturbine,seeSection6.3.TheturbineoverspeedinstrumentrangehasbeenaddedtoTable7.3-1.ThenumberofchannelsprovidedisaddedtoTable7.3-1,andTable7.3-8isdeleted.TheminimumnumberoftripchannelsrequiredhavebeenaddedtotheTechnicalSpecifications.12.TheLPCITable7.3-4hasbeenexpandedtoincludetheinstrumentsoftheactualdesignandthenumberofchannelsprovided.ThemarginandtripsettingofTable7.3-4aswellasTable7.3-10havebeendeleted.13.TheCSTable7'-3hasbeenrevisedtoaddthenumberofinstrumentchannelsprovided,andmargin,responsetime,andtripsettingshavebeendeleted.Table7.3-11hasbeendeleted.Rev.22,4/81032.54-4 SSES-FSARUESTION040.2ThestaffrequiresthatthefollowingqualificationtestprograminformationbeprovidedforallClass1Eequipment:(1)IdentificationofEquipmentincluding,(a)Manufacturer(b)Manufacturer'stypenumber(c)Manufacturer'smodelnumber(2)Equipmentdesignspecificationrequirements,including,(a)Thesystem"safetyfunctionrequirements(b)Anenvironmentalenvelopewhichincludesallextremeparameters,bothmaximumandminimumvalues,expectedtooccurduringplantshutdown,normaloperation,abnormaloperation,andanydesignbasisevent.(c)Timerequiredtofulfillitssafetyfunctionwhensubjectedtoanyoftheextremesoftheenvironmentalenvelopespecifiedabove.(3)Testplan,(4)Testset-up,(5)Testprocedures,(6)Acceptabilitygoalsandrequirements,(7)Testresults,(8)Identificationofthedocumentswhichincludeanddescribetheaboveitems.(9)TheinformationrequestedaboveshallbeprovidedforatleastoneitemineachofthefollowinggroupsofClass1Eequipment.(a)Switchgear(b)Motorcontrolcenters,(c)Valveoperators(incontainment)(d)Motors(e)IogicequipmentRev.22,4/81040.2-1 SSES-FSAR(f)Cable(g)Dieselgeneratorcontrolequipment(h)Sensors(i)Limitswitches(j)Heaters(k)Fans(1)Controlboards(m)Instrumentracksandpanels(n)Connectors(o)Penetrations(p)Splices(q)Terminalblocks(10)InaccordancewiththerequirementsofAppendixBof10CFR50,thestaffrequiresastatementverifying:(a)thatallClass1Eequipmenthasbeenqualifiedtotheprogramdescribedabove,and(b)thatthequalificationinformationisavailableforanNRCaudit.RESPONSE:ThequalificationtestprograminformationforClasslEequipmentisprovidedintheSusquehannaSESEnvironmental(}ualificationReportForClasslEEquipmentsubmittedunderseparatecover.Rev.22,4/81040.2-2 SSES-PSABstartontheautostartsignalandoperateonstandbyforfiveminutes.(d)Verifyingthatonlossofoffsitepowerinconjunctionwithasafetyfeaturesactuationsignalthedieselgeneratorsstartontheautostartsignal,theemergencybusesareenergizedwithpermanentlyconnectedloads,theauto-connectedemergency(accident)loadsareenergizedthroughtheloadsequence,andthesystemoperatesfozfiveminuteswhilethegeneratorsareloadedwiththeemergencyloads.(e)Verifyingthatoninterruptionoftheonsitesourcestheoadsareshedfromtheemergencybusesinaccordancewithdesignrequirementsandthatsubsequentloadingoftheonsitesourcesisthroughtheloadsequencer.(4)Thevoltagelevelsatthesafety-relatedbusesshouldbeoptimizedforthefullloadandminimumloadconditionsthatareexpectedthroughouttheanticipatedrangeofvoltagevariationsoftheoffsitepowezsourcebyappropriateadjustmentofthevoltagetapsettingsoftheinterveningtransformers.Merequirethattheadequacyofthedesigninthisregardbevezifiedbyactualmeasurementandbycorrelationofmeasuredvalueswithanalysisresults.Provideadescriptionofthemethodformakingthisverification;beforeinitialreactorpoweroperation,providethedocumentationrequiredtoestablishthatthisverificationhasbeenaccomplished.RESPONSEI.RefertoFigures8.3-1,83-2,8.3-3and8.3-15forthefollowingdiscussiononundervoltagedetectionandtransferlogic.Theprimarybustransferonlossofoffsitepowerisinitiatedatthe13.8kVstartupswitchgear.Eachclass1E4.16kVswitchgearbusesprovidethebackupundervoltagetransfer.RefertoSubsection8.3fordiscussiononbusarrangementandtheinterconnectionoftheoffsitepowersuppliesandtheon-sitedistributionsystem~~Rev.22,4/81040.6-3 SSES-ZSAR(1)Each13.8kVstartupbusisprovidedwithanoffsitepowersupplyandthecapabilityofconnectingtothesecondoffsitepowersupplybytheclosingofthel3.8kVtiebreaker(breaker52-10502).Theundervoltagedetectionsystemateach13.8kVswitchgearbusconsistsof(1)incomingfeeder(offsitepowersupply)undervoltage-clays-device27AI,(2)busundervoltagerelay-device27A2,and(3)tiebusundervoltagerelay-device27A1.{a)Device27AX-initiatestrippingoftheincomingfeeder.Device27AIisaninstantaneousplungertyperelaywithpickupsettingat93.6volts(78%oftherate120volts).TwoindependentsinglephaserelaysareusedtomonitortheA-Band0-Cphasevoltages.Theincomingbreakeristrippedoncoincidencelogicofthetwoundervoltagerelaysat917voltswith30cycletimedelay.(b)Device27A1-ProvidesthepermissiveforclosingoftiebreakerDevice27A1isalongtimeinductiondisctypeundervoltagerelaysetat82volts(68%ofrated)andtimedial1/2.Twosinglephaserelayareprovidedformonitoringtheavailabilityofthealternateoffsitepowersupplyatthe13.8kVlevelandprovideacoincidencelogicfortheclosingofthetiebreaker(c)Device27A2-initiatesthebustransfer)Device27A2isa3phaseinstantaneousplungertyperelaywiththreefullwavebridgerectifiers.Therelayissettodropoutat30volt(25%ofrated).Bustransferiscompletedbytheclosingofthetiebreaker(permissivebydevice27A1).2.Each4.16kVclass1Eswitchgearbusisprovidedwithapreferredandanalternate(offsite)powersupplyandonedieselgeneratorfeederasdiscussedinSubsection83.1.3Theundervoltagedetectionandbackupbustransferonlossofoffsitepowerorsustaineddegradedvoltageonthebusisprovidedby(1)incomingfeederundervoltagerelay-device27',(2)busundervoltagerelay-device27A,and(3)degradedvoltageprotectionrelays-devices27B1,27B2,27B3,and27B4.ThedevicesettingsfortheClassIEbusundervoltageprotectionaresummarizedinthefollowingTable40.6-1.Rev.22,.4(83>040.6-4 SSES-FSARDevice27AI-providesthepermissiveforclosingoftheincomingbreakerDevice27AIisasinglephaseinductiondisctyperelaysetat92voltsandtimedial1/2.Thisrelayisusedtomonitortheavailabilityof'theoffsitepowersupplyattheclasslE4.16ivlevel.(b)Device27A-initiatesthebustransferDevice27Aisa3phaseinstantaneousplungertyperelaywiththreefullwaverectifiers.Therelayissettodropoutat18voltor15%ofratedbusvoltage.The4.16kVbustransferisinitiatedwithatimedelayof10cyclesbytrippingofthepreferincomingfeederbreaker.Thetransferiscompletedifthealternateoffsitepowersupplytothis4.16kVbusisavailable(permissivebydevice27AI).Incasethealternateoffsitepowerisnotavailable,thestandbydieselgeneratorisinitiatedtostartwitha0.5seconddelay.(c)Devices27B1,27B2,27B3,and27B4-initiatebustransferandundervoltagealarm.Theseundervoltagerelaysaresolid-state,singlephasewithdefinitetimedelay(ITE27Dtypedefinitelongtime).Theadditionallevelvoltageprotectionforeach4.16kVClassIEbusisprovidedtoassurethatvoltagelevelsatallClassIEdistributionbusesmeettheminimumrequirementofallsafetyrelatedequipment.Intheeventoflossofvoltageonthe4.16kVClassIEbus,thebusundervoltagerelay(27A)initiatesbustransferperparagraph(b)above.Inaddition,relays27Bl,27B2,27B3,and27B4providebackupprotectionforalarmsandinitiatingbustransfer.Ifadegradedvoltageconditionoccursonthe4.16kVClassIEbus,withnoLOCAsignalpresent(seeFigure8.3-15),whichisbelowthesettingofrelays27B1and27B2,analarm(coincidencelogic)willbeinitiatedafter10seconds.Thesamerelayswillinitiatethebustransferafter30minutesLOCAsignalswillbypassrelays27B1and27B2orbustransferwillbeblockedbyLOCA.The10secondtimedelayisprovidedtoprecludespuriousalarms.The30~inutestimedelayisprovidedforoperatorstoinitiatecorrectiveactions.Theserelaysprovidepre-alarmtoalerttheoperatorthat"abnormal"voltageconditionexistsattheClassIEbus.Rev.22,4/81040.6-5 SSES-FSARInaddition,relays27B3and27B4willinitiateanalarmandbustransferafter17secondswhenthebusvoltageisdegradedbelowthesettingcoincidentwithanLOCAcondition.Thesetworelaysarealsoconnectedinacoincidentlogicwithtimedelayrelaystoprecludespurioustrippingoftheoffsitepowersources.Thisprotectiveschemewillforcealossofoffsitepoweronthe4.16kVClassIEbusondegradedbusvoltage.Ifthealternateoffsitepowerisnotavailable,theemergencydieselgeneratorwillbestartedautomaticallywitha0.5seconddelayandconnectedtotherespectivebuswithin10secondspersection8.3.1.4.1.Allbusundervoltagerelayswillinitiatebustransfer,onlywhenthebusisfedfromtheoffsitepowersupplies.However,theserelayswillinitiateundervoltagealarmevenwhenthebusisenergizedbyemergencydieselgenerator.II.(1)Selectionofallvoltagerelaysettingsisbasedontheon-sitedistributionsystemloadflowstudyandisverifiedbypreopezationaltests.Thecontinuousoperatingvoltageateachdistributionvoltagelevelismaintainedat,+10%oftheratedvoltagelevelovertheentiretransmissiongridoperatingrange.Trippingoftheoffsitepoversupplyatthe13.8kVlevelisaccomplishedbyacoincidencelogicoftvoindependent'inglephaseundervoltagerelays.ThebackuptrippingofthesameoffsitepowersupplytotheClass1E416kVsvitchgearisprovidedbya3phasefullwaverectifierstypeundezvoltagerelayforminimizingnuisancetrippingsuchaslossofa-..singlecontrolfuseinthedetectioncircuit..Thetotaltimedelayallowedbyrestarting{starting)ofclasslEequipmentafteraDBAis13secondsasshownon'able8.3-1.10secondsisreservedfordieselgeneratorstarting.Therefore,3secondsisallocatedforvoltagesensingandbustransfer.Pze-operatingtestsvillverifythatthetimedelayonthebustransferdoesnotexceedtheallowabletime.Asdiscussedin(I)ofabove,offsitepowersupplyzsautomaticallydisconnectedatthe13.8kVlevel.IfthetransferisnotcompletedwithinthetimedelayoftheClass1E416kVbustransfercircuit,theoffsitepowersupplyisalsodisconnectedatthe4.16kVlevel.TheundervoltagedetectionsensorsandcircuitsaredesignedinaccordancewithIEEEstd279-1971Rev.22,4/81040.6-6 SSES-FSAR4)4((2)Allloadsoneach4.16kVClass1Eswitchgearbusexceptthe480voltloadcentercederareshedonlossofpowertothebus.Oncethebusisre-energized,the4.16kVClasslEloadsareloadedinaccordancewiththepre-settimedelay.Loadsheddingandreloadingof4.16kVclasslEloadsarerepeatedasdiscussedabovewheneverthebusbecomesde-energized.(4)RefertoChapter16forTechnicalSpecification.Transformertapsettingsaceselectedforoptionaloperatingvoltagelevelsfora11loadingconditionsundertheanticipatedvoltagevariationoftheoffsitepowersupplies.Thecontinuousoperatingvoltageateachlevelismaintainedwithin+10%orated.Pre-opeationaltestsverifytheactualvoltagelevels.III.RelaySettings:Thefunctionandsettingsofundervoltagerelaysaredeterminedinconsiderationofthefullload,minimumload,andthelargestmotorstartingconditionsthatareexpectedthroughouttheanticipatedrangeofvoltagevariationsfortheoffsitepowersources.Thefollowingdesigncriteriaareused:(1)Themaximumallowablevoltageatnoloadortheminimumloadcondztxonsis110%ofthemotorratedvoltage.(2)Theminimumvoltageunderthemaximumrunningloadconditionxs90/ofthebusratedvoltage.(3)Theminimumstartingvoltageis80%ofmotorratedvoltage.SeeTable40.6-1.Rev.22,4/81040.6-7 SSES-FSARTABLE40.6-1SETTINGTABLE(4KVBUS)DeviceNo.27AI(preferred)FunctionPermissivetoclosethepreferredpowerincomingBreaker.AlarmYesVoltage~nettin95%Time~nettin8sec.27AI(alternate)PermissivetoclosethealternatepowerincomingBreakerYes95%8sec.27A59/27Initiatebustransfer.Triptheincomingclosedbreaker.Busover/undervoltage(alarmonly&locatedinloadcenter)YesYes15%110%/90%10cycles10sec.27Bl27B2Undervoltagealarmandinitiatebustransferwithtimedelayrelays.Yes95%10sec.27B1X27B2XTimedelayrelayswith27B1&27B2toinitiatebustransfer.No30min.27B327B4InitiatebustransferonLOCAconditionNo93%17sec.Rev.22,4/81 SSES-FSARQUESTION040.32:Insection9.5.2.2youdescribetheplantcommunicationssystemprovided.Itisnotedthatuseofradio(portableandfixed)communicationshasbeenexcluded.Aspartoftheplantdefense-in-depthconcept,intheeventofanaccidentorfireinanareawherefixedcommunicationssystemscannotbeused,werequire(asaminimum)thatportablecommunicationsequipmentbeprovidedatstrategicworkstationsintheplantforusebypersonnelundersuchconditions.RESPONSE:RefertorevisedSubsection9.5.2andtheresponseprovidedtoquestion281.13.Rev.22,4/81040.32-1 SSES-FSARUESTION40.951.Provideatablethatlistsallequipmentincludinginstrumentationandvitalsupportsystemequipmentrequiredtoachieveandmaintainhotand/orcoldshutdown.Foreachequipmentlisted:a.Differentiatebetweenequipmentrequiredtoachieveandmaintainhotshutdownandequipmentrequiredtoachieveandmaintaincoldshutdown.b.Defineeachequipment'slocationbyfirearea,c.Defineeachequipment'sredundantcounterpart,d.Identifyeachequipment'sessentialcabling(instrumentation,control,andpower).Foreachcableidentified:(1)Describethecablerouting(byfirearea)'fromsourcetotermination,and(2)Identifyeachfirearealocationwherethecablesareseparatedbylessthanawallhavingathree-hourfireratingfromcablesforanyredundantshutdownsystem,ande.Listanyproblemareasidentifiedbyiteml.d.(2)abovethatwillbecorrectedinaccordancewithSectionIII.G.3ofAppendixR(i.e.,alternateordedicatedshutdowncapability).RESPONSE:Themethodofverifyingsafe-shutdowncapabilitysuggestedinQ40.95wasconsidered.However,amoreefficientandlesstime-consumingbutequallyeffectivemethodofreviewbasedonexaminationofeachfirezonewaschosen.First,alistofsystemsrequiredtoshutdowntheplantwasdeveloped.Criteriaincludedalossofoffsitepower,allsystemsshouldbesafety-related,nosinglefailure(otherthanasinglefireanditseffects),andthatmanualoperationandcontrolpost-firewereacceptable.SeeTable40.95-1.Toshowtheredundantequipmentanddifferentiatebetweenequipmentrequiredtoachieveandmaintainhotshutdownandequipmentrequiredtoachieveandmaintaincoldshutdown,Table40.95-1isdividedintothreegroupsofsystems,categorizedbytheirfunctions,asdescribedbelow.GroupIconsistsofthosesystemsrequiredforbothhotandcoldshutdown.Anexampleisthecontrolroddrivemanualscramcircuits.GroupIsystemsarefurtherdividedintotwoindependentsubsystemsdesignatedDivisionIandDivisionII.DivisionsinanyoneGroupIsystemmustbesingle-fireisolated*fromeachother.Rev.22,4/8140.95-1 SSES-FSARGroupIIconsistsofthosesystemsrequiredforhotshutdown.Severalsystemsarelistedt;ogetherbecauseoftheinterdependencyofthesesystems,e.g.dieselgeneratorsandauxiliaries.Again,thesesystemsarefurtherdividedintoDivisionsIandII.AllequipmentandcablesessentialforGroupII,DivisionI,mustbesingle-fireisolatedfromallessentialcablesforGroupIIDivisionIIsystems.Hence,asanexample,RCIC(DivisionI)andHPCI(DivisionII)mustbesingle-fireisolated*fromeachother.GroupIIIconsistsofthosesystemsrequiredforcoldshutdown.Again,DivisionImustbesingle-fireisolated*fromDivisionII.Thosesystemswithcontainmentisolationvalveshaveacross-divisonalcircuit.Thisisnecessaryfordiversecontainmentisolationfunction.Ifthesystem,sayHPCI,isDivisionII,thecross-divisionisolationvalvecircuitswouldberoutedintheirownseparatedconduits.Likewise,theRCICsystem,DivisionI,thecross-divisionalcircuitswouldberoutedintheirownconduits.Thecrossdivisionalcircuitsofthesetwosystems,willbesingle-fireisolatedfromeachotherandfrombothDivisionsIandIIuptothebreaker.Table40'5-2isaspecificcomponentlistingofthosedevicesessentialtothefunctioningofthesystemsinTable40.95-1.Firezonelocationforeachdeviceisalso-listed.Unit2equipmentfornon-commonsystemsdifferonlyinthattheprefix1ischangedto2forbothequipmentnumberandfirezone.Thespecificmethodofcablereviewisdescribedbelow.TheFireProtectionReviewReportanalysis(Section4.0)verifiesthatfireswillbecontainedwithinthezoneoforigin.Eachfirezoneisreviewedindividually.First,aracewaylayoutdrawingismarkedtoshowthedivisionalizationofthesafety-relatedraceway.Theminoritydivisionisidentifiedanditsracewayislisted.Theterm"minoritydivision"referstotheelectricaldivisionwhichhasfewerofitsracewaysroutedthroughthefirezoneinquestion.Actually,eitherdivisioncouldbechosenforfurtherexamination,buttheminoritydivisionrepresentstheleasteffort.Thecablesinallthelistedminorityracewaysarechecked,andanynotconnectedtoasafeshutdownsystemasgiveninTable40.95-1ortoanyofthecomponentslistedinTable40.95-2aredeleted.Allcableleftisreviewedforitssupportofthesystem'ssafeshutdownfunction(s)andfortheeffectsoffailurecausedbyfire.Thisstepleavessafeshutdowncablingthatviolatesfirezoneseparation.Eachcableorcomponentisthenreviewedforapplicablefireprotectionmeasures.Thecableistheneitherreroutedorseparationbarriersand/orsuppressionanddetectionsystems,asnecessary,areprovided.*Single-fireisolatedmeanseitherinseparatefirezonesorhavingthefollowingfire-protectionmeasures:a)Fire/smokedetectionisprovidedinallfirezonescontainingessentialminoritydivisionsafeshutdownraceway..Rev.22,4/8140.95-2 FSAR-SSESTABLE40-95-1SystemsRequiredForShutdownGROUPI-SystemsRequiredforHot6ColdShutdownControlRodDrive-ManualScramCircuitsonlyMainSteamIsolationValves(manualclosurefunctionsonly)SuppressionPoolTemperatureMcnitorinqReactorPressureVesselInstrumentationGROUPII-SystemsRequiredforHotShutdownDivisionIRCICADSESHESSWPumphouseHVACDieselGeneratorsandAuxiliariesDieselGeneratorHVACContainmentInstrumentGasDivisionIlHPCIplusallDivisionIIofthesesystemsunderModeII,DivisionexceptRCIC.GROUpIII-SystemsRequiredforColdShutdownDivisionIRHRRHRSMESQESSMPumphouseHVACDieselGeneratorsandAuxiliariesDieselGeneratorHVACDivisionIIAllDivisionIIofaboveRev.22,4/Sl SSES-FSAR2.ProvideatablethatlistsClass1EandNon-ClassIEcablesthatareassociatedwiththeessentialsafeshutdownsystemsidentifiedin,item1above.Foreachcablelisted:a.Definethecables'ssociationtothesafeshutdownsystem(commonpowersource,commonraceway,separationlessthanRegulatoryGuide1.75guidelines,cablesforequipmentwhosespuriousoperationwilladverselyaffectshutdownsystems,etc.))b.Describeeachassociatedcablerouting(byfirearea)fromsourcetotermination,andc.Identifyeachlocationwheretheassociatedcablesareseparatedbylessthanawallhavingathree-hourfireratingfromcablesrequiredfororassociatedwithanyredundantshutdownsystem.RESPONSE:a.AffiliatedcircuitsareusedinSSESinplaceof"associated"circuitswhicharedefinedinSection8.1.6.lnparagraph4)and5).Theseparation/isolationbetweenClassIEandnon-ClassIEcablesaredesignedtominimizeanyfailureinthenon-ClassIEequipmentfromcausingunacceptableinfluencesintheClassIEsystem.b.TheaffiliatedcircuitsaresubjectedtothesamerequirementsasClassIEcircuits.RefertoSections3.12.3.4and8.3.1.11.4andTable8.3-10forcableroutingrequirements.c.TheaffiliatedcablesareroutedwiththeirrespectiveClassIEcablesasdescribedinTable8.3-10.Therefore,theseparationbetweentheaffiliatedcablesandtheredundantClassIEcables,includingthosecablesrequiredforsafeshutdown,isinaccordancewithRegulatoryGuide1.75.The.responsetoQuestion40.95addressesthecableseparationbetweenredundantshutdownsystems.Rev.22,4/8140.96-1 SSES-FSARUESTION3.Provideoneofthefollowingforeachofthecircuitsidentifiedinitem2.cabove:aTheresultsofananalysisthatdemonstratesthatfailurecausedbyopen,ground,orhotshortofcableswillnotaffectit'sassociatedshutdownsystem,b.IdentifyeachcircuitrequiringasolutioninaccordancewithsectionIII.G.3ofAppendixR,orIdentifyeachcircuitmeetingtherequirementsofsectionIII.G.2ofAppendixR(i.e.,three-hourwall,20feetofclearspacewithautomaticfiresuppression,orone-hourbarrierwithautomaticfiresuppression).RESPONSE:a.Anaffiliatedcircuitmayaffectitsassociatedshutdownsystemintwoways:Affiliatedcircuitroutedwithshutdowncircuitorinsameenclosure:A~nalaie:AnopencircuitofaffiliatedcablewillnotaffectshutdownsystembecausetheClassIEcableandaffiliatedcablehavethesamequalifiedcableinsulation.(seeTable9.5-1).Forshortingorgroundingofaffiliatedcircuits,refertoSection8.1.6.lnparagraph5)forthebasisandmethodsforseparation/isolationofNon-ClassIEandClassIEcircuits.Theworstcredibleeventwhichcouldaffectoneoftheredundantshutdowntrainsthroughtheaffiliatedcircuitisafireinvolvingaracewaycontainingbothaffiliatedcableanditsassociatedshutdownsystemcables.Assumeintheworstcasewherethesecablesareallshortedtogetherwith120Vac,125Vdc,250Vdc,or480Vaccableduetoafire.(4kVandhighervoltagecablesareroutedintheirownconduit).Theprotectivedevice(s)ofthefaultedcircuitsshouldbetrippedtopreventfurtherdamageintotheshutdownsystem.IftheClasslEprotectivedevicedoesnottrip,theshutdownequipmentmaybedamaged,andthereforepreventtheequipmentfromperformingitsshutdownfunction.However,failureofaClasslEdevicetotripmustbeconsideredasinglefailure,whichisbeyondthefireprotectiondesignbasis.Inorderforthisshutdowntrain,asdesigned,tofailduetofire,thesemultiple,independent,lowprobabilityeventsmusthappensimultaneously.Thisisconsideredextremelyunlikely.Rev.22,4/8140.97-1 SSES-PSAR(2)Affiliatedcircuitsharingthesamepowersupplyoftheassociatedshutdowncircuits:A~nalsis:SameasdescribedinSection8.1.6.1.nforseparation/isolationofnon-ClassIEandClassIEcircuits.b.Rc.TheaffiliatedcircuitsaresubjectedtothesamerequirementsasClassIEcircuits.Theresponsetoquestion40.95addressesthiscondition.Rev.22,4/8140.97-2 SSES-FSAR5~Theresidualheatremovalsystemisgenerallyalowpressuresystemthatinterfaceswiththehighpressureprimarycoolantsystem.ToprecludeaLOCAthroughthisinterface,werequirecompliancewiththerecommendationsofBranchTechnicalPositionRSB5-1.Thus,thisinterfacemostlikelyconsistsoftworedundantandindependentmotoroperatedvalveswithdiverseinterlocksinaccordancewithBranchTechnicalPositionICSB3.Thesetwomotoroperatedvalvesandtheirassociatedcablemaybesubjecttoasinglefirehazard.Itisourconcernthatthissinglefirecouldcausethetwovalvestoopenresultinginafire-initiatedIOCAthroughthesubjecthigh-lowpressuresysteminterface.Toassurethatthisinterfaceandotherhigh-lowpressureinterfacesareadequatelyprotectedfromtheeffectsofasinglefire,werequirethefollowinginformation:a~Identifyeachhigh-lowpressureinterfacethatusesredundantelectricallycontrolleddevices(suchastwoseriesmotoroperatedvalves)toisolateorprecluderuptureofanyprimarycoolantboundary.b.Identifyeachdevice'sessentialcabling(powerandcontrol)anddescribethecablerouting(byfirearea)fromsourcetotermination.C.Identifyeachlocationwheretheidentifiedcablesareseparatedbylessthanawallhavingathree-hourfireratingfromcablesfortheredundantdevice.d.Fortheareasidentifiedinitemcabove(ifany),providethebasesandjustificationastotheacceptabilityoftheexistingdesignoranyproposedmodifications.RESPONSE:Wehavereviewedthemajorreactorpressureboundaryhighpressure/lowpressureinterfacevalvesperBranchTechnicalPositionRSB5-1.Usingthesecriteria,checkvalvesinserieswithmotoroperatedvalves(MOVs)areacceptable.AfirecouldopenonlytheMOV.ManyoccurrencesofthiscombinationofcheckandMOVexistatSSESintheCoreSpray,Feedwater,andResidualHeatRemovalSystems,amongothers.Usuallyassociatedwiththecheckvalveisapneumaticoperator.Thisoperatorisfortestingpurposesonlyandcanneitherunseatnorpreventfromseatingthevalveflapperwhenadifferentialpressureexistsacrossthevalve.Hence,afire-causedfailureofthesolenoidactuatorsforthepneumaticoperatorsonthesecheckvalvescannotcausethevalvestoopeninadvertentlyandthuscannotdegradethereactorcoolantpressureboundary.Rev.22,4/Sl40.99"1 SSES-FSARInadditiontotheabove,threepairsofvalvesperunit(sixpairstotal),allassociatedwiththeRHRSystemashigh/lowpressureinterfacevalves,consistoftworemotelyoperatedvalvesinseries.Onepairofthesevalvesperunitintheshutdowncoolingsuctionline.TheotherpairareinthelinestoeachRHRheatexchangerforuseinthesteamcondensingmode.Thevalvenumbersaregivenbelow:Unit1HV-E-11-1F008/HV-E-ll-lF009ShutdownCoolingMode(motoroperated)PV-E-ll-1F051A/PV-E-ll-lF052ASteamCondensingMode(airoperated)PV-E-ll-1F051B/PV-E-ll-lF052BSteamCondensingMode(airoperated)Unit2HV-E-11-2F008/HV-E-ll-2F009ShutdownCoolingMode(motoroperated)PV-E-ll-2F051A/PV-E-11-2F052A'teamCondensingMode(airoperated)PV"E-11-2F051B/PV-E-ll-2F052BSteamCondensingMode(airoperated)Theshutdowncoolingsuctionvalvesareinseparatedivisionsandaresubjecttothenormalseparationcriteria.Also,theinboardvalveislocatedinsidetheinertedcontainmentwhereafirecannotbepostulated.Acable-by-cableseparationreviewwasconducted;cablesfrombothvalvesarenotroutedinanysinglefirezoneotherthanthemaincontrolroomandtheRemoteShutdownPanels(RSP).AreactorpressurevesselinterlockpreventsashutdowncoolingvalveswitchinthemaincontrolroomfromopeningitsvalvewheneverthevesselpressureexceedsthedesignratingofthedownstreamRERpiping.AdesignchangeisunderwaytorelocatethepressureinterlockcontactbetweentheMCRandtheRSP.Therelaypanelscontainingthepressurecontactsarelocatedinseparatedrelayrooms.Hence,afireoranoperatormistakeineithertheMCRorRSPwillnotcauseanoverpressurization.Thesteamcondensingmodevalvesareinterconnectedbydesignforcoordinatedsteamadmissionandpressurecontrolandhencearenotseparatednordivisionalized.Shouldbothvalvesbedrivenopenbyfire,adequateoverpressurizationprotectionexistsviaPSV-Ell"F055A8BtopreventruptureofthedownstreamRHRpiping.Rev.22,4/8140.99-2 SSES-FSARFigures3.6-1through3.6-9and3.6-14areindicatedas"Later".ProvideaschedulefortheirinclusionintheFSAR.RESPONSE:Seerevisedfigures3.6-1through3.6-8.Figure3.6-9hasbeenintentionallyleftblank.Figure3'-14willbeprovidedinthesecondquarterof1981.Rev.22,4/81110.29-1 SSES-FSARAsrequiredby10CFR50.55a(g)werequestthatyousubmityourpreserviceandinitial20monthinservicetestingprogramforpumpsandvalves.Enclosure110-3providesasuggestedformatforthissubmittalandadiscussionofinformationwerequiretojustifyanyreliefrequests.RESPONSE:Thepreserviceandinitial20monthinservicetestingprogramforpumpsandvalveshasbeensubmittedunderseparatecover.Rev.22,4/81110.47-1 SSES-FSARAreviewofthedesignadequacyofyoursafety-relatedelectricalandmechanicalequipmentunderseismicandhydrodynamicloadingswillbeperformedbyourSeismicQualificationReviewTeam(SQRT).Asitevisitatsomefuturedatewillbenecessarytoinspectandotherwiseevaluateselectedequipmentafterourreviewofthefollowingrequestedinformation.TheSQRTeffortwillbeprimarilyfocusedontwosubjects.Thefirstistheadequacyoftheoriginalsingle-axis,single-frequencytestsoranalysesofequipmentqualifiedperthecriteriaofZEEEStd.344-1971.Thesecondsubjectisthequalificationofequipmentforthecombinedseismicandhydrodynamicvibratoryloadings.Thefrequencyofthisvibrationmayexceed33hertzandnegatetheoriginalassumptionofacomponentsrigidityinsomecases.AttachedEnclosure110-4describestheSQRTanditsprocedures.SectionV.2.ArequiresinformationwhichyoushouldsubmitsothatSQRTcanperformitsreview.SeveraloftheBNRHarkZIOLapplicantshavestatedintheirClosureReportsthatequipmentwillbequalifiedfortheSRSScombinationofthehydrodynamicandseismicrequiredresponsespectra(RRS).Similarly,whenqualifiedbyanalysis,thepeakdynamicresponsesoftheequipmenttothehydrodynamicandseismicloadswillbecombinedbySRSS.ThecombiningbySRSSofeithertheRRSorpeakdynamicresponsesforhydrodynamicandseismicloadingsisnotacceptableatthistime.Toaidthestaffinitsreview,provideacompilationoftherequiredresponsespectralistedbelowforeachflooroftheseismicCategory1buildingsatyourplant.(1)theRRSfortheOBEorSSE,whicheveriscontrolling.lftheOBEiscontrolling,explainwhy.(2)thecontrollinghydrodynamicRRS(3)items(1)and(2)combinedbySRSS(4)items(1)and(2)combinedbyabsolutesum.RESPONSE:TheconcernsraisedbythisquestionhavebeenaddressedintheSRQTsubmittalsofDecember,1980,January,1981andFebruary,1981.Rev.22,4/81110.50-1 SSES-PSARQUESTION121.8:~ewillrequirethatyourinspectionprogramforClass1,Zand3componentsbeinaccordancewiththe=evise'ulesin10CEHPdr50,Section50.55a,paragraph(g)publ'shedinthePebruary12,1976issueofthe."-EDERALREGISTER.Toevaluateyourinspec-ionp"ogram,"hefollowingminimuminformationisnecessaryrorourreview:(1)Apreserviceinspectionplantoconsis-oftheapplicableASllECodeEditionandtheexceptionstotheCoderequirements.(2)Aninserviceinspectionplansubmittedwithinsixmonthsofanticipatedcommercialoperation.Thepreserviceinspectionplanwillberevi..wedtosupportthesafetyevaluationreportfindingoncompliancewithpreserviceandinserviceinspectionrequirements.Thebasisforthedeterminationwillbecompliancewith:(1)TheEditionofSectionXIoftheASl}ECodestatedinyourPSARorlaterEdit'onsofSectionXI=eferencedintheFEDERALREGISTERthatyoumayelecttoapply.AllaugmentedexaminationsestablishedbytheCommissionwhenaddedassuranceofstructuralreliabilitywasdeemednecessary.ExamplesofaugmentedexaminationrequirementscanbefoundinNRCpositionson(a)highenergyfluidsystemsinSRPSection3.2,(b)turbinediskintegrityinSRPSection10.2.3,and(c)feedwaterinletnozzleinnerradii.YourresponseshoulddefinetheapplicableSectionXIEdition(s)andsubsections.Ifanyexaminationrequirementsofthe"-ditionofSectionXIinyourPSARcannotbemet,areliefrequestincludingcompletetechnicaljustificationtosupportyourconclusionmustbeprovided.Theinserviceinspectionplanshouldbesubmittedforreviewwithinsixmonthsofanticipatedcommercialoperationtodemonstratecompliancewith10CFRPart50,Section50.55a,paragraph(g).Thisplanwillbeevaluatedinasafetyevaluationreportsupplement.TheobjectiveistoincorporateintotheinserviceinspectionprogramSectionXIrequirementsineffectsixmonthspriortocommercialoperationandanyaugmentedRev.22,4/81121.8-1 examinationrequirementsestablishedbytheCommission.Yourresponseshoulddefineallexaminationrequirementsthatyoudeterminearenotpracticalwithinthelimitationsofdesign',geometry,andmaterialsofconstructionofthecomponents.Attachedaredetailedguidelinesforthepreparationandcontentoftheinspectionprogramsandreliefrequeststobesubmittedforstaffreview.RESPONSE:TheinspectionprogramforClass1,2and3componentshasbeenprovided(PLA-619,N.W.CurtistoB.J.Youngblooddated1/27/81).Rev.22,4/81121.8-2 SSES-FSARUESTION123.1PursuanttoGeneralDesignCriterion2,safety-relatedstructures,systemsandcomponentsaretobedesignedforappropriateloadcombinationsarisingfromaccidentsandseverenaturalphenomena.Withregardtothevibratoryloadsattributedtothefeedbackofhydrodynamicloadsfromthepressuresuppressionpoolofthecontainment,thestaffrequiresthatsafety-relatedmechanical,electrical,instrumentationandcontrolequipmentbedesignedandqualifiedtowithstandeffectsofhydrodynamicvibratoryloadsassociatedwitheithersafetyreliefvalve(SRV)dischargeofLOCAblowdownintothepressuresuppressioncontainmentcombinedwiththeeffectsofdynamicloadsarisingfromearthquakes.ThecriteriatobeusedbythestafftodeterminetheacceptabilityofyourequipmentqualificationprogramforseismicanddynamicloadsareIEEEStd.344-1975assupplementedbyRegulatoryGuides1.100and1.92,andStandardReviewPlanSections3.9.2and3.10.Statetheextenttowhichtheequipmentinyourplantmeetstheserequirementsandtheaboverequirementstocombineseismicandhydrodynamicvibratoryloads.Forequipmentthatdoesnotmeettheserequirementsprovidejustificationfortheuseofothercriteria.RESPONSE:I.BOPForSusquehannaProject,allBOPSafetyrelatedmechanical,electrical,instrumentationandcontrolequipmentlocatedinsidePrimaryContainment,ReactorandControlbuildings,isbeingqualifiedforSeismicloadsincombinationwithhydrodynamicvibratoryloadsassociatedwithSRVdischargeandLOCAblowdown.AlthoughtheSRSSmethodofcombinationofseismicandhydrodynamicloadsisacceptable,fortheprojecttobeconservative,theloadsarecombinedbyabsolutesummethod.Thecaseswhichhavedeviationsfromtheabsolutesummethodofcombinationwillbeidentifiedinthequalificationreports.ThecriteriaforthequalificationofBOPequipmentforseismicloadsisdescribedinSection3.7b.3oftheFSAR.ThecriteriaforloadcombinationsandmethodologyforthedesignassessmentandqualificationofSafetyrelatedBOPequipmentforseismicandhydrodynamicloadshavebeendescribedinSections5'and7.1.7oftheDesignAssessmentReport(DAR)Rev.2.BasicallytherequirementsofIEEEStd.344-1975asSupplementedbyRegulatoryguides1.100and1.92andSRPSections3.9.2and3.10arecoveredinthecriteriawiththefollowingexceptionforspatialcombinationofthreecomponentsofdynamicmotionasstatedinSection7.1.7.1.3oftheDAR.Thecriteriastates"theresponseatanypointisthemaximumvalue~Rev.22,4/81123.1"1 SSES-FSARobtainedbyaddingtheresponseduetoverticaldynamicloadwiththelargervalueoftheresponsesduetooneofthehorizontaldynamicloadsbytheabsolutesummethod."AllSusquehannaBOPequipmentisbeingqualifiedforthecriteriadiscussedabove.II.NSSSLOADCOMBINATIONS:TheseweretransmittedtotheNRCon8/28/80asPage3ofAttachmentNtoPLA-536.ThiswasinresponsetoNRCQuestion110.42.IMPLEMENTATIONOFLOADCOMBINATIONS:TheGESQRTProgramusesoutputsfromtheGEEquipmentAdequacyEvaluationProgramwhichcombinesdynamicloadsbySSESasacceptedbytheNRCinNUREG-0484.Theindividualitemsassociatedwiththeloadcombinationsareaddedasdescribedbelow:SteadyStateEvents(e.g.,DeadLoad,Pressure)-AbsoluteSumTimeVaryingComponents(e.g.,MaximumSeismic,MaximumHydrodynamic)-SRSSComponentsofEvents(e.g.,MaximumX-LoadDuetoY-Earthquake)-SRSSModalResponse-SRSS,exceptforcloselyspacedmodeswhereeffectsarecombinedbyAbsoluteSum,DoubleSum,orGrouping.Detailsforeachitemofequipmentarecontainedinthatequipment'sDesignRecordFilewhichisavailableforaudit.Rev.22,4/81123.1"2 SSES-FSARProvidethefollowinginformation:Twosummaryequipmentlists(oneforNSSSsuppliedequipmentandoneforBOPsuppliedequipment).Theselistsshouldincludeallsafetyrelatedmechanicalcomponents,electrical,instrumen-tation,andcontrolequipment,includingvalveactuatorsandotherappurtenancesofactivepumpsandvalves.Inthelists,thefollowinginformationshouldbespecifiedforeachitemofequipment.(1)Methodofqualificationused:a)Analysisoftest(indicatethecompanythatpreparedthereport,thereferencereportnumberanddateofthepublication).b)Ifbytest,describewhetheritwasasingleormulti-frequencytestandwhetherinputwassingleaxisormulti-axis.c)Ifbyanalysis,describewhetherstaticordynamic,singleormultiple-axisanalysiswasused.Providenaturalfrequency(orfrequencies)ofequipment.(2)Indicatewhethertheequipmenthasmetthequalificationrequirements.(3)Indicatethesysteminwhichtheequipmentislocatedandwhethertheequipmentisrequiredfor:a)hotstand-byb)coldshutdownc)bothd)neither(4)Locationofequipment,i.e.,building,elevation.(5)Availabilityforinspection(Istheequipmentalreadyinstalledattheplantsite?)Rev.22,4/81123.2-1 SSES-FSAR(ii)Anacceptablescenarioofhowtomaintainhotstand-byandcoldshutdownbasedonthefollowingassumptions:(1)SSEorOBE(2)Lossofoffsitepower(3)Anysinglefailure(iii)Acompilationoftherequiredresponsespectra(RRS)forallapplicablevibratoryloads(individualandcombinedifrequired)foreachfloorofthenuclearstationunderconsideration.RESPONSE:TheresponsetothisquestionwassubmittedviaPLA-627(CurtistoYoungblood)datedFebruary5,1981.Rev.22,4/81123.2-2 SSES-FSARUESTION123.3Identifythoseitemsofnuclearsteamsupplysystemandbalance-of-plantequipmentrequiringreevaluationandspecifywhyreevaluationisnecessary(i.e.becausetheoriginalqualificationusedthesinglefrequency,singleaxismethodology,becauseequipmentisaffectedbyhydrodynamicloads,orbecausebothoftheaboveconditionswerepresent)foreachitemofequipment.RESPONSE:OriginallyalmostallSafetyrelatedBOPequipmentsforSusquehannahadbeenqualifiedforonlySeismicloads.Thisequipmenthasbeenre-.evaluatedduetotheinclusionofnewhydrodynamic(SRV6LOCA)loads,andarebeingre-qualifiedwithrespecttothecriteriadescribedinDARSection7.17.ThequalificationprogramfortheBOPSafetyrelatedequipmentisbeingexecutedinthefollowingfourphases.Phase-I:uglificationofEuimentforOnlSeismicLoads:qrempecxfx.edxnFSARSubsectx.on3.7b.3.Phase>>II:EvaluationforCombinedSeismicandHdrodamic(SRV8LOCA)Loads:TheonlyknowndynamicloadatthetimeofexecutionofthisphaseoftheprogramwasSeismicloads.Duringthisphase,thevendorssupplyingtheequipmentwererequiredtoqualifytheequipmentinaccordancewiththereuientssThisphasewasundertakentoevaluateiftheexistingSeismicqualificationofallSafetyrelatedBOPequipmentcouldbeextendedtothecombinedSeismicandhydrodynamicloads.Thecriteriausedforthere-evaluationisdescribedinDARSection7.1.7.Thegeneralproblemareasidentifiedduringthisevaluationandtheproposedactiontomitigatetheseproblemsareshownbelow.Rev.22,4/81123.3-1 SSES-FSARPROBLEMACTIONAdditionalHydrodynamicLoadsFlexibilityofEquipmentSupportnotconsideredoRetestand/orReanalysis.oModificationstoequipmentortheirSupportsifrequired.oProvideresponsespectreconsideringsupportflexi-bility.InadequateModellingInadequateTestingoIncludeSupportConditionsduringanalysisortesting.oCorrectduringreanalysis.oRetestoQualificationbyanalysis.PhaseIII:ReuglificationEfforts:Specifically,theProblemareasidentifiedinthepreviousphaseareresolvedduringthisphasebytakingappropriateactions.There-qualificationreportsdemonstratethatthecriteriaofDARSection7.1.7havebeencompliedwith.PhaseIV:ModificationstoEuimentorEuimentSuorts:EquipmentortheirSupportsneedingmodificationsidentifiedduringtheregulationseffortsofPhaseIIIareexecutedduringthisphase.ThefollowingareNSSSequipment:SYSTEMSafetyReliefValveMSIVFlowElementRecirc.PumpMotorGateValveHCUCRDValvesSLCStorageTankSLCAccumulatorSLCPumpSLCExplosiveValveMPLijB21F013B21F022/F028B21N051/52/53/54B31C001B31F023/31/32C12D001C12F009/10/ll/12C41A001C41A003C41C001C41F004Rev.22,4/81123.3-2 RHRHeatExchangerRHRPumpFlowOrificeAssemblyLPCSPump6MotorFlowOrificeAssemblyMSIVHeaterMSIVBlowerHPCIPumpHPCITurbineFlowOrificeAssemblyRCICPumpRCICTurbineFlowOrificeAssemblyFuelPrepMachineGen.PurposeGrappleDryerSSeparatorSlingHeadStrongBackControlRodGrappleRefuelingPlatformInVesselRackDef.FuelStorageCont.FuelStorageVaultSSES-FSARCONTROLROOMPANELSE11B001E11C002E11N012/N014E21C001E21N002E32B001E32C001/C002E41C001E41C002E41N007E51C001E51C002E51N001E18E001F18E011F19E008F19E009F20E002E21E003F22E006F22E009F22E012ReactorCoreCoolingBBPowerRangeMonitoringCabinetRPSDiv.1and2LogVBRPSDiv.2and3LogicalVBNSSSTemperatureRecorderVBFeedwater8RecirculationInstrumentPanelNSSSProcessInstrumentPanelDiv1RHR/HPCIRelayVBDiv2RHR/HPCIRelayVBADSChARelayVBMSIVLeakageControlDiv2VBHPCIRelayVBRCICRelayVBInboardValveRelayBoardOutboardValveRelayVBDiv1CSRelayVBDiv2CSRelayVBADSChBRelayVBMSIVLeakageControlDiv1VBRadiationMonitoringInstrumentPanelARadiationMonitoringInstrumentPanelBOperatingBBH12-P601H12-P608H12"P609H12-P611H12-P614H12-P612H12-P613H12-P617H12-P618H12-P628H12"P654H12-P620H12-P621H12"P622H12-P623H12-P626H12-P627H12-P631H12-P655H12-P606H12"P633'12-P680Rev.22,4/8l123.3-3 SSES-FSARTerminationCabinetsPlantOperationBenchboardCondensingChamberCondensingChamberCondensingChamberCondensingChamberCondensingChamberCondensingChamberNUCLEARBOILERLOCALPANELSH12-P700SeriesH12-P853B21-D002B21-D004ABB21-D006ADB21-D007ADB21"D008ADB21-D009ADReactorWaterClean-UpReactorVesselIevelandPressure(A)ReactorVesselLevelandPressure(B)RecirculationPumpAJetPumpBHighPressureCoolantInjectionBReactorCoreIsolationCoolingAResidualHeatRemovalChannelAResidualHeatRemovalDiv.2ChannelBRecirculationPumpsDrywellPressureLocalPanelADrywellPressureLocalPanelBMainSteamIsolationValveIeakageControlCoreSprayLocalPanelAStandbyLiquidControlMainSteamFlowA/BHighPressureCoolantInjectionLeakDet.CoreSprayChannelBMainSteamFlowC/DHighPressureCoolantInjectionReactorCoreIsolationCoolingLeakDet.MainSteamFlowA/BMainSteamFlowC/DMainSteamIsolationValveLeakageCon.HighPressureCoolantInjectionDiv.1AReactorCoreIsolationCoolingDiv.2BSRM/IRMNUCLEARBOILERTemperatureElementTemperatureElementTemperatureElementH23-P002H23-P004H23"P005H23-P009H23-P010H23-P014H23-PoljH23-P018H23"P021H23-P022H23"P057H23-P058H23"P074Div.2H23-P001H23-P011H23-P015H23-P016H23"P019H23-P025H23-P036H23-F038Div.2(B)H23-P041H23-P042H23-P073Div.1H23"P034H23-P037H23-P030/31/32/33B21-N004B21"N010ADB21-N014ADRev.22,4/81123.3-4 SSES-FSARTransmitterTransmitterTransmitterTransmitterTransmitterTransmitterPressureSwitchTemperatureElementTemperatureElementVacuumSwitchTemperatureElementDifferentialPressureTemperatureElementDifferentialPressureLevelSwitchI,evelSwitchTemperatureSwitchPressureTransmitterPressureIndicatorValve,GuideTubeMiscellaneousPartsPressureSwitchPressureSwitchLimitSwitchLimitSwitchI,evelTransmitterTemperatureElementDifferentialPressureDifferentialPressureDifferentialPressurePressureSwitchSwitchPressureSwitchLevelSwitchLevelSwitchTemperatureElementTemperatureElementFlowIndicatingSwitchDifferentialPressureSwitchPressureSwitchFlowMeterLevelSwitchLevelSwitchLevelSwitchIevelSwitchIevelSwitchTemperatureElementTemperatureElementTemperatureElementTemperatureIndicatorI,evelSwitchTemperatureElementB21"N015ADB21-N016ADB21-N017B21-N056ADB21-N064B31-N014CDB31-N023ABB31-N024ABC12-N013ADC12-N013EFC41-N003C41-N004C41"R003C51-J004AEC51-5110001C72-N003ADC72-N005ADC72-N006ADC72-N008ADEll-N008ABEll-N009ADEll"N013Ell-N015AEll-N015BEll-N018Ell-N021ABEll-N022ABEll-N023ABEll-N024Ell-N029ADEll-N030ADEll"N033ABE21-N003ABE21-N006ABE21-N007ABE32-N006E41-N002E41-N003E14-N014E41-N015ABE41"N018E41-N024ABE41-N025AHE41-N028ABE41-R002E51-N010E51-N011ABthruE41-N030ABRev.22,4/81123.3-5 SSES"FSARTemperatureTemperatureTemperatureTemperatureTemperatureTemperatureTemperatureTemperatureSwitchElementElementElementElement.IndicatorElementElementElementE51-N021ABE51-N022ABE51-N023ABE51-N025ADthruE51-N027ADE51-R005G33-N016AFG33-N022AFG33-N023AFG33-N044ARev.22,4/81123.3-6 SSES"FSARQUESTION123.4:Describethemethodsandcriteriausedtodeterminetheacceptabilityoftheoriginalequipmentqualificationtomeettherequiredresponsespectraofitem2.(iii).-123.2(iii).RESPONSE:I.BOPForcases.wheretheoriginalspectraforwhichanequipmentwasqualifiedenvelopedthecombinedSeismicandhydrodynamicloadspectraofItem123.2(iii),theequipmentisconsideredqualified.Otherwise(whichistrueformostcases)theequipment,isrequalifiedforthecombinedspectratomeetthecriteriadiscussedinresponsetoQuestions123.1.ThesecriteriaaredescribedinSection7.1.7oftheDesignAssessmentReport.II.NSSSThemethodsandcriteriausedtodeterminetheacceptabilityoftheoriginalequipmentqualificationmaybefoundinGeneralElectricCompany'sProprietaryreports:NEDE-24788,"SeismicQualificationReviewTeam(SQRT)TechnicalApproachforRe-EvaluationofBWR4/5Equipment";andNEDE-25250"GenericCriteriaForHigh-FrequencyCutoffofBWREquipment".Rev.22,4/81123.4-1 SSES-FSARDescribethemethodsandcriteriausedtoaddressthevibrationfatiquecycleeffectsontheaffectedequipmentduetorequiredloadingconditions.RESPONSE:I.BOPAsdescribedinSubsection3.7b.3.2ofFSAR,ingeneral,thedesignofequipmentisnotfatiguecontrolledsincethenumberofcyclesinanearthquakeislow.ForcombinedSeismicandhydrodynamicloadsforequipmentqualifiedbyanalysis,thefatigueeffectsareimplicitlyconsideredsincethestressesduetoSRV(whicharegenerallycontrollingforfatigue)areasmallcontributiontotheoverallequipmentstresses.FatigueeffectsinBOPequipmentqualifiedbytestingareaccountedforbyrepetitionofthetests.Typicallytestsaredonefor5OBE(or5upsetconditions,i.e.,OBE+SRV+LOCA)followedby1SSE(or1faultedcondition,i.e.,SSE+SRV+LOCA)ineachoffront-to-back/verticalandside-to-side/verticalbiaxialconfigurations.Inaddition,onsomeselectedpiecesofequipment,vibratorytabletestingiscarriedoutforanextendeddurationoftime(suchas30to60minutes)beyondthecombinedloadingtest.TheinputmotionsfortheextendeddurationtestswillbesuchthatthegeneratedtestresponsespectraforanysegmentoftheextendeddurationtestswillenvelopetheSRVspectra.Furthermore,itwillbeascertainedthattheequipmentperformsitsintendedfunctionbefore,duringandafterthevibratorytabletests.Theresultsoftheextendeddurationtestswillbedocumentedintherespectivequalificationreports.II.NSSSVibrationfatiguecycleeffectsforNSSSequipmentdesignedtoASMEcoderequirementswasreviewedatGEbyNRCconsultantsfromBattellePacificNorthwestLaboratoriesonOctober7,1980.TheconsultantsstatedsatisfactionwiththeGEapproachwhichencompassesOBE,SRV,thermalandpressurecycles.NonASMECodecomponentsqualifiedbytestaddressthe"strongmotion"phaseofseismicandSRVdynamicmotionsufficienttogeneratemaximumequipmentresponse.Theseloadsarecontrolling.GEtestinggenerallyconsistsof5upsetand1faultedtestof30secondseachwhichisabout50$greaterthanrequiredtoaddressstrongmotionvibration.Rev.22,4/81123.5-1 SSES-FSARNonASMECodecomponentsqualifiedbyanalysisgenerallyhavenot,inthepast,hadtoaddressvibrationfatiguecycleeffects.Inmostcases,sucheffectsarenotnowpartofthequalificationrecord.Rev.22,4/Sl123.5-2 SSES-FSARBasedonthemethodsandcriteriadescribedinitems4and5,providetheresultsofthereviewoftheoriginalequipmentqualificationwithidentificationof(1)equipmentwhichhasfailedtomeettherequiredresponsespectraandrequiredrequalification,and(2)equipmentwhichwasfoundacceptable,togetherwiththenecessaryinformationtojustifytheadequacyoftheoriginalqualificatioa.RESPONSEI.BOPForcaseswheretheoriginalseismicreportscanbeextendedtoqualifyanequipmentforcombinedseismicandhydrodynamicloadsbyinspectionandsubsequentconcurrencebyvendor,suchdocumentsformapartofthequalificationpackage.Thefollowingpiecesofequipmentboughtundertheindicatedpurchaseorder(P.O.)fallintothiscategory:(1)Coolingandchilledwaterpumps(P.O.gM-327)(2)ExpansionTanksandAirSeparatorTaaks(P.O.AM-302)(3)NitrogenGasAccumulators(P.O.j/M-156)TherestoftheBOPequipmentisbeingqualifiedforthecriteriadescribedinSection7.1.7oftheDesignAssessmentReport.Thequalificationreportsforthisequipmentwillprovidetheappropriatedocumentation.II.NSSSRefertotheResponsetoQuestion123.3forthelistofequipmentreevaluatedbyGEoatheSusquehannaSQRTProgram.AlloftheequipmentlistedinqualifiedtoSQRTCriteriawiththeexceptionofthefollowiag:B21"F022/F028B31-F031/F032C12>>F009/F010F011/F012C41-A003C41-F004E32-B001MSIVGateValveCRDValveSLCAccumulatorSLCExplosiveValveMSIVHeaterDatarequiredfromvendorOperabilitydeflectionanalysisrequiredOperabilitydeflectionanalysisrequiredA/EpipeaccelerationsrequiredA/EpipeaccelerationsrequiredTestrequiredRev.22,4/81123.6-1 SSES-FSARE41-C002E51-C002F22-E006F22-E009H12-P608H23-P030"P031"P032-P033163C1158272A8005272A8006HPCITurbineRCICTurbineInvesselRackDef.FuelStorageCont.PowerRangeMonitoringCabinetSRM/IRMPanelsFlowTransmitteronH23-P074SwitchonH12-P853SwitchonH12-853TestrequiredAnalysisoflubeoilpipingrequiredAnalysisrequiredAnalysisrequiredTestrequiredTestrequiredTestrequiredTestrequiredTestrequiredInformationtojustifyqualificationoftheequipmentselectedbytheNRCfortheSiteAuditwillbeavailableatthesiteforNRCinspection.InformationtojustifyqualificationoftheremainderoftheequipmentisavailableforNRCauditatGE-SanJose.Rev.22,4/Sl123.6-2 SSES-FSARDescribeproceduresandscheduleforcompletionofeachitemidentifiedinitem6.(1)123.6(1)thatrequiresrequalification.RESPONSE:I.BOPTypically,thequalificationprogramisexecutedinthefollowingsteps.oDetermineQualificationAwardsRequestVendor(orConsultant)QuoteReceiveandEvaluateQuotePlacePurchaseOrderoPerformQualificationREviewTestProcedureReviewAnalysisMethodologyBeginAnalysisorTestingoFinalCompletionReceiveandreviewRequalificationReportsFinalApprovaloftheReportThescheduleforthecompletionofthequalificationprogramisshownintheattachedTable123.7-1.II.NSSSTheresponsetoQuestion123.6liststheequipmentfoundbyGEtorequirerequalificationalongwithastatementdefiningtheworktobeperformed.AllrequalificationwillbecompletedonaschedulesufficienttopermitNRCreviewpriortofuelload.Rev.22,4/Sl123.7-1 TABLE123.7-1SCHEDULEFORCOMPLETIONOFEUIPMENTREQUALIFICATIONPage1of6SQRTFormNo.E-109-1E"109-2E-112E"117-1E-118E"119A"1E-119A-2E-119A-3E-119BCE-120-1-120"2E-121-1E-121"2E-135-1E-135-2E-136E"151E-152E-155J-038AE~niment4kVSwitchgear4kVSwitchgearSub-ComponentsESW8RHRPumpMotors480VSafe-GuardLoadCenterUnitSubstations480VMotorControlCentersBatteryMonitorsBatteryFuseBoxeseBatteryChargers24Vdc,125VdcS250VdcBatteryCells6Racks125VdcDistributionPanels24VdcDistributionPanels125V6250VdcIoadCenters250VdcControlCentersElectricalPenetration(MediumVoltage)ElectricalPenetration(LowVoltage)ACInstrumentTransformersMotorGeneratorSets8ControlCabinetAutomaticTransferSwitchesControlSwitchesFieldMountedElectronicPressureTransmittersNo.ofItems/2Units12122420162216121232144Sets4432CompletionDate3-13-815-15-81Complete3-27-814-17-813-27-813-27-813-27-815-29"813-20-814-10-813-27-814-10-815-15-815-15-813-27-81CompleteComplete6-15-81CompleteRev.22,4/81 SQRTFormNo.J-03B-1thruJ-03B-14E~nimentPanel-MountedInstrumentsNo.ofItems/2Units242Page2of6CompletionDate4thquarter1981J-05A-14,31,33,37,ControlPanels6Devices10A6B,43,47,49,92,93,95697315-30-81(panels)6-15-81(devices)J-05B-1RemoteShutdownControlPanel5-30-81(panels)6-15-81(devices)J-27J-31J-59-1thruJ-59-10ReactorCoolantPressureBoundaryLeakDetectionSystemAnnubarFlowElementsRTD's54Complete(panels)6-15-81(devices)Complete5"22-81J-65-1thruJ-65-4ControlValvesinNuclearService283-27-81J-65B-1thruJ-65B-llControlValvesinNuclearService863-27-81J-69-162J-69B-1thru6J-70-1J-70-2J-92-1thruJ"92-5PilotSolenoidValvesPilotSolenoidValvesPressureRegulatingValvesProcessSolenoidValvesExcessFlowCheckValves74762385-15-815-15-815-15-815-15-815-1-81J-98CarrierModulator(Isolator)6"15-&1M-llM"12M"22-162M-30(78forms)M-30(6forms)M-55ESWPumpsRHRSuctionWaterPumpsReactorBuildingCranesDieselGeneratorDieselGeneratorReactorVesselTopHeadInsulationSupportSteel4Sets4SetsCompleteComplete4-3-81Complete2"27-81CompleteRev.22,4/81 SQRTFormNo.E-58M-60M-87-1M-87-2M-90M-149M"151M-156E~nimentDieselOilTransferPumpsBuriedDieselGeneratorFuelOilStorageTanksContainmentHydrogenRecombinersHydrogenRecombinerPowerSupplyFuelPoolSkimmerSurgeTanksContainmentVacuumReliefValvesSuppressionPoolSuctionStrainersContainmentNitrogenGasAccumulatorsNo.ofItems/2Units203260Page3of6CompletionDateComplete3-27-815-15-81Complete4-27-815-22-81CompleteCompleteM-159-1thruM-159-21NuclearSafety8ReliefValves585-1-81M-160ACSRVDischargeLine8,RHRReliefValveF055DischargeLineVacuumBreakers685-15-81M-164-192CRDVentValvePlatformHighDensitySpentFuelPoolRacks48ModulesCompleteCompleteM"302M-307-1thruM-307-3ExpansionTanks6AirSeparatorsCentrifugalFansComplete3-13-81M-308"1M-308"2VaneAxialFans,ReactorBuildingVaneAxialFans,Diesel'eneratorBuilding5-1"81CompleteM-308-364M-309-1thruM>>309-4VaneAxialFans,ESSWPumphouseAirHandlingUnits12Complete4-17-81M"310M"315M-317'-320"1CentrifugalWaterChillersReactorBuildingUnitCoolersDrywellUnitCoolersChlorineDetectors24125-22-815-29-813"27-816-15-81Rev.22,4/81 SQRTFormNo.M-320-2-1A61BM-320-2-2AM-320-3M-320-4M-370-5A65BM-320-6-1A61BM"320-6-2AM-320"6-3A67M-320-8M-320-9M-320-10M-321"1M-321-2M"321-3~EnimentFlowSwitchesFlowSwitchesLevelGaugePressureDifferentialSwitchesTemperatureSwitchesTemperatureSwitchesTemperatureSwitchesTemperatureSwitchesPressureDifferentialTransmitterTemperatureDetectorUnitLevelSwitchesStandbyGasTreatmentSystem-HousingStandbyGasTreatmentSystem-DelugeDrainValvesStandbyGasTreatmentSystem-ControlPanelsNo.ofItems/2Units282410184Page4of6CompletionDate6-15-816-15-816-15-816-15-816-15-816-15-816-15-816-15-816"15-816-15"816-15-812-20-815-1-813-6-81M"323C-1M-323C-2M-325M-327-1M"327-2M-334-1thruZ-334-5AirFlowMonitoringUnitSGTSExhaustVentFlowCondition-ing8SamplingProbeSystemHighEfficiencyVentilationFiltersChilledWaterPumpCoolingWaterPumpHVACControlPanels6Devices123"13-813-13-81CompleteCompleteComplete5-30-81(panels)6-15-81(devices)M-336AM-362M"365P"10A-1HVACDampersSGTSCentrifugalFansChilledWaterReliefValvesMotorOperatedGateValves,6008195Units5-8-81Complete5-1-816-15-81Rev.22,4/81 SQRTFormNo.-10A"2P-10A-3E~nimentMotorOperatedGateValves,9008MotorOperatedGlobeValves,900886008No.ofItems/2Units15Page5of6CompletionDate6-15-816-15-81P-10BMotorOperatedStopCheckValves,90086-15-81P-11A-1P-11A-2MotorOperatedGateValves,900'irOperatedTestableCheckValves,90086-15-816"1-81P"12A-1P12A-2P12A-3P-12A"4MotorOperatedGateValves,150j/MotorOperatedGlobeValves,300j/MotorOperatedGateValves,300j/GearOperatedGate8GlobeValves,300jj24206-15-816-15-816-15-816-1-81P-12B-1P-12B"2-12B"3MotorOperatedGateValves,150jj63008AirOperatedGateValves,150j/GearOperatedGate8GlobeValves,150jj14136-15"816-1-816-1-81P-14AP-14BP-15AP15B-1P-15B-2P-16A-1MotorOperatedGlobeValves,15008MotorOperatedGlobeValves,1500//MotorOperatedGlobeValves,15008MotorOperatedGateValves,15008AirOperatedGateValves,1500'otorOperatedButterflyValves,150jj18286-15"816-15-816-15-816-15-816-1-816-15-81P16A-2P-16A-3AirOperatedButterflyValves,1500GearOperatedButterflyValves,150jj126-1-816-1-81P"17A-1-17A-2MotorOperatedGateValves,900j/MotorOperatedGlobeValves,90086-15-816"15-81Rev.22,4/81 SQRTFormNo.P-17A-3P"17A"4P-17BP-18AP-31AE~nimentAirOperatedTestableCheckValves,9008GearOperatedGateValves,900//AirOperatedTestableCheckValves,90017GearOperatedGateValves,1508AirOperatedButterflyValves,1508No.ofitems/2UnitsPage6of6CompletionDate6-1"816-1-816-1-816-1-816-1-81Rev.22,4/81 SSES-FSARUESTION123.8Describeplansforaconfirmatoryin-situimpedancetestandanin-plantSRVtestprogramorotheralternativestocharacterizetheabilityofequipmenttoaccommodatehydrodynamicloading.RESPONSE:In-Situtestsarebeingperformedforthedeterminationofstructuraldynamiccharacteristicsoftheequipmentforin-servicecondition.Thisin-situinformationisbeingusedassupportingevidencefor(a)validatingamathematicalmodelforqualificationbyanalysis,or(b)simulatingthein-serviceconditiononthevibratorytabletestsforqualificationbytesting.Theresultsandtheusageofin-situtestingwillbedescribedintherespectivequalificationreports,wheneversuchtestsareperformed.AllsafetyrelatedBOPequipmentfoSusquehannaprojectisbeingqualifiedforcombinedseismicandhydrodynamicloadsforthecriteriadescribedinSection7.1.7ofDAR.Susquehannahasnoplanstoperformanin-plantSRVtestforequipmentqualifications,perse.AnairbubbletestwasconductedinthesuppressionpoolinanattempttosimulatetheeffectsofanSRVairclearingtransientload.Thedatafromthistestarebeingstudiedinanefforttodeterminetheextentofconservatismsintheanalyticalpredictionofappliedhydrodynamicloads.Rev.22,4/81123.8-1 SSES-FSARToconfirmtheextenttowhichthesafetyrelatedequipmentmeetstherequirementsofGeneralDesignCriterion2,theSeismicQualificationReviewTeam(SQRT)willconductaplantsitereview.Forselectedequipment,SQRTwillreviewthecombinedrequiredresponsespectra(RRS)orthecombineddynamicresponse,examinetheequipmentconfigurationandmounting,andthendeterminewhetherthetestoranalysiswhichhasbeenconducteddemonstratescompliancewiththeRRSiftheequipmentwasqualifiedbytest,ortheacceptableanalyticalcriteriaifqualifiedbyanalysis.Thestaffrequiresthata"QualificationSummaryofEquipment"asshownontheattachedpagesbepreparedforeachselectedpieceofequipmentandsubmittedtothestafftwoweekspriortotheplantsitevisit.TheapplicantshouldmakeavailableattheplantsiteforSQRTreviewallthepertinentdocumentsandreportsofthequalificationfortheselectedequipment.Afterthevisit,theapplicantshouldbepreparedtosubmitcertainselecteddocumentsandreportsforfurtherstaffreview.RESPONSE:SusquehannaSQRTpre-visitinformationrequiredforhasbeensubmittedforallBOPandNSSSequipment.ofEquipment"andthepertinentdocuments,reports,necessaryinformationasrequiredareavailablefortheSQRTsitereview"QualificationSummaryvendorprintsandallSQRTreview.Rev.22,4/81123.9-1 SSES-FSARTheSusquehannaFSARSection3.7b.2.1indicatesthatbothaflexiblebasemodelandafixedbasemodelwereutilizedfortheseismicanalysisofthecontainmentbuilding.Discussandexplaintherationaleforusingtwodifferentmodelsfortheseismicanalysis.Demonstratetheequivalencyofthetwomodelsbycomparingtheirdynamiccharacteristicsontheresultsfromthetwoanalyses.RESPONSE:Afixedbasemodelcanbejustifiedsincethecontainmentisfoundedonhard,competentrock.Theminimumshearwavevelocity,Vs,fortherockis6200fps(reference:Subsection2.5.4.2.1).Therefore,structuraldesignofthecontainmentwasbasedonthefixedbaseresults.Aflexiblebaseanalysis,whichtakesintoaccountsoilstructureinteractioneffects,wasusedtogeneratestructuralresponsespectraforevaluationofequipment,pipingsystems,etc.SeeattachedFigures130.20-15through130.20-18forcomparativeresponsespectraatthetopofthereactorpedestalforbothfixedandflexiblebaseresults.Thestructuralaccelerations,shearforces,bendingmomentsandaxialforcesforthefixedandflexiblebaseanalysesgenerallydifferbylessthan20%withthemajorityofvalueswithin10-15'hisisshownintheattachedFigures130.20-1through130.20-10.Therefore,thetworesultsareconsideredcomparable.SinceseismicforcesfortheSusquehannasiteaccountforlessthan20%ofthetotalmaximumreinforcingsteelstressforthegoverningloadcombination,the20%maximumincreaseinseismicresponsefortheflexiblebaseresultswouldresultinonlya4%increaseinstress.Thisincreaseinstressiswellwithintheexistingdesignmargin.Theflexiblebasedisplacementsarelargerthanthefixedbasedisplacementsbyapproximately20-50%.ThisisshownintheattachedFigures130.20-11through130.20-14.Theselargerdisplacementsfortheflexiblebaseanalysiswereusedtodeterminetherequiredseparationbetweenthecontainmentandthesurroundingreactorandcontrolbuildings.Rev.22,4/81130.20-1 SSES-FSARInTorsionalAnalysisofDieselGeneratorBuildingandESSNpumphouse:Justifytheuseofstaticanalysisforadynamicphenomenon.RESPONSE:Subsection3.7b.2.11states"Astaticanalysiswasdonetoaccountfortorsion...".Thisstatementpertainstothedistributionofseismicforces.Duringthedynamicanalysisstagetheinertiaforceateachmass.However,sincethecenterofrigiditydoesnotcoincidewiththecenterofmass,thereistorsion.Theinertiaforceobtainedfromthedynamicanalysiswasusedbymultiplyingitwiththeeccentricity(thedistancebetweenthecenterofmassandthecenterofrigidity)toobtainthetorsionalmoment.Thismomentwasthendistributedtothestructuralwallsforassessment.Aminimumexcentricityof5%wasconsidered.Rev.224/81130.21-1
a)JustifytheuseofacommonfillingsystemforallECCSdischarge pipingversusind,ependeni jockeypumps.b)Identifytheexpecteddemandsonthecondensate transfersystemandwhateffects,ifany,wouldbeexpectedonthemakeuprequiredtokeepthedischarge pipesfullofwater?c)Canindividual "filllines"beisolatedtopermitmaintenance ononeECCSsystemwithoutaffecting theothersystem?d)Thedischarge piping"fillsystem"isapparently considered tobeanauxiliary system.Areanypriorityinterlocks providedtoensurethatthe"fillingsystem"willbegivenpriorityovertheotherusesofthecondensate transfersystemwater?e)Theindividual filllinesapparently donothaveinstrumentation tomonitorlowpressure.
.136-~0.128-FlexibleBaseModelResultsFixedBaseModelResults,~228I~3,0.220~caIo.2ooI/9'5'0.175II./8/0.154Ii~/so0.137l~/2Ij~/080.109I.oeqI1011~os'u~>77/I,052120.046I22(.ZS80.24023~8'830.614.~sos0.446IIj~345'0.294Ij~2/g0.183I'~/360.128II1524I~/97I~/8Io.128'7./~/2180.108Ij~ot30.09126~078I190.071III.o~tfIIRev.22,4//81UNITS:G's13.0320.021~a210,020SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENTHORIZONTALACCELERATIONSOBEFIGURE130.20-1 56789101213'~Z'Ml0.251I~83/,0.215I~zo30.189Ij~gzo0.169i~/50.152'(~/48~0.137l~/36Il0.126~/z5i~/o30.092IjlloBo(,0.067II~o520.0342214.390.33123II24~Z7oJ520716P.lt170.161~,/S457180.140I~/320.12126II~/2o190.100I~iot200.073l~//Z70,751I~5540.545I,I~I(~4410.360Ii~zBZ0.225I.(z+0.161UNITS:G'sRev.22,4/81,d5SUSQUEHANNASTEAMELECTRICSTATION210.034UNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENTHORIZONTALACCELERATIONSSSE.136-FlexibleBaseModelResults0.128-FixedBaseModelResults.FIGIIHE.130.20-2
provideassurance thatwhenthecondensate transferpumpsareoperating thattheindividual ECCSdischarge linesarefullofwater.f)Whatisthehistoryofwaterhammereventsatotherplantsemploying thisdesign?RESPONSEa)ThepumpfillsystemadoptedforSusquehanna SESutilizestheexistingcondensate systemandisrelatively simple.Ztisbelievedtohaveahighersystemoverallreliability thanasystemrequiring individual pumps,orso-called jockeypumps,toperformthefillfunction.
.0400.059I~040>O.OS9l~03'PI.'iO.O58Ij~03S0.055Ii~0360.051I,~0340.047I~o3z0.043~O300.0391415161718~ocr0.062II.o65~0.061II~o~o0.057QP222425./030.103lII~ioo0.101.a%40.094f~os'.084I.a670.05420.032101213~2728.uz00.024l~0200,0153pI2926II19I~osI0.0122pIl~Oiafo.oovfII21~o~o0.0250.028I~Cnfj~o4o0.035l~o0.026Il~o20.017Il.j~o>O.OI77UNITS:G'sRev.22,4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTo.136-FlexibleBase'odelResults0.128-FixedBaseModelResultsCONTAINMENTVERTICAL,ACCELERATIONSOBElFIGIJRE130.20-3 9~0500.059101213~ops0.112I~O7O0.111'~is50.162II~tpo0.158tI22II~o~s0.109140.098III~fl1240.096II~IO80.089I~0690.10340.14715f4~~lB30.131/0.0850.097~OS20.089I16'Idio0.085~oII80.070~os80.08217~os@0.073.062~0570.0450.046.0050&I/~070.055t~osq0.041I~os0.027UNITS:Q'g42728I,CoOg0.050I~osv0.02930I4I~oso0.01242926I19~os~0.02220III21Ii~&i0.011IRev.22,4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSIS'EPORT~~~~~I136-.FlexibleBaseMode'1Results0.3.28-FixedBaseModelResultsCONTAINMENTVERTICALACCELERATIONS%REFIQURE~130.20-4 46~44164~(97260IM2~'1431232562g102~104~1,>>0l300423gag2883t51,440I&207,770~IRIDO1524264~$1g25eee~e'735~10>>2,070~2'LQO2,220~14)02,550QtI02,720ZERO3,62040003,830'tZI0161718261924e~ek1$~646~5958970'7ss1~>ag36455817766f99$4UNITS:KIPS124.010~44l0204O2~WOa13274,100~$55Q2127424$35Rev.22,4/SlD.136-FlexibleBaseMo'delResults0.128-FixedBaseModelResultsFIGURE130.20"5SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENTSHEARFORCESOBE se~4e201~25536648I010~573311261+014231,380I6$0010~654ese~4Il41.7so~2l302,180Z550e,sso~Z4l50151617440~4193404f449242517ceo~8qg014~Italo1028503ggg3.110[335l0e,eeo~3801826011~85l.7209I2.'430SZSQ194,68o5590404444447~485UNITS:KIPS12204,91o53004ee~54913'7210,040~kola27see~6O7Rev.22,4/81II*..136-FlexibleBaseModelResults0.128-FixedBaseModelResultsFIGURE130.20-6SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENTSHEARFORCESARE 1022020.50~O.QS24,22~W.S/140222.ss~Z.pg42162'5~158.33F.'74242.42P.ag54o.s~6.061,0~6l~01615.4~IS~/2516.8~III.Z81.2~f/0171832I317~108//.28.8~3'7.I10105~ll5124~/'37145I~l149tgy1826173ZD,224.8ZV.519623,2so1~2.221916.6~242.62UNITS:10'.FT12256m32014.9l7.813214~34lo2115.s~l7.527222~@/22718.0/'7.IRev.22,4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORT'0.136-FlexibleBaseModelResults.0'28-FixedBaseModelResults.CONTAINMENTMOMENTSOBEFIGURE130.20-7 1'22020.630.7/oss.ss~6.3&140232.873,2Co4.2s.g~3z.s249.14'1510.2l2.Is4g,g~6is.3sss~RO.6ioo~Ill1617251s.s~~Z3520.5~246S5.149.g10.iss~i5li52~f7178208183QJg182621.2263SOS38224.0304]UNITS:10sK-FT24s~ZOO~19so.s~Z5.512sis~3720is.s~z3.o13sss~4532112.7~Z'Z.727~~136-FlexibleBaseModelResults0.128-FixedBaseModelResults4~~53S22220qg,+Rev.22,4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORT.CONTAINMENTMOMENTSs'c'CFIGURE130.20-8 2'2sv~4&ieo~~f2I1423131JrO10ees~IZED>'I4ss~SISsos~eJRQs7s~+72ese~Sg(7'Z792015161718-26so~@9~oet!04se~<7l491503396Q'26242517ee4~233ees~5361,010<>s~$4.gUNITS:KIPS'2131,070307120214es~$65Rev.22,4/811,090136-FlexibleBaseModelResults0.128-FixedBaseModelResults'31SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINEMNTAXIALFORCESOBEFIGURE130.20-9 6I>>~+'2126Jg6777256~24026r5232os~Zan150~1085951&1oso~15<12so'~367145o~911590lQIG~lSI't1720161718261o2~l<~164~f41I719gQ764BOO614~7602517966~g(g525~4465UNITS:KIPS1219002010f12'0642~7i'll662~3544'13~t70l.2050126136-FlexibleBaseModelResults~~~0.128'FixedBaseModelResults.21669D5Rev.22,4/81.SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAlNMENTAX(ALFORCESSSEFIGURE'30..20-10 136-FlexibleBaseModelResults~~0.128-FixedBaseModelResults31.662396127I10Itc,C.'.8130.0i~aSI27.7I~3'I,2IiIj~~o,S21.4I~<<.918.7j)i~.~l>16.5j~2.(.0144I~j3,814151617182619t~18.9IjCn3l11.77.06II~~,SIUNITS:10FTI,~I411923ItIS6I.SiMi<<'399l83.5I,~so.ar53.94th32.4~1213'.69~4'.oe1.89't.t820213.54II'.10Rev.22,4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENTHOBIZONTALDISPLACENIENTSOBEFIGURE130.20-11 D136-FlexibleBaseModelResults0.128-FixedBaseModelResultsS5I38.636.6i~vs.aI33.8I~s.i.zI~s.i~29.6IiE~M26.1Ii~os,z22.81415162223II24)48.8~7o4I551.~z<q189Ii~(145Ij~flII789101112i~si.si20.1'isa.s'7.5I'3.6!~lc..oIiI~la,4,i5.75II~a,ss132.32~<.sv17I'ns>>'+5'182.126j2<8'4.3UNITS:10~FT1920~I%1)8.65I4.37II3.'ti1.3721Rev.22,4/8iSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2'INALSAFETYANALYSISREPORT,CONTAINMENTHORIZONTALDISPLACEMENTSSSEFIGURE130.20-12 151617d,649.34101213~o.f980.812Ij~o,89>2~0.804II~o,as+3,0,79114I'~o,see40.752.d.g2t5.'.703II~o,7'9260.648.~0,75670.594I.d,7l780.53518'~o.st@~omit~~0.4300.4460.658I2728'926j~o.5<770.329,19IIl~u~z300.21520II~a.slh0.090211.57II1.55II1.47I~no1.41I~/.481.16~I0.896I~d.974,0.667IIaazs0.427IIg,+700.181'223242517~Z.W72.69II1~2.i'22.64II1~21(2.47II,~2.5'2.22UNITS:104FTRev.22,4/81~d,Z95'~0,%9S~AZ'FS.$36-FlexibleBaseModelResults0.128-FixedBaseModelResultsSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENTVERTICA'LDISPLACEMENTSOBEPIGIIRE,130.20-13
However,thereisnoknownoperating experience withacommondischarge linefillsystem.Thecondensate transfersystemhasbeendesignedtobereliableinsomuchasitisrequiredforplantoperation.
~ll.s~s101.53I1.51IIj~l.&O1.49II~r,ss1.41Ij~l.so1.321415l~l.4'31..2216It1.1217j~i.so'IS'.00l.J2'90e[,cg,OX'0.7750.754Ie22I.Ij~SDAp42.40II~s.t~"2.233.oS2.1917~41.80I!~i~1.395-514.18I.S.~I4.10I.~~asI3.44/ot.2.19UNITS:104FT12132728f29;~o<j0.616~II~O,RSL300.364jIj~o.aa0.170II~5Kb5,'5%>26Ij~l.7419i1.04I.~I.'L'9200.663Ij~o.ass21I0.282O.S3oRev.22,4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORT.136-FlexibleBaseModelResults0.128-FixedBaseModelResultsCONTAINMENTVERTICALDISPLACEMENTSSSEFIGURE.130.20-14 1.8001.6001.4001.200zOcc1.000.800Pk~'hieWse..600.400.200.0000.1'0.20.40.61.02.04.06.010..20.FREQUENCY(HZ)40.60.100.LOCATION:RPVPEDESTALDIRECTION:HORIZONTALEARTHQUAKE:OBEDAMPING:0.005Rev.22,4/SlI.SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMAT'RPVPEDESTALHORIZONTALOBEFIGURE130.20-15 0
Therefore completefailureofthiscommonfillingsystemfortheECCSwouldrequirethattheplantbebroughttoashutdowncondition.
/3.0002.7002.4002.100i.sooz0I-a1.5001.200F(ex''ltlbd$8900600~300.0000.1'.20.40.61.02.04.06.010.FREQUENCY(HZ)20.40,60.100.LOCATION:RPVPEDESTALDIRECTION:HORIZONTALEARTHQUAKE:SSEDAMPING:0.010Rev.22,4/SlSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMATRPVPEDESTALHORIZONTALSSEFIGURE130;20-16 kix'eelhase0.10.2OA06102.04.06.010.FREQUENCY(HZ)20.40.60.100..LOCATION.'PVPEDESTALDIRECTION:VERTICALEARTHQUAKE:OBEDAMPING:0.005Rev.22,4/B1SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMATRPVPEDESTALVERTICALOBEFIGURE130.17 2.0001.8001.6001.4001.200OI-cc1.000.800/legibleb~seri~Frxed!~b~t~600~400~200~0000.1~0.20.40.61.02.04.06,010.FREQUENCY{HZ)20.40.60.100LOCATION:RPVPEDESTALDIRECTION:VERTICALEARTHQUAKE:SSEDAMPING:0.010Rev.22,4/81~SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMATRPVPEDESTALVERTICALSSEhFIQURE130.'20-18
b)Atstandbypressures substantially belowvalveratedpressures, the'estimated makeupfortheECCSsystemsislessthanl(one)gpm.SeerevisedSubsection 6.3.2.2.5.Rev.22,4/Sl211.211-1 SSES-PSAR
>IIIIIIIIIIIIIIIII)IIIIItttllll>llll.llllll'mIIIIII<IIIf~II~s~~~~~~~~~'FI~~~~~~~0.~~'I/LI~IMCNABle/4r/v/tICA4i4ftt6/At,c~L/.//rt/cae//esm~~~Jt~4/Ot/~A4C5CCAVOlOeV4W/ttl~!o/ktIIi/p)~.~f4"J'.C.\1tvRev.22/4/81SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTFINALPLANTGRADES,7.FIGURE2~5.-.24
.)Theindividual filllinescanbeisolatedtopermitmaintenance onECCSsystemsandindividual loops'fasystemwithoutaffecting theotherloops.SeerevisedSubsection 6.3.22.5.d)Duetotheverysmallamountofcontinuous make-uprequirednointerlocks areprovidedtogivepriorityto"keep-full" functionoftheCondensate TransferSystem'sECCSfilllines.e)Seerevisedsubsection 6.3.2.2.5.f)ThewaterhammereventswhichhaveoccurredinBHRplantswithECCSfillsystemsaredocumented andtransmitted totheNRCasLicensing EventReports(LER).ThesearekeptonfileattheNRC.SeeTable211.211-1 foratabulation ofwaterhammereventsbasedonLERinformation onfilewiththeGeneralElectricCompany.Rev.17,9/802'l1.211-2 SSES-FSAR Providedatatoverifythatrepresentative HPCIactivecomponents (inparticular, thepump)havebeen"proof-tested" underthemostsevereoperating conditions thatareanticipated.
Theservicelifeandthemaximumexpectedoperating timeaccumulated duringtheservicelifeofthatHPCIpumpshouldbespecified.


SSES-FSARQUESTION130.22:rExplainwhytheanalysisforthetorsionaleffectwasnotdonefortheReactorBuilding.RESPONSE':Thetorsionaleffectinthereactor/controlbuildingwasconsideredinthedynamicanalysis.Units1and2wereconsideredsimultaneously.IntheN-Sdirectiontheeccentricityislargerthan5%.TheN-SdynamicmodelpresentedonFigure3.7b-10ofFSARconsistsof3sticksateachfloorandthestiffnessdistributionofthestructuralwallsaresuchthatproperrepresentationoftheeccentricityisobtained.Therefore,thetorsionaleffectisproperlyaccountedforinthedynamicanalysis.Thecomputeddynamicmemberforcesandmodelpaintresponseswereusedfortheassesmentofstructureandequipment.IntheE-Wdirection(seeseismicmodelonFigure3.7b-9)theeccentricityislessthan5%.However,amiriimumeccentricityof5%wasconsideredbyredistributingthemasses.Thiswasdonefortheassesmentofwalls.Rev.224/81130.22-1 SSES-FSARInFigure7-6whichshowsdowncomerbracingsystemdetails,itappearsthatthebracingisweldedtothelinerplatethroughtheuseofanembeddedplatewithoutanyanchoragetothecontainmentconcretewall.Sincethesteellinerplateisnotastructuralcomponent,indicatehowthepullingforcesfromthebracingcanberesistedandhowtheleaktightintegrityofthelinercanbemaintained.RESPONSE:Downcomerbracingforcesareresistedbyembeddedanchoragesinthecontainmentconcretewall.Thisdesignassurestheleaktightintegrityofthelinerplateismaintained.Rev.22,4/81130.23-1 SSES-FSARItappearsthatportionsoftherecirculationpumpsealcoolingwaterarenotseismicCategoryI(RegulatoryGuide1.29).Thestaffrequiresadditionalinformationtoshowthatacompletelossofpumpsealcoolingwaterwouldnotleadtounacceptableconsequences.RESPONSE:TwononseismicCategory1sourcesofcoolingareavailabletotherecirculationpumpseals:recirculationpumpsealcoolingwatersuppliedbyRBCLCWandrecirculationpumpsealinjectionwatersuppliedbytheCRD-system.GeneralElectric'sLicensingTopicalReport,NED0-24083,RecirculationPumpShaftSealLeakageAnalysis,provides:ananalyticalbasisforrecirculationpumpsealleakage,assumingafailureofbothcoolingwatersystems.Thisgenericanalysispredictsaboundingleakageratewellunder100gpm.ThegenericanalysisisapplicabletoSusquehanna.Thereportalsodocumentstestresults,demonstratingthatpumpsealintegritywillbemaintainedifanyoneofthetwocoolingwatersystemsisoutofoperationatagiventime.Rev.22,4/81211.1-1 SSES-FSARQUESTION211.8TheSRP54.7statestheresidualheatremovalsystem(RHRS)shouldmeettherequirementsofGeneralDesignCriterion(GDC)34ofAppendixAto10CFRPart50.TheRHRbyitselfcannotaccomplishthcheatremovalfunctionsasrequiredbyGDC34.TocomplywiththesinglefailurecriteriontheFSARdescribesanalternatemethodofachievingcoldshutdowninSection15.2.9Insufficientinformationisprovidedtoallowanadequateevaluationofthisalternatemethod.Inparticular,wehaverecentlyapprovedRevision2toSRP5.4.7(containinqBranchTechnicalPositionRSB5-1)whichdelineatesaccceptablemethodsformeetingthesinglefailurecriterion.ThisBranchTechnicalPositionrequirestestinqtodemonstratetheexpectedperformanceofthealternatemethodforachievinqcoldshutdown.Youshoulddescribeplanstomeetthisrequirement.Inaddition,werequirethatallcomponentsofthealternatesystembesafetygrade(seismicCateqoryI).Asaresultofthisrequirement,theairsupplytotheautomaticdepressurizationsystem(ADS)valves,includingthesystemupstreamoftheaccumulators,mustbesafetygrade.Thisairsupplymustbesufficienttoaccountforairconsumptionnecessaryforvalveoperationplusairlossduetosystemleakageoveraprolongedperiodwithlossofoffsitepower.RESPONSE.AsdiscussedinSubsection93.1.5.1,thegassupplytotheADSvaluesandthebackupqassupplytotheADSaccumulatorsissafetygrade.Codescoveringthedesignandconstructionofthesecompon'eatsarediscussedinSubsection9.3.1.5.1Allcomponentsthatareapartofthealternateshutdownloop(seeSd>section15.2.9&Figs.15.2-14and15,2-15areroutinelytestedasrequiredbytechnicalspecifications.Testingofthetotalalternateshutdownsystemwouldnotprovideanyadditionalpertinentinformationandwouldresultinintroducinglowerquality(suppressionpool)waterintothevessel.Bsedontheabove,wedonotfeelthattestingofthetotalloopisnecessaryordesirable.ThisissuewastentativelyresolvedwiththeNRContheShorehamdocket(BWR/4)byanagreementtotestonesafetyreliefvalveinSanJosesimulatingthealternateshutdowncondition.TherationaleforacceptanceofthisplanwasthattheSRVistheonlycomponentintheloopwhichhasnotbeendemonstratedtobesuitableforalternateshutdownconditions.Thistest.wassuccessfullycompletedinDecember1979.Rev,224/812118-1 SSES-PSARGeneralHlectricinconjunctionviththeThreeMileIslandOwnersGroupisplanninqfurtherSRVtestinqinresponsetoTMIrelatedissues.Thistestinq.villincludeconditionssimilartothealternateshutdovn-conditionsandwillincludeavalveofCrosbyManufactureasisusedintheSusquehannaplant.Itisexpectedthatthesetestswillfurtherconfirmthatanin-planttestisnotrequiredtodemonstratealternateshutdownconditionscapability.REV18,1$/802118-2 SSES-I'SARQUESTION21185:ProvideassurancethatadequateNPSHexistsforanECCSpassivefailureinawater-tightpumpcoom.AddressthepossibilityofvortexfomationatthesuctionoftheremainingECCSpumpswiththeloweredpoollevel.DiscusspreoperationalteststobeperformedtodemonstratethatthereisnotimpairmentofECCSfunctionduetoloweredsuppressionpoollevel.RESPONSESeeSubsection6.3.6fordiscussionofNPSHavailabilitywithECCSpassivefailureandofvortexformationinthesuppressionpool.TestingforpumpoperationatminimumNPSHmarginisprovidedbypreoperationaltests.Rev.22,4/8121185-1 SSES-FSARItisnotevidentthattheassumeddropof100Finfeedwatertemperature0givesaconservativeresultofthistransientwithmanualrecirculationflowcontrol.Forexample,afeedwatertemperaturedropofabout150FoccurredatonedomesticBWRresultingfromasingleelectricalcomponentfailure.Theelectricalequipmentmalfunction(circuitbreak-tripofamotorcontrolcenter)causedacompletelossofallfeedwaterheatingduetototallossofextractionsteam.Accordingly,either(1)submitasuf-ficientlydetailedfailuremodesandeffectsanalysis(FMEA)todemonstratetheadequacyofa100Ffeedwatertemperaturereductionrelativetosingleelectricalmalfunctionsor(2)submitcalculationsusingalimitingFWtemperaturedropwhichclearlyboundscurrentoperatingexperience.Also,temperaturedropsoflessthan100Fcanoccurandinvolvemorerealisticslowchangeswithtime.Assumingallcombinationsresultinslowtransientswiththesurfaceheatfluxinequilibriumwiththeneutronfluxattheoccurrenceofscram,asmallertemperaturedropthan100FthatstillcausesscramcouldresultinalargerQCPR.Pleaseevaluatethistransientandjustifythattheassumedvaluesofthemagnitudeandtimerateofchangeinthefeedwatertemoeratureareconservative.RESPONSE:Nosingleelectricalcomponentfailurewillcausethelossofmorethanonetrainoffeedwaterheatersasseparatepowersourcesaresuppliedtoeachofthefeedwatercontrolpanels.Eachfeedwaterheatertrainconsistsoffivefeedwaterheatersplusadraincooler.SSESdoesnothaveafeedwaterheatertrainbypassline.TheGEfeedwaterheatersystemdesignspecificationrequiresthatthemaximumtemperaturedecreasewhichcanbecausedbybypassingfeedwaterheater(s)byasimplevalveoperationwillbelessthanorequalto100oF.Thisisthebasisoftheassumeddropof100Finfeedwatertemperatureintheanalysis.LossofonefeedwaterheatertrainatSSESwillactuallyresultinsignificantlylessthana100Ftemperaturedrop.Itshouldbepointedoutthatasteadystate(i.e.,thesurfaceheatfluxinequilibriumwiththeneutronflux)isassumedindeterminingtheMCPRduringthetransient.Therefore,atemperaturelosssmallerthan100FisnotexpectedtoresultinamymoresevereatransientthanthatanalyzedRev.22,4/81211.116-1 SSES-FSARQUESTION211.120:FortherecirculationpumpseizureaccidentwenoteinTable15.3-3thatcreditistakenfornonsafety-gradeequipmenttoterminatethisevent.Section15.3.3oftheStandardReviewPlan,Revision1,rewuiresuseofonlysafety-gradeequipmentandthesafetyfunctionsbeaccomplishedassumingtheworstsinglefailureofanactivecomponent.Reevaluatethisaccidentwiththeabovespecificcriteria,andprovidetheresultingCPRandpercentageoffuelrodsinboilingtransition.RESPONSE:Therecirculationpumpseizureenent,assumingtheoperationofspecificnon-safetygradeequipment,hasamildimpactinrelationtothedesign-basisdouble-endedrecirculationlingbreakinSectouns6.3and15.6.Failureofsuchequipmentwouldnotmakethecoreperformanceand/orradiologicalconsequencesofthishighlyimprobablepumpseizure(rapidcoreflowdecrease)eventmorelimitingthanthemaximumDBA-LOCAaddressedintheFSAR.Therefore,noadditionalevaluationsareconsiderednecessary.TheFSARtexthasbeenrevisedregardingfrequencyclassificationbydeletingreferencestoinfrequentincidentclassificationinSubsection15.3.3.1.2and15.3'.1.2,recirculationpumpseizureandrecirculationpumpshaftbreakrespectivelyRev.22,4/81211.120-1 SSES-FSAROperationofSusquehannawithpartialfeedwaterheatingmightoccurduringmaintenanceorasaresultofadecisiontooperatewithlowerfeedwatertemperaturenearendofcycle.Justifythatthismodeofoperationwillnotresultin(1)greatermaximumreactorvesselpressuresthanthoseobtainedwiththeassumptionusedinSection5.2.2,or(2)amorelimiting5MCPRthanwouldbeobtainedwiththeassumptionsusedinSection15.0.Thebasisforthemaximumreductioninfeedwaterheatingconsideredintheresponseshouldbeprovided(e.g.,specificturbineoperationallimitations).RESPONSE:Lowerfeedwatertemperatureincreasesthecoreinletsubcoolingandresultsinacorrespondingdecreaseinboththecoreaveragevoidfractionandthesteamproduction.Thefeedwatertemperatureof250oFisconsideredasthelowerlimitbasedontheconclusionthatplantswithimprovedinterferencefitspargerscanberuninthismode(250FFFVZ)withoutadverseconsequences.Typically,thecoreaveragevoidfractionisreducedby-16$whenthefeedwatertemperatureisreducedfrom420Fto250F.Thelowersteamproductionratereducesthepeakpressureswhichoccurduringatransient(Table211.125).TheuseoffeedwatertemperaturereductiontoextendthecyclebeyondnormalEOCisnotexpectedtoresultinmoreseveretransients.Thelowervoidfraction("16$lowerat250FFFWT)reducesthedynamicvoidcoefficientandtheseverityofthetransient(i.e.,theACPRduetothetransient)isless.Table211.125providesthetypicalACPRnumbersfortwotransientsanalyzed.Althoughthescramreactivityresponseissomewhatdegradedduetothelessbottompeakedpowershape,theoverallresponseisdominatedbythevoidfeedbackeffectsandtheresultingtransientislesssevere.ReducingthefeedwatertemperaturebeforeEOCwillnotresultinmoresevereplanttransienteither.Thepeakpressureswillbelessduetothereducedsteamproduction.TheACPRwillbelessduetothesmallervoidcoefficient.Duetothepresenceofasignificantnumberofcontrolrodsinsertedintothecoreforthiscondition,thescramresponseisnotappreciablyaffectedbythefeedwatertemperaturereduction.Inaddition,thetransientresponseatpointsinthecycleotherthanEOCisconsistentlylessthanEOC.Ifoperationinthereducedfeedwatertemperaturemodeisutilized,priortooperationananalyseswillbeperformedtoshowthismodeofoperationwillnotviolateMCPRsafetylimits,giventheeventsinChapter15.Rev.22,4/81211.125-1 TABLE211.125TRANSIENTANALYSISRESULTSReactor~CeleTransientExposurePointPeakVesselPressureCPRBWR4251"764Evil.cycleLoadrejectionw/obypassRatedEOC(104.2/power)1235.17(ReducedFeedwater)ExtendedEOCHeating(100$power)12190.16FeedwaterControllerfailureRatedEOC(104.2$power)12020.12(Reduced'eedwater)ExtendedEOCHeating(100$power)10600.05*ODYNANALYSISRESULTSRev.22,4/81 SSES-FSARIntheevaluationofthe"generatorloadrejection"transient,afull-strokeclosuretimeof0.15secondsisassumedfortheturbinecontrolvalves(TCV).Section15.2.2.3.4statesthattheassumedclosuretimeisconservativecomparedtoanactualclosuretimeofmorelike0.20seconds.However,inFigure10.2-2,TurbineControlValveFastClosureCharacteristic,anacceptableTCVclosuretimeof0.08secondsisimplied.Explainthisapparentnon-conservativediscrepancyandtheeffectithasonanalysesinChapter15requiringTCVclosure.RESPONSE:The0.08secondsshowninFigure10.2.2isanacceptablevaluewhereasthe.07secondsTCVclosuretimeinTables15.2-1and15.2-2istheboundingvalue.SeeresponsetoQuestion211.117forfurtherclarificationtothisquestion.Rev.22,4/81211.161-1 SSES-FSARThenarrativeonpage15.4-13discussingthe"abnormalstartupofanidlerecirculationpump"transientstates,"Thewaterleveldoesnotreacheitherthehighorlowlevelsetpoints."Table15.4.3.indicatesalowleveltripoccurs22.0secondsafterpumpstart.Figure15.4-6indicatesalowleveltripoccursapproximately23.5secondsafterpumpstart.Further:a)Table15.4-6indicatesalowlevelalarm10.5secondsafterpumpstartwhileFigure15.4-6indicatesthisalarmoccursabout11.5secondsafterthepumpstarts.b)Table15.4-6indicatesvessellevelbeginningtostabilize50'secondsafterthepumpstarts.Figure15.4-6showsnosuchindication.Resolvethesediscrepancies.RESPONSE:ThesequenceinTable15.4-3startsoutwithascramat10secondsfollowingtheimproperpumpstart.Figure15.4-6confirmsthis.At23.5seconds(ratherthan22)levelfallstoL3whichalsoissuesaredundantscramsignaltoasystemwhichhasalreadyscrammed.ItistheintentofTable15.4-3hasbeenmodified.a)Table15.4-4indicatesL4nearllseconds.ThisisverifiedbyFigure15.4-6,b)Table15.4-4indicatesthatvessellevelisbeginningtostabilizeat50seconds.Thisappearstobecorrect.Actually,levelrecoveredfromL3atabout41secondsandfrom30to40secondslevelischangingattherateof2.5in/sec.From50to60secondslevelrateisdefinitelyflatteningoutundernormalfeedwaterlevelcontrol.Rev.224/81211.180-1 SSES-FSARQUESTION211.210:ExpandthediscussioninSection6.3todescribethedesignprovisionsthatareincorporatedtofacilitatemaintenance(includinqdraininqandflushing)andcontinuousoperationoftheECCSpumps,seals,valves,heatexchangers,andpipingrunsinthelong-termLOCAmodeofoperationconsideringthatthewaterbeingrecirculatedispotentiallyveryradioactive.RESPONSE:TheSusquehannaeguipmentforlong-termcoolinqfcllowingapostulatedLOCAincludestwoccmpletecozespraysystemsandtwoRHRsystems.Thesetvosystemsconsistofatotalofeightpumpscapableofpzovidinqwatertothereactorpressurevessel.ThepipinqandinstrumentationdiagramsofthesesystemsareshowninFigures6.3-4and5.4-13.Lonq-termcoolingvatercanbeprovidedtothecorebyoneRHR(LPCXmode)pumporoneCSloop(bothpumps),whileheatcanberejectedtotheultimateheatsinkviaeitherofthetwoRHRheatexchangersusingoneoffourRHRpumps.Thusamaximumofthreepumpsvouldberequiredforpost-LOCAcorecoolinq.AllofthesecomponentsaredesiqnedtoremainoperableduringandfollovinqaLossofCoolantAccident,andtheredundancyprovidedissuchthatmaintenanceisnotexpectedtoberequiredduringthelong-teracorecoolingperiodfollowinqaLOCA.Hovever,theRHRandCoreSpraysystemsaredesignedwithprovisionsforflushingasshovninFigures6.3-4and5.4-13.Rev.224/81211210-1 SSES-FSARgDESTXON211.211:SeverewaterhammeroccurrenceintheECCSdischargepipingduringstartupoftheECCSpumpsisavoidedbyensuringthatthedischargepipesaremaintainedfullofwater.ThecondensatetransfersystemiusedtoachievethisfunctionforallECCSpiping.Sincethecondensatetransfersystemalsosupplies~atertonumerousothersystems,thefollowingareasrequireclarification:a)JustifytheuseofacommonfillingsystemforallECCSdischargepipingversusind,ependenijockeypumps.b)Identifytheexpecteddemandsonthecondensatetransfersystemandwhateffects,ifany,wouldbeexpectedonthemakeuprequiredtokeepthedischargepipesfullofwater?c)Canindividual"filllines"beisolatedtopermitmaintenanceononeECCSsystemwithoutaffectingtheothersystem?d)Thedischargepiping"fillsystem"isapparentlyconsideredtobeanauxiliarysystem.Areanypriorityinterlocksprovidedtoensurethatthe"fillingsystem"willbegivenpriorityovertheotherusesofthecondensatetransfersystemwater?e)Theindividualfilllinesapparentlydonothaveinstrumentationtomonitorlowpressure.provideassurancethatwhenthecondensatetransferpumpsareoperatingthattheindividualECCSdischargelinesarefullofwater.f)Whatisthehistoryofwaterhammereventsatotherplantsemployingthisdesign?RESPONSEa)ThepumpfillsystemadoptedforSusquehannaSESutilizestheexistingcondensatesystemandisrelativelysimple.Ztisbelievedtohaveahighersystemoverallreliabilitythanasystemrequiringindividualpumps,orso-calledjockeypumps,toperformthefillfunction.However,thereisnoknownoperatingexperiencewithacommondischargelinefillsystem.Thecondensatetransfersystemhasbeendesignedtobereliableinsomuchasitisrequiredforplantoperation.ThereforecompletefailureofthiscommonfillingsystemfortheECCSwouldrequirethattheplantbebroughttoashutdowncondition.b)Atstandbypressuressubstantiallybelowvalveratedpressures,the'estimatedmakeupfortheECCSsystemsislessthanl(one)gpm.SeerevisedSubsection6.3.2.2.5.Rev.22,4/Sl211.211-1 SSES-PSAR.)TheindividualfilllinescanbeisolatedtopermitmaintenanceonECCSsystemsandindividualloops'fasystemwithoutaffectingtheotherloops.SeerevisedSubsection6.3.22.5.d)Duetotheverysmallamountofcontinuousmake-uprequirednointerlocksareprovidedtogivepriorityto"keep-full"functionoftheCondensateTransferSystem'sECCSfilllines.e)Seerevisedsubsection6.3.2.2.5.f)ThewaterhammereventswhichhaveoccurredinBHRplantswithECCSfillsystemsaredocumentedandtransmittedtotheNRCasLicensingEventReports(LER).ThesearekeptonfileattheNRC.SeeTable211.211-1foratabulationofwaterhammereventsbasedonLERinformationonfilewiththeGeneralElectricCompany.Rev.17,9/802'l1.211-2 SSES-FSARProvidedatatoverifythatrepresentativeHPCIactivecomponents(inparticular,thepump)havebeen"proof-tested"underthemostsevereoperatingconditionsthatareanticipated.TheservicelifeandthemaximumexpectedoperatingtimeaccumulatedduringtheservicelifeofthatHPCIpumpshouldbespecified.RESPONSE:TheHPCIpumpforSusquehannaSESissimilarindesignandfabricationtopumpsthathavebeeninstalledandoperatedinBWRplantsforseveralyears.WhiletheyhaveneverbeencalledupontofunctionduringaDBA,thesepumpsareperiodicallytestedinoperatingplantsandhavebeenshowntoperformsatisfactorily.Eachpumpistestedatthevendor'splantforhydraulicperformanceandfreedomfromvibration.ThisisinadditiontothetestsandinspectionsperformedduringthefabricationofthepumpsThesevereoperatingconditionstowhichthepumpsareexposedaretemperaturesto148Fambient,maximumexpectedpost-DBAradiationlevelsanddynamicloadsduetothesafeshutdownearthquakeandhydrodynamiceffectsassociatedwiththeDBA.Thepumpsaremainlyfabricatedofmetallicmaterialswhichwillnotbedegradedbytheexpectedpost-DBAtemperatureandradiationenvironment.Thenon-metallicgasketsandsealsaremadeofmaterialswithademonstratedresistancetothepost-DBAenvironment.Thedynamicloadinputsareaddressedanalyticallyandevaluatedagainstappropriatecriteriatoassureoperationofthepumpwhileundergoingdynamicloading.Theaboveassuresthattheexpectedservicelifewillexceedtheexpectedoperatingtimeofapproximately550hours.Abreakdownofexpectedoperatinghoursforseveraleventsdu'ringthelifeofthepumpisprovidedbelow:Event0eratinTime(Hours)ShopTestingPreoperationalTestingMonthlyTestingYearlyTestingPost-LOCAShutdown2104048012N/ATheassumedoperatingtimeforpost-LOCAis12hoursfortheHPCIpump.ThelowpressureRHRandCSsystemstakeupthe'coreRev.22'/81211.226-1 SSES"FSARcoolingwithin12hoursafterincipientLOCAeventandmaintainthelongtermcorecoolingofpostLOCAsubsequentto12hoursperiod.GEstatedthattheECCSpumpmotorsmeettheenvironmentalqualificationrequirementsoftheDORguidelinesandIEEE323-1971.PriortoJune30,1982,furtherqualificationworkwillbepreformedtobringtheseitemsuptoatleastthelevelofIEEE323-1971perNUREG0588CategoryII.Rev.224/81211.226-2 SSES-FSARUESTION211.260:IdentifytheFailureModeandEffectAnalysisforevaluatingthecontrolroddrivesystemwhichyoustateisprovidedinAppendix15A.RESPONSE:Subsection4.6.2hasbeenrevisedtostatethatTheNuclearSafetyandOperationalAnalysisispresentedinsubsection15A.6.5.3.Rev.'224/81211.260-1 SSES-FSARQUESTION211.262:Forthe"recirculationpumpseizure"accident,coincidentlossofoff-sitepowerisnotsimulatedwiththeassumedturbinetripandcoastdownoftheundamagedpump.ReanalyzethistransientassumingcoincidentlossofoffsitepowerandincorporatethisreanalysiswiththatpreviouslyrequestedinQ211.120.RESPONSE:Theeventseverityofacoincidentlossofoffsitepowerwiththepostulatedrecirculationpumpseizureaccidentisboundedbytheanalysisof"LossofACPower"asshowninSection15.2.6.Theonlydifferencebetweenthesetwoeventsisthecoreflowcoastdownrate,TheflowcoastdownrateduringthepumpseizureeventcoincidentwithalossofoffsitepowerisfasterthanthatduringthelossofACpowertransient.ThelossofACpowercausesthiseventtobecomeapressurizationevent.Thefasterflowcoastdownforpressurizationeventsarelessseverebecauseofnegativevoidreactivitycoefficient.Ifthelossofoffsitepowerwerecoincidentwiththehighwaterlevelturbinetrip,theresultingaccidentwouldbelessseverethantheoneanalyzedintheFSAR.Thisisduetothefactthattherecirculationpumptripwilloccurearlierintheformeraccident.TodiscusstheeffectofcorecoastdownrateonCPR,thefollowingispresented.CorecoastdownratehasaneffectonthechangeinCPR.Thiseffecthastwocriticalcomponentswhichvaryinverselywitheachother.Theinverserelationshipexistsbetweentheheatgenerationrate(neutronflux)andtheheatdissipationrate(thermalhydraulics),Thefasterthecoastdownrate,thefastertheneutronfluxdrops,but,theslowertheresidualheatinthefuelisdissipated.TheeventsinChapter15'areanalyzedtoconservativelyaccountforthisrelationshipwithregardstothechangeinCPR-Rev.22,4/81211.262-1 SSES-FSARg,>>6:Fromthediscussionofsinglefailuresforthe"inadvertentHPCIstartup"transient,itisindicatedthatasinglefailureofthepressureregulatororlevelcontrolwillaggravatethetransient,resultinginreducedthermalmargins.ProvidetheHCPRandpeakvesselpressurevaluesthatresultforthiseventwiththemostlimitingoftheabovesinglefailuresconsideredintheanalysis.RESPONSE:Intheeventofthe"inadvertentHPCIstartup"transient,neitherthepressureregulatornorthelevelcontrollerisexpectedtofailbecausebothsystemsareinnormalcontinuousoperationatthetimeofthehypothesizedevent,andnosignificantchangeintheirfunctionisdemandedbytheevent.Theyshouldsimplycontinuetheirnormalfunction.InadvertentstartupoftheHPCIresultsinamildpressurization.Uponpressurizationduetotheadditionofcoolerwaterintothefeedwatersparger,thepressureregulatortendstoregulatethevesselpressurebyadjustingthepositionoftheturbinecontrolvalve.Whenanactivefailureoftheregulatorsystemisconsidered,suchthattheturbinecontrolvalveswouldnotopen,furtherpressurizationwouldresultwhichwouldleadtoaneventsimilartothe"pressureregulatorfailure-close"transient(15.2.1)Nosignificantchangeinthermalmarginprotectionwouldoccur(<.01CPRchange).Becauseoftheadditionofthecoolerwaterinfeedwatersparger,thelevelcontrolsystemtendstoreducethefeedwaterflowtomaintainthenormalwaterlevel.Whenanactivefailureofthelevelcontrolsystemisconsidered,thewaterlevelwouldcontinuetorise..Thissituationissimilartothe"feedwatercontrollerfailure-maximumdemand"transient(15.1.2)andresultsinasimilarCPRchange.SincetheHPCIstartupdoesnotchallengethesecontrolsystemssignificantly,beyondtheirnormalcontxolfunctions,theindependent,simultaneousfailureofeitherisconsideredextremelyunlikely.Note:Theword"aggravate"usedinthetextdoesnotmeanaworsethermalmargin.Itratherimpliesanundesirableaction(e.g.turbinetrip)whichmayresultinreactorscramandshutdown.RBV.22,.4/81211.276-1 SSES-FSAROurpositionontheemergencycorecoolingsystems(ECCS)isthatthesesystemsshouldbedesignedtowithstandthefailureofanysingleactiveorpassivecomponentwithoutadverselyaffectitheirlong-termcoolingcapabilities.lnthisregard,weareconcernedthatthesuppressionpoolinboilingwaterreactors(BWR's)maybedrainedbyleakagefromisolationvalveswhichmayberenderedinaccessiblebylocalizedradioactivecontaminationfollowingapostulatedloss-of-coolantaccident(LOCA).Accordingly,indicatethedesignfeaturesintheSusquehannafacilitywhichwillcontainleakagefromthefirstisolationvalveintheECCSlinestakingwater(suctionlines)fromthesuppressionpoolduringthelong-termcoolingphasefollowingapostulatedLOCA.RESPONSE:TheECCSisdesignedtowithstandthefailureofanysingleactiveorpassivecomoonentwithoutadverselyaffectingthelong-termcoolingcapabilities.AnyleakagefromECCSsystemscanbeisolatedandcontained.ThedesignfeaturesinSusquehannathatassurethiscapabilityaredescribedinresponsetoFSARQuestion211.10.Rev.22,4/81211.295-1 SSES-FSARQUESTION221.14:YourresponsetoQuestion221.1isunacceptable.Thestaffbelievesthatthestate-of-the-arthasprogressedsuchthateffectiveLPMsystemscanbeinstalledincommercialLWRs.TherationaleforthisisdocumentedindraftRegulatoryGuide1.133(Loose-PartDetectionProgramforthePrimarySystemofLight-Water-Cooled-Reactors).Additionalrationaleclarifyingthestaffpositionc'nalsobefoundinaletter,VassallotoJ.E.Mecca(PugentSoundPowerandLightCompany)"SkagitNuclearPowerProject,Units162"datedJuly20,1978(DocketNos.50-522/523)availableintheNRCpublicdocumentroom.AnumberofLWR's,includingBWR's,atthesamestageoflicensingasSusquehanna,havecommittedtotheinstallationofaLPMsystem.Inaddition,itisrequiredbythestaffthataLPMsystembeinstalledandoperationalpriortostartupofthereactor.Therefore,pleaseprovidetheinformationrequestedinQ221.1.RESPONSE:TheSusquehannaSESLoosePartsMonitoringSystemisdiscussedinsubsections7.7.1.12and7.7.2.12.Rev.22,4/81221.14-1 SSES-PSARTheresponsetoQuestion221.9isunacceptable.Theapplicantshouldcommittosubmitareportdescribingthecomputerprogramusedforcorethermal-hydraulicanalysispriortoissuanceofanoperatinglicenseforSusquehanna.Thereportshouldprovidethecodedescription,thecalculationalmethodsandempiricalcorrelationsused,asampleapplicationandcodeverificationthroughcomparisonwithexperimentaldata.1RESPONSE:ThecomputerprogramcitedinSubsection4.4.4.5isnamedTSCOR.VariousversionsofthiscodehavebeenusedbytheGeneralElectricCompanyforoveradecadetoperformdetailedcore,steadystate,thermal-hydraulicanalyses.TheXSCORcomputerprogramisusedasthebasisforthesteadystatethermal-hydraulicmoduleintheGEBS/PANACthree-dimensionalBWRcoresimulator.Themodelsandnon-proprietarycorrelationsaredescribedinChapter4oftheBWRCoreSimulatorLicensingTopicalReport(NEDO-20953,Hay1976).Rev.22,4/81230.1-1 SSES-FSARTheresponsetoQuestion221.2isunacceptable.Question2requestedassumptionsusedforamountofcrudusedindesigncalculationsandthesensitivityofCPRandcorepressuredroptovariationsintheamountofcrudpresent.Merelystatingthat"aconservativeamountofcrudisdepositedonthefuelrodsandfuelrodspacers"doesnotbegintoanswerthisquestion.Thequestionalsoaskedforadiscussionofhowcrudbuildupinthecorewouldbedetected;'odiscussionisprovided.RESPONSE:Ingeneral,theCPRisnotaffectedascrudaccumulatesonfuelrods,(References1and2).Therefore,nomodificationstoGEXLaremadetoaccountforcruddeposition.Forpressuredropconsiderations,theamountofcrudassumedtobedepositedonthefuelrodsandfuelrodspacersisgreaterthanisactuallyexpectedatanypointinthefuellifetime.Thiscruddepositionisreflectedinadecreasedflowarea,increasedfrictionfactors,andincreasedspacerlosscoefficients,theeffectof,whichis.toincreasethecorepressuredropbyapproximately.1.7psi,anamountwhichislargeenoughtobedetectedinmonitoringofcorepressuredrop.Itshouldbenotedthatassumptionsmadewithrespecttocruddepositionincorethermalhydraulicanalysesareconsistentwithestablishedwaterchemistryrequirements.Moredetaileddiscussionofcrud(service-inducedvariations)anditsuncertaintyisfoundinSectionIIIofReference3.
===RESPONSE===
TheHPCIpumpforSusquehanna SESissimilarindesignandfabrication topumpsthathavebeeninstalled andoperatedinBWRplantsforseveralyears.WhiletheyhaveneverbeencalledupontofunctionduringaDBA,thesepumpsareperiodically testedinoperating plantsandhavebeenshowntoperformsatisfactorily.
Eachpumpistestedatthevendor'splantforhydraulic performance andfreedomfromvibration.
Thisisinadditiontothetestsandinspections performed duringthefabrication ofthepumpsThesevereoperating conditions towhichthepumpsareexposedaretemperatures to148Fambient,maximumexpectedpost-DBAradiation levelsanddynamicloadsduetothesafeshutdownearthquake andhydrodynamic effectsassociated withtheDBA.Thepumpsaremainlyfabricated ofmetallicmaterials whichwillnotbedegradedbytheexpectedpost-DBAtemperature andradiation environment.
Thenon-metallic gasketsandsealsaremadeofmaterials withademonstrated resistance tothepost-DBAenvironment.
Thedynamicloadinputsareaddressed analytically andevaluated againstappropriate criteriatoassureoperation ofthepumpwhileundergoing dynamicloading.Theaboveassuresthattheexpectedservicelifewillexceedtheexpectedoperating timeofapproximately 550hours.Abreakdown ofexpectedoperating hoursforseveraleventsdu'ringthelifeofthepumpisprovidedbelow:Event0eratinTime(Hours)ShopTestingPreoperational TestingMonthlyTestingYearlyTestingPost-LOCA Shutdown2104048012N/ATheassumedoperating timeforpost-LOCA is12hoursfortheHPCIpump.ThelowpressureRHRandCSsystemstakeupthe'coreRev.22'/81211.226-1 SSES"FSAR coolingwithin12hoursafterincipient LOCAeventandmaintainthelongtermcorecoolingofpostLOCAsubsequent to12hoursperiod.GEstatedthattheECCSpumpmotorsmeettheenvironmental qualification requirements oftheDORguidelines andIEEE323-1971.
PriortoJune30,1982,furtherqualification workwillbepreformed tobringtheseitemsuptoatleastthelevelofIEEE323-1971perNUREG0588CategoryII.Rev.224/81211.226-2 SSES-FSAR UESTION211.260:IdentifytheFailureModeandEffectAnalysisforevaluating thecontrolroddrivesystemwhichyoustateisprovidedinAppendix15A.RESPONSE:
Subsection 4.6.2hasbeenrevisedtostatethatTheNuclearSafetyandOperational Analysisispresented insubsection 15A.6.5.3.
Rev.'224/81211.260-1 SSES-FSAR QUESTION211.262:Forthe"recirculation pumpseizure"accident, coincident lossofoff-sitepowerisnotsimulated withtheassumedturbinetripandcoastdown oftheundamaged pump.Reanalyze thistransient assumingcoincident lossofoffsitepowerandincorporate thisreanalysis withthatpreviously requested inQ211.120.
 
===RESPONSE===
Theeventseverityofacoincident lossofoffsitepowerwiththepostulated recirculation pumpseizureaccidentisboundedbytheanalysisof"LossofACPower"asshowninSection15.2.6.Theonlydifference betweenthesetwoeventsisthecoreflowcoastdown rate,Theflowcoastdown rateduringthepumpseizureeventcoincident withalossofoffsitepowerisfasterthanthatduringthelossofACpowertransient.
ThelossofACpowercausesthiseventtobecomeapressurization event.Thefasterflowcoastdown forpressurization eventsarelessseverebecauseofnegativevoidreactivity coefficient.
Ifthelossofoffsitepowerwerecoincident withthehighwaterlevelturbinetrip,theresulting accidentwouldbelessseverethantheoneanalyzedintheFSAR.Thisisduetothefactthattherecirculation pumptripwilloccurearlierintheformeraccident.
Todiscusstheeffectofcorecoastdown rateonCPR,thefollowing ispresented.
Corecoastdown ratehasaneffectonthechangeinCPR.Thiseffecthastwocriticalcomponents whichvaryinversely witheachother.Theinverserelationship existsbetweentheheatgeneration rate(neutronflux)andtheheatdissipation rate(thermalhydraulics),
Thefasterthecoastdown rate,thefastertheneutronfluxdrops,but,theslowertheresidualheatinthefuelisdissipated.
TheeventsinChapter15'areanalyzedtoconservatively accountforthisrelationship withregardstothechangeinCPR-Rev.22,4/81211.262-1 SSES-FSAR g,>>6:Fromthediscussion ofsinglefailuresforthe"inadvertent HPCIstartup"transient, itisindicated thatasinglefailureofthepressureregulator orlevelcontrolwillaggravate thetransient, resulting inreducedthermalmargins.ProvidetheHCPRandpeakvesselpressurevaluesthatresultforthiseventwiththemostlimitingoftheabovesinglefailuresconsidered intheanalysis.
 
===RESPONSE===
Intheeventofthe"inadvertent HPCIstartup"transient, neitherthepressureregulator northelevelcontroller isexpectedtofailbecausebothsystemsareinnormalcontinuous operation atthetimeofthehypothesized event,andnosignificant changeintheirfunctionisdemandedbytheevent.Theyshouldsimplycontinuetheirnormalfunction.
Inadvertent startupoftheHPCIresultsinamildpressurization.
Uponpressurization duetotheadditionofcoolerwaterintothefeedwater sparger,thepressureregulator tendstoregulatethevesselpressurebyadjusting thepositionoftheturbinecontrolvalve.Whenanactivefailureoftheregulator systemisconsidered, suchthattheturbinecontrolvalveswouldnotopen,furtherpressurization wouldresultwhichwouldleadtoaneventsimilartothe"pressure regulator failure-close "transient (15.2.1)Nosignificant changeinthermalmarginprotection wouldoccur(<.01CPRchange).Becauseoftheadditionofthecoolerwaterinfeedwater sparger,thelevelcontrolsystemtendstoreducethefeedwater flowtomaintainthenormalwaterlevel.Whenanactivefailureofthelevelcontrolsystemisconsidered, thewaterlevelwouldcontinuetorise..Thissituation issimilartothe"feedwater controller failure-maximum demand"transient (15.1.2)andresultsinasimilarCPRchange.SincetheHPCIstartupdoesnotchallenge thesecontrolsystemssignificantly, beyondtheirnormalcontxolfunctions, theindependent, simultaneous failureofeitherisconsidered extremely unlikely.
Note:Theword"aggravate" usedinthetextdoesnotmeanaworsethermalmargin.Itratherimpliesanundesirable action(e.g.turbinetrip)whichmayresultinreactorscramandshutdown.
RBV.22,.4/81211.276-1 SSES-FSAR Ourpositionontheemergency corecoolingsystems(ECCS)isthatthesesystemsshouldbedesignedtowithstand thefailureofanysingleactiveorpassivecomponent withoutadversely affectitheirlong-term coolingcapabilities.
lnthisregard,weareconcerned thatthesuppression poolinboilingwaterreactors(BWR's)maybedrainedbyleakagefromisolation valveswhichmayberenderedinaccessible bylocalized radioactive contamination following apostulated loss-of-coolant accident(LOCA).Accordingly, indicatethedesignfeaturesintheSusquehanna facilitywhichwillcontainleakagefromthefirstisolation valveintheECCSlinestakingwater(suctionlines)fromthesuppression poolduringthelong-term coolingphasefollowing apostulated LOCA.RESPONSE:
TheECCSisdesignedtowithstand thefailureofanysingleactiveorpassivecomoonent withoutadversely affecting thelong-term coolingcapabilities.
AnyleakagefromECCSsystemscanbeisolatedandcontained.
ThedesignfeaturesinSusquehanna thatassurethiscapability aredescribed inresponsetoFSARQuestion211.10.Rev.22,4/81211.295-1 SSES-FSAR QUESTION221.14:YourresponsetoQuestion221.1isunacceptable.
Thestaffbelievesthatthestate-of-the-art hasprogressed suchthateffective LPMsystemscanbeinstalled incommercial LWRs.Therationale forthisisdocumented indraftRegulatory Guide1.133(Loose-Part Detection ProgramforthePrimarySystemofLight-Water-Cooled-Reactors).
Additional rationale clarifying thestaffpositionc'nalsobefoundinaletter,VassallotoJ.E.Mecca(PugentSoundPowerandLightCompany)"SkagitNuclearPowerProject,Units162"datedJuly20,1978(DocketNos.50-522/523) available intheNRCpublicdocumentroom.AnumberofLWR's,including BWR's,atthesamestageoflicensing asSusquehanna, havecommitted totheinstallation ofaLPMsystem.Inaddition, itisrequiredbythestaffthataLPMsystembeinstalled andoperational priortostartupofthereactor.Therefore, pleaseprovidetheinformation requested inQ221.1.RESPONSE:
TheSusquehanna SESLoosePartsMonitoring Systemisdiscussed insubsections 7.7.1.12and7.7.2.12.
Rev.22,4/81221.14-1 SSES-PSAR TheresponsetoQuestion221.9isunacceptable.
Theapplicant shouldcommittosubmitareportdescribing thecomputerprogramusedforcorethermal-hydraulic analysispriortoissuanceofanoperating licenseforSusquehanna.
Thereportshouldprovidethecodedescription, thecalculational methodsandempirical correlations used,asampleapplication andcodeverification throughcomparison withexperimental data.1RESPONSE:
ThecomputerprogramcitedinSubsection 4.4.4.5isnamedTSCOR.VariousversionsofthiscodehavebeenusedbytheGeneralElectricCompanyforoveradecadetoperformdetailedcore,steadystate,thermal-hydraulic analyses.
TheXSCORcomputerprogramisusedasthebasisforthesteadystatethermal-hydraulic moduleintheGEBS/PANAC three-dimensional BWRcoresimulator.
Themodelsandnon-proprietary correlations aredescribed inChapter4oftheBWRCoreSimulator Licensing TopicalReport(NEDO-20953, Hay1976).Rev.22,4/81230.1-1 SSES-FSAR TheresponsetoQuestion221.2isunacceptable.
Question2requested assumptions usedforamountofcrudusedindesigncalculations andthesensitivity ofCPRandcorepressuredroptovariations intheamountofcrudpresent.Merelystatingthat"aconservative amountofcrudisdeposited onthefuelrodsandfuelrodspacers"doesnotbegintoanswerthisquestion.
Thequestionalsoaskedforadiscussion ofhowcrudbuildupinthecorewouldbedetected;
'odiscussion isprovided.
 
===RESPONSE===
Ingeneral,theCPRisnotaffectedascrudaccumulates onfuelrods,(References 1and2).Therefore, nomodifications toGEXLaremadetoaccountforcruddeposition.
Forpressuredropconsiderations, theamountofcrudassumedtobedeposited onthefuelrodsandfuelrodspacersisgreaterthanisactuallyexpectedatanypointinthefuellifetime.
Thiscruddeposition isreflected inadecreased flowarea,increased frictionfactors,andincreased spacerlosscoefficients, theeffectof,whichis.toincreasethecorepressuredropbyapproximately
.1.7psi,anamountwhichislargeenoughtobedetectedinmonitoring ofcorepressuredrop.Itshouldbenotedthatassumptions madewithrespecttocruddeposition incorethermalhydraulic analysesareconsistent withestablished waterchemistry requirements.
Moredetaileddiscussion ofcrud(service-induced variations) anditsuncertainty isfoundinSectionIIIofReference 3.


==Reference:==
==Reference:==
1.McBeth,R.V.,R.Trenberth,andR.W.Wood,"AnInvestigationIntotheEffectsofCrudDepositsonSurfaceTemperature,Dry-Out,andPressureDrop,withForcedConvectionBoilingofWaterat69BarinanAnnularTestSection",AEEW-R-705,1971.2.Green,S.J.,B.W.LeTourneau,A.C.Peterson,"ThermalandHydraulicEffectsofCrudDepositedonElectricallyHeatedRodBundles",WAPD-TM-918,Sept.1970.3."GeneralElectricThermalAnalysisBasis(GETAB):Data,Correlation,andDesignApplication",GeneralElectricCompany,January1977,(NEDO-10958A).Rev.22,4/81230.2-1 SSES-FSARYourresponsetoquestion221.13isincomplete.Sincetheoperationaldesignguidelinesareexceededforsomeoperatingconditions,Figure4.4-6shouldberevisedtoshowdecayratiosasafunctionofrodposition,recirculationflowandpower.Figure4.4-6ascurrentlypresentedisnotsufficientlydetailedforuseininferringoperationalboundaries.RESPONSE:Theoperationaldesignguidelineisnotintendedforuseindefiningoperationalboundaries.Itisusedtodeterminetherangeofoptionaloperationintheautomaticflowcontrolmode.Currentguidelineisthedecayratio0.5.ItisclearfromFigure4.4-6thatmostoftheoperatingdomainmeettheguideline.Itshouldbenoted,however,thatpower/flowconditionwhichhasadecayratiogreaterthantheguidelinecanalwaysbeoperatedinthemanualflowcontrolmode.AlthoughGEdoesutilizedesignstabilityguidestooptimizeBNRoperationandperformancefromanavailabilityconsiderations,applicationoftheseguidelinesisnotconsideredtobeanecessaryrequirementtodemonstrate'anacceptableandlicensableconfiguration.Thecriterionusedwithrespecttosafetyisthatthecalculateddecayratiobelessthan1.0overtheexpectedrangeofoperation.ThishasbeendemonstratedforSusquehannaunit.OperationalguideshavebeendeletedfromFigure4.4-6.Rev.22,4/81230.3-1 SSES-FSARYourresponsetoQuestion221.15isunacceptable.YoureferenceNEDO-10958-Aforadiscussionoftheuncertaintiesandtheirbases.ThestaffevaluationofNEDO-10958states"TheestimatedvalueoftheuncertaintiesandthebasisforthevaluedependonthespecificdesignandequipmentofeachreactorandwillbeevaluatedforeachreactoratthetimeTechnicalSpecificationsareissued."InformationtosupporttheuncertaintyvaluesforSusquehannamustbesubmittedpriortoissuanceofasafetyevaluationreportforSusquehanna.RESPONSE:AgeneraldiscussionoftheboundingstatisticalanalysisuncertaintieshowninTable4.4-6isgivenintheGETABLicensingtopicalreport(Reference1).Oftheseuncertainties,allexceptthatofcriticalpowerareunaffectedbythetwowater-rodassemblydesign.TheGEXLcriticalpowerpredictabilityforthe8x8twowater-roddesignhasbeenshowntobesimilartothestandardonewater-roddesign(seetheresponsetoQuestion221.3);thevalueforthisuncertaintycitedinReference1(1=3.6%)isconservativewithrespecttobothonewater-rodandtwowater-roddesigns.AdditionalinformationconcerningtheremaininguncertaintiesinTable4.4-6andthebasesusedinthederivationofthoseuncertaintiesiscontainedintheLicensingtopicalreport"ProcessComputerPerformanceEvaluationAccuracy"(References2,3and4).Asstatedtherein,"theanalysiswasperformed...formeasurementssystemstypicalof(orconservativewithrespectto)theBWR4-6,"andisthereforedirectlyapplicabletoSusquehanna.
 
1.McBeth,R.V.,R.Trenberth, andR.W.Wood,"AnInvestigation IntotheEffectsofCrudDepositsonSurfaceTemperature, Dry-Out,andPressureDrop,withForcedConvection BoilingofWaterat69BarinanAnnularTestSection",
AEEW-R-705, 1971.2.Green,S.J.,B.W.LeTourneau, A.C.Peterson, "ThermalandHydraulic EffectsofCrudDeposited onElectrically HeatedRodBundles",
WAPD-TM-918, Sept.1970.3."GeneralElectricThermalAnalysisBasis(GETAB):Data,Correlation, andDesignApplication",
GeneralElectricCompany,January1977,(NEDO-10958A).
Rev.22,4/81230.2-1 SSES-FSAR Yourresponsetoquestion221.13isincomplete.
Sincetheoperational designguidelines areexceededforsomeoperating conditions, Figure4.4-6shouldberevisedtoshowdecayratiosasafunctionofrodposition, recirculation flowandpower.Figure4.4-6ascurrently presented isnotsufficiently detailedforuseininferring operational boundaries.
 
===RESPONSE===
Theoperational designguideline isnotintendedforuseindefiningoperational boundaries.
Itisusedtodetermine therangeofoptionaloperation intheautomatic flowcontrolmode.Currentguideline isthedecayratio0.5.ItisclearfromFigure4.4-6thatmostoftheoperating domainmeettheguideline.
Itshouldbenoted,however,thatpower/flow condition whichhasadecayratiogreaterthantheguideline canalwaysbeoperatedinthemanualflowcontrolmode.AlthoughGEdoesutilizedesignstability guidestooptimizeBNRoperation andperformance fromanavailability considerations, application oftheseguidelines isnotconsidered tobeanecessary requirement todemonstrate'an acceptable andlicensable configuration.
Thecriterion usedwithrespecttosafetyisthatthecalculated decayratiobelessthan1.0overtheexpectedrangeofoperation.
Thishasbeendemonstrated forSusquehanna unit.Operational guideshavebeendeletedfromFigure4.4-6.Rev.22,4/81230.3-1 SSES-FSAR YourresponsetoQuestion221.15isunacceptable.
Youreference NEDO-10958-A foradiscussion oftheuncertainties andtheirbases.Thestaffevaluation ofNEDO-10958 states"Theestimated valueoftheuncertainties andthebasisforthevaluedependonthespecificdesignandequipment ofeachreactorandwillbeevaluated foreachreactoratthetimeTechnical Specifications areissued."Information tosupporttheuncertainty valuesforSusquehanna mustbesubmitted priortoissuanceofasafetyevaluation reportforSusquehanna.
 
===RESPONSE===
Ageneraldiscussion oftheboundingstatistical analysisuncertaintie showninTable4.4-6isgivenintheGETABLicensing topicalreport(Reference 1).Oftheseuncertainties, allexceptthatofcriticalpowerareunaffected bythetwowater-rod assemblydesign.TheGEXLcriticalpowerpredictability forthe8x8twowater-rod designhasbeenshowntobesimilartothestandardonewater-rod design(seetheresponsetoQuestion221.3);thevalueforthisuncertainty citedinReference 1(1=3.6%)isconservative withrespecttobothonewater-rod andtwowater-rod designs.Additional information concerning theremaining uncertainties inTable4.4-6andthebasesusedinthederivation ofthoseuncertainties iscontained intheLicensing topicalreport"ProcessComputerPerformance Evaluation Accuracy" (References 2,3and4).Asstatedtherein,"theanalysiswasperformed...for measurements systemstypicalof(orconservative withrespectto)theBWR4-6,"andistherefore directlyapplicable toSusquehanna.


==References:==
==References:==
1."GeneralElectricThermalAnalysisBasis(GETAB):Data,Correlation,andDesignApplication,"GeneralElectricCompany,January1977(NEDO-10958A).2.J.F.Carew,"ProcessComputerPerformanceEvaluationAccuracy,"GeneralElectricCompany,June1974(NEDO-20340).3.J.F.Carew,"ProcessComputerPerformanceEvaluationAccuracyAmendment1,"GeneralElectricCompany,December1974(NEDO-20340-1).4.J.F.Carew,"ProcessComputerPerformanceEvaluationAccuracyAmendment2,"GeneralElectricCompany,September1975(NEDO-20340-2).Rev.22,4/81230.4-1 SSES-FSAR*UESTION230.8:Thesteady-stateoperatinglimitfortheMinimumCriticalPowerRatio(MCPR)is1.25.ThisvalueiscalculatedbasedonREDYmodeldescribedinNEDO-10802.TheresultsofthreeturbinetriptestsperformedatthePeachBottom-2haverevealedthatincertaincasestheresultspredictedbyREDYmodelarenon-conservative.TheGeneralElectricCompany'snewODYNforuseintransientanalyseshasbeenapproved.Accordingly,theapplicantisrequiredtoreanalyzepriortocriticalitythefollowingtransientswithODYN:1)generatorloadrejection/turbinetrip,2)feedwatercontrollerfailure~aximumdemandand3)mainsteamisolationvalveclosurewithpositionswitchscramfailure.Ifanothereventshouldbemorelimitingthanthoselistedabove,theothereventshouldreanalyzedwithODYN.ThereanalysesshouldincludeCPRcalculationanddemonstratethattheoperatinglimitforMCPRisnotlessthan1.25.RESPONSE:TheSusquehannaSESODYNsubmittalisscheduledforthesecondquarterof1981.
 
UESTION281.17ItisourpositiontomeetSectionC.lofAppendixAtoBTP-ASB9.5-1automaticsmokedetectorsbeprovidedinthefollowingareasandthattheyalarmandannunciateinthecontrolroom.Firedetectorsshould,asaminimum,beselectedandinstalledinaccordancewithNFPA72E,"AutomaticFireDetectors".ReactorBuildingFireZoneAreaElevationl.1-1G2.1-2A3.1-3A4.1-3B5.1-3C6.1-4A7.1-4B8.1-4G9.1-5A10.1-5B11.1-5D12.1-5E13.1-6A14.1-6D15.1-6E16.1-6F17.0-6G18.1-7A19.1-7B20.0-8ASumppumproomAccessareaAccessareaAccessareaAccessareaContainmentaccessareaPipepenetrationroomMainsteampipingFuelpoolpumps6heatexchangersValveaccessareaRMCUPumps8heatexchangersPenetrationroom'ccessAreaHSVequipmentroomRecirculationfansareaSpentfuelpoolSurgetankvaultHRVfanandfilterroomsRecirculationfanroomRefuelingfloor645-668670-683683-719683-719683-719719-747719-733717-816749-771761-771749-766749-777779-797779-797778-797779-797775-797779-816799-816818-873partialRESPONSE:Eachoftheareaslistedarebeingexaminedtodetermineiftheycontainorpresentafireexposurehazardtosafety-relatedsystemsnecessarytoaccomplishormaintainasafe-shutdowncondition.Additionalsmokedetectionwillbeprovidedinthoseareassatisfyingeithercriteria.ThisisdocumentedinRevisionltothePireProtectionReviewReport.Rev.20,2/81281.17-1 SSES-FSARUESTION313.1TheclassificationsystemforemergencyconditionsusedbyPPSLisidentifiedintheemergencyplan,asisthesystemusedbytheLuzerneCountyOfficeofCivilDefenseandthePABureauofRadiologicalHealth.Whiletheseclassificationsystemsappearcompatible,thetermsusedaredifferentandnodirectcomparisonismadeintheplan.ProvidesuchacomparisonbetweentheclassificationtermsusedbyPPMandthoseusedbytheoffsiteagencies,eitherinthetextofSection4oftheplan,oronFigure6.1.RESPONSEoAsestablishedin10CFR50AppendixEandNUREG0654/FEMAREPl,Rev.l,PPSI,,State,andLocalEmergencyPlanshaveincorporatedthesameemergencyclassificationsystem.TheclassificationsystemoutlinedinSection4.0oftheSusquehannaSESEmergencyPlanRev.2datedOctober1980isidenticaltothestateandlocalemergencyclassificationsystem.Rev.22,4/81313.1-1 SSES-FSARUESTION313.6Concerningprotectiveactions,describestepstakentomakeavailableonrequesttooccupantsinthelowpopulationzone,informationconcerninghowtheemergencyplansprovidefornotificationtothemandhowtheycanexpecttobeadvisedwhattodo.RESPONSEThefollowingmethodswillbeimplementedtoensureinformationonEmergencyPlanningistransmittedtotheEmergencyPlanningZoneresidents.Annually,afullpagead,summarizingtheinstructionandactiontobetakenbytheEPZresidentsintheeventofanemergencywillbepublishedinthelocalnewspaper.Annually,printedinstructionsandevacuationmapswillbedistributedtoresidentswithintheEPZ.EvacuationmapsandprintedinstructionswillbeprintedinalltelephonedirectorieswithintheEPZ.Analert.warningsirensystemcontrolledbythecountyEmergencyOperationsCenterswillbeinstalledwithintheEPZtoprovideearlynotificationtothepublic.ThissystemwillalertthepublictotunetothelocalEmergencyBroadcastSystemforfurtherinformationanddirection.Rev.22,4/81313.6-1 SSES"FSARUESTION313.7DescribethetrainingprovidedtheappropriatestaffmembersoftheBerwickHospitaltoshowthattheyarepreparedandqualifiedtohandleradiologicalemergencies.RESPONSEKeymembersoftheBerwickHospitalStaffwillbeinitiallytrainedattheOakRidge"REACTS"course.AnnualtrainingofappropriateBerwickHospitalpersonnelwillbeprovidedbyaconsultantexperiencedinthehandlingofcontaminated/irradiatedinjuredpersonnel.AnnualdrillsofBerwickHospitalstaffmemberswillbeconductedandcritiquedtoensuretheirabilitytohandleradiologicalemergencies.Rev.22,4/81313.7-1 SSES"FSARUESTION313.8Provideacommitmenttoconductannualexercisestotesttheadequacyoftheemergencyplanandtheimplementingprocedures.SeeRegulatoryGuide1.101,AnnexA,atSection8.1.2.RESPONSEThesecondsentenceofthefirstparagraphinSection8.1.2oftheEmergencyPlanwillbechangedtoread:"AninitialexercisepriortoloadingoffuelforUnit1andannualexercisesthereafterwillinvolveascenarioappropriatetoaSiteEmergencyorGeneralEmergencyCondition."Theseexerciseswillbeconductedusingtheguidelinesof10CFR50AppendixFNUREG0654/FEMAREP1Rev.l,andANSI/ANS-3.7.3-l979.Rev.22,4/81'313.8-1 SSES-FSARgWhenwillsettlementreadingsontheESSWPumphouseBasement(FSARTable2.5-8)beprovided?RESPONSE:Theresponsetothisquestionisgivenin362.22.Rev.22,4/81362.9-1 SSES-FSARProvideamapofthesiteclearlyshowingthetopographyasalteredbytheplant.NotethatFSARFigure2.4-1isinadequatebecauseitisverydifficulttoseethecontoursinthevicinityoftheplant.RESPONSE:Figure2.5"24hasbeenrevisedandshowsallthepresentroadsandfinishedgradingforbothUnits1and2.Rev.22,4/81371.19-1' SSRS-FSARgmSTXON-421.442=.Zthas"ometoouratantionthatsomeapplicantsailnotintendto"onductconfirmatorytestsofsomeDistcibutiosystmsanitransformerssuoplyingpowrtovitalbusesasreguiceDbyPosition3ofRegulatoryGuide1.68,andmorespecificxtllybyPact4ofthestaffpositiononDegradedgridvoltage(appliedtoallplantsinli=ensingceviewbythePowerSystemsBranchsin"e1976).Part4ofthedgcaDeDgciDvoltagepositionstatesasfoliows:ThavoltageleveLsatthesafety-related'usesshouldbeoptimizedforthefullloaDandmininumloadconditionsthataceexpecteDthcoughoutthanticipatedrangeofvoltagevariationsoftheoffsitepowersourcebyappropriateaDjustmentofthevoltagetapsettingsoftheinterveningtcansfocmecs.HerequirethattheadequacyaftheDesigninthisregardbeverifiedbyactualmeasurementandbycorrelationofmeasuredvalueswithanalysisresults.ProvidezDescriptionofthemethodfocmakingthisvacification;beforeinitialreactorpoweropecation,pcovidethedo"umentationrequiceDtoestablishthatthisvecificationhasbeenaccomplished.'!YourtestdescriptioninFSAR.Chap.tecl4doesnotcontainsufficientdetailforust>determineifyouintendtoconductsuchatest.Itisourpositionthat&#x17d;onficmxtorytestsofallvitalbusesmustbeconductedincludingallsour"esofpowecsuppliestothebusesNoiifyyourtestDescriptiontoindicatethatthistestingwillbeconductedinaccordancewithRegulatoryGuide168andtheaboveciteDposition..BZSPOBSZ=.VoltagesrecordedduringtheP100.1Preoperationaltest(Subsection14.2.12.1),willbereviewedandanalyzedagainstdesigncalcul'ationstoassureoptimaltapsettingshavebeenselected.Rev.22,4/81421.042-1 SSES-FSAR5ous55.x.5.z.5.c.c5.f.f5h.hvalves:andturbinestop,intecept,andcontrolvalves.Verifyresponsetimesofbranchsteamlineisolation.Demonstrateadequateperformancemarginsforshieldingandpenetrationcoolingsystemscapableofmaintainingternperaturesofcooledcomponentswithindesignlimitswiththeminimumdesigncapabilityofcoolingsystemcomponentsavailable(100/)Demonstrateadequatebeginning-of-I.ifeperformancemarginsforauxiliarysystemsrequiredtosupporttheoperationofenqineeredsafetyfeaturesortomaintaintheenvironmentinspacesthathouseenqineeredsafetyfeatures.Engineeredsafetyfeatureswillbecapableoperformingtheirdesignfunctionsovertherangeofdesigncaoabilityofoperablecomponentsintheseauxiliarysystems(50%,100%).Demonstratethatprocessandeffluentradiationmonitoringsystemsarerespondingcorrectly.Demonstratethatgaseousandliquidradioactivewasteprocessinq,storage,andreleasesystemsoperateinaccordancewithdesign.Demonstratethattheventilationsystemthatservesthemainsteamlinetunnelmaintainstemperaturewithinthedesignlimits.Demonstratethatthedynamicresponseoftheplanttothedesiqnloadswingsforthefacility.5oisla5.1.1.DemonstratethatthedynamicresponseoftheplantisinaccordancewithdesignforclosureoXreactorcoolantsystemflowcontrolvalves.Demonstratethatthedynamicresponseoftheplantisinaccordancewithdesignrequirementsforturbinetrip.QESPOQS~Preoperationaltestsofsafetyrelatedsystemsaredescribedbythetestabstractsprovidedinsubsection14-2-12-1.Specificdetailedguidelinesfortestinqsuchalossofpower,air,etc.aredescribedinthestartupadministrationmanualSection7.5.Lossofpoweristestedifitcausesanevolutiontooccurwithinthesystemsuchasswitchingautomaticallytoadifferentpowersource.Lossofairtestingisperformedbyplacingthevalveinitsnon-failedpositionbynormalactuatoroperation,thenisolatingtheactuatorairsupply,bletdingoffairpressureandverifyingvalvemovementtothefailedposition.Eachautomaticcontainmentisolationvalveistestedinthesystempre-optest.forproperoper-ationandclosuretimingasrequiredbythedesignsectionsoftheFSAR.Leakdetectionsystemssuchassteamleakdetectionaretestedinthesystempre-opsaffectedbythedetectionsystem.Rev.22,4/81423.12-5 SSES-FSARTheresponsetoitem423.14indicatesthat,testingdescribedinRegulatoryGuide1.80sectionsC.7throughC.10willnotbedonesincethetestingwillhavealreadybeendoneduring"varioussystempreoperationaltests".EitherprovidetestdescriptionsthatshowtestingequivalenttothatspecifiedinregulatorypositionsC.8,C.9,andC.10willbeperformed,ormodifyyourpreoperationaltestprogramtoincludeanintegratedlossofairtestandprovideanabstractofthattest.RESPONSE:SeerevisedresponsetoQuestion423.12.Table'23.28-1listsairoperatorvalves/HVACdamperswhicharetestedforlossofair.PreoperationaltestswithinwhichthelossofairtestingisaccomplishedisalsoprovidedinTable423.28-1.FurthertestingisperformedfortheADS/SRVvalvesasfollows:1.Verifyminimumcapacityofaccumulatorinacceptancecriteria.2.VerifyADS/SRV'sareoperatedfromtheirrespectiveaccumulator/supplywithothersuppliesdepressurized.3.Recordpressureatwhichanopenvalvebeginstocloseforsafety/reliefvalvesandverifyvalvefailstocloseonlossofair.4.VerifyanopenADSvalveismaintainedopenataccumulatorpressureof75+0-2PSIGandfailsclosedonlossofair.Rev.22,4/81423.28-1 SYSTEMRHRVALVENO.1-Ell<<P050A;BPREOP.NO.P49.1INST.AIRORPRI.CONT.INST.GAS~Inst<AirCCO1-E11-P122A,B'-E11-F051A,B1-Ell<<F052A,B1-E11-P053A,Bl-E11-F305A,DInst;GasInst.Air1-'Ell-PlllA,B1<<Ell-F129A,B.l-E11-F132A,B1<<E11-F136,F137,P140HV-E51-'17088''..'V-E51-1F025;1P026W-E51-1F004,1F005'HV-E51-1P054~CoreSpray.HV-E21lF006A,B~1N-E21~1F037A,B~~P50;1'$51.1'Inst'Gas'nst;Air.':ln'st;'GasHPCICRD..-HV-E41-.1F028,1F029HV>>E41-1F025,1P026'HV-E41-1P057,1P100.C12-POoaA,B.......XV-lP010,1P011.HV-B31-1P019;1P020.Both+'~~~'52;1'''~~~~P55sl~~\~Inst;Air''1F100'Ga's'Inst.Air0thes.Ins't'ir~~~
1."GeneralElectricThermalAnalysisBasis(GETAB):Data,Correlation, andDesignApplication,"
SYSVALVENO.PREOPNO.INST.AIRORPRICONT.INST.GASPireProtectionXV-12244,45;46,48,49XV-12205A,B,CXV-02247A,B;CXV-02248.XV-02215liv-11315'P13P14.Inst;'Air'Inst;.Air'BHVACllD17534A,B,C,D,E,ll',llAll+'ID17502AjB;Hg17514A,BAll*1~P34;XInst;'A'irllD17530A,B,'lD17531A'llD17564A,B;BD17524A,B.A11\~IlD17576A,B;-)lD17586A;BAll*llD17508A,B~.Both+-llD17651..BDID17603A;BBDID17604A;B;-BDID17605A;B..BDID17606A;B;BDID17609A;B.~7aI17659AB-n6BDID17668A,B;BDID17669A,BBDID.17670A,B;.QDID1761A,B.....~~~~~~BDID.17674A,B;BDID17675A.,B..
GeneralElectricCompany,January1977(NEDO-10958A).
SYSTEMVALVENO.PREOP.NO.INST.AIRORPRI.CONT.INST.GASRWCUia""'ii)oHV-14506A;B;14507A,B.HV-14508A,B;14510A,B.P61'.3.'nst;AirHV-14511AB'4512AB'HV-14513A,B;14514A,B'HV-14566A,B;14522....HV-14523,14528,14516HV-14518,14519;14520'HV-14521,G33-1F033Liquid-Radwast16108A1;16116Al16108A2,16116ALBoth'*~~e~/P69'.1'Ihst;'Air'ContainmentRecirculationHV-17521,23,24,22,25'A11''HV-157040514'All'''V-15703;13..~~'P73'.1'Inst.'Aii'~~~/~~~~'0~~/~~-
2.J.F.Carew,"ProcessComputerPerformance Evaluation Accuracy,"
SYSTEMVALVENO.PREOP.NO.INST-AIRORPRCONT.INST.GASR.B.HVACPDD17501A;B;HD17511A;9'34'.'1'nst;'AirRBChilledMaterHD17521AB;HD17513A9HD17518A,B;HD17516HD17523A,B;HD17528A,BPDD17578A,B;HD17526':HD17566A~B~)'ID17588Af'9HD17538A,BTV-18726A1,A2,B1,92TV-18741A;9,C,DTV<<18743A,B.P34.2.~~Inst;AirTV-18751A9CD~TV-18753A,BTV-18764A,BTY-18771A;9;C,D~TV-18781A1A2,9192,A11+HV18782A1~A2~91~92~A11HV-18791A1,.A2,91,92h11*\~Inst;.Gas.HV-18791AlgA2,91;92All.*~~
GeneralElectricCompany,June1974(NEDO-20340).
SYSTEMVALVENO.PREOP.NO.INST.AIRORPRI.CONT.INST.GASControlStructureQHVAGHDM&7802AB'oth*HDM-07833A,B;HDM-07824A2,B2HDM-07824A4B4HDM-078S'BHDM-07872A,B;HDM-07873A,BAll*'V-07813A,BTV-08602A,B0O.lP30..2.~.'....Feedwater10604ABC'10640'106'4114107A,B10650'10606A,B;C10604A,B;C'0663A'1~A2~B1~B27C1~C210664A;B,C.~~~~~~~
3.J.F.Carew,"ProcessComputerPerformance Evaluation AccuracyAmendment 1,"GeneralElectricCompany,December1974(NEDO-20340-1).
SSES-FSAROurreviewofrecentlicenseeeventreportsdisclosedthatasignificantnumberofreportedeventsconcernedtheoperabilityofhydraulicandmechanicalsnubbers.Provideadescriptionoftheinspectionsorteststhatwillbeperformedfollowingsystemoperationtoassurethatthesnubbersareoperable.Theseinspectionsortestsshouldbeperformedpreoperationallyifsystemoperationcanbeaccomplishedpriortogenerationofnuclearheat.RESPONSE:ExistingQArecordsontheconstructioninstallationandinspectionofsafetyrelatedsnubberswillbeassembledintoapackageforreviewbytheSuperintendentofPlant.Thispackagewillprovideassurancethatthepreoperationalconditionofthesnubbersisacceptableandthattheyareinstalledinaccordancewithdesign.Aftersystempreoperationaltestingandpriortofuelload,snubberswillbevisuallyexaminedandmanuallytestedfcrfreedomofmovementovertherangeofstrokeinbothcompressionandtension.ThismeetstherequirementofZEBulletin81-01Rev.1.Nohydraulic'nubbersareutilizedinsafetyapplicationsatSusquehannaSES.Rev.22,4/81423.40-1}}
4.J.F.Carew,"ProcessComputerPerformance Evaluation AccuracyAmendment 2,"GeneralElectricCompany,September 1975(NEDO-20340-2).
Rev.22,4/81230.4-1 SSES-FSAR
*UESTION230.8:Thesteady-state operating limitfortheMinimumCriticalPowerRatio(MCPR)is1.25.Thisvalueiscalculated basedonREDYmodeldescribed inNEDO-10802.
Theresultsofthreeturbinetriptestsperformed atthePeachBottom-2haverevealedthatincertaincasestheresultspredicted byREDYmodelarenon-conservative.
TheGeneralElectricCompany's newODYNforuseintransient analyseshasbeenapproved.
Accordingly, theapplicant isrequiredtoreanalyze priortocriticality thefollowing transients withODYN:1)generator loadrejection/turbine trip,2)feedwater controller failure~aximum demandand3)mainsteamisolation valveclosurewithpositionswitchscramfailure.Ifanothereventshouldbemorelimitingthanthoselistedabove,theothereventshouldreanalyzed withODYN.Thereanalyses shouldincludeCPRcalculation anddemonstrate thattheoperating limitforMCPRisnotlessthan1.25.RESPONSE:
TheSusquehanna SESODYNsubmittal isscheduled forthesecondquarterof1981.
UESTION281.17ItisourpositiontomeetSectionC.lofAppendixAtoBTP-ASB9.5-1automatic smokedetectors beprovidedinthefollowing areasandthattheyalarmandannunciate inthecontrolroom.Firedetectors should,asaminimum,beselectedandinstalled inaccordance withNFPA72E,"Automatic FireDetectors".
ReactorBuildingFireZoneAreaElevation l.1-1G2.1-2A3.1-3A4.1-3B5.1-3C6.1-4A7.1-4B8.1-4G9.1-5A10.1-5B11.1-5D12.1-5E13.1-6A14.1-6D15.1-6E16.1-6F17.0-6G18.1-7A19.1-7B20.0-8ASumppumproomAccessareaAccessareaAccessareaAccessareaContainment accessareaPipepenetration roomMainsteampipingFuelpoolpumps6heatexchangers ValveaccessareaRMCUPumps8heatexchangers Penetration room'ccessAreaHSVequipment roomRecirculation fansareaSpentfuelpoolSurgetankvaultHRVfanandfilterroomsRecirculation fanroomRefueling floor645-668670-683683-719683-719683-719719-747719-733717-816749-771761-771749-766749-777779-797779-797778-797779-797775-797779-816799-816818-873partialRESPONSE:
Eachoftheareaslistedarebeingexaminedtodetermine iftheycontainorpresentafireexposurehazardtosafety-related systemsnecessary toaccomplish ormaintainasafe-shutdown condition.
Additional smokedetection willbeprovidedinthoseareassatisfying eithercriteria.
Thisisdocumented inRevisionltothePireProtection ReviewReport.Rev.20,2/81281.17-1 SSES-FSAR UESTION313.1Theclassification systemforemergency conditions usedbyPPSLisidentified intheemergency plan,asisthesystemusedbytheLuzerneCountyOfficeofCivilDefenseandthePABureauofRadiological Health.Whiletheseclassification systemsappearcompatible, thetermsusedaredifferent andnodirectcomparison ismadeintheplan.Providesuchacomparison betweentheclassification termsusedbyPPMandthoseusedbytheoffsiteagencies, eitherinthetextofSection4oftheplan,oronFigure6.1.RESPONSEoAsestablished in10CFR50AppendixEandNUREG0654/FEMA REPl,Rev.l,PPSI,,State,andLocalEmergency Planshaveincorporated thesameemergency classification system.Theclassification systemoutlinedinSection4.0oftheSusquehanna SESEmergency PlanRev.2datedOctober1980isidentical tothestateandlocalemergency classification system.Rev.22,4/81313.1-1 SSES-FSAR UESTION313.6Concerning protective actions,describestepstakentomakeavailable onrequesttooccupants inthelowpopulation zone,information concerning howtheemergency plansprovidefornotification tothemandhowtheycanexpecttobeadvisedwhattodo.RESPONSEThefollowing methodswillbeimplemented toensureinformation onEmergency Planningistransmitted totheEmergency PlanningZoneresidents.
: Annually, afullpagead,summarizing theinstruction andactiontobetakenbytheEPZresidents intheeventofanemergency willbepublished inthelocalnewspaper.
: Annually, printedinstructions andevacuation mapswillbedistributed toresidents withintheEPZ.Evacuation mapsandprintedinstructions willbeprintedinalltelephone directories withintheEPZ.Analert.warningsirensystemcontrolled bythecountyEmergency Operations Centerswillbeinstalled withintheEPZtoprovideearlynotification tothepublic.ThissystemwillalertthepublictotunetothelocalEmergency Broadcast Systemforfurtherinformation anddirection.
Rev.22,4/81313.6-1 SSES"FSAR UESTION313.7Describethetrainingprovidedtheappropriate staffmembersoftheBerwickHospitaltoshowthattheyarepreparedandqualified tohandleradiological emergencies.
RESPONSEKeymembersoftheBerwickHospitalStaffwillbeinitially trainedattheOakRidge"REACTS"course.Annualtrainingofappropriate BerwickHospitalpersonnel willbeprovidedbyaconsultant experienced inthehandlingofcontaminated/irradiated injuredpersonnel.
AnnualdrillsofBerwickHospitalstaffmemberswillbeconducted andcritiqued toensuretheirabilitytohandleradiological emergencies.
Rev.22,4/81313.7-1 SSES"FSAR UESTION313.8Provideacommitment toconductannualexercises totesttheadequacyoftheemergency planandtheimplementing procedures.
SeeRegulatory Guide1.101,AnnexA,atSection8.1.2.RESPONSEThesecondsentenceofthefirstparagraph inSection8.1.2oftheEmergency Planwillbechangedtoread:"AninitialexercisepriortoloadingoffuelforUnit1andannualexercises thereafter willinvolveascenarioappropriate toaSiteEmergency orGeneralEmergency Condition."
Theseexercises willbeconducted usingtheguidelines of10CFR50AppendixFNUREG0654/FEMA REP1Rev.l,andANSI/ANS-3.7.3-l979.
Rev.22,4/81'313.8-1 SSES-FSAR gWhenwillsettlement readingsontheESSWPumphouse Basement(FSARTable2.5-8)beprovided?
 
===RESPONSE===
Theresponsetothisquestionisgivenin362.22.Rev.22,4/81362.9-1 SSES-FSAR Provideamapofthesiteclearlyshowingthetopography asalteredbytheplant.NotethatFSARFigure2.4-1isinadequate becauseitisverydifficult toseethecontoursinthevicinityoftheplant.RESPONSE:
Figure2.5"24hasbeenrevisedandshowsallthepresentroadsandfinishedgradingforbothUnits1and2.Rev.22,4/81371.19-1' SSRS-FSAR gmSTXON-421.442=.
Zthas"ometoouratantionthatsomeapplicants ailnotintendto"onductconfirmatory testsofsomeDistcibutio systmsanitransformers suoplying powrtovitalbusesasreguiceDbyPosition3ofRegulatory Guide1.68,andmorespecificxtlly byPact4ofthestaffpositiononDegradedgridvoltage(appliedtoallplantsinli=ensing ceviewbythePowerSystemsBranchsin"e1976).Part4ofthedgcaDeDgciDvoltagepositionstatesasfoliows:ThavoltageleveLsatthesafety-related'uses shouldbeoptimized forthefullloaDandmininumloadconditions thataceexpecteDthcoughout thanticipated rangeofvoltagevariations oftheoffsitepowersourcebyappropriate aDjustmentofthevoltagetapsettingsoftheintervening tcansfocmecs.
HerequirethattheadequacyaftheDesigninthisregardbeverifiedbyactualmeasurement andbycorrelation ofmeasuredvalueswithanalysisresults.
ProvidezDescription ofthemethodfocmakingthisvacification; beforeinitialreactorpoweropecation, pcovidethedo"umentation requiceDtoestablish thatthisvecification hasbeenaccomplished.'!
Yourtestdescription inFSAR.Chap.tec l4doesnotcontainsufficient detailforust>determine ifyouintendtoconductsuchatest.Itisourpositionthat&#x17d;onficmxtory testsofallvitalbusesmustbeconducted including allsour"esofpowecsuppliestothebusesNoiifyyourtestDescription toindicatethatthistestingwillbeconducted inaccordance withRegulatory Guide168andtheaboveciteDposition..
BZSPOBSZ=.
VoltagesrecordedduringtheP100.1Preoperational test(Subsection 14.2.12.1),
willbereviewedandanalyzedagainstdesigncalcul'ations toassureoptimaltapsettingshavebeenselected.
Rev.22,4/81421.042-1 SSES-FSAR 5ous55.x.5.z.5.c.c5.f.f5h.hvalves:andturbinestop,intecept,andcontrolvalves.Verifyresponsetimesofbranchsteamlineisolation.
Demonstrate adequateperformance marginsforshielding andpenetration coolingsystemscapableofmaintaining ternperatures ofcooledcomponents withindesignlimitswiththeminimumdesigncapability ofcoolingsystemcomponents available (100/)Demonstrate adequatebeginning-of-I.ife performance marginsforauxiliary systemsrequiredtosupporttheoperation ofenqineered safetyfeaturesortomaintaintheenvironment inspacesthathouseenqineered safetyfeatures.
Engineered safetyfeatureswillbecapableoperforming theirdesignfunctions overtherangeofdesigncaoability ofoperablecomponents intheseauxiliary systems(50%,100%).Demonstrate thatprocessandeffluentradiation monitoring systemsareresponding correctly.
Demonstrate thatgaseousandliquidradioactive wasteprocessinq, storage,andreleasesystemsoperateinaccordance withdesign.Demonstrate thattheventilation systemthatservesthemainsteamlinetunnelmaintains temperature withinthedesignlimits.Demonstrate thatthedynamicresponseoftheplanttothedesiqnloadswingsforthefacility.
5oisla5.1.1.Demonstrate thatthedynamicresponseoftheplantisinaccordance withdesignforclosureoXreactorcoolantsystemflowcontrolvalves.Demonstrate thatthedynamicresponseoftheplantisinaccordance withdesignrequirements forturbinetrip.QESPOQS~Preoperational testsofsafetyrelatedsystemsaredescribed bythetestabstracts providedinsubsection 14-2-12-1.
Specificdetailedguidelinesfortestinqsuchalossofpower,air,etc.aredescribed inthestartupadministration manualSection7.5.Lossofpoweristestedifitcausesanevolution tooccurwithinthesystemsuchasswitching automatically toadifferent powersource.Lossofairtestingisperformed byplacingthevalveinitsnon-failed positionbynormalactuatoroperation, thenisolating theactuatorairsupply,bletdingoffairpressureandverifying valvemovementtothefailedposition.
Eachautomatic containment isolation valveistestedinthesystempre-optest.forproperoper-ationandclosuretimingasrequiredbythedesignsectionsoftheFSAR.Leakdetection systemssuchassteamleakdetection aretestedinthesystempre-opsaffectedbythedetection system.Rev.22,4/81423.12-5 SSES-FSAR Theresponsetoitem423.14indicates that,testingdescribed inRegulatory Guide1.80sectionsC.7throughC.10willnotbedonesincethetestingwillhavealreadybeendoneduring"varioussystempreoperational tests".Eitherprovidetestdescriptions thatshowtestingequivalent tothatspecified inregulatory positions C.8,C.9,andC.10willbeperformed, ormodifyyourpreoperational testprogramtoincludeanintegrated lossofairtestandprovideanabstractofthattest.RESPONSE:
SeerevisedresponsetoQuestion423.12.Table'23.28-1 listsairoperatorvalves/HVAC damperswhicharetestedforlossofair.Preoperational testswithinwhichthelossofairtestingisaccomplished isalsoprovidedinTable423.28-1.
Furthertestingisperformed fortheADS/SRVvalvesasfollows:1.Verifyminimumcapacityofaccumulator inacceptance criteria.
2.VerifyADS/SRV's areoperatedfromtheirrespective accumulator/
supplywithothersuppliesdepressurized.
3.Recordpressureatwhichanopenvalvebeginstocloseforsafety/reliefvalvesandverifyvalvefailstocloseonlossofair.4.VerifyanopenADSvalveismaintained openataccumulator pressureof75+0-2PSIGandfailsclosedonlossofair.Rev.22,4/81423.28-1 SYSTEMRHRVALVENO.1-Ell<<P050A;B PREOP.NO.P49.1INST.AIRORPRI.CONT.INST.GAS~Inst<AirCCO1-E11-P122A,B
'-E11-F051A,B 1-Ell<<F052A,B 1-E11-P053A,B l-E11-F305A,D Inst;GasInst.Air1-'Ell-PlllA,B 1<<Ell-F129A,B
.l-E11-F132A,B 1<<E11-F136,F137,P140 HV-E51-'17088
''..'V-E51-1F025;1P026 W-E51-1F004,1F005
'HV-E51-1P054
~CoreSpray.HV-E21lF006A,B~1N-E21~1F037A, B~~P50;1'$51.1'Inst'Gas'nst; Air.':ln'st;'GasHPCICRD..-HV-E41-.1F028,1F029 HV>>E41-1F025,1P026
'HV-E41-1P057,1P100.
C12-POoaA,B.......
XV-lP010, 1P011.HV-B31-1P019;1P020
.Both+'~~~'52;1'''~~~~P55sl~~\~Inst;Air''1F100'Ga's' Inst.Air0thes.Ins't'ir
~~~
SYSVALVENO.PREOPNO.INST.AIRORPRICONT.INST.GASPireProtection XV-12244,45;46,48,49 XV-12205A, B,CXV-02247A,B;C XV-02248.
XV-02215liv-11315
'P13P14.Inst;'Air'Inst;.Air'BHVACllD17534A,B,C,D,E,ll',ll All+'ID17502AjB; Hg17514A,B All*1~P34;XInst;'A'ir llD17530A, B,'lD17531A' llD17564A,B; BD17524A,B.A11
\~IlD17576A,B;
-)lD17586A;B All*llD17508A,B
~.Both+-llD17651.
.BDID17603A;B BDID17604A;B;-
BDID17605A;B..BDID17606A;B; BDID17609A;B.
~7aI17659AB-n6BDID17668A,B; BDID17669A,BBDID.17670A,B;.
QDID1761A,B.....
~~~~~~BDID.17674A,B; BDID17675A.,B..
SYSTEMVALVENO.PREOP.NO.INST.AIRORPRI.CONT.INST.GASRWCUia""'ii)oHV-14506A;B; 14507A,B.
HV-14508A,B; 14510A,B.P61'.3.'nst; AirHV-14511A B'4512AB'HV-14513A,B; 14514A,B'HV-14566A,B; 14522....
HV-14523, 14528,14516 HV-14518, 14519;14520'HV-14521, G33-1F033 Liquid-Radwast 16108A1;16116Al16108A2,16116ALBoth'*~~e~/P69'.1'Ihst;
'Air'Containment Recirculation HV-17521,23,24,22,25'A11''
HV-157040514'All'''V-15703;13
..~~'P73'.1'Inst.'Aii'
~~~/~~~~'0~~/~~-
SYSTEMVALVENO.PREOP.NO.INST-AIRORPRCONT.INST.GASR.B.HVACPDD17501A;B; HD17511A;9
'34'.'1'nst;
'AirRBChilledMaterHD17521AB;HD17513A9HD17518A,B; HD17516HD17523A,B; HD17528A,B PDD17578A,B; HD17526':HD17566A~
B~)'ID17588Af'9 HD17538A,B TV-18726A1,A2,B1,92 TV-18741A; 9,C,DTV<<18743A, B.P34.2.~~Inst;AirTV-18751A 9CD~TV-18753A,B TV-18764A,B TY-18771A;9;C,D
~TV-18781A1 A2,9192,A11+HV18782A1~A2~91~92~A11HV-18791A1,
.A2,91,92h11*\~Inst;.Gas.
HV-18791Alg A2,91;92All.*~~
SYSTEMVALVENO.PREOP.NO.INST.AIRORPRI.CONT.INST.GASControlStructure QHVAGHDM&7802A B'oth*HDM-07833A, B;HDM-07824A2, B2HDM-07824 A4B4HDM-078S'BHDM-07872A,B; HDM-07873A,B All*'V-07813A,B TV-08602A,B 0O.lP30..2.~.'....Feedwater 10604ABC'10640'106'4114107A,B10650'10606A,B;C 10604A,B;C
'0663A'1~A2~B1~B27C1~C210664A;B,C
.~~~~~~~
SSES-FSAR Ourreviewofrecentlicenseeeventreportsdisclosed thatasignificant numberofreportedeventsconcerned theoperability ofhydraulic andmechanical snubbers.
Provideadescription oftheinspections orteststhatwillbeperformed following systemoperation toassurethatthesnubbersareoperable.
Theseinspections ortestsshouldbeperformed preoperationally ifsystemoperation canbeaccomplished priortogeneration ofnuclearheat.RESPONSE:
ExistingQArecordsontheconstruction installation andinspection ofsafetyrelatedsnubberswillbeassembled intoapackageforreviewbytheSuperintendent ofPlant.Thispackagewillprovideassurance thatthepreoperational condition ofthesnubbersisacceptable andthattheyareinstalled inaccordance withdesign.Aftersystempreoperational testingandpriortofuelload,snubberswillbevisuallyexaminedandmanuallytestedfcrfreedomofmovementovertherangeofstrokeinbothcompression andtension.Thismeetstherequirement ofZEBulletin81-01Rev.1.Nohydraulic'nubbers areutilizedinsafetyapplications atSusquehanna SES.Rev.22,4/81423.40-1}}

Revision as of 04:51, 29 June 2018

Forwards Revision 22 to FSAR
ML18026A222
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 03/20/1981
From: CURTIS N W
PENNSYLVANIA POWER & LIGHT CO.
To: YOUNGBLOOD B J
Office of Nuclear Reactor Regulation
Shared Package
ML17138B875 List:
References
ER-100450, PLA-662, NUDOCS 8103230429
Download: ML18026A222 (177)


Text

REGOLAT'ORY INFORMATION DISTRIBUTION SYSTEM(RIDS)ACCESSION NBR:8103230429 "OOC~DATE:81./03/20 NOTARIZED:

HOFACIL:50Susquehanna SteamElectricStation<UnitirPennsy'lva 388usEruehanna SteamElectricStationiUnit2rPennsylva AUTHOR'FFILIATION Pennsylvania Power8LightCo~RECIPIENT AFFILIATION Licensing Branch1DOCKET¹0500038705000388

SUBJECT:

ForwardsrevisedpagestoFSAR~0ISTRISOTION COOS:ROOTSCOPIESRECEIVESILTR3,ENCLlgSIZE:I+8'~TITLE:PSAR/FSAR ANDTSandRelatedCorrespondence NOTES:Send I8,E3cooiesFSAR8allamends'end I8E3copiesFSAR8allamends'5000387 05000388RECIPIENT IDCODE/NAME ACTION:A/DLICENSNGRUSHBROOKgtvI

~INTERNAL:

ACCIDEYALRR26CHKHENGBR08CORKPERFBR10K%ERGPREP22GEOSCIKNCES14HYD/GEO3R15I8,E06LICQUALBRMECHKNG8R18NRCPOR02OPLICBRPROC/TSTREV20RADASSESSRR22IÃFIL01CYNGBR25COPIESLTTR'ENCL 1010111,111011223311111111111111RECIPIENT IOCODE/NAME YOUNGBLOODEB STARKgR~04dUXSYSSR07CONTSYS8R0'?EFFTRSYSBR12EQUIPQUALBR13PULIFACTENGBRI8CSYSBRieLICGUIDBR'LIATLKNGBR17MPAOELDPOWERSYSBR1?QABR21REACSYSBR23SITANALBR2aSYSINTERACBRCOPIESLTTRENCL1011111111331111110101111111EXTERNAL:

ACRSNSIC2705161611LPDR0311TOTALNU'vIBEROFCOPIESRFQUIREO:LTTR57ENCL51 TWONORTHNINTHSTREET,ALLENTOWN, PA.18101PHONEs(215)770-5151NORMANW.CURTISVicePresirtent.

Engineering 8Construction-Nuclear 770.5381March20,1981Mr.B.J.Youngblood Licensing Project:Branch81DivisionofProjectManagement U.S.NuclearRegulatory Commission Washington, DC20555SUSQUEHANNA STEAMELECTRICSTATIONFSARCHANGESER100450FILE841-2PLA-662Enclosedplease'ind forty(40)copiesofchangestotheSusquehanna SteamElectricStationFinalSafetyAnalysisReport.EffectedFSARSectionsarelistedontheattachment tothisletter.Verytrulyyours,N.W.CurtisVicePresident-Engineering ttConstruction-Nuclear TEG/mksEnclosure yooI5I/goPENNSYLVANIA POWER8LIGHTCOMPANY8~Psgg0489 SSES-FSAR TABLE3.2-1(Continued)

Pae30NANoneApplicable XManufacturer's Standards 6)I-Theequipment shallbeconstructed inaccordance withtheseismicrequirements fortheSafeShutdownEarthquake, asdescribed inSection3.7.NA-Theseismicrequirements fortheSafeShutdownEarthquake arenotapplicable totheequipment orstructure.

7)Y-Requirescompliance withtherequirements of10CFR50,AppendixBinaccordance withthequalityassurance programdescribed inChapter17.N-NotwithinthescopeoflOCFR50,AppendixB.8)Theclassification ofthecontrolroddrivewaterreturnlinefromthereactorvesselthroughthethirdisolation valvewillbeGroupA.BeyondthethirdvalvewillbeGroupD,exceptasnotedinTable3.2-1.9)Thefollowing qualification shallbemetwithrespecttothecertification requirements:

Themanufacturer oftheturbinestopvalves,turbinecontrolvalves,turbinebypassvalves,andmainsteamleadsfromturbinecontrolvalvetoturbinecastingshallusequalitycontrolprocedures equivalent tothosedefinedinGeneralElectricPublication GEZ-4982A, "GeneralElectricLargeSteamTurbine-Generator equalityControlProgram".

2.Acertification shallbeobtainedfromthemanufacturer ofthesevalvesandsteamleadsthatthequalitycontrolprogramsodefinedhasbeenaccomplished.

10)1.Instrument andsamplingpipingfromthepointwheretheyconnecttotheprocessboundaryandthroughtheprocessshutoff(root)valve(s),

isolation valve(s),

andexcessflowcheckvalve,whenprovided, willbeofthesameclassification asthesystemtowhichtheyconnect.2.Allinstrument lineswhichareconnected tothereactorcoolantpressureboundaryandareutilizedtoactuatesafetysystemsshallbeGroupBfromtheprocessshutoff(root)valve(s),

isolation valve(s),

orexcessflowcheckvalve,whenprovided, tothesensinginstrumentation.

3.Allinstrument lineswhichareconnected tothereactorcoolantpressureboundaryandarenotutilizedtoactuatesafetysystemsshallbeequalityGroupCfromthe8103230429 SSES-FSAR TABLE3.2-1(Continued)

Pae31processshutoff(root)valve(s),

isolation valve(s),

excessflowcheckvalves,whenprovided, tothesensinginstrumentation.

4.Otherinstrument lines:.a)Thoseconnected tospecialequipment orGroupDsystempressureboundaries andutilizedtoactuatesafetysystemswillbeGroupCfromthesystempressureboundarythroughtheprocessshutoffvalve(s)tothesensinginstrumentation.

b)Thoseconnected toGroupBandGroupCsystemsandutilizedtoactuatesafetysystemsshallbeofthesameclassification astheprocesssystemtothesensinginstrumentation.

c)Thoseconnected toGroupBandGroupCsystemsandnotutilizedtoactuatesafetysystemswillbeofGroupDclassification exceptforthoseGroupCsystemsbyGEutilizing capillary (filledandsealed)instrument lines.d)Thoseconnected toGroupDsystemsandnotutilizedtoactuatesafetysystemswillbeofGroupDclassification.

5.ForGroupA,B,andCsystems,thesamplelinebeyondtheprocessshutoff(root)valve(s)orisolation valve(s)willbeGroupBthroughthepenetration andGroupDfromtheisolation valvetotheshutoffvalveoutsideofthesamplestation.ll)TheHPCIandRCICturbinesdonotfallwithintheapplicable designcodes.Toensurethattheturbineisfabricated tothestandards commensurate withtheirsafetyandperformance requirements, GeneralElectrichasestablished specificdesignrequirements forthiscomponent.

12)Thehydraulic controlunit(HCU)isaGeneralElectricfactoryassembled, engineered moduleofvalves,tubing,piping,andstoredwaterwhichcontrolsasinglecontrolroddrivebytheapplication ofprecisely timedsequences ofpressures andflowstoaccomplish slowinsertion orwithdrawal ofthecontrolrodsforpowercontrol,whileproviding rapidinsertion forreactorscram.Althoughthehydraulic controlunitisfieldinstalled andconnected toprocesspiping,manyofitsinternalpartsdiffermaikedlyfromprocesspipingcomponents becauseofthemorecomplexfunctions theymustprovide.Thus,althoughthe THISFIGUREHASBEENINTENTIONALLY LEFTBLANKREV.22,4/81SUSQUEHANNA STEAINELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTTHISFIGUREHASBEENINTENTIONALLY LEFTBLANKFIGURE3.6-9 SSES-FSAR TABLE39-2INDEXLOADINGCOMBINATIONS~STRESS LIMITSAiNDALLO@ABLESTRESSESaReactorVesselPressureandShroudSupportAssemblyb.ReactorVesselInternals andAssociated Equipment c.ReactorRaterCleanupHeatExchangers dClass1MainSteamPipinge.Class1Recirculation LoopPipingf.Thisitemintentionally leftblankq.Safety/Relief Valves(MainSteam)h.MainSteamIsolation Valvei.Recirulation PumpReactorRecirculation SystemGateValves(Suction/Discharge) k.Thisitemintentionally leftblank1.StandbyLiquidControlPumpm.StandbyLiquidControlTankn.ECCSPumpo.RHRHeatExchanger pR'ACUPumpq.RCICTurbineSeRCICPumpNewFuelStorageRackst.HighPressureCoolantInjection PumpuThisitemintentionally leftblankv.ControlRodDriveHousingJetPumpsaa.ControlRodGuideTubeabIncoreHousingacReactorVesselSupportEquipment CRDHousingSupportRev.22,4/81 SSES-FSAB TABLE39-2ZNDEX-Continued ad.Thisitemintentionally leftblankae.HPCZTurbine.DesignCalculations af.HighDensitySpentFuelStorageRacksRev.22,4/81 TABLE3.9-2(s)-(page1of2)NEWFUELSTORAGERACKSCRITERIA1.NEWFUELSTORAGERACKSLOADINGFAULTEDCONDITION "A"LOCATIONALLOWABLE STRESS(.7ULT)CALCULATED STRESSStressduetonormalupsetoremergency loadingshallnotcauseafailuresoastoresultinacriticalarray.l.2.3.4.DeadLoadsFullFuelLoadinrackS.S.E.Thermal(notappli-cable)1.Beam(Axial)l.26,0008/in2 22.Beam(Trans.)'2.'6,000/I/in>

3.Combined=3.26,0008/in1.18,9058/ig 22.7,005///in 2.25,9108/in 2.SOURCEOFALLOWABLE STRESS(.7ULT)a~b.C~d.e.ASTMB308Alloy6061-T6ASMECode-BoilersandPressureVessels,Sect.III,NAProductSafetyStandards forBt&-6-Mark III,Sect.VI,A.(3)ASME-PressureVesselsandPiping:DesignandAnalysis, VolumeOne,Page69.ASTHcodeforBoilersandPressureVesselswasselectedonthepremisethatdatausedfromthissourcewouldnecessarily beontheconvervative sideasappliedtothefuelstoragerackcalculations.

Rev.22,4/81 TABLE3.9-2(se2of2)S-S.S.E.loadsderivedbydynamicanalysis.

=Totalstressreferstocombinedearthquake andthermalloadathighestexpectedpooltemperature.

Earthquake stressesobtainedbysquarerootofthesumof-thesquaresmethodforaresponseduetotri-axial excitation.

Stressgivenisthehighestinthetotalstructural array.4.NEWFUELSTORAGERACKSFAULTEDCONDITION"B" Stressesduetonormalupset(SeeBelow,Par.~)oremergency loadingshallnotcauseafailuresoastoresultinacriticalarray.(Location-See Par.6,Below)NotApplicable NotApplicable FAULTEDCONDITION "B":Condition "B"isanemergency condition inwhichthestresslimitisequaltotheyieldstrengthat0.2%offset.Theracksweretestedtodetermine theircapability tosafelywithstand theaccidental, uncontrolled, dropofafu'elbundlefromitsfullyretracted positionintotheweakestportionoftherack.6.METHODOFTESTING:Four(4)rackcastingsweresubjected toimpactloadsrangingfrom1908ft.lbs.to4070ft.lbs.whichweregenerated bydroppingsimulated fuelbundlesweigh-ing660lbs.fromheightsvaryingfrom3.0'nd6.17'.Rackswerealignedinpairsandsimulated bundlesweredroppedonbothracksattheflangearea.Both.centerimpactandendimpacttestswereconducted.

(Two(2)oftherackswereX-Rayexaminedpriortotesting.Straingagesweremountedonrackstoascer-tainmax.strainandaccelerometers weremountedonbundlestodetermine "G"loads.)7.TESTRESULTS:Atotalofnineteen(19)testswereperformed withdropheightincreased ateachtest.FirstfailureoccurredduetoacentralimpactonrackNo.3fromamax.heightof6.17',(Test813).Racks81andi02bothfailedfromacenterimpactcausedbyaloaddroppedfromaheightof5.33',(Testf/19).Accelerometer readingsarenotavailable duetotheinability toadequately affixtheaccel-erometertothesimulated fuelbundle.Rev.22,4/81 SSES-FSARTABLE3.9-2(af)e1of2HIGHDENSITYSPENTFUELRACKSTYPESOFANALYSISPERB3MEDDYNAMICANALYSIS:

Adynamicmodalanalysisusingtheseismic,SRV,andDX'Aresponsespectrawasperformed onasimplified modelconsisting of6racks(1quadrant).

'Iheresulting loadsonthecornermodulewereextracted andamoredetailedanalysisperforned.STATICANALYSIS:

Adetailedfiniteelement(1364elanents) modelofthecornermodulewasdeveloped andastaticanalysisperformed usingtheloadingresultsofthedynamicanalysis.

Thesectiondescriptions, allowable stressesandstressratiosforthedetailedmodelaregivenonpage2ofthistable.FUELRA'ITLING ANALYSIS:

Atimehistoryanalysiswasperformed todetermine localimpactloadsduetofuelrattling.

Acanparison ofthesupportloadsfromthefuelrattlinganalysiswiththoseoftheresponsespectrumanalysisshowedthatthefuelrattlingresultsarelessthanorequaltotheresponsespectrumresults.Analysisofthepoisoncanwascompleted usingthelocalimpactloads.MODELIMPACTANALYSIS:

Anequivalent staticloadwasdetermined forthefollowing dropconditions:

1)18"fueldroponcorneroftopcasting2)18"fueldroponmiddleoftopcasting3)fueldropfulllengththroughthecavityimpacting bottomcastingatthemiddle.Forthefirst2casestheequivalent staticloadscalculated werecombinedwithdeadloadandappliedtothedetailedmodel.Forthe3rdcase,theultimateloadofthebundleshearingoutofthefuelseatwasdetermined andcombinedwithdeadload.Thiscombinedloadwasthenappliedtothedetailednadel.Rev.22,4/81 SSES-FSARTABIE3.9-2(af),page2of2HIGHDENSITYSPENTFUELRACKSUMMARYOFRESUL'LSFORTHEDETAIIZDMODELELEMENTSNORMALAUlMABLESTRESSESNORMALOPERATING CONDITION DESIGNACCIDENTANDEKTREMEENVIRONMENTAL CONDITIONS SECT.NO.SECTIONDESCRIPTION FaFbyFbxfafbfbxFbxSTRESSRATIO(1)fbxFbyMAXSTRESSRATIO(l)4BottomGridInnerSect.8550BottcmGridOuterSectionNearLeg96501TopGridOuterSection99412TopGridInnerSection94203BottomGridOuterSect.88301576015760.0261576015760.0571576012120.0621576012120.0051576012120.047.009.055.248.831.249.747.78.813.93.108.42.013.85.269.57.018.040.062.005.047.006.715.74.039.766.85.248.108.42.831.013.85.249.269.57BottomGridInnerSectionNearLeg95301576012120.046.508.248.80.046.508.248.807BottomGridFoot8BottanGridFoot91/2"Plate107/8"Plate(1)StressRatio10250110203320173701576012120.1321418014180.161Fv=1390F=10970abvfbxFa+%'FbxxRev.22,4/81(2)PlateStressRatio=f>fx+.001.13.003.1699(2)92(2).160.1950.003.160.006.2076(2).92(2)NOZEAllowable stressesarefactoredupperTable9.1-7aoftheSSES-FSAR.

SSES-FSAH4.4.6INSTHH:.5ENTATI0NREQ0IHEiJENTSThereactorvesselinstrumentation monitorsheKeyreac.orvesseloperatinq parameters duringplannedoperations.

Thi-ensuressuffi"ient controloftheparamete=s.

Thefollowinq reactorvesselsensorsarediscussed inSubsection 7.7.1.l.(1)ReactorVesselTemperatu"e (2)ReactorVessel~r,'aterLevel(3)ReactorVesselCoolantFlowHatesandDifferen=ial Pressures(4)ReactorVesselXntmalPressure(5)Neutron.'lonitoring System4.4.61LoosePa"tsilonitoring TheLoosePartsMonitoring SystemforSusquehanna SESisdiscussed inSubsections 7.7.1.12and7.7.2.12.

44.7REFERENCES

4.4-1GeneralElectricThermalAnalysisBasis(GETAB):Data,Cor"elation andDesiqnApplication, GenealElectricCompany,January1977,(N"D0-10958A).

4.4-2Co"FlowDisributioninaModernBoilingMaterReactora-MeasuredinlJonticello, Auqus"1976,(NFDO-10722A).4.4-3H.C.Nartinelli andD.F..Nelson,"Prediction ofPressureDropsDuinqForcedConvection Boilinqof:Hater,"ASHZTrans.,70,pp695-702,1948.44-4C.J.Baroczy,"ASystematic Correlation forTwo-Phase PressureDrop,"HeatTran"ferConference (LosAngeles),

AECLE,PreprintNo.37,1966.44-5Jens,R.H.,andLottes,P.A,AnalysisofHeatTransfer, Burnout,PressureDrop,andDensityDataforHighPressuredater,USAECReport-4627, 1972.4.4-6Neal,LG.,andRivi,S.il.,"TheStabilityofBoiling-cfaterReactorsandLoops,"Nuc1earScienceandEngineerinq,30p.25,1967.Rev.22,4/814.4-27 1.6TOTALCORESTABILITY1.41,0ULTIMATEPERFORMANCE LIMITOIL00.80.6NATURALCIRCULATION 105'%ODLINE0.40200204080120PERCENTPOWERSUSQUEHANNA STEAMfLECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCOREREACTXVITY STABILXTY FIGURE44 SSES-TSAR

.separated housing,givesaforceofapproximately 35,000lb.Thisforceismultiplidbyafa"torof3forimpact,conservatively assumingthatthehousingtravelsthroughal-in.gapbeforeitconta"tsthesupports.

Thetotalforce(105,0001b)isthentreatedasastaticloadindesign.AllCRDhousingsupportsubassemblies arefabricated ofcommonlyavailable structural steel,exceptforthediscsprings,whichareSchnorr,TypeBS-125-71-8.

6.2~Evaluations oftheCRDSThissubjectiscoveredundernuclearsafetyandoperational analysis(NSOA)inAppendix15A,Subsection 15A.6.5.3.4.6.2.3Safety-Evaluat.iou-Safetyevaluation ofteecontrolrods,CRDS,andcontrolroddrivehousingsupports.isdescribed below..Purtherdescription of"ontrolrodsiscontained inSection4.2.4.6.2.3.1

-ControlRods4.62..3;1.1Haterials Adequacy-Thro~uhout DesignlifetimeTheadequacyofthematerials throughout thedesignlifewasevaluated inthemechanical designofthe"ontrolrods.Theprimarymaterials, 84"powderand304austenitic stainless steel,havebeenfoundsuitableinmeetingthedemandsoftheBQRenvironment.,

Rev.22,4/8146-20 SSES-FSAR thatareautomatically actuatedcanalsobemaauallyactuatedfromthemaincontrolroom.Asinglefailureiaanyelectrical systemisanalyzedregardless ofwhetherthelossofasafetyfunctioniscausedbyeithercomponent failingtoperformarequisite mechanical motion,orcomponent performing anunnecessary mechanical motion.6.2.4.4TestsandInsectionsThecontainment isolation systemispreoperationally testedinaccordance withtherequirements ofChapter14.Thecontainment isolation systemisscheduled toundergoperiodictestingduringreactoroperation.

Thefunctional capabilities ofpoweroperatedisolation valvesaretestedremotemanuallyfromthecontrolroom.Byobserving positionindicators andchangesintheaffectedsystemoperation, theclosingabilityofaparticular isolatioa valveisdemonstrated.

Adiscussion oftestingandiaspection, including leaktightness testing,pertaining toisolation valvesisprovidedinSubsection 6.2.6andiaChapter16.Table6.2-12listsallisolation valves.Instruments willbeperiodically testedandinspected.

Testand/orcalibration pointswillbesuppliedwitheachinstrument.

Excessflowcheckvalves(EFCV)shallbeperiodically testedbyopeningatestdrainvalvedownstream oftheEFCVandverifying properoperation.

Withtheexception oftheCRDinsertandwithdrawal lines,thepenetrations listedinTable6.2-12areTypeCtested.Thetestmethodsandacceptance criteriaarelistedinSubsections 6.2.6and3.9.6.2.6.2.5COMBUSTIBLE GASCONTROLINCONTAINMENT Thecombustible gascontrolsystemisprovided, inaccordance withtherequirements ofGeneralDesignCriterion 41ofAppendixAto10CFR50,tocontroltheconcentration ofhydrogenwithiathecontainment following aloss-of-coolant accident(IOCA).Rev.22,4/816.2-4S SSES-ESAR TABLE6.2-22LEAKAGERATETESTLISTPenetration Description InboardIsolation BarrierTypeBarrierDescription/

TestValveNo.Notes*OutboardIsolation BarrierBarrierDescription/

ValveNo.Notes*Exemption toIOCFR50AppendixJRequiredX-IX-2X-2X-2X-2X-3AX-3BEquip.accesshatchBEquip.accesshatchuithpersonnel lockPersonnel lockbarrelBPersonnel lockinnerdoorBPersonnel lockouterdoorBSparePrimaryContainment PressureInst.(2)Double0-ringDouble0-ringInnerdoor/barrel Double0-ringCap1>21,310Outerdoor/barrel Double0-ring1>21,310,11X-3CX-3DX-4X-5X-6X-7ASpareSpareDry@oilheadaccessmanholeDryuellheadSpareCRDremovalhatchMainsteamACapACapDouble0-ringDouble0-ringCapDouble0-ringHV-IF022A 4>5,17HV-IF028A>

HV-IFOOIB, PTIN06IB,~I1051 4>19YesX-78X-7CX-7DHainsteamHainsteamHainsteam~CHV-IF022BCIW-IF022C CIAf-IF022D 4,5,174,5,174,5,17HV-IF028B>

HV-IFOOIF PT-IN061F, PT-IN051F HV-1E028C>

HV-IFOOIK PT-IN061K>

PT-IN051K HV-IF028D>

HV-IFOOIP PT-IN061P>

PT-IN05IP 4>194>194,19IIYesYesX-8X-9ARev.,4/81HainsteamlinedrainFeeduater CHV-IF016CIFOIOA17>1814>18HV-IF019HV-IF032A>

IN-IF013, HV-IF042, HV-1F1041914,19 SSES-FSAR TABLE6.2-22Continued Pa8c6Penetration Description InboardIsolation BarrierTypeBarrierDescription/

TestValveNo.Notes*OutboardIsolation BarrierBarrierDescription/

ValveNo.Notes*Exemption to10CFR50,AppendixJRequiredX-58AX-58BX-59hX-59BX-60AX-60AX-60AX-60BX-61AX-61AX-61AX-61BX-62AX-62BX-63AX-63BX-64AX-64BX-65AX-65BX-66AX-66BX-72AX-728Mainsteam,RWCU inst(4)AHainsteam,RWCU inst(2)hReactorlevelinstReactorlevelinst0sample0sample0sampleReactorWaterSampleDemin.WaterFlowInstrumentation AhCSY-15740B CSV-15776B CSV-15750B CIN-IF019C1-41-018hMainsteaminst(2)Mainsteaminst(2)Mainstcaminst(2)Hainsteaminst(2)Hainstcam,RWCU inst(3)Hainsteaminst(2)Prcssureinst(3)ReactorlevelinstReactorlevelinstReactorlevelinstReactorlevelinstLiquidradwasteLiquidradwaatehh.hAAhhCliV-16116hl CUV-16108A1 ILRTLeakVeriiication C1-57-1931010101018l81817>18181018101010101010101010101017,1817,18SV-15742B SV-15774B SV-15752B UV-1F0201-41-0171-57-195HV-16116A2UV-16108A2 10,1110,1110,1110>1111>1911>1911,1919191910~1110,1110>1110>1110,1110,1110,1110,1110,1110>1110>1111,1911,19Rev.22,4/81 SSES-FSAR TABLE6.2-23IVITIALA'.EDBOUNDAHYCONDITIONS FORIVADVERTENTSPRAYACTUATIONSTIJDY-00Tz.meZerotoDrvwellVolume(Žt~)Pressure(PSIA)Temperature(F)RelativeHumidity(n)SprayRate(GPN/TRANS)Metwell23960014.81501000/023960034.8325910010700/1Volume-VaporRegion(Ft~)Suppression Pool(Ft~)Pressure(PSIATemperature (F)RelativeHumidity(K)Suppression PoolFreeSurfaceArea(Ft~)>letwegl-to-Drvwell VacuumBreake."-NumberofValveAssemblies FlowAreaPerAssembly(Ft~)FlowCoefficient AssumedVacuumBreakerLiftingPressureRHRSystem-DrgwellSprayModeServiceMaterFlowHate(GPM)ServiceMaterTemperature (F)HeatExchangeEffectiveness 14859013155014.8501005277(puid)14590013155030.28501005277of52.050.3539000320.245Rev.22,4/81 SSES-FSAR 6.3.5INSTRUMENTATION REUIREMENTS Designdetailsincluding redundancy andlogicoftheECCSinstrumentation arediscussed inSection7.3.Allinstrumentation requiredforautomatic andmanualinitiation oftheHPCI,CS,LPCIandADSisdiscussed inSubsection 7.3.2andisdesignedtomeettherequirements ofIEEE279andotherapplicable regulatory requirements.

TheHPCI,CS,LPCIandADScanbemanuallyinitiated fromthecontrolroom.TheHPCI,CS,andLPCIareautomatically initiated onlowreactorwaterlevelorhighdrywellpressure.

(SeeTable6.3-2forspecificinitiation levelsforeachsystem.)TheADSisautomatically actuatedbysensedvariables forreactorvessellowwaterleveland',drywell highpressureplustheindication thatatleastoneLPCIpumporbothCSpumpsinthesameloopareoperating.

TheHPCI,CSandLPCIautomatically returnfromsystemflowtestmodestotheemergency corecoolingmodeofoperation following receiptofanautomatic initiation signal.TheCSandLPCIsysteminjection intotheRPVbeginwhenreactorpressuredecreases tosystemdischarge shutoffpressure.

HPCIinjection beginsassoonastheHPCIturbinepumpisuptospeedandtheinjection valveisopenedsincetheHPCIiscapableofinjecting waterintotheRPVoverapressurerangefrom150psigto1145psig.6.3.6NPSHMARGINANDVORTEXFORMATION AFTERAPASSIVEFAILUREINAWATERTIGHTECCSPUMPROOMNPSHcalculations forECCSpumpshaveshownadequatemargintoassurecapability ofproperpumpoperation afterapoolleveldropduetoaworstcasepassivefailureinanECCSwatertightpumproom.Thiscapability willbeverifiedduringpreoperational testingassumingapassivefailureintheECCSpumproomresulting inthelowestpoollevelwithsubsequent operation oftheECCSpumpwiththesmallestNPSHmarginaboveNPSHrequired.

ECCSpumpdataispresented inFigures6.3-75thru6.3"78.Thepoolleveldrophasbeendetermined assumingapassivefailureinaECCSwatertightpumproomwithoperatoraction10minutesafteranalarmintheroomindicating highwaterlevel.Thislowestsuppression poolwaterlevelwillalsobeusedduringpreoperational testingtoverifytheabsenceofvortexformation intheflowapproaching thesuctionstrainers inthepoolduringECCSpumpoperation.

Pumpperformance andpumpnoisewillbemonitored duringtheseteststodetermine ifpumpsaresensitive tosuctionflowconditions inthesuppression pool.Rev.22,4/816.3-32 SSES-FSAR 7.3.1.1b.8.5.3.7 ActuatedDevicesRefertoSubsection 9.4.8.7.3.1.1b.8.5.3.8 SearationTheinstrumentation,

controls, andpowersupplyoftheESSWpumphouse aredivisionally separated.

Twobaysprovidephysicalandelectrical separation betweenDivisionIandDivisionII.7.3.1.1b.8.5.3.9 SuortinSstemsTheinstrumentation andcontrolsoftheESSWpumphouse ventilation systemarepoweredfromClass1E125Vdcand120Vacsystems.Theseelectrical systemsarediscussed inChapter8.TheESSWpumphouse unitheaterssupporttheventilation systemasdiscussed inSubsection 9.4.8.7.3.l.lb.8.5.3.10 SstemPartsNotReuiredforSafetThepartsoftheESSWpumphouse ventilation systemnotrequiredforsafetyareasfollows:a)Allelectricunitheaters,seeSubsection 9.4.8b)Instrumentation formonitoring airflowfromtheESSWpumphouse ventilation systemc)Instrumentation foralarminginthemaincontrolroomofhigh-high andlow-lowtemperatures intheESSWpumphouse 7.3.1.lb.8.5.4 ESFSwitchear(SWGR)RoomsCoolinSstemForthedescription ofoperation oftheabovesystemrefertoSubsection 9.4.2.2.Rev.22,4/817.3-101 SSES-FSAR onegroupwillnotinterfere withproperoperation oftheredundant portionsofthesysteminSection8.1.I7.3.2a.5.4.3IEEEStandard338(1975)Thecapability fortestingthesuppression poolcoolinginstrumentation andcontrolsystemisdiscussed inSection7.3.2.6.4.1.9 and7.3.2.6.3.1.10.

7.3.2a.5.4.4 IEEEStandard379(1972)aThesinglefailurecriterion ofIEEE279(1971),paragraph 4.2asfurtherdefinedinIEEE379(1972),"Application oftheSingleFailureCriterion toNuclearPowerGenerating StationProtection System,"ismetasdescribed inSection7.3.2a.5.4.1.2.

7.3.2a.5.4.5 IEEEStandard384(1974)Independence ofsuppression poolcoolingequipment isdemonstrated intheSectiononConformance toIEEE279(1971)paragraph 4.6andIEEE308(1974).SeeSections7.3.2a.5.3.1.6 and7.3.2a.5.3.2.

7.3.2a.6throuh7.3,2a.ll TheseSubsection numberswerenotused.7.3.2a.12 Additional DesinConsiderations Analses7.3'a.12.1GeneralPlantSafetAnalsisITheexamination ofthe'subjectESFsystemattheplantsafetyanalyseslevelispresented inChapter15andAppendix15A.Rev.22,4/817.3-196 SSES-FSAR 7.6.1b.1.1.8 Environmental Consideration Thepressuretransmitters locatedoutsidetheprimarycontainment aredesignedandqualified towithstand allanticipated environmental conditions inaccordance withIEEE-323-1974 andIEEE-344-1975.

7.6.1b.1.2 PrimaryContainment andSuppression PoolTemperature Monitoring System7.6.1b.1.2.1 SystemIdentification TheSuppression Poolsystemsaredesignedtomonitorthetemperature intheprimarycontainment andsuppression poolduringnormalplantoperations andafterLOCA.7.6.1b.1.2.2 SafetyEvaluation Theindication ofcontainment temperatures inthecontrolroomisrequiredforpostaccidentmonitoring andissafetyrelated.Theinitiating contactsfortheautomatic startofthedrywellfansarederivedfromelectronic switchesinthetemperature sensingloop.Thisfunctionissafetyrelated.Thesystemdesignconformstoallapplicable criteriaforphysicalseparation anddivisionalization.

RefertoSubsection 7.3.l.lb.

Thehardcopytimeplotofthecontainment temperatures isoperating historyonlyandisnotsafetyrelated.However,redundant systemsareprovided.

iOTheindication ofsuppression pooltemperature inthecontrolroomisrequiredtoensurethattheplantisalwaysoperating withinthetechnical specification limits.Manual,operatoractionisrequiredtomaintaintheplantwithinthespecifications.

Suppression pooltemperature isalsorequiredforpostaccidentmonitoring.

Bothofthesefunctions aresafetyrelated.Thesystemdesignconformstoallapplicable criteriaforphysicalseparation anddivisionalization.

Refertosubsection 7.3.1.lb.

Thehardcopytimeplotofsuppression pooltemperature isoperating historyonlyandisnotsafetyrelated.However,redundant systemsareprovidedandaredevisionalized.

TheprimaryContainment andsuppression chambertemperature elementsandtemperature indicators willbequalified tooperatefollowing aDBA.IRev.22,4/817.6-57 SSES-FSAR 7.6.1b.1.2.3 PowerSourcesThesafetyrelatedinstrumentation ispoweredfromdivisionalized powersources.DivisionIClassIEbus(120Vac)powersLoopA,DivisionIIClassIEbus(120Vac)powersLoopB.FourdualelementRTDsperredundant systemarelocatedintheprimarycontainment tosensethetemperature atthefollowing elevations:

a)Reactorpressurevesselheadb)Upperplatformc)Lowerplatformd).Drywell(belowreactorpressurevessel).Tworedundant temperature elementsarelocatedinthesuppression chamber.Theselectedlocationforthetemperature sensorshelpstheoperatortodefinetheareaoftheheatsourcewithintheprimarycontainment.

ThesignalfromtheRTDelementsareamplified byelectronic temperature transmitters todrivemeters,recorderchannels, andalarmswitchesinthecontrolroom.Tworedundant indicators, fortheprimarycontainment arelocatedinthemaincontrolroom.Theinitiating contactsforthehighspeedstartofthedrywellcoolingfans(refertosystemdescription inSection9.4)andderivedfromthetworedundant temperature sensingelementslocatedintheserviceareaofthefans.Ifhightemperature isdetectedtheelectronic switcheswillinitiatethehighspeedstartofthedrywellcoolingfans.Electronic signalconverters withfullelectrical input-output isolation areplacedbetweensafetyrelatedinstrumentation andtheinputchannelstotherecorders.

!Tworedundant multipoint recorders fortheprimarycontainment temperature monitoring systemprovideapermanent historyofallRTDmeasurements totheoperatorinthecontrolroom.Eachtemperature sensingcircuitisequippedwithalarmswitchesandinitiateonecontrolroomalarmperredundant channel.Rev.22,4/817.6-58 SSES-FSAR Onetemperature indicator fortheprimarycontainment islocatedontheremoteshutdownpanel.RefertoSubsection 7.4.1.4forsystemdescription.

Instrument rangesaredefinedinSection7.5.7.6.lb.2.4bEquipment Design-Su~pression PoolTemperature Thesuppression pooltemperature ismonitored bytworedundant systems,eachofwhichperformsasdescribed below.EightRTD'sperredundant systemarelocatedinthesuppression poolapproximately sixinchesbelowtheminimumpoolwaterlevel.Thesesensorsarelocatedaroundthepoolinordertoprovideagoodspatialdistribution ofpooltemperature.

RefertoTable7.6-9fortheexactlocationofthesesensors.Thesignalsfromthesenosrsareprocessed byanelectronic unitlocatedinthecontrolroom.Thiselectronic unitconvertstheRTDsignalsintodegreesFahrenheit andcomputestheaverageoftheeighttemperatures.

IfoneoftheRTDsfails,anerroralarmisgenerated, andthefailedRTDmayberemovedfromthecalculation oftheaveragebyoperatoraction.Theaveragevalueisdisplayed bydigitalindicators locatedbothontheelectronic unitandonthemaincontrolboard.Akeyboardallowstheoperatortodisplayanyindividual temperature input.Ahightemperature alarmisgenerated bycomparing theaveragetemperature toseveralinternally storedsetpoints.

Thealarmcondition isdisplayed bystatuslightslocatedbothontheelectronic unitandonthemaincontrolboard.Electrically isolatedoutputsinterface withanannunciator locatedonthemaincontrolboard.Adigitalprinterlocatedontheelectronic unitperiodically printstheaveragetemperature, plustheindividual temperatures, plusthecurrentdateandtime.Trendinginformation mayalsobeprintedattheoperator's request.Alarmconditions areprintedalongwiththetemperature.

Electrically isolateddigitalandanalogsignalsareprovidedtointerface withotherplantinformation systems.Theelectronic unithasaselfcheckingdiagnostic systemthatprovidesanerroralarmifafailureisdetectedinanypartofthesystem.Inadditiontotheeighttemperature sensorsmentioned above,therearefouradditional sensorsassociated withDivisionI.Thesesensorsarelocatedinthesuppression pool,sixteenfeetbelowminimumwaterlevel.Theyareusedfordisplayonlyandarenotusedinthecalculation ofaveragetemperature andarenotredundant.

Instrument rangesandaccuracies aredefinedinTable7.5-3.Rev.22,4/817.6-59 SSES-FSAR 7.6.-1h-12.5--Redundancy-Redundant instrumentation isprovidedforthecontainment andsuppression pooltemperature monitorinq system7~6;1b-1.2.6--SeDaration-JPhysicalandelectrical separation isprovidedforthesafetyrelatediastrumentatioa.

Nonsafety circuitsareisolatedbyelectronic converters vith.fullinput-output

.isolation.

7,6Pb,-12~7-genatiooaZ..

Consideration-Thesystemisdesignedtofunctionduringnormalplantoperation andafteraDBA.7611.-1.28--Zn~ironmental

-Consideration-Alltemperature seasingelementslocatedinsidethecontainment aredesiqned.

tooperate.inthenormaloperating environment, durinqandafteraLOCA.Allelectronic eguipment andindicating devicesarelocatedwithinthecontrolstructure..

Expectedenvironmenta1 coaditions aredefinedinChapter3.7-,6~4k.,~1-Q--~ggesgigg.

Qoo3.-Wage~Level-monitoring System.7.6ilb=-l 3=-1--System-Tdentification-Theinstrumentatioa forsuppression poolwaterlevelmonitoring isdesiqnedtoprovideindicatioa andarecordinthecontrolroomofthesuppression pool'level durinqnormalplantoperation andinaccidentconditions, including aLOCA.,Rev.22,4/817.6-59a SSES-FSAR TABLE7.6-9SuressionPoolTemeratureSensorLocations Azimuth36030'8o100o30'02o 141o30'43o 179o18030'16o30'18o 268o30'70o 318o319030'48 30'50oRadius34'-6"34I6II44'4'4I6ll34'-6"44'4'4'-6" 34I6ll44'4'4I6ll34I6ll44'4'ev.22,4/81 SSES-FSARI77CONTROLSYSTEMSNOTREQUIREDFORSAFETY7.71DESCRIPTION-Thissubsection discusses instrumentation controlsofsystemswhosefunctions arenotessential forthesafetyoftheplantandpermitsanunderstanding ofthewaythereactorandimportant subsystems arecontrolled.

Thesystemsinclude:(1)Reactorvessel-instrumentation VLSSS(2)Reactormanualcontrolsystem-instrumentation andcontrols, NSSS(3)Recirculation flowcontrolsystem-instrumentation andcontrolsNSSS{0)Reactorfeedwater system-instrumentation andcontrolsNSSS(5)Pressureregulator andturbine-qenerator system-instumentation and.controls non-NSSS(6)Neutronmonitoring system-TIP(7)Processcomputersystem-instrumentation NSSS(8)Neutronmonitoring system-traversing in-coreprobeNSSS(9)Reactorwatercleanupsystem-instrumentation andcontrolsNSSS(10)Refueling interlocks system(ll)NuclearPressureReliefSystem-instrumentation 5controls(12)Rodblockmonitorsystem(13)Loosepartsmonitoring system7.7.~~.ReacgogVessel-Instrumentation thosesysteRev.22,4/817&71Figures5.1-3aand5.1-3bshowtheinstrument numbers,arrangements ofthesensors,andsensingequipment usedtomonitorthereactorvesselconditions.

Becausethereactorvesselsensorsusedforsafetysystems,engineered safeguards, andcontrolsystemsaredescribed andevaluated inotherportionsofthisdocument, onlythesensorsthatarenotrequiredformsaredescribed inthissubsection.

SSES-FSAR 7.7.1.11.1.5 Testability 0Therodblockmonitorchannelsaretestedandcalibrated withprocedures givenintheapplicable instruction manuals.TheRBMsarefunctionally testedbyintroducing testsignalsintotheRBMchannels.

7.7.1.11.2 Environmental Considerations (Seedescription forAPRM,Subsection 7.6.la.5.6.2) 7.7.1.11.3 Operational Considerations Whenincreasing power,theset-uppermissive lampwilllightatwhichtimetheoperatormustevaluateconditions beforemanuallychangingtothenexthigherrodblocksetpointline.7.7.1.12LoosePartsMonitorin~

SystemTheLoosePartsMonitoring Systemwillmonitor,alarmandrecordtheReactorVesselacoustics forthepresenceofinternalloosepartsinaccordance withR.G.1.133 Draft-2Rev.1.Thesystemwillmonitorthepointslistedbelow.Whenanimpacteventsignalexceedsaselectable amplitude, analarmwilloccurandpeakimpactandimpactrepetition willautomatically berecordedandtimedsequentially, foreachselectedchannel.Eightpiezoelectric accelerometers areattachedexternally totheReactorVessel:a.Twomountedapprox.180apartonornearthemainsteamlinestomonitortheupperheadregions.b.Twomountedapprox.180oapartonornearthefeedwater linestomonitortheuppervesselregions.c.Twomountedapprox.180apartandat90rotationfromtheuppervesselsensorsmountedonorneartherecirculation suctionlinestomonitorthevesselcoreplateregion.Rev.22,4/817.7-62 SSES-FSAR d.Twomountedapprox.90apart,oneonaCRDHousingandtheotherontheRPVdrainpiping,tomonitorthelowervesselregions.7.7.1.12NuclearPressureReliefSystem7.7.1.12.1 SystemIdentification TheNuclearPressureReliefSystem,consisting ofsafetyreliefvalvesandassociated circuitry, isdesignedtolimitnuclearsteamsupplysystempressureundervariousmodesofreactoroperation.

7.7.1.12.2 Equipment DesignTheNuclearPressureReliefSystemcontrolsandinstrumentation consistofmanualcontrol/pressure sensorchannelseachdedicated toitsrespective safetyreliefvalveandassociated valveoperator(solenoid operatedairpilotvalve).Thepilotvalvecontrolsthepneumatic pressureappliedtotheaircylinderoperator.

Uponenergizing thepilotvalve,pneumatic pressureisdirectedfromtheaccumulator toactontheaircylinderoperatorcausingthesafetyreliefvalvetoopen.Uponagainde-energizing thepilotvalve,airintheaircylinderisexhausted andtheaccumulator isonceagainisolatedviathede-energized pilotvalve.Anaccumulator, oneforeachvalve,isincludedwiththecontrolequipment tostorethepneumatic enexgyforsafetyreliefvalveoperation.

Safetyreliefvalvesareautomatically initiated byhighreactorpressureconditions.

CablesfromthepressuresensorsforvesselpressureareroutedRev.22,4/Sl7.7-62a SSES-FSAR 10"-FR50-AppendixA.Criteria-24-TheRBMprovidesaninterlocking functioninthecontrolrodvithdraval portionofthe"RDreactormanualcontrolsystem.Thisdesignisseparated fromtheprotective functions intheplanttoassuretheirindependence.

ThRBHisdesignedtopreven'tinadvertent controlrod.vithdraval givenanimposedsinqlefailurevithintheRBN.OneofthetvoRBHchannelsissufficient toprovideanappropriate controlrodvithdraval block.Enaddition, theRBNhasbeendesignedtomeet"appropriate protection systemcriteria....acceptable totheRegulatory Staff."(Reference 7.7-2)7.7.2.12LoosePartsHonitorin~

SystemTheLPNSisnotasafety-related system.Tthasbeendesignedinaccordance withRegulatory Guide1.133,Rev.1,Draft2.7.72;l2-NuclearPressureRelief--System-Igstgumentation and-gotltrols-

)@7$~12Q.--General-Fuactioaai-BeguirementsConformance TheNuclearPressureReliefSystemisdesignedtoprovidethenu"learsteamsupplypressurerelieffunctionvithoutjeopardytothesafety-related ADSfunction,dis"ussedinSection7.3.7,42~4,22--Specific" Regulatory Requirements (1)10CPR50AppendixA-"riterion 10.TheNuclearPressureReliefSystemprovidesadditional meansforminimizing theprobability ofabnormalreactorcoolantpressureboundaryleakage.(2)10CPR50AppendixA-"riterion 15.TheNuclearPressureReliefSystemisdesignedtoaffordadeguateadditional marqintoassurethatthedesignconditions ofthe"eactorcoolantpressureboundaryarenotexceededduringanycondition ofnormaloperation, including anticipated operational occurrences.

(3)10CPR50AppendixA-"riterion 30.Thecomponents oftheNuclarPressureReliefSystemaredesigned,

selected, fabricated, erectedandtestedtothehighest,practical, currentindustrial standards.

TheSystemisRev.22,4/817.7-78 lvt~z,loge~~ll~',IIr--Ilvsfsceoosese>>4

~efcesfsliIIII,I+ALJL~.SONV>>ICOSAlt(SIDIC)loxK.J,ecosr<<teI~leseO<<(TN)tftfIIfI~~~~oT~1lo4c>~aRITs(NOIR.AlcsotSSISNT-DssS V(stCDC)tslaefvor(tKlNNvsol)Ql~TsecosscNNcoa~OTCNTSALA.llxvassocsossscrcc r----iI(STNLNcceecs4Il~4SI1~tltIvIIIIIIIIsl~JX-ltfeeSotf((l--@J'rSAIIIIt.soxvtlceoASDSCKICACKSllhCWONT SCSSSCIAflRCDNTTssr(fscoefCSISCSSAONS CS\~0'fCSSTSSLIlI~DAlI~~AC~'IICTsOOO>>NCS S<<ffoeefSAL(CCCRCSc~)~NColPAAIllSCVDCVKCTASLCDCSCNOTsevNCNICNsSN o)4re(i(oecSTAc xeee~lteleSTANLOADCC>>SCCSTe>>CAPCCDCSDeeceuertxrf SCLATo4pccocslovcAceseescllf NCLATeccDSReeceteeoeotleseto evcscsteecrf NSLAYsofcICSCWLSSetlcSIclfcOlCOVS~seooeepoocrew NSLA'fsee>>e~osoC~KoeveopccDIRst>>DKNIlcOCLAY(TNKSOTS~~cooefcdoe>>N~SoOeeelNg@aa~~C.fsWeWPdsSPCPOSSCitoosocefIt~OCOOOtepeecc4I@a~e5it@O>>reerAloceeeelCNvelc4voltsecTCS crsfcrVOL'leecTelrecxscoo

~Ll>>s'lIf~llCIISS~IIIIII5II'N<<PSOtesorcofo(Dccel)(scCtsOSS-C)vrfsIIIIIlfIQC5~IsesI~~oeoWooi&o lrfX.,II~l)<<>>~llfllflI'IlIIIIIIIIIfOeeloIITccsesssoc s<<tvfONTSSLI>>N>>~ee>>l>>ICsoo~CSCSf)(Neerxxccsc)

(fceplot)$IIl(5(f)5ls,ace.JIIIIIIIIr-IsllI~tte>>APTSOCeKPOaSAre*TIISSSltl(OXSOl)lueasO5-c)IIIIIlsIf,I.'SKAAbcsNLLKOCAI~steercALcretroIleeelxCKCI0Cele<<teesc)(ONRlOSTC)cftectxcse oesefrfeesTWII~II,IIIIIIIslII~ilIlIIICCCL.JIIIIIIIIeIAeosOPSOC*(CKSOS)CKSOSA(eoel4ACCec)CSCNacCDC)(esca~Nf)lIllllSSI~N()TecpcoToDcvsccsxACl(lITesteACCOCSATCD C>>SclorSASCASCCK c.Tsseo'(ance>>AcxsfALLcsecsssf~cxsscRCCONNCCTCD TDl'NCSLSL.~tees<<AIcIAIt%0>>ooteeoccscotsssoLsssoAsetpeeso4s>>soececooseeatecceceesAlter>>eATssoorfsejeol~IALsolocoeeorclec otsTKpolQoceefoo

~eoeesegteKI~Neer>>lfep<<~pLA~Lcoesorl N~N4.elclATco>>erectclolcoAToogsssoe>>4seoeecfolcPDSAsstoSTARTDeCKLKDTlvc

%teeepAps Loeoo~.SefskssssecsCP(stcxtso) sssTKINCPCK,tKps LoseclccltfesoeeoeocecrfA<<pooseoo Atlococoessctetesopeaeosa efe<<saoso.SooxtoeKepfocTees~oLATrAssrf>>>>sfocfIcoscocrowfoKxseopSLToALTCKNATD sccacoAoNAseesDNccv.srlttco

~COAXItxteteees DCTICCW4>>CSTCSC>>CAN CSNSTtocfecccc acvoLTIcArtssu.KArcDLDADtokcNKscxccrsfsoLccxsooweecs.locowlTswIssxcfKctlxreKollcloloo vDDccscxcofcsc'f)~.SoosteoplaflrAsffcofsorsopoateKop<<eseeaeocafoo ooooelse>>so4IttsehSA.K Tostoee<<os(

SolAfDOAN~pss(Aflow epoeesosseaeefsscfexfcoINopsKATseee eroscATSK StAN'oeoo A4O<<CILALIASpeRAAoseor~oeitoseeaexsoo DriesLLseoeeooreeat>>eeoc%TINeeetfCNOKACSSIstol>>NetPesxfsltloSavTKAteopeowosL socorcwcf resttster~exefsoelOPSteoCeOeaeete<<AD%NOLANONLYOeaCATSSAooxpeolosATelTsssDeooAC4>>tNesrse4

~cLNDess~Kvcellooper>>IceoooiIINNNL+tfe1%,cerovLeefooTDSSea.sstoloctoowxa.setoslkesopofL, CKAcxsossteaNelecvecossNetsfsosfcoostoolcASLCosoNotLsoeeKTessAlso<<oe5)scfcsINCCLIoovteecPI~stslo(SACOK)IOSSAADSWX4leKVSSOOA$SNthqmalAlCAoPP4~Ij;"eDhE4sCBSLlI.coeetctoeoosa((39RtLfsCCCCSlCAIIIIJo~Ceca(4SOKreNODAl(~~e~lwxsessaNets)l)>*IL~J~~soalcloSllosSsofs8&~ccoortcfCoIseoctpoetf4softfcoefccssovfccs uwAFAT(tooocvtecsKNAIC CAcol,osssec(Dolsssstfsosfooeeos eotsfco(,

tevesslcoetlSSNTOTSCATOSN~tOOLCOi'OSSICSCCSCCNSOos(CDOOSATDOOTSTDSCTSCNgVSOLID~eotlxsefotssATDCN Scseccsaeeco SCOO-OrtsACSCgeaol easfceC4DDAOSovD'scssesoocooNSLSfovoc(I,ONO<<COlofIIf~IfIjsIbmjIIIsIIIIIfo<<lIIV.ICsc4r-III~ISfI~JIseerqIONL4lesIflflfIIIbad'IIIII1IIlfs>>AIIII~'ItolIIII~esseIII.Cs,II,elIsll,~~sIIlslIITS(I-'IJ~IIll4IIllfIIliatoIIIIICwosIIII¹Nf.IREV.22,4/81E4SHT.1SUSQUEHANNA STEAMELECTRICSTATlONUNITS1AND2FINALSAFETYANALYSISREPORT~NOOoecrolcl(CKCPS)ltsocS(Cotf>>OL&4)ccecscassosefg~gfl coscerectctsooetcOTt SPAADNsseo4'pcoooslcsoo(eepcLAOC SS)(occPtcOS5)~~t~~1S1lONAXXLsNtfe&f SATDC)sr<<oscxvscccr4CAPCO)tsovNceresTlsoDLSONflPSOO~TCANSCOICCCCN>>WCCNCCOKsootleoo(oioos)NclocoRSSPItsoc(ccctssos>>OctsewsxoN)(loesvcxcsCC)o>>eospoo)sAexprregstesssSsoc>>scc

~elf>>eel(oxlol)opfoocJspseec(locPSSD5-1)PNSSeO1KtfIl~~4~~1~~se(oxoos)OKsscA(OCCPSRODC)fP//JJJJI/JS/EJ/J///Jte L,ILLcoostocssf DNteleeesstee>>Neollccocolccxcst(L J//J//JJ//J/J/J//J/i%

AestereoUNlT'I.4.16KVPOWERSYSTEMFIGURE8~I

TRICsOKR.TCSTYOSN(vastclwsuc<<(DIN(cLoSETRAN\OX(OILO(KOUfk(LA'I(4(LL)OPOS LLCO>>LOCKOUTRCC.AVmColOLRoftkYOSN'5ck)cCwYvlll(Dou'ICtosc4Kklst2cuofoilcNCKR(LtCOKN)oreNMAICKCocil)CLOlt'ecLKtkSteCfecAMATCNCIACLCAONeODOR/gffcCNORMAArtCLO<<I.OOOISL QK1-ooSN*(I'I)WtUCNCLNCtklklaOxOLLockoufkek'LIKO~LLV.eic<<<<5OKAOstkOOCNaf<<flatccw'YULNCO ns"KLIC<<ucel C\'TAI~CNSOOO'21A42-(oo1CIC+CTAlfOkfCOKNMATCNC)ACLC52SAS)C)LTeCEAOLLSEAts'llaasoloi(oetolp

,ul<<eI)Laeeeu)NDAI)NoaN*~eMN~seseoIOI)OLlol2t(LLIOS)524O)OC42tOCOC)CL.LOOO0IELSCLLCN t<<ISILLCNDit\CLCetNDICCCLlatMOi4DI.COt.oOo.f(Ocecols)

(OCLSOK)(OOEOLO)(O!'eloco)Q~IA(~RA)Cle<<aXaueEN<<toesICONLc-)MWIO-NNsaoesIClsloe)~lkcoi}TaacocfIeloe)~oecoe)4240200SDCOCOC42LOCOC)lttOeoALIS<<CDLNM,C<<ooootoasCSAEIVed(TVANfoNotleat(NoseolcvfcIN'YLISNPsescfooileeo)

CSW<<~eOON0ETA~Kk(LtloelCLOScfAsrteaTLtoffc<<D~SSASLE(eENODCFINCTIOK QA~TRN~tNKACLloelo<<CN0<<s(LAIOYI VOLlolet5CSTAlol)cf'e'octfkll eeoeaeLL44ICAvcoO'OOOAUSYALleOkkfafee'Td'NOILIeai su'oce))sA5)CA)2io)uivilif YEAI.ARMO'D)2)PUT RfIINARa)ARTIL<<eveeeefoeAICCoiNkvfckIASN.AANLIolsot4KVosoetIECC<<EAISEC ICTAastEY045ICLaeftkfSLDOC IITAAI)~Kv005LClftCK<<)Loot:CIAECI ocvCVLrcvotkeckfeoc ICIAE))aolt<<eeesissNKNCfuL)AICSele~a~I.>>~EVOISICSOUA(eCLoaf(ILA<<LLAotj.we62)C)ClAt(pff)2(()ff))4",

BREAKERTot.taf())

UN)Tf(ESSTRAN~lfSC<<IWINOlSENC.SOl<<eIf<<0Mfkfeesus~fauc0emef<<iIf(40CASekoak52IceoeIAONlovesKoYoLiesccvksp~p~a-efaLO<<LVlusgee<<I0N52IousDestosl.<<LNONnlACCANROTOACA(IsOICDILSIS CQCCKOKAIN).ALIC)~Icsee("-4(sefec(O CAIN~ILV'essI'OYKCJOkNOTceucfufco OSCTIP(tKLAYoulkurCkslffIINCNNLv<<filllAktYkcltNToelfaeifless)see<<CNINY~KYOTelYACSCNToulfuf'ltisr'sw<<LNletLNYCITICNOTYACC(NTRCD~C'Lo\CAAMC(koCIACN4DLL)COSfkikfe4LA4to'\EC NortlpoktcNS'Auro fklo-IILNOLLLY OetksftoOtle(4(CCNIASLSYNTtk,fso<<00 CISK)CONYC)TCR CNtufOVTYVTCXIST\YOLLovveaC AVLNCOCLAYISICkTININIOIISCoeefssfeoulsv A~NCacaif YLITCILLSLve<<CNlealaeAIf)5NOTYACSCNYtl'A~ILLYceetSILL<<))O,NLIAECACCAIA0LSNIILKieeLOOClose024OSOIe)000014<<S<<NLI~<<Ovosiaosceealooiolas<<4CcoeolYilaoIas~I000<<~oooiee<<01COI~)CteceoSlave'ivessveevco<<IILNoeitpcocK

-NaeckoeuI~sitesIeaeNolff~>v~IaafoaktsiLLIL<<ecocswoacaftkLocal<<NNecaue<<1LI42eoII=20)IOslCa)oeLl-4'IIoeLItoeoeIaI2)eNsoto<<iSt.tseaeLlCOSYO~I.0404Litaap~LNVf~\LastOVNL<<ICKECLL'IOltali,+lingSILL'(Ocltl0III)A4ca'ESCANloltoef04AlioOs.lCoalcsa40222>toke~CIOIOO)I202~IAlotKosDSSIOI~004)11'2$)os2vs;Io)LIL202NOe.tSIL4044>Ã2)AeeltLac$$2040I0$4$$toecLOlic)tcAIN40eof0(45)toiO'SIt'20eof\ILtooIKOIr.~IAAOINOI.C~Orts20)oo1020P0)saltSOALIVACLoeeascoooSaavu<<allACLAeaslesos<<clANINLlllooleois~CINE<<eELLLeCT24iCATtlClfaecta$$CKTSJCTC)I~Cfl42bettCC2PSCal51CcfttCfai)CICSJCETSS4427)Ca)asCessCT21ICTIetaEISSCttt)CattpCEY4)fflstCTC0$cta$244225CETttiranCSCfSO)aI)aaCSCISef)I)I)fa1$CSI2)IsISfs5$tfl~Iifrrtr4Cal)I4Cal)54Ccfa)4(TtSl~212ff~(ET~1~CtiSS~40271~ocros~CTISCtCTCes~OVSS~CCCSS0lal~I~Ccf4$~ill1)~4flff4CE1SS4Ctat)4ICat)4~EYCI4214740ffaIs4Ccrta$CCISC4241st0beff0CICSS~424244~)ISOA<<22ClCl4241CSc)24)454)NNeSEIIC)4)ffl)PINf4ff~EII.OetoefTNICOCLAV~CYCcelffufClllffYv<<INTNC-OefufISYACCINTAMOsooia<<its SoceosvfoALresetAffok1NCoesfICCLSC()~2()T5,aeccEE(4cctveo)fee<<sn)c ctc<<4404oosufcctv<<LeteeIT5eo<<Nae2<<escacefe<<oessecaeNvvf<<4atsfccflec RECEKccscocaurec vASALNC,-

t,fokCINCILtLINCHETERANDRCLATOikcekk)IS tokC.vokuaeYC.'SCCDWCeOOSOt4'2ORCAKCftCONfAOLCWITCNC'\WVeNCNPII(LCCTOUT'SMALLDCCCONNCCT ALLRCCIOTCCONfkotCIACL)ITC

~.)Nf(KCOIYOLV<<eee oekl4t-COOC452.(OKYSWAL4(NOYCALTSOK ONLY)VIINl<<litOKklINOACAATLNCe Ltolefioif-S,PCN04)isfcotfRCCAT(4444SCCVIO-44$4CSI~sec0cArcsctfeforakpteor cvecuar2ctuforcc-E4)SHTSSCCA)(iOO-5Ia~C5Seat+Se~L44c<<tressfgOILSLL<<2 4'resLa'IRE)ERERCEf)WCI$.2oatolLL400<<Iocoo4220)00aes<<O4240200S240e<<ILLN4Ooois~ee<<OONIN<<a000<<Lola)ao000eeol<<YSICL0leseso100No<<IOOI<<4OesetLLlakestse"Iol424)(LAICillsioe4C'Coils~ALDsocleslIoeae2L~IIIAICEILlaCocoo.CSAItoaol0C45$1~4'W5LIEtolO<<OLoioeocloessIIAtoe~$Tc2)tct00e(Icos1ACLI~CCCSOCOIN42$0IolaCokNDLCioaeCOCOI14costsSlS4NNLCL42I~Ce'1CS40Ctaciata141744II$14140~CETCSCac)4CrassCKT$041474CfatoCCY40cactt44204CCY424f2)0t)4ctfptrCdatt4Ciata0CC1$44CIISI1Claeo0Illfa0)CCSC~442540CETSatCICSC4~seps414144)NISCYJe)S~Tltl0Clr400CCCtttgatffo447424412050SUSQUEHANNA

.STEAMELECTRlQSTATION

,.UNlTS1AND47-.,--.-'.FINALSAFETY'NALYS/S

.RFsPOET'4.16KVBUs.)QcolvllNG'fhof RQR&ggR,LOGIC.OIAGRale--

FIGURE'.3.15 I~

SSES-"SAR toneselectorswitch,areaselectorswitch,messagetaperecorder, riverwarningspeakers'and

monitors, andanoutdoorroofsiren.Thissystemsupplements "heradiation monitoring systemsdescribed inChapter12.Duringemergen"y conditions theplantoperatorac+ivates thesystembyselecting thedesignated alamandareatobecovered.The.alarmsandinstructions arebroadcasted v'ahePAsystempagelinestoallspeakersinselec+edareasthroughout tJeplant.Durincanemergency thenighttimemutefunctionofoutdoorspeakerswillbeoveridden.Ther'erwarningspeakershaveindependent amplifiers withoutputmonitorncinthecontrolroom~Theoperatorswitchesthesystemtoof,afterconfirmation ofnormalconditions.

Thepreferred powerfortheEVACsystemissuppliedfromUnit1vi..alacbus,andthealterna+e powerisfedfromUnit2vitalacbus.DuringUnit1opera+ion whileUnit2isunderconstruction, powertotheEVACsystemisfedfromheUnit1computerUPSbus.Thepreferred powerfortheroofsirenissuppliedfromUnit1plant125Vdcbusandthealternate powerisfedfromUnit2plant125Vdcbus.DuringUnit1operation whileUnit2isinconstruction stage,thealternate powertotheroofsirenisfedfromaseparate125VdcbusofUnit1.{refertoSubsections 8.3.1.8and8.3.2.1.1.1)

.9.5.2.2.5 SecurityCommunication and.AlarmSystemRefertotheSuscuehanna SESSecurityPlanForadescription oftheSecurityCommunications System.9.52.2.6.Portable Communication SystemOnsiteportableradiocommunication systemsaredescribed intheSusquehanna SESSecurityPlanandintheSusquehanna SESEmergency za~.95.2.2.7SystemEvaluation Systemdesignconsiderations includediversity andoperational reliability.

Thein-Plantcommunication systemsareprovidedwithreliableandredundant powersuppliesforuninterrupted communications betweenallareasofthePlant.Rev.22,4/819.5-30

'

..gifagI~Ilt)OtlalgV>>4~>>Elaraoaa\tt~Will\Tl>>1001E40alIruatCvCf4+CO%SO)IICrl>>C~41rJg,,~4+-8h~w04'stsa4r0LC'WILKIWIMa>>El>>44~4440aw~lao+aatt(Katlow~4O'I10~IIfL>>r44O+CEIC~%+E,'sa~~'~~IJOG~IIJta1~~'JILaa.ltI0)RA0LJNIgOCIVLWIr>>ao4!OIP040EIOC+C~~a>>Ir~~'~rIKO)atl4ICJh44$ruatIIIIIIIIIIIIIIIIIIIIIIIIICgEl)a.g5C>>44.~4taaa)l~,.3~a)I)OWC'g(vgO)05Q-hQ4r~t~~~04\>>C>>~&'104'n/

.4C~4c'IIIJ~cargear~futfOPOtc)O~I$IOCSC~~~+0W~~JLOC10106h0\F4viawaltta)00~l.MOlOEOall)laAletaatl0%>01fataL~IISII0IUStgltlatlwTC4J%gtatiL~~nLaoII~~I~I~IIOCjulIttr&CO$$lvIS~u~~ttCCOCIklKOt>OtA~!WJJalalr--Ch=W-A,arIIll041)l'Itlt~vsaallWTOTt4Ol~SeeeaEJOWtttMIOOMICOatMltl%42~Jtt'ISEO~ltNt~lICO~4t)0'actl02Jest0eatiO2Cattllat2MOSI22Kata!N4~1~NCttl2Ld<<at4CS+420)O)140atttatKCCkkWN4$OCR)0EgEC'hLIOltSlktt4AIO+fCtOAIKelw'a

~LV4OcOC>0)0POO)ECOOl;-4000)0I~0(101/Af')44CC>010IA;/+t$44!I=IIIIIII+II~~I~I~IrcfIIIIIIII,IIIII4~nrarar'II0%CRITIII~.ttlIIag)0)II4I)lt~4altllttCiOOCIO)Alttt4flLTIO~~TCWAO~L.JOO,.,ICaIEIC.4'EOOOI~COlt~0)4Oa2!IJE1)41YOOCCOCI~4Oa114!rSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYStSREPORTREV.22,O/S>.M-162Sht,rakco.tCONOIOILIC pa4CtratiP6XDLIQUIDRADNASTEPROCESSING FIGURE11.2-10

SSES-FSAR 135PLANTPROCEDURES135.1ADNINISTRATIVZ PROCEDURES Allsafety-related operations atSusquehanna SteamElectricStationUnits162areconducted inaccordance withdetailed, writtenandapprovedprocedures.

Plantpersonnel receivetrainingintheuseofappropria teprocedures andtheprocedures aremadeavailable tothematalltimes.135.1.1Procedure Conformance Procedure topicsfollowtheguidancespecified byapplicable portionsofRegulatory Guide133,Revision1andprocedures aropreparedfollowing theguidanceprovidedbyANSIV18.7-1976.

13-51.2Pre~aration ofProcedures Procedures arepreparedbytheplantstaff,supportorganizations orcontractorganizatio'ns underthedirection oftheSupevisorofOperations, Supervisor ofMaintenance, Technical Supervisor, HealthPhysicsSupervisor, QualitySupervisor, Personnel andAdministrative Supervisor, andSecuritySupervisor.

Theplant!procedure categories andatypicalscheduleforprocedure preparation areshownonFigure13.5-1-Reviewofsafety-related procedures useandchangesthereto,isperformed bythePlantOperations ReviewCommittee (PORC}andapprovedbytheSuperintendent ofPlantasdescribed.

inSection13.4.Inaddition, functional'nit procedures willbereviewedbyNuclearQualityAssurance.

Procedures areperiodically reviewedtodetermine ifchangesarenecessary ordesirable Applicable procedures arereviewedaftersignificant systemorequipment modification, andfollowing anunusualincident,"such asahazardous condition, anunexpected transient, asignificant operatorerror,orequipment malfunction wheretheprocedures contributed tothecauseoftheincident, orwereinadequate inmitigating theeffectsoftheincident.

Whenanoperation istemporarily alteredinsuchamannerthatportionsofanexistingprocedure donotapply,thentheexistingprocedure maybetemporarily changed.Temporary changestoRev.22,4/81135-1 QRgPxjHH0zlmzmDmxzza2zcomzm0rMAOOzPROCEDURES ADMIHISTRATIVE ALARMRESPONSECHEMISTRY EMERGENCY EMERGEHCY PLAHENVIRONMENTAL SURVEILLAHCE FUELNAHDLIHGGEHERALPLAHTHEALTHPHYSICSIHSTRUMEHTATIOH ACONTROLMAINTENANCE MATERIALCOHTROLOFF-HORMAL OPERATING GUALITYRADWASTEMAHAGEMEHT REACTOREHGINEERIHG RECORDSRELAYCALIBRATION SECURITYSPECIALEVENTSSURVEILLAHCE TESTTRAIHIHGMOHTNSPRIORTOFUELLOADING343230282624222018161412108642CDCD SSES-FSAR condition arise,theplantoperating staffshalltakewhateveractionisnecessary including, butnotlimitedto,stoppingthetestinordertorestoresafeplantconditions.

Duringstartuptesting,theplantoperating staffisspecifically responsible forcompliance withoperating technical specifications, andcompliance withtheprovisions oftheoperating license.14.2'.2TestPrereuisitesSpecifictestprerequisites areidentified ineachpreoperational testprocedure.

Thetestdirectorverifiesthateachprerequisite iscompleted andproperlydocumented priortosignoffintheofficialtestcopyoftheprocedure.

Ifaprerequisite inapreoperational testcannotbesatisfied, thetestdirectorwilllisttheprerequisite asatestexception tothePreoperational Test.Asaprerequisite topreoperational testing,properoperation ofeachalarmloopisverifiedandlistedinanappendixtothetest.Duringthepreoperational test,systemparameters arevariedandinterlocks aretestedwhichcausealarmstoactuate.Thosealarmswhichareactuatedduringthecourseofthetestwillbedocumented inthebodyofthepreoperational test.14.2.4.3Procedure Hodifications Testsareconducted inaccordance withapprovedprocedures.

Zfnecessary, theseprocedures maybemodifiedtocompletetesting.Suchprocedure modi-fications aredocumented onatestchangenoticeform.Xnadditiontogeneration ofatestchangenoticeform,thetestdizectormarksuptheofficialtestcopyoftheprocedure andinit:als/dates thechange.Reviewandapprovalfortestchangenoticesonpreoperational testprocedures isprovidedbytheTRB.Testchangenoticesforstartuptestprocedures shallbeinitialed/dated byanon-shiftlicensedsenioroperatorinadditiontothetestdirector.

Reviewandapprovalfortestchangenoticesonstartuptestprocedures isprovidedbythePORC.Preparation, reviewandapprovalactivities azeaccomplished beforeorafterperformance ofassociated testingbasedonthefollow'ng criteria:

a)Non<<Intent ChangesiRev.22,4/81Forprocedure modifications thatdonotchangeacceptance criteriaanddopreservetheintentofthetest,thetestchangenoticemaybeapprovedafterperformance ofassociated testing.4b)IntentChangesForprocedure modifications thataltertheacceptance criteriaortheintentofthetest,thetestchangenoticeisapprovedbeforeperformance ofassociated testing.14.2-12 SSES-FSARinformation willbesortedandreportedforaperiodoftwoyearspriortofuelloadonthefirstunit.TheManager-Nuclear Supportisaddressed inSubsection 17.2.1.14.2.9TRIALUSOFPLANTOPERATING ANDEMERGENCY PROCEDURES TheadequacyofPlantOperating andEmergency Procedures willbeconfirmed bytrial-use duringtheInitialTestProgram.Thoseprocedures thatdonotrequirenuclearfuelareconfirmed adequatetotheextentpracticable duringthePreoperational TestProgram.Thoseprocedures thatrequirenuclearfuelareconfirmed adequatetotheextentpracticable duringtheStartupTestProgram.Theplantoperating staffisresponsible forconfirmation ofoperatinq andemergency procedures.

TheSuperintendent ofPlantisresponsible forensuringthatcomments/changes identified duringconfirmation areincorporated infinalized procedures.

Itisnotintendedthatpreoperational testprocedures explicitly incorporate orreferenceplantoperating andemergency procedures.

Thesetestsareintendedtostandontheirownsincetheyarenotnecessarily compatible withconfigurations andconditions requiredforconfirmation offacilityoperating andemergency procedures.

Startuptestprocedures will'ncorporate andreference plantoperating andemergency procedures totheextentpractical.

14-2-10~INITIAL-FUEL-LOADINGANDINITIALCRITICALITY Initialfuelloadingisaccomplished inaccordance withstartuptestprocedure, ST-3FuelLoadingInitialcriticality isaccomplished inaccordance withstartuptestprocedure ST-4,PullCoreShutdownMargin.Theseprocedures complywiththegeneralguidelines andregulatory positions contained inRegulatory Guide1.68(Revision 1,January1977).Testabstracts establishing theobjectives, prerequisites, testmethod,andacceptance criteriafortheseprocedures arepresented inSubsection 14.2.12.142-11T>STPROGRAMSCHEDULEcdRev.22,4/8114.2-19ThePreoperational TestProgramisscheduled for15monthsdurationontheUnit1andCommoncomponents andfor12monthsdurationontheremaining Unit2components..(See Figure14.2-4a~'

SSES-FSAR (P30.1)ControlStructure HSVSstemPreperational TestStructure HavSystemanditsinterlocks insidethecontrolstructure buildingtodemonstrate thissystem'sabilitytomaintainapositivepressureaboveatmospheric duringnormaloperation andhighradiation signalwhentheemergency outsideairsupplymodeisrunning.Todemonstrate theabilityoftheControlStructure HGVtoisolatebeforechlorinereachestheisolation damperswhenchlorineisdetectedintheoutsideairintake.overtotheISG.Requiredinstruments arecalibrated andcontrolsareoperable.

TheControlStructure ChilledWaterSystem,Instrument AirSystemandturbinebuildingventareavailable.

Required'lectrical powersupplysystemsareavailable.

TestMethod-Thesystemoperation isinitiated manuallyandfanperformance, damperoperations andheatingelementoperation aredetermined.

Thedifferential pressures withrespecttooutsideatmosphere

.aremeasured.

Requiredcontrolsareoperated'or simulated signalsareappliedtoverifytheemergency filteroperation onhighradiation signal,automatic recirculation onhighchlorinesignal,systemmanualisolation andothersysteminterlocks andalarms.AccetanceCriteria-Thesystemperformance parameters areinaccordance withtheapplicable designdocuments.

(P30.2)ControlStructure ChilledWaterSstemPreperational TestStructure ChilledWaterSystemtoprovidechilledwaterflowtoControlStructure Heating/Ventilating UnitsandControlroomfloorandcomputerroomfloorcoolingunits.toperformthistestandthesystemisturnedovertotheISG.Requiredinstruments arecalibrated andcontrolsareoperable.

TheServiceWaterSystem,Emergency ServiceWaterSystem,andInstrument AirSystemareavailable.

Requiredelectrical powersupplysystemsareavailable.

TestMethod-Thesystemisoperatedtodemonstrate chilleroperation andchilledwaterpumpperformance.

Requiredcontrolsareoperatedorsimulated signalsareappliedtoverifyautomatic alignment ofthesystemunderemergency conditions (startofemergency condenser waterrecirculation pump)andothersysteminterlocks andalarms.Rev.22,4/8114.2-3l, SSES"FSAR TestMethod-Thebatteryperformance testismanuallyinitiated byconnecting thebatterybanktotheResistorI.oadBankanddischarging thebatteries ataconstantcurrentforaspecified periodoftime.TheBatteryServiceTestismanuallyinitiated byconnecting thebatterybanktotheResistorLoadBankandsimulating, ascloselyaspossible, theloadthebatteries willsupplyduringaDesignBaseAccident.

Thenthebatterychargerisconnected tothebatteries andthedistribution panelstoverifythattheycanequalizechargethebatteries whilesimultaniously providing powertothenormalplantloads.Thebatterychargerisalsoconnected totheResistorIoadBankandcurrentisincreased toitsmaximumratingwiththechargerisolatedfromitsassociated batterybank.Alarmsaresimulator andverifiedtooperateproperly.

AccetanceCriteria-Thebatteries cansatisfactorily deliverstoredenergyforthespecified amountoftimeasrequiredfortheperformance andservicetests.Thebatterychargerscandeliverratedoutput,also,thattheycanchargetheirassociated batterybankfromminimumvoltagetoafullychargedstateinaspecified amountoftimewhilesimultaneously supplying normalplantloads.Thealarmsoperateattheirengineered setpoints andannunciate inthecontrolroom.(P76.1)PlantLeakDetection SstemPreperational TestTestOb'ective

-'Todemonstrate theoperability ofthePlantIeakDetection System.toperformthistestandthesystemisturnedovertotheISG.Requiredinstruments arecalibrated andcontrolsareoperable.

Requiredelectrical powersupplysystemsareavailable.

TestMethod-Sumplevelswillbevaried(ifpracticable) orsimulated signalsareappliedtolevelsensorstoverifytheleak'etection systemalarms'cce tanceCriteria-Thesystemperformance parameters areinaccordance withtheapplicable designdocuments.

Rev.22,4/8114.2-49 SSES-FSAR 3)Thatallwarningsignalsareworkingperdesignintent.4)Thecapability ofthecranetooperateinadesignated areainaccordance withdesignrequirements.

overtotheISG.Requiredelectrical powersupplysystemsareavailable andcontrolsareoperable.

Requiredloadsareavailable toperformloadtestingofthiscrane.TestMethod-Thelightingsystemforthecraneisenergized andobservedforproperoperation.

Thebridgeandthetrolleyarespeed-tested inbothdirections.

Currentandvoltagereadingsaretakeninbothdirections.

Theproximity switchesaretestedforboththebridgeandthetrolleyincluding trolleymovementrestriction switchesinzonesA,B,andC.Themainhoistandtheauxiliary hoistarespeed-tested traveling upandtraveling down.Currentandvoltagereadingsaretakeninbothdirections.

Alllimitswitchesaretested.Alossofpowersituation iscreatedforbothhoiststocheckthebrakesabilitytoholdwithoutpower.Anoverspeed testissimulated foreachhoist.Themainhoistloadlimitswitchisalsotested.Theabovelistedtestsarerunfromthependantpushbutton controlsystem.Operability ofthecraneisalsodemonstrated fromthecabandby'radiocontrol.Theanticollision systemistestedandthecranepowersourceisverified.

AccetanceCriteria-Thesystemperformance parameters areinaccordance withthe'pplicable designdocuments.

(P100.1)ColdFunctional Testcapableofoperating onanintegrated basisinnormalandemergency modes,todemonstrate thatadequatepowersuppliesfortheclassIEequipment willexist-completed andplantsystemsarereadyforoperation onanintegrated basis.TestMethod-Emergency CoreCoolingSystems(RHR6CoreSpray)arelinedupintheirnormalstandbymode.Theplantelectrical systemislineduppernormalelectrical systemlineup(ForUnitlthislineupmaybedifferent thanthelineupfortwounitoperation).

Lossofcoolantaccidentsignalsareinitiated withandwithoutalossofoffsitepower.VoltagesandloadsareRev.22,4/8114.2"55 SSES-FSAR UESTION021.01Providethefollowing additional information forthesecondary containment:

(1)Showanappropriate plantelevation andsectiondrawings,

,thosestructures andareasthatwillbemaintained atnegativepressurefollowing aloss-of-coolant accidentandthatwereconsidered inthedosecalculation model;(2)ProvidetheTechnical Specification limitforleakagewhichmaybypasstheStandbyGasTreatment SystemFilters,(e.g.,valveleakageandguardpipeleakage);

and,(3)Discussthemethodsoftestingthatwillbeusedtoverifythatthesystemsprovidedarecapableofreducingtoandmaintaining anegativepressureof0.25",e.g.,withinallsecondary containment volumes.RESPONSE1)Following aloss-of-coolant-accident, allaffectedvolumesofthesecondary containment willbemaintained atnegativepressure.

Allthesevolumesareidentified onFigures6.2-24thru6.2-43asventilation zonesI,IIandIII.AlsoseeSubsection 6.5.3.2foradiscussion ofthereactorbuildingrecirculation system.2)SeeTechnical Specification 3/4.6;.5.3 forthelimitingconditions foroperation andthesurveillance requirements fortheSGTS.Allleakageintothesecondary containment istreatedbytheSGTS.Refertosubsection 6.2.3.2.3 foradiscussion ofcontainment bypassleakage.3)TheStandbyGasTreatment System(SeeSubsection 6.5.1.1)inconjunction withthereactorbuildingrecirculation system(seeSubsection 6.5.3.2)andthereactorbuildigisolation system(seeSubsection 9.4.2.1.3) isprovidedtoproduceandmaintainnegativepressurewithinaffectedvolumesofthesecondary containment.

Actuation andoperation oftheabovesystemswillbeusedtoverifythatthenegativepressureisestablished andmaintained.

Eachventilation zoneisprovidedwithredundant negativepressurecontrollers.

I,owpressuresideinputs(lowpressuresensingelements) tothesecontrollers arelocatedasfollows:Ventilation ZoneI-Ventilation ZoneII-AccessareofEL749'-l(SeeFigure6.2-28)AccessareaofEL.749'-l" Rev.22,4/81021.01-1 SSES-FSAR Ventilation ZoneIII-Refueling Floor,E1.818'-1" (SeeFigures6.2-30and6.2-40).Thequantityofairexhausted fromthesecondary containment willbesuchthatineachaffectedventilation zonethenegativepressurewillbemaintained.

Theinterconnecting ductworkoftherecirculation systemwillequalizethenegativepressurethroughout eachzone.Rev.2,9/78021.01"2 SSES-FSAR UESTION021.10Withrespecttocontainment steambypassforsmallbreaks,indicateyourcompliance withourproposedBranchTechnical Position"SteamBypassforMarkIIContainments,"

whichisenclosed.

RESPONSEAcomparison oftheSusquehanna SESdesignwithyourproposedBTP"SteamBypassforMKIICoatainments" ispresented below.Theitemnumberscorrespond withtheitemsintheBTP.l.a.BassCaabilitContainment WetwellSrasThewetwellspraysystemelectrical instrumentation andcontrolssuppliedbyGEmeetthesameESFstandards ofquality,redundancy andtestability astheRHRsystem,ofwhichitisapart.Thesystemismanuallycontrolled andactuated.

Theconsequences ofactuation ofthewetwellsprayonECCSfunctionareaddressed intheresponsetoQuestion211.13.l.b.Transient BassCaabilitAnalsesThecalculation ofmaximumallowable steambypassleakageforsmallsteambreaksaspresented inSection6.2.1oftheSusquehanna FSARcomplieswiththeintentoftheproposedbranchtechnical position; althoughitdoesnotassumeanormalplaatdepressurization/shutdown timeof6hours.Thecalculation assumesthatthesteamleakageisterminalted bysomeoperatoractioa(containment sprays,ADS)within15minutesafteranabnormally highsuppression chamberpressureisobserved(830psig).Themaximumsuppression chamberpressureexpectedduringaIOCA,assumingalldrywellairhasbeencarriedoverandnosteamleakagehasoccurred, is25psig.Significantly exceeding thispressure(to&30psig)indicates aleakagesituation andnecessitates operatoraction.Further,thecalculation conservatively neglectsanycontainment heatsinks(poolsurface,containment walls,etc.).Themethodemployedtocalculate themaximumallowable steambypasslakageflowcharacteristic (A/rgb)hasbeenpreviously described insomedetailinsubmittals toNRCquestions ontheHatchlnuclearplaat.Briefly,itsimplyinvolvesanendpointtypecalculation ofthemassofsteamwhichcanbeaddedtothesuppression chamberabove30psigtogivedesignpressure(45psig),conservatively assumingalldrywellairhasbeencarriedoverthethesuppression Rev.22,4/81021.10-1 SSES-FSAR chamberandtakingnocreditforsuppression chamberheatsinks/condensation.

KnowingthismassofsteamQMandassumingthattheoperatoractionwillbedelayed10minutesafterobservin'g the30psig,andthattheactionwillrequire5moreminutestotakeeffect(5t=15min.total),theallowable lakeageratem=Am/Atcanbecalculated.

Theflowcharacteristic A/~kcanthenbecalculated fromM=A/lvpschp"(gwherebPis'thepressuredifference betweenthedrywellandsuppression chamberatquasi-steady flow(equalP<g/gH,whereH=ventsubmergence).

TheresultisanA/~k=.06ft~forSusquehanna.

2.a.FSARSubsection 6.2.6.5'.1addresses thisitem.2.b.FSARSubsection 6.2.6.5.1.2 addresses thisitem.2.c.FSARSubsection

'6.2.6.5.1.2 addresses thisitem.3.a.TheSusquehanna designmeetstheintentofthisitem.SeeSubsection 6.2.1.1.3.2.

Withrespecttocompliance withtheproposedBranchTechnical Position"SteamBypassofMarkIIContainments,"

thefollowing Susquehanna SRPpositionstatement isrespectfully provided:

IssuanceoftheStandardReviewPlans(SRP)post-dates theSusquehanna construction permitbymorethan2years.Therefore, noattemptwasmadetodesigntheplanttotherequirements oftheSRPs.TheSusquehanna FSARwaspreparedusingRevision2ofRegulatory Guide1.70asmuchaspractical foraplantofitsvintage,withassurance fromNRCmanagement thatcompliance withthisRegulatory Guideassuredsubmittal ofallnecessary licensing information.

Asdocumented inaletterofAugust5,1977fromG.G.SherwoodtoE.G.CaseoftheNRC,theSRPsconstitute asubstantial increaseintheinformation requiredjusttodescribethedegreeofcompliance ofvarioussystems.Thisincreaseinturnrepresents asubstantial resourceexpenditure whichisunjustified andwhichcouldcauseprojectdelaysifrequiredoftheseprojects.

Asstatedinthe,reference letter,GeneralRev.22,4/Sl021.10-2 SSES-FSAR Electric(andPPM)believesthatSRPsshouldbeappliedtoFSARsonlytotheextentthattheywererequiredintheFSARs.PPGLandGeneralElectricbelievetheaboveposition, whichistheessenceofadirective fromBenC.Rusche,DirectorofNuclearReactorRegulation, totheNRCstaffdatedJanuary31,1977,istheappropriate procedure forreviewoftheSusquehanna FSAR.Rev.22,4/81021.10-3 SSES-FSAR UESTXON021.21Heareawarethatrevision3totheDFFRistobesubmitted tothisSummerandthatRevision2whichisnowreferenced isout-of-date,asitdoesnotadequately reflectthestatusofcurrentpooldynamicloads.DiscusshowtheDARwillbeupdatedtoreflectthisstatusanddiscussanyotherreportsyouintendtosubmittodocumentyourplantdesign.RESPONSE:

PPGLisworkingwiththeotherMarkIIownerstodevelopmethodologies, analytical programsandtestdatawhichwillprovideimproveddefinitions ofhydrodynamic loads.ThisefforthasresultedinRevision3totheDFFR,andisexpectedtoresultinfurtherrevisiontothatreport.ltispresently beingrevisedtoreflectthecurrentpositionoftheMarkXIowners.Futurerevisions totheDFFRareexpectedtohavenoeffectontheSSESDAR,sinceplantspecifics aswellasgenericMarkXImethodologies applicable toSSESwillbeincorporated intotheDAR.TheDARhasbeenupdatedtoreflectthecurrentdesignassessment methodologies usedatSSES.Rev.22,4/81021.21-1 SSES-PSAR Identifyallopeningsprovidedforgainingaccesstothesecondary containment, anddiscusstheadministr'ative controlsthatwillbeexercised overthem.Discusstheinstrumentation tobeprovidedtomonitorthestatusoftheopeningsandwhetherornotthepositionindicators andalarmswillhavereadoutandalarmcapability inthemaincontrolroom.RESPONSE:

1)Secondary Containment AccessOpenings:

DoorNos.Elev.Col.Coordinates SecurityMonitored 101102103-0104-0119A120A571-0670670670670676676818U/29U/37.4U/20.6U/29P/20.6P/37.4P/32YesYesYesYesYesYesYesRoofHatch8Elev.872,coordinates:

P/37.4(Security Monitored) 2)Doors5119A,120Aand571-0provideaccessintothesecondary containment throughtheuseofcardreader/cipher keyboardcontrol.Doors101,102,108-0,104-0andtheroofhatch(54001)willnotnormallybeusedtogainaccessintothesecondary containment.

Alltransactions willbeloggedintotheSecurityDataandManagement System(SDMS).Allalarmsgenerated willannunciate atboththeSecurityControlCenter(SCC)andAlternate SecurityControlCenter(ASCC).Theplantcontrolroomwillnothaveareadoutoralarmcapability.

BoththeSCCandASCCare,however,mannedcontinuously 24hoursaday.Instrumentation tocontrolandmonitorthestatusofsecondary containment isdescribed inChapter7.0oftheSusquehanna SESPhysicalSecurityPlan.Rev.22,4/81021.31-1 SSES-FSAR Subsection 4.2.2.2oftheDARstatesthat,thechuggingloadsonsubmerged structures andimpartedonthedowncomers willbeevaluated later..Providethepresentstatusoftheseevaluations andthescheduleforyoursubmission ofthecompleted evaluation.

RESPONSE

Thecalculation ofsubmerged structure loadsduetochuggingwillusetheimprovedchuggingloadmethodology developed underMarkIZOwnersGroupTaskA16.Theappropriate designsourceswillbeusedwiththeGreen'sfunctionsolutionfortheSSESannularcontainment toprovidethepressuredistribution inthesuppression pool.Thepressurearoundastructure willbeintegrated todetermine thenetpressureloadonthestructure.

Adescription ofthismethodology andverification willbeincludedintheDAR.Thechuggingsourcesusedwillbedeveloped fromthepressuretimehistories providedbyKWUforthedesignassessment (seeSSESDAR,Section9.5.3).Thedowncomer hasbeenassessedforthechuggingloadsandtheresultswillbeincorporated intotheDAR.Theothersubmerged structures arenowbeingevaluated.

Weexpectcompletion'f thisevaluation inAprilof1981.Rev.22,4/81021.71-1 SSES-FSAR Providetheinformation previously requested in020.44regarding loadsresulting frompoolswellwavesfollowing thepoolswellprocessorseismicslosh.Discusstheanalytical modelandassumptions usedtoperformtheseanalyses.

RESPONSE

Theanalytical methodofcalculating theloadsresulting fromseismicsloshandtheassumption usedaredescribed inawriteuptobeincludedintheOAR.Thisinformation willbesubmitted inApril1981.Rev.22,4/81021.73-1 SSES-FSAR Discusstheapplicability ofthegenericsupporting

programs, testsandanalysestoSSESdesign(i.e.,FSIconcerns, downcomer stiffners, downcomer
diameter, etc.)RESPONSE:

Acompletedescription oftheGKM-IIMtestprogram,testresultsandevaluation ofthetestdataisprovidedinChapter9.0oftheSusquehanna SESDAR.TheGKM-IIMtestswerestructured tobeasprototypical oftheSusquehanna SESplantconfigurations aswaspractical.

Assuch,concernsrelatedtoFSI,downcomers stiffnessg downcomer

diameter, etc.,arefullyaddressed.

Rev.22,4/Sl021.75"1 SSES-FSAR Providethetimehistoryofplantofresponses ofplantstructures, components topooldynamicloads.modifications resulting frompoolspecificloadsandassessment piping,equipment andIdentifyanysignificant plantdynamicloadsconsiderations.

RESPONSE

Timehistoryinformation forLOCAloadscanbefoundinSSESDAR,Section4.2.Similarinformation duetoSRVactuation canbefoundinSSESDAR,Section4.1.Inaddition, theplantspecificLOCAandchuggingloaddefinition developed fromtheGKMII-MtestprogramcanbefoundinSubsection 9.5.3.Thisloaddefinition willbeusedtoevaluatetheconservatism oftheDFFRLOCAloaddefinition developed fromtheGKMII-MtestprogramcanbefoundinSubsection 9.5.3.Thisloaddefinition willbeusedtoevaluatetheconservatism oftheDFFRLOCAloaddefinition andisscheduled forsubmittal inRevision5oftheSSESDAR(March,1981).Assessment ofthepipingtopooldynamicloadsisnotcompleted.

PPGLinterprets thisquestionasrequiring:

a)Responseofpipinginthewetwelltopooldynamictimehistoryloads.b)Responseofpipinginthedrywell,wetwellandreactorbuildingtoresponsespectraduetoSRVandLOCAloads.SummaryoftheresultsofpipinganalysiswillbeprovidedintheDARuponcompletion ofpipinganalysisinMayof1981.Modification ofplantdesigntodatea)Additionofquenchers b)Designchangesinplatform, vacuumbreakers, andrecombiner Supportbeamsbyraisingthemoutofthepoolswellzone.c)Redesignofdowncomer bracingsystemd)Added60reinforcing barsineachsuppression chamnber.

e)Addedembedments andanchorboltsinsuppression chamberwallsanddiaphragm slab.f)Diaphragm slabreinforcements changedfrom'5to90toincreaseupliftloadingsacceptance.

g)Significant numberofpipesupportsaddedormodified.

Rev.22,4/81021.76-1 SSES-FSAR Providefiguresshowingreactorpressure, quenchermassfluxandsuppression pooltemperature versustimeforthefollowing events:(1)Astuck-open SRVduringpoweroperation assumingreactorscramat10minutesafterpooltemperature reaches110FandallRHRsystemsoperable; (2)Sameasevent(1)aboveexceptthatonlyoneRHRtrainavailable; (3)Astuck-open SRVduringhotstandbycondition assuming120Fpooltemperature initially andonlyoneRHRtrainavailable; (4)TheAutomatic Depressurization System(ADS)activated following asmalllinebreakassuminganinitialpooltemperature of120FandonlyoneRHRtrainavailable; and(5)Theprimarysystemisisolatedanddepressurizing atarateof100Fperhourwithaninitialpooltemperature of120FandonlyoneRHRtrainavailable.

Provideparameters suchasservicewatertemperature, RHRheatexchanger capability, andinitialpoolmassfortheanalysis.

RESPONSE

TheSusquehanna uniqueSRVmassandenergyreleaseanalysisispresented inAppendixIoftheDAR.Rev.22,4/81021'7"1 SSES-FSAR Withregardtothepooltemperature limit,providethefollowing additional information:

(1)Definition ofthe"local"and"bulk"pooltemperature andtheirapplication totheactualcontainment andtothescaledtestfacilities, ifany;and(2)Thedatabasethatsupportanyassumeddifference betweenthelocalandthebulktemperatures.

RESPONSE

Theterms"Local"and"bulk"temperature areusedasdefinedinSubsection III.C.l.a ofNUREG0487,"MackIIContainment LeadPlantProgramLoadEvaluation andAcceptance Critera",

UnitedStatesNuclearRegulatory Commission, October1978.Becauseofthedesignfeaturesofquenchers andtheirorientation inthesuppression pool(asdiscussed intheSSESDAR,Subsection 8.5.5),thedifferences between"local"and"bulk"pooltempoeratures areexpectedtobesmall.Therefore, thedifference shouldnotexceedthevaluewhichwaspreviously derivedforramsheaddischarge devicesinMarkIplants(10').Itisintendedtoverifythenumbersusingdatafromin-planttestswhicharepresently underpreparation forLaSalleandZimmer.Rev.22,4/81021.78-1 SSES-FSAR uestion021.79:Forthesuppression pooltemperature monitoring system,providethefollowing additional information:

(1)Type,numberandlocationoftimperature instrumentation thatwillbeinstalled inthepool;and(2)Discussion andjustification ofthesamplingoraveraging technique thatwillbeappliedtoarriveatadefinitive pooltemperature.

RESPONSE

(1)PleaserefertorevisedSection7.6.1b.l.2.

Susquehanna SEShascompleted evaluation ofthesuppression poolmonitoring criteriaasdefinedinNUREG-0487 andhasdeveloped abasicsystemasfollows:oNumberandLocationofTemeratureInstruments:

20remotetemperature detectors (seefigure021.74-35) ineachsuppression pools-16remotetemperature detectors locatedjustbelowthemin.waterlevelandarrangedtoprovide2eachon8locations aroundthepool.-4remotetemperature detectors (seeFigure021.74-35-TE's 15769,15761,15756, 15751)distributed aroundthepoolat"Q"center-linelocationo~Te:ClassIEInstrument-Divisionalized withonefromeachlocationineachdivision, exceptfor4remotetemperature detectors atthe"g"centerline.

Allsensorswillberedundant, SeismicCategoryIandsuppliedfromonsiteemergincy power.(2)Thetechnique issuedtoarriveatanaverage,orbulk,pooltemperature isconservative duetotheplacement ofthe16pooltemperature detectors.

These16detectors areevenlydistributed nearthepoolsurface,wherethehottestwaterwillriseRev;22'.4/81021.79-1 SSES"FSAR Table7.2-4,DesignBasisSetpoints, wasdeletedinRevision11.Severalsectionsstillrefertodatacontained inthattable.Severalreferences aremadetodesignbasissetpoints previously listedinTable7.2-4.Thistablehasbeenintentionally leftblank.Pleaseclarifythisdiscrepancy.

RESPONSE

Table7.2-4wasdeletedbecausetheinformation thereonhasbeenincorporated intheplantTechnical Specifications.

Someinformation fromTable7.2-1andalltheinformation fromTables7.2-5and7.2-6hasbeendeletedfromSection7.2andisalsocontained intheTechnical Specifications astheappropriate singlepointofreference forthisdata.Variousdiscussions inSection7.2havebeenrevisedbyappropriately referencing theTechnical Specifications ratherthanthedeletedtables.Rev.22,4/81032.52"1 SSES-FSAR Discussion oftheEmergency CoreCoolingSystemsandtheassociated tablesareincomplete andinconsistent.

Correctandclarifythefollowing:

1)Thesameinstruments areusedforReactorVessellowwaterlevelandPrimaryContainment highpressureformanyESFsystems.Thespecification shownfortheseinstruments inTables7.3-1through7.3-5arenotconsistant.

Correcttripsettings, ranges,andaccuracies shownfortheseinstruments.

2)Thesetableshaveallottedcolumnsforinstrument responsetimesandmargins(oftripsetting)tomeetrequirements ofIEEE279-1971Section3,butmostdatahasbeenomitted.Responsetimesshouldindicateminimumand/ormaximumwhereapplicable.

3)Table7.3"1hasomittedallspecifications fortheTurbineoverspeed instrument.

4)Figure7.3-5hasseveralerrors:oItdoesnotshowtwoADSlogicsasindicated in7.3.l.la.,1.4.4.

oReferenced Figure7.3-16doesnotexist.oItdoesnotshowlowpressureinterlocks toLPCIandCSrequiredtoinitiateADSasindicated in7.3.l.la.l.4.4.

5)Table7.3-2indicates onlyonereactorwaterlevelsetpoint(-149inches)fortheADS.Section7.3.1.1a.l.4.4 indicates twolevelsetpoints, alowandalowerwaterlevel.6)Useoflevelswticheswitharangeof-150"/0/+60" toinitiateADSandCSactionwithtripsettingsat-149doesnotseemlikeconservative design.Justifytheuseofthisrangeforthisapplication.

Discussaccuracyofthetripsettingandhowitisaffectedbynormalandaccidentenvironmental conditions andlongtermdrift.7)WhyaretworangesshownforLPCIpumpdischarge pressure(10-240psigand10-260psig).Rangeshownforthisinstrument inTable7.3-4is10-240psigonly.8)Section7.3.1.1a.l.4.5 onADSBypassesandInterlocks indicates thatitispossiblefortheoperatortomanuallydelaythedepressurizing actionandstates"ThiswouldresetRev.22,4/Sl032.54"1 SSES-FSAR thetimerstozerosecondsandpreventdepressurization for105seconds."

Table7.3-2,Figure7.3-8Sht.3andTable6.3-2allindicateatimedelayof120seconds.Howisatimedelayof105secondsachieved?

9)Explainwhytworanges(50-1000psigand50-1200psig)arelistedfortheReactorVesselLowPressureinstrument inTable7.3-3.10)Instrument rangesforpumpdischarge flow,Table7.3-3,andpumpminimumflowbypass,Table7.3-4,arespecified ininchesofwaterbuttripsettingsareingpm.Supplyrangesfortheseflowinstruments ingpm.Table7.3-9HPCISystemMinimumNumbersofTripChannelsRequiredforFunctional Performance doesnotagreewithTable7.3-1HPCIInstrument Specifications.

Table7.3-8doesnotlistHPCIpumphighsuctionpressureorTurbineOverspeed asshowninTable7.3-1.Table7.3-8liststwoitems,HPCIpumpflowandHPCIpumpdischarge flow,notshowninTable7.3-1.12)Table7.3-4LowPressureCoolantInjection

-Instrument Specifications doesnotagreewithTable7.3-10LowPressureCoolantInjection SystemMinimumNumberofTripChannelsRequiredforFunctional Performance.

Table7.3-10doesnotlistReactorlowpressureorPumpdischarge pressureasshowninTable7.3-4.Table7.3-10listsseveraltripchannelswhicharenotshowninTable7.3-4.TheseincludeReactorvessellowwaterlevelinsideshroud,Reactorvessellowflow,Primarycontainment highpressure, andReactorvessellowwaterlevel(Recirculation Pumps).13)Table7.3-11CoreSpraySystemMinimumNumbersofTripChannelsRequiredforFunctional Performance isincomplete.

ItdoesnotlistPumpDischarge FlowasshowninTable7.3-1.RESPONSE:

Tables7.3-1thru7.3-4havebeenrevisedtoincludeallappropriate instrument functions andthenumberofchannelsprovided.

Thetripsettingsandresponsetimeinformation hasbeendeleted,andisprovidedintheTechnical Specifications.

Tables7.3-8thru7.3-11aredeleted,withappropriate numberofchannelinformation incorporated intoTables7.3-1thru7.3-4.Revisions toTable7'-5havebeensubmitted withtheresponsetoQuestion032.55.2.Theinstrument responsetimesandmargins(oftripsettings) areincludedintheTechnical Specifications.

ThedatainRev.22,4/Sl032.54"2 SSES-FSAR theTechnical Specifications isintendedtoalsosatisfytherequirements ofIEEE279-1971, Section3.3.TheHPCIturbineoverspeed tripisawhichisintegralwiththeturbine.discussion oftheHPCIturbine.Theandaccuracyinformation isprovidedSpecifications.

mechanical device,SeeSection6.3,foroverspeed tripsettingintheTechnical 4,Figure7.3-5isrevisedtoshowasimplified pictureoftheADSandLPCI/CSinitiation logic.The"ADSdivisionIandIILogics,discussed inrevisedSubsection 7.3.l.la.l 4-4andshownindetailbyFigure7.3-8sheet3,areidentical andenergizing eitherwillinitiateADS.Therefore theyareshowntwiceinFigure7.3-5.Relatingthesimplified pictureinFigure7.3-5tothedetailedonein'Figure 7.3"8,theleftbranchcorresponds tologicAinDiv.I(orBinDiv.II)andtherighttologicCinDivisionI(orDinDiv.II).Anotehasbeenadded,toFigure7.3-5toclarifytheseparatelogicsforDiv.IandDiv.II.Thereference toFigure7.3-16contained onFigure7.3-5iserroneous.

Thecorrectreference FigureforLPCIlogicisFigure7.3-10,RHRFCD.Thelowpressureinterlocks forpumps(CSandRHR)havebeenaddedtoFigure7.3-5.5.TherevisedTable7.3-2includesanappropriate entryfor.ADSinitiation, withactioncausedbytwosignals,oneeachfromthereactorwaterlevelLl,andreactorwaterlevelL3.BothsignalsarerequiredbeforeADSisautomatically initiated.

ThesetpointforthisactionisprovidedintheTechnical Specifications.

6.Theinstrument tripsettingshavebeenremovedfromthetablesofChapter7andincludedintheTechnical Specifications'he levelswitchtripsettingof-149inchesforADSandCSwillbechangedandwillbewithintheproperaccuracyandrangeoftheinstrument.

Thetripsettingaccuracyrelatedtoabnormaloperating temperature withinthedrywellisdiscussed intheresponsetoquestion032.59.Instrument driftisincludedindeveloping theinstrument setpoints.7./8.TheLPCIpumpdischarge pressurepermissive fortheADShastworedundant channelsprovidedforeachLPCI(RHR)pump.Howevertheinstruments haveidentical ranges,soTable7.3-2hasbeenrevisedtoagreewithTable7.3-4.TheADStimersetpointfoundinTable6.3-2isanupperlimit.Thecorrectsetpoints (including margin)areprovidedintheTechnical Specification.

Thepropertimedelaytimeisbymechanical adjustment ofpneumatically operatedtimedelayrelay.ThetextofSubsection Rev.22,4/81032.54-3

.SSES-FSAR 7.3'.1a.l.4.5 hasbeenrevisedtodeletetheactualnumerical value.The105secondtimevalueisnominal,andwasusedtoallowforthemarginandtolerance ofthedevice.ThepropervalueisprovidedintheTechnical Specification.

9.ThetwotripsystemsforCShavediverseinstruments specified forreactorvesselandthesameinstruments areusedinLPCIlowpressure.

Tables7.3-3and7.3-4,asrevised,givetheinstrument rangesforbothtripsystems.ThetripsettingvaluesareprovidedintheTechnical Specifications.

10.TheCSandLPCI(RHR)pumpminimumflowbypassrangesareconverted fromdifferential pressuretoflowontherevisedTables7.3-3and7.3-4.11.Table7.3-1hasbeenrevisedtoincludeHPCIpumpminimumflowbypassandtheHPCIpumpflowcontroller signaling theHPCIturbine.Theturbineoverspeed tripisamechanical devicethatisintegralwiththeturbine,seeSection6.3.Theturbineoverspeed instrument rangehasbeenaddedtoTable7.3-1.ThenumberofchannelsprovidedisaddedtoTable7.3-1,andTable7.3-8isdeleted.TheminimumnumberoftripchannelsrequiredhavebeenaddedtotheTechnical Specifications.

12.TheLPCITable7.3-4hasbeenexpandedtoincludetheinstruments oftheactualdesignandthenumberofchannelsprovided.

ThemarginandtripsettingofTable7.3-4aswellasTable7.3-10havebeendeleted.13.TheCSTable7'-3hasbeenrevisedtoaddthenumberofinstrument channelsprovided, andmargin,responsetime,andtripsettingshavebeendeleted.Table7.3-11hasbeendeleted.Rev.22,4/81032.54-4 SSES-FSAR UESTION040.2Thestaffrequiresthatthefollowing qualification testprograminformation beprovidedforallClass1Eequipment:

(1)Identification ofEquipment including, (a)Manufacturer (b)Manufacturer's typenumber(c)Manufacturer's modelnumber(2)Equipment designspecification requirements, including, (a)Thesystem"safetyfunctionrequirements (b)Anenvironmental envelopewhichincludesallextremeparameters, bothmaximumandminimumvalues,expectedtooccurduringplantshutdown, normaloperation, abnormaloperation, andanydesignbasisevent.(c)Timerequiredtofulfillitssafetyfunctionwhensubjected toanyoftheextremesoftheenvironmental envelopespecified above.(3)Testplan,(4)Testset-up,(5)Testprocedures, (6)Acceptability goalsandrequirements, (7)Testresults,(8)Identification ofthedocuments whichincludeanddescribetheaboveitems.(9)Theinformation requested aboveshallbeprovidedforatleastoneitemineachofthefollowing groupsofClass1Eequipment.

(a)Switchgear (b)Motorcontrolcenters,(c)Valveoperators (incontainment)

(d)Motors(e)Iogicequipment Rev.22,4/81040.2-1 SSES-FSAR (f)Cable(g)Dieselgenerator controlequipment (h)Sensors(i)Limitswitches(j)Heaters(k)Fans(1)Controlboards(m)Instrument racksandpanels(n)Connectors (o)Penetrations (p)Splices(q)Terminalblocks(10)Inaccordance withtherequirements ofAppendixBof10CFR50,thestaffrequiresastatement verifying:

(a)thatallClass1Eequipment hasbeenqualified totheprogramdescribed above,and(b)thatthequalification information isavailable foranNRCaudit.RESPONSE:

Thequalification testprograminformation forClasslEequipment isprovidedintheSusquehanna SESEnvironmental

(}ualification ReportForClasslEEquipment submitted underseparatecover.Rev.22,4/81040.2-2 SSES-PSABstartontheautostart signalandoperateonstandbyforfiveminutes.(d)Verifying thatonlossofoffsitepowerinconjunction withasafetyfeaturesactuation signalthedieselgenerators startontheautostart signal,theemergency busesareenergized withpermanently connected loads,theauto-connected emergency (accident) loadsareenergized throughtheloadsequence, andthesystemoperatesfozfiveminuteswhilethegenerators areloadedwiththeemergency loads.(e)Verifying thatoninterruption oftheonsitesourcestheoadsareshedfromtheemergency busesinaccordance withdesignrequirements andthatsubsequent loadingoftheonsitesourcesisthroughtheloadsequencer.

(4)Thevoltagelevelsatthesafety-related busesshouldbeoptimized forthefullloadandminimumloadconditions thatareexpectedthroughout theanticipated rangeofvoltagevariations oftheoffsitepowezsourcebyappropriate adjustment ofthevoltagetapsettingsoftheintervening transformers.

Merequirethattheadequacyofthedesigninthisregardbevezifiedbyactualmeasurement andbycorrelation ofmeasuredvalueswithanalysisresults.Provideadescription ofthemethodformakingthisverification; beforeinitialreactorpoweroperation, providethedocumentation requiredtoestablish thatthisverification hasbeenaccomplished.

RESPONSEI.RefertoFigures8.3-1,83-2,8.3-3and8.3-15forthefollowing discussion onundervoltage detection andtransferlogic.Theprimarybustransferonlossofoffsitepowerisinitiated atthe13.8kVstartupswitchgear.

Eachclass1E4.16kVswitchgear busesprovidethebackupundervoltage transfer.

RefertoSubsection 8.3fordiscussion onbusarrangement andtheinterconnection oftheoffsitepowersuppliesandtheon-sitedistribution system~~Rev.22,4/81040.6-3 SSES-ZSAR(1)Each13.8kVstartupbusisprovidedwithanoffsitepowersupplyandthecapability ofconnecting tothesecondoffsitepowersupplybytheclosingofthel3.8kVtiebreaker(breaker52-10502)

.Theundervoltage detection systemateach13.8kVswitchgear busconsistsof(1)incomingfeeder(offsitepowersupply)undervoltage

-clays-device27AI,(2)busundervoltage relay-device27A2,and(3)tiebusundervoltage relay-device27A1.{a)Device27AX-initiates trippingoftheincomingfeeder.Device27AIisaninstantaneous plungertyperelaywithpickupsettingat93.6volts(78%oftherate120volts).Twoindependent singlephaserelaysareusedtomonitortheA-Band0-Cphasevoltages.

Theincomingbreakeristrippedoncoincidence logicofthetwoundervoltage relaysat917voltswith30cycletimedelay.(b)Device27A1-Provides thepermissive forclosingoftiebreakerDevice27A1isalongtimeinduction disctypeundervoltage relaysetat82volts(68%ofrated)andtimedial1/2.Twosinglephaserelayareprovidedformonitoring theavailability ofthealternate offsitepowersupplyatthe13.8kVlevelandprovideacoincidence logicfortheclosingofthetiebreaker(c)Device27A2-initiates thebustransfer)Device27A2isa3phaseinstantaneous plungertyperelaywiththreefullwavebridgerectifiers.

Therelayissettodropoutat30volt(25%ofrated).Bustransferiscompleted bytheclosingofthetiebreaker(permissive bydevice27A1).2.Each4.16kVclass1Eswitchgear busisprovidedwithapreferred andanalternate (offsite) powersupplyandonedieselgenerator feederasdiscussed inSubsection 83.1.3Theundervoltage detection andbackupbustransferonlossofoffsitepowerorsustained degradedvoltageonthebusisprovidedby(1)incomingfeederundervoltage relay-device 27',(2)busundervoltage relay-device27A,and(3)degradedvoltageprotection relays-devices 27B1,27B2,27B3,and27B4.ThedevicesettingsfortheClassIEbusundervoltage protection aresummarized inthefollowing Table40.6-1.Rev.22,.4(83>040.6-4 SSES-FSAR Device27AI-providesthepermissive forclosingoftheincomingbreakerDevice27AIisasinglephaseinduction disctyperelaysetat92voltsandtimedial1/2.Thisrelayisusedtomonitortheavailability of'theoffsitepowersupplyattheclasslE4.16ivlevel.(b)Device27A-initiates thebustransferDevice27Aisa3phaseinstantaneous plungertyperelaywiththreefullwaverectifiers.

Therelayissettodropoutat18voltor15%ofratedbusvoltage.The4.16kVbustransferisinitiated withatimedelayof10cyclesbytrippingofthepreferincomingfeederbreaker.Thetransferiscompleted ifthealternate offsitepowersupplytothis4.16kVbusisavailable (permissive bydevice27AI).Incasethealternate offsitepowerisnotavailable, thestandbydieselgenerator isinitiated tostartwitha0.5seconddelay.(c)Devices27B1,27B2,27B3,and27B4-initiatebustransferandundervoltage alarm.Theseundervoltage relaysaresolid-state,singlephasewithdefinitetimedelay(ITE27Dtypedefinitelongtime).Theadditional levelvoltageprotection foreach4.16kVClassIEbusisprovidedtoassurethatvoltagelevelsatallClassIEdistribution busesmeettheminimumrequirement ofallsafetyrelatedequipment.

Intheeventoflossofvoltageonthe4.16kVClassIEbus,thebusundervoltage relay(27A)initiates bustransferperparagraph (b)above.Inaddition, relays27Bl,27B2,27B3,and27B4providebackupprotection foralarmsandinitiating bustransfer.

Ifadegradedvoltagecondition occursonthe4.16kVClassIEbus,withnoLOCAsignalpresent(seeFigure8.3-15),whichisbelowthesettingofrelays27B1and27B2,analarm(coincidence logic)willbeinitiated after10seconds.Thesamerelayswillinitiatethebustransferafter30minutesLOCAsignalswillbypassrelays27B1and27B2orbustransferwillbeblockedbyLOCA.The10secondtimedelayisprovidedtoprecludespuriousalarms.The30~inutes timedelayisprovidedforoperators toinitiatecorrective actions.Theserelaysprovidepre-alarm toalerttheoperatorthat"abnormal" voltagecondition existsattheClassIEbus.Rev.22,4/81040.6-5 SSES-FSAR Inaddition, relays27B3and27B4willinitiateanalarmandbustransferafter17secondswhenthebusvoltageisdegradedbelowthesettingcoincident withanLOCAcondition.

Thesetworelaysarealsoconnected inacoincident logicwithtimedelayrelaystoprecludespurioustrippingoftheoffsitepowersources.Thisprotective schemewillforcealossofoffsitepoweronthe4.16kVClassIEbusondegradedbusvoltage.Ifthealternate offsitepowerisnotavailable, theemergency dieselgenerator willbestartedautomatically witha0.5seconddelayandconnected totherespective buswithin10secondspersection8.3.1.4.1.

Allbusundervoltage relayswillinitiatebustransfer, onlywhenthebusisfedfromtheoffsitepowersupplies.

However,theserelayswillinitiateundervoltage alarmevenwhenthebusisenergized byemergency dieselgenerator.

II.(1)Selection ofallvoltagerelaysettingsisbasedontheon-sitedistribution systemloadflowstudyandisverifiedbypreopezational tests.Thecontinuous operating voltageateachdistribution voltagelevelismaintained at,+10%oftheratedvoltagelevelovertheentiretransmission gridoperating range.Trippingoftheoffsitepoversupplyatthe13.8kVlevelisaccomplished byacoincidence logicoftvoindependent'ingle phaseundervoltage relays.ThebackuptrippingofthesameoffsitepowersupplytotheClass1E416kVsvitchgear isprovidedbya3phasefullwaverectifiers typeundezvoltage relayforminimizing nuisancetrippingsuchaslossofa-..single controlfuseinthedetection circuit..

Thetotaltimedelayallowedbyrestarting

{starting) ofclasslEequipment afteraDBAis13secondsasshownon'able8.3-1.10secondsisreservedfordieselgenerator starting.

Therefore, 3secondsisallocated forvoltagesensingandbustransfer.

Pze-operating testsvillverifythatthetimedelayonthebustransferdoesnotexceedtheallowable time.Asdiscussed in(I)ofabove,offsitepowersupplyzsautomatically disconnected atthe13.8kVlevel.Ifthetransferisnotcompleted withinthetimedelayoftheClass1E416kVbustransfercircuit,theoffsitepowersupplyisalsodisconnected atthe4.16kVlevel.Theundervoltage detection sensorsandcircuitsaredesignedinaccordance withIEEEstd279-1971Rev.22,4/81040.6-6 SSES-FSAR 4)4((2)Allloadsoneach4.16kVClass1Eswitchgear busexceptthe480voltloadcentercederareshedonlossofpowertothebus.Oncethebusisre-energized, the4.16kVClasslEloadsareloadedinaccordance withthepre-settimedelay.Loadsheddingandreloading of4.16kVclasslEloadsarerepeatedasdiscussed abovewheneverthebusbecomesde-energized.

(4)RefertoChapter16forTechnical Specification.

Transformer tapsettingsaceselectedforoptionaloperating voltagelevelsfora11loadingconditions undertheanticipated voltagevariation oftheoffsitepowersupplies.

Thecontinuous operating voltageateachlevelismaintained within+10%orated.Pre-opeationaltestsverifytheactualvoltagelevels.III.RelaySettings:

Thefunctionandsettingsofundervoltage relaysaredetermined inconsideration ofthefullload,minimumload,andthelargestmotorstartingconditions thatareexpectedthroughout theanticipated rangeofvoltagevariations fortheoffsitepowersources.Thefollowing designcriteriaareused:(1)Themaximumallowable voltageatnoloadortheminimumloadcondztxons is110%ofthemotorratedvoltage.(2)Theminimumvoltageunderthemaximumrunningloadcondition xs90/ofthebusratedvoltage.(3)Theminimumstartingvoltageis80%ofmotorratedvoltage.SeeTable40.6-1.Rev.22,4/81040.6-7 SSES-FSAR TABLE40.6-1SETTINGTABLE(4KVBUS)DeviceNo.27AI(preferred)

FunctionPermissive toclosethepreferred powerincomingBreaker.AlarmYesVoltage~nettin95%Time~nettin8sec.27AI(alternate)

Permissive toclosethealternate powerincomingBreakerYes95%8sec.27A59/27Initiatebustransfer.

Triptheincomingclosedbreaker.Busover/under voltage(alarmonly&locatedinloadcenter)YesYes15%110%/90%10cycles10sec.27Bl27B2Undervoltage alarmandinitiatebustransferwithtimedelayrelays.Yes95%10sec.27B1X27B2XTimedelayrelayswith27B1&27B2toinitiatebustransfer.

No30min.27B327B4InitiatebustransferonLOCAcondition No93%17sec.Rev.22,4/81 SSES-FSAR QUESTION040.32:Insection9.5.2.2youdescribetheplantcommunications systemprovided.

Itisnotedthatuseofradio(portable andfixed)communications hasbeenexcluded.

Aspartoftheplantdefense-in-depthconcept,intheeventofanaccidentorfireinanareawherefixedcommunications systemscannotbeused,werequire(asaminimum)thatportablecommunications equipment beprovidedatstrategic workstationsintheplantforusebypersonnel undersuchconditions.

RESPONSE

RefertorevisedSubsection 9.5.2andtheresponseprovidedtoquestion281.13.Rev.22,4/81040.32-1 SSES-FSAR UESTION40.951.Provideatablethatlistsallequipment including instrumentation andvitalsupportsystemequipment requiredtoachieveandmaintainhotand/orcoldshutdown.

Foreachequipment listed:a.Differentiate betweenequipment requiredtoachieveandmaintainhotshutdownandequipment requiredtoachieveandmaintaincoldshutdown.

b.Defineeachequipment's locationbyfirearea,c.Defineeachequipment's redundant counterpart, d.Identifyeachequipment's essential cabling(instrumentation, control,andpower).Foreachcableidentified:

(1)Describethecablerouting(byfirearea)'fromsourcetotermination, and(2)Identifyeachfirearealocationwherethecablesareseparated bylessthanawallhavingathree-hour fireratingfromcablesforanyredundant shutdownsystem,ande.Listanyproblemareasidentified byiteml.d.(2)abovethatwillbecorrected inaccordance withSectionIII.G.3ofAppendixR(i.e.,alternate ordedicated shutdowncapability).

RESPONSE

Themethodofverifying safe-shutdown capability suggested inQ40.95wasconsidered.

However,amoreefficient andlesstime-consuming butequallyeffective methodofreviewbasedonexamination ofeachfirezonewaschosen.First,alistofsystemsrequiredtoshutdowntheplantwasdeveloped.

Criteriaincludedalossofoffsitepower,allsystemsshouldbesafety-related,nosinglefailure(otherthanasinglefireanditseffects),

andthatmanualoperation andcontrolpost-fire wereacceptable.

SeeTable40.95-1.Toshowtheredundant equipment anddifferentiate betweenequipment requiredtoachieveandmaintainhotshutdownandequipment requiredtoachieveandmaintaincoldshutdown, Table40.95-1isdividedintothreegroupsofsystems,categorized bytheirfunctions, asdescribed below.GroupIconsistsofthosesystemsrequiredforbothhotandcoldshutdown.

Anexampleisthecontrolroddrivemanualscramcircuits.

GroupIsystemsarefurtherdividedintotwoindependent subsystems designated DivisionIandDivisionII.Divisions inanyoneGroupIsystemmustbesingle-fire isolated*

fromeachother.Rev.22,4/8140.95-1 SSES-FSAR GroupIIconsistsofthosesystemsrequiredforhotshutdown.

Severalsystemsarelistedt;ogether becauseoftheinterdependency ofthesesystems,e.g.dieselgenerators andauxiliaries.

Again,thesesystemsarefurtherdividedintoDivisions IandII.Allequipment andcablesessential forGroupII,DivisionI,mustbesingle-fire isolatedfromallessential cablesforGroupIIDivisionIIsystems.Hence,asanexample,RCIC(Division I)andHPCI(Division II)mustbesingle-fire isolated*

fromeachother.GroupIIIconsistsofthosesystemsrequiredforcoldshutdown.

Again,DivisionImustbesingle-fire isolated*

fromDivisionII.Thosesystemswithcontainment isolation valveshaveacross-divisonal circuit.Thisisnecessary fordiversecontainment isolation function.

Ifthesystem,sayHPCI,isDivisionII,thecross-division isolation valvecircuitswouldberoutedintheirownseparated conduits.

Likewise, theRCICsystem,DivisionI,thecross-divisional circuitswouldberoutedintheirownconduits.

Thecrossdivisional circuitsofthesetwosystems,willbesingle-fire isolatedfromeachotherandfrombothDivisions IandIIuptothebreaker.Table40'5-2isaspecificcomponent listingofthosedevicesessential tothefunctioning ofthesystemsinTable40.95-1.Firezonelocationforeachdeviceisalso-listed.Unit2equipment fornon-common systemsdifferonlyinthattheprefix1ischangedto2forbothequipment numberandfirezone.Thespecificmethodofcablereviewisdescribed below.TheFireProtection ReviewReportanalysis(Section4.0)verifiesthatfireswillbecontained withinthezoneoforigin.Eachfirezoneisreviewedindividually.

First,aracewaylayoutdrawingismarkedtoshowthedivisionalization ofthesafety-related raceway.Theminoritydivisionisidentified anditsracewayislisted.Theterm"minority division" referstotheelectrical divisionwhichhasfewerofitsracewaysroutedthroughthefirezoneinquestion.

Actually, eitherdivisioncouldbechosenforfurtherexamination, buttheminoritydivisionrepresents theleasteffort.Thecablesinallthelistedminorityracewaysarechecked,andanynotconnected toasafeshutdownsystemasgiveninTable40.95-1ortoanyofthecomponents listedinTable40.95-2aredeleted.Allcableleftisreviewedforitssupportofthesystem'ssafeshutdownfunction(s) andfortheeffectsoffailurecausedbyfire.Thisstepleavessafeshutdowncablingthatviolatesfirezoneseparation.

Eachcableorcomponent isthenreviewedforapplicable fireprotection measures.

Thecableistheneitherreroutedorseparation barriersand/orsuppression anddetection systems,asnecessary, areprovided.

  • Single-fire isolatedmeanseitherinseparatefirezonesorhavingthefollowing fire-protection measures:

a)Fire/smoke detection isprovidedinallfirezonescontaining essential minoritydivisionsafeshutdownraceway..Rev.22,4/8140.95-2 FSAR-SSESTABLE40-95-1SystemsRequiredForShutdownGROUPI-SystemsRequiredforHot6ColdShutdownControlRodDrive-ManualScramCircuitsonlyMainSteamIsolation Valves(manualclosurefunctionsonly)Suppression PoolTemperature Mcnitorinq ReactorPressureVesselInstrumentation GROUPII-SystemsRequiredforHotShutdownDivisionIRCICADSESHESSWPumphouse HVACDieselGenerators andAuxiliaries DieselGenerator HVACContainment Instrument GasDivisionIlHPCIplusallDivisionIIofthesesystemsunderModeII,DivisionexceptRCIC.GROUpIII-SystemsRequiredforColdShutdownDivisionIRHRRHRSMESQESSMPumphouse HVACDieselGenerators andAuxiliaries DieselGenerator HVACDivisionIIAllDivisionIIofaboveRev.22,4/Sl SSES-FSAR 2.ProvideatablethatlistsClass1EandNon-Class IEcablesthatareassociated withtheessential safeshutdownsystemsidentified in,item1above.Foreachcablelisted:a.Definethecables'ssociation tothesafeshutdownsystem(commonpowersource,commonraceway,separation lessthanRegulatory Guide1.75guidelines, cablesforequipment whosespuriousoperation willadversely affectshutdownsystems,etc.))b.Describeeachassociated cablerouting(byfirearea)fromsourcetotermination, andc.Identifyeachlocationwheretheassociated cablesareseparated bylessthanawallhavingathree-hour fireratingfromcablesrequiredfororassociated withanyredundant shutdownsystem.RESPONSE:

a.Affiliated circuitsareusedinSSESinplaceof"associated" circuitswhicharedefinedinSection8.1.6.lnparagraph 4)and5).Theseparation/isolation betweenClassIEandnon-ClassIEcablesaredesignedtominimizeanyfailureinthenon-Class IEequipment fromcausingunacceptable influences intheClassIEsystem.b.Theaffiliated circuitsaresubjected tothesamerequirements asClassIEcircuits.

RefertoSections3.12.3.4and8.3.1.11.4 andTable8.3-10forcableroutingrequirements.

c.Theaffiliated cablesareroutedwiththeirrespective ClassIEcablesasdescribed inTable8.3-10.Therefore, theseparation betweentheaffiliated cablesandtheredundant ClassIEcables,including thosecablesrequiredforsafeshutdown, isinaccordance withRegulatory Guide1.75.The.responsetoQuestion40.95addresses thecableseparation betweenredundant shutdownsystems.Rev.22,4/8140.96-1 SSES-FSAR UESTION3.Provideoneofthefollowing foreachofthecircuitsidentified initem2.cabove:aTheresultsofananalysisthatdemonstrates thatfailurecausedbyopen,ground,orhotshortofcableswillnotaffectit'sassociated shutdownsystem,b.Identifyeachcircuitrequiring asolutioninaccordance withsectionIII.G.3ofAppendixR,orIdentifyeachcircuitmeetingtherequirements ofsectionIII.G.2ofAppendixR(i.e.,three-hour wall,20feetofclearspacewithautomatic firesuppression, orone-hourbarrierwithautomatic firesuppression).

RESPONSE

a.Anaffiliated circuitmayaffectitsassociated shutdownsystemintwoways:Affiliated circuitroutedwithshutdowncircuitorinsameenclosure:

A~nalaie:Anopencircuitofaffiliated cablewillnotaffectshutdownsystembecausetheClassIEcableandaffiliated cablehavethesamequalified cableinsulation.

(seeTable9.5-1).Forshortingorgrounding ofaffiliated

circuits, refertoSection8.1.6.lnparagraph 5)forthebasisandmethodsforseparation/isolation ofNon-Class IEandClassIEcircuits.

Theworstcredibleeventwhichcouldaffectoneoftheredundant shutdowntrainsthroughtheaffiliated circuitisafireinvolving aracewaycontaining bothaffiliated cableanditsassociated shutdownsystemcables.Assumeintheworstcasewherethesecablesareallshortedtogetherwith120Vac,125Vdc,250Vdc,or480Vaccableduetoafire.(4kVandhighervoltagecablesareroutedintheirownconduit).

Theprotective device(s) ofthefaultedcircuitsshouldbetrippedtopreventfurtherdamageintotheshutdownsystem.IftheClasslEprotective devicedoesnottrip,theshutdownequipment maybedamaged,andtherefore preventtheequipment fromperforming itsshutdownfunction.

However,failureofaClasslEdevicetotripmustbeconsidered asinglefailure,whichisbeyondthefireprotection designbasis.Inorderforthisshutdowntrain,asdesigned, tofailduetofire,thesemultiple, independent, lowprobability eventsmusthappensimultaneously.

Thisisconsidered extremely unlikely.

Rev.22,4/8140.97-1 SSES-PSAR (2)Affiliated circuitsharingthesamepowersupplyoftheassociated shutdowncircuits:

A~nalsis:Sameasdescribed inSection8.1.6.1.n forseparation/isolation ofnon-Class IEandClassIEcircuits.

b.Rc.Theaffiliated circuitsaresubjected tothesamerequirements asClassIEcircuits.

Theresponsetoquestion40.95addresses thiscondition.

Rev.22,4/8140.97-2 SSES-FSAR 5~Theresidualheatremovalsystemisgenerally alowpressuresystemthatinterfaces withthehighpressureprimarycoolantsystem.ToprecludeaLOCAthroughthisinterface, werequirecompliance withtherecommendations ofBranchTechnical PositionRSB5-1.Thus,thisinterface mostlikelyconsistsoftworedundant andindependent motoroperatedvalveswithdiverseinterlocks inaccordance withBranchTechnical PositionICSB3.Thesetwomotoroperatedvalvesandtheirassociated cablemaybesubjecttoasinglefirehazard.Itisourconcernthatthissinglefirecouldcausethetwovalvestoopenresulting inafire-initiated IOCAthroughthesubjecthigh-lowpressuresysteminterface.

Toassurethatthisinterface andotherhigh-lowpressureinterfaces areadequately protected fromtheeffectsofasinglefire,werequirethefollowing information:

a~Identifyeachhigh-lowpressureinterface thatusesredundant electrically controlled devices(suchastwoseriesmotoroperatedvalves)toisolateorprecluderuptureofanyprimarycoolantboundary.

b.Identifyeachdevice'sessential cabling(powerandcontrol)anddescribethecablerouting(byfirearea)fromsourcetotermination.

C.Identifyeachlocationwheretheidentified cablesareseparated bylessthanawallhavingathree-hour fireratingfromcablesfortheredundant device.d.Fortheareasidentified initemcabove(ifany),providethebasesandjustification astotheacceptability oftheexistingdesignoranyproposedmodifications.

RESPONSE

Wehavereviewedthemajorreactorpressureboundaryhighpressure/low pressureinterface valvesperBranchTechnical PositionRSB5-1.Usingthesecriteria, checkvalvesinserieswithmotoroperatedvalves(MOVs)areacceptable.

AfirecouldopenonlytheMOV.Manyoccurrences ofthiscombination ofcheckandMOVexistatSSESintheCoreSpray,Feedwater, andResidualHeatRemovalSystems,amongothers.Usuallyassociated withthecheckvalveisapneumatic operator.

Thisoperatorisfortestingpurposesonlyandcanneitherunseatnorpreventfromseatingthevalveflapperwhenadifferential pressureexistsacrossthevalve.Hence,afire-caused failureofthesolenoidactuators forthepneumatic operators onthesecheckvalvescannotcausethevalvestoopeninadvertently andthuscannotdegradethereactorcoolantpressureboundary.

Rev.22,4/Sl40.99"1 SSES-FSAR Inadditiontotheabove,threepairsofvalvesperunit(sixpairstotal),allassociated withtheRHRSystemashigh/lowpressureinterface valves,consistoftworemotelyoperatedvalvesinseries.Onepairofthesevalvesperunitintheshutdowncoolingsuctionline.TheotherpairareinthelinestoeachRHRheatexchanger foruseinthesteamcondensing mode.Thevalvenumbersaregivenbelow:Unit1HV-E-11-1F008/HV-E-ll-l F009ShutdownCoolingMode(motoroperated)

PV-E-ll-1F051A/PV-E-ll-l F052ASteamCondensing Mode(airoperated)

PV-E-ll-1F051B/PV-E-ll-l F052BSteamCondensing Mode(airoperated)

Unit2HV-E-11-2F008/HV-E-ll

-2F009ShutdownCoolingMode(motoroperated)

PV-E-ll-2F051A/PV-E-11

-2F052A'team Condensing Mode(airoperated)

PV"E-11-2F051B/PV-E-ll

-2F052BSteamCondensing Mode(airoperated)

Theshutdowncoolingsuctionvalvesareinseparatedivisions andaresubjecttothenormalseparation criteria.

Also,theinboardvalveislocatedinsidetheinertedcontainment whereafirecannotbepostulated.

Acable-by-cable separation reviewwasconducted; cablesfrombothvalvesarenotroutedinanysinglefirezoneotherthanthemaincontrolroomandtheRemoteShutdownPanels(RSP).Areactorpressurevesselinterlock preventsashutdowncoolingvalveswitchinthemaincontrolroomfromopeningitsvalvewheneverthevesselpressureexceedsthedesignratingofthedownstream RERpiping.Adesignchangeisunderwaytorelocatethepressureinterlock contactbetweentheMCRandtheRSP.Therelaypanelscontaining thepressurecontactsarelocatedinseparated relayrooms.Hence,afireoranoperatormistakeineithertheMCRorRSPwillnotcauseanoverpressurization.

Thesteamcondensing modevalvesareinterconnected bydesignforcoordinated steamadmission andpressurecontrolandhencearenotseparated nordivisionalized.

Shouldbothvalvesbedrivenopenbyfire,adequateoverpressurization protection existsviaPSV-Ell"F055A 8Btopreventruptureofthedownstream RHRpiping.Rev.22,4/8140.99-2 SSES-FSAR Figures3.6-1through3.6-9and3.6-14areindicated as"Later".Provideaschedulefortheirinclusion intheFSAR.RESPONSE:

Seerevisedfigures3.6-1through3.6-8.Figure3.6-9hasbeenintentionally leftblank.Figure3'-14willbeprovidedinthesecondquarterof1981.Rev.22,4/81110.29-1 SSES-FSAR Asrequiredby10CFR50.55a(g) werequestthatyousubmityourpreservice andinitial20monthinservice testingprogramforpumpsandvalves.Enclosure 110-3providesasuggested formatforthissubmittal andadiscussion ofinformation werequiretojustifyanyreliefrequests.

RESPONSE

Thepreservice andinitial20monthinservice testingprogramforpumpsandvalveshasbeensubmitted underseparatecover.Rev.22,4/81110.47-1 SSES-FSAR Areviewofthedesignadequacyofyoursafety-related electrical andmechanical equipment underseismicandhydrodynamic loadingswillbeperformed byourSeismicQualification ReviewTeam(SQRT).Asitevisitatsomefuturedatewillbenecessary toinspectandotherwise evaluateselectedequipment afterourreviewofthefollowing requested information.

TheSQRTeffortwillbeprimarily focusedontwosubjects.

Thefirstistheadequacyoftheoriginalsingle-axis, single-frequency testsoranalysesofequipment qualified perthecriteriaofZEEEStd.344-1971.

Thesecondsubjectisthequalification ofequipment forthecombinedseismicandhydrodynamic vibratory loadings.

Thefrequency ofthisvibration mayexceed33hertzandnegatetheoriginalassumption ofacomponents rigidityinsomecases.AttachedEnclosure 110-4describes theSQRTanditsprocedures.

SectionV.2.Arequiresinformation whichyoushouldsubmitsothatSQRTcanperformitsreview.SeveraloftheBNRHarkZIOLapplicants havestatedintheirClosureReportsthatequipment willbequalified fortheSRSScombination ofthehydrodynamic andseismicrequiredresponsespectra(RRS).Similarly, whenqualified byanalysis, thepeakdynamicresponses oftheequipment tothehydrodynamic andseismicloadswillbecombinedbySRSS.Thecombining bySRSSofeithertheRRSorpeakdynamicresponses forhydrodynamic andseismicloadingsisnotacceptable atthistime.Toaidthestaffinitsreview,provideacompilation oftherequiredresponsespectralistedbelowforeachflooroftheseismicCategory1buildings atyourplant.(1)theRRSfortheOBEorSSE,whichever iscontrolling.

lftheOBEiscontrolling, explainwhy.(2)thecontrolling hydrodynamic RRS(3)items(1)and(2)combinedbySRSS(4)items(1)and(2)combinedbyabsolutesum.RESPONSE:

Theconcernsraisedbythisquestionhavebeenaddressed intheSRQTsubmittals ofDecember, 1980,January,1981andFebruary, 1981.Rev.22,4/81110.50-1 SSES-PSAR QUESTION121.8:~ewillrequirethatyourinspection programforClass1,Zand3components beinaccordance withthe=evise'ules in10CEHPdr50,Section50.55a,paragraph (g)publ'shed inthePebruary12,1976issueofthe."-EDERAL REGISTER.

Toevaluateyourinspec-ion p"ogram,"hefollowing minimuminformation isnecessary rorourreview:(1)Apreservice inspection plantoconsis-oftheapplicable ASllECodeEditionandtheexceptions totheCoderequirements.

(2)Aninservice inspection plansubmitted withinsixmonthsofanticipated commercial operation.

Thepreservice inspection planwillberevi..wed tosupportthesafetyevaluation reportfindingoncompliance withpreservice andinservice inspection requirements.

Thebasisforthedetermination willbecompliance with:(1)TheEditionofSectionXIoftheASl}ECodestatedinyourPSARorlaterEdit'onsofSectionXI=eferenced intheFEDERALREGISTERthatyoumayelecttoapply.Allaugmented examinations established bytheCommission whenaddedassurance ofstructural reliability wasdeemednecessary.

Examplesofaugmented examination requirements canbefoundinNRCpositions on(a)highenergyfluidsystemsinSRPSection3.2,(b)turbinediskintegrity inSRPSection10.2.3,and(c)feedwater inletnozzleinnerradii.Yourresponseshoulddefinetheapplicable SectionXIEdition(s)andsubsections.

Ifanyexamination requirements ofthe"-ditionofSectionXIinyourPSARcannotbemet,areliefrequestincluding completetechnical justificationtosupportyourconclusion mustbeprovided.

Theinservice inspection planshouldbesubmitted forreviewwithinsixmonthsofanticipated commercial operation todemonstrate compliance with10CFRPart50,Section50.55a,paragraph (g).Thisplanwillbeevaluated inasafetyevaluation reportsupplement.

Theobjective istoincorporate intotheinservice inspection programSectionXIrequirements ineffectsixmonthspriortocommercial operation andanyaugmented Rev.22,4/81121.8-1 examination requirements established bytheCommission.

Yourresponseshoulddefineallexamination requirements thatyoudetermine arenotpractical withinthelimitations ofdesign',geometry, andmaterials ofconstruction ofthecomponents.

Attachedaredetailedguidelines forthepreparation andcontentoftheinspection programsandreliefrequeststobesubmitted forstaffreview.RESPONSE:

Theinspection programforClass1,2and3components hasbeenprovided(PLA-619, N.W.CurtistoB.J.Youngblood dated1/27/81).Rev.22,4/81121.8-2 SSES-FSAR UESTION123.1PursuanttoGeneralDesignCriterion 2,safety-related structures, systemsandcomponents aretobedesignedforappropriate loadcombinations arisingfromaccidents andseverenaturalphenomena.

Withregardtothevibratory loadsattributed tothefeedbackofhydrodynamic loadsfromthepressuresuppression poolofthecontainment, thestaffrequiresthatsafety-related mechanical, electrical, instrumentation andcontrolequipment bedesignedandqualified towithstand effectsofhydrodynamic vibratory loadsassociated witheithersafetyreliefvalve(SRV)discharge ofLOCAblowdownintothepressuresuppression containment combinedwiththeeffectsofdynamicloadsarisingfromearthquakes.

Thecriteriatobeusedbythestafftodetermine theacceptability ofyourequipment qualification programforseismicanddynamicloadsareIEEEStd.344-1975assupplemented byRegulatory Guides1.100and1.92,andStandardReviewPlanSections3.9.2and3.10.Statetheextenttowhichtheequipment inyourplantmeetstheserequirements andtheaboverequirements tocombineseismicandhydrodynamic vibratory loads.Forequipment thatdoesnotmeettheserequirements providejustification fortheuseofothercriteria.

RESPONSE

I.BOPForSusquehanna Project,allBOPSafetyrelatedmechanical, electrical, instrumentation andcontrolequipment locatedinsidePrimaryContainment, ReactorandControlbuildings, isbeingqualified forSeismicloadsincombination withhydrodynamic vibratory loadsassociated withSRVdischarge andLOCAblowdown.

AlthoughtheSRSSmethodofcombination ofseismicandhydrodynamic loadsisacceptable, fortheprojecttobeconservative, theloadsarecombinedbyabsolutesummethod.Thecaseswhichhavedeviations fromtheabsolutesummethodofcombination willbeidentified inthequalification reports.Thecriteriaforthequalification ofBOPequipment forseismicloadsisdescribed inSection3.7b.3oftheFSAR.Thecriteriaforloadcombinations andmethodology forthedesignassessment andqualification ofSafetyrelatedBOPequipment forseismicandhydrodynamic loadshavebeendescribed inSections5'and7.1.7oftheDesignAssessment Report(DAR)Rev.2.Basically therequirements ofIEEEStd.344-1975asSupplemented byRegulatory guides1.100and1.92andSRPSections3.9.2and3.10arecoveredinthecriteriawiththefollowing exception forspatialcombination ofthreecomponents ofdynamicmotionasstatedinSection7.1.7.1.3 oftheDAR.Thecriteriastates"theresponseatanypointisthemaximumvalue~Rev.22,4/81123.1"1 SSES-FSAR obtainedbyaddingtheresponseduetoverticaldynamicloadwiththelargervalueoftheresponses duetooneofthehorizontal dynamicloadsbytheabsolutesummethod."AllSusquehanna BOPequipment isbeingqualified forthecriteriadiscussed above.II.NSSSLOADCOMBINATIONS:

Theseweretransmitted totheNRCon8/28/80asPage3ofAttachment NtoPLA-536.ThiswasinresponsetoNRCQuestion110.42.IMPLEMENTATION OFLOADCOMBINATIONS:

TheGESQRTProgramusesoutputsfromtheGEEquipment AdequacyEvaluation ProgramwhichcombinesdynamicloadsbySSESasacceptedbytheNRCinNUREG-0484.

Theindividual itemsassociated withtheloadcombinations areaddedasdescribed below:SteadyStateEvents(e.g.,DeadLoad,Pressure)

-AbsoluteSumTimeVaryingComponents (e.g.,MaximumSeismic,MaximumHydrodynamic)

-SRSSComponents ofEvents(e.g.,MaximumX-LoadDuetoY-Earthquake)

-SRSSModalResponse-SRSS, exceptforcloselyspacedmodeswhereeffectsarecombinedbyAbsoluteSum,DoubleSum,orGrouping.

Detailsforeachitemofequipment arecontained inthatequipment's DesignRecordFilewhichisavailable foraudit.Rev.22,4/81123.1"2 SSES-FSAR Providethefollowing information:

Twosummaryequipment lists(oneforNSSSsuppliedequipment andoneforBOPsuppliedequipment).

Theselistsshouldincludeallsafetyrelatedmechanical components, electrical, instrumen-tation,andcontrolequipment, including valveactuators andotherappurtenances ofactivepumpsandvalves.Inthelists,thefollowing information shouldbespecified foreachitemofequipment.

(1)Methodofqualification used:a)Analysisoftest(indicate thecompanythatpreparedthereport,thereference reportnumberanddateofthepublication).

b)Ifbytest,describewhetheritwasasingleormulti-frequency testandwhetherinputwassingleaxisormulti-axis.

c)Ifbyanalysis, describewhetherstaticordynamic,singleormultiple-axis analysiswasused.Providenaturalfrequency (orfrequencies) ofequipment.

(2)Indicatewhethertheequipment hasmetthequalification requirements.

(3)Indicatethesysteminwhichtheequipment islocatedandwhethertheequipment isrequiredfor:a)hotstand-byb)coldshutdownc)bothd)neither(4)Locationofequipment, i.e.,building, elevation.

(5)Availability forinspection (Istheequipment alreadyinstalled attheplantsite?)Rev.22,4/81123.2-1 SSES-FSAR (ii)Anacceptable scenarioofhowtomaintainhotstand-byandcoldshutdownbasedonthefollowing assumptions:

(1)SSEorOBE(2)Lossofoffsitepower(3)Anysinglefailure(iii)Acompilation oftherequiredresponsespectra(RRS)forallapplicable vibratory loads(individual andcombinedifrequired) foreachfloorofthenuclearstationunderconsideration.

RESPONSE

Theresponsetothisquestionwassubmitted viaPLA-627(CurtistoYoungblood) datedFebruary5,1981.Rev.22,4/81123.2-2 SSES-FSAR UESTION123.3Identifythoseitemsofnuclearsteamsupplysystemandbalance-of-plant equipment requiring reevaluation andspecifywhyreevaluation isnecessary (i.e.becausetheoriginalqualification usedthesinglefrequency, singleaxismethodology, becauseequipment isaffectedbyhydrodynamic loads,orbecausebothoftheaboveconditions werepresent)foreachitemofequipment.

RESPONSE

Originally almostallSafetyrelatedBOPequipments forSusquehanna hadbeenqualified foronlySeismicloads.Thisequipment hasbeenre-.evaluated duetotheinclusion ofnewhydrodynamic (SRV6LOCA)loads,andarebeingre-qualified withrespecttothecriteriadescribed inDARSection7.17.Thequalification programfortheBOPSafetyrelatedequipment isbeingexecutedinthefollowing fourphases.Phase-I:uglification ofEuimentforOnlSeismicLoads:qrempecxfx.ed xnFSARSubsectx.on 3.7b.3.Phase>>II:

Evaluation forCombinedSeismicandHdrodamic(SRV8LOCA)Loads:Theonlyknowndynamicloadatthetimeofexecution ofthisphaseoftheprogramwasSeismicloads.Duringthisphase,thevendorssupplying theequipment wererequiredtoqualifytheequipment inaccordance withthereuientssThisphasewasundertaken toevaluateiftheexistingSeismicqualification ofallSafetyrelatedBOPequipment couldbeextendedtothecombinedSeismicandhydrodynamic loads.Thecriteriausedforthere-evaluation isdescribed inDARSection7.1.7.Thegeneralproblemareasidentified duringthisevaluation andtheproposedactiontomitigatetheseproblemsareshownbelow.Rev.22,4/81123.3-1 SSES-FSAR PROBLEMACTIONAdditional Hydrodynamic LoadsFlexibility ofEquipment Supportnotconsidered oRetestand/orReanalysis.

oModifications toequipment ortheirSupportsifrequired.

oProvideresponsespectreconsidering supportflexi-bility.Inadequate Modelling Inadequate TestingoIncludeSupportConditions duringanalysisortesting.oCorrectduringreanalysis.

oRetestoQualification byanalysis.

PhaseIII:Reuglification Efforts:Specifically, theProblemareasidentified inthepreviousphaseareresolvedduringthisphasebytakingappropriate actions.There-qualification reportsdemonstrate thatthecriteriaofDARSection7.1.7havebeencompliedwith.PhaseIV:Modifications toEuimentorEuimentSuorts:Equipment ortheirSupportsneedingmodifications identified duringtheregulations effortsofPhaseIIIareexecutedduringthisphase.Thefollowing areNSSSequipment:

SYSTEMSafetyReliefValveMSIVFlowElementRecirc.PumpMotorGateValveHCUCRDValvesSLCStorageTankSLCAccumulator SLCPumpSLCExplosive ValveMPLijB21F013B21F022/F028 B21N051/52/53/54 B31C001B31F023/31/32 C12D001C12F009/10/ll/12 C41A001C41A003C41C001C41F004Rev.22,4/81123.3-2 RHRHeatExchanger RHRPumpFlowOrificeAssemblyLPCSPump6MotorFlowOrificeAssemblyMSIVHeaterMSIVBlowerHPCIPumpHPCITurbineFlowOrificeAssemblyRCICPumpRCICTurbineFlowOrificeAssemblyFuelPrepMachineGen.PurposeGrappleDryerSSeparator SlingHeadStrongBackControlRodGrappleRefueling PlatformInVesselRackDef.FuelStorageCont.FuelStorageVaultSSES-FSAR CONTROLROOMPANELSE11B001E11C002E11N012/N014 E21C001E21N002E32B001E32C001/C002 E41C001E41C002E41N007E51C001E51C002E51N001E18E001F18E011F19E008F19E009F20E002E21E003F22E006F22E009F22E012ReactorCoreCoolingBBPowerRangeMonitoring CabinetRPSDiv.1and2LogVBRPSDiv.2and3LogicalVBNSSSTemperature RecorderVBFeedwater 8Recirculation Instrument PanelNSSSProcessInstrument PanelDiv1RHR/HPCIRelayVBDiv2RHR/HPCIRelayVBADSChARelayVBMSIVLeakageControlDiv2VBHPCIRelayVBRCICRelayVBInboardValveRelayBoardOutboardValveRelayVBDiv1CSRelayVBDiv2CSRelayVBADSChBRelayVBMSIVLeakageControlDiv1VBRadiation Monitoring Instrument PanelARadiation Monitoring Instrument PanelBOperating BBH12-P601H12-P608H12"P609H12-P611H12-P614H12-P612H12-P613H12-P617H12-P618H12-P628H12"P654H12-P620H12-P621H12"P622H12-P623H12-P626H12-P627H12-P631H12-P655H12-P606H12"P633'12-P680 Rev.22,4/8l123.3-3 SSES-FSAR Termination CabinetsPlantOperation Benchboard Condensing ChamberCondensing ChamberCondensing ChamberCondensing ChamberCondensing ChamberCondensing ChamberNUCLEARBOILERLOCALPANELSH12-P700SeriesH12-P853B21-D002B21-D004AB B21-D006AD B21-D007AD B21"D008AD B21-D009AD ReactorWaterClean-UpReactorVesselIevelandPressure(A)ReactorVesselLevelandPressure(B)Recirculation PumpAJetPumpBHighPressureCoolantInjection BReactorCoreIsolation CoolingAResidualHeatRemovalChannelAResidualHeatRemovalDiv.2ChannelBRecirculation PumpsDrywellPressureLocalPanelADrywellPressureLocalPanelBMainSteamIsolation ValveIeakageControlCoreSprayLocalPanelAStandbyLiquidControlMainSteamFlowA/BHighPressureCoolantInjection LeakDet.CoreSprayChannelBMainSteamFlowC/DHighPressureCoolantInjection ReactorCoreIsolation CoolingLeakDet.MainSteamFlowA/BMainSteamFlowC/DMainSteamIsolation ValveLeakageCon.HighPressureCoolantInjection Div.1AReactorCoreIsolation CoolingDiv.2BSRM/IRMNUCLEARBOILERTemperature ElementTemperature ElementTemperature ElementH23-P002H23-P004H23"P005H23-P009H23-P010H23-P014H23-PoljH23-P018H23"P021H23-P022H23"P057H23-P058H23"P074Div.2H23-P001H23-P011H23-P015H23-P016H23"P019H23-P025H23-P036H23-F038Div.2(B)H23-P041H23-P042H23-P073Div.1H23"P034H23-P037H23-P030/31/32/33 B21-N004B21"N010AD B21-N014AD Rev.22,4/81123.3-4 SSES-FSAR Transmitter Transmitter Transmitter Transmitter Transmitter Transmitter PressureSwitchTemperature ElementTemperature ElementVacuumSwitchTemperature ElementDifferential PressureTemperature ElementDifferential PressureLevelSwitchI,evelSwitchTemperature SwitchPressureTransmitter PressureIndicator Valve,GuideTubeMiscellaneous PartsPressureSwitchPressureSwitchLimitSwitchLimitSwitchI,evelTransmitter Temperature ElementDifferential PressureDifferential PressureDifferential PressurePressureSwitchSwitchPressureSwitchLevelSwitchLevelSwitchTemperature ElementTemperature ElementFlowIndicating SwitchDifferential PressureSwitchPressureSwitchFlowMeterLevelSwitchLevelSwitchLevelSwitchIevelSwitchIevelSwitchTemperature ElementTemperature ElementTemperature ElementTemperature Indicator I,evelSwitchTemperature ElementB21"N015AD B21-N016AD B21-N017B21-N056AD B21-N064B31-N014CD B31-N023AB B31-N024AB C12-N013AD C12-N013EF C41-N003C41-N004C41"R003C51-J004AE C51-5110001 C72-N003AD C72-N005AD C72-N006AD C72-N008AD Ell-N008AB Ell-N009AD Ell"N013Ell-N015A Ell-N015B Ell-N018Ell-N021AB Ell-N022AB Ell-N023AB Ell-N024Ell-N029AD Ell-N030AD Ell"N033AB E21-N003AB E21-N006AB E21-N007AB E32-N006E41-N002E41-N003E14-N014E41-N015AB E41"N018E41-N024AB E41-N025AH E41-N028AB E41-R002E51-N010E51-N011AB thruE41-N030AB Rev.22,4/81123.3-5 SSES"FSAR Temperature Temperature Temperature Temperature Temperature Temperature Temperature Temperature SwitchElementElementElementElement.Indicator ElementElementElementE51-N021AB E51-N022AB E51-N023AB E51-N025AD thruE51-N027AD E51-R005G33-N016AF G33-N022AF G33-N023AF G33-N044A Rev.22,4/81123.3-6 SSES"FSAR QUESTION123.4:Describethemethodsandcriteriausedtodetermine theacceptability oftheoriginalequipment qualification tomeettherequiredresponsespectraofitem2.(iii).-123.2(iii).RESPONSE:

I.BOPForcases.wheretheoriginalspectraforwhichanequipment wasqualified enveloped thecombinedSeismicandhydrodynamic loadspectraofItem123.2(iii),theequipment isconsidered qualified.

Otherwise (whichistrueformostcases)theequipment, isrequalified forthecombinedspectratomeetthecriteriadiscussed inresponsetoQuestions 123.1.Thesecriteriaaredescribed inSection7.1.7oftheDesignAssessment Report.II.NSSSThemethodsandcriteriausedtodetermine theacceptability oftheoriginalequipment qualification maybefoundinGeneralElectricCompany's Proprietary reports:NEDE-24788, "SeismicQualification ReviewTeam(SQRT)Technical ApproachforRe-Evaluation ofBWR4/5Equipment";

andNEDE-25250 "GenericCriteriaForHigh-Frequency CutoffofBWREquipment".

Rev.22,4/81123.4-1 SSES-FSAR Describethemethodsandcriteriausedtoaddressthevibration fatiquecycleeffectsontheaffectedequipment duetorequiredloadingconditions.

RESPONSE

I.BOPAsdescribed inSubsection 3.7b.3.2ofFSAR,ingeneral,thedesignofequipment isnotfatiguecontrolled sincethenumberofcyclesinanearthquake islow.ForcombinedSeismicandhydrodynamic loadsforequipment qualified byanalysis, thefatigueeffectsareimplicitly considered sincethestressesduetoSRV(whicharegenerally controlling forfatigue)areasmallcontribution totheoverallequipment stresses.

FatigueeffectsinBOPequipment qualified bytestingareaccounted forbyrepetition ofthetests.Typically testsaredonefor5OBE(or5upsetconditions, i.e.,OBE+SRV+LOCA)followedby1SSE(or1faultedcondition, i.e.,SSE+SRV+LOCA)ineachoffront-to-back/vertical andside-to-side/vertical biaxialconfigurations.

Inaddition, onsomeselectedpiecesofequipment, vibratory tabletestingiscarriedoutforanextendeddurationoftime(suchas30to60minutes)beyondthecombinedloadingtest.Theinputmotionsfortheextendeddurationtestswillbesuchthatthegenerated testresponsespectraforanysegmentoftheextendeddurationtestswillenvelopetheSRVspectra.Furthermore, itwillbeascertained thattheequipment performsitsintendedfunctionbefore,duringandafterthevibratory tabletests.Theresultsoftheextendeddurationtestswillbedocumented intherespective qualification reports.II.NSSSVibration fatiguecycleeffectsforNSSSequipment designedtoASMEcoderequirements wasreviewedatGEbyNRCconsultants fromBattellePacificNorthwest Laboratories onOctober7,1980.Theconsultants statedsatisfaction withtheGEapproachwhichencompasses OBE,SRV,thermalandpressurecycles.NonASMECodecomponents qualified bytestaddressthe"strongmotion"phaseofseismicandSRVdynamicmotionsufficient togeneratemaximumequipment response.

Theseloadsarecontrolling.

GEtestinggenerally consistsof5upsetand1faultedtestof30secondseachwhichisabout50$greaterthanrequiredtoaddressstrongmotionvibration.

Rev.22,4/81123.5-1 SSES-FSAR NonASMECodecomponents qualified byanalysisgenerally havenot,inthepast,hadtoaddressvibration fatiguecycleeffects.Inmostcases,sucheffectsarenotnowpartofthequalification record.Rev.22,4/Sl123.5-2 SSES-FSAR Basedonthemethodsandcriteriadescribed initems4and5,providetheresultsofthereviewoftheoriginalequipment qualification withidentification of(1)equipment whichhasfailedtomeettherequiredresponsespectraandrequiredrequalification, and(2)equipment whichwasfoundacceptable, togetherwiththenecessary information tojustifytheadequacyoftheoriginalqualificatioa.

RESPONSEI.BOPForcaseswheretheoriginalseismicreportscanbeextendedtoqualifyanequipment forcombinedseismicandhydrodynamic loadsbyinspection andsubsequent concurrence byvendor,suchdocuments formapartofthequalification package.Thefollowing piecesofequipment boughtundertheindicated purchaseorder(P.O.)fallintothiscategory:

(1)Coolingandchilledwaterpumps(P.O.gM-327)(2)Expansion TanksandAirSeparator Taaks(P.O.AM-302)(3)NitrogenGasAccumulators (P.O.j/M-156)TherestoftheBOPequipment isbeingqualified forthecriteriadescribed inSection7.1.7oftheDesignAssessment Report.Thequalification reportsforthisequipment willprovidetheappropriate documentation.

II.NSSSRefertotheResponsetoQuestion123.3forthelistofequipment reevaluated byGEoatheSusquehanna SQRTProgram.Alloftheequipment listedinqualified toSQRTCriteriawiththeexception ofthefollowiag:

B21"F022/F028 B31-F031/F032 C12>>F009/F010 F011/F012 C41-A003C41-F004E32-B001MSIVGateValveCRDValveSLCAccumulator SLCExplosive ValveMSIVHeaterDatarequiredfromvendorOperability deflection analysisrequiredOperability deflection analysisrequiredA/Epipeaccelerations requiredA/Epipeaccelerations requiredTestrequiredRev.22,4/81123.6-1 SSES-FSAR E41-C002E51-C002F22-E006F22-E009H12-P608H23-P030"P031"P032-P033163C1158272A8005272A8006HPCITurbineRCICTurbineInvesselRackDef.FuelStorageCont.PowerRangeMonitoring CabinetSRM/IRMPanelsFlowTransmitter onH23-P074SwitchonH12-P853SwitchonH12-853TestrequiredAnalysisoflubeoilpipingrequiredAnalysisrequiredAnalysisrequiredTestrequiredTestrequiredTestrequiredTestrequiredTestrequiredInformation tojustifyqualification oftheequipment selectedbytheNRCfortheSiteAuditwillbeavailable atthesiteforNRCinspection.

Information tojustifyqualification oftheremainder oftheequipment isavailable forNRCauditatGE-SanJose.Rev.22,4/Sl123.6-2 SSES-FSAR Describeprocedures andscheduleforcompletion ofeachitemidentified initem6.(1)123.6(1)thatrequiresrequalification.

RESPONSE

I.BOPTypically, thequalification programisexecutedinthefollowing steps.oDetermine Qualification AwardsRequestVendor(orConsultant)

QuoteReceiveandEvaluateQuotePlacePurchaseOrderoPerformQualification REviewTestProcedure ReviewAnalysisMethodology BeginAnalysisorTestingoFinalCompletion ReceiveandreviewRequalification ReportsFinalApprovaloftheReportThescheduleforthecompletion ofthequalification programisshownintheattachedTable123.7-1.II.NSSSTheresponsetoQuestion123.6liststheequipment foundbyGEtorequirerequalification alongwithastatement definingtheworktobeperformed.

Allrequalification willbecompleted onaschedulesufficient topermitNRCreviewpriortofuelload.Rev.22,4/Sl123.7-1 TABLE123.7-1SCHEDULEFORCOMPLETION OFEUIPMENTREQUALIFICATION Page1of6SQRTFormNo.E-109-1E"109-2E-112E"117-1E-118E"119A"1E-119A-2E-119A-3E-119BCE-120-1-120"2E-121-1E-121"2E-135-1E-135-2E-136E"151E-152E-155J-038AE~niment4kVSwitchgear 4kVSwitchgear Sub-Components ESW8RHRPumpMotors480VSafe-Guard LoadCenterUnitSubstations 480VMotorControlCentersBatteryMonitorsBatteryFuseBoxeseBatteryChargers24Vdc,125VdcS250VdcBatteryCells6Racks125VdcDistribution Panels24VdcDistribution Panels125V6250VdcIoadCenters250VdcControlCentersElectrical Penetration (MediumVoltage)Electrical Penetration (LowVoltage)ACInstrument Transformers MotorGenerator Sets8ControlCabinetAutomatic TransferSwitchesControlSwitchesFieldMountedElectronic PressureTransmitters No.ofItems/2Units12122420162216121232144Sets4432Completion Date3-13-815-15-81Complete3-27-814-17-813-27-813-27-813-27-815-29"813-20-814-10-813-27-814-10-815-15-815-15-813-27-81CompleteComplete6-15-81CompleteRev.22,4/81 SQRTFormNo.J-03B-1thruJ-03B-14E~nimentPanel-MountedInstruments No.ofItems/2Units242Page2of6Completion Date4thquarter1981J-05A-14,31,33,37, ControlPanels6Devices10A6B,43,47,49, 92,93,95697315-30-81(panels)6-15-81(devices)

J-05B-1RemoteShutdownControlPanel5-30-81(panels)6-15-81(devices)

J-27J-31J-59-1thruJ-59-10ReactorCoolantPressureBoundaryLeakDetection SystemAnnubarFlowElementsRTD's54Complete(panels)6-15-81(devices)

Complete5"22-81J-65-1thruJ-65-4ControlValvesinNuclearService283-27-81J-65B-1thruJ-65B-llControlValvesinNuclearService863-27-81J-69-162J-69B-1thru6J-70-1J-70-2J-92-1thruJ"92-5PilotSolenoidValvesPilotSolenoidValvesPressureRegulating ValvesProcessSolenoidValvesExcessFlowCheckValves74762385-15-815-15-815-15-815-15-815-1-81J-98CarrierModulator (Isolator) 6"15-&1M-llM"12M"22-162M-30(78forms)M-30(6forms)M-55ESWPumpsRHRSuctionWaterPumpsReactorBuildingCranesDieselGenerator DieselGenerator ReactorVesselTopHeadInsulation SupportSteel4Sets4SetsCompleteComplete4-3-81Complete2"27-81CompleteRev.22,4/81 SQRTFormNo.E-58M-60M-87-1M-87-2M-90M-149M"151M-156E~nimentDieselOilTransferPumpsBuriedDieselGenerator FuelOilStorageTanksContainment HydrogenRecombiners HydrogenRecombiner PowerSupplyFuelPoolSkimmerSurgeTanksContainment VacuumReliefValvesSuppression PoolSuctionStrainers Containment NitrogenGasAccumulators No.ofItems/2Units203260Page3of6Completion DateComplete3-27-815-15-81Complete4-27-815-22-81CompleteCompleteM-159-1thruM-159-21NuclearSafety8ReliefValves585-1-81M-160ACSRVDischarge Line8,RHRReliefValveF055Discharge LineVacuumBreakers685-15-81M-164-192CRDVentValvePlatformHighDensitySpentFuelPoolRacks48ModulesCompleteCompleteM"302M-307-1thruM-307-3Expansion Tanks6AirSeparators Centrifugal FansComplete3-13-81M-308"1M-308"2VaneAxialFans,ReactorBuildingVaneAxialFans,Diesel'enerator Building5-1"81CompleteM-308-364M-309-1thruM>>309-4VaneAxialFans,ESSWPumphouse AirHandlingUnits12Complete4-17-81M"310M"315M-317'-320"1Centrifugal WaterChillersReactorBuildingUnitCoolersDrywellUnitCoolersChlorineDetectors 24125-22-815-29-813"27-816-15-81Rev.22,4/81 SQRTFormNo.M-320-2-1A 61BM-320-2-2A M-320-3M-320-4M-370-5A65BM-320-6-1A 61BM"320-6-2A M-320"6-3A 67M-320-8M-320-9M-320-10M-321"1M-321-2M"321-3~EnimentFlowSwitchesFlowSwitchesLevelGaugePressureDifferential SwitchesTemperature SwitchesTemperature SwitchesTemperature SwitchesTemperature SwitchesPressureDifferential Transmitter Temperature DetectorUnitLevelSwitchesStandbyGasTreatment System-HousingStandbyGasTreatment System-DelugeDrainValvesStandbyGasTreatment System-ControlPanelsNo.ofItems/2Units282410184Page4of6Completion Date6-15-816-15-816-15-816-15-816-15-816-15-816-15-816-15-816"15-816-15"816-15-812-20-815-1-813-6-81M"323C-1M-323C-2M-325M-327-1M"327-2M-334-1thruZ-334-5AirFlowMonitoring UnitSGTSExhaustVentFlowCondition-ing8SamplingProbeSystemHighEfficiency Ventilation FiltersChilledWaterPumpCoolingWaterPumpHVACControlPanels6Devices123"13-813-13-81CompleteCompleteComplete5-30-81(panels)6-15-81(devices)

M-336AM-362M"365P"10A-1HVACDampersSGTSCentrifugal FansChilledWaterReliefValvesMotorOperatedGateValves,6008195Units5-8-81Complete5-1-816-15-81Rev.22,4/81 SQRTFormNo.-10A"2P-10A-3E~nimentMotorOperatedGateValves,9008MotorOperatedGlobeValves,900886008No.ofItems/2Units15Page5of6Completion Date6-15-816-15-81P-10BMotorOperatedStopCheckValves,90086-15-81P-11A-1P-11A-2MotorOperatedGateValves,900'irOperatedTestableCheckValves,90086-15-816"1-81P"12A-1P12A-2P12A-3P-12A"4MotorOperatedGateValves,150j/MotorOperatedGlobeValves,300j/MotorOperatedGateValves,300j/GearOperatedGate8GlobeValves,300jj24206-15-816-15-816-15-816-1-81P-12B-1P-12B"2-12B"3MotorOperatedGateValves,150jj63008AirOperatedGateValves,150j/GearOperatedGate8GlobeValves,150jj14136-15"816-1-816-1-81P-14AP-14BP-15AP15B-1P-15B-2P-16A-1MotorOperatedGlobeValves,15008MotorOperatedGlobeValves,1500//MotorOperatedGlobeValves,15008MotorOperatedGateValves,15008AirOperatedGateValves,1500'otor OperatedButterfly Valves,150jj18286-15"816-15-816-15-816-15-816-1-816-15-81P16A-2P-16A-3AirOperatedButterfly Valves,1500GearOperatedButterfly Valves,150jj126-1-816-1-81P"17A-1-17A-2MotorOperatedGateValves,900j/MotorOperatedGlobeValves,90086-15-816"15-81Rev.22,4/81 SQRTFormNo.P-17A-3P"17A"4P-17BP-18AP-31AE~nimentAirOperatedTestableCheckValves,9008GearOperatedGateValves,900//AirOperatedTestableCheckValves,90017GearOperatedGateValves,1508AirOperatedButterfly Valves,1508No.ofitems/2UnitsPage6of6Completion Date6-1"816-1-816-1-816-1-816-1-81Rev.22,4/81 SSES-FSAR UESTION123.8Describeplansforaconfirmatory in-situimpedance testandanin-plantSRVtestprogramorotheralternatives tocharacterize theabilityofequipment toaccommodate hydrodynamic loading.RESPONSE:

In-Situtestsarebeingperformed forthedetermination ofstructural dynamiccharacteristics oftheequipment forin-service condition.

Thisin-situinformation isbeingusedassupporting evidencefor(a)validating amathematical modelforqualification byanalysis, or(b)simulating thein-service condition onthevibratory tabletestsforqualification bytesting.Theresultsandtheusageofin-situtestingwillbedescribed intherespective qualification reports,wheneversuchtestsareperformed.

AllsafetyrelatedBOPequipment foSusquehanna projectisbeingqualified forcombinedseismicandhydrodynamic loadsforthecriteriadescribed inSection7.1.7ofDAR.Susquehanna hasnoplanstoperformanin-plantSRVtestforequipment qualifications,per se.Anairbubbletestwasconducted inthesuppression poolinanattempttosimulatetheeffectsofanSRVairclearingtransient load.Thedatafromthistestarebeingstudiedinanefforttodetermine theextentofconservatisms intheanalytical prediction ofappliedhydrodynamic loads.Rev.22,4/81123.8-1 SSES-FSAR Toconfirmtheextenttowhichthesafetyrelatedequipment meetstherequirements ofGeneralDesignCriterion 2,theSeismicQualification ReviewTeam(SQRT)willconductaplantsitereview.Forselectedequipment, SQRTwillreviewthecombinedrequiredresponsespectra(RRS)orthecombineddynamicresponse, examinetheequipment configuration andmounting, andthendetermine whetherthetestoranalysiswhichhasbeenconducted demonstrates compliance withtheRRSiftheequipment wasqualified bytest,ortheacceptable analytical criteriaifqualified byanalysis.

Thestaffrequiresthata"Qualification SummaryofEquipment" asshownontheattachedpagesbepreparedforeachselectedpieceofequipment andsubmitted tothestafftwoweekspriortotheplantsitevisit.Theapplicant shouldmakeavailable attheplantsiteforSQRTreviewallthepertinent documents andreportsofthequalification fortheselectedequipment.

Afterthevisit,theapplicant shouldbepreparedtosubmitcertainselecteddocuments andreportsforfurtherstaffreview.RESPONSE:

Susquehanna SQRTpre-visit information requiredforhasbeensubmitted forallBOPandNSSSequipment.

ofEquipment" andthepertinent documents, reports,necessary information asrequiredareavailable fortheSQRTsitereview"Qualification SummaryvendorprintsandallSQRTreview.Rev.22,4/81123.9-1 SSES-FSAR TheSusquehanna FSARSection3.7b.2.1indicates thatbothaflexiblebasemodelandafixedbasemodelwereutilizedfortheseismicanalysisofthecontainment building.

Discussandexplaintherationale forusingtwodifferent modelsfortheseismicanalysis.

Demonstrate theequivalency ofthetwomodelsbycomparing theirdynamiccharacteristics ontheresultsfromthetwoanalyses.

RESPONSE

Afixedbasemodelcanbejustified sincethecontainment isfoundedonhard,competent rock.Theminimumshearwavevelocity, Vs,fortherockis6200fps(reference:

Subsection 2.5.4.2.1).

Therefore, structural designofthecontainment wasbasedonthefixedbaseresults.Aflexiblebaseanalysis, whichtakesintoaccountsoilstructure interaction effects,wasusedtogeneratestructural responsespectraforevaluation ofequipment, pipingsystems,etc.SeeattachedFigures130.20-15 through130.20-18 forcomparative responsespectraatthetopofthereactorpedestalforbothfixedandflexiblebaseresults.Thestructural accelerations, shearforces,bendingmomentsandaxialforcesforthefixedandflexiblebaseanalysesgenerally differbylessthan20%withthemajorityofvalueswithin10-15'his isshownintheattachedFigures130.20-1through130.20-10.

Therefore, thetworesultsareconsidered comparable.

SinceseismicforcesfortheSusquehanna siteaccountforlessthan20%ofthetotalmaximumreinforcing steelstressforthegoverning loadcombination, the20%maximumincreaseinseismicresponsefortheflexiblebaseresultswouldresultinonlya4%increaseinstress.Thisincreaseinstressiswellwithintheexistingdesignmargin.Theflexiblebasedisplacements arelargerthanthefixedbasedisplacements byapproximately 20-50%.ThisisshownintheattachedFigures130.20-11 through130.20-14.

Theselargerdisplacements fortheflexiblebaseanalysiswereusedtodetermine therequiredseparation betweenthecontainment andthesurrounding reactorandcontrolbuildings.

Rev.22,4/81130.20-1 SSES-FSAR InTorsional AnalysisofDieselGenerator BuildingandESSNpumphouse:

Justifytheuseofstaticanalysisforadynamicphenomenon.

RESPONSE

Subsection 3.7b.2.11 states"Astaticanalysiswasdonetoaccountfortorsion...".

Thisstatement pertainstothedistribution ofseismicforces.Duringthedynamicanalysisstagetheinertiaforceateachmass.However,sincethecenterofrigiditydoesnotcoincidewiththecenterofmass,thereistorsion.Theinertiaforceobtainedfromthedynamicanalysiswasusedbymultiplying itwiththeeccentricity (thedistancebetweenthecenterofmassandthecenterofrigidity) toobtainthetorsional moment.Thismomentwasthendistributed tothestructural wallsforassessment.

Aminimumexcentricity of5%wasconsidered.

Rev.224/81130.21-1

.136-~0.128-FlexibleBaseModelResultsFixedBaseModelResults,~228I~3,0.220~caIo.2ooI/9'5'0.175II./8/0.154Ii~/so0.137l~/2Ij~/080.109I.oeqI1011~os'u~>77/I,052120.046I22(.ZS80.24023~8'830.614.~sos0.446IIj~345'0.294Ij~2/g0.183I'~/360.128II1524I~/97I~/8Io.128'7./~/2180.108Ij~ot30.09126~078I190.071III.o~tfIIRev.22,4//81UNITS:G's13.0320.021~a210,020SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENT HORIZONTAL ACCELERATIONS OBEFIGURE130.20-1 56789101213'~Z'Ml0.251I~83/,0.215I~zo30.189Ij~gzo0.169i~/50.152'(~/48~0.137l~/36Il0.126~/z5i~/o30.092IjlloBo(,0.067II~o520.0342214.390.33123II24~Z7oJ520716P.lt170.161~,/S457180.140I~/320.12126II~/2o190.100I~iot200.073l~//Z70,751I~5540.545I,I~I(~4410.360Ii~zBZ0.225I.(z+0.161UNITS:G'sRev.22,4/81,d5SUSQUEHANNA STEAMELECTRICSTATION210.034UNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENT HORIZONTAL ACCELERATIONS SSE.136-FlexibleBaseModelResults0.128-FixedBaseModelResults.FIGIIHE.130.20-2

.0400.059I~040>O.OS9l~03'PI.'iO.O58Ij~03S0.055Ii~0360.051I,~0340.047I~o3z0.043~O300.0391415161718~ocr0.062II.o65~0.061II~o~o0.057QP222425./030.103lII~ioo0.101.a%40.094f~os'.084I.a670.05420.032101213~2728.uz00.024l~0200,0153pI2926II19I~osI0.0122pIl~Oiafo.oovfII21~o~o0.0250.028I~Cnfj~o4o0.035l~o0.026Il~o20.017Il.j~o>O.OI77UNITS:G'sRev.22,4/81SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTo.136-FlexibleBase'odel Results0.128-FixedBaseModelResultsCONTAINMENT

VERTICAL, ACCELERATIONS OBElFIGIJRE130.20-3 9~0500.059101213~ops0.112I~O7O0.111'~is50.162II~tpo0.158tI22II~o~s0.109140.098III~fl1240.096II~IO80.089I~0690.10340.14715f4~~lB30.131/0.0850.097~OS20.089I16'Idio0.085~oII80.070~os80.08217~os@0.073.062~0570.0450.046.0050&I/~070.055t~osq0.041I~os0.027UNITS:Q'g42728I,CoOg0.050I~osv0.02930I4I~oso0.01242926I19~os~0.02220III21Ii~&i0.011IRev.22,4/81SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSIS'EPORT

~~~~~I136-.Flexible BaseMode'1Results0.3.28-FixedBaseModelResultsCONTAINMENT VERTICALACCELERATIONS

%REFIQURE~130.20-4 46~44164~(97260IM2~'1431232562g102~104~1,>>0l300423gag2883t51,440I&207,770~IRIDO1524264~$1g25eee~e'735~10>>2,070~2'LQO2,220~14)02,550QtI02,720ZERO3,62040003,830'tZI0161718261924e~ek1$~646~5958970'7ss1~>ag36455817766f99$4UNITS:KIPS124.010~44l0204O2~WOa13274,100~$55Q2127424$35Rev.22,4/SlD.136-FlexibleBaseMo'delResults0.128-FixedBaseModelResultsFIGURE130.20"5SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENT SHEARFORCESOBE se~4e201~25536648I010~573311261+014231,380I6$0010~654ese~4Il41.7so~2l302,180Z550e,sso~Z4l50151617440~4193404f449242517ceo~8qg014~Italo1028503ggg3.110[335l0e,eeo~3801826011~85l.7209I2.'430SZSQ194,68o5590404444447~485UNITS:KIPS12204,91o53004ee~54913'7210,040~kola 27see~6O7Rev.22,4/81II*..136-FlexibleBaseModelResults0.128-FixedBaseModelResultsFIGURE130.20-6SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENT SHEARFORCESARE 1022020.50~O.QS24,22~W.S/140222.ss~Z.pg42162'5~158.33F.'74242.42P.ag54o.s~6.061,0~6l~01615.4~IS~/2516.8~III.Z81.2~f/0171832I317~108//.28.8~3'7.I10105~ll5124~/'37145I~l149tgy1826173ZD,224.8ZV.519623,2so1~2.221916.6~242.62UNITS:10'.FT12256m32014.9l7.813214~34lo2115.s~l7.527222~@/22718.0/'7.IRev.22,4/81SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORT'0.136-FlexibleBaseModelResults.0'28-FixedBaseModelResults.CONTAINMENT MOMENTSOBEFIGURE130.20-7 1'22020.630.7/oss.ss~6.3&140232.873,2Co4.2s.g~3z.s249.14'1510.2l2.Is4g,g~6is.3sss~RO.6ioo~Ill1617251s.s~~Z3520.5~246S5.149.g10.iss~i5li52~f7178208183QJg182621.2263SOS38224.0304]UNITS:10sK-FT24s~ZOO~19so.s~Z5.512sis~3720is.s~z3.o13sss~4532112.7~Z'Z.727~~136-FlexibleBaseModelResults0.128-FixedBaseModelResults4~~53S22220qg,+Rev.22,4/81SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORT.CONTAINMENT MOMENTSs'c'CFIGURE130.20-8 2'2sv~4&ieo~~f2I1423131JrO10ees~IZED>'I4ss~SISsos~eJRQs7s~+72ese~Sg(7'Z792015161718-26so~@9~oet!04se~<7l491503396Q'26242517ee4~233ees~5361,010<>s~$4.gUNITS:KIPS'2131,070307120214es~$65Rev.22,4/811,090136-FlexibleBaseModelResults0.128-FixedBaseModelResults'31 SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINEMNTAXIALFORCESOBEFIGURE130.20-9 6I>>~+'2126Jg6777256~24026r5232os~Zan150~1085951&1oso~15<12so'~367145o~911590lQIG~lSI't1720161718261o2~l<~164~f41I719gQ764BOO614~7602517966~g(g525~4465UNITS:KIPS1219002010f12'0642~7i'll662~3544'13~t70l.2050126136-FlexibleBaseModelResults~~~0.128'FixedBaseModelResults.21669D5Rev.22,4/81.SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAlNMENT AX(ALFORCESSSEFIGURE'30..20-10 136-FlexibleBaseModelResults~~0.128-FixedBaseModelResults31.662396127I10Itc,C.'.8130.0i~aSI27.7I~3'I,2IiIj~~o,S21.4I~<<.918.7j)i~.~l>16.5j~2.(.0144I~j3,814151617182619t~18.9IjCn3l11.77.06II~~,SIUNITS:10FTI,~I411923ItIS6I.SiMi<<'399l83.5I,~so.ar53.94th32.4~1213'.69~4'.oe1.89't.t820213.54II'.10Rev.22,4/81SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENT HOBIZONTALDISPLACENIENTSOBEFIGURE130.20-11 D136-FlexibleBaseModelResults0.128-FixedBaseModelResultsS5I38.636.6i~vs.aI33.8I~s.i.zI~s.i~29.6IiE~M26.1Ii~os,z22.81415162223II24)48.8~7o4I551.~z<q189Ii~(145Ij~flII789101112i~si.si20.1'isa.s'7.5I'3.6!~lc..oIiI~la,4,i5.75II~a,ss132.32~<.sv17I'ns>>'+5'182.126j2<8'4.3UNITS:10~FT1920~I%1)8.65I4.37II3.'ti1.3721Rev.22,4/8iSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2'INALSAFETYANALYSISREPORT,CONTAINMENT HORIZONTAL DISPLACEMENTS SSEFIGURE130.20-12 151617d,649.34101213~o.f980.812Ij~o,89>2~0.804II~o,as+3,0,79114I'~o,see40.752.d.g2t5.'.703II~o,7'9260.648.~0,75670.594I.d,7l780.53518'~o.st@~omit~~0.4300.4460.658I2728'926j~o.5<770.329,19IIl~u~z300.21520II~a.slh0.090211.57II1.55II1.47I~no1.41I~/.481.16~I0.896I~d.974,0.667IIaazs0.427IIg,+700.181'223242517~Z.W72.69II1~2.i'22.64II1~21(2.47II,~2.5'2.22UNITS:104FTRev.22,4/81~d,Z95'~0,%9S~AZ'FS.$36-FlexibleBaseModelResults0.128-FixedBaseModelResultsSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTCONTAINMENT VERTICA'L DISPLACEMENTS OBEPIGIIRE,130.20-13

~ll.s~s101.53I1.51IIj~l.&O1.49II~r,ss1.41Ij~l.so1.321415l~l.4'31..2216It1.1217j~i.so'IS'.00l.J2'90e[,cg,OX'0.7750.754Ie22I.Ij~SDAp42.40II~s.t~"2.233.oS2.1917~41.80I!~i~1.395-514.18I.S.~I4.10I.~~asI3.44/ot.2.19UNITS:104FT12132728f29;~o<j0.616~II~O,RSL300.364jIj~o.aa0.170II~5Kb5,'5%>26Ij~l.7419i1.04I.~I.'L'9200.663Ij~o.ass21I0.282O.S3oRev.22,4/81SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORT.136-FlexibleBaseModelResults0.128-FixedBaseModelResultsCONTAINMENT VERTICALDISPLACEMENTS SSEFIGURE.130.20-14 1.8001.6001.4001.200zOcc1.000.800Pk~'hieWse..600.400.200.0000.1'0.20.40.61.02.04.06.010..20.FREQUENCY (HZ)40.60.100.LOCATION:

RPVPEDESTALDIRECTION:

HORIZONTAL EARTHQUAKE:

OBEDAMPING:0.005Rev.22,4/SlI.SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMAT'RPVPEDESTALHORIZONTAL OBEFIGURE130.20-15 0

/3.0002.7002.4002.100i.sooz0I-a1.5001.200F(exltl bd$8900600~300.0000.1'.20.40.61.02.04.06.010.FREQUENCY (HZ)20.40,60.100.LOCATION:

RPVPEDESTALDIRECTION:

HORIZONTAL EARTHQUAKE:

SSEDAMPING:0.010Rev.22,4/SlSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMATRPVPEDESTALHORIZONTAL SSEFIGURE130;20-16 kix'eelhase0.10.2OA06102.04.06.010.FREQUENCY (HZ)20.40.60.100..LOCATION.'PV PEDESTALDIRECTION:

VERTICALEARTHQUAKE:

OBEDAMPING:0.005Rev.22,4/B1SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMATRPVPEDESTALVERTICALOBEFIGURE130.17 2.0001.8001.6001.4001.200OI-cc1.000.800/legibleb~seri~Frxed!~b~t~600~400~200~0000.1~0.20.40.61.02.04.06,010.FREQUENCY

{HZ)20.40.60.100LOCATION:

RPVPEDESTALDIRECTION:

VERTICALEARTHQUAKE:

SSEDAMPING:0.010Rev.22,4/81~SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTRESPONSESPECTRUMATRPVPEDESTALVERTICALSSEhFIQURE130.'20-18

>IIIIIIIIIIIIIIIII)IIIIItttllll>llll.llllll'm IIIIII<IIIf~II~s~~~~~~~~~'FI~~~~~~~0.~~'I/LI~IMCNABle/4r/v/tICA4i4ftt6/At,c~L/.//rt/cae//esm~~~Jt~4/Ot/~A4C5CCAVOlOeV4W/ttl~!o/ktIIi/p)~.~f4"J'.C.\1tvRev.22/4/81SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTFINALPLANTGRADES,7.FIGURE2~5.-.24

SSES-FSAR QUESTION130.22:rExplainwhytheanalysisforthetorsional effectwasnotdonefortheReactorBuilding.

RESPONSE':

Thetorsional effectinthereactor/control buildingwasconsidered inthedynamicanalysis.

Units1and2wereconsidered simultaneously.

IntheN-Sdirection theeccentricity islargerthan5%.TheN-Sdynamicmodelpresented onFigure3.7b-10ofFSARconsistsof3sticksateachfloorandthestiffness distribution ofthestructural wallsaresuchthatproperrepresentation oftheeccentricity isobtained.

Therefore, thetorsional effectisproperlyaccounted forinthedynamicanalysis.

Thecomputeddynamicmemberforcesandmodelpaintresponses wereusedfortheassesment ofstructure andequipment.

IntheE-Wdirection (seeseismicmodelonFigure3.7b-9)theeccentricity islessthan5%.However,amiriimumeccentricity of5%wasconsidered byredistributing themasses.Thiswasdonefortheassesment ofwalls.Rev.224/81130.22-1 SSES-FSAR InFigure7-6whichshowsdowncomer bracingsystemdetails,itappearsthatthebracingisweldedtothelinerplatethroughtheuseofanembeddedplatewithoutanyanchorage tothecontainment concretewall.Sincethesteellinerplateisnotastructural component, indicatehowthepullingforcesfromthebracingcanberesistedandhowtheleaktight integrity ofthelinercanbemaintained.

RESPONSE

Downcomer bracingforcesareresistedbyembeddedanchorages inthecontainment concretewall.Thisdesignassurestheleaktight integrity ofthelinerplateismaintained.

Rev.22,4/81130.23-1 SSES-FSAR Itappearsthatportionsoftherecirculation pumpsealcoolingwaterarenotseismicCategoryI(Regulatory Guide1.29).Thestaffrequiresadditional information toshowthatacompletelossofpumpsealcoolingwaterwouldnotleadtounacceptable consequences.

RESPONSE

TwononseismicCategory1sourcesofcoolingareavailable totherecirculation pumpseals:recirculation pumpsealcoolingwatersuppliedbyRBCLCWandrecirculation pumpsealinjection watersuppliedbytheCRD-system.GeneralElectric's Licensing TopicalReport,NED0-24083, Recirculation PumpShaftSealLeakageAnalysis, provides:ananalytical basisforrecirculation pumpsealleakage,assumingafailureofbothcoolingwatersystems.Thisgenericanalysispredictsaboundingleakageratewellunder100gpm.Thegenericanalysisisapplicable toSusquehanna.

Thereportalsodocuments testresults,demonstrating thatpumpsealintegrity willbemaintained ifanyoneofthetwocoolingwatersystemsisoutofoperation atagiventime.Rev.22,4/81211.1-1 SSES-FSARQUESTION211.8TheSRP54.7statestheresidualheatremovalsystem(RHRS)shouldmeettherequirements ofGeneralDesignCriterion (GDC)34ofAppendixAto10CFRPart50.TheRHRbyitselfcannotaccomplish thcheatremovalfunctions asrequiredbyGDC34.Tocomplywiththesinglefailurecriterion theFSARdescribes analternate methodofachieving coldshutdowninSection15.2.9Insufficient information isprovidedtoallowanadequateevaluation ofthisalternate method.Inparticular, wehaverecentlyapprovedRevision2toSRP5.4.7(containinq BranchTechnical PositionRSB5-1)whichdelineates accceptable methodsformeetingthesinglefailurecriterion.

ThisBranchTechnical Positionrequirestestinqtodemonstrate theexpectedperformance ofthealternate methodforachievinq coldshutdown.

Youshoulddescribeplanstomeetthisrequirement.

Inaddition, werequirethatallcomponents ofthealternate systembesafetygrade(seismicCateqoryI).Asaresultofthisrequirement, theairsupplytotheautomatic depressurization system(ADS)valves,including thesystemupstreamoftheaccumulators, mustbesafetygrade.Thisairsupplymustbesufficient toaccountforairconsumption necessary forvalveoperation plusairlossduetosystemleakageoveraprolonged periodwithlossofoffsitepower.RESPONSE.

Asdiscussed inSubsection 93.1.5.1,thegassupplytotheADSvaluesandthebackupqassupplytotheADSaccumulators issafetygrade.Codescoveringthedesignandconstruction ofthesecompon'eats arediscussed inSubsection 9.3.1.5.1 Allcomponents thatareapartofthealternate shutdownloop(seeSd>section 15.2.9&Figs.15.2-14 and15,2-15areroutinely testedasrequiredbytechnical specifications.

Testingofthetotalalternate shutdownsystemwouldnotprovideanyadditional pertinent information andwouldresultinintroducing lowerquality(suppression pool)waterintothevessel.Bsedontheabove,wedonotfeelthattestingofthetotalloopisnecessary ordesirable.

Thisissuewastentatively resolvedwiththeNRContheShorehamdocket(BWR/4)byanagreement totestonesafetyreliefvalveinSanJosesimulating thealternate shutdowncondition.

Therationale foracceptance ofthisplanwasthattheSRVistheonlycomponent intheloopwhichhasnotbeendemonstrated tobesuitableforalternate shutdownconditions.

Thistest.wassuccessfully completed inDecember1979.Rev,224/812118-1 SSES-PSARGeneralHlectricinconjunction viththeThreeMileIslandOwnersGroupisplanninqfurtherSRVtestinqinresponsetoTMIrelatedissues.Thistestinq.villincludeconditions similartothealternate shutdovn-conditions andwillincludeavalveofCrosbyManufacture asisusedintheSusquehanna plant.Itisexpectedthatthesetestswillfurtherconfirmthatanin-planttestisnotrequiredtodemonstrate alternate shutdownconditions capability.

REV18,1$/802118-2 SSES-I'SAR QUESTION21185:Provideassurance thatadequateNPSHexistsforanECCSpassivefailureinawater-tightpumpcoom.Addressthepossibility ofvortexfomationatthesuctionoftheremaining ECCSpumpswiththeloweredpoollevel.Discusspreoperational teststobeperformed todemonstrate thatthereisnotimpairment ofECCSfunctionduetoloweredsuppression poollevel.RESPONSESeeSubsection 6.3.6fordiscussion ofNPSHavailability withECCSpassivefailureandofvortexformation inthesuppression pool.Testingforpumpoperation atminimumNPSHmarginisprovidedbypreoperational tests.Rev.22,4/8121185-1 SSES-FSAR Itisnotevidentthattheassumeddropof100Finfeedwater temperature 0givesaconservative resultofthistransient withmanualrecirculation flowcontrol.Forexample,afeedwater temperature dropofabout150FoccurredatonedomesticBWRresulting fromasingleelectrical component failure.Theelectrical equipment malfunction (circuitbreak-trip ofamotorcontrolcenter)causedacompletelossofallfeedwater heatingduetototallossofextraction steam.Accordingly, either(1)submitasuf-ficiently detailedfailuremodesandeffectsanalysis(FMEA)todemonstrate theadequacyofa100Ffeedwater temperature reduction relativetosingleelectrical malfunctions or(2)submitcalculations usingalimitingFWtemperature dropwhichclearlyboundscurrentoperating experience.

Also,temperature dropsoflessthan100Fcanoccurandinvolvemorerealistic slowchangeswithtime.Assumingallcombinations resultinslowtransients withthesurfaceheatfluxinequilibrium withtheneutronfluxattheoccurrence ofscram,asmallertemperature dropthan100FthatstillcausesscramcouldresultinalargerQCPR.Pleaseevaluatethistransient andjustifythattheassumedvaluesofthemagnitude andtimerateofchangeinthefeedwater temoerature areconservative.

RESPONSE

Nosingleelectrical component failurewillcausethelossofmorethanonetrainoffeedwater heatersasseparatepowersourcesaresuppliedtoeachofthefeedwater controlpanels.Eachfeedwater heatertrainconsistsoffivefeedwater heatersplusadraincooler.SSESdoesnothaveafeedwater heatertrainbypassline.TheGEfeedwater heatersystemdesignspecification requiresthatthemaximumtemperature decreasewhichcanbecausedbybypassing feedwater heater(s) byasimplevalveoperation willbelessthanorequalto100oF.Thisisthebasisoftheassumeddropof100Finfeedwater temperature intheanalysis.

Lossofonefeedwater heatertrainatSSESwillactuallyresultinsignificantly lessthana100Ftemperature drop.Itshouldbepointedoutthatasteadystate(i.e.,thesurfaceheatfluxinequilibrium withtheneutronflux)isassumedindetermining theMCPRduringthetransient.

Therefore, atemperature losssmallerthan100Fisnotexpectedtoresultinamymoresevereatransient thanthatanalyzedRev.22,4/81211.116-1 SSES-FSAR QUESTION211.120:Fortherecirculation pumpseizureaccidentwenoteinTable15.3-3thatcreditistakenfornonsafety-grade equipment toterminate thisevent.Section15.3.3oftheStandardReviewPlan,Revision1,rewuiresuseofonlysafety-grade equipment andthesafetyfunctions beaccomplished assumingtheworstsinglefailureofanactivecomponent.

Reevaluate thisaccidentwith theabovespecificcriteria, andprovidetheresulting CPRandpercentage offuelrodsinboilingtransition.

RESPONSE

Therecirculation pumpseizureenent,assumingtheoperation ofspecificnon-safety gradeequipment, hasamildimpactinrelationtothedesign-basisdouble-ended recirculation lingbreakinSectouns6.3and15.6.Failureofsuchequipment wouldnotmakethecoreperformance and/orradiological consequences ofthishighlyimprobable pumpseizure(rapidcoreflowdecrease) eventmorelimitingthanthemaximumDBA-LOCAaddressed intheFSAR.Therefore, noadditional evaluations areconsidered necessary.

TheFSARtexthasbeenrevisedregarding frequency classification bydeletingreferences toinfrequent incidentclassification inSubsection 15.3.3.1.2 and15.3'.1.2,recirculation pumpseizureandrecirculation pumpshaftbreakrespectively Rev.22,4/81211.120-1 SSES-FSAR Operation ofSusquehanna withpartialfeedwater heatingmightoccurduringmaintenance orasaresultofadecisiontooperatewithlowerfeedwater temperature nearendofcycle.Justifythatthismodeofoperation willnotresultin(1)greatermaximumreactorvesselpressures thanthoseobtainedwiththeassumption usedinSection5.2.2,or(2)amorelimiting5MCPRthanwouldbeobtainedwiththeassumptions usedinSection15.0.Thebasisforthemaximumreduction infeedwater heatingconsidered intheresponseshouldbeprovided(e.g.,specificturbineoperational limitations).

RESPONSE

Lowerfeedwater temperature increases thecoreinletsubcooling andresultsinacorresponding decreaseinboththecoreaveragevoidfractionandthesteamproduction.

Thefeedwater temperature of250oFisconsidered asthelowerlimitbasedontheconclusion thatplantswithimprovedinterference fitspargerscanberuninthismode(250FFFVZ)withoutadverseconsequences.

Typically, thecoreaveragevoidfractionisreducedby-16$whenthefeedwater temperature isreducedfrom420Fto250F.Thelowersteamproduction ratereducesthepeakpressures whichoccurduringatransient (Table211.125).

Theuseoffeedwater temperature reduction toextendthecyclebeyondnormalEOCisnotexpectedtoresultinmoreseveretransients.

Thelowervoidfraction("16$lowerat250FFFWT)reducesthedynamicvoidcoefficient andtheseverityofthetransient (i.e.,theACPRduetothetransient) isless.Table211.125providesthetypicalACPRnumbersfortwotransients analyzed.

Althoughthescramreactivity responseissomewhatdegradedduetothelessbottompeakedpowershape,theoverallresponseisdominated bythevoidfeedbackeffectsandtheresulting transient islesssevere.Reducingthefeedwater temperature beforeEOCwillnotresultinmoresevereplanttransient either.Thepeakpressures willbelessduetothereducedsteamproduction.

TheACPRwillbelessduetothesmallervoidcoefficient.

Duetothepresenceofasignificant numberofcontrolrodsinsertedintothecoreforthiscondition, thescramresponseisnotappreciably affectedbythefeedwater temperature reduction.

Inaddition, thetransient responseatpointsinthecycleotherthanEOCisconsistently lessthanEOC.Ifoperation inthereducedfeedwater temperature modeisutilized, priortooperation ananalyseswillbeperformed toshowthismodeofoperation willnotviolateMCPRsafetylimits,giventheeventsinChapter15.Rev.22,4/81211.125-1 TABLE211.125TRANSIENT ANALYSISRESULTSReactor~CeleTransient ExposurePointPeakVesselPressureCPRBWR4251"764Evil.cycleLoadrejection w/obypassRatedEOC(104.2/power)1235.17(ReducedFeedwater)

ExtendedEOCHeating(100$power)12190.16Feedwater Controller failureRatedEOC(104.2$power)12020.12(Reduced'eedwater)

ExtendedEOCHeating(100$power)10600.05*ODYNANALYSISRESULTSRev.22,4/81 SSES-FSAR Intheevaluation ofthe"generator loadrejection" transient, afull-stroke closuretimeof0.15secondsisassumedfortheturbinecontrolvalves(TCV).Section15.2.2.3.4 statesthattheassumedclosuretimeisconservative comparedtoanactualclosuretimeofmorelike0.20seconds.However,inFigure10.2-2,TurbineControlValveFastClosureCharacteristic, anacceptable TCVclosuretimeof0.08secondsisimplied.Explainthisapparentnon-conservative discrepancy andtheeffectithasonanalysesinChapter15requiring TCVclosure.RESPONSE:

The0.08secondsshowninFigure10.2.2isanacceptable valuewhereasthe.07secondsTCVclosuretimeinTables15.2-1and15.2-2istheboundingvalue.SeeresponsetoQuestion211.117forfurtherclarification tothisquestion.

Rev.22,4/81211.161-1 SSES-FSAR Thenarrative onpage15.4-13discussing the"abnormal startupofanidlerecirculation pump"transient states,"Thewaterleveldoesnotreacheitherthehighorlowlevelsetpoints."Table15.4.3.indicates alowleveltripoccurs22.0secondsafterpumpstart.Figure15.4-6indicates alowleveltripoccursapproximately 23.5secondsafterpumpstart.Further:a)Table15.4-6indicates alowlevelalarm10.5secondsafterpumpstartwhileFigure15.4-6indicates thisalarmoccursabout11.5secondsafterthepumpstarts.b)Table15.4-6indicates vessellevelbeginning tostabilize 50'secondsafterthepumpstarts.Figure15.4-6showsnosuchindication.

Resolvethesediscrepancies.

RESPONSE

ThesequenceinTable15.4-3startsoutwithascramat10secondsfollowing theimproperpumpstart.Figure15.4-6confirmsthis.At23.5seconds(ratherthan22)levelfallstoL3whichalsoissuesaredundant scramsignaltoasystemwhichhasalreadyscrammed.

ItistheintentofTable15.4-3hasbeenmodified.

a)Table15.4-4indicates L4nearllseconds.ThisisverifiedbyFigure15.4-6,b)Table15.4-4indicates thatvessellevelisbeginning tostabilize at50seconds.Thisappearstobecorrect.Actually, levelrecovered fromL3atabout41secondsandfrom30to40secondslevelischangingattherateof2.5in/sec.From50to60secondslevelrateisdefinitely flattening outundernormalfeedwater levelcontrol.Rev.224/81211.180-1 SSES-FSAR QUESTION211.210:Expandthediscussion inSection6.3todescribethedesignprovisions thatareincorporated tofacilitate maintenance (includinq draininqandflushing) andcontinuous operation oftheECCSpumps,seals,valves,heatexchangers, andpipingrunsinthelong-term LOCAmodeofoperation considering thatthewaterbeingrecirculated ispotentially veryradioactive.

RESPONSE

TheSusquehanna eguipment forlong-term coolinqfcllowing apostulated LOCAincludestwoccmpletecozespraysystemsandtwoRHRsystems.Thesetvosystemsconsistofatotalofeightpumpscapableofpzovidinq watertothereactorpressurevessel.Thepipinqandinstrumentation diagramsofthesesystemsareshowninFigures6.3-4and5.4-13.Lonq-term coolingvatercanbeprovidedtothecorebyoneRHR(LPCXmode)pumporoneCSloop(bothpumps),whileheatcanberejectedtotheultimateheatsinkviaeitherofthetwoRHRheatexchangers usingoneoffourRHRpumps.Thusamaximumofthreepumpsvouldberequiredforpost-LOCA corecoolinq.Allofthesecomponents aredesiqnedtoremainoperableduringandfollovinq aLossofCoolantAccident, andtheredundancy providedissuchthatmaintenance isnotexpectedtoberequiredduringthelong-tera corecoolingperiodfollowinq aLOCA.Hovever,theRHRandCoreSpraysystemsaredesignedwithprovisions forflushingasshovninFigures6.3-4and5.4-13.Rev.224/81211210-1 SSES-FSAR gDESTXON211.211:Severewaterhammeroccurrence intheECCSdischarge pipingduringstartupoftheECCSpumpsisavoidedbyensuringthatthedischarge pipesaremaintained fullofwater.Thecondensate transfersystemiusedtoachievethisfunctionforallECCSpiping.Sincethecondensate transfersystemalsosupplies~atertonumerousothersystems,thefollowing areasrequireclarification:

a)JustifytheuseofacommonfillingsystemforallECCSdischarge pipingversusind,ependeni jockeypumps.b)Identifytheexpecteddemandsonthecondensate transfersystemandwhateffects,ifany,wouldbeexpectedonthemakeuprequiredtokeepthedischarge pipesfullofwater?c)Canindividual "filllines"beisolatedtopermitmaintenance ononeECCSsystemwithoutaffecting theothersystem?d)Thedischarge piping"fillsystem"isapparently considered tobeanauxiliary system.Areanypriorityinterlocks providedtoensurethatthe"fillingsystem"willbegivenpriorityovertheotherusesofthecondensate transfersystemwater?e)Theindividual filllinesapparently donothaveinstrumentation tomonitorlowpressure.

provideassurance thatwhenthecondensate transferpumpsareoperating thattheindividual ECCSdischarge linesarefullofwater.f)Whatisthehistoryofwaterhammereventsatotherplantsemploying thisdesign?RESPONSEa)ThepumpfillsystemadoptedforSusquehanna SESutilizestheexistingcondensate systemandisrelatively simple.Ztisbelievedtohaveahighersystemoverallreliability thanasystemrequiring individual pumps,orso-called jockeypumps,toperformthefillfunction.

However,thereisnoknownoperating experience withacommondischarge linefillsystem.Thecondensate transfersystemhasbeendesignedtobereliableinsomuchasitisrequiredforplantoperation.

Therefore completefailureofthiscommonfillingsystemfortheECCSwouldrequirethattheplantbebroughttoashutdowncondition.

b)Atstandbypressures substantially belowvalveratedpressures, the'estimated makeupfortheECCSsystemsislessthanl(one)gpm.SeerevisedSubsection 6.3.2.2.5.Rev.22,4/Sl211.211-1 SSES-PSAR

.)Theindividual filllinescanbeisolatedtopermitmaintenance onECCSsystemsandindividual loops'fasystemwithoutaffecting theotherloops.SeerevisedSubsection 6.3.22.5.d)Duetotheverysmallamountofcontinuous make-uprequirednointerlocks areprovidedtogivepriorityto"keep-full" functionoftheCondensate TransferSystem'sECCSfilllines.e)Seerevisedsubsection 6.3.2.2.5.f)ThewaterhammereventswhichhaveoccurredinBHRplantswithECCSfillsystemsaredocumented andtransmitted totheNRCasLicensing EventReports(LER).ThesearekeptonfileattheNRC.SeeTable211.211-1 foratabulation ofwaterhammereventsbasedonLERinformation onfilewiththeGeneralElectricCompany.Rev.17,9/802'l1.211-2 SSES-FSAR Providedatatoverifythatrepresentative HPCIactivecomponents (inparticular, thepump)havebeen"proof-tested" underthemostsevereoperating conditions thatareanticipated.

Theservicelifeandthemaximumexpectedoperating timeaccumulated duringtheservicelifeofthatHPCIpumpshouldbespecified.

RESPONSE

TheHPCIpumpforSusquehanna SESissimilarindesignandfabrication topumpsthathavebeeninstalled andoperatedinBWRplantsforseveralyears.WhiletheyhaveneverbeencalledupontofunctionduringaDBA,thesepumpsareperiodically testedinoperating plantsandhavebeenshowntoperformsatisfactorily.

Eachpumpistestedatthevendor'splantforhydraulic performance andfreedomfromvibration.

Thisisinadditiontothetestsandinspections performed duringthefabrication ofthepumpsThesevereoperating conditions towhichthepumpsareexposedaretemperatures to148Fambient,maximumexpectedpost-DBAradiation levelsanddynamicloadsduetothesafeshutdownearthquake andhydrodynamic effectsassociated withtheDBA.Thepumpsaremainlyfabricated ofmetallicmaterials whichwillnotbedegradedbytheexpectedpost-DBAtemperature andradiation environment.

Thenon-metallic gasketsandsealsaremadeofmaterials withademonstrated resistance tothepost-DBAenvironment.

Thedynamicloadinputsareaddressed analytically andevaluated againstappropriate criteriatoassureoperation ofthepumpwhileundergoing dynamicloading.Theaboveassuresthattheexpectedservicelifewillexceedtheexpectedoperating timeofapproximately 550hours.Abreakdown ofexpectedoperating hoursforseveraleventsdu'ringthelifeofthepumpisprovidedbelow:Event0eratinTime(Hours)ShopTestingPreoperational TestingMonthlyTestingYearlyTestingPost-LOCA Shutdown2104048012N/ATheassumedoperating timeforpost-LOCA is12hoursfortheHPCIpump.ThelowpressureRHRandCSsystemstakeupthe'coreRev.22'/81211.226-1 SSES"FSAR coolingwithin12hoursafterincipient LOCAeventandmaintainthelongtermcorecoolingofpostLOCAsubsequent to12hoursperiod.GEstatedthattheECCSpumpmotorsmeettheenvironmental qualification requirements oftheDORguidelines andIEEE323-1971.

PriortoJune30,1982,furtherqualification workwillbepreformed tobringtheseitemsuptoatleastthelevelofIEEE323-1971perNUREG0588CategoryII.Rev.224/81211.226-2 SSES-FSAR UESTION211.260:IdentifytheFailureModeandEffectAnalysisforevaluating thecontrolroddrivesystemwhichyoustateisprovidedinAppendix15A.RESPONSE:

Subsection 4.6.2hasbeenrevisedtostatethatTheNuclearSafetyandOperational Analysisispresented insubsection 15A.6.5.3.

Rev.'224/81211.260-1 SSES-FSAR QUESTION211.262:Forthe"recirculation pumpseizure"accident, coincident lossofoff-sitepowerisnotsimulated withtheassumedturbinetripandcoastdown oftheundamaged pump.Reanalyze thistransient assumingcoincident lossofoffsitepowerandincorporate thisreanalysis withthatpreviously requested inQ211.120.

RESPONSE

Theeventseverityofacoincident lossofoffsitepowerwiththepostulated recirculation pumpseizureaccidentisboundedbytheanalysisof"LossofACPower"asshowninSection15.2.6.Theonlydifference betweenthesetwoeventsisthecoreflowcoastdown rate,Theflowcoastdown rateduringthepumpseizureeventcoincident withalossofoffsitepowerisfasterthanthatduringthelossofACpowertransient.

ThelossofACpowercausesthiseventtobecomeapressurization event.Thefasterflowcoastdown forpressurization eventsarelessseverebecauseofnegativevoidreactivity coefficient.

Ifthelossofoffsitepowerwerecoincident withthehighwaterlevelturbinetrip,theresulting accidentwouldbelessseverethantheoneanalyzedintheFSAR.Thisisduetothefactthattherecirculation pumptripwilloccurearlierintheformeraccident.

Todiscusstheeffectofcorecoastdown rateonCPR,thefollowing ispresented.

Corecoastdown ratehasaneffectonthechangeinCPR.Thiseffecthastwocriticalcomponents whichvaryinversely witheachother.Theinverserelationship existsbetweentheheatgeneration rate(neutronflux)andtheheatdissipation rate(thermalhydraulics),

Thefasterthecoastdown rate,thefastertheneutronfluxdrops,but,theslowertheresidualheatinthefuelisdissipated.

TheeventsinChapter15'areanalyzedtoconservatively accountforthisrelationship withregardstothechangeinCPR-Rev.22,4/81211.262-1 SSES-FSAR g,>>6:Fromthediscussion ofsinglefailuresforthe"inadvertent HPCIstartup"transient, itisindicated thatasinglefailureofthepressureregulator orlevelcontrolwillaggravate thetransient, resulting inreducedthermalmargins.ProvidetheHCPRandpeakvesselpressurevaluesthatresultforthiseventwiththemostlimitingoftheabovesinglefailuresconsidered intheanalysis.

RESPONSE

Intheeventofthe"inadvertent HPCIstartup"transient, neitherthepressureregulator northelevelcontroller isexpectedtofailbecausebothsystemsareinnormalcontinuous operation atthetimeofthehypothesized event,andnosignificant changeintheirfunctionisdemandedbytheevent.Theyshouldsimplycontinuetheirnormalfunction.

Inadvertent startupoftheHPCIresultsinamildpressurization.

Uponpressurization duetotheadditionofcoolerwaterintothefeedwater sparger,thepressureregulator tendstoregulatethevesselpressurebyadjusting thepositionoftheturbinecontrolvalve.Whenanactivefailureoftheregulator systemisconsidered, suchthattheturbinecontrolvalveswouldnotopen,furtherpressurization wouldresultwhichwouldleadtoaneventsimilartothe"pressure regulator failure-close "transient (15.2.1)Nosignificant changeinthermalmarginprotection wouldoccur(<.01CPRchange).Becauseoftheadditionofthecoolerwaterinfeedwater sparger,thelevelcontrolsystemtendstoreducethefeedwater flowtomaintainthenormalwaterlevel.Whenanactivefailureofthelevelcontrolsystemisconsidered, thewaterlevelwouldcontinuetorise..Thissituation issimilartothe"feedwater controller failure-maximum demand"transient (15.1.2)andresultsinasimilarCPRchange.SincetheHPCIstartupdoesnotchallenge thesecontrolsystemssignificantly, beyondtheirnormalcontxolfunctions, theindependent, simultaneous failureofeitherisconsidered extremely unlikely.

Note:Theword"aggravate" usedinthetextdoesnotmeanaworsethermalmargin.Itratherimpliesanundesirable action(e.g.turbinetrip)whichmayresultinreactorscramandshutdown.

RBV.22,.4/81211.276-1 SSES-FSAR Ourpositionontheemergency corecoolingsystems(ECCS)isthatthesesystemsshouldbedesignedtowithstand thefailureofanysingleactiveorpassivecomponent withoutadversely affectitheirlong-term coolingcapabilities.

lnthisregard,weareconcerned thatthesuppression poolinboilingwaterreactors(BWR's)maybedrainedbyleakagefromisolation valveswhichmayberenderedinaccessible bylocalized radioactive contamination following apostulated loss-of-coolant accident(LOCA).Accordingly, indicatethedesignfeaturesintheSusquehanna facilitywhichwillcontainleakagefromthefirstisolation valveintheECCSlinestakingwater(suctionlines)fromthesuppression poolduringthelong-term coolingphasefollowing apostulated LOCA.RESPONSE:

TheECCSisdesignedtowithstand thefailureofanysingleactiveorpassivecomoonent withoutadversely affecting thelong-term coolingcapabilities.

AnyleakagefromECCSsystemscanbeisolatedandcontained.

ThedesignfeaturesinSusquehanna thatassurethiscapability aredescribed inresponsetoFSARQuestion211.10.Rev.22,4/81211.295-1 SSES-FSAR QUESTION221.14:YourresponsetoQuestion221.1isunacceptable.

Thestaffbelievesthatthestate-of-the-art hasprogressed suchthateffective LPMsystemscanbeinstalled incommercial LWRs.Therationale forthisisdocumented indraftRegulatory Guide1.133(Loose-Part Detection ProgramforthePrimarySystemofLight-Water-Cooled-Reactors).

Additional rationale clarifying thestaffpositionc'nalsobefoundinaletter,VassallotoJ.E.Mecca(PugentSoundPowerandLightCompany)"SkagitNuclearPowerProject,Units162"datedJuly20,1978(DocketNos.50-522/523) available intheNRCpublicdocumentroom.AnumberofLWR's,including BWR's,atthesamestageoflicensing asSusquehanna, havecommitted totheinstallation ofaLPMsystem.Inaddition, itisrequiredbythestaffthataLPMsystembeinstalled andoperational priortostartupofthereactor.Therefore, pleaseprovidetheinformation requested inQ221.1.RESPONSE:

TheSusquehanna SESLoosePartsMonitoring Systemisdiscussed insubsections 7.7.1.12and7.7.2.12.

Rev.22,4/81221.14-1 SSES-PSAR TheresponsetoQuestion221.9isunacceptable.

Theapplicant shouldcommittosubmitareportdescribing thecomputerprogramusedforcorethermal-hydraulic analysispriortoissuanceofanoperating licenseforSusquehanna.

Thereportshouldprovidethecodedescription, thecalculational methodsandempirical correlations used,asampleapplication andcodeverification throughcomparison withexperimental data.1RESPONSE:

ThecomputerprogramcitedinSubsection 4.4.4.5isnamedTSCOR.VariousversionsofthiscodehavebeenusedbytheGeneralElectricCompanyforoveradecadetoperformdetailedcore,steadystate,thermal-hydraulic analyses.

TheXSCORcomputerprogramisusedasthebasisforthesteadystatethermal-hydraulic moduleintheGEBS/PANAC three-dimensional BWRcoresimulator.

Themodelsandnon-proprietary correlations aredescribed inChapter4oftheBWRCoreSimulator Licensing TopicalReport(NEDO-20953, Hay1976).Rev.22,4/81230.1-1 SSES-FSAR TheresponsetoQuestion221.2isunacceptable.

Question2requested assumptions usedforamountofcrudusedindesigncalculations andthesensitivity ofCPRandcorepressuredroptovariations intheamountofcrudpresent.Merelystatingthat"aconservative amountofcrudisdeposited onthefuelrodsandfuelrodspacers"doesnotbegintoanswerthisquestion.

Thequestionalsoaskedforadiscussion ofhowcrudbuildupinthecorewouldbedetected;

'odiscussion isprovided.

RESPONSE

Ingeneral,theCPRisnotaffectedascrudaccumulates onfuelrods,(References 1and2).Therefore, nomodifications toGEXLaremadetoaccountforcruddeposition.

Forpressuredropconsiderations, theamountofcrudassumedtobedeposited onthefuelrodsandfuelrodspacersisgreaterthanisactuallyexpectedatanypointinthefuellifetime.

Thiscruddeposition isreflected inadecreased flowarea,increased frictionfactors,andincreased spacerlosscoefficients, theeffectof,whichis.toincreasethecorepressuredropbyapproximately

.1.7psi,anamountwhichislargeenoughtobedetectedinmonitoring ofcorepressuredrop.Itshouldbenotedthatassumptions madewithrespecttocruddeposition incorethermalhydraulic analysesareconsistent withestablished waterchemistry requirements.

Moredetaileddiscussion ofcrud(service-induced variations) anditsuncertainty isfoundinSectionIIIofReference 3.

Reference:

1.McBeth,R.V.,R.Trenberth, andR.W.Wood,"AnInvestigation IntotheEffectsofCrudDepositsonSurfaceTemperature, Dry-Out,andPressureDrop,withForcedConvection BoilingofWaterat69BarinanAnnularTestSection",

AEEW-R-705, 1971.2.Green,S.J.,B.W.LeTourneau, A.C.Peterson, "ThermalandHydraulic EffectsofCrudDeposited onElectrically HeatedRodBundles",

WAPD-TM-918, Sept.1970.3."GeneralElectricThermalAnalysisBasis(GETAB):Data,Correlation, andDesignApplication",

GeneralElectricCompany,January1977,(NEDO-10958A).

Rev.22,4/81230.2-1 SSES-FSAR Yourresponsetoquestion221.13isincomplete.

Sincetheoperational designguidelines areexceededforsomeoperating conditions, Figure4.4-6shouldberevisedtoshowdecayratiosasafunctionofrodposition, recirculation flowandpower.Figure4.4-6ascurrently presented isnotsufficiently detailedforuseininferring operational boundaries.

RESPONSE

Theoperational designguideline isnotintendedforuseindefiningoperational boundaries.

Itisusedtodetermine therangeofoptionaloperation intheautomatic flowcontrolmode.Currentguideline isthedecayratio0.5.ItisclearfromFigure4.4-6thatmostoftheoperating domainmeettheguideline.

Itshouldbenoted,however,thatpower/flow condition whichhasadecayratiogreaterthantheguideline canalwaysbeoperatedinthemanualflowcontrolmode.AlthoughGEdoesutilizedesignstability guidestooptimizeBNRoperation andperformance fromanavailability considerations, application oftheseguidelines isnotconsidered tobeanecessary requirement todemonstrate'an acceptable andlicensable configuration.

Thecriterion usedwithrespecttosafetyisthatthecalculated decayratiobelessthan1.0overtheexpectedrangeofoperation.

Thishasbeendemonstrated forSusquehanna unit.Operational guideshavebeendeletedfromFigure4.4-6.Rev.22,4/81230.3-1 SSES-FSAR YourresponsetoQuestion221.15isunacceptable.

Youreference NEDO-10958-A foradiscussion oftheuncertainties andtheirbases.Thestaffevaluation ofNEDO-10958 states"Theestimated valueoftheuncertainties andthebasisforthevaluedependonthespecificdesignandequipment ofeachreactorandwillbeevaluated foreachreactoratthetimeTechnical Specifications areissued."Information tosupporttheuncertainty valuesforSusquehanna mustbesubmitted priortoissuanceofasafetyevaluation reportforSusquehanna.

RESPONSE

Ageneraldiscussion oftheboundingstatistical analysisuncertaintie showninTable4.4-6isgivenintheGETABLicensing topicalreport(Reference 1).Oftheseuncertainties, allexceptthatofcriticalpowerareunaffected bythetwowater-rod assemblydesign.TheGEXLcriticalpowerpredictability forthe8x8twowater-rod designhasbeenshowntobesimilartothestandardonewater-rod design(seetheresponsetoQuestion221.3);thevalueforthisuncertainty citedinReference 1(1=3.6%)isconservative withrespecttobothonewater-rod andtwowater-rod designs.Additional information concerning theremaining uncertainties inTable4.4-6andthebasesusedinthederivation ofthoseuncertainties iscontained intheLicensing topicalreport"ProcessComputerPerformance Evaluation Accuracy" (References 2,3and4).Asstatedtherein,"theanalysiswasperformed...for measurements systemstypicalof(orconservative withrespectto)theBWR4-6,"andistherefore directlyapplicable toSusquehanna.

References:

1."GeneralElectricThermalAnalysisBasis(GETAB):Data,Correlation, andDesignApplication,"

GeneralElectricCompany,January1977(NEDO-10958A).

2.J.F.Carew,"ProcessComputerPerformance Evaluation Accuracy,"

GeneralElectricCompany,June1974(NEDO-20340).

3.J.F.Carew,"ProcessComputerPerformance Evaluation AccuracyAmendment 1,"GeneralElectricCompany,December1974(NEDO-20340-1).

4.J.F.Carew,"ProcessComputerPerformance Evaluation AccuracyAmendment 2,"GeneralElectricCompany,September 1975(NEDO-20340-2).

Rev.22,4/81230.4-1 SSES-FSAR

  • UESTION230.8:Thesteady-state operating limitfortheMinimumCriticalPowerRatio(MCPR)is1.25.Thisvalueiscalculated basedonREDYmodeldescribed inNEDO-10802.

Theresultsofthreeturbinetriptestsperformed atthePeachBottom-2haverevealedthatincertaincasestheresultspredicted byREDYmodelarenon-conservative.

TheGeneralElectricCompany's newODYNforuseintransient analyseshasbeenapproved.

Accordingly, theapplicant isrequiredtoreanalyze priortocriticality thefollowing transients withODYN:1)generator loadrejection/turbine trip,2)feedwater controller failure~aximum demandand3)mainsteamisolation valveclosurewithpositionswitchscramfailure.Ifanothereventshouldbemorelimitingthanthoselistedabove,theothereventshouldreanalyzed withODYN.Thereanalyses shouldincludeCPRcalculation anddemonstrate thattheoperating limitforMCPRisnotlessthan1.25.RESPONSE:

TheSusquehanna SESODYNsubmittal isscheduled forthesecondquarterof1981.

UESTION281.17ItisourpositiontomeetSectionC.lofAppendixAtoBTP-ASB9.5-1automatic smokedetectors beprovidedinthefollowing areasandthattheyalarmandannunciate inthecontrolroom.Firedetectors should,asaminimum,beselectedandinstalled inaccordance withNFPA72E,"Automatic FireDetectors".

ReactorBuildingFireZoneAreaElevation l.1-1G2.1-2A3.1-3A4.1-3B5.1-3C6.1-4A7.1-4B8.1-4G9.1-5A10.1-5B11.1-5D12.1-5E13.1-6A14.1-6D15.1-6E16.1-6F17.0-6G18.1-7A19.1-7B20.0-8ASumppumproomAccessareaAccessareaAccessareaAccessareaContainment accessareaPipepenetration roomMainsteampipingFuelpoolpumps6heatexchangers ValveaccessareaRMCUPumps8heatexchangers Penetration room'ccessAreaHSVequipment roomRecirculation fansareaSpentfuelpoolSurgetankvaultHRVfanandfilterroomsRecirculation fanroomRefueling floor645-668670-683683-719683-719683-719719-747719-733717-816749-771761-771749-766749-777779-797779-797778-797779-797775-797779-816799-816818-873partialRESPONSE:

Eachoftheareaslistedarebeingexaminedtodetermine iftheycontainorpresentafireexposurehazardtosafety-related systemsnecessary toaccomplish ormaintainasafe-shutdown condition.

Additional smokedetection willbeprovidedinthoseareassatisfying eithercriteria.

Thisisdocumented inRevisionltothePireProtection ReviewReport.Rev.20,2/81281.17-1 SSES-FSAR UESTION313.1Theclassification systemforemergency conditions usedbyPPSLisidentified intheemergency plan,asisthesystemusedbytheLuzerneCountyOfficeofCivilDefenseandthePABureauofRadiological Health.Whiletheseclassification systemsappearcompatible, thetermsusedaredifferent andnodirectcomparison ismadeintheplan.Providesuchacomparison betweentheclassification termsusedbyPPMandthoseusedbytheoffsiteagencies, eitherinthetextofSection4oftheplan,oronFigure6.1.RESPONSEoAsestablished in10CFR50AppendixEandNUREG0654/FEMA REPl,Rev.l,PPSI,,State,andLocalEmergency Planshaveincorporated thesameemergency classification system.Theclassification systemoutlinedinSection4.0oftheSusquehanna SESEmergency PlanRev.2datedOctober1980isidentical tothestateandlocalemergency classification system.Rev.22,4/81313.1-1 SSES-FSAR UESTION313.6Concerning protective actions,describestepstakentomakeavailable onrequesttooccupants inthelowpopulation zone,information concerning howtheemergency plansprovidefornotification tothemandhowtheycanexpecttobeadvisedwhattodo.RESPONSEThefollowing methodswillbeimplemented toensureinformation onEmergency Planningistransmitted totheEmergency PlanningZoneresidents.

Annually, afullpagead,summarizing theinstruction andactiontobetakenbytheEPZresidents intheeventofanemergency willbepublished inthelocalnewspaper.
Annually, printedinstructions andevacuation mapswillbedistributed toresidents withintheEPZ.Evacuation mapsandprintedinstructions willbeprintedinalltelephone directories withintheEPZ.Analert.warningsirensystemcontrolled bythecountyEmergency Operations Centerswillbeinstalled withintheEPZtoprovideearlynotification tothepublic.ThissystemwillalertthepublictotunetothelocalEmergency Broadcast Systemforfurtherinformation anddirection.

Rev.22,4/81313.6-1 SSES"FSAR UESTION313.7Describethetrainingprovidedtheappropriate staffmembersoftheBerwickHospitaltoshowthattheyarepreparedandqualified tohandleradiological emergencies.

RESPONSEKeymembersoftheBerwickHospitalStaffwillbeinitially trainedattheOakRidge"REACTS"course.Annualtrainingofappropriate BerwickHospitalpersonnel willbeprovidedbyaconsultant experienced inthehandlingofcontaminated/irradiated injuredpersonnel.

AnnualdrillsofBerwickHospitalstaffmemberswillbeconducted andcritiqued toensuretheirabilitytohandleradiological emergencies.

Rev.22,4/81313.7-1 SSES"FSAR UESTION313.8Provideacommitment toconductannualexercises totesttheadequacyoftheemergency planandtheimplementing procedures.

SeeRegulatory Guide1.101,AnnexA,atSection8.1.2.RESPONSEThesecondsentenceofthefirstparagraph inSection8.1.2oftheEmergency Planwillbechangedtoread:"AninitialexercisepriortoloadingoffuelforUnit1andannualexercises thereafter willinvolveascenarioappropriate toaSiteEmergency orGeneralEmergency Condition."

Theseexercises willbeconducted usingtheguidelines of10CFR50AppendixFNUREG0654/FEMA REP1Rev.l,andANSI/ANS-3.7.3-l979.

Rev.22,4/81'313.8-1 SSES-FSAR gWhenwillsettlement readingsontheESSWPumphouse Basement(FSARTable2.5-8)beprovided?

RESPONSE

Theresponsetothisquestionisgivenin362.22.Rev.22,4/81362.9-1 SSES-FSAR Provideamapofthesiteclearlyshowingthetopography asalteredbytheplant.NotethatFSARFigure2.4-1isinadequate becauseitisverydifficult toseethecontoursinthevicinityoftheplant.RESPONSE:

Figure2.5"24hasbeenrevisedandshowsallthepresentroadsandfinishedgradingforbothUnits1and2.Rev.22,4/81371.19-1' SSRS-FSAR gmSTXON-421.442=.

Zthas"ometoouratantionthatsomeapplicants ailnotintendto"onductconfirmatory testsofsomeDistcibutio systmsanitransformers suoplying powrtovitalbusesasreguiceDbyPosition3ofRegulatory Guide1.68,andmorespecificxtlly byPact4ofthestaffpositiononDegradedgridvoltage(appliedtoallplantsinli=ensing ceviewbythePowerSystemsBranchsin"e1976).Part4ofthedgcaDeDgciDvoltagepositionstatesasfoliows:ThavoltageleveLsatthesafety-related'uses shouldbeoptimized forthefullloaDandmininumloadconditions thataceexpecteDthcoughout thanticipated rangeofvoltagevariations oftheoffsitepowersourcebyappropriate aDjustmentofthevoltagetapsettingsoftheintervening tcansfocmecs.

HerequirethattheadequacyaftheDesigninthisregardbeverifiedbyactualmeasurement andbycorrelation ofmeasuredvalueswithanalysisresults.

ProvidezDescription ofthemethodfocmakingthisvacification; beforeinitialreactorpoweropecation, pcovidethedo"umentation requiceDtoestablish thatthisvecification hasbeenaccomplished.'!

Yourtestdescription inFSAR.Chap.tec l4doesnotcontainsufficient detailforust>determine ifyouintendtoconductsuchatest.ItisourpositionthatŽonficmxtory testsofallvitalbusesmustbeconducted including allsour"esofpowecsuppliestothebusesNoiifyyourtestDescription toindicatethatthistestingwillbeconducted inaccordance withRegulatory Guide168andtheaboveciteDposition..

BZSPOBSZ=.

VoltagesrecordedduringtheP100.1Preoperational test(Subsection 14.2.12.1),

willbereviewedandanalyzedagainstdesigncalcul'ations toassureoptimaltapsettingshavebeenselected.

Rev.22,4/81421.042-1 SSES-FSAR 5ous55.x.5.z.5.c.c5.f.f5h.hvalves:andturbinestop,intecept,andcontrolvalves.Verifyresponsetimesofbranchsteamlineisolation.

Demonstrate adequateperformance marginsforshielding andpenetration coolingsystemscapableofmaintaining ternperatures ofcooledcomponents withindesignlimitswiththeminimumdesigncapability ofcoolingsystemcomponents available (100/)Demonstrate adequatebeginning-of-I.ife performance marginsforauxiliary systemsrequiredtosupporttheoperation ofenqineered safetyfeaturesortomaintaintheenvironment inspacesthathouseenqineered safetyfeatures.

Engineered safetyfeatureswillbecapableoperforming theirdesignfunctions overtherangeofdesigncaoability ofoperablecomponents intheseauxiliary systems(50%,100%).Demonstrate thatprocessandeffluentradiation monitoring systemsareresponding correctly.

Demonstrate thatgaseousandliquidradioactive wasteprocessinq, storage,andreleasesystemsoperateinaccordance withdesign.Demonstrate thattheventilation systemthatservesthemainsteamlinetunnelmaintains temperature withinthedesignlimits.Demonstrate thatthedynamicresponseoftheplanttothedesiqnloadswingsforthefacility.

5oisla5.1.1.Demonstrate thatthedynamicresponseoftheplantisinaccordance withdesignforclosureoXreactorcoolantsystemflowcontrolvalves.Demonstrate thatthedynamicresponseoftheplantisinaccordance withdesignrequirements forturbinetrip.QESPOQS~Preoperational testsofsafetyrelatedsystemsaredescribed bythetestabstracts providedinsubsection 14-2-12-1.

Specificdetailedguidelinesfortestinqsuchalossofpower,air,etc.aredescribed inthestartupadministration manualSection7.5.Lossofpoweristestedifitcausesanevolution tooccurwithinthesystemsuchasswitching automatically toadifferent powersource.Lossofairtestingisperformed byplacingthevalveinitsnon-failed positionbynormalactuatoroperation, thenisolating theactuatorairsupply,bletdingoffairpressureandverifying valvemovementtothefailedposition.

Eachautomatic containment isolation valveistestedinthesystempre-optest.forproperoper-ationandclosuretimingasrequiredbythedesignsectionsoftheFSAR.Leakdetection systemssuchassteamleakdetection aretestedinthesystempre-opsaffectedbythedetection system.Rev.22,4/81423.12-5 SSES-FSAR Theresponsetoitem423.14indicates that,testingdescribed inRegulatory Guide1.80sectionsC.7throughC.10willnotbedonesincethetestingwillhavealreadybeendoneduring"varioussystempreoperational tests".Eitherprovidetestdescriptions thatshowtestingequivalent tothatspecified inregulatory positions C.8,C.9,andC.10willbeperformed, ormodifyyourpreoperational testprogramtoincludeanintegrated lossofairtestandprovideanabstractofthattest.RESPONSE:

SeerevisedresponsetoQuestion423.12.Table'23.28-1 listsairoperatorvalves/HVAC damperswhicharetestedforlossofair.Preoperational testswithinwhichthelossofairtestingisaccomplished isalsoprovidedinTable423.28-1.

Furthertestingisperformed fortheADS/SRVvalvesasfollows:1.Verifyminimumcapacityofaccumulator inacceptance criteria.

2.VerifyADS/SRV's areoperatedfromtheirrespective accumulator/

supplywithothersuppliesdepressurized.

3.Recordpressureatwhichanopenvalvebeginstocloseforsafety/reliefvalvesandverifyvalvefailstocloseonlossofair.4.VerifyanopenADSvalveismaintained openataccumulator pressureof75+0-2PSIGandfailsclosedonlossofair.Rev.22,4/81423.28-1 SYSTEMRHRVALVENO.1-Ell<<P050A;B PREOP.NO.P49.1INST.AIRORPRI.CONT.INST.GAS~Inst<AirCCO1-E11-P122A,B

'-E11-F051A,B 1-Ell<<F052A,B 1-E11-P053A,B l-E11-F305A,D Inst;GasInst.Air1-'Ell-PlllA,B 1<<Ell-F129A,B

.l-E11-F132A,B 1<<E11-F136,F137,P140 HV-E51-'17088

..'V-E51-1F025;1P026 W-E51-1F004,1F005

'HV-E51-1P054

~CoreSpray.HV-E21lF006A,B~1N-E21~1F037A, B~~P50;1'$51.1'Inst'Gas'nst; Air.':ln'st;'GasHPCICRD..-HV-E41-.1F028,1F029 HV>>E41-1F025,1P026

'HV-E41-1P057,1P100.

C12-POoaA,B.......

XV-lP010, 1P011.HV-B31-1P019;1P020

.Both+'~~~'52;1'~~~~P55sl~~\~Inst;Air1F100'Ga's' Inst.Air0thes.Ins't'ir

~~~

SYSVALVENO.PREOPNO.INST.AIRORPRICONT.INST.GASPireProtection XV-12244,45;46,48,49 XV-12205A, B,CXV-02247A,B;C XV-02248.

XV-02215liv-11315

'P13P14.Inst;'Air'Inst;.Air'BHVACllD17534A,B,C,D,E,ll',ll All+'ID17502AjB; Hg17514A,B All*1~P34;XInst;'A'ir llD17530A, B,'lD17531A' llD17564A,B; BD17524A,B.A11

\~IlD17576A,B;

-)lD17586A;B All*llD17508A,B

~.Both+-llD17651.

.BDID17603A;B BDID17604A;B;-

BDID17605A;B..BDID17606A;B; BDID17609A;B.

~7aI17659AB-n6BDID17668A,B; BDID17669A,BBDID.17670A,B;.

QDID1761A,B.....

~~~~~~BDID.17674A,B; BDID17675A.,B..

SYSTEMVALVENO.PREOP.NO.INST.AIRORPRI.CONT.INST.GASRWCUia""'ii)oHV-14506A;B; 14507A,B.

HV-14508A,B; 14510A,B.P61'.3.'nst; AirHV-14511A B'4512AB'HV-14513A,B; 14514A,B'HV-14566A,B; 14522....

HV-14523, 14528,14516 HV-14518, 14519;14520'HV-14521, G33-1F033 Liquid-Radwast 16108A1;16116Al16108A2,16116ALBoth'*~~e~/P69'.1'Ihst;

'Air'Containment Recirculation HV-17521,23,24,22,25'A11

HV-157040514'AllV-15703;13

..~~'P73'.1'Inst.'Aii'

~~~/~~~~'0~~/~~-

SYSTEMVALVENO.PREOP.NO.INST-AIRORPRCONT.INST.GASR.B.HVACPDD17501A;B; HD17511A;9

'34'.'1'nst;

'AirRBChilledMaterHD17521AB;HD17513A9HD17518A,B; HD17516HD17523A,B; HD17528A,B PDD17578A,B; HD17526':HD17566A~

B~)'ID17588Af'9 HD17538A,B TV-18726A1,A2,B1,92 TV-18741A; 9,C,DTV<<18743A, B.P34.2.~~Inst;AirTV-18751A 9CD~TV-18753A,B TV-18764A,B TY-18771A;9;C,D

~TV-18781A1 A2,9192,A11+HV18782A1~A2~91~92~A11HV-18791A1,

.A2,91,92h11*\~Inst;.Gas.

HV-18791Alg A2,91;92All.*~~

SYSTEMVALVENO.PREOP.NO.INST.AIRORPRI.CONT.INST.GASControlStructure QHVAGHDM&7802A B'oth*HDM-07833A, B;HDM-07824A2, B2HDM-07824 A4B4HDM-078S'BHDM-07872A,B; HDM-07873A,B All*'V-07813A,B TV-08602A,B 0O.lP30..2.~.'....Feedwater 10604ABC'10640'106'4114107A,B10650'10606A,B;C 10604A,B;C

'0663A'1~A2~B1~B27C1~C210664A;B,C

.~~~~~~~

SSES-FSAR Ourreviewofrecentlicenseeeventreportsdisclosed thatasignificant numberofreportedeventsconcerned theoperability ofhydraulic andmechanical snubbers.

Provideadescription oftheinspections orteststhatwillbeperformed following systemoperation toassurethatthesnubbersareoperable.

Theseinspections ortestsshouldbeperformed preoperationally ifsystemoperation canbeaccomplished priortogeneration ofnuclearheat.RESPONSE:

ExistingQArecordsontheconstruction installation andinspection ofsafetyrelatedsnubberswillbeassembled intoapackageforreviewbytheSuperintendent ofPlant.Thispackagewillprovideassurance thatthepreoperational condition ofthesnubbersisacceptable andthattheyareinstalled inaccordance withdesign.Aftersystempreoperational testingandpriortofuelload,snubberswillbevisuallyexaminedandmanuallytestedfcrfreedomofmovementovertherangeofstrokeinbothcompression andtension.Thismeetstherequirement ofZEBulletin81-01Rev.1.Nohydraulic'nubbers areutilizedinsafetyapplications atSusquehanna SES.Rev.22,4/81423.40-1