ML20212Q691

From kanterella
Jump to navigation Jump to search
Method for Calculating Transient Critical Power Ratios for BWRs (RETRAN-TCPPECO)
ML20212Q691
Person / Time
Site: Peach Bottom  Constellation icon.png
Issue date: 11/22/1985
From: Auve S, Diamond H, Keith Young
PECO ENERGY CO., (FORMERLY PHILADELPHIA ELECTRIC
To:
Shared Package
ML20212Q678 List:
References
PECO-FMS-002, PECO-FMS-2, NUDOCS 8609050357
Download: ML20212Q691 (71)


Text

.-_ ___

I I-I$k

'i ME7flOD WR CALCIIIATING TRANSIDTP CRITICAL POLER RATIOS mR BOILING HATER REACIORS (RETRNMCPPDCD)

Prepared By: o[ ,

(ha c @ //2/ [_

l<. R. Young ,.) / Date I Engineer Fuel Management Section Prepared By: '5 - M // / I S. A. Adve' ' Date I Engineer Fuel Management Section

/ // 4 [

Reviewed By: , IWD: 6mcod, Senior' Engineer 'Date I Core Design & Operations Fuel Management Section Reviewed By: ((

Date I W. G. Lee, Senig Engirfeer Riel Safety & Technology Fuel Management Section I Approved By: ) I // JA((

I

~

L. F. Rubino Date Engineer-in {harge Fuel Management Section 8609050357 860829 7 DR ADOCK 0500 Operating License DPR-44 and DPR-56 I Philadelphia Electric Company Electric Production Departannt Nuclear Generation Division I 2301 Market Street Philadelphia, PA 19101

I I DISCLAIMER OF RESPONSIBILITY I This document was nrepared by the Philadelphia -

Electric Company and is believed to be true and accurate to the best of its knowledge and information. This document and the informat. ion contained herein are authorized for use only by Philadelphia Electric Company and/or the appropriate sub-divisions within the U.S. Nuclear Regulatory Commission for review purposes.

I With regard to any unauthorized use whatsoever, Philadelphia Electric Company and its officers, directors, agents, and employees assume no liability nor make any warranty or representation with regard to the contents of this document or its accuracy or completeness.

I I

I I

I I

I -

1-I - -

ABSTRACT I

A method for the determination of fuel transient critical Power Ratios (CPRs) has been developed. This method is based on the RETRAN and TCPPECO computer codes. The critical power ratio approach is used to describe the conditions at which

, a boiling transition occurs from nucleate boiling to transition boiling. Qualification of this method is provided through I comparison to the experimental transient boiling transition data taken from the General Electric (GE) ATLAS Loop. Application of this method is demonstrated by calculating the trans.ient critical power ratio of a typical licensing basis transient.

I I

I

I

'I I

I -u-

!I I

'I ACKNOULEDGEMENTS 4 +

The Authors would especially like to thank TVA for i their assistance in adapting their code for use by PECo.

B t

I I

I I

e I

I i

I - iii -

1 I

I I TABLE OF CONTENTS E Page -

. ~

Disclaimer ................................................. i Abstract ................................................. ii Acknowledgement ............................................ iii E Table of Contents .......................................... iv

-5 List of Tables .......................................... V List of Figures .......................................... vi

1.0 INTRODUCTION

........................................ 1 1.1 Purpose .......................................... 1 1.2 Brief Description ................................ 1

2.0 DESCRIPTION

........................................... 4 2.1 RETRAN Model ..................................... 4 2.2 TCPPECO Methodology ..............................

6 3.0 QUALIFICATION ......................................... 12 3.1 Steady-State Comparisons ......................... 12 I 3.2 3.3 3.4 Transient Comparisons Sensitivity Studies Results .........................................

13 15 16 4.0 METHOD FOR DETERMINING MCPR'S ......................... 18 5.0 APPLICATION ........................................... 19 5.1 RETRAN Hot Channel Model for Peach Bottom ........ 20 5.2 Results .......................................... 21 5.3 Range of Applicability ........................... 21 6.0

SUMMARY

AND CONCLUSIONS ............................... 21

7.0 REFERENCES

........................................... 63 I

I l

- iv -

I . . _

1 5

lI l LIST OF TABLES

'I -

TABLE DESCRIPTION 1 NUMBER PAGE I

I 1 GE ATLAS Loop Test Section Input Data 22 Used in the RETRAN Model i

2 Steady-State Results 23 3 Flow Decay,at Constant Power Results 24 4 Flow and Power Decay Results 25 5 Flow and Power Increase Results 25 I 6 Flow Decay at Constant Power Sensitivity Studies 26 I 7 Flow and Power Change Sensitivity Studies 27 I

I I

g

'I I --

I LIST OF FIGURES I

PAGE I FIGURE 1

DESCRIPTION RETRAN Model for ATLAS Test Section 28 I

2 TCPPECO Flowchart 29 3 Steady-State MCPR Versus Test Section Power 30 1 4 RETRAN/TCPPECO Transient CPR Predictions for 31 through the Flow Decay at Constant Power Transients through I 16 (Runs 101, 102, 104, 105, 106, 108, 110, 111, 112, 113, 114, 257, 258) 43 17 RETRAN/TCPPECO Transient CPR Predictions for 44 through the Flow and Power Decay Transients through .

28 (Runs 201, 202, 203, 206, 207, 208, 211, 215 55 216, 217, 218, 219) 29 RETRAN/TCPPECO Transient CPR Predictions 56 I, through 32 for the Flow and Power Increase Transient (Runs 229 and 231) through 59 I 33 Calculational Flow Path for MCPR 60 34 RETRAN Hot Channel Model 61 35 Application Section Results 62 I

I I

I

-m-

1.0 INTRODUCTION

1.1 Purpose The criterion used to quantify operating limits for a BUR is the Critical Power Ratio (CPR). CPR is defined -

as the ratio of the power necessary to obtain the critical quality, for a given mass flux and pressure, i

to the actual bundle operating power. The steady-state operating limit for BWRs is determined by calculating the transient change in CPR. This report describes a metaod developed for calculating CPRs

( during transient conditions using the RETRAN (1) and TCPPECO (2) computer codes.

Qualification of this method is provided through ,

comparisons to the steady-state (3) and transient

{ boiling transition data (4). Furthermore, this method has been applied to a typical licensing basis transient for Peach Bottom and results are provided.

1.2 Brief Description In order to determine the operating limit CPR, a method for calculating the ACPR during transients is needed. The RETRAN and TCPPECO computer codes were used to develop a method for calculating the A CPR as described below, f

I The overall system level transient response is calculated with the RETRAN computer code. The results of this system level calculation are used to provide time-dependent boundary conditions to a separate .

RETRAN model of the limiting fuel bundle generally referred to as the " hot channel". The RETRAN code does not contain a critical power calculation, therefore, ACPR cannot be obtained directly from the hot channel RETRAN run. In order to determine A CPR, a computer code TCPPECO was developed to utilize the hot channel results to calculate the transient CPR and A CPR using the GEXL (5) correlation. GEXL is a General Electric Company proprietary critical quality versus boiling length correlation. The GEXL corre-lation is based on steady-state boiling tran~sition data obtained from a variety of electrically heated test sections, including simulated full-size BWR bundles.

I In order to establish the validity of this method, RETRAN and TCPPECO were used to predict transient boiling transition data obtained from the GE-ATLAS loop facility (4). The GE-ATLAS loop provides both steady-state and transient boiling transition data for single-rod, 9-rod and 16-rod electrically heated test sections. The 16-rod assembly data was chosen for use in this qualification work since this geometry most closely represents a full size BWR fuel assembly.

I 2-I

The following sections describe the RETRAN model used to predict the data, the TCPPECO computer code, results of the data comparison, results of the l sensitivity studies, and application of this method to a typical licensing basis transient for Peach Bottom.

1 B

I 1

I I

I .

I I

I I

I 8

I I

I

B 1

2.0 DESCRIPTION

l 2.1 RETRAN Model B

A RETRAN model was developed to represent the test section used in the GE-ATLAS loop facility. A total I of thirteen control volumes were used to nodel the W Atlas test section. Twelve control volumes were used t

for the active core region (heated length) , and one

" time-dependent volume" vas used to model the upper plenum with constant conditions specified. A total of f thirteen junctions were used to represent the flow paths. Twelve junctions connected the core volumes l One additional junction was set and the upper plenum.

up as a " positive fill" junction to model the. inlet flow to the test section. 'This provided flexibility -

f to model the inlet flow and enthalpy as a function of time representing the measured data. The power addition to the test section is constant for both steady-state and flow decay at constant power l

transients. Therefore, the power addition to the test section (Volumes 1 thru 12) wes simulated using the "non-conducting heat exchanger" option available in l RETRAN whereby the user directly specifies the amount of heat to be added to the water in each volume as a function of time. A schematic of this RETRAN model is shown in Figure 1.

i I

For the power and flow decay transients, and the power and flow increase transients, the test section power varies as a function of time. Therefore, conventional heat conductors were used to model the power addition to the test section. This was necessary to account for the conduction effects due to the fuel rod thermal time constant. In order to use the conventional heat conductors, metal properties and heater rod geometry were requi. red. The calculations for the RETRAN model used in this study are documented in Reference 6.

The test section geometry input data used in the RETRAN model is given in Table 1. The inlet flow, inlet enthalpy, total power and core exit pressure were obtained from the measured data as a function of time. 'The model was initialized using the steady-state self-initiation feature of RETRAN. The total power was adjusted until the RETRAN predicted core exit quality matched the measured data. It was found that in almost all cases, the total power to the test section had to be reduced in order to obtain an agreement with the measured core exit quality. This may be due to the power lost between the power measuring device and the test section. The automatic time step control feature in RETRAN was used during the transients.

I I

~'~

I

2.2 TCPPECO Methodology lI As stated earlict, the figure of merit used to quantify thermal margins is the Critical Power Ratio (CPR) . CPR is defined as the ratio of the power

'I necessary to obtain the critical quality (for a given mass flux and pressure), to the actual operating power. The TCPPECO computer code calculates the CPR versus time using the thermal hydraulic response predicted by the RETRAN hot channel model.

The RETRAN minor edit results for nodal enthalples and mass flow rates, bundle pressure and saturated liquid and vapor enthalpies are required as input. TCPPECO utilizes the GEXL critical quality versus boiling length correlation to calculate CPR at each time step during a transient by an iterative procedure. For each node considered, a CPR is estimated and the nodal qualities are corrected based on this estimated CPR.

A revised boiling length is calculated based on_the revised enthalpy distribution, and used along with the nodal mass flux and bundle pressure to calculate a revised critical quality at the node. This process continues until the revised quality is equal to the revised critical quality, and the estimated CPR which produces this condition is considered to be the correct CPR for that node. The channel minimum critical power ratio (MCPR) .is defined as the lowest nodal CPR calculated for a particular time edit.

I I

I The TCPPECO computer code calculates the CPR using iterative techniques described as follows: (A flowchart of the code is found in Figure 2. )

1. Read Title cards. The first two cards of the input are title cards. These cards consist of a title, problem dimension and control options.
2. Read First data card. This data card provides the thermal hydraulic data for the IMAX and JMAX junctions. The data is used to determine the boiling length at the junctions near the iaottom ,

of the channel (IMAX, maximum 10 are allowed) and CPR near the top junctions (JMAX, maximum 10 allowed).

I 3. Read Second data card. This data card provides the fuel rod and water rod geometrical dimensions.

I

4. Read Third Data Card. This card provides the bundle flow area, bundle R-factor, bundle active fuel length, and the time limit. The problem terminates when a user specified time limit is reached.

I

'l I

I

5. Read Fourth and Fifth Data Cards. This card contains the channel heights corresponding to the IMAX junctions and JMAX junctions. (IMAX, 2 to 10 values are allowed) (J MAX , 1 to 10 values I are allowed).
6. Read the transient thermal hydraulic data from the RETRAN " Hot Channel" case. This data consists of flowing enthalpies at the junctions, mass flow rates, system pressure, saturated liquid and vapor enthalpies at the syst.em pressure as a function of time.
7. Calculate, I HFG = HG-HF, where HG and HF are saturated vapor and liquid enthalpies taken from Step 6.

HIN = HI(l) , where HI(l) is taken from Step 6.

XIN = (HIN - HF)/HFC, where XIN = inlet gravity.

I 8. Begin CPR iterations with first 'J' junction.

GO = (W(J) /FLAREA) *36 00.E-6, where W(J) and FLAREA are taken from Step 6 and Step 4, re spec tively .

9. Calculate quality XJ at 'J' junctions:

XJ = (!!J-HF) /HFG, for J=1, JMAX I

5 5

I

10. Calculate revised enthalpy and quality distributions using a CPR guess (initial guess of 1.20):

I.

HI = CPR * (HI - HIN) + HIN XI = (HI - HF)/HFG for I = 1, MAX HJ = CPR * (HJ - HIN) + HIN XJ = (HJ - HF)/HFG for node at which CPR is being calculated.

I

11. Calculate BL. The boiling length (BL) for node I 'J' is calculated as:

BL = ZJ (J) - ZDL -

where ZJ = Height of Junction 'J' ZDJ = Channel height where boiling begins.

A curvefit routine is used to find'the junction height where the boiling begins (quality = 0).

The thermodynamic equilibrium qualities from Step.9 and the 'I' junction heights are input in the curvefit routine. The fit is performed and the channel height (ZDJ) where the quality = 0 is determined. This value is then used to determine the boiling length from the relationship shown above.

I I

I

_9_

B

e I .

12. Calculate (XC) the critical quality via the GEXL correlation. Channel geometry, bundle R-factor, pressure, mass flux, and boiling length are used to calculate the critical quality at node 'J' using the GEXL correlation.
13. Calculate TM(J) . The thermal margin at node 'J' is evaluated from the following expression:

I TM(J) = (XC - XIN) (XJ (J) - XIN)

I

14. Compare the revised quality (XJ) in Step 10 at Junction 'J' to the critical quality (XC) de termined in S tep 12. .
15. If lXC-XJl < 0.0001, CPR is considered converged. A maximum of 1000 iterations are allowed. The converged CPR is taken as the node

'J' critical power ratio.

,l 5 16. If CPR is not converged, a new CPR is estimated as follows:

I CPR(new) = CPR (old ) * ( ( XC-XIN ) / (XJ-XIN ) +1. 0 )

  • 0. 5 The iteration continues with the new CPR until convergence is achieved.

I I

I

17. A check is made to see if all 'J' functions CPR's have been computed: ,

If 'J' = JMAX, go to Step 18, otherwise, set J =

J+1 and return to Step 8.

. 18. If TIME =TMAX, calculation is complete. If not, set TIME = TIME +DELTAT and return to Step 6.

19. Calculate MCPR. After the CPR has been evaluated at all JMAX nodes, the channel MCPR is
l = calculated as the minimum nodal CPR.
20. Print results. The results of this time edit are printed according to a user specified option.
21. Print A CPR results. The minimum bundle MCPR during the transient is subtracted from the initial MCPR to obtain the transient A CPR, which is printed upon the completion of the run along with A CPR/ICPR ratio.
22. END I

I I

I I

5

3.0 QUALIFICATION The steady-state and transient boiling transition data are provided in Reference (3) and (4) for the 16-rod electrically heated test section identified as 16R-2. This assembly exhibits a nearly uniform radial peaking pattern and a chopped cosine axial power shape.

3.1 Steady-State Comparisons I A total of 50 steady-state points were simulated for pressures ranging from 800 to 1000 psia, mass fluices ranging from 0.25 to 1.0 MLB/hr-ft2, and inlet sub-cooling ranging from 20 to 165 BTU /LBM. RETRAN-TCPPECO was used to predict the steady-state minimum critical power ratio (MCPR) for this data using the model described in Section 2. The results of the 50 steady-state cases are presented in the form of predicted MCPR versus test section power in Table 2.

These results are also presented graphically in Figure

3. It can be seen that the steady-state MCPR results fall into the range from 0.973 to 1.053. The mean was 1.007, with a standard deviation of 0.019, indicating good agreement with the experimental results. These results demonstrate the applicability of the RETRAN-TCPPECO methodology under steady-state conditions.

I I

I

I Transient Comparisons 3.2 A total of 27 transient cases, in which boiling transition was experimentally observed, were simulated. c Of these, 13 were flow de~ay at constant power transients, 12 were flow and power decay I transients, and 2 were flow and power increase transients. Whenever the test results showed that a large power decrease or flow increase was imposed to mitigate the rod temperature excursions, the RETRAN input was set up so that these large changes were I

ignored. The reason for this is that the conditions beyond the onset of boiling transition were outside the area of interest for this study. Instead, the data was changed to follow the same trends observed prior'to that point (in all cases, this occurred after the boiling transition was observed).

The RETRAN/TCPPECO transient runs were initialized ,by vary'ing the initial power until the predicted exit quality matched the experimental exit quality. The TCPPECO predictions were compared to the experimental data in terms of the time to boiling trans'ition (BT).

Whenever the RETRAN-TCPPECO predicted MCPR first becomes equal to or less than 1.0, a boiling transition is predicted to occur. The predictions are compared to the experimental data in terms of the time to inital . boiling transition, experimentally observed I

I

as the time of the. start of the first rod thermocouple temperature excursion. Cases for which BT is not predicted but was experimentally observed, the MCPR and the time at which BT was predicted are presented.

Plots of the predicted CPR versus time are shown in Figures 4 through 32.

The results of the flow decay at constant power are shown in Table 3. The boiling transition was predicted to occur in 12 of the 13 cases. Run number 112 was the only case in which no boiling transition was predicted; however, the predicted MCPR during the transient was 1.011. Figures 4 through 16 show the CPR versus time for these transients.

The flow and power decay transients were characterized by a simultaneous decrease in the channel power and inlet flow. The TCPPECO predictions for these transients are compared to the experimental results in Table 4. Boiling transition was predicted for all cases. Plots of CPR versus time for the flow and power decay transients are shown in Figures 17 through 28.

In the flow and power increase transients (see Table

5) , the test section power and inlet flow were increased simultaneously. TCPPECO was unable to predict boiling transition for these two transients; however, the minimum predicted CPR values during the I

transients were small and are well within the uncertainties of the transient data or the GEXL correlation (1.008 for Run #229 and 1.022 for Run  ;

  1. 231).

{ Figures 29 through 32 graphically presents the CPR versus time for the flow and power increase l transi~ents.

3.3 Sensitivity Studies Sensitivity studies were performed on the axial nodalization in the core region (12 axial nodes versus 24 axial nodes), the void models (HEM versus EPRI void

{ model), and the time stop size.

consisted of 12 nodes, the IIEM void model, and a time The base model step size of 0.05 sec (maximum) and 0.01 sec (minimum). The results of the sensitivity studies were compared to this base model. These results are

[ shown in Tables 6 and 7.

l The axial nodalization sensitivity studies were performed by using 24 axial nodes in the core region.

The results indicate that the data is predicted equally well using either 12 or 24 axial nodes.

I The void model sensitivity study was performed to evaluate the impact of using the EPRI void model as opposed to the !!omogeneous Equilibrium Model (IIEM) .

All ~27 transients were analyzed with both void models.

I It was found that the HEM and EPRI void models l

predicted almost the exact same results.

Finally, the effects of changing the time step size .

was studied. All the transients were simulated using smaller time step sizes (0.005 maximum and 0.001 minimum). The transients were also run for a fixed ]

time step size of 0.025 seconds. The range of time step sizes tested predicted essentially the same results. Plots of all the sensitivity cases are shown

( in Figures 3 through 30. The plots were all overlaid onto the base model plots so that any discrepancies would be immediately obvious. It can be seen that H there is little or no variation of the sensitivity L

cases from the base case.

3.4 Results

[ The results of this study are summarized below:

- The RETRAN/TCPPECO method predicted the GE Atlas boiling transition data very well.

{

I

- Representing the active core region with twelve nodes was found to be sufficient. Increasing the number of nodos to twenty-four had no significant effect on the predicted results.

c F _ _ - - - - - - -

I - The results were found to be relatively insensitive to the void model used. Therefore, either the Homogeneous Equilibrium Model (HEM)

I or the EPRI void model can be used to calculate .

transient critical power ratios.

- The time step-sensitivity studies indicated that the predicted results were relatively insensitive to the range of time step sizes tested.

I I

I ~

I g . .

I I

I I

I I I

l l

4.0 METHOD FOR DETERMINING TRANSIENT A CPR'S I

This section describes the methodology developed by PECO for determining transient A CPRs. The flow chart of this methodology is illustrated in Figure 33. The overall transient response is calcu.tated using the system level RETRAN model described in Reference 8. The time dependent boundary conditions calculated by the overall system level RETRAN model are provided to drive a separate RETRAN model, representing the limiting fuel bundle referred to as the l " Hot. Channel". An estimate of the bundle power is made for input to the hot channel model. The bundle initial inlet flow corresponding to the estimated bundle power for input to the hot channel model is determined using the FIBWR(10) computer cede. The hot channel run is then executed. The time dependent transient predictions of flow and enthalpy at various elevations obtained from the hot channel run are provided to the TCPPECO code using the REEDIT option in RETRAN. Using the time dependent conditions from the hot channel model, TCPPECO is executed to calculate the transient MCPR. If an MCPR value of 1.07 is reached during the transient, the transient A CPR is determined as ICPR minus the MCPR. If the MCPR does not reach 1.07, a new bundle power is estimated and the process is repeated.

il I

I I _

5.0 RPLICATION I 5.1 RETRAN Hot Channel Model for Pcach Bottom Generator Load Rejection Without Bypass (GLRWOB) transient was chosen to demonstrate the application of the method described in this report for calculating transient ACPRs. The overall system level reactor response to GLRWOB was calculated using the model cascribed in Reference 8. The results of this system level calculation were used to provide the time-dependent boundary conditions to the hot channel model.

I The hot channel model us,ed for Peach Bottom transient analysis consists of twenty-seven control volumes, twenty-six junctions, and twenty-four heat conductors.

A schematic of the model is shown in Figure 34. The upper plenum and core inlet volume are represented as I .

time-dependent volumes. The core region is represented by twenty-five axial control volumes.

Twenty-four heat conductors are used to represent the power ' input to the active core region. Geometric characteristics of various fuel types (8x8, P8x8R, etc.) can be used to represent the fuel types present in the reactor core.

I I

I

i I

The tims-dopendant boundary conditions from the system level transient calculation (pressure, inlet enthalpy, normalized power) were provided to the hot channel s model. The initial inlet flow to the hot channel was calculated using the FIBWR code (10) by imposing the initial core pressure drop obtained from the system level RETRAN calculation.

The transient predictions obtained from the hot I c'hannel run were provided to the TCPPECO code for determining the transient A CPR.

5.2 Results A typical licensing basis transient (GLRWOd) was analyzed to demonstrate the applicability of the method described in this report for calculating transient A CPRs. Geometric characteristics of P8x8R fuel were used.

The A CPR, defined as the initial CPR minus the minimum CPR during the transient, was calculated to be 0.29. A plot of the transient CPR as a function of time as calculated by RETRAN - TCPPECO is presented in Figure 35.

I I

I I - 2o -

I

5.3 Range of Applicability This method is valid only up to the time at which a boiling transition (BT) from nucleate to film boiling is predicted by GEXL. This method is also limited to the range of applicability of the GEXL correlations.

I I .

6.0 SUfG1ARY AND CONCLUSIONS The overall purpose for performing the present study was to develop a method for calculating transient critical power ratios using RETRAN and TCPPECO and to qualify it through comparisons to steady-state and transient boiling transition data.

Based on this study it can be concluded that RETRAN and I TCPPECO can be used with confidence for calculating transient CPRs in order to determine plant operating limits for use in core reload design and licensing.

I

~

I.

I I

I I

I I - - . .-

I TABLE 1 GE ATLAS Loop Test Section Geometry Input Data, Used in the RETRAN Model I Number of Electrically Heated Rods 16 Heated Length (in) 144.0 Flow Area (in) 5.19 Rod Outer Diameter (in) 0.562 Number of Spacers 8 Hydraulic Diameter (in) 0.523 Spacer Form Loss Coefficient "K"* 0.1136 Test Section R-Factor 1.006 I

I

  • Based on the flow area of the test section.

I I

I I

I

I Table 2 --- STEADY-STATE RESULTS TEST SECTION I RUN #

6 POWER (MW) 1.990 PREDICTED MCPR 1.043 7 2.427 1.035 I 8 9

10 2.711 2.929 2.908 1.016 1.011 1.015 I 11 17 18 2.629 2.626 2.150 1.018 1.014 1.015 21 1.052 I 22 23 2.098 2.217 2.786 1.038 1.019 24 3.164 1.000 I 25 26 27 3.203 2.827 2.264 1.008 1.009 1.012 I 28 29 30 2.359 2.392 3.020 1.024 1.008 1.006 31 3.414 1.019 I 33 35 36 3.426 2.958 2.371 0.988 1.014 1.024 MEAN = 1.007 I 37 42 47 2.539 3.178 1.664 0.999 1.005 1.024 STANDARD DEVIATION = 0.019 48 1.506 1.018 I 52 53 1.404 1.420 1.053

.l.012 54 1.400 1.008 I 55 56 57 1.368 2.067 2.535 1.004 1.014 0.995 58 0.982 I 162 163

'2.811 3.026 2.194 0.983 0.994 164 1.780 0.989 165 1.614 0.995 166 2.057 1.011 167 1.679 1.006 1.673 I 168 169 170 1.518 2.772 1.010 1.014 0.994 259 2.270 1.005 I 261 262 263 2.416 2.636 1.946 0.994 0.989 0.966 I 264 265 266 1.758 1.827 2.014 0.976 0.973 0.973 267 2.821 0.980 I - - - - --

l l

/

Table 3 - FLOW DECAY AT CONSTANT POWER RESULTS EXPERIMENTALLY I ICPR ICPR OBSERVED TIME TO BT*

PREDICTED TIME TO BT*

PREDICTED TIME

- OBSERVED TIME ~

RUN # (GE) (PE) (SEC) (SEC) (SEC) 101 1.32 1.33 5.37 3.10 -2.27 102 1.25 1.28 2.63 2.70 0.07 104 1.32 1.33 3.47 3.90 0.43 105 1.26 1.27 3.47 3.40 -0.07 I 106 108 1.45 1.29 1.45 1.29 3.00 3.63 3.00 3.80 0.00 0.17 l

110 1.45 1.45 5.16 4.95 -0.21 111 1.29 1.29 3.00 3.40 0.40 112 1.55 1.56 6.29 *** ----

113 1.44 1.45 5.24 5.20 -0.04 114 1.29 1.29 4.47 4.30 -0.17 257 ** 1.15 3.71 2.90 -0.81 256 ** 1.08 2.41 2.10 -0.31 l

l I

  • BT -- Boiling Transition
    • Data was not reported by G.E.
      • Boiling Transition was not predicted. MCPR = 1.011 at 7.75 sec I

I I

I I

I Table 4 - FLOW AND POWER DECAY RESULTS EXPERIMENTALLY I RUN #

ICPR (GE)

ICPR (PE)

OBSERVED TIME TO BT*

(SEC)

PREDICTED TIME TO BT*

(SEC)

PREDICTED TIME

- OBSERVED TIME (SEC) 201 1.045 1.044 4.59 3.00 -1.59 202 1.029 1.027 6.00 3.25 -2.75 203 1.009 1.007 4.18 2.20 -1.98 206 1.160 1.160 3.84 3.20 -0.64 207 1.190 1.200 4.53 3.55 -0.98 208 1.400 1.410 2.56 2.70 0.14 211 1.060 1.060 2.68 2.75 0.07 215 1.140 1.150 3.65 3.60 -0.05 216 1.170 1.170 3.88 3.45 -0.43 217 1.220 1.220 3.06 3.20 0.14 218 1.280 1.290 5.00 5.45 0.45 219 ** 1.335 3.47 4.20 0.73 Table 5 - FLOW AND POWER INCREASE RESULTS EXPERIMENTALLY OBSERVED PREDICTED PREDICTED TIME ICPR ICPR TIME TO BT* TIME TO BT* - OBSERVED TIME RUN # (GE) (PE) (SEC) (SEC) (SEC) 229 1.073 4.17 18.20 (1) -----

231 1.383 13.67 20.00 (2) -----

I

  • BT -- Boiling Transition Data was not reported by G.E.

I 1 2

Boiling Transition was not predicted. MCPR = 1.008 at 18.2 sec Boiling Transition was not predicted. MCPR = 1.022 at 20.0 see I

Table 6 - FLOW DECAY AT CONSTANT POWER I SENSITIVITY STUDIES Time to BT in seconds

{ RUN #

BASE CASE ALGEBRAIC SLIP FIXED TIME STEP SMALLER TIME STEP 24-NODE 101 3.10 2.85 3.10 3.10 3.05 102 2.70 2.70 2.70 2.75 2.70 104 3.90 3.45 3.85 3.95 (1) 4.25 105 3.40 3.40 3.40 3.45 3.35 106 2.95 2.80 3.00 2.95 2.90

[ 108 3.80 3.80 3.75 3.80 3.80 110 4.95 5.20 5.00 5.00 4.55 I

L 111 3.40 3.50 3.45 3.45 3.55 112 7.75 (2) 7.00 (3) 7.65 (4) 7.65 (5) 7.35 (6) 113 5.20 5.35 5.20 5.25 5.35

{ 114 4.30 4.25 4.35 4.40 4.55 257 2.90 2.85 2.90 2.95 2.90 258 2.10 2.15 2.10 2.10 2.10 I

l (1) 1.001 at 3.95 sec j (2) 1.011 at 7.75 sec (3) 1.009 at 7.00 sec (4) 1.011 at 7.65 sec (5) 1.011 at 7.65 sec l (6) 1.013 at 7.35 sec

I Table 7 - FLOW AND POWER CHANGE I SENSITIVITY STUDIES Time to BT in seconds Flow and power decay transients:

BASE ALGEBRAIC FIXED SMALLER

$S$_$ $_$ ____II$__ $I"*__$_$ $I"_I$_$ $_$$$5 201 3.00 3.00 2.95 3.05 3.00 202 3.25 3.25 3.20 3.25 3.25 203 2.20 2.10 2.10 2.25 2.15 206 3.20 3.15 3.18 3.20 3.20 207 3.55 3.55 3.55 3.55 3.55 208 2.70 2.70 2.70 2.70 2.75 211 2.75 2.65 2.75 2.75 2.80 215 3.60 3.60 3.60 3.60 3.70 216 3.45 3.55 3.45 3.50 3.55 217 3.20 3.20 3.20 3.20 3.25 218 5.45 5.70 5.45 5.50 5.25 219 4.20 4.65 (1) 4.25 4.35 3.85 Flow and power increase transients:

I BASE ALGEBRAIC FIXED SMALLER I RUN #

CASE SLIP TIME STEP TIME STEP 24

__-NODE 229 18.20 (2) 18.25 (3) 18.15 (4) 18.05 (5) 18.15 (6) 231 20.00 (7) 20.00 (7) 20.00 (7) 20.00 (7) 20.00 (8)

I (1) 1.002 at 4.65 sec (5) 1.014 at 18.05 see I (2)

(3)

(4) 1.008 1.014 1.014 at 3.95 sec at 18.25 sec at 18.15 sec (6)

(7)

(8) 1.004 1.022 1.015 at at at 18.15 20.0 20.0 sec sec sec l I  :

I l

I I UPPER PLENUM (Time Dependent Volume)

$ 13 I '

I @

11 l

10 I +a E@^ 8

?)

7 l

I u 5

. mo -

,I @

EE @

+2 I e@ u 1 IHLET FILL " POSITIVE" .

-VOLUMES N -J UN'CTIONS

- CONDUCTORS ( an-Conducting heat exchanger or Conducting Heat Conductors)

I

  • FIGURE 1 RETRAri Hadel for ATLAS Test Section l

I 1.2.3.4.5 I READ TCPPECO INPUT 13 1r CALCULATE I , ,

TM(J)

THERMAL MARGIN READ 1 r

@  : TRANSIENT 34 NEW _ NO COMPARE I

(RETRAN) "" ~

CPR XC-XJ<0.0001 ESTIMATED 1 r I 7 CALCULATE HIN 15 U

YES I 1 r CPR(OLD)=CPR BEGIN 1 r ITE ION g NO F

g ,

N uix YES CALCULATE 1 r

, XJ h NO _

TIME =TM CALCULATE 1 REVISED ENTHALPIES 18 I

AND ~

CALCULATE QUALITY MCPR DISTRIBUTIONS 1r 1r 11 20

'E CALCULATE PRINT

g BOILING RESULTS LENGTH (BL) p 1 r
I 12 CALCULATE XC 21 END VIA GEXL 1r l TCPPECO FLOWCHART FIGURE 2 g PAGE 29

I .

._. ._ _ , _ . . . . _ _ __ __ q _ .. _ _ _ _ _ _ _ . . , .._ o q o

M

_,_____.__' 4 Q.

+ _ . . .

%,- G s__

4

,_a____ '

___._J.

i.

,___'___;. 4 l

I r D 4

___._ __ __ . _ ' _ _ _ _ l__

, _ . _ . , . _4....,;__ _3

! . _ _ ,! _ _ _ . , _ _ _ _ _ 4! . _ ,

____..._'____,- iho

.4_

,L m O ,

j ___ .'_ ___ ,___ ._ ,__.+_.i.+ ._. . _ _ _ _ _ _ _ _ - a.

% l l

, . } ,

'l b '

y._ _.>.._ - __ _; __._ -..._}____.y___y Q

$_ ..___j____i._'.__ _ _ .. _ _ _ _ _ .' _ _ _ _ j f:::] ,

D  ;

__ __ ,! __ p! __ ___ ;_.

D ,

O ' ___;_____j.._ _ 4 __j__ '1 C EE b I !____  !

[ ;_.._______

__,_____.,___ l _,

+t.!___-_-__ __.__ ___'____. ,L:;: 4* C CO O , ,

5 j_____$_____, +t' l . t . _ ; _ _ _ _ _ , _ _ . .. _ . .I. $ h OQ  ;  ; ,

+ ,

. w s

ON  ;  ;

.,'_________.,____;___+3______.._.,____,.___.

S$ ,._____________!_+.

l + _ . _ , _ _ _ _ _ _! _ _ _ . _ ..' . _ _ CQ' r d I Qq Q., q e  : _____.,_____,_._______.._..____,______.____.,.7o 4+

e

,; . 7 l bkd j_. - l

_j_t__$.+_______..__;_..;I O

m NOO j , * ' '

;L Q,

% q _ _ _ _ j _ _ _ _ _ _ _ _ _ _; _ _ _ _ _ _ _ _ _ 4 _ _ _ p _ _ _ _ q _ _ _ z _ _ q .[ Q

'+ M  %

M q h to

,_____z__

;_____;__J____

, 4 ,

_ _ _ ,,____,___.)

l lt g q 6 b9  ; ,' l + l j  ; w

,_..__,___ .4_ _4. _ .y___ _;_____' ____,_____.,f y) '

Ng I

i

, _g. ,

__.L____j 4 __+_j ____j_____<- O E -.,

@g ,

____q N l

_ _ __ ;__ l

______.___,__ l }

+

,_____4_____;___

__;..T " I'2  %

Q

__.4 ____

b I  : lL l >  ;  :

3 j, .__j_.___.j__..__;____ --.+ 4_ _ __ _ _ ; _ . _ ; _ _ _ j, L

+ '

Q N

g

,.___4_

; l

_________;_____-_____.:_____4____;____;l l

M . ! _ _ _ .. ,! _ _ _ _ _ l _ _ _. _ _ _! _ _ q!________! l ,

h

__.,-___d_ ,

o i

)__ . j g%e l j_____j._ . p_.d____4.__;_____j____j_____j. M l l

+  :  :

,  ! 6

_ _ _ _ . ; . _ _ _ _ 4 _ _ _ . _ ; _ . . .. ; _

l o

s' _ . : ___ _,. . .

-pt,.__riF.rrrr .. p._ __,_-_...._._ .rrrr r rrr F ""'Trrrrt '"T " t J o e o e o o o m o I N o

o e

o e

o e

o e

o D

g

n. m m a - o ,- m a s o a.m g

im m ume = aus a mas sus an es uma e amm num m uma am e umas mas imm RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS (RUN #101) ---- Atc. stre BASE CASE 1.4-FIX TSTEP p_ SM. TSTEP R 1.3- 2 * * *- 24 NOBE I

T I

C \

A 1.2- g L \w o '\

W 1. I -

E R

A T

1. 0- SSOE"AS---------------- Nqm"lY' Y - E=N = r A ' WY:-M!-w :-

z I

O _

0. 9-I i i i 8 4 I i 1 0 1 2 3 4 5 6 7 8 BOILING TRANSITION OCCURS AT MCPR= 1.0 T1ME (1N SEC)

Sigwrs 4. TRANSIENT CPR VS. TIME PA GE 31

RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS (RUN y108) Atc. Si>P BASE CASE

1. 3 -
,. qq. - FIX TSTEP c SU. TSTEP R \

\

I 24 NODE T 1.2-~

I C

A L

P 1.1 -

0 W

E R

R 1.0-- - - - - - - - * - - - - - - - - - - - - - - - -

A UCPR=1.0 O Ge _. l# e,% , . .V wa .7 ,

  • c.* , ,. ,  : , j. ,'

{

O

0. 9 - s n s- ,

e n n . u 0 1 2 3 4 5 6 7 8 TIME (IN SEC)

  • B0] LING TRANSITION OCCURS AT MCPR= 1.0 Sigwns 5. TRANSIENT CPR' VS. TIME PA GE 32 I

i e sur una em aus aus me e a em mim e use m ses sup zum ses, amm l

l l

l l

RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS

^1.o. sur (RUN 9104)

BASE CASE 1.4- FlX TSTEP

  • SM. TSTEP l  : - .~

r '

s.

~

C " gn ^ + ^ ' 24 NOBE R 1.3-I .:

T -

3 1 - g C -

\

A 1.2-L P

O -

W 1. 1 -

E '

R A 1. 0- NE?EEAS----------------------- -

~

T = ir~= ~ ~ - r -

L-w m L ~v n - '-

T I ~

O

0. 9- i i ..

i i i i i i 0 1 2 3 4 5 6 7 8 T3ME (IN SEC)

um as .

e em um e e ama aus unre um sure suo en ee a em RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS Atc. silP (RUN #105)

BASE CASE 1.3- F1X TSTEP "Y SU. TSTEP C

R '"**

24 NODE I  : \

T 1. 2.- \

I -

C _

A -

L  :

P 1.1 -

O .

W  :

E -

S

\

R 1.0- NS?02 U----------------------

R A  :

TO ;';~ ^

-- .: ,; lt ; '-

0 '.

0. 9- i i i i i i i i i 0 1 2 3 4 5 6 7 8 TIME (IN SEC)

BOILING TRANS]T10N OCCURS A T UCPR= 1.0 Siywec, 7. TRANSIENT CPR VS. TIME PA GE 34

- ==w w an uma as - see wm nwamm, ,

RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS (RUN y106) ALC. SLIP DASE CASE l 1. s- F1X TSTEP e

_ h 1 C

SM. TSTEP R 1. 4- -

s - ^ ^ -

24 NODE I

T ..

(

i I .

i C 1. 3 - ~

A ~

L P 1.2-e \

k R 1.1 -

3 R .

~N I i. 0-EfB=le'-------------------------------------------------------------

1 o

. m..-

~~ .

. . >.,r. v O. 9- 4 l 'i '

I I I 'l 4 8 2 3 4 5 6 7 8 0 1

  • B0lLINC TRANSITION OCCURS AT MCPR= 1.0 T1ME (1N SEC)

Siyuas 8. TRANSIENT CPR VS. TIME PA GE 35

- e - - -

RETRAN/TCPPEC0 TRANSIENT CPR PREDICTIONS (RUN y108) ALC. SLIP BASE CASE

1. 4-F1X TSTEP C  : SM. TSTEP R 1.3- ,,-

7

. my-.y ,..r, m. .1 . .

24 NOBE T  :

I -

C 1.2- '

A L  :

P 1. 1 - i 0 -

~

W E . ,

R 1.0- ---------------------------------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MCPR- 1.0 R .

A -

T 0.9- ' -

{ ,

s f c"^^- v-- .- .c.

0.8- ... .

O 1 2 3 4 5 6 7 8

  • BOLLING TRANSITION OCCURS A T LICPR= 1.0 T1ME (1N SEC)

Sipe 9. TRANSIENT CPR VS. TIME PA GE 36

mas er um em um es an um am> um e um um uma una y een ame um )

i RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS (RUN y110) ALC. SUP BASE CASE

1. 5 - F]X TSTEP 4

C SU. TSTEP R 1. 4 - '*-*

24 NODE I

T .

I C 1. 3 -

A L

P 1.2- \

0 x f

R 1.1 -

\.

x R

A UCPR = 1.0 * - - - - - - - - - - - - - - - - - - - - - - - - - - -

T 1.0-------------------------------------- --

I '

~ "^ '"

0

0. 9 - , , , , , , , . .

3 4 5 6 7 8  !

0 1 2 1 B0]LINC TRANS]T10N OCCURS AT DCPR= 1.0 TIME (IN SEC)

{

Wym 10. TRANSIENT CPR VS. TIME PA GE 37

ma su aus semi en es sur sua suo ask que sua gut me sus guns aus am em RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS ALC. SLIP (RUN ll111)

BASE CASE 1.4-F1X TSTEP c SM. TSTEP R 1. 3 - --

c -

w 1

~'

n "'" "^**

24 NODE T .

I C 1. 2 -

A L

P 1.1 -

0 W

[  :%

R 1.0-LICPR=1.0*

R A

0. 9-O g;. . y. .u - - - - - ., m g, 0.8- ......, ...... ,, .. .... , , ...,

0 1 2 3 4 5 6 7 8 B0]LINC TRAN SIT 10N OCCURS AT AfCPR= 1.0 TIME (IN SEC)

Sigwrs 11. TRANSIENT CPR VS. TIhlE PA GE 38

l RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS ALC. SLIP (RUN ll113)

-BASE CASE

1. 6 --

FIX TSTEP C  : 'Y~

R 1. 5- ~

SM. TSTEP I

T  ! "* *- 24 NODE I 1.4-C -

1 A  :

L 1.3- ,

p  :

0 1.2-W  : l R 1.1 R  :

AfCPR= 1.0

  • 1.0- ----------- --------------------------------------------------------------.-

A T  :

I O 0. 9-' i i i a i i

i e i 0 1 2 3 4 5 6 7 8

' BOLLING TRANSITION OCCURS A T LICPR= 1.0 T1UE (1N SEC)

Sicyn 12. TRANSIENT CPR VS. TIhlE PA CE 39 M

ima em an, unr; sus go em me em um que sun, test, que sus gar sus ami en l RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS ALC. SUP (RUN ll113)

DASE CASE 1.6-

F1X TSTEP C  :

R 1. 5- SM. TSTEP l .

,:.,,p.n:- ....

u yong I 1.4-c  :

A  :

i L 1. 3 --

P i 0 1.2-I R 1. 1 -

i b. %

R A 1. 0-

~

EER = l e *- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \--

~

i , . , , ;, , . -

} , .

0 0.9-i e i i i i i i i 0 1 2 3 4 5 6 7 8 T3ME (JN SEC)

BOLLING TRANSITION OCCURS A T UCPR= 1.0 Si,7wes 13. TRANSIENT CPR VS. TIhlE PA GE 40

vvuvuuv RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS

- Atc. Stie (RUN ll114-)

BASE CASE 1.3- m F]X TSTEP SU. TSTEP

~

C "*A 24 NODE R 1. 2 -

I y .

I C

A 1.1 -

L NS?E=A'0 W 1. O E

R I . . , ,

O

0. 8 - i . . . . i i i i

4 5 6 7 8 0 1 2 3 TIME (IN SEC)

  • BOILING TRANS] TION OCCURS A T UCPR= 1.0 Stym 14. TRANSIENT CPR VS. TIME PA CE 4-1

v - -ut__r, - - uu RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS (RUN y257) AL C. SUP

- BA SE CA SE .

1

1. 2 - F]X TSTEP i

,, wwh -

c ' "Y ~~ 2 4 ##M'

\ R Nr 3 -

\

l T -

l 3 1.1 -

l c

A L s ,

P 'N O . 1 W l R 1. 0 - E fR=1S_'________________ ____ _______-_---------------------------------

~

R A . ,

T 3 _

0 -

yg, ,. ,. . n , ,, p' ,. . d{ " e,e 4 3 i

^

0. 9 - . . . . . i i 3 4 5 6 7 8 0 1 2 BOILINC TRANSITION OCCURS AT MCPR= 1.0 TIME (IN SEc)

Sty m 15. TRANSIENT CPR VS. TIME PA CE 42

uma amo sus num aus as aus u m a o age een aus aus sus an ear aus aus em l l

1 RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS (RUN y258) ALC. SLIP

-BASE CASE 1.1 -

F1X TSTEP SM. TSTEP 1 C " '- '-- 24 NODE R '

1 T -

3 1. O C UCPR = 1.0

  • A L

i P

x R 0. 9 -  %

~.,

R ',g

+ , _ . . .

A ^ '

m ._ ,

~

T ' i' r ym ( i 1 Y4 v i

I 0

0.8- i i i i a a i i 0 1 2 3 4 5 6 7 8 BOILING TRANSITION OCCURS AT MCPR= 1.0 T1ME (1N SEC)

Stywns 16. TRANSIENT CPR VS. TIME PA CE 43

aus uns Cass sus em> aus uns aus em esu aus que sus sua gar se aus em RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS ALc. StiP (RUN ll801)

BASE CASE 1.1 -

F1X TSTEP SU. TSTEP

    • ^*

24 NODE

4. _

I T -

1 1. 0 --------- ,-----------------

C UCPR = 1.0

^ -

N

'% N,*

/

g w

/ 3 4

w v 4 g ,

R 0. 9 -

R A

T ~

I _ =~

0 .

0. 8-0 1 2 3 4 5 6 7 G BOILING TRANS] TION OCCURS AT UCPR= 1.0 TIME (IN SEC)

Sigue 17. TRANSIENT CPR VS. TIME PA CE 44

RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS (RUN y308) ALC. SUP

---DASE CASE 1.1-FIX TSTEP SM. TSTEP C

"" 24 NODE R -

I ' y i v'~" r T -

1.0--- -----*--------------------

I C MCPR = 1.O ~Q A

W -

L t

w P

O w -

N -

E -

R 0. 9-R -

A -

T I  : -?

o

0. 8- . . .

i 0 1 2 3 4 5 6 7 8

  • BOILING TRANSITION OCCURS AT MCPR= 1.0 TJUE (3N SEC)

Sip 18. TRANSIENT CPR VS. TIME PAGE 45

sus sur sua sus as un aus an sua en as as sus suu ma eu as e en RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS Atc. stiP (RLTN l}203)

BASE CASE

1. 1 - F]X TSTEP
SU. TSTEP 24 yoDr c  :

R .

1 .

1. 0-f- - 2 2 2 I=------- - - - - - - - - - - - - - - - - - - - - -

I c

A MCPR= 1.0 * -------------------------l. ,e N,_

L P j ff,*garO g

l R 0. 9-N #

R -

A ~

T I  :

o .

5 0.8- , , , , , , , ,

2 3 4 5 6 7 8 0 1 BOILINC TRANSITION OCCURS A T UCPR= 1.0 T1ME (IN SEC) 9ty m 19. TRANSIENT CPR VS. TIME PA GE 46

, , , g , g , p ,

g . ,--- , g- ,- g g RETRAN/TCPPECO Aic. Si1P TRANSIENT CPR PREDICTIONS DASE CASE

\

(RUN //206) F1X TSTEP

1. 4- SM. TSTEP l 24 NODE C

R 1. 3-I T .

I C 1.2-A _

g .y <<

P 1. I -

0 W

k i, o_

_________*___________________ ______________________.__->^Nbe.. g.

./y ^ jY "

MCPR= 1.0

  • R ,

A  % '

""7' T 0. 9- .-

0

0. 8-i i i i i i i i 0 1 2 3 4 5 6 7 8
  • BOILING TRANSITION OCCURS A T LICPR= 1.0 T1UE (1N SEC)

Si7 an 20. TRANSIENT CPR VS. TIME PA GE 47

es aus an en en aus se en em as que en aus CaCus Ces~C RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS

^1.c. sur (RUN ll209)

BASE CASE 1.3- '

FIX TSTEP i  :

SM. TSTEP C -

24 NODE l R 1. 2i , ,f ", .

5 l

1 '

T  :

I C  :

A 1.1 -

L  :

P  :

0  : #CPR=1.0*

W 1.02- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

l f% : '?::,:1# .

A 0. 9 N . J T '

I 0 i O. 8- i i i i i i i i e 3 4 5 6 7 8 0 1 2 TIME (IN SEC)

BOLLING TRANSITION OCCURS AT MCPR= 1.0 l

5tym 21. TRANSIENT CPR VS. TIME PA GE 48 1

me uns aus em en aus um aus en en sus au que tus uns uns as e en RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS Atc. Stip l (RUN ll208)

BA SE CA SE 1.5- ' F]X TSTEP c  :

% SU. TSTEP R 1. 4 -- '

"" 24 NOSE T  :

1 . t C 1.3- - \

A g L _

g P 1. 2 - -

O w  :

E -

R \

1. 1 _ .

R  :

  • f 3, g - UCPR = 1.0 ' __________' ____________________y__ l'_________________.

[

0. 9 - , , , , .. . ., .. ,.. ... ,

0 1 2 3 4 5 6 7 8 BOLLING TRANS]T]ON OCCURS AT DCPR= 1.0 TIME (IN SEC) hym 22. TRANSIENT CPR VS. TIME PA CE 49

um aus uns sus en an use un su Tu gas as sus aus sus uns ins sus em RETRAN/TCPPECO Atc. Stip TRANSIENT CPR PREDICTIONS BASE CASE (RUN #311)

FIX TSTEP 1.1 -

SU. TSTEP 34 MODE

. . ';f;

! N TDiGS

.Ly 1.0- *-- v %NT*

I C LICPR= 1.0 *

\

0 i  % f

[  ! N /i E

R 0. 9- M@

R -

A -

T I  :

o .

o 8- , ,

0 1 2 3 4 5 6 7 8

  • BOILING TRANSITION OCCURS A T LICPR= 1.0 T1UE (1N SEC)

Sigm 23. TRANSIENT CPR VS. TIME PA CE 50

m r n- n mum r, rv, e o RETRAN/TCPPECO ^1.c. Sur TRANSIENT CPR PREDICTIONS (RUN y315) BASE CASE F1X TSTEP 1.2- '

SM. TSTEP C

~

24 NOBE I

'"N l R - Y" '

I _

l T 1.1 -

' 7~

I f '

[ l

' vy l P 1. 02------------------------- ---- *-------------------- --------- --

l 0 MCPR=1.0

  • i W  :

E -

R 1 R 0. 9-l A

T I

O .

0. 8- i i i i i i i e e 2 3 4 5 6 7 8 0 1 TIME (IN SEC)
  • BOILING TRANSITION OCCURS AT MCPR= 1.0

! hyuas 24. TRANSIENT CPR VS. TIME PA GE 51

me seu um um sus es uns as seu un sua sum um em en su a RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS ALC. SLIP (RUN #316)

BASE CASE l

1.2- FIX TSTEP SM. TSTEP

" %)%?v 24 NODE c

R ,

I T -

1 1.1-C ,

A  %

\T P v 0 5,

1. 0 - NSEEEA'O -) - -

R /kWp

    • x d g. , - .

l

0. 9 - i e i i e i i l i i 5 6 7 8 0 1 2 3 4 {
  • BOLLING TRANSITION OCCURS AT llCPR= 1.0 TIME (IN SEC)

Sipwro 25. TRANSIENT CPR VS. TIME PA GE 52

me sus uma em aus aus uns an en um aus em sua em aus aus sus asu em RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS (RUN y317) A1.C. SLIP BASE CASE 1.3-F]X TSTEP C S2. TSTEP R

I T 1. 2-

?N ~ "Vi ***'

24 NODE I

C A

L  :

RI

,,, gt fw I K r mP

1. 0 -- NCEE2AA-------------------- *-------------

R Rf '

T p *

{ \. W.

0. 9-i i i i i i i i .

0 1 2 3 4 5 6 7 8 TIME (IN SEC)

  • BOILING TRANSITION OCCURS AT UCPR= 1.0 h y m 26. TRANSIENT CPR VS. TIME PA CE 53

m m rn r rn m r v r, r e RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS ALC. SL]P (RUN #818) l BASE CASE l 1.4- 1 FIX TSTEP l l

1

SU. TSTEP 1 C -

1 R 1.32 _

,. y m . ,

24 NODE r

I .  : >r , r,- "

~,y 1 y, T -

I  :

C  :

A 1.2-L  :

P  :

v 0  : v W 1.1 - v E

R  :

A 1. 0 NSEE=A'O - -------- --;,-- - - -

% -w" O  :

I

0. 6 , , , , , , ,

0 1 2 3 4 5 6 7 8 TIME (IN SEC)

  • BOILING TRANSITION OCCURS A T UCPR= 1.0 Sipe 27. TRANSIENT CPR VS. TIME PA CE 54

ame sun um aus sum uma en an een en sus uns sua su um um aus aus RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS (RUN ll819) ALC. SLIP BASE CASE

F]X TSTEP C YY ' ' '

g R 1. 3 - s -*-'

24 NODE I

T  :

I -

C  :

A 1.2-L  :

p  :

I' I R -

N A 1. 0 - NSEEN O-----------------------  ?- % h ,--l:-- --------------------------.

T I

O -

O. 9 0 1 2 3 4 5 6 7 8 BOILINC TRANSITION OCCURS AT LICPR= 1.0 Sigm 28. TRANSIENT CPR VS. TIME PA CE 55

me sus as seu em nas sus num aus um aus sum una sus sus aus sus sum aum

.RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS (RUN jj239) Atc. stiP

-DASE CA SE 1.4- '

FLY TSTEP

~

SM. TSTEP C

R 1.32 ^ ' ' *- 24 NODE I  :

T i -

s I -

7/ 's c  :

1 -

A 1.2- '

L j , . ,

P  : -

O

~ ^ *. .

f R

1 1-j

' 4

  • r m A 1. 0 EER 10* _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

T I  :

O i O. 9- ',. ... ... ..

0 1 2 3 4 5 6 7 8 9 to TIME (IN SEC)

BOLLING TRANSITION OCCURS A T LICPR= 1.0 h y m 29. TRANSIENT CPR VS. TIME PA CE 56

une su um as em sum aus sus sus sua sus um num na muu sus em em RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS (R[l.V lG89) ALC. SLIP PASE CASE 1.4- -

F1X TSTEP SM. TSTEP c

R 1.3- ' * *

  • 24 NODE I

4 T

I C  :

A 1.2-'

L  :

P  :

O  :

W 1. 1 -

E  : -

R +- . . _ ,

, - ~ ~ z y _- _ _- .

A 1.0-- ff M ;1 0_'___________________________'____[ _ __

!_M__[1_M6Oh_$_3, T  : -

i I  :

O i

0. 9-~
g. .g. .g. .g. .g. .g. .g. .g. .g. .g. ,g 10 11 12 13 14 15 16 17 18 19 20 TIME (IN SEC)

BOILING TRANSITION UCCURS A T UCPR= 1.0 Sipwrs 30. TRANSIENT CPR VS. TIME

PA CE 57

umu uma uma sus en sus aus am sus sua sus uma um suu sin a sum aus RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS ALC. SUP (RUN #231)

- BASE CASE 1.7- ~

F1X TSTEP C 1. 6 -

~

>- SM. TSTEP R .

l I .

24 NOBE T 1. 5 - x I _

C . .:

A L

1'4- ~

~

" * '"' '- A' '

4- ,

P 1. 3-'

O  : r-1.2k ""'y R r.,

R 1.1 -

A  :

T  : MCPR = 1.0 ,

I 1.0-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

~

0 .

D. 9-~ ... .,

0 1 2 3 4 5 6 7 8 9 10

  • BOILING TRANSITION OCCURS AT DCPR= 1.0 TIME (IN SEC) h ym 31. TRANSIENT CPR VS. TIME PA CE 58 l

ime aus num num em aus aus aus sus e een ime sus sus en aus sus i

RETRAN/TCPPECO TRANSIENT CPR PREDICTIONS (RUN l}331) ALG. SLIP

-- BASE CASE

1. 7- l F1X TSTEP '

C 16- ~

SM. TSTEP R

I ~ ~- % NODE T 1. 5-I  :

C  :

A 1.4-L  :

P 1. 3-O  :

W  :

E 1.2-R -

. ,_ ~ " ~

R 1. 1 - . . . . .

A  : '+- .

' ' ' ' "' ~

{ 3,o}_1l.QEB=10

  • v- -

o  :

0. 9-
g. .g. .g. .g. .g. .g. .g. .g. .g. .f. .g 10 11 12 13 14 15 16 17 18 19 20 TluE (IN SEC)

'D01 LING TRANSITION OCCURS AT llCPR= 1.0 Sipe 32. TRANSIENT CPR VS. TIME PA GE 59

I I

I BOUNDARY CONDITIONS FROM ~

RETRAN SYSTEM I LEVEL MODEL RESTART FILE I CHANNEL FLOW I SINGLE CHANNEL FIBWR

RETRAN HOT CHANNEL MODEL MODEL g

RETRAN I ESTIMATED CHANNEL RE-EDIT FOR BOUNDARY POWER CONDITIONS n

l l TCPPECO I NO CPR=1.07 YES TRAN IENT ACPR I

'I I

METHODOLOGY FOR CALCULATING TRANSIENT ACPR FIGURE 33 l PAGE 80

4. A I ' ""

O i2s t u4 g M O i24 t t73 ~

V//A O i1s I Vf4 i 177 O 122 m 6;;i' t 170 Vfs f o i2o l M bs t 118 g M O, oe io Vffs O ia g M b ti t i15 Vffs O tis I Vfs f

t 114 O n4 9 113

a VA

/ O ns t 117 V//A O n2 '

'l f Vfs h\t t 110 g Vffs O na 9 i0s Vffs O tos t 10B g e O ios t 107 Vffs O to, I Vf/>

b to o -=""*

a 6 ':

m 6:::

I 4 .,o, m o,, a 6 ;;;

9 107 Vffs O so2 i g -next cowoucreas Vfg bios g

6'"iinelina?"icto=>

FIGURE 34 RETRAN HOT CHANNEL MODEL PAGE B1

um um um um em num uma em aus em nas e men am um um man um en TYPICAL LICENSING BASIS TRANSIENT (GLRw/oB) i CPR, POWER, HEA T FL UX vs TIME

\ --7.5 C

R l

h T .

N . E

E I A l

C U T A T l t

L R  ! F 0  ; L P N t U 0 X i W P I E O R 1.51 - W l- 1.33 R 1.36- s - R

/

~

1.07 .1 .1 l 0.0 0.5 1.0 1.5 2.0 2.5 3.0 l

l TIME IN SECONDS RED = CRITICAL PO#ER ratio FICURE 35 l BLUE = NORMALIZED NEUTRON PONER

CREEN=NORE ZU nuu ru.. PAGE 62 l

I

7.0 REFERENCES

1. RETRAN - A Program for One-Dimensional Transient Thermal-Hydraulic Analysis of Complex Fluii Flow Sys tems, EPRI CCM-5, December 1978.
2. S. L. Forkner, Program TCP to Calculate Transient Critical Power Ratio, Tennessee Valley Authority (TVA),

MDS-339, July 25, 1978.

3. Deficient Cooling 12th Quar terly Progress Repor t, AEC Research and Development Repor t, GEAP-10221-12, July 1972.
4. Transient Critical Heat Flux - Experimental Resultn, AEC Research and Development Repor t, GEAP-13295, Septebmer 1972.

I 5. General Electric BWR Thermal Analysis Basis (GETAB) :

Data Correlation and Design Application, Licensing Topical Repor t, NEDO-10958, November 1973.

I 6. TCPPECO (ATLAS) MCD-005 Model Calculation Data Book ,

PECo 1984.

7. 8x8R Ilot Channel MCD-004 Model Calculation Data Book, PEco 1984.

I 8. RETRAN Core-Wide MCD-001 Model Calculation Data Book, PECo 1984.

I

l I

l

9. FIBWR 8X3R Single Channel MCD-009 Model Calculation Data Book, PECO 1985.
10. FIBWR: A Steady-State Core Flow Code for BWR, EPRI NP-1923. June 1984.

I I

I I .

I lI

.I I

I I

I I. _ - _ - _ -

_ _ _ _ -