ML18141A054: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 3: Line 3:
| issue date = 07/31/1983
| issue date = 07/31/1983
| title = Cycle 6 Core Performance Rept. W/Undated Ltr
| title = Cycle 6 Core Performance Rept. W/Undated Ltr
| author name = HENDRIXSON E S
| author name = Hendrixson E
| author affiliation = VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
| author affiliation = VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
| addressee name = DENTON H R, VARGA S A
| addressee name = Denton H, Varga S
| addressee affiliation = NRC OFFICE OF NUCLEAR REACTOR REGULATION (NRR)
| addressee affiliation = NRC OFFICE OF NUCLEAR REACTOR REGULATION (NRR)
| docket = 05000281
| docket = 05000281

Revision as of 06:37, 17 June 2019

Cycle 6 Core Performance Rept. W/Undated Ltr
ML18141A054
Person / Time
Site: Surry Dominion icon.png
Issue date: 07/31/1983
From: Hendrixson E
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To: Harold Denton, Varga S
Office of Nuclear Reactor Regulation
References
405, VEP-NOS-6, NUDOCS 8307250320
Download: ML18141A054 (49)


Text

..... Vepco SURRY UNIT 2, CYCLE 6 CORE PERFORMANCE

  • REPORT -NOTICE -THE ATTACHE_D FILES ARE OFFICIAL RECORDS OF THE DIVISION OF DOCUMENT CONTROL. THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND l'._'lUST BE RETURNED TO THE RECORDS FACILITY BRANCH 016. PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGE(S) FROM DOCUMENT FOR REPRODUCTION MUST BE REFERRED TO FILE PERSONNEL.

DEADLINE RETURN DATE ;:/Id;:?.

/' *veP-NOS-8

,--------NUCL RECORDS FACILITY BRANCH ;TMENT . -... ~:a--e,-... ----...----.*-

________________ , __ jµipany VEP-NOS-6 SURRY UN IT 2, CYCLE 6 CORE PERFORMANCE REPORT REVIEWED BY: C. T. Snow, Supervisor Nuclear Fuel Operation BY E. S. HENDRIXSON APPROVED BY: Nuclear Fuel Operation Subsection Nuclear Operations Department Virginia Electric & Power Company Richmond, Virginia July, 1983

.. CLASSIFICATION/DISCLAIMER The data, techniques, information, and conclusions in this report have been prepared solely for use by the Virginia Electric and Power Company (the Company), and they may not be appropriate for use in situations other than those for which they were specifically prepared.

The Company therefore makes no claim or warranty whatsoever, express or implied,as to their accuracy, usefulness, or applicability.

In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusions in it. By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory"whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it . i I,.'

  • ACKNOWLEDGEMENTS The author would like to acknowledge the cooperation of the Surry Power Station personnel in supplying the basic data for this report. Special thanks are due Mr. L. J. Curfman. Also, the author would like to express his gratitude to Mr. C. T. Snow for his aid and guidance in preparing this report. ii TABLE OF CONTENTS SECTION TITLE PAGE NO. Classification/Disclaimer i Acknowledgements ii List of Tables iv List of Figures V 1 Introduction and Summary. 1 2 Burnup Follow 7 3 Reactivity Depletion Follow 14 4 Power Distribution Follow 16 5 Primary Coolant Activity Follow 36 6 Conclusions 40 7 References.

41 iii LIST OF TABLES TABLE TITLE PAGE NO. 4.1 Summary of Incore Flux Maps for Routine Operation

... 20 iv LIST Of FIGURES FIGURE TITLE PAGE NO. 1.1 Core Loading Map 4 1.2 Movable Detector and Thermocouple Locations.

5 1.3 Control Rod Locations.

6 2.1 Core Burnup History 9 2.2 Monthly Average Load Factors 10 2.3 Assemblywise Accumulated Burnup: Measured and Predicted 11 2.4 Assemblywise Accumulated Burnup Comparison of Measured with Predicted 12 2.5 Sub-batch Burnup Sharing 3.1 Critical Boron Concentration versus Burnup -HFP-ARO 4.1 Assemblywise Power Distribution

-S2-6-07 4.2 Assemblywise Power Distribution

-S2-6-18 4.3 Assemblywise Power Distribution

-S2-6-31 4.4 Hot Channel Factor Normalized Operating Envelope 4.5 Heat Flux Hot Channel Factor, F~(Z) -S2-6-07 4.6 Heat Flux Hot Channel Factor, F6(Z) -S2-6-18 4.7 Heat Flux Hot Channel Factor, F~(Z) -S2-6-31 4.8 Maximum Heat Flux Hot Channel Factor, F ~':p Q , versus Axial Position . 4.9 Maximum Heat Flux Hot Channel Factor, F-Q, versus 4.10 Enthalpy Rise Hot Channel Factor, F-DH(N), versus V Burnup Burnup 13 15 21 22 23 24 25 26 27 28 29 30 LIST OF FIGURES CONT'D FIGURE TITLE PAGE NO. 4.11 Target Delta Flux versus Burnup 31 4.12 Core Average Axial Power Distribution

-S2-6-07 32 4.13 Core Average Axial Power Distribution

-S2-6-18 33 4.14 Core Average Axial Power Distribution

-S2-6-31 34 4.15 Core Average Axial Peaking Factor, F-Z, versus Burnup 35 5.1 Dose Equivalent I-131 versus Time 38 5.2 I-131/I-133 Activity Ratio versus Time 39 vi 1 SECTION 1 INTRODUCTION AND

SUMMARY

On June 30, 1983, Surry Unit 2 completed Cycle 6. Since the initial criticality of Cycle 6 on December 28, 1981, the reactor core produced approximately 94 x 10 6 MBTU * (16,006 Megawatt days per metric ton of contained uranium) which has resulted in the generation of approximately 8.9 x 10 9 KWHr gross (8.4 x 10 9 KWHr net) of electrical energy. Surry 2, Cycle 7 reached the end of full power reactivity at a core burnup of approximately 15,640 MWD/MTU at which point power operation was continued through.a power coastdown.

The unit was operated in the coastdown mode achieving an additional 366 MWD/MTU burnup prior to shutting down for refueling.

The purpose of this report is to present an analysis of the core performance for routine operation during Cycle 6. The physics tests that were performed during the startup of this cycle were covered in the Surry 2, Cycle 6 Startup Physics Test Report 1 and, therefore, will not be included here. The sixth cycle core consisted of six sub-batches of fuel: a twice-burned sub-batch from cycles 4 and 5 (6B2), a once-burned sub-batch from cycle 2 (4A5), a -once-burned sub-batch from cycle 4 (6A2), two once-burned sub-batches from cycle 5 (7A and 7B), and one fresh batch (Batch 8). The Sur,ry 2, Cycle 6 core loading map specifying the fuel sub-batch identifications, fuel assembly locations, burnable poison locations and source assembly locations is shown in Figure 1.1. Movable detector locations and thermocouple locations are identified in Figure 1. 2. Control rod locations are shown in Figure 1. 3. Routine core follow involves the analysis of four principal 1

  • performance indicators.

These are burnup distribution, reactivity depletion, ,power distribution, and primary coolant activity.

The core burnup_ distribution is followed to verify both burnup symmetry and proper sub-batch burnup sharing, thereby, ensuring that the fuel held over for the next cycle will be compatible with the new fuel that is inserted.

Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate at what burnup level refueling will be required.

Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specifications 2 limits, thereby ensuring that adequate margins to linear power density and critical heat flux thermal limits are maintained.

Lastly, as part of normal core follow, the primary coolant activity is monitored to verify that the dose equivalent Iodine-131 concentration is within the limits specified by the Surry Technical Specifications 2 , and to assess the integrity of the fuel. Each of the four performance indicators is discussed in'detail for the Surry 2, Cycle 6 core in the body of this report. The re~ults are summarized below: 1. Burnup Follow -The burnup tilt (deviation from quadrant symmetry) on the core was no greater than +/-0.5% with the burnup accumulation in each sub-batch deviating from design prediction by less than +/-1.0%. 2. Reactivity Depletion Follow -The critical boron concentration, used to monitor reactivity depletion, was consistently within +/-0.6% AK/K of the design prediction which is within the +/-1% AK/K margin allowed by Section 4.10 of the Technical Specifications . 2

3. Power Distribution Follow Incore flux maps taken each month indicated that the assemblywise radial power distributions deviated from the design predictions by an average percent difference of less than 2%. All hot channel factors met their respective Technical Specifications limits. 4. Primary Coolant Activity Follow The average dose equivalent iodine-131 activity level in the primary coolant during Cycle 6 was approximately 0.00327 µCi/gm. This is less than 1% of the Technical Specifications 2 operating_

limit for the concentration of radioiodine in the primary coolant. In addition, the effects of fuel densification were monitored throughout the cycle. No densification effects were observed.

3 R p N M L Figure 1. 1 SURRY UN IT 2 -CYCLE 6 CORE LOADING MAP K .J H G F E W41 2P8 Wll I I I I I 1 __ 1 __ 1 __ 1 l....,l,_L-2

---.-I -:5,--P7~1 6Pl I 4Nl I 5P2 l-6--P,--3--,.I

_O_L_6 -I I I I 16P I I 16P I I I D __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ I 2N3 I OPS I 3Pl I ON7 I lNS I ON3 I 2Pl I 4P3 I ON4 I I I 12P I 20P I I ss I I 20P I 12P I I C __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ I lN7 I 1N2 I 3P9 I 1N3 I 5P9 I OL9 I lPS I lN9, I 1P3 I 2N8 I ONl I I I I 16P I I 20P I I ZOP I I 16P I I I B __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ I DLS I 3P4 I 2P5 I W22 I OP6 I ON2 I 1P6 I lND I 3P7 I W24 I OP3 I 4P6 I lLO I I I 12P I 16P I I 20P I I 20P I I 20P I I 16P I i2P I I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 5PO I 5P8 I 3N4 I 5Pl I VZ7 I 4N8 I W40 I 4N6 I VOl I lPD I 4N2 I OPS I lPl I I I 20P I I 20P I I 4P I I 4P I I 20P I I 2DP I I A __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ I W29 I 5P5 I 3N5 I 3P6 I 3Nl I ltl6 I Vl3 I 4P4 I Vl4 I 21l5 I 4N7 I 4P9 I 3Nb I 3P3 I W20 I I I 16P I I zop I I 4P I I 20P I I 4P I I 2DP I I 16P I I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 6P6 I 4N9 I 3N8 I DL3 I 3P5 I W5D I 5P4 I Sl9 I 6P5 I W07 I 4P8 I OLl I 2N6 I 2N7 I 1P4 I I ss I I I I 20P I I 20P I I 20P I I 20P I I I I I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I W32 I 5P6 I 2Nl I OP7 I 2N9 I 5N2 I Vl5 I OPl I Vll I 2N2 I DN5 I 3P8 I 4N4 I 3PO I W04 I I I 16P I I 20P I I 4P I I 20P I I 4P I I 20P I I 16P I I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 4P5 I 2P4 I ON9 I 6P8 I V25 I 3N9 I W26 I 5Nl I V09 I 6P2 I lNl I 4P2 I 1P7 I I I 20P I I 20P I I 4P I I 4P I I 20P I I 20P I I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I lLl I lP8 I DP4 I W42 I 4Pl I 3N7 I DPZ I 1N4 I 6P4 I W36 I 6PO I 2P2 I OL7 I I I 12P I 16P I I 20P I I 2DP I I 2DP I I 16P I 12P I I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I DN6 I 4ND I 2P9 I lNB I 2P3 I OLB I DP9 I 3N3 I 6P7 I 5ND I 3N2 I I I I 16P I I ZDP I I 2DP I I 16P I I I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I DNB I 2P6 I 2PD I 2N4 I 4N5 I 4N3 I 5P3 I 1P2 I 3ND I I I 12P I 2DP I I ss I I 2DP I 12P I I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 1--1--> ASSEMBLY ID I DL4 I 4PD I 3P2 I 2ND I 4P7 I 2P7 I OL2 I I I I 16P I I 16P I I I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 1--> ONE OF THE FOLLOWING:

I was I 1P9 I W48 I I I I I 1 __ 1 __ 1 __ 1 I __ I A. SS -SECONDARY SOURCE B. XXP -BURNABLE POISON ASSEMBLY CXX -NUMBER OF ROOS! l 3 4 5 6 7 8 9 10 11 12 13 14 15 FUEL ASSEMBLY DESIGN PARAMETERS SUB-BATCH 4AS 6A2 6B2 7A 7B 8 Initial Enrichment (w/o U-235) 2.606 2.906 3.203 3.126 3.406 3.607 Assembly Type 15X15 15X15 15X15 15Xl5 15X15 15X15 Number of Assemblies 1 8 16 12. 52 68 Fuel Rods per Assembly 204 204 204 204 204 204 Assembly Identification S19 V01,V09 W04,WOS OLl-019 ON1-0N9 0Pl-OP9 Vll, V13 W07 ,Wll 110-112 1N0-1N9 1P0-1P9 V14,V15 W20,W22 2N0-2N9 2P0-2P9 V25,V27 W24,W26 3N0-3N9 3P0-3P9 W29,W32 4N0-4N9 4P0-4P9 W36,W40 5NO-SN2 5PO-SP9 W41,W42 6P0-6P8 W48,WSO 4 R p H H Figure 1.2 SURRY* UN IT 2 -CYCLE 6 MOVABLE DETECTOR AND THERMOCOUPLE LOCATIONS L K J. H G F E I I I IMDITCI --..----1

__ 1 __ , __ 1 __ ..-__ I I I I I I I ITCI ITCINDI I D __ 1 __ , __ , __ 1 __ 1 __ 1 __ 1 __ 1 __ IMDI I *I IHDI I I IMDI ITC) ITCIMDITCI )Tel ITCI c* ,--1--1-.--1--1--1--1--1--1--1--1--1 B ITCI IMDI I IMDI \MDITCI I I __ 1 __ , __ 1 __ 1 __ 1 __ 1 __ 1 . 1 __ 1 __ 1 __ 1 __ I I I I I I I I I I I MD I I MD I I IMDI IMDITCIMDITCI ITC IHDITCI )Tel 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I I I I MD I I I I I I I I I I I ITC) ITCI I IHDITCIHD I I I I I A __ , __ , __ , __ , __ 1 __ 1 __ , __ 1 __ 1 __ 1 __ , __ , __ 1 __ , __ I I I I I I I I I I I I I I I I ITCITCIMDI I 1. IMDI IMDI ITCIMDI IMDI I '--'--'--'--'--'--'--'--'--'--'--'--'--'--'--'

I I I MD I I MD I I I I I I I I MD I I I INDITCITCI ITCITCI ITCITCIHD ITCI ITCINDITCI

'--'--'--'--'--'--'--'--'--'--'--'--'--'--'--'

I I I I I I I I I I MD I I I I I I I I I ITCIMDI I ITCIMDITCI I I I. IHDI , __ , __ , __ , __ , __ 1 __ , __ , __ 1 __ 1 __ 1 __ , __ 1 __ , __ 1 __ 1 I I MD I I I I MD I I I I I I I MD I I ITCI I I ITCI I I ITC IMDI ITCI 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1_*_1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I I I I I I I MD I I HD I I I I I I I I TC I MD I TC I I TC I I TC I 11D I I I I '--'--'--'--'--'--'--'--'--'--'--'--'--'

I I I I I MD I I I I I I MD I IMDI ITCI ITCI I I ITCIMDITCI

'--'--'--'--'--'--'--'--'--'--'--'

I I I I I MD I I Ho I I I I I I I I TC I I TC I I I , __ , __ , __ , __ , __ 1 __ , __ 1 __ 1 __ , I MD I I I I I I I ITCI I I IMDI ITCI '--'--'--'--'--'--'--'

MD -MOVABLE DETECTOR I I I I TC -THERMOCOUPLE J MD I TC J TC I '--'--'--'

5 l 2 3 4 s 6 7 8 9 10 11 12 13 14 15 Figure 1.3 SURRY UN IT 2 -CYCLE 6 CONTROL ROD LOCATIONS R P N M L K J H G F E D C B A 180° LOOP C INLET 90°-Absorber Material Ag-In-Cd LOOP C OUTLET N-41 C A B SA D SA A B C N-44 LOOP A/ OUTLET A B SB D SP C SP D SB B A FUNCTION NUMBER OF Control Bank D Control Bank C Control Bank B Control Bank A Shutdown Bank SB Shutdown Bank SA SP (Spare Rod Locations) 8 8 8 8 8 8 8 I LOOP B D A ~INLET SA SA N-43 B C SP SP SB C D B A SB SB SP SA C D SB SB SP SA C D B A SP SP SB B C SA SA N-42 D A 'LOOP A INLET CLUSTERS 6 1 2 3 4 5 LOOP B 6 OUTLET lo 0 7 8 9 10 11 12 13 14 15 SECTION 2 BURNUP FOLLOW The burnup history for the Surry Unit 2, Cycle 6 core is graphically depicted in Figure 2.1. The Surry 2, Cycle 6 core achieved a burnup of 16,006 MWD/MTU. As shown in Figure 2.2, the average load factor for Cycle 6 was 86% when referenced to rated thermal power (2441 MW(t)). Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed burnup distribution analy"sis.

The NEWTOTE 3 computer code is used to calculate these assemblywise burnups. Figure 2. 3 is a radial burnup distribution map in which the assemblywise burnup accumulation of the core at the end of Cycle 6 operation is given. For comparison purposes, the design values are also given. map in which the percentage Figure 2.4 is a radial burnup distribution difference comparison of measured and predicted assemblywise burnup accumulation at the end_of Cycle 6 operation is given. As can be seen from this figure, the accumulated assembly burnups were generally within +/-3.0% of the predicted values. In addition, deviation from quadrant symmetry in the core, as indicated by the burnup tilt factors, was no greater than +/-0.5%. The burnup sharing on a sub-batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle sub-batch burnup predictions to be made for use in reload fuel design studies. Sub-batch definitions are given in Figure 1.1. As seen in Figure 2. 5, the sub-batch burnup sharing for Surry Unit 2, Cycle 6 followed 7 design predictions very closely with each sub-batch deviating less than 1.0% from qesign. Symmetric burnup in conjunction with good agreement between actual and predicted assemblywise burnups and sub-batch burnup sharing indicate that the Cycle 6 core did deplete as designed.

8 C 18000 17000 16000 15000 14000 Y 13000 C L 12000 E 11000 B U 10000 R N 9000 u P 6000 M 7000 w 0 6000 I M 5000 T U 4000 3000 2000 1000 0 . .0 0 -~ *0; . . . SURRY 2 -CYCLE 6 CORE BURNUP HISTORY 0: 0 / /'. / / / / / / _J )r / / / ,/ -_v I I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 l 1 l l l 1 l 1 . 1 l 1 1 1 0 J F M A M J J A s 0 N 0 E A E A p A u u u E C 0 E C N B R R y N L G p T V C 6 6 8 8 8 6 8 8 8 6 8 8 8 1 2 2 2 2 2 2 2 2 2 2 i 2 TlMElMONTHSl Figure 2.1 r ,I / / / / V I 0 0 0 0 1 1 1 1 J F M A A E A p N B R R 8 8 6 8 3 3 3 3 CYCLE 6 MAX!MU~ DESIGN BURNUP -16,800 MWOIMTU / 0 1 M A y 8 3 Ill BURNUP W!NOOW FOR CYCLE 7 DESIGN -14,000 TO 16,600 9 ( / I 0 0 0 0 1 1 1 1 J J A s u u u E N L G p 8 8 8 8 3 3 3 3 Ml-lO/MTU 100 90 80 *70 .60 50 40 30 20 10 0 D J F M E A E A C N B R 8 8 8 8 1 2 2 2 LOAD FACTOR = Figure 2.2 SURRY 2 -CYCLE 6 MONTHLY AVERAGE LOAD FACTOR A M J J A s 0 N D J F M A p A u u u E C 0 E A E A p R y N L G p T V C N B R R 8 8 8 8 8 8 8 8 8 8 8 8 8 2 2 2 2 2 2 2 2 2 3 3 3 3 MONTH M J A u y N 8 8 3 3 THERMAL ENERGY GENERATION IN MONTH(MWHTl


AUTHORIZED POWER LEVEL ( MWT l X HOURS 1N MONTH (EXCLUDES REFUELING OUTAGES) 10 C y C L E 1 z 3 5 6 7 8 9 10 11 12 13 lit 15 A Figure 2.3

  • SURRY 2 -CYCLE 6 p H 11 ASSEMBL YWISE_ ACCUMULATED BURNUP MEASURED AND PREDICTED (1000 MWD/MTU) L IC J H G F E D. C B A I 24.401 10.941 24*.211 I 24.451 11.211 24.451 I MEASURED I I PREDICTED I I 24.311 14.751 15.681 29.851 15.411 14.761 23.831 I 23.931 14.791 15.771 30.621 15.771 14.791 23.931 I 25.461 16.491 18.581 34.441 32.oal 34.191 18.901 16.811 25.451 I 25.311 16.441 18.651 34.551 32.631 34.551 18.651 16.441 25.311 I 25.241 25.411 19.161 33.541 20.0ll JS.OSI 20.121 33.931 19.721 25.881 25.721 I 25.2al 25.571 19.321 33.731 20.oal 35.221 20.oal 33.731 19.321 25.571 25.281 I 24.021 16.241 19.281 41.181 19.791 36.0SI 19.711 36.031 20.201 41.051 19.101 16.851 24.391 I 24.ool 16.441 19.321 40.891 19,971 36.041 19.731 36.041 19.971 40.891 19.321 16.441 24.ool I 14.691 18.571 33.521 19.551 30.261 30.881 38.941 31.551 30.221 20.061 33.761 18.921 15.221 I 14.791 18.651 33.861 19.971 30.441 31.341 39.251 31.341 30.441 19.971 33.861 18.651 14.791 I 24.341 15.421 34.681 19.931 35.551 30.681 29.631 19.101 29.851 30.951 35.931 19.931 34.561 15.841 24.541 I 24,481 15.771 34.671 20.081 36.011 31.271 30.191 19.421 30.191 31.211 36.0ll 20.081 34.671 15.771 24.481 I 10.561 29.551 32.631 3s.021 19.241 38.941 19.191 28.161 19.171 39.071 19.601 34.951 32.421 30.571 ll.431 I 11.211 30.391 32.101 35.281 19.731 39.331 19.421 28.361 19.421 39,331 19.731 35.zai 32.101 30.391 11.211 I 23.901 15.291 ~-**,671 20.061 35.761 31.191 29.701 19.141 30.lll 30.691 35.671 20.241 34.511 15.971 24.671 I 24.481 15.771 1~.671 20.081 36.0ll 31.271 30.191 19,421 30,191 31.271 36.Dll 20,081 34.671 15.771 24.481 R I 14.871 18.721 33.811 20.111 30.031 30.631 38.881 30.721 30.351 19.891 34.151 18.781 14.771 I 14.791 18.651 33.861 19.971 30.441 31.341 39.251 31.341 30.441 19.971 33.861 18.651 14.791 I 24.191 16.881 19.701 41.051 19.951 35.271 19.301 35.591 19.871 40.921 19.731 16.701 23.961 I z4.001 16.441 19.321 40.891 19.971 36.041 19.731 36.041 19.971 40.891 19.321 16.441 24.00I p I 25.631 ZS.SOI 19.621 33.691 19.601 34.631 19.741 33.701 19.531 25.891 25.401 I 25.281 25.571 19.321 33.731 20.081 35.221 20.081 33.731 19.321 25.571 25.281 I 25.921 17.361 19.061 34,091 32.061 34.391 18.841 16.581 25.521 I 25.311 16.441 18.651 34.551 32.631 34.551 18.651 16.441 25,311 I 24.401 15.361 15.871 30.801 15.631 14,691 23.971 I 23.931 14,791 15.771 30.621 1s.111 14,791 23.931 I 24.671 11.481 24.521 I 24.451 11.211 24,451 H " L K J H G F E D C 11 B A l 2 3 4, 5_ 6 7 8 9 10 11 12 13 lit 15 1 2 3 5 6 7 a 9 10 11 12 13 14 15 R p Figure 2.4 SURRY 2 -CYCLE 6 ASSEMBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED (1000 MWD/MTU) N " L K J H G F E D C B A I 24,401 10.941 24,271 I -0.211 -2.871 -o.7SI I MEASURED I I M/P?. DIFF I I 24.3ll .14.7SI lS.681 29,851 lS.411 14,761 23.831 I 1.601 -0.281 -o.s31 -2.s11 -2.261 -0.231 -o.411 --.-------------------------------------------------------------

-I 2S.46I 16.491 18,581 34.441 32.081 34.191 18.901 16.811 25.4SI I o.s11 o.311 -o.411 -o.311 -1.101 -1.osl 1.341 2.251 o.S41 I 2S.24I 25.411 19.161 33.S41 20.0ll 35,0SI 20.121 33.931 19.721 25.881 2S.72I 1. -0.111 -o.641 -0.821 -o.581 -o.361 -o.481 0.221 o.s11 2.101 1.181 1. 741 I 24.021 16.241 19.281 41.181 19,791 36.DSI 19.711 36.031 20.201 41.051 19.101 16.851 24.391 I 0.081 -1.211 -D.161 o.691 -o.881 0.031 -0.131 -0.021 1.111 o.391 -1,141 2.531 1.641 -----------.


I 14,691 18.571 33,521 19,SSI 30.261 30.881 38.941 31.SSI 30.221 20.061 33.761 18.921 15,221 I -0.101 -o.471 -0.991 -2.101 -o.571 -1.481 -o.791 o.671 -0.111 o,461 -o.291 1.411 2,851 ----------------------------------------------------------------------------------------------------------

1 24.341 15,421 34,681 19.931 35,551 30,681 29,631 19,101 29,851 30.9SI 35,931 19,931 34.561 15.641 24.541 I -0.601 -2.161 0.031 -o.751 -l,291 -1.891 -1.861 -1.651 -1.131 -1.031 -0.241 -0.121 -0.331 o.491 0.251 I 10.561 29.551 32.631 35,021 19,241 38.941 19,191 28,161 19.171 39.071 19.601 34.951 32.421 30.571 11,431 I -6.251 -2,781 -0.211 -o.741 -2.511 -o.981 -1.201 -0.121 -1.321 -0.671 -o.691 -o.941 -0.851 o.S81 1,431 I 23.901 15.291 34.671 20.061 35.761 31.191 29.701 19.141 3D.lll 30.691 35.671 20.241 34.Sll 15.971 24.671 I -2.371 -3.021 -0.021 -0.121 -0.101 -0.211 -1.641 -1.461 -0.281 -1.851 -0.961 o.791 -o.461 1.321 o.761 I 14.871 18.721 33.811 20,171 30.031 30.631 38.881 30.721 30,351 19.891 34.lSI 18.781 14.771 I o.521 o.341 -0.151 o.991 -1.341 -2.261 -0.951 -1.971 -o.291 -0.411 o.851 o.661 -0.141 I 24,191 16.881 19.701 41.051 19,951 35.271 19.301 35.591 19.871 40.921 19.731 16.701 23.961 I 0.801 2.671 2.011 o.371 -0.121 -2.141 -2.201 -1.ZSI -0.481 0.071 2.151 1.621 -o.151 -. -------------------------------------------------------------------------------,--------

1 25.631 25.801 19,621 33.691 19,601 34.631 19.741 33.701 19.531 25.891 25.401 I 1.391 o.881 1.591 -0.141 -2.401 -1.671 -1.681 -0.101 1.091 1.251 o.471 1 z 3 5 6 7 8 9 10 11 12 I 25.921 17.361 19.061 34,091 32.061 34.391 18.841 16.581 25.521 I 2,381 5.641 2.181 -1.331 -1.751 -o.461 1.011 o.691 o.831 ------------------

13 I STANDARD DEV I I = o.95 I R p N I 24,401 15.361 15.671 30.601 15.631 14.691 23.971 I 1,971 3.851 o.661 o.571 -o.881 -o.681 o.191 I 24.671 11.481 24,521 I o.891 1.s8I 0.211 " L K J ff G F E BURNUP SHARING (MWD/MTU)

Batch Cycle 2 Cycle 4 Cycle 5 Cycle 6 Total 4A5 11,129 17,031 28,160 6A2 12,651 17,368 30,019 6B2 9,146 11,710 11,353 32,209 7A 16,851 10,877 27,728 7B 15,252 16,210 31,462 8 17,681 17,681 Core Average 16,006 12 D C I ARITHMETIC AVG I IPCT DIFF = -0.171 ------------------

14 I AVG ABS PCT I I DIFF = 1.10 I 8 A 15 BURNUP TILT NW = -0.46 NE = +0.28 SW = +0.10 SE = +0.08 s u B 36000 32000 28000 B 24000 A T C H B u R N 20000 U 16000 p M H 12000 D I M T U 8000 4000 0 Figure 2.5 SURRY UNIT 2-CYClE 6 SUB-BATCH BURNUP SHARING SYMBOLIC POINTS ARE MEASURED DATA SUB-BATCH 4A 6A 66 7A 78 8 SYMBOL DIAMOND STAR PLUS SQUARE TRIANGLE X . . _....-::: . [A--/ V v-_/ -i.,..-,---...--v~ I/ .. _.A _/ -,,_ l£-. .._.-1' A'. V -lA>'" -~ A */ .A', I:-.. .._,,,,-...... bd /<.. ...,, A io"""" v' ,., / . ' -,,, A / -~ ...... -V -/ v /;, ./ *~ V vv J><' < / ., V V v<7 [....X'" :/ V / V / V ~/ .,-. v V / lx"" _v / I I I I I .. .. 0 2000 4000 6000 6000 10000 12000 14000 16000 18000 CYCLE BURNUP !MWO/MTUl 13 SECTION 3 REACTIVITY DEPLETION FOLLOW The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous reactivity behavior.

The FOLLOW 4 computer code was used to normalize "actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon and samarium concentrations, moderator temperature, and power level. The normalized critical boron concentration versus burnup curve for the Surry 2, Cycle 6 core is shown in Figure 3 .1. It can be seen that the measured data compare to within 75 ppm of the design prediction.

This corresponds to approximately

+/-0. 6% .6.K/K which is within the +/-1% .6.K/K criterion for reactivity anomalies set forth in Section 4.10 of the Technical Specifications 2* In conclusion, the trend indicated by the critical boron concentration verifies that the Cycle 6 core depleted as expected.

14 1400

  • 1200 C R I T 1 1000 C .A L 13 0 R 800 0 N C 0 N C 600 E N T R A T I 400 0 N p p M 200 0 .. 'x ',(' \ "'; ' " -I 0 SURRY UN1T 2-CYCLE 6 CR1T1CAL BORON CONCENTRAT10N VS. BURNUP r---.. I~ ........ I'-.. -. '~" ~~-'?. " 2000 4000 HFP-ARO X MEASURED PRED1CTED

~; f'.-.. ~, "' *x \ ['.._ " i'.. --~ ~-"" -~ \( "" "" ""-. ~)( "' '~ "' 6000 8000 10000 12000 CYCLE BURNUP (MWO/MTUl 15 Figure 3. 1 I~ ~,.. rsc, " 14000 16000 SECTION 4 POWER DISTRIBUTION FOLLOW Analysis of core power distribution data on a routine basis is necessary to verify that the hot channel factors are within the Technical Specifications limits and to ensure that the reactor is operating without any abnormal conditions which could cause an "uneven" burnup distribution.

Three-dimensional core power distributions are determined from movable detector flux map measurements using the INCORE 5 computer program. A summary of all full-power flux maps taken since the completion of startup physics testing for Surry 2, Cycle 6 is given in Table 4.1. Power distribution maps were generally taken at monthly intervals with additional maps taken as needed. Radial (X-Y) core power distributions for a representative series of incore flux maps are given in Figures 4. 1 through 4. 3. Figure 4 .1 shows a power distribution map that was taken early in cycle life. Figure 4.2 shows a power distribution map that was taken near mid-cycle burnup. Figure 4.3 shows a map that was taken late in Cycle 6 life. The radial power distributions were taken under equilibrium operating conditions with the unit at approximately full power. In each case, the measured relative assembly powers were generally within 6. 2% of the predicted values with an average percent difference of less than 1. 5% which is considered good agreement.

In addition, as indicated by the INCORE tilt factors, the power distributions were essentially symmetric for all cases. An important aspect of core power distribution follow is the 16 monitoring of nuclear hot channel factors. Verification that these factors are within Technical Specifications limits ensures that linear power density and critical heat flux limits will not be violated, thereby providing adequate thermal margins and maintaining fuel cladding integrity.

The Technical Specifications Limit on the axially dependent heat flux hot channel factor FQ(Z) was 2.18 x K(Z), where K(Z) is the hot channel factor normalized operating envelope.

Figure 4. 4 is a plot of the K(Z) curve associated with the 2.18 FQ(Z) limit. The axially dependent heat flux hot channel factors, FQ(Z), for a representative set of flux maps are given in Figures 4.5 through 4. 7. Throughout Cycle 6, the measured values of FQ(Z) were within the Technical Specifications limit. A summary of the maximum values of axially-dependent heat flux hot channel factors measured during Cycle 6 is given in Figure 4.8. Figure 4.9 shows the maximum values for the heat flux hot channel factors measured as a function of burnup during Cycle 6. As can be seen from this figure, there was approximately 20% margin to the limit at the beginning of the cycle, with the margin increasing throughout cycle operation.

The measured F-Q value at 10,950 MWD/MTU is considered to be a data anomaly refuted by the other measured values during Cycle 6. The value of the enthalpy rise hot channel factor, F-AH, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed.

The Technical Specifications limit for this parameter is set such that the critical heat flux (DNB) limit will not be violated.

Additionally, the F-delta H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation.

The Cycle 6 limit on the enthalpy rise hot channel factor was 1.55 x [1+0.2(1-P)], where Pis the fractional power level. The maximum values of F-delta H 17 J versus burnup are shown in Figure 4. 10. The measured F-t.H value at 10,950 MWD/MTU is ~onsidered to be a data anomaly refuted by the other measured values.during Cycle 6. The Technical Specifications require that target delta flux* values be determined periodically.

The target delta flux is the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon. Therefore, the delta flux is measured with the core at or near these conditions and the target delta flux is established at this measured point. Since the target delta flux varies as a function of burnup, the target value is updated monthly. Operational delta flux limits are then established about this target value. By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided. The plot of the target delta flux versus burnup, given in Figure 4.11, shows *the value of this parameter to have been approximately

-2% at the beginning of Cycle 6. By the middle of the cycle the value of delta flux had shifted to approximately

-3% where it remained until becoming -2.5% by the end of Cycle 6. This power history can also be observed in the corresponding core average axial power distribution for a representative series of maps given in Figures 4.12 through 4.14. In Map S2-6-07 (Figure 4.12) taken at approximately 1116 MWD/MTU, the axial power distribution had a slightly peaked cosine shape with a peaking factor of 1.22. In Map S2-6-18 (Figure 4.13) taken at approximately 7,390 MWD/MTU, the axial power distribution had flattened somewhat with an axial peaking factor of 1.16. Finally, in Map S2-6-31 (Figure 4.14) taken at approximately 15,326 MWD/MTU, the axial Pt-Pb *Delta Flux= 2441 X 100 where Pt= power in top of core (MW(t)) Pb= power in bottom of core (MW(t)) 18 _J power distribution was slightly concave with an axial peaking factor of 1.15. The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15. In conclusion, the Surry 2, Cycle 6 core performed very satisfactorily with power distribution analyses verifying that design predictions were accurate and that the values of the FQ(Z) and F-delta H hot channel factors were within the limits of the Technical Specifications.

19 N 0 TABLE 4, 1 SURRY UNIT 2

  • CYCLE 6 SUHHARV Of FLUX HAPS FOR ROUTINE OPERATION 1 2 BURN f*Q(T) IIOT r-olf(NI IIOT CORE f(Z) 4 HAP UP BANK CHANNEL FACTOR CIINL. FACTOR MAX 3 QPTR AXIAL 110. F(XY) Off Of NO. 1 8 5 11 12 13 14 6 17 18 19 20 1 23 211 25 26 II 29 30 31 DATE HWO PWR D HTU (%1 STEPS ASSY PIN AXIAL ASSY PIN F-Oll(NI AXIAL f(ZI MAX LOC SET TII IH POINT f*Q(TI POINT (%1 OLES 2-10-82 1116 100 228 ro4 fl 33 1,749 007 Gil 1. 387 34 1.214 1.338 1.0053 NE *2, 190 47 3-15-82 2113 96 219 007 GIi 34 1.758 007 Gil 1. 389. 311 1. 216 1,331 1,0049 SW -2.190 45 4-13-82 2739 95 216 007 Gil 33 1.750 007 Gil 1,383 34 1.211 1,3211 1. 0044 SW -2.550 47 5-13-82 3690 91 215 007 GIi 33 1. 726 007 GIi I, 385 311 1,192 1.338 1.00119 NE -2.366 44 6-18-82 4386 100 223 007 HI 34 1, 7111 004 111 1. 3811 35 1. 182 1,335 1,0055 SW -3,273 47 7-15-82 5266 100 220 007 Ill 34 1,712 007 Ill 1,386 311 1,174 1. 332 1, 0072 NE -2.751 117 8-20-82 6493 100 220 [04 Cij 411 1,700 f05 If I 1,390 114 1.166 1,340 1,00611 SW -3.257 117 9-17-82 7390 100 228 EOII CII 115 1,702 F05 Ill 1. 390 114 1, 162 1,347 1, 0053 NE -3.039 47 10-15-82 8337 100 225 EOII CII 45 1. 707 f05 111 1,398 44 1,158 1.350 1.001111 NE -3.323 47 11-15-82 !,13811 100 225 EOII 00 115 1. 697 H11 IL 1.396 115 1. 152 1. 355 1,00110 NE -3.087 1111 12-06-82 10095 100 226 EOII 00 46 1.697 011 GL 1.1102 45 1.1115 1,360 1, 0066 NE -2,856 47 01-17-83 10959 100 228 L13 KL 411 I. 778 L13 KL 1.1183 116 1. 13'1 1,ll44 1.0057 SW ~2.952 47 02-11-83 11806 100 228 EOII 00 46 1.679 DI 1 GL 1. 411 46 1.1311 1. 367 1, 0052 NE -2.8110 115 03-10-83 12695 100 228 EOII DO 116 1.671 011 OL 1,II08 47 1.1311 1. 357 1. 0056 NE -3.066 115 011*27-83 13900 100 227 D11 GL 53 1.6711 011 GL 1.1100 53 1, 139 1. 351 1,0067 NE -2.660 117 05-16-83 111581 100 227 011 IL 53 1.670 011 IL 1. 401 53 1.138 1,355 1.0055 NE -2.191 115 06-07-83 15326 100 228 L12 LG 53 1.677 EOII OJ 1,396 53 1. 150 1,346 1.0061 NE -2,518 48 NOTES: IIOT SPOT LOCATIONS ARE SPECIFIED DY GIVING ASSEHDLY LOCATIONS IE.G, 11-8 IS THE CENTER-OF-CORE ASSEHBLYJ, FOLLOWED BY THE PIN LOCATION !DENOTED ev TIIE "Y" COORDINATE Wltll THE FlffE[N ROWS OF FUEL RODS LETTERED A THROUGH RAND TIIE ><" COORDINATE DESIGNATED IN A SIMILAR MANNERI. IN TIIE "z 11 DIRECTION TIIE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROM TIIE TOP Of THE CORE, 1. f*Q(T) INCLUDES A TOTAL UNCERTAINTY Of 1,08, ~. f*OH(NI INCLUDES A MEASUREMENT UNCERTAINTY Of 1,011, 3, f(><Y) IS EVALUATED AT THE MIDPLANE Of THE CORE, 4, QPTR
  • QUADRANT POWER TILT RATIO. 5, MAPS 9 AND 10 WERE QUARTER-CORE fLU>< HAPS TAKEN FOR INCORE EXCORE DETECTOR CALIBRATION, 6, HAPS 15 AND 16 WERE QUARTER-CORE FLUX HAPS TAKEN FOR INCORE EXCORE DETECTOR CALIBHATION, 7, HAPS 21 AND 22 WERE QUARTER*COHE FLUX HAPS TAKEN FOR INCORE EXCORE DETECTOR CALIBRATION, 8, HAPS 27 AND 28 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE EXCORE DETECTOR CALIBRATION, R Figure 4.1 SURRY UN IT 2 -CYCLE 6 ASSEMBL YWISE POWER DISTRIBUTION S2-6-07 p H H , L. K J H G F E D C B
  • HEASURED *
  • PCT DIFFERENCE.
  • 0.42. 0.72. 0.42. * -2.4. -2.4. -1.8.
  • MEASURED * .PCT DIFFERENCE
  • 0.46
  • 0.94
  • 0.96
  • 1.01
  • 0.96
  • 0.93
  • 0.45 *
  • 1.4
  • o.3
  • _ -1.3 * -1.8 *. -1.8 * -o.9
  • o.4 *.
  • o.51. o.96. 1.09. 1.15. 1.17. 1.14. 1.10. o.97. o.52 *
  • 1.2. o.5. o.o. -0.1. -1.8. -o.4. o.9. 1.5. 2.4.
  • 0.50
  • 0.94
  • 1.12
  • 1.20
  • 1.20
  • 1.13
  • 1.21
  • l *. 23
  • 1.15
  • 0.95
  • 0.52 *
  • O.l. 0.3. -0.l. -0.l. -0.6. -0.2. 0.5. 2.7. 2.~. 1.7. 2.8 *
  • 0.45. 0.95. 1.12. 0.99. 1.18. 1.18. 1.18. 1.19. 1.20
  • 1.00
  • 1.14. 0.99
  • 0.47. * -o.8. -o.8. -0.2. o.4. -0.2. -1.0. -1.0. -0.2. 1.2. 1.9. o.9. 3.1. 5.5 *
  • 0.94. 1.09. 1.20. 1.18. 1.15. 1.17. 1.02. 1.17. 1.15. 1.19. 1.22. 1.12. 0.98. * -o.3. -o.3. -0.1. -0.1. -1.0. -2.3. -2.4. -2.7. -1.5. o.8. 1.1. 2.8. 4.o
  • A l 2 3 4 5* 6
  • o.4o. o.95. 1.15. 1.20. 1.19. 1.18. 1.13. 1.15. 1.13. 1.11. 1.21. 1.23. 1.11. 1.00. o.44. 7 * -6.l. -2.3. 0.2. -0.1. -o.3. -l.8. -3.5. -3.4. -3.8. -2.9. o.8. 2.2. 1.7. 2.3. 2.5 *
  • o.69. o.99. 1.19. 1.14. 1.19. 1.03. 1.15. 1.01. 1.15. 1.01. 1.19. 1.15. 1.19. 1.05. o.77. 8 * -6.1. -3.6 .* 0.2. -0.1. -0.4 -1.2. -3.7. -3.6. -3.3. -3.2. -0.1. 1.2. o.5. 2.3. 4.3 *
  • 0.40. 0.96. 1.18. !.,l. 1.19. 1.19. 1.14. 1.16. 1.14. 1.17. 1.18. 1.21. 1.16. 1.00. 0.45. 9 * -~.,. -1.t. l.o. o.7. -0.2. -0.9. -2.8. -2.8. -2.8. -2.7. -1.2. o.6. o.7. 2.6. 5.o *
  • o.~7. 1.12. 1.22. 1.18. 1.15. 1.11. 1.02. 1.18. 1.15. 1.18. 1.21. 1.10. o.96.
  • 3.0. 3.o. 1.5. o.3. -1.1. -2.6. -2.3. -1.9. -1.1. 0.2. 1.0. 1.2. 1.8 *
  • 0.46
  • 0.99
  • 1.15
  • 0.99
  • 1.18
  • 1.18
  • 1.18
  • 1.19
  • 1.18
  • 0.99
  • 1.14
  • 0.97
  • 0.41> *
  • 3.1. 3.1. 2.0. 0.6. -0.3. -1.1. -1.3. -0.7. 0.2. 1.2. 1.3. 1.6. 1.8 *
  • 0.52. 0.95. 1.13. 1.21. 1.21. 1.12. 1.20. 1.22. 1.14. 0.94. 0.51 *
  • 3.1. 2.1. 0.6. 0.7. 0.3. -1.1. -0.4. 1.3. 1.2. 1.1. 2.3.
  • 0.53. 1.02. 1.13. 1.14. 1.17. 1.15. 1.12. 0.98. 0.51 *
  • 4.9. 6.7. 3.7. -o.9. -2.0. o.3. 2.3. 1.8. 1.5 *
  • 0.48. 0.99. 0.98. 1.03. 0.99. 0.96. 0.46.
  • 6.7
  • 5.1
  • 0.6
  • 0.1
  • 1.0
  • 1.8
  • 2.4 *
  • 0.44
  • 0.75
  • 0.43 *
  • 2.6. 2.1. 1.3. 10 11 12 13 14 15 STANDARD DEVIATION=

1.463 AVERAGE PCT. DIFFERENCE=

1.7

SUMMARY


MAP NO: 52-6-7 DATE: 2/10/82 CONTROL ROD POSITIONS:

F-Q(TJ = 1. 749 D BANK AT 228 STEPS F-DH<NJ = 1.387 F(ZJ = 1.214 F(XYJ = 1.338 BURNUP : 1116 MWD/MTU 21 POWER: 100?. QPTR: NW 0.98861 NE 1.0053 -----------1----------

SW 1.00381 SE 1.0023 A.O = -2.19(?.J A Figure 4.2 p SURRY UNIT 2 -CYCLE 6 ASSEMBLYWISE POWER DISTRIBUTION S2-6-18 N " L K J H 6 F E D C B , MEASURED ,

  • PCT DIFFERENCE. , 0.40, 0.67, 0.40, , -3.0 * -3.0 *. ;-3,0 * , MEASURED , , PCT DIFFERENCE.
  • 0.48, 0.92, 0.97, 0.93, 0,95, 0,94, 0,48. , 1.9, 0.6, -0,9, -1.4, -2.1. 2,2, 2,6,
  • 0.54, 1.03, 1.17. 1.09. 1,08, l,09, 1.20, 1.06. 0,55 *
  • 1.5. -o.o. -o.4. o.4. -0.1. o.3. 2.2. 2.5. 2.6 *
  • 0.53, 0.96, 1.20, 1,19, 1.26, 1.09, 1,27. 1.22, 1.24. 0.97, 0.55, * -0.6 * -0.2 , -1.1 , -0,2
  • 0.1 , 0.4 , 0.8 , 2.2 , .1.6 , 1.0 , 2,2 , , 0.46 , 1,01 , 1,21 , 1.02 , 1.25 , 1,15 , 1.23
  • 1.15 , 1.28 , l,D3 , 1,21 , 1,05 , 0.49 * * -2.1, -2.1, -1.0. 0,5, -0,3, -o.o, -0.1. 0.6, 1.6, 1:6, -0.8. 1,9, 5.2,
  • 0,91, 1,16, 1.19, 1.24, 1,09. 1,11. 0.98, 1.12. 1.10. 1,26. 1.19, 1,18. 0.94. * -o.8. -o.8. -o.6. -1.2. -o.6. -0.1. -o.8. -0.2. o.5. o.4. -0.2. o.8. 2.5
  • A l 2 3 5 6
  • 0.39. 0.95. 1.10, 1.25. 1.12. 1,10, 1.06, 1.20. 1.08. 1.12. 1.14, 1.25. 1.09. 0.97, 0,42. 7 , -6.4. -2.2. 0.5, -0.9, -2.0, -1.7, -1.2, -0.8, -0.1. 0,2, -0.2, -0.6. -0.4. -0.1. 0.1,
  • 0.64, 0,91. 1.09, 1,08. 1.21. 0.97, 1.19, 1.06. 1.20, 0.98, 1.22. 1.08. 1.08, 0.95, 0,70. 8 , -6.4. -3.7. 0,5, -0,7, -1,9, -1.2, -1.3°, -0,7, -0.7. -0.9, -1.0, -0.8. -0.7, 0.5, 1,2. , 0,39, 0.95. 1.10, 1,26, 1.15. 1.11. 1,06. 1.20, 1.07, 1,11, 1.14. 1,26, 1.09, 0,98. 0.43. 9 * -6.4 * -2.6
  • 1.2 * -0.1
  • o.o * -o.8 * -1.3 * -1.0 * -o.9 * -1.3 * -o.4
  • o.3 * -o.o
  • 0.1
  • 2.3 *
  • 0.93. 1.18, 1.21. 1.27, 1.10. 1.11, 0.97. 1.11. 1.10. 1.27, 1.21. 1.18, 0,92. , 1.2, 1.2. 1,1, 1.0. -o.o, -1.4, -1.7, -1,3, o.o, 1.1, 1.4, 0.5. 0.1. , 0.48. 1.06. 1,24, 1.03, 1.26. 1.13, 1.20, 1,13, 1.26, 1.04. 1.24, 1.05. 0.47.
  • 2.1, 2,1, 1,8. 1,5. -o.o, -1.7, -2.4. -1.6, 0.1, 2.9, 2.1. 1.3, 0.9. , 0.55, 0.98. 1.24. 1.19, 1.24, 1.06. 1.24. 1.21, 1.24, 0.97. 0.55 *
  • 3.o. 2.4. 1.5. -0.1. -1.4. -2.2. -1.3. 1.1. 1.5. 1.4. 2.3.
  • 0.55, 1.08. 1.19, 1.07, 1,06, 1.08. 1.18, 1,04, 0.54,
  • 3.7. 4.4. 1.6. -1,9. -2.3. -0.1. o.8. 0.9. 1.5. , 0,49 , 0.95 , 0.98 , 0.94 , 0.97 , 0.92 , 0.47 , , 4,4, 3.9, 0.9, -0.3, -0.3. 0,3. 0,9, , 0.43, 0,70, 0.42, , 3.2. 1,9. -0.2. 10 11 lZ 13 14 15 STANDARD DEVIATION=

1.217 AVERAGE PCT. DIFFERENCE=

1,4 MAP NO: S2-6-18 CONTROL ROD POSITIONS:

D BANK AT 228 STEPS

SUMMARY


DATE: 9/17/82 F-Q(TJ = 1.702 F-DH<Nl = 1.390 F(Zl = 1.162 F(XYl = 1.347 BURNUP = 7390 MWD/MTU 22 POWER: 100?. QPTR: NW 0.99471 NE 1.0053 ___________ , _________

_ SW 1.00081 SE 0.9992 A.O = -3.04C?.l R Figure 4.3 p SURRY UNIT 2 -CYCLE 6 ASSEMBLYWISE POWER DISTRIBUTION S2-6-31 N It L K J K G F E D C 8

  • HEASIJRED
  • PCT DIFFERENCE.
  • 0.44
  • 0.70
  • 0.44 * * -o.3. -o.3. -o.6.
  • HEASURED *
  • 0.52. 0.92. 1.01. 0.92. 1.00. 0.90. 0.50.
  • 4.1 1.2. -o.6. -1.2. -1.5. -1.0. o.7 *
  • o.sa
  • 1.09
  • 1.22
  • 1.07
  • 1.01
  • 1.05
  • 1.22
  • 1.09
  • o.sa *
  • 3.4. 0.8. -0.3. 0.5. -2.5. -1.l. 0.2. l.S. 3.2 *
  • O.S6. 0.97. 1.23. 1.16. 1.27. 1.05. 1.27. 1.18. 1.26. 0.98. 0.58 *
  • o.o. o.4. -1.4. 0.1. o.o. -0.1. -0.2. 1.5. 1.3. 1.2. 2.s *
  • o.49. 1.os. 1.23. 1.03. 1.27. 1.11. 1.2s. 1.11. 1.29. 1.03. 1.24. 1.10. o.s3. * -2.6. -2.6. -1.1. 1.0. -o.o. 0.9. 0.9. 1.0. 1.3. 1.2. -0.7. 2.2. s.s.
  • o.91
  • 1.22
  • 1.16
  • 1.2s
  • 1.05
  • 1.08
  • o.97
  • 1.08
  • 1.06
  • 1.27
  • 1.is
  • 1.22
  • o.93 * * -o.4. -o.4. -o.5. -1.6. o.4. 1.5. 1.5. 1.4. 1.1. -0.1. -1.3. -0.2. 1.9
  • A l 2 3 s 6
  • 0.43. 1.00. 1.08. 1.26. 1.06. 1.06. 1.04. 1.23. 1.04. 1.08. 1.08. 1.23. 1.05. 1.00. 0.44. 7 * -4.5. -o.7. 1.7. -1.0. -3.o. -o.8. 1.9. 1.7. 1.7. 1.4. -1.6. -2.9. -1.2. -1.2. -o.5 *
  • o.67
  • 0.91
  • 1.05
  • 1.04
  • 1.20
  • o.95
  • 1.24
  • 1.06
  • 1.24
  • o.97
  • 1.22
  • 1.03
  • 1.03
  • o.94
  • o. n . 8 * -4.5. -2.0. 1.7. -0.9. -3.2. -0.9. 2.0. 2.3. 2.0. 1.6. -1.3. -1.7. -0.4. 1.1. 1.7 * ..................
. ...................................................................................... .
  • o.43. o.98. 1.os. 1.26. 1.10. 1.06. 1.02. 1.24. 1.os. 1.08. 1.10. 1.27. 1.06. 1.03. o.46. 9 * -4.5. -2.8. -1.2. -1.1. 0.1. -0.7. -o.o. 1.9. 2.8. 1.0. 0.6. 0.2. 0.3. 1.3. 3.4.
  • o.9o. 1.21. 1.17. 1.28. 1.05. 1.06. o.95. 1.07. 1.os. 1.27. 1.17. 1.22. o.91 * * -1.2. -1.2. 0.1. 1.1. o.6. -0.3. -o.4. -o.z. o.o. -0.1. o.6. 0.1. o.o *
  • o.51. 1.09. 1.26. 1.03. 1.26. 1.07. 1.20. 1.06. 1.24. 1.02. 1.26. 1.09. a.so.
  • 1.3
  • 1.3
  • 1.3
  • 1.4 * -o.6 * -2.s * -2.9 * -3.l * -2.5
  • o.4
  • 1.2
  • 1.2
  • o."8 *
  • o.s8. o.99. 1.27. 1.14. 1.22. 1.02. 1.24. 1.1s. 1.24. o.98. o.s8.
  • 3.7. 2.8. 1.4. -2.0. -4.o. -3.4. -2.7. -1.7. -o.4. 1.3. 2.5 *
  • 0.59. 1.13. 1.22. 1.02. 1.01. 1.03. 1.20. 1.07. O.S7.
  • 4.2. 4.8. 0.2. -3.6. -3.0. -2.6. -2.0. -0.7. 1.8 *
  • 0.52. 0.96. 1.04. 0.92. 0.98. 0.89. 0.49.
  • 4.8. s.1. 2.4. -o.9. -3.1. -2.s. -1.8 *
  • 0.47. 0.71. 0.43.
  • S.7. 2.2. -3.3. 10 11 12 13 14 15 STANDARD DEVIATION " 1.267 AVERAGE PCT. DIFFERENCE:

1.6 NAP NO: 52-6-31 CONTROL ROD POSITiotlS:

D BANK AT 228 STEPS SUNNARY DATE: 6/07/83 F-QI Tl = 1.677 F-DHCNI = 1.396 FIZI = 1.150 FIXYI = 1.346 BURNUP = 15326 MWD/MTU 23 POWER: 1007. QPTR: NW 0.9971 I NE 1.0061 -----------1----------

sw 1.0019 I SE 0.9949 A.O: -2.521?.I

,-.. N -.....;, 0

  • Li.. C u.J N ...J < c::: 0 z I N .......,, :::.::: -----------------------------------, L0 0.8 0.6 0.4 0.2 0.0 0 BOTTOM HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE (6.1, 1.0) 2 4 6 8 CORE HEIGHT (FEET) 24 Figure 4.4 (10.9, 0.94) (12.0, 0.46) 10 1 2 TOP 2.5 + 2.0 + 1.5 + X X X X 1.0 + X X -x -X 0.5 + 0.0 + I *.*** I
  • 61 55 BOTTOM OF CORE X X SURRY UN IT 2 -CYCLE 6 HEAT FLUX HOT CHANNEL FACTOR, F6(Z) S2-6-07 X XX X xxxxxxx XXXXXX X X xx xxxxx XX X X X X X I
  • I
  • 50 45
  • I
  • 40 I
  • 35 I
  • 30 I
  • 25 AXIAL POSITION (NODES) 25 I
  • 20 Figure 4.5 X XX XX xx X X I
  • 15 X I
  • 10 X X X
  • I *** I 5 1 TOP OF CORE 2.5 + 2.0 + SURRY UN IT 2 -CYCLE 6 HEAT FLUX HOT CHANNEL FACTOR, F~(Z) S2-6-18 xxxxxx xx
  • X XX XXX XXXX' X X XX X XX XX XX XX* X 1.5 + X X X X X X X 1.0 + X -x -X 0.0 + I , , , *. I . 61 55 BOTTOM Of CORE I , 50 I
  • 45 I
  • 40 I
  • 35 I
  • 30 AXIAL POSITION (NODES) 26 I , 25 I
  • 20 X Figure 4.6 X X X XX X I , 15 XX X I , 10 X X X X
  • I ... I 5 1 TOP Of CORE

...., ,..., 2.5 + N 2.0 + -O' r:z;. SURRY UN IT 2 -CYCLE 6 HEAT FLUX HOT CHANNEL FACTOR, F6(Z) S2-6-31 X XX X XXX X X X XXX XX xx XX X XX Figure 4. 7 xxxx xx xx , .5 + X XXX XXXX XX X X X X X 1.0 +X -X 0.5 + 0.0 + I . , **. I

  • 61 55 BOTTOM OF CORE X I
  • 50 I , 45 X I
  • 40 I , 35 X I
  • 30 AXIAL POSITION (NODES) 27 X X I
  • 25 I
  • 20 X I , 15 I , 10 X X X X
  • I **. I 5 1 TOP OF CORE Figure 4.8 SURRY UNIT 2 -CYCLE 6 MAX1MUM HEAT FLUX HOT CHANNEL FACTOR, FQ
  • P VS AXIAL POSITION FQ
  • f LlMIT
  • MAXIMUM FQ
  • P 2.2 r--......... ----r--__ l 2.0 **' '** ... **' **** \ * ** ... l . 6 ** .... * ~* .... ,.. .... ........ ... * \ *' **** : . * * * * * * \
  • 1 . 6 * ' \ * * * \ 1 . 4 . * \ * \ F 1 . 2 Q * * , 1 . 0
  • p *
  • 0.6 :~ Q.6 Q.4 ' , 0.2 . a.a -I 61 55 50 45 40 35 30 25 20 15 10 5 AXIAL POSITION CNODEl 28 BOTTOM OF CORE TOP OF CORE

~-~-----------------------------------

11 A 2.2 2 . 1 X 2.0 I M u M H }; A T F L u X H 0 T l . 9 1 .e 1 . 7 C 1 . 6 H A N N E 1 .5 L F A C 1 . 4 T 0 R l . 3 . --l . 2 -I 0 Figure 4.9 SURRY 2 -CYCLE 6 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, F-Q 1 VS. BURNUP -TECH SPEC LIMIT X MEASURED VALUE ) )( . ' ' X X X ,, V X . -"' " X X >: X X ' . . 2000 4000 6000 8000 10000 12000 14000 16000 CYCLE BURNUP (MHO/MTUl 29 1 ,60 1 ,55 .. E t .50 N T H A L l . 45 p ';( R l 1 . 40 s E H 0 1 . 35 T C H A 1 .30 N .N E L F A C T 1 . 25 0 1 . 20 R 1 . 15 . . . 1 . 1 0 ,-I 0 Figure 4.10 SURRY UNIT 2 -CYCLE 6 ENTHALPY RISE HOT CHANNEL FACTOR, F-DHlNl VS. BURNUP -TECH SPEC LIMIT X MEASURED VALUE ) X V ,. V' " X X X X X X X X 2000 4000 6000 8000 10000. 12000 14000 16000 CYCL~ BURNUP !MWO/MTUl 30 10 6 6 T A R G 4

  • E T
  • D E 2 L T A F 0 L u X I -2 N p E R -4 C E N T 6 -10 ,. t:,. . . -I 0 2000 t:,. SURRY UNIT 2 -CYCLE 6 TARGET DELTA FLUX VS. BURNUP . '* ---t:,. t:,. t:,. I 4000 6000 8000 10000 CYCLE BURNUP tMHD/MTUl 31 Figure 4.11 . -t t::. . . ---12000 14000 16000

-A J;,:l N H ...:l i 0 z '-' -N '-' N i:... 1.5 + 1.2 + SURRY UN IT 2 -CYCLE 6 CORE AVERAGE AXIAL POWER DISTRIBUTION S2-6-07 Fz = 1.214 A.O.= -2.2 X XX X xxxxxxxx XXXXXX X X X XX XX X X XX X X X Figure 4.12 XX XX X XX X X X 0.9 + 0.6 + X -X X X X X X -x 0.3 + 0.0 + I ***** I

  • 61 55 BOTTOM Of CORE X I
  • 50 I
  • 45 I
  • 40 I
  • 35 I
  • 30 I
  • 25 AXIAL POSITION (NODES) 32 I
  • 20 I
  • 15 X X I
  • 10 X X XX X X X X
  • I .** I 5 1 TOP Of CORE SURRY UN IT 2 -CYCLE 6 CORE AVERAGE AXIAL POWER DISTRIBUTION S2-6-18 1.5 + Fz = 1.162 -A. O. = -3. 0 1.2 + XX X XX X XX X X X X X X X X X X X X X X X X X X X X X X X Figure 4. 13 X X X X X X X X X X 0.9 + X X 0.6 + X -x -X o. 3 + 0.0 + I **.** I . 61 55 BOTTOM OF CORE x* I
  • 50 I
  • li5 X I
  • l!O I
  • 35 I
  • 30 *x AXIAL POSITION (NODES) 33 I
  • 25 I
  • 20 X X X X I
  • 15 I
  • 10 X X X X X X X X . I **. I 5 1 TOP OF CORE

-N '-' N µ.j SURRY UN IT 2 -CYCLE 6 CORE AVERAGE AXIAL POWER DISTRIBUTION S2-6-31 1.5 + Fz = 1.150 A. o. = -2.5 1.2 + XX X X X X X 0.9 + X X 0.6 +X -X 0.3 + o.o + I ***.* I

  • 61 55 BOTTOM Of CORE X I
  • 50 XX XX X X XX I
  • 45 X X I 40 X XX XX X XX XX I
  • 35 I
  • 30 xxxxxx XX X X X X I
  • I
  • 25 20 AXIAL POSITION (NODES) 34 Figure 4.14 X XXX X X X X X X I
  • I
  • 15 10 X X X X X X X
  • I *** I 5 1 TOP OF CORE 1 . 4 . 1 . 3 A .. _x l A .l p t:::,. E A K l . 2 I N G F A C T 0 R 1 . t 1 . 0 -I a Figure 4.15 SURRY UN1T 2 -CYCLE 6 CORE AVERAGE AX1AL PEAK1NG FACTOR, F-Z VS. BURNUP /J. /J. t:::,. ... b. b. b. " l, t:::,. /J. t. b. 2000 4000 6000 8000 10000 12000 l 4000 16000 CYCLE BURNUP IMWD/MTUl 35 SECTION 5 PRIMARY COOLANT ACTIVITY FOLLOW Activity levels of iodine-131 and 133 in the primary coolant are important in core performance follow analysis because they are used as indicators of defective fuel. Additionally, they are also important with respect to the offsite dose calculation values associated with accident analyses.

Both I-131 and I-133 can leak into the primary coolant system through a breach in the cladding.

As indicated in the Surry Power Station Technical Specifications, the dose equivalent I-131 concentration in the primary coolant is limited to 1.0 µCi/gm for normal steady state operation.

Figure 5 .1 shows the dose equivalent I-131 activity level history for the Surry 2, Cycle 6 core. The demineralizer flow rate averaged 106 gpm during power operation.

The data shows that during Cycle 6, the core operated substantially below the _1. 0 µCi/ gram limit during steady state operation (the spike data is associated with power transients and unit shutdown).

Specifically, the cycle average value of dose equivalent I-131 was 0.00327 µCi/gram which is less than 1% of the Technical Specifications limit. The ratio of the specific activities of I-131 to I-133 is used to characterize the type of fuel failure which may have occurred in the reactor core. Use of the ratio for this determination is feasible because I-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days). For pinhole defects, where the diffusion time through the defect is on the order of days, the I-133 36

  • ,
  • decays out leaving the I-131 dominant in activity, thereby causing the ratio to be 0.5 or more. In the case of large leaks, uranium particles in the coolant, and/or "tramp" uranium*, where the diffusion mechanism is negligible, the I-131/I-133 ratio will generally be less than 0.1. Figure 5.2 shows the I-131/I-133 ratio data for the Surry 2, Cycle 6 core. The I-131/I-133 ratio generally remained around 0.5, which indicates possible pinhole defects in the fuel cladding.
  • "Tramp" uranium consists of small particles of uranium which adhere to the outside of the fuel during the manufacturing process. 37

'\ * "* c:, C) -(1) CD c-(D l/) ,q' (Tl N -b -O') CD c-tD Lr.I ,q' l:: (Tl 0 ' Cf) N w .........

a::: 'o ::) -u (1) 0 CD (!) a::: c-u tD ...... Lr.I l:: v (Tl N (!) ... 'o -O') CD c-ID (!) Lr.I ,q' (11 N CYCLE SURRY .UN IT 2 DOSE EQU-I VALENT vs. l TECHNICAL SPECJFJCATJONS LJMIT l I -1 3 1 (!) (!) (!) C!) (!) C!) & (!) ae @E (!) (!) (f, (!) (!)(!)C) C!) (!) (!) (!) (!) (!) (!) (!) (!) (!) (!) c§l C!) (!) (!) i@ <!JJ C!) i (!) ~-(!) ! (!) (!) C!) (!) (!) C!) 6 TIME (!) (!) C!) (!) @ (!) (!) (!) (!) Figure 5. 1 (!) (!) C!) (!) (!) (!) 100 50 L,.J . b 0 --=-.1,1-'--.-~~.L.1-..,...J.L~

......... -J,.~--.-~-.-~-.-~.-1---.~~.1.-J...,-~_..1,~..-----.-ll..J-..~-.---u...JO JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV OEC JAN FEB MAR APR MAY JUN 1982 1983 38

" *

  • SURRY UNIT 2 I-131/I-133 ACTIVITY 0 a:, . N 1!) (!) (!) 0 C!) ...,. . N (! C!) -(!) C)O -c: (!) ( (!) L... 1--N a: (!) (!) a:: . 1b C!) >-1--0 _w >...: (! b C!) "' C!) C!) \!) -(!) u a: (!) (!) 0 (T'}N (T'}...: --........ -o (T'} a:, . -,o -0 ...,. . 0 0 i 0 . r I I I I r I I I I I I C!) CYCLE . I RATIO (!) (!) I I IJ I I C!) (!) (!) (!) * (!) (!) Figure 5.2 6 vs. TIME C!) C!) C!) C!) (!) (!) C!) C!) C!) C!) -C) = 1p© b C!) C!) (! C!) (' ,.. \!) '!J.C!> C!) C!) (!)(!) (: (!)(: % C!) Cl?, (!) b (!)( (! 11> , I I l I JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN 1982 1983 39 100 -:..: 50 a: LL.I :3: 0 0 a..

.. * ,., SECTION 6 CONCLUSIONS The Surry 2, Cycle 6 core has completed operation.

Throughout this cycle, all core performance indicators compared favorably with the design predictions and all core related Technical Specifications limits were met with significant margin. No abnormalities in reactivity, power distribution, or burnup accumulation were detected.

In addition, the excellent mechanical integrity of the fuel was not changed significantly throughout Cycle 6 as indicated by the radioiodine analysis . 40

-*. SECTION 7 REFERENCES

1) Mr. E. S. Hendrixson, "Surry Unit 2, Cycle 6 Startup Physics Test Report," VEP-FRD-47, February, 1982. 2) Surry Power Station Unit 1 and 2 Technical Specifications, Sections 3.1.D, 3.12.B, and 4.10. 3) Mr. T. K. Ross, "NEWTOTE Code", VEPCO NFO-CCR-6 Rev-5, November, 1982. 4) Mr. R. D. Klatt, Mr. W. D. Leggett, III, and Mr. L. D. Eisenhart, "FOLLOW Code," WCAP-7 482, February, 19 70. 5) Mr. W. D. Leggett, III and Mr. L. D. Eisenhart, "INCORE Code," WCAP-7149, *December, 1967. 41