ML20135B682: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:}}
{{#Wiki_filter:..          . . .              . . . ---    -      -                                                    --_- ._- - -                                  -
f i
November 29, 1996 A
ORGANIZATION:                    Baltimore Gas and Electric
 
==SUBJECT:==
SUMARY OF MEETING WITH BALTIMORE GAS AND ELECTRIC COMPANY (BGE) ON BGE LICENSE RENEWAL ACTIVITIES
'                        On October 10, 1996, the Nuclear Regulatory Commission (NRC) staff met with representatives of BGE in Rockville, Maryland. The purpose of the meeting was
,                        BGE to deliver and discuss sample' revisions to portions of the Structures, i                        Component Supports, and Main Feedwater System integrated plant assessment i                        (IPA) reports. A list of meeting attendees is provided in Attachment 1.
Attachment'2 is a copy of the materials distributed during the meeting.
3 The IPA report revisions delivered during the meeting were intended to demonstrate BGE's implementation of the template as modified by the agreements i                        in principle discussed at the' September 11, 1996, management meeting. BGE 1                      -stated that the reports were revised to address scoping and intended functions
[                        -(Sections I. A and B of the template). The staff stated that it will visit
;                        Calvert Cliffs on October 17,1996, to review onsite information related to j                        BGE's scoping process, and will provide comments on the sample revisions on October 24, 1996. During the meeting, BGE also provided an overview of its
;                        scoping and screening process.
i                        Prior to the public meeting, the staff met with BGE to gather information'and 1
obtain a better understanding of the Calvert Cliffs piping design and analysis 3                        process. Attachment 3 is a copy of the piping design information received by 1                        the staff. Attachment 4 is a copy of background information BGE provided to
!                        the staff in preparation for an upcoming meeting on BGE's license renewal l                        activities for EQ and Non-EQ Cables. The meeting is scheduled for October 16, s                        1996, Origin'al signed by:
Scott C. Flanders, Project Manager
,                                                                              License Renewal Project Directorate l
Division of Reactor Program Management                                                ,
Office of Nuclear Reactor Regulation                                                  !
Docket Nos.: 50-317&50-318                                                                                                                  j
]
Attachments:                                                                                                                                ;
: 1.      Attendance List                                                                                                              3      l Meeting Handouts
[
2.
: 3.      Piping design information                                                                                          Cf b ' 8 /
: 4.      BGE's license renewal activities for EQ and Non-EQ Cables l
.                        cc w/ attachments:
l                        Service List (with a11' enclosures)
Distribution:              See page 2                                                            g
:                        DOCUMENT NAME:              A:1010MS (SFlanders Disk) 4        Ta ,seelve e copy of this doeuensest,insucete in the hea: *C" = Copy without attachment / enclosure *E* = Copy with attachment / enclosure *N* = No copy l                              050026                                      , p 4        0FFICE          PM:PDLR / L J E: D:PDLR ll P                                                          l                            l 4
NAME            SFlandepf/                        SFNewbemryV 1          DATE            / 2/ 7 796                          D J 3 /96 9612050097 961129                                                RECORD COPY
^
PDR        ADOCK 05000317
__.        P_                                PDR
 
                                                            \
4 Baltimore Gas & Electric                                                                        1 l
HARD COPY:                                              l Docket or Central File
:  PUBLIC PDLR R/F OGC ACRS DISTRIBUTION via e-mail 3
FMiraglia/AThadani (A) (FJM)/(ACT)
HBWang (HXW1)
RCorreia (RPC)
RZimmerman (RPZ)
JMoulton (JPM1)
SHoffman (STH)
RWessman (RHW)
TMartin (TTM)
PTKuo (PTK)
RAnand (RKA)
JStrosnider (JRS2)
DMatthews (DBM)
:  Slee (SSL1) i WDean (WMD)
; SDroggitis (SCD)
SNewberry (SFN)
BPrato (RJP2)                                            ,
JMitchell (JAM)                                          l SPeterson (SRP)                                          l SFlanders (SCF)                                          l CRegan (CMRI)                                            l LDoerflein (LTD)                                        ,
Glainas (GCL)                                            l EJordan (JKR)
PShemanski (PCS)
JSStewart (JSSI)
TSpeis (TPS)
JMoore/EHoller (JEM)/(EJH)                              ,
GMizuno (GSM)                                            l GHolahan (GMH)
BSheron (BWS) 1 i
A
 
  ._  _      -.        __ - - - _.- - -            ~ -      --- -            . -. . - . . _ -
l l
ATTENDANCE _ LIST NRC MEETING WITH BALTIMORE GAS AND ELECTRIC October 10. 1996 l                      NAME                                          ORGANIZATION
: 1. Scott Flanders                                      NRC/NRR
: 2. John Moulton                                        NRC/NRR
: 3. P.T. Kuo                                            NRC/NRR l
: 4. Sam Lee                                            NRC/NRR
: 5. Dennis DiBello                                      BGE/LCMU
: 6. Marc Hotchkiss                                      ABB-CE (BGE/LCMU)
: 7. Tricia Heroux                                      for EPRI
: 8. A. Mimaki                                          MHI                                  !
: 9. C. Neoin                                            OAK TECHNOLOGIES
: 10. Ikuo Morimaka                                      KANSAI ELECTRIC POWER                l l
: 11. S. Azumi                                            KANSAI ELECTRIC POWER
: 12. T. Nishimoto                                        INTERNATIONAL ACCESS CORP.
: 13. Don Shaw                                          _BGE/LCMU
: 14. Barth Doroshuk                                      BGE/LCMU                            !
: 15. Mary Bowman                            .
BGE/LCMU
: 16. Barry Tilden                                        BGE/LCMU l
i ATTACHMENT 1 1
 
i c
9 BGE Deliverables to NRC l                                                          October 10,1996 l
(                        l. Feedwater_ System License Renewal Technical Report, written for LR                ,
Technical Report Template parts I.A. and B.
: 2. Structures License Renewal Technical Report, written for LR Technical Report l                                Template parts I.A. and B.                                                    l
: 3. Component Supports License Renewal Technical Report, written for LR Technical Report Template parts I.A. and B.
I i
n I
l
 
1 For LR Technical Report Template Development                                                  October 10,1996    ;
5.8 FEEDWATER SYSTEM l
5.8.1    Scoping                                                                                                i
 
===System Description===
The Condensate and Feedwater Systems are designed to provide a means for transferring the condensate from the condenser hotwell to the steam generators. The system design features provide for raising the temperature and pressure of the condensate, controlling the rate of flow to the steam generators, and the addition of chemicals and purification of the condensate. [UFSAR Ch.10.2]
Condensate from the hotwells is pumped by motor-driven condensate pumps through the gland steam condenser, the condensate demineralizer and precoat filtering system, and the lowest feedwater heating stages to the suction of the condensate booster pumps. These booster pumps deliver the condensate to the two turbine-driven steam generator feed pumps (SGFPs) through two parallel sets of feedwater heaters. The SGFPs pump the feedwater through two parallel high pressure heaters to the steam generators. The condensed steam from the Iowar pressure feedwater heating stages dt'ains back to the condenser hotwell and from higher pressure  1 heaters is pumped into the condensate system. The Updated Final Safety Analysis Report (UFSAR) Chapter 10          l includes a system description and diagram of the condensate and feedwater systems. Spei:ific component design data is included in Table 10-1 of the UFSAR. [UFSAR Ch.10.2)
A portion of the condensate flowstream is normally routed through the precoat filters and condensate demineralizers (full flow capability exists) in order to remove particulates and corrosive elements.
Additionally, chemicals are added to the condensate for oxygen scavenging and pH control. [UFSAR Ch.10.2, Sys Desc 32]
The portion of the Condensate System within the scope of License Renewal is addressed in section 5.6 of this application.
The Feedwater System includes the equipment, instruments and controls from the suction of the SGFPs, through the feedwater heaters, the regulating valves, the flow nozzles, the feedwater isolation valves, and the feedwater header check valves to the steam generator feedwater inlet nozzles. Also included are steam generator secondary side pressure and level instrumentation loops. This instrumentation provides steam generator level control information as well as the protective functions of steam generator isolation and auxiliary feedwater initiation. The steam generator vessels (including the feedwater nozzles) are included in the Reactor Coolant System, which is addressed in section 4.1 of this application. [FW AMR]
The Feedwater System functional requirements are determined by the System and Structure Scoping activity of the Integrated Plant Assessment (IPA) process described in the CCNPP IPA Methodology. The system functional requirements are: [SLSR]
e    to transfer feedwater from the steam generator feed pump suction to the steam generators e    to regulate the flow of feedwater to the steam generators to maintain a constant water level
* to provide a means of raising the temperature of the condensate received by the feed pumps e    to provide a means for injecting chemicals into the steam generators from the chemical addition system The Feedwater System is in scope for license renewal based on 54.4(a). In accordance with section 4.1.1 of the CCNPP IPA Methodology, a detailed list of system intended functions was determined.
The following Feedwater System intended functions were determined based on the requirements of 54.4(a)(1) and (2): [SLSR, FW CLSR]
* Provide containment overpressure protection
    . Prevent reverse flow from the steam generater 1
 
For LR Technical Report Template Development                                                    October 10,1996
* Send signals to the Engineered Safety Features Actuation System l
l l
* Provide signals to the Reactor Protection System
      . Provide Signals to Auxiliary Feedwater Actuation System I
e  Isolate feedwater flow to the affected steam generator e  Provide a pressure retaining boundary for the system l
* Maintain electrical continuity and provide fault protection for the plant safety related electrical system All components of the Feedwater System that support the intended functions listed above are safety related,          1 Seismic Category I and are subject to the applicable loading conditions identified in the UPSAR Section              l SA.3.2 for Seismic Category I systems and equipment design.
I
      'Ihe following Feedwater System intended functions were determined based on the requirements of 54.4(a)(3):
[SLSR, FW CLSR]
* For fire protection ( 50.48) - Monitor steam 1;enerator level to support safe shutdown in the event of a postulated severe fire.
* For environmental qualification ( 50.49)- Maintain functionality of electrical equipment as addressed by the Environmental Qualification Program, and provide information used to assess the plant and environs condition during and following an accident.
* For anticipated transient without scram ( 50.62) - Provide Auxiliary Feedwater Actuation System start signal (diverse from Reactor Protection System) on low steam generator water level conditions indicative          j of an Anticipated Transient Without Scram (Auxiliary Feedwater Actuation System).
* For station blackout (Q50.63) - Provide steam generator level indication.
The regulations listed in 54.4(a)(3) do not necessarily require nuclear safety grade SCs in order to respond to        ,
the requirements of the regulations. However, the components of the Feedwater System that support the                  l intended functions listed above associated with these regulations are safety related, Siesmic Category I and are subject to the applicable loading conditions identified in the UFSAR Section SA.3.2 for Seismic Category I systems and equipment design.
Sconed SCs and Their Intended Functions The components of the Feedwater System were reviewed and those that supported the system intended functions were determined to be within the scope of review for license renewal. The portion of the Feedwater System that is in scope includes all components (electrical, mechanical, and instrument) from the inlet side of the feedwater isolation motor-operated valve (MOV) to the steam generator nozzle. Also included are steam generator secondary side water level and pressure instrumentation loops, including the root isolation valves and all downstream components (valves, tubing, instruments). Figure 5.8-1 provides a simplified diagram of the feedwater system indicating the portion of the system within the scope of license renewal. This diagram is provided for illustration purposes only.
Several component types are common to many plant systems and perform the same passive intended functions.
These are addressed separately in commodity evaluations and are not included in this section. The following i  identifies the disposition of these commodity components: [FW Pre-Eval, FW AMR Report]
l
* Structural supports for piping, cables and components in the Feedwater System are evaluated for the effects of aging in the Component Supports Commodity Evaluation in section 7.6 of this application 2
 
_ __. _ - .              . _ _ ..        ._.___.___._._.___.m                                . _ _      . . _ _ _ _ . _ _  _ _ . - - . _
For LR Technical Report Template Development                                                    October 10,19%
I
* Electrical control and power cabling for components in the Feedwater System is evaluated for the effects of aging in the Electrical Cables Commodity Evaluation in section 6.2 of this application                _
* Process and instrument tubing, and tubing supports, for components in the Feedwater System are evaluated for the effects of aging in the Instrument Line Commodity Evaluation in section 63 of this application 3
In accordance with section 5.1 of the CCNPP IPA Methodology, the sys, tem intended functions were characterized as either active or passive. The only passive intended ftmetion associated with the Feedwater i              System which is not completely addressed by one of the commodity evaluations referred to above is: [FW Pre-
;              Eval]
* Provide a pressure retaining boundary for the system i
The following are the Feedwater System components within the scope of license renewal that perform the passive intended function without moving parts or a change in configuration or properties and, therefore, meet the criteria of 654.21(aXIXi) as subject to an aging, management review: [FW Pre-Eval, IPA Methodology]
* System piping and in-line components provide the pressure retaining boundary of the system.
Of those, the following components are replaced based on a qualified life ofless than 40 years and are therefore not subject to an aging management review in accordance with 54.21(aXIXii): [FW Pre-Eval]
* steam generator level transmitters (Unit 2 only)
* steam generator pressure transmitters (Unit 2 only)
Additionally, all instrument transmitters and instrument valves in the Feedwater System are evaluated in the Instmment Line Commodity Evaluation in section 63 of this application. Also, all components of the Feedwater System required to be environmentally qualified in accordance with Q50.49 are either replaced based on a qualified life ofless than 40 years, or included in the scope of the Instrument Line Commodity Evaluation.                !
l A list of the component types for Feedwater System components evaluated in this section is shown in Table                      j 5.8-1.
TABLE 5.8-1 FEEDWATER SYSTEM COMPONENT TYPES REOUIRING AMR l
Piping Check Valves Hand Valves
* I Motor-Operated Valves                                                      :
Temperature Elements                                                        l
* includes only those hand valves not included in the scope of the Instrument Line Commodity Evaluation l
3
 
For LR Technical Report Template Development                                                                                                                                                                  October 10,1996 -
CCNPP Main Feedwater System - Simolified Diaaram Note: Not all components within the scope of License Renewal are shown sw =
h$  ;    '
M
                                                                                                                                                                                                                                                                              }'
                                                                                                                                                                                                ,._.,_m                                                                      7    h-
                                                                                                                                                                                                      ---.;m-._..g                                                    j      ( g,,
a ew                !                                                    wm          -
From                                                                                            s        .. .-        u                                                      -
p                                                          v E , ,r
                                                                                                                  ,w, _ _      mnorm.                    rwimmenan uov
_yh,,- .-fg                                                                              3 g
m                                                                                                                                                                                        .
L 3
Feed Heater I
                                                                                                                                                                                                                                                                      ,      (
                                                                                                                                                                                                                                                                          ..~d i
ss                                  ~ ?n ?T!??%% '1 _                      indicates portion of Feedwater
                                                                                                                          ~' ' * ' -                            System within the scope of License m                                                                            Renewal Feed mw              Heater                                                                                                                                                                              g3 G*"***'
E      :
x; mu:s wa j    [.j@
em                                                                    "
                                                                                                                                                                    . ;, _our..    .a                                                                                      ih,)i m
rwo m w        x rw rio.                        ---~~'a
                                                                                                                                                                                    % m,g 94
* y_ ]
none.                    m .m    nov                                                                                                      ;
t      ,
f Wi_....o t
RCS Figure 5.8-1 4
 
t i
For LR Technical Report Template Development Purposes                                                    10/10/96 APPENDIX A TECHNICAL INFORMATION 7.1      Structures 7.1.1    Scoping i
Structures Descrintion The CCNPP plant site is described in Chapter 1 of the UFSAR. The plant arrangement consists of numerous structures which are shown on UFSAR Figure's 1-2 through 1-30 with further discussion of the design features
,                in Chapter 5. Structures provide many purposes at CCNPP including foundation, support, shielding, and containment for plant equipment. [UFSAR Chapter 1 and 5].
l In accordance with the CCNPP IPA methodology as described in Section 5.4, the following structures are identified to be within the scope oflicense renewal: [SLS]
* Intake Structure
* Containment Structure i              e    Turbine Building Structure (AFW Pump Room)
* No. 21 Fuel Oil Storage Tank (FOST) Enclosure 4
* Auxiliary Building Structure
* No.12 Condensate Storage Tank (CST) Enclosure
)
1 He general description and layout of the above scope structures at CCNPP is as follows: [UFSAR Chapter 1,5 and 8]
* The Intake Structure is located between the Chesapeake Bay shoreline and the turbine building structure.            l
)
The intake structure, which transfers cooling water from the Chesapeake Bay, is primarily a reinforced concrete seismic category I structure, founded on a slab varying in elevation from -26'0" to -14'3". The a
intake structure houses 12 circulating water pumps, supplying cooling water to the condensers, and 6 r                  saltwater pumps, supplying cooling water to the salt water cooling system. To protect me pumps and q                    condensers from foreign bodies present in the Chesapeake Bay water, trash racks and traveling water                  i screens are provided. Vertical guides are provided down the sides of each intake channel to receive stop-logs to permit drainage for inspection and maintenance. Running the full length of the structure is a gantry crane having a lifling capacity of 35 tons. Since the saltwater cooling pumps, which are essential for safe shutdown of the CCNPP, are housed in the intake structure, the intake structure is designed for seismic, tornado, and hurricane conditions. The specifics of these loading conditions are provided in UFSAR Table 5-7.
* West of the intake structure is a common Turbine Building Structure for both Units 1 and 2 which is oriented parallel and adjacent to the shoreline of the Chesapeake Bay. The turbine building houses the Unit I and Unit 2 turbine generators, condensers, feedwater heaters, condensate and feed pumps, turbine auxiliaries, and certain of the switchgear assemblies. The turbine building structure is an integrated steel structure, with metal siding, supported on reinforced concrete foundations. Included in the turbine building are the turbine generator bays, heater bays, and the turbine-generator concrete pedestals which project through the building to the operating deck at elevation 45 feet. The turbine generator Units I and 2 are separated by an expansion joint in the super-structure. The circulating water intake and discharge conduits are incorporated into the spread footings. The turbine building is a seismic category 11 structure with the Application for License Renewal                            7.1-1          Calvert Cliffs Nuclear Power Plant
 
For LR Technical Report Template Development Purposes                                                          10/10/96 APPENDIX A TECIINICAL INFORMATION
]
exception of the auxiliary feedwater pump enclosure, which is designed as a seismic category I structure and a turbine missile barrier.
l
* Adjoining the turbine building on its west side is the Auxiliary Building Structure. The auxiliary                      I building structure is primarily a reinforced concrete seismic category I structure with a mat foundation.              )
The foundation supports a structural steel and reinforced concrete frame which consists mainly of reinforced concrete walls and floors. On the top structure and over the fuel handling area is a secondary steel frame structure with missile-resistant concrete walls and roof which houses the spent fuel crane.
Facilities related to the NSSS which are located in the auxiliary building structure including the followmg.            ;
1
              . New and spent fuel handling, storage and shipment
* Control room
              . Waste processing system                ,
* Chemical addition system
              . Safety injection system
* Spent fuel pool cooling system
              . Various electrical distribution systems                              e  Chemical and volume control system
              . Component cooling
* Containment spray
* Emergency diesel generator rooms                                                                              l Since safety-related equipment is housed in the auxiliary building structure, the auxiliary building structure is designed for seismic, tornado, and turbine missile conditions. The specifics of these loading conditions are provided in UFSAR Table 5-6.                                                                                        I In addition to all other loads including Operating Basis Earthquake (OBE) and Safe Shutdown Earthquake (SSE), the steel-framed structure over the spent fuel pool is designed to resist tornadoes and missiles without partial or complete collapse, except for the west wall. A study indicates that the possibility of tornado missiles impacting the spent fuel pool from the west side is remote.
l
* Twin Containment Structures are located north west and south west of the auxiliary building structure with a connective boundary to the auxiliary building structure formed by the shape of the containments.
Each Con <airment Structure is a seismic catego y I structure, housing the reactor and other NSSS components consisting of a reactor, SGs, RCPs, a pressurizer, and some of the reactor auxiliaries which do not normally require access during power operation. The containment consists of a reinforced concrete                    ,
cylinder and a shallow domed roof which rests on a reinforced concrete foundation slab. The concrete cylinder and dome have a post tensioned contraction design. Attached to the inside of the containment structure is a coated carbon steel liner. There are three personnel and equipment access openings in the containment: a two-door personnel lock, a large diameter single door equipment hatch, and a two-door personnel escape lock. The primary containment has numerous penetrations for piping and electrical connections. These penetrations are leak tight, inerted assemblies, welded to the containment liner. A fuel transfer tube penetration in the containment is provided permit fuel movement between the refueling pool in the containment and the spent fuel pool in the auxiliary building. Two sumps are provided in the containment floor: a normal and emergency sump.
The Containment Structure, in conjunction with Engineered Safety Features (ESFs), is designed to withstand an internal pressure of 50 psig, a coincident concrete surface temperature of 276 F and a leak rate of 0.20% by weight per day at design temperature and pressure. Since safety-related equipment is housed Application for License Renewal                        7.1-2                  Calvert Cliffs Nuclear Power Plant
 
l 1
4 For LR Technical Report Template Development Parposes                                                    10/10/96 APPENDIX A TECHNICAL INFORMATION
.            in the containment structure, the containment structure is designed for seismic, tornado, and turbine missile conditions. The specifics of these loading conditions are provided in UFSAR Section 5.A.3.
* The Fuel Oil Storage Tank No. 21 Enclosure is seismic category I reinforced concrete located to the west of the containments. It houses the Fuel Oil Storage Tank (FOST) No. 21 which is a shared fuel supply for the emergency diesel generators. The enclosure protects No. 21 FOST from tornado-generated missiles and tornado winds by a seismic category I concrete structure. This structure will also withstand the impact of a 4
transmission tower falling on it without d mage to the fuel oil storage tank contained within the structure.
Bursting pressures are relieved by baffled, missile-proof vents.
* The Condensate Storage Tank No.12 Enclosure is a seismic category I reinforced concrete structure located north of the turbine building in the task farm area. It houses Condensate Storage Tank No.12 which is shared between the units. Tornado protection for the tank consists of a seismic class I concrete structure of sufficient thickness to stop tornado-generated missiles and to resist tornado. wind pressures.
Bursting pressures are relieved by baffled, missile-proof vents.
l Structures have been grouped together since they are designed and constructed in a similar manner, comprised of the same materials, subject to the same aging mechanisms, and are managed by similar plant programs.
Each structure within the scope of License Renewal and subject to an aging management review has a separate aging management review report which is listed in the references at the end of this section.
In accordance with Section 4.2.2 of the CCNPP IPA Methodology, Structures are determined to perform one or more of the functions listed in Table 7.1-1 in support of the 54.4 (a) scope criteria: [lPA Meth, AMRs]
* Functions 1-4 are associateo with seismic category I structures. Seismic category I design requirements are the structure level equivalent of SR components specified in QS4.4 (a)(1).
* Functions 5 and 6 apply to non-seismic category I structural components which could, if they fail, prevent a SR functian from occurring. This is the structural equivalent for 54.4 (a)(2).
* Function 7 is the equivalent for the fire protection (Q50.48) portion of 54.4 (a)(3) which is applicable to structures.
* Function 8 is a system level function for containment system type components and is the environmental qualification ( 50.49) portion of QS4.4 (a)(3).
Application for License Renewal                          7.1-3          Calvert Cliffs Nuclear Power Plant
 
For LR Technical Report Template Development Purposes                                                    10/10/96 APPENDIX A TECHNICALINFORMATION TABLE 7.1-1 INTENDED FUNCTIONS OF STRUCTURES Auxiliary  Intake      Turbine    No. 21 FOST  No.12 CST Function -                  Containment Building. Structure    Building    Enclosure :  Enclosure
: 1. Provide structural and/or functional          j.            j          j          j            j            j support to safety-related equipment
: 2. Provide shelter / protection to safety-        j              j          j          j            j            j related equipment.        (This function includes radiation protection for EQ                '
equipment and high energy line break-related protection equipment.)
: 3. Serve as a pressure boundary or a              j              j                                                          !
fission product retention barrier to protect public health and safety in the event of any postulated DBEs
: 4. Serve as a missile barrier (internal or        j              j          j          j            j            j external)
: 5. Provide structural and/or functional          j              j          j            j            j support to NSR equipment whose                                                                                            l failure    could      directly    prevent                                                                                i satisfactory accomplishment of any of the required safety-related functions                                                                                    j (Example: seismic Category II over I                                                                                      l design considerations)
: 6. Provide flood protection barrier                j              j          j            j (internal flooding event)
: 7. Provide a rated fire barrier to confine        j              y          j            j                                !l or retard a fire from spreading to or from adjacent areas of the plant
: 8. Maintain the functionality of electrical        y components addressed by the EQ program.
Application for License Renewal                            7.1-4          Calvert Cliffs Nuclear Power Plant
 
_      .-                ,  = - _        .-          ., -              . ._.                          . . _ . .
For LR Technical Report Template Development Purposes                                                    10/10/ %          j APPENDIX A                                                                j l
2 TECHNICAL INFORMATION                                                _
I l
Sconed SCs and Their Intended Functions                                                                                    I During the scoping process, structural components were identified for each structure within the scope of License Renewal. These structural components were grouped into 4 structural categories and I system category based on their design and materials.
: 1. Concrete Components,
: 2. Structural Steel Components,
: 3. Architectural Components,
: 4. Unique Components, and
;    5. System Type Components.                          ,
Within those five structural component groups,59 different structural component types were identified as contributing to the intended functions of the structure. Table 7.1-2 lists these component types and the l    structures to wh% they are applicable. Functions from Table 7.1-1 indicate which structural component contributes to the intended functions.
i Several structural component types are common to many plant systems and perform the same passive intended functions,(e.g., piping and component supports). As described in Section 2.0, these are addressed separately as commodity groups and are not included in this section. They include the following:                                          ,
l
* Component supports that are connected to the structures are evaluated for the effects of aging in the Component Supports Commodity Evaluation in section 7.6 of this application.
;    e  Cranes and fuel handling equipment which is connected to the stmetures is evaluated for the effects of aging in the Cranes and Fuel Handling Commodity Evaluation in section xx.xx of this application.
l    . Electrical control and power cabling for components in the Containment System is evaluated for the effects of aging in the Electrical Cables Commodity Evaluation in section 6.2 of this application.                              ;
While the first seven functions are of a structural nature, the eighth function is a system-type function provided
;    by the EQ electrical penetrations. Aging management for these penetrations is provided by the CCNPP 50.49 4    Program aging management review which is provided in a separate LRA section.
J s
e Application for License Renewal                        7.1-5            Calvert Cliffs Nuclear Power Plant
 
l For LR Technical Report Template Development Purposes                                                              10/10/96
  . .                                                        APPENDIX A TECHNICAL INFORMATION TABLE 7.1-2 STRUCTURAL COMPONENT TYPES REOUIRING AMR Auxiliary          . Intake  Turbine          No. 21 --  No.12 CST Building:.        Stmeture  Building        :FOST-        Enclosure -
Enclosure Concrete (Including Reinforcing Steel)
_ Foundations                                      1, 5                2                        1, 2          1, 2 (Footings, beams, and mats)
Columns                      1, 5                1, 5    '
2,4,7 Walls                                        1,2,4,5,6,          1, 2, 4, 7  1, 2, 4,          2, 4          2, 4 7                          6, 7 Beams                        1, 5                1, 5              2, 4 l      Ground Floor                                      1, 5              1, 2    1, 2, 4, Slabs / Equipment Pads                                                          6, 7 l      Elevated Floor Slabs          1, 5            1, 2 , 5 ,7            1, 2  1, 2, 6, 7 Roof Slabs                                        2, 4                2                        2, 4          2, 4 Cast-in-Place                1, 5                  1            1, 2, 6, 7 1, 2, 6, 7  1, 2, 4, 5        1, 2, 4 Anchors /Embedments*
Ductbanks                                                                      1, 2 Grout                        1, 5                1, 5                1, 2  1, 2, 6, 7  1, 2, 4, 5            2 Concrete Blocks                                    2 (Shielding)
Removable Missile              4                                                                                              )
Shield Fluid Retaining Walls                              1              1, 2, 6  1, 2, 6, 7 and Slabs Masonry Block Walls                          1,2,5,6,7 Post-Installed Anchors
* 1                  1, 5              2, 5      4, 5              5 StructuralSteel Columns
* 1,5                  1, 5 Beams
* 1, 5                1, 5              1, 2    1, 2, 7          2, 4          2, 4 Baseplates*                  1,5                  1, 5              1, 5    1, 2, 4,          2, 4          2, 4 5, 7 Floor Framing
* 1, 5                1, 5                1, 5      1, 5
(      Roof Framing
* 1, 4, 5              2                        2, 4          2, 4 l      Roof Trusses
* 1, 4, 5 Bracing
* 1, 5                1, 5              2, 5        4                5
!      Platform Hangers
* 1, 5                1, 5                5          5              5 l
Application for License Renewal                                7.1-6            Calvert Cliffs Nuclear Power Plant
 
l .
j        For LR Technical Report Template Development Purposes                                                    10/10/96 l
  - -                                                  APPENDIX A TECHNICAL INFORMATION                                    '
TABLE 7.1-2 (Cont.)
STRUCTURAL COMPONENT TYPES REOUIRING AMR Auxiliary        Intake    Turbine-            No. 21-  No.12 CST Containment Building      Structure  Building          .FOSTc    . Enclosure Enclosure StructuralSteel Decking
* 1, 5          1, 5          2      1, 2, 7              2, 4      2, 4 Jet Impingement'                            2                        4 Barriers Liners                        3              3 Floor Grating
* 1, 5                        5          5                    5 Checkered Plates
* 1, 5                        2 Stairs and Ladders
* 5          5                    5 Architectural Components Building Siding                                                      2 Clips
* Fire Doors, Jambs,                            7          2, 7    2,6,7 and liardware*
Access Doors,                                2            2      2,6,7                                                !
Jambs, and Hardware
* Caulking and                            2,6,7          2,6,7      2,6,7              1, 2        1, 2 Scalants Coatings (including      1,2,3,4,5, galvanizing)                  7 Unique Components Concrete Basemat        1,2,3,4,5, 6, 7 Concrete Dome          1,2,3,4,5, 7
Concrete                1,2,3,4,5, Containment Walls            6, 7 Primary / Secondary        1, 2, 4 Shield Wall Refueling Pool              1, 6 Concrete Refueling Pool Liner          3 Post Tensioning          1, 2, 3, 4 System l      Crane Girder.                5 l
Application for License Renewal                          7.1-7            Calvert Cliffs Nuclear Power Plant
 
For LR Technical Report Template Development Purposes                                                10/10/96
  ,                                                  APPENDIX A TECHNICAL INFORMATION TABLE 7.1-2 (Cont.)
l STRUCTURAL COMPONENT TYPES REOUIRING AMR Auxiliary      Intake    Turbine  No. 21 FOST No.12 CST Containment
                                            . Building    Structure  Building    Enclosure . Enclosure Unique Components Lubrite Plates
* 1, 5 Maranite XL Board              7 New Fuel Rack                              1 l
Assembly
* l Spent Fuel Storage                          1 Racks i
Monorail.                                  5 Cask Handling Crane                        1, 5
                                                                                                                    )
I Rail / Supports
* l Lead Brick Shielding                        2                                                                  i Pipe Whip                                  2 Restraints
* i Roll-Up Doors.                              2 Expansion Joints                      2, 7
_Watertight Doors
* 6, 7        6            2,6,7 Sluice Gates
* 1 Anchor Brackets
* 1 System 1)pe Components Electrical                    3 Penetrations (Non-EQ)
Mechanical                      3 Penetrations Fuel Transfer Tube /          3 Bellows Personnel Airlocks          3, 7 Equipment Hatch              3, 7
* Indicates that component type is included under the heading " Steel Components" in the discussion addressing the results of the AMR and in Table 7.1-3.
Application for License Renewal                        7.1-8          Calvert Cliffs Nuclear Power Plant l
 
For LR Technical Report Template Development                                        September 10,1996 7.6 COMPONENT SUPPORTS 7.6.1 Scoping Commodity Anoroach for Comoonent Supports
          " Component support" is defined as the connection between a system, or comli onent within a system, and a plant structural member (e.g., the concrete floor or wall, structural beam or column, or ground outside the plant buildings). [AMR] Supports for structural components are not " component supports" in this sense because any support for a structural component is itself a structural component. [CCNPP IPA Methodology]
Component supports are associated with equipment in almost every plant system. They perform the same basic function, regardless of the system with which they are associated. For this reason, it was determined that a commodity evaluation of component supports would be more efficient to address these supports than evaluating them as part of each system Aging Management Review. [CCNPP IPA Methodology]
Commodity Descriotion As discussed in the CCNPP IPA Methodology section on commodity evaluations (section 7.2),
;        component supports are scoped using a process similar to the scoping process for structures, as follows.
A generic list of component support types was developed by reviewing industry and plant-specific information, including Seismic Qualification Utility Group guidance, American Society of Mechanical Engineers Section XI component support inspection documentation and the CCNPP System Level Scoping Results. All component support types which provide support to equipment within the scope of license renewal are identified and listed as within the scope of license renewal. Systems having i      component supports addressed in this section are identified in Table 7.6-1. [CCNPP IPA Methodology]
j        Supports for both the distributive portions of systems, such as piping and cable raceways, and system equipment items are included in the scope of this section. The total population of component supports are grouped intc four categories based on the items the; support (piping, cable raceways, HVAC ducting, and equipment) and then into 20 component support types. Component support types are based on
]      similarities of design, loading condition, and environment. All categories and types are shown in Table          l 7.6-2. [AMR]                                                                                                    l Supports for the steam generators and reactor vessel are not included in this commodity evaluation but          .
I are addressed in Sections 4.1 and 4.2, respectively.              Supports for the spent fuel pool cooling demineralizer and filter vessel are also addressed separately, in Section 5.7.
Basic design basis information for certain supports is discussed in UFSAR chapters 1 (Principal Architectural and Engineering Criteria for Design), 5 (Containment Structure, Design Criteria), 5A (Structural Design Basis), 6 (Engineered Safety Features Design Basis), and 10 (Steam and Power Conversion Systems). [AMR]
Scooed SCs and Their Intended Functions All component supports within the scope of license renewal were considered to be subject to aging management review except snubbers, which were excluded as active equipment by 54.21(a)(1)(i).
[CCNPP IPA Methodology]
I
 
1 I
l For LR Technical Report Template Development                                              September 10,1996 Because the component supports subject to aging management review support components that provide
~
functions meeting f 54.4(a) (1), (2), and (3), the supports were determined to have the following passive intended functions, which directly correlate:
l                a.          Provide structural support for safety-related systems and components.
: b.          Provide structural support for non-safety-related equipment where failure of this structural component could directly prevent satisfactory accomplishment of safety-related functions.
: c.          Provide structural support for non-safety-related systems and components which are            ,
I j                            required for fire protection, environmental qualification, pressurized thermal shock, anticipated transients without scram, and station blackout, and credited in the analysis for these events included in thesurrent licensing basis (CLB). [AMR]
i                                                                                                                            i 4
The design loading conditions for component supports include factors such as dead loads, thermal loads, seismic loads, etc. Supporting information for specific loading conditions of specific supports is 4
maintained on site. [UFSAR][ES-040]
TABLE 7.6-1 SYSTEMS WITIIIN TIIE SCOPE OF LICENSE RENEWAL
;                    CONTAINING SUPPORTS WITHIN THE COMMODITY EVALUATION (CCNPP system numbers are shown in par % eses)
(037) Demineralized Water and Condensate Storage (002) Electrical 125 Volt DC Distribution                    (038) Sampling System (Nuclear Steam Supply System (004) Electrical 4 kV Transformers and Busses (005) Electrical 480 Volt Transformers and Busses (041)C e cal and Volume Control (006) Electrical 480 Volt Motor Control Centers                (042) Circulating Water (008) Well and Pretreated Water (044) Condensate (011) Service Weter Cooling (045) Feedwater
( I ) Saltwater Coohg                                        (047) Technical Support Center Computer (013) Fire Protection                                        (048) Emergency Safety Features Actuation (015) Component Cooling %,ater (055) Control Rod Drive Mechanisms and Electrical (017)instmment AC                                            (058) Reactor Protection (018) Vital Instrument AC                                    (060) Primary Containment HVAC (019) Compressed Atr
                            ,                                        (061) Containment Spray 4      (020) Data Acquisition Computer (062) Control Boards (023) Diese! Fuel Oil (064) Reactor Coolant (024) Emergency Diesel Generators
,                                                                    (067) Spent Fuel PoolCooling (026) Annunciation (069) Waste Gas (029) Plant Heating
                                                  .      .          (073) Hydrogen Recombiner (030) Control Room Heating, Ventilation and Air              (077/79) Area and Process Radiation Monitoring (032) Auxi i        u ld g and Radwaste Heating and 3        S (097) Lighting and Power Receptacles (036) Auxilia Fe          ar 2
 
                - _ ~ . .      . _ . -      _-. =_                _ . . -        . . - - .          ._      .-    _- -      - .- -
d For LR Technical Report Template Development                                                      September 10,1996 TABLE 7.6-2 COMPONENT SUPPORT COMMODITY TYPES REOUIRING AN AMR Component Support Group .                                          . Associated Systems (see Table 7.61 for system title)
Piping Supports Spring Hangers, Constant Load Supports, Sway Struts, Rod                    008 011 012 013 015 019 IIangers, and Snubber Supports' Outside Containment                        023 024 029 036 037 038 Spring Hangers, Constant Load Supports, Sway Struts, Rod                    041 045 052 061 067 083 l                  Hangers, and Snubber Supports1 Inside Containment                                      (Note 1) 2                  Piping Frames Outside Containment Piping Frames Inside Containment Cable Raceway Supports Channel, Clamp, and Other Supporting Styles Outside
                                                            ~
Cables are not assigned to specific Containment                                                                            systems.
Channel, Clamp, and Other Supporting Styles inside Containment                                            _ _ _ _
HVAC Ducting Supports Rod Hanger Trapeze Supports Outside Containment                                        030 032 Rod Hanger Trapeze Supports inside Containment                                            060 Equipment Supports Anchorage including Elastomer Vibration isolators                                      030 032 Electrica! Cabinet Anchorage Outside Containment                            002 004 005 006 017 018
:                                                                                              020 024 026 038 048 055 3                                                                                              057 058 062 077/79 078 097 (Note 2)
Electrical Cabinet Anchorage inside Containment                                        077/079 Electrical Equipment (load bearing insulation material)                            002 004 005 Equipment Frames (Instruments / Batteries on Racks)                      002 008 011 012 015 019 023 Outside Containment                                                        024 029 030 032 036 038 042 044 045 052 061 067 069 083 l                Eqt'ipment Frames (Instruments on Racks) Inside                                  013 038 041 045 Containment                                                                      052 064 073 083 j                Frames and Saddles (Tanks and Heat Exchangers) Outside                011 012 013 015 019 023 024 029 Containment                                                                036 038 041 061 064 067 069 Frames and saddles (Tanks and Heat Exchangers)Inside                              041 052 064 073 I                Containment Metal Sj' ring Isolators and Fixed Bases Outside                      008 011 012 013 015 019 023 024
.                Contair/nent                                                            029 032 036 041 044 052 061 067 Metal Spring Isolators and Fixed Bases inside Containment                              060 064 Loss-of-Coolant Accident (LOCA) Restraints                                                064 Ring Foundations for Flat-Bottom Vertical Tanks                                  008 023 037 052 i      Note 1: Correlation of piping support types to individual systems is not relevant to the AMR results. See more discussion under " Piping Supports."
Note 2: Local control panels and distribution panels in a variety of fluid systems were evaluated in the Electrical i              Panels Commodity Evaluation and their supports are included in this support group.
4 Snubber supports include the hardware from the wall and piping / equipment to the snubber pin connections. The snubber itselfis not subject to AMR.
3
 
                                /                                                                                                                                                        ~
!                                                                                                                                                Life Cycle Management Unit i
License Renewal Scoping / Pre-Evaluation Discussions October 10,1996 i
1
 
t Life Cycle Management Unit Discussion Topics System Level Scoping
      - Emphasis on Feedwater and structures Component Level Scoping for Feedwater System                                                      -
Component Level Scoping for Auxiliary Building Pre-Evaluation for the Feedwater System Scoping / Pre-Evaluation and Commodity Evaluations 2
 
Life Cycle Management Unit System Level                g Scoping Process                            i e_                        4"~ T~ %l                              System Level Scoo.ina 8--
                                                                                                            -j_,i
                                                                                          - .xn
                                                                                                                .c..xm
                                                                                                                    ,_            g.g Methodology Section 3 DBE                    Vs.1 Steps FP. EQ, T""              ^2$2                  - Identify system / structure l                      l                                      conceptual boundaries
                                                                          ,_.,    ,s,
                                                                                                                                      .,-      -        - Prepare screening tools
                                                                                                                                                        - Screen systems and 1                2 i
structures
                                                                      ."q=.-            m3=._ =3=._                            -
sp          -
Results I                i I                  I              - System / Structure u .L Amcton. for SS.
Information 3
m ,.                  - Screening Tools SSs w4 thin the Scope
                                                                                                                              ",=';*'                  - System Level Scoping oruc.n.. a.n.        i 7              Resuits 1
ro s.,
(*Tu9s*.")          3
 
                                                                                                                                                                                                                                                  /
E_                                                                                      F S                                                                                                                                                    -_  .
t e                                                                                                                                                                          .
a m
1 1
4                                                                                      &
2                                                                                      2 d
e                                                                                      .
5                                                                . .
    - - - = - - T W      RSRFh                      ehn w Ta ot Th              - - -
SESECWCh o e T
e e_
w en enmh          mme@hT l
HSFCCCA
                                                                                                                                                                                      - - o- .
s- ea = mcnms- ooou"eMCec.
s e      ec eee                      s edae e                s h
ee                  mm3            e .e          at    e m
se c aes "at    nehm    3mm e      ,n m  ag N r e                sea e a emhet uale amugse r re snm d cl d            A r
e_          s;4m e n mh      be m u
r e  mnoesdep                s - mn a              d        -h o n t ec rgs r a                    ap he p ra                Gs            yn e rem o                            s          e dse r e                      eg e
esn ery r                    ta s    n e on raniae                                                                            aurse e aen d r                                                              Wrt e_ ce r a e c t
s a s u.                                                                                                          t n raga      ehe        s ehs l                                                                        I arn emi                                          ss                                        m a e                                mn        rt-.^mai_
i n                    y      r e se m__ ogahn                          c nen  sobed S
der        ag                                                                        sp                            t ede                              eel
                                                                                                                                                                                                              -p. -_
s      a
: ssgt                                                      er              sen          d                                                                                  n t sm s                                                                      de a lg ys                    e is        og niutsa or                      aao      e o stg                                        r        e nee              arta aol seceeero Sapp n e om                  emmhmy                                      hprear            r s ete                                                                                                                                                                                                      -
ey              e                                    l u e          L e    up s l                                                          s e mop dece r
e  ms                e ke sa sm P                          e se c                      emedo              necr mmesmgm p
ens r
r ee tnee e
r e r
mr essmt e a        me e
as soreyt pep n    ay e nete s hemmeye e
r        t e&pte th Ta rso e
es emgi da(                            hse e
lm    i t
i ap l
t e
cd l
iv c aagsu a
at  danme    er rg ams t mat      e y
osarl    ea rdet      r ooe      or s s
as o                              eersee;u sa                              e s ,ur arsul s
s m r Se                                t r                                              h                            -
umOnMst r
st                                                      e          e                                              ep                                                                -
c =
ep a
e              gem          wtrn                  d e              s a  r          m        s eg Faaadur            r w a n                          e mr r e na - id a                  sds e                                                        '    r                                              i huLs s a wgepg ul Pss                                                          r t ey m
a ar a
at ne          h eh    e        ^m                    a                      e                              r ru e                  hn              -  w a      u r  o u    n s
t efa                                                            eW                                                      a s -                      u der e
gk                                                                                                                                      r              uy                  s us e r
i v
r ut a
n a
e t me
                                                                  -                              ^
egw ~daheeym l
n sen              t m-                e      ha ly      m mrs                aes        nhe_
de
                                      = re mV_
r m                        r e __o ac r7'ai e a rn                      u ee4 c  m s
s e      0 m
s                                                                          gdg                                      e      rab  e r_                                    _e                                                              a er mp m e  t m                        ab_                                                    h                  r
* r a t me_
t an                re m st  e
                                      =
                                      =              t m y
s              c        n
                                                                                                                  ^p nbg fe
:    r tn              gr              a a e                            .h m
i he                                i              h                                                                                          er                          .
rh          a              e                                                                                                                  ut r r tmn u
m - ^qJ                e 2todt e                                                                                                                                                              r nm          r s mt e          i e-n e                      m              e e    l                e r
n                s thp re                                          e y                              .
t e                                                                                                                                                s el      wg. r
                                                  ^sc m ._
: a.          e u                                                    e t
o
                                                                                                                                                                                                                                            /
                                                                                                        ~ acsmW--      r i
r k      pi t                                                                        -
ee r ep                                                            a                            .
S u
m    pi a.            h_                                                            oe          eo                                                                                  y.
e n      n td _          e_                                    ;      p eu            r a mp          u            +
g      grg atc m                                                                                                                                                                          .
bu ne d dd
                                                                                            ,e      gtg n usee    i s s ;_ yr seotr  r                                                                                .
l eA          km g
age      ew          s s        m e t
e t
                                                                                                                                                                                                                      .m                    t ssm  e o e er dm-n dv eee be t
m_et edl e ertek e
d m
r t mum
                                          $es eg sr ea
                                                                                                        ' h ,e
                                                                                                        ^ tpee uu Ts seat he a
m
                                                                                                                                                                                                                                  .        u e re c
l y                                                                                                    e-sp eep t      r nr ne meu a aw n
r a                em    e s
s S
G E    t e                                                                                                                                                                            . T L
L A C a
P a
u E r o
r e
3 g
r a
S e
c eU P
g 6 t0 S
e c
aU                          gPE  D
                                                                                                                                                                                                                                  -  m 4                            a F nS                      t1 r at e
o F nS                            t h                                                                                    -
I 1 A 0 R 2
2 o 2 u
3 5
1 A 0R 2
2
                                                                                                                                          ,2 a S32
                                                                                                                                                                                                                          -                n f
L i
f mh 1 1 ot ni g to  a T        T e
p i 1 e
e r e T eus o
: h.                              . 4 T
o r
e1 c
oT me m1 aT k
s o
                                                                                                                                            - 1
                                                                                                                                            ~ea T
a T
o e .7 mT ao u          m a 5 n.
d T e
L o
r e
u ea r
e3s n pen    de we e e-sa i
p u
n ep dn t Md a re ni  p          t r a n t                  p r
e cm sus o e mM e p    n C
mu-                                                                        a a                                          n a;                                      _    t      yi                                              a                                          e y
mt m
s el r
n                                        Dm3          ee                  c ne              er u                      e d        nd          s d    a e        eh erd              c                                                                          oe                                                    d e                                      .
r ag # e t
: y.            t
                                                        - eh o
nr e        ma mI m s
t n
aem s
t se e e a
m a e no n  o m e
                                                                                                                                                                                            ;- m e    q.                                    c het m u r rm r
e hee egg egs e
e r
m l                eg r e t
a r
e m m e n hs e t ni ae      e e da n p s wW n
r st m o eo nd e
e a
                                                                                                                                          .m ermt e
t e
a s
d n
e k ruu s
a
                                                                                                                                                                                                ^ et
_ ot l
e n
r g
e a
t  e l
l eyl n              h                tar                              cr e            p                    r i b                                          c              m      I m-e                                                                                                                                                        m
                .r                                  htw                              s t          alm                  me                  - ow                    o n            t        o    m            .                          i o
ghes        ce                                                s$                                                                                            o M
e s                        mo                              a es                  b          od    a t                  d                      d e p e J w        h                                                        s              g            t n                  h                  e            m sa  o    s                ueR e                              &m og                    m imrt t
se e
nr            e        um ma e
s e
r as tent e
en sm hei o c l
nh e                  e-          eo s
es e
e r
h            o m
p si t d          us .
n  a n
c s                                                                                    t m                      m p-o m        a                a m                              e                                                                              e            a              ih me        mG                n em                              yei s cm                              ee e                      g e                  e n            c c            e k
ae                                re                                                          n                  g et 1gi sh e                met a
mss  b r at
                                                                                                                        .e am  r a
e u
r l
ev i
a r
e h
a st e
a t
sp g mu at en a
t o
r e
e r sp ie n
t e
m d
g e
n n
ss m
el o
r c
a r
e s            u r
e                                            g ea Wn t n h
t r              nr et h o ea er n e
st e
e t
e c
o r
e r
a t
o r
d p
u o                  t a
l e
e m
a m
p u
l e
e                            sar e
a n                d e
e t
e m
p                                  s si p
m s                                            m e
r n                                                m a
n e
n et P
a g
e                                                                                                                                                                                                                                              t 1
7 o
f                                                P D go S
t S
e c
t U u
mS    F gP(
te D
n U
4 7                                                1 2
5                                                2 1 A 0R 2m
                                                                                                                                        .S2    3                                                                      h n
i 3
                                                                                                                                                                                                                                .              t
 
mL  s        -          -_                          a I            i                    g        .
i
                                                                      !!                  1 ll li "I ' l                I II    'II k!!                  (n l[lsi!'r{              l I    !![ll l
ili  i i ll < !          hI !
                  "1 1li! i t it i II !i.119 l! ! !rliI.!k III            $
illo  1:
l'il1 iii lji l                i1          11it;;itilIl                g lii,              i! ! iti li!gliii!!!!
1 Iiirir                  2 i l                                            2 11                                                ,
l'i  i 3
13!
II l I
III ii p      i ,
jij $
a l i E                                                                  }
k!I      kI                                    '
e h  h a!!Ili.niiij h                tili i                                !          a  ?a 1 i ig        !gi                                          a l}kk.l$        ll;  .                            ,
5-  m II i 11{.
m 1a      .i
: i.                                          -
a i                                                                    't            E
            !it      111 u        !i il e                      1i -
5
 
x Life Cycle Management Unit Tools - DBE Flow Chart                                                                                                                                                      Steam Generator Tube Rupture Design Basis Event Even
  . . . . . . . I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t I
ace p.
I I                                          I                                                    Crttical m.m.m.                                                                                                                                                                                                                                                                            *==*.=.="*
c      .e                                              a is ,c.,,,,                                                  n ,,,                                                                                mm                                      vs.                        .="*',",,***=,,,*"                sat *tY am      i r
u-- e c                            Functions
  .......,.............g..........                                                                                                                          ....................,............i...................
i 1r                ir                                              1r
                                                                                                                                                                                                                                                                                                                  ,,,,,                        Plant r                                                                                                          1r                        i f
i f          it            it                  '
t                      't
                                                                                                                                                                                                                                                                                                              't-                        Functions a  4.s.                    P ~.8          aca peu &                                                anas                                                                                                                                                                                        ;                        Supposting S.A.sy kg. cal.er                          RPS                R co.s C                  RCP            '**$'8**                          408Af.
i        An.ca.e                      Acced.nl '        Pla Lyy                                                                                8                                                                                                                                                        V$                        Crttiggj $3fg se                                          an e                                                  e-m.a                                      Tr p        -
c ed e                                              Sh.d es a n.s                                                                                                                      i                                              u'om me          i                                                                  - DCS
: a.                                                                                                                        l                                                                                                                                                                    Functions ir                            r              1r                                                      r                                  t                                          '                    '                            '
if                    r                      t                          t                (8                                1r u,.                      A mar                  cvca                                    j      a.nev er,see.                          arsnaa.p tot
                                                                                                                                                                            - f.m                I acs l        Ause*.8 aerpa                    88 s                                                    aca                          Systems &
sesansepume                                                                                                                                                  I
                                                    * '8884w                                          va acca ce.no                          vAjimyAcw i
a e nvvor x                                                                                                                    Vltal vA lus voc                          .
a 1251EIC$                                                #8 VAC WDF '                                                                                                                  ultas voc                                        u 120VACvir -
Ama a ren                  ul120Mvor          a
                                                                                              $'        iI suvvors ,
n an.cs ,
VA  120VAC g .                                        Ac3                      VA 120VAc VDF,                          g,,ggg,,,08 m man n.n e                                                                            ~
n  .
                                                                                                                                                                              %,,,,,                            u 12nvoc 5 .-                  saras tsun,                                    a tasvo:                                Supporting isaavAcvir ,                                                                                        a wArw -(
                                                      -OMN! g
                                                                                                        '                                                                                                                                          "#                                                                                    the Plant vAliaovaCw                                                                                                Y :cves      s vAltaow:w "P'
Functions A, , F          ,                            VAl64l                                                    goy,,gyor ,                          cane a a tri
                                                                                                                                                                                                                    , uma as vAjiaava w ,
VA n.ArW -
if                                                      i g-                                                                                                VA [u_yoc e VA 120 bAC W g                  ',                                                                                * ' 6 ' 'd" bA 12GM$C W rus        r                                -
I'tasvAchip                                                                                          vA    12avacer '
ul4ao vAc vor                                                                                      EExcessissv                                                                                                      are i -
M      tasvoc -                                                                                        u pas vACvir g      iasvAc        w a c.o.a r.csa                                                      .                . -                      mua              ein.ca                    .                  ..un m              a m    e. s .                                    .                . = ==                                                      = an= =                    - .                      - - . . = taa                        .u m m.-                                                --.a                                                                        .- - .                          . ac.                        ..
                                                            ...-,-.a                                                                                                                  : c'm".'""*"              .i                              '"*
                                                                                                                                                                                                                                                                .; '"*"'                                                    FIGURE 14-15 LEGEND                        -"''                              *'*"                                                                                                                                                                                                                      DBE No.15 FLOW CHART
                                                        --n==                                                                                                                        5 .""'*
                                                                                                                                                                                      .                          s                  . " " * ' "
                                                                                                                                                                                                                                                  "=              -4'"*a*".*"                          -
                                                      ======.a==                                          a.=.-.              - - =a==.
SCREENING TOOL a., wsAa a si.aaanocis                                                                                                                                        a====.-.=-=====""*'"-
                                                        . .                                                                                                                                                                                                                                                                  Revision 4 l              la    .i.c3s,.ois                    .e -
                                                                                                                                    .=.                                                                                                          n                                                                LCM-12        Revision s n g tygAgg Q.py                  du ei.y - -                                    . .s. .Ps                                            e e.      .
                                                                                                                          .apas.'
                                                                                                                              -. e =.-~~      e.a.                                                                                                                                                                                                    j 7 - ~ ~                                                                                                                                                                                                                                                        BGE LCM Prograrn 5
  .-.~
 
I Life Cycle Management Unit i VITAL AUXILIARIES WATER COOlafG POWER    mm.DISTR.IBUTION                          mm                                  -Aa                                BtSTRU.R,IENT A          .
          -                    .D.                        -            .RW      j      _      . .,VAC .C.R.                -- .            . .WAC .
                ' Tissgency J                Dlusal Generale                Sese Weer CeotiG            t ConDel Rease HVAO'A                e      Cangenses Ar* *
                ' . ESFAS (Nnes t) j @agyw h                                        VA 4 ItV b 12S VDC,                  VA 1    AC
                                                                                                      '129 WJC T M ' '
VA    WAC6 NAFW                                                      eg g ga.apwa'
                      ]        f                                                                                            .,
VA      12S VDC
                                                                            ~
                                                                                        -.      - efVAC SAKL        '
s . ;p Ap . m
                                                          ~  '
s 3 CentalResnerww*.;-                          gwac < p 4 nVg. ; ~ 3                _VA e      __p.                        -
VA    SUV                      VA l 488 VAC VDP''
        =                  4 IEW VDP                        VA  ese VAC VDP
                                                                                                                              -    e " 4A *CNMTs VA    12SVDC                                                          'y y            ~ ~ gg.
f.ledstce 4 KV                        VA  120 VAC NVDP        .,        , NVAC.ECCGI,' '
              . T.
                          ^
_4 thmes                                                                                        VA 400 VAC M' VA      EDO                                            ,                              m'Ou T-            VA[r ? f20VAC VIP' VA      HVAC SWCR VA      125 VDC                                  sas wasar Cecang                          VAC VDP "
VA  IA SWAC                  VA        120 VAC VDP2 VA  e ffVVDP
        *            "' 'AO #                                VA  dag VAC VDP 120 VAC VDP                            va  in wc                -        ., NW AC . PEN Je ..
120 VAC CPT                                                              W,                    I                        =
* VA VA Flow Chart Ence. 4s0 V Traner. a simas
                                                                                            ~~ l ---  dag VAC VDP :.
TA VA VA
                        . =-
HVAC .SWGR 125VDC i=.          HVAC.SWGR .
g            e Rmemesse HAVr VA VAg 120  l ese VAC WACVDPt VUP        t'?
      =              120 VAC VWP Vle                AC
                                                                                      "          . HVAC. APW% e Aest thablDig ans a VA HVAC CR/CSR                                                                          pagwasse H&W.
VA l 450 VAC VDPA%
VA l HVAC.SRWWAPW
      -            120 VAC MVDP            l AC                                                -.            Hh AG . EDG VA 480 VAC VDP (h4CC)
VAy l HVAC-CR>CSit m gg        I VA l 480 VACVDPN
_                  m VDC
                                                                                      =i    HVAC. FUEL MAIRR$3 ElecL 12S V DC Dinertuman VA l 440 VAC VDP (BUG)                                                                Radweehe HSV ..
VA l HVAC. RAT                                                                                    p. m. .,
VA 125 VDC a. J5 N3
                                                                                    -          ECc3 COOLatim i Amt BidAnggik &s Nose (sk                                                                                  - Redsustg HSV'.'. '
(1) Syneems 4. S to, t9. 25,32. 64 and et awumn NsR coregonenis wpurm snusi                              '
VAC sees thed to suppost ESFAS tancmons See esponset tota.
g      925 VIC ' '" " " '
                                                                                    .=        mAC. RWmAPWs Aim Summig mul -
Rartnesse HAW"      d VA l 408 VAC fM894 ;
* REFERENCE                                                                                VA l 120 VACVDP #
l        814NH0080                  l                                                                                              FIGURE 1460 REY                                                                                                                        VITAL AUXIUARIES FLOW CHART SCREENING TOOL VAIdentmer                        Va . VITAL AUMauARY                                                                          Revision 4 ViF . VITAL INVERTER FED V.CF,                                                                            LCM 12                Revision 6 VA VA e at the sytnene D .VITAL Vim D4ESEL ESa      FED,m NVP . NCMvlTAL FED                                                                    BCE LCM PROGRAM Wed h                          CPT . CONTROL PCYER TWANSFORMER
 
  /
Life Cycle Management Unit Tools - FP Screening Tool LCM-12            Revision 5 Fire Protection (FP) Screening Tool                                      Revision 4 SYSTEM /                S/U Sys                                                                          FIRE PROTECTION (FP) FUNCTION                                      SOURCE      SECTION/
STRUCTURE                  ID No.                                                                          SAFE SHUTDOWN (SS) FUNCTION                                      DOCUMENT      PAGE Demin Water and                37                                                        SS ProSides back-up source of AFW water to support RCS Heat Removal.                    Ref 2  Att 1, pg 21 Condensate Storage
* Includes manual realignment of CST                                                        Att 2. Fig 11
* Includes condenser make-up path isolation                                                and 15 SS Provides make-up water to SRW/CC systems via system hose connections                Ref 2  Att 1, pg 15,23 to support RCS Pressure & Inventory Control, and Heat Removal                              Att 2. Fig 12 (Cold Shutdown).                                                                            and 15 Chemical and Volume            41                                                        SS Provides primary make-up to support RCS Pressure & Inventory Control.                Ref 2  Att 1, pg 13 Control System
* Includes realignment to auxiliary spray mode [ Notes 3,5]                                Att 2, Fig 3 and 8 Condensate                    44                                                        SS Provides make-up water to SRW/CC systems via system ho;e connections.                Ref 2  Att 1, pg 15,21 and 23 Att 2, Fig 12, 15 and 17 Feedwater System              45                                                        SS Monitor Steam Generator Level to support safe shutdown in the event of              Ref 2  Att 1, pg 18,19 a postulated severe fire,                                                                  Att 2, Fig 20 and 21 Safety injection              52                                                        SS Provides RCS Pressure & Inventory Control to ensure safe shutdown in                Ref 2  Att 1, pg 14 event of a postulated severe fire.                                                          Att 2. Fig 3
* Includes Sitankisolation [ Notes 3,5}
SS Provides RCS Heat Removal by realign!ng and operating in the shutdown                Ref 2  Att 1, pg 22 coo!!ng mode to ensure safe shutdown in the event of a postulated severe                    Att2 Fig 5 fire. [ Notes 2,3,5]
Page 8 of 12 BGE LCM PROGRAM 7
 
Life Cycle Management Unit                            1 Tools - ATWS Screening Tool LCM-12 Revision 5 ATWS Screening Tool                                                      Revision 4 Reference 1 -                  Calvert Cliffs NuclearPower Plant, Units 1 & 2. Updated Final Safety Analysis Report (UFSAR), Section 7.10 & 7.11.
l SYSTEM /    SYSTEM STRUCTURE ID NO.              ATWS FUNCTION (S)
Auxfilary          36 Feedwater
* Provide AFAS START signal (diverse from RPS) on low steam generator water level conditions indicative of an ATWS (AFAS); components include isolators, bistables, initiation relays. and logic modules.
Fe(daater          45                                                                                                i
* Provide AFAS START signal (diverse from RPS) on low steam generator water level cnnditions indicative of an ATWS (AFAS) ; components include level              !
transmitters.
Emergency          48 Safety Feature
* Process sensed signals / provide reactor trip signal (diverse from RPS) on high Actuation                      pressurtzer pressure conditions indicative of an ATWS (DSS); components include isolators, blstables, logic modules, and initiation relays.
(ESFAS)
* Process sensed signals / provide turbine trip signal (diverse from RPS) on CEDM undervoltage conditions indicative of an ATWS (DTT); components include isolators, bistables, logic module, and initiation relays.
Control Rod        55 Drive
* Interrupt power to the CEDMs/ initiate reactor trip on DSS signal; components indude CEDM motor generator output contactors.
Mechanism and Electrical Reactor            58
* Process sensed voltage signals for ESFAS (DTT) trips; components include Protective CEDM power bus undervoltage sensors, intermediate sensor relays.
* Provide signal to DSS circuits on high pressurizer pressure conditions; componentsinclude pressuretransmitters.
Main Steam          83
* Initiate turbine trip on DTT signal; components include hydraulically controlled reheater stop valves (Unit 2).
Main                93 Turbine
* Interrupt power to the Main Turbine Trip solenoid valves / initiate turbine trip on DTT signal; components include trip solenoid valves (both units), intermediate initiation relays and hydraulically controlled intermediate stop valves (Unit 1),
hydraulically controlled auto stop valve (Unit 2), and hydraulically controlled turbine stop valves (both units),
GENERAL - Any systems providing signalinputs to the systems listed above should be reviewed to determine if that system provides the function of loop protection and isolation from electrical faults.
Page1of1 BG&E LCM PROGRAM 8
 
1 i
Life' Cycle Management Unit System Level Sco.nina. - Structures j                Excerpts for ES-011 "SSC Evaluation" (Q List Basis Document) l                c) Structures Seals and expansion joints for safety-related structures are SR-CAT l.
{                            Turbine Building siding clips are SR-CATI (reference UFSAR 10.A.1.20.1).
The following structures have been designed as SR-CATI and all non-safety-related items in them (except as not in Attachment 3, Section 2.b.S)b)) shall be mounted
;                            structurally as safety-related. Otherwise, these structures are AQ-illl:
Containment Structures.
The emergency sump including grating enclosure is SR-CATI (CLASS-649).
The reactor cavity pool seal is SR-PB (CLASS - 2Q9300104).
The reactor cavity neutron shield is AQ-illi (CLASS - 2Q9300104, Rev.1).
I                                Auxiliary Building (excluding those areas listed in UFSAR Section 3.2.9.2 and the i
west wall above elevation 69'0").
intake Structure (circulating water and saltwater enclosure portion).
Diesel Generator Rooms.
Refueling Water Tank Pumps Rooms.
j                                Condensate Storage Tank 12 Enclosure Structure.
i                                Fuel Oil Storage Tank 21 Enclosure Structure.
Auxiliary Feedwater Pump Rooms.
;                                Diesel Generator DGOC Electrical Ductbank (excluding those areas listed in                      ,
UFSAR Sections 5.2.10.5 and 5.2.10.6) (CLASS-2Q9300111, CLASS-2Q9400020).
i 9
  ._ _ .__ _ _ ._        _ _ __.        _ _ .          ._ _ _ _ _ _ _.      . _ _ . _ _ - _ _ _ . - , . _ _ _ . . _ . . _ . _ . _ . - - ~ _
 
Life Cycle Management Unit System Level Scoping Results LCM-12 Revision 5 I
BGE LCM PROGRAM i
TABLE 2 SYSTEM LEVEL SCOPING RESULTS Revision 4 CRITERIA 1 & 2                                      CRITERION 3 Req'd SystemIStructure                                                                                                  Classi ClassIof SR-UnN                      ID for DBE                                                                                                                        In ScoPo Chemmal and Volurne DBE Plant F"%(s)                                      Q  orSR1M 1M Reference  PAM    FP ATWS 880    PTS Na 15                                                                                                                  EQ      Yes/No Control (CVCS)                                    Na 16 (continued)                                        Na 17 Na28 Caculatog Water      1&2                      42    No    None Yes    N/A      N/A      No    No  No    No    No    No        Yes Condenser Air Red    1&2                    43    No    None No    N/A      N/A      No    No  No    No    No    No        No C  .G i ate          112                    44    No  None No    NA        N/A      No    Yes  No    No    No    No        Yes Feedwater            1&2                      45  Na2    Cntnt Owr areProtechon(s14)                            No    mA        NJA      Yes    Yes  Yes  Yes    No  Yes        Yes No. 3 Prevert Reverse Flow from SG (s26)
Na 4  Cntrrt Press Control & eq (s13,14,17)
Na5    Provide Signals to ESFAS (#14,15)
Na8    PnMde Signals to RPS (54,6,7,12,14,26)
Na7    Provide Signals to AFAS(NOT #7 & #26)
Na9    isolate Affected SM (814,15)
No.10 Na12 Na 13 Na 14 Na15 No.16 Na17 No.18 No.26 Ea -, 0--                                    46 1&2                          No.13  C 6..@d-%(s13,17)                                      No    N/A      MA      No    No  No Na17                                                                                                        No    No    No        ies F"        Heater    1&2                      47    No    None                                                  No    N/A      N/A      No    No  No    No    No Drame and Verts                                                                                                                                                          No        No i Page 7 of 17 10 h
1 w                                              <                      w rr ,                                    s9
 
M                                                                                                    Ufe Cycle Management Unit LCM-12 Reviskan $
System Level Scoping Results BGE LCM PROGRAM TABLE 2 SYSTEM LEVEL SCOPING RESULTS Revision 4 CRITERIA 1 & 2                                    CRJTERION 3 Re(d                                                            ClassI ClassIor SR-SysterntStructure  Unit  ID  for DBE                                                                                                                  In Scope DBE Plant FeMs)                                      Q or SR-lu 1M Reference  PAM  FP  ATWS SBO    PTS    EQ      Yes/No Docks and Manne Reized  Batn 108    h    None                                                No    NJA      NA        No  No  No    t4o Structures                                                                                                                                    No    No        No 8amers and Bamer        Botn 120    No Penetratene Nane                                                w      NA        NA        No  Yes  No    No  h    94 o      Yes Amhary Buenng          Both  -  M 19 A      :- - Frorn Turtane Generatar                  No    Yes      UFSAR      No  Yes  No    No  No    No        Yes Produced Meaaes                                                    Chaper 5 Concensate Storage Tark Botn        No 812 Enclosure t4ane                                              w      Yes      UFSAR      No  No  No    No  No    No        Yes~
Chaper5 WM Water                Botn  -    No  None                                                h      h        NA        No  No  No    No  No    No        No Trommere Plant
    @e Gen House            Both  -    No  r4one                                              No    No        NA        No  M    No    No  No    M          No Eqe;M Hatch Access      1&2    -    No  None                                                h      No      leiA      No  No  No    f40  No    h          No SuMeg 81 E? ', _ a Hatch A~--    1&2 Bsang #2
                                    -    No  None                                                t4o    w        NA        h    No  No    No  No    No        No Fra Protectum          Botn  -    No  None                                                No    too      NA        hs  No  No    No  No    No        No Pump House Fue6 Asserntses        1&2  -
Na 2  Reactor Core Performance (AA Req'd OBEs)                  NA                  No'                  w
                                                                                                                                ~
No              NiA            No  No    No        No        Yes Na3 tact 4 Na 5 Na 6 Na 7 Na 8 Nct 9 Na 10 Na 12 Na 13 Nct14
                                                                                                                                                                          }
10A                                          e.ge is ,1,7
 
Life Cycle Management Unit
                                                  == L~                        J;TE"*?n',                        Component Level Scoping Process for
        - ,- cr-
                                                              ,                                systems                        - Systems 4_-
ATWS, EQ Saeerung
                                                  " "Q'8 d*'*d # "**d*d 7                                                                                                                Methodology Section 4.1
      %"T@                                                  ,
* Steps
                                                  .':"'O*C
                                                                                                                        - Identification of detailed system functions X                                                    m m o ..
                                                  / ,, ,, _ N                                                            - Development of function f" * ~ ' ' ~ ' ~                                                                      catalogs
      /                              :
s-    <~                  _
                                                                                                                        - Generation of scoping
      " ~ " * "                "
:            4 "=                                          I '~ ~ '                  results tables
                                                              -~                                , - - -
rd- j . ":TE~ L                                                                                .-
* Results g_                            l 1                            ,_ h.                        - Intended functions list
_-*s                                                                                  - Function catalogs g                                                                  /                          1
                                                                                                                        - Component Level Scoping i                  ,_
m,,,,,,,,                                                              Results
                                                  **07"."O'
                                                      ,.                                                                                              f function (s).
rwu                                                            11
 
M                                                                                          Ufe Cycle Management Unit Table 1 -Intended Functions SG&E LCM Program                                                                                                                                        par.E        1 TABLE 1: ITLR SYSTEN FWCTIOh3                                      REV. 1                                    DATE: 01/29/93
$YSTEn: 045 FEEDWATER GLIST ITLE Criteria 1 & 2                                      Criterton 3. 4
                                                                                  .                                              C                            A FUhCTION                                                                                            Dat                          L  P                    P    T    5  L DESCalPTION 30 NLM6ER                                                                                            1  1  1  1  1 1 1 1  2 5  s  A      1  1  P    E  T    W    8 F C OF FUhCTIOu                      2  3  4 5 6  7  8 9  0  2    4
  ====                                              -
3      5 6 7 a  6 0  1  M  Q  E  N  8    0  5    5  0  P O La045-01 SEhD $1GkALS TO ESFAS AND Pt0 VIDE STEAN GEMERATOR 150LAf t0M.
(fra 92-155 ADORESSES T3E APPLICABLE DSEs FOR Tuls FUNCit0N)
                                                                              . . . . . . . . . . . 1 X . . . . . . . . . . . .                              . . .    =l e
E E
ua5 02        P.OVioE CO. Amu Ommssuit n=Cuc..                                . . .        . . . . . . . . .
                                                                                                                        . . . . . . . . . . . . . . . .I Lt045-03      Pa0 VIDE CouTAIMMENT ISOLATION.
                                                                              . . . . . . . . . . I . . . X              . . . . . . . . . . . . . .
e
                                                                                                                                                                        .l lag 45-C4                                                                                                                                                                i PREVENT REVER$E FLOW FatM SS VIA CLOSURE OF CHECK VALVE.                                                      1
                                                                                                                                                                        .l Lt045-05      MAlmTAIN FWCTIOhALITY OF ELECTRICAL EQU1PMENT AS ADDRESSED ST THE EG Panrm,                                                    . . . . . . . . . , . . . . . . . . . . . . . .                        1  . . . .      .\
n t
I LA045-06      TO MAlhTA!E THE PRES 3ung animensi 0F fut $YSTEN LIQUID.
                                                                              . . . . . . . . . . . . . . . . . . . . . . . X . . . . .                                .l LR045-07      TO PacVICE IuF0aMAf tcu usED TO ASSESS inE PLANT Amo EEVIE0kS CONDITION OWING ARD FOLLadING A5 ACCIDENT.
                                                                              . . . . . . . . . . . . . . . . . . . E                  . . . . . . . . .              .I t
I u x5 07.A    .0T uiE.
                                                                              . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  1 I                                                                                            1 LR045-07-8    STEAM GENERATOR LEVEL.
                                                                              . . . . . . . . . . . . . . . . . . . . . . . . . . . = * *l i
La045-07-C    STEAN CEMERATOR PRESSURE. (TPS 92-155 EEGLESTS THE ADOTION OF TNIS PAAAMETEA)
                                                                                              .........................l 12
 
Life Cycle Management Unit Table 1 -Intended Function i ' page 2)                                                    ,
BC&E LCM Program paw:      2 TABLE 1: ITLe sfsTEM FUNCTIObs eEV.1 sfsTEM: 045 FEEDuTER                                                                                                                          CATE: 01/29/93 GLIST ITLt criterie 1 & 2 Criterion 3    4 fuhCT10m                                                                                                                          C                k DESCRIPTION                                              DBE                            L P ID NUMEf.R                                                                                                                                      P  T  s
    ...        ..    .~                        Of fuuCTIou                        2    3 4 5 6  7 8
                                                                                                        \1    1  1  1  1  1 1  1 2  5 s A  1 1 P E  T  W 8    f L
C
                                                                  ,._                                  91 0  2 3  4  5  6 7  4 6  0  M e  n 1    E  a e  $  $  0  P O
                                                                                                        .l.          .  .  . .  . .  . . . . .
Lt045-08                                                                                                                                  . . .  .  .  .  . .
PROVIDE STEAM CENERATOR LEVEL tlCICATION.                        . . .
LR045-09                                                                    t            . . . . . . . . . . . . . . . . . . . . . . . E . .l 70 MAINTAIN ELECTRICAL CONTIuu!TT AND/OR PROVIDE PROTECTION TmE ELECTRICAL STsTEM.                                            .          OF                                                                  a
                                                                                            . . . . . . . . . . . . . . . . . . I . . .                  . . .    .]
1 t:045.to PaOVioE CtosumE Or ConTAinaiEmi is0LATICE VALVES. (TPt 92155 WITTEu TO DELETE TNIs FUNCTIO 4)
                                                                                          .........................                                          K - .I La045-11      Pa0 VIDE s!GNALs To AFAs.
B M. X X X X X    .X    X X X X X X X        .
X . . . . . . . . . . . . .
t 045.i2      P.0VroE sicots 10....
                                                                                                                                          . . . . . . . . . .j b
13
 
Life Cycle Management Unit Function Catalog -
LR045- 06 Pressure Boundarv BGCE CCNPP ITLR COMPONENT FUNCTION CATALOG Revisions 1 EXTRACT DATE: 11/04/92 REPORT DATE 01/29/93 FACE NUMBER:      1 FUNCTION: LR045-06 SYSTEMS 045 EQUIPMENT 1D                  REFERENCE                      NOTES 1#DB1-1018          NETD                                  1 1#DB1-1019          NETD                                  1
    .#DB3-1001          NETD                                  1 1#DB3-1002          NETD                                  1 1CKVFW-130          NETD                                  1 1CKVFW-133            NETD                                  1 1HVFW-1501            NETD                                1 1HVFW-1502            NETD                                1 IHVFW-1503            NETD                                1 1HVFW-1504            NETD                                1, TPR 92-144 1HVFW-1505            NETD                                1                  l 1HVFW-1506                                                                    l NETD                                  1                  l 1HVFW-1507          NETD                                1 1HVFW-1508            NETD                                1 1HVFW-1510            NETD                                1 1HVFW-1511            NETD                                1 3HVFW-1512            NETD                                1 1HVFW-1513            NETD                                1 1HVFW-1514            NETD                                1 INVFW-1517            NETD                                1 14
 
I                                                                        Life Cycle Management Unit Component Level Scoping Results
          $G&E Life Cycle Management Program                                                                          PAGE:      78 TA8LE 2 ITLR COMPONENT LEVEL SCREEhlhG RESULT 8 SYSTEM: 045 FEEpuATER DATE: 01/28/93 REYll!ON: 1 NiY'F'$ EXTRACT DATER 11/04/92 EQUlPMENT ID            EQUlPMENT DESCFIPfl0N                FUNCTION ID                                  ITLR (REF TA8LE 1)              REFERENCE        LR OR N      NOTE FLW$NT 103C                LR LR045-03 UFSAR Ch5 Fs10              tt sh22 LR045 06 NETD                        LR 1Mov45160P            1: SG FW 150L tt045-01 FLWSNT-103C                LR FLW5NT 1038                LR FLWSNT 103A                LA FLWSNT 136                  LR LR045-02 FLW5HT 103C                  LR LR045-03 UFSAR Ch5 Foto              LR Sh22 LR045-05 NETO                        LR 1Mov4517              12 so FW !s0L                                                                                                l l
LR045 01 FLWSNT 103C                LR FLWSNT 1038                LR FLW5NT 103A                LR FLWSNT 136                  LR LR045 02 FLW5NT 103C                LR LR045 03 UFSAR Ch5 Fg10              LR Eh22 l                                                                    LR045 06 l                                                                                            NETD                        LR IMov45170P            12 SG FW 150L OPER
* LR045-01 FLWsNT 103C                LR FLWSNT 1038                LR FLWSNT 103A                LR FLWSNT-136                  LR LR045-02 fLWsNT 103C                LR LR045-03 UFSAR Ch5 Foto            LR Sh22 LR045 05 NETD                      LR 1Mov5087              11 SGFP NP $f DP A87/E $f A N
1MOV50870P            11 FW $GFP NP $ TOP A80VE N
1Mov5088              11 SGFP NP STOP SELN $E A N
1Mov50880P            11 FW SGFP NP STOP SELOW 15
 
[                                                                                                                      Life Cycle Management Unit Component Level Scoping for Structures                  _COmDOnent gLevel ScoDina -
                      -                                                                                i                            Structures
                            =                                                                :=:=.
20:===                                                                                C                    -
Methodology Section 4.2
          = t ,.      .    = = =,
jg_
* Steps j                                                                                              - Function identification
                        . ~-'                                                                                          - Generic Structure Component Types 1
        ~ ~ " " ~ ' ~ "
                                                                                                                        - Structural components which contribute to intended I                                                                                                    functions
        * ~#
* Results l
                                                                                                                          - Tbl 1S Structure Intended
        " "*"'L*,.i"*""" "                                                                                                    Functions
                          !                                                                                              - Tbl 2S Structural Components
_      ,,y g .-                                                                                                that are part of the structure i
                                                                                                                          - Tbl 3S Structural components                            '
j u.i a .m.cw                                                                                                within the scope of LR
                  .L7'T,*i.O Figure 4-2                          jg
  -_                                    . _ .                                                  _ _ . _  ._ ..~._ _      -,      .      . . . . , _ . _ - , . . _ _ . . _ . ,        _
 
x M                                                                                  Life Cycle Management Unit Table 1S BG&E LCM PROGRAM LCM-11S REV.1 TABLE 1S: STRUCTURE INTENDED FUNCTIONS                          Rev.1 Date:3/20/S6 STRUCTURE: AUXILIARYBUILDING SHEET 2 OF 2 INTENDED          DESCRIPTION OFINTENDED FUNCTION                                            CRITERIA          APPLICABLE TO FUNCTION                                                                                                        mis ID NUMBER                                                                                                        STRUCWRE?
Yes/No 1                  2        3  4 LR-S-01  Provides structural and/or functional support to safety-      X                                          Yes related equipment LR-S-02  Provides shelter / protection to safety-related equipment      X                                          Yes LR-S-03  Serves as a pressure boundary or fission product              X                                            Yes retention barrier to protect public health and safety in the event of any postulated DBEs LR S-04 Serves as a missile barrier (intemal or external)              X                                          Yes LR-S-05  Provides structural and/or functional support to non.                            X                        Yes safety-re:ated equipment whose failure could directly prevent satisfactory accomplishment of any of the required safety-related functions LR-S-06  Provides flood protection barrier (internal flooding event)                      X                        Yes LR S-07 Provides rated fire barriers to cont'me or retard a fire from                              X              Yes spreading to or from adjacent areas of the plaat 17
 
7                                  M                                                                                                        Life Cycle Management Unit Table 2S - Concrete BG&E LCM PROGRAM                                                                                                                            LCM-11S REV.1 TABLE 2S                                          Rev.1 STRUCTURAL COMPONENTS THAT ARE PART OF THE STRUCTURE Date: 3/20/96 STRUCTURE: AUXILIARY BUILDING                                                                                                              SHEET 2 OF 5 COMPONENT                                                  in Structure                in Structure Reference                Remarks / Reference (s)
Yes/No A Concrete (including Reinforcing Steel)
: 1. Foundations (Footings, Beams, and Mats)                                      Yes      61466,61-668 thru 61-671
: 2. Columns                                                                      Yes    61 4 66,61-670,61 4 71,61-675,63-675,61-680,63-680,61-693 thru 696,61-719
: 3. Walls                                                                        Yes      61-666,61 4 70,61-671,61-675,63475,61-680,63-680,61-685,63485
: 4. Beams                                                                        Yes    61-979,61-980,61-714,61-715,61-996
: 5. Ground Floor Stabs and Equipment Pads                                        Yes    61-680,63-680,61-991                                See D.6 this table
: 6. Elevated Floor Slabs                                                          Yes    61470, 61 -671, 61-675, 63-675, 61-680, 6M80, 61-685,63-685,62-149 through 62-153
: 7. Roof Slabs                                                                    Yes    61-685,634 85,61-690
: 8. Cast-in-Place Anchors                                                        Yes    61-670,61-671,61-973,61-991,63-502,63-503
: 9. Manholes                                                                      No
: 10. Duct Banks                                                                    No
: 11. Grout                                                                        Yes    61 4 66,63-510,63-512,63-522
: 12. Concrete Blocks (Shielding)                                                  Yes    63-884,61-670,63-511
: 13. Precast Concrete                                                              No
: 14. Fluid Retaining Wa!!s and Stabs                                              Yes    61-706,61-707,61-708
: 15. Masonry Block Wa!!s                                                          Yes    62-128,62-172 thru 62-176
                                                                                                                                                                                                                                              )
: 16. Post-Installed Anchors                                                        Yes    61-670,61 671 (Expansion and Grouted Types) 18
 
Life Cycle Management Unit Table 3S - Structural Steel BG&E LCM PROGRAM LCM-11S REV.1 TABLE 3S:                                          Rev.1 STRUCTURAL COMPONEFCS WITHIN THE SCOPE OF LICENSE RENEWAL Data: 3/20/96 STRUCTURE: AUXILIARY BUILDING Component                                                                                        SHEET 3 OF 10 Intended Function          Intended Functan Description Number                                                          Remarks / References LR-S-
: 8. Structural Steet
: 1. Coha*
1.5      See Note S-1
: 2. Beams 1,5      See Note S-2
: 3. Base Plates 1.5        See Note S-3
: 4. Floor Framing 1.5      See Note S-4
: 5. Roof Framing 1.4.5      See Note S-5
: 6. Roof Trusses 1.4.5      See Note S4
: 7. h".                                                1.5        See Note S-7
: 8. Girts N/A c-~--" not withm the scope of LR
: 9. Platform Hangers 1.5        See Note SS
: 10. "W.                                                1.5        See Note S-10
: 11. Jet Impingernera Barriers 2        See Note S-11
: 12. Ught Poles ComF--" not in F-_ =--
: 13. Steel Liners 3        See Note S-13
: 14. Light Gage Metal a **                              -
e'-
: not in s:ruct.se
: 15. Floor Grating N/A r= ---- -5 not within tne scope of LR
: 18. Checkered Plate N/A Comp--" not within the scope of LR
: 17. Stahs and Ladvars MA                                            c-=---- ---: not wittiin the scope cf LR
: 18. Lintels                                            -
e-      . ant not in stnxture m                                                                                    19
 
M                                                                          Life Cycle Management Unit Table 3S - Unique Components BG&E LCM PROGRAM LCM-11S REV.1 TABLE 3S:                                  Rev.1 STRUCTURAL COMPONENTS WITHIN THE SCOPE OF LICENSE RENEWAL Date: 3/20/96 STRUCTURE: AUXILIARY BUILDING SHEET 5 OF 10 Component              intended Function    intended Function Description        Remarks / References Number LR-S-D. Additional Components
: 1. Watertight doors                              6,7        See Note SP-1
: 2. Lead Brick Shielding                            2          See Note SP-2
: 3. Roll-up Doors 2          See Note SP-3
: 4. New Fuel Rack Assembly                          1          See Note SP-4
: 5. Monorail                                        5          See Note SP-5
: 6. Equipment Pads
: a. Control Room HVAC Equipment Room          1,5        See Note SP-8                  See Tabte 4
: b. EmerDency Diesel Generator Rooms          1,5        See Note SP-6                  See Table 4
: c. Charging Pumps Rooms                      1,5        See Note SP-6                  See Table 4
: d. ECCS Pump Rooms                          1,5        See Note SP-8                  See Table 4
: e. Switchgear & Electrical Equipment        1,5        See Note SP-6                  See Table 4 Rooms
: f. Component Cooling Pump Rooms            1,5          See Note SP-6                  See Table 4
: g. Service Water Pump Rooms                1,5          See Note SP-6                  See Table 4
: 7. Cask Handling Crane Rail / supports            1,5          See Note SP-7
: 8. Pipe Whip Restraints                            2          See Note SP-8
: 9. Expansion Joints                                2, 7        See Note SP-9
: 10. Spent Fuel Storage Racks                        1          See Note SP-10 20
 
Life Cycle Management Unit Pre-Evaluation Process Pre-Evaluation
        'v_ .                            -
                                                    ,.      i.c?                                          -
Methodology Section 5 i
_ f ,. _                  s                            >
                                                            ,c, Steps
            ~~'"*"
L 2.:%                    ._                                  - Categorized intended
                  ,                                  " "4"                                                            functions as active or g'"L;*". 3                  ,,,                        .                                                          passive.
E"          mim      ~
sc.                                                - Determine long-lived or short-ga,ae          ---.
g QU"                --.                              -
                                                        ."-.E",
LT43.                                - Determine whether
:                                    _                                                components will be covered C sc.                                                          by a commodity evaluation.
l
                **""''                                      1 x              -
i                  G            sc.'                                            - Exclude components Y            !                        '"7                                                          specifically excluded by LR m,              sc. . ..J                    (Jc-)                "
Rule.
i SCs Subject -
Results m MR
                                                                                                                - List of SCs subject to AMR.
                                            +                      +
Evaluauon r eo,. s.,                                                      21
 
l r
m Life Cycle Management Unit                  i Pre - Evaluation Results ATTACllMENT 4, COMPONENTS SUBJECT TO SYSTEM                                  i AGING MANAGEMENT REVIEW Component Pre-Evaluation Revision i System: Maln Feedwater (045)                                          Date: March 7,1996 l
4 EquipmentID '                                Equipment Description 7 ;
1.D81 1018                            FW SYSTEM PIPING l-DB 1-1019                            FW SYSTEM PIPNG l-DB3-1001                            FW SYSTEM PIPING l-DB3 1002                            FW SYSTEM PIPIMG ICKVFW-130                              12 50 FW llDR CKV ICKVFW-133                            11 SG FW llDR CKV lilVFW-1501                            LT 1l13A ROOT liiVFW-1502                            LT il13A ROOT lilVFW-1503                            LT ill3A ROOT lilVFW-1504                            LT lll3A ROOT lilVFW 1521                            LT-ill3B ROOT lilVFW-1522                            LT 1113B ROOT                                        j IHVF W-1523                            LT-1113B ROOT                                        j liiVFW-1524                              LT-ill3B ROOT                                        '
tilVFW-154 i                            LT-1113C ROOT lilVFW 1542                              LT ill3C ROOT lifVFW-1543                              LT ill3C ROOT lilVFW-1544                            LT ill3C ROOT IliVFW-1561                            LT-l 113D ROOT liiVFW-1562                            LT-1113D ROOT lilVFW-1563                              LT-il l3D ROOT liiVFW-1564                              LT il13D ROOi lilVFW-1587                              1-LT-ill4A ROOT VLV llIVFW 1588                              l-LT-ill4A ROOT VLV lif VFW-1596                              l-LT-1114B ROOT VLV liiVFW-1597                              l-LT 1114B ROOT VLV lilVFW-1601                              LT-1123A ROOT liiVFW-1602                              LT l123A ROOT lilVFW-1603                                LT-il23A ROOl IllVFW-1604                              LT-!123A ROOT 1FIVFW-1621                              LT-1123B ROOT lilVFW 1622                              LT-1123B ROOT lilVFW-1623                              LT-11238 ROOT lilVFW 1624                              LT 1123B ROOT liiVFW-1641                              LT-1123C ROOT lifVFW-1642                              LT-il23C ROOT lilVFW-1643                                LT-l123C ROOT lilVFW-1644                                LT-1123C ROO F j  lH VFW-1661                                LT-1123D ROOT lilVFW-1662                                LT-1123D ROOT
'  tilVFW 1663                                L1-il23D ROOl lilVFW-1664                                L1 il23D ROOl tilVF W-1687                              l-LT il24A ROOT VLV I  IllVFW 1688                                l LT-il24A ROOT VLV
  -                                                                                Page i of 3
 
Life Cycle Management Unit Pre - Evaluation Results ATTACIIMENT 4A, COMPONENTS SUBJECT TO COMMODITY AGING MANAGEMENT REVIEW Component Pre-EysNation Revision i System: MAjn Feedwater (045)                                          Date: March 7,1996 Q,4        ,      IInstrutnent'Ilnes COnan1bSity Efalsa'ti5ns,      .    ,
              ' iEquipment IIO              -      ,
                                                        ~^
OEquipme'niDescription 1 IIfVFW-I505                            LT-1II3A HI VENT liiVFW 1506                            LT-1113A DRN liiVFW-!$07                            LT-1113 A ISOL liiVFW-1508                            LT 1113A ISOL liiVFW-1510                              1105-LT ISOL llIVFW-1511                            LT-ill3A EQUAL IHVFW-1512                            LT-ill3A IVU DRN IHVFW-1513                            LT-1II3A DRN liiVFW-1514                            LT-1113A I.VU DRN IHVFW-1517                              l 105-LT ISOL IHVFW-1518                            Il05-LT ISOL llIVFW-1519                            1105-LT DRN liiVFW-1520                            i l05-LT DRN ll!VFW-1525                            LT-1113B HI VENT 3VFW-1526                                    LT 1113B DRN llIVFW 1527                              LT 1113B ISOL llIVFW-1528                            LT-1113B ISOL llIVFW 1530                              1-LT illi ISOL liiVFW-1531                            LT 1113B EQUAL lllVFW 1532                              LT-1113B 11U DRN 1IIVFW-1533                              LT-1113B DRN lHVFW-1534                              LT-ill3B B/U DRN tilVFW-1537                              l-LT-li t i ISOL lif VF'>      38                        1-LT-1111 ISOL l}lVI" ~339                              t il l-LT DRN liiVFM1540                                t ill-LT DRN tilVFW-1545                              LT-lll3C HI VLNT llIVFW-1546                              LT ill3C DRN I!!VFW-1547                              LT-1113C ISOL lilVFW-l$48                              LT ill3C ISOL lliVFW-1550                              1105-L1 B/U DRN llIVFW 1551                              LT ill3C EQUAL llIVFW-1552                              LT lil3C B/U DRN IHVFW-1553                                LT-i l l3C DRN IHVFW-1554                                LT ill3C IVU DRN lilVF W-1557                              1105-LT B/U DRN llIVFW-1565                                LT-1113D !!! VLNT liiVFW-1566                                LT-ill3D DRN llIVFW 1567                                LT il13D ISOL liiVFW-1568                                LT Il13D ISOL IHVFW-1570                                11 Il-LT IVU DRN liiVFW-1571                                LT-i ll3D LQUAL Page i of 10 l
l 1
 
Life Cycle Management Unit Scoping and Commodity Evaluations IPA Flow Diagram p            Passiv.
                                      .?
                                              }f SSC Scoping Syst.eJ+v.I &            Activ.            SC g..;-"'                                i%
r.,i SS-~.                                    '        if h,
                        ~                                                                                  =
For electricalpanels r          .,L                  ",            ,,                  andinstrumentlines
* 2" """                                          '7???, ':          '"*";';,*
                                                                                      "          >            evaIuations,
: n. t.
L"','2;'                                  1i                            '
1r                          ,.,    ,.,                              y7      - the commodity m .-~a                        evaluation replaces
                                                                                        'C:E" -
programs to ma ag.                only the AMR sDp 1i                                    * " " * * * **'"'-
SCs NOT SUBJECT TO of the IPA.
                                                                      .?:,%      "".*;;.'l;',:"~*x              - Scoping / pre-eval are done per the Commodity Evaluation                      standard process.
of ElectricalPanels &
Instrument Lines 23
 
M                                                                                  Life Cycle Management Unit Scoping and Commodity Evaluations (Cont.?
IPA Flow Diagram p,g          Pa..iv.
V                                                      =
For the FP commodity C. .*' 0".*. n                    . 'L, Aes.
to pesiodic evaluation
                                                  ~~~"'
                  . SS within                                    y                                                  - Systems in scope
                  .::n            -
                                                                  ,e                , , , _                          primarily for FP
                  .L"'",o"'..                                                    ,,;' '%
C'.',;""'~
n'?L*".
                                                                            ~
                                                                                                      "w              function were scoped &
pre-eval'd as part of the
                          .                                                        :u2,.
                    -                        Y            3        v..        v..                          V          commodity eval.
systems                                                                                  m o ...u.o orne,                        "'
                                                                                                  ,,y,.~,~.,        - Othersystems with FP in scope 3(
FPsystems                  C",,"N;g"?              functions Were scopedl Primarily                                                                      V                y for FP
                                              ,e,,,,,u,,,,,,,
AMR                    0            Uon      e pyg.gyafc Using me t
y                e- 4 4                  y ea-standardProcess.
Fire Protection Commodity Evaluation i
24
 
f[M                                                                                      Life Cycle Management Unit Scoping and Commodity Evaluations i 'Cont.)                                              ,
IPA Flow Diagram Function    Passive "2:,'          y                                                  =
For the Cranes / Fuel ssC se.pwa System Level &  Active            30                                                  Handlina commoditv G                      #
            ?:~,r"~c                        t. ;,1 evaluation replacement V
                                                                                                      - Systems associated
            ' ;"'*"" .                      Y        ei-      '
:",;~,          .                with load handling /
            ' C="                                    %M1:            ~~"
                                                                        .    .'u"l'                      refueling were scoped M8D                                        7            activttles
              ,'Lm..                y          y          Yes    Yes
                                                                                              )f as part of comm eval.
mprograms e~~  or
                                                                                                      - Structures component Structuralcomponents                                                      pr$r$=""*5Ns .        leVelscoping results within the scope of LR                  V                                ***"*'      **"*
Were reviewed to SCs NOT SUBJECT TO                                    Y
: o.      t,    , t
                                                                          - ante, m.
ensure proper yngg,ygg,,,
V Cranes /FuelHandling Commodity Evaluation 25
 
    =
  ,t  i J
M                                                                                                        Life Cycle Management Unit J
Sco.oina_ and Commodity Evaluations (Cont.'l                                                                          .        .
IPA Flow Diagram i
Pa..tv.
Function 2',"          y                                                                  For the Cables &
          **c 21%
            .,.                                  ,,,,,,            ,e                                                                Component Supports K?"'"'
b'C3                                                                commodity evaluations f"                -
                                                                                                                                        - Commodity evaluation
          . gg,,,                                                v~      .~-              ,
                                                                                                          ".;in*,    u.                    covered all steps of the
:=r,:"*                                                      ,Lya.'                    "".c"tivm..'.'"?                      IPA.
            '""*"'                                        V          V                  r..      r..                        y          - Scoping step was
                                                                                                                  ~;,, .:n                  closely linked to Components within                                                                                        gn.nt"**, ,,,.          scoping resuits for
          '^* "' ?" "                                      se.,,or,?aerra                                  y ** '"''" y"'                  supported components
                                                                    ^=                            o.~.--n -              .n.c<.
of aging ar, ad.quauty manag.d.
and electricalloads.
Component Supports & Cables
    \                                              Commodity Evaluations 2s
 
I i
                                                                                                                                                                                                                            - ' ~ Os hE5N+N9mp5;;;ggg:. ..
                                                                                                                                                                                                                                                                        .:gt.j;itqt4";ggype=w w m .5vz::;      :
;                                                                                                                                                Piping Design & Analysis at l                                                                                                                                          Calvert Cliffs Xuclear power Plant                                                                            -
i i
j
  .                                                                                                                                                                                                                                                  By Todd Conner Oct.10,1996 1
3
'l
_ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ . _ _ _ _ _ _ _ _ _ _ . _ _ _ . _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ . _ . _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ . _ . . _ . _ _ . _ . _                                                  _ _ . _ _    _ _ _ _ _      ___.....__..____.__._____<m-_      _ _ . _ _ _ _ _ _ _ _ _ _
 
i l                                                                                                                                                                      Purpose m -__
l                                                                                                                                                  e Identify what the current licensing basis l                                                                                                                                                        requirements are for piping at CCNPP e Identify Piping Design Engineering Capabilities at CCNPP 1
  - - - _ - - - . - - - _ _ _ - - . - . - _ . _ - - . _ - - - - _ . _ - . - - _ - - _ - - - - - - _ - _ - _ . - - - - - - _ - _ _ _ . _ . - _ _ _ - - -                . _ . . _ . _ _ _ . _ _ - . _ . _ - - _ - . - _ _ . _ . _ _ _ . - _ .    . _ _ . - _ - - _ _ _ _ _ _ - - - - _ _ - - . - - - - - ~ - - - - - . _ _ _ _ _ _ - _ - - . - . - . - _ . _ . . - _ _ .
 
4 Design Codes at CCXPP l
e B31.71969 - autumn '71 Class 1 Systems Class 2 systems off the RCS (Typically) o B31.1 1967 - summer '72 Class 3 systems e Section 1111965 winter '67 NSSS Vessels e Section ill 1977 summer '78 Third Train AFW (Added after constr.)
 
9 System vs. Code
                                                                                                                                                                              - --._gy                                                            -
_;_:_ g m o Class 1 systems Reactor Coolant System (B31.7 Class 1)
RCS Attached Piping (B31.7 Class I)                                                                                                                          '
                                                                                                                            - Safety injection
                                                                                                                            - Letdown / Charging
                                                                                                                            - Pressurizer Spray / Aux... Spray i
                                                                                                                              - NSSS Sampling System                                                                                                                    '
                                                                                                                              - Surge Line
                                                                                                                              - Safety Valve Lines                                                                                                                      '
1
 
System vs. Code
___-                    ,7 y;                                                                  g-e Class 2 systems Feed Water (B31.1) n Charging / Letdown / Boric Acid (B31.1)
ECCS - LPSI, HPSI, CS, SDC (B31.7 Cl 11) n AFW (B31.1) e Class 3 systems Service Water, Comp. Cooling Water, Saltwater (B31.1)                                                                                                                                                                    ,
AFW Motor Driven (Section ill )
Spent Fuel Pool Cooling (B31.7 Class 111)
 
UFSAR Requirements
                          ==____                    = -- - t i
e Chapter 4 (Class l}
o Chapter 5A (all seismic}
o Figures 5A-6 and 4-8 (specific load i            combinations & limits;>
i i
I I
 
Seismic Basis for Piping      .
:-      =
o Cat. I Structures (UFSAR Ch 5A}
Response Curves Damping Values                .
Code Case N-411 e
i i
 
l' TABLE SA-6 I
TABLE OF LO40IM COMBINATIONS AND PRIMARY STRESS LIMITS FOR NOCLEAR CLASS 2 AND 3 PIPIM                                                                                                          i LOADING COMBINATIONS                                                                      PRIMARY STRESS LIMITS                                                                                                :
Vessels                              Pipine                                                                                          Supports
: 1. Design Loading + OBE        P, s S,                              P, s 125,                                                                                      Working Stress i
P, + P, s 1.5 S,                      P, + P, s 12 S,
: 2. Nomal Operating            P, s S,                              P, s S,                                                                                        Within Yield Loadings + Safe Shutdown + Earthquake                                                                                                                    r        3 P, s 1.5 S.((p    e-S,              P, s 4 S, Cos ,
* p"-                                                                                                                    ,
                                                  ),_                                              x                                          (2  S,;                                                          i (b)                                                                                                (c)                                                        i
: 3. Nomal Operating            P, s S t                              P, s St                                                                                        Deflection of supports Loadings + Pipe Rupture                                                                                                                                            limited to maintain                      .
    + Safe Shutdown                      -
r      3                supported equipment within              .
Earthquake                  P, s 1.5 1-
                                                "yr -
St              P, s 4 St Cos                                                            ,* p"-
limits shown in columns (1)
(S,)2                                              x                                          (2  S>
t and (2) g)                                                                                              (e).(c) i t
"3  These stress criteria are not applied to the piping run within which a pipe break is considered to have occurred
(*)  For loading combinations 2 and 3 stress limits for vessel, with symbol P, changed to P,, should also be used                                                                                              ,
evaluating the effects of local loads imposed on vessels and/or piping.
(*)  The tabulated limits for piping are based on a minimum " shape factor." These limits may be modified                                                                                                      i incorporate the shape factor of the particular piping being analyzed.                                                                                                                                    ;
CALVERT CLIFFS UFSAR                                    SA.3-35                                                                                                                      Rev. 18
                                                                                                                                                                                                                ^
 
1 1
dynamic earth pressure as well as static earth pressure    ~
(Section2.7.6.4).
SA.3.1.14 Desion Code References The design and checking of the design have 'been made in accordance with the provisions indicated in the ACI Code and Commentary  318-63, Section 2603(a),      2603(b)  and    ACI Committee 334  (Concrete  Shell  Structures  Practice    and Commentary), Section 202(d), 202(e) and Commentary Part 4, except as modified in Updated Final Safety Analysis Report Section 5.1.2.3 through 5.1.2.6 and Section 5.1.3.2.
SA.3.2    SEISMIC CATEGORY I SYSTEMS AND EQUIPMENT DESIGN                  l Seismic Category I systems and equipment, including pipe, are designed to meet the load combinations and stresses as stated in Table 4-8 for Nuclear Class 1, and Table SA-6 for Nuclear Class 2 and 3, and non-class. Seismic Category I systems and equipment are bolted down rigidly to supports or braced (as in the case of cable tray supports) to resist seismic and tornado forces. The NSSS contractor is taking exception to this support approach and the individual supports were designed based on the criteria outlined in Sections 5.1.1 and 5.1.2.8.
There are no significant gaps between the equipment and their supports or restraints. Any small gap will not cause significant impact forces on the equipment, restraints or the structures. Therefore, small gaps between the equipment and supports or restraints are not significant in the consideration of the seismic analysis.
Defonnations in support structures will        limit strains    in piping systems to the criteria stated in Tables 4-8 and SA-6 for those l systems essential to safe shutdown of the plant following a LOCA.
The Containment penetration assemblies are designed to accommodate the forces and moments due to pipe rupture. Guides, pipe stops, increased pipe thicknesses or other means are provided to make the penetration the strongest part of the system.
The mathematical models employed in dynamic (seismic) analysis of the          i Reactor Coolant System      cmponents  were  formulated  using  lumped      l O
CALVERT CLIFFS UFSAR                5A.3-22                            Rev. 18      l
 
  ~        parameter modeling techniques.      A single composite model was employed in the analysis of the couple components, which included the reactor vessel assembly, the two steam generators, the four reactor coolant pumps and the reactor coolant piping. The total mass and related stiffness of each of the coupled components was included in the model.
Sufficient mass points were included in the mode.1 and, at each mass point, translational dynamic degrees of freedom retained, so dynamic analysis includes the combined vertical, torsional and horizontal response of the system due to seismic excitations.
A separate multi-mass model was employed in the seismic analysis of the pressurizer.
5A.3.2.1    Pipino For the design of Seismic Category I piping and equipment, l coefficients were based on the floor response-spectrum curves. These curves were generated using the time-history technique for both horizontal and vertical direction, for various damping values, and at designated floor elevations in the Category I structures. This method is based on a dynamic analysis of multi-degree-of-freedom system. Code Case N-411 g                      of the ASME B&PV Code may be used to take advantage of the flexibility in piping systems (Section 5A.3.2.2).
i Buried Pipes All Category I buried pipes are designed for bending stresses l due to ground motion. At the joints, where direction of pipe changes, a cushion of compressible material is provided to accommodate any rotation of the pipe joint.
Above-Ground Pioes Piping systems are anchored and restrained to floors and walls of buildings.        The relative seismic displacements between buildings, between floors in buildings, and between major components are applied to the piping, anchors and restraints. Seismic movements are always considered to be out of phase between buildings, hence maximum relative
  .)
CALVERT CLIFFS UFSAR                  SA.3-23                            Rev. 18
 
l i
displacements    are  used.      The  resulting stresses are        'I classified as secondary and are combined with other secondary            i stresses. The sum of secondary stresses is held within the                l limits of the applicable piping code.                                    I SA.3.2.2    Routino of Seismic Cateaory I PiDinQ                  l The routing of all Category I piping is confined within the l Containment Structure or the Auxiliary Building, both of                  i which are Category I structures. Category II piping such as l            l' instrument and plant air, plant heating system water, nitrogen, wash water service, fire protection, and roof drain lines are primarily 2"      and smaller piping.      The 2"  and smaller Category II pipe runs which are routed in close proximity of Category I piping do not have the potential to inflict damage on the Category I piping.      Physical separation        ,
of larger Category 11 piping is routed such that its failure              I would not pose a hazard. Where larger Category 11 piping whose rupture could pose a hazard is routed near Category I piping, adequate pipe restraints are provided to preclude the possibility of pipe whip damage to the Category I piping.            l    j Category I piping was designed in accordance with B31.1 1967, Power Piping,      or B31.7 1969, Nuclear Power Piping.
Exceptions are noted in ' relevant sections of the UFSAR for              ;
specific systems and components. Effective August 6, 1985,              '
l ASME Code Case N-411. " Alternative Damping Values for Seismic Analysis of Piping, Section III Div. 1 Class          1, 2 and 3 Construction,"    may  be  used  for new analyses or for reconciliation work on new or existing systems. This case takes advantage of piping system flexibility.            See the provisions in the NRC letter dated August 6,1985, when using this code case. All Category I piping, with the exception of l 2" and smaller B31.1 and B31.7 Nuclear Class 2 and 3 piping, was originally designed by Bechtel Power Corporation andl included the location of restraints          and  supports,  and detemination of loads. The building structure connections were checked by the structural engineering group. The piping support contractor was given all necessary infonnation to design and locate pipe supports, and indicates the location CALVERT CLIFFS UFSAR                  SA.3-24                              Rev. 18
 
        . - . ~ - . .    ~ - - -                  -                -          .  . --
of the supports on Bechtel's piping fabrication isometric            !
  %                    erection sketch.      These drawings, as well as the support design drawings and field installation were checked by Bechtel Engineering. For 2" and smaller Category I piping, a Bechtel field installation manual was provi'ded so that field engineers could properly design and locate pipe supports and restraints. When Bechtel field engineers had completed their design, drawings were submitted to Bechtel engineering for review. The field did not locate any of the seismic supports or restraints for Category I system equipment or components.
I                      This work was done at the CE and Bechtel engineering offices.
SA.3.2.3      Eautoment. Personnel. and Escape Locks The equipment, personnel and escape locks are Category I l equipment and are designed for the following accelerations:
(OBE) i Vertical        Horizontal Lock                          Acceleration    Acceleration Equipment Lock                    0.07 g          0.11 g i
(                    Personnel Lock Escape Lock 0.08 g 0.07 g 0.12 g 0.10 g The      acceleration values  are multiplied    by  the  nonnal operating weight of the lock or parts of the lock to obtain the horizontal and vertical components of the earthquake force. Both components are considered acting simultaneously with nonnal operating loads without exceeding code allowable, at a temperature of 120*F.
The earthquake forces due to the SSE are obtained by
,                      multiplying the accelerations above by 1.90. The locks are designed to withstand the simultaneous action of SSE                i components and accident loads as stated in Chapter 5,. at a temperature of 276*F, without exceeding material yie'id stress nor loss-of-lock function.
s I
CALVERT CLIFFS UFSAR                    SA.3-25                                Rev. 18
 
                                                              .  .-..-_,-~---v.~
SA.3.1.6  Amplified Response loadino for Pipino and Instrumentation I                    A multi-mass response-spectrum, modal analysis method was employed in the seismic analysis of Category I piping,l support systems and instrumentation.          American Society of Mechanical Engineers (ASME) Code Case N-411 may be used to take advantage of the flexibility in piping systems (Section 5A.3.2.2) . The natural frequencies, mode shapes, and the maximum response accelerations were determined using the appropriate response-spectrum curves in the horizontal and vertical direction.        The response-spectrum curves are generated using the time-history of the floor, which includes the seismic response of the building.          The horizontal and vertical seismic forces were applied simultaneously. Shear stresses, moments, and deflections were determined for the piping system and restraints.        The load and stresses due to seismic loadings were assumed to be acting simultaneously
  .                  with operating weights and longitudinal pressure loads.
                                                    % Critical Damoino (translational)
                                                      "0BE" (E)            "SSE" (E')  ,
Welded steel plate assemblies                        1                      1 Welded steel framed structures                        2                      2 Bolted or riveted steel framed structures                                          2.5                    2.5 Reinforced concrete equipment supports                                            2                      3 Reinforced concrete frame and buildings                                            3                      5 Prestressed concrete structures                      2                      5 i
Steel piping                                          0.5                    0.5 Soil                                                  2                      3
                                                    % Critical Damoino (rotational)
_(El E                    (E')
Rocking motion for prestressed concrete structures                                  5                        7 Rocking motion for reinforced                          5                        7 concrete structures
                                        .v-.......
 
Load Combinations & Stress Limits b ..,.,m.m,o,.7.,.-m.......          .
o ES-040 is a formal Design Document that l                        provides design criteria that ensures the                                              '
;                        compliance with CCNPP UFSAR, and CLB for:
1 Piping
                              - (Loads, combinations, and Stress Criteria) f Supports
                              - (Loads, combinations, and Stress Criteria) i Attachments to Equipment and structures i
i i
 
Piping Design Criteria ES-040 Revision 0 Page 30 of 72      '
ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES (Page 3 of 7)
: 2. LOAD DESCRIPTIONS A.        Weight i                                                                                                                i Weight of the piping system willinclude the weight of the pipe material, attached insulation or shielding, attached or inline piping components, and the weight of the fluid within. The design weight is the maximum weight of the system, e.g.,            )
when the system is completely filled with water. For those piping systems which l
do not operate with a liquid, e.g., steam piping, an additional weight analysis        ,{
may be necessary to calculate the system loading for the hydrodynamic pressure test condition. Treat this as a test load (see code for pipe and support limits).
i B.        Pressure l
The pressure used for any load case should be appropriate to the operating or transient condition being analyzed. The design, normal, and maximum                        l pressures are listed in M-601 for each system service number.
C.        Temperature Effects Temperature effects will include thermal expansion / contraction of the pipe, and            l anchor movements imposed by the thermal movement of equipment to which                      !
the pipe is attached. In an extreme case, anchor movements from containment expansion during a LOCA will also be included.
If an analysis is performed and thermal movements are found to be excessive, these movements should be checked for interference.
All frame type supports classified as " rigid" should be evaluated for the sliding friction force resulting from thermal growth in the longitudinal direction of the i
supported pipe. This friction effect should only be evaluated for norma!                    l operating loads (i.e., do not combine with transient loads or OBE/SSE). In general, the friction force should be computed as 0.3 x (weight + radial forces              '
from thermal expansion, where applicable) and applied in the direction of thermal growth. Other approaches to evaluating frictional affects may be used if properly justified or referenced.
 
Piping Design Criteria ES Oe:
Revision 6 Page 31 of 72 ATTACHMENT 2, SERVICE LEVELS AND LOAD T(PES (Page 4 of 7)
D.              Fluid Transient l
Fluid transients are dynamic events associated with irregular flow or interrupted            '
flow in the pipe. Fluid hammer may result from rapid valve closure. Fluid slug results from an amount of liquid water being propelled at high speed (either by the sudden opening of a valve on a line under pressure, or the venting of steam
'                          into a closed discharge system that contained water) impacting an elbow, pipe bend, or pipe teniinal end. These events are usually evaluated by time-history methods.                                                                                      (
l E.                                                                                                              !
RelieflSafety Valve Discharge                                                                  l When a relief or safety valve discharges, the fluid initiates a jet force that is transferred through the piping system. If the valve vents to atmosphere, the jet force may be calculated and applied to the system as a constant load. if the valve vents to a closed discharge system, transient conditions may develop (such as the generation of a fluid slug) which may require time-history analysis.
F.            Earthquake Effects I
Seismic Category I piping systems must be designed to resist two levels of                    I earthquake: OBE and SSE. Earthquakes will generate two types of loads applicable to piping systems: inertia loads (from the excitation of the piping                i system's mass) and anchor movement loads (from the movement of equipment                      ;
or structures to which the piping system is attached).                                          -
Use the response spectrum method for the seismic analysis of piping systems,.
unless attemative techniques, i.e., time-history analysis are approved. The                      l spectrum provides values of acceleration (response) plotted against natural frequency for a series of damping values and a ductility value of one. Code j
Case N-411 damping may be used for all new or revised piping system analyses. If spectra for the SSE are not available, they may be calculated by                      ,
using SSE = 1.875 OBE (the ratio for the vertical response of containment is                      I less in several cases).                                                                          !
 
Piping Design Criteria                                                                            i ES-040 Revision 0 Page 32 of 72  ;
ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES                                  l (Page 5 of 7)                                          !
When analyzing a system for the effects of seismic inertia dnsure that all values of acceleration are enveloped for the entire frequency range. The following guidelines may be useful, but requires verification that all peaks are enveloped:
For systems that run between floor levels, select the most conservative floor response spectrum.                                                            l l
For systems that go between seismically-independent structures, use the most conservative building and elevation spectrum.
Use the SRSS approach for modal combinations and treat closely-spaced                !
modes as addressed in AEC Reg. Guide 1.92. Total response to the three              ;
directions of motion (N-S, E-W, vertical) should also be obtained by the SRSS      I approach.                                                                            '
i Evaluate seismic anchor movement for the piping system if one or more of the following exist:                                                                    {
The piping system is run between two seismically independent structures.
i The piping is attached to large equipment or intemal structures which have the capability for independent motion.
The difference in elevation between the highest anchor point and the lowest anchor point on the piping system is greater than 40 feet and the net relative displacement between the two points is greater than 1/16th inch.
 
Piping Design Criteria ES-040 Revision 0    l Page 33 of 72 ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES (Page 6 of 7)
Seismically independent structures include the following:
Main auxiliary building (upper elevations have separate east / west structures).                                                                        ,
Penetration area (auxiliary building).
Diesel generator rooms (11,12, 21, 22).
                    . Containment building.
Intake structures (pumphouse, divided into north / middle / south substructures).
Equipment and intemal structures having the capability for independent motion are:
Containment intemal structure (floors are fixed to intemal structures, and slotted at shell).
Reactor vessel.
                  .      Reactor coolant pumps.
                  .      Reactor coolant loop, pressurizer.
                  .      Steam generators.
G. Pipe Rupture l
Failure scenarios in the different piping systems at the plant that might result in a LOCA or otherwise affect the performance of other systems in their ability to              i perform a specified safety function must be evaluated to ensure that overall                  '
plant safety will not be jeopardized.
4 Pipe break / crack locations (for the consideration of the design and placement of pipe whip restraints, jet impingement barriers and missile protection) are postulated based on system geometry and pipe stress levels.
I
 
    . . _ _ ._      _~        . _ _ _ _          _ - _ _ _ _ _ _                . _ _ _          _ _ __            ...
1 Piping Design Criteria ES-040 Revision 0 Page 34 of 72 ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES i
(Page 7 of 7)
The following lists hypothetical break locations:              '
                              .      Terminal ends / anchor points.
Any intermediate locations between terminal ends where either the sum of
;'                                  primary and secondary circumferential or longitudinal stresses derived on an elastic basis under the loads associated with seismic events and operational 1-plant conditions exceeds 0.8 (Sn + SA), or the secondary circumferential or l                                    longitudinal stress exceeds 0.8 SA.
i                            Two additionalintermediate locations are selected based on the points of high stress as identified by UFSAR Chapter 10A. No breaks occurin short pipe runs of 5 pipe diameters orless in length.
A critical crack defined as one-half the pipe diameter in length and one-half the pipe wall thickness in width is postulated to occur at any location. Since a crack is postulated to occur anywhere, select locations having the most adverse effect on plant safety.
Pipe breaks and/or cracks are postulated to occur in piping (greater than 1" nominal size) of high energy systems, which are defined as those fluid systems 3
where either of the following process conditions are maintained during normal plant conditions:
                            .      Maximum op3 rating temperature exceeds 200* F.
Maximum operating pressure exceeds 275 psig.
i Normal plant conditions are defined as normal steady state or hot standby (Modes 1,2,3).
Piping systems that contain fluids above atmospheric conditions but below high energy conditions during normal plant conditions are classified as moderate i
energy. Pipe breaks and/or cracks are not postulated in moderate energy systems at CCNPP,                                                                            !
Additionalinformation may be found in UFSAR Section 10A and Mechanical                        !
Design Criteria Appendix A.
j l
i                                                                                                                      !
4
-1
 
                                                                                      . r.                                                                      m                                                                    F        <!.
Primary Stress Limits for 831.1 Pipe for Design and Level 1 Conditions (also applicable to B31.7. Class 11 and Class 111)
DESIGN                                                                                LEVEL 1 PRESSURE                                                                                          YES                                                                        YES WEIGHT OF                                                                                          YES                                                                        YES PIPING SYSTEM WEIGHT OF                                                                                          YES                                                                        YES FLUID
_  OBE INERTIA                                                                                          NO O                                                                                                                                                                                YES tu SSE INERTIA                                                                                          NO                                                                        NO h  SAFETY / RELIEF                                                                                      NO                                                                        YES 2  VALVE DISCHARGE FLUID TRANSIENT                                                                                    NO                                                                        YES PIPE RUPTURE                                                                                      NO                                                                          NO HOOP                                                                        P(D - 2yt)                                                                                      P(D - 2ytl STRESS 2tE                                            '                      '"      2tE      "
LONGITUDINAL                                                                  pd                  2 M
STRESS                                                                                                                                                                      Pd'      M
                                                                                        .                                          02                                d''I*                                                                "
02  d2'I      "
NOTES:
: 1. See sheet 7 for calculating moment and application of stress                                                                                                                              '
intensification factors.
: 2. B31.1 Seismic Category ll pipe is only analyzed for Design and Level 1 loads, and does not consider earthquake effects.
B31.1
: n.                        1
                                                      -                        :. . g. . ,
                        ~^
                                                                                                                          -t Primary StroSs Limits for B31.1 Pipe for Level 2 and Lovel 3 Conditions (also applicable to B31.7 Class 11 and Class Ill)
LEVEL 2                                  LEVEL 3 PRESSURE                              YES                                        YES WEIGHT OF                              YES PIPING SYSTEM                                                                    YES VEIGHT OF                            YES FLU!D                                                                            YES c  OBE INERTIA                            NO                                        NO F
b  SSE INERTIA                          YES                                        YES a
2  SAFETY / RELIEF                        YES                                        YES                                                    '
VALVE olSCHARGE FLUlo TRANSIENT                        YES                                        YES PIPE RUPTURE                          NO                                        YES HOOP                                P(D - 2yt!
STRESS                                                                      P(D - 2ytl 2tE                                      2tE LONG. MEMBRANE                          PD                                      PO STRESS LONG. GENolNG
                                          'iT ' ' ''
                                                ~~                                  E''                                ''
y ,                  }                u ,          j, #                              -
STRESS                    7 s - 5.ces[ ,                                                                                      .
                                                                    - s -- s scos[
NOTES:
1.
See Sheet 7 for calculating moment and application of Stress intensification factors.                                                                                                                '
2.
Ignore theSe load levels for B31.1 Seismic Category li pipe.
: 3.      Bracketed value [ ] is in radians.
B31.1
 
G C i a a Z Y T.:iX M M J M rh Secondary Stress Range for B31.1 Pipe for Level 1 Loads Sets (also applicable to B31.7. Class 11 and Class 111)
LEVEL 1 E  OBE SAM                                YES H
                                                                                              $  THERMAL                                YES 2  EXPANSION O  THERMAL                                YES A.1 LONGITUDINAL                              M STRESS RANGE (2)                          2 s a s.
NOTES:
1.
See sheet 9 for calculating moment and application of stress intensification factors.
2.
The term f(Sn - St ) may be added to SA, where St is the primary longitudinal stress calculated in Table 1 for Level 1 sustained loads (i.e.
weight and pressure).                                                                                    .
3.
B31.1 Seismic Category 11 pipe does not consider earthquake effects.
B31.1
 
Gli .E.TXKli:                                                                                                  .x.- , y 7% :ggq Pipe Stress Legend for B31.1 (1967)
P                                                                                    =                        Pressure. psi.
M                                                                                    =
Resultant moment. Ib.-in.                                                                                                                                                                                ..
i                                                                                    =
D                                                                                    =                        Stress intensification factor (see page B31.1 Appendix D).
Outside diameter of pipe, in.
d                                                                                    =
Inside diameter of pipe, in.
t                                                                                    =                        Wall thickne s, in.
y                                                                                    =
E                                                                                    =
See B31.1 Tab!e 104.1.2 (a) 2-Joint efficiency (see B31.1 Table 102 4 3).
Z                                                                                    =
Section modulus of pipe, in.'
Sn                                                                                    =
A!!owable stress at temperature. pse (B31.1 pipe use B31.1 Appendix A Table A1 and Table A2. B31.7 Class 11 pipe use 831.7 Appendix A Table AB. 831.7 Class til pipe use B31.7 Appendix A Table A8 and A9).
S,                                                                                        =
Tabulated allowable stress limit at temperature from S
o                                                                              =                            ASME B&PV Code Section til or ANSI B31.7 (Table A.1).
S . (for ferritic steefs) and 1.2 S, (for austenitic steels)
(s,ee UFSAR Table 4-8).
St                                                                                  =
S,                                                                                    =
S, + 1/3 (S,,- S,)(see UFSAR Table 4-8).
Yield strength of materiat at temperature, psi (see ASME (1967)).
S.                                                                                    =
Tensite strength of material at temperature. psi (see ASME (1967)).
Sa                                                                                    =
Se                                                                                  =
f(1.25 Se + 0.25 Sn)
Aflowable stress at minimum environmental temperature, psi (831.1 pipe use B31.1 Appendix A Table A1 and Table A2                                                                                      .
031.7 Class 11 pipe use B31.7 Appendix A TaNe A8; B31.7 f                                                                                    =                          Class ill pipe use B31.7 Appendix A Tab!e A8 ano A9)
Stress range reduction factor (B31 1 Table 102 3 2(c))
B31.1
 
gjpgG3L5;7&&.226EMntBirm Primary Stress Limits for ASME Class 2 and Class 3 Pipe for Design and Level 1 Conditions.                -
DESIGN PRESSURE                                                    - LEVEL 1 YES                                                                                -
YES WEIGHT OF                        YES PIPING                                                        YES WEIGHT OF                          YES FLUlO                                                        YES E                            OBE INERTIA                        NO E                                                                                              YES y                            SSE INERT!A                        NO 9                                                                                              NO SAFETY / RELIEF                            NO VALVE                                                        YES-DISCHARGE FLUID NO TRANSIENT                                                        YES PIPE RUPTURE                                NO                            NO HOOP          P (O - 2 y t t P t0 - 2v t)
STRESS              2' LONGITUDINAL              Pd' O ' -d ' , o 75'u                ***              +u.'
STRESS                        '    , , , ,'
0' d' ,o.754w.            suA 2                          -
NOTES:                                                            '
1.
See sheet 7 for calculating M4 and Ma.
ASME CLASS 2/3
 
GP-      'TX                        :::.:c_ ,r;ig. . cy;;;g Primary Stress Limits for ASME Class 2 and Class 3 Pipe for Level 2 and Level 3 Conditions LEVEL 2                                              LEVEL 3 PRESSURE                                          YES                                                  YES WEIGHT OF                                          YES                                                  YES PIPING WEIGHT OF                                          YES                                                  YES FLUID 3                              OBE INERTIA                                          NO                                                  NO w                              SSE INERTIA                                        YES                                                YES 2
0                                                                                                                                                                                                -
2                              SAFETY / RELIEF                                    YES                                                YES VALVEDtSCHARGE FLUlO TRANSIENT                                    YES                                                YES PIPE RUPTURE                                        NO                                                  YES HOOP                                        pio - 2 yti P(0 - 2 vtl STRESS                                            7t                    '' '*
* 2t                          a LONGITUDINAL                              p                                                    pa'
_ c' o' - c' , 0 75tu,              . u,), g STRESS                                                  7
                                                                                                                                                                                                    ' o' o' , 0 75tu,      i
                                                                                                                                                                                                                                . u,; ,7g g" NOTES:
: 1.                                See sheet 7 for calculating MA and Mg.
I e
ASME CLASS 2/3
 
gerim.~
u migmys p ;m Secondary Stress Range for ASME Class 2 and Class 3 Pipe
          .for Loveli Load Sets and Unrepeated Anchor Movements LEVEL 1      Unrepeated AM OBE SAM YES
              ^                                              NO p  THERMAL YES
              =  EXPANSION                                    NO
              $  THERMAL YEs g AM NO UNREPEATED                  NO                          ,
AM                                          YES LONGITUDINAL h2 ,,a3,        g STRESS RANGE (2)                              2 g
NOTES:
1.
: 2. See sheet 8 for calculating Mc and Mo.
The term f(S 3- St ) may be added to S , Where S A      t longitudinal weight          stress and pressure).        calculated in Table 1 for Level 1 sustained loads (i eis the pr e
ASME CLASS 2/3
 
mWMMA                                      '
Pipe Stress Legend for ASME Class 2 and Class 3 Systems P            =
Pressure, psi.
TAA          =
Resultant stati moment, Ib.-in.
Me          =
Resultant dynamic moment, Ib.-in.
Mc          =
Resultant in.          moment from expansion and anchor movements, Ib.-
Mo            =
                        , Resultant moment from an unrepeated anchor movement, Ib.-
in.
i              =
D            =    Stress intensification factor (see NC-/ND-3673).
Outside diameter of pipe, in.
d            =
Inside diameter of pipe, in.
t              =
Wall thickness, in.
y              =
See NC-/ND-3641.1.
Z              =
Section' modulus of pipe, in.
Sn            =
Allowable stress at temperature, psi (NC uses ASME Appendix S3            =    ! Table 1-7.0; ND uses ASME Appendix I Table I-7 0 or 1-8.0).
Se            =
f(1.25 Sc + 0.25 Sn).
Allowable stress at minimum environmental temperature, psi (NC uses ASME Appendix ! Table I-7.0; ND uses ASME            ,
f Appendix I Table I-7.0 or I-8.0).
                  =
Stress 1).
range reduction factor (ASME NC/ND Table 3611.2(e)-
ASME CLASS 2/3
 
i                                                                .
2" and Smaller Piping
_ _____            m.      __
o WO-30 Cookbook
;            Factor of safety of 10 on the Code or FS of 40 on failure Seismic is based on limiting freq. to 20 Hz (i.e.,
ZPA at CCNPP)                                      j o M-18 Cookbook
;            Factor of Safety of 6 above the Code or FS of 24 on Failure.                                        l Seismic is based on limiting freq. to corresponding acceleration of 1 g 1
i i
 
I Analysis Capabilities @
CCXPP e AutoPipe e ME1C1 r
e ANSYS (under Development)              .
n
 
File & Retrieval Methods e Nucleis/ NORMS Involved process using word searches and database cross references e Imaging Most hard copies have been imaged, which ma<es reference vary rapid. But, complete retrieval can be time consuming.
 
Exam.ple 1 - Feedwater System
_,m_                                                    _____  .      _
o System Description & Overview e Load Cases                                                                                                    ;
e Stress Ratio's i
__.._m____ -.__.m .- _______.-._--__._m.-___._._-_m-___m____m-                  ._____ - e -
 
      +s a.. una        ,- -                      aww                          .1          1  -u    4s .- ua. n-  . s. ..n.. >_a. -
    '                                                                                                                    L il
                                              =                              i sE3 Es                    l l;(            s 5
4 ug W5                  i 1
5t I j y    :
lr
                                                                                                                        #g                    '
5        si                                                    1 a      3 8            $g    .        I      II                                                      -
S                        E
                                                                .n B
                                                    <        P 9
E              )          0          )
II                                              y          E I
[I                    't l
i :
t.'-l't.                      I i
                    %g :-. [ '-                                          -R - ,g l om                                      fit            o"
                                                      / A. xg il/                      y '<
                                        \,
X$ii,i ii    ,                    ..                        $X                                                ,
1 I .$
r e
ii'          , .. ,                :: , .. ,
h              _
h                                                              i li                                                                      II                                              '
i I
f                                                                      :!
I l; b ~.
4} M                -
I a                                          a                          '
                          /      D    ,
DQ
                                      %                  E            l%Y                      /
* i
                      .i                X                            !            X ll                                    s.e1 s                ..
b
                                            -C><p '    -
                                                            #~\ W D
l t                                                              ;'t 2:
                                                              !!.'g I!!
i;
 
Example 2 - Saltwater System e System Description & Overview o Load Cases I
i e Stress Ratio's                                                  .
l I
1                                                                          i t
i
[
i
 
I                                              I
                                                                                                                          $-h                                      $s@@ ,                    ,                              .
                                                                                                                                                                                                                                            .. . --  -- s + = i=
no 4
                                                                                                              '2 '
d            @. . l.a      >                                ,s.    ...--@
Ob
                          .% @f_..g.4                      ,,,                    Y 12 012 0 12 13 -N                                  SRW HX                        NS C"""                                                                                      1;;.
: m.            ---
U.                        .,                                    CC HX 4                                                                                        y
                                              *-=***
g h                '--@
a o                              *                                                @                                                                                                                          @                  g. . ,. ,,
                            "''@                    4.o . . ,,12 - M b:,                                                                                                            g . . . . ,,
                                                      ~
                                                                                                              ,a c,;.
I                                                            . . . .
                                                                                                                                                                              '' ''"8 S '''
r.
                                                                                                                                                                                                                                                        .. .- g 9- ,-
                                                . w.s O;                                                                      . g+:                                          @ @ @ @ ; :4 W.
: c.    ::-o p8. @v=4 }.. g.4 :ia 9
                                                                                              -    %.'"                                                                                          s b N:
tccs cntaQP M ) }"'
s''tt., @ c -                                      y            ''%
:'a
                                                                                    ..          -hg &}-                                                    ''
                                                                                                                                                                                                                                                                          @                  i it
                                                        - m=- o--            -
(                SRW HX ii                                                      0110                        -g                                    -
11
                                                                                                                                                                                                                                                                                    .o        '.
i 8,m;.y.. g                                                      i'                                                                    10 O                                                  e      ."1-    u, CC HX o sDu n a*v,,,          s*' y                                                  :
i                                                                                    i qw i]i d d../l si.s      .,
                                                                                                                                                                                                                                                                  - 9e
: = $.,, D .;"";                                                                                                                                        --WA                                                cius . 4
            ? -< ~.A.:-~ -
                                            .,__ 2 e,        ,,                      .
                                                                                                  %g-@ e..              ,,.
I%d          .*
6            ., w ,
y
                                                                                                                                                                                                          ,          73e a
                                                                                                                                                                                                                      --                                .. ,_p m
                                                                                                                                                                                                                                                                                ,:,;,r
                                                                                                                                                                                                                                                                                ,s
                                                                                              ._ ._..                      rt. ~..~ .-.
                                                                                                                                                                                                                                                                        . s.C-%9.
U U
CIRCtA ATit0 WATER
                                                                                                                      %%"=!                                                                        ~                                    FIGURE 38-7 SALTWATER SYSTEM
 
CALVERT CLIFFS ENGINEERING STANDARD I
Number: ES-040 PlPING DESIGN CRITERIA Revision 00 Effective: DEC 131995      CON OLLED E 13 C l
Writer (s):    6b V 'JfS.9hGray                            Date:  //
2/M
                /
1 Technical        f.4 d- 3d.4.d                              Date:  8'/'N9 Reviewer:              J. A. Crunkleto:T Sponsor:    @              k                                Date:  11 W T M." . Gahan,111                                              '
Approved:                            b                      Date:  Idek Ge'ner$J4upervisor- Design Engineering i
 
Piping Design Criteria                                                                ES-040 i                                    '
Revision 0 Page 2 of 72 RECORD OF REVISION 1
Revision                    Summary of Change 0                        This ES-040 supersedes DS-040.
ES199501673 was initiated by the GS-DES to facilitate the transference of this design standard to an engineering standard.
This revision is only a editorial / formatting change.
                                                                                          =
0 i
4 e
e en I
l
 
      ~    _    _        _        __            _._          _                    _ . _ _.. _._.                                      ._ _.                              . _ _ -.
M i
.                                                                                                                                                                                      1 4
Piping Design Criteria ES-040 Revision 0 Page 3 of 72
,                                                      TABLE OF CdNTENTS 1
SECTION TITLE                                                                                                                                                  PAGE
 
==1.0 INTRODUCTION==
............................................................................................................5                                            l 1.1        Purpose ...... .... . .. ......................................................................5 1.2        Scope / Applicability..... ... .            ............................................................5
 
==2.0 REFERENCES==
...............................................................................................................5 l
2.1        Developmental References . .. . . . .... . .... . .... ... . .. .. ....... ... ........ . . . . . .... ..... . . . . 5                                    :
;                2.2        Performance References .......... ... ....... .. . .. .. . . ..... . . .......... .. .. . . . .. .. . . . . . 7 3.0                                                                                                                                                                            1 DEFINITIONS.................................................................................................................8
+
4.0    R E S P O N S I B ILITIE S . . . . . . . .. . .. ... ... . . ........:..... . ...... . . . . . .. ... . ... . . . .. . . . . . .. . . . .. ... . . . . .... ...
1 3
4.1        Principal Engineers .. .... . .              . . . . . . . . . . . . . . . . . . . . . . . . . .      .............................9
.                4.2        Originator and Reviewer... .                    ........................................................9 5.0 S TAN D ARDIM ET H O D . . ......... ... ..... ... . . . . . . .. . . . . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .
5.1        Codes and Standards...              . . . . . . . . . . . . . . . . . . . . . . . . . . .      ..........................10 5.2        Pipe Stress Criteria.. . .. ... ..                ................................                                    ...........10
:                                                                                                                                                                                      i A.      USAS B31.1 Requirements (Applicable to USAS B31.7 Class 11 and Class Ill):. ..    . . . . . . . . . . .                    . . . . . . . .                    . . . . . . . . . . . . . . .          . 11 4
B.      ASME BPV Code Class 2 and Class 3 Requirements:. . ..... .. ... .. 12 4
4 C.      USAS B31.7 Class i Requirements.... ....                                              . . . . . .      .      ...........13
!              5.3        Pipe Support Capacities and Allowables.........                                          . . . . . . .        . . . . . . . . . . . .      ... 15 A.      Pipe Supports of B31.1 Systems (Also Applicable to Supports of
;                                  B31.7 Class il and Class lil Systems).... .... . ..                                                        . . . . ..              .... 16 1
B. Pipe Supports of ASME Class 2 and Class 3 Systems.... . .. .........                                                                      .18 C. Pipe Supports of B31.7 Class i Systems ....... ..... . ....... .. . . . . . . . . . . 19 D. Concrete Expansion Anchors and Imbedded Studs .. . . .. . ..                                                                    .. . . . 20 E.      Building Steel.....      ..                            .        .. . . . .                  .. . . . .                  .            .22
 
Piping Design Criteria                                                                                                                                            ES-040 Revision 0 Page 4 of 72 TABLE OF CONTENTS SECTION TITLE                                                                                                                                                      PAGE 5.4    Nozzles.....................................................................................................22
                                                                                                                                                                                  ~
5.5 . Pu mp s a nd Valve s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . .. .. ... . . . . . ... . ... . . .. . . . . . ... . 22 6.0    BASES.........................................................................................................................23 ATTACHMENT 1, LICENSING AND DESIGN BASES MEETING RESULTS......... ......... ..... 24                                                                                              !
ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES ........... .... .................... .... ..... .... 28 ATTACHMENT 3, 831.1 PIPE STRESS AND SUPPORT CAPACITY TABLES....... ..... ..... . 35 ATTACHMENT 4, ASME CLASS 2 AND CLASS 3 PIPE STRESS AND SUPPORT                                                                                                ~
C A PA C ITY TA B L E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ATTACHMENT 5, B31.7 CLASS I PIPE STRESS AND SUPPORT CAPACITY TABLES.. . . 52 ATTACHMENT 6, LEVEL 3 STRESS LIMITS FOR STEEL PIPE SUPPORTS ON SEISMIC I
l CATEGORY l B31.1 AND B31.7 SYSTEMS ................ ....... . . ... .... .. .... ......... .. . .. ... . 63 1
                                                                                                                                                                                  ?
                                                                                                                                                                                  ?
v        -t_.__              r                                --                      -
 
  . . _ _ . . _ _ . _ . _ _ . _ ~ . _ . . . _ . . - _ _ _ _ _ _ . _ _                                        _ -            _ _..              _ ._
l i
Piping Design Cntena                                                                                          ES-040 Revision 0 Page 5 of 72
 
==1.0          INTRODUCTION==
 
1.1          Purpose
,                                    This engineering standard provides pipe stress criteria, attached equipment load j                                      criteria, component pipe support load criteria, and support and building steel stress enteria applicable to the evaluatum of piping systems at the Calvert Cliffs Nuclear Power Plant (CCNPP), Units 1 and 2. Satisfaction of the criteria contained in or referenced by this document during design and modifications qualifies a piping system and/or piping component for licensed service in accordance with the UFSAR [B-1].
l-                                    it is not the intent of this document to provide detailed techniques or methodologies for i                                    the design and analysis of piping systems.
1.2        Scope / Applicability                                                                          _
This engineering standard is applicable for evaluations of existing or modified piping for j                                    systems having the following codes of record:
                                    .      B31.1 Seismic Category I and Seismic Category ll (USAS B31.1).
B31.7 Class ll and Class ill (USAS B31.7).
e j                                          ASME Class 2 and Class 3 (Section 111).
B31.7 Class I (USAS B31.7).                                                                              .
Refer to Section 5.1 br applicable code editions and addenda.
l                     
 
==2.0        REFERENCES==
 
2.1          Developmental References A.          AISC, Manua! of Steel Construction. 7th Edition B.          ASME Boiler and Pressure Vessel Code, Section lil & XI,1983 Edition.
C.          ASME Boiler and Pressure Vessel Code, Section 111,1977 Edition up to and including Summer 1978 Addenda.
D.          ASME Boiler and Pressure Vessel Code, Section Ill, all Rulings and Addenda up to Winter 1967 with Summer 1969 Addenda and Code Case N-1401 added.
E.          ASTM, Annual Book of ASTM Standards.1985 l
F.          Baltimore Gas and Electric Company, Calvert Cliffs Nuclear Power Plant Units 1 j                                              and 2, Updated Final Safety Analysis Report.
i i
L        -        ,                      _      _          . . _                      __ . _
                                                                                                      - . . _ .  . . ~ . _ ,                __
 
  ~ - . .
i i
Piping Design Criteria ES-040 Revision 0  i Page 6 of 72 2.1    Developmental References (Continued)
G. Baltimore Gas and Electric Company, CCNPP Design Engineering, EN-1-200 l                        (draft), " Preparation and Control of Calvert Cliffs Design Standards" H.      Bechtel Power Corporation, Job No.11865, "CCNPP Units 1 and 2. Bechtel Project Engineering Plan for NRC l.E. Bulletin 79-14," Rev. 5, October 1982.
: l. Bechtel Power Corporation, Job No.11865, File No. 0151, Rev. O, " Design            t Criteria Document for Auxiliary Feedwater Modification, CCNPP FCR 79-1062,"
October 1981.
J. Letter to BG&E from Hopper and Associates, HABGE-04/94-0252," Piping Supports Extreme Load Design Limits; March 8,1994, TechnicalInterchange Meeting Minutes," April 5,1994
                                                                                                -            i K. Letter to BGE from Hopper and Associates, HABGE-04/94-0258, "Calvert Cliffs          !
Design Standard Number: DS-040 Piping Design Criteria Revision 0," April 26,          i 1994.
L.    " Selected Papers by Nathan M. Newmark," Civil Enaineerina Classics. ASCE,            t NY, NY,1976                                                                            !
M. SQUG, " Generic implementation Procedure for Seismic Verification of Nuclear Plant Equipment," Rev. 2, February 1992 l
N. US AEC, Regulatory Guide 1.48," Design Limits and Loading Combinations for            l Seismic Category i Fluid System Components,"
l May 1973.                                                                              '
O. US AEC, Regulatory Guide 1.92, Rev.1, " Combining Modal Response and Spatial Components in Seismic Response Analysis," February 1976.
P. US NRC, IE Bulletin 79-02, " Pipe Support Base Plate Designs Using' Concrete            l Expansion Anchor Bolts," March 1979.                                                    I Q. US NRC, Regulatory Guide 1.29," Seismic Design Classification," September j                    1978                                                                                    l 1
R. USAS 831.1 Power Piping Code,1967 Edition with B31.1b-1971, B31.1c-1972,                j and B31.1d-1972 Addenda.                                                                '
S. USAS B31.7 Nuclear Power Piping Code,1969 Edition with B31.7b-1971 and B31.7c-1971 Addenda and Code Cases 83 and 1477.                                        l 1
l
 
i l
l Piping Design Criteria                                                                  ES-040 Revision 0 Page 7 of 72
                                                                                          ~
l                                                    -
l 2.2      Performance References A.      AISC, Manual of Steel Construction,6th Edition.                              !
B. AISC, Manual of Steel Construction. 7th Edition.
C.      ASME Boiler and Pressure Vessel Code, Code Case N-411, February 1986.
D.      ASME Boiler and Pressure Vessel Code, Section ill,1977 Edition up to and      {
including Summer 1978 Addenda.                                                i E.      ASME Boiler and Pressure Vessel Code, Section 111, all Rulings and Addenda up to Winter 1967 with Summer 1969 Addenda and Code Case N-1401 added.
F.      ASME Boiler and Pressure Vessel Code, Section XI,1983 Edition.      -
1 G.      Baltimore Gas and Electric Company, Calvert Cliffs Nuclear Power Plant Units 1 l
and 2, Updated Final Safety Analysis Report.
                                                                                                ]
H.      Bechtel Power Corporation, Design Guide No. C-2.40, Rev.1, " Concrete Expansion Anchors," February 1984.
: l.      Bechtel Power Corporation, Job No.11865, Drawing No. M-601 B, Rev.15,          ;
                " Piping Class Summary Analysis Requirements," November 1992.
J.      Bechtel Power Corporation, Job No.11865, Drawing No. M401, Rev. 27,
                " Piping Class Summary Sheets," April 1991.
K.      Bechtel Power Corporation, Job No.11865, TRD-M-1046, Rev. 2, " Piping and Pipe Support Installation Performance Standard,"
October 1982.
L.      Bechtel Power Corporation, Job. No.11865, Drawing No. M-600, Rev!43,
                " Piping Class Sheets," July 1989.
M.      BGE, Drawing No. 60-064-E, Sheets 5 & 6.
N.      ES-022, Calculations O.      ITT Grinnell LCD-105.
P.      ITT Grinnell PH-74-R Catalog.
Q.      USAS B31.1 Power Piping Code,1967 Edition with B31.1b-1971, B31.1c-1972, l
and 831.1d-1972 Addenda.
l      R.      USAS B31.7 Nuclear Power Piping Code,1969 Edition with B31.7b-1971 and l              B31.7c-1971 Addenda and Code Cases 83 and 1477.
l
 
Piping Design Criteria                                                                      ES-040 Revision 0 Page 8 of 72 3.0    DEFINITIONS A. Design-Basis Events Conditions of operation including anticipated operational occurrences, analyzed accidents, extemal events or natural phenomena for which SSCs are designed to ensure those SSCs are capable of performing their specified functions.
B. Loss-Of-Coolant Accident (LOCA)
Those accidents that result from the loss of reactor coolant, at a rate in excess      i of the reactor coolant makeup system, from breaks in the reactor coolant                l pressure boundary, up to and including a break equivalent in size to the double-ended rupture of the largest pipe in the reactor coolant system.
C. Operating-Basis Earthquake (OBE)
The largest earthquake postulated to occur in the vicinity of the plant during the      !
plant's lifetime. Also referred to as the " design earthquake."
D. Safety Analysis Report (SAR)                                                            I The SAR is that set of criteria, standards, and commitments to the NRC to 'which every system, structure, and component in the plant must adhere to in order to          j qualify for licensed service. Also referred to as the " current licensing basis."        !
E. Safe Shutdown Earthquake (SSE)
The maximum hypothetical earthquake postulated to occurin the vicinity of the            i plant. Also referred to as the " design-basis earthquake" or "DBE."
F. Seismic Anchor Movement (SAM)
The displacement of anchor points to which a piping system is attached.
Examples would be buildings and large equipment to which piping is connected, moving during a seismic event.                                            -
G. Seismic Category i Those systems which must te designed to withstand both operating-basis earthquake (OBE) and safe shutdown earthquake (SSE) loads. These are systems whose failure could cause uncontrolled release of radioactivity or those essential for immediate and long-term operation following a loss-of-coolant l            accident (LOCA). Also referred to as " Class 1 (Seismic)" as defined in UFSAR i
Section SA.3.1.2, or " Seismic."
l l
l l
 
I i
                                                                                                                                              \
i Piping Design Criteria                                                                        ES-040                !
Revision 0 Page 9 of 72 3.0      DEFINITIONS (Continued)                                                                                      1 i
i l                              H.      Seismic Category ll l                                      Those systems not essential to safe shutdown of tha plant, and those whose                          f l                                      failure would not result in the uncontrolled release of radioactivity. Also referred                  l l-                                      to as " Class 2 (Seismic)," as defined in UFSAR Section 5A.3.1.3, or "Non-                          l I                                      Seismic."                                                                                            l l
l                              .t      Square-Root-Sum-of-the-Squares (SRSS) l A method of combining the responses of cyclic dynamic loads which reflects the fact that the peak response of each cyclic load does not necessarily happen in phase with the peaks from other cyclic loads. This approach is used to combine the separate modal responses when performing a response spectrum analysis; it is also used to combine the overall responses of different cyclic dynamic loads. See Attachment 3 for examples.
J.      Thermal Anchor Movement (TAM)
The thermally induced displacements of anchor points to which a piping system is attached. Examples would be the displacement of a heat exchanger nozzle caused by expansion of the exchanger, or displacement of a containment penetration anchor caused by expansion of the containment during a LOCA.
K. -    Updated Final Safety Analysis Report (UFSAR)
This document wntains design-basis information for all systems at CCNPP.
4.0        RESPONSIBILITIES 4.1        Principal Engineers Principat Engineers are responsible for assign'ng engineering personnel who are qualified to perform design and analyses of piping and/or pipe supports.
l 4.2        Originator and Reviewer in most cases piping and/or pipe support analyses will be govemed by the procedural l                            requirements in ES-022, Calculations. When applicable, the Originator and Reviewer i                            are responsible for comply with ES-022, Calculations requirements and for clearly l                            documenting the reasons and rationale for using criteria which differ from those identified in this engineering standard.
l NOTE This engineering standard restates and attempts to clarify licensing basis information.
.                          It may be necessary to seek NRC concurrence of piping criteria different than that contained in this engineering standard. Evaluate any attemate piping criteria to see if it
;                          represents an "Unreviewed Safety Question" (USQ).
1
 
                                                                                                        \
r spuiw veiwii umam ES-040 Revision 0 Page 10 of 72 5.0      STANDARDIMETHOD 5.1    Codes and Standards The following codes and standards govern the design and evaluation of piping covered
)          by this document for CCNPP Units 1 and 2:
USAS B31.7 Nuclear Power Piping Code,1969 Edition with B31.7b-1971 and B31.7c-1971 Addenda l          .
USAS B31.1 Power Piping Code,1967 Edition with B31.1b-1971, B31.1c-1972, l
and B31.1d-1972 Addenda AISC Manual of Steel Construction, 7th Edition (for non-catalog steel pipe supports on B31.7 and B31.1 systems)
CCNPP UFSAR (Section 5A3.1.5 and Table 4-8 list allowable stresses and/or other limits for use with the above Codes when evaluating B31.1 and B31.7 piping systems for SSE and SSE + pipe rupture conditions. A discussion of this basis is contained in Attachment 1)
ASME Boiler and Pressure Vessel Code, Section ill,1977 Edition through Summer 1978 Addenda (for pipe and pipe supports of motor-driven train of AFW)                                                                                i t
5.2    Pipe Stress Criteria                                                                          l The stress enteria to be satisfied by pipe within the scope of this document are listed by section according to the Code which govemed the original design:
831.1 Seismic Category I and 11 (USAS B31.1); also applicable to B31.7 Class ll and Class ill (USAS B31.7)
ASME (1977) Class 2 and Class 3 (Section lil)                                        ;
        .                                                                              ~
831.7 Class I (USAS B31.7)                                                            !
The service levels the pipe must withstand and the associated stress criteria are presented in tabular format within the attachments referenced by each section.                l The service levels and associated loads are described in Attachment 2, Service Levels and Load Types. When considering the load combinations at the different service l
levels, use the most severe, yet realistic, combination of associated loads. Since              !
excessive conservatism can be costly, avoid the temptation to combine loads which do not occur at the same time (unless required to do so by licensing or design commitments).
b
 
L                                                                                                                    !
l Mping uesign Cntena ES-040 Revision 0      i Page 11 of 72 l
s 5.2  Pipe Stress Criteria (Ccntinued) l B31.1 (1967) and B31.7 did not provide allowable stresses for use with extreme loads                    I (SSE, pipe rupture). The criteria used by systems whose construction was govemed by these Codes in meeting these loads were developed based on the imowledge and                            ,
experience of the nuclear industry at the time. Tnese criteria are contained in the                    '
UFSAR: refer to Attachment 1, Licensing and Design Basis Meeting revised, for further '
discussion.                                                                                            l A.      USAS B31.1 Requirements (Applicable to USAS B31.7 Class 11 and Class lli):
USAS B31.1 Code requirements, including those applicable to the evaluation of -
i USAS B31.7 Class ll and Class lit systems, limit the following.                                ;
e Primary stress, to prevent bursting or rupture.                                            i e
Secondary stress, to prevent incremental plastic collapse.
The evaluation criteria in this section follows the approach outlined in B31.1 (1967) Sections 102 and 104.
I No explicit evaluation is required for high-cycle fatigue; however, if high-cycle fatigue is anticipated to be a problem, perform an evaluation according to an                  ~!
established methodology (the method used for B31.7 Class l pipe in 5.2.C is acceptable).                                                                                    {
'                                                                                                                      s 1
Evaluate flanges, expansion joints and brittle /non-ductile connections for displacement-controlled loads at all service levels. Use the load combinations in              '{
Attachment 3, B31.1 Pipe Stress and Support Capacity Tables, Table 4, with pressure loadings when analyzing these items. Manufacturer's allowables are not to be exceeded without performing a detailed component analysis.
: 1.      Primary Stress For Seismic Category l B31.1 pipe, limits on primary stresses must l
j satisfy all service level limits, i.e., Design, Level 1, Level 2, and Level 3, as shown in Attachment 3, Tables 1 and 2. The stress limits forthe first                j two service levels are taken from B31.1 (1967) Sections 102.3.2(d) and 102.2.4(1); stress limits for the second two service levels are taken from UFSAR Table 4-8 load levels 2 and 3. Seismic Category ll B31.1 pipe is only required to satisfy limits on primary stress for Design and Level 1 load combinations (excluding OBE effects).
Longitudinal stresses are checked using the criteria in B31.1 Section 102.3.2(d) for Design and Level 1 load combinations. Use the limit equations from UFSAR Table 4-8 (with P. = PD/4t and P. = M/Z) when i                          evaluating the pipe under Level 2 and Level 3 load combinations. The i
pressure design equation from B31.1 Section 104.1.2(a) has been rearranged for the purpose of checking hoop stress from both pressure and local forces for all service levels.
 
l Piping Design Cnteria                                                                                    ES-040 Revision 0 Page 12 of 72 5.2    Pipe Stress Criteria (Continued)
: 2.        Secondary Stress For both Seismic Category I and Seismic Category 11 B31.1 pipe, evaluate the maximum longitudinal secondary stress range for Level 1 load sets as shown in Attachment 3 Table 3. The criteria used is from B31.1 Section 102.3.2(c). A load set is defined as those values of moment from both SAM and thermal activity which are applied simultaneously. The stress range is the difference in stress between the two sets. The unloaded condition of zero moment (except piping system deadweight) is considered as one of the load sets. Exclude OBE SAM effects when evaluating secondary stresses in Seismic Category 11 B31.1 pipe.
B. ASME BPV Code Class 2 and Class 3 Requirements:
ASME BPV Code Class 2 and Class 3 design criteria as stated in Section lli Subsections NC (Class 2) and ND (Class 3) limit the followmg
                                          .    . Primary stress, to prevent bursting or rupture.
                                          . Secondary stress, to prevent incremental plastic collapse.
The evaluation criteria in this section follows the approaches outlined in ASME Section 111 NC-/ND-3600.
No explicit evaluation is required for high-cycle fatigue; however, if high-cycle fatigue is anticipated to be a problem, consider performing an evaluation I
according to an established methodology (the criteria used for B31.7 Class I pipe in Section 5.2.C of this document is acceptable, as are criteria for ASME Class 1 pipe).
Evaluate flanges, expansion joints and brittle /non-ductile connections for displacement-controlled loads at at; service levels. Use the load combinations in                                ,
Attachment 4, ASME Class 2 and Class 3 Pipe Stress and Support Capacity Tables. Table 4, with pressure loadings when analyzing these items. Ensure l
l manufacturer's allowables are not exceeded without performing a detailed                                          l component analysis.                                                                  -
i
: 1.        Primary Stress Primary stresses must satisfy all service level limits, i.e., Design, Level 1, Level 2, and Level 3, as shown in Attachment 4, Tables 1 and 2. The limits for these service levels are taken from Section ill NC-/ND-3611.2 according to the recommendations of AEC Reg. Guide 1.48, which is                                      4 cited by "AFW Design Criteria" (Bechtel) as providing information on load combinations and allowable stresses for the motor-driven AFW system.
This regulatory position states that for ASME Class 2 and Class 3 pipe, the upset / Level B allowable will be used for meeting normal and occasional loads acting with the OBE, and the emergency / Level C allowable will be used for meeting normal, occasional, and faulted loads l                                                  acting with the SSE.
l l
l
 
Piping Design Criteria ES-040 Revision 0 t
Page 13 of 72 i                                                                                                                                  ,
5.2      Pipe Stress Cdteria (Continued) t Longitudinal stresses are checked using the procedures in NC-/ND-                  -I 3650. NC-/ND-3652.1 Equation (8) is used for checking the Design Level; NC-/ND-3652.2 Equation (g)is used for checking Levels 1-3. The vorking pressure equation from NC-/ND-3640 has been rearranged for                  l the ourpose of checking hoop stress from both pressure and local                    !
,.                                            forces, e.g., welded attachments, for all service levels.                          !
;-                                    2.      Secondary Stress Evaluate the maximum longitudinal secondary stress range for Level 1                l load sets as shown in Attachment 4, Table 3. The equation used is NC-                ;
                                              /ND-3652.3(a) Equation (10). A load set is defined as those values of                t moment from SAM and thermal activity which are applied          _
simultaneously. The stress range is the difference in stress between the two sets. The unloaded condition of zero moment (except piping system                l deadweight)is considered as one of the load sets.
J t
Evaluate the maximum longitudinal secondary stress range for any unrepeated anchor movements as shown in Attachment 4, Table 3, such -                !
as those resulting from building settlement or from containment expansion during a LOCA. The equation used is NC-/ND-?552.3(N Equation (10a).                                                                      l i
:                    C.            USAS B31.7 Class l Requirements USAS B31.7 Chss I requirements limit the following:                                            ;
Primary stress intensity, to prevent bursting or rupture.
Primary plus secondary stress intensity range, to prevent incremental plastic collapse.
l Peak stress intensity range cumulative usage, to protect against high-cycle fatigue.                                                            ~
The criteria in this section, uses the simplified approach described in B31.7 Sections 1-704 and 1-705. If a more rigorous analysis is desired, use the attemative rules of B31.7 Appendix F.
Evaluate flanges, expansion joints and brittle /non-ductile connections for displacement-controlled loads at all service levels. Use the load combinations in Attachment 5, B31.7 Class 1 Pipe Stress and Support Capacity Tables, Table 4,
,                                with pressure loadings when analyzing these items. Ensure manufacturer's
!                                  allowables are not exceeded without performing a detailed component analysis.
i i
 
  , ,,,,, ,o . ,3, . v. . ..
ES-040 l                                                                                                        Revision 0 Page 14 of 72 l S.2      Pipe Stress Criteria (Continued)
: 1.        Primary Stress intensity Primary stress intensities must satisfy all service level limits, i.e., Design
                                + Level 1, Level 2, and Level 3, as shown in Attachment 5, Tables 1 and l                              2. The stress intensity limits and load combinations for the different service levels are taken from UFSAR Table 4-8.
The limit equations from UFSAR Table 4-8 goveming bending and                            !
membrane stress have been expressed in terms of "B" stress indices as used in B31.7 Section 1705.1 for checking longitudinal stresses.
l The pressure design equation from B31.7 Section 1-704.1 has been rearranged for the purpose of calculating hoop stress from both pressure and local forces, e.g., welded attachments.                            -
: 2.          Primary Plus Secondary Stress Intensity Range Evaluate the longitudinal primary plus secondary stress intensity range for Level 1 load sets as shown in Attachment 5, Table 3. A load set is defined as those values of pressure, moment, and thermal gradients which are applied simultaneously. The stress range is the difference in l
stress between two load sets. The unloaded condition of zero pressure, zero moment (except pipe weight) and zero thermal gradient is considered as one of the load sets. The equation used for this evaluation is B31.7 Section 1-705.2 Equation (10). If this relationship cannot be satisfied for all stress ranges associated with Level 1, use the simplified elastic-plastic discontinuity analysis of B31.7 Section 1-705.4.
: 3.          Peak Stress Intensity Range Cumulative Usage Determine the longitudinal peak stress intensity range cumulative usage for Level 1 load sets as shown in Attachment 5, Table 3. For each load i
set, calculate the peak stress intensity range. The equation used is B31.7 Section 1-705.3 Equation (11).                                  --
i Evaluate cumulative usage as follows:
: a.        Designate the specified number of times each type of stress l
cycle of types 1,2,3, etc., will be repeated during the life of the system or part thereof as ni, where i=1,2,3... respectively. In determining ni, consider the superposition of cycles of various origins that produce a total stress range greater than the stress i
range of the individual cycles.
: b.        For each type of stress cycle, determine the altemating stress intensity Su as shown in Attachment 5. Table 3.
 
l        Piping Design Criteria                                                                                      ES-040 L                                                                                                              Revision 0 Page 15 of 72 5.2      Pipe Stress Criteria (Continued)-
: c.            For each value of Su, use the fatigue curves in B31.7 Section 1-705.3 Figures 1-705.3.3(a) and 1-705.3.3(b) to determine the maximum number of repetdsons that could be allowed if this cycle were the only one acting. Call these values N,.
: d.            For each stress cycle, determine the cumulative usage according to:
n, u, =
: e.            Calculate the cumulative usage factor U where:
U = Iui
: f.            U must be s 1.0 5.3      Pipe Support Capacities and Allowables Pipe supports can be categorized as either " component standard supports" or " support steel."
* Component standard supports" are those available for purchase from a vendor's catalog (such as struts, clamps, rods, springs, and snubbers). " Support steel" comprises that group of supports that is made by welded or bolted structural steel members to form a pipe support. " Support Steel" can also connect " component standard supports" to structural steel.
The criteria, which all pipe supports for piping systems covered by this engineering standard must satisfy, are listed by section according to the Code which govemed the design of the pipir$g system:
1
                .          B31.1 Seismic Category I and 11 (USAS B31.1), also applicable to 831.7 Class il and Class ill (USAS B31.7).
                .          ASME Class 2 and Class 3 (ASME, Section 111).
B31.7 Class I (USAS B31.7).
The service levels that the pipe supports must withstand and the associated design criteria are presented in tabular format within Attachments referenced by each section.
These service levels are described in Attachment 2.
Service levels and design criteria have also been provided for concrete expansion
,              anchors and anchor studs, which often serve as a link between the pipe support and
!              the concrete portions of the building, and for building steel to aid in the analysis of those portions of the building structure to which pipe supports are attached. These l              criteria are contained in subsections to this engineering standard, titled as follows:
i l
t
 
l l
t yuey vaagn untena ES-040 i Revision 0 )
Page 16 of 72 5.3    Pipe Support Capacities and Allowables (Continued)
Concrete Expansion Anchors and imbedded Studs.
        . Building Steel.
When considering the load combinations at the different service levels, use the most severe yet realistic combination of service levels and associated loads. Loads which
{
do not normally occur at the same time should not be added together for conservatism.      !
Since excessive conservatism can be costly, avoid the temptation to combine loads          j which do not occur at the same time (unless required to do so by licensing or ciesign      l commitments).                                                                              '
AISC 7th Edition (which applies to steel pipe supports on B31.1 and B31.7 systems) did not provide allowable stresses for use with extreme loads (SSE, pipe rupture). The design criteria used by systems whose construction was govemed by this Code in meeting these loads were developed based on the knowledge and experience of the nuclear industry at the time. These criteria are contained in the UFSAR; refer to Attachment 1, for further discussion.
A.      Pipe Supports of 831.1 Systems (Also Applicable to Supports of B31.7 Class ll and Class ill Systems)
Pipe supports of Seismic Category l B31.1, B31.7 Class 11 and 831.7 Class 111 systems must perform their required functions for four levels of service: Design, Level 1, Level 2, and Level 3. Pipe supports on Seismic Category 11 B31.1            l systems are only analyzed for Design and Level 1 load combinations, excluding OBE effects. Refer to Attachment 3, Tables 4.
: 1.      Component Standard Supports The original component standard supports of B31.1, B31.7 Class ll, and B31.7 Class til piping systems use the allowables listed in the ITT Grinnell PH-74-R Catalog with the following adjustments in capacity for the different service levels:
Level 1:                      1.2 x catalog load capa5ty Level 2, Level 3:            2.0 x catalog load capacity These increases in capacity have been documented for use in " Plan for IE 79-14" (Bechtel).
l t
The following exceptions apply:
Rigid struts: Use the 20% increase in catalog capacity when meeting Level 1 loads; use the Level D allowable from ITT Grinnell LCD-105 when meeting Level 2 and Level 3 loads.
l
 
l Mping t>esign Unt;na ES-040 Revision 0 Page 17 of 72 S.3    Pipe Support Capacities and Allowables (Continued)
Snubbers (Grinnell on Seismic Category I systems; Usega and Grinnell on Seismic Category ll systems): Use the catalog capacity when meeting Design and Level 1 loads; use the "one-time allowable load" listed in the catalog when meeting Level 2 and Level 3 loads.
Spring hangers: Meet the catalog capacity for all service levels and remain within the spring travel working range.
When new component standard supports are purchased from catalogs that include ASME load ratings, use the following catalog design limits to satisfy the service levels:                                                        j Design:                        Catalog Level A Level 1:                        Catalog Level B 1
Level 2. Level 3:              Catalog Level D Use of these capacities for new supports provides consistency with those capacities used for the original supports to meet the different service levels.
: 2.      Support Steel (Steel Supports)
For the original steel supports of B31.1, 831.7 Class ll, and B31.7 Class ill systems, use the criteria in the AISC Manual cf Steel Construction,7th Edition, (documented by Bechtel " Plan for IE 79-14") with several enhancements:
Design:  AISC 7th Level 1:    1.2 x AISC 7th
                                                                                              ~
Level 2:  within yield,1.5 x AISC 7th Level 3:  deflection of supports limited to maintain supported equipment within acceptable limits (F on elastically calculated stresses).
Where:    F.      is the material ultimate stress.
The 20% increase in meeting Level 1 loads is allowed by B31.1 (1967)
Section 121.1.2 (1). The limits for response to Level 2 and Level 3 loads are taken from UFSAR Table 4-8.
1
 
e spmy vesyn unna ES-040 Revision 0 Page 18 of 72 5.3  Pipe Support Capacities and Allowables (Continued)
The limit of yield may be taken as 1.5 x AISC 7th allowables, with the following exceptions:
                                  . Stresses may not exceed 0.7 F.
                                  . Shear stress may not exceed 0.42 F.
Buckling load may not exceed 2/3 P.,                          I These adjustments for using F, as a limit are identical to those required    !
by ASME Section 111 NF (post 1980) when analyzing linear-type supports under Level C loads (which applies a 1.5 increase to working stress limits), and are therefore deemed acceptable.
To bound reasonable deflection limits for steel supports when analyzing the system under Level 3 loads, use a numerical stress limit of F based on elastically calculated stresses. The restrictions for using this limit are contained within Attachment 6. Level 3 Stress Limits for Steel Pipe Supports on Seismic Category l B31.1 and B 31.7 Systems.
B. Pipe Supports of ASME Class 2 and Class 3 Systems Pipe supports of ASME Class 2 and Class 3 (ASME B&PVC, Section lii) systems must perform their required functions for four levels of service: Design, Level 1, Level 2, and Level 3. Allowable limits for meeting the separate service levels have been set in accordance with AEC Reg. Guide 1.48, which is cited by "AFW Design Criteria" (Bechtel) as providing limits and load combinations for j
the motor-driven AFW system. ASME Level B limits are used for meeting                    ;
normal and occasionalloads acting with the OBE, and ASME Level D limits are used for meeting normal, occasional, and faulted loads acting with the SSE.
Refer to Attachment 4, Table 4.                                                          i
: 1.      Component Standard Supports Component standard supports of ASME Class 2 and Class 3 piping systems use the indicated catalog allowables at the following service levels:
Design:                      catalog Level A                            -
Level 1:                      catalog Level B Level 2, Level 3:              catalog Level D
: 2.      Support Steel (Steel Supports)
The steel supports of ASME Class 2 and Class 3 systems use the criteria of ASME Section lli NF '3300 (Class 2) and NF-3400 (Class 3):
,                          Design:                Level A limits Level 1:              Level B limits Level 2, Level 3:      Level D limits
 
nping vesgn Unt::n3 ES-040      i Revision 0    ;
Page 19 of 72      j 5.3  Pipe Support Capacities and Allowables (Continued)                                                  !
C.        Pipe Supports of 831.7 Class i Systems                                                    '
(                                                                                                                ,
l                    Pipe supports of B31.7 Class I systems must perform their required functions for l                    fourlevels of service: Design, Level 1, Level 2, and Level 3.
: 1.        Component Standard Supports Due to the lack of CCNPP documentation concoming B31.7 Class I                  '
piping system component standard support allowables, it is                      !
recommended the analyst review the original calculation for these systems before proceeding with an analysis. The following values from the ITT Grinnell PH-74-R Catalog with the following adjustments in capacity for the different service levels may be used as part of a cursory        ,
evaluation:                                                      -
Design + Level 1:      catalog load capacity Level 2, Level 3:        2.0 x catalog load capacity The unmodified catalog load capacity is used in meeting Design and Level 1 loads to provide consistency with UFSAR Table 4-8, which indicates that no increases in support stress allowables are taken for            ]
these combinations. The increased capacities for meeting Level 2 and Level 3 loads have been documented for use by " Plan for IE 79-14" (Bechtel) on Seismic Category l B31.1 systems.
The following exceptions apply:
l Rigid struts: use the Level D allowable from ITT Grinnell LCD-105 when meeting Level 2 and Level 3 loads.
l Snubbers: use the catalog capacity when meeting Design and Level 1 loads; use the "one-time allowable load" listed in the catalog when meeting Level 2 and Level 3 loads.
Spring hangers: meet the catalog capacity for all service levels and remain within the spring travel working range.
When new components are purchased from catalogs with ASME load
: t.                          ratings, use the following catalog ratings to meet the different service levels:                                                                              l Design & Level 1:        Catalog Level A and B
  .                        Level 2, Level 3:        Catalog Level D                                            l 1
3                          Use of these capacities for new supports provides consistency with i                          those capacities used for the original supports to meet the different i
service levels.                                                                        .
l l
 
nping vesign t.,nnns ES-040 Revision 0 Page 20 of 72 5.3    Pipe Support Capacities and Allowables (Continued)
: 2.      Support Steel (Steel Supports)
For the original steel supports of 831.7 Class i systems, use the criteria of the AISC Manual of Steel Construction,7th Edition (as indicated by Bechtel " Plan for IE 79-14") with several enhancements:
Design + Level 1:      AISC 7th Level 2:  within yield, AISC 7th x 1.5 Level 3:  deflection of supports limited to maintain supported equipment within acceptable limits (Fo on elastically calculated stresses).
Where:      Fu is the material ultimate stress All limits are taken from UFSAR Table 4-8.
The limit of yield may be taken as 1.5 x AISC 7th allowables, with the following exceptions:
i Stresses may not exceed 0.7 F.
                                  . Shear stress may not exceed 0.42 Fu                          l e  Buckling load may not exceed 2/3 P,                          I These adjustments for using F, as a limit are identical to those required      !
by ASME Section lll NF (post 1980) when analyzing linear-type supports under Level C loads (which applies a 1.5 increase to working stress limits), and are therefore deemed acceptable.
To bound reasonable deflection limits for steel supports when analyzing the system under Level 3 loads, use a numerical stress limit of E based on elastically calculated stresses. The restrictions for using this limit are    l contained within Attachment 6.                                                  I D. Concrete Expansion Anchors and Imbedded Studs Concrete expansion anchors and imbedded studs have been used to attach pipe supports and other equipment to concrete portions of the building structure.
The following types have been used on all piping systems covered by this document:
 
Piping Design Criteria ES-040 Revision 0 Page 21 of 72 S.3    Pipe Support Capacities and Allowables (Continued)
: 1.      Expansion Anchors There are two types of expansion anchors: non-ductile and ductile.
Non-ductile expansion anchors fail in a non-ductile mode, i.e. by pulling out of the concrete. Ductile expansion anchors failin a ductile mode, i.e.
by yielding of the bolt material. Use the following safety factors (required by NRC IE 79-02) against ultimate capacity for both types of anchors.
To meet all service levels specified for the supported piping, capacities      ,
may be obtained either from tests, the vendor catalog, or C-2.40              l (Bechtel).
: a.      Non-ductile Expansion Anchors:                                        l (1)    Wedge Type (SF=4):                                -
Philips Red Head Wedge Anchor Hilti Kwik-Bolt Wedge Anchor Hilti Kwik 11 Wedge Anchor Ramset Trubolt Wedge Anchor (2)    Sleeve Type (SF=4):
Liebig Safety Bolt Anchor (3)    Shell Type (SF=5):
Hilti HDI Flush Shell Anchor
: b.      Ductile Expansion Anchors (SF=4):'
Drillco Maxi-Bolts                                        _
: 2.      Imbedded Studs l
Studs which have been cast in place or grouted in place, and are assured of failing in a ductile mode, i.e. by yielding of the stud material, should use the support steel criteria appropriate to the piping system          1 being analyzed.                                                                  '
l
 
l            Piping Design Criteria ES-040                  ,
Revision 0                t Page 22 of 72 5.3            Pipe Support Capacities and Allowables (Continued)
E.      Building Steel Building steel to which pipe supports have been attached should meet the
[
criteria of the AISC 6th edition as indicated by UFSAR Section 5A3.1.8, with the
!                                  following excephons specified in that sechon:
Design:      AISC 8th l                                          Level 1:      0.7 yield                                                                    '
Level 2:      0.9 yield
;                                          Level 3:      0.9 yield Stresses induced in the steel by the supported piping must be combined with all other stresses induced in the member.
5.4            Nozzles The piping reactions at equipment nozzles must meet the manufacturers allowables for all service levels. Evaluate the nozzles for displacement-controlled loads using the loads and load combinations listed for pipe supports. Select the applicable pipe                              ,
support table based on the construction code for the piping being analyzed (pressure loadings must be added to these). In the absence of manufacturers allowables, the                              ,
piping reactions should be compared to loads previously approved by the vendor, i.e.
loads from a previous analysis. If vendors allowables cannot be met, but vendor-calculations are available, review the calculations for possible errors in classification of l
the different stress components, e.g., load combinations for different service levels.
Correct classification of stresses may demonstrate the capacity to be higher than originally calculated. NB-3000 of ASME Section lli (1977) may prove helpfulin this l                      regard.
If none of the above options is viable, evaluate the nozzle rigorously by finite-element or other means in order to determine its actual capacity or to verify that the imposed loads result in acceptable stress levels for applicable codes and standards. Use the results of any rigorous evaluation as input for future nozzle validations.
5.5            Pumps and Valves i
Evaluate both pumps and valves which are independently attached to structures for loads and service levels listed for pipe supports, based on the attached piping system code (consider as non-ductile).
Check pumps which have restrained motors (independently supported) to ensure the j                    deflection between the pump and the motor will not damage or impede its function for all service levels for which the pump has a safety function.
 
l i                                                                                                                                      i 1
1 ES-040            I Revision 0          !
Page 23 of 72                  i 5.5 Pumps and Valves (Continued)                                                                                        i i
Similarly, check valves with their operators independently restrained to ensure th deflection between the valve and the operator will not damage or impede its func for all service levels for which the valve has a safety function.
Compare valve accelerations from the piping analysis (OBE, SSE) to the app Seismic Qualification Report (SQR) to ensure that acceleration limits are satisf vendor limits acceptable  limits. do not exist, test data on valves of the same type can be used to e I
6.0  BASES
[B1]
Baltimore Gas and Electric Company, Calvert Cliffs Nuclear Power Plant Unit and 2, Updated Final Safety Analysis Report.
I
                                                                                                              *e i
I i
 
i l
I I
L                  raping uesign Untena                                                                                    ES-040              !
Revision 0            !
Page 24 of 72 ATTACHMENT 1, LICENSING AND DESIGN BASES MEETING RESULTS                                                      !
!                                                                                (Page 1 of 4)                                                l INTRODUCTION l
This attachment contains a summary of a meeting by members of various CCNPP Engineering Units and several supporting A&E's called to address the situation of when the original design                              !
Codes used in the construction of a system give little or no guidance on how to proceed with                                !
the evaluation of extreme load conditions. The main focus of the meeting wasjustifying a                                    i proposed stress limit for steel pipe supports within the context of the SAR (this is discussed in                            '
Attachment 6, Level 3 Stress Limits for Steel Pipe Supports on Seismic Category l B31.1 and
                . B31.7 Systems. Within the meeting, the relationship between the design Codes and the.                                        ;
CCNPP UFSAR was made clear. the UFSAR augmented the design criteria in the Codes, and                                        !
documented limits for the evaluation of extreme load conditions for equipment and supports.                                  i l                MEETING
 
==SUMMARY==
                                                                                      ~
Date March 8,1994                                                                                                            ,
e                                  I i                The meeting was called to address the generic issue of what to do when design Codes give                                      I l
little or no guidance on how to proceed with the evaluation of extreme load conditions on                                    ;
piping system supports.
<                A presentation was given to propose the use of a 0.4% strain limit as acceptance criteria for                                {
steel supports when analyzing for the most extreme or " faulted" condition. The faulted l
condition is described in ASME Section ill as a service level in which gross general deformations with some loss of dimensional stability and damage requiring repair may be                                      j tolerated, so long as the component in question performs its intended function. For a piping system, its function is protection of the pressure boundary and delivery of required flow. This service level may be associated with loads from an SSE and LOCA.
t Support load types have been categorized as follows:                                                                          I e        Constant force (such as weight).
imposed displacement (such as those resulting from the thermal expansion of support equipment).                                                                                                          i Impulsive /impactive/ dynamic (such as seismic or transient type loads).
i l
i
 
l npnew vecewn unaa ES-040 i Revision 0 !
Page 25 of 72 ATTACHMENT 1, LICENSING AND DESIGN BASES MEETING RESULTS                                  !
(Page 2 of 4)                                            l The mechanism by which each type of load acts was discussed.
It was shown by energy balance that allowing a linear elastic analyzed stress in a support equal to F. (Ultimate Stress) for ductile materials would result in an actual strain of no more than 0.4%. This strain limit provides a '' safety factor" of at least 5 against the onset of the strain-hardening regime for typical ductile materials, which occurs at 2.0% svain. It was assumed all constant force-type loads would remain below yield, having been limited by previous service levels, and the associated plastic deformation would come from imposed displacements and minor distortion from ductile action of the material under dynamic loads.
1 These limits are to apply when performing re evaluations of existing supports. The strain-limit        i argument was judged acceptable from a physical standpoint. Concems were raised about low              !
cycle fatigue on supports, ensuring supports f ive adequate ductility, and consideration of the        l effect of support ductility on the supported pipng. It was remarked low cycle fatigue was not expected to be a problem in light of the low number of cycles a support system was expected            .
to experience during a faulted event. Buckling and brittle fracture were raised as concems;            I anchor bolts and structural botting were also raised as issues in need of resolution.                  1 The list of concems about using Fu as a limit was formalized as follows:
  .        Buckling.
Effect of support displacement on piping stresses.
j
  .        Fracture protection verification.
Also, it was suggested a higher strain limit (5%) is acceptable if a detailed inelastic analysis were performed. When using this limit, rules for strain hardening and flow rules would have to be clearly defined.
Anchor bolts were discussed; anchor bolts at the plant have used a safety factor of 4 (5 for shell type). Anchor studs which are cast in place or attached to embed plates should use the same criteria as support steel. It was decided to address the issue of anchor bolt safety factors at a later date, if necessary.
I l
 
      ..,,...,.~...v.....                                                                          ES-040 Revision 0 Page 26 of 72 ATTACHMENT 1, UCENSING AND DESIGN BASES MEETING RESULTS (Page 3 of 4)
The issue of welding was discussed. It was suggested that there should be verification of no fast irecture potential and some field verification of weld quality. It was agreed that welds should be judged by criteria compatible with the steel criteria, i.e,. the welds must not be the weak link in the system. Fast fracture must be addressed; the bottom line is that fracture protection must be verified so connected steel can be assured of developing ductility.
Similarly, structural bolting compatibility with the connected steel criteria must be verified.
Snubbers were brought up. It was suggested their connecting steel should follow the proposed steel criteria. Current practice is to use the catalog load for the mechanical portion of the snubbers to meet the " normal" and " upset" conditions, and the one-time load to meet the
    " faulted" condition (CCNPP has hydraulic snubbers only). It was suggested to address possible increased limits for the mechanical portion of the snubber at a later date if necessary.
i  Nozzles were also mentioned as an issue. With additional system flexibility, nozzles may see more load. Questions were raised concoming the evaluation of nozzles, namely, how to perform an evaluation. The comment was made that most vendors want no load on the l  nozzles of their equipment. Class 1 nozzles usually can't take as much load as the attached pipe or vessel wall. Some Class 2 and 3 systems were most likely done to rules similar to Section Vlli, which basically states there will be no nozzle loads. It was decided to consider nozzles and snubbers as a separate issue to be addressed later if necessary. Other catalog items such as component standard supports were also men'.ioned and considered in a like manner, The next part of the meeting was devoted to looking at licensing and Code issues. The UFSAR sections which allov, the use of the proposed strain limit were discussed:
* UFSAR SA2.1: Class 1 shall mean Category I (seismic).
* UFSAR 5A3.2: Class 1 systems should use the criteria and load combinations in Table          i 4-8.                                                                                          ,
Table 4-8: For LOCA + SSE (load combination #3), deflection of supports is limited to        !
maintain equipment within limits of columns 1 and 2.                            ~
i l
l f
1 i
i l
l
!                                                                                                          \
l
 
l Piping Design Criteria                                                                      ES-040 l                                                                                          Revision 0 Page 27 of 72    l l
l            ATTACHMENT 1, LICENSING AND DESIGN BASES MEETING RESULTS                                  l (Page 4 of 4)                                            l l
While Chapter 4 of the UFSAR generally refers to the reactor coolant loop, from these l
statements Table 4-8 is to be used for all Seismic Category I piping. The original Code in the        1 design of the supports,~AISC, does not have strain-based limits. It was stated the materialin the UFSAR augmented the Code, and provides the user with steps beyond the Code. The SAR, then, has established faulted limits.                                                          ,
it was agreed that the techniques and criteria proposed during the meeting for the analysis of steel supports in the Pipe Rupture /LOCA + SSE condition are clearfy permitted by the license.        '
Therefore, the licensing justification should be documented when this limit is included in a engineering standard.
m
 
mping vesign Um:;na ES-040 Revision 0 Page 28 of 72 ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES (Page 1 of 7)
INTRODUCTION This attachment provides a description of the service levels and load types appropriate to the analysis of piping systems at CCNPP.
: 1.      SERVICE LEVELS A.        Seismic Category l B31.1, B31.7 Seismic Category 1 B31.1 and B31.7 piping systems at CCNPP Units 1 and 2 were designed for four general service levels, which have been designated in this document as Design, Level 1. Level 2, and Level 3. The loads associated with these levels are described in UFSAR Section 5A.3.1.5 and Table 4-8.
The Design Level evaluates the response of the system under the application of primary loadings from design pressure, fluid weight, and system deadweight.
Secondary stresses are evaluated based on the maximum moment range from thermal service loadings and/or anchor movements, i.e., TAM and/or OBE SAM.
The Secondary Stresses and the Primary Design Level Stresses can be combined and evaluated together.
Level 1 loads are those associated with upset service operation of the plant, commonly occurring transients (relief valve discharge, transients from startup, shutdown, and trips) and those imposed by the OBE.
It should be noted that while B31.1 and 831.7 Class 11 and Class 111 systems evaluate Design and Level 1 loads separately (according to B31.1 Sections 102.3.2(d) and 102.2.4, which distinguish between design loads and occasional loads), 831.7 Class I systems are required to evaluate Design Loads,in conjunction with Level 1 loads, i.e., a combination of design pressure, design weight and the OBE is required as one of the load combinations (according to B31.7 Section 1-705.1 and UFSAR Table 4-8).                              -
Level 2 loads are those associated with emergency service operation of the plant, including both transients (relief valve discharge, transients from startup, shutdown, and trips), and those imposed by the SSE.
Level 3 loads are those associated with extreme accident (faulted) conditions at the plant, such as plant response to a worst-case pipe rupture event (LOCA).
Loads associated with accident mitigation must be included, as must loads from the SSE.
l
                                                                                                      /
i
 
- - - _ - - -      - - . - .. . - . -                      . - _        - . - - - . ~ . ~ . - - - - . -                      _ - - -.
Piping Design Criteria ES 040              [
Revision 0            l Page 29 of 72 l
ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES (Page 2 of 7)                                                      l B.                Seismic Category 11831.1 -
Seismic Category 11 B31.1, piping systems need only satisfy Design and Level 1                  -
loads as described above in Sechon 1.A, excluding any earthquake effects.                      ;
C.                ASME Class 2 and Class 3 r
The motor-driven train of the auxiliary feedwater system was installed almost 10              'I years after plant startup. It was constructed to a different set of requirements,                ;
the ASME BPV Code Section 111 (1977). Due to the lack of CCNPP                                  t documentation concoming the service levels used in the evaluation of the                        !
motor-driven AFW system, it is recommended that the analyst review th_e                          ;
original calculation for this system before proceeding with an analysis. "AFW                    ;
Design Criteria" (Bechtel) indicates that load combinations involving earthquake                !
effects was taken from AEC Reg. Guide 1.48. Therefore, the materialin this i
Reg. Guide has been used in establishing service levels for the motor-driven                      ;
AFW system. The recommended load combinations have been expressed as                              i Design, Level 1, Level 2, and Level 3 to provide consistency with the                            '
terminology used in this document for the original piping systems.
The Design Levelis the same as for Seismic Category l B31.1 and B31.7.                          '
systems.
l The regulatory position contained in AEC Reg. Guide 1.48 states:
OBE to be considered at ASME Service Level B for pipe and supports with normal operating loads and occasional loads. This is Level 1.                                l i
SSE to be consdered at ASME Service Level C for pipe and ASME Service Level D for suppods with normal operating loads and occasionalloads. This is Level 2.
SSE to be considered at ASME Service Level C for pipe and ASME Service Level D for supports with extreme accident conditions at the plant. This is Level 3.                                                                                      '
See Attachment 4, Tables 1,2 and 4 for additional clarification of load combinations and allowable limits.
 
Piping Design Criteria                                                                                    ES-040 Revision 0 Page 30 of 72 ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES (Page 3 of 7)                                                          i
: 2.      LOAD DESCRIPTIONS A.      Weight l                        Weight of the piping system will include the weight of the pipe material, attached insulation or shielding, attached or inline piping components, and the weight of                  i the fluid within. The design weight is the maximum weight of the system, e.g.,                    ,
when the system is completely filled with water. For those piping systems which do not operate with a liquid, e.g., steam piping, an additional weight analysis may be necessary to calculate the system loading for the hydrodynamic pressure test condition. Treat this as a test load (see code for pipe and support                  i limits).                                                                                            ;
B.      Pressure 4
                                                                                                                          }
The pressure used for any load case should be appropriate to the operating or                      .
transient condition being analyzed. The design, norma!, and maximum                                !
pressures are listed in M-601 for each system service number.
C.      Temperature Effects
                    . Temperature effects will include thermal expansion / contraction of the pipe, and anchor movements imposed by the thermal movement of equipment to which the pipe is attached. In an extreme case, anchor movements from containment expansion dunng a LOCA will also be included, if an analysis is performed and thermal movements are found to be excessive, these movements should be checked for interference.
All frame-type supports classified as " rigid" should be evaluated for the sliding friction force resulting from thermal growth in the longitudinal direction of the supported pipe. This friction effect should only be evaluated for normal operating loads (i.e., do not combine with transient loads or OBE/SSEk- In general, the friction force should be computed as 0.3 x (weight + radial forces from thermal expansion, where applicable) and applied in the direction of thermal growth. Other approaches to evaluating frictional affects may be used if property justified or referenced.
 
Piping Design Criteria                                                                      ES-040 l                                                                                          Revision 0 Page 31 of 72 ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES (Page 4 of 7)
D.      Fluid Transient Fluid transients are dynamic events associated with irregular flow or interrupted flow in the pipe. Fluid hammer may result from rapid valve closure. Fluid slug results from an amount of liquid water being propelled at high speed (either by the sudden opening of a valve on a line under pressure, or the venting of steam into a closed discharge system that contained water) impacting an elbow, pipe bend, or pipe terminal end. These events are usually evaluated by time-history methods.                                                                                ,
I E. Relief / Safety Valve Discharge i
When a relief or safety valve discharges, the fluid initiates a jet force that is transferred through the piping system. If the valve vents to atmosphere, the jet force may be calculated and applied to the system as a constant load. If the valve vents (3 a closed discharge system, transient conditions may develop (such as the generation of a fluid slug) which may require time-history analysis.
F.      Earthquake Effects Seismic Category I piping systems must be designed to resist two levels of earthquake: OBE and SSE. Earthquakes will generate two types of loads applicable to piping systems: inertia loads (from the excitation of the piping system's mass) and anchor movement loads (from the movement of equipment or structures to which the piping system is attached).
Use the response spectrum method for the seismic analysis of piping systems,            ,
unless attemative techniques, i.e., time-history analysis are approved. The              I spectrum provides values of acceleration (response) plotted against natural frequency for a series of damping values and a ductility value of one.. Code              i Case N-411 damping may be used for all new or revised piping system                      i analyses. If spectra for the SSE are not available, they may be calculated by using SSE = 1.875 OBE (the ratio for the vertical response of containment is less in several cases).
l 1
 
l l
I Piping Design Criteria ES-040            l Revision 0 Page 32 of 72                    i l
ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES                                                    I (Page 5 of 7)
I When analyzing a system for the effects of seismic inertia ensure that all values                    1
;                            of acceleration are enveloped for the entire frequency range. The following                          l guidelines may be useful, but requires verification that all peaks are enveloped:
l
                            . For systems that run between floor levels, select the most conservative floor                    !
response spectrum.                                                                                l 1
* For systems that go between seismically-independent structures, use the                          )
most conservative building and elevation spectrum.                                              j Use the SRSS approach for modal combinations and treat closely spaced                                i modes as addressed in AEC Reg. Guide 1.92. Total response to the three                                l directions of motion (N-S, E-W, vertical) should also be obtained by the SRSS                          (
approach.
Evaluate seismic anchor movement for the piping system if one or more of the                          l following exist:                                                                                      '
i The piping system is run between two seismically independent structures.
                          . The piping is attached to large equipment or intemal structures which have the capability for independent motion.
The difference in elevation between the highest anchor point and the lowest                      j anchor point on the piping system is greater than 40 feet and the net relative                    ,
displacement between the two points is greater than 1/16th inch.
                                                                                                                                  ]
I l
l
 
Mping vesgn Untena                                                                            ES-040 Revision 0    ,
Page 33 of 72 1
ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES (Page 6 of 7)
Seismically independent structures include the following.
l e    Main auxiliary building (upper elevations have separate east / west                    I structures).
* Penetration area (auxiliary building).                                                i e  Diesel generator rooms (11,12,21,22).
                        . Containment building.
l e  Intake structures (pumphouse, divided into north / middle / south substructures).
Equipment and intemal .=tructures having the capability for independent motion              I are:
l l
e    Containment intemal structure (floors are fixed to intemal structures, and            ;
slotted at shell).
                        . Reactor vessel.
* Reactor coolant pumps.                                                                1
                        . Reactor coolant loop, pressurizer.
                      . Steam generators.
G. Pipe Rupture Failure scenarios in the different piping systems at the plant that might result in a LOCA or otherwise affect the performance of other systems in their ability to perform a specified safety function must be evaluated to ensure that overall plant safety will not be jeopardized.
Pipe break / crack locations (for the consideration of the design and placement of pipe whip restraints, jet impingement barriers and missile protection) are postulated based on system geometry and pipe stress levels.
1 i
i i
 
t i
Piping Design Cnteria                                                                                                                            '!
ES-040 Revision 0 Page 34 of 72 1
ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES (Page 7 of 7)                                                              i The following lists hypothebcal break locations:                                                                            t
                                                    .            Terminal ends / anchor points.                                                                                }
i
                                                    .            Any intermediate locations between terminal ends where either the sum of                                      l primary and secondary circumferential or longitudinal stresses derived on an                                  j elastic basis under the loads associated with seismic events and operational                                  j plant conditions exceeds 0.8 (S , + S4), or the secondary circumferential or longitudinal stress exceeds 0.8 SA.                                                                            ;
1 Two additio':al intermsdiate locations are selected based on the points of high
!                                                  stress as identified by UFSAR Chapter 10A. No breaks occur in short pipe runs                                                :
i                                                  of 5 pipe diameters orless in length.
l A critical crack defined as one-half the pipe diameter in length and one-half the                                            l pipe wall thickness in width is postulated to occur at any location. Since a crack                                            :
is postulated to occur anywhere, select locations having the most adverse effect                                              !
on plant safety.
Pipe breaks and/or cracks are postulated to occur in piping (greater than 1"                                                  i nominal size) of high energy systems, which are defined as those fluid systems where either of the following process conditions are maintained during normal                                                .
plant conditions:                                                                                                            f j'                                                .          Maximum operating temperature exceeds 200* F.
e          Maximum operating pressure exceeds 275 psig.
l                                                                                                                                                                                I l
Normal plant conditions are defined as normal steady state or hot standby (Modes 1, 2, 3).                                                                                  .
Piping systems that contain fluids above atmospheric conditions but below high energy conditions during normal plant conditions are classified as moderate energy. Pipe breaks and/or cracks are not postulated in moderate energy systems at CCNPP.
Additionalinformation may be found in UFSAR Section 10A and Mechanical Design Criteria Appendix A.
l i
l                                                                                                                                                                                l r
                                                    - , ~ ~ . . . . _ _ . . , _ .                          _ . _ _ - .          . . . . , _ .                          . . . ,
 
i Piping Design Criteria ES-040
'                                                                                                Revision 0 Page 35 of 72 ATTACHMENT 3, B31.1 PIPE STRESS AND SUPPORT CAPACITY TABLES                                      I l
t (Page 1 of 9)
Pipe Stress Legend for B31.1 (1967)                                                                          !
1 I-    P                  =    Pressure, psi.
M                    =    Resultant moment, Ib.-in.
t i                    =  Stress intensification factor (see page B31.1 Appendix D).
D                  =    Outside diameter of pipe, in.
d                  =    Inside diameter of pipe, in.
t                    =    Wall thickness, in.                                              -
y                    =
See B31.1 Table 104.1.2 (a) 2.
E                    =  Joint efficiency (see B31.1 Table 102.4.3).                                          I Z                    =  Section modulus of pipe, in.'                                                        !
StocAt s            =
Appropriate local hoop stress from contact forces and attachments, psi.              (
                        =
S LOCAL L                Appropriate local longitudinal stress from contact forces and attachments, psi.
Sn                  =
Allowable stress at temperature, psi (831.1 pipe use B31.1 Appendix A Table A1 and Table A2; B31.7 Class ll pipe use B31.7 Appendix A Table A8; B31.7 Class ill pipe use B31.7 Appendix A Table A8 and A9).
So                  =
Syfor carbon steel and 1.2 Sn for stainless steel (see UFSAR Table 4-8).
St                  =    Sy + 0.33 (S,- S,) (see UFSAR Table 4-8).
S,                  =    Yield strength of material at temperature, psi (see ASME,1967). _.
So                  =    Tensile strength of material at temperature, psi (see ASME,1967).
SA                  =    f(1.25 S, + 0.25 Sn).
Se                  =    Allowable stress at minimum environmental temperature, psi (B31.1 pipe                !
use B31.1 Appendix A Table A1 and Table A2; B31.7 Class 11 pipe use                    j l                            831.7 Appendix A Table A8; B31.7 Class ill pipe use B31.7 Appendix A
)                            Table A8 and A9).
l l  f                    =    Stress range reduction factor (B31.1 Table 102.3.2(c)).
4 t
I
 
Mping Design Crit: rim                                                                                                                            !
ES-040 Revision 0 Page 36 of 72 i
ATTACHMENT 3, B31.1 PIPE STRESS AND SUPPORT CAPACITY TABLES                                                                              '
(Page 2 of 9)
Table 1:                                                                            !
Primary Stress Limits for B31.1 Pipe for Design and Level 1 Conditions (also applicable to B31.7 Class il and Class lii)                                                                          !
DESIGN                              LEVEL 1 PRESSURE                                        YES                                YES WEIGHT OF                                      YES                                YES PIPING SYSTEM                                                                                                                                  '
WElGHT OF                                      YES                                YES                    -
FLUID E        OBE INERTIA                                      NO                                YES 5i y        SSE INERTIA                                      NO                                NO o
SAFETY / RELIEF                                    NO                                YES VALVE DISCHARGE FLUID                                      NO                                  YES TRANSIENT l
FAULTED                                      NO                                  NO (PIPE RUPTURE)
HOOP            P(D - 2yt i                                        P(D 2yt) t cALH      bh STRESS                2tE                                                2tE      tocALH I    '
h LONGITUDINAL          Pd*                M                                Pd*  M STRESS          o' d, + p s toc,t                    i s u s, D, ,d , + p s toc,t        t sus, NOTES:
: 1.        See sheet 7 for calculating moment and application of stress intensification factors.
s
                                                                                                                                                              )
l    2.        B31.1 Seismic Category li pipe is only analyzed for Design and Levci 1 loads, and does                                                        l not consider earthquake effects.
l 1
l l
l
\
 
1 J
raping ve:ign t,nnn2                                                                              )
ES-040 l
Revision 0 1 Page 37 of 72 ATTACHMENT 3, B31.1 PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 3 of g)
Table 2:
Primary Stress Limits for B31.1 Pipe for Level 2 and Level 3 Conditions (also applicable to B31.7 Class 11 and Class lil)
LEVEL 2                          LEVEL 3 PRESSURE                      YES                                YES WEIGHT OF                      YES                                YES PlPING SYSTEM WEIGHT OF                      YES                                YES            _
FL8J1D f    OBE INERTIA                      NO                                NO 5
3    SSE INERTIA                      YES                                YES 2
SAFETY / RELIEF                  YES                                YES VALVE DISCHARGE FLUID                        YES                                YES TRANSIENT FAULTED                        NO                                YES (PlPE RUPTURE)
HOOP            P(D - 2yt)                        P(D - 2yt)
STRESS                2:E      ' C^' "    '
2tE        'OC" " '    '
LONG ME BpANE                    '*''''''                          *'"'''        ''
STRESS LONG. BENDING          u 4          ,                  u 4 STRESS (3)          i ' i 4* ' .E      . sto,f-      7 s 7 sten  [,. sto f-i NOTES:
: 1. See sheet 7 for calculating moment and application of stress intensification factors.
: 2. Ignore these load levels for B31.1 Seismic Category 11 pipe.
: 3. Resulting value in []is in radians.
l l
 
  -.  .        .=                _                    . - - - . .        -    ..          . _ . - . - - _            .    - . .
t Piping Design CritGri9 ES-040 Revision 0      !
Page 38 of 72          ,
ATTACHMENT 3, B31.1 PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 4 of 9)                                                  :
Table 3:
Secondary Stress Range for B31.1 Pipe for Level 1 Loads Sets i
(also applicable to B31.7 Class ll and Class lil)                                          '
LEVEL 1 5          OBE SAM                          YES
                                    $            THERMAL                          YES                                            -
                                  @            EXPANSION i
THERMAL                          YES
[
AM LONGITUDINAL                      "                                      -
                                                                          . as,,,,,,.3. ,,                                        ,
STRESS RANGE (2)
NOTES:
I
: 1.          See sheet 9 for calculating moment and application of stress intensification factors.
l 2.
The term f(Sn - S't) may be added to SA, where S't is the primary longitudinal stress                        !
calculated in Table 1 for design loads, i.e., weight and pressure.
: 3.          B31.1 Seismic Category 11 pipe does not consider earthquake effects.
l g      -      ,    ,            - - . .      -
 
rseuew vauvo vntna ES-040 Revision 0 Page 39 of 72 ATTACHMENT 3, B31.1 PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 5 of 9)
Table 4:
1 Pipe Supports on B31.1 (1967) Systems (Also applicable to B31.7 Class 11 and Class Ill)
DESIGN          LEVEL 1          LEVEL 2        LEVEL 3                  '
WElGHT              YES                YES              YES            YES THERMAL              YES                YES (2)          YES (2)        YES (2)
EXPANSION (1)
)                TAM (1)            YES              YES              YES            YES OBE INERTIA            NO              YES                NO            NO
;                OBE SAM              NO                YES                NO            NO
,              SSE INERTIA            NO                NO              YES
:                                                                                        YES SSE SAM              NO                NO                YES            YES RELIEF / SAFETY          NO              YES                YES          YES VALVE DISCHARGE FLUID              NO              YES              YES            YES TRANSIENT FAULTED              NO                NO                NO            YES (PIPE RUPTURE)
COMPONENT          ASME LEVEL          ASME            ASME STANDARD                                                            ASME LEVEL -
A              LEVEL 8        LEVEL D            D (NEW)
COMPONENT          ITT GRINNELL          ITT              ITT            ITT STANDARD            PH-74-R          GRINNELL        GRINNELL        GRINNELL (OLD)            CATALOG            PH-74-R        PH-74-R          PH-74-R (3)                        CATALOG x        CATALOG x        CATALOG x 1.2              2.0            2.0 SUPPORT            AISC 7th        AISC 7th x          YlELD        DEFLECTION STEEL                                  1.2              (4)      CONTROLLED (5) l j        See notes 15 on the following page.
i
\
 
Piping Design Criteria                                                                                      ES-040 Revision 0 Page 40 of 72      l ATTACHMENT 3, B31.1 PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 6 of 9)
                                                                                                                    )
i Table 4.                                                3 Pipe Supports on B31.1 (1967) Systems                                              j (Also applicable to B31,7 Class ll and Class Ill)
NOTES:                                                                                                              l l
: 1.    . Ignore for snubbers unless travel is exceeded.
: 2.      Neglect friction effects when condition involves dynamic loads.
: 3. The following exceptions apply:
      . Rigid Grinnell struts use Level D allowable from ITT Grinnell LCD-105 when meeting Level 2 and Level 3 loads
      . Snubbers use catalog capacity when meeting Design and Level 1 loads; "one-time allowable load" listed in catalog should be used when meeting Level 2 and Level 3 loads
      . Spring hangers should meet all load levels with the catalog capacity and should remain within the working range of the spring
: 4. May use AISC 7th x 1.5, with following limitations:
      . Stresses may not exceed 0.7 F.
      . Shear stresses may not exceed 0.42 Fu
      . Buckling load may not exceed 2/3 critical buckling load 5.. F, limit compared to elastically calculated stresses. See Attachment 6.
 
Piping Design Criteria ES-040 Revision 0 Page 41 of 72 ATTACHMENT 3, B31.1 PIPE STRESS AND SUPPORT CAPACITY TABLES                                        ;
(Page 7 of 9) 1.0    Combined Moment for B31.1 (1967) Primary Stress Evaluation .
The moment combination technique used in this section is based on that described in                  ,
B31.1 (1967) Section 119.6.4(a).        The square-root-sum-of-the-squares (SRSS)                  I approach of combination of cyclic dynamic loads is described in AEC Reg. Guide 1.92.
The combination should be carried out as follows:
: a. Combine all moments from cyclic dynamic loads (seismic inertia, fluid hammer) by the SRSS approach. This is illustrated as follows:
CYCLIC ' CYCLIC                  E1                          ~
                          #1          #2 Ms    +4          +1            ]4232 , 4,3 M2      -6        +10        }(.6 )2 + (10 2) , g 3,7 Ma    +3          -7                2    2 f3 +(.7 ) = 7.6 The components Mi , M2 , M3 will be used as the components for the net cyclic dynamic moment.
: b. Combine the moments from non-cyclic dynamic loads (fluid slug, valve discharge) and static loads (weight) through algebraic summation. Use these as the components for the net non-cyclic moment.
l 1
I
 
ripung voign unen2                                                                                                    ES-040 l
Revision 0 Page 42 of 72 ATTACHMENT 3, B31.1 PlPE STRESS AND SUPPORT CAPACITY TABLES (Page 8 of 9)
: c.      Combine the components of the net cyclic dynamic moment and the net non-                                                    ;
cyclic moment through algebraic summation, using both positive and negative l                          signs on the net cyclic dynamic moment. This process is illustrated below-                                                  >
NET NON-                    NET CYC.                  T*                              E2 t
CYC.
I Mi    +4                        i4.1                4 + 4.1 = 8.1                4 - 4.1 = -0.1 M2    -6                        i11.7                  -6 + 11.7 =                  11.7 =                        ;
5.7                            -17.7 Ma      +3                        i7.6                  3+7.6=                      3 - 7.6 = -4.6-l 10.6                                                          '
14.5                            18.3 dM'+M 28+M 32 3
                                                                      =
The largest resultant moment of column E1 or Z2 is the moment to be used when checking primary stress. In this example, it would be the moment from column E2.
: d.      Apply appropriate stress intensification factor "i" to the components of the resultant bending moment on the pipe cross section, and combine with the                                                      !
torsional component as shown:
M = g(iM,)2 +(iM3 ) +M 32 "M"is the moment which should be used in the stress eval Mcp. For branches              -
and tees, see B31.1 Section 119.6.4 (b) for combining con %nents Ms, M 2, Ms.
1 I
l l
e 4                              .-                                                      ,,.                    - - -
 
  .      _    - . -            -- -_ -              -      . - - - - _ - . _ . .~                        -      . - . . - . -
l                                                                                                                                        !
l Mping Design Cnt:;ri3                                                                                        ES-040 Revision 0            :
Page 43 of 72 ATTACHMENT 3, B31.1 PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 9 of 9) 2.0        Combined Moment for B31.1 (1967) Secondary Stress Evaluation i
The moment combination technique used in this section is based on that described in                              !
B31.1 (1967) Section 119.6.4(a).                                                                                ;
Combine as follows:
: a.          Combine all moments from thermal expansion and thermal anchor movements by algebraic summation. Use these components as the net non-cyclic moment.
: b.        Combine the components of the SAM moment and the net non-cyclic moment                                i through algebraic summation, using both positive and negative signs on the SAM moment. Also, evaluate the full range of the SAM moment. This process is illustrated below:
NET NON-              NET CYC.                  I1                I2            I3 CYC.
Mi          +4                  14.1          4 + 4.1 = 8.1          4 - 4.1 = -0.1  2 x 4.1 = 8.2 M2          -6                    11.7          -6 + 11.7 =          11.7 =      2 x 11.7 =
5.7              -17.7          23.4 M3          +3                  i7.6          3 + 7.6 = 10.6          3 - 7.6 = -4.6  2 x 7.6 = 15.2
                              ]M,' + M2* + Ma * =                      14.5                18.3          29.1 i
The largest resultant moment of column I1, I2, or I3 is the moment to be used when checking secondary stress range. In this example, it would be the                                    -
moment from column I3.
: c.        Apply appropriate stress intensification factor "i" to the components of the resultant bending moment on the pipe cross section, and combine with the torsional component as shown:
M = ](iM,)* +(iM3 )2 +M3 '
                              "M"is the moment which should be used in the stress evaluation. For branches and tees, see B31.1 Section 119.6.4(b) for combining components M i, Mr. M 3-
 
Piping Design Criteria ES-040 Revision 0 Page 44 of 72 l
ATTACHMENT 4, ASME CLASS 2 AND CLASS 3 PIPE STRESS AND SUPPORT CAPACITY                            !
TABLES                                                !
(Page 1 of 8)
Pipe Stress Legend for ASME Class 2 and Class 3 Systems P              =    Pressure, psi.
M4            =    Resultant static moment, Ib.-in.
Me              =    Resultant dynamic moment, Ib.-in.
Mc              =    Resultant moment from expansion and anchor movements, Ib.-in.
Mo              =    Resultant moment from an unrepeated anchor movement, Ib.-in.                    !
i              =
Stress intensification factor (see NC-/ND-3673).
D              =    Outside diameter of pipe, in.
i d              =    Inside diameter of pipe,in.                                                      I t              =    Wall thickness, in.
l y              =    See NC-/ND-3641.1.
j Z                =    Section modulus of pipe,in.'
Stoca n          =  Appropriate local hoop stress from contact forces and attachments, psi.
St ocat          =  Appropriate local longitudinal stress from contact forces and attachments, psi.
I Sn              =    Allowable stress at temperature, psi (NC uses ASME Appendix l Table l-            ,
7.0; ND uses ASME Appendix I Table I-7.0 or 1-8.0).
SA              =
f(1.25 S + 0.25 Sn).
l' Se              =    Allowable stress at minimura environmental temperature, psi (NC uses ASME Appendix I Table I-7.0; ND uses ASME Appendix I Table I-7.0 or I-8.0).
f              =    Stress range reduction factor (ASME NC/ND Table 3611.2(e)-1).                        l l
 
l l                      Piping Desigo Oriteria                                                                                                                                  I ES-040            ;
Revision 0          I Page 45 of 72 l
t ATTACHMENT 4, ASME CLASS 2 AND CLASS 3 PlPE STRESS AND SUPPORT CAPACITY i
TABLES (Page 2 of 8)
Table 1:                                                                          l Primary Stress Limits for ASME Class 2 and Class 3 Pipe for Design and Level 1 Conditions                                                                    1 I
i DESIGN                                      LEVEL 1 PRESSURE                                            YES                                          YES WEIGHT OF                                            YES                                          YES PIPING WElGHT OF                                            YES                                          YES FLUID                                                                                                                                      :
OBE INERTIA                                                                                                                                    )
E                                                                  NO                                          YES
                .y                                                                                                                                                            l i
y          SSE INERTIA                                            NO                                            NO 2
SAFETY / RELIEF                                        NO                                          YES VALVE Dt3 CHARGE
                                  . FLUID                                            NO                                          YES TRANSIENT FAULTED                                              NO                                          NO (PIPE RUPTURE)
HOOP                      P(D 2y t)                                          P (0 2 y t h STRESg                                2:
LONGITUDINAL                rd'                  o.7siu.                        ed'        o.7sicu. . u i D  a        #
2    *'OC'''      "                                    ''''''
STRESS                          d                                          Da d 8              2
* NOTES:                                                                                                                            -
: 1.          See sheet 7 for calculating M4 and Ms.
l
 
i Piping Design Criteria                                                                                                      ES-040 Revision 0 Page 46 of 72 1
ATTACHMENT 4, ASME CLASS 2 AND CLASS 3 PIPE STRESS AND SUPPORT CAPACITY                                                                    I TABLES (Page 3 of 8)
Table 2:
;                              Primary Stress Limits for ASME Class 2 and Class 3 Pipe                                                                  i for Level 2 and Level 3 Conditions                                                                ;
LEVEL 2                                            LEVEL 3 PRESSURE                                    YES                                              YES WElGHT OF                                  YES                                              YES PIPING                                                                                                                          I WElGHT OF YES                                              YES                                    ;
            -            FLUID j
{
w OBE INERTIA                                  NO                                                NO                                    i j          8      SSE INERTIA                                  YES                                              YES                                    ,
3                                                                                                                                            ,
!                SAFETY / RELIEF                                YES                                              YES i                        VALVE
* i                  DISCHARGE i                        FLUID                                YES                                                YES TRANSIENT FAULTED                                    NO                                              YES (PIPE RUPTURE) l                        HOOP                    P(D 2vtI p go.2 yt) 2'                                                2      **'"''"'''""
STP.ESS i                LONGITUDINAL                Pd'      O.7b(Ma + Ms )                          Pd*      0.75(Ma + Me)
:                      STRESS                o' d '
* I            **"''"*            o'-d'
* z        **'''^'d'''8*
NOTES:                                                                                                                    ,.
;          1.      See sheet 7 for calculating M4and Ms.
1
'S 1
2
 
Piping Design Criteria                                                                    ES-040 Revision 0 Page 47 of 72 ATTACHMENT 4, ASME CLASS 2 AND CLASS 3 PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 4 of 8)
Table 3:
Secondary Stress Range for ASME Class 2 and Class 3 Pipe for Level 1 Load Sets and Unrepeated Anchor Movements LEVEL 1          Unrepeated AM OBE SAM                  YES                    NO E        THERMAL                  YES                    NO y      EXPANSION g        THERMAL                YES                    NO AM                                                            _
UNREPEATED                  NO                    YES AM LONGITUDJ, AL      @.as,,,,,,i.os,      p . a s ,,,,, , s .o s ,
STRESS RANGE (2)
NOTES:                                                                                            ,
i
: 1.        See sheet 8 for calculating Mc and Mo.
l l
: 2.        The term f(S - S't) may be added to SA, where S't is the primary longitudinal stress    i calculated in Table 1 for design loads (i.e. weight and pressure). This is equivalent to equation ll in ASME, Sect. til (1977), Section NC-3652.3 and ND-3652.3.
l l
i l
1
 
l                                                                                                                    -
I Piping Design Criteria                                                                    ES-040 Revision 0
.:                                                                                                  Page 48 of 72 l
4                                                                                                                      !
ATTACHMENT 4, ASME CLASS 2 AND CLASS 3 PIPE STRESS AND SUPPORT CAPACITY TABLES
.                                                            (Page 5 of 8)
Table 4:
!                                    Pipe Supports on ASME Class 2 and Class 3 Systems
,                                          DESIGN          LEVEL 1        LEVEL 2          LEVEL 3
)                  WElGHT                  YES              YES            YES              YES t
THERMAL                  YES              YES (2)        YES (2)          YES (2)                  i i
EXPANSION (1)
TAM (1)                  YES              YES            YES              YES OBE INERTIA                  NO              YES            NO              NO                      I 4
OBE SAM                  NO              YES            NO              NO i
:                SSE INERTIA                NO                NO            YES              YES 1                  SSE SAM                  NO                NO            YES              YES                      I
,            RELIEF / SAFETY                NO              YES            YES              YES VALVE j                DISCHARGE i                  FLUID                  NO              YES            YES              YES TRANSIENT j                  FAULTED                  NO              NO              NO              YES (PIPE RUPTURE)
COMPONENT              ASME LEVEL        ASME LEVEL ASME LEVEL            ASME LEVEL i                STANDARD                    A                B              D                D SUPPORT                  ASME            ASME            ASME            ASME      _
STEEL                SECTION lli    SECTION lli    SECTION lil      SECTION 111                  j
.                                        NF LEVEL A      NF LEVEL B      NF LEVEL D      NF LEVEL D                    !
NOTES:
: 1.      Ignore for snubbers unless travelis exceeded.
2
: 2.        Neglect friction effects when condition involves dynamic loads.
1 e
d w n  -
 
Piping Design Criteria                                                                                        ES-040    [
4 Revision 0
!                                                                                                                                      Page 49 of 72  l ATTACHMENT 4, ASME CLASS 2 AND CLASS 3 PIPE STRESS AND SUPPORT CAPACITY TABLES 1                                                                                                  (Page 6 of 8) 3 1.0    Combn;ad Moments for ASME Class 2 and Class 3 Stress Evaluations The moment combination techniques used in this section are based on those described                              '
l                                      in NC-/ND-3652.4.                      The square-root-sum-of-the-squares (SRSS) approach to                  t combination of cyclic dynamic loads is described in AEC Reg. Guide 1.92.
For branches and tees, see NC-/ND-3652.4 for combining components M i , M 2, Ma into                            ,
the appropriate resultant.                                                                                      l A.      Static Moment M4 The static moment M 4 is found by combining all corresponding static loads (weight) by algebraic summation in each of the orthogonal directions and then performing the SRSS method to get the resultant moment (M4.)                                            i 1                                      B.      Dynamic Moment Ms.                                                                                      !
l
: 1.                Combine all moments from cyclic dynamic loads (seismic inertia, fluid                  I hammer) by the SRSS approach. This is illustrated as follows:
CYCLIC              CYCLIC                                E1
                                                                    #1                    #2
;                                                M,              +4                  +1                      g42,12 , 4,j M2              4                  +10                    g(.e 2) + (j o2) = 11.7 M3              +3                  -7                      y3 2            2
(.7 ) = 7.6 The components Mi , M2, Ma will be used as the components for the net                  ;
cyclic dynamic moment.
: 2.                Combine the moments from non-cyclic dynamic loads (fluid slug, valve discharge) through algebraic summation. Use these as the components for the net non-cyclic dynamic moment.                                                  1
 
Piping Design Untena ES-040 Revision 0              !
Page 50 of 72              j ATTACHMENT 4, ASME CLASS 2 AND CLASS 3 PIPE STRESS AND SUPPORT CAPACITY                                                                        !
TABLES                                                                          i (Page 7 of 8)                                                                        !
3.
Combine the components of the net cyclic dynamic moment and the net                                          !
non-cyclic dynamic moment through algebraic summation, using both                                            !
positive and negative signs on the not cyclic dynamic moment. This                                            i process is illustrated as follows:
NET NON-              NET CYC.                                Z1              I2 CYC.
M,    +4                    14.1                              4 + 4.1 = 8.1 4 - 4.1 = -0.1 M2    -6                  i11.7                                -6 + 11.7 =  11.7 =
5.7          -17.7    _.
M3      +3                    i7.6                                  3 + 7.6 =  3 - 7.6 = -4.6 10.6 dM,' + M2 ' + M3 ' =                                    14.5          18.3 4
The largest resultant moment of column Z1 or E2 is Ms. In this example,                                        .
it would be the moment from column Z2.
C.              Expansion / Anchor Movements Moment Mc.
I
: 1.        Combine all moments from thermal expansion and thermal anchor movements by algebraic summation. Use these components as the net non-cyclic moment.
l l
l l
l I
I i
 
riping vesign Unt:na                                                                      ES-040 Revision 0 Page 51 of 72 ATTACHMENT 4, ASME CLASS 2 AND CLASS 3 PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 8 of 8)-
: 2. Combine the components of the SAM moment and the net non-cyclic moment through algebraic summation, using both positive and negative signs on the SAM moment. Also, evaluate the full range of the SAM moment. This process is illustrated below-NET NON-            SAM            E1                I2            E3 CYC.
M,    +4              i4.1        4 + 4.1 = 8.1      4 - 4.1 = -0.1  2 x 4.1 = 8.2 M2    -6              111.7        -6 + 11.7 =        11.7 =    2 x 11.7 =-
5.7              -17.7          23.4 M3      +3              i7.6        3 + 7.6 = 10.6      3 - 7.6 = -4.6 2 x 7.6 = 15.2 dM,' + M 2 +M 3 2  =          14.5              18.3          29.1 The largest resultant moment of column E1, I2, or I3 is Mc. In this example, it would be the moment from column I3.
D.      Unrepeated Anchor Movement Moment Mo.
The range in unrepeated anchor movement moment is the range in moment                i from the unloaded condition to the loaded condition, Mo is determined by using      ^
the SRSS method to combine these three orthogonal moment ranges.                      ;
 
Piping Design Criteria                                                                    - ES-040 Revision 0 Page 52 of 72 ATTACHMENT 5, B31.7 CLASS I PlPE STRESS AND SUPPORT CAPACITY TABLES (Page 1 of 11)
Pipe Stress Legend for B31.7 Class 1 Systems Bs, B        =  Primary stress indices for component under investigation (see B31.7 Appendix D Table D-201).
Ci, C2, C    =  Secondary stress indices for component under investigation (see B31.7 Appendix D Table D-201).
K,,K 2,'K3  =  Local stress indices for component under investigation (see page B31.7 Appendix D Table D-201).
P            =  Pressure, psi.
M            =  Resultant moment due to static and dynamic loads, Ib.-in.
D            =  Outside diameter of pipe, in.
t~            =  Wall thickness, in.
                                                                                                ~
Z            =  Section modulus of pipe, in.'
y            =  0.4 (constant - see B31.7 Section 1-704.1).
StocAtH      e  Local hoop stress from contact forces and attachments, psi.
Stocatt      =  Local longitudinal stress from contact forces and attachments, psi.
v            =  0.3 (Poisson's ratio).
En          =  Modulus of elasticity times the coefficient of thermal expansion, both at room temperature, psi /'F (B31.7 Appendix A Table A5 and Table A6).
AT i        =  Range in temperature difference between the temperature of the inside surface and the temperature of the outside surface of the pipe assuming a moment-generating linear temperature distribution, 'F (see B31.7 Section 1-705.3.1 for description).
AT:          =  Range in temperature for that portion of the nonlinear thermal gradient through the wall thickness not included in AT , 'F (see B31.7 Section 1-i 705.3.1 for description).
E.e          =  Average modulus of elasticity between two parts of a gross structural discontinuity, psi (B31.7 Appendix A Table A6).                                      ,
: a.          =  Mean coefficient of expansion on side a of a gross discontinuity, inlin. 'F (B31.7 Appendix A Table A5).
T.          =  Average temperature minus the room temperature on side a of a gross structural discontinuity, 'F.                                        _
: n.          =  Mean coefficient of expansion on side b of a gross structural discontinuity, inlin. *F (B31.7 Appendix A Table A5).
T.          =  Average temperature minus the room temperature on side b of a gross structural discontinuity, 'F.
S.          =  Stress intensity at temperature, psi (831.7 Appendix A Table A1).
So          =  S, for ferritic steels,1.2 S. for austenitic steels (UFSAR Table 4-8).
St          =  S, + 0.33(S. - S,) (UFSAR Table 4-8).
S,          =  Yield strength of material at temperature, psi (see ASME (1967)).
So          =  Tensile strength of material at temperature, psi (see ASME (1967)).
Ss          =  Peak stress intensity range for a given set of cycles, psi.
Su          =  Attemating stress intensity for a given set of cycles, psi.
l
 
J l
riping vesign untin3 ES-040  I Revision 0 Page 53 of 72 ATTACHMENT 5, B31.7 CLASS I PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 2 of 11)
Table 1:
Primary Stress intensity Limits for B31.7 Class 1 Pipe for Design + Level 1 Condition h
DESIGN + LEVEL 1                    !
PRESSURE                                      YES                      !
l WEIGHT OF                                      YES PIPING SYSTEM WEIGHT OF                                      YES                      i FLUID OBE INERTIA                                    YES          -
C                                                                                  l
            $        SSE INERTIA                                    NO s                                                                                  i O      SAFETY / RELIEF                                  YES                        !
VALVE DISCHARGE FLUID TRANSIENT                                  YES FAULTED                                      NO (PIPE RUPTURE)
HOOP STRESS                      P (D - 2 y t )
2:
INTENSITY LONGITUDINAL                    a,eo ,e,u      ,    ,,,
STRESS INTENSITY                    2:          z NOTES:
: 1.      See sheet 8 for calculating moment.                                    -
l 1
 
1 Piping Design Criteria ES-040 Revision 0 !
Page 54 of 72  l ATTACHMENT 5, B31.7 CLASS I PIPE STRESS AND SUPPORT CAPACITY TABLES                                        ;
(Page 3 of 11)
(
Table 2:
Primary Stress Intensity Limits for B31.7 Class l Pipe for Level 2 and Level 3 Conditions LEVEL 2                              LEVEL 3                          !
PRESSURE                          YES                                    YES                            :
WEIGHT OF                          YES                                    YES PIPING SYSTEM WEIGHT OF                          YES                                    YES FLUID E      OBE INERTIA                          NO                                    NO                -
z y      SSE INERTIA                        YES                                    YES o                                                    ,
3 SAFETY / RELIEF                      YES                                    YES VALVE DISCHARGE FLUID                          YES                                    YES TRANSIENT FAULTED                          NO                                    YES (PIPE RUPTURE)
HOOP STRESS          P(D . 2 y t )                          P(D - 2y tl INTENSITY              si                                    2
                                      + S ocatt s 1.0 So t
                                                                              + S ocata s 1.0 8 5 MEMBRANE                2                                      2:      t STRESS INTENSITY                                                                                                I LONG. BENDING                          ,            y                                        y              I STRESS          eg z
s;4 so " K(spo %=t).
T*                sg'T z
4
                                                                          %*" 1(af_o 2sd 2:
* R= t).
INTENSITY (2)
NOTES:
1
: 1.        See sheet 8 for calculating moment.
: 2.        Resulting value in []is in radians.
 
Mping Design Untena ES-040 Revision 0
.                                                                                                                                      Page 55 of 72 ATTACHMENT 5, B3i.7 Cl. ASS I PIPE SYRESS AND SUPPORT CAPACITY TABLES j                                                                              (Page 4 of 11)
\                                                                                  Table 3:
1 Primary Plus Secondary Stress intensity Range,
: l.                                                              Peak Stress intensity Range, j                                              and Alternating Stress intensity for Level 1 Load Sets i
1 i
LEVEL 1 PRESSURE                                                                  YES WEIGHT OF                                                                  YES
,                                FLUID THERMAL                                                                  YES EXPANSION THERMAL                                                                  YES AM OBE INERTIA                                                                  YES Z
            $                OBE SAM                                                                  YES 8
2      SAFETY / RELIEF                                                                  YES VALVE DISCHARGE FLUID                                                                  YES TRANSIENT LONG. STRESS                      c.'o                                          i 2'      ' a'' '''*"'
* 2 n - G 5 =I$7.l+ c .t .. la.T. . r. l s a o s ,
INTENSITY RANGE PEAK LONG.
STRESS                  s,, . x ,,c;r o , =9 , , ,,,_ , , , J ,,, ,_ g ,,),,,, ,,,,, ;,,,, , ,,,, ,],  ,,!, ,, ,
INTENSITY ALTERNATING                                                                                                                                    I LONGITUDINAL                                                                Su = 0.5 Spi                                                        ;
STRESS INTENSITY                                                                                                                                i i
NOTES:
: 1.                See sheet 9 for calculating moment.
l i
 
                                                                          . _ _ . . . .m Piping Design Criteria ES-040            ,
Revision 0 -
Page 56 of 72          ,
ATTACHMENT 5, B31.7 CLASS i PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 5 of 11)
Table 4:
Pipe Supports on B31.7 Class i Systems                        1 DESIGN      LEVEL 2        LEVEL 3
                          + LEVEL 1                                                          !
WEIGHT              YES          YES            YES THERMAL              YES (2)      YES (2)        YES (2)
EXPANSION (1)
TAM (1)              YES          YES            YES
{
OBE INERTIA            YES          NO              NO            -
OBE SAM              YES            NO              NO SSE INERTIA            NO          YES            YES SSE SAM              NO          YES            YES RELIEF / SAFETY          YES          YES            YES                                j VALVE DISCHARGE FLUlD              YES          YES              YES TRANSIENT FAULTED                NO            NO            YES (PIPE RUPTURE)
COMPONENT              ASME        ASME            ASME STANDARD            LEVEL A      LEVEL D        LEVEL D (NEW)
COMPONENT              ITT          ITT            ITT STANDARD          GRINNELL      GRINNELL        GRINNELL (OLD)            PH-74-R      PH-74-R        PH 74-R (3)          CATALOG      CATALOG x      CATALOG x 2.0              2.0 SUPPORT            AISC 7th      YlELD        DEFLECTION i
STEEL                              (4)      CONTROLLED (5)
(See notes on the next page) i i
 
t                                                                                                            ,
i Piping Design Criteria ES-040  l Revision 0 Page 57 of 72 ATTACHMENT 5, B31.7 CLASS I PIPE STRESS AND SUPPORT CAPACITY TABLES                              !
                                                ,    (Page 6 of 11) l NOTES:
3 1
: 1.        Ignore for snubbers unless travelis exceeded.                                              i i                                                                                                            !
: 2.        Neglect friction effects when condition involves dynamic loads.                            f 1
l      3.        The following exceptions apply-                                                            l l                . Rigid Grinnell struts use Level D allowable from ITT Grinnell LCD-105 when j                    meeting Level 2 and Level 3 loads Snubbers use catalog capacity when meeting Design and Level 1 loads; "one-time          i allowable load" listed in catalog should be used when meeting Level 2 an~d Level 3      ;
loads                                                                                  1 Spring hangers should meet all load levels with the catalog capacity and should remain within the working range of the spring.
: 4.        May use AISC 7th x 1.5, with following limitations:
                . Stresses may not exceed 0.7 Fo l              . Shear stresses may not exceed 0.42 F.
4 Buckling load may not exceed 2/3 critical buckling load                                  i
                                                                                                            \
F, on elastically calculated stresses. See Attachment 6.
5.
4 e~
J f
4 i
}
4 1
 
_ _ ___._.______ ___    .                                          . _ _ _ _ _ _ _ _ ~ . . _ _ . . _ . _ .___.__._.. ._ _ _ ._
i 1
                          . irii.y v m y n vii m w
;                                                                                                                                              ES-040  :
Revision 0 '
4                                                                                                                                        Page 58 of 72 ATTACHMENT 5, B31.7 Cl. ASS I PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 7 of 11)                                                                  '
i                                                                                                                                                        i 1.0      Combined Moment for B31.7 Class i Primary Stress intensity Evaluation
'                                    The moment combination technique described in this section is based on B31.7 Section                                ;
1-705.1. The square-root-sum-of-the-squares (SRSS) approach to combination of i
cyclic dynamic loads is described in AEC Reg. Guide 1.92.
$                                  The combination should be carried out as follows:
;                                  1.
Combine all moments from cyclic dynamic loads (seismic inertia, fluid hammer)                                (
;                                          by the SRSS approach. This is illustrated below:                                                            1 l
;                                                  CYCLIC        CYCLIC                              I1                                    -
4
                                                      #1            #2 4
4 Mi    +4            +1 i                                                                                        J4 2 32 ,4,3 j                                            M2    -6            -10
'                                                                                  }(.e)+(10)=11,7 2              2 4
M3    +3            -7                        2            2 4
d3 + (-7 ) = 7.6                                                  '
i The components Mi, M2 , M3 will be used as the components for the net cyclic
!                                          dynamic moment.                                                                                                i j                                  2.
j Combine the moments from non-cyclic dynamic loads (fluid slug, valve                                          .
discharge) and static loads (weight) through algebraic summation. Use these as                                J the components for the net non-cyclic moment.
i
?-
4 A
i 3
 
I Piping Design Criteria
(                                                                                                                        ES-040 Revision 0 Page 59 of 72 ATTACHMENT 5, B31.7 CLASS I PlPE STRESS AND SUPPORT CAPACITY TABLES (Page 8 of 11) l l          3.      Combine the components of the net cyclic dynamic moment and the net non-cyclic moment through algebraic summation, using both positive and negative                                          ;
signs on the net cyclic dynamic moment. This process is illustrated below.                                            i NET NON-          NET CYC.                          Z1                I2                                ;
CYC.
l
;                  Mi          +4                14.1                        4 + 4.1 = 8.1  4 - 4.1 = -0.1 M2          -6              111.7                        -6 + 11.7 =    11.7 =
5.7            -17.7                                I M3          +3                17.6                          3 + 7.6 =    3 - 7.6 = -4.6                            ;
10.6 i
14.5            18.3
                                      ]M'+M 2+M 3 2      3
                                                      =
I The largest resultant moment of column E1 or I2 is the moment to be used when checking primary stress intensity. In this example, it would be the moment from column Z2.
For branches and tees, see B31.7 Appendix D Table D-201 (5) for combining                                                l components M , M 2, Ma into the appropriate resultant.
i 1
I
 
I Piping Design Criteria ES-040 Revision 0 Page 60 of 72                !
ATTACHMENT 5, B31.7 CLASS I PlPE STRESS AND SUPPORT CAPACITY TABLES                                                                      !
;                                                                                                (Page 9 of 11)                                                          '
j                    2.0          Combined Moment for B31.7 Class i Primary Plus Secondary Stress _ Evaluation l                                  and Peak Stress Evaluation The moment combination technique described in this section is based on B31.7 Section 1-705.2. The square-root-sum-of-the-squares (SRSS) approach to combination of cyclic dynamic loads is described in Reg. Guide 1.92.
!                                  The combination should be carried out as follows:
;                                  a.        Combine all moments from cyclic dynamic loads (seismic inertia, fluid hammer)
:                                            by the SRSS approach. This is illustrated as follows:
I CYCLIC                                                      I1
                                                                                                                                                ~
CYCLIC I                                                                #1                          #2 i
Mi          +4                            +1                  d42 +3 2    = 4,j j..                                            M2          -6                            -10                        2
                                                                                                            /(-6 ) + (10') = 11.7 j                                              M3          +3                            -7                        2  2 f3 +(.7 ) = 7.6 l
The components Mi, M2 , M3 will be used as the components for the net cyclic
;.                                          dynamic moment.
: b.        Combine all moments from thermal expansion and thermal anchor movements by algebraic summation. Use these components as the net non-cyclic moment.                                                    !
I                                                                                                                                                                          l
.                                                                                                                                                                          \
i                                                                                                                                          _
4 1
l l
1 i
j I
i 1
 
Piping Design Crit:ria ES-040 Revision 0 Page 61 of 72 ATTACHMENT 5, B31.7 CLASS I PIPE STRESS AND SUPPORT CAPACITY TABLES i
(Page 10 of 11) c.
Combine the components of the SAM moment and the not non-cyclic moment f
through algebraic summation, using both positive and negative signs on the SAM moment. Also, evaluate the full range of the SAM moment. This process is illustrated below:
NET NON-            SAM          E1                E2 i
E3                '
CYC.
M,      +4              14.1      4 + 4.1 = 8.1    4 - 4.1 = -0.1  2 x 4.1 = 8.2          i M2      -6              111.7        -6 + 11.7 =      11.7 =  2 x 11.7 = 23.4 5.7              -17.7                  ~
M3      +3              17.6      3 + 7.6 = 10.6    3 - 7.6 = -4.6
                                                                                                \
2 x 7.6 = 15.2            '
            ]M,' + M2* + Ma * =            14.5              18.3          29.1 The largest resultant moment of column I1, I2, or I3 is the net secondary moment.
i l
1
 
E Piping Design Criteria -                                                                                    ES-040 l
Revision 0                l Page 62 of 72 l
ATTACHMENT 5, B31.7 CLASS I PIPE STRESS AND SUPPORT CAPACITY TABLES                                                        i (Page 11 of 11)                                                        !
l
,                c.        Combine the components of the net cyclic dynamic moment and the net                                            i l                          secondary moment through algebraic summation, using both positive and
* l                          negative signs on the not cyclic dynamic moment. Also, evaluate the full range                                j
!                          of the net cyclic dynamic moment. This process is illustrated below-                                          l l
NET              NET                    I1                  I2                  I3                              f i                      SEC.            CYC.
[
M,      8.2            i4.1                8.2 + 4.1 = 12.3    8.2 - 4.1 = 4.1    2 x 4.1 = 8.2                          i M2    23.4            i11.7                  23.4 + 11.7 =    23.4 - 11.7 = 11.7  2 x 11.7 = 23.4                          !
35.1                                            _
M3    15.2            17.6                  15.2 + 7.6 =      15.2 - 7.6 = 7.6    2 x 7.6 = 15.2 22.8
                    ]M,8 +M3 8+M*=                            43.6                18.3              29.1                                ;
3 I
The largest resultant moment of column I1, I2, or Z3 is the moment to be used                                  l when checking primary plus secondary stress intensity range and peak stress                                      '
intensity range. In this example, it would be the moment from column I1.
For branches and tees, see B31.7 Appendix D Table D-201 (5) for combining components Mi, M2, M3into the appropriate resultant.
1 i
l I
 
l Piping Design Criteria                                                                    ES-040
!                                                                                        Revision 0 Page 63 of 72 ATTACHMENT 6, LEVEL 3 STRESS LIMITS FOR STEEL PIPE SUPPORTS ON SEISMIC CATEGORY 1 B31.1 AND B31.7 SYSTEMS l                                          (Page 1 of 10) 1.0    CRITERIA The following strain-bounding limits on elastically calculated stresses in steel pipe supports on Seismic Category l B31.1 and B31.7 systems should be used when meeting Level 3 loads:
Tension, Compression, Bending:              less than F.                            .
Shear:                                      less than 0.5 F.
Buckling:                                  less than 2/3 P, Where:                                      F,is the ultimate material stress These limits are intended for use with ductile materials and ductile support configurations; refer to the subsequent sections in this attachment. The buckling limit is the same for that to be used when evaluating Level 2 loads; buckling is a non-ductile mode of failure and hence no further increase may be taken. When applying these limits, stresses from all sustained force loads must be kept at or below yield. For            !
situations in which extreme support deflections result, the effect of the support compliance on the supported pipe should be evaluated.
Higher strain limits may be applied as discussed in Attachment 1 so long as the analysis methodology (plastic flow and strain hardening limits) are adequately documented and approved.
f
 
Piping Design Criteria                                                                                  ES-040 1
t                                                                                                              Revision 0                  ;
Page 64 of 72                      i i
ATTACHMENT 6, LEVEL 3 STRESS LIMITS FOR STEEL PlPE SUPPORTS ON SF.lSMIC                                                        !
CATEGORY l B31.1 AND B31.7 SYSTEMS                                                :
(Page 2 of 10) 2.0              STRAIN-LIMIT BASIS                                                                                              l l
Ductility, by definition, describes the ability of a component or structural system to deform beyond its yield limit. A structure will yield locally under displacement-controlled                      :
loading, and the stresses will be readjusted to other parts of the structure. This energy                        ;
absorption and deformation capacity are what prevent brittle failure under excessive                              '
loading.
For supports to be able to withstand stresses greater than yield, they must be ductile. It                        ;
is important to verify the as-built dimensions and condition of the piping and support                            i system. Not only must the supports be ductile, but the system response must be                                    '
ductile. This support system must also include redundancy and inelastic load-deformation capabilities in order to provide adequate performance.
It is well documented that the pipir g and associated supports have the ability to withstand large displacement-controlled loads, e.g. earthquakes, without failure. From                            :
a historical and experimentally based viewpoint, the ductility of pipe supports is evident.
Situations have been documented in which the building has collapsed, however the                                  i piping system remained intact, with only minor damage. Typically, seismic loads much                              !
greater than the SSE at CCNPP are necessary to cause damage to pipe supports.                                      ,
1 Limits for extreme load conditions, i.e., pipe rupture, SSE, 'have been established for Seismic Category I system steel pipe supports in the CCNPP UFSAR. UFSAR section l                        5.A.2.1 defines class I as Category I (Seismic) structures, systems, and equipment.
UFSAR section 5.A.3.2 states that class I systems and equipment, including pipe, are designed to meet the load combinations and stresses stated in UFSAR Table 4-8.
UFSAR Table 4-8 states that for the case of pipe rupture and SSE, deflections of pipe supports are limited to maintain supported equipment within allowable limits. It is desirable to express a stress limit for supports which reflects the requirements of the i                      UFSAR, but is still valid for use with a linear elastic analysis.
:                                                                                                                                            i J
I l
1
 
Piping Design Criteria                                                                              ES-040        ,
Revision 0 Page 67 of 72 ATTACHMENT 6, LEVEL 3 STRESS LIMITS FOR STEEL PIPE SUPPORTS ON SEISMIC 3
CATEGORY I B31.1 AND B31.7 SYSTEMS (Page 5 of 10) l                          An energy balance for A36 steel, with elastically calculated stresses limited to Fu,
!                          results in a true strain of approximately 0.22% (see Figure 2.3). This results in a safety                  !
factor of almost 9 against the initiation of strain hardening (2% strain) and a safety                      l factor of almost 90 when considering rupture (20% strain). It is important to note that                    ]
stresses from sustained forces must be held below yield, and that the stress value equal to F. is not the actual stress, but instead representative of a certain amount of l                          permissible strain.                                                                                        ,
l                          Figure 2.3: Energy Balance Between Actual Strain l                          and Elastically Calculated Stress Fu                                                      -
l 1
l l
                                                                                                                                        )
:                                                                                                                                      i
                                                                                      @ ENERGY WHICH WUST OC So,                                          ASSOR8CD
[NERCY WHICH f$
_                                                ABSORBE0 l
e
* J                                  1 u
3                                -
                                                                                *0.0022                  0 02' STRAIN ( C )
l l
I l
l l
l
 
  . - - . .                  ----                      - ~ . - . - - . - - - - -                        _ -    . . . .      -      - - - - .
l                                                                                                                                              !
Piping Design Cntena ES-040        !
Revision 0        }
Page 68 of 72 ATTACHMENT 6, LEVEL 3 STRESS UMITS FOR STEEL PIPE SUPPORTS ON SEISMIC CATEGORY l B31.1 AND B31.7 SYSTEMS                                                      !
l                                                                                (Page 6 of 10)                                              l l
3.0    MATERIAL DUCTIUTY                                                                                              l Important to the energy absorption capabilities of the pipe support is the structural material. Carbon (CS) and stainless (SS) steels are very ductile and are able to                                  l undergo large deformations without failure. Matenals that are considered non-ductile include cast iron and polyvinyl chloride (PVC).                                                                    I L
Wald material is typically considered stronger than the base metal for good quality                              (
welds. Weld length and detailing become important considerations for ductile behavior.                            l l                            Bolt materials are similar to pipe materials. For material ductility, the following ductility                      !
!                            factor, p, is defined:                                                                          _
l c,
p=-                                                .
i c,
l where:
c, = strain at failure c,= strain at yield p values greater than 70 are common for carbon and stainless steels. ASTM tests                                    !
materials for their elongation properties under tensile loading. Values for different materials can be found in Table 3.1.
Table 3.1: Material Properties for Common Materials ASTM            MATERIAL                                                      F:    F,    c,        c, No.
(ksi) (ksi) (%)        (%)
A36              Structural Stee!                                              58    36    23        0.12 A307              CS Standard Fasteners                                          60    35    18        0.12 A325              High Strength Bolts                                            105  81    14        0.28 A490              High Strength Bolts                                            150  130  14        0.45 A106B              CS Pipe for High Temperature Service                          60    35    22        0.12 Therefore, higher strength materials sacrifice ductility for a higher yield strength. Even                        l so, the high strength materials have sufficient ductility to withstand large strains.                                !
i                                                                                                                                                l I
l I
l l
4 l
l
            ,y-..--,m-                  _.  . , - - -          -                                                      -
 
l                                                                                                                          l l      Piping Design Criteria                                                            '
    '                                                                                                    ES-040 l                                                                                                      Revision 0          i Page 69 of 72          l l
ATTACHMENT 6, LEVEL 3 STRESS LIMITS FOR STEEL PIPE SUPPORTS ON SEISMIC                                            l CATEGORY I B31.1 AND B31.7 SYSTEMS (Page 7 of 10) 4.0    SYSTEM DUCTILITY Another important aspect of support ductility is the structural system response during a                      I
;            strain-controlled loading. The support should behave in such a manner that the l            support is able to yield and continue to support loads without brittle failure. Two                          i considerations include support configuration and detailing.
l 4.1    Support Configuration Supports designed to AISC and AWS standards can be considered ductile if good workmanship and detailing are provided. Anchorage is typically designed                          i stronger than the support; hence, the support is the weaker element of the                              l system. A plastic hinge forms in the support member before the anchorage yields. Therefore, no further load can be transferred to the anchorage.                                1 Examples of when this condition does not exist include concrete cracking,-
corrosion, missing bolts or anything else limiting the design strength of the anchorage.
Essentially supports fall into two categories: pinned (rotations allowed) and fixed (momant-resisting) supports. Pinned connections typically are ductile, such as                        ;
rod hangers. However, short rod hangers with heavy loads (especially fixed at                          !
the connection to the structure) are non-ductile. Moment-resisting connections vary in degree of fixity. Strut connections, including the use of clip angles, are ductile.
1 Figure 4.1.1: Ductile Strut Connection                                                                  i i
                                                                                                        ~
o        o .
v      ,e      *A d            O        d g.
: d.      .d    .
d,*      g.
El -
GD
                                                                          =
bb          4) c        s
                                                                    ^b i
l
 
l l
l Piping Design Criteria
  '                                                                                            ES-040 Revision 0 Page 70 of 72 ATTACHMENT 6, LEVEL 3 STRESS LIMITS FOR STEEL PIPE SUPPORTS ON SEISMIC i
)                              CATEGORY I B31.1 AND B31.7 SYSTEMS                                    l (Page 8 of 10)
                                                                                                      ]
,                Moment frame welded supports are suspect in terms of ductility. For a check of      I ductility, ensure the anchorage is adequate and use the following weld check:
                                                                                                      )
Figure 4.1.2: Welded Support
'                                      - t m-                      I m= THICKNESS OF                3 MEMBER                      1 t j ---      -      -
                                                      -t 2                                            i e
J  :
L xxxxxxxxxxxxxxxxw If the combined throat thickness is greater than the member thickness, the connection can be considered ductile using the following evaluation from SQUG's GlP for USIA46:
0.707 (t, + 1 2) > tm Weld fengths found from AISC or AWS requirements and detailed according to established procedures are strong enough to withstand loads associated with stresses greater than the yield stress (F for A36 steel).
4.2    Support Detailing                                                          -
Detailing of the support is important to ensure adequate strength and adequate ductility to absorb energy and withstand deformations beyond yield. As mentioned earlier, weld lengths are adequate for ductility if constructed according to established procedures. Weld cracking obviously places the support ductility into question. Because of the ductile nature of weld materials, a crack can be considered as a decreased length, if the remaining weld is in sound condition. The same procedure can be followed as that of the support anchorage. If the weld length is sufficient such that the member becomes plastic before the weld yields, the support is adequate for ductility requirements.
 
l Piping Design Criteria
  '                                                                                          ES-040
\                                                                                        Revision 0 Page 71 of 72 ATTACHMENT 6, LEVEL 3 STRESS LIMITS FOR STEEL PIPE SUPPORTS ON SEISMIC CATEGORY I B31.1 AND B31.7 SYSTEMS (Page 9 of 10)
For bolted connections, adequate bolt spacing and edge distance can be          i checked to ensure adequate ductility. Clamp orientation is important. Two non-    !
ductile orientations are as follows:
{
i Figure 4.2.1: Non-Ductile Clamp Orientations                                                    '
l (A)                                                    (0)                    _
f ,// // h b / // //                                                            ,
l l
ECCENTRICALLY LOADED T                                      @
VERTICAL-FRICTION
{
 
Mping uesign Unt:nn ES-040    $
Revision 0    I Page 72 of 72    .
ATTACHMENT 6, LEVEL 3 STRESS LIMITS FOR STEEL PlPE SUPPORTS ON SEISMIC                                  f CATEGORY l B31.1 AND B31.7 SYSTEMS                                  ;
(Page 10 of 10) 5.0        LOW CYCLE FATIGUE When allowing altamating plastic strains, low cycle fatigue becomes an issue. Thes              '
altemating strains are limited to ductile supports since non-ductile supports will fail in a brittle manner under plastic strains. Fatigue stresses representative of these strains can be checked against the allowabie peak stresses listed in ASME Section ll!
Appendix 1. The maximum stress amplitude from a linear elastic analysis is limited to Fu or 58 ksi for A36 steel. Choosing a typical stress intensification factor i=2.5, the peak        -
stress amplitude is:
I Sx = 2.5 x 58 = 145 ksi
_            1 From examination of the fatigue curve in Figure 5.1, this results in an estimated 200              l cycles of S4 = 145 ksi for crack initiation in carbon steel. Provided the reduction in            i fatigue life from other cyclic loads is small, low cycle fatigue for this case is not a            l concem. Configurations with higher stress intensification may need to have fatigue                '
addressed as part of the Level 3 evaluation.
Figure 5.1: Design Fatigue Curve for Carbon Steel (ASME Section ill Appendix l Figure I-9.1) i le 103 3              %                                                                                              i J        %2        ~~~.                                                                                      )
j                N:3                  ..
* i
  ,,,                                    % d.  ,
                                                ~.:~  ~
                                                          %-a~                                                \
                                                                  =
w ..~
i                                        -
I
                                                                          . x.  --
N- C    -... __
10 10                              102          103                10              90 5                106 wots s .m u t06 U  1    1  .0 kai I.  . .      vr. .n, ,,0 .
 
i f.
V WGPRES01. ppt
                                                                                                                                                                                                        -CABLES CABLES & EQ                                    1of13 i
OVERVIEW OF CABLES & EVALUATION PROCESS                                                                                                                                                                                                          '
i POTENTIAIlPLAUSIBLE AGING MECHANISMS                                                                                                                                                                                                            '
EVALUATION PROCESS DETAILS THERMAL SCREENING PROCESS RESULTS OF EVALUATION                                                                                                                                          ,
t i
AGING MANAGEMENT Of CABLES                                                                                                                                                                                                                      j EQ EQUIPMENT                                                                                                                                                                                                                                    !
QUESTIONS c
Pr !
                                                                                                                                                                                                                                                  ,1 '
E'
                                                                                                                                                                                                                                                  *I i
I i
    . . _ _ _    . . _ __ _ _ _ _ _ _ . _ . _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _              __,.._______m_ _ - __ .. . . . . _-      . . . ~ . ~ _ , _ . . _ . - .
 
      . _.__...m...                                  ...__.m.-_;        ...__.-_..__._____.____...m                                                                                                                                    . _ _ . . _ - . - . _ . _ _ _ . . _ - . . _ . . .                                . . - . . _ _                    . - . _ . .      .
i 4
                                                                                                                                                                                                                                                                                                                                      .WGPRESO1. ppt CABLES ALL CABLES                                                                                            2 e i3                                  i w/o LR PRE-SCREENING
                                                                                                                                                                                                                                                                                                                                                                                -i
                                                                                                                                                                                                                                                                                                                                                                                .I REASONS FOR COAS10DITYEVALUATION OFALL CABLES
* i Original Cables at CCNPP purchased as Safety-Related, without regard to application or system l                                                                                                                                                                                                                                                                                                                                                                                l resulting in a common set of cables for a broad range of applications across the site.
;                                                                        Cable & Service Types and Aging Processes Independent of System.                                                                                                                                                                                                                                        :
i s                                                                                                '
Inclusion of All Cables provides Assurance against Loss of Data by Omisssion.
y s
i Pre-screening would not yield benefits, commensurant with effort, such as elimination of cable types                                                                                                                                                                                                    "
except in limited cases such as PVC and Teflon and unspecified cable types.
i t
I i
                                                                                                                                                                                                                                                                                                                                                                                .h i
f i
f
 
WGPREs01. ppt REFERENCES REFERENCES (1) - CCETS (Calvert Cliffs Electrical Tracking System)
(2) - Digital Engineering System 1000 (3) - IEEE Standard 101 - 1987, "IEEE Guide for the Statistical Analysis of Thermal Life Test Data" (4) - EPRI NP-4172SP, " Radiation Data for Design and Qualification of Nuclear Plant Equipment" (5) - EPRI TR-103841, " Low-Voltage Environmentally-Qualified Cable License Renewal Industry Report" (6) - DOE, " Cables & Terminations Aging Management Report" (DRAFT)
(7) - ES-014, " Summary of Ambient Environmental Service Conditions used at Calvert Cliffs Nuclear Power Plant" (8) - EQ Files (Calvert Cliffs)
 
WGPRES01. ppt PROJECT PARTICIPANTS                                                                        PROJECT Plant Support Engineering Section of CCNPPD EQ Project                                                                                                                                                          l:
i Electrical Engineering Unit ofNED                                                                                                                                  :
r Plant Testing Unit of CdNPPD                                                                                                                                      ;
Life Cycle Management Unit ofNED b
.___.._.m _.__ .. - - . . _. . _ _. .m___m__._. _ . _ _ _ ____ _ ___ _ _ _ _ __    _.__ _ __ _ m<___ __ w _ ___ . . _ __.. _e.,., , --,. m, ..,c . ,,, , , , m.,--.+..,.4  e.e.. - , , ,. .,e-m,--
 
WRES0lp CABLES                                                                    CAMES 3 of 13 STARTING POINT CCETS Report which included all scheduled cables.
CABLES & SERVICE TYPES Insulating Material                Power                                                          Cntrl  Instr Silicone Rubber                    X                                                              X      X            ,
XLPE                                X                                                              X      X EPR                                X                                                              X      X Mineral                            X                                                              -
X Kapton                            -                                                              -
X Fiber Optic                        -                                                              -
X Teflon                            ---                                                            --
X PVC                                -
X      X Misc                              X                                                              X      X
 
                                                                                                                                                                                                                                            ..          -.    =                    . ~__ -..
i                                                                                                                                                                                                                                                                WGPRES01. ppt CABLES                                                CAMIS                                  t 4 of13 2                                                                                                                                                                                                                                                                                                        ,
NOTES RELATIVE TO CABLE POPULATION AT CCNPP b
1 Over 80% of scheduled cables are silicone rubber insulated.
Silicone Rubber insulated cables do not undergo significant thermal aging during 60 years of service at CCNPP due to plant specific derate practice.
s Mineral insulated caples do not undergo significant thermal aging during 60 years of service at Calvert Cliffs.
i With the exception of(2) cables, there are no PVC, Teflon, or Misc insulated cables at CCNPP which are in the scope of LR.
a r
s I
_ ______ _ . _ _ _ . _ . _ _ _ . . _ _    ______...________.._.._m. _ _ _ _ _ _ . _ _ _ _ _ . . _ _ _ _ _ . _ _ . _ _ _ _ _ _ _ _ _ _ _ . . _ _ . _ _ _ _ _ _ _ . _ _ _ . . _ _ _ . _ _ _ _ _ _ _ _ _        ________,__m ______  __
                                                                                                                                                                                                                                          -    . . _ , _ _.__m  .._ _ _ _ _ _ _ _ _          _ _ _ _
 
WGPRES01. ppt
                                                        -                                                                          CABLES s or13 POTENTIAL / PLAUSIBLE AGING MECHANISMS ARDM                                        PL4USIBLE                NOTE Mechanical Stress                            NO                        Precluded by Installation Practices Electrical Stress                            NO                        Precluded by Derating & Design Water Treeing                                NO                        XLPE not used in High Voltage Applications Radiation Stress                            NO                      g No Teflon Cables are in the scope of LR Tbennal Aging                                YES                      non-Silicone Rubber Power & Control Cables s
Kapton Specific Aging                        YES                      Kapton Cables in Cntrnt Radiative Clouding                          NO                        In-scope F.O. Cables in low Rad Environment IR Reduction                                YES                      Certain non-Silicone Rubber Instrument Cables Synergistic Thermal / Radiative Aging      YES                      EPR/XLPE Power Cables in Cntmt Chemical Attack                            NO                        Exposure to Degrading Chemicals not Normal References 4-6
 
WGMS01. ppt CONSIDER CABLES ARDM's                                                                                                                                                  ;
6 of 13
                                                                                                                                      & DEVELOP hETHODOLOGY y
1 ALL EQ                                                                                                  SCHEhES                                                                                        NON-EQ 968                        M All Non-EQ Schemes                                                                                                  , ,
Srv Temp                    All Non-EQ Schemes 1  3  l v          IDENTIFY OMR                                                                                                                                60-yr Srv Limit                                  THERhML Operating Region where                                                            _                                  SCREENING                                                t Thermal Aging NOT Plausible G                                                                                                                                                                                                                                  ;
                                                                        \
l [
[                                                                                      1 i
2              l Random-Lay                                                    EPR/XLPE                            Silicone Rubber Cables                                      !
EPR/XLPE Cables                                              Spaced Power,                        & EPR/XLPE in Power / Control                                            PVC, Mineral,                        Instmment Cables                                            ,
Se:vice                                                      etc.
1437        1 f                                                                                                  p Ifin the scope of LR &
ARDI                                                        thermal aging                                                                                      .
to determine                                                is plausible                                                                                      !
if thermal aging                                                                                    Thermal Aging then Replace, or needs on-going NOT Plausible Condition Monitor aging management 186 6
 
  -.                    - . . - . . . . - . ~ , - . . - - . -                                        - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
l WGPRES01. ppt I
h2      1 CABLES 7 of i3                    :
I                                                                                                                                              I                                I                                              I                      I
                                                              }
SYNERGISTC MMTIVF AGING of                                              AGING of                                                                                                                                        AGING of AGING of                                                          AGING of FIBER-OPTIC                                          KAPTON                                                                                                                                          SPECIAL SUSCEPTIBLE N
CABES                                                                                                                                          CIRCUITS                                                                                                                  TERMINATIONS CABLES                                                                                                                                                                                                                                                                                                      AGING of CME SUSCEPTIBLE                                        !
CABES                                              I I f                                                              i f                                                                                                                                            I  f                            i f                                                                  I f                  I 5
I NO                                                                                                                                                                                                                                                                                                                    THERMAL
                                                                                                                                                                                                                                            ^
PLAUSIBE                                                                                                                                                                                                                                                                                                              DEGRADATION
* SPECIFIC                                                                                                                        IR REDUCTION                                                    SUBJECT                                      IN POWER                                          '
AGING                                                                                                                                          '                                                                                                                                                                    OEATION AGING                                                                                                                            PLAUSIBLE                                                      TO AGING                                      SERVICE IN SCOPE                                      IN CNTMT PLAUSIBE 4
M                                                                  1!                                                                                                                                          1 I                              1 f                                            1 f                  1f                    :
I
[
I CONDITION MONITORING N/A                            REPLACEhENT                                                                                                                                                                                                      N/A                                                          (Syst Walkdowns, M                                          G                                                              CONDITION MONITORING              Mst Rde l
Surveillance)                ,
16                                                                                                                                      115                                                                            - 18                    12 i
i i
 
WGPRES01. ppt CABLES 3                                                                                      8 er 13 DETERMINATION of NORMAL &
ACCIDENT SERVICE CONDITIONS DETERMINATION of ACCEPTANCE CRITERIA                                                          g s
1,I l
PRE-AGING BASED on MOST SUSCEPTIBLE MATERIAL 1;f I
LOCA TESTING
 
t W PRES 01. ppt
            -                      CABLES SCREENING CRITERIA Thermal Aging Screen.
EPR or XLPE cables in power or control service, Arrenhius based T(60) < Operating Temp                              No PVC cable in scope t
Radiative Aging Screen:
Radiation Damage Threshold < 1.5 Mrad                                No Teflon cable in scope                                                ;
Kapton Aging Screen:
16 cables Kapton inside Containment (Kapton under mechanical stress in hot, wet environment)                                                                            ,
Synergistic Rad / Thermal Aging Screen:                                                                                                      i EPR or XLPE insulated power service                                18 cables cable in containment t
IR Reduction Screen:                                                                                                                        .
EPR or XLPE instrument cables                                      115 cables servicing wide dynamic range instruments SplitJacket Screen:
CBL018 not used iii containment EQ cable, EPR insulated with                                        CBLO38 is SIS wire (notjacketed)                                        t bonded Hypalon jacketed                                            WRNMS1 includes this config used in containment                                                CETX01 includes this config i
 
WGPRES01. ppt THERMAL SCREENING                                                                    c^BirS 9 ofl3 f
l (1) Determine a 60 year service limiting temperaturefor each insulation materialin use.                                                          '
Dielectric Failure may result ifa cable is continuously exposed to temperatures at or above this limit for 60 years.
Arrenhius methodology (Ref3) applied to conservative selection from System 1000 data-base (Ref2)                                          l (2) Determine upper bound on operating service temperature ofcable in normal service.
Determine maximum ambient temperatures te which cables are exposed based on plant temperature surveys (Ref7)                              ;
Maximum ambient temperature is 160F (Main Steam Piping Penetration Room)        i Evaluate ohmic heating ofthe gable.
Ohmic Heating of Instrumentation Cables negligible.                                                                          ,
Ohmic Heating of Spaced Power Cables detemuned by IPCEA model.
Upper Bound on Operating Service Temperature of Unspaced (Random Lay) Power and Control Cables Deiuumd Empirically.
(3) Ifoperating service temperature exceeds the 60 year service limiting temperature, then thermal aging is plausible and must be managed.                                                                                      .
I i
                =
_. __          ._-  ____m
 
                                                                                                                            . -. . . ~ . -                                      . _ . . . . . . . . . . _ . ~ _ . - -                ~ . . .    ~ _ - . . . - . . . -                              . - . .
I i  '
WGPRES01. ppt CAEES CABLES                                                                                                  10 of13 ARRENHIUS METHODOLOGY 1
Log (L)
                                                                                                  /                                                                                                                                L = Life in hours T = Service Temp in K                                                        i I
                                                                                                                                                                                                                                \                                                                              I f
Log (L) = B/T + A                                                                                                          b l
t W
t i
(1/T)                                              i
                                                                                                                                                                                                                                                                                                              . t a-1 i
s t
r
. - - - . . . . . . - - - - . _ - - . _ - - - - _ _ . - - - - . - . - . . . _ . - . . - -          ...--...----.--.-..u    _ . . _ - . . . - . - - - - - - - - - . - - _ _ _ .                                        _ _ _ _ _                .  --..--_-----,-.,.en.----e,--~~,,,-
 
9/30/96                                        1                                                                                                                                              cblthemp. doc Method 1:  log (L) = (B/T) + A                  K=A Method 2:  In(L) = (B/I) + 1n(A)                K = In(A)
Material  Source                  Criteria                                                                                              K                                              B                60yr Temp            Nctes EPR      Phase l,                20% Retention of Elongation,                                                                          -9.601                                          5484.0914          184F                Method 1, UESC Syst 1000          Margin of Safety to Dielectric Faihnt                                                                                                                                                        Chosen Act.Enrgy= 1.06eV (1.05eV towest of 20 data sets)
EPR      CBLO38                  50% Retention of Elongation                                                                          -11.597                                        6226.8            188F                Method I EPR      CDLOO1                  100*4 Retention of Elongation                                                                        -16.6I                                          81 3 .92          195F                Method I SR        Phase 1,                Dielectric Failure                                                                                    -11.508                                        7252.9355          298F                Method 1 UESC Syst 1000                                                                                                                                                                                                        Chosen Act.Fmgy=Irwest SR        CBtD09                  50% Retention of Elongation                                                                          -38.444                                        20943.4758        271F                  Method 2 SR        CBtD19                  100% Retention of Elongation                                                                          -12 919                                        10310.62225        252F  %              Method 2 I
XISE      Phase 1 Dieleyc Failure                                                                                        -7.714                                        4791.7286952      182F                Method 1 UESC Syst 1000 Chosen Act. Enrgy = 1mwest XLPE    CBID45                  60% Retention of Elongation                                                                            -30.362                                      15624.9            186F                  Method 2 5
9g
 
i THERMAL SCREENING                                                                                                                                  WGPRES01. ppt '    i CAMES 11 of l3            1 60 year service limiting temperatures:
i BGE                                                      AMG SR > 194F (90C)                                          275F EPR- 184F                                                185F                                                                                                                        '
XLPE - 182F                                              181F PVC - 112F (none in scope)                                11IF                                                                                                                        -
Thermal Aging Not Plausible:                                                                                                                                          l L
Silicone Rubber Cables -                                                                  23175 Mineral Insulated Cables -                                                g                135 Non-SiliconeRubber Cables in Instrument Service -                                            1635                                                                                      i Spaced Power Service EPR/XLPE Cables -                                                      110                                                                                          -
Thermal Aging Plausible or Validation of Upper Bound on Service Temperature Required:                                                                                                                                                    ,
i Unspaced EPR/XLPE Power and Control Cables -                                        1437 Spaced Power Service EPR/XLPE Cables -                                              186 I
Some Cables Found to be Out of the Scope ofLicense Renewal:
All PVC Cables-                                                                                          256 Spaced Power Service EPR/XLPE Cables -                                                                  259 i
r
 
RANDOM-LAY PWR/CNTRL SERVICE                                                                      W PRES 01. ppt CABI.Es ARDI                                                                12 or 13 Needed to assess approximately 1500 EPR, XLP cables in power and control service.
Development ofan all-encompassing model to address ohmic heating ofrandom lay cables not feasible.
Consistent with the desire to be comprehensive in evaluating cables, all cables in the target group are considered whether in or out ofthe scope ofLicense Renewal.
INITIAL ANALYSIS (1) Rank all 480V power service trays by a heat transfer model which included consideration of circuit loads, ambient temperatures, cable mass, and tray covers.
                                                                                                                                                        ~
(2) Identify cable trays near significant external radiant heat sources such as hot pipes.
s (3) Analyze results of steps 1 and 2 and select thermal survey locations.
s REFINING THERMAL SURVEY (4) Perform a thermal survey of candidate " hot" tray locations and external radiant heat sources to find " bounding" locations for long-term operating temperature monitoring.
ON-GOING TEMPERATURE SURVEY (5) Install temperature probes at " bounding" locations.
FINAL ANALYSIS (6) Collect service temperature data over sufficient time to capture peak operating temperatures.
(7) Compare data with 60 year service limiting temperatures.
 
CABLES EPR/XLPE IN RANDOM-LAY POWER SERVICE Set of all 480V                    Rankbasedon Continuously        --
Circuit and Tray Loading, Energized                    AmbientTemps,and Cables                          Tray Config 1f PerformThermal Survey to refine ranking and s            findlocalhotspots M
InstallOperating                  ^" IY*
ServiceTemperature          Oper SrvTemp Data vs.
7 Instrumentation          60 year SrvTemp Limits t
e
 
CABLES Kapton cables in containment, OTHER AGING                                                                              149                                                            EPR/XLPE Instr cables subject to Crit IR Reduction, PLAUSIBLE                                                                                                                                          EPR/XLPE Pwr cables subject to Synergistic Aging THERMAL                                                                                                                                                186 Spaced EPR/XLPE Power Cables, AGING                                                                    1623                                                                  1437 Random-Lay EPR/XLPE Power Cables Note: 18 Random-Lay Power Cables included in above group PLAUSIBLE                                                                                                                                            not mcluded m, this total EQ                                                                968
                                        , . .                                                                                                                    ' . , .                        .                ~ -                                      --                                                ,
l Q ,s~ ~ ~:                                                              ' ::,
5      S'''r Q': ~                        . . ~ ,? h,,, ,r -'                          * '    " . 'S*, A.<l, .,l                                . ' < $ ".,' R :1NA^ ' , T ' .? ~ (                                                                s'
                                                                                                                                                                                                                                                                                                  - , * , * ','                        t- ',t                              <
: '' &'*' .;s> y. - '~                            ,'
g~-
        .; w ?g
: =L eh'.%&
4.
ir
                                                                    &z.bi ::, l L, '.
                                                                                                ,v ,'F
                                                                                                                            " , '' Q.
f'> , s ' ''i ,.                                    * - - ,
                                                                                                                                                                                                                                                              '.a
                                                                                                                                                                                                                                      ': ' .,, ' ' . , ;, ', > M: .. 8' ',t
                                                                                                                                                                                                                                                                                                        . **"a.,
                                                                                                                                                                                                                                                                                                                  ',  0 v2 ;
      ~~~s
        ,:      '; m s ~r-
:t .
a..'s~  m x,p%,,      ;,
                                                                          , . , , , - - : ?,
                                                                                                , , ' 'l (u*, ,Q (s:,                                                                ,, ,, ,, : z '' :
* b y i, +,^^
:r," ,, W
                                                                                                                                                                          ,. ,p , . t : u , 's ,~ -                                    -
                                                                                                                                                                                                                                                      ,                          ,< ' :.'n 2' ' ) < ;Q~>[
                                                                                                                                                                                                                                                                                ,,, ,,  - ;. ' ,, >                    't
                                                                                                                                                                                                                                                                                                                                                                  ': ' -t ' <;; % ,, . ,,>
        ,s.                                                            ..                  .                                            .
                                                                                                                                                                                                                                                              . , '                      s . cr .      n. 2''?mS,~,1      t
                                                                                                                                                                                                                                                                                                                                  , 4 't:,',sA.
                                                                                                                                                                                                                                                                                                                                      ,            s, 2-?' ', - i'o,jph          :-                        3. ' g,.i        5. r            .,
                                                                                                                          , q                            '4',.            ' . ^*/ >.'k[ .f,s s                      7s > >                                      , f( ^                          s'-                                        <                '' -    T N *:                Q]'
f'                                                                          ,' , .9,'                                  1'[* <
                                                                                                                                                                                                                                                                                                  - - -% ~u ~,              ' N          '
L:        . ' U,.t ' ""J.::              +v,, ,s ]~                                                                                                                                                                ,
                                                                    ~ :
nr                    .
                                          %M                  'Ch                                                                                " ', <. ''.'aci
                                                                                                                                                >'''"'sr,
                                                                                                                                                                                    '< 2        , " ;'', > ' . . a[u #} ; **, *
                                                                                                                                                                                                , ~ .u -
                                                                                                                                                                                                                '^d'                '                                                                                                                    #
                                                                                                      '^ 'ht [
                                                                ,                                                                                                                                  s } +. ,'s f%.e. sA                                                                                                        ,,p {b }u
                        'c' +w<'t g                                                      .m,      w ,..*'s'm,sw',,m                                                                            ,.,s g ;m n a                                      .m w,[' . , ' ' ' 'e* -' ::;* ', c /> , . .,
                                                                                                                                                                                                                      .~
            %u , 'R5
                                          ,r ;m +s.      ,
                                                                                                    -<7                                            s s ,                                            g,>.                                        ,
s s,        ,
                                                        '.c                                        ?
                                                                                                        ,3 ,<                          ,.'',                              >u
                                                                                                                                                                            ^
o          s - -
u              ~~ '              ' <            . ,.
                                                      'd      ~g' 'l ['s'; ' {
S 'b'            Yt                                                                                        . 1,f'', ^                                  *+s; J '"                                      *                                                          '
                                                                                                                                                                                                                                                                                                        ,k'^f,'.2',
                    .(u%'s                                                                                                                                                                                                                      e, ,[''                                    5                                                                  -
s.
                                                                                                                                                                                                                                                                                , j u
                                                                                                                                                                                                                                                                                            , , ,, ,. ~:
                                                ~,
                                                                                                                                                                                        <. , ,,: - ' .s.- . ,
: 7. w ,,,,+: .,                          ,wn. > ,1<      , ; , w :<y,, 3> ; - ,s- :.+:
                                                                    ,                                                        ,                                                . :->:~                                                                                                                                                              ,..
    /
g      ''    bk                              N            7'      ,< , \ Fr                                                [-                            ,-                        [          $
                                                                                                                                                                                                                                                            , '                                        y  ,y
                                                                                                                                                                                      ,p Q 6 ,.] ,' y- .
j    ' )-,7~ T''g^/ptti,
                                                                  ~
                                                                                  '+' ; ; g, 'J. r,<t<.s? ' [>-'; ."cq                                                                                                                    ,
1;            ." / t r; > , ' '                        s a                                                                                                                                                                                                                                                              'r~+,
:              u ss                      g+'''{';^3 y                  ; ; ) ,,' L'',            h.fJ t[ $ e,^''f{';,'A 'y,
                                                                                                                                                                                                                    ' r'                                        . >' " I' s' 6 '' ' ' .l'; , sf
                                                                                                                                                                                                                                                                                                                                  .s                                    ,
U > Jy >J ~. 7g c                              : p' SR p
                                                                                                                                                                                                                                                                                ,~ ~. - .. , -                                            s
        ' ^I^'U)yk                                    >)                            . , mh': .,b 3h'E
                                                                                                                              "'uI>'\                , ; -+\;' '                            '"t '
0^~          # E' d', , k - s ^. '
S    l v 'y "'                                    3>&:cc , d[<        < rn, ' '
                                                                                    "    s''
J    '[p';        ':        .c Hf,                    s                    +          'S'' ''.' -''    %
s
                                                                                                                                                                                                                                                ' ' [c ',
                                                                                                                                                                                                                                                                                                        , , :c'ss                  , ', se
                                                                                                                                                                                                                                                                        'v
                                                                                                      .i s.                                                                                                                            ,, ,. , j
    \
s s N.3'st 'i                                <'.
                                                                                                            ,s m^ '(            .,                  s
                                                                                                                                                                                                                                                                                        ,~ ,s,              *4.'                    -s' sSs(u g'T-..
: s.      st                                                                                                    s                s                                                                                  ,
                                                                                                                                        -, '' , ~                                                        '' , , . , '
y.?,4 '., ',                                Y;."y      (:,@" . , ,                              h .-<      _Acg ' <'.                              ' ,e } Z, ;,. ^,"J,+-        ^                                                        v '
g .f        ~
c', }, ,*[. . y        P'''s.'..
                                                                                            's*                                                                                                                ss, s      >                                .,,, .                                        .> ,                                      r                                                      <                    ..                                                            w                                                            .
                                      %                                                                        '.                                            ',[^'                , [                        /#      ,#
v'                                                                                                                                          ' ',[
                        ,s    [;                    .) ' ( ,                , . *                                      .s                                                                                                                                                                , ^            p.,
                                                                                                                                                                                                                                                                                        ;.'s
                                                                                                                    ,          ,                                                                                                                                                                                                  g
                                                                                              . ,; u, 3                  : : ., ,                                                                                                                                                                        :'u
: p.      ,ty'n,            - ak          :s , :w<
a , ;s                                                                    .
                                                                                                                                                            ~
                                                                                                                                                                        ,\.                      ','&.        e                                                                ,-_                                          ::'            ,c
                          .:                                                                                  .4                                                                            s              s                                                                                                    ,.s,p-
            ,E[ ::'    ',
        'c (sf r? f .t ,(
j'p' e 'T't \ 0 <*        ,. ,,          ')',      '
                                                                                                  , ,j I 4 4,
                                                                                                      ,  ' 7- ) s
                                                                                                                                  's
                                                                                                                                                            ' ^ * '
                                                                                                                                                                          ' ','                    ,,%;          <                                                                    , "' x                  n''.',.x-                        *
                                ,,s' " .,>W(t.                          /
v g'
        .N
        ' .N      gs 'gg'}m s              ps
                                          '. \    .N
                                                          .        s
                                                                              ,/            .
                                                                                                                    %              '' j v' #                                        s        ,            s.        ''y>        ,
y :' < J 4 '#ff ' '*v. <,                                    ss ,,                          s,                                                  .
_-,                        ., , A #                                            >y'^'
vs t.r: , ; w 3 ,                                                                                                                                                                                                                                                                    s
        ,    s          . <^                                    c'                                  ?
_____.m                _____._______._-_u..__m________-__.2__                                                      _ _ _ . _ _ _ . _ _ . _ _ _ _ _ .                                    .        r      .. . _ _ _ _ -                _ _ _ _ +
 
t
                                                                            '                                                                                                                                                                                    WGPRES01 ppt CABI.ES i
CABLE AGING MANAGEMENT                                                                                                                  13 or13      ;
i Replacement Prior to Period ofExtended Operation                                                                                                              i Kapton Cables in containment in fire detection service - 16 i
Condition Monitoring Unspaced EPR/XLPE Power and Control Cables -                                                                                            1437                    i Spaced Power Service EPR/XLPE Cables -                                                                                                  186                      !
EPR/XLPE Cables in Power Service in Containment -                                                                                      186                    I i
Replacement at EndofQualifiedLife l'
EQ Cables - 968 Performance Monitoring EPR/XLPE Cables in Wide Dynamic Range Instmmentation Service -                                                                                                        115 F
_ _ _ _ - . .                - _ - = - _ _ _ - . . . _ . . _ . _          _ . _ _ - - _ _ . _ _ . _              _ _ _ _ - _ - - _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ - _ _ _ _ _ - _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ - _ -
 
4 WGPRES01. ppt  .
EQ EQPMT      j EQ EQUIPMENT                                                    e6            r i
Regulatory Basis of current EQ Program is 10CFR50.49                                                                    i i
i ELEMENTS OF CURRENTPROGRAM
                                                                                                                            \
(1) Identification of equipment required to be environmentally qualified                                        l per 10CFR50.49(b).
Safety-related electrical equipment which is required to perform an electrical safety function after being  j subjected to or while exposed to harsh environmental conditions induced by design basis events.
j i
(2) Documentation to substantiate environmental qualificatioh ofin-scope equipment.                              ;
An Environmgntal Qualification Documentation File (EQ File) is maintained for each equipment group. The EQ File contains data on subparts susceptible to                                  '
environmentally induced degradation, the basis ofenvironmental qualification including                      !
acceptance criteria, test data, analysis ofqualification process and anomalies, etc.
I i
(3) Maintenance and surveillance to maintain qualification on a continuing basis.                                I i
Qualification Maintenance Requirement Sheets (QMRS) are maintained for each equipment subgroup.
l I                The QMRS identifies installation, maintenance, testing, refurbishment, and monitoring requirements l
necessary to maintain environmental qualification ofEQ equipment.                                          !
)
i I
(4) Program controlling procedures B
4 i
 
Eq[Ed" EQ EQUIPMENT                                                                            2 cf 6 THE FOLLOWING EQ ISSUES AFFECT LICENSE RENEWAL (1) The CLB is to be maintained.
(2) The management of plausible aging must be demonstrated for long-lived equipment with passive functionality.
Long-lived passive device groups include cable, electrical penetrations, seals, terminal blocks, solenoid valves. The current EQ Program effectively manages the aging oforganic subparts which could adversely affect the required electrical functionality of the EQ equipment.
(3) EQ is considered a TLAA by NRC.
To support conclusion that action will be taken in accordance with the CLB per 10CFR50.29, NRC staffhas requested that certain information be provided.
(4) A GSI exists and must be addressed.
The GSI is documented as Issue 168 ofNRC Task Action Plan. The SOC to the LR Rule (60FR22484) allows LR applicants to resolve the issue and incorporate resolution in their LRA, orjustify that the CLB will be maintained until reasonable options to manage the aging become available.
 
EQ EQUIPMENT                                                    W PRES 01. ppt EQ EQPMT TLAA                                                    '
INFORMATION REQUESTED BY STAFF (1) Evaluation Methodology Attempted extension ofqualified life by refurbishment, retest, and/or reanalysis within bounds set by EQ Program and its regulatory basis.
(2) Acceptance Criteria Qualified Life of60 years.                                            s (3) Corrective Actibns Option (1): ReplaceEQ equipment at end ofqualified life with identical equipment.
Option (2): Replace EQ equipment at end ofqualified life with equivalent equipment.
Option (3): Replace EQ equipment at end ofqualified life with new equipment.
Option (4): Use ofcondition-based life assessment. (FUTURE)
(4) Timing of Resolution Program administered to ensure that environmental qualification ofinstalled equipment is maintained.
Replacements are scheduled and re-evaluations are executed in atimely manner. Environmental are not allowed to expire during the current license period and will not be allowed to expire during th period ofextended operation.
 
t EQ EQUIPMENT                                                                                                woPaEsoi. ppt EQ EQPMT 4or6 GSI PRIMARY FOCUSIS CABLES Accelerated Aging Qualification Process Accuracy oflife predictions provided by Arrenhius methodology; i.e, is pre-aging adequate?
Lirnitaticas ofusing an estimated activation energy?                                                                                                                                                                                          ;
How does humidity affect qualification results?                                                                                                                                                                                              !
i Failure Mechanisms of Special Cables                                                                                                                                                                                                                                :
Multi-conductor cables Bonded-Jacket cables Cable Installation and Environments Affect on qualification ofpot-spots, Excessive Vibration, Water / steam Impingement, Physical Damage.                                                                                                                                      l Affect on qualification of Bends, Overhangs, Vertical Runs, Trays, Conduits, Fire Protective Coatings, and ImproperInstallation.                                                                                                                                                                                                [
CM Techmques Effectiveness?                                                                                                                                                                                                                            [
Can they be used to predict accident survivability?
i License Renewal Acceptable re-qual options?
Viabilityofcondition-basedlife?                                                                                                                                                                                                          !
Use ofoperatingexperience?                                                                                                                                                                                                              !
Extension ofqualified life using current qual process?                                                                                                                                                                                  :
I E
_ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , ~-_ _ _ _ _ _                _                                        ._ _ __ _ .._._,.... _._ ._._ __ _ -- _
 
EQ EQUIPMENT                                                                                                                WGPREs01. ppt EQ EQPMT GSI                                                                                                                  s or6 BGE RESPONSE TO GSI BGE will continue to meet its CLB with respect to 10CFR50.49 until such time that reasonable options to manage aging become available or the issue is considered closed.
BGE will continue to follow industry developments.
BGE will respond to new regulatory requirements.
ADDITIONAL CONSIDERATIONS r
Failure Mechanisms of Special Cables BGE's acceptance criterid is directly linked to critical electrical characteristics or a known precursor to electrical property changes.
Cable Installation and Environments BGE's cable installation practices have been and are designed to address and mitigate the etTects of these issues.
License Renewal BGE has reviewed its EQ Program and concluded that it will continue to provide reasonable assurance that mtended EQ functions will be maintained consistent with the CLB during the period ofextended operation.
 
  . _ .. ._ _ m._..  . . _ _ . _ _ - - _ - _ . _ . .  - . _ - . . . _ . . ~ . . _ _ . - . . . . . .        . m...-      -- _ . .- - . _ _. . - . _ . .            .- _
f WGPRES01. ppt      i EQ EQPMT BGE PARTICIPATION                                                      6 cr6 IN INDUSTRY ACTIVITIES Membcr ofNUGEQ                                                                                                                                          :
l Member of EPRI                                                                                                                                          -
Research on Cable Aging is anderway Research on Cable Condition Monitoring proposed.
i
                                                    \
                                                                                                                                                                            \
Operating Experience Unit All SOER's received by BGE are reviewed for applicability to CCNPP.                                                                      .
r e
a r
b t
1
                                                            , . , . - - - _ , -                      - _~ -          -. -                              -              ._}}

Revision as of 08:46, 1 July 2020

Summary of 961010 Meeting W/Util in Rockville,Md to Deliver & Discuss Sample Revs to Portions of Structures,Component Supports & Main Feedwater Sys IPA Repts.List of Attendees & Handouts Encl
ML20135B682
Person / Time
Site: Calvert Cliffs  Constellation icon.png
Issue date: 11/29/1996
From: Scott Flanders
NRC (Affiliation Not Assigned)
To:
NRC (Affiliation Not Assigned)
References
NUDOCS 9612050097
Download: ML20135B682 (177)


Text

.. . . . . . . --- - - --_- ._- - - -

f i

November 29, 1996 A

ORGANIZATION: Baltimore Gas and Electric

SUBJECT:

SUMARY OF MEETING WITH BALTIMORE GAS AND ELECTRIC COMPANY (BGE) ON BGE LICENSE RENEWAL ACTIVITIES

' On October 10, 1996, the Nuclear Regulatory Commission (NRC) staff met with representatives of BGE in Rockville, Maryland. The purpose of the meeting was

, BGE to deliver and discuss sample' revisions to portions of the Structures, i Component Supports, and Main Feedwater System integrated plant assessment i (IPA) reports. A list of meeting attendees is provided in Attachment 1.

Attachment'2 is a copy of the materials distributed during the meeting.

3 The IPA report revisions delivered during the meeting were intended to demonstrate BGE's implementation of the template as modified by the agreements i in principle discussed at the' September 11, 1996, management meeting. BGE 1 -stated that the reports were revised to address scoping and intended functions

[ -(Sections I. A and B of the template). The staff stated that it will visit

Calvert Cliffs on October 17,1996, to review onsite information related to j BGE's scoping process, and will provide comments on the sample revisions on October 24, 1996. During the meeting, BGE also provided an overview of its
scoping and screening process.

i Prior to the public meeting, the staff met with BGE to gather information'and 1

obtain a better understanding of the Calvert Cliffs piping design and analysis 3 process. Attachment 3 is a copy of the piping design information received by 1 the staff. Attachment 4 is a copy of background information BGE provided to

! the staff in preparation for an upcoming meeting on BGE's license renewal l activities for EQ and Non-EQ Cables. The meeting is scheduled for October 16, s 1996, Origin'al signed by:

Scott C. Flanders, Project Manager

, License Renewal Project Directorate l

Division of Reactor Program Management ,

Office of Nuclear Reactor Regulation  !

Docket Nos.: 50-317&50-318 j

]

Attachments:  ;

1. Attendance List 3 l Meeting Handouts

[

2.

3. Piping design information Cf b ' 8 /
4. BGE's license renewal activities for EQ and Non-EQ Cables l

. cc w/ attachments:

l Service List (with a11' enclosures)

Distribution: See page 2 g

DOCUMENT NAME: A:1010MS (SFlanders Disk) 4 Ta ,seelve e copy of this doeuensest,insucete in the hea: *C" = Copy without attachment / enclosure *E* = Copy with attachment / enclosure *N* = No copy l 050026 , p 4 0FFICE PM:PDLR / L J E: D:PDLR ll P l l 4

NAME SFlandepf/ SFNewbemryV 1 DATE / 2/ 7 796 D J 3 /96 9612050097 961129 RECORD COPY

^

PDR ADOCK 05000317

__. P_ PDR

\

4 Baltimore Gas & Electric 1 l

HARD COPY: l Docket or Central File

PUBLIC PDLR R/F OGC ACRS DISTRIBUTION via e-mail 3

FMiraglia/AThadani (A) (FJM)/(ACT)

HBWang (HXW1)

RCorreia (RPC)

RZimmerman (RPZ)

JMoulton (JPM1)

SHoffman (STH)

RWessman (RHW)

TMartin (TTM)

PTKuo (PTK)

RAnand (RKA)

JStrosnider (JRS2)

DMatthews (DBM)

Slee (SSL1) i WDean (WMD)
SDroggitis (SCD)

SNewberry (SFN)

BPrato (RJP2) ,

JMitchell (JAM) l SPeterson (SRP) l SFlanders (SCF) l CRegan (CMRI) l LDoerflein (LTD) ,

Glainas (GCL) l EJordan (JKR)

PShemanski (PCS)

JSStewart (JSSI)

TSpeis (TPS)

JMoore/EHoller (JEM)/(EJH) ,

GMizuno (GSM) l GHolahan (GMH)

BSheron (BWS) 1 i

A

._ _ -. __ - - - _.- - - ~ - --- - . -. . - . . _ -

l l

ATTENDANCE _ LIST NRC MEETING WITH BALTIMORE GAS AND ELECTRIC October 10. 1996 l NAME ORGANIZATION

1. Scott Flanders NRC/NRR
2. John Moulton NRC/NRR
3. P.T. Kuo NRC/NRR l
4. Sam Lee NRC/NRR
5. Dennis DiBello BGE/LCMU
6. Marc Hotchkiss ABB-CE (BGE/LCMU)
7. Tricia Heroux for EPRI
8. A. Mimaki MHI  !
9. C. Neoin OAK TECHNOLOGIES
10. Ikuo Morimaka KANSAI ELECTRIC POWER l l
11. S. Azumi KANSAI ELECTRIC POWER
12. T. Nishimoto INTERNATIONAL ACCESS CORP.
13. Don Shaw _BGE/LCMU
14. Barth Doroshuk BGE/LCMU  !
15. Mary Bowman .

BGE/LCMU

16. Barry Tilden BGE/LCMU l

i ATTACHMENT 1 1

i c

9 BGE Deliverables to NRC l October 10,1996 l

( l. Feedwater_ System License Renewal Technical Report, written for LR ,

Technical Report Template parts I.A. and B.

2. Structures License Renewal Technical Report, written for LR Technical Report l Template parts I.A. and B. l
3. Component Supports License Renewal Technical Report, written for LR Technical Report Template parts I.A. and B.

I i

n I

l

1 For LR Technical Report Template Development October 10,1996  ;

5.8 FEEDWATER SYSTEM l

5.8.1 Scoping i

System Description

The Condensate and Feedwater Systems are designed to provide a means for transferring the condensate from the condenser hotwell to the steam generators. The system design features provide for raising the temperature and pressure of the condensate, controlling the rate of flow to the steam generators, and the addition of chemicals and purification of the condensate. [UFSAR Ch.10.2]

Condensate from the hotwells is pumped by motor-driven condensate pumps through the gland steam condenser, the condensate demineralizer and precoat filtering system, and the lowest feedwater heating stages to the suction of the condensate booster pumps. These booster pumps deliver the condensate to the two turbine-driven steam generator feed pumps (SGFPs) through two parallel sets of feedwater heaters. The SGFPs pump the feedwater through two parallel high pressure heaters to the steam generators. The condensed steam from the Iowar pressure feedwater heating stages dt'ains back to the condenser hotwell and from higher pressure 1 heaters is pumped into the condensate system. The Updated Final Safety Analysis Report (UFSAR) Chapter 10 l includes a system description and diagram of the condensate and feedwater systems. Spei:ific component design data is included in Table 10-1 of the UFSAR. [UFSAR Ch.10.2)

A portion of the condensate flowstream is normally routed through the precoat filters and condensate demineralizers (full flow capability exists) in order to remove particulates and corrosive elements.

Additionally, chemicals are added to the condensate for oxygen scavenging and pH control. [UFSAR Ch.10.2, Sys Desc 32]

The portion of the Condensate System within the scope of License Renewal is addressed in section 5.6 of this application.

The Feedwater System includes the equipment, instruments and controls from the suction of the SGFPs, through the feedwater heaters, the regulating valves, the flow nozzles, the feedwater isolation valves, and the feedwater header check valves to the steam generator feedwater inlet nozzles. Also included are steam generator secondary side pressure and level instrumentation loops. This instrumentation provides steam generator level control information as well as the protective functions of steam generator isolation and auxiliary feedwater initiation. The steam generator vessels (including the feedwater nozzles) are included in the Reactor Coolant System, which is addressed in section 4.1 of this application. [FW AMR]

The Feedwater System functional requirements are determined by the System and Structure Scoping activity of the Integrated Plant Assessment (IPA) process described in the CCNPP IPA Methodology. The system functional requirements are: [SLSR]

e to transfer feedwater from the steam generator feed pump suction to the steam generators e to regulate the flow of feedwater to the steam generators to maintain a constant water level

  • to provide a means of raising the temperature of the condensate received by the feed pumps e to provide a means for injecting chemicals into the steam generators from the chemical addition system The Feedwater System is in scope for license renewal based on 54.4(a). In accordance with section 4.1.1 of the CCNPP IPA Methodology, a detailed list of system intended functions was determined.

The following Feedwater System intended functions were determined based on the requirements of 54.4(a)(1) and (2): [SLSR, FW CLSR]

  • Provide containment overpressure protection

. Prevent reverse flow from the steam generater 1

For LR Technical Report Template Development October 10,1996

  • Send signals to the Engineered Safety Features Actuation System l

l l

. Provide Signals to Auxiliary Feedwater Actuation System I

e Isolate feedwater flow to the affected steam generator e Provide a pressure retaining boundary for the system l

  • Maintain electrical continuity and provide fault protection for the plant safety related electrical system All components of the Feedwater System that support the intended functions listed above are safety related, 1 Seismic Category I and are subject to the applicable loading conditions identified in the UPSAR Section l SA.3.2 for Seismic Category I systems and equipment design.

I

'Ihe following Feedwater System intended functions were determined based on the requirements of 54.4(a)(3):

[SLSR, FW CLSR]

  • For fire protection ( 50.48) - Monitor steam 1;enerator level to support safe shutdown in the event of a postulated severe fire.
  • For environmental qualification ( 50.49)- Maintain functionality of electrical equipment as addressed by the Environmental Qualification Program, and provide information used to assess the plant and environs condition during and following an accident.

The regulations listed in 54.4(a)(3) do not necessarily require nuclear safety grade SCs in order to respond to ,

the requirements of the regulations. However, the components of the Feedwater System that support the l intended functions listed above associated with these regulations are safety related, Siesmic Category I and are subject to the applicable loading conditions identified in the UFSAR Section SA.3.2 for Seismic Category I systems and equipment design.

Sconed SCs and Their Intended Functions The components of the Feedwater System were reviewed and those that supported the system intended functions were determined to be within the scope of review for license renewal. The portion of the Feedwater System that is in scope includes all components (electrical, mechanical, and instrument) from the inlet side of the feedwater isolation motor-operated valve (MOV) to the steam generator nozzle. Also included are steam generator secondary side water level and pressure instrumentation loops, including the root isolation valves and all downstream components (valves, tubing, instruments). Figure 5.8-1 provides a simplified diagram of the feedwater system indicating the portion of the system within the scope of license renewal. This diagram is provided for illustration purposes only.

Several component types are common to many plant systems and perform the same passive intended functions.

These are addressed separately in commodity evaluations and are not included in this section. The following i identifies the disposition of these commodity components: [FW Pre-Eval, FW AMR Report]

l

  • Structural supports for piping, cables and components in the Feedwater System are evaluated for the effects of aging in the Component Supports Commodity Evaluation in section 7.6 of this application 2

_ __. _ - . . _ _ .. ._.___.___._._.___.m . _ _ . . _ _ _ _ . _ _ _ _ . - - . _

For LR Technical Report Template Development October 10,19%

I

  • Electrical control and power cabling for components in the Feedwater System is evaluated for the effects of aging in the Electrical Cables Commodity Evaluation in section 6.2 of this application _
  • Process and instrument tubing, and tubing supports, for components in the Feedwater System are evaluated for the effects of aging in the Instrument Line Commodity Evaluation in section 63 of this application 3

In accordance with section 5.1 of the CCNPP IPA Methodology, the sys, tem intended functions were characterized as either active or passive. The only passive intended ftmetion associated with the Feedwater i System which is not completely addressed by one of the commodity evaluations referred to above is: [FW Pre-

Eval]
  • Provide a pressure retaining boundary for the system i

The following are the Feedwater System components within the scope of license renewal that perform the passive intended function without moving parts or a change in configuration or properties and, therefore, meet the criteria of 654.21(aXIXi) as subject to an aging, management review: [FW Pre-Eval, IPA Methodology]

  • System piping and in-line components provide the pressure retaining boundary of the system.

Of those, the following components are replaced based on a qualified life ofless than 40 years and are therefore not subject to an aging management review in accordance with 54.21(aXIXii): [FW Pre-Eval]

Additionally, all instrument transmitters and instrument valves in the Feedwater System are evaluated in the Instmment Line Commodity Evaluation in section 63 of this application. Also, all components of the Feedwater System required to be environmentally qualified in accordance with Q50.49 are either replaced based on a qualified life ofless than 40 years, or included in the scope of the Instrument Line Commodity Evaluation.  !

l A list of the component types for Feedwater System components evaluated in this section is shown in Table j 5.8-1.

TABLE 5.8-1 FEEDWATER SYSTEM COMPONENT TYPES REOUIRING AMR l

Piping Check Valves Hand Valves

  • I Motor-Operated Valves  :

Temperature Elements l

  • includes only those hand valves not included in the scope of the Instrument Line Commodity Evaluation l

3

For LR Technical Report Template Development October 10,1996 -

CCNPP Main Feedwater System - Simolified Diaaram Note: Not all components within the scope of License Renewal are shown sw =

h$  ; '

M

}'

,._.,_m 7 h-

---.;m-._..g j ( g,,

a ew  ! wm -

From s .. .- u -

p v E , ,r

,w, _ _ mnorm. rwimmenan uov

_yh,,- .-fg 3 g

m .

L 3

Feed Heater I

, (

..~d i

ss ~ ?n ?T!??%% '1 _ indicates portion of Feedwater

~' ' * ' - System within the scope of License m Renewal Feed mw Heater g3 G*"***'

E  :

x; mu:s wa j [.j@

em "

. ;, _our.. .a ih,)i m

rwo m w x rw rio. ---~~'a

% m,g 94

  • y_ ]

none. m .m nov  ;

t ,

f Wi_....o t

RCS Figure 5.8-1 4

t i

For LR Technical Report Template Development Purposes 10/10/96 APPENDIX A TECHNICAL INFORMATION 7.1 Structures 7.1.1 Scoping i

Structures Descrintion The CCNPP plant site is described in Chapter 1 of the UFSAR. The plant arrangement consists of numerous structures which are shown on UFSAR Figure's 1-2 through 1-30 with further discussion of the design features

, in Chapter 5. Structures provide many purposes at CCNPP including foundation, support, shielding, and containment for plant equipment. [UFSAR Chapter 1 and 5].

l In accordance with the CCNPP IPA methodology as described in Section 5.4, the following structures are identified to be within the scope oflicense renewal: [SLS]

  • Intake Structure
  • Containment Structure i e Turbine Building Structure (AFW Pump Room)
  • No. 21 Fuel Oil Storage Tank (FOST) Enclosure 4
  • Auxiliary Building Structure
  • No.12 Condensate Storage Tank (CST) Enclosure

)

1 He general description and layout of the above scope structures at CCNPP is as follows: [UFSAR Chapter 1,5 and 8]

  • The Intake Structure is located between the Chesapeake Bay shoreline and the turbine building structure. l

)

The intake structure, which transfers cooling water from the Chesapeake Bay, is primarily a reinforced concrete seismic category I structure, founded on a slab varying in elevation from -26'0" to -14'3". The a

intake structure houses 12 circulating water pumps, supplying cooling water to the condensers, and 6 r saltwater pumps, supplying cooling water to the salt water cooling system. To protect me pumps and q condensers from foreign bodies present in the Chesapeake Bay water, trash racks and traveling water i screens are provided. Vertical guides are provided down the sides of each intake channel to receive stop-logs to permit drainage for inspection and maintenance. Running the full length of the structure is a gantry crane having a lifling capacity of 35 tons. Since the saltwater cooling pumps, which are essential for safe shutdown of the CCNPP, are housed in the intake structure, the intake structure is designed for seismic, tornado, and hurricane conditions. The specifics of these loading conditions are provided in UFSAR Table 5-7.

  • West of the intake structure is a common Turbine Building Structure for both Units 1 and 2 which is oriented parallel and adjacent to the shoreline of the Chesapeake Bay. The turbine building houses the Unit I and Unit 2 turbine generators, condensers, feedwater heaters, condensate and feed pumps, turbine auxiliaries, and certain of the switchgear assemblies. The turbine building structure is an integrated steel structure, with metal siding, supported on reinforced concrete foundations. Included in the turbine building are the turbine generator bays, heater bays, and the turbine-generator concrete pedestals which project through the building to the operating deck at elevation 45 feet. The turbine generator Units I and 2 are separated by an expansion joint in the super-structure. The circulating water intake and discharge conduits are incorporated into the spread footings. The turbine building is a seismic category 11 structure with the Application for License Renewal 7.1-1 Calvert Cliffs Nuclear Power Plant

For LR Technical Report Template Development Purposes 10/10/96 APPENDIX A TECIINICAL INFORMATION

]

exception of the auxiliary feedwater pump enclosure, which is designed as a seismic category I structure and a turbine missile barrier.

l

  • Adjoining the turbine building on its west side is the Auxiliary Building Structure. The auxiliary I building structure is primarily a reinforced concrete seismic category I structure with a mat foundation. )

The foundation supports a structural steel and reinforced concrete frame which consists mainly of reinforced concrete walls and floors. On the top structure and over the fuel handling area is a secondary steel frame structure with missile-resistant concrete walls and roof which houses the spent fuel crane.

Facilities related to the NSSS which are located in the auxiliary building structure including the followmg.  ;

1

. New and spent fuel handling, storage and shipment

  • Control room

. Waste processing system ,

  • Chemical addition system

. Safety injection system

  • Spent fuel pool cooling system

. Various electrical distribution systems e Chemical and volume control system

. Component cooling

  • Emergency diesel generator rooms l Since safety-related equipment is housed in the auxiliary building structure, the auxiliary building structure is designed for seismic, tornado, and turbine missile conditions. The specifics of these loading conditions are provided in UFSAR Table 5-6. I In addition to all other loads including Operating Basis Earthquake (OBE) and Safe Shutdown Earthquake (SSE), the steel-framed structure over the spent fuel pool is designed to resist tornadoes and missiles without partial or complete collapse, except for the west wall. A study indicates that the possibility of tornado missiles impacting the spent fuel pool from the west side is remote.

l

  • Twin Containment Structures are located north west and south west of the auxiliary building structure with a connective boundary to the auxiliary building structure formed by the shape of the containments.

Each Con <airment Structure is a seismic catego y I structure, housing the reactor and other NSSS components consisting of a reactor, SGs, RCPs, a pressurizer, and some of the reactor auxiliaries which do not normally require access during power operation. The containment consists of a reinforced concrete ,

cylinder and a shallow domed roof which rests on a reinforced concrete foundation slab. The concrete cylinder and dome have a post tensioned contraction design. Attached to the inside of the containment structure is a coated carbon steel liner. There are three personnel and equipment access openings in the containment: a two-door personnel lock, a large diameter single door equipment hatch, and a two-door personnel escape lock. The primary containment has numerous penetrations for piping and electrical connections. These penetrations are leak tight, inerted assemblies, welded to the containment liner. A fuel transfer tube penetration in the containment is provided permit fuel movement between the refueling pool in the containment and the spent fuel pool in the auxiliary building. Two sumps are provided in the containment floor: a normal and emergency sump.

The Containment Structure, in conjunction with Engineered Safety Features (ESFs), is designed to withstand an internal pressure of 50 psig, a coincident concrete surface temperature of 276 F and a leak rate of 0.20% by weight per day at design temperature and pressure. Since safety-related equipment is housed Application for License Renewal 7.1-2 Calvert Cliffs Nuclear Power Plant

l 1

4 For LR Technical Report Template Development Parposes 10/10/96 APPENDIX A TECHNICAL INFORMATION

. in the containment structure, the containment structure is designed for seismic, tornado, and turbine missile conditions. The specifics of these loading conditions are provided in UFSAR Section 5.A.3.

  • The Fuel Oil Storage Tank No. 21 Enclosure is seismic category I reinforced concrete located to the west of the containments. It houses the Fuel Oil Storage Tank (FOST) No. 21 which is a shared fuel supply for the emergency diesel generators. The enclosure protects No. 21 FOST from tornado-generated missiles and tornado winds by a seismic category I concrete structure. This structure will also withstand the impact of a 4

transmission tower falling on it without d mage to the fuel oil storage tank contained within the structure.

Bursting pressures are relieved by baffled, missile-proof vents.

  • The Condensate Storage Tank No.12 Enclosure is a seismic category I reinforced concrete structure located north of the turbine building in the task farm area. It houses Condensate Storage Tank No.12 which is shared between the units. Tornado protection for the tank consists of a seismic class I concrete structure of sufficient thickness to stop tornado-generated missiles and to resist tornado. wind pressures.

Bursting pressures are relieved by baffled, missile-proof vents.

l Structures have been grouped together since they are designed and constructed in a similar manner, comprised of the same materials, subject to the same aging mechanisms, and are managed by similar plant programs.

Each structure within the scope of License Renewal and subject to an aging management review has a separate aging management review report which is listed in the references at the end of this section.

In accordance with Section 4.2.2 of the CCNPP IPA Methodology, Structures are determined to perform one or more of the functions listed in Table 7.1-1 in support of the 54.4 (a) scope criteria: [lPA Meth, AMRs]

  • Functions 1-4 are associateo with seismic category I structures. Seismic category I design requirements are the structure level equivalent of SR components specified in QS4.4 (a)(1).
  • Functions 5 and 6 apply to non-seismic category I structural components which could, if they fail, prevent a SR functian from occurring. This is the structural equivalent for 54.4 (a)(2).
  • Function 7 is the equivalent for the fire protection (Q50.48) portion of 54.4 (a)(3) which is applicable to structures.
  • Function 8 is a system level function for containment system type components and is the environmental qualification ( 50.49) portion of QS4.4 (a)(3).

Application for License Renewal 7.1-3 Calvert Cliffs Nuclear Power Plant

For LR Technical Report Template Development Purposes 10/10/96 APPENDIX A TECHNICALINFORMATION TABLE 7.1-1 INTENDED FUNCTIONS OF STRUCTURES Auxiliary Intake Turbine No. 21 FOST No.12 CST Function - Containment Building. Structure Building Enclosure : Enclosure

1. Provide structural and/or functional j. j j j j j support to safety-related equipment
2. Provide shelter / protection to safety- j j j j j j related equipment. (This function includes radiation protection for EQ '

equipment and high energy line break-related protection equipment.)

3. Serve as a pressure boundary or a j j  !

fission product retention barrier to protect public health and safety in the event of any postulated DBEs

4. Serve as a missile barrier (internal or j j j j j j external)
5. Provide structural and/or functional j j j j j support to NSR equipment whose l failure could directly prevent i satisfactory accomplishment of any of the required safety-related functions j (Example: seismic Category II over I l design considerations)
6. Provide flood protection barrier j j j j (internal flooding event)
7. Provide a rated fire barrier to confine j y j j !l or retard a fire from spreading to or from adjacent areas of the plant
8. Maintain the functionality of electrical y components addressed by the EQ program.

Application for License Renewal 7.1-4 Calvert Cliffs Nuclear Power Plant

_ .- , = - _ .- ., - . ._. . . _ . .

For LR Technical Report Template Development Purposes 10/10/ % j APPENDIX A j l

2 TECHNICAL INFORMATION _

I l

Sconed SCs and Their Intended Functions I During the scoping process, structural components were identified for each structure within the scope of License Renewal. These structural components were grouped into 4 structural categories and I system category based on their design and materials.

1. Concrete Components,
2. Structural Steel Components,
3. Architectural Components,
4. Unique Components, and
5. System Type Components. ,

Within those five structural component groups,59 different structural component types were identified as contributing to the intended functions of the structure. Table 7.1-2 lists these component types and the l structures to wh% they are applicable. Functions from Table 7.1-1 indicate which structural component contributes to the intended functions.

i Several structural component types are common to many plant systems and perform the same passive intended functions,(e.g., piping and component supports). As described in Section 2.0, these are addressed separately as commodity groups and are not included in this section. They include the following: ,

l

  • Component supports that are connected to the structures are evaluated for the effects of aging in the Component Supports Commodity Evaluation in section 7.6 of this application.
e Cranes and fuel handling equipment which is connected to the stmetures is evaluated for the effects of aging in the Cranes and Fuel Handling Commodity Evaluation in section xx.xx of this application.

l . Electrical control and power cabling for components in the Containment System is evaluated for the effects of aging in the Electrical Cables Commodity Evaluation in section 6.2 of this application.  ;

While the first seven functions are of a structural nature, the eighth function is a system-type function provided

by the EQ electrical penetrations. Aging management for these penetrations is provided by the CCNPP 50.49 4 Program aging management review which is provided in a separate LRA section.

J s

e Application for License Renewal 7.1-5 Calvert Cliffs Nuclear Power Plant

l For LR Technical Report Template Development Purposes 10/10/96

. . APPENDIX A TECHNICAL INFORMATION TABLE 7.1-2 STRUCTURAL COMPONENT TYPES REOUIRING AMR Auxiliary . Intake Turbine No. 21 -- No.12 CST Building:. Stmeture Building :FOST- Enclosure -

Enclosure Concrete (Including Reinforcing Steel)

_ Foundations 1, 5 2 1, 2 1, 2 (Footings, beams, and mats)

Columns 1, 5 1, 5 '

2,4,7 Walls 1,2,4,5,6, 1, 2, 4, 7 1, 2, 4, 2, 4 2, 4 7 6, 7 Beams 1, 5 1, 5 2, 4 l Ground Floor 1, 5 1, 2 1, 2, 4, Slabs / Equipment Pads 6, 7 l Elevated Floor Slabs 1, 5 1, 2 , 5 ,7 1, 2 1, 2, 6, 7 Roof Slabs 2, 4 2 2, 4 2, 4 Cast-in-Place 1, 5 1 1, 2, 6, 7 1, 2, 6, 7 1, 2, 4, 5 1, 2, 4 Anchors /Embedments*

Ductbanks 1, 2 Grout 1, 5 1, 5 1, 2 1, 2, 6, 7 1, 2, 4, 5 2 Concrete Blocks 2 (Shielding)

Removable Missile 4 )

Shield Fluid Retaining Walls 1 1, 2, 6 1, 2, 6, 7 and Slabs Masonry Block Walls 1,2,5,6,7 Post-Installed Anchors

  • 1 1, 5 2, 5 4, 5 5 StructuralSteel Columns
  • 1,5 1, 5 Beams
  • 1, 5 1, 5 1, 2 1, 2, 7 2, 4 2, 4 Baseplates* 1,5 1, 5 1, 5 1, 2, 4, 2, 4 2, 4 5, 7 Floor Framing
  • 1, 5 1, 5 1, 5 1, 5

( Roof Framing

  • 1, 4, 5 2 2, 4 2, 4 l Roof Trusses
  • 1, 4, 5 Bracing
  • 1, 5 1, 5 2, 5 4 5

! Platform Hangers

  • 1, 5 1, 5 5 5 5 l

Application for License Renewal 7.1-6 Calvert Cliffs Nuclear Power Plant

l .

j For LR Technical Report Template Development Purposes 10/10/96 l

- - APPENDIX A TECHNICAL INFORMATION '

TABLE 7.1-2 (Cont.)

STRUCTURAL COMPONENT TYPES REOUIRING AMR Auxiliary Intake Turbine- No. 21- No.12 CST Containment Building Structure Building .FOSTc . Enclosure Enclosure StructuralSteel Decking

  • 1, 5 1, 5 2 1, 2, 7 2, 4 2, 4 Jet Impingement' 2 4 Barriers Liners 3 3 Floor Grating
  • 1, 5 5 5 5 Checkered Plates
  • 1, 5 2 Stairs and Ladders
  • 5 5 5 Architectural Components Building Siding 2 Clips
  • Fire Doors, Jambs, 7 2, 7 2,6,7 and liardware*

Access Doors, 2 2 2,6,7  !

Jambs, and Hardware

  • Caulking and 2,6,7 2,6,7 2,6,7 1, 2 1, 2 Scalants Coatings (including 1,2,3,4,5, galvanizing) 7 Unique Components Concrete Basemat 1,2,3,4,5, 6, 7 Concrete Dome 1,2,3,4,5, 7

Concrete 1,2,3,4,5, Containment Walls 6, 7 Primary / Secondary 1, 2, 4 Shield Wall Refueling Pool 1, 6 Concrete Refueling Pool Liner 3 Post Tensioning 1, 2, 3, 4 System l Crane Girder. 5 l

Application for License Renewal 7.1-7 Calvert Cliffs Nuclear Power Plant

For LR Technical Report Template Development Purposes 10/10/96

, APPENDIX A TECHNICAL INFORMATION TABLE 7.1-2 (Cont.)

l STRUCTURAL COMPONENT TYPES REOUIRING AMR Auxiliary Intake Turbine No. 21 FOST No.12 CST Containment

. Building Structure Building Enclosure . Enclosure Unique Components Lubrite Plates

  • 1, 5 Maranite XL Board 7 New Fuel Rack 1 l

Assembly

  • l Spent Fuel Storage 1 Racks i

Monorail. 5 Cask Handling Crane 1, 5

)

I Rail / Supports

  • l Lead Brick Shielding 2 i Pipe Whip 2 Restraints
  • i Roll-Up Doors. 2 Expansion Joints 2, 7

_Watertight Doors

  • 6, 7 6 2,6,7 Sluice Gates
  • 1 Anchor Brackets
  • 1 System 1)pe Components Electrical 3 Penetrations (Non-EQ)

Mechanical 3 Penetrations Fuel Transfer Tube / 3 Bellows Personnel Airlocks 3, 7 Equipment Hatch 3, 7

  • Indicates that component type is included under the heading " Steel Components" in the discussion addressing the results of the AMR and in Table 7.1-3.

Application for License Renewal 7.1-8 Calvert Cliffs Nuclear Power Plant l

For LR Technical Report Template Development September 10,1996 7.6 COMPONENT SUPPORTS 7.6.1 Scoping Commodity Anoroach for Comoonent Supports

" Component support" is defined as the connection between a system, or comli onent within a system, and a plant structural member (e.g., the concrete floor or wall, structural beam or column, or ground outside the plant buildings). [AMR] Supports for structural components are not " component supports" in this sense because any support for a structural component is itself a structural component. [CCNPP IPA Methodology]

Component supports are associated with equipment in almost every plant system. They perform the same basic function, regardless of the system with which they are associated. For this reason, it was determined that a commodity evaluation of component supports would be more efficient to address these supports than evaluating them as part of each system Aging Management Review. [CCNPP IPA Methodology]

Commodity Descriotion As discussed in the CCNPP IPA Methodology section on commodity evaluations (section 7.2),

component supports are scoped using a process similar to the scoping process for structures, as follows.

A generic list of component support types was developed by reviewing industry and plant-specific information, including Seismic Qualification Utility Group guidance, American Society of Mechanical EngineersSection XI component support inspection documentation and the CCNPP System Level Scoping Results. All component support types which provide support to equipment within the scope of license renewal are identified and listed as within the scope of license renewal. Systems having i component supports addressed in this section are identified in Table 7.6-1. [CCNPP IPA Methodology]

j Supports for both the distributive portions of systems, such as piping and cable raceways, and system equipment items are included in the scope of this section. The total population of component supports are grouped intc four categories based on the items the; support (piping, cable raceways, HVAC ducting, and equipment) and then into 20 component support types. Component support types are based on

] similarities of design, loading condition, and environment. All categories and types are shown in Table l 7.6-2. [AMR] l Supports for the steam generators and reactor vessel are not included in this commodity evaluation but .

I are addressed in Sections 4.1 and 4.2, respectively. Supports for the spent fuel pool cooling demineralizer and filter vessel are also addressed separately, in Section 5.7.

Basic design basis information for certain supports is discussed in UFSAR chapters 1 (Principal Architectural and Engineering Criteria for Design), 5 (Containment Structure, Design Criteria), 5A (Structural Design Basis), 6 (Engineered Safety Features Design Basis), and 10 (Steam and Power Conversion Systems). [AMR]

Scooed SCs and Their Intended Functions All component supports within the scope of license renewal were considered to be subject to aging management review except snubbers, which were excluded as active equipment by 54.21(a)(1)(i).

[CCNPP IPA Methodology]

I

1 I

l For LR Technical Report Template Development September 10,1996 Because the component supports subject to aging management review support components that provide

~

functions meeting f 54.4(a) (1), (2), and (3), the supports were determined to have the following passive intended functions, which directly correlate:

l a. Provide structural support for safety-related systems and components.

b. Provide structural support for non-safety-related equipment where failure of this structural component could directly prevent satisfactory accomplishment of safety-related functions.
c. Provide structural support for non-safety-related systems and components which are ,

I j required for fire protection, environmental qualification, pressurized thermal shock, anticipated transients without scram, and station blackout, and credited in the analysis for these events included in thesurrent licensing basis (CLB). [AMR]

i i 4

The design loading conditions for component supports include factors such as dead loads, thermal loads, seismic loads, etc. Supporting information for specific loading conditions of specific supports is 4

maintained on site. [UFSAR][ES-040]

TABLE 7.6-1 SYSTEMS WITIIIN TIIE SCOPE OF LICENSE RENEWAL

CONTAINING SUPPORTS WITHIN THE COMMODITY EVALUATION (CCNPP system numbers are shown in par % eses)

(037) Demineralized Water and Condensate Storage (002) Electrical 125 Volt DC Distribution (038) Sampling System (Nuclear Steam Supply System (004) Electrical 4 kV Transformers and Busses (005) Electrical 480 Volt Transformers and Busses (041)C e cal and Volume Control (006) Electrical 480 Volt Motor Control Centers (042) Circulating Water (008) Well and Pretreated Water (044) Condensate (011) Service Weter Cooling (045) Feedwater

( I ) Saltwater Coohg (047) Technical Support Center Computer (013) Fire Protection (048) Emergency Safety Features Actuation (015) Component Cooling %,ater (055) Control Rod Drive Mechanisms and Electrical (017)instmment AC (058) Reactor Protection (018) Vital Instrument AC (060) Primary Containment HVAC (019) Compressed Atr

, (061) Containment Spray 4 (020) Data Acquisition Computer (062) Control Boards (023) Diese! Fuel Oil (064) Reactor Coolant (024) Emergency Diesel Generators

, (067) Spent Fuel PoolCooling (026) Annunciation (069) Waste Gas (029) Plant Heating

. . (073) Hydrogen Recombiner (030) Control Room Heating, Ventilation and Air (077/79) Area and Process Radiation Monitoring (032) Auxi i u ld g and Radwaste Heating and 3 S (097) Lighting and Power Receptacles (036) Auxilia Fe ar 2

- _ ~ . . . _ . - _-. =_ _ . . - . . - - . ._ .- _- - - .- -

d For LR Technical Report Template Development September 10,1996 TABLE 7.6-2 COMPONENT SUPPORT COMMODITY TYPES REOUIRING AN AMR Component Support Group . . Associated Systems (see Table 7.61 for system title)

Piping Supports Spring Hangers, Constant Load Supports, Sway Struts, Rod 008 011 012 013 015 019 IIangers, and Snubber Supports' Outside Containment 023 024 029 036 037 038 Spring Hangers, Constant Load Supports, Sway Struts, Rod 041 045 052 061 067 083 l Hangers, and Snubber Supports1 Inside Containment (Note 1) 2 Piping Frames Outside Containment Piping Frames Inside Containment Cable Raceway Supports Channel, Clamp, and Other Supporting Styles Outside

~

Cables are not assigned to specific Containment systems.

Channel, Clamp, and Other Supporting Styles inside Containment _ _ _ _

HVAC Ducting Supports Rod Hanger Trapeze Supports Outside Containment 030 032 Rod Hanger Trapeze Supports inside Containment 060 Equipment Supports Anchorage including Elastomer Vibration isolators 030 032 Electrica! Cabinet Anchorage Outside Containment 002 004 005 006 017 018

020 024 026 038 048 055 3 057 058 062 077/79 078 097 (Note 2)

Electrical Cabinet Anchorage inside Containment 077/079 Electrical Equipment (load bearing insulation material) 002 004 005 Equipment Frames (Instruments / Batteries on Racks) 002 008 011 012 015 019 023 Outside Containment 024 029 030 032 036 038 042 044 045 052 061 067 069 083 l Eqt'ipment Frames (Instruments on Racks) Inside 013 038 041 045 Containment 052 064 073 083 j Frames and Saddles (Tanks and Heat Exchangers) Outside 011 012 013 015 019 023 024 029 Containment 036 038 041 061 064 067 069 Frames and saddles (Tanks and Heat Exchangers)Inside 041 052 064 073 I Containment Metal Sj' ring Isolators and Fixed Bases Outside 008 011 012 013 015 019 023 024

. Contair/nent 029 032 036 041 044 052 061 067 Metal Spring Isolators and Fixed Bases inside Containment 060 064 Loss-of-Coolant Accident (LOCA) Restraints 064 Ring Foundations for Flat-Bottom Vertical Tanks 008 023 037 052 i Note 1: Correlation of piping support types to individual systems is not relevant to the AMR results. See more discussion under " Piping Supports."

Note 2: Local control panels and distribution panels in a variety of fluid systems were evaluated in the Electrical i Panels Commodity Evaluation and their supports are included in this support group.

4 Snubber supports include the hardware from the wall and piping / equipment to the snubber pin connections. The snubber itselfis not subject to AMR.

3

/ ~

! Life Cycle Management Unit i

License Renewal Scoping / Pre-Evaluation Discussions October 10,1996 i

1

t Life Cycle Management Unit Discussion Topics System Level Scoping

- Emphasis on Feedwater and structures Component Level Scoping for Feedwater System -

Component Level Scoping for Auxiliary Building Pre-Evaluation for the Feedwater System Scoping / Pre-Evaluation and Commodity Evaluations 2

Life Cycle Management Unit System Level g Scoping Process i e_ 4"~ T~ %l System Level Scoo.ina 8--

-j_,i

- .xn

.c..xm

,_ g.g Methodology Section 3 DBE Vs.1 Steps FP. EQ, T"" ^2$2 - Identify system / structure l l conceptual boundaries

,_., ,s,

.,- - - Prepare screening tools

- Screen systems and 1 2 i

structures

."q=.- m3=._ =3=._ -

sp -

Results I i I I - System / Structure u .L Amcton. for SS.

Information 3

m ,. - Screening Tools SSs w4 thin the Scope

",=';*' - System Level Scoping oruc.n.. a.n. i 7 Resuits 1

ro s.,

(*Tu9s*.") 3

/

E_ F S -_ .

t e .

a m

1 1

4 &

2 2 d

e .

5 . .

- - - = - - T W RSRFh ehn w Ta ot Th - - -

SESECWCh o e T

e e_

w en enmh mme@hT l

HSFCCCA

- - o- .

s- ea = mcnms- ooou"eMCec.

s e ec eee s edae e s h

ee mm3 e .e at e m

se c aes "at nehm 3mm e ,n m ag N r e sea e a emhet uale amugse r re snm d cl d A r

e_ s;4m e n mh be m u

r e mnoesdep s - mn a d -h o n t ec rgs r a ap he p ra Gs yn e rem o s e dse r e eg e

esn ery r ta s n e on raniae aurse e aen d r Wrt e_ ce r a e c t

s a s u. t n raga ehe s ehs l I arn emi ss m a e mn rt-.^mai_

i n y r e se m__ ogahn c nen sobed S

der ag sp t ede eel

-p. -_

s a

ssgt er sen d n t sm s de a lg ys e is og niutsa or aao e o stg r e nee arta aol seceeero Sapp n e om emmhmy hprear r s ete -

ey e l u e L e up s l s e mop dece r

e ms e ke sa sm P e se c emedo necr mmesmgm p

ens r

r ee tnee e

r e r

mr essmt e a me e

as soreyt pep n ay e nete s hemmeye e

r t e&pte th Ta rso e

es emgi da( hse e

lm i t

i ap l

t e

cd l

iv c aagsu a

at danme er rg ams t mat e y

osarl ea rdet r ooe or s s

as o eersee;u sa e s ,ur arsul s

s m r Se t r h -

umOnMst r

st e e ep -

c =

ep a

e gem wtrn d e s a r m s eg Faaadur r w a n e mr r e na - id a sds e ' r i huLs s a wgepg ul Pss r t ey m

a ar a

at ne h eh e ^m a e r ru e hn - w a u r o u n s

t efa eW a s - u der e

gk r uy s us e r

i v

r ut a

n a

e t me

- ^

egw ~daheeym l

n sen t m- e ha ly m mrs aes nhe_

de

= re mV_

r m r e __o ac r7'ai e a rn u ee4 c m s

s e 0 m

s gdg e rab e r_ _e a er mp m e t m ab_ h r

  • r a t me_

t an re m st e

=

= t m y

s c n

^p nbg fe

r tn gr a a e .h m

i he i h er .

rh a e ut r r tmn u

m - ^qJ e 2todt e r nm r s mt e i e-n e m e e l e r

n s thp re e y .

t e s el wg. r

^sc m ._

a. e u e t

o

/

~ acsmW-- r i

r k pi t -

ee r ep a .

S u

m pi a. h_ oe eo y.

e n n td _ e_  ; p eu r a mp u +

g grg atc m .

bu ne d dd

,e gtg n usee i s s ;_ yr seotr r .

l eA km g

age ew s s m e t

e t

.m t ssm e o e er dm-n dv eee be t

m_et edl e ertek e

d m

r t mum

$es eg sr ea

' h ,e

^ tpee uu Ts seat he a

m

. u e re c

l y e-sp eep t r nr ne meu a aw n

r a em e s

s S

G E t e . T L

L A C a

P a

u E r o

r e

3 g

r a

S e

c eU P

g 6 t0 S

e c

aU gPE D

- m 4 a F nS t1 r at e

o F nS t h -

I 1 A 0 R 2

2 o 2 u

3 5

1 A 0R 2

2

,2 a S32

- n f

L i

f mh 1 1 ot ni g to a T T e

p i 1 e

e r e T eus o

h. . 4 T

o r

e1 c

oT me m1 aT k

s o

- 1

~ea T

a T

o e .7 mT ao u m a 5 n.

d T e

L o

r e

u ea r

e3s n pen de we e e-sa i

p u

n ep dn t Md a re ni p t r a n t p r

e cm sus o e mM e p n C

mu- a a n a; _ t yi a e y

mt m

s el r

n Dm3 ee c ne er u e d nd s d a e eh erd c oe d e .

r ag # e t

y. t

- eh o

nr e ma mI m s

t n

aem s

t se e e a

m a e no n o m e

- m e q. c het m u r rm r

e hee egg egs e

e r

m l eg r e t

a r

e m m e n hs e t ni ae e e da n p s wW n

r st m o eo nd e

e a

.m ermt e

t e

a s

d n

e k ruu s

a

^ et

_ ot l

e n

r g

e a

t e l

l eyl n h tar cr e p r i b c m I m-e m

.r htw s t alm me - ow o n t o m . i o

ghes ce s$ o M

e s mo a es b od a t d d e p e J w h s g t n h e m sa o s ueR e &m og m imrt t

se e

nr e um ma e

s e

r as tent e

en sm hei o c l

nh e e- eo s

es e

e r

h o m

p si t d us .

n a n

c s t m m p-o m a a m e e a ih me mG n em yei s cm ee e g e e n c c e k

ae re n g et 1gi sh e met a

mss b r at

.e am r a

e u

r l

ev i

a r

e h

a st e

a t

sp g mu at en a

t o

r e

e r sp ie n

t e

m d

g e

n n

ss m

el o

r c

a r

e s u r

e g ea Wn t n h

t r nr et h o ea er n e

st e

e t

e c

o r

e r

a t

o r

d p

u o t a

l e

e m

a m

p u

l e

e sar e

a n d e

e t

e m

p s si p

m s m e

r n m a

n e

n et P

a g

e t 1

7 o

f P D go S

t S

e c

t U u

mS F gP(

te D

n U

4 7 1 2

5 2 1 A 0R 2m

.S2 3 h n

i 3

. t

mL s - -_ a I i g .

i

!! 1 ll li "I ' l I II 'II k!! (n l[lsi!'r{ l I  !![ll l

ili i i ll < ! hI !

"1 1li! i t it i II !i.119 l! ! !rliI.!k III $

illo 1:

l'il1 iii lji l i1 11it;;itilIl g lii, i! ! iti li!gliii!!!!

1 Iiirir 2 i l 2 11 ,

l'i i 3

13!

II l I

III ii p i ,

jij $

a l i E }

k!I kI '

e h h a!!Ili.niiij h tili i  ! a ?a 1 i ig !gi a l}kk.l$ ll; . ,

5- m II i 11{.

m 1a .i

i. -

a i 't E

!it 111 u !i il e 1i -

5

x Life Cycle Management Unit Tools - DBE Flow Chart Steam Generator Tube Rupture Design Basis Event Even

. . . . . . . I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t I

ace p.

I I I Crttical m.m.m. *==*.=.="*

c .e a is ,c.,,,, n ,,, mm vs. .="*',",,***=,,,*" sat *tY am i r

u-- e c Functions

.......,.............g.......... ....................,............i...................

i 1r ir 1r

,,,,, Plant r 1r i f

i f it it '

t 't

't- Functions a 4.s. P ~.8 aca peu & anas  ; Supposting S.A.sy kg. cal.er RPS R co.s C RCP '**$'8** 408Af.

i An.ca.e Acced.nl ' Pla Lyy 8 V$ Crttiggj $3fg se an e e-m.a Tr p -

c ed e Sh.d es a n.s i u'om me i - DCS

a. l Functions ir r 1r r t ' ' '

if r t t (8 1r u,. A mar cvca j a.nev er,see. arsnaa.p tot

- f.m I acs l Ause*.8 aerpa 88 s aca Systems &

sesansepume I

  • '8884w va acca ce.no vAjimyAcw i

a e nvvor x Vltal vA lus voc .

a 1251EIC$ #8 VAC WDF ' ultas voc u 120VACvir -

Ama a ren ul120Mvor a

$' iI suvvors ,

n an.cs ,

VA 120VAC g . Ac3 VA 120VAc VDF, g,,ggg,,,08 m man n.n e ~

n .

%,,,,, u 12nvoc 5 .- saras tsun, a tasvo: Supporting isaavAcvir , a wArw -(

-OMN! g

' "# the Plant vAliaovaCw Y :cves s vAltaow:w "P'

Functions A, , F , VAl64l goy,,gyor , cane a a tri

, uma as vAjiaava w ,

VA n.ArW -

if i g- VA [u_yoc e VA 120 bAC W g ', * ' 6 ' 'd" bA 12GM$C W rus r -

I'tasvAchip vA 12avacer '

ul4ao vAc vor EExcessissv are i -

M tasvoc - u pas vACvir g iasvAc w a c.o.a r.csa . . - mua ein.ca . ..un m a m e. s . . . = == = an= = - . - - . . = taa .u m m.- --.a .- - . . ac. ..

...-,-.a  : c'm".'""*" .i '"*

.; '"*"' FIGURE 14-15 LEGEND -" *'*" DBE No.15 FLOW CHART

--n== 5 .""'*

. s . " " * ' "

"= -4'"*a*".*" -

======.a== a.=.-. - - =a==.

SCREENING TOOL a., wsAa a si.aaanocis a====.-.=-=====""*'"-

. . Revision 4 l la .i.c3s,.ois .e -

.=. n LCM-12 Revision s n g tygAgg Q.py du ei.y - - . .s. .Ps e e. .

.apas.'

-. e =.-~~ e.a. j 7 - ~ ~ BGE LCM Prograrn 5

.-.~

I Life Cycle Management Unit i VITAL AUXILIARIES WATER COOlafG POWER mm.DISTR.IBUTION mm -Aa BtSTRU.R,IENT A .

- .D. - .RW j _ . .,VAC .C.R. -- . . .WAC .

' Tissgency J Dlusal Generale Sese Weer CeotiG t ConDel Rease HVAO'A e Cangenses Ar* *

' . ESFAS (Nnes t) j @agyw h VA 4 ItV b 12S VDC, VA 1 AC

'129 WJC T M ' '

VA WAC6 NAFW eg g ga.apwa'

] f .,

VA 12S VDC

~

-. - efVAC SAKL '

s . ;p Ap . m

~ '

s 3 CentalResnerww*.;- gwac < p 4 nVg. ; ~ 3 _VA e __p. -

VA SUV VA l 488 VAC VDP

= 4 IEW VDP VA ese VAC VDP

- e " 4A *CNMTs VA 12SVDC 'y y ~ ~ gg.

f.ledstce 4 KV VA 120 VAC NVDP ., , NVAC.ECCGI,' '

. T.

^

_4 thmes VA 400 VAC M' VA EDO , m'Ou T- VA[r ? f20VAC VIP' VA HVAC SWCR VA 125 VDC sas wasar Cecang VAC VDP "

VA IA SWAC VA 120 VAC VDP2 VA e ffVVDP

  • "' 'AO # VA dag VAC VDP 120 VAC VDP va in wc - ., NW AC . PEN Je ..

120 VAC CPT W, I =

  • VA VA Flow Chart Ence. 4s0 V Traner. a simas

~~ l --- dag VAC VDP :.

TA VA VA

. =-

HVAC .SWGR 125VDC i=. HVAC.SWGR .

g e Rmemesse HAVr VA VAg 120 l ese VAC WACVDPt VUP t'?

= 120 VAC VWP Vle AC

" . HVAC. APW% e Aest thablDig ans a VA HVAC CR/CSR pagwasse H&W.

VA l 450 VAC VDPA%

VA l HVAC.SRWWAPW

- 120 VAC MVDP l AC -. Hh AG . EDG VA 480 VAC VDP (h4CC)

VAy l HVAC-CR>CSit m gg I VA l 480 VACVDPN

_ m VDC

=i HVAC. FUEL MAIRR$3 ElecL 12S V DC Dinertuman VA l 440 VAC VDP (BUG) Radweehe HSV ..

VA l HVAC. RAT p. m. .,

VA 125 VDC a. J5 N3

- ECc3 COOLatim i Amt BidAnggik &s Nose (sk - Redsustg HSV'.'. '

(1) Syneems 4. S to, t9. 25,32. 64 and et awumn NsR coregonenis wpurm snusi '

VAC sees thed to suppost ESFAS tancmons See esponset tota.

g 925 VIC ' '" " " '

.= mAC. RWmAPWs Aim Summig mul -

Rartnesse HAW" d VA l 408 VAC fM894 ;

  • REFERENCE VA l 120 VACVDP #

l 814NH0080 l FIGURE 1460 REY VITAL AUXIUARIES FLOW CHART SCREENING TOOL VAIdentmer Va . VITAL AUMauARY Revision 4 ViF . VITAL INVERTER FED V.CF, LCM 12 Revision 6 VA VA e at the sytnene D .VITAL Vim D4ESEL ESa FED,m NVP . NCMvlTAL FED BCE LCM PROGRAM Wed h CPT . CONTROL PCYER TWANSFORMER

/

Life Cycle Management Unit Tools - FP Screening Tool LCM-12 Revision 5 Fire Protection (FP) Screening Tool Revision 4 SYSTEM / S/U Sys FIRE PROTECTION (FP) FUNCTION SOURCE SECTION/

STRUCTURE ID No. SAFE SHUTDOWN (SS) FUNCTION DOCUMENT PAGE Demin Water and 37 SS ProSides back-up source of AFW water to support RCS Heat Removal. Ref 2 Att 1, pg 21 Condensate Storage

  • Includes manual realignment of CST Att 2. Fig 11
  • Includes condenser make-up path isolation and 15 SS Provides make-up water to SRW/CC systems via system hose connections Ref 2 Att 1, pg 15,23 to support RCS Pressure & Inventory Control, and Heat Removal Att 2. Fig 12 (Cold Shutdown). and 15 Chemical and Volume 41 SS Provides primary make-up to support RCS Pressure & Inventory Control. Ref 2 Att 1, pg 13 Control System
  • Includes realignment to auxiliary spray mode [ Notes 3,5] Att 2, Fig 3 and 8 Condensate 44 SS Provides make-up water to SRW/CC systems via system ho;e connections. Ref 2 Att 1, pg 15,21 and 23 Att 2, Fig 12, 15 and 17 Feedwater System 45 SS Monitor Steam Generator Level to support safe shutdown in the event of Ref 2 Att 1, pg 18,19 a postulated severe fire, Att 2, Fig 20 and 21 Safety injection 52 SS Provides RCS Pressure & Inventory Control to ensure safe shutdown in Ref 2 Att 1, pg 14 event of a postulated severe fire. Att 2. Fig 3
  • Includes Sitankisolation [ Notes 3,5}

SS Provides RCS Heat Removal by realign!ng and operating in the shutdown Ref 2 Att 1, pg 22 coo!!ng mode to ensure safe shutdown in the event of a postulated severe Att2 Fig 5 fire. [ Notes 2,3,5]

Page 8 of 12 BGE LCM PROGRAM 7

Life Cycle Management Unit 1 Tools - ATWS Screening Tool LCM-12 Revision 5 ATWS Screening Tool Revision 4 Reference 1 - Calvert Cliffs NuclearPower Plant, Units 1 & 2. Updated Final Safety Analysis Report (UFSAR), Section 7.10 & 7.11.

l SYSTEM / SYSTEM STRUCTURE ID NO. ATWS FUNCTION (S)

Auxfilary 36 Feedwater

  • Provide AFAS START signal (diverse from RPS) on low steam generator water level conditions indicative of an ATWS (AFAS); components include isolators, bistables, initiation relays. and logic modules.

Fe(daater 45 i

  • Provide AFAS START signal (diverse from RPS) on low steam generator water level cnnditions indicative of an ATWS (AFAS) ; components include level  !

transmitters.

Emergency 48 Safety Feature

  • Process sensed signals / provide reactor trip signal (diverse from RPS) on high Actuation pressurtzer pressure conditions indicative of an ATWS (DSS); components include isolators, blstables, logic modules, and initiation relays.

(ESFAS)

  • Process sensed signals / provide turbine trip signal (diverse from RPS) on CEDM undervoltage conditions indicative of an ATWS (DTT); components include isolators, bistables, logic module, and initiation relays.

Control Rod 55 Drive

Mechanism and Electrical Reactor 58

  • Process sensed voltage signals for ESFAS (DTT) trips; components include Protective CEDM power bus undervoltage sensors, intermediate sensor relays.
  • Provide signal to DSS circuits on high pressurizer pressure conditions; componentsinclude pressuretransmitters.

Main Steam 83

  • Initiate turbine trip on DTT signal; components include hydraulically controlled reheater stop valves (Unit 2).

Main 93 Turbine

  • Interrupt power to the Main Turbine Trip solenoid valves / initiate turbine trip on DTT signal; components include trip solenoid valves (both units), intermediate initiation relays and hydraulically controlled intermediate stop valves (Unit 1),

hydraulically controlled auto stop valve (Unit 2), and hydraulically controlled turbine stop valves (both units),

GENERAL - Any systems providing signalinputs to the systems listed above should be reviewed to determine if that system provides the function of loop protection and isolation from electrical faults.

Page1of1 BG&E LCM PROGRAM 8

1 i

Life' Cycle Management Unit System Level Sco.nina. - Structures j Excerpts for ES-011 "SSC Evaluation" (Q List Basis Document) l c) Structures Seals and expansion joints for safety-related structures are SR-CAT l.

{ Turbine Building siding clips are SR-CATI (reference UFSAR 10.A.1.20.1).

The following structures have been designed as SR-CATI and all non-safety-related items in them (except as not in Attachment 3, Section 2.b.S)b)) shall be mounted

structurally as safety-related. Otherwise, these structures are AQ-illl

Containment Structures.

The emergency sump including grating enclosure is SR-CATI (CLASS-649).

The reactor cavity pool seal is SR-PB (CLASS - 2Q9300104).

The reactor cavity neutron shield is AQ-illi (CLASS - 2Q9300104, Rev.1).

I Auxiliary Building (excluding those areas listed in UFSAR Section 3.2.9.2 and the i

west wall above elevation 69'0").

intake Structure (circulating water and saltwater enclosure portion).

Diesel Generator Rooms.

Refueling Water Tank Pumps Rooms.

j Condensate Storage Tank 12 Enclosure Structure.

i Fuel Oil Storage Tank 21 Enclosure Structure.

Auxiliary Feedwater Pump Rooms.

Diesel Generator DGOC Electrical Ductbank (excluding those areas listed in ,

UFSAR Sections 5.2.10.5 and 5.2.10.6) (CLASS-2Q9300111, CLASS-2Q9400020).

i 9

._ _ .__ _ _ ._ _ _ __. _ _ . ._ _ _ _ _ _ _. . _ _ . _ _ - _ _ _ . - , . _ _ _ . . _ . . _ . _ . _ . - - ~ _

Life Cycle Management Unit System Level Scoping Results LCM-12 Revision 5 I

BGE LCM PROGRAM i

TABLE 2 SYSTEM LEVEL SCOPING RESULTS Revision 4 CRITERIA 1 & 2 CRITERION 3 Req'd SystemIStructure Classi ClassIof SR-UnN ID for DBE In ScoPo Chemmal and Volurne DBE Plant F"%(s) Q orSR1M 1M Reference PAM FP ATWS 880 PTS Na 15 EQ Yes/No Control (CVCS) Na 16 (continued) Na 17 Na28 Caculatog Water 1&2 42 No None Yes N/A N/A No No No No No No Yes Condenser Air Red 1&2 43 No None No N/A N/A No No No No No No No C .G i ate 112 44 No None No NA N/A No Yes No No No No Yes Feedwater 1&2 45 Na2 Cntnt Owr areProtechon(s14) No mA NJA Yes Yes Yes Yes No Yes Yes No. 3 Prevert Reverse Flow from SG (s26)

Na 4 Cntrrt Press Control & eq (s13,14,17)

Na5 Provide Signals to ESFAS (#14,15)

Na8 PnMde Signals to RPS (54,6,7,12,14,26)

Na7 Provide Signals to AFAS(NOT #7 & #26)

Na9 isolate Affected SM (814,15)

No.10 Na12 Na 13 Na 14 Na15 No.16 Na17 No.18 No.26 Ea -, 0-- 46 1&2 No.13 C 6..@d-%(s13,17) No N/A MA No No No Na17 No No No ies F" Heater 1&2 47 No None No N/A N/A No No No No No Drame and Verts No No i Page 7 of 17 10 h

1 w < w rr , s9

M Ufe Cycle Management Unit LCM-12 Reviskan $

System Level Scoping Results BGE LCM PROGRAM TABLE 2 SYSTEM LEVEL SCOPING RESULTS Revision 4 CRITERIA 1 & 2 CRJTERION 3 Re(d ClassI ClassIor SR-SysterntStructure Unit ID for DBE In Scope DBE Plant FeMs) Q or SR-lu 1M Reference PAM FP ATWS SBO PTS EQ Yes/No Docks and Manne Reized Batn 108 h None No NJA NA No No No t4o Structures No No No 8amers and Bamer Botn 120 No Penetratene Nane w NA NA No Yes No No h 94 o Yes Amhary Buenng Both - M 19 A  :- - Frorn Turtane Generatar No Yes UFSAR No Yes No No No No Yes Produced Meaaes Chaper 5 Concensate Storage Tark Botn No 812 Enclosure t4ane w Yes UFSAR No No No No No No Yes~

Chaper5 WM Water Botn - No None h h NA No No No No No No No Trommere Plant

@e Gen House Both - No r4one No No NA No M No No No M No Eqe;M Hatch Access 1&2 - No None h No leiA No No No f40 No h No SuMeg 81 E? ', _ a Hatch A~-- 1&2 Bsang #2

- No None t4o w NA h No No No No No No Fra Protectum Botn - No None No too NA hs No No No No No No Pump House Fue6 Asserntses 1&2 -

Na 2 Reactor Core Performance (AA Req'd OBEs) NA No' w

~

No NiA No No No No Yes Na3 tact 4 Na 5 Na 6 Na 7 Na 8 Nct 9 Na 10 Na 12 Na 13 Nct14

}

10A e.ge is ,1,7

Life Cycle Management Unit

== L~ J;TE"*?n', Component Level Scoping Process for

- ,- cr-

, systems - Systems 4_-

ATWS, EQ Saeerung

" "Q'8 d*'*d # "**d*d 7 Methodology Section 4.1

%"T@ ,

  • Steps

.':"'O*C

- Identification of detailed system functions X m m o ..

/ ,, ,, _ N - Development of function f" * ~ ' ' ~ ' ~ catalogs

/  :

s- <~ _

- Generation of scoping

" ~ " * " "

4 "= I '~ ~ ' results tables

-~ , - - -

rd- j . ":TE~ L .-

  • Results g_ l 1 ,_ h. - Intended functions list

_-*s - Function catalogs g / 1

- Component Level Scoping i ,_

m,,,,,,,, Results

    • 07"."O'

,. f function (s).

rwu 11

M Ufe Cycle Management Unit Table 1 -Intended Functions SG&E LCM Program par.E 1 TABLE 1: ITLR SYSTEN FWCTIOh3 REV. 1 DATE: 01/29/93

$YSTEn: 045 FEEDWATER GLIST ITLE Criteria 1 & 2 Criterton 3. 4

. C A FUhCTION Dat L P P T 5 L DESCalPTION 30 NLM6ER 1 1 1 1 1 1 1 1 2 5 s A 1 1 P E T W 8 F C OF FUhCTIOu 2 3 4 5 6 7 8 9 0 2 4

==== -

3 5 6 7 a 6 0 1 M Q E N 8 0 5 5 0 P O La045-01 SEhD $1GkALS TO ESFAS AND Pt0 VIDE STEAN GEMERATOR 150LAf t0M.

(fra 92-155 ADORESSES T3E APPLICABLE DSEs FOR Tuls FUNCit0N)

. . . . . . . . . . . 1 X . . . . . . . . . . . . . . . =l e

E E

ua5 02 P.OVioE CO. Amu Ommssuit n=Cuc.. . . . . . . . . . . . .

. . . . . . . . . . . . . . . .I Lt045-03 Pa0 VIDE CouTAIMMENT ISOLATION.

. . . . . . . . . . I . . . X . . . . . . . . . . . . . .

e

.l lag 45-C4 i PREVENT REVER$E FLOW FatM SS VIA CLOSURE OF CHECK VALVE. 1

.l Lt045-05 MAlmTAIN FWCTIOhALITY OF ELECTRICAL EQU1PMENT AS ADDRESSED ST THE EG Panrm, . . . . . . . . . , . . . . . . . . . . . . . . 1 . . . . .\

n t

I LA045-06 TO MAlhTA!E THE PRES 3ung animensi 0F fut $YSTEN LIQUID.

. . . . . . . . . . . . . . . . . . . . . . . X . . . . . .l LR045-07 TO PacVICE IuF0aMAf tcu usED TO ASSESS inE PLANT Amo EEVIE0kS CONDITION OWING ARD FOLLadING A5 ACCIDENT.

. . . . . . . . . . . . . . . . . . . E . . . . . . . . . .I t

I u x5 07.A .0T uiE.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 I 1 LR045-07-8 STEAM GENERATOR LEVEL.

. . . . . . . . . . . . . . . . . . . . . . . . . . . = * *l i

La045-07-C STEAN CEMERATOR PRESSURE. (TPS92-155 EEGLESTS THE ADOTION OF TNIS PAAAMETEA)

.........................l 12

Life Cycle Management Unit Table 1 -Intended Function i ' page 2) ,

BC&E LCM Program paw: 2 TABLE 1: ITLe sfsTEM FUNCTIObs eEV.1 sfsTEM: 045 FEEDuTER CATE: 01/29/93 GLIST ITLt criterie 1 & 2 Criterion 3 4 fuhCT10m C k DESCRIPTION DBE L P ID NUMEf.R P T s

... .. .~ Of fuuCTIou 2 3 4 5 6 7 8

\1 1 1 1 1 1 1 1 2 5 s A 1 1 P E T W 8 f L

C

,._ 91 0 2 3 4 5 6 7 4 6 0 M e n 1 E a e $ $ 0 P O

.l. . . . . . . . . . . .

Lt045-08 . . . . . . . .

PROVIDE STEAM CENERATOR LEVEL tlCICATION. . . .

LR045-09 t . . . . . . . . . . . . . . . . . . . . . . . E . .l 70 MAINTAIN ELECTRICAL CONTIuu!TT AND/OR PROVIDE PROTECTION TmE ELECTRICAL STsTEM. . OF a

. . . . . . . . . . . . . . . . . . I . . . . . . .]

1 t:045.to PaOVioE CtosumE Or ConTAinaiEmi is0LATICE VALVES. (TPt 92155 WITTEu TO DELETE TNIs FUNCTIO 4)

......................... K - .I La045-11 Pa0 VIDE s!GNALs To AFAs.

B M. X X X X X .X X X X X X X X .

X . . . . . . . . . . . . .

t 045.i2 P.0VroE sicots 10....

. . . . . . . . . .j b

13

Life Cycle Management Unit Function Catalog -

LR045- 06 Pressure Boundarv BGCE CCNPP ITLR COMPONENT FUNCTION CATALOG Revisions 1 EXTRACT DATE: 11/04/92 REPORT DATE 01/29/93 FACE NUMBER: 1 FUNCTION: LR045-06 SYSTEMS 045 EQUIPMENT 1D REFERENCE NOTES 1#DB1-1018 NETD 1 1#DB1-1019 NETD 1

.#DB3-1001 NETD 1 1#DB3-1002 NETD 1 1CKVFW-130 NETD 1 1CKVFW-133 NETD 1 1HVFW-1501 NETD 1 1HVFW-1502 NETD 1 IHVFW-1503 NETD 1 1HVFW-1504 NETD 1, TPR 92-144 1HVFW-1505 NETD 1 l 1HVFW-1506 l NETD 1 l 1HVFW-1507 NETD 1 1HVFW-1508 NETD 1 1HVFW-1510 NETD 1 1HVFW-1511 NETD 1 3HVFW-1512 NETD 1 1HVFW-1513 NETD 1 1HVFW-1514 NETD 1 INVFW-1517 NETD 1 14

I Life Cycle Management Unit Component Level Scoping Results

$G&E Life Cycle Management Program PAGE: 78 TA8LE 2 ITLR COMPONENT LEVEL SCREEhlhG RESULT 8 SYSTEM: 045 FEEpuATER DATE: 01/28/93 REYll!ON: 1 NiY'F'$ EXTRACT DATER 11/04/92 EQUlPMENT ID EQUlPMENT DESCFIPfl0N FUNCTION ID ITLR (REF TA8LE 1) REFERENCE LR OR N NOTE FLW$NT 103C LR LR045-03 UFSAR Ch5 Fs10 tt sh22 LR045 06 NETD LR 1Mov45160P 1: SG FW 150L tt045-01 FLWSNT-103C LR FLW5NT 1038 LR FLWSNT 103A LA FLWSNT 136 LR LR045-02 FLW5HT 103C LR LR045-03 UFSAR Ch5 Foto LR Sh22 LR045-05 NETO LR 1Mov4517 12 so FW !s0L l l

LR045 01 FLWSNT 103C LR FLWSNT 1038 LR FLW5NT 103A LR FLWSNT 136 LR LR045 02 FLW5NT 103C LR LR045 03 UFSAR Ch5 Fg10 LR Eh22 l LR045 06 l NETD LR IMov45170P 12 SG FW 150L OPER

  • LR045-01 FLWsNT 103C LR FLWSNT 1038 LR FLWSNT 103A LR FLWSNT-136 LR LR045-02 fLWsNT 103C LR LR045-03 UFSAR Ch5 Foto LR Sh22 LR045 05 NETD LR 1Mov5087 11 SGFP NP $f DP A87/E $f A N

1MOV50870P 11 FW $GFP NP $ TOP A80VE N

1Mov5088 11 SGFP NP STOP SELN $E A N

1Mov50880P 11 FW SGFP NP STOP SELOW 15

[ Life Cycle Management Unit Component Level Scoping for Structures _COmDOnent gLevel ScoDina -

- i Structures

=  :=:=.

20:=== C -

Methodology Section 4.2

= t ,. . = = =,

jg_

  • Steps j - Function identification

. ~-' - Generic Structure Component Types 1

~ ~ " " ~ ' ~ "

- Structural components which contribute to intended I functions

  • ~#
  • Results l

- Tbl 1S Structure Intended

" "*"'L*,.i"*""" " Functions

! - Tbl 2S Structural Components

_ ,,y g .- that are part of the structure i

- Tbl 3S Structural components '

j u.i a .m.cw within the scope of LR

.L7'T,*i.O Figure 4-2 jg

-_ . _ . _ _ . _ ._ ..~._ _ -, . . . . . , _ . _ - , . . _ _ . . _ . , _

x M Life Cycle Management Unit Table 1S BG&E LCM PROGRAM LCM-11S REV.1 TABLE 1S: STRUCTURE INTENDED FUNCTIONS Rev.1 Date:3/20/S6 STRUCTURE: AUXILIARYBUILDING SHEET 2 OF 2 INTENDED DESCRIPTION OFINTENDED FUNCTION CRITERIA APPLICABLE TO FUNCTION mis ID NUMBER STRUCWRE?

Yes/No 1 2 3 4 LR-S-01 Provides structural and/or functional support to safety- X Yes related equipment LR-S-02 Provides shelter / protection to safety-related equipment X Yes LR-S-03 Serves as a pressure boundary or fission product X Yes retention barrier to protect public health and safety in the event of any postulated DBEs LR S-04 Serves as a missile barrier (intemal or external) X Yes LR-S-05 Provides structural and/or functional support to non. X Yes safety-re:ated equipment whose failure could directly prevent satisfactory accomplishment of any of the required safety-related functions LR-S-06 Provides flood protection barrier (internal flooding event) X Yes LR S-07 Provides rated fire barriers to cont'me or retard a fire from X Yes spreading to or from adjacent areas of the plaat 17

7 M Life Cycle Management Unit Table 2S - Concrete BG&E LCM PROGRAM LCM-11S REV.1 TABLE 2S Rev.1 STRUCTURAL COMPONENTS THAT ARE PART OF THE STRUCTURE Date: 3/20/96 STRUCTURE: AUXILIARY BUILDING SHEET 2 OF 5 COMPONENT in Structure in Structure Reference Remarks / Reference (s)

Yes/No A Concrete (including Reinforcing Steel)

1. Foundations (Footings, Beams, and Mats) Yes 61466,61-668 thru 61-671
2. Columns Yes 61 4 66,61-670,61 4 71,61-675,63-675,61-680,63-680,61-693 thru 696,61-719
3. Walls Yes61-666,61 4 70,61-671,61-675,63475,61-680,63-680,61-685,63485
4. Beams Yes61-979,61-980,61-714,61-715,61-996
5. Ground Floor Stabs and Equipment Pads Yes61-680,63-680,61-991 See D.6 this table
6. Elevated Floor Slabs Yes 61470, 61 -671,61-675, 63-675,61-680, 6M80,61-685,63-685,62-149 through 62-153
7. Roof Slabs Yes61-685,634 85,61-690
8. Cast-in-Place Anchors Yes61-670,61-671,61-973,61-991,63-502,63-503
9. Manholes No
10. Duct Banks No
11. Grout Yes 61 4 66,63-510,63-512,63-522
12. Concrete Blocks (Shielding) Yes63-884,61-670,63-511
13. Precast Concrete No
14. Fluid Retaining Wa!!s and Stabs Yes61-706,61-707,61-708
15. Masonry Block Wa!!s Yes62-128,62-172 thru 62-176

)

16. Post-Installed Anchors Yes61-670,61 671 (Expansion and Grouted Types) 18

Life Cycle Management Unit Table 3S - Structural Steel BG&E LCM PROGRAM LCM-11S REV.1 TABLE 3S: Rev.1 STRUCTURAL COMPONEFCS WITHIN THE SCOPE OF LICENSE RENEWAL Data: 3/20/96 STRUCTURE: AUXILIARY BUILDING Component SHEET 3 OF 10 Intended Function Intended Functan Description Number Remarks / References LR-S-

8. Structural Steet
1. Coha*

1.5 See Note S-1

2. Beams 1,5 See Note S-2
3. Base Plates 1.5 See Note S-3
4. Floor Framing 1.5 See Note S-4
5. Roof Framing 1.4.5 See Note S-5
6. Roof Trusses 1.4.5 See Note S4
7. h". 1.5 See Note S-7
8. Girts N/A c-~--" not withm the scope of LR
9. Platform Hangers 1.5 See Note SS
10. "W. 1.5 See Note S-10
11. Jet Impingernera Barriers 2 See Note S-11
12. Ught Poles ComF--" not in F-_ =--
13. Steel Liners 3 See Note S-13
14. Light Gage Metal a ** -

e'-

not in s:ruct.se
15. Floor Grating N/A r= ---- -5 not within tne scope of LR
18. Checkered Plate N/A Comp--" not within the scope of LR
17. Stahs and Ladvars MA c-=---- ---: not wittiin the scope cf LR
18. Lintels -

e- . ant not in stnxture m 19

M Life Cycle Management Unit Table 3S - Unique Components BG&E LCM PROGRAM LCM-11S REV.1 TABLE 3S: Rev.1 STRUCTURAL COMPONENTS WITHIN THE SCOPE OF LICENSE RENEWAL Date: 3/20/96 STRUCTURE: AUXILIARY BUILDING SHEET 5 OF 10 Component intended Function intended Function Description Remarks / References Number LR-S-D. Additional Components

1. Watertight doors 6,7 See Note SP-1
2. Lead Brick Shielding 2 See Note SP-2
3. Roll-up Doors 2 See Note SP-3
4. New Fuel Rack Assembly 1 See Note SP-4
5. Monorail 5 See Note SP-5
6. Equipment Pads
a. Control Room HVAC Equipment Room 1,5 See Note SP-8 See Tabte 4
b. EmerDency Diesel Generator Rooms 1,5 See Note SP-6 See Table 4
c. Charging Pumps Rooms 1,5 See Note SP-6 See Table 4
d. ECCS Pump Rooms 1,5 See Note SP-8 See Table 4
e. Switchgear & Electrical Equipment 1,5 See Note SP-6 See Table 4 Rooms
f. Component Cooling Pump Rooms 1,5 See Note SP-6 See Table 4
g. Service Water Pump Rooms 1,5 See Note SP-6 See Table 4
7. Cask Handling Crane Rail / supports 1,5 See Note SP-7
8. Pipe Whip Restraints 2 See Note SP-8
9. Expansion Joints 2, 7 See Note SP-9
10. Spent Fuel Storage Racks 1 See Note SP-10 20

Life Cycle Management Unit Pre-Evaluation Process Pre-Evaluation

'v_ . -

,. i.c? -

Methodology Section 5 i

_ f ,. _ s >

,c, Steps

~~'"*"

L 2.:% ._ - Categorized intended

, " "4" functions as active or g'"L;*". 3 ,,, . passive.

E" mim ~

sc. - Determine long-lived or short-ga,ae ---.

g QU" --. -

."-.E",

LT43. - Determine whether

_ components will be covered C sc. by a commodity evaluation.

l

    • "" 1 x -

i G sc.' - Exclude components Y  ! '"7 specifically excluded by LR m, sc. . ..J (Jc-) "

Rule.

i SCs Subject -

Results m MR

- List of SCs subject to AMR.

+ +

Evaluauon r eo,. s., 21

l r

m Life Cycle Management Unit i Pre - Evaluation Results ATTACllMENT 4, COMPONENTS SUBJECT TO SYSTEM i AGING MANAGEMENT REVIEW Component Pre-Evaluation Revision i System: Maln Feedwater (045) Date: March 7,1996 l

4 EquipmentID ' Equipment Description 7 ;

1.D81 1018 FW SYSTEM PIPING l-DB 1-1019 FW SYSTEM PIPNG l-DB3-1001 FW SYSTEM PIPING l-DB3 1002 FW SYSTEM PIPIMG ICKVFW-130 12 50 FW llDR CKV ICKVFW-133 11 SG FW llDR CKV lilVFW-1501 LT 1l13A ROOT liiVFW-1502 LT il13A ROOT lilVFW-1503 LT ill3A ROOT lilVFW-1504 LT lll3A ROOT lilVFW 1521 LT-ill3B ROOT lilVFW-1522 LT 1113B ROOT j IHVF W-1523 LT-1113B ROOT j liiVFW-1524 LT-ill3B ROOT '

tilVFW-154 i LT-1113C ROOT lilVFW 1542 LT ill3C ROOT lifVFW-1543 LT ill3C ROOT lilVFW-1544 LT ill3C ROOT IliVFW-1561 LT-l 113D ROOT liiVFW-1562 LT-1113D ROOT lilVFW-1563 LT-il l3D ROOT liiVFW-1564 LT il13D ROOi lilVFW-1587 1-LT-ill4A ROOT VLV llIVFW 1588 l-LT-ill4A ROOT VLV lif VFW-1596 l-LT-1114B ROOT VLV liiVFW-1597 l-LT 1114B ROOT VLV lilVFW-1601 LT-1123A ROOT liiVFW-1602 LT l123A ROOT lilVFW-1603 LT-il23A ROOl IllVFW-1604 LT-!123A ROOT 1FIVFW-1621 LT-1123B ROOT lilVFW 1622 LT-1123B ROOT lilVFW-1623 LT-11238 ROOT lilVFW 1624 LT 1123B ROOT liiVFW-1641 LT-1123C ROOT lifVFW-1642 LT-il23C ROOT lilVFW-1643 LT-l123C ROOT lilVFW-1644 LT-1123C ROO F j lH VFW-1661 LT-1123D ROOT lilVFW-1662 LT-1123D ROOT

' tilVFW 1663 L1-il23D ROOl lilVFW-1664 L1 il23D ROOl tilVF W-1687 l-LT il24A ROOT VLV I IllVFW 1688 l LT-il24A ROOT VLV

- Page i of 3

Life Cycle Management Unit Pre - Evaluation Results ATTACIIMENT 4A, COMPONENTS SUBJECT TO COMMODITY AGING MANAGEMENT REVIEW Component Pre-EysNation Revision i System: MAjn Feedwater (045) Date: March 7,1996 Q,4 , IInstrutnent'Ilnes COnan1bSity Efalsa'ti5ns, . ,

' iEquipment IIO - ,

~^

OEquipme'niDescription 1 IIfVFW-I505 LT-1II3A HI VENT liiVFW 1506 LT-1113A DRN liiVFW-!$07 LT-1113 A ISOL liiVFW-1508 LT 1113A ISOL liiVFW-1510 1105-LT ISOL llIVFW-1511 LT-ill3A EQUAL IHVFW-1512 LT-ill3A IVU DRN IHVFW-1513 LT-1II3A DRN liiVFW-1514 LT-1113A I.VU DRN IHVFW-1517 l 105-LT ISOL IHVFW-1518 Il05-LT ISOL llIVFW-1519 1105-LT DRN liiVFW-1520 i l05-LT DRN ll!VFW-1525 LT-1113B HI VENT 3VFW-1526 LT 1113B DRN llIVFW 1527 LT 1113B ISOL llIVFW-1528 LT-1113B ISOL llIVFW 1530 1-LT illi ISOL liiVFW-1531 LT 1113B EQUAL lllVFW 1532 LT-1113B 11U DRN 1IIVFW-1533 LT-1113B DRN lHVFW-1534 LT-ill3B B/U DRN tilVFW-1537 l-LT-li t i ISOL lif VF'> 38 1-LT-1111 ISOL l}lVI" ~339 t il l-LT DRN liiVFM1540 t ill-LT DRN tilVFW-1545 LT-lll3C HI VLNT llIVFW-1546 LT ill3C DRN I!!VFW-1547 LT-1113C ISOL lilVFW-l$48 LT ill3C ISOL lliVFW-1550 1105-L1 B/U DRN llIVFW 1551 LT ill3C EQUAL llIVFW-1552 LT lil3C B/U DRN IHVFW-1553 LT-i l l3C DRN IHVFW-1554 LT ill3C IVU DRN lilVF W-1557 1105-LT B/U DRN llIVFW-1565 LT-1113D !!! VLNT liiVFW-1566 LT-ill3D DRN llIVFW 1567 LT il13D ISOL liiVFW-1568 LT Il13D ISOL IHVFW-1570 11 Il-LT IVU DRN liiVFW-1571 LT-i ll3D LQUAL Page i of 10 l

l 1

Life Cycle Management Unit Scoping and Commodity Evaluations IPA Flow Diagram p Passiv.

.?

}f SSC Scoping Syst.eJ+v.I & Activ. SC g..;-"' i%

r.,i SS-~. ' if h,

~ =

For electricalpanels r .,L ", ,, andinstrumentlines

  • 2" """ '7???, ': '"*";';,*

" > evaIuations,

n. t.

L"','2;' 1i '

1r ,., ,., y7 - the commodity m .-~a evaluation replaces

'C:E" -

programs to ma ag. only the AMR sDp 1i * " " * * * **'"'-

SCs NOT SUBJECT TO of the IPA.

.?:,% "".*;;.'l;',:"~*x - Scoping / pre-eval are done per the Commodity Evaluation standard process.

of ElectricalPanels &

Instrument Lines 23

M Life Cycle Management Unit Scoping and Commodity Evaluations (Cont.?

IPA Flow Diagram p,g Pa..iv.

V =

For the FP commodity C. .*' 0".*. n . 'L, Aes.

to pesiodic evaluation

~~~"'

. SS within y - Systems in scope

.::n -

,e , , , _ primarily for FP

.L"'",o"'.. ,,;' '%

C'.',;""'~

n'?L*".

~

"w function were scoped &

pre-eval'd as part of the

. :u2,.

- Y 3 v.. v.. V commodity eval.

systems m o ...u.o orne, "'

,,y,.~,~., - Othersystems with FP in scope 3(

FPsystems C",,"N;g"? functions Were scopedl Primarily V y for FP

,e,,,,,u,,,,,,,

AMR 0 Uon e pyg.gyafc Using me t

y e- 4 4 y ea-standardProcess.

Fire Protection Commodity Evaluation i

24

f[M Life Cycle Management Unit Scoping and Commodity Evaluations i 'Cont.) ,

IPA Flow Diagram Function Passive "2:,' y =

For the Cranes / Fuel ssC se.pwa System Level & Active 30 Handlina commoditv G #

?:~,r"~c t. ;,1 evaluation replacement V

- Systems associated

' ;"'*"" . Y ei- '

",;~, . with load handling /

' C=" %M1: ~~"

. .'u"l' refueling were scoped M8D 7 activttles

,'Lm.. y y Yes Yes

)f as part of comm eval.

mprograms e~~ or

- Structures component Structuralcomponents pr$r$=""*5Ns . leVelscoping results within the scope of LR V ***"*' **"*

Were reviewed to SCs NOT SUBJECT TO Y

o. t, , t

- ante, m.

ensure proper yngg,ygg,,,

V Cranes /FuelHandling Commodity Evaluation 25

=

,t i J

M Life Cycle Management Unit J

Sco.oina_ and Commodity Evaluations (Cont.'l . .

IPA Flow Diagram i

Pa..tv.

Function 2'," y For the Cables &

    • c 21%

.,. ,,,,,, ,e Component Supports K?"'"'

b'C3 commodity evaluations f" -

- Commodity evaluation

. gg,,, v~ .~- ,

".;in*, u. covered all steps of the

=r,:"* ,Lya.' "".c"tivm..'.'"? IPA.

'""*"' V V r.. r.. y - Scoping step was

~;,, .:n closely linked to Components within gn.nt"**, ,,,. scoping resuits for

'^* "' ?" " se.,,or,?aerra y ** '"" y"' supported components

^= o.~.--n - .n.c<.

of aging ar, ad.quauty manag.d.

and electricalloads.

Component Supports & Cables

\ Commodity Evaluations 2s

I i

- ' ~ Os hE5N+N9mp5;;;ggg:. ..

.:gt.j;itqt4";ggype=w w m .5vz::;  :

Piping Design & Analysis at l Calvert Cliffs Xuclear power Plant -

i i

j

. By Todd Conner Oct.10,1996 1

3

'l

_ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ . _ _ _ _ _ _ _ _ _ _ . _ _ _ . _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ . _ . _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ . _ . . _ . _ _ . _ . _ _ _ . _ _ _ _ _ _ _ ___.....__..____.__._____<m-_ _ _ . _ _ _ _ _ _ _ _ _ _

i l Purpose m -__

l e Identify what the current licensing basis l requirements are for piping at CCNPP e Identify Piping Design Engineering Capabilities at CCNPP 1

- - - _ - - - . - - - _ _ _ - - . - . - _ . _ - - . _ - - - - _ . _ - . - - _ - - _ - - - - - - _ - _ - _ . - - - - - - _ - _ _ _ . _ . - _ _ _ - - - . _ . . _ . _ _ _ . _ _ - . _ . _ - - _ - . - _ _ . _ . _ _ _ . - _ . . _ _ . - _ - - _ _ _ _ _ _ - - - - _ _ - - . - - - - - ~ - - - - - . _ _ _ _ _ _ - _ - - . - . - . - _ . _ . . - _ _ .

4 Design Codes at CCXPP l

e B31.71969 - autumn '71 Class 1 Systems Class 2 systems off the RCS (Typically) o B31.1 1967 - summer '72 Class 3 systems e Section 1111965 winter '67 NSSS Vessels e Section ill 1977 summer '78 Third Train AFW (Added after constr.)

9 System vs. Code

- --._gy -

_;_:_ g m o Class 1 systems Reactor Coolant System (B31.7 Class 1)

RCS Attached Piping (B31.7 Class I) '

- Safety injection

- Letdown / Charging

- Pressurizer Spray / Aux... Spray i

- NSSS Sampling System '

- Surge Line

- Safety Valve Lines '

1

System vs. Code

___- ,7 y; g-e Class 2 systems Feed Water (B31.1) n Charging / Letdown / Boric Acid (B31.1)

ECCS - LPSI, HPSI, CS, SDC (B31.7 Cl 11) n AFW (B31.1) e Class 3 systems Service Water, Comp. Cooling Water, Saltwater (B31.1) ,

AFW Motor Driven (Section ill )

Spent Fuel Pool Cooling (B31.7 Class 111)

UFSAR Requirements

==____ = -- - t i

e Chapter 4 (Class l}

o Chapter 5A (all seismic}

o Figures 5A-6 and 4-8 (specific load i combinations & limits;>

i i

I I

Seismic Basis for Piping .

- =

o Cat. I Structures (UFSAR Ch 5A}

Response Curves Damping Values .

Code Case N-411 e

i i

l' TABLE SA-6 I

TABLE OF LO40IM COMBINATIONS AND PRIMARY STRESS LIMITS FOR NOCLEAR CLASS 2 AND 3 PIPIM i LOADING COMBINATIONS PRIMARY STRESS LIMITS  :

Vessels Pipine Supports

1. Design Loading + OBE P, s S, P, s 125, Working Stress i

P, + P, s 1.5 S, P, + P, s 12 S,

2. Nomal Operating P, s S, P, s S, Within Yield Loadings + Safe Shutdown + Earthquake r 3 P, s 1.5 S.((p e-S, P, s 4 S, Cos ,
  • p"- ,

),_ x (2 S,; i (b) (c) i

3. Nomal Operating P, s S t P, s St Deflection of supports Loadings + Pipe Rupture limited to maintain .

+ Safe Shutdown -

r 3 supported equipment within .

Earthquake P, s 1.5 1-

"yr -

St P, s 4 St Cos ,* p"-

limits shown in columns (1)

(S,)2 x (2 S>

t and (2) g) (e).(c) i t

"3 These stress criteria are not applied to the piping run within which a pipe break is considered to have occurred

(*) For loading combinations 2 and 3 stress limits for vessel, with symbol P, changed to P,, should also be used ,

evaluating the effects of local loads imposed on vessels and/or piping.

(*) The tabulated limits for piping are based on a minimum " shape factor." These limits may be modified i incorporate the shape factor of the particular piping being analyzed.  ;

CALVERT CLIFFS UFSAR SA.3-35 Rev. 18

^

1 1

dynamic earth pressure as well as static earth pressure ~

(Section2.7.6.4).

SA.3.1.14 Desion Code References The design and checking of the design have 'been made in accordance with the provisions indicated in the ACI Code and Commentary 318-63, Section 2603(a), 2603(b) and ACI Committee 334 (Concrete Shell Structures Practice and Commentary), Section 202(d), 202(e) and Commentary Part 4, except as modified in Updated Final Safety Analysis Report Section 5.1.2.3 through 5.1.2.6 and Section 5.1.3.2.

SA.3.2 SEISMIC CATEGORY I SYSTEMS AND EQUIPMENT DESIGN l Seismic Category I systems and equipment, including pipe, are designed to meet the load combinations and stresses as stated in Table 4-8 for Nuclear Class 1, and Table SA-6 for Nuclear Class 2 and 3, and non-class. Seismic Category I systems and equipment are bolted down rigidly to supports or braced (as in the case of cable tray supports) to resist seismic and tornado forces. The NSSS contractor is taking exception to this support approach and the individual supports were designed based on the criteria outlined in Sections 5.1.1 and 5.1.2.8.

There are no significant gaps between the equipment and their supports or restraints. Any small gap will not cause significant impact forces on the equipment, restraints or the structures. Therefore, small gaps between the equipment and supports or restraints are not significant in the consideration of the seismic analysis.

Defonnations in support structures will limit strains in piping systems to the criteria stated in Tables 4-8 and SA-6 for those l systems essential to safe shutdown of the plant following a LOCA.

The Containment penetration assemblies are designed to accommodate the forces and moments due to pipe rupture. Guides, pipe stops, increased pipe thicknesses or other means are provided to make the penetration the strongest part of the system.

The mathematical models employed in dynamic (seismic) analysis of the i Reactor Coolant System cmponents were formulated using lumped l O

CALVERT CLIFFS UFSAR 5A.3-22 Rev. 18 l

~ parameter modeling techniques. A single composite model was employed in the analysis of the couple components, which included the reactor vessel assembly, the two steam generators, the four reactor coolant pumps and the reactor coolant piping. The total mass and related stiffness of each of the coupled components was included in the model.

Sufficient mass points were included in the mode.1 and, at each mass point, translational dynamic degrees of freedom retained, so dynamic analysis includes the combined vertical, torsional and horizontal response of the system due to seismic excitations.

A separate multi-mass model was employed in the seismic analysis of the pressurizer.

5A.3.2.1 Pipino For the design of Seismic Category I piping and equipment, l coefficients were based on the floor response-spectrum curves. These curves were generated using the time-history technique for both horizontal and vertical direction, for various damping values, and at designated floor elevations in the Category I structures. This method is based on a dynamic analysis of multi-degree-of-freedom system. Code Case N-411 g of the ASME B&PV Code may be used to take advantage of the flexibility in piping systems (Section 5A.3.2.2).

i Buried Pipes All Category I buried pipes are designed for bending stresses l due to ground motion. At the joints, where direction of pipe changes, a cushion of compressible material is provided to accommodate any rotation of the pipe joint.

Above-Ground Pioes Piping systems are anchored and restrained to floors and walls of buildings. The relative seismic displacements between buildings, between floors in buildings, and between major components are applied to the piping, anchors and restraints. Seismic movements are always considered to be out of phase between buildings, hence maximum relative

.)

CALVERT CLIFFS UFSAR SA.3-23 Rev. 18

l i

displacements are used. The resulting stresses are 'I classified as secondary and are combined with other secondary i stresses. The sum of secondary stresses is held within the l limits of the applicable piping code. I SA.3.2.2 Routino of Seismic Cateaory I PiDinQ l The routing of all Category I piping is confined within the l Containment Structure or the Auxiliary Building, both of i which are Category I structures. Category II piping such as l l' instrument and plant air, plant heating system water, nitrogen, wash water service, fire protection, and roof drain lines are primarily 2" and smaller piping. The 2" and smaller Category II pipe runs which are routed in close proximity of Category I piping do not have the potential to inflict damage on the Category I piping. Physical separation ,

of larger Category 11 piping is routed such that its failure I would not pose a hazard. Where larger Category 11 piping whose rupture could pose a hazard is routed near Category I piping, adequate pipe restraints are provided to preclude the possibility of pipe whip damage to the Category I piping. l j Category I piping was designed in accordance with B31.1 1967, Power Piping, or B31.7 1969, Nuclear Power Piping.

Exceptions are noted in ' relevant sections of the UFSAR for  ;

specific systems and components. Effective August 6, 1985, '

l ASME Code Case N-411. " Alternative Damping Values for Seismic Analysis of Piping,Section III Div. 1 Class 1, 2 and 3 Construction," may be used for new analyses or for reconciliation work on new or existing systems. This case takes advantage of piping system flexibility. See the provisions in the NRC letter dated August 6,1985, when using this code case. All Category I piping, with the exception of l 2" and smaller B31.1 and B31.7 Nuclear Class 2 and 3 piping, was originally designed by Bechtel Power Corporation andl included the location of restraints and supports, and detemination of loads. The building structure connections were checked by the structural engineering group. The piping support contractor was given all necessary infonnation to design and locate pipe supports, and indicates the location CALVERT CLIFFS UFSAR SA.3-24 Rev. 18

. - . ~ - . . ~ - - - - - . . --

of the supports on Bechtel's piping fabrication isometric  !

% erection sketch. These drawings, as well as the support design drawings and field installation were checked by Bechtel Engineering. For 2" and smaller Category I piping, a Bechtel field installation manual was provi'ded so that field engineers could properly design and locate pipe supports and restraints. When Bechtel field engineers had completed their design, drawings were submitted to Bechtel engineering for review. The field did not locate any of the seismic supports or restraints for Category I system equipment or components.

I This work was done at the CE and Bechtel engineering offices.

SA.3.2.3 Eautoment. Personnel. and Escape Locks The equipment, personnel and escape locks are Category I l equipment and are designed for the following accelerations:

(OBE) i Vertical Horizontal Lock Acceleration Acceleration Equipment Lock 0.07 g 0.11 g i

( Personnel Lock Escape Lock 0.08 g 0.07 g 0.12 g 0.10 g The acceleration values are multiplied by the nonnal operating weight of the lock or parts of the lock to obtain the horizontal and vertical components of the earthquake force. Both components are considered acting simultaneously with nonnal operating loads without exceeding code allowable, at a temperature of 120*F.

The earthquake forces due to the SSE are obtained by

, multiplying the accelerations above by 1.90. The locks are designed to withstand the simultaneous action of SSE i components and accident loads as stated in Chapter 5,. at a temperature of 276*F, without exceeding material yie'id stress nor loss-of-lock function.

s I

CALVERT CLIFFS UFSAR SA.3-25 Rev. 18

. .-..-_,-~---v.~

SA.3.1.6 Amplified Response loadino for Pipino and Instrumentation I A multi-mass response-spectrum, modal analysis method was employed in the seismic analysis of Category I piping,l support systems and instrumentation. American Society of Mechanical Engineers (ASME) Code Case N-411 may be used to take advantage of the flexibility in piping systems (Section 5A.3.2.2) . The natural frequencies, mode shapes, and the maximum response accelerations were determined using the appropriate response-spectrum curves in the horizontal and vertical direction. The response-spectrum curves are generated using the time-history of the floor, which includes the seismic response of the building. The horizontal and vertical seismic forces were applied simultaneously. Shear stresses, moments, and deflections were determined for the piping system and restraints. The load and stresses due to seismic loadings were assumed to be acting simultaneously

. with operating weights and longitudinal pressure loads.

% Critical Damoino (translational)

"0BE" (E) "SSE" (E') ,

Welded steel plate assemblies 1 1 Welded steel framed structures 2 2 Bolted or riveted steel framed structures 2.5 2.5 Reinforced concrete equipment supports 2 3 Reinforced concrete frame and buildings 3 5 Prestressed concrete structures 2 5 i

Steel piping 0.5 0.5 Soil 2 3

% Critical Damoino (rotational)

_(El E (E')

Rocking motion for prestressed concrete structures 5 7 Rocking motion for reinforced 5 7 concrete structures

.v-.......

Load Combinations & Stress Limits b ..,.,m.m,o,.7.,.-m....... .

o ES-040 is a formal Design Document that l provides design criteria that ensures the '

compliance with CCNPP UFSAR, and CLB for

1 Piping

- (Loads, combinations, and Stress Criteria) f Supports

- (Loads, combinations, and Stress Criteria) i Attachments to Equipment and structures i

i i

Piping Design Criteria ES-040 Revision 0 Page 30 of 72 '

ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES (Page 3 of 7)

2. LOAD DESCRIPTIONS A. Weight i i Weight of the piping system willinclude the weight of the pipe material, attached insulation or shielding, attached or inline piping components, and the weight of the fluid within. The design weight is the maximum weight of the system, e.g., )

when the system is completely filled with water. For those piping systems which l

do not operate with a liquid, e.g., steam piping, an additional weight analysis ,{

may be necessary to calculate the system loading for the hydrodynamic pressure test condition. Treat this as a test load (see code for pipe and support limits).

i B. Pressure l

The pressure used for any load case should be appropriate to the operating or transient condition being analyzed. The design, normal, and maximum l pressures are listed in M-601 for each system service number.

C. Temperature Effects Temperature effects will include thermal expansion / contraction of the pipe, and l anchor movements imposed by the thermal movement of equipment to which  !

the pipe is attached. In an extreme case, anchor movements from containment expansion during a LOCA will also be included.

If an analysis is performed and thermal movements are found to be excessive, these movements should be checked for interference.

All frame type supports classified as " rigid" should be evaluated for the sliding friction force resulting from thermal growth in the longitudinal direction of the i

supported pipe. This friction effect should only be evaluated for norma! l operating loads (i.e., do not combine with transient loads or OBE/SSE). In general, the friction force should be computed as 0.3 x (weight + radial forces '

from thermal expansion, where applicable) and applied in the direction of thermal growth. Other approaches to evaluating frictional affects may be used if properly justified or referenced.

Piping Design Criteria ES Oe:

Revision 6 Page 31 of 72 ATTACHMENT 2, SERVICE LEVELS AND LOAD T(PES (Page 4 of 7)

D. Fluid Transient l

Fluid transients are dynamic events associated with irregular flow or interrupted '

flow in the pipe. Fluid hammer may result from rapid valve closure. Fluid slug results from an amount of liquid water being propelled at high speed (either by the sudden opening of a valve on a line under pressure, or the venting of steam

' into a closed discharge system that contained water) impacting an elbow, pipe bend, or pipe teniinal end. These events are usually evaluated by time-history methods. (

l E.  !

RelieflSafety Valve Discharge l When a relief or safety valve discharges, the fluid initiates a jet force that is transferred through the piping system. If the valve vents to atmosphere, the jet force may be calculated and applied to the system as a constant load. if the valve vents to a closed discharge system, transient conditions may develop (such as the generation of a fluid slug) which may require time-history analysis.

F. Earthquake Effects I

Seismic Category I piping systems must be designed to resist two levels of I earthquake: OBE and SSE. Earthquakes will generate two types of loads applicable to piping systems: inertia loads (from the excitation of the piping i system's mass) and anchor movement loads (from the movement of equipment  ;

or structures to which the piping system is attached). -

Use the response spectrum method for the seismic analysis of piping systems,.

unless attemative techniques, i.e., time-history analysis are approved. The l spectrum provides values of acceleration (response) plotted against natural frequency for a series of damping values and a ductility value of one. Code j

Case N-411 damping may be used for all new or revised piping system analyses. If spectra for the SSE are not available, they may be calculated by ,

using SSE = 1.875 OBE (the ratio for the vertical response of containment is I less in several cases).  !

Piping Design Criteria i ES-040 Revision 0 Page 32 of 72  ;

ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES l (Page 5 of 7)  !

When analyzing a system for the effects of seismic inertia dnsure that all values of acceleration are enveloped for the entire frequency range. The following guidelines may be useful, but requires verification that all peaks are enveloped:

For systems that run between floor levels, select the most conservative floor response spectrum. l l

For systems that go between seismically-independent structures, use the most conservative building and elevation spectrum.

Use the SRSS approach for modal combinations and treat closely-spaced  !

modes as addressed in AEC Reg. Guide 1.92. Total response to the three  ;

directions of motion (N-S, E-W, vertical) should also be obtained by the SRSS I approach. '

i Evaluate seismic anchor movement for the piping system if one or more of the following exist: {

The piping system is run between two seismically independent structures.

i The piping is attached to large equipment or intemal structures which have the capability for independent motion.

The difference in elevation between the highest anchor point and the lowest anchor point on the piping system is greater than 40 feet and the net relative displacement between the two points is greater than 1/16th inch.

Piping Design Criteria ES-040 Revision 0 l Page 33 of 72 ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES (Page 6 of 7)

Seismically independent structures include the following:

Main auxiliary building (upper elevations have separate east / west structures). ,

Penetration area (auxiliary building).

Diesel generator rooms (11,12, 21, 22).

. Containment building.

Intake structures (pumphouse, divided into north / middle / south substructures).

Equipment and intemal structures having the capability for independent motion are:

Containment intemal structure (floors are fixed to intemal structures, and slotted at shell).

Reactor vessel.

. Reactor coolant pumps.

. Reactor coolant loop, pressurizer.

. Steam generators.

G. Pipe Rupture l

Failure scenarios in the different piping systems at the plant that might result in a LOCA or otherwise affect the performance of other systems in their ability to i perform a specified safety function must be evaluated to ensure that overall '

plant safety will not be jeopardized.

4 Pipe break / crack locations (for the consideration of the design and placement of pipe whip restraints, jet impingement barriers and missile protection) are postulated based on system geometry and pipe stress levels.

I

. . _ _ ._ _~ . _ _ _ _ _ - _ _ _ _ _ _ . _ _ _ _ _ __ ...

1 Piping Design Criteria ES-040 Revision 0 Page 34 of 72 ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES i

(Page 7 of 7)

The following lists hypothetical break locations: '

. Terminal ends / anchor points.

Any intermediate locations between terminal ends where either the sum of

' primary and secondary circumferential or longitudinal stresses derived on an elastic basis under the loads associated with seismic events and operational 1-plant conditions exceeds 0.8 (Sn + SA), or the secondary circumferential or l longitudinal stress exceeds 0.8 SA.

i Two additionalintermediate locations are selected based on the points of high stress as identified by UFSAR Chapter 10A. No breaks occurin short pipe runs of 5 pipe diameters orless in length.

A critical crack defined as one-half the pipe diameter in length and one-half the pipe wall thickness in width is postulated to occur at any location. Since a crack is postulated to occur anywhere, select locations having the most adverse effect on plant safety.

Pipe breaks and/or cracks are postulated to occur in piping (greater than 1" nominal size) of high energy systems, which are defined as those fluid systems 3

where either of the following process conditions are maintained during normal plant conditions:

. Maximum op3 rating temperature exceeds 200* F.

Maximum operating pressure exceeds 275 psig.

i Normal plant conditions are defined as normal steady state or hot standby (Modes 1,2,3).

Piping systems that contain fluids above atmospheric conditions but below high energy conditions during normal plant conditions are classified as moderate i

energy. Pipe breaks and/or cracks are not postulated in moderate energy systems at CCNPP,  !

Additionalinformation may be found in UFSAR Section 10A and Mechanical  !

Design Criteria Appendix A.

j l

i  !

4

-1

. r. m F <!.

Primary Stress Limits for 831.1 Pipe for Design and Level 1 Conditions (also applicable to B31.7. Class 11 and Class 111)

DESIGN LEVEL 1 PRESSURE YES YES WEIGHT OF YES YES PIPING SYSTEM WEIGHT OF YES YES FLUID

_ OBE INERTIA NO O YES tu SSE INERTIA NO NO h SAFETY / RELIEF NO YES 2 VALVE DISCHARGE FLUID TRANSIENT NO YES PIPE RUPTURE NO NO HOOP P(D - 2yt) P(D - 2ytl STRESS 2tE ' '" 2tE "

LONGITUDINAL pd 2 M

STRESS Pd' M

. 02 dI* "

02 d2'I "

NOTES:

1. See sheet 7 for calculating moment and application of stress '

intensification factors.

2. B31.1 Seismic Category ll pipe is only analyzed for Design and Level 1 loads, and does not consider earthquake effects.

B31.1

n. 1

-  :. . g. . ,

~^

-t Primary StroSs Limits for B31.1 Pipe for Level 2 and Lovel 3 Conditions (also applicable to B31.7 Class 11 and Class Ill)

LEVEL 2 LEVEL 3 PRESSURE YES YES WEIGHT OF YES PIPING SYSTEM YES VEIGHT OF YES FLU!D YES c OBE INERTIA NO NO F

b SSE INERTIA YES YES a

2 SAFETY / RELIEF YES YES '

VALVE olSCHARGE FLUlo TRANSIENT YES YES PIPE RUPTURE NO YES HOOP P(D - 2yt!

STRESS P(D - 2ytl 2tE 2tE LONG. MEMBRANE PD PO STRESS LONG. GENolNG

'iT ' '

~~ E

y , } u , j, # -

STRESS 7 s - 5.ces[ , .

- s -- s scos[

NOTES:

1.

See Sheet 7 for calculating moment and application of Stress intensification factors. '

2.

Ignore theSe load levels for B31.1 Seismic Category li pipe.

3. Bracketed value [ ] is in radians.

B31.1

G C i a a Z Y T.:iX M M J M rh Secondary Stress Range for B31.1 Pipe for Level 1 Loads Sets (also applicable to B31.7. Class 11 and Class 111)

LEVEL 1 E OBE SAM YES H

$ THERMAL YES 2 EXPANSION O THERMAL YES A.1 LONGITUDINAL M STRESS RANGE (2) 2 s a s.

NOTES:

1.

See sheet 9 for calculating moment and application of stress intensification factors.

2.

The term f(Sn - St ) may be added to SA, where St is the primary longitudinal stress calculated in Table 1 for Level 1 sustained loads (i.e.

weight and pressure). .

3.

B31.1 Seismic Category 11 pipe does not consider earthquake effects.

B31.1

Gli .E.TXKli: .x.- , y 7% :ggq Pipe Stress Legend for B31.1 (1967)

P = Pressure. psi.

M =

Resultant moment. Ib.-in. ..

i =

D = Stress intensification factor (see page B31.1 Appendix D).

Outside diameter of pipe, in.

d =

Inside diameter of pipe, in.

t = Wall thickne s, in.

y =

E =

See B31.1 Tab!e 104.1.2 (a) 2-Joint efficiency (see B31.1 Table 102 4 3).

Z =

Section modulus of pipe, in.'

Sn =

A!!owable stress at temperature. pse (B31.1 pipe use B31.1 Appendix A Table A1 and Table A2. B31.7 Class 11 pipe use 831.7 Appendix A Table AB. 831.7 Class til pipe use B31.7 Appendix A Table A8 and A9).

S, =

Tabulated allowable stress limit at temperature from S

o = ASME B&PV Code Section til or ANSI B31.7 (Table A.1).

S . (for ferritic steefs) and 1.2 S, (for austenitic steels)

(s,ee UFSAR Table 4-8).

St =

S, =

S, + 1/3 (S,,- S,)(see UFSAR Table 4-8).

Yield strength of materiat at temperature, psi (see ASME (1967)).

S. =

Tensite strength of material at temperature. psi (see ASME (1967)).

Sa =

Se =

f(1.25 Se + 0.25 Sn)

Aflowable stress at minimum environmental temperature, psi (831.1 pipe use B31.1 Appendix A Table A1 and Table A2 .

031.7 Class 11 pipe use B31.7 Appendix A TaNe A8; B31.7 f = Class ill pipe use B31.7 Appendix A Tab!e A8 ano A9)

Stress range reduction factor (B31 1 Table 102 3 2(c))

B31.1

gjpgG3L5;7&&.226EMntBirm Primary Stress Limits for ASME Class 2 and Class 3 Pipe for Design and Level 1 Conditions. -

DESIGN PRESSURE - LEVEL 1 YES -

YES WEIGHT OF YES PIPING YES WEIGHT OF YES FLUlO YES E OBE INERTIA NO E YES y SSE INERT!A NO 9 NO SAFETY / RELIEF NO VALVE YES-DISCHARGE FLUID NO TRANSIENT YES PIPE RUPTURE NO NO HOOP P (O - 2 y t t P t0 - 2v t)

STRESS 2' LONGITUDINAL Pd' O ' -d ' , o 75'u *** +u.'

STRESS ' , , , ,'

0' d' ,o.754w. suA 2 -

NOTES: '

1.

See sheet 7 for calculating M4 and Ma.

ASME CLASS 2/3

GP- 'TX  :::.:c_ ,r;ig. . cy;;;g Primary Stress Limits for ASME Class 2 and Class 3 Pipe for Level 2 and Level 3 Conditions LEVEL 2 LEVEL 3 PRESSURE YES YES WEIGHT OF YES YES PIPING WEIGHT OF YES YES FLUID 3 OBE INERTIA NO NO w SSE INERTIA YES YES 2

0 -

2 SAFETY / RELIEF YES YES VALVEDtSCHARGE FLUlO TRANSIENT YES YES PIPE RUPTURE NO YES HOOP pio - 2 yti P(0 - 2 vtl STRESS 7t '*

  • 2t a LONGITUDINAL p pa'

_ c' o' - c' , 0 75tu, . u,), g STRESS 7

' o' o' , 0 75tu, i

. u,; ,7g g" NOTES:

1. See sheet 7 for calculating MA and Mg.

I e

ASME CLASS 2/3

gerim.~

u migmys p ;m Secondary Stress Range for ASME Class 2 and Class 3 Pipe

.for Loveli Load Sets and Unrepeated Anchor Movements LEVEL 1 Unrepeated AM OBE SAM YES

^ NO p THERMAL YES

= EXPANSION NO

$ THERMAL YEs g AM NO UNREPEATED NO ,

AM YES LONGITUDINAL h2 ,,a3, g STRESS RANGE (2) 2 g

NOTES:

1.

2. See sheet 8 for calculating Mc and Mo.

The term f(S 3- St ) may be added to S , Where S A t longitudinal weight stress and pressure). calculated in Table 1 for Level 1 sustained loads (i eis the pr e

ASME CLASS 2/3

mWMMA '

Pipe Stress Legend for ASME Class 2 and Class 3 Systems P =

Pressure, psi.

TAA =

Resultant stati moment, Ib.-in.

Me =

Resultant dynamic moment, Ib.-in.

Mc =

Resultant in. moment from expansion and anchor movements, Ib.-

Mo =

, Resultant moment from an unrepeated anchor movement, Ib.-

in.

i =

D = Stress intensification factor (see NC-/ND-3673).

Outside diameter of pipe, in.

d =

Inside diameter of pipe, in.

t =

Wall thickness, in.

y =

See NC-/ND-3641.1.

Z =

Section' modulus of pipe, in.

Sn =

Allowable stress at temperature, psi (NC uses ASME Appendix S3 =  ! Table 1-7.0; ND uses ASME Appendix I Table I-7 0 or 1-8.0).

Se =

f(1.25 Sc + 0.25 Sn).

Allowable stress at minimum environmental temperature, psi (NC uses ASME Appendix ! Table I-7.0; ND uses ASME ,

f Appendix I Table I-7.0 or I-8.0).

=

Stress 1).

range reduction factor (ASME NC/ND Table 3611.2(e)-

ASME CLASS 2/3

i .

2" and Smaller Piping

_ _____ m. __

o WO-30 Cookbook

Factor of safety of 10 on the Code or FS of 40 on failure Seismic is based on limiting freq. to 20 Hz (i.e.,

ZPA at CCNPP) j o M-18 Cookbook

Factor of Safety of 6 above the Code or FS of 24 on Failure. l Seismic is based on limiting freq. to corresponding acceleration of 1 g 1

i i

I Analysis Capabilities @

CCXPP e AutoPipe e ME1C1 r

e ANSYS (under Development) .

n

File & Retrieval Methods e Nucleis/ NORMS Involved process using word searches and database cross references e Imaging Most hard copies have been imaged, which ma<es reference vary rapid. But, complete retrieval can be time consuming.

Exam.ple 1 - Feedwater System

_,m_ _____ . _

o System Description & Overview e Load Cases  ;

e Stress Ratio's i

__.._m____ -.__.m .- _______.-._--__._m.-___._._-_m-___m____m- ._____ - e -

+s a.. una ,- - aww .1 1 -u 4s .- ua. n- . s. ..n.. >_a. -

' L il

= i sE3 Es l l;( s 5

4 ug W5 i 1

5t I j y  :

lr

  1. g '

5 si 1 a 3 8 $g . I II -

S E

.n B

< P 9

E ) 0 )

II y E I

[I 't l

i :

t.'-l't. I i

%g :-. [ '- -R - ,g l om fit o"

/ A. xg il/ y '<

\,

X$ii,i ii , .. $X ,

1 I .$

r e

ii' , .. ,  :: , .. ,

h _

h i li II '

i I

f  :!

I l; b ~.

4} M -

I a a '

/ D ,

DQ

% E l%Y /

  • i

.i X  ! X ll s.e1 s ..

b

-C>

,s. ...--@ Ob .% @f_..g.4 ,,, Y 12 012 0 12 13 -N SRW HX NS C""" 1;;.

m. ---

U. ., CC HX 4 y

  • -=***

g h '--@ a o * @ @ g. . ,. ,, "@ 4.o . . ,,12 - M b:, g . . . . ,, ~ ,a c,;. I . . . . "8 S r. .. .- g 9- ,- . w.s O; . g+: @ @ @ @ ; :4 W.

c.  ::-o p8. @v=4 }.. g.4 :ia 9

-  %.'" s b N: tccs cntaQP M ) }"' stt., @ c - y %

'a

.. -hg &}- @ i it - m=- o-- - ( SRW HX ii 0110 -g - 11 .o '. i 8,m;.y.. g i' 10 O e ."1- u, CC HX o sDu n a*v,,, s*' y  : i i qw i]i d d../l si.s ., - 9e

= $.,, D .;""; --WA cius . 4

? -< ~.A.:-~ - .,__ 2 e, ,, . %g-@ e.. ,,. I%d .* 6 ., w , y , 73e a -- .. ,_p m ,:,;,r ,s ._ ._.. rt. ~..~ .-. . s.C-%9. U U CIRCtA ATit0 WATER %%"=! ~ FIGURE 38-7 SALTWATER SYSTEM CALVERT CLIFFS ENGINEERING STANDARD I Number: ES-040 PlPING DESIGN CRITERIA Revision 00 Effective: DEC 131995 CON OLLED E 13 C l Writer (s): 6b V 'JfS.9hGray Date: // 2/M / 1 Technical f.4 d- 3d.4.d Date: 8'/'N9 Reviewer: J. A. Crunkleto:T Sponsor: @ k Date: 11 W T M." . Gahan,111 ' Approved: b Date: Idek Ge'ner$J4upervisor- Design Engineering i Piping Design Criteria ES-040 i ' Revision 0 Page 2 of 72 RECORD OF REVISION 1 Revision Summary of Change 0 This ES-040 supersedes DS-040. ES199501673 was initiated by the GS-DES to facilitate the transference of this design standard to an engineering standard. This revision is only a editorial / formatting change. = 0 i 4 e e en I l ~ _ _ _ __ _._ _ _ . _ _.. _._. ._ _. . _ _ -. M i . 1 4 Piping Design Criteria ES-040 Revision 0 Page 3 of 72 , TABLE OF CdNTENTS 1 SECTION TITLE PAGE

1.0 INTRODUCTION

............................................................................................................5 l 1.1 Purpose ...... .... . .. ......................................................................5 1.2 Scope / Applicability..... ... . ............................................................5

2.0 REFERENCES

...............................................................................................................5 l

2.1 Developmental References . .. . . . .... . .... . .... ... . .. .. ....... ... ........ . . . . . .... ..... . . . . 5  :

2.2 Performance References .......... ... ....... .. . .. .. . . ..... . . .......... .. .. . . . .. .. . . . . . 7 3.0 1 DEFINITIONS.................................................................................................................8

+

4.0 R E S P O N S I B ILITIE S . . . . . . . .. . .. ... ... . . ........:..... . ...... . . . . . .. ... . ... . . . .. . . . . . .. . . . .. ... . . . . .... ...

1 3

4.1 Principal Engineers .. .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .............................9

. 4.2 Originator and Reviewer... . ........................................................9 5.0 S TAN D ARDIM ET H O D . . ......... ... ..... ... . . . . . . .. . . . . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .

5.1 Codes and Standards... . . . . . . . . . . . . . . . . . . . . . . . . . . . ..........................10 5.2 Pipe Stress Criteria.. . .. ... .. ................................ ...........10

i A. USAS B31.1 Requirements (Applicable to USAS B31.7 Class 11 and Class Ill):. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4

B. ASME BPV Code Class 2 and Class 3 Requirements:. . ..... .. ... .. 12 4

4 C. USAS B31.7 Class i Requirements.... .... . . . . . . . ...........13

! 5.3 Pipe Support Capacities and Allowables......... . . . . . . . . . . . . . . . . . . . ... 15 A. Pipe Supports of B31.1 Systems (Also Applicable to Supports of

B31.7 Class il and Class lil Systems).... .... . .. . . . . .. .... 16 1

B. Pipe Supports of ASME Class 2 and Class 3 Systems.... . .. ......... .18 C. Pipe Supports of B31.7 Class i Systems ....... ..... . ....... .. . . . . . . . . . . 19 D. Concrete Expansion Anchors and Imbedded Studs .. . . .. . .. .. . . . 20 E. Building Steel..... .. . .. . . . . .. . . . . . .22

Piping Design Criteria ES-040 Revision 0 Page 4 of 72 TABLE OF CONTENTS SECTION TITLE PAGE 5.4 Nozzles.....................................................................................................22

~

5.5 . Pu mp s a nd Valve s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . .. .. ... . . . . . ... . ... . . .. . . . . . ... . 22 6.0 BASES.........................................................................................................................23 ATTACHMENT 1, LICENSING AND DESIGN BASES MEETING RESULTS......... ......... ..... 24  !

ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES ........... .... .................... .... ..... .... 28 ATTACHMENT 3, 831.1 PIPE STRESS AND SUPPORT CAPACITY TABLES....... ..... ..... . 35 ATTACHMENT 4, ASME CLASS 2 AND CLASS 3 PIPE STRESS AND SUPPORT ~

C A PA C ITY TA B L E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ATTACHMENT 5, B31.7 CLASS I PIPE STRESS AND SUPPORT CAPACITY TABLES.. . . 52 ATTACHMENT 6, LEVEL 3 STRESS LIMITS FOR STEEL PIPE SUPPORTS ON SEISMIC I

l CATEGORY l B31.1 AND B31.7 SYSTEMS ................ ....... . . ... .... .. .... ......... .. . .. ... . 63 1

?

?

v -t_.__ r -- -

. . _ _ . . _ _ . _ . _ _ . _ ~ . _ . . . _ . . - _ _ _ _ _ _ . _ _ _ - _ _.. _ ._

l i

Piping Design Cntena ES-040 Revision 0 Page 5 of 72

1.0 INTRODUCTION

1.1 Purpose

, This engineering standard provides pipe stress criteria, attached equipment load j criteria, component pipe support load criteria, and support and building steel stress enteria applicable to the evaluatum of piping systems at the Calvert Cliffs Nuclear Power Plant (CCNPP), Units 1 and 2. Satisfaction of the criteria contained in or referenced by this document during design and modifications qualifies a piping system and/or piping component for licensed service in accordance with the UFSAR [B-1].

l- it is not the intent of this document to provide detailed techniques or methodologies for i the design and analysis of piping systems.

1.2 Scope / Applicability _

This engineering standard is applicable for evaluations of existing or modified piping for j systems having the following codes of record:

. B31.1 Seismic Category I and Seismic Category ll (USAS B31.1).

B31.7 Class ll and Class ill (USAS B31.7).

e j ASME Class 2 and Class 3 (Section 111).

B31.7 Class I (USAS B31.7). .

Refer to Section 5.1 br applicable code editions and addenda.

l

2.0 REFERENCES

2.1 Developmental References A. AISC, Manua! of Steel Construction. 7th Edition B. ASME Boiler and Pressure Vessel Code, Section lil & XI,1983 Edition.

C. ASME Boiler and Pressure Vessel Code, Section 111,1977 Edition up to and including Summer 1978 Addenda.

D. ASME Boiler and Pressure Vessel Code, Section Ill, all Rulings and Addenda up to Winter 1967 with Summer 1969 Addenda and Code Case N-1401 added.

E. ASTM, Annual Book of ASTM Standards.1985 l

F. Baltimore Gas and Electric Company, Calvert Cliffs Nuclear Power Plant Units 1 j and 2, Updated Final Safety Analysis Report.

i i

L - , _ _ . . _ __ . _

- . . _ . . . ~ . _ , __

~ - . .

i i

Piping Design Criteria ES-040 Revision 0 i Page 6 of 72 2.1 Developmental References (Continued)

G. Baltimore Gas and Electric Company, CCNPP Design Engineering, EN-1-200 l (draft), " Preparation and Control of Calvert Cliffs Design Standards" H. Bechtel Power Corporation, Job No.11865, "CCNPP Units 1 and 2. Bechtel Project Engineering Plan for NRC l.E. Bulletin 79-14," Rev. 5, October 1982.

l. Bechtel Power Corporation, Job No.11865, File No. 0151, Rev. O, " Design t Criteria Document for Auxiliary Feedwater Modification, CCNPP FCR 79-1062,"

October 1981.

J. Letter to BG&E from Hopper and Associates, HABGE-04/94-0252," Piping Supports Extreme Load Design Limits; March 8,1994, TechnicalInterchange Meeting Minutes," April 5,1994

- i K. Letter to BGE from Hopper and Associates, HABGE-04/94-0258, "Calvert Cliffs  !

Design Standard Number: DS-040 Piping Design Criteria Revision 0," April 26, i 1994.

L. " Selected Papers by Nathan M. Newmark," Civil Enaineerina Classics. ASCE, t NY, NY,1976  !

M. SQUG, " Generic implementation Procedure for Seismic Verification of Nuclear Plant Equipment," Rev. 2, February 1992 l

N. US AEC, Regulatory Guide 1.48," Design Limits and Loading Combinations for l Seismic Category i Fluid System Components,"

l May 1973. '

O. US AEC, Regulatory Guide 1.92, Rev.1, " Combining Modal Response and Spatial Components in Seismic Response Analysis," February 1976.

P. US NRC, IE Bulletin 79-02, " Pipe Support Base Plate Designs Using' Concrete l Expansion Anchor Bolts," March 1979. I Q. US NRC, Regulatory Guide 1.29," Seismic Design Classification," September j 1978 l 1

R. USAS 831.1 Power Piping Code,1967 Edition with B31.1b-1971, B31.1c-1972, j and B31.1d-1972 Addenda. '

S. USAS B31.7 Nuclear Power Piping Code,1969 Edition with B31.7b-1971 and B31.7c-1971 Addenda and Code Cases 83 and 1477. l 1

l

i l

l Piping Design Criteria ES-040 Revision 0 Page 7 of 72

~

l -

l 2.2 Performance References A. AISC, Manual of Steel Construction,6th Edition.  !

B. AISC, Manual of Steel Construction. 7th Edition.

C. ASME Boiler and Pressure Vessel Code, Code Case N-411, February 1986.

D. ASME Boiler and Pressure Vessel Code, Section ill,1977 Edition up to and {

including Summer 1978 Addenda. i E. ASME Boiler and Pressure Vessel Code, Section 111, all Rulings and Addenda up to Winter 1967 with Summer 1969 Addenda and Code Case N-1401 added.

F. ASME Boiler and Pressure Vessel Code,Section XI,1983 Edition. -

1 G. Baltimore Gas and Electric Company, Calvert Cliffs Nuclear Power Plant Units 1 l

and 2, Updated Final Safety Analysis Report.

]

H. Bechtel Power Corporation, Design Guide No. C-2.40, Rev.1, " Concrete Expansion Anchors," February 1984.

l. Bechtel Power Corporation, Job No.11865, Drawing No. M-601 B, Rev.15,  ;

" Piping Class Summary Analysis Requirements," November 1992.

J. Bechtel Power Corporation, Job No.11865, Drawing No. M401, Rev. 27,

" Piping Class Summary Sheets," April 1991.

K. Bechtel Power Corporation, Job No.11865, TRD-M-1046, Rev. 2, " Piping and Pipe Support Installation Performance Standard,"

October 1982.

L. Bechtel Power Corporation, Job. No.11865, Drawing No. M-600, Rev!43,

" Piping Class Sheets," July 1989.

M. BGE, Drawing No. 60-064-E, Sheets 5 & 6.

N. ES-022, Calculations O. ITT Grinnell LCD-105.

P. ITT Grinnell PH-74-R Catalog.

Q. USAS B31.1 Power Piping Code,1967 Edition with B31.1b-1971, B31.1c-1972, l

and 831.1d-1972 Addenda.

l R. USAS B31.7 Nuclear Power Piping Code,1969 Edition with B31.7b-1971 and l B31.7c-1971 Addenda and Code Cases 83 and 1477.

l

Piping Design Criteria ES-040 Revision 0 Page 8 of 72 3.0 DEFINITIONS A. Design-Basis Events Conditions of operation including anticipated operational occurrences, analyzed accidents, extemal events or natural phenomena for which SSCs are designed to ensure those SSCs are capable of performing their specified functions.

B. Loss-Of-Coolant Accident (LOCA)

Those accidents that result from the loss of reactor coolant, at a rate in excess i of the reactor coolant makeup system, from breaks in the reactor coolant l pressure boundary, up to and including a break equivalent in size to the double-ended rupture of the largest pipe in the reactor coolant system.

C. Operating-Basis Earthquake (OBE)

The largest earthquake postulated to occur in the vicinity of the plant during the  !

plant's lifetime. Also referred to as the " design earthquake."

D. Safety Analysis Report (SAR) I The SAR is that set of criteria, standards, and commitments to the NRC to 'which every system, structure, and component in the plant must adhere to in order to j qualify for licensed service. Also referred to as the " current licensing basis."  !

E. Safe Shutdown Earthquake (SSE)

The maximum hypothetical earthquake postulated to occurin the vicinity of the i plant. Also referred to as the " design-basis earthquake" or "DBE."

F. Seismic Anchor Movement (SAM)

The displacement of anchor points to which a piping system is attached.

Examples would be buildings and large equipment to which piping is connected, moving during a seismic event. -

G. Seismic Category i Those systems which must te designed to withstand both operating-basis earthquake (OBE) and safe shutdown earthquake (SSE) loads. These are systems whose failure could cause uncontrolled release of radioactivity or those essential for immediate and long-term operation following a loss-of-coolant l accident (LOCA). Also referred to as " Class 1 (Seismic)" as defined in UFSAR i

Section SA.3.1.2, or " Seismic."

l l

l l

I i

\

i Piping Design Criteria ES-040  !

Revision 0 Page 9 of 72 3.0 DEFINITIONS (Continued) 1 i

i l H. Seismic Category ll l Those systems not essential to safe shutdown of tha plant, and those whose f l failure would not result in the uncontrolled release of radioactivity. Also referred l l- to as " Class 2 (Seismic)," as defined in UFSAR Section 5A.3.1.3, or "Non- l I Seismic." l l

l .t Square-Root-Sum-of-the-Squares (SRSS) l A method of combining the responses of cyclic dynamic loads which reflects the fact that the peak response of each cyclic load does not necessarily happen in phase with the peaks from other cyclic loads. This approach is used to combine the separate modal responses when performing a response spectrum analysis; it is also used to combine the overall responses of different cyclic dynamic loads. See Attachment 3 for examples.

J. Thermal Anchor Movement (TAM)

The thermally induced displacements of anchor points to which a piping system is attached. Examples would be the displacement of a heat exchanger nozzle caused by expansion of the exchanger, or displacement of a containment penetration anchor caused by expansion of the containment during a LOCA.

K. - Updated Final Safety Analysis Report (UFSAR)

This document wntains design-basis information for all systems at CCNPP.

4.0 RESPONSIBILITIES 4.1 Principal Engineers Principat Engineers are responsible for assign'ng engineering personnel who are qualified to perform design and analyses of piping and/or pipe supports.

l 4.2 Originator and Reviewer in most cases piping and/or pipe support analyses will be govemed by the procedural l requirements in ES-022, Calculations. When applicable, the Originator and Reviewer i are responsible for comply with ES-022, Calculations requirements and for clearly l documenting the reasons and rationale for using criteria which differ from those identified in this engineering standard.

l NOTE This engineering standard restates and attempts to clarify licensing basis information.

. It may be necessary to seek NRC concurrence of piping criteria different than that contained in this engineering standard. Evaluate any attemate piping criteria to see if it

represents an "Unreviewed Safety Question" (USQ).

1

\

r spuiw veiwii umam ES-040 Revision 0 Page 10 of 72 5.0 STANDARDIMETHOD 5.1 Codes and Standards The following codes and standards govern the design and evaluation of piping covered

) by this document for CCNPP Units 1 and 2:

USAS B31.7 Nuclear Power Piping Code,1969 Edition with B31.7b-1971 and B31.7c-1971 Addenda l .

USAS B31.1 Power Piping Code,1967 Edition with B31.1b-1971, B31.1c-1972, l

and B31.1d-1972 Addenda AISC Manual of Steel Construction, 7th Edition (for non-catalog steel pipe supports on B31.7 and B31.1 systems)

CCNPP UFSAR (Section 5A3.1.5 and Table 4-8 list allowable stresses and/or other limits for use with the above Codes when evaluating B31.1 and B31.7 piping systems for SSE and SSE + pipe rupture conditions. A discussion of this basis is contained in Attachment 1)

ASME Boiler and Pressure Vessel Code, Section ill,1977 Edition through Summer 1978 Addenda (for pipe and pipe supports of motor-driven train of AFW) i t

5.2 Pipe Stress Criteria l The stress enteria to be satisfied by pipe within the scope of this document are listed by section according to the Code which govemed the original design:

831.1 Seismic Category I and 11 (USAS B31.1); also applicable to B31.7 Class ll and Class ill (USAS B31.7)

ASME (1977) Class 2 and Class 3 (Section lil)  ;

. ~

831.7 Class I (USAS B31.7)  !

The service levels the pipe must withstand and the associated stress criteria are presented in tabular format within the attachments referenced by each section. l The service levels and associated loads are described in Attachment 2, Service Levels and Load Types. When considering the load combinations at the different service l

levels, use the most severe, yet realistic, combination of associated loads. Since  !

excessive conservatism can be costly, avoid the temptation to combine loads which do not occur at the same time (unless required to do so by licensing or design commitments).

b

L  !

l Mping uesign Cntena ES-040 Revision 0 i Page 11 of 72 l

s 5.2 Pipe Stress Criteria (Ccntinued) l B31.1 (1967) and B31.7 did not provide allowable stresses for use with extreme loads I (SSE, pipe rupture). The criteria used by systems whose construction was govemed by these Codes in meeting these loads were developed based on the imowledge and ,

experience of the nuclear industry at the time. Tnese criteria are contained in the '

UFSAR: refer to Attachment 1, Licensing and Design Basis Meeting revised, for further '

discussion. l A. USAS B31.1 Requirements (Applicable to USAS B31.7 Class 11 and Class lli):

USAS B31.1 Code requirements, including those applicable to the evaluation of -

i USAS B31.7 Class ll and Class lit systems, limit the following.  ;

e Primary stress, to prevent bursting or rupture. i e

Secondary stress, to prevent incremental plastic collapse.

The evaluation criteria in this section follows the approach outlined in B31.1 (1967) Sections 102 and 104.

I No explicit evaluation is required for high-cycle fatigue; however, if high-cycle fatigue is anticipated to be a problem, perform an evaluation according to an ~!

established methodology (the method used for B31.7 Class l pipe in 5.2.C is acceptable). {

' s 1

Evaluate flanges, expansion joints and brittle /non-ductile connections for displacement-controlled loads at all service levels. Use the load combinations in '{

Attachment 3, B31.1 Pipe Stress and Support Capacity Tables, Table 4, with pressure loadings when analyzing these items. Manufacturer's allowables are not to be exceeded without performing a detailed component analysis.

1. Primary Stress For Seismic Category l B31.1 pipe, limits on primary stresses must l

j satisfy all service level limits, i.e., Design, Level 1, Level 2, and Level 3, as shown in Attachment 3, Tables 1 and 2. The stress limits forthe first j two service levels are taken from B31.1 (1967) Sections 102.3.2(d) and 102.2.4(1); stress limits for the second two service levels are taken from UFSAR Table 4-8 load levels 2 and 3. Seismic Category ll B31.1 pipe is only required to satisfy limits on primary stress for Design and Level 1 load combinations (excluding OBE effects).

Longitudinal stresses are checked using the criteria in B31.1 Section 102.3.2(d) for Design and Level 1 load combinations. Use the limit equations from UFSAR Table 4-8 (with P. = PD/4t and P. = M/Z) when i evaluating the pipe under Level 2 and Level 3 load combinations. The i

pressure design equation from B31.1 Section 104.1.2(a) has been rearranged for the purpose of checking hoop stress from both pressure and local forces for all service levels.

l Piping Design Cnteria ES-040 Revision 0 Page 12 of 72 5.2 Pipe Stress Criteria (Continued)

2. Secondary Stress For both Seismic Category I and Seismic Category 11 B31.1 pipe, evaluate the maximum longitudinal secondary stress range for Level 1 load sets as shown in Attachment 3 Table 3. The criteria used is from B31.1 Section 102.3.2(c). A load set is defined as those values of moment from both SAM and thermal activity which are applied simultaneously. The stress range is the difference in stress between the two sets. The unloaded condition of zero moment (except piping system deadweight) is considered as one of the load sets. Exclude OBE SAM effects when evaluating secondary stresses in Seismic Category 11 B31.1 pipe.

B. ASME BPV Code Class 2 and Class 3 Requirements:

ASME BPV Code Class 2 and Class 3 design criteria as stated in Section lli Subsections NC (Class 2) and ND (Class 3) limit the followmg

. . Primary stress, to prevent bursting or rupture.

. Secondary stress, to prevent incremental plastic collapse.

The evaluation criteria in this section follows the approaches outlined in ASME Section 111 NC-/ND-3600.

No explicit evaluation is required for high-cycle fatigue; however, if high-cycle fatigue is anticipated to be a problem, consider performing an evaluation I

according to an established methodology (the criteria used for B31.7 Class I pipe in Section 5.2.C of this document is acceptable, as are criteria for ASME Class 1 pipe).

Evaluate flanges, expansion joints and brittle /non-ductile connections for displacement-controlled loads at at; service levels. Use the load combinations in ,

Attachment 4, ASME Class 2 and Class 3 Pipe Stress and Support Capacity Tables. Table 4, with pressure loadings when analyzing these items. Ensure l

l manufacturer's allowables are not exceeded without performing a detailed l component analysis. -

i

1. Primary Stress Primary stresses must satisfy all service level limits, i.e., Design, Level 1, Level 2, and Level 3, as shown in Attachment 4, Tables 1 and 2. The limits for these service levels are taken from Section ill NC-/ND-3611.2 according to the recommendations of AEC Reg. Guide 1.48, which is 4 cited by "AFW Design Criteria" (Bechtel) as providing information on load combinations and allowable stresses for the motor-driven AFW system.

This regulatory position states that for ASME Class 2 and Class 3 pipe, the upset / Level B allowable will be used for meeting normal and occasional loads acting with the OBE, and the emergency / Level C allowable will be used for meeting normal, occasional, and faulted loads l acting with the SSE.

l l

l

Piping Design Criteria ES-040 Revision 0 t

Page 13 of 72 i ,

5.2 Pipe Stress Cdteria (Continued) t Longitudinal stresses are checked using the procedures in NC-/ND- -I 3650. NC-/ND-3652.1 Equation (8) is used for checking the Design Level; NC-/ND-3652.2 Equation (g)is used for checking Levels 1-3. The vorking pressure equation from NC-/ND-3640 has been rearranged for l the ourpose of checking hoop stress from both pressure and local  !

,. forces, e.g., welded attachments, for all service levels.  !

- 2. Secondary Stress Evaluate the maximum longitudinal secondary stress range for Level 1 l load sets as shown in Attachment 4, Table 3. The equation used is NC-  ;

/ND-3652.3(a) Equation (10). A load set is defined as those values of t moment from SAM and thermal activity which are applied _

simultaneously. The stress range is the difference in stress between the two sets. The unloaded condition of zero moment (except piping system l deadweight)is considered as one of the load sets.

J t

Evaluate the maximum longitudinal secondary stress range for any unrepeated anchor movements as shown in Attachment 4, Table 3, such -  !

as those resulting from building settlement or from containment expansion during a LOCA. The equation used is NC-/ND-?552.3(N Equation (10a). l i

C. USAS B31.7 Class l Requirements USAS B31.7 Chss I requirements limit the following:  ;

Primary stress intensity, to prevent bursting or rupture.

Primary plus secondary stress intensity range, to prevent incremental plastic collapse.

l Peak stress intensity range cumulative usage, to protect against high-cycle fatigue. ~

The criteria in this section, uses the simplified approach described in B31.7 Sections 1-704 and 1-705. If a more rigorous analysis is desired, use the attemative rules of B31.7 Appendix F.

Evaluate flanges, expansion joints and brittle /non-ductile connections for displacement-controlled loads at all service levels. Use the load combinations in Attachment 5, B31.7 Class 1 Pipe Stress and Support Capacity Tables, Table 4,

, with pressure loadings when analyzing these items. Ensure manufacturer's

! allowables are not exceeded without performing a detailed component analysis.

i i

, ,,,,, ,o . ,3, . v. . ..

ES-040 l Revision 0 Page 14 of 72 l S.2 Pipe Stress Criteria (Continued)

1. Primary Stress intensity Primary stress intensities must satisfy all service level limits, i.e., Design

+ Level 1, Level 2, and Level 3, as shown in Attachment 5, Tables 1 and l 2. The stress intensity limits and load combinations for the different service levels are taken from UFSAR Table 4-8.

The limit equations from UFSAR Table 4-8 goveming bending and  !

membrane stress have been expressed in terms of "B" stress indices as used in B31.7 Section 1705.1 for checking longitudinal stresses.

l The pressure design equation from B31.7 Section 1-704.1 has been rearranged for the purpose of calculating hoop stress from both pressure and local forces, e.g., welded attachments. -

2. Primary Plus Secondary Stress Intensity Range Evaluate the longitudinal primary plus secondary stress intensity range for Level 1 load sets as shown in Attachment 5, Table 3. A load set is defined as those values of pressure, moment, and thermal gradients which are applied simultaneously. The stress range is the difference in l

stress between two load sets. The unloaded condition of zero pressure, zero moment (except pipe weight) and zero thermal gradient is considered as one of the load sets. The equation used for this evaluation is B31.7 Section 1-705.2 Equation (10). If this relationship cannot be satisfied for all stress ranges associated with Level 1, use the simplified elastic-plastic discontinuity analysis of B31.7 Section 1-705.4.

3. Peak Stress Intensity Range Cumulative Usage Determine the longitudinal peak stress intensity range cumulative usage for Level 1 load sets as shown in Attachment 5, Table 3. For each load i

set, calculate the peak stress intensity range. The equation used is B31.7 Section 1-705.3 Equation (11). --

i Evaluate cumulative usage as follows:

a. Designate the specified number of times each type of stress l

cycle of types 1,2,3, etc., will be repeated during the life of the system or part thereof as ni, where i=1,2,3... respectively. In determining ni, consider the superposition of cycles of various origins that produce a total stress range greater than the stress i

range of the individual cycles.

b. For each type of stress cycle, determine the altemating stress intensity Su as shown in Attachment 5. Table 3.

l Piping Design Criteria ES-040 L Revision 0 Page 15 of 72 5.2 Pipe Stress Criteria (Continued)-

c. For each value of Su, use the fatigue curves in B31.7 Section 1-705.3 Figures 1-705.3.3(a) and 1-705.3.3(b) to determine the maximum number of repetdsons that could be allowed if this cycle were the only one acting. Call these values N,.
d. For each stress cycle, determine the cumulative usage according to:

n, u, =

e. Calculate the cumulative usage factor U where:

U = Iui

f. U must be s 1.0 5.3 Pipe Support Capacities and Allowables Pipe supports can be categorized as either " component standard supports" or " support steel."
  • Component standard supports" are those available for purchase from a vendor's catalog (such as struts, clamps, rods, springs, and snubbers). " Support steel" comprises that group of supports that is made by welded or bolted structural steel members to form a pipe support. " Support Steel" can also connect " component standard supports" to structural steel.

The criteria, which all pipe supports for piping systems covered by this engineering standard must satisfy, are listed by section according to the Code which govemed the design of the pipir$g system:

1

. B31.1 Seismic Category I and 11 (USAS B31.1), also applicable to 831.7 Class il and Class ill (USAS B31.7).

. ASME Class 2 and Class 3 (ASME, Section 111).

B31.7 Class I (USAS B31.7).

The service levels that the pipe supports must withstand and the associated design criteria are presented in tabular format within Attachments referenced by each section.

These service levels are described in Attachment 2.

Service levels and design criteria have also been provided for concrete expansion

, anchors and anchor studs, which often serve as a link between the pipe support and

! the concrete portions of the building, and for building steel to aid in the analysis of those portions of the building structure to which pipe supports are attached. These l criteria are contained in subsections to this engineering standard, titled as follows:

i l

t

l l

t yuey vaagn untena ES-040 i Revision 0 )

Page 16 of 72 5.3 Pipe Support Capacities and Allowables (Continued)

Concrete Expansion Anchors and imbedded Studs.

. Building Steel.

When considering the load combinations at the different service levels, use the most severe yet realistic combination of service levels and associated loads. Loads which

{

do not normally occur at the same time should not be added together for conservatism.  !

Since excessive conservatism can be costly, avoid the temptation to combine loads j which do not occur at the same time (unless required to do so by licensing or ciesign l commitments). '

AISC 7th Edition (which applies to steel pipe supports on B31.1 and B31.7 systems) did not provide allowable stresses for use with extreme loads (SSE, pipe rupture). The design criteria used by systems whose construction was govemed by this Code in meeting these loads were developed based on the knowledge and experience of the nuclear industry at the time. These criteria are contained in the UFSAR; refer to Attachment 1, for further discussion.

A. Pipe Supports of 831.1 Systems (Also Applicable to Supports of B31.7 Class ll and Class ill Systems)

Pipe supports of Seismic Category l B31.1, B31.7 Class 11 and 831.7 Class 111 systems must perform their required functions for four levels of service: Design, Level 1, Level 2, and Level 3. Pipe supports on Seismic Category 11 B31.1 l systems are only analyzed for Design and Level 1 load combinations, excluding OBE effects. Refer to Attachment 3, Tables 4.

1. Component Standard Supports The original component standard supports of B31.1, B31.7 Class ll, and B31.7 Class til piping systems use the allowables listed in the ITT Grinnell PH-74-R Catalog with the following adjustments in capacity for the different service levels:

Level 1: 1.2 x catalog load capa5ty Level 2, Level 3: 2.0 x catalog load capacity These increases in capacity have been documented for use in " Plan for IE 79-14" (Bechtel).

l t

The following exceptions apply:

Rigid struts: Use the 20% increase in catalog capacity when meeting Level 1 loads; use the Level D allowable from ITT Grinnell LCD-105 when meeting Level 2 and Level 3 loads.

l

l Mping t>esign Unt;na ES-040 Revision 0 Page 17 of 72 S.3 Pipe Support Capacities and Allowables (Continued)

Snubbers (Grinnell on Seismic Category I systems; Usega and Grinnell on Seismic Category ll systems): Use the catalog capacity when meeting Design and Level 1 loads; use the "one-time allowable load" listed in the catalog when meeting Level 2 and Level 3 loads.

Spring hangers: Meet the catalog capacity for all service levels and remain within the spring travel working range.

When new component standard supports are purchased from catalogs that include ASME load ratings, use the following catalog design limits to satisfy the service levels: j Design: Catalog Level A Level 1: Catalog Level B 1

Level 2. Level 3: Catalog Level D Use of these capacities for new supports provides consistency with those capacities used for the original supports to meet the different service levels.

2. Support Steel (Steel Supports)

For the original steel supports of B31.1, 831.7 Class ll, and B31.7 Class ill systems, use the criteria in the AISC Manual cf Steel Construction,7th Edition, (documented by Bechtel " Plan for IE 79-14") with several enhancements:

Design: AISC 7th Level 1: 1.2 x AISC 7th

~

Level 2: within yield,1.5 x AISC 7th Level 3: deflection of supports limited to maintain supported equipment within acceptable limits (F on elastically calculated stresses).

Where: F. is the material ultimate stress.

The 20% increase in meeting Level 1 loads is allowed by B31.1 (1967)

Section 121.1.2 (1). The limits for response to Level 2 and Level 3 loads are taken from UFSAR Table 4-8.

1

e spmy vesyn unna ES-040 Revision 0 Page 18 of 72 5.3 Pipe Support Capacities and Allowables (Continued)

The limit of yield may be taken as 1.5 x AISC 7th allowables, with the following exceptions:

. Stresses may not exceed 0.7 F.

. Shear stress may not exceed 0.42 F.

Buckling load may not exceed 2/3 P., I These adjustments for using F, as a limit are identical to those required  !

by ASME Section 111 NF (post 1980) when analyzing linear-type supports under Level C loads (which applies a 1.5 increase to working stress limits), and are therefore deemed acceptable.

To bound reasonable deflection limits for steel supports when analyzing the system under Level 3 loads, use a numerical stress limit of F based on elastically calculated stresses. The restrictions for using this limit are contained within Attachment 6. Level 3 Stress Limits for Steel Pipe Supports on Seismic Category l B31.1 and B 31.7 Systems.

B. Pipe Supports of ASME Class 2 and Class 3 Systems Pipe supports of ASME Class 2 and Class 3 (ASME B&PVC, Section lii) systems must perform their required functions for four levels of service: Design, Level 1, Level 2, and Level 3. Allowable limits for meeting the separate service levels have been set in accordance with AEC Reg. Guide 1.48, which is cited by "AFW Design Criteria" (Bechtel) as providing limits and load combinations for j

the motor-driven AFW system. ASME Level B limits are used for meeting  ;

normal and occasionalloads acting with the OBE, and ASME Level D limits are used for meeting normal, occasional, and faulted loads acting with the SSE.

Refer to Attachment 4, Table 4. i

1. Component Standard Supports Component standard supports of ASME Class 2 and Class 3 piping systems use the indicated catalog allowables at the following service levels:

Design: catalog Level A -

Level 1: catalog Level B Level 2, Level 3: catalog Level D

2. Support Steel (Steel Supports)

The steel supports of ASME Class 2 and Class 3 systems use the criteria of ASME Section lli NF '3300 (Class 2) and NF-3400 (Class 3):

, Design: Level A limits Level 1: Level B limits Level 2, Level 3: Level D limits

nping vesgn Unt::n3 ES-040 i Revision 0  ;

Page 19 of 72 j 5.3 Pipe Support Capacities and Allowables (Continued)  !

C. Pipe Supports of 831.7 Class i Systems '

( ,

l Pipe supports of B31.7 Class I systems must perform their required functions for l fourlevels of service: Design, Level 1, Level 2, and Level 3.

1. Component Standard Supports Due to the lack of CCNPP documentation concoming B31.7 Class I '

piping system component standard support allowables, it is  !

recommended the analyst review the original calculation for these systems before proceeding with an analysis. The following values from the ITT Grinnell PH-74-R Catalog with the following adjustments in capacity for the different service levels may be used as part of a cursory ,

evaluation: -

Design + Level 1: catalog load capacity Level 2, Level 3: 2.0 x catalog load capacity The unmodified catalog load capacity is used in meeting Design and Level 1 loads to provide consistency with UFSAR Table 4-8, which indicates that no increases in support stress allowables are taken for ]

these combinations. The increased capacities for meeting Level 2 and Level 3 loads have been documented for use by " Plan for IE 79-14" (Bechtel) on Seismic Category l B31.1 systems.

The following exceptions apply:

l Rigid struts: use the Level D allowable from ITT Grinnell LCD-105 when meeting Level 2 and Level 3 loads.

l Snubbers: use the catalog capacity when meeting Design and Level 1 loads; use the "one-time allowable load" listed in the catalog when meeting Level 2 and Level 3 loads.

Spring hangers: meet the catalog capacity for all service levels and remain within the spring travel working range.

When new components are purchased from catalogs with ASME load

t. ratings, use the following catalog ratings to meet the different service levels: l Design & Level 1: Catalog Level A and B

. Level 2, Level 3: Catalog Level D l 1

3 Use of these capacities for new supports provides consistency with i those capacities used for the original supports to meet the different i

service levels. .

l l

nping vesign t.,nnns ES-040 Revision 0 Page 20 of 72 5.3 Pipe Support Capacities and Allowables (Continued)

2. Support Steel (Steel Supports)

For the original steel supports of 831.7 Class i systems, use the criteria of the AISC Manual of Steel Construction,7th Edition (as indicated by Bechtel " Plan for IE 79-14") with several enhancements:

Design + Level 1: AISC 7th Level 2: within yield, AISC 7th x 1.5 Level 3: deflection of supports limited to maintain supported equipment within acceptable limits (Fo on elastically calculated stresses).

Where: Fu is the material ultimate stress All limits are taken from UFSAR Table 4-8.

The limit of yield may be taken as 1.5 x AISC 7th allowables, with the following exceptions:

i Stresses may not exceed 0.7 F.

. Shear stress may not exceed 0.42 Fu l e Buckling load may not exceed 2/3 P, I These adjustments for using F, as a limit are identical to those required  !

by ASME Section lll NF (post 1980) when analyzing linear-type supports under Level C loads (which applies a 1.5 increase to working stress limits), and are therefore deemed acceptable.

To bound reasonable deflection limits for steel supports when analyzing the system under Level 3 loads, use a numerical stress limit of E based on elastically calculated stresses. The restrictions for using this limit are l contained within Attachment 6. I D. Concrete Expansion Anchors and Imbedded Studs Concrete expansion anchors and imbedded studs have been used to attach pipe supports and other equipment to concrete portions of the building structure.

The following types have been used on all piping systems covered by this document:

Piping Design Criteria ES-040 Revision 0 Page 21 of 72 S.3 Pipe Support Capacities and Allowables (Continued)

1. Expansion Anchors There are two types of expansion anchors: non-ductile and ductile.

Non-ductile expansion anchors fail in a non-ductile mode, i.e. by pulling out of the concrete. Ductile expansion anchors failin a ductile mode, i.e.

by yielding of the bolt material. Use the following safety factors (required by NRC IE 79-02) against ultimate capacity for both types of anchors.

To meet all service levels specified for the supported piping, capacities ,

may be obtained either from tests, the vendor catalog, or C-2.40 l (Bechtel).

a. Non-ductile Expansion Anchors: l (1) Wedge Type (SF=4): -

Philips Red Head Wedge Anchor Hilti Kwik-Bolt Wedge Anchor Hilti Kwik 11 Wedge Anchor Ramset Trubolt Wedge Anchor (2) Sleeve Type (SF=4):

Liebig Safety Bolt Anchor (3) Shell Type (SF=5):

Hilti HDI Flush Shell Anchor

b. Ductile Expansion Anchors (SF=4):'

Drillco Maxi-Bolts _

2. Imbedded Studs l

Studs which have been cast in place or grouted in place, and are assured of failing in a ductile mode, i.e. by yielding of the stud material, should use the support steel criteria appropriate to the piping system 1 being analyzed. '

l

l Piping Design Criteria ES-040 ,

Revision 0 t Page 22 of 72 5.3 Pipe Support Capacities and Allowables (Continued)

E. Building Steel Building steel to which pipe supports have been attached should meet the

[

criteria of the AISC 6th edition as indicated by UFSAR Section 5A3.1.8, with the

! following excephons specified in that sechon:

Design: AISC 8th l Level 1: 0.7 yield '

Level 2: 0.9 yield

Level 3
0.9 yield Stresses induced in the steel by the supported piping must be combined with all other stresses induced in the member.

5.4 Nozzles The piping reactions at equipment nozzles must meet the manufacturers allowables for all service levels. Evaluate the nozzles for displacement-controlled loads using the loads and load combinations listed for pipe supports. Select the applicable pipe ,

support table based on the construction code for the piping being analyzed (pressure loadings must be added to these). In the absence of manufacturers allowables, the ,

piping reactions should be compared to loads previously approved by the vendor, i.e.

loads from a previous analysis. If vendors allowables cannot be met, but vendor-calculations are available, review the calculations for possible errors in classification of l

the different stress components, e.g., load combinations for different service levels.

Correct classification of stresses may demonstrate the capacity to be higher than originally calculated. NB-3000 of ASME Section lli (1977) may prove helpfulin this l regard.

If none of the above options is viable, evaluate the nozzle rigorously by finite-element or other means in order to determine its actual capacity or to verify that the imposed loads result in acceptable stress levels for applicable codes and standards. Use the results of any rigorous evaluation as input for future nozzle validations.

5.5 Pumps and Valves i

Evaluate both pumps and valves which are independently attached to structures for loads and service levels listed for pipe supports, based on the attached piping system code (consider as non-ductile).

Check pumps which have restrained motors (independently supported) to ensure the j deflection between the pump and the motor will not damage or impede its function for all service levels for which the pump has a safety function.

l i i 1

1 ES-040 I Revision 0  !

Page 23 of 72 i 5.5 Pumps and Valves (Continued) i i

Similarly, check valves with their operators independently restrained to ensure th deflection between the valve and the operator will not damage or impede its func for all service levels for which the valve has a safety function.

Compare valve accelerations from the piping analysis (OBE, SSE) to the app Seismic Qualification Report (SQR) to ensure that acceleration limits are satisf vendor limits acceptable limits. do not exist, test data on valves of the same type can be used to e I

6.0 BASES

[B1]

Baltimore Gas and Electric Company, Calvert Cliffs Nuclear Power Plant Unit and 2, Updated Final Safety Analysis Report.

I

  • e i

I i

i l

I I

L raping uesign Untena ES-040  !

Revision 0  !

Page 24 of 72 ATTACHMENT 1, LICENSING AND DESIGN BASES MEETING RESULTS  !

! (Page 1 of 4) l INTRODUCTION l

This attachment contains a summary of a meeting by members of various CCNPP Engineering Units and several supporting A&E's called to address the situation of when the original design  !

Codes used in the construction of a system give little or no guidance on how to proceed with  !

the evaluation of extreme load conditions. The main focus of the meeting wasjustifying a i proposed stress limit for steel pipe supports within the context of the SAR (this is discussed in '

Attachment 6, Level 3 Stress Limits for Steel Pipe Supports on Seismic Category l B31.1 and

. B31.7 Systems. Within the meeting, the relationship between the design Codes and the.  ;

CCNPP UFSAR was made clear. the UFSAR augmented the design criteria in the Codes, and  !

documented limits for the evaluation of extreme load conditions for equipment and supports. i l MEETING

SUMMARY

~

Date March 8,1994 ,

e I i The meeting was called to address the generic issue of what to do when design Codes give I l

little or no guidance on how to proceed with the evaluation of extreme load conditions on  ;

piping system supports.

< A presentation was given to propose the use of a 0.4% strain limit as acceptance criteria for {

steel supports when analyzing for the most extreme or " faulted" condition. The faulted l

condition is described in ASME Section ill as a service level in which gross general deformations with some loss of dimensional stability and damage requiring repair may be j tolerated, so long as the component in question performs its intended function. For a piping system, its function is protection of the pressure boundary and delivery of required flow. This service level may be associated with loads from an SSE and LOCA.

t Support load types have been categorized as follows: I e Constant force (such as weight).

imposed displacement (such as those resulting from the thermal expansion of support equipment). i Impulsive /impactive/ dynamic (such as seismic or transient type loads).

i l

i

l npnew vecewn unaa ES-040 i Revision 0 !

Page 25 of 72 ATTACHMENT 1, LICENSING AND DESIGN BASES MEETING RESULTS  !

(Page 2 of 4) l The mechanism by which each type of load acts was discussed.

It was shown by energy balance that allowing a linear elastic analyzed stress in a support equal to F. (Ultimate Stress) for ductile materials would result in an actual strain of no more than 0.4%. This strain limit provides a safety factor" of at least 5 against the onset of the strain-hardening regime for typical ductile materials, which occurs at 2.0% svain. It was assumed all constant force-type loads would remain below yield, having been limited by previous service levels, and the associated plastic deformation would come from imposed displacements and minor distortion from ductile action of the material under dynamic loads.

1 These limits are to apply when performing re evaluations of existing supports. The strain-limit i argument was judged acceptable from a physical standpoint. Concems were raised about low  !

cycle fatigue on supports, ensuring supports f ive adequate ductility, and consideration of the l effect of support ductility on the supported pipng. It was remarked low cycle fatigue was not expected to be a problem in light of the low number of cycles a support system was expected .

to experience during a faulted event. Buckling and brittle fracture were raised as concems; I anchor bolts and structural botting were also raised as issues in need of resolution. 1 The list of concems about using Fu as a limit was formalized as follows:

. Buckling.

Effect of support displacement on piping stresses.

j

. Fracture protection verification.

Also, it was suggested a higher strain limit (5%) is acceptable if a detailed inelastic analysis were performed. When using this limit, rules for strain hardening and flow rules would have to be clearly defined.

Anchor bolts were discussed; anchor bolts at the plant have used a safety factor of 4 (5 for shell type). Anchor studs which are cast in place or attached to embed plates should use the same criteria as support steel. It was decided to address the issue of anchor bolt safety factors at a later date, if necessary.

I l

..,,...,.~...v..... ES-040 Revision 0 Page 26 of 72 ATTACHMENT 1, UCENSING AND DESIGN BASES MEETING RESULTS (Page 3 of 4)

The issue of welding was discussed. It was suggested that there should be verification of no fast irecture potential and some field verification of weld quality. It was agreed that welds should be judged by criteria compatible with the steel criteria, i.e,. the welds must not be the weak link in the system. Fast fracture must be addressed; the bottom line is that fracture protection must be verified so connected steel can be assured of developing ductility.

Similarly, structural bolting compatibility with the connected steel criteria must be verified.

Snubbers were brought up. It was suggested their connecting steel should follow the proposed steel criteria. Current practice is to use the catalog load for the mechanical portion of the snubbers to meet the " normal" and " upset" conditions, and the one-time load to meet the

" faulted" condition (CCNPP has hydraulic snubbers only). It was suggested to address possible increased limits for the mechanical portion of the snubber at a later date if necessary.

i Nozzles were also mentioned as an issue. With additional system flexibility, nozzles may see more load. Questions were raised concoming the evaluation of nozzles, namely, how to perform an evaluation. The comment was made that most vendors want no load on the l nozzles of their equipment. Class 1 nozzles usually can't take as much load as the attached pipe or vessel wall. Some Class 2 and 3 systems were most likely done to rules similar to Section Vlli, which basically states there will be no nozzle loads. It was decided to consider nozzles and snubbers as a separate issue to be addressed later if necessary. Other catalog items such as component standard supports were also men'.ioned and considered in a like manner, The next part of the meeting was devoted to looking at licensing and Code issues. The UFSAR sections which allov, the use of the proposed strain limit were discussed:

  • UFSAR SA2.1: Class 1 shall mean Category I (seismic).
  • UFSAR 5A3.2: Class 1 systems should use the criteria and load combinations in Table i 4-8. ,

Table 4-8: For LOCA + SSE (load combination #3), deflection of supports is limited to  !

maintain equipment within limits of columns 1 and 2. ~

i l

l f

1 i

i l

l

! \

l

l Piping Design Criteria ES-040 l Revision 0 Page 27 of 72 l l

l ATTACHMENT 1, LICENSING AND DESIGN BASES MEETING RESULTS l (Page 4 of 4) l l

While Chapter 4 of the UFSAR generally refers to the reactor coolant loop, from these l

statements Table 4-8 is to be used for all Seismic Category I piping. The original Code in the 1 design of the supports,~AISC, does not have strain-based limits. It was stated the materialin the UFSAR augmented the Code, and provides the user with steps beyond the Code. The SAR, then, has established faulted limits. ,

it was agreed that the techniques and criteria proposed during the meeting for the analysis of steel supports in the Pipe Rupture /LOCA + SSE condition are clearfy permitted by the license. '

Therefore, the licensing justification should be documented when this limit is included in a engineering standard.

m

mping vesign Um:;na ES-040 Revision 0 Page 28 of 72 ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES (Page 1 of 7)

INTRODUCTION This attachment provides a description of the service levels and load types appropriate to the analysis of piping systems at CCNPP.

1. SERVICE LEVELS A. Seismic Category l B31.1, B31.7 Seismic Category 1 B31.1 and B31.7 piping systems at CCNPP Units 1 and 2 were designed for four general service levels, which have been designated in this document as Design, Level 1. Level 2, and Level 3. The loads associated with these levels are described in UFSAR Section 5A.3.1.5 and Table 4-8.

The Design Level evaluates the response of the system under the application of primary loadings from design pressure, fluid weight, and system deadweight.

Secondary stresses are evaluated based on the maximum moment range from thermal service loadings and/or anchor movements, i.e., TAM and/or OBE SAM.

The Secondary Stresses and the Primary Design Level Stresses can be combined and evaluated together.

Level 1 loads are those associated with upset service operation of the plant, commonly occurring transients (relief valve discharge, transients from startup, shutdown, and trips) and those imposed by the OBE.

It should be noted that while B31.1 and 831.7 Class 11 and Class 111 systems evaluate Design and Level 1 loads separately (according to B31.1 Sections 102.3.2(d) and 102.2.4, which distinguish between design loads and occasional loads), 831.7 Class I systems are required to evaluate Design Loads,in conjunction with Level 1 loads, i.e., a combination of design pressure, design weight and the OBE is required as one of the load combinations (according to B31.7 Section 1-705.1 and UFSAR Table 4-8). -

Level 2 loads are those associated with emergency service operation of the plant, including both transients (relief valve discharge, transients from startup, shutdown, and trips), and those imposed by the SSE.

Level 3 loads are those associated with extreme accident (faulted) conditions at the plant, such as plant response to a worst-case pipe rupture event (LOCA).

Loads associated with accident mitigation must be included, as must loads from the SSE.

l

/

i

- - - _ - - - - - . - .. . - . - . - _ - . - - - . ~ . ~ . - - - - . - _ - - -.

Piping Design Criteria ES 040 [

Revision 0 l Page 29 of 72 l

ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES (Page 2 of 7) l B. Seismic Category 11831.1 -

Seismic Category 11 B31.1, piping systems need only satisfy Design and Level 1 -

loads as described above in Sechon 1.A, excluding any earthquake effects.  ;

C. ASME Class 2 and Class 3 r

The motor-driven train of the auxiliary feedwater system was installed almost 10 'I years after plant startup. It was constructed to a different set of requirements,  ;

the ASME BPV Code Section 111 (1977). Due to the lack of CCNPP t documentation concoming the service levels used in the evaluation of the  !

motor-driven AFW system, it is recommended that the analyst review th_e  ;

original calculation for this system before proceeding with an analysis. "AFW  ;

Design Criteria" (Bechtel) indicates that load combinations involving earthquake  !

effects was taken from AEC Reg. Guide 1.48. Therefore, the materialin this i

Reg. Guide has been used in establishing service levels for the motor-driven  ;

AFW system. The recommended load combinations have been expressed as i Design, Level 1, Level 2, and Level 3 to provide consistency with the '

terminology used in this document for the original piping systems.

The Design Levelis the same as for Seismic Category l B31.1 and B31.7. '

systems.

l The regulatory position contained in AEC Reg. Guide 1.48 states:

OBE to be considered at ASME Service Level B for pipe and supports with normal operating loads and occasional loads. This is Level 1. l i

SSE to be consdered at ASME Service Level C for pipe and ASME Service Level D for suppods with normal operating loads and occasionalloads. This is Level 2.

SSE to be considered at ASME Service Level C for pipe and ASME Service Level D for supports with extreme accident conditions at the plant. This is Level 3. '

See Attachment 4, Tables 1,2 and 4 for additional clarification of load combinations and allowable limits.

Piping Design Criteria ES-040 Revision 0 Page 30 of 72 ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES (Page 3 of 7) i

2. LOAD DESCRIPTIONS A. Weight l Weight of the piping system will include the weight of the pipe material, attached insulation or shielding, attached or inline piping components, and the weight of i the fluid within. The design weight is the maximum weight of the system, e.g., ,

when the system is completely filled with water. For those piping systems which do not operate with a liquid, e.g., steam piping, an additional weight analysis may be necessary to calculate the system loading for the hydrodynamic pressure test condition. Treat this as a test load (see code for pipe and support i limits).  ;

B. Pressure 4

}

The pressure used for any load case should be appropriate to the operating or .

transient condition being analyzed. The design, norma!, and maximum  !

pressures are listed in M-601 for each system service number.

C. Temperature Effects

. Temperature effects will include thermal expansion / contraction of the pipe, and anchor movements imposed by the thermal movement of equipment to which the pipe is attached. In an extreme case, anchor movements from containment expansion dunng a LOCA will also be included, if an analysis is performed and thermal movements are found to be excessive, these movements should be checked for interference.

All frame-type supports classified as " rigid" should be evaluated for the sliding friction force resulting from thermal growth in the longitudinal direction of the supported pipe. This friction effect should only be evaluated for normal operating loads (i.e., do not combine with transient loads or OBE/SSEk- In general, the friction force should be computed as 0.3 x (weight + radial forces from thermal expansion, where applicable) and applied in the direction of thermal growth. Other approaches to evaluating frictional affects may be used if property justified or referenced.

Piping Design Criteria ES-040 l Revision 0 Page 31 of 72 ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES (Page 4 of 7)

D. Fluid Transient Fluid transients are dynamic events associated with irregular flow or interrupted flow in the pipe. Fluid hammer may result from rapid valve closure. Fluid slug results from an amount of liquid water being propelled at high speed (either by the sudden opening of a valve on a line under pressure, or the venting of steam into a closed discharge system that contained water) impacting an elbow, pipe bend, or pipe terminal end. These events are usually evaluated by time-history methods. ,

I E. Relief / Safety Valve Discharge i

When a relief or safety valve discharges, the fluid initiates a jet force that is transferred through the piping system. If the valve vents to atmosphere, the jet force may be calculated and applied to the system as a constant load. If the valve vents (3 a closed discharge system, transient conditions may develop (such as the generation of a fluid slug) which may require time-history analysis.

F. Earthquake Effects Seismic Category I piping systems must be designed to resist two levels of earthquake: OBE and SSE. Earthquakes will generate two types of loads applicable to piping systems: inertia loads (from the excitation of the piping system's mass) and anchor movement loads (from the movement of equipment or structures to which the piping system is attached).

Use the response spectrum method for the seismic analysis of piping systems, ,

unless attemative techniques, i.e., time-history analysis are approved. The I spectrum provides values of acceleration (response) plotted against natural frequency for a series of damping values and a ductility value of one.. Code i Case N-411 damping may be used for all new or revised piping system i analyses. If spectra for the SSE are not available, they may be calculated by using SSE = 1.875 OBE (the ratio for the vertical response of containment is less in several cases).

l 1

l l

I Piping Design Criteria ES-040 l Revision 0 Page 32 of 72 i l

ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES I (Page 5 of 7)

I When analyzing a system for the effects of seismic inertia ensure that all values 1

of acceleration are enveloped for the entire frequency range. The following l guidelines may be useful, but requires verification that all peaks are enveloped

l

. For systems that run between floor levels, select the most conservative floor  !

response spectrum. l 1

  • For systems that go between seismically-independent structures, use the )

most conservative building and elevation spectrum. j Use the SRSS approach for modal combinations and treat closely spaced i modes as addressed in AEC Reg. Guide 1.92. Total response to the three l directions of motion (N-S, E-W, vertical) should also be obtained by the SRSS (

approach.

Evaluate seismic anchor movement for the piping system if one or more of the l following exist: '

i The piping system is run between two seismically independent structures.

. The piping is attached to large equipment or intemal structures which have the capability for independent motion.

The difference in elevation between the highest anchor point and the lowest j anchor point on the piping system is greater than 40 feet and the net relative ,

displacement between the two points is greater than 1/16th inch.

]

I l

l

Mping vesgn Untena ES-040 Revision 0 ,

Page 33 of 72 1

ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES (Page 6 of 7)

Seismically independent structures include the following.

l e Main auxiliary building (upper elevations have separate east / west I structures).

  • Penetration area (auxiliary building). i e Diesel generator rooms (11,12,21,22).

. Containment building.

l e Intake structures (pumphouse, divided into north / middle / south substructures).

Equipment and intemal .=tructures having the capability for independent motion I are:

l l

e Containment intemal structure (floors are fixed to intemal structures, and  ;

slotted at shell).

. Reactor vessel.

. Reactor coolant loop, pressurizer.

. Steam generators.

G. Pipe Rupture Failure scenarios in the different piping systems at the plant that might result in a LOCA or otherwise affect the performance of other systems in their ability to perform a specified safety function must be evaluated to ensure that overall plant safety will not be jeopardized.

Pipe break / crack locations (for the consideration of the design and placement of pipe whip restraints, jet impingement barriers and missile protection) are postulated based on system geometry and pipe stress levels.

1 i

i i

t i

Piping Design Cnteria '!

ES-040 Revision 0 Page 34 of 72 1

ATTACHMENT 2, SERVICE LEVELS AND LOAD TYPES (Page 7 of 7) i The following lists hypothebcal break locations: t

. Terminal ends / anchor points. }

i

. Any intermediate locations between terminal ends where either the sum of l primary and secondary circumferential or longitudinal stresses derived on an j elastic basis under the loads associated with seismic events and operational j plant conditions exceeds 0.8 (S , + S4), or the secondary circumferential or longitudinal stress exceeds 0.8 SA.  ;

1 Two additio':al intermsdiate locations are selected based on the points of high

! stress as identified by UFSAR Chapter 10A. No breaks occur in short pipe runs  :

i of 5 pipe diameters orless in length.

l A critical crack defined as one-half the pipe diameter in length and one-half the l pipe wall thickness in width is postulated to occur at any location. Since a crack  :

is postulated to occur anywhere, select locations having the most adverse effect  !

on plant safety.

Pipe breaks and/or cracks are postulated to occur in piping (greater than 1" i nominal size) of high energy systems, which are defined as those fluid systems where either of the following process conditions are maintained during normal .

plant conditions: f j' . Maximum operating temperature exceeds 200* F.

e Maximum operating pressure exceeds 275 psig.

l I l

Normal plant conditions are defined as normal steady state or hot standby (Modes 1, 2, 3). .

Piping systems that contain fluids above atmospheric conditions but below high energy conditions during normal plant conditions are classified as moderate energy. Pipe breaks and/or cracks are not postulated in moderate energy systems at CCNPP.

Additionalinformation may be found in UFSAR Section 10A and Mechanical Design Criteria Appendix A.

l i

l l r

- , ~ ~ . . . . _ _ . . , _ . _ . _ _ - . . . . . , _ . . . . ,

i Piping Design Criteria ES-040

' Revision 0 Page 35 of 72 ATTACHMENT 3, B31.1 PIPE STRESS AND SUPPORT CAPACITY TABLES I l

t (Page 1 of 9)

Pipe Stress Legend for B31.1 (1967)  !

1 I- P = Pressure, psi.

M = Resultant moment, Ib.-in.

t i = Stress intensification factor (see page B31.1 Appendix D).

D = Outside diameter of pipe, in.

d = Inside diameter of pipe, in.

t = Wall thickness, in. -

y =

See B31.1 Table 104.1.2 (a) 2.

E = Joint efficiency (see B31.1 Table 102.4.3). I Z = Section modulus of pipe, in.'  !

StocAt s =

Appropriate local hoop stress from contact forces and attachments, psi. (

=

S LOCAL L Appropriate local longitudinal stress from contact forces and attachments, psi.

Sn =

Allowable stress at temperature, psi (831.1 pipe use B31.1 Appendix A Table A1 and Table A2; B31.7 Class ll pipe use B31.7 Appendix A Table A8; B31.7 Class ill pipe use B31.7 Appendix A Table A8 and A9).

So =

Syfor carbon steel and 1.2 Sn for stainless steel (see UFSAR Table 4-8).

St = Sy + 0.33 (S,- S,) (see UFSAR Table 4-8).

S, = Yield strength of material at temperature, psi (see ASME,1967). _.

So = Tensile strength of material at temperature, psi (see ASME,1967).

SA = f(1.25 S, + 0.25 Sn).

Se = Allowable stress at minimum environmental temperature, psi (B31.1 pipe  !

use B31.1 Appendix A Table A1 and Table A2; B31.7 Class 11 pipe use j l 831.7 Appendix A Table A8; B31.7 Class ill pipe use B31.7 Appendix A

) Table A8 and A9).

l l f = Stress range reduction factor (B31.1 Table 102.3.2(c)).

4 t

I

Mping Design Crit: rim  !

ES-040 Revision 0 Page 36 of 72 i

ATTACHMENT 3, B31.1 PIPE STRESS AND SUPPORT CAPACITY TABLES '

(Page 2 of 9)

Table 1:  !

Primary Stress Limits for B31.1 Pipe for Design and Level 1 Conditions (also applicable to B31.7 Class il and Class lii)  !

DESIGN LEVEL 1 PRESSURE YES YES WEIGHT OF YES YES PIPING SYSTEM '

WElGHT OF YES YES -

FLUID E OBE INERTIA NO YES 5i y SSE INERTIA NO NO o

SAFETY / RELIEF NO YES VALVE DISCHARGE FLUID NO YES TRANSIENT l

FAULTED NO NO (PIPE RUPTURE)

HOOP P(D - 2yt i P(D 2yt) t cALH bh STRESS 2tE 2tE tocALH I '

h LONGITUDINAL Pd* M Pd* M STRESS o' d, + p s toc,t i s u s, D, ,d , + p s toc,t t sus, NOTES:

1. See sheet 7 for calculating moment and application of stress intensification factors.

s

)

l 2. B31.1 Seismic Category li pipe is only analyzed for Design and Levci 1 loads, and does l not consider earthquake effects.

l 1

l l

l

\

1 J

raping ve:ign t,nnn2 )

ES-040 l

Revision 0 1 Page 37 of 72 ATTACHMENT 3, B31.1 PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 3 of g)

Table 2:

Primary Stress Limits for B31.1 Pipe for Level 2 and Level 3 Conditions (also applicable to B31.7 Class 11 and Class lil)

LEVEL 2 LEVEL 3 PRESSURE YES YES WEIGHT OF YES YES PlPING SYSTEM WEIGHT OF YES YES _

FL8J1D f OBE INERTIA NO NO 5

3 SSE INERTIA YES YES 2

SAFETY / RELIEF YES YES VALVE DISCHARGE FLUID YES YES TRANSIENT FAULTED NO YES (PlPE RUPTURE)

HOOP P(D - 2yt) P(D - 2yt)

STRESS 2:E ' C^' " '

2tE 'OC" " ' '

LONG ME BpANE '*' *'"

STRESS LONG. BENDING u 4 , u 4 STRESS (3) i ' i 4* ' .E . sto,f- 7 s 7 sten [,. sto f-i NOTES:

1. See sheet 7 for calculating moment and application of stress intensification factors.
2. Ignore these load levels for B31.1 Seismic Category 11 pipe.
3. Resulting value in []is in radians.

l l

-. . .= _ . - - - . . - .. . _ . - . - - _ . - . .

t Piping Design CritGri9 ES-040 Revision 0  !

Page 38 of 72 ,

ATTACHMENT 3, B31.1 PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 4 of 9)  :

Table 3:

Secondary Stress Range for B31.1 Pipe for Level 1 Loads Sets i

(also applicable to B31.7 Class ll and Class lil) '

LEVEL 1 5 OBE SAM YES

$ THERMAL YES -

@ EXPANSION i

THERMAL YES

[

AM LONGITUDINAL " -

. as,,,,,,.3. ,, ,

STRESS RANGE (2)

NOTES:

I

1. See sheet 9 for calculating moment and application of stress intensification factors.

l 2.

The term f(Sn - S't) may be added to SA, where S't is the primary longitudinal stress  !

calculated in Table 1 for design loads, i.e., weight and pressure.

3. B31.1 Seismic Category 11 pipe does not consider earthquake effects.

l g - , , - - . . -

rseuew vauvo vntna ES-040 Revision 0 Page 39 of 72 ATTACHMENT 3, B31.1 PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 5 of 9)

Table 4:

1 Pipe Supports on B31.1 (1967) Systems (Also applicable to B31.7 Class 11 and Class Ill)

DESIGN LEVEL 1 LEVEL 2 LEVEL 3 '

WElGHT YES YES YES YES THERMAL YES YES (2) YES (2) YES (2)

EXPANSION (1)

) TAM (1) YES YES YES YES OBE INERTIA NO YES NO NO

OBE SAM NO YES NO NO

, SSE INERTIA NO NO YES

YES SSE SAM NO NO YES YES RELIEF / SAFETY NO YES YES YES VALVE DISCHARGE FLUID NO YES YES YES TRANSIENT FAULTED NO NO NO YES (PIPE RUPTURE)

COMPONENT ASME LEVEL ASME ASME STANDARD ASME LEVEL -

A LEVEL 8 LEVEL D D (NEW)

COMPONENT ITT GRINNELL ITT ITT ITT STANDARD PH-74-R GRINNELL GRINNELL GRINNELL (OLD) CATALOG PH-74-R PH-74-R PH-74-R (3) CATALOG x CATALOG x CATALOG x 1.2 2.0 2.0 SUPPORT AISC 7th AISC 7th x YlELD DEFLECTION STEEL 1.2 (4) CONTROLLED (5) l j See notes 15 on the following page.

i

\

Piping Design Criteria ES-040 Revision 0 Page 40 of 72 l ATTACHMENT 3, B31.1 PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 6 of 9)

)

i Table 4. 3 Pipe Supports on B31.1 (1967) Systems j (Also applicable to B31,7 Class ll and Class Ill)

NOTES: l l

1. . Ignore for snubbers unless travel is exceeded.
2. Neglect friction effects when condition involves dynamic loads.
3. The following exceptions apply:

. Rigid Grinnell struts use Level D allowable from ITT Grinnell LCD-105 when meeting Level 2 and Level 3 loads

. Snubbers use catalog capacity when meeting Design and Level 1 loads; "one-time allowable load" listed in catalog should be used when meeting Level 2 and Level 3 loads

. Spring hangers should meet all load levels with the catalog capacity and should remain within the working range of the spring

4. May use AISC 7th x 1.5, with following limitations:

. Stresses may not exceed 0.7 F.

. Shear stresses may not exceed 0.42 Fu

. Buckling load may not exceed 2/3 critical buckling load 5.. F, limit compared to elastically calculated stresses. See Attachment 6.

Piping Design Criteria ES-040 Revision 0 Page 41 of 72 ATTACHMENT 3, B31.1 PIPE STRESS AND SUPPORT CAPACITY TABLES  ;

(Page 7 of 9) 1.0 Combined Moment for B31.1 (1967) Primary Stress Evaluation .

The moment combination technique used in this section is based on that described in ,

B31.1 (1967) Section 119.6.4(a). The square-root-sum-of-the-squares (SRSS) I approach of combination of cyclic dynamic loads is described in AEC Reg. Guide 1.92.

The combination should be carried out as follows:

a. Combine all moments from cyclic dynamic loads (seismic inertia, fluid hammer) by the SRSS approach. This is illustrated as follows:

CYCLIC ' CYCLIC E1 ~

  1. 1 #2 Ms +4 +1 ]4232 , 4,3 M2 -6 +10 }(.6 )2 + (10 2) , g 3,7 Ma +3 -7 2 2 f3 +(.7 ) = 7.6 The components Mi , M2 , M3 will be used as the components for the net cyclic dynamic moment.
b. Combine the moments from non-cyclic dynamic loads (fluid slug, valve discharge) and static loads (weight) through algebraic summation. Use these as the components for the net non-cyclic moment.

l 1

I

ripung voign unen2 ES-040 l

Revision 0 Page 42 of 72 ATTACHMENT 3, B31.1 PlPE STRESS AND SUPPORT CAPACITY TABLES (Page 8 of 9)

c. Combine the components of the net cyclic dynamic moment and the net non-  ;

cyclic moment through algebraic summation, using both positive and negative l signs on the net cyclic dynamic moment. This process is illustrated below- >

NET NON- NET CYC. T* E2 t

CYC.

I Mi +4 i4.1 4 + 4.1 = 8.1 4 - 4.1 = -0.1 M2 -6 i11.7 -6 + 11.7 = 11.7 =  ;

5.7 -17.7 Ma +3 i7.6 3+7.6= 3 - 7.6 = -4.6-l 10.6 '

14.5 18.3 dM'+M 28+M 32 3

=

The largest resultant moment of column E1 or Z2 is the moment to be used when checking primary stress. In this example, it would be the moment from column E2.

d. Apply appropriate stress intensification factor "i" to the components of the resultant bending moment on the pipe cross section, and combine with the  !

torsional component as shown:

M = g(iM,)2 +(iM3 ) +M 32 "M"is the moment which should be used in the stress eval Mcp. For branches -

and tees, see B31.1 Section 119.6.4 (b) for combining con %nents Ms, M 2, Ms.

1 I

l l

e 4 .- ,,. - - -

. _ - . - -- -_ - - . - - - - _ - . _ . .~ - . - . . - . -

l  !

l Mping Design Cnt:;ri3 ES-040 Revision 0  :

Page 43 of 72 ATTACHMENT 3, B31.1 PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 9 of 9) 2.0 Combined Moment for B31.1 (1967) Secondary Stress Evaluation i

The moment combination technique used in this section is based on that described in  !

B31.1 (1967) Section 119.6.4(a).  ;

Combine as follows:

a. Combine all moments from thermal expansion and thermal anchor movements by algebraic summation. Use these components as the net non-cyclic moment.
b. Combine the components of the SAM moment and the net non-cyclic moment i through algebraic summation, using both positive and negative signs on the SAM moment. Also, evaluate the full range of the SAM moment. This process is illustrated below:

NET NON- NET CYC. I1 I2 I3 CYC.

Mi +4 14.1 4 + 4.1 = 8.1 4 - 4.1 = -0.1 2 x 4.1 = 8.2 M2 -6 11.7 -6 + 11.7 = 11.7 = 2 x 11.7 =

5.7 -17.7 23.4 M3 +3 i7.6 3 + 7.6 = 10.6 3 - 7.6 = -4.6 2 x 7.6 = 15.2

]M,' + M2* + Ma * = 14.5 18.3 29.1 i

The largest resultant moment of column I1, I2, or I3 is the moment to be used when checking secondary stress range. In this example, it would be the -

moment from column I3.

c. Apply appropriate stress intensification factor "i" to the components of the resultant bending moment on the pipe cross section, and combine with the torsional component as shown:

M = ](iM,)* +(iM3 )2 +M3 '

"M"is the moment which should be used in the stress evaluation. For branches and tees, see B31.1 Section 119.6.4(b) for combining components M i, Mr. M 3-

Piping Design Criteria ES-040 Revision 0 Page 44 of 72 l

ATTACHMENT 4, ASME CLASS 2 AND CLASS 3 PIPE STRESS AND SUPPORT CAPACITY  !

TABLES  !

(Page 1 of 8)

Pipe Stress Legend for ASME Class 2 and Class 3 Systems P = Pressure, psi.

M4 = Resultant static moment, Ib.-in.

Me = Resultant dynamic moment, Ib.-in.

Mc = Resultant moment from expansion and anchor movements, Ib.-in.

Mo = Resultant moment from an unrepeated anchor movement, Ib.-in.  !

i =

Stress intensification factor (see NC-/ND-3673).

D = Outside diameter of pipe, in.

i d = Inside diameter of pipe,in. I t = Wall thickness, in.

l y = See NC-/ND-3641.1.

j Z = Section modulus of pipe,in.'

Stoca n = Appropriate local hoop stress from contact forces and attachments, psi.

St ocat = Appropriate local longitudinal stress from contact forces and attachments, psi.

I Sn = Allowable stress at temperature, psi (NC uses ASME Appendix l Table l- ,

7.0; ND uses ASME Appendix I Table I-7.0 or 1-8.0).

SA =

f(1.25 S + 0.25 Sn).

l' Se = Allowable stress at minimura environmental temperature, psi (NC uses ASME Appendix I Table I-7.0; ND uses ASME Appendix I Table I-7.0 or I-8.0).

f = Stress range reduction factor (ASME NC/ND Table 3611.2(e)-1). l l

l l Piping Desigo Oriteria I ES-040  ;

Revision 0 I Page 45 of 72 l

t ATTACHMENT 4, ASME CLASS 2 AND CLASS 3 PlPE STRESS AND SUPPORT CAPACITY i

TABLES (Page 2 of 8)

Table 1: l Primary Stress Limits for ASME Class 2 and Class 3 Pipe for Design and Level 1 Conditions 1 I

i DESIGN LEVEL 1 PRESSURE YES YES WEIGHT OF YES YES PIPING WElGHT OF YES YES FLUID  :

OBE INERTIA )

E NO YES

.y l i

y SSE INERTIA NO NO 2

SAFETY / RELIEF NO YES VALVE Dt3 CHARGE

. FLUID NO YES TRANSIENT FAULTED NO NO (PIPE RUPTURE)

HOOP P(D 2y t) P (0 2 y t h STRESg 2:

LONGITUDINAL rd' o.7siu. ed' o.7sicu. . u i D a #

2 *'OC " '

STRESS d Da d 8 2

  • NOTES: -
1. See sheet 7 for calculating M4 and Ms.

l

i Piping Design Criteria ES-040 Revision 0 Page 46 of 72 1

ATTACHMENT 4, ASME CLASS 2 AND CLASS 3 PIPE STRESS AND SUPPORT CAPACITY I TABLES (Page 3 of 8)

Table 2:

Primary Stress Limits for ASME Class 2 and Class 3 Pipe i for Level 2 and Level 3 Conditions  ;

LEVEL 2 LEVEL 3 PRESSURE YES YES WElGHT OF YES YES PIPING I WElGHT OF YES YES  ;

- FLUID j

{

w OBE INERTIA NO NO i j 8 SSE INERTIA YES YES ,

3 ,

! SAFETY / RELIEF YES YES i VALVE

  • i DISCHARGE i FLUID YES YES TRANSIENT FAULTED NO YES (PIPE RUPTURE) l HOOP P(D 2vtI p go.2 yt) 2' 2 **'""'""

STP.ESS i LONGITUDINAL Pd' O.7b(Ma + Ms ) Pd* 0.75(Ma + Me)

STRESS o' d '
  • I **""* o'-d'
  • z **^'d8*

NOTES: ,.

1. See sheet 7 for calculating M4and Ms.

1

'S 1

2

Piping Design Criteria ES-040 Revision 0 Page 47 of 72 ATTACHMENT 4, ASME CLASS 2 AND CLASS 3 PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 4 of 8)

Table 3:

Secondary Stress Range for ASME Class 2 and Class 3 Pipe for Level 1 Load Sets and Unrepeated Anchor Movements LEVEL 1 Unrepeated AM OBE SAM YES NO E THERMAL YES NO y EXPANSION g THERMAL YES NO AM _

UNREPEATED NO YES AM LONGITUDJ, AL @.as,,,,,,i.os, p . a s ,,,,, , s .o s ,

STRESS RANGE (2)

NOTES: ,

i

1. See sheet 8 for calculating Mc and Mo.

l l

2. The term f(S - S't) may be added to SA, where S't is the primary longitudinal stress i calculated in Table 1 for design loads (i.e. weight and pressure). This is equivalent to equation ll in ASME, Sect. til (1977), Section NC-3652.3 and ND-3652.3.

l l

i l

1

l -

I Piping Design Criteria ES-040 Revision 0

.: Page 48 of 72 l

4  !

ATTACHMENT 4, ASME CLASS 2 AND CLASS 3 PIPE STRESS AND SUPPORT CAPACITY TABLES

. (Page 5 of 8)

Table 4:

! Pipe Supports on ASME Class 2 and Class 3 Systems

, DESIGN LEVEL 1 LEVEL 2 LEVEL 3

) WElGHT YES YES YES YES t

THERMAL YES YES (2) YES (2) YES (2) i i

EXPANSION (1)

TAM (1) YES YES YES YES OBE INERTIA NO YES NO NO I 4

OBE SAM NO YES NO NO i

SSE INERTIA NO NO YES YES 1 SSE SAM NO NO YES YES I

, RELIEF / SAFETY NO YES YES YES VALVE j DISCHARGE i FLUID NO YES YES YES TRANSIENT j FAULTED NO NO NO YES (PIPE RUPTURE)

COMPONENT ASME LEVEL ASME LEVEL ASME LEVEL ASME LEVEL i STANDARD A B D D SUPPORT ASME ASME ASME ASME _

STEEL SECTION lli SECTION lli SECTION lil SECTION 111 j

. NF LEVEL A NF LEVEL B NF LEVEL D NF LEVEL D  !

NOTES:

1. Ignore for snubbers unless travelis exceeded.

2

2. Neglect friction effects when condition involves dynamic loads.

1 e

d w n -

Piping Design Criteria ES-040 [

4 Revision 0

! Page 49 of 72 l ATTACHMENT 4, ASME CLASS 2 AND CLASS 3 PIPE STRESS AND SUPPORT CAPACITY TABLES 1 (Page 6 of 8) 3 1.0 Combn;ad Moments for ASME Class 2 and Class 3 Stress Evaluations The moment combination techniques used in this section are based on those described '

l in NC-/ND-3652.4. The square-root-sum-of-the-squares (SRSS) approach to t combination of cyclic dynamic loads is described in AEC Reg. Guide 1.92.

For branches and tees, see NC-/ND-3652.4 for combining components M i , M 2, Ma into ,

the appropriate resultant. l A. Static Moment M4 The static moment M 4 is found by combining all corresponding static loads (weight) by algebraic summation in each of the orthogonal directions and then performing the SRSS method to get the resultant moment (M4.) i 1 B. Dynamic Moment Ms.  !

l

1. Combine all moments from cyclic dynamic loads (seismic inertia, fluid I hammer) by the SRSS approach. This is illustrated as follows:

CYCLIC CYCLIC E1

  1. 1 #2
M, +4 +1 g42,12 , 4,j M2 4 +10 g(.e 2) + (j o2) = 11.7 M3 +3 -7 y3 2 2

(.7 ) = 7.6 The components Mi , M2, Ma will be used as the components for the net  ;

cyclic dynamic moment.

2. Combine the moments from non-cyclic dynamic loads (fluid slug, valve discharge) through algebraic summation. Use these as the components for the net non-cyclic dynamic moment. 1

Piping Design Untena ES-040 Revision 0  !

Page 50 of 72 j ATTACHMENT 4, ASME CLASS 2 AND CLASS 3 PIPE STRESS AND SUPPORT CAPACITY  !

TABLES i (Page 7 of 8)  !

3.

Combine the components of the net cyclic dynamic moment and the net  !

non-cyclic dynamic moment through algebraic summation, using both  !

positive and negative signs on the not cyclic dynamic moment. This i process is illustrated as follows:

NET NON- NET CYC. Z1 I2 CYC.

M, +4 14.1 4 + 4.1 = 8.1 4 - 4.1 = -0.1 M2 -6 i11.7 -6 + 11.7 = 11.7 =

5.7 -17.7 _.

M3 +3 i7.6 3 + 7.6 = 3 - 7.6 = -4.6 10.6 dM,' + M2 ' + M3 ' = 14.5 18.3 4

The largest resultant moment of column Z1 or E2 is Ms. In this example, .

it would be the moment from column Z2.

C. Expansion / Anchor Movements Moment Mc.

I

1. Combine all moments from thermal expansion and thermal anchor movements by algebraic summation. Use these components as the net non-cyclic moment.

l l

l l

l I

I i

riping vesign Unt:na ES-040 Revision 0 Page 51 of 72 ATTACHMENT 4, ASME CLASS 2 AND CLASS 3 PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 8 of 8)-

2. Combine the components of the SAM moment and the net non-cyclic moment through algebraic summation, using both positive and negative signs on the SAM moment. Also, evaluate the full range of the SAM moment. This process is illustrated below-NET NON- SAM E1 I2 E3 CYC.

M, +4 i4.1 4 + 4.1 = 8.1 4 - 4.1 = -0.1 2 x 4.1 = 8.2 M2 -6 111.7 -6 + 11.7 = 11.7 = 2 x 11.7 =-

5.7 -17.7 23.4 M3 +3 i7.6 3 + 7.6 = 10.6 3 - 7.6 = -4.6 2 x 7.6 = 15.2 dM,' + M 2 +M 3 2 = 14.5 18.3 29.1 The largest resultant moment of column E1, I2, or I3 is Mc. In this example, it would be the moment from column I3.

D. Unrepeated Anchor Movement Moment Mo.

The range in unrepeated anchor movement moment is the range in moment i from the unloaded condition to the loaded condition, Mo is determined by using ^

the SRSS method to combine these three orthogonal moment ranges.  ;

Piping Design Criteria - ES-040 Revision 0 Page 52 of 72 ATTACHMENT 5, B31.7 CLASS I PlPE STRESS AND SUPPORT CAPACITY TABLES (Page 1 of 11)

Pipe Stress Legend for B31.7 Class 1 Systems Bs, B = Primary stress indices for component under investigation (see B31.7 Appendix D Table D-201).

Ci, C2, C = Secondary stress indices for component under investigation (see B31.7 Appendix D Table D-201).

K,,K 2,'K3 = Local stress indices for component under investigation (see page B31.7 Appendix D Table D-201).

P = Pressure, psi.

M = Resultant moment due to static and dynamic loads, Ib.-in.

D = Outside diameter of pipe, in.

t~ = Wall thickness, in.

~

Z = Section modulus of pipe, in.'

y = 0.4 (constant - see B31.7 Section 1-704.1).

StocAtH e Local hoop stress from contact forces and attachments, psi.

Stocatt = Local longitudinal stress from contact forces and attachments, psi.

v = 0.3 (Poisson's ratio).

En = Modulus of elasticity times the coefficient of thermal expansion, both at room temperature, psi /'F (B31.7 Appendix A Table A5 and Table A6).

AT i = Range in temperature difference between the temperature of the inside surface and the temperature of the outside surface of the pipe assuming a moment-generating linear temperature distribution, 'F (see B31.7 Section 1-705.3.1 for description).

AT: = Range in temperature for that portion of the nonlinear thermal gradient through the wall thickness not included in AT , 'F (see B31.7 Section 1-i 705.3.1 for description).

E.e = Average modulus of elasticity between two parts of a gross structural discontinuity, psi (B31.7 Appendix A Table A6). ,

a. = Mean coefficient of expansion on side a of a gross discontinuity, inlin. 'F (B31.7 Appendix A Table A5).

T. = Average temperature minus the room temperature on side a of a gross structural discontinuity, 'F. _

n. = Mean coefficient of expansion on side b of a gross structural discontinuity, inlin. *F (B31.7 Appendix A Table A5).

T. = Average temperature minus the room temperature on side b of a gross structural discontinuity, 'F.

S. = Stress intensity at temperature, psi (831.7 Appendix A Table A1).

So = S, for ferritic steels,1.2 S. for austenitic steels (UFSAR Table 4-8).

St = S, + 0.33(S. - S,) (UFSAR Table 4-8).

S, = Yield strength of material at temperature, psi (see ASME (1967)).

So = Tensile strength of material at temperature, psi (see ASME (1967)).

Ss = Peak stress intensity range for a given set of cycles, psi.

Su = Attemating stress intensity for a given set of cycles, psi.

l

J l

riping vesign untin3 ES-040 I Revision 0 Page 53 of 72 ATTACHMENT 5, B31.7 CLASS I PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 2 of 11)

Table 1:

Primary Stress intensity Limits for B31.7 Class 1 Pipe for Design + Level 1 Condition h

DESIGN + LEVEL 1  !

PRESSURE YES  !

l WEIGHT OF YES PIPING SYSTEM WEIGHT OF YES i FLUID OBE INERTIA YES -

C l

$ SSE INERTIA NO s i O SAFETY / RELIEF YES  !

VALVE DISCHARGE FLUID TRANSIENT YES FAULTED NO (PIPE RUPTURE)

HOOP STRESS P (D - 2 y t )

2:

INTENSITY LONGITUDINAL a,eo ,e,u , ,,,

STRESS INTENSITY 2: z NOTES:

1. See sheet 8 for calculating moment. -

l 1

1 Piping Design Criteria ES-040 Revision 0 !

Page 54 of 72 l ATTACHMENT 5, B31.7 CLASS I PIPE STRESS AND SUPPORT CAPACITY TABLES  ;

(Page 3 of 11)

(

Table 2:

Primary Stress Intensity Limits for B31.7 Class l Pipe for Level 2 and Level 3 Conditions LEVEL 2 LEVEL 3  !

PRESSURE YES YES  :

WEIGHT OF YES YES PIPING SYSTEM WEIGHT OF YES YES FLUID E OBE INERTIA NO NO -

z y SSE INERTIA YES YES o ,

3 SAFETY / RELIEF YES YES VALVE DISCHARGE FLUID YES YES TRANSIENT FAULTED NO YES (PIPE RUPTURE)

HOOP STRESS P(D . 2 y t ) P(D - 2y tl INTENSITY si 2

+ S ocatt s 1.0 So t

+ S ocata s 1.0 8 5 MEMBRANE 2 2: t STRESS INTENSITY I LONG. BENDING , y y I STRESS eg z

s;4 so " K(spo %=t).

T* sg'T z

4

%*" 1(af_o 2sd 2:

  • R= t).

INTENSITY (2)

NOTES:

1

1. See sheet 8 for calculating moment.
2. Resulting value in []is in radians.

Mping Design Untena ES-040 Revision 0

. Page 55 of 72 ATTACHMENT 5, B3i.7 Cl. ASS I PIPE SYRESS AND SUPPORT CAPACITY TABLES j (Page 4 of 11)

\ Table 3:

1 Primary Plus Secondary Stress intensity Range,

l. Peak Stress intensity Range, j and Alternating Stress intensity for Level 1 Load Sets i

1 i

LEVEL 1 PRESSURE YES WEIGHT OF YES

, FLUID THERMAL YES EXPANSION THERMAL YES AM OBE INERTIA YES Z

$ OBE SAM YES 8

2 SAFETY / RELIEF YES VALVE DISCHARGE FLUID YES TRANSIENT LONG. STRESS c.'o i 2' ' a '*"'

  • 2 n - G 5 =I$7.l+ c .t .. la.T. . r. l s a o s ,

INTENSITY RANGE PEAK LONG.

STRESS s,, . x ,,c;r o , =9 , , ,,,_ , , , J ,,, ,_ g ,,),,,, ,,,,, ;,,,, , ,,,, ,], ,,!, ,, ,

INTENSITY ALTERNATING I LONGITUDINAL Su = 0.5 Spi  ;

STRESS INTENSITY i i

NOTES:

1. See sheet 9 for calculating moment.

l i

. _ _ . . . .m Piping Design Criteria ES-040 ,

Revision 0 -

Page 56 of 72 ,

ATTACHMENT 5, B31.7 CLASS i PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 5 of 11)

Table 4:

Pipe Supports on B31.7 Class i Systems 1 DESIGN LEVEL 2 LEVEL 3

+ LEVEL 1  !

WEIGHT YES YES YES THERMAL YES (2) YES (2) YES (2)

EXPANSION (1)

TAM (1) YES YES YES

{

OBE INERTIA YES NO NO -

OBE SAM YES NO NO SSE INERTIA NO YES YES SSE SAM NO YES YES RELIEF / SAFETY YES YES YES j VALVE DISCHARGE FLUlD YES YES YES TRANSIENT FAULTED NO NO YES (PIPE RUPTURE)

COMPONENT ASME ASME ASME STANDARD LEVEL A LEVEL D LEVEL D (NEW)

COMPONENT ITT ITT ITT STANDARD GRINNELL GRINNELL GRINNELL (OLD) PH-74-R PH-74-R PH 74-R (3) CATALOG CATALOG x CATALOG x 2.0 2.0 SUPPORT AISC 7th YlELD DEFLECTION i

STEEL (4) CONTROLLED (5)

(See notes on the next page) i i

t ,

i Piping Design Criteria ES-040 l Revision 0 Page 57 of 72 ATTACHMENT 5, B31.7 CLASS I PIPE STRESS AND SUPPORT CAPACITY TABLES  !

, (Page 6 of 11) l NOTES:

3 1

1. Ignore for snubbers unless travelis exceeded. i i  !
2. Neglect friction effects when condition involves dynamic loads. f 1

l 3. The following exceptions apply- l l . Rigid Grinnell struts use Level D allowable from ITT Grinnell LCD-105 when j meeting Level 2 and Level 3 loads Snubbers use catalog capacity when meeting Design and Level 1 loads; "one-time i allowable load" listed in catalog should be used when meeting Level 2 an~d Level 3  ;

loads 1 Spring hangers should meet all load levels with the catalog capacity and should remain within the working range of the spring.

4. May use AISC 7th x 1.5, with following limitations:

. Stresses may not exceed 0.7 Fo l . Shear stresses may not exceed 0.42 F.

4 Buckling load may not exceed 2/3 critical buckling load i

\

F, on elastically calculated stresses. See Attachment 6.

5.

4 e~

J f

4 i

}

4 1

_ _ ___._.______ ___ . . _ _ _ _ _ _ _ _ ~ . . _ _ . . _ . _ .___.__._.. ._ _ _ ._

i 1

. irii.y v m y n vii m w

ES-040

Revision 0 '

4 Page 58 of 72 ATTACHMENT 5, B31.7 Cl. ASS I PIPE STRESS AND SUPPORT CAPACITY TABLES (Page 7 of 11) '

i i 1.0 Combined Moment for B31.7 Class i Primary Stress intensity Evaluation

' The moment combination technique described in this section is based on B31.7 Section  ;

1-705.1. The square-root-sum-of-the-squares (SRSS) approach to combination of i

cyclic dynamic loads is described in AEC Reg. Guide 1.92.

$ The combination should be carried out as follows:

1.

Combine all moments from cyclic dynamic loads (seismic inertia, fluid hammer) (

by the SRSS approach. This is illustrated below
1 l
CYCLIC CYCLIC I1 -

4

  1. 1 #2 4

4 Mi +4 +1 i J4 2 32 ,4,3 j M2 -6 -10

' }(.e)+(10)=11,7 2 2 4

M3 +3 -7 2 2 4

d3 + (-7 ) = 7.6 '

i The components Mi, M2 , M3 will be used as the components for the net cyclic

! dynamic moment. i j 2.

j Combine the moments from non-cyclic dynamic loads (fluid slug, valve .

discharge) and static loads (weight) through algebraic summation. Use these as J the components for the net non-cyclic moment.

i

?-

4 A

i 3

I Piping Design Criteria

( ES-040 Revision 0 Page 59 of 72 ATTACHMENT 5, B31.7 CLASS I PlPE STRESS AND SUPPORT CAPACITY TABLES (Page 8 of 11) l l 3. Combine the components of the net cyclic dynamic moment and the net non-cyclic moment through algebraic summation, using both positive and negative  ;

signs on the net cyclic dynamic moment. This process is illustrated below. i NET NON- NET CYC. Z1 I2  ;

CYC.

l

Mi +4 14.1 4 + 4.1 = 8.1 4 - 4.1 = -0.1 M2 -6 111.7 -6 + 11.7 = 11.7 =

5.7 -17.7 I M3 +3 17.6 3 + 7.6 = 3 - 7.6 = -4.6  ;

10.6 i

14.5 18.3

]M'+M 2+M 3 2 3

=

I The largest resultant moment of column E1 or I2 is the moment to be used when checking primary stress intensity. In this example, it would be the moment from column Z2.

For branches and tees, see B31.7 Appendix D Table D-201 (5) for combining l components M , M 2, Ma into the appropriate resultant.

i 1

I

I Piping Design Criteria ES-040 Revision 0 Page 60 of 72  !

ATTACHMENT 5, B31.7 CLASS I PlPE STRESS AND SUPPORT CAPACITY TABLES  !

(Page 9 of 11) '

j 2.0 Combined Moment for B31.7 Class i Primary Plus Secondary Stress _ Evaluation l and Peak Stress Evaluation The moment combination technique described in this section is based on B31.7 Section 1-705.2. The square-root-sum-of-the-squares (SRSS) approach to combination of cyclic dynamic loads is described in Reg. Guide 1.92.

! The combination should be carried out as follows:

a. Combine all moments from cyclic dynamic loads (seismic inertia, fluid hammer)
by the SRSS approach. This is illustrated as follows:

I CYCLIC I1

~

CYCLIC I #1 #2 i

Mi +4 +1 d42 +3 2 = 4,j j.. M2 -6 -10 2

/(-6 ) + (10') = 11.7 j M3 +3 -7 2 2 f3 +(.7 ) = 7.6 l

The components Mi, M2 , M3 will be used as the components for the net cyclic

. dynamic moment.
b. Combine all moments from thermal expansion and thermal anchor movements by algebraic summation. Use these components as the net non-cyclic moment.  !

I l

. \

i _

4 1

l l

1 i

j I

i 1

Piping Design Crit:ria ES-040 Revision 0 Page 61 of 72 ATTACHMENT 5, B31.7 CLASS I PIPE STRESS AND SUPPORT CAPACITY TABLES i

(Page 10 of 11) c.

Combine the components of the SAM moment and the not non-cyclic moment f

through algebraic summation, using both positive and negative signs on the SAM moment. Also, evaluate the full range of the SAM moment. This process is illustrated below:

NET NON- SAM E1 E2 i

E3 '

CYC.

M, +4 14.1 4 + 4.1 = 8.1 4 - 4.1 = -0.1 2 x 4.1 = 8.2 i M2 -6 111.7 -6 + 11.7 = 11.7 = 2 x 11.7 = 23.4 5.7 -17.7 ~

M3 +3 17.6 3 + 7.6 = 10.6 3 - 7.6 = -4.6

\

2 x 7.6 = 15.2 '

]M,' + M2* + Ma * = 14.5 18.3 29.1 The largest resultant moment of column I1, I2, or I3 is the net secondary moment.

i l

1

E Piping Design Criteria - ES-040 l

Revision 0 l Page 62 of 72 l

ATTACHMENT 5, B31.7 CLASS I PIPE STRESS AND SUPPORT CAPACITY TABLES i (Page 11 of 11)  !

l

, c. Combine the components of the net cyclic dynamic moment and the net i l secondary moment through algebraic summation, using both positive and

  • l negative signs on the not cyclic dynamic moment. Also, evaluate the full range j

! of the net cyclic dynamic moment. This process is illustrated below- l l

NET NET I1 I2 I3 f i SEC. CYC.

[

M, 8.2 i4.1 8.2 + 4.1 = 12.3 8.2 - 4.1 = 4.1 2 x 4.1 = 8.2 i M2 23.4 i11.7 23.4 + 11.7 = 23.4 - 11.7 = 11.7 2 x 11.7 = 23.4  !

35.1 _

M3 15.2 17.6 15.2 + 7.6 = 15.2 - 7.6 = 7.6 2 x 7.6 = 15.2 22.8

]M,8 +M3 8+M*= 43.6 18.3 29.1  ;

3 I

The largest resultant moment of column I1, I2, or Z3 is the moment to be used l when checking primary plus secondary stress intensity range and peak stress '

intensity range. In this example, it would be the moment from column I1.

For branches and tees, see B31.7 Appendix D Table D-201 (5) for combining components Mi, M2, M3into the appropriate resultant.

1 i

l I

l Piping Design Criteria ES-040

! Revision 0 Page 63 of 72 ATTACHMENT 6, LEVEL 3 STRESS LIMITS FOR STEEL PIPE SUPPORTS ON SEISMIC CATEGORY 1 B31.1 AND B31.7 SYSTEMS l (Page 1 of 10) 1.0 CRITERIA The following strain-bounding limits on elastically calculated stresses in steel pipe supports on Seismic Category l B31.1 and B31.7 systems should be used when meeting Level 3 loads:

Tension, Compression, Bending: less than F. .

Shear: less than 0.5 F.

Buckling: less than 2/3 P, Where: F,is the ultimate material stress These limits are intended for use with ductile materials and ductile support configurations; refer to the subsequent sections in this attachment. The buckling limit is the same for that to be used when evaluating Level 2 loads; buckling is a non-ductile mode of failure and hence no further increase may be taken. When applying these limits, stresses from all sustained force loads must be kept at or below yield. For  !

situations in which extreme support deflections result, the effect of the support compliance on the supported pipe should be evaluated.

Higher strain limits may be applied as discussed in Attachment 1 so long as the analysis methodology (plastic flow and strain hardening limits) are adequately documented and approved.

f

Piping Design Criteria ES-040 1

t Revision 0  ;

Page 64 of 72 i i

ATTACHMENT 6, LEVEL 3 STRESS LIMITS FOR STEEL PlPE SUPPORTS ON SF.lSMIC  !

CATEGORY l B31.1 AND B31.7 SYSTEMS  :

(Page 2 of 10) 2.0 STRAIN-LIMIT BASIS l l

Ductility, by definition, describes the ability of a component or structural system to deform beyond its yield limit. A structure will yield locally under displacement-controlled  :

loading, and the stresses will be readjusted to other parts of the structure. This energy  ;

absorption and deformation capacity are what prevent brittle failure under excessive '

loading.

For supports to be able to withstand stresses greater than yield, they must be ductile. It  ;

is important to verify the as-built dimensions and condition of the piping and support i system. Not only must the supports be ductile, but the system response must be '

ductile. This support system must also include redundancy and inelastic load-deformation capabilities in order to provide adequate performance.

It is well documented that the pipir g and associated supports have the ability to withstand large displacement-controlled loads, e.g. earthquakes, without failure. From  :

a historical and experimentally based viewpoint, the ductility of pipe supports is evident.

Situations have been documented in which the building has collapsed, however the i piping system remained intact, with only minor damage. Typically, seismic loads much  !

greater than the SSE at CCNPP are necessary to cause damage to pipe supports. ,

1 Limits for extreme load conditions, i.e., pipe rupture, SSE, 'have been established for Seismic Category I system steel pipe supports in the CCNPP UFSAR. UFSAR section l 5.A.2.1 defines class I as Category I (Seismic) structures, systems, and equipment.

UFSAR section 5.A.3.2 states that class I systems and equipment, including pipe, are designed to meet the load combinations and stresses stated in UFSAR Table 4-8.

UFSAR Table 4-8 states that for the case of pipe rupture and SSE, deflections of pipe supports are limited to maintain supported equipment within allowable limits. It is desirable to express a stress limit for supports which reflects the requirements of the i UFSAR, but is still valid for use with a linear elastic analysis.

i J

I l

1

Piping Design Criteria ES-040 ,

Revision 0 Page 67 of 72 ATTACHMENT 6, LEVEL 3 STRESS LIMITS FOR STEEL PIPE SUPPORTS ON SEISMIC 3

CATEGORY I B31.1 AND B31.7 SYSTEMS (Page 5 of 10) l An energy balance for A36 steel, with elastically calculated stresses limited to Fu,

! results in a true strain of approximately 0.22% (see Figure 2.3). This results in a safety  !

factor of almost 9 against the initiation of strain hardening (2% strain) and a safety l factor of almost 90 when considering rupture (20% strain). It is important to note that ]

stresses from sustained forces must be held below yield, and that the stress value equal to F. is not the actual stress, but instead representative of a certain amount of l permissible strain. ,

l Figure 2.3: Energy Balance Between Actual Strain l and Elastically Calculated Stress Fu -

l 1

l l

)

i

@ ENERGY WHICH WUST OC So, ASSOR8CD

[NERCY WHICH f$

_ ABSORBE0 l

e

  • J 1 u

3 -

  • 0.0022 0 02' STRAIN ( C )

l l

I l

l l

l

. - - . . ---- - ~ . - . - - . - - - - - _ - . . . . - - - - - .

l  !

Piping Design Cntena ES-040  !

Revision 0 }

Page 68 of 72 ATTACHMENT 6, LEVEL 3 STRESS UMITS FOR STEEL PIPE SUPPORTS ON SEISMIC CATEGORY l B31.1 AND B31.7 SYSTEMS  !

l (Page 6 of 10) l l

3.0 MATERIAL DUCTIUTY l Important to the energy absorption capabilities of the pipe support is the structural material. Carbon (CS) and stainless (SS) steels are very ductile and are able to l undergo large deformations without failure. Matenals that are considered non-ductile include cast iron and polyvinyl chloride (PVC). I L

Wald material is typically considered stronger than the base metal for good quality (

welds. Weld length and detailing become important considerations for ductile behavior. l l Bolt materials are similar to pipe materials. For material ductility, the following ductility  !

! factor, p, is defined: _

l c,

p=- .

i c,

l where:

c, = strain at failure c,= strain at yield p values greater than 70 are common for carbon and stainless steels. ASTM tests  !

materials for their elongation properties under tensile loading. Values for different materials can be found in Table 3.1.

Table 3.1: Material Properties for Common Materials ASTM MATERIAL F: F, c, c, No.

(ksi) (ksi) (%) (%)

A36 Structural Stee! 58 36 23 0.12 A307 CS Standard Fasteners 60 35 18 0.12 A325 High Strength Bolts 105 81 14 0.28 A490 High Strength Bolts 150 130 14 0.45 A106B CS Pipe for High Temperature Service 60 35 22 0.12 Therefore, higher strength materials sacrifice ductility for a higher yield strength. Even l so, the high strength materials have sufficient ductility to withstand large strains.  !

i l I

l I

l l

4 l

l

,y-..--,m- _. . , - - - - -

l l l Piping Design Criteria '

' ES-040 l Revision 0 i Page 69 of 72 l l

ATTACHMENT 6, LEVEL 3 STRESS LIMITS FOR STEEL PIPE SUPPORTS ON SEISMIC l CATEGORY I B31.1 AND B31.7 SYSTEMS (Page 7 of 10) 4.0 SYSTEM DUCTILITY Another important aspect of support ductility is the structural system response during a I

strain-controlled loading. The support should behave in such a manner that the l support is able to yield and continue to support loads without brittle failure. Two i considerations include support configuration and detailing.

l 4.1 Support Configuration Supports designed to AISC and AWS standards can be considered ductile if good workmanship and detailing are provided. Anchorage is typically designed i stronger than the support; hence, the support is the weaker element of the l system. A plastic hinge forms in the support member before the anchorage yields. Therefore, no further load can be transferred to the anchorage. 1 Examples of when this condition does not exist include concrete cracking,-

corrosion, missing bolts or anything else limiting the design strength of the anchorage.

Essentially supports fall into two categories: pinned (rotations allowed) and fixed (momant-resisting) supports. Pinned connections typically are ductile, such as  ;

rod hangers. However, short rod hangers with heavy loads (especially fixed at  !

the connection to the structure) are non-ductile. Moment-resisting connections vary in degree of fixity. Strut connections, including the use of clip angles, are ductile.

1 Figure 4.1.1: Ductile Strut Connection i i

~

o o .

v ,e *A d O d g.

d. .d .

d,* g.

El -

GD

=

bb 4) c s

^b i

l

l l

l Piping Design Criteria

' ES-040 Revision 0 Page 70 of 72 ATTACHMENT 6, LEVEL 3 STRESS LIMITS FOR STEEL PIPE SUPPORTS ON SEISMIC i

) CATEGORY I B31.1 AND B31.7 SYSTEMS l (Page 8 of 10)

]

, Moment frame welded supports are suspect in terms of ductility. For a check of I ductility, ensure the anchorage is adequate and use the following weld check:

)

Figure 4.1.2: Welded Support

' - t m- I m= THICKNESS OF 3 MEMBER 1 t j --- - -

-t 2 i e

J  :

L xxxxxxxxxxxxxxxxw If the combined throat thickness is greater than the member thickness, the connection can be considered ductile using the following evaluation from SQUG's GlP for USIA46:

0.707 (t, + 1 2) > tm Weld fengths found from AISC or AWS requirements and detailed according to established procedures are strong enough to withstand loads associated with stresses greater than the yield stress (F for A36 steel).

4.2 Support Detailing -

Detailing of the support is important to ensure adequate strength and adequate ductility to absorb energy and withstand deformations beyond yield. As mentioned earlier, weld lengths are adequate for ductility if constructed according to established procedures. Weld cracking obviously places the support ductility into question. Because of the ductile nature of weld materials, a crack can be considered as a decreased length, if the remaining weld is in sound condition. The same procedure can be followed as that of the support anchorage. If the weld length is sufficient such that the member becomes plastic before the weld yields, the support is adequate for ductility requirements.

l Piping Design Criteria

' ES-040

\ Revision 0 Page 71 of 72 ATTACHMENT 6, LEVEL 3 STRESS LIMITS FOR STEEL PIPE SUPPORTS ON SEISMIC CATEGORY I B31.1 AND B31.7 SYSTEMS (Page 9 of 10)

For bolted connections, adequate bolt spacing and edge distance can be i checked to ensure adequate ductility. Clamp orientation is important. Two non-  !

ductile orientations are as follows:

{

i Figure 4.2.1: Non-Ductile Clamp Orientations '

l (A) (0) _

f ,// // h b / // // ,

l l

ECCENTRICALLY LOADED T @

VERTICAL-FRICTION

{

Mping uesign Unt:nn ES-040 $

Revision 0 I Page 72 of 72 .

ATTACHMENT 6, LEVEL 3 STRESS LIMITS FOR STEEL PlPE SUPPORTS ON SEISMIC f CATEGORY l B31.1 AND B31.7 SYSTEMS  ;

(Page 10 of 10) 5.0 LOW CYCLE FATIGUE When allowing altamating plastic strains, low cycle fatigue becomes an issue. Thes '

altemating strains are limited to ductile supports since non-ductile supports will fail in a brittle manner under plastic strains. Fatigue stresses representative of these strains can be checked against the allowabie peak stresses listed in ASME Section ll!

Appendix 1. The maximum stress amplitude from a linear elastic analysis is limited to Fu or 58 ksi for A36 steel. Choosing a typical stress intensification factor i=2.5, the peak -

stress amplitude is:

I Sx = 2.5 x 58 = 145 ksi

_ 1 From examination of the fatigue curve in Figure 5.1, this results in an estimated 200 l cycles of S4 = 145 ksi for crack initiation in carbon steel. Provided the reduction in i fatigue life from other cyclic loads is small, low cycle fatigue for this case is not a l concem. Configurations with higher stress intensification may need to have fatigue '

addressed as part of the Level 3 evaluation.

Figure 5.1: Design Fatigue Curve for Carbon Steel (ASME Section ill Appendix l Figure I-9.1) i le 103 3  % i J %2 ~~~. )

j N:3 ..

  • i

,,,  % d. ,

~.:~ ~

%-a~ \

=

w ..~

i -

I

. x. --

N- C -... __

10 10 102 103 10 90 5 106 wots s .m u t06 U 1 1 .0 kai I. . . vr. .n, ,,0 .

i f.

V WGPRES01. ppt

-CABLES CABLES & EQ 1of13 i

OVERVIEW OF CABLES & EVALUATION PROCESS '

i POTENTIAIlPLAUSIBLE AGING MECHANISMS '

EVALUATION PROCESS DETAILS THERMAL SCREENING PROCESS RESULTS OF EVALUATION ,

t i

AGING MANAGEMENT Of CABLES j EQ EQUIPMENT  !

QUESTIONS c

Pr !

,1 '

E'

  • I i

I i

. . _ _ _ . . _ __ _ _ _ _ _ _ . _ . _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __,.._______m_ _ - __ .. . . . . _- . . . ~ . ~ _ , _ . . _ . - .

. _.__...m... ...__.m.-_; ...__.-_..__._____.____...m . _ _ . . _ - . - . _ . _ _ _ . . _ - . . _ . . . . . - . . _ _ . - . _ . . .

i 4

.WGPRESO1. ppt CABLES ALL CABLES 2 e i3 i w/o LR PRE-SCREENING

-i

.I REASONS FOR COAS10DITYEVALUATION OFALL CABLES

  • i Original Cables at CCNPP purchased as Safety-Related, without regard to application or system l l resulting in a common set of cables for a broad range of applications across the site.
Cable & Service Types and Aging Processes Independent of System.

i s '

Inclusion of All Cables provides Assurance against Loss of Data by Omisssion.

y s

i Pre-screening would not yield benefits, commensurant with effort, such as elimination of cable types "

except in limited cases such as PVC and Teflon and unspecified cable types.

i t

I i

.h i

f i

f

WGPREs01. ppt REFERENCES REFERENCES (1) - CCETS (Calvert Cliffs Electrical Tracking System)

(2) - Digital Engineering System 1000 (3) - IEEE Standard 101 - 1987, "IEEE Guide for the Statistical Analysis of Thermal Life Test Data" (4) - EPRI NP-4172SP, " Radiation Data for Design and Qualification of Nuclear Plant Equipment" (5) - EPRI TR-103841, " Low-Voltage Environmentally-Qualified Cable License Renewal Industry Report" (6) - DOE, " Cables & Terminations Aging Management Report" (DRAFT)

(7) - ES-014, " Summary of Ambient Environmental Service Conditions used at Calvert Cliffs Nuclear Power Plant" (8) - EQ Files (Calvert Cliffs)

WGPRES01. ppt PROJECT PARTICIPANTS PROJECT Plant Support Engineering Section of CCNPPD EQ Project l:

i Electrical Engineering Unit ofNED  :

r Plant Testing Unit of CdNPPD  ;

Life Cycle Management Unit ofNED b

.___.._.m _.__ .. - - . . _. . _ _. .m___m__._. _ . _ _ _ ____ _ ___ _ _ _ _ __ _.__ _ __ _ m<___ __ w _ ___ . . _ __.. _e.,., , --,. m, ..,c . ,,, , , , m.,--.+..,.4 e.e.. - , , ,. .,e-m,--

WRES0lp CABLES CAMES 3 of 13 STARTING POINT CCETS Report which included all scheduled cables.

CABLES & SERVICE TYPES Insulating Material Power Cntrl Instr Silicone Rubber X X X ,

XLPE X X X EPR X X X Mineral X -

X Kapton - -

X Fiber Optic - -

X Teflon --- --

X PVC -

X X Misc X X X

.. -. = . ~__ -..

i WGPRES01. ppt CABLES CAMIS t 4 of13 2 ,

NOTES RELATIVE TO CABLE POPULATION AT CCNPP b

1 Over 80% of scheduled cables are silicone rubber insulated.

Silicone Rubber insulated cables do not undergo significant thermal aging during 60 years of service at CCNPP due to plant specific derate practice.

s Mineral insulated caples do not undergo significant thermal aging during 60 years of service at Calvert Cliffs.

i With the exception of(2) cables, there are no PVC, Teflon, or Misc insulated cables at CCNPP which are in the scope of LR.

a r

s I

_ ______ _ . _ _ _ . _ . _ _ _ . . _ _ ______...________.._.._m. _ _ _ _ _ _ . _ _ _ _ _ . . _ _ _ _ _ . _ _ . _ _ _ _ _ _ _ _ _ _ _ . . _ _ . _ _ _ _ _ _ _ . _ _ _ . . _ _ _ . _ _ _ _ _ _ _ _ _ ________,__m ______ __

- . . _ , _ _.__m .._ _ _ _ _ _ _ _ _ _ _ _ _

WGPRES01. ppt

- CABLES s or13 POTENTIAL / PLAUSIBLE AGING MECHANISMS ARDM PL4USIBLE NOTE Mechanical Stress NO Precluded by Installation Practices Electrical Stress NO Precluded by Derating & Design Water Treeing NO XLPE not used in High Voltage Applications Radiation Stress NO g No Teflon Cables are in the scope of LR Tbennal Aging YES non-Silicone Rubber Power & Control Cables s

Kapton Specific Aging YES Kapton Cables in Cntrnt Radiative Clouding NO In-scope F.O. Cables in low Rad Environment IR Reduction YES Certain non-Silicone Rubber Instrument Cables Synergistic Thermal / Radiative Aging YES EPR/XLPE Power Cables in Cntmt Chemical Attack NO Exposure to Degrading Chemicals not Normal References 4-6

WGMS01. ppt CONSIDER CABLES ARDM's  ;

6 of 13

& DEVELOP hETHODOLOGY y

1 ALL EQ SCHEhES NON-EQ 968 M All Non-EQ Schemes , ,

Srv Temp All Non-EQ Schemes 1 3 l v IDENTIFY OMR 60-yr Srv Limit THERhML Operating Region where _ SCREENING t Thermal Aging NOT Plausible G  ;

\

l [

[ 1 i

2 l Random-Lay EPR/XLPE Silicone Rubber Cables  !

EPR/XLPE Cables Spaced Power, & EPR/XLPE in Power / Control PVC, Mineral, Instmment Cables ,

Se:vice etc.

1437 1 f p Ifin the scope of LR &

ARDI thermal aging .

to determine is plausible  !

if thermal aging Thermal Aging then Replace, or needs on-going NOT Plausible Condition Monitor aging management 186 6

-. - . . - . . . . - . ~ , - . . - - . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

l WGPRES01. ppt I

h2 1 CABLES 7 of i3  :

I I I I I

}

SYNERGISTC MMTIVF AGING of AGING of AGING of AGING of AGING of FIBER-OPTIC KAPTON SPECIAL SUSCEPTIBLE N

CABES CIRCUITS TERMINATIONS CABLES AGING of CME SUSCEPTIBLE  !

CABES I I f i f I f i f I f I 5

I NO THERMAL

^

PLAUSIBE DEGRADATION

  • SPECIFIC IR REDUCTION SUBJECT IN POWER '

AGING ' OEATION AGING PLAUSIBLE TO AGING SERVICE IN SCOPE IN CNTMT PLAUSIBE 4

M 1! 1 I 1 f 1 f 1f  :

I

[

I CONDITION MONITORING N/A REPLACEhENT N/A (Syst Walkdowns, M G CONDITION MONITORING Mst Rde l

Surveillance) ,

16 115 - 18 12 i

i i

WGPRES01. ppt CABLES 3 8 er 13 DETERMINATION of NORMAL &

ACCIDENT SERVICE CONDITIONS DETERMINATION of ACCEPTANCE CRITERIA g s

1,I l

PRE-AGING BASED on MOST SUSCEPTIBLE MATERIAL 1;f I

LOCA TESTING

t W PRES 01. ppt

- CABLES SCREENING CRITERIA Thermal Aging Screen.

EPR or XLPE cables in power or control service, Arrenhius based T(60) < Operating Temp No PVC cable in scope t

Radiative Aging Screen:

Radiation Damage Threshold < 1.5 Mrad No Teflon cable in scope  ;

Kapton Aging Screen:

16 cables Kapton inside Containment (Kapton under mechanical stress in hot, wet environment) ,

Synergistic Rad / Thermal Aging Screen: i EPR or XLPE insulated power service 18 cables cable in containment t

IR Reduction Screen: .

EPR or XLPE instrument cables 115 cables servicing wide dynamic range instruments SplitJacket Screen:

CBL018 not used iii containment EQ cable, EPR insulated with CBLO38 is SIS wire (notjacketed) t bonded Hypalon jacketed WRNMS1 includes this config used in containment CETX01 includes this config i

WGPRES01. ppt THERMAL SCREENING c^BirS 9 ofl3 f

l (1) Determine a 60 year service limiting temperaturefor each insulation materialin use. '

Dielectric Failure may result ifa cable is continuously exposed to temperatures at or above this limit for 60 years.

Arrenhius methodology (Ref3) applied to conservative selection from System 1000 data-base (Ref2) l (2) Determine upper bound on operating service temperature ofcable in normal service.

Determine maximum ambient temperatures te which cables are exposed based on plant temperature surveys (Ref7)  ;

Maximum ambient temperature is 160F (Main Steam Piping Penetration Room) i Evaluate ohmic heating ofthe gable.

Ohmic Heating of Instrumentation Cables negligible. ,

Ohmic Heating of Spaced Power Cables detemuned by IPCEA model.

Upper Bound on Operating Service Temperature of Unspaced (Random Lay) Power and Control Cables Deiuumd Empirically.

(3) Ifoperating service temperature exceeds the 60 year service limiting temperature, then thermal aging is plausible and must be managed. .

I i

=

_. __ ._- ____m

. -. . . ~ . - . _ . . . . . . . . . . _ . ~ _ . - - ~ . . . ~ _ - . . . - . . . - . - . .

I i '

WGPRES01. ppt CAEES CABLES 10 of13 ARRENHIUS METHODOLOGY 1

Log (L)

/ L = Life in hours T = Service Temp in K i I

\ I f

Log (L) = B/T + A b l

t W

t i

(1/T) i

. t a-1 i

s t

r

. - - - . . . . . . - - - - . _ - - . _ - - - - _ _ . - - - - . - . - . . . _ . - . . - - ...--...----.--.-..u _ . . _ - . . . - . - - - - - - - - - . - - _ _ _ . _ _ _ _ _ . --..--_-----,-.,.en.----e,--~~,,,-

9/30/96 1 cblthemp. doc Method 1: log (L) = (B/T) + A K=A Method 2: In(L) = (B/I) + 1n(A) K = In(A)

Material Source Criteria K B 60yr Temp Nctes EPR Phase l, 20% Retention of Elongation, -9.601 5484.0914 184F Method 1, UESC Syst 1000 Margin of Safety to Dielectric Faihnt Chosen Act.Enrgy= 1.06eV (1.05eV towest of 20 data sets)

EPR CBLO38 50% Retention of Elongation -11.597 6226.8 188F Method I EPR CDLOO1 100*4 Retention of Elongation -16.6I 81 3 .92 195F Method I SR Phase 1, Dielectric Failure -11.508 7252.9355 298F Method 1 UESC Syst 1000 Chosen Act.Fmgy=Irwest SR CBtD09 50% Retention of Elongation -38.444 20943.4758 271F Method 2 SR CBtD19 100% Retention of Elongation -12 919 10310.62225 252F  % Method 2 I

XISE Phase 1 Dieleyc Failure -7.714 4791.7286952 182F Method 1 UESC Syst 1000 Chosen Act. Enrgy = 1mwest XLPE CBID45 60% Retention of Elongation -30.362 15624.9 186F Method 2 5

9g

i THERMAL SCREENING WGPRES01. ppt ' i CAMES 11 of l3 1 60 year service limiting temperatures:

i BGE AMG SR > 194F (90C) 275F EPR- 184F 185F '

XLPE - 182F 181F PVC - 112F (none in scope) 11IF -

Thermal Aging Not Plausible: l L

Silicone Rubber Cables - 23175 Mineral Insulated Cables - g 135 Non-SiliconeRubber Cables in Instrument Service - 1635 i Spaced Power Service EPR/XLPE Cables - 110 -

Thermal Aging Plausible or Validation of Upper Bound on Service Temperature Required: ,

i Unspaced EPR/XLPE Power and Control Cables - 1437 Spaced Power Service EPR/XLPE Cables - 186 I

Some Cables Found to be Out of the Scope ofLicense Renewal:

All PVC Cables- 256 Spaced Power Service EPR/XLPE Cables - 259 i

r

RANDOM-LAY PWR/CNTRL SERVICE W PRES 01. ppt CABI.Es ARDI 12 or 13 Needed to assess approximately 1500 EPR, XLP cables in power and control service.

Development ofan all-encompassing model to address ohmic heating ofrandom lay cables not feasible.

Consistent with the desire to be comprehensive in evaluating cables, all cables in the target group are considered whether in or out ofthe scope ofLicense Renewal.

INITIAL ANALYSIS (1) Rank all 480V power service trays by a heat transfer model which included consideration of circuit loads, ambient temperatures, cable mass, and tray covers.

~

(2) Identify cable trays near significant external radiant heat sources such as hot pipes.

s (3) Analyze results of steps 1 and 2 and select thermal survey locations.

s REFINING THERMAL SURVEY (4) Perform a thermal survey of candidate " hot" tray locations and external radiant heat sources to find " bounding" locations for long-term operating temperature monitoring.

ON-GOING TEMPERATURE SURVEY (5) Install temperature probes at " bounding" locations.

FINAL ANALYSIS (6) Collect service temperature data over sufficient time to capture peak operating temperatures.

(7) Compare data with 60 year service limiting temperatures.

CABLES EPR/XLPE IN RANDOM-LAY POWER SERVICE Set of all 480V Rankbasedon Continuously --

Circuit and Tray Loading, Energized AmbientTemps,and Cables Tray Config 1f PerformThermal Survey to refine ranking and s findlocalhotspots M

InstallOperating ^" IY*

ServiceTemperature Oper SrvTemp Data vs.

7 Instrumentation 60 year SrvTemp Limits t

e

CABLES Kapton cables in containment, OTHER AGING 149 EPR/XLPE Instr cables subject to Crit IR Reduction, PLAUSIBLE EPR/XLPE Pwr cables subject to Synergistic Aging THERMAL 186 Spaced EPR/XLPE Power Cables, AGING 1623 1437 Random-Lay EPR/XLPE Power Cables Note: 18 Random-Lay Power Cables included in above group PLAUSIBLE not mcluded m, this total EQ 968

, . . ' . , . . ~ - -- ,

l Q ,s~ ~ ~: ' ::,

5 Sr Q': ~ . . ~ ,? h,,, ,r -' * ' " . 'S*, A.<l, .,l . ' < $ ".,' R :1NA^ ' , T ' .? ~ ( s'

- , * , * ',' t- ',t <

&'*' .;s> y. - '~ ,'

g~-

.; w ?g

=L eh'.%&

4.

ir

&z.bi ::, l L, '.

,v ,'F

" , Q.

f'> , s ' i ,. * - - ,

'.a

': ' .,, ' ' . , ;, ', > M: .. 8' ',t

. **"a.,

', 0 v2 ;

~~~s

,: '; m s ~r-

t .

a..'s~ m x,p%,,  ;,

, . , , , - - : ?,

, , ' 'l (u*, ,Q (s:, ,, ,, ,, : z  :

  • b y i, +,^^
r," ,, W

,. ,p , . t : u , 's ,~ - -

, ,< ' :.'n 2' ' ) < ;Q~>[

,,, ,, - ;. ' ,, > 't

': ' -t ' <;; % ,, . ,,>

,s. .. . .

. , ' s . cr . n. 2?mS,~,1 t

, 4 't:,',sA.

, s, 2-?' ', - i'o,jph  :- 3. ' g,.i 5. r .,

, q '4',. ' . ^*/ >.'k[ .f,s s 7s > > , f( ^ s'- < - T N *: Q]'

f' ,' , .9,' 1'[* <

- - -% ~u ~, ' N '

L: . ' U,.t ' ""J.:: +v,, ,s ]~ ,

~ :

nr .

%M 'Ch " ', <. .'aci

>"'sr,

'< 2 , " ;, > ' . . a[u #} ; **, *

, ~ .u -

'^d' ' #

'^ 'ht [

, s } +. ,'s f%.e. sA ,,p {b }u

'c' +w<'t g .m, w ,..*'s'm,sw',,m ,.,s g ;m n a .m w,[' . , ' ' ' 'e* -' ::;* ', c /> , . .,

.~

%u , 'R5

,r ;m +s. ,

-<7 s s , g,>. ,

s s, ,

'.c  ?

,3 ,< ,., >u

^

o s - -

u ~~ ' ' < . ,.

'd ~g' 'l ['s'; ' {

S 'b' Yt . 1,f, ^ *+s; J '" * '

,k'^f,'.2',

.(u%'s e, ,[ 5 -

s.

, j u

, , ,, ,. ~:

~,

<. , ,,: - ' .s.- . ,

7. w ,,,,+: ., ,wn. > ,1< , ; , w :<y,, 3> ; - ,s- :.+:

, , . :->:~ ,..

/

g bk N 7' ,< , \ Fr [- ,- [ $

, ' y ,y

,p Q 6 ,.] ,' y- .

j ' )-,7~ Tg^/ptti,

~

'+' ; ; g, 'J. r,<t<.s? ' [>-'; ."cq ,

1; ." / t r; > , ' ' s a 'r~+,

u ss g+{';^3 y  ; ; ) ,,' L, h.fJ t[ $ e,^f{';,'A 'y,

' r' . >' " I' s' 6 ' ' .l'; , sf

.s ,

U > Jy >J ~. 7g c  : p' SR p

,~ ~. - .. , - s

' ^I^'U)yk >) . , mh': .,b 3h'E

"'uI>'\ , ; -+\;' ' '"t '

0^~ # E' d', , k - s ^. '

S l v 'y "' 3>&:cc , d[< < rn, ' '

" s

J '[p'; ': .c Hf, s + 'S .' -  %

s

' ' [c ',

, , :c'ss , ', se

'v

.i s. ,, ,. , j

\

s s N.3'st 'i <'.

,s m^ '( ., s

,~ ,s, *4.' -s' sSs(u g'T-..

s. st s s ,

-, , ~ , , . , '

y.?,4 '., ', Y;."y (:,@" . , , h .-< _Acg ' <'. ' ,e } Z, ;,. ^,"J,+- ^ v '

g .f ~

c', }, ,*[. . y Ps.'..

's* ss, s > .,,, . .> , r < .. w .

% '. ',[^' , [ /# ,#

v' ' ',[

,s [; .) ' ( , , . * .s , ^ p.,

.'s

, , g

. ,; u, 3  : : ., ,  :'u

p. ,ty'n, - ak :s , :w<

a , ;s .

~

,\. ','&. e ,-_  ::' ,c

.: .4 s s ,.s,p-

,E[ ::' ',

'c (sf r? f .t ,(

j'p' e 'T't \ 0 <* ,. ,, ')', '

, ,j I 4 4,

, ' 7- ) s

's

' ^ * '

' ',' ,,%; < , "' x n.',.x- *

,,s' " .,>W(t. /

v g'

.N

' .N gs 'gg'}m s ps

'. \ .N

. s

,/ .

% j v' # s , s. y> ,

y :' < J 4 '#ff ' '*v. <, ss ,, s, .

_-, ., , A # >y'^'

vs t.r: , ; w 3 , s

, s . <^ c'  ?

_____.m _____._______._-_u..__m________-__.2__ _ _ _ . _ _ _ . _ _ . _ _ _ _ _ . . r .. . _ _ _ _ - _ _ _ _ +

t

' WGPRES01 ppt CABI.ES i

CABLE AGING MANAGEMENT 13 or13  ;

i Replacement Prior to Period ofExtended Operation i Kapton Cables in containment in fire detection service - 16 i

Condition Monitoring Unspaced EPR/XLPE Power and Control Cables - 1437 i Spaced Power Service EPR/XLPE Cables - 186  !

EPR/XLPE Cables in Power Service in Containment - 186 I i

Replacement at EndofQualifiedLife l'

EQ Cables - 968 Performance Monitoring EPR/XLPE Cables in Wide Dynamic Range Instmmentation Service - 115 F

_ _ _ _ - . . - _ - = - _ _ _ - . . . _ . . _ . _ _ . _ _ - - _ _ . _ _ . _ _ _ _ _ - _ - - _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ - _ _ _ _ _ - _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ - _ -

4 WGPRES01. ppt .

EQ EQPMT j EQ EQUIPMENT e6 r i

Regulatory Basis of current EQ Program is 10CFR50.49 i i

i ELEMENTS OF CURRENTPROGRAM

\

(1) Identification of equipment required to be environmentally qualified l per 10CFR50.49(b).

Safety-related electrical equipment which is required to perform an electrical safety function after being j subjected to or while exposed to harsh environmental conditions induced by design basis events.

j i

(2) Documentation to substantiate environmental qualificatioh ofin-scope equipment.  ;

An Environmgntal Qualification Documentation File (EQ File) is maintained for each equipment group. The EQ File contains data on subparts susceptible to '

environmentally induced degradation, the basis ofenvironmental qualification including  !

acceptance criteria, test data, analysis ofqualification process and anomalies, etc.

I i

(3) Maintenance and surveillance to maintain qualification on a continuing basis. I i

Qualification Maintenance Requirement Sheets (QMRS) are maintained for each equipment subgroup.

l I The QMRS identifies installation, maintenance, testing, refurbishment, and monitoring requirements l

necessary to maintain environmental qualification ofEQ equipment.  !

)

i I

(4) Program controlling procedures B

4 i

Eq[Ed" EQ EQUIPMENT 2 cf 6 THE FOLLOWING EQ ISSUES AFFECT LICENSE RENEWAL (1) The CLB is to be maintained.

(2) The management of plausible aging must be demonstrated for long-lived equipment with passive functionality.

Long-lived passive device groups include cable, electrical penetrations, seals, terminal blocks, solenoid valves. The current EQ Program effectively manages the aging oforganic subparts which could adversely affect the required electrical functionality of the EQ equipment.

(3) EQ is considered a TLAA by NRC.

To support conclusion that action will be taken in accordance with the CLB per 10CFR50.29, NRC staffhas requested that certain information be provided.

(4) A GSI exists and must be addressed.

The GSI is documented as Issue 168 ofNRC Task Action Plan. The SOC to the LR Rule (60FR22484) allows LR applicants to resolve the issue and incorporate resolution in their LRA, orjustify that the CLB will be maintained until reasonable options to manage the aging become available.

EQ EQUIPMENT W PRES 01. ppt EQ EQPMT TLAA '

INFORMATION REQUESTED BY STAFF (1) Evaluation Methodology Attempted extension ofqualified life by refurbishment, retest, and/or reanalysis within bounds set by EQ Program and its regulatory basis.

(2) Acceptance Criteria Qualified Life of60 years. s (3) Corrective Actibns Option (1): ReplaceEQ equipment at end ofqualified life with identical equipment.

Option (2): Replace EQ equipment at end ofqualified life with equivalent equipment.

Option (3): Replace EQ equipment at end ofqualified life with new equipment.

Option (4): Use ofcondition-based life assessment. (FUTURE)

(4) Timing of Resolution Program administered to ensure that environmental qualification ofinstalled equipment is maintained.

Replacements are scheduled and re-evaluations are executed in atimely manner. Environmental are not allowed to expire during the current license period and will not be allowed to expire during th period ofextended operation.

t EQ EQUIPMENT woPaEsoi. ppt EQ EQPMT 4or6 GSI PRIMARY FOCUSIS CABLES Accelerated Aging Qualification Process Accuracy oflife predictions provided by Arrenhius methodology; i.e, is pre-aging adequate?

Lirnitaticas ofusing an estimated activation energy?  ;

How does humidity affect qualification results?  !

i Failure Mechanisms of Special Cables  :

Multi-conductor cables Bonded-Jacket cables Cable Installation and Environments Affect on qualification ofpot-spots, Excessive Vibration, Water / steam Impingement, Physical Damage. l Affect on qualification of Bends, Overhangs, Vertical Runs, Trays, Conduits, Fire Protective Coatings, and ImproperInstallation. [

CM Techmques Effectiveness? [

Can they be used to predict accident survivability?

i License Renewal Acceptable re-qual options?

Viabilityofcondition-basedlife?  !

Use ofoperatingexperience?  !

Extension ofqualified life using current qual process?  :

I E

_ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , ~-_ _ _ _ _ _ _ ._ _ __ _ .._._,.... _._ ._._ __ _ -- _

EQ EQUIPMENT WGPREs01. ppt EQ EQPMT GSI s or6 BGE RESPONSE TO GSI BGE will continue to meet its CLB with respect to 10CFR50.49 until such time that reasonable options to manage aging become available or the issue is considered closed.

BGE will continue to follow industry developments.

BGE will respond to new regulatory requirements.

ADDITIONAL CONSIDERATIONS r

Failure Mechanisms of Special Cables BGE's acceptance criterid is directly linked to critical electrical characteristics or a known precursor to electrical property changes.

Cable Installation and Environments BGE's cable installation practices have been and are designed to address and mitigate the etTects of these issues.

License Renewal BGE has reviewed its EQ Program and concluded that it will continue to provide reasonable assurance that mtended EQ functions will be maintained consistent with the CLB during the period ofextended operation.

. _ .. ._ _ m._.. . . _ _ . _ _ - - _ - _ . _ . . - . _ - . . . _ . . ~ . . _ _ . - . . . . . . . m...- -- _ . .- - . _ _. . - . _ . . .- _

f WGPRES01. ppt i EQ EQPMT BGE PARTICIPATION 6 cr6 IN INDUSTRY ACTIVITIES Membcr ofNUGEQ  :

l Member of EPRI -

Research on Cable Aging is anderway Research on Cable Condition Monitoring proposed.

i

\

\

Operating Experience Unit All SOER's received by BGE are reviewed for applicability to CCNPP. .

r e

a r

b t

1

, . , . - - - _ , - - _~ - -. - - ._