ML20245F004

From kanterella
Jump to navigation Jump to search
Rev 3 to Offsite Dose Calculation Manual Procedure
ML20245F004
Person / Time
Site: River Bend Entergy icon.png
Issue date: 02/14/1989
From:
GULF STATES UTILITIES CO.
To:
Shared Package
ML20245F003 List:
References
RSP-0008, RSP-8, NUDOCS 8905020234
Download: ML20245F004 (111)


Text

,. ____ _________ _. ___

g/

RIVER BEND STATION APPROVAL SHEET STATION OPERATING PROCEDURES NO. RSP-0008 _ TITLE OFFSITE DOSE CALCULATION MANUAL (0DCM)

., PROCEDURE [

A -ges" \ '

SAFETY RELATED YES 13 (Nd f[\W'E l\ ,t.V K96 #

.g ' "g QA APPLICABLE YE8l]1 l[I -

gp N' 1 REV. I PAGES INDEP. I \* / l l l NO. 1 ISSUED REVIEW l APPED9ED BY 8

I EFFECT l l SIGNAWRE/DATE I SIGNATURE /DAlt i DATE I v i i l I l l I I I o 1 Thru 112 '

[A fjj l07/11/86 1

/4 8 /13 / "

I i k 07/29/88l I% b flj l l 3 1 thru 110 02/14/69 1 l I I I l l l 1 l l l l 1 1 I I l l l l l l l l l l 1 1 1 l l .

I I I l l l 1 1 I I I I l l l RECEIVED l l l l l FEB 141989 l l l l l soc l l l l l l l l l l 1 I I I I I I l l l l 1 1 I I I I I I I ~ l I I I I I I l l l l l I fE)0' 00$$ SE gs i I I I I I

F ;.D s-

}. e Table of Contents Section. Pm 1.0 Introduction.............................................. 3 1.1 Purpose .................................................. 3 1.2 References ............................................... 3 1.3 Definitions .............................................. 4 1.4 Required Equipment ....................................... 5 1.5 Precautions and Limitations .............................. 5 1.t Prerequisites ............................................ 5

- 2.0 Liquid Effluent Methodology............................... 6 2.1 River Bend Station Site Description....................... 6 2.2 Compliance with 10CFR20 (Liquids)......................... 6 2.3' Determination of Setpoints for Radioactive Liquid Effluent Monitors....................................... 7 2.4 Determining the Dose for Radioactive Liquid Effluents..... 10 2.5 Projecting Dose for Radioactive Liquid Effluents.......... 11 3.0 Gas eous E f fluent Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 Introduction................................................ 12 3.2 Data Requirements for Gaseous Effluents................... 12 3.3 Instantaneous Release Rate and Setpoint Determination..... 13 3.4 Cumulative Dose Determination for Radioactive Gaseous Effluents........................ 4 ..................... 27 3.5 Dose Projection - Determination of Need to Operate Ventilation Exhaust Treatment System.................... 38 4.0 Radiological Environmental Monitoring Program.... ......... 39 5.0 40CFR190 Considerations................................... 49 5.1 Compliance vith 40CFR190.................................. 49 5.2 Calculations Evaluating Conformance with 40CFR190......... 49 5.3 Calculations for Total Body Dose. . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.4 Thyroid Dose.............................................. 50 5.5 Organ Dose................................................ 51 5.6 Skin Dose................................................. 52 6.0 Interlaboratory Comparison Studies..... .................. 52 6.1 Requirement...,.............................. ............ 52 6.2 Program............................... ................... 52 RSP-0008 REV. 3 PAGE 1 0F 110

t Appendices PAGE A Liquid MPC Values 54 B Liquid Environmental Dose Transfer Factors A 56 tt C KgL gAir Dose Transfer Factors 60 D Expected _ Gaseous Radionuclides Mixture 67 E X/Q and DLQ Values _for Restricted Area Boundary 69 F Maximum X/Q and D/Q for Individual Locations 78 G Instantaneous Dose Transfer Factor Tables 80 H Gaseous MPC Values 82 I Environmental Dose Transfer Factors for Gaseous Effluents 84 Figures 1 Restricted Area and Near-Field Environmental Monitoring Locations 104 2 Schematic of Gaseous Radwaste System 105 3 Effluent Release Points 106 4 Schematic of Liquid Radwaste System 107 5 Far-Field Radiological Environmental Monitoring Locations 108 6 Schematic of the Solid Waste Treatment System 109 Attachments 1 ODCM/ Procedure Revision Sheet 110 i

l l

l RSP-0008 REV. 3 PAGE 2 0F 110 I

1.0 INTRODUCTION

1.1 PURPOSE This manual provides a concise description of the environmental dose models and techniques used to calculate offsite doses resulting from missured or projected releases of radioactive materials from Gulf States Utilities' River Bend Nuclear Station. It also provides the methodology for calculating effluent monitoring setpoints and allowable release rates to ensure compliance with the Radiological Effluent Technical Specifications (RETS) of Gulf States Utilities, River Bend Station. This manual also contains a description of the Radiological Environmental Monitoring Program which includes sample point descriptions for both onsite and offsite locations and sampling and analysis frequencies.

The ODCM follows the methodology and models suggested by the " Guidance Manual for Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants" (NUREG-0133, dated October 1978) and " Calculation of Annual Doses !. .:an from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I" (Regulatory Guide 1.109, Rev. 1, dated October  !

1977). Alternate calculational methods may be used from those presented as long as the overall methodology does not change or as long as the alternative methods provide results that are more limiting. Also, as available, the most up-to-date revision of Regulatory Guide 1.109 dose conversion factors and site-specific environmental transfer factors may be substituted for those currently included and used in this document.

1.2 RERERENCES 1.2.1 NUREG 0133; Guf. dance Manual for Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants; October, 1978.

1.2.2 REG. GUIDE 1.109, Rev. 1, October, 1977; Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Compliance with 10 CFR Part 50, Appendix I.

1.2.3 U.S. Ccde of Federal Regulations; 10CFR20.

1.2.4 River Bend Environmental Report, OLS.

1.2.5 REG. GUIDE 1.111; Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water - Cooled Reactors.

1.2.6 River Bend Station USAR RSP-0008 REV. 3 PAGE 3 0F 110

ll l

l l

1.2.7 River Bend Technical Specifications; Section 3/4.11.

1.2.8 River Bend Environmental Report, CPS. i l

1.2.9 U.S. Code Of Federal Regulations, 10CFR50.  ;

1.2.10 U.S. Code of Federal Regulations, 40CFR190.

J 1.2.11 NUREG 0543, Methods for Demonstrating LVR Compliance with the EPA Uranium Fuel Cycle Standard (40CFR Part 190) 1.2.12 QAFR P-86-03-004 1.2.13 QAFR # P-86-03-005 1.2.14 QAFR # P-86-03-002 1.2.15 CONDITION REPORT # 86-0495 1.2.16 River Bend Technical Specification; Section 6.14.

1.2.17 River Bend Technical Specification 3.3.7.10 1.2.18 River Bond Station Radiological Environmental Operating Report for 1985 1.2.19 QAFR #P-86-03-003 1.3 DEFINITIONS 1.3.1 !F.MBER(s) 0F THE PUBLIC -

MEMBER (S) 0F THE PUBLIC shall include all persons who are not occupationally associated with the plant. This category does not include employees of the utility, its contractors or vendors. Also excluded from this category are persons who enter the site to service equipment or to make deliveries. This category does include persons who use portions of the site for recreational, occupational or other purposes not associated vith the plant.

1.3.2 0FFSITE DOSE CALCULATION HANUAL -

The OFFSITE DOSE CALCULATION MANUAL shall contain the methodology and parameters used in the calculation of offsite doses due to radioactive gaseous and liquid effluents and in the calculation of gaseous and liquid effluent monitoring alarm / trip setpoints. It shall also contain a table and figure defining current radiological environmental monitoring sample locations.

RSP-0008 REV. 3 PAGE 4 0F 110

1 1.3.3 SITE BOUNDARY -

The SITE BOUNDARY shall be that line beyond which the land is not I owned, leased, or otherwise controlled by the licensee. )

i 1.3.4 UNRESTRICTED AREA -

An UNRESTRICTED AREA shall be any area at or beyond the SITE BOUNDARY access to which is not controlled by the licensee for purposes of protection of individuals from exposure to radiation and radioactive materials, or any area within the site boundary used for residential quarters or for industrial, commercial, institutional, and/or recreational purposes.

1.3.5 VENTILATION EXHAUST TREATMENT SYSTEM -

A VENTILATION EXHAUST TREATMENT SYSTEM is any system designed and installed to reduce gaseous radioiodine and/or radioactive material in  !

particulate form in effluents by passing ventilation or vent exhaust gases through charcoal absorbers and HEPA filters prior to the release to the environment (such a system is not considered to have any effect on noble gas effluents). Engineered Safety Feature (ESF) atmospheric cleanup systems are not considered to be VENTILATION EXHAUST TREATMENT SYSTEM components.

1.4 REQUIRED EQUIPMENT 1.4.1 None 1.5 PRECAUTIONS AND LIMITATIONS 1.5.1 As per Reference 1,2.16, Licensee-initiated changes to the ODCM/ Procedure shall be submitted to the Commission in the Semiannual Radioactive Effluent Release Report for the period in which the change (s) was made effective I

1.5.2 Fo changes (s) shall be made to the ODCM/ Procedure that will reduce the accuracy or reliabillty of dose calculations or setpoint determinations.

1.5.3 Any change (s) shall be recorded on the ODCM Revision Sheet  !

and made in accordance with Reference 1.2.16.

1.6 PREREQUISITES 1.6.1 None RSP-0008 REV. 3 PAGE 5 0F 110

2.0 LIQUID EFFLUENT METHODOLOGY 2.1 River Bend Site Description The River Bend Station Updated Safety Analysis Report (USAR).contains l' the official description of the site characteristics. The description that follows'is a brief summary for dose calculation purposes:

The River Bend Station (RBS) is on a site in West Feliciana Parish, Louisiana, located approximately 24 miles north-northwest of Baton Rouge, Louisiana. This site is just sast of the Mississippi River which is used as the source of the RBS major water requirements and which receives the RBS liquid effluents.

The reactor is a General Electric boiling water reactor of the BWR-6

.or 1972 product line. Containment is of the Mark 3 design, a free-standing cylindrical steel structure surrounded by a reinforced concrete shield building.

2.2 Compliance with 10CFR20 (Liquids) 2.2.1  : Requirements In accordance with Technical Specification 3.11.1.1, the concentration of radioactive material released in liquid effluents to Unrestricted Areas (Figure 1) shall be limited to the concentrations specified in 10CFR20, Appendix B, Table II, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble

~

gases, the concentration shall be limited to 2 x 10 ' uCi/ml total activity. The concentration of radionuclides in liquid waste is determined by sappling and analysis in accordance with Technical Specification Table 4.11.1.1-1.

2.2.2 methodology This section describes the calculational method to be used to determine F , the fra: tion of 10CFR23 limits of release 7

concentrations of liquid radioactive effluents.

2.2.2.1 General Approach Liquid effluent releases from River Bend Station are discharged through the cooling tower water blowdown which is directed to the Mississippi River. Principal sources of radwaste are from floor drains, phase separators / backwash tank subsystem, sample recovery tanks, and reactor water cleanup (as shown in Figure 4). The liquid radwaste system is operated as a batch system. Only one tank of liquid radwaste is released at a time and is considered a batch.

RSP-0008 REV. 3 PAGE 6 0F 110 1

i

, s The radioactive content of each batch release will be determined prior to release in accordance with Table 4.11.1.1-1 of the RBS Technical Specific ~ations. Compliance with 10CTR20 limits will be determined with the following equation:

f y

n C f

2.2.2.1-1 Fg = I i=1 (MPC)g fl*I2 where:

F = The fraction of 10CFR20 MPC limits resulting from the release source being discharged f

3

= The undiluted release rate of the release source at the monitor location, in gpm f = The cooling tower blowdown release rate, in gpm 2

C = The undiluted concentration of nuclide (1), in f

cCi/ml from sample assay.

(MPC)g

= Maximum Permissible Concentration of nuclide (i) from Appendix A, in uCi/ml as long as Fg is less than 1.0, the concentration of the tank is within compliance with 10CFR20 limits.

2.2.2.2 Simplified Approach

-8 For purposes of simplifying the calculations, the value of 3 x 10 u'i/ml (unidentified 10CFR20 MPC value) ould be substituted for (MPC)g and the cutulative concentration ( C-Total = sum of all identified radionuclida concentrations) or the gross beta-gauma concentration should be substituted for C . As long as the diluted f

-8 concentration (C-Total x yf /(f 3 + f2)) is less than 3 x 10 uCi/ml, the nuclide by nuclide calculation is not required to demonstract compliance with 10CFR20 MPC limits 2.3 Determination of Setpoints for Radioactive Liquid Effluent Monitors 2.3.1 Requirements Technical Specification 3.3.7.10 requires the radioactive liquid effluent monitor be operable with their high alarm / trip setpoints set to ensure that limits of Technical Specification 3.11.1.1 are not exceeded. The high alarm / trip setpoints shall be determined and adjusted by the methodology which follows.

RSP-0008 REv. 3 PAGE 7 0F 110 w_-_

]

The high alarm setpoint for the liquid effluent radiation monitor is derived fr'om the concentration limit provided in 10CFR20, Appendix B, Table II, Column 2 applied at the restricted area boundary where the discharge flows into the Mississippi River.

2.3.1.2 Liquid Effluent Monitors Two General Atomics RD-53 monitors are provided to ensure compliance with Technical Specification limits for liquid releases. The RD-53 is an offline gamma scintillation (NaI) monitor designed for detecting radioactivity in liquids. The monitors consists of a removable sample canister surrounded by Pb shielding. A well inside the canister holds the detector within the sample fluid. The two monitors are as follows:

1. Cooling Tower Blowdown Line Monitor (1RMS-RE108)
a. Range: 10 to 10 cpm
2. Liquid Radwaste Effluent Monitor (1RMS-RE107) 1 7
a. Range: 10 to 10 cpm 2.3.2 Methodology The high alarm setpoint does not consider dilution, dispersion, or decay of radioactive material beyond the site boundary. That is, the alarm setpoint is based on a concentration limit at the end of the blowdown line discharge.

2.3.2.1 Liquid Radwaste Effluent Monitor (IRMS-RE107)

A sample of each batch of liquid radwaste is analyzed for I-13) and other principal gamma emitters as specified in Table 4.11.1.1-1 of Technical Specification 3.11.1.1, for total activity concentration prior to release. The fraction F gof the 10CFR20 MPC limits fcr unrestricted areas is determined in accordance with the preceding section for the act.ivity concentration released.

The 1.1guid radwaste efflutnt monitor will terminate a 1.' quid radwaste discntrge if activity levels exceed the Technical Specifications limits. The automatic actions associated with a trip of the monitor are:

1. ILWS-FV197 closes
2. 1LWS-A0V258 opens RSP-0008 REV. 3 PAGE 8 0F 110

, i An alarm will also be annunciated in the main control room.

The liquid radwaste effluent line radiation monitor alarm setpoint is determined with the equation:

S = A x g 2.3.2-1 Fg where:

S = the radiation monitor setpoint (cpm or uCi/ml)

A = the counting rate (cpm /ml) or activity concentration (uC1/ml) of the sample as determined in the laboratory.

g = the ratio of effluent radiation monitor counting rate to laboratory counting rate or activity concentration in a given batch of liquid (cpm per cpm /ml, cpm per uCi/m1, or uCi/ml per uC1/ml) i Note: A/F grepresents the counting rate of a solution having the same radionuclides distribution as the sample and having the maximum permissible concentration (MPC) of that mixture.

2.3.2.2 Cooling Tower Blowdown Line Monitor (1RMS-RE108)

The cooling tower monitor alarms at high levels of radioactivity in the normal plant service water / circulating water effluent to the Mississippi River. An alarm will be annunciated in the main control room if predetermined setpcints are exceeded.

The cooling tower monitor alarm setpoint is determined by the equatim :

S = 2 x BFG 2.3.2.2-1 where:

S = the radiation monitor setpaint (cpm or uCi/ml)

BKG = monitor background value (cpm or uCi/ml)

The cooling tower blowdown line is not expected to be a contaminated stream and normally would serve as a dilution source for the final radwaste system effluent discharge. Any significant upward fluctuation in the background level is indicative of a release which could approach 10CFR50 Appendix I limits or 10CFR20 limits when combined with the liquid radwaste effluent.

1 l

l RSP-0008 REV. 3 PAGE 9 0F 110

l 2.4 Deter'ining the Dose for Radioactive Liquid Effluents 2.4.1 Requirements Technical Specification 3.11.1.2 requires tne dose or dose commitment to a person offsite due to radioactive material released in liquid effluents be calculated on a cumulative basis at least every 31 days.

Dose or dose commitment shall be limited to:

a) Less than or equal to 1.5 mrems to the total body and to less than or equal to 5 mrems to any organ, during any quarter; and b) Less than or equal to 3 mrems to the total body and less than or equal to 10 mrems to any organ during any calendar year.

2.4.2 Methodology This section provides the methodology to calculate dose to all age groups and organs from all radionuclides identified in the liquid effluents.

The method is based on the methodology suggested by Sections 4.3 and 4.3.1 of NUREG-0133, Rev. 1 , November 1978 The dose factors A for all viable pathways are listed in Appendix B.

f The following equation provides a dose calculation to the total body or any organ for a given age group based on actual release conditions.

Dg =A

  • At*Q g 2.4.2-1 f

DF w D w

n 2.4.2-2 D = I Dg TOTAL t i=1 where:

D TOTAL t = The total dose commitment to the organ (t) due to all releases during the desired time period in mrem.

RSP-0008 REV. 3 PAGE 10 0F 110

F \

a; e D

it = Dose commitment from_ radionuclides (i) received by organ (t) of.the adult age grouj dut:ing the time period (mrem).

A it '= Site related dose commitment factor to the total body or-any organ (t) for each identified radionuclides (1). The Ag values listed in Appendix B are site-related to RBS.(mrem /hr per uCi/ml).

i At = The total time for al' botch releases'that occurred in the period (hrs).

-Q i = The total quantity of nuclide (i) released during the interval At (uC1).

Dy = The near field dilution factor. Site specific value is 77.4.

DF = The total volume of dilution that occurred during the time period (ml).

The doses associated with each isotope may then be summed to provide l the cumulative dose over a desired time period (e.g., sum all doses

-- during a 31 day period, calendar quarter, or a year).

RSP-0008 REV. 3 PAGE 11 0F 110 I

I

L

.E.

2.5 Projecting Dose for Radioactive Liquid Effluents

' 2.5.1 Requirements Technical Specification 3.11.1.3 requires the liquid radwaste treatment system be used to reduce the radioactive materials in liquid.

wastes prior to their discharge when projected doses due to liquid effluents, to unrestricted areas Figure 1 ) would exceed 0.06 mrem to the total body or 0.2 mrem to any organ in a 31 day period.

2.5.2 Methodology The following calculational methodology shall be performed at least once per 31 day period:

D TOTAL t i L =

  • 31 2.5.2-1 PD E

D L

PD = Projected dose commitment (mrem) to organ (t) during the 31 day period from liquid effluents.

X = Number of days to date in the current quarter D

3.0 GASEOUS EFFLUENT METHODOLOGY 3.1 Introduction

- The River. Bend Station discharges gaseous effluents through the Main Plant: Exhaust Duct, Fuel Building Exhaust Duct, and Radwaste Building Exhaust Duct. The location of these release points in relation to the hiver Bend site is found in Figure 3. The gaseous effluent streams, radioactivity monitoring points, and effluent discharge points are j shown schematically in Figure 2. For purposes of sin.pthity, Fuel l

Building exhaust effluea.ts are includee in the Main P3 ant exhaust duct releases All gaseous effluent releases from the Radcaste Building Exhaust Duct are assumed to be ground level releases. The Main Plant l Exhaust Duct routine releases are treated as a wake. split conditionally elevated) zelease.

j' 32 Data Requirements for Gaseous Effluents For the purpose of estimating offsite radionuclides concentrations and radiation doses, measured radionuclides concentrations in gaseous  ;

effluents and in ventilation air exhausted from the station are relied upon. Table 4 11.2.1.2-1 in the Technical Specifications identifies the' radionuclides in gaseous discharges for which sampling and analysis is done.

RSP-0008 REV. 3 PAGE 12 0F 110

I When a nuclide concentration is below the LLD for the analysis, it is not reported as being present in the sample.

In the absence of real-time meteorological data, historical information will be used to calculate off-site dose. Modelling will be performed in accordance with the methodologies described in Reg.

Guide 1.111 . Rev. 1.

3.3 Instantaneous Release Rate and Setpoint Determination 3.3.1 Instantaneous Release Rate Determination The instantaneous release rate determination is performed to show compliance with the limits set forth in 10CFR20.

3.3.1.1 Requirements Technical Specification 3.11.2.1 states that the dose rate due to radioactive materials released in gaseous effluents from the site to areas at and beyond the site boundary (see Figure 1) shall be limited to the following:

a. For noble gases: Less than or equal to 500 mrem / year to the total body and less than or equal to 3,000 mrem / year to the skin; and
b. For I-131, I-133, tritium, and for all radionuc!.Jes in particulate form with half-lives greater than 8 days: less than or equal to 1,500 mrem / year to any organ.

3.3.1.2 Methodology 3.3.1.2.1 General Approach - Total Body and Skin Instantaneous Release Rate Calculations To determine the dose rate from noble gases in unrestricted areas, the fol'owing formulae are used:

n DR TB

"(*

  • 7) ( i) ( !O) (01) * * ' ' ~

i=1 j i

RSP-0008 REV. 3 PAGE 13 0F 110

n  !

DR, g = (3.15 x 10 ) I (Lg + 1.1 Mf ) ( ) () 3.3.1.2.1-2 i=1 where:

DR = Dose rate to the total body in mrem / year.

TB K

g

= The total body dose factor due to gamma emissions for each identified noble gas radionuclides (i) in 3

mrem /see per uCi/m . Appendix C.

L = Skin dose factor due to beta emissions for each identified noble gas radionuclides (1) in mrem /sec per uCi/m . Appendix C.

Mg = The air dose factor due to gamma emissions for each identified noble gas radionuclides (i) in mrad /sec per uCi/m . Appendix C.

(X/Q) = The highest calculated annual average relative dispersion factor for any area at or beyond the unrestricted area boundary for all Sectors (sec/m ).

Appendix F.

= The release rate of radionuclides (1) in gaseous Q

effluents from all releases in aci/sec.

1.1 = Conversion factor for M gfrom mrad to mrem.

3.15 x 10 = Number of sec/ year.

In order to comply with the limits of 10CFR20, DR Tb 5 00 mrsm/ year and DR g 53,000 mrom/ year must be met at the most limiting location, at or beyond the site boundary.

The radionuclides mix was based upon source terms tabulated in the River Bend Station USAR, Table 11.3-1 and are summarized in Appendix D.

The X/Q values utilized in equations 3.3.1.2.1-1 and 3.3.1.2.1-2 are l based upon maximum long-term annual average (X/Q) in the unrestricted area. Appendix F lists the maximum X/Q values for the RBS release points at the appropriate receptor locations.

RSP-0008 REV. 3 PAGE 14 0F 110 I

i

i-i To select the most limiting location, the highest X/Q for each release point is used (from Appendix F):

-6 3 (X/Q), = 3.31 x 10 sec/m (X/Q), = 4.21 x 10-5 ,, j,3 where:

(X/Q), = . Chi /Q for Main Plant exhaust duct and Fuel Building exhaust duct (X/Q), = Chi /Q for Radwaste Building exhaust duct Appendix F contains the maximum X/Q and D/Q values used in calculating individual doses.

Release rates for all release points must be considered at the same time. If releases'are c,ccurring at the same time, the total instantaneous dose for all releases must be less than the limits of Technical Specification 3.11.2.1. An administrative control limits the release rates for each of the three release points to 1/3 the total Technical Specification doses. ,

3.3.1.2.2 Limited Analysis Approach - Instantaneous Noble Gas Release Rate NOTE This approach for K,ff and G + 1.1M),ff shouM only be used if the relative atand.snces of the noble gas radionuclides in the effluent stream are similar to those listed in Appendix D or os the previous Semiannual Efflusnt Report, as appropriate.

(Reference 1.2.19)

RSP-0008 REV. 3 PAGE 15 0F 110

o The above methodology can be simplified to provide for a rapid determination of cumulative noble gas release limits based on the requirements specified in Section 3.3.1.1. Beginning with equation 3.3.1.2.1-1 the implication proceeds as follows:

From 4i evaluation of projected releases, an effective total body dose factor (K,ff) can be derived. This dose f actor is, in ef fect, a weighted average total body dose factor. See Appendix C for a detailed explanation and evaluation of K,ff. H e valua of K,ff has been derived from the radioactive noble gas effluents listed in RBS-USAR and included in Appendix D. The values are:

Radwaste Building Exhaust Duct:

K,ff = (8.05 x 10-5) ( ,,3/uCi-sec)

Main Plant Exhaust Duct and Fuel Building Exhaust Duct:

~

K,ff = 5.56 x 10 (mrem-m /uCi-sec)

Either of these values, as appropriate, may be used in conjunction with the total noble gas release rate (Q ) to verify that the f

instantaneous dose rate is within the allowable limits. To compensate for any unexpected variability in the radionuclides distribution, a conservatism factor of 0.8 is introduced into the calculation. The simplified equation is:

n .

=

DRg (3.15 x 10 ) (K,ff) (X/Q) I O f

3.3.1.2.2-1

~

0o

. i=1 where:

DR TF

= Total body dose rete from noble gases in airborne releases in mrem / year.

(X[Q) = The highest calculated annual average relative dispersion factor for any area at or beyond the unrestricted area boundary for all Sectors (sec/m ).

Appendix F.

Q = The total release rate of all noble gas nuclides f

from the release source of interest in uCi/sec.

3.15 x 10 = Number of seconds / year RSP-0008 REV. 3 PAGE 16 0F 110

I.

  • l l

l l

This limited analysis approach methodology is also available for determining skin dose rates from noble gas release rates:

Beginning with equation 3.3.1.2.1-2, the simplification proceeds as follows:

From an evaluation of projected releases, an effective skin dose factor, (L + 1.1M),ff, can be derived. This dose factor is, in effect, a weighted average skin dose factor. See Appendix C for a detailed explanation and evaluation of (L + 1.1M),ff. The value of (L

+ 1.1M),ff has been derived from the radioactive noble gas effluents listed in RBS USAR and included in Appendix D. The values are:

Radwaste Building Exhaust Duct:

~

(L + 1.1M),ff = 1.59 x 10 ' (mrem -m /uCi-sec)

Main Plant Exhaust Duct and Fuel Building Exhaust Duct:

~

(L + 1.1M),ff = 1.36 x 10 ' (mrem -m /uCi-sec)

Either of these values, as appropriate, may be used in conjunction with the total noble gas release rate ( Q ) to verify that the f

instantaneous dose rate is within the allowable limits. To compensate for an unexpected variability in the radionuclides distribution, a cnnswrvatism factor of 0.8 is introduced into the calculation. The simplified equation is:

n .

DR gg = (3.15 x 10 ) (L + 1.1M),ff ( ) I Q f

3.3.1.2.2-2 0.8 i=1 where:

DR = Skin dose rate from noble gases in airborne releases in Skin mrem / year.

(5/Q) = The highest calculated annual average relative dispersion factor for any area at or beyond the unrestricted area boundary for all Sectors (sec/m ).

Appendix F.

Q = The total release rate of all noble gas nuclides from 1

the release source of interest in uCi/sec.

3.15 x 10 = Number of seconds / year RSP-0008 REY. 3 PAGE 17 0F 110

3.3.1.2.3 Determining the !.adiciodine and 8-day Particulate Release Rates The following calculational method is provided for determining the dose rate from 1 dioiodine (I-131, I-133), Tritium and particulate ,

with half-lives greater than 8 days and to determine if they are within the limits listed in Section 3.3.1.1-b.

In the calculation to show compliance with 10CFR20, only the

. inhalation pathway is considered, since it is the most limiting pathway.

Inhalation Pathway:

DR I&8DPt

( i) ( } ( i) 3.3.1.2.3-1 i=1 where:

DR I68DPt = Dose rate to the organ t for the age group of interest from radioiodines (I/131, I-133), tritium and 8 day particulate via the inhalation pathway (mrem /yr).

Q = Release rate of nuclide (i), (uCi/sec).

f (X7Q) = The highest calculated annue.1 averaba relative dispersion factor for any area at or beyond the unrestricted area 3

boundary for all Sectors (sec/m ). Appendix F.

P i = The dose factor for spplicable environmental pathway (mrem /yr per uCi/m ). Appendix G Values for Pg were calculated for a child using the inhtlation pathway j methodology of NUREG-0133. The P values are presented in Appendix G.

f RSP-0008 REV. 3 PAGE 18 0F 110 l

l. .

3.3.2 Setpoint Determination 3.3.2.1 Requirements Instrumentation is provided to monitor beta-gamma radiation from radioactive materials released from the River Bend Station in gaseous effluents. Each release point process monitor listed in Tech. Spec.

Table 4.11.2.1.2-1 includes an alarm (HIGH ALARM) that is set to report when the radioactive noble gas in gaseous effluents (Main Plant exhaust duct, Fuel Building exhaust duct and/or Radwaste Building exhaust duct) is expected to cause a noble gas concentration at ground level offsite resulting in a dose rate equal to or greater than 500 mrem /yr to the total body and/or 3000 mrem /yr to the skin.

The ALERT alarm is set to report when the radioactive noble gas in gaseous effluents (Main Plant exhaust duct, Tuel Building exhaust duct and/or Radwaste Building exhaust duct) is expected to cause a noble gas concentration at ground level offsite that would result in meeting or exceeding either the 5 mrad per quarter gamma air dose or 10 mrad per quarter beta air dose limit (Technical Specification 3.11.2.2).

It is permissible to set the ALERT alarm at twice (2.0) normal (approximately 100 % unit power) detector background if nuisance alarms would result from setpoints based on gamma and beta air dose.

(Reference 1.2.12)

The distribution of radioactive noble gases in a gaseous effluent stream is determined by gamma spectrum analysis of identifiable radionuclides in effluent gas sample (s). Results of one or more previous analyses may be averaged to obtain a representative spectrum.

In the event the distribution is unobtainable from measured data, the distribution of radioactive noble gases based on past data or calcula;ed by the BWR-GALE code appearing in Appendix D may be assumed.

To allow for multiple sources of releases from the three different release points, the allowable operating setpoints will be administ.t stively controlle d to allocate one-third (1/3) of the total allowable release to each of the release soc:rces.

3.3.2.2 Methodology

a. HIGN ALARM Setpoint Determinatica This section describes the methodology for determining HIGH ALARM / trip setpoints for the three release points:
1. Wide Range Gas Monitor (WRGM) l RSP-0008 REV. 3 PAGE 19 0F 110 l

l Step 1 Determine hTB ut lizing ne f the following methods:

TB

=( ,

x 0 ) (500) (0.8) 3.3.2.2-1 (576) (K,ff) or NOTE The Kg methodology for determining h should TB be used only if isotopic analyses is available and the relative abundances of noble gas nuclides in the effluent stream are not similar to those listed in Appendix D or not similar to the noble gas isotopic mixture described in the previous Semiannual Effluent Report. (Reference 1.2.19)

~

TB " * * ' '

(576)I (Kg ) (f f) i=1 where:

h3 = maximum acceptable total release rate of all noble gas radionuclides in the gaseous eff2uent (uCi/sec).

(576) = The highest calculcted annval average relat/ve dispersion factor for any area at or beyond the unrestricted area boundary for all Sectors (sec/m ). Appendix F.

K g

= The total whole body dose factor due to gamma emissions from noble gas radionuclides (1) (mrem /sec per uCi/m ) from Appendix C, Table C-1.

f = Fraction of noble gas radionuclides (i) to total f

noble gas concentration.

K,ff = Effective dose factor (mrem /see per uCi/m ) from Appendix C, Table C-3.

~

3.17x10 = Inverse of number of seconds per year in year /sec.

RSP-0008 REV. 3 PAGE 20 0F 110

l t

I i

I 0.8 = Conservative factor to account for changing isotopic j inventory. i 500 = Whole body exposure limits of 500 mrem / year.

~0 3.17x10 = Inverse of number of seconds per year in year /sec.

Step 2 .

Determine Q, utilizing one of the following metheds.

Q, = (3.17 x 10-8) (3,000) (0.8) 3.3.2.2-3 (5 76) (L+1.1M) g or NOTE The (L + 1.1M)g methodology for determining Q 3 should be used only if . isotopic analyses is available and the relative abundances of noble gas nuclides in the effluent stream are not  !

similar to those listed in Appendix D or not  !

similar to the noble gas isotopic mixture described in the previous Semiannual Effluent Report. (Reference 1.2.19)

Q, = (3.17 x 10-8) (3,000) 3.3.2.2-4 (5[Q)1 [(Lj + 1.1Mg )ff ]

l . i=1 Q

s

= the maximum a ceptable release rate of all gas radionuclides in the gaseous effluent (uCi/sec])

Lg + 1.1Mg = Total skin dose factor due to emission from noble gas radionuclides (i) mrem /sec /uC1/m from Apnendix C.

(5[6) = The highest calculated annaal average relative dispersion factor for any area at or beyond the unrestricted area boundary for all Sectors

'. (sec/m ). Appendix F.

RSP-0008 REY. 3 PAGE 21 0F 110  ;

_ _-__.___-._._--___mm___mm _.--.m___..___________..__..__..___m_ - _ _ _ _ _ _ _ . . . _ _

(L+1.1M),ff = Effective total ~ skin' dose factor

'(mrem /sec/pC1/m ) from Appendix C Table C-4 3000 = Skin exposure limit of 3000 mrem / year

-8 Inverse of number of-seconds per year in' year /sec.

3.17x10 =

Step 3 Selectthelowerofthehvalues(hTB # s) btained in Step 1 and Step 2.

NOTE Actual alarm setpoint in the data-base may be modified to account for loop accuracy.

Step 4 MultiplythehvalueselectedinStep3by0.33. By multiplying the Q value by a factor of 0.33, the allowable operating setpoints will be administrative 1y controlled to allocate one-third (1/3) of the total allowable release rate to each of the release points. The resultant product will be the actual ODCM release' rate HIGH ALARM setpoint for the appropriate WRGM Monitor.

ii Particulate and Gas Monitor (P&G) (gas channel only).

Step 1 Perform Steps 1 through 3 of Section 3.3.2.2a.1 above Step 2 Determine C (the maxist.m acceptable total radioactivity concentration of all noble gases radionuclides for all release points in the gaseous effluent.(uCi/cc]):

l C,= (2.12 x 10- 3]_Q 3.3.2.2-5 F

where: 2.12 x 10~3 = Unit conversion factor to convert uCi/sec/cfm to uC1/cc.

h = lower of the two h values, hTB #

s' l F = The maximum acceptable effluent flow rate at the point of release based on design flow rates (cfm)

RSP-0008 REV 3 PAGE 22 0F 110

.. .x q

+, .

NOTE Act'ual alarm setpoint in the data-base may be modified to account for loop accuracy._

Step 3' Multiply the C,lvalue determined in Step 2 by 0.33. By multiplying the.C,value by a factor of 0.33, the allowable operating setpoints will be administrative 1y controlled to allocate one-third (1/3) of the total allowable release to each of the release points. The resultant product will be the actual ODCM activity concentration HIGH ALARM setpoint for the appropriate P&G monitor gas channel,

b. ALERT Setpoint Determination'(Reference 1.2.12)
1. Wide Range Gas Monitor (WRGM)

Step 1

'Determinehg.g utilidng one of the following methods.

Qg ,3 = (1.26 x 10*7) (5)f0.8) 3.3.2.2-6 (f[d) (M,ff)

OR-NOTE TheM.methodologyfor.

g determining-A should G

be used only if isotopic analyses is available and the relative abundances of noble gas nuclides in the effluent stream are not similar to those listed in Appendix D or not similar to the noble gas isotopic mixture described in the previous Semiannual Effluent Report. (Reference 1.2.19)

= (1.26 x 10 ) (5) 3.3.2.2-7 G-A (E/h)I Mg ff i=1 Where:

Q = maximum acceptable total release late of all noble gas radionuclides in the gaseous effluent [uci/sec]

RSP-0008 REV. 3 PAGE 23 0F 110

a c .. . . a b'

s .

1 (X[d) = The highest calculated annual average-relative dispersion factor for any area at or beyond the unrestricted area boundary for all Sectors (sec/m ). Appendix F.

M,ff = Effective gamma air dose factor (mrad-m /uCi-sec).

Appendix C, Table C-5.

5 = 5 mrads/ quarter (92 days) gamma' air dose limit-at'the unrestricted area boundary.

Mp = The gamma air dose factor for radioactive noble 3

gas.nuclide (i) in mrad-m /uCi-sec (Appendix C).

f = The fractional abundance of noble gas radionuclides i f

~

1,26 x IO = Inverse of number of. seconds per quarter in quarters /second.

0.8 = Conservatism factor to account for changing isotopic inventory.

Step 2 utilizing ne f the following methods:

Determineh-A B B-A

( * * " (' ' ' *

~

(5[d)(N,ff) of NOTE TheN-methodologyfordeterminingh g B-A s uld be used only if isotopic analyses is available the. relative abundances of noble gas nuclides in the effluent stream are not similar to those listed in Appendix D or the previous Semiannual Effluent Report. (Reference'1.2.19)

= ( .26 x 10 b (10) 3.3.2.2-9 B-A (5Td) E (Ng ) (f g) i=1 RSP-0008 REV. 3 PAGE 24 0F 110

i . .

k'here :

= maximum acceptable total release rate of all QB -A noble gas radionuclides in the gaseous effluents (uci/sec).

(57Q) = The highest calculated annual average relative dispersion factor for an area at or beyond the unrestricted area boundary for all sectors (sec/m ) (Appendix F).

10 = 10 mrad / quarter (92 days) beta air dose limit at the unrestricted area BOUNDARY.

N,gg

= Etfective beta air dose factor (mrad -

m3 /uCi-sec). Appendix C, Table C-5.

Ng = The air dose factor due to beta emissions from each noble gas radionuclides i.

f = The fractional abundance of noble gas f

radionuclides 1, 1.26 x 10" = Inverse of number of seconds per quarter in quarters /second.

0.8 = Conservatism factor to account for changing isotopic inventory.

Step 3 Select the lowot of the Q valuer obtained in Steps 1 and 2, eitherh-AG B-A' Step 4 MultiplythehvalueseleecedinStep3by0.33. Bymultiplyingtheh value by this factor, the allowable operating setpoints will be .

administrative 1y controlled to allocate one-third (1/3) of the total i allowable release rate to each of the release points. The resultant product will be the actual ODCM ALERT setpoint to be entered into the applicable k'RGM's RM-80.

i l

REV. 3 PAGE 25 OP 110 )

RSP-0008

l .

Step 5 If the actual ODCM ALERT setpoint determined in Step 4 is less than two (2.0) times the detector background, it is permissible to enter an ALERT setpoint equal to two (2.0) times the normal (approximately 100?.

unit power) detector background to reduce the possibility of nuisance alarms. The twice background setpoint should provide sufficient indication that an offsite dose limit could possibly be exceeded.

11. Particulate and Gas Monitor (P&G) (gas channel only)

Step 1 Perform Steps 1 through 3 of Section 3.3.2.2.b.i above.

Step 2 Determine C, (the maximum acceptable total radioactivity concentration of all noble gas radionuclides for all release points in gaseous effluent [uCi/cc]):

-3 3.3.2.2-10 C,= (2.12 x 10 F

-3 Where: 2.12 x 10 = Unit conversion factor to convert uCi/sec/

cfm to uCi/cc.

h = Lower of the two h values, Q # O B-A G-A F = The maximum acceptable effluent flow rate at the point of release based on design flow rates (cfm).

Step 3 Multiply the C value determined in Step 2 by 0.33. By multiplying the C,value by this factor, the allowable operating setpoints will be administrative 1y controlled to allocate (1/3) of the total allowable release to each of the release points. The resultant product will be the actual ODCM activity concentration ALERT setpoint. This value is the setpoint to be entered into the applicable P&G monitor's RM-80.

Step 4 If the actual ODCM ALERT setpoint determined in Step 3 is less than two (2.0) times the gas detector background, it is permissible to enter an ALERT setpoint equal to two (2.0) times the normal (approximately 100*. unit power) gas detector background to reduce the possibility of nuisance alarms. The twice background setpoint should provide sufficient indication that an offsite dose limit could possibly be exceeded.

RSP-0008 EEV. 3 PAGE 26 0F 110

7

I 3.4 Cumulative Dose Determination for Radioactive Gaseous Effluents 3.4.1 oble Gases 3.4.1.1 Requirements
a. Air Dose Technical Specification 3.11.2.2 states that the air dose due to noble gases released in gaseous effluents from each reactor unit to areas at and beyond the site boundary (see Figure 1) shall be limited to the following:
1. During any calendar quarter: less than or equal to 5 mrads for gamma radiation and less than or equal to 10 mrads for beta radiation; and
11. During any calendar year: less than or equal to 10 mrads for gamma radiation and less than or equal to 20 mrads for beta radiation,
b. Total Body and Skin Dose (Reference 1.2.13)
1. Technical Specification 3.11.4 states that the annual (calendar year) dose or dose commitment to any MEMBER OF THE PUBLIC, due to releases of radioactivity and to radiation from uranium fuel cycle sources, shall be limited to less than or equal to 25 mrems to the total body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems,
11. Technical Specification 6.9.1.8 (Semi-Annual Effluent Release Report) regnires that an assessment of radiation doses to the likely most-exposed MEMBER OF THE PUBLIC from reactor releases and other nearby uranium fuel cycle sources (including doses from primary effluent pathways and direct radiation) be performed for the previous calendar year to show conformance with 40 CFR190, Environmental Radiation Protection Standards for Nuclear Power Operation.

Cummulative doses from liquid effluents and gaseous pathways (radioiodines (I-131, I-133), Tritium and particulate with T 1/2 > 8 days) are determined in accordance with Sections 2.4.2 and 3.4.2.5. Cummulative total body and skin doses from noble gas releases are deterrained in accordance with Section 3.4.1.2b.

3.4.1.2 Methodology

a. Air Dose This section provides the methodology to calculate the gamma and beta  !

air doses to a maximum receptor location at the site boundary from all noble gas radionuclides identified in the gaseous effluents.

RSP-0008 REV. 3 PAGE 27 0F 110 I

j .

i ,

The method is based on the methodology suggested by sections 5.3 and 5.3.1 of NLTEG-0133, Rev.1, November,1978. The dose factors for beta and gamma air dose are listed in Appendix C and are obtained from Table B-1 of RG 1.109, Revision 1, October 1977.

The following equations provide for air dose calculations based on actuai noble gas releases during a specific time interval for radioactive gaseous release sources at the site boundary:

D Gamma-Air

("i) } ( i} * ' ""

i=1 n

D Beta-Air ( i) )

( i} ' #~

i=1 where:

D = e gamma air dose from radoacthe noble gases in Gamma-Air mrad.

M = The gamma air dose factor for radioactive noble gas nuclide (1) in mrad-m /uCi-sec (Appendix C).

(5) = The highest calculated annual average relative dispersion factor for an area at or beyond the unrestricted area boundary for all sectors (sec/m ) (Appendix F).

Q = The number of uCi of nuclide (1) released during the period of interest.

D = e a air dose from ranoactM nome gases h mrai Beta-Air Ng = The beta air dose factor for radioactive noble gas nuclide (i) in mrad-m /uCi-sec (Appendix C), Table C-1.

b. Total Body and Skin Dose (Reference 1.2.13)

This section provides the methodology to calculate the total body and skin doses to the likely most-exposed MEMBER OF THE PUBLIC from all noble gas radionuclides identified in the gaseous effluents.

The method is based on the methodology suggested in Section C.2 and Appendix B of RG 1.109, Revision 1, October, 1977. The dose transfer factors required for the calculations are listed in Appendix C of this document and are obtained from Table B-1 of RG 1.109, Revision 1, October, 1977.

RSP-0008 REV. 3 PAGE 28 0F 110 1

e ...

, .ct The following equations provide for total' body and skin dose calculations based on actual noble gas releases during a specific time interval ~for radioactive gaseous release sources at the site boundary:

i '; n

'U Tctal' Body F .

( i)I )(01) 3.4.1.2b.-1 i=1 l

n __
l. *'

' "1)(UO) i)

D * ' '

Skin F i

.i=1 Where:

l l -D = e tal body dose from radioactive nome gases in Total. Body mrem.

Kg= The total whole body dcse factor due to gamma emmissions from noble gas radionuclides (i) (mrem /sec per uCi/m ) from Appendix C, Table C-1.

= The highest calculated annual average relative (X[Q) dispersion factor for an area at or beyond the unrestricted area boundary for all sectors (sec/m ) (Appendix F).

NOTE For purposes of calculating DTotal Body ""

D Skin r the Semiannual Radioactive Effluent Release Report, X/Q values based on meteorological data for the actual considered time period should be used rather than historical (X/6) values. If at all possible, these real time X/Q values should also be used when determining 40CFR190 compliance when Technical Specification limits have been exceeded by a factor of two (2.0).

Qf = The number of uCi of noble ga nuclide (i) released during the period of interest.

.D = The skin dose from radioactive noble gases in mrem.

Skin Mg = The gamma air dose factor due to gamma emissions from each noble gas radionuclides (i) released.

RSP-0008 REV. 3 PAGE 29 0F 110

ll , .

L = The skin dose factor due to beta emissions from noble gas radionuclides (1) (mrem /sec per uCi/m ) from Appendix C, Table C-1.

l 1.1 = Average ratio of tissue to air energy absorption coefficients.

S = 0.7, attenuation factor accounting for shielding provided by F

residential structures for maximally exposed individual.

3.4.1.3 Simplified Approach A single effective gamma air dose factor (M,gf) and beta air dose factor (N,ff) have been derived, which are representative of the radionuclides abundances and corresponding dose contributions that are projected in the RBS USAR. (See Appendix C fo- a detailed explanation l

and evaluation of M ff and N,ff). The values of M,ff and N,ff which have been der ced from the projected radioactive noble gas effluents are:

Radwaste Building Exhaust Duct:

-5 M

df

= 8.07 x 10 mrad-m /uCi-sec

~

N,ff = 7.40 x 10 mrad-m /uCi-sec Main Plant Exhaust Duct and Fuel Building Exhaust Duct:

~

3 M,ff = 5.96 x 10 mrad-m /uci-sec

~

N,ff = 8.99 x 10 mrad-m /uCi-sec NOTE The M,ff and N,ff factors should only be used if the actual effluent is similar to that described in Appendix D or similar to the noble gas isotopic mixture described in the previous Semiannual Effluent Report. (Reference 1.2.19)

RSP-0008 REV. 3 PAGE 30 0F 110

. .  :.e 1 .

=.. ..

The effective gamma air dose factor may be used in conjunction with the. total' noble gas release to' simplify'the dose evaluation and to verify that the cumulative gamma and beta air dose is within the er,uivalence of the limits of Technical Specification 3.11.7.2. To compensate for any unexpected variability.in the radionuclides l.

distribution, a conservatism factor of.0.8 is introduced into the

. calculation. The simplified equation is:

l i

(M,ff) (X/Q) n D

  • 3.4.1.3-1 Gamma-Air - Oi 0.8 i=1 (N,ff) (X[Q). n D

Beta-Air

  • 0.1 3.4.1.3-2 0.8 i=1 3.4.2 Determining the Radiofodine and 8 Day Particulate Dose to Any Organ from Cumulative Releases 3.4.2.1 Requirements

' Technical Specification 3.11.2.3 states that the dose to a Member of the Public from iodine-131, iodine-133, tritium, and all radionuclides in' particulate form with half-lives greater than 8 days in gaseous effluents released, from each reactor unit, to areas at and beyond-the site boundary shall be limited to the fc,11owing:

a. During any calendar quarter: less than or equal to 7.5 mrem to any organ; and
b. During any calendar year: less than or equal to 15 mrem to any organ.

RSP-0008 REV. 3 PAGE 31 0F 110

o . )

3.4.2.2 Methodology The following calculational method is provided for determining the

~

critical organ _ dose due to releases of radiciodines' (I131, I133),

trituim and particulate. It is based on Section 5.3.1 of NUREG-0133, Rev. 1, November 1978. The equation can be used for any age group provided that the appropriate dose factors are used and the total dose reflects only those pathways that are applicable to the age group.

The symbol (X/Q)D represents a depleted (X/Q) which is different from the noble gas (X/Q) in that (X/Q)D takes into'accout the loss of radioiodines (I-131, I-133), 8 day particulate, and tritium from the plume as the semi-infinite cloud travels over a given distance. The dispersion factor (D/Q) represents the rate of fallout from the cloud that affects a square meter of ground at various distances from the site. The total dose to an organ can then be determined by summing the pathways that apply to the receptor in the sector. The equations are:

Inhalation Pathway:

n D

I&8DPt "(* * ) ( it) ( 0)D ( i) '

~

i=1 Ground Plane Pathway:

n D

I&8DPt =(. x 10 )I (Rit) ( !O) ( i) * '

~

i=1 Contaminated Forage / Cow / Milk Pathway:

n D

I&8DPt " ( *1

  • it) ( !O) ( i} ' ' '

~

i=1 Total Dose:

D Total = I D I68DPt

~

z=1 IMPORTANT k' hen calculating organ doses due to the release of C-14 and/or tritium (H-3), X/Q values (not D/Q values) must be used for cow milk, goat milk, meat and vegetation pathway calculations.

l l RSP-0008 REV. 3 PAGE 32 0F 110

!l l

L F

where:

D I68DPt = Dose in mrem to the organ (t) of a specified age group from radioiodines (I-131, I-133), tritium and 8 day particulate due to a particular pathway.

.z = All the applicable pathways for the age group of interest.

I D

Total = Total dose in mrem.to the organ (t) of a specified age group from gaseous radiciodine (I-131, I-133), tritium and particulate effluents, summed over all applicable pathways (z).

-8 =

3.17 x 10 The inverse of the number of seconds per year (years /sec).

R it = 'The dose factor for nuclide (i) for pathway (z) to organ (t) of the specified age group. The units are either:

3 mrem-m for pathways using (X/Q)D yr-uCi or 2

mrem-m -sec for pathways using (D/Q) yr-uCi (See Appendix I.)

(X/Q)

D = The depleted (X/Q) value for a specific location where 3

the receptor is located (sec/m ). (See Appendix F.)

Note: No credit is taken for depletion and decay. (X/Q)D = (X/Q)

(D[Q) = The deposition value for a specific location where the receptor is located (m" ). (See Appendix F.)

RSP-0008 REV. 3 PAGE 33 0F 110 r usa

L NOTE For purpose of calculating D I&8DPt f r the Semiannual Radioactive Effluent Release Report, X/Q and D/Q values bcsed on meteorological D

data for the actual considered time period should be used rather than historical (X7Q)D and (D/Q) values. If at all possible, real time X/QD and D/Q values should also be used when determining 40CFR190 compliance when Technical Specification limits have been exceeded by a factor of two (2.0).

Q . .

i = The number of ticrocuries of nuclide (i) released (or projected) durit.g the dose calculation exposure period.

3.4.2.3 Limited Analysis Approat.h The contaminated forage / cow / milk pa,hway has been identified in Section 5.4 of the RBS ER-OLS as th. most limiting, with the infant thyroid being the most critical age group and organ. It is possible

~

to demonstrate compliance with the c:ose limit of Technical specification 3.11.2.3 for radioiodines (I-131, I-133), tritium and particulate by only evaluating the infant's thyroid dose due to the release of radiciodines via the contaminated forage / cow / milk pathway.

The calculational method to be used includes a conservatism factor of 0.8 which assures that the calculated dose is always greater than or equal to the actual dose despite possible atypical distributions of radionuclides in the gaseous effluent. The simplified dose equation reduces to:

D= (3.17 x 10-8) (D/Q) I (Rg ) (Qg ) 3.4.2.3-1 0.8 radioiodines 3.4.2.4 Approach Selection Criteria The limited analysis may be used in all cases to demonstrate compliance.with the dose limit of Technical Specification 3.11.2.3 (7.5 mrem /qtr) for radiciodines (I-131, I-133), tritium and particulate.

~However, for the dose assessment included in the Semi-annual Radioactive Effluent Release Reporr., doses will be evaluated for all designated age groups and organs via all designated pathways from radiciodines (I-131, I-133), tritium and particulate measured in the gaseous effluents according to sampling and analyses required by the Technical Specifications.

RSP-0008 REV. 3 PAGE 34 0F 110 ,

4

'I. .

l , .

l 3.4.2.5 Annual Dose Due to Radioiodines (I-131, I-133), tritium, and

!' 8-Day Particulate Technical Specification 3.11.2.3 required the annual dose be calculated at least once per 31 days for all pathways. The following formulae are used to calculate the annual dose for radioiodines, (I-131, I-133), tritima and 8- day particulate:

Inhalation Pathways:

n D

I&8DPt

= ( .1 x 10 ) I (Rit) ( )D (01) 3.4.2.5-1 i=1 Ground Plane Pathway:

D I&8DPt

= (3.1 x 10 ) (Rgt) ( ) (Qg ) 3.4.2.5-2 i=1 Contaminated Forage / Cow / Milk Pathway:

D I&8DPt

" (' * ) ( it} ( ) (Oi ) * * *

~

i=1 Contaminated Forage / Goat / Milk Pathway:

D I&8DPt

= (. x 0 ) (Rgt) ( ) (Qg ) 3.02 M i=1 Contaminated Forage / Meats:

n

~

D I&8DPt

= (3.17 x 10 ) E-(Rit) I ) (01 ) 3.4.2.5-5 i=1 RSP-0008 REV. 3 PAGE 35 0F 110

. O Fresh Fruits and Vegetables:

n D ygggp = (3.17 x 10~0) I (Rgt) ( h) (Qg ) 3.4.2.5-6 i=1

. Total Dose:

n D = I' D I&8DPt 3.4.2.5-7 z=1 where:

D I&8DPt = Annual dose to the organ (t )

for the age group of interest from radiciodines (I-131, I-133), tritium and 8-day particulate .

via the pathway of interest in mrem /yr.

For radioiodines (I-131, I-133),'the entire source term was"used to calculate these-values.

z = All the applicable pathways for the age group of interest.

Qg = .The number of uCi of nuclide (i) released during the year of interest.

Rg = The dose factor for nuclide (i) for organ (t),for the pathway specified

[ units vary with pathway]. For tritium, a site-specific absolute humidity (H) value of 12.9 gm/m was used for calculation.

(See Appendix I.)

(D/Q) = A long-term relative deposition value for elevated and

~

ground level releases. A factor with units of m which describes-the deposition of particulate matter from a plume at a point downrange from the source.

Actual meteorological data and sector wind frequency distribution will be used to determine annual average D/Q for the year of interest.

RSP-0008 REV. 3 PAGE 36 0F 110

l-1

.= A long-term depleted and 8-day decayed relative (X/Q)D concentration value for elevated an! ground level 3

release (sec/m ). It describes the physical dispersion characteristics of a semi-infinite cloud traveling-downwind. Since radiciodines (I-131, I-133), and particulate M tle out (fallout of the cloud) on the ground, the (X/Q)D represents what physically remains.

of the cloud at a given location downwind from the release E point. Actual mecsorological data and sector wind frequency distributions wil?. be used to determine annual average-(X/Q)D frte fear of interest. Total body and organ doses will be calculated for pathway and age group on an annual basis using.the above-described methodology.

IMPORTANT Who calculating organ doses due to the release of C 14 and/or tritium (H-3), (X/Q) values (not D/Q va.'ues) must be used for cow milk, goat milk, meat and vegetation pathway calculations.

NOTE For purposes of calculating DR I&8DPt #*

  • Semiannual Radioactive Effluent Release Report, X/QDand D/Q values based on meteorological data for the actual consid-ered time period should be used rather than historical (X[Q)D an ) va ues. If at all possible, real time X/Q and D D/Q values should also be used when determining 40CFR190 compliance when Technical Specifi-cation limits have been exceeded by a factor of two (2.0).

-8 = The inverse of the number of seconds per year (in 3.17 x 10 year /sec).

Meteorologic(1 data (X/Q, X/QD , D/Q) will be determined from actual meteorological data and sector wind frequency distributions for the year of interest. Release rates (uCi/ year) will be based on total activity released through elevated and ground level (total of all vent pathways) as reported in the Semi-annual Radioactive Effluent Release Report, i

l RSP-0008 REY. 3 PAGE 37 0F 110

3.5 Dose Projection - Determination of Need to Operate Ventilation Exhaust Treat-ent System 3.5.1 Requirement Technical Specification 3.11.2.5 requires that the ventilation exheust treatment system be used to reduce radioactive material in waste prior to discharge when the projected dose due to gaseous effluents (radiciodines (I-131, I-133), particulate T 1/2 > 8 days and H-3) would exceed 0.3 mrem to any organ in a 31 day period.

NOTE The ventilation exhaust treatment system does not reduce the noble gas concentration in plant effluents (See Definition 1.3.5).

3.5.2 Methodology The following calculation method is provided for determining the projected doses:

ID G =

  • 31 3.5.2-1 PD D

where:

G = Projected dose due to radioiodines (I-131, 1-133),

PD particulate with T > 8 days and H-3 during the 1/2 current 31 day period (mrem).

X = The number of days to date in the current quarter D

D = Cumulative total dose due to radiciodines (I-131, I-133), particulate with T 1/2 >

8 days and H-3 during the current quarter (mrem).

A dose projection would be based on the latest results of the monthly calculations of the dose due to radiciodines (I-131, I-133),

particulate witi T 1/2 > 8 days, and H-3 (Section 3.4.2.5). The value may need . 3 adju.-ud to account for any changes in operating conditions that could significantly alter the actual releases, such as failed fuel, or changes in ventilation flow rate.

l RSP-0008 REV. 3 PAGE 38 OF 110

1

l. .

I 4.0- RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM Table.4.1 contains the sample point description, sampling and ecliection frequency, analy=1:, and analysis frequency for various exposure pathways in the vicinity of RBS for the radiological monitoring program. Figures 1 and 5 indicate the locations of the various onsite and offsite sampling points and TLD locations.

This section describes only those elements of the radiological environmental monitoring program required by the RBS Technical Specifications, Additional exposure pathways, sample points, analyses, and/or frequencies are performed as described in ER-OLS Section 6.2.

Samples of groundwater are taken from onsite wells located to intercept any potential contamination of the Upland Terrace Aquifer so that any such contamination would be detected before migrating beyond RBS site boundaries.

RSP-0008 REV. 3 PAGE 39 0F 110

0 1

1 F

O, 0

4 E

G y :r ry A c eo et ec P n gf li .ti e d pvrip us iy mieso qi rl attot es ry tk scl po re aims Fl ae e foi dn a cw ta atg ay c .

fo nA l s l en;ml

_ a ai ubismr weae r os .c eo cy1isoggt T

p y

rl3tsl n r aa1 rol ara hn arohou Ca1P gf c f q o6 9 3 M

A dj.

O R

G y Og4

+ /o e

TV V E

R P

rn bre >

e. Ov R

eodv y li ee G c ptrh N n mcic I

R de nu aeui.

sl qh t

,aG, O aa l ewn T

gr e ror ,eu yV 8 I

ic 0 N nF a sgq 0 O r ane 0 1

M ilpon se utrdf ir P

. L mi ot oa S 4 A at ui oe R T Sc E

L B

N E

M l

l e inryl ro thktm nt es l

A N o oieus I O C Cwwdi R

I V n. n .

E N oW iN io. rl

)

L n g

tW tt eo a aS tr A on s n n t m t nt C

I io ti n i o n i o Sk snW bin en Co G pt i i t d9 u . C O ic t a at . n S1 m) r(

L re a r taw eO 6kn e O

I cr si c

o T

S N B dN  ;

s i)8i o wW oS D eD l dM da r1 c ..t P A D n nom e# ns5a m R ,d n 5 em eRk v au c ek Bk B in rB;o g

. ta m s8 Re I(eL n0 n o r7 rs d a2

- i. r e ee0 rr ..l l y oe f v1 vc aa t yi t lr:

Pc i i c; eG Swvi a r n s R; RA3 N f sn Pa leat e r e

  1. e Iiu c s

.Scm

.hte t l

ps p .t .i 2Unm .O mi m 1 n 1 rt I s S ao C aD a Ae Roa Pn QnrC Ln S S AC ANC AO AoF( Ai

- 1 y 3

- a - 1

_ we i-hl t1 t p r am ad Pa Pn S a

_ e e

_ rr ns

_ uo re

_ s/ ot

_ od ba pn rl

_ xa .

iu E Ac

_ 1

0 1

1 F

0 1

4

. E y

c ly r

e oO

$ G A

P n t

$QFI es r ui qs ey rl a

u q

'd 0 6$

Fa e n s OgA 0 (p '

dA n d o

- p/ h ar e

o a m $ %*>* 4 T

p y

G m

a p ddC h 3 V

  1. . rh -

E R

y l c e;v a

n e c)e M du nsi A nq eDr R ae cLt 8 G r sT e 0 O gF e(r 0 0

R n P i n n /.

ist mrny .

P l o S G pi ueel R N mt t mr loeye I

ac R Se mmot O l ril r T l espa I

o hoeu N C Tddq O

M t .

1 -

a n .s .

. L) o yy y.

4 A2T 6 r  ;

lww ws

- - ~ , 42 i A S1 IH , Hy E Ne n g 2F Le U6 7S w L Eg on n #W n n AA FU AH .

B Ma io i o .a .y LL W L E C NP n tL ta d AN ledn i. .

ti T O( pt i tE c cw g .E gn gLE R i c a oa . aN Jn Jh g ntN na E.n I re r p M tN o oc o o.m V cr S T 0 S tb ti lJm l7N l tk N si m N . y1 m m au. aH a k aFE ac eD o dE r W J3 i .k L O dN t dk D r I n

y8 e5 n euN led eo7 le m elr6 L ,dn f T em l lAN l loS; .k A  : A Bk iw eB o oO ot oo p ;

C ta ss T t H ;- 0 pd m p p 5 pc6 I

G O

in.

oe tn S no ei R r7 e.

v1 u

ULa Ar k r e; ba nk va u 5 uaE u bn d

bk9 b m6 ur J

1 b 6 um9 55 mt O i S P ie t5- t N to; tk L Pc n ea T R; G 'f Rr S6; S1 St 6.dn S 1 S d OI ea rc A r a 9) 6m 0a S6 4n D

A l t ps uo C sl a

I D

.t n

e oml

.E .d 1 r 7 yF 7

1 . .k y7 266

. ,6 .m.

0y 266

..a R mi 1 2t l 1 D66 aD e0 N Ae Acn Ba 8wW Cw. C6 05w S M4 I TC TJi T y 1H( TH1 T99 11H T99 y _ n ae o wl i hp t tm a aa i PS d a

er R ro u/ t sd c on pa e

r x i E D 2.

0 1

1 F

O x 2 E 4 Og E O C y 7 A P

c v n ,& C es ui b qs ey rl Og /g/T(r,I6 /g &

p /L F a dA n 9p / %g<

n ar 7~

e p

o y

T 3 V

E R

y c

n de M nu A aq R e 8 G gr O O nF O R i O

P l n -

po a P G mi S N at R I

Sc R e O l T l I

o N C O

M 1 . n

. L) n E e 7 oo 4 A3 S  ; tS sr t T

E Ne n 7S o.m rtk T

,U .1 7S

, aU g

i o1 o

e l e A.t 6 L E g on FU ec Fd FU n ng; oc W I*c.

A NP B

T Ma O(

io ti pt gn d

tJ0 1 Wn n

ef g a n orw

. j W gn d

to, a e mr i n) liu l so pn erE a .

R ic na . Co;4 n7 . y oH na erb I sy ntS re o loFE o . l am oa onS IV cr lTE rN6 WS rNS lTE oFo trB he N si aFN e 9 a U aIS p ac p m

.E l

E D

eD W wm iam W ke s erk le .k m okd letm Dkd le .k m enD eRt l o l.

,d P n ck n na lRn e 5 A n ot' oJ ot oTr o a tN C ta pc3 l2a p 3 n e 6. a pc6 h a pfr 5 e r I

G in.

oe b

ur J

1

,8 v86 bo1 w04 o ,5 b J

1 pne eon. bu -

lG t4 s6 O a6 u R 9 . tir l h ,E uCr L Pc to; tS; c4 to; et S t a r9ii r .yys. .E i

O n S 1 G S 1 M5 S S 1 T a1 Sl e. F .i I

ea S6 m6 9 yE S6 r6m anE ye D l t ww .k w a

.k r(S wr A

R ps .m. .HH y

. ..Hm .m. .M .t S .I t

e p

mi 1ky 2 2y k 1ky 2 y5 I n7 2 aD E w EAA 16. w F F wA G w Cow. Nerm HAa S'_ I1H ILL T1 H THL6 T2H TtH7 TCWk TLp y

a we hl t p am Pa S

e rr uo s/

od pn xa E

0 1

1 f

O 3

4 E

y c . C 7 Q G A

P n

n e , h.

t us {s qi es ry fl gno -(q's }h( ( egc&

p a 2

  1. d dn nA )0 e<

a 7 9 eo f } -

E G p i n?

y T 3 3g; i7 .

usg V E

R y

c n

e M du A nq R aer 8 G O O gF O R n O P in -

l o P G pi

  • S t mt R i ac R Se O l i l s i

o )

N C

  • 5 'n O -

. 6 g i M 8y 9 9 ndt 1 7w R lona .

L) r 1H O n .R aP W W. oy y a 4 A4 E.

T Ne nn

, r w e H e'S il vl

. 0 1 Ad; LL nd AS LS eHl wf ena ar ny S owlW Ha L E g oo vn Rim #(ea u ae e rm B Ma ii ioA gr mk Bo .m loAC loin ps( loLn Atk A NP tt R L ed R tk pL T O( pc 3( ne8 l ar c (l i p(e9 R ie r2 op ooes J6 y a . yug C rr IV ci a#d e a l

ap a5 pR v s ie t; itdrW atS ton iLi yd O tas N sD neo  ; ynRc a5 l on l s . i oi; E e tR ere to c iRemCk tooS irsW Dd lea .

eor iifA 1

le4 tun i Rog l

nn L n GnS r u l e

r t nii A .a o o tMt i ato r od os0 t

Ecm uol s C t pnim c ttSe pn dii d k il s n otk emu uS v a nto1 n5R ttI o ie.

I G bia g r mi b oan o1 R5 sa r O oc utt5 r0t Ui R u4 cti; c4 rtfc L Pn taS a0s St0 t1 eSl g e s9 i So O a St 1 L1 Ge2n. S4 S l n S .a F R I

D let s SI e

.k w oW o.iS lIi s

ys; wn) l NR A pi . d'e)I; .d a .P)tS .s

. l

.efs .H a e l

R mD 1 nw5 2at I 5a 2y t woo 2 kk I.e)f w5l a Jeo6 Jon Kn6tm kw Lo r lAri Mo6u S TBP9 TRi T o9Sk IH TPSc TLAD I P9C y

a we hl t p am Pa S

e rr eo e

s/

od pn xa E

0 1

1 r

O 4

4 E

G y A P

c n

e us qi es A ry fl a

,s% 1 DQ dn nA QJ'i a

a' AA %dp.%)'*gi 6# .

f s

eo p (

y T

v' h 2)'O,s 3

yJ d V E

'7 1%'

$ R y

c y ,Qv h7 Q

n ,'d'3, e '

M du A nq R aer 8 G 0 O gF 0 R n 0 P in -

l o . P G pi S N mt R I

ac R Se O l

.T l I

o N C O s M

s 1 n. R A e e L) oW mR eL c c,.

4. A5 A . iN k l( c rsW T , L  ; d ty tW f o rA tetN E Ne nn f ) n sw a
5. ut l

, pd o eme L Eg oo go0g g r a eI t tm .W. a h emem B Ma ii n 1 n nae hw Sk 1GetN noMt r

rork A NP tt loS dd i

oL v3 t A eSW gR tCt 1 O( pc l(i1 rL d9 tl r mo s S9 R

irr e amnn kaa a R#

d iwa(e n

e0 orSok uatrm isnkN o h

h t y6 IV ci e l eans eng B bt yi1 n trt N

E sD e

Dd l31 o 8y pt9r l oee oRet p wa lori ped n

r1

anas3 e# eCir7 ect tt rati etutW
o. iou; wNae el L n u r ntG tn. v ni pSoaN e.Bl A

C

,a yo.e yoe yeaW in losuk , o bt l t ocnv i

t n l tbsf itibnW. o tml Re pit se o

rl aSm i ay l ta ,i ykm d pl k pJ a s I . . tl G

O i e oc i ,HnS wkW it)tk m i ll iar rr bnnul aa uiooi Uw)n4 e ,d Utic ci L Pn t1 aW tS5a tcr0 eG tl v So5e Sarn O a U8Ab U 6t9 Uie. N Sl ens GP6B1 G ea I

D let s 9L tk m

l9S 0 I

rT6 e Il ri g

9 r; smr t t tec tAF A pi . ..s .e.d .ck; .i .fstn .n.ed .it R mD 2yte2 1 wyn; 2en) l s 2oesa 1 oyva 2 gd .

S a Mwcw Nowe4 Nl a0 Pn P rer Ql wio Qint IHJ(4 IPHB1 I eb1 TO IMtwF T aHRR Tl aS y

a we hl t p am Pa S

e rr uo s/

od pn ma I

0 1

1 F

O 5

4 E

G A

y P c

n e

us qi es ry Fl a f%Q dn nA d

a f 4p/ P

. hc eo T

p y

y4N h bc< 3 96 V

gf.h E R

9 y

c n

g d' e

M du A nq R aer 8 G 0 O gF 0 R n 0 P in -

l o P

- e S G pi

_ N mt R I ac

_ R Se O

_ l T l . .

I o ) )

)

N C l l O o a a , l M r n1 i ) a 1  ; f ,t .

ia6W n.c efl oli

. L) 3 tom rn )

.N ote lsoa tac 4 A6 # a k feo rl iSp i te T ,

1 gowC eo ic ym t S aec ei p

- E Ne nn e 2 8 n o( t r ll wk an( Fge t pS L [ g oo nt T m S oNT nt ael a ti dp as(

B Ma ii oa Wk; N l N en tF 4 s W reS go A NP tt iG 1 O amrem Co s S b1N a ( l E lN T O( pc t g86 I C otU; u6 et t R ie rr at n T e0tk r( cs ee .t e

S m naWS ae I

ta lo1 wy A l 0a e )k tm V ci S T o2W8 p

wW tWte s . en leak N sD d atH S 1 oS n cr is8 l gm t E e da u tn P eeJt cu oik oS3 Dd no eoS L euo: m Pt S nB$ ps p L n eR lbU A noid ek ir a( 9 a2 A ,a B oa I obtl g dsad r ; yy. yn1 C t s p d C haae n0 noen F . e tm9 ta n . rs dn E p ti a2 ipna yl ie ii; eeW. baa I

- G O

i e oc vcN uo P

S e1Sf l6 e r; I hp eo)i n .

)

.wl tHi S

ld; ias v t cd tus l sn iio L

O Pn i cN euRA m tr2 S

lW F

/

L O

Te.oa ytW nk ar Pa c

B(ldl ara . s UAa Uok o L c

.htei I

D R

A l s pi hk mO I r8 2atW N C

.e..

v R

T wl

.Hir ma C s

.O t r cif c p

Susdp S e 2Un

. S.ci

.e rR a Svw Ss

.tJ a

a Ro. RrcN O ASae Ln Qh0nSTiQnr Lie Can S 1NO T gJN C TUf n l IC1 4a( T oF TRN TEi

_ y

_ a we hl t p am Pa S

e rr eo e

s/

od pn x a_

E

['

0 1

1 f

O 6

s 4 i

s E ly: G e A y :at d P c eni. n n tass as e i oi e st s scps cs

. gi oimy iy

- es ppol pl ry moca oa fl ot n tn .

a coya oay s

C dn sl ho9 >

l nA yi r m i mr a eu ue Qc l

f hati ait eo p

t mrt mtr nmai mi y oaur a T M gQ t t

'O/Yh6 s 3

/o #m ..

V d d 9 E R

e e f t t y

Ssk Gu.

i i c s s n o o e p s p s.

R M

A du nq aer mdd ono cai mdd ono cai b. oAY AQ 8 G r r a 0 O gf sye sye r 0 R n bl p bl p g 0 P i n ah ah -

l o rty rty ly P G pi gnl gnl .

S N mt or yme or r R I

ac lymet e R Se t t O l krr lrrr r i l eea a t ea a i

o . evu ovu u N

O C )

l Woq , HOq Q M a g r 1 ,i t n t a . ,

. I,) .c ut i u e nd .

t 4 A7 de on s so n wa r , rn T , m vp ba bt oo et ea E Ne nn k elS al ,o an, dR fn fl L E g oo r cB( pl r al w ia ip B Ma r l c rll os ul a A

I NP O(

ii tt pc n e7 t1 ivhE rtS eea vhfy v epa f

l s be A qp tqm Ao R ie e; erS ittr imt c m r rr Cy So R ur Rou tc eo ef IV N

ci sD ea r Nm U ,k

) moe f if ro AA cr c 1 io af at E e ch S ( pre p e r r . rn Dd c G g0 pf g0 pmg .e rte re .

L n iva r1 iar ev enN eiW A

C t

,a rZ .

e )

fi n4 R[ isma od; T sah . srh sea ni iR T eN i

TdS a

n I

G i e, Sr ia l

fig l e A iecy itc W srsw sss .

L g

R ddm drm ng

[ na O oc U i ouu stiH sni1 en go l ar0 an0 L Pn Sdc oBo E isd iwdI A l g7 l w7 O a Gne R R C Mp A Mo i rl W pp4 po4 I

et up e A udL ddm aa D Ut a Ud D l s

.oS cn f N t t

.mel r h i

A R

pi mD Sm p( .io R .mur e ce tqp U l u l u Srt U Ukqa Dk sn O .l o .l o a GoE Hra S W ie W i a ii R Ueb Deb S T cS TOB S4I n S4l p Dl G Wwa Wwa y

a we hl t p am e Pa n S r o

mr b uo r s/ e od t pn a wa W

[

3

0 1

1 F

O 7

4 E

G y A e P c l n b e i us c- cd qi i pmi ie es p ry oe on Fl a

t s o , to, o

dn ssy sss nA iil iin a sl so r aya ayi eo ml u ml t p man mar y ann ano Gap T Gaa 3 ly V.

E l

R a

u y n c n n a e i M du m A nq b. ne R ae a r

es 8 G r h 0 O

R gF n

g wro 0 0

P in l y -

l o a l e . P G pi u ll S N mt n ab R I

ac n na R Se a ol O l i si T l m aa .

I o e ev e N C S Sa g O r M r a 1 t a h

. L) u e c to A8 o n f s

f T . bt ai E Ne nn an, or ed or L E g oo aI otr- ot t B Ma ii rll h/nat h/nmn f-I NP O(

R -

tt ie pc epa v

iRoum 't f

S E

T cda n cdaaa antma earal antel earrp \- 'f0 O@L rr A oep ot IV ci T ro R rypr rypsy E

N sD N e

Dd M E

if p e ipmg B

E T

ol mty ol ea lisb p

limnb ea od w 4OW Q .

L n I ar R liyud li yd e 9 0 /c ,i h A ,a D sea E pcl e pcl c &A C t E srh V mrl mc mrl mn I

G n,

ie S itc sss .

N aeaon smnre aeaoe.

smnri s o

I O

L oc Pn N E sni1 iwdt D eoi mofu eoi mofl e fg  %+/ Qh O Mo NA O nctsfl a I nctsnr

_ I D

et l s L

E ddmi ir aen O eeii aeia eei h

.ercac A pi R .mue H erc R mD O Dkqp S .rcet rcees do+Oc% '

a H E ia I Uhepo Dhepri S S S41 p F Ftrsn Itrsad

- o

- y

_ a we

_ hl

_ tp

_ am Pa

_ S n e o rr i uo t s

_ s/

od e

_ pn g

- xa n F I

_ 4

0 1

1 F

O 8

. 4 ly E h G t A y dn n P c no i n am -

's e e us cs h sn qi ie T ee .

es ps ld ry o y" pr fl tl ma a oa . ag dn sn e s nA i a g e a r 3t f a1 a i eo m3 h os p m1 c tn y a- s o T G1 i p 3 d um

,r o .

t V g

n n.

a l e as tf n

E R

i pn l e y w o pl c o ez p n r h em e g t g ha M du n ts A na g fi R ae n ox f' e 8 G - r i i ol O O gF r em b O R n u c sa O P i n d ne ut P

l o eh ie -

G pi ut dg S N mt ly. n l ae R I ac ho fr rv R Se ts na my 0 l na ie 1 l oe n kf I

o Ms e .

d a N C e nt 5e O r ou l M _ r ys h yb a 1 ofn t e e 4 L) ae s bd nh 4 A9 hed a f . n it I , _ cl r e o ) eo h cy E Ne nn a afl r l tf L E g oo efgoaQa h .to ne io B Ma ii o u/ cmart ab w u

A NP tt pc r eynDg ao eryn t

sa n

1 O(

R ie rr ostrn diaali snsd el fro r aC idre lee bl i

IV ci ei n nd v p . osi( a a N sD lkoueem) et a l n E e p otl a2 el nW I n

\

ii Dd s( a mtmba lbeI ta L n ano ld pat a vd C

G A

I t

n.

ie

,a sereunke rftcull oe il oib wfssarma mti m aenk sge eP5 ni e

kn n ae ey ml z

e

\%

O O oc Tfe cg l ev 3 ae oa L Pn il e ei n e, tk cn ,

O I

let a E C .dbhteeaatsgrv Ortaaa et b a ea .0 D

A R

pi mD a

s U 2et eaha D Geerhrt O /rgage R 1 heeivfo QiAn t Cm l tl

. iso g

b lb l

e l

sbs.

al e e

a h0t 79-4['4L g gp-,Y S P Gtvnhain GsLA il wl ii a ml r /O

_h

~

i nw 7^ n lew pe aglisa l T

kg ml nat '<

y ap imn sm /

a we hl ms dao a unt cie s %'

a o p t p am em re-  %-

Pa ra pse S te es e sr kho rr pt l td uo s/

od us ew n immh og pn ho fri T d Ifh w a_

[  :

S

[ . .

l 1 2 O

N l

." . .. . j i

5.0 40CFR190 CONSIDERATIONS 5.1 Comb 11ance with 40CFR190 Compliance with 40CFR190 as prescribed by Technical Specification 3.11.4 is to be demonstrated only when one or more of Technical Specification (s) 3.11.1.2.a, 3.11.1.2.b, 3.11.2.2.a, 3.11.2.2.b, 3.-11.2.3a, and 3.11.2.3.b, including direct radiation are exceeded by a factor of 2. Once this occurs, GSU has 30 days to submit a report in accordance with Specification 3.11.4.

5.2 Calculations Evaluating Conformance with 40CFR190 To perform the calculations to evaluate conformance with 40CFR190, an effort is made to develop doses that are realistic by removing assumptions that lead to overestimates of dose to a Member of the Public (i.e. calculations for compliance with 10CFR50 Appendix I). To accomplish this, the following calculational rules are used:

5.2.1 Doses to Members of the Public via the liquid release pathway are considered to be < 1 mrem /yr (Ref NUREG-0543).

5.2.2 Doses to a member of the Public due to a milk pathway will be evaluated only as can be shown to exia. Otherwise, doses via this pathway will be estimated as < 1 mrem /yr.

5.2.3 Environmental sampling data which demonstrate that no pathway exists may be used to delete a pathway to man from a calculation.  ;

5.2.4 To sum numbers represented as "less than" (<) , use the value of the largest number in the group.

e.g., <5 + <1+ <1+ <3 = 5 5.2.5 When doses via direct radiation are added to doses via inhalation pathway, they will be calculated for the same distance in the same sector.

09N 5.2.6 The calculational locations for a Member of the Public will only be at residences or places of employment. $ qS

.5 . 2 . 7 If at all possible; X/Q, X/Q , and D/Q values based g59 D

meterological data for the actual considered time peri d g \ [ 497 should be used in determining compliance with 40CFR190.

Note: Additional assumptions may be used to provide situation n C[h i

specific parameters, provided they are documented along wi of,.g their concomitant bases.

RSP-0008 REV. 3 PAGE 49 0F 110

l 5.3 Calculations of Total Body Dose Estimates will be made for each of the following exposure pathways to

-the same location by age class. Only those age classes known to exist at a location are considered.

5.3.1 Direct Radiation (from storage tanks, N-16 sources, etc.)

The component of dose to a Member of the Public due to direct

. radiation will be determined by thermoluminescent dosimeters (TLDs).

5.3.2 Inhalation Dose The inhalation dose will be determined at the calculational locations for each age group according to the methods outlined in Sections 2.0 and 3.0 of this manual.

5.3.3 Ingestion Pathway (cow milk, goat milk, meat, vegetation)

The dose via the ingestion pathway will be calculated at the consumer locations for the consumers at risk. If no milk pathway exists in a sector, the dose via this pathway will be treated as < 1 mrem /yr.

5.3.4 Total Body Noble Gas Immersion Dose l This dose will be calculated in accordance with Section 3.4.1.2b. for i the maximally exposed MEMBER OF THE PUBLIC in the limiting sector. l 5.3.5 Ground Plane Deposition 5.3.6 Other Uranium Fuel Cycle Sources The dose from other fuel sources will be treated as < 1 mrem /yr.

5.4 Thyroid Dose ,

The cose to the thyroid will be calculated for the limiting sector CO the sum of: sq0 5.4.1 Direct Radiation (from storage tanks, N-16 soure t goA The component of dose to the thyroid due to direct radiat en will J5A3 ME determined by thermoluminescent dosimeters (TLDs).

\

F cp5 9)'h l 5.4.2 Inhalation Dose

@g6 The inhalation dose to the thyroid will be determined at the calculational locations for each age group according to the methods outlined in Sections 2.0 and 3.0 of this manual.

RSP-0008 REV. 3 PAGE 50 0F 110

)

5.4.3 Ingestion Pathway (cow milk, goat milk, meat, vegetation) l The dose to the thyroid via the ingestion pathway will be calculated at the consumer locations for the consumers at risk. If no milk pathway exists in a sector, the dose via this pathway will be treated as < 1 mrem /yr.

i 5.4.4 Noble Gas Immersion Dose It is assumed that an external total body dose from noble gases i irradiates internal body organs at the same numerical rate (Reference 1.2.11). This dose for the thyroid will therefore be equal to the dose calculated in Step 5.3.4 above.

5.4.5 Ground Plane Deposition 5.4.6 Other Uranium Fuel Cycle Sou ces The dose from other fuel cycle sources will be treated as < 1 mrem /yr.

5.5 Organ Dose (other than thyroid and skin)

The dose to any organ will be calculated for the limiting sector as the sum of:

5.5.1 Direct Radiation (from storage tanks, N-16 sources, etc.)

The component of dose to an organ due to direct radiation will be determined by thermoluminescent dosimeters (TLDs).

5.5.2 Inhalation Dose The inhalation dose to an organ will be determined at the calculational locations for each age group according to the methods outlined in Sections 2.0 and 3.0 of this manual. [,A 5.5.3 Ingestion Pathway (cow milk, goat milk, meat, vegetation) Q' l The dose to an organ via the ingestion pathway will be calcu N6h clM If no mil F way '

[ the consumer locations for the consumers at risk.

exists in a sector, the dose via this pathway will be treated mrem /yr.

s<1 gF

\g\,g'y .

.f,

\

5.5.4 Noble Gas Immersion Dose p a/'/

g'O It is assumed that an external total body dose from noble gases irradiates internal body organs at the same numerical rate (Reference 1.2.11). This dose for an organ will therefore be equal to the dose calculated in Step 5.3.4 above.

5.5.5 Ground Plane Deposition RSP-0008 REV. 3 PAGE 51 0F 110

5.5.6 Other Uranium Fuel Cycle Sources The dose from other fuel cycle sources will be treated as < 1 mrem /yr.

5.6 Spin Dose The dose to the skin will be calculated for the limiting sector as the sum of:

5.6.1 Direct Radiation (from storage tanks, N-16 sources, etc.)

The component of dose to the skin due to direct radiation will be determined by thermoluminescent dosimeters (TLDs).

5.6.2 Inhalation Dose The inhalation dose to the skin (only tritium is considered) will be determined at the calculational locations for each age group according to the methods outlined in Sections 2.0 and 3.0 of this manual. ,

5.6.3 Ingestion Pathway (cow milk, goat milk, meat, vegetation)

The dose to the skin via the ingestion pathway (only tritium and C-14 considered) will be calculated at the consumer locations for the consumers at risk. If no milk pathway exists in a sector, the dose via this pathway will be treated as < 1 mrem /yr.

5.6.4 Skin Noble Gas Immersion Dose This dose will be calculated in accordance with Section 3.4.1.2b for4/

the maximally exposed MEMBER OF THE PULLIC in the limiting sector (s)/ 1 5.6.5 Ground Plane Deposition 40 5.6.6 Other Urar.2um Fuel Cycle Sources c[ gS 6g\ +g ye This dose from other fuel cycle sources will be treated as < 1 cy mrem /yr. h

,A@gy

.fV 6.0 INTERLABORATORY COMPARISON STUDIES 6.1 Requirement Technical Specification 3.12.3 states " Analyses shall be performed on radioactive materials supplied as part of an Interlaboratory Comparison Program that has been approved by the Commission."

RSP-0008 KEV. 3 PAGE 52 0F 110

1 .

1 .

6.2 Program 6.2.1 Environmental Sample Analyses Comparison Program Environmental samples from the River Bend Station are to be analyzed by the River Bend Station Environmental Services Group or by a qualified contracting laboratory. These laboratories will participate in the U.S. Environmental Protection Agency's Environmental Radioactivity Laboratory Intercomparison Studies (Crosscheck) Program or an equivalent program. This participation will include all of the determinations (sample-radionuclides combinations) that are offered by EPA and that are also included in the licensee's environmental monitoring program. Results of the Interlaboratory Program will be included in the Annual Radiological Environmental Operating Report.

6.2.2 Effluent Release Analyses Program RBS Chemistry Group will perform sample analyses for gamma-emitting radionuclides in effluent releases. The radiochemistry laboratory will participate annually in a corporate interlaboratory comparison study or an equivalent study. The results of these studies will be provided to the NRC upon request.

6.2.3 Abnormal Results If the GSU laboratory or vendor laboratory results lie at greater than three (3) standard deviations from the " recognized value," an evaluation will be performed to identify any recommended remedial actions to reduce anomalous errors. Complete documentation on the evaluation will be available to RBS Environmental Services Group and will be provided to the NRC upon request.

A X,elNf tP

  1. % \

cf* @*

\8 ~Q :,_a

/ $/

,y hf cf RSP-0008 REV. 3 PAGE 53 0F 110

a . , ,

APPENDIX A LIQUID MPC VALUES I

zA sq 0' \

ps9 e4@ T

\D 499*

t S' '

't P . 8.r,.}$ev

_S L

RSP-000s REV. 3 ppgg 3z 97 1l0

]

MAXIMUM PERMISSIBLE CONCEN~rRATIONS IN WATER IN UNRESTRICTED AREAS MPC MPC MPC Nuclide* (uCi/ml) Nuclide* (uci/ml) ,Nuclide* (uCi/ml)

H-3 3 E-3 Y-90 2 E-5 Te-129 8 E-4 Na-24 3 E-5 Y-91 3 E-3 Te-131m 4 E-5 P-32 2 E-5 Y-91 3 E-5 Te-131 None Cr-51 2 E Y-92 6 E-5 Te-132 2 E-5 Mn-54 1 E-4 Y-93 3 E-5 I-130 3 E-6 Mn-56 1 E-4 Zr-95 6 E-5 I-131 3 E-7 Fe-55 8 E-4 Zr-97 2 E-5 I-132 8 E-6 Fe-59 5 E-5 Nb-95 1 E-4 I-133 1 E-6 Co-57 4 E-4 Nb-97 9 E-4 I-134 2 E-5 Co-58 9 E-5 Mo-99 4 E-5 I-135 4 E-6 Co-60 3 E-5 Tc-99m 3 E-3 Cs-134 9 E-6 Ni-65 1 E-4 Tc-101 None Cs-136 6 E-5 Cu-64 2 E-4 .Ru-103 8 E-5 Cs-137 2 E-5

'Zn-65 1 E-4 Ru-105 1 E-4 Cs-138 None Zn-69 2 E-3 Ru-106 1 E-5 Ba-139 None Br-82 4 E-5 Ag-110m 3 E-5 Ba-140 2 E-5 Br-83 3 E-6 Sn-113 8 E-5 Ba-141 None Br-84: None** In-113m 1 E-3 Ba-142 None Br-85 None Sb-122 3 E-5 La-140 2 E-5 Rb-86 2 E-5 Sb-124 2 E-5 La-142- None Rb-88 None Sb-125 1 E-4 Ce-141 9 E-5 Rb-89 None Te-125m 1 E-4 Ce-143 4 E-5 Sr-89 3 E-6 Te-127m 5 E-5 Ce-144 1 E-5 Sr-90 3 E-7 Te-127 2 E-4 Pr-144 None Sr-91 5 E-5 Te-129m 2 E-5 W-187 6 E-5 Sr-92 6 E-5 Np-239 1 E-4

  • If a nuclide is not. listed, refer to 10CFR20, Appendix B and use the most conservative insoluble / soluble MPC where they are given in Table II, Column.2.
    • None (as per 10CFR20, Appendix B) "No MPC limit for any single radionuclides not listed above with decay mode other than alph emissionorspontaneousfissionandwithradioactivehalf-ljv gOcf4 less than 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />." -

ik

&#

  • g.)f
  1. p*f . ?

e$

i RSP-0008 REV. 3 PAGE 55 0F 110 1

- - _ = _ _ _ _ _ _ _ _ __ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ ___ __

APPENDIX B LIQUID ENVIRONMENTAL DOSE TRANSFER FACTORS

^i t C

4#s

\0 9ephe, A)

ND

  1. gp. ,,,

9% -wy

,g',

grJ7 '

4D RSP-0008 REV. 3 PAGE 56 0F 110

4 -

TABLE B-1 LIQUID EFFLUENT DOSE PARAMETERS (Page 1)

A g

, mrem /hr per uCi/ml Radionuclides Total Body Critical Organ Na-24 6.13E02 6.13E02 P-32 1.87E06 4.84E07 Cr-51 4.31 1.08E03 Mn-54 4.56E04 7.32E05 Mn-56 1.07E03 1.92E05 Fe-55 9.14E02 5.67E03 Fe-59 8.07E03 7.02E04  ;

Co-58 4.02E02 3.64E03 Co-60 1.14E03 9.68E03 Ni-63 1.29E03 3.85E04 Ni-65 9.28 5.16E02 Cu-64 1.36E01 2.47E03 Zn-65 7.30E04 1.61E05 Zn-69 1.40E01 2.07E02 Sr-89 1.20E03 4.19E04 Sr-90 2.50E05 1.03E06 Sr-91 3.01E01 3.68E03 Sr-92 1.30E01 5.80E03 Y-91 2.37 4.89E04 Y-92 1.56E-02 9.32E03 Y-93 4.66E-02 5.35E04 Zr-95 7.74E-02 3.62E02 Zr-97 1.82E-03 1.23E03 Nb-95 1.34E02 1.51E06 Mo-99 6.84 2.96E02 Tc-99m 3.45E-01 1.60E01 Tc-101 1.39E-01 2.55E-01 Ru-103 1.55E01 4.21E03 Ru-105 1.19 1.84E03 Ru-106 6.78E01 3.47E04 Ag-110M 1.21E01 8.35E03 '

j gi Te-129M 6.08E03 2.57E05 '

V Te-131M 3.13E03 3.73E0 \

Te-132 6.80E03 3.42 sjd) \

Ba-139 3.51E-01 21 gt g g% \

Ba-140 1.64E02 Cftb3 g cL Ba-141 1.96E-01 5. 2 g9L f N[p-}

Ba-142 1.66E-01 /

2. X La-142 9.13E-03 2.68 02 pp *gg6(p Ce-141 4.11E-01 1.39E ' , tJA Ce-143 7.73E-02 2.61E0 ep,*9 Ce-144 1.50E01 9.44E04 i

RSP-0008 REV. 3 PAGE $7 0F 110 I

.' 4 -

l l

l TABLE B-1 l

LIQUID EFFLUENT DOSE PARAMETERS (Page 2)

Radionuclides Total Body Critical Organ Pr-143 2.87E-01 2.54E04 Nd-147 2.74-01 2.20E04 W-187 8.66E01 8.12E04 Np-239 1.70E-02 6.22E03 Br-83 4.80E01 6.91E01 Br-84 6.22E01 6.22E01 I-131 1.57E02 8.98E04 I-132 8.75 8.75E02 I-133 3.49E01 1.68E04 I-134 '4.74 2.30E02 I-135 1.97E01 3.52E03 Rb-89 1.51E02 2.15E02 Cs-134 6.49E05 7.94E05 Cs-136 9.93E04 1.38E05 Cs-137 3.83E05 5.85E05 Cs-138 2.90E02 5.85E02 H-3 2.80E-01 2.88E-01 O -)

yV N% e y% j'$"

/.OY,.D & G,ch d

\ >' )],/j N gf RSP-0008 REV. 3 PAGE 58 0F 110

l . '.

TABLE B-2 CALCULATIONAL ASSUMPTIONS FOR A h

A it

  • *'* ( "! + F i+ I i) Fg Uw = 730 kg/yr adult water consumption (Reg. Guide 1.109 Table E-5)

Dw = 24,800 dilution factor for potable water intake (RBS Environmental Report page 5.4-5)

U F = 21 kg/yr adult fish consumption (Reg. Guide 1.109 Table E-5)

BF i = bioaccumulation factor for nuclide i in fish (pC1/kg per pCi/t) RBS Environmental Report Table 5.4-3 (Table B-3) Reg. Guide 1.109 Table A-1 RBS ER-CPS Appendix N, " Stable Element Study" U

I = 5 kg/yr adult invertebrate consumption (Reg. Guide 1.109 Table E-5)

BI I = bioaccumulation factor for nuclide i in invertebrates (pCi/kg per pCi/t) Reg. Guide 1.109 Table A-1 DF i = dose conversion factor for nuclide i for adults in pre-selected organ t (mrem /pCi). Reg. Guide 1.109, Table E-11.

q'A \

4c 8IO

&# Y ,+

f f. , ,

,/

4*

slJl RSP-0008 REV. 3 PAGE $9 0F 110

I

!l .

APPENDIX C E L AIR DOSE TRANSFER FACTORS l 1 i

y 4 ,4 ' Dg o#q Ok 9 ,cf 98 J. $'

KD /

& #'/

V i

RSP-0008 REV. 3 pggg 59 97 339

l. ' . .

TABLE C-1  !

l DOSE TRANSFER FACTORS FOR EXPOSURE TO A SEMI-INFINITE CLOUD OF RADI0 ACTIVE NOBLE GASES D0SE TRANSFER FACT 0RS Gamma Beta Beta and Gamma K

g Lg (L+1.1M)g mrem mrem mrem Nuclide uCi sec/m3 uCi sec/m3 uCi sec/m3 Kr-83m 2.4E-9 ---

6.7E-7 Kr-85m 3.7E-5 4.6E-5 8.9E-5 Kr-85 5.1E-7 4.2E-5 4.3E-5 Kr-87 1.9E-4 3.1E-4 5.3E-4 Kr-88 4.7E-4 7.5E-5 6.0E-4 Kr-89 5.3E-4 3.2E-4 9.3E-4 Kr-90 4.9E-4 2.3E-4 8.0E-4 Xe-131m 2.9E-6 1.5E-5 2.0E-5 Xe-133m 8.0E-6 3.1E-5 4.2E-5 Xe-133 9.3E-6 9.7E-6 2.2E-5 Xe-135m 9.9E-5 2.3E-5 1.4E-4 Xe-135 5.7E-5 5.9E-5 1.3E-4 Xe-137 4.5E-5 3.9E-4 4.4E-4 Xe-138 2.8E-4 1.3E-4 4.5E-4 Ar-41 2.8E-4 8.5E-5 4.0E-4 AIR DOSE TRANSFER iACTORS Gamma Beta ;W M

i N

i s 'oA 7 ( ps mrad mrad / .-ce Nuclide uCi sec/m3 uCi sec/m3 ,ff(yl3f.g \

g Kr-83m Kr-85m 6.1E-7 3.9E-5 9.1E-6 6.2E-5

/ \b hI3 (h D fh \

, i' >

f Kr-85 5.4E-7 6.2E-5 pg9' N ,;< E /"

Kr-87 2.0E-4 3.3E-4 dFy3r//,e',,

Kr-88 4.8E-4 9.3E-5 Kr-89 5.5E-4 3.4E-4 -

Kr-90 5.2E-4 2.5E-4 iN*'f7,' ,' s' Xe-131m 4.9E-6 3.5E-5 Xe-133m 1.0E-5 4.7E-5 Xe-133 1.1E-5 3.3E-5 Xe-135m 1.1E-4 2.3E-5 Xe-135 6.1E-5 7.8E-5 Xe-137 4.8E-5 4.0E-4 Xe-138 2.9E-4 1.5E-4 Ar-41 2.9E-4 1.0E-4 Ref. Regulatory Guide 1.109, Revision 1, Table B-1.

RSP-0008 REV. 3 PAGE 61 Or 110

TABLE C-2 TECHNICAL BASES FOR EFFECTIVE DOSE FACTORS The evaluation of doses due to releases of radioactive material to the atmosphere can be simplified by the use of effective dose transfer factors instead of using dose factors which are radionuclides specific.

These effective factors, which are based on the typical radionuclides distribution in the releases, can be applied to the total radioactivity released to approximate the dose in the environment, i.e., instead of having to sum the isotcpic distribution multiplied by the isotope specific dose factor only a single multiplication (K,ff, (L + 1.1M),ff, M,ff, or N,ff times the total quantity of radioactive material released) would be needed. This approach provides a reasonable estimate of the actual dose while eliminating the need for a detailed calculational technique.

Use of effective dose factors should only be used if isotopic analyses are not available (i.e., prior to initial criticality), if the relative abundances of the noble gas isotopic mixture are similar to those listed in Appendix D or if the relative abundances of the noble gas isotopic mixture are similar to those listed in the previous Seminannual Radioactive Effluent Release Report. (Reference 1.2.19)

Determination of E fective Dose Factors The effective dose transfer factors should be based on past operating data. The radioactive effluent distribution for the past years can be used to derive single effective factors by the following equations:

eif i

'i 'A ~

where: \

K,ff = The effective total body dose factor due to ga a 05 #c@# d 'f .. &

emissions from all noble gases released. '/

K f

= The total body dose factor due to gamma emissions f \ m g , / ,. ,

each noble gas radionuclides "i" released.

f g

= The fractional abundance of noble gas radionuclides 1" of the total noble gas radionuclides.

RSP-0008 REV. 3 PAGE 62 0F 110

?- ,

1 l

. 1 l

1 TABLE C-2 TECHNICAL BASES FOR EFFECTIVE DOSE FACTORS (Continued) n (L + 1.1 M) ,ff =

igg + 1.1 Mf ) . ff C.2-2 l

i=1 where:

(L + 1.1. M)g f = The effective skin dose factor due to beta and gamma emissions from all noble gases released.

(Lg + 1.1 Mf ) = The skin dose factor due to beta and gamma emissions from each noble gas radionuclides "i" released.

n M,ff = I Mg . f g

C.2-3 i=1 where: oi

=

/?C M gf The effective air dose f actor due to gamma emissiony p' from all noble gases released. y gO?#

Mg = The air dose factor due to gamma emissions f m each ND p#

noble gas radionuclides "1" released. ,4>O "'

n 3.GF

=I gyC -4 N,ff Ng . f g

i=1 i

where N

gf

= The effective air dose factor due to beta emissions from all noble gases released.

Ng = The air dose factor due to beta emissions from each noble gas radionuclides "i".

To provide an additional degree of conservatism, a factor of 0.8 is introduced into the dose calculation process when the effective dose transfer factor is used. This added conservatism provides additional assurance that the evaluation of dose by the use of a single effective factor will not significantly under-estimate any actual dose in the environment.

Each year the dose factors should be determined and the average annual values be used.

RSP-0008 REV. 3 PAGE 63 0F 110

l

. .. j TABLE C-3

(

EFFECTIVE DOSE FACTORS FOR N0BLE GASES {

TOTAL BODY EFFECTIVE DOSE - K,ff Main Plant Radwaste Building Exhaust Duct

  • Exhaust Duct 3 3 Year K,fg (mrem-m /uCi-sec) K,ff (mrem-m /uCi-sec)

Projected ** 5.56E (-5)*** 8.05E (-5)

  • Main Plant exhaust duct contains contributions frem Fuel Building.
    • Projected values from RBS FSAR. When RI.S becomes operational, actual release rates reported in semi-annual effluent report should be used to generate effective dose factors.

~

      • 5.56E (-5) = 5.56 x 10 G

A '

4 N+o + yqs ,&

g.$

VV RSP-0008 REV. 3 PAGE 64 0F 110

l

,, ,. 1 TABLE C-4 EFFECTIVE DOSE FACTORS FOR NOBLE GASES SKIN EFFECTIVE DOSE (L + 1.1 M),ff Main Plant Radwaste Building Exhaust Duct

  • Exhaust Duct 3

Year (L+1.1M),ff (mrem-m /uCi-sec) (L+1.1M),ff (mrem-m /uCi-sec)

Projected ** 1.36E (-4) 1.59E (-4)

  • Main Plant exhaust duct contains contributions from Fuel Building.
    • Projected values from RBS FSAR. k' hen RBS becomes c ,.nrational, actual release rates reported in semi-annual effluent report should be used to generate effective dose factors.

(>

, Asp-S;&@e W+  ;.g, 9, p

< L:. ,/

~

/

,a .e N I , i

,s rp&

l l

l l

RSP-0008 REV. 3 PAGE 65 0F 110

l .

I TABLE C-5 1

EFFECTIVE DOSE FACTORS FOR NOBLE GASES AIR DOSES M,ff and N,ff.

l Main Plant Radwaste Building Exhaust Duct

  • Exhaust Duct (mrad-m /uCi-sec) (mrad-m /uCi-sec)

Gamma Air Beta Air Gamma Air Beta Air ear M,ff N,ff M,ff N,ff Projected ** 5.96E(-5) 8.99E(-5) 8.07E (-5) 7.40E (-5)

  • Main Plant exhaust duct contains contributions from Fuel Building.
    • Projected values from RBS FSAR. When RBS becomes operational, actual release rates reported in semi-annual effluent report should be used to generate effective dose factors.

C 4

f b*4 .)h e "#

p9k ' 4 x 9 p-c,[4 l

l RSP-000f, REV. 3 PAGE 66 0F 110

N-----__

k g, W

  • i APPENDIX D EXPECTED GASEOUS RADIONUCLIDES MIX 7URE i

b

    1. 3** / l 9

,g#

e i

I i

l RSP-0008 REV. 3 pAGE 67 0F 110 4

1 k

EXPECTED RELEASE OF RADI0 ACTIVE NOBLE GASES IN GASEOUS EFFLUENTS FROM RIVER BEND STATION USAR*

Containment Building ** Radwaste Building Nuclide C1/yr Fraction Ci/yr Fraction Kr-83m 4.7E (-2) 1.07E (-5) <1 ---

Kr-85m 218 0.050 <1 ---

Kr-85 210 0.048 <1 ---

Kr-87 14.2 0.003 <1 ---

Kr-88 47.2 0.011 <1 ---

Kr-89 118 0.027 29 .03 Xe-131m 21 0.005 <1 ---

Xe-133m 6.6E (-2) 1.504E (-5) <1 -

Xe-133 2,340 0.533 220 .19 Xe-135 693 0.158 280 .24 Xe-135m 140 0.032 530 .46 Xe-137 380 0.087 83 .07 Xe-138 208 0.047 2 1.75E (-3) 4,389. 1.0000 1,144 .99

    • Containment Building contains releases from Fuel Building d

4 ,9 ,\

f b e g4 ,/ p 4 p ,/

J/p'~

N&

I RSP-0008 REV. 3 PAGE 68 0F 110 I

_ _ _ _--- -- - _ )

4 e APPENDIX E X/Q AND D/Q VALUES FOR RESTRICTED AREA BOUNDARY I

b At fWW+#p i 1

sfP sf .

l l ,

i RSP-0008 REV. 3 PAGE 69 0F 110 A--____________= _

l 4

, l i Long Term Diffusion Estimates l

l E.1 Objective l

Annual average CHI /Q and D/Q estimates for continuous and intermittent releases were calculated for each of the sixteen 22.5-deg sectors at receptor locations used to determine the maximum individual and popu-lation dose receptors.

The methodology described in Regulatory Guide 1.111, Rev. 1 provided guidance for the aforementioned analysis. The resultant CHI /Q and D/Q values for the maximum individual dose receptors are displayed in Appendix F.

E.2 Calculation Techniques Nomenclature 2.032 =

(2/w)1/2 (2n/16)'

(distansionless) v = 3.14159..,

(dimensionless) exp = 2.71828. (dimensionless)

E T

= Entrainment coeff2cient (dimensionless)

Q = Terrain recir'.ulation factor T

(dioensionless) x = Downwind receptor distance (m) o = Vertical dispersion qd (plume spread) coefficient (m) [de[g

q. c,d-u 30

= 30-ft average wind speed [ 'O corresponding to a given hour of onsite reteoro-

\t?

g

@g, g'd' 4 l

{

logical data (m sec )\, ,~

,['

\,4" /,/

x s o u

150

= 150-ft average wind speed l corresponding to a given hour of onsite meteoro-logical data (m r,ec"1)

(CHI /Q) = Average concentration normalized by source strength (sec m' ) l I

RSP-0008 REV. 3 PAGE 70 0F 110 j 1

j J

(CHI /QD ) = Depleted CHI /Q (see m' )

Fg = Momentum flux (m sec )

h = Maximum adjacent b

building height (m) h = Release height (m) r

= Effective release height (m) h, h e N nbuoyant plume rise (m) pr h = 'opographic height of receptor above plant grade (m) d = Stack or vent diameter (m) u, = Efflux velocity (m sec'1)

N = Total number of valid hours of onsite wind data in all sectors for appli-cable averaging period (dimensionless)

= Relative deposition rate 6/Q normalized by source strength (m-1)

D/Q = Relative deposition per unit area normalized by source strength (m" )

G = Ground release (subscript) (dimensionless s % sq9 e g g%

i =. Index for atmospheric f (d'> '(cf' gb N 6,

stability group (Classes, 4 <p, d,r

g 4

A through G) (dimensiofQess) F' j = Index for number of hours (dimension 1 ) ,C 99 k = Index for a particular

\sN" receptor distance (dimensionless) 1 = Index for a particular 22 5-deg sector (dimensionless)

I n = Number of hours onsite wind data in a particular 22.5-deg s2ctor (dimensionless)

~

S = Stability parameter (sec )

PSP-0008 REV, 3 PAGE 71 0F 110

.d

~ E.3 CHI /Q Modeling Technique Annual average values of relative concentration were calculated for continuous gaseous releases of activity from the containment building vent and the radwaste building vent according to the straight-line airflow (Gaussian) model described in Regulatory Guide 1.111, Rev. 1.

An adjustment was made to the model to characterize the regional airflow pattern. The equation of this model is as follows:

2.032 E r . (1.r r) .x,* '

(C!!MO dk1 N (p_)k x 0 8 30 ('zp +chb '/')%

U 150 sk Since the River Bend Station site is' located in relatively open terrain, the terrain recirculation factor (D)k (Presented in Figure 2 of Regulatory Guide 1.111) was applied.

- The entrainment coefficientT (E ) is a functi n f the ratio of efflux velocity (u,) to elevated wind speed (u150) f r the conditionally elevated release points.

For vent releases occuring below the levei of a nearby structure,.100 percent downwash (total entrainment) is conservatively assumed (E T

  • 1). For vent releaser occuring between 1 and 2 times the height of a nearby structure, a conditionally elevated release is assumed, and the entrainment coefficient is defined as follows:

E =

0.0 when u,/5 150 > 5.0 (totally elevated) 4

.E T

T

=

0.30-0.06 (u,/U150) xo O when 1.5 < u,/U 150 5 5.0 (partially entrained) d.@h f"

ep

=

E T 2.5o-1.58 (u,/u150) when 1.0 < u,/u150 5 1.5 (partially entrained)

=

E 7 1.0 when u,/E 150 5 1.0 (totally entrained)

RSP-0008 REV. 3 PAGE 72 0F 110

Within 5 km in each downwind sector, Equation E.3-1 was evaluated by sector at the property and restricted area boundaries and nearest j resident, vegetable garden, milk cow, and meat animal. ~There were no goats whose milk is consumed-in the area of interest. This evaluation

~

was performed for each continuously emitting release point and the intermittent release from the mechanical vacuum pump with onsite data collected during the period of March 17, 1977 through March 16, 1979.

The effective release height was computed from the following equation:

h, =

h, - (h t)k + hpr E.3-2 Where the downwash correction facter (as defined by Equation (5) in

-Regulatory Guide 1.111, Rev. 1) is included in the equation for h pr-(see Equation E.3-4). j Values of topographic heights were conservatively assessed as the maximum height within a particular annulus-sector (annsect). An annsect is an area bounded by a 22.5-deg sector and any two radial distances from the release point.

e y/ 74 For A D stability conditions, plume rise for nonbuoyanta soup es'G,,,s Wy yf, gy\C ] 9d't, calculated by the following algorithm:

TN when: g\ 0

.S Ld gge$/

u,/u150 > 1.5 cgm 2/3 1/3 E.3-3 1'44

("e l_ (x/d) h

  • d pr "150).

RSP-0008 REV. 3 PAGE 73 0F 110

i

  • when:

aCD u,/u150 l' '

qC\ )sr M(,q )'t - '>

2/3 1/3 k h

pr

= 1.44 (u,/u150) (x/d) (d-3) [1.5 - (u,/tf150) d)h?b %D E.3- pj6@k and $T

+

bg0 h 3 E.3-5 pr I ("e/"150)

The result from Equation E.3-3 or E.3-4 (whichever condition exists) is then compared to Equation E.3-5 and the smaller value of h pr 18 used.

For E-G stability conditions, Equations E.3-3, E.3-4, and E.3-5 are compared with:

h pr

= 4 (F,/s)5 and, 1/3 -1/6 h = 1.5 (F,/u_150) S where:

2 (u,)2 d F =

m 4

and the smallest value was chosen.

RSP-0008 REV. 3 PAGE 74 0F 110

In the ground level portion of Equation E.3-1, the vertical dispersion term:

- [p C()?

(o 2

+ 0.Sh /s)Y # M i,k O \

b was constrained to be less than or equal to 1.7320 ;f6 g$* ,

ik a b p\W E.4 (_CHIf C Q) and D/Q Modeling Techniques p~

Annual average depleted relative concentration values were conservatively assumed to be equal to annual average relative eref re, n credit was concentration values (CHI /Q = (CHI /Q)D).

taken for attendant plume depletion of radiciodines and particulate.

Annual average relative deposition values were calculated using Regulatory Guide 1.111, Rev. I with the following equation:

. l

) + b D 1

)[(k-)x 13 a

n-1, k l For the conditionally elevated release points, Figures 6 through o of Regulatory Guide 1.111, Rev. I were used to calculate tL-(6/Q)g and (6/Q)g values, while for the ground level release points Figure 6 was utilized to calculate the (6/Q)G value.

E.5 methodology Employed for Intermittent Release The methodology employed in the calculation of intermittent release CHI /Qs and D/Qs was as follows: ,

1. Two-hour sector-averaged CHI /Q values were calculated without terrain recircul ation f actors.
2. The 15 percent, I hour value was plotted at 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> on log-log l

coordinates, while the annual average value was plotted at 8,760 l hr. A straight line connecting the two points was drawn.

3. Log-log interpolation based on total ground intermittent release hours versus annual hours yielded a CHI /Q multiplier.

4 The multiplier was applied to annual average CHI /Q and D/Q values to obtain intermittent CHI /Q and D/Q values.

For River Bend Station, a 320 hr/yr intermittent release through the l

containment building vent from the mechanical vacuum pump was I evaluated.

RSP-0008 REV. 3 PAGE 75 0F 110

lt

/d

/ ,-

. <"'I;p?ii TABLE E-1 f s.; 'i.M. p -

ANNUAL AVERAGE CHI /Q VALUES x 10" (sec/m )(' { \b }('cg ..

FOR RESTRICTED AREA B0UNDARY .g%3 )

h?B , g,#A -

Main Plant Exhaust -

Sector Duct (Continuous) Radwaste Exhaust Duct Bug'1 ding (@ntinuous5Y'gj0C' j,,l

~

p' S 11.4 105 SSW 19.7 186 SW 16.4 215 WSW 19.5 326 W 23.6 654 WNW 33.1 421 NW 15.7 262 NNW 14.8 138 N 18.8 180 NNE 24.9 211 NE 16.6 150 ENE 12.2 146 E 9.07 168 ESE 10.4 154 SE 8.19 93.1 SSE 7.69 45.6 t

i l

i l

l i

l I

i l

l l

s

)

RSP-0008 REV. 3 PAGE 76 0F 110 l

G- *

  • TABLE E-2 0 C0?

~

40\'6 ANNUAL AVERAGE D/Q VALUE* x 10 ' (m-2) y c3c,g(9 FOR RESTRICTED AREA B0UNDARY g@

Main Plant Exhaust Radwaste Buildingh g@~

Sector Duct (Continuous) Exhaust Duct (Continuous) p3 6g qsOU '

S 7.61 21.4 SSW 11.3 39.6 SW 10.4 36.1 WSW 9.79 38.5 W 13.8 68.8 WNV 18.0 50.3 hV 8.68 40.8 NhV 10.5 24.7 N 11.8 28.6 NNE 11.2 27.1 i NE 8.26 22.3 ENE 9.73 22.7 E 7.75 23.0 ESE 7.76 24.6 SE 6.60 17.2 SSE 5.34 11.8 RSP-0008 REV. 3 PAGE 77 0F 110

r-- ---, - , .

'E'

' i ..

  • I APPENDIX F Od M XIMUM X/Q AND D/Q VAWES FOR INDIVIDUAL LOCATIONS e +#s p qY'p l

4 l

RSP-0008 REV. 3 PAGE 78 0F 110

i i gs

  • C, '
tk'ne[s,YC k

?',PL s e G .,.C#g 6cP C od

)

k l  ?' i y p* -'

S h%b 8,5 U

N 9 O t 1

. 5 02 3 11

. . a1,1 q

1 1

I c 3 3 5 72 38 T tu 3 1 8 31 F A nD 7 O L a - - - - - -

U l t n. 9 C Ps 2 2 - 2 2 o 7 L u Q Q Q Q i A na / / 2 /2 /2 t C a H/ i/ l Q ih l I Q lQ l E ax H  !

t / c G E ME C C D CD CD o A S - l P O

D s

. i L ) .h A d rt U e o D i tr I p co V u ef I

c s D c e N o td I

0 0 9 88 0. 3 n sa 53 1 . u rm M 1 6 2 . 20 ( o U . 2 1 3 30 45 we M g 4 2 Q b I

dt - - n X

A l c Bu

- - - - - /.id l

HQ l 3 M D ) C/nu e 5 Doo E tt ( ) t ih V.

H ss 1 1 6 1 1 sdts E 1 T au Q Q ( Q Q ena R

- wa / / 1 /1 /1 hacs -

F R dh l l Q lQ l l l Q g on O ax H H / i/ i/ iQl o E F RE C C D CD CD h/ i L l l t B S hHaa A E )

itCcl T T t i u A n wttc R e sel m )eha N n yhtc O i rgo 8 I a aipe 0 T t dhys 0 I n n Ho 0 S o uh ,d -

O C ot P P ( W W biss wuy S

R E W N N D W N N W y i a n) N tndw D os W m m m roah N i r eirt A te m 0 0 4 pt a

_ at 9 eeee 0 9 oasp N ce 4 2, mmmm 0, 9 rce om O 9 aaaa pol n I

L( 9 1 SSSS 7 8 (li o S 1 mi R ne t E 2 3 ot5a P m ii t S 1 / tsne I c arig D d e crhe n s2ootv C a l i I ) 7m dwr R 4 6 - ee o E ) ( 1 09til t H 3e ) ) ipap

. 1

. P (s r 5 6 2 0sume o o S ( ( =1 rcic O eD t 1 rcne

_ M s s p l l n Q=ooar

_ T i or e a a e e /

_ A s y

di c mn m d r

c n

l Qmmkm A e t io i H/uul u

_ l r R n ni n a e CDmmim a ia enas a g r iimi

_ n at m de r e ll xx x A e u idte k e f  : l l aaoa

_ aB m sram l t e s AAMMNM m i eaem i i R e ))))))

md x RCHi M s t an a n o 1 23456 Ga M O

  • N ((((((

4 e 0

8 G APPENDIX G INSTANTANEOUS DOSE TRANSFER FACTOR TABLES COPi vjoBU Off N '\SS89 g?s \ Dse skOL

$g ca 0

te

\

/.,33 ,,3 RSP-0008 REV. 3 PAGE 80 DF 110

u i 'e' .

P g .

,. e e e

'bCOP 1 O't T OOOOOOOOOOOOOO3 000000000000000 ON k

+++++++++++++++ - -

C wwwwwWWWWWWuwww O \.

COOOOOOOOOOOOON \

.i C0000000000000"

<W e r%Y$

C.O.O. O.O. O. O. O.O.O. O.O.O. O.w.

000000000000OOO . Q\

%O g#

eNNNNcNC@@N@Ooa COOOOCOOOOOOOOO
m. +++++++++++++++

C wwwwwwWWWwwwwww 3 O C N e n c @ e0 ~ 2 : c O O N .

O w NDN"OmwgNONCOC" C e=

C e w.w... ww . N.

.. O\

.. N. e e *= w D. O. O. e. =

COOOOOCCOOOOOOO **

  • W w 0 0 e C CL c 4 9 i - O 088888888888808

+++++++++++++++ >

0

(

O b wwwwwwwwwwwwwww = A

% DOOOOOOOCCOONcN **

@ -C bOCOOOOOOOOO@e0" to O > -

O 80 0 0. C. O. C. O. O. O. O. O. O..a.m. a g

W C00000000000000 b m.

a O O m

EC t 8088,88888885985

+++ + +++++.+ ++

2

= NV WWWwwwwww JWWwww L w == MOOOOMOOON*Acc0N O L 04 3 C O O O w o O m eo w b eo n e  %

3 M N. e=. 0. O. O. r=. 0. O. M. N. N. e0. N. m. e e

O O

0000o0000000000. O.

m w'  % .

O b >

L O w "e

6 N

h y

O E E Obb3b@ CON @NDeb2 3 0 @b 000000000000000 -

W = L@ +++++++++++++++ m w m E> wwwwwwwwwwwwwWw >

CD C w= Om35mmOC=ACAwmN 4 W =J O N M P= m - C O O N # m C O - m H > #

C. #. m. **. *. *. O. c. e .e0. @. w. c. N. e E 6 . V O O- C00000000000000 C O +8 m U

W 's a so

@ w .* O w C 8 D O e OObOOb@@@'@bbebO G e 8 'O 'C00000000000000 V A O +++++++++++++++ M

> @ wWWWWWWWWWWWWWW =.a=  %

<. CC OONCO@meeNONe@C U 3 mO C O O O O N m O c c a m 00 @ O 3 I plD C r 6 O. O. N. O. C. a. m.... e= @ @ N. M. a. *. C.

4 O 00000000000000C C L U e

=J W 4

- 6 E O w 3fb@be4433@e233 E +3 000000000000000 0 E o +++++++++++++++ **

O m WWWWWWWWWWWWWWW e L e0 m N c N m N m c N N @ a e0 N k E- N O N o n @ @ @ 2 00 @ C @ eo n e

> .e= v=. N. Ne me m. e. e

. m. m. m. .=. c. N. ee ew E n w 0 000000000000000 m W

E =

0 m

= m2cabetN@@23h22 L N OOCOOOOOOOOOOOO d h +++++++++++++++ 0

.J O V wwwwwwwwwwwwwww e (J O s e= > @ @ m N a n to m O M O N m

== CD me@*NON#NNMONNe N ZZ

== Q . - .m. . m. N. e=. *=. @. N. a. a. N. N. N. . =O H 000000000000000 3 ll 11 A

C C

>O O O (z V MNOw 30 = - X m 10 C e os O m m a a e m V Z = e b e c @ @ ao m e w e e m m G

>W Q e e e a e e e e e e e e *= w m W 40 3 e 64 E zzwCOzzzem8wsee vzwuvNomuo u -z so i

l

. _ _ _ _ _ _ _ _ __ _ _ _ )

)

]l. '

4

  • a APPENDIX y I GASEOUS MPC VALugs l

l l

l b

'll3' g@#s,Q\ D ps QP

?

p? -

tgN 5

39 6

pp l

RSP-0008 REV, 3 pggg gg 97 310

lh,*.

i.:

4 .

.)_,s

/p'"9,4 910 COD TABLE H-1 gC\b ggr,9 g

\g\

MAXIMUM PERMISSIBLE CONCENTRATIONS IN AIR IN UNRESTRICTED AREAS p9E ggot.

MPC MPC gotdU t

- Nuclide* (uC1/cc) Nuclide* f,uc,1Ne

- Ar-41 4 E-8 Y-91 1 E-9 Kr-83m' 3 E-6 Zr-95 1 E-9 Kr-85m 1 E-7 Nb-95 3 E-9 Kr-85 3 E-7 Ru-103 3 E-9 Kr-87 2 E-8 Ru-106 2 E-10 Kr-88 2 E-8 Ag-110m 3 E-10 Kr-89 3 E-8 Sn-113 2 E-9 Kr-90 3 E-8 In-113m 2 E-7 Xe-131m 4 E-7 Sn-123 1 E-10

- Xe-133m 3 E-7 Sn-126 1 E-10 Xe-133 3 E-7 Sb-124 7 E-10 Xe-135m 3 E-8 Sb-125 9 E-10 Xe-135 1 E-7 .Te-125m 4 E-9

- Xe-137 3 E-8 Te-127m 1 E-9 Xe-138 '3 E-8 Te-129m 1 E-9 H-3 2 E-7 I-130 1 E-10 P-32 2 E-9 I-131 1 E-10 Cr-51 8 E-8 I-132 3 E-9 Mn 1 E-9 I-133 4 E-10 Fe-59 2 E-9 I-134 6 E-9 Co-57 6 E-9 I-135 1 E-9 Co-58 2E9 Cs-134 4 E-10 Co-60 3 E-10 Cs-136 6 E-9

'Zn-65 2 E-9 Cs-137 5 E-10 Rb-86 2 E-9 Ba-140 1 E-9 Sr-89 3 E-10 La-140 4 E-9 Sr-90 3 E-11 Ce-141 5 E-9 Rb-88 3 E-8 Ce-144 2 E-10

  • If a nuclide is not listed, refer to 10CFR20 Appendix B and use the most conservative insoluble / soluble MPC where they are given in Table II, Column I,

, ** None (as per 10CFR20, Appendix B) "no MPC limit for any single radionuclides not listed above with decay mode other than alpha emission or. spontaneous fission and with radioactive half-lives less than 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />."

i RSP-0008 REV. 3 PAGE 83 0F 110

_ _ _ - _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ =

l,, .

l

' O?i y%[O\

O Yy\ChgGE9 APPENDIX I \s

\

ENVIRONMENTAL DOSE TRANSFER FACTORS 4931Q .

FOR GASEOUS EFFLUENTS zg C# gg D#

g&

g 1

! RSP 0008 REV. 3 PAGE 84 0F 110

& @Q n

3 0

Om40 , h

( A C 6 +++ = WWW l A d M C m~ e h o

  • mcN -

C ~JCCCCCCCC e *

  • G W New b M

4 9 O C e E C O w ah  % M @ cam X a EC CCC - NU CC +++ 6 - == c c CC WWW D E OM N O NCCCCCN h 3 N a ca W N @ N CeNcc0 @aw*N. m E 6 *= c e c' o m m N e *= N == O. G e C.= a . 6 O b > W 4 6 O E N w s E E N 3 . - O W - G6 6@ C C +C-33m OCC e a .J M E> 0CC WC&C+++ > a m g w= NN4 CO@@WWW m l- ( w I *= = m NO emNON e E >= > -W a= c m N E 6 ee-CCec@e*== 3 C 00 m. *=. N. g - C O @M* C U l U d e 2 u e l W e a 6 C l M 6 - O C == Q C C C C W G 6 e O m ##' D e A a C CCCC CC - 9 M >" e CC+CCCC++- h E CC @sWaaNOWW -O N 3 E 3 eO eseNONamm o >= 6 @ M C O M M c C.2=O Com#eA@ch C D 6 ( C e NN* C E L U == 4 W G G6 *s = ( b e E O C m A, w E a gdm D s Oy) . .-\ CCC Z \) ths t U & CC+++ e v C e O CC 2 C 6 CCCCC CCWWW 6 g 'gi (:C.- -u< - so CNRN@CCCRC@N C t > l @ @ @ ** * @ @ @ @ m C N O e . ck' K - R-E w- o- @e@N@ NANN * ** @NamNeeN--N. m e , O , sk ,.ece mi # W *= g .g% ,4 E $ .C-WQ 6 \ &<

  • t.\ v L

>= ( h N CCC XXM C00 0 0 #r . , '< .J V OOC +CC +++ e b e N y p-= (E O CXC@WeNCeWWW NW d \c -Q.$ l) =W C Ce#Ecc*N@eXN = d \. E6A X @ N N @ X

  • e *= N. N. N.

- e.= . O - N c e= @ w c. e m m N A s= - 3 C 11 11 3

  • =

A e C il: >8 (C 4 3kC O >= 30 - X C e m C m m a*=*=M C 3 - c @ @ c @ - * *= X m m @ .. o= W U e e e e a e e e s= == m M W W (Q 3 ECEEEM@(l I $ $ e >= A( E 3'O N W M Q U CD U - - 2 El O E =. 4 . t ~ . $ ..; .~ - ~ p ", g6 LO  %- ognCH g v gpa 10 9 0 C -f C C C C. C. C. C. C.NC. C. C. b ' L x g r5#4 0gguA (('y!M e N %C N C P= C+ C +C +W + m m W+Cw@cowC C C. NWC*NmNNO + O 3 @NmW@mmNm w . w  %@ocACMMM N C e DOC 2 e =w-ACC . .o = . = N.m" *N.w..N C eN 2 . a w C W e  % C o to K L ( 7

W U V @ o D .= n ~O m <

- O CCC > c. Q 6 +++ - h WWW s @ C PCN e C w O CCCCCCCCC N. N. . @ w mN. 6 M 5 i e C tly C.  % w ah M @ ese X a EC CCC

  • = - OC +++ b c

w .N V-- N C --N WwW 6 E UM N - 3 C 2 EMN.Ne@N CN RD W C = m e e c . N. *. O. m g b - C P= C C m N N e w @ * ~ C @ . = a 6 > O o W M w < b A 5 0  % N @ E E C 3 . = C @b + sem - W = b@ C wC CCC e . J W 5> CeN CCA@+++ > == in % w= NMN m-P=mWwW m 4 =J J mem *A .cNcN e E

  • 4 W NM-E L ge.-Cowe@e C N a m 4 0. *. o -

C o e ma- C U e 3 .Q a W U e .= b c w = @ C M O m w a C 8 @ e C + as @ b e D C 4 0 0 W CC M C C-CC ++ = @ E > @ CCMCC CWW - h A* CC b2CND NNN U  % 3 eO em-- N@ $ 5 % mdth Nece # $ . M. C @ 6 > b CCXee@ P* memo 4 C *

  • C E A U w e

d 9 @ 6 ( - 6 e E O w m eJ M#M @ 0 0 000 d Z e @c +++ e 6 g C X@ C b .A - >= M P. C NC= C S N MP= m s e * @ @ w e CON*= N 2 e e P= C .C W W W e > I E = . w Q N @ @ @ M @ @ C.= @c=c* e=. Nme-mmm e X E C- =@ O b e N N ##m b 4 h CCC .-CCC U C V sCN+>> .+++ @ 6 w (.o.i o maOsWemmNWWW W Z= (D C@mNR3GNmf2N  % *

W EZ A N C N a N N M C M.A.=. O +

-Q . mNNe@NwsN 3 C

>= . Awe 11 14 3

e 4 @

C C C

>C @ Q >

(E D 2NC*

30 = XOcmomMsXam V E == A @ @ C 0% * .= **

  • M M @

W W

>W Q 4 9 0 0 0 0 t 5 0 .=

  • M ECEggem4Wsee m -

40 8Q C b( E EQNWMQUCDQ==Z E

Gi s

2 0

+

%p/ O n

i k 00000000000.7E4 .^i '%.

?-Q S ,i 6 ;h q ' \

8 7 0 7 0 7+ 0 2 g 0+00E + 0

' 0 n 0E0+200t 0 +

u 688E46666 E 0 L 906326296 7 n. 1 954019151 4 o 1 771500 94621.

i

. 6 t r i

o E s G o 8 R p 8 A e H d C d E S i 762 e G I

o 000 v A D r +++ i P y EEE t S h 717 a O T 914 l O 000000000 . e E 276 r S

A d C n a

R O Q F y /

e 542 X

) n 000 i d 006 +++ r

( )i 0 002 EEE o R K 8 0487 f S

3 m

4 8 4 424.5044 02 0

R O

/

i C

9 2 403001 9732 1 151 .46 1

3 T u f V C

A r o E 4 F y R

- / e l N a u

  • O er 442 l E I re 8000 a .

L S av 00 +++ v )

B R (i 0 0 00 0EEE 3 A E L 428 88 6847 a m T V s 325 21 6884 /

N r 502 0166 d i O o 266007651 836 n C C t a u c ) r 8 E a S F i e 0 O ( p 0 D e 0 s 8 e r P

- o 0 44 d a S

D 0+00 00 i e

Y e 00E0000++ l y R A nn 2682802EE c /

W ao 378680795 u n H gB n e T

A O r 990946756.O 001343552 72 . h r

a P c (

a L e e A r T f a N o E

M t 332 e 3

_ N O

ca . ._ 000

+++

t a

P 022.00EEE R r 0004 r d

_ I T 628804466217 n V - 593913335134 e a

_ N l 01 1333381 . . s E C 735611132246 a 4 e

1 N l -

O e C I r

- T 7 442 r c

AT y 0 000 o LN AA HF d

B o

8400+00 4781E8088EEE 870494598227

+ + +

/

e s

f s

NN 91115458991 t

.4

_ i

_ II . 413127421 C i

_ T 316 u n

_ == u

_ 1

_ P e

_ U n h

_ YO e o T

_ AR d 4701 40590334413 d MG l

i l

5668911 1 133 e  :

c

_ lE - - - - - - - - - 113 s E AG u N0NRRSSAE - - - a T PA N MCZSSCCIC11 H I B O N

a e

e

  • i CO?

4 0Y a

Ot'\C\WiSS\f8 gM C

O C a0 3 O P= k N N @

C=CCCCCCCC

\ 4 J

= ++++++++++ k  ??g (eVt 4 wwwwwwwwww -

mr M m c tv N O * @ c C D

@c@cC Nmca @

A ab ab N N c.b cyb "y, V*h l[M'. i/y

@ O C e0 2 7.C N N k @

C*CCC-CCCC C ++++++++++ C 3 W W W J W W w eel W W e

=* 7eckemch@C C.

.=

M. =. #. *=. C. C. C. m

. #. m. .o

=

  • NNN@* Nam # +3 6

.* C w m l o o @

x a C 4 W z D V W O 0 D =

  1. CC37CNNN@ 03

- 0 C"CCC=CCCC > m C L ++++++++++ -

A wwwwwwwwww =#

m 2 mcchemcN@c -

e D

  • g C M. e. #. w. C. C. O. M. X. m.

w wNNN@e=Nwma 6 M

4 D Q a C U e K G C W G w NA N

=G @ Cod 7CNNk@ W.

a OC C=CCC-CCCC

= at= ++++++++++ 6 w wwwwwwwwww o w

E kg occhencN4C e L M. *. X. **. C. C. C. m. E. S. m g *=NNN@*Nem# O.

C 6

  • p= h  % >

O N w

< E o E c w e s G Q

= Z 9 3 .

O eb SCC 320NNN4 - .

W = N@ C-CCC-3CCC e .==

J M E> +++++++ >++ > m E

C g w= w w w w wJ w w w w 6.i 4 w =J @ccNemcNc0 m

=N N > e m p.#.. ae C C. o. m. . @. D Q z  %

s=NNN@pN*M# C 3 Q o O ed a U L a e 60 W e C M w = b C

w 8 e 6 C W D e &

e I c. S C C a @ C N P= N @ V @

O C*CCC-CCCC = A M

> @ ++++++++++ - N C

( CC wwwwwwwwww U E "E eo mecNeme>@c $ e

= @G3 C 6 l N 6 M. *. M. *=. C. C. C. m. a. @. g l 4 C *NNN@*NemR C ~

L U e D

.J g b 4 Z e

> C  %

Z - o m w > e Z - +4 m o @ 3 m C P= P= N @ C Z Z @ U CeccC*CCCC **

O O e ++++++++++ e t E 4 6 wwwwwwwwww 6 C w N m e cP= c m cP= 4 0 e

-> C 8

m. e. s. *. C. o. o. m. a. m.

O e a E =

w w Q .= N N N @ w N ** m # e .=

Z e a 5

u -e u oCCamce=NN@ o Q h C*CCCwCCCC U  %

z o ++++++++++ e 3 . o wwwwwwwwww e e CJ C3 @ccNemek@C  % **

% .J 04 . M. *. 3. . C. C. C. M. a. m. U C N wNNN@wNema 3 3 11 11

== @

b 4:

3 C

  • t FC e o 1 (E D #NCe 30 = W

% = 3 c C 4 r@oCO mm w m*= m s #.=

  • *= W @..
  • w U e e e e e a e e .=
  • w .a (O 3 ZCzzemdwee e o 44 E EONMQQCO-= G3 Z l

l u_______

lil

>)c-c 0 3'7 7 e (-

3 x 'r < "-)C ,3 E 3F ,0 ;C f Om)2 G0 2 p a,a c )

24 xcD7 3c - c 00

++

n EE 33 C'1 5t a W?

C 4 3>cZ ?(ct3 n i

k 0 0 0 0 0 0 0 0 0 0 0.7 3 d-S .

47 Y5 (

09 g 1 0 n

++ i EE3 t 43 24 a g 1 02 00 l n 633 ++ . u 0 u 213 EE n c 1 L l18 33 o l 1 a

0 0 0 0 0.l 9 100073 i

. . t c F 47 i 0

E s n G o p

e 0 R h 9 A e w H d C d d E S i 1824 e e G o 1000 v s A OB r ++++ i u P y EEEE t S h 6833 a e 0 T 0000000003873 l b

0 . e E 1947 r o S t A d C ) n e c 7 00 a r R e 00 11 a O s +1 ++ Q

/y E+ / s F

)

ie Cn 3E 76 EE4.68724 92 536 0000 X e u

i ud 04 2188++++ r l

( i 80 9482EEEE o a R rK 96 37032733 f v ep 0120032111173 S . . . 0 Q R 7147 / 3 O r 1 X T y .

C / f . V A m 870 10 o E 6 F e 001 11 e. R

- r +++ ++ e i l N e r 8EE EE86 u

  • O 355 37 8624 ,

5.0000 l

E I 2e 682 278 a )

L S mv 754 8510++++ v 3 B R (i 859 4706EEEE m A E L 268 00286233 a /

T V s 1630018321773 i N r . . . . d C O o 4647 n u C t a c r E a ) e p

8 S f 00 08 i 0 O 1 11010 ( 0 D e ++11 ++ r 0 s EE++EE3 e a -

- oe t 86 5 d e P Y

Dn o

4EE458.00 992499 3255489++

0

+

i l /

y S R

/ nB 2250042EE E c m W a 228495206 7 u e r

H g 0011345249806 n T r . . a A

P o 23 3 h c

(

a e L e r A 98090 988 a T 001019000 f N t + + + ++0+++ o 3 E c EEEEE+EEE -

M a 19774E9718624 e H .

N r 8984842560000 t 4 O T 882134383++++ a d1 R - 135613649EEEE r n-I 4049185200433 aC IV G 2221111511073 e N .. . . . . s 4d E 1647 a 1 n e a l

C e 3 K 87080007 r r-L y 0010111088624 oH .

I d + + + +++*+60000 c f MT o ++++ e m L B EEEEEEEE4.EEEE 47616797 s so WU 8275452648633 i/

tr OD . if CA T 2 1. 1. 3 9.S.5 1 32 3 0 7 3 C n 2247 u us

== e 1 es P ho U n Td YO e o AR d 4701 WC i 04590334413 d 1 t

l l

65689111133 4 e e lE c - - - - - - - - 1131 s L AG u 0NNRRSSAE- - - - a O PA N 0MISSCCBC11HC B M

5; NNOggCOPi Ofy\C go

=

++

c o mS 4

e C.C.C.C.C.C.C.C.C C.C.a m.

Q9M ('Qh e-giog og.t,;3 O

-O g e

+- =

W+* d MW . N e. e

@ CNN CC =

C. @No ++ . 3 C 3 eem WW e u -

W wen @A C = =

C.C.C,C.O.N. .m C.C.C.a m.

= m

.d u W C

W d c O O o "

E a 4 m

( e >

Z V V V 5 W D' = wmNo 9 @ Q

= 0 *CCC >

  • 4 C 6 ++++ 3 C.

b WWWW =.d m a @e@c e @

D -

C.C.C.C.C.C.C.C.C.a. @ * *".m

= a C W W N-@w 6 O V d

(

g .

e C C g

U C CC' e  %

e N - -- e C e C + ++- O w Nh +

Wm W WWee N W

=@ CN X e a QC X @ NMC em.CCCCmNNA 3

- 3V= m C AceN++++ 6 =

w C N N#=mWWWW C e E LM m

  • NemsN b >

$ mC#Coca=NN.C@c .a m ' ' ' ' ' ' '

C g m s

u - x b .

O N b = >

H W

E ec **

we O

C.

W g

G eCe a 6 C++ ++ c =

E E +WW 3

O W

eL NS Wa-M@@

W W N.

en ma eme.eNNA CCCC

=

e a

-W M E> mm@ ++++ > M

$s % == CN- =mNN.WWWW CN#P E

( W .J --e escaeC@c e N N > W =

E L - .N. @. C C. . a.c W m. N. . m. o O C O Ne@* O 3 O d e U L Wi e a @ e e W Co*Cae = a C

=====O w C 8 e m'

++++++

WWWWWW e 6

e C

e I 00 2 e A

- CC e > N e NCC NeMNma e N.

C e@e = h M

(,

0 @ceacme++ + = N E Ce NaNcNCcWW W Q E 2 e eNa@C@ Nee > 3 e Z m L

@ c 6 N . . E 4

L C C. C. *. N. c. N. ch e s. M N. C O. C. =4 U

a 3 2 4 e@CSC@me e

- CO*C-CCC b E d ++++++++ C m W Q WWWWWWWWW 5 e ~@SSNNeNNW No C Z .

L Nm>&CeceCC CC a 2 N Aem@mC@ee+ ++ e De E=

I NmeCNXNCeWhaWW b Ce

= N e > @ e N C ** 2 @ S @ c eV

> Q N. N. N. N. ". N. N. N.. a. C. ' = m.

8 n

E 29 W emg e g -c I. ee

=e Q e m M eCCeCON 6 Le W h NC=C===C@@@NM OZ 0 b

=

E t

Q C+++++++N.CCO3

+WWWWWWW +++6 @ E E e wpm @#@@N#WWW J e WO 3W N G C a m m m m m @@ @. %  % dL CW - -b QN N. N.a.m.@.*.e.#.N.e @.@ . .m 9 O C mm@w 3 sw al li O w em A 40 0 C >D

. :, E C @ O g ENC-O = XCemomm Xam V .a 1 = mm 2 G G p d o @a @e e@aeem "e "e =a *s e e m w d w (C 3 ECREEMM(We1 4 9 4 0 44 E EONMMQQCQ==ZQ e E I

l

.,~J 3 - "

Q<(C)oC ze C ?

25

\mwc ,n :$ rkJ h

.i 00

++

n EE

' goP gaU 32

  • C i

k S

O000000000073 93

. rc05 -

h c,c,1NI @

00 11 g

n 9 Q"h{

++

-Q =\r e ?;r,Q i .

EE5 t 52 25 a \

9 955 00 l n 017 ++ .

u 0 u 290 EE n c 1 E 288 32 o l 1 a

0000032500073. i t c F 93 i 0

s n o e 2 E p h 9 G e w R d A d d E H i 1925 e e G C o 1 000 v s A S r + + + + i u P I y EEEE t D h 4432 a e T 0000000002973 l b

S . e U 4393 r o O t E -

d S ) n e A c 7 0 00 a r G e 0 1 11 a s + + + + Q R /y E E EE 6 / s O ie 5 26 725 X e 8.9000 1

I Cn 1 7 434 u ud 2 0 66120+++ r l R i 4 9 7376+EEE o a rK 6 1 901 1E432 f v S e 4060088341. 573 R p . . 0 Q O 2393 / 3 I r -

1 X C y A / '

f . V.

F a 880 11 o E 8 e 001 11 e. R

- N r + + + ++ e i I

O a EEE EE92 u .

I - r 835 96 9725 l ,

E S 2e 664 506 9.0 0 0 0 a )

L R mv 574 6615++++ v 3 B E (i 582 9649EEEE m A V L 638 -

84748232 a /

T N s 1390022992173 i O r . . . d C C o 1293 n u t a E c r S a ) a 8 O F 00111 i p 0 D 11111 - ( 0 e +++++9 r 0 s e a -

Y oe Dn EEEEE08.97 31616+

51213E900 6

0 d

i e

y P

S A o 7705623++ + l / R W nB 8696710EE E c e H a 651751982 6 u e T g 0035912112706 n r A r . . m P O 11 1 h (

c L a e A e r T 890909988 a N 001010000 f E t + + +++++++ o 3 M c EEEEEEEEE -

N a 4335844998625 e H .

O r 5331942550000 t 4 R T 965571434++++ a d1 I - 872536438EEEE r n-V I 38712550* 4632 aC N G 1112112 e E . . . . . 51t.573

. s 4d 1893 a 1 n e - a l

C e 3 K 78091007 r r-L y 001011 1 0 625 oH I

d + + ++++++ 8000 c f MD o EEEEEEEE00+++ e m L B 191931491 + EEE s so WI 491531644E432 / tr OH . 4961263613073 i if CC T . . . C n 7893 u us

== e P

1 es ho U n Td YO e o AR d 4701 WG i 40590334413 d  ;

H l 5668911 1 133 4 e e TE c - - - - - - - - - 1131 s t AG u N0NRRSSAE- - - - a o PA N MCZSSCCBC11HC B N

e i . .

e.

L V

e *'

,ps'p+

+ 0M^-0P4

\ OFF\C\ cyto

\

me CO

++

e es e bq L .

(

C WW 4 me

=

E M 0.C. .C. C C C C.C.C.C.C.J.@. $\r 4 Lhhss d Q(J[# @,L CC p

-- C

++ =

ww . J

@@@ me a

@ O-m CC =

= *m@ ++ . 3 0 3 CNC ww C U -

d @N: Ce C = *

  • e C. O. C. C. C. e. e.
  • C. C. C. 2. m.

W U w

  • @ = Q w w C O o @ M E a E @

( G 3 Z D W U C V M = N@Me ,e @ O

= 0 -CCC > d (

A Q 'b ++++ = 3 A wwww &

M C MNCA e S 3 - = D o C. C. C. C. C. C. O. O. C. C. @. 2 7 c w am*@ 6 d

C

'M

( C 0 = C @

U k O "* e W g G Q e *w e O m + + ++ 0 6 Nh w w WWe@  % W

  • @ M e No.@mNme X W

= UC N @ 2e>.0000 3

  • e m @*N3++++ b =

w 3D= N m emMNwWWW D e E bM- C N MN#a@ Nee b >

M a 4 C.C. C.C.e. w. c N 4.N.#.m. O C M@w@ O.  % M O 6 - X

  • > b >

O N .

W

( E cce

  • O W M

>  % G L

CC"

+++

+* @ =

a

= g wwW w+ 2

  • E Q t b NMO ewe @NMe = =

W = N. eem -mmeeCoo e m

WM E> mmN N-CC++++ >

a g = = = Nom C*m*Wwww E

  1. w J C@@ meNMecce 4  %

d =

k . >

z L m.@.w.o.C.e.:.N N m.m.a.m. e o O C me*@ C 3 Q d e U L W e a W C M 6 O*we m - a C w*eemo w O 8 @

m

++++*+

e b

e O

s e oc QC WWWw+ws.m>

mecewe mN@ommNoc o

=

t e h

A M

> o om44cce++ + =  % C

(- CD ' den 2eseww W U E 3 e mo@e*NN@X @ 3 0 K m C k

- L C.O.c.e .7.N.3.N.m @ @ . .@. N. 3

( O Nm M C w b U J G

( @@*@C@@@@ e

  • Co*C-CCCC 6 2 d +++++++++ 0 M w U wwwwwwwww e a eccNmNem*@@me @ C *

% m>*@h>w3@CCCO a 3 N *NM@@egem++++ e De g i m#m>MXQN@Wwww 6 Ce

= = e@3-Nde@eN@ee e9

> C

  • .* w

. .N. w. ". *. O. *. w. &. R. 7 O

a sg z

w *ew@ e *C 9 8 e

= U e M g NmC@wCCW 6 6e W h CCwCa**C mNme OZ

=* V ++++++++ occo wwwwwwwwo++++

U c

b EE o m emmsa@*cNwwww e W 3(

OE 6 @@CCAMXpNC@C#. N

=

a

-b

@. *. N.M.N.e.m. .N m.e.g..>

g= N Q C www@ 3 3W HH W

- ew L 20 D C -V

>O e c (M D 3%C*

2Q = 20t@Cmm22=m D **

2 @a@s ca me e "e e gM* *maM X W

= @

  • W U @s e W W (c 3 ZOzzmMM(we ea e e o 44 2 EUNMMOUCO-=CO 3 E

pe*#

,go86 COPi Op\C ggo

,o mS

~, .aacq c

4

, p0M 00 W . C.C.C.C.C.C.C.C C.C.C.@.m.

GN CC @

-- C

++ =

WWN d Nw a m e e #.

C No@ ++ . 3 C 3 NMC WW C g -

W mkN cm O - e

- e C.C.C.C.C.m.N.N C.C.C.@.m. s y W

@N =

C W e C 0 C D 2 g G A m 4 @ d b V V W

@ ~ emN3 eCCC 0 e c

- O

++++ =>

m (

C 6 = A A WWWW w M C Mmem o O C > ~ D C C.C* C* C.C.C.C.C.C.@ae@m . *

  • e W *=@N W O M W 4 V O a C @

U m e e L g

C W

e W

Nh C

W

+ "e

+

O W+cN U

N e

W

=@ #@ CWNMcNN3 X W

  • UC @c me*20000 3
  • = 39 CN NmC ++++ b -

- - NN ~M-mWWWW O e E 6M ma CNmcNecm b >

M a C.N M. C.C.e.c.r e @ @ . .@. M. O g camN O.  % M C b

  • X N w .

O N N m b

e W

C < E ** C e W m C C we e g a C + + ++ @ =

= E E WW WW@@ 3 .

O e6 @@@ Ns - .

W - NW CC4 3M- NC N N.@ @ @C C C e a W W E> 44e MNM ++++ > m e g w= Je@ #NemWWWW E

< W J om4 escam@cm e  %

> >g d

w. N a. c. C em. N. m m m. c. e. n. y

~

k U C o ammN C 3 0 e e o L W e a e e M W Ceeem = A C C memeeC w C Q @ C+++++ b C e +WWWWWe e e e t 00 Wem-mmme@ c 2 e A CC =

h M

> C M m*#N Nam C e c e A.++ CC +C = N g

  1. Ce @NWNN@NWW W O E 2 e McCMNCCes > 3 9 t- s C 6 N L C.C.w.N.e.m.a .n. c a.@.C.@. E

< C M8 m R =

N u 4 @ $

< CNmmCmmNN e

  • CCCC*CCCC b z w +++++++++ 0 m W Q WWWWWWWWW e E e GN@NmNXXme@NX C Z .

2 b Nm@eNCNamCCCC w X C N 3COReweNN++++ e De g 4 Ca#NMCmewwwWW 6 Ce

= = m#mpme@mm*@em SQ

> Q N.N.N.K.N.A.S.@.e .m.N.@.M.

S E e en W "NmN e ec G E a

- U g g m

.a N@meeee ke

~ h CCCoweeQ@c@ND CZ E D +++++++CmCCCC 0 h N O ++++ e

>J m W W W W W W W C m.W W W W

-N-ceNee e W (C #eeM@@ Ace @@eM N W

- ~b 80(

N m.e. N.>.w.N.w.N m e.g @ . . m. Q C NNmN 3 3d li ll e A

e em 40 C C >D

>C e o

<g V #NC-30 - Cacmommaa-m V Z = Ab@cmew**mm 2 O D..

>W Q a e a e e ee e seeme c &

40 3 CEMEEMM(We ee e e C A( Z UZNOMOOCU-=ZO C E

S

.N OBgCOPi OffI' ISgF.D w

me CO g 10 M

.C-10 en

' .s lC.e.C.C.o.c.o.c.o.o.C.N.m.

l g

p 0g D.OcW'.VqI'q m

o e

=-

-+

=

a

-+wn me e m

c 3

we.

N@

NON Ce

++

wd C

=

3 U -

C 4 met. @b Q = ~

  1. 46 Nm n
  • =+8 0 w w

C.C.C.C.C.@ A. C. O. C. . -

a C

o O O W A' x CL 2 m

( G )

Z t Q V U w in = Nmme O @ O

= 0 --oCo > W (

c 6 ++++ = 3 .A

). -wwww a M C e0046 e G 3 >= = 2 <

c C C.C. C. C.o.c.o.c. c.o.N.m.

O i w N N .- - 6 0 '

M a a G u -- e 6 E @ m *=.= n Q W C ++ O w NA + wwNN N W

=@ e w o c e P= CN N M e X 9

~ 0C N e ND *R 3

=

w 3g

= N

'N O

Nec.

acmNwwww COCO

++++ L Q

=

E bE e O NXN@NN@c 6 >

M- CL M C A. C. C. e. *. N N A. c. N. m. O g -N.=* o. N m i

O 6 e X  ;

>= h *

{

O .N 6 . > i e ( E NNm - O @ J  !

- w e CCC =* . E 1 e 6 +++ a+ @ = 2 E E www +wa 3

O W

a 6 NW cNN .

N-N wee.moCCC s@

eNme =

e a i

J @ E> -m2 m>mm++++ > m e E w= M-N E  !

4 -w J m@e cN4m.wwww MNN sace a

>= > *

=.N. N. O. O. c. c. @N* e. R. N..m. g

=N 3 6 Q O O @ e *= * " C 3 U a e

  • O b  !

W e a e e i e w mcN-*N = CL o  :

OmweeO w O 4 8 e ++++++ b o '

.m wwwwwwm e e e e oe e=@m**ceA e D e A CC M N P= M X e @ C Q C = h M a

> 0 m e eNCwW m e.=W s . + + -

+ = N E '

4 CC asse D E i 3 e N e= - N N e m N e @ 3 e i Z th C 6

- L C. C. .N. X. w. N. m. m. m m. a. C. r=. E 4 O @e @ C ~

L U e e J e L 4 NemmomeN e i

>=

a CCCC-CQON b i E- ++++++++C o a w o wwwwwwww+ 8 e c r= c k r= = N weNmc Z .

G Nmbeemn c@ooo .e* 3

  • = Oemeca N++++ e De E 4 m**=ccc NNwwww 6 C4

= = e=2m@NN bNcm@c e0

> 0 S E N.M.m. e.m.@.@.e.r= - N.C.N. M. e w e v= .=

  • s . e a.=Ct

.e= ee i Q

W e m J men e 6 Le

= h NOO=ee e@me OZ E V C + + + .- + Coco O b o C+www+wo ++++ e WE e CW@@NWmCNWWWW W W (W

g Cm@meAXQM@@@A N *d '

. s r= = =%

8 w=

> >= R e. m. e. N. N. e= @e c = . 2. N. m.

@ Q C N M P= # # e= s= 3 3W H ll @

e On L CO C

>3 (E

O V

W 3 r= O m O

.= D 3Q = #CASCmma#*m D Z = emn 3 G G" a= w 0 ee@e @ e e m*=*="e e ee a*-me w +8 (Q 3 SCEEEMM(W$ 0 0 $ e Q A4 E EUNMMOUCWa=ZU dD E U__________.__._________

_ 4b' 35

- _._ O $mD A

n 00

++

_ i k

S 00000000000.92 E[

93 .

hb c,O2yo~c 13 g x s2 00 n 11 i

++ t

~ EE 35, a g

469 00 l n 06 ++ u 0 u n.

780 E[ c 1 L 457 92 o l 1 00000669 93 i a

9 8 6 0 0 0.1 3 t c F

'E i

s 0 n

G o e 6 R p h 9 A e w H d C d d E S i 1935 e e C I

o 1 000 v s A D r + +++ i u P y EEEE t S h .

0492 a e U T 0000000001793 l b

O . . . e E

S 5413 r o t

A d C ) n e c 9 11 a r R e 0 11 a O s + + + - Q F /y E EE 5 / s ie 5 7 03735 X e

)

i Cn ud 9 8 8 6 297.90000 54 866 .+ +++ r l u

( i 7 2 8001EEEE o a R rK 5 4 64802692 f v e 5070022355293 S p 0 Q R 2413 / 3 O r 1 X T y .

C / f . V 2 A n 770 11 o E 1 F e 001 11 e. R

- r +++ ++ e i I

N e EEE EE u

  • O - r 231 63 9735 l ,

_ E I 2e 826 563 9.0 000 a )

L S mv 998 5494++++ v 3 B R (i 867 7864EEEE m A E L 901 63114692 a /

I V s 1 410087115593 i N r . . d C o n O 1213 u C t a c r E a ) e 8 S F 912118 i p 0 O 011110 ( 0 D e ++++++ r 0 s EEEEEE8 e a -

oe 97 6 e P Y

Dn o

3477345.00 898697 3296445++

0

+

d i

l /

y S R

A nS 2728139EE E c a W a g _ 419273232 6 u e H

r 0041157125106 n r T . . . a A O 12 1 h (

P c a e L e r A 789909977 a T 000010000 f N t +++++++++ o 3 E c EEEEEEEEE -

M a 0542774438735 e H .

N r 9887162020000 t 4 O T 939086428++++ a d1 R - 656497262EEEE r n-I I 6205566747392 aC V G 1224244613093 e N . . . s 4d E 1113 a 1 n e a l

C K e 3 L

I

- ,. 99111 80011 10 8635 r r-oH M 0+++++0 0000 c f O u 0+EEEEE0 + +++ e m TL S 0E3593990EEEE s so AI 0233880776692 / tr OH .

0173411717693 i if CC T 3 . . . .

C n 5 8913 u us

== e P

1 es ho O n Td YO e o AR d 4701 WG i 40590334413 d  :

H l 56689111133 4 e e TE c - - - - - - - - 1 131 s t AG u MONRRSSAE- - - - a o PA N MCZSSCCBC1IHC B N

, t f

.ii i$.

1

- 4 el. E:

g bM8O ]

35 00

++

s -

._ W:C(

3 n EE i -

15 k

S 0000000000009 2,%

o ,.>< s a 36 g 2 11 1 1 i n  ;!

z?- 3o:ch> h =a {} (5

++ t i!,

f i' EE8 35 a g 66 00 l n 514 ++ u 0 u 240 EE n. c 1 L 868 15 o l 1 a

656 - 09 i 000001 11 t c r

. . 00.O.36 i s

o E n C o e 7 R p h 9 A e w H d C d E S id 2035 e e G o 11 00 v s A Ol r ++++ i u P y EEEE t S a e h 4615 U

O T 00000000021 .09 l e

r b

E 1 136 o S t A d C ) '

n e c 6 9 11 a r R

O e.

s 0 0

+ +

11

+ + Q a

F /y E E EE47 / s ie 9 2 4 735 X e

)

1 Cn ud 1

4 4 0 788.99000 32 437 0+++ r l u

( i 9 7 0693+EEE o a R rK 1 8 1 845E615 f v e 8090043684409 S p 0 Q R 4736 / 3 O r 1 X I y .

C /

~

r . V 3 A a 770 22 o E 1 F e 001 11 e. R

- r + + + + + e i l

N a EEE EE86 u ,

O - r 181 31 9735 5.0000 l ,

E I 2e 611 137 a )

L S mv 716 4969++++ v 3 B R (i 903 9336EEEE m A E L 630 54778615 a /

T V s 3820011227309 i N r . . . d C O o 3636 n u C t a c r -

E a ) e 8 S F 912128 6 p 0 O 011 11 0 ( 0 D e + + ++++ r 0 s EEEEEE2 e a -

- oe 7 6 d e P Y

Dn o

2187589.90 313867 71189600+

0

+

i l /

y S R

A nB 3304234+E E c a W a 9215275E6 6 u e H g 0052281242302 n r T r . a A O 34 3 h (

P c

- a e L '

e r A 780909977 a T 001010000 r N t + + + + +++++ o 3 E c EEEEEEEEE -

M a 7797931148735 e H .

N r 2386813990000 t 4 O T 859631910++++ a d1 .

R - 571823923EEEE r n-I 3975634745715 aC IV G 1114244613009 e N . . . . s 4d E 1136 a 1 n e - a l

C K e 3 L 689 1117 r r-y 00091110 9735 oH IMT d +++0++++ 0000 c f N o EEE+EEEE ++++ e m TA AF B 869E51216EEEE s so tr 3934360426615 /

ON . 819651 11 36809 i if GI T . . . . C n 1136 u us

== e P

1 es ho U n Td YO e o AR d 4701 WC i 40590334413 d l H l 56689111133 4 e e

_ TE c - - - - - - - - 1131 s t

_ AC u N0NRRSSAE- - - - a o

- PA N MCISSCCBC11HC B h f

$h5 3 k et-o2% OO) cC:Qhu."Cng i U e 24 n 00 i

++

k S 00000000000.1EE2 x sO 07 26 99 o9sm3oPyYoC 00

++ g cS

,1\

I FE6 24 n 9 28 00 i n 469 ++ . t 0 u 164 EE n a 1 L 1 76 12 o l 1 309 ~ 07 i u

0000011 t c F 000.26 1

. . i l 0

E s a G o p

c 8 R 9 A e n H d e C d h E S i 9 24 e w C

_ I o

r 01 00 v A D + 0++ i d P

_ y E+EE t e S h 6E12 a s U T 0000000009507 l u O e E

S 4926. r o t

A d G ) n e c 79 9 - a r R e 00 09 a O s ++ +0 Q F /y EE 3 / s i e 98 E + 6.1 5E 24 X e

) Cn 22 788 .7 00 u i

ud 28 08650 ++ r l

( 54 5365+ EE o a R rKi 17 9218t212 f v e- 02600331361 07 S p . 0 Q

. R 2126 / 3 O r 1 X T y .

C / r .

V 4 A a 870 09 o E 1 F e 001 10 e. R

- r + + + ++ e i N a EEE 2 - - u l

E O r 7 ta7 EE6.371 24 92 l .

I 2e 039 639 0000 a )

L S mv 428 011 0+ - ++ v 3 B R (i 930 2430EEEE m A E L 820 25431012 a /

T V s 5710019385407 i N r . d C O o 1626 n u C t a c r E a ) e 8 S F 991998 i p 0

- O 001000 ( 0 D e ++++++ r 0 s e a

- oe EEEEEE5.7 319241 5 d e y

P Dn 04825130l 0 i S Y o 1 020627+O + l / R A nB 7523732E- E c e W a 15019726E 6 u e H g 0032155210803 n r T r a A O 13 3 h (

P c a e L e r A 9898888 a T 080000000 r N t 1 0+++++++ o 3 E c + +EEEEEEE -

M a EE7921917 124 e H .

N r 2615329726000 t 4 O T 7550566530 ++ a e, 1

_ R I I

- 015953427+EEE 1 23091861E0l2 r n-aC V G 1264221530807 e N . . s 4d E 4526 a 1 n le a

C e 3 7970997 r r-y 9000100096124 oH d 0+++++++40000 c f T o + E[EEEEE + ++ e m TL B E86218591EEEE s sr A0 .

3353592T48012 / to E0 . 1147296l96007 i if MA T . . . . C n 8226 u us

== e 1 es P ho U n Td YO e o AR d 4701 WG i 04590334413 d  :

H t 6568911 1133 4 e e TE c - - - - - - - - 1131 s t AG u OMNRRSSAE - - - - a o PA N CMZSSCCBC11HC B N

I .:! ili!i i y' *

. a. i

. L

_ . f .i't 51 n'c. "

3 >~ E) 7

_  ;\ -

,7 24 C 9 ___S2 c~> h r $ c T' . -

n 00 _ U9

. i ++

k $

S 0 0 0 0 0 0 0 0 0 0 0. E 07E 5 $

26 7o 7, ,O2

_ 1!

15 99 g 00- n ~

++

EE9 26 - 24 i

t a

~

~

~

,d s $2S:

e~a E cIchs ksTh(_

I g 628 00 l n 376 ++ . u 0 u 616 EE n 1 L 108 07 o lc 1 0000011100026 i a

. . t c F 15 i 0

E s n G o p

e 9 R h 9 A e w H d C d d E S i 124 e e C I

o 9000 v s A D r 0+++ i u P y +EEE t S h 0707 a a U

O T 0000'000006326 l e

b E 3715 r o S t A d G ) n e c 9 99 a r R e 7 0 00- a O s 0 +- ++ Q F /y + E EE18 / s ie E 3 13267124 X e

) Cn 7 6- 80 . 0000 u

. ud 4 2- 7848+ - ++ r l

( i 5 5 4113EEEE o a R rK 6 9 06422007 f v e 1 040032931226 S p . 0 Q R 2915 / 3 O r 1 X T y .

C / f . V 5 A s 789 99 o e.

E 1 F e 000 00 R

- r +++ ++ e i l N e EEE 6 u

  • E O

I

- r 2e 1

034 58 EE9.27 63 303 0100 24 l a )

L S mv 728 5460+0++ v 3 B R (i 473 9978E EE m A E L 557 56783E07 a /

T V s 5470097262226 i N r d C O o 1515 n u C t a c r E a ) e 8 S F 99 998' 1 p 0 O 00 000 ( 0 D e ++ +++ r 0 s e a -

- oe Dn EE0EEE9.6 811139 61+147401 5

0 d

i e

y P

S Y o 81E5350+0 + l / R A, nB 2547863E- E cu s W a 21607200E 4 e H g-r 0022645218208 n r T a A O 83 2 h (

P c a e r

L e A S998 888 a T 0000 000 r N t ++++9+++8 o 3 E c EEEE0E[E0 -

M a 1558+323+6124 e H .

N r 6427E874E0000 t 4 O T 757142448+ ++ a d1 _

R - 357669996EEEE r n-I l 1925810494007 aC V G 1532111314026 e N . . . s 4d E 2415 a 1 n e a l

C e 3 9970997 r r- _

y 70001000 6124 oM d 0+++++++30000 c f o +EE0EEEE + - ++ e m TN B E31645860EEEE s so AE 1061646492007 / tr EE . 1136142176626 4 if MT T . . . . C n 6115 u us

== e P

1 es ho U n Td YO e o AR d 4701 WG i 40590334413 d  :

H l 56689111133 4 e e TE c - - - - - - - - 1131 s a

t o

AC u MONRRSSAE- - - -

PA N MCZSSCCBC1 1 HC B N .

I 4-it .'

..f I.

......wm OFFICI AL WORK COPY ISSUED Nb C 00 2 e. e. e. e. e. o c e.  : APR 10 689 M c e. c N

  1. C

==

m m Cm

+c STM10N- DOCUMM CMTROL E9 No

  • p 70

= C w

E .bM m==

w "D N C

O

~ e u C. O. C. C. O. *. *. N C. C. C. C C. u o em .a.

W W C O O @

o 1 1 C

  • c 4 W 3
V Q V V W M -

SNNe C e Q O CCCO > a (

C 6 ++++ =

3 4 x wwww &

M c NmeN e O D N 4 o C.C.C. C.C.C.C. C.C.3.m.a.c. -es w be"* = 0 M w

( C C = c e U N @ @@ e k E G O O CO e O W + + ++ C w Nh w w  % W

=@ e N w eN w a. m N@ X W a UC @ 'N ~NX #. C N CC 3

= su- e m emN=+ ++ b -

- N

  • cmcew ww O e E LX > @ cm-NCecN 6 >

M a ". C. D. O. O. m. m.

  • 2 .N .e c o. O E Newe O.  % M O 6 - X
  • h .

O

(

N E Nem CC 6

O w

  • w e Coo -- C. g I L +++ ++ 0
  • 2 E www www@ 3

- O W =

s k NO

  • am 3- .mN mob *C"CO No -

e =

=

w M g> ncN OmNN+C++ > m E E w= MNO CNamweww E

( w w m2@ ~OD@2wcN e  %

> > e =

z 6 @. c. c. O. O. e ..- m 7 @ .N...

R O. g Q O O -N** C 3 0 a e o L w e a @ c M 6 @@Q@QC

  • a C C0-C-0 w O 8 e a

++++++ b o wwwwwwm.Nw e e a

\ e O@ N2NmNN b @ L i

QC be=mkb2CO O ~@ > M

> 0 mammem2+ e + =  % E

< Ca #@em@@sww w 0 5 2 e mon-C-@MC m 3 m 2 m C C

- 6 C.O.M.M.O.N.e.#.w @.@. @.M. 5

(

L O we e C w U

.J e 8

( N....NNC e

~ CC000000@  %

E W ++++++++C O m w Q WWWWWWWW+ 0 e @mC*Nm@2W@*NA G Z .

b @*mMmmOmeCOCC d X N Xe#NNm@mS+e++ e Um E=

B NC@N@@CCQWWWW 6 CI

= MCbbengeN4CbN eQ z

C @

e. m. *. *. w. @. @. N. w. 2. G. 2. C. e at w *N== a eC

@ l e

@ m N meceeN 6 Le h OmCC=CCO @=Ne OZ V +c++++++ C000 o b Q o w+WWwwwwo+e++ e NJ C mwa@Nmenswwww w e

(= @ @ b "e

  • 2 @ 2 3 3 C & N e

wZ . =% -b KQ N w. e. c. .N.N.w.N.e m.e.s.c. O C F @N** 2 De HH 9

- @W A K0 D C *D

>O e O (E D 3Noa 30 ~ 3Cf>Cmm32*m D ==

T -

c@@ cme =mamm 3 @ C NW O s e e e a eo es**Me a w (O 3 ECZEEMM(wt 1 e a e O 44 E KQNWMQQCQ--ZO C 2 l

4- )

.s 1

)

- p

.w=* # $

OFFC ggED

=

C me CC

(

4

++

M C.C. C.C.C.C. C.C. C.C. C C.W W- '

dC ,

I Om e

-C

++ C , c g COIh *-

WW- =

. pqeh()it t

dotu.af . A m

~N . me o .

mmN CC' =

C ~22 ++ O 3 #Na WW 3 ~

C.

W ama C= Q =U =

p O. C. C. C. C. . m. m C. C. C. a. c.

m 6 a o W -- = C 0 n C

E 0 D

( L Z C Z @ )

U V V-M = V

=

0 CCMA C Q W C. L -CCC W Q h ++++ => 3 <

M C WWWW w A O

  • CCC* e C C C.C. C. C. C.C.C. C.O. N.M.a. c.

=

e a

W meme M 6 C d

6 -

i O mm CC e G CC me e 6 m ++ ++ @

W Nh WW C

=@ N e

~ UC mN EN WW@N.C@mo mN .

C2*NCCCC X @

w

=

3D mm CCCm++++ 6 =3 E LM=

CC ma som-WWWW sca O e c 6 >

M E

a O.c. e.C. C m.m.e m. m. @C NCC-

a. c. C C 6 e@me O.  %

N - X M O

h N

N W

( E 2C "O b .

=

@ 20- -- O 6 O. W e

C++ ++ c E

= 3 5 +WW WW

=

eL WNm 3 W =C NS NNA *c-ce@me -

J M E) NON SC*mCCCC 2 a

  • C E w* M** NmNe++++ > M 4 W W 4CN @MmmWWWW E N > n CecNtNC= s  %

g' =. m. e. C. C. w. w. w w e. @

C 6 . .g e. g O em-- =O O # C 3 U e W e L M b CNCo m a e c m--- =

a 8 C C++++O +

6 C

C e +WWWWW C a 09 e e CC WmemNNNN@ A C*@CC#m D 9 A e

> c CamNme@CC ++ +W C =

h M

( CG *eN@@N=WW

=

D N E 3 8

@@2XXNm#c e 'E

m 3 e G C 6

< C C.o.m.m.@.#.4.*.- C.C.C.C. E L GN m C ~

U W

< meC mm e $

CCCa*CC m 6 2 d W o ~+++-++mC o m E e 4WWW+WWC+

E 6 Wa@MWee+WN@MA

  • Nme=CCW@C O Z e

C N @NNNNCama+CCC *

  • E I @MMgN@ppeWWWW +++ e T*

= 6 Cf

=

Q CN@eWON@mMMC= SO 3 m.m.N. =.*.p. a. N. #. C.N.M.S. 9 e

W MMp=

ag m *C E =@ 0W C Q CmmNCON 9 m N h 6 6e

( V SCCCa**C MA OZ NN O C+++++++CN4CC

+WWWWWWWCCC++ O 6 WJ C @ E QQ W@cNmmmm6++WW W WO WG .

@NaNe@NC3WWC-  % M6

>< w M. b. f. N..e..@ @ C..e. @ w 2. %.

=

U

=%

C nH @w=* 3 3e e

A e WW 0 40

>C @ C "D

<E D 2NCe Q 0 =

CRemomm

>W

=

O

@r@@me=32em e e e e e eea eemm 2 e-wm=

  • a G

(O m W A4 E 3 CZZEEMM4WD 8 6 0 g C QENMMQQCQ==ZQ @ K

)

2,r$c7O E2 C- - q#

5 L ;L' 7

~

35 in 00

++ 70 .. o ,oe cC O

k 19 S 0 0 0 0 0 0 0 0 0 0 0. E 03E 69 4 7 kg9 aF$- (E 2 c $

1 00 .:5 11

++

3:2e-EE g' 675 35 592 00 0 n 015 ++ .

1 u 922 EE n 1 L 881 03 o 000001 11 00069 i f

. . t 12 i O

E s 2 G o 0 R p 1 A e H d C d E S i 0835 e G B

o 1 000 v A D r ++++ i P

y EEEE t d S h 2603 a e U T 0000000001569 l s Q e u E 3412 r S e A d b C )

n c 9 0 00 a o R e 0 1 11 t O s + + ++ Q T /y E E e

)

ie Cn 2

2 6 7 EE26.8635 42 80380000

/

X r a

i ud 0 9 1946++++ r

( i 1 4 5874EEEE o s R rk 3 1 96665403 f e e 1010044588769 u S p . . 0 l R 1512 a 3 O

T r

y 1 v C / f .

V.

8 A e 990 11 o E 1 F e r

001 11 e. R

- +++ ++ e i l

N a EEE EE u O r 276 33448635 l , -

E I 2e 263 30490000 a )

L S mv 226 8836++++ v 3 B R (i 939 5773E0EE m A E L 347 53687803 a /

1 V s 421 0011110269 i M r . . d C O o 1312 n u C t a c r E a ) e 8 S F 912019 i p 0 O 01 1110 ( 0 D e + + ++++ r . 0 s EEEEEE e a4 -

- oe 175148776 6 d e1 P Dn 510986200 0 i y- S Y o 3380551 + + + l

/C R A nB 7632365EE E c s W a 1 41603763 7 u ed H g 0051861126904 n rn T r . . aa A O 71 1 h (

P c 3 L

a e-e rH A 909019999 a T

010110000 f m N t + + +++++++ o 3o E c EEEEEEEEE - r M a 8371429317635 e Hf N r 7555506230000 t O T 787248064++++ e ds R - 060483605E0EE r ne I

V B

0167299122803 as N

G 9371211251469 e o

. . . . s 4d E 2212 a 1 N

e 9 l

Cn O e i I

899920 r rt T y 00001 1 07 7535 oa A d ++++++1000000 c fl T o EEEEEE++0++++ e u EN B 188913EE1EEEE s sc GE 7431028816803 / tl EE .

8584274827969 i i a VT T C nc 5912 u u

== n P

1 ee hh U n T w YO e o AR d 4701 WG i 40590334413 d  :

H l 56689111 133 4 e e TE c - - - - - - - - - 1131 s t AG u NONHRSSAE - - - - a o PA N NCZSSCCBC11HC B N

{\\ )

j1!i

r;3;7 3C(9- )0C -

a 2>"

c E3C<p0 Q I 7

,O

,Coo ;C I *

,C sop

) aCu s

35 n 00 5 53r au) pC'C _

++

?zd h 2 c(

i k E0 S 00000000000.97 40 e2

3C2; Cc{i 27 00 9 11

++ in EE t g

935 35 a 457 00 l 0

n 481 ++ . u 1 u 043 EE n c 1 L 874 97 o l 00000221 00040 i a F t c O 27 i E s n 3 G o e 0 R p h 1 A e w H d C d d E S i 0835 e e G I o r

1 000 v s A D ++++ i u P y LEEE t S h 4697 a e U T 0000000007040 l b

O e E 4827 r o S t

_ A d '

G n

)

e c - 0 0 a r R e 1 01 a O s- + 1 + Q '

F /y E + / s

)

ie Cn 9

0 8 1 E6 E6.88635 89540000 X e u

i ud + 1 5886++++ r l

(

rKi E 7 1319EEE0 o a R 8 6 86836297 f v e

S R

p 1

0100777132.'.0 2727

. 0 Q

/ 3 O r 1 X T y .

C / f .

V -

9 A s 90 11 o E

_ 1 F e r

01 11 e. R

- + + ++ e i l N a 9EE EE u O r 028 71518635 l . .

E I 2e +20 01650000 a )

L S mv E63 2415++++ v 3 B R (i 295 2408EEEE m A E L 466 53413497 a /

I V s 6320022234340 i N r d C O o 1427 n u C t a c r E a ) e 6 S F 913119 i p 0 O 011116 ( 0 O e ++++++ r 0 s EEEEEE e a -

- oe 526964186 6 d e P Dn 189894100 0 i y S Y o 8686817++ + l / R A nB 5743448EE E c e W a 943547320 4 u e H g 0093112264505 n r l r a

_ A O 13 3 h (

_ P c L a e A

e r 09019999 a 1011000 9+++++++0 f I

N t + o 3 E c 0EEEEEEEE -

M a +455268747635 e H .

N r E229158880000 t 4 O T 879579783++++ a d1 R - 845415687EEEE r n-I B 3063834398597 aC V G 5241111132740 e N . . .. s 4d E a 1127 1 n e a N l C

OI e 3 T y 9009200 r r-A 01101118 7635 oH TO d

o

+++++++000000 c f B

EEEEEE[+0++++ e m EL CI 1953226E3EEEE s so 7069434674497 / tr _

EH .

1319353141640 i if _

VC 1 . . . . . . . . . .. C n _

== 8127 u us e

P 1 es ho U n Td YO e .. o AR d 4701 WG i 40590334413 d  :

H l 56689111133 4 e e -

TE c - - - - - - - - - 1131 s t AC u N0NRRSSAE- - - - a o PA N MCISSCCBC11 HC B N

i

, FIGURE - 1 RES'TRICTED AREA AND NEAR-FIELD ENVIRONMENTAL I

, , MONITORING LOCAT10NS

. s s O A s

s (NW) g s (MfW)

R (N)

/

I1 08%)'7[jgn' (NN'd / )

's \

g g ,' '

s APR,(0 W

$U

{

's s i as d / j P

s \

g I

p [',gcy DOWgNT I COWOL (WNW) s s ,s

' ) - i s . \ g) i >

,e' i

s t s Tc1 j

/ '

s i 't /

l 02 s N \ l)ie 4' '

- ,ss D .

.,' -l

't j. \ \ fi (- ,,'%,, - * (ENE)

'4+

___ l

( ' ,,-( ,le.,,' ( ' > : -

,, -nw (

  • ' A -

s

\f - ,,,

j N 's *t - --

'~'

' ~/ l (W) O h" 30

/m E I

~~L,- A ~ ~ .'f ,i c\

<[s,-h,'1 1

I (E)

,4 N '

~, ,

~~ s '

- , \ 9 \ r A~~,, 5'

..,.m..,/ - \ s s

'\ 'a  ;

/' ' ' '/.. 1.)

\ ....

.. / TL1 g *\ j GSU Property une ' F 1

  1. \ s

,' / i f h.. s s (ESE)

/ / T s

/ , I \ s M ' \ / s i g

- /

\

i y s (WSW) / \\ N

- fs

\

\ \

- / I

' /

f \ Ta i' '*g g

' ,' i- \ c \

\

G f / e (SE)

,' / \ S,i h* '

\ *4 s I i s l

., /

l \ \

Q /

/ I \ \

/

/ **f* K / D6scharge une

\

j

\

\

/ mwe' g,eese M SomsHeng Point 9 \

g L / I \ H (SW) '

,' [ ,' (SSE)

/ Discharge f Outten

/

/ her.feeed Redfio6096 cal Em6etsunental teonetorene Locations AT.. Air Semp6er & TLD

/ / T .. . TLD

/ / WU Sempting well luegradientl WD Semphne we# IDowngredienti f

K

' 8' 0"* '

/ p J 02 Onette Gee 5*'s*e*n" 2

/ (SSW) 5 (S)

/

FIGURE PAGE 1 1 0F 1 RSP-0008 REV - 3 PAGE 104 0F 110 1

., '. FIGURE-- 2 SCHEMATIC 0F GASEOUS RADMASTE S1fSTEM

.. i

  1. R COPI i

'1 "N\C\Wggc0ED O

7 4 a ho r i: APR 1 g T9 2: s.

."1 (OL E;:

2$

34

.. ftd yg(34 @,h ,I

  • b$

j$ ' n . n n l

5*

. J . .

h Ig $3 1.

  • ** ;3  ;#

- 1 ** j*

-  := :3

. n 1 1 1 2

3. l.

r- r-  ::  :

25 25  :

. - 1 1 22

3 g  :.

3 .I .

=

s . :I:

u . u  ;

s - = . . . . . .

.  : . . . o  : .

u  :

a g  : .

2  :

' ~

~ ~ "

[- , a r f --

u  :

~~ _

. = = ~

. t .j

.  : I s t 2 .  : 4 --

15 21 .: . I
t 2:  :  : }

4:2  :

1I:a 2* 2 -

jI

= - o i

2:

2:

z. t.
:: 3::
2 4i
:u .f :.

. ig. " '

3

- a.s .t

? I i

>  ; .  : j.  : *

? 1 J 1:-

l i

i 2 *

e  ::*  ::

l - 1  ::  ::  ::.

- u- <!

. 7

,. j -

s.i 1 ..us

.i i FIGURE PAGE 1 2 0F 1 RSP-0008 REV - 2 PAGE 105 0F 110 E _ _ _ _ _ _ _ _ _ _ _ _ _ i

FIGURE - 3 EFFLUENT RELEASE POINTS .

[. ! ,,, ~ ' O / \ -

n . - .

g Mjg

'y

+ J-v // a.. - r

  • s

_- s .,

) Q .-~._

p,

^*[

y/W,}.--

' s k . y_

8 j.

/ i L'~hp n m.

?-

~J

..E'.

l a w +.

[,;;f'i r .. v, .

f,8l :. n

, ( ) ~,rq~ l' , N Q A, ao&

qc ,' . - .. .-

.n.W4

.%,~[ b )- [~-

/

(.  ; < '

.. '" 'i & /

l s.-

... T '.

~

&? -

'<. f

~

.... N)NcAdph /

}/gf

)a tW dJ

^

r'q'.

~4T-4 .. l .

n Yf.

's -

>  %'%"Y. -:O "

\

? , r ~E ,-

.,. .~. :,.G . ,

+ f. ,Q.R a

9p-l h, D>

,/ x __ y . gG ~ -

&u ,

' (# - ?

I -

Q ~

D'

. . . _'.l _'_,

i - ~

rg. Ns' [

g, . :~ f g,M\j p * 'f 7 ,g u[... g y

( y -

( ,- , '. .,: , , ,1 - ,

l

) kh 13 '<- ' '

-s .#

,;!  !-* +++ ++ e" O fptCi y N"W ".' R G '

gi -t iss;agjsgiI!

ii i , I,j g 6

l l'3 _g

-s i:

s a .

8 i

,
,: i li E APR 3 g g3

= . 1i g l=i 2 -i 5 -l - .-

i

'j 8

_g i i 1, I i I, lst ges Mgg comiG-i 8 8

, -l  : : :  :  :  : il y

-i -l  !!!

!:  !: [!!in !. .

-i FIGURE PAGE 1 3 0F 1 RSP-0008 REV - 3 PAGE 106 0F 110

l

. 1

. FIGURE - 4 SCl{EMATIC OF LIQUID RADh'ASTE SYSTEM

., a C

g.g86 mfOC cOE9 V s# ,

f .\Y 3 3' n,\ - p # emu i

t

=

31$.

cww.

,,, <1]

.46

./'

,-. v

, i .... u.

3 1 7 --

.r. : -

. u

4

.(. -

i i.t I  !

~

1.3.1 J i!

t :  : :  ::

033 0Il ))

v I

-ti. !.  :

-.1

  • 2 .:  :

and .sJ -

v t i  :.

t E

1

3 i
1  :
"1 .1 I

i l

j i i -  :- *

- 3

- 3 -

b

2 . i. 1.

. a  : i a  : e  : . e.

I
.: s c .t. -
: .t. -
.r. -
32

" [ 3 5

g J

t J. ::.Ej:::

2 2

:*:.. . j j :.

.z. ..z. =  : *

j 21: : 1
so,1
1. , <I11 ion ej 2

x1 f

1.

l

! =~

l' i

FIGURE PAGE 1 4 0F 1 RSP-0008 REV - 3 PAGE 107 0F 110

, < FIGURE - 5 FAR-FfELD RADIOLOGICAL ENVIRONMENT

  • ' MONITORING LOCATIONS

,,mn COPi s v

0 \ R t. C\

(NW) (NNW) \ lg(A N) I/\0Y'W(M)GT.)'-~ f og (NE s g h ) I  ; ij.I.b '

I # '

eseamosa \ l TAC .r# #

s \ \ g i dbq 93*V**# f fP  % \

\

\ l

,' D s

- (g)

(WNW) ,

N g ,

f l% s

\

\ g

\ gng l

/

/

Ws f TC$'

I "~

~ , _ ' s TD2J s a TS: ## ,

ATK3s J TC ,,

we. i _

e, ~

N "'""""' -

. 76 Ten .

f E (E)

(W) af

-- u 5

  • ~

m TLS

' $ yg s

~

, nummy e R2  %

/ O \

/

s' /

% i \ \

nTGS.,4 g

l f _

p' j l \ 1/ s (ESE) l M - f f . N s (WSW) f 1  % \

s

,/ ATLC /4 / g\ y

/ / l 1 \  %

/

/ 3 \ ,)yl emner I

i e -

g \

/

l \

j i \ sh

/ '

\

/ l ,o .f*y ,

/ / \ " g

/  ! (SE) p \-

(SW) / I 5 n t~: .Amt \ )

i

/ K i  % \ t'

,' (SSW) l i

,,,,,e,,,,

N g'

I \

For.fioid Redeleecal \\

Env6tenmental thenNering Lacettono i Il \- - , 1 g v. A semanane Estees#g fg ,

AT . S . Air Sempter and TLD ISpeciell I i \ .N /

  1. " ' N ATLC Air Someter esed TLD Cardrets T.. TLD inecators ' \j' s.,~,,/

T.C TLD Contro6s l T.S . Specist TLDs 8 10 00C vegetetten Centsee i 9 ' g SWU Upstressa Snartace water j Wiemetem SwD Downstream Surtese Water SEDU Upstroom Somment I SEDO Doumetream Seenuant FU Upstream Floh/invertetre... ' J H FD Deusasertem Flah/tevertebrete' ' (S) ', (SSE)

FIGURE PAGE 1 5 0F 1 RSP-0008 REV - 2 PAGE 108 0F 110

a

=

sM5ya m $:;x$>de.O OM Hh mot"s

- OyMN gm>H'. K a $M!,  ;

E.

$e E

ER

)

2

( N O

MSODA D.

E L

I T

TN ER MDA,D E \

O A

T T EO NNN C E DeE I Et LS  %

\

5,\ LOom#- _

R ANA OuS SI N O

P LOT PCS N SGO I A L C \ t1 i Ie;;A EGT 1 n

, r m REO ANN O+ <. 'O- I ,v <&

T )

N 3 E

N

(

O &ss A 1$

M R

E  ?, <

d49

% \ _

P .

\

. Cq Y 5 A 7 g

g o

E R

E T

S Y

LS )

s e

O I

T A

C I

F 0

0 8

L O .

S N S O O I L

L A T

( L e At T GU E D

5 5o R R C

.a' . O F

E AR P . )

4 O l$ S A.

c g

t T O .u' . OP n C IL1 O0 La -

Sy S4 m

O35 N1 A0 -

R4 E 1 T 3 A (4 W2 I E

RS T EN S FC S

A NT W ) AR S E E L RO TP N L B E E I )

S 3

( E S A R E G I

S L D R R E

E E N O S IA UL LA T G G U E V N

M 8 D D N 4

S L

)

3 R A CC I E A U U I S

E S ( P NP I

P R L L R N S t s T S O S S E S T S R T BI N O O E T R R C N I

N T N R A ( TO SI O E E E E R AT R T T T N P D D RR E U L L E S I D A I

F I

F P H R S WE S e E A OF L E EO L N e T L tE O TO TP O I O

t O EP LDP &P O rR OO P SP AG SG A OO P A

R P I

F G ))

P G 4 P G EG DG U NG i 2

((

L W0 W0 L D 8 D7 C2 3 O0 S E 7 D0 D0 E 29 N4 C0 U 1 A 4 A2 U W1 OT W3 ES E T

F R R F R C R D e e e e O

o

  • e e N 8h [OM H m OM H WgT$O@ N<
  • w m>0 $ @ H"O

7 7 Q,

A l' $5 SUED l

ATTACHMENT - 1 DCM/PR NO.

l gSIONSHEET I  ! l l DESCRIBE THE.INFORMATION TO BE CH INCLUDE 1@50. .y,. ..RATI0l l DESCRIPTION OF THE CHANGE (S) MADEI @Tgg,DDCM#^~~~iALE FOR AND A COMPLETE [

l l l I I l I I I I I I I I I I I I I I I I I I I I I

-l l l l I I I I i 1.

I I I I I I I I I I I I l COMMEhTS: l l l 1 l l l 1 I I I I I l WILL THIS CHANGE REDUCE THE ACCURACY OR RELIABILITY OF DOSE CALCULATIONS OR l l SETPOIhT DETERMINATIONS (TECHNICAL SPECIFICATION 6.14)? YES NO l l l l WILL THIS CHANGE REQUIRED REVISION TO LOWER TIER IMPLEMENT C ""0CEDURES OR l l COMPUTER PROGRAMS. Yt.. NO l 1 l l THESE CHANGES HAVE BEEN REVIEWED AND FOUND ACCEPTABLE, PURSUANT TO TECHNICAL l l SPECIFICATION 6.5.2. l l I l REVIEWED, RADIOLOGICAL ENGINEERING SUPERVISOR: / I l DATE l l l l REVIEWED, DIRECTOR - RADIOLOGICAL PROGRAMS: / l l DATE l I I I I I I ll l l l l ATTACHMENT I PAGE 1 ll l l l l 1 l OF 1 ll RSP-0008 l REV - 3 l PAGE 110 0F 110 l l 1 Ii l l l