ML20236V331

From kanterella
Jump to navigation Jump to search
SAR for Peach Bottom Atomic Power Station Spds
ML20236V331
Person / Time
Site: Peach Bottom  Constellation icon.png
Issue date: 11/20/1987
From: Finn S, Lobner P
SCIENCE APPLICATIONS INTERNATIONAL CORP. (FORMERLY
To:
Shared Package
ML20236V313 List:
References
SAIC-87-1835, NUDOCS 8712040241
Download: ML20236V331 (143)


Text

- _ _ _ _ _ _ _ - _ _ _ _ - - _ _ _ _ _ _ _ _ - _ - - _ - _ _ _ _ _ _

SAIC 87/1835 SAFETY ANALYSIS REPORT (SAR)

FOR TIIE PEACII BOTTOM ATOMIC POWER STATION (PBAPS)

SAFETY PARAMETER DISPLAY SYSTEM (SPDS)

Authors: Peter Lobner Stephen Finn November 20, 1987 ffj2040241G72130' p ADOCK 05000277 PDR

l SAFETY ANALYSIS REPORT (SAR)

L FOR THE PEACH BOTTOM ATOMIC POWER STATION (PBAPS)

SAFETY PARAMETER DISPLAY SYSTEM (SPDS)

TABLE OF CONTENTS I Section Eagt

1. INTRO DUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Purpose of the S PDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 l 1.2 Users of the S PD S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 S cope of this S PDS Safety Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.

SUMMARY

OF REGULATORY REQUIREMENTS AND G umELINES FOR THE S PDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3. RELATIONSHIP BETWEEN THE SPDS AND THE PLANT M ONITORING S YS TEM (PM S ).. ... .............. .............. ....... .... 23 3.1 Overview of the PM S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.1 PMS Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.2 PMS Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 -

3.1. 3 PM S S oftware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 .

3.1.4 PMS S ecurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.5 PMS Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 Overvie w of t h e S PD S . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 35 3.2.1 S PDS Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3. 2.2 S PDS Hard ware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3. 2. 3 S PD S S oftware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.4 S PD S Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3. 2.5 S PDS Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 Interface Between PMS and SPDS................................... 38 3.3.1 Design Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3. 3.2 Implementation Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.3 Testing I n t e rf a c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.4 Installation Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4. INTEGRATION OF THE SPDS WITH THE PBAPS CONTROL ROOM........................................................................... 40 4.1 Information Content................................................... 40 4.2 Instrument Rang es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Warning and Alarm Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Location of S PD S Consoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5. INTEGRATION OF THE SPDS WITH PBAPS EMERGENCY OPERATING PROCED URES (EOPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.1 Overview of the PBAPS Emergency Operating Procedures ...... 42 5.1.1 General Structures of the PBAPS Emergency Operating Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.1.2 Uses ofInformation in the PBAPS Emergency Operatin g Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 S PDS Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 1

4-TABLE OF CONTENTS (continued) I i

Seenon Eags i

5.3 Functional Design of the SPDS Displays in Relation to  !

Emergency Operating Procedure Data Requirements .............. 56  ;

5.3.1 Display Hieramhy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3.2 Communication Linkages Among Displays................ 56 ,1 5.3.3 Aggregation of Data in Individual Displays................ 62 5.4 Relationship to NUREG 0737, Su Functions . . . . . . . . . . . . . . .....................................

. . . . . . . . . . . . . pplement 172Critical Safe ty

6. S PDS DATA VALID ATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.1 Basic Data Validation Functions of the PMS...... .. .............. 74 6.2 S supplementary S PD S Data Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7. S PDS HUMAN FACTORS ENGINEERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.1 Human Factors Engineerin g Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.2 Human Factors Enginee.-ing Input from PECo..................... 77 7.2.1 PECo Involvement in the SPDS Design Process.......... 77 7.2.2 Function Validation Testing of SPDS....................... 78 7.3 Incorporation of Human Factors Design and Operations Features During Evolution of the SAIC PMS and SPDS for .

Boiling Water Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.3.1 Grand Gulf Emergency Response Information System . . 78 7.3.2 Dynamic Screenin Group..............g Program for EPRI/BWR Owners

............................................. 79 7.3.3 Perry Simulator Testing for EPRI/BWR Owners Group........................................................... 80 7.3.4 Fermi 2 Emergency Response Information System (ERIS).......................................................... 80 7.3.5 Shearon Harris and H.B. Robinson Emergency Response Facility Information System (ERFIS) .......... 81 7.3.6 Cooper Nuclear Station (CNS) Plant Management Information System (PM1S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.3.7 Duane Arnold Process Computer Replacement............ 82

8. ISOLATION OF THE PMS AND SPDS FROM EQUIPMENT AND S ENS ORS IN S A FETY S YSTEMS .. .. ... ...... ......... . . ........ . . .... .... 83
9. PMS AND S PDS DOCUMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 10 PMS AND S PDS TRAINING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 10.1 Trauung and Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 10.2 Training Pro g r a m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11 PM S AND S PDS TESTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 11.1 Factory Testi n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 11.1.1 Functional Performance Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 11.1.2 Integrated System Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 11.1.3 S PD S Valid a tion Te s t. ... .. .. ... .. . . .. .. . . . . . . . . . . .. . .. .... 89 l

i'l 1

TABLE OF CONTENTS (continued)

Section Pagg 11.2 Fi eld Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 11.2.1 Field Installation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 11.2.2 Field Performance Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 11.2.3 Field Verification Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 11.2.4 Availability Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 11.3 Periodic Te stin g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

12. RE FE REN CE S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 l.

l t

1 I

1 i

111

. , LIST OF TABLES-Table Eagt 2.1 - Peach Bottom SPDS Compliance with NUREG-0696 Guidelines........ 3 2.2 Peach Bottom SPDS Compliance with NUREG-0700 Guidelines........ 9 2.3 Peach Bottom SPDS Compliance with NUREG-0737, Su

. Requirements and G uidelines . . . . . . . . . . . . . . ................ . . . . . . . . . . .10. . . . . . . . .pplemen 2.4 Peach Bottom SPDS Compliance with NUREG-0800 Guidelines........ 12 2.5 Peach Bottom SPDS Compliance with NUREG-0814 Guidelines........ 20 5.2-1 Summary of Plant Data Available on the PBAPS SPDS ................... 57 5.3-1 Aggregation and Usage of Data in the PBAPS SPDS Displays ........... 63 5.4-1 Relationship Between NUREG 0737, Supplement 1 Safety Functions and Peach Bottom 2 and 3 Emergency Operating Procedures ............. 73-6-1 Definition of PMS Quality Codes . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 75 i

1 i

1 i

l-1 I

l 1

I f

iv i

4

LIST OF FIGURES Eigan Page '

-3.3-1 PMS and S PDS Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ 24 f 3.1-2' P M S D a t a . Fl o w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1-3 ' Peach Bottom PMS Operators Comote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1-4 Organization of PMS Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.1-1 Overview of PBAPS Emergency Operating Procedures.................... 43 5.1-2 Pmcedure T- 100, Scram (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.1-3 Proced ure T- 101, RPV Control (RC)......................................... 45 5.1-4 Procedure T-102, Containment Contro1 (CC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' 46 5.1-5 Pmcedure T-103, Secondary Containment Control (SCC) ................ 47

~

'5.1-6 Procedure T-104, Radioactive Release (RR)................................. 48 ,

5.1-7 Procedure T-99, Post-S cram Recovery (PSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.1-8 Procedure T-111, Level Restoration (LR).................................... 50 5.1-9 ' Procedure T- 112, Emergency Blowdown (EB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5,1-10 Procedure T-113, Blowdown Cooling (BK) ........ ..... ... .. .... . ... .. .... 52 5.1-11. Procedure T- 114, Spray Cooling (SPK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52:

5.1-12 Procedure T- 115, Alternate Cooldown (AK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.1-13 Procedure T- 1 16, RPV Flooding (RF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.1-14 Procedure T-117, Level / Power Control (LQ)................................ 54 5.1-15 Procedure T-118, Primary Containment Flooding.......................... 54 5.3-1 Expected Peach Bottom SPDS Display Hierarchy .......................... 60 8-1 Identification of Class 1E Portion of the PBAPS PMS..................... 84 11-1 Factory Acceptance Test S tructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 y

-.--------,..--,-_,m - -- . - - _ _

1. INTRODUCTION This SAR is intended to satisfy the requirements of NUREG-0737, Supplement 1 (Ref.1) for a written safety analysis for the Safety Parameter Display System (SPDS).

1.1 PURPOSE OF THE SPDS The SPDS provides a continuous indication of the plant safety status during normal, abnormal and emergency operation. The SPDS generates the information-necessary for rapid detection of abnormal or emergency operating conditions, as well as monitoring the plant's response to corrective actions. The SPDS displays a set of parameters which is sufficient to indicate the safety status of the plant.

1.2 USERS OF THE SPDS The SPDS will be used by the Reactor Operator, the Shift Supervisor and the .

Shift. Technical Advisor. The Operators Console in the Peach Bottom control room has

~

three positions to support these three users simultaneously. Separate control room l consoles are provided for Unit 2 and Unit 3. See Section 3.1 for a description of the Operator's Console.

i 1.3 SCOPE OF THE SPDS SAFETY ANALYSIS This safety analysis report (SAR) documents compliance of the PBAPS SPDS with applicable regulatory requirements and addresses the following features of the SPDS .

design and operation:

Relationship between SPDS and the Plant Monitoring System (PMS)

Integration of the SPDS and the PBAPS Emergency Operating Procedures (EOPs).

Integration of the SPDS with the PBAPS Control Room SPDS data validation SPDS human factors.

Isolation of the PMS and SPDS from equipment and sensors in safety systems.

SPDS Documentation SPDS Training SPDS Testing Details of the design and operation of the PBAPS SPDS are presented in the PBAPS SPDS Detailed Design Report (Ref. 2).

1-1

I

2.

SUMMARY

OF REGULATORY REQUIREMENTS AND GUIDELINES FOR THE SPDS q l

This section provides an overview of how the PBAPS SPDS complies with

{

applicable regulatory requirement and guidelines. This information is documented in the following tables:

Table 2-1  : Compliance with NUREG-0696 (Ref. 3) f Table 2 0  : Compliance with NUREG-0700 (Ref. 4)  !

- Table 2 4  : Compliance with NUREG-0737, Supp.1 (Ref 1)

- Table 2-4  : Compliance with NUREG-0800 (Ref. 5)

Table 2-5  : Compliance with NUREG-0814 (Ref. 6)

These tables also serve as a cross-reference between particularregulatory requirements and guidelines and the section of this SAR which discusses the matter in more detail.

j l

l l

2 i

T

_ ~

s

._ t

_e C s t

e F. _

im S S im O .

r n Ce fTo D Fe fEo e sl a n af i

Sa r e P Oar oi n abo d e

Ta l eh t CS Ea l e h imt s

adn t a

b S bt c r h no Tm' ei r an ei r an ne ai d he pi o y t i .

t t mc i

r ad ce hreo' het t nr i

pi ad c e f S ut l

a gi n pi ng l

aR vA R

.~

s t t ic st F D sdo A OP sS l

t r ne ia c no t r ne ia c ioc i s S e eh t

ao i r t eh t t

ao ES dc er ai s~

c mt h l l an- l e Sr th i s

. n a

pO l t s i

icno mO p

ht l

s i

hmo Dlo dn s.n dn t

at ht n

e as me as Poanio Si n or Sc i i n

i ud ny ud ny i i

l o qe ia rh et qe ia i

l l s oi t D6 6' l

e m eif ml p t s ei f mlp ao nr yeid r st Pn So n d o Sl i r s ei a Sl i r ei s t

a uc n i o' n mt e oc i

_ i u Dau t d e Dau t d mo dc t i t __

C Pq S S m Pq S rc i r ae t

ne c e

G 6

S y ell ha MD P P he e

a s S y ell ha MD P P S

h e

t e eht ph d g et st haia s r t

t i n Se Me aS S e

e 9

6 Tc i ASp Th

.s t Tc i ASp Ta s Tms rap e P S S 1_

0- ys .m yug. .

ys .m yug

.e yf ooo e

ym ym ynl a y pi on l l l l l l l t G pei p n pe i p n pa ple sf e l pi l

p _

E ms mi mti cmr ms ml i ms mpt a r ml t

R ot Cno ol a l

o n u e ot Cno ol Cca Ch oe omas Cihn oa m o

U Cc Cft t scu Cre C N

h .

t i

w C C F F n _

e n o _-

c S f

S

' O O /t o

i t

a n /

I

/ E

/

E a i t d a S S S

/

S m a i l

i D r' d a

_ l p P D D D o i V

P P P F l

a m S S S S V a o -

C - - F -

y a a t

a C ceon S c e

cn eo O c e

l p

t a D ._

S pi t T p pi t E p s D f o

D n Sa c i n S Sa c n S i

D e n P o ef ri i

y e r eif ri i

y e r y m o at s at s i

S i

al a a al a r Ti- t t

p w u l p win wau l p win a m l c a

m i

r dQr a c i

s dUr dQ r i s drU iy rt a

e i

d n

o c D ay a D a Hi c Pi c R y

t t

s e Him S Ha S Ha Sl p i

S I

Sr u e

o D Cs D Cp s l

Fs m D Fp l

B Se i

P Si Oie P Ois Dm Pi D Dl i P Pa h TS S TD ES S ED SS S SF c 6 a 9 e 6 P 0

- n

. G i o _

1

- E t c 8 9 9 7 8 8 1 1 1 2 R S e 2 2 2 4 4 4 5 5 5 e U l

b N a

T e

r 3 5 5 2 3 a 3 4 4 4 P

1 1 1 2 2 2 2 2 2 1

_ 9 1 1 2 3 4 5 6 7 8 9

_ 1

_ 1 m

, l l;l lj illllIl qll !l

s s 3 a n ua,sapd rewd u a oehy v sea n r y ecc i 5 a r undt nf n

dc e uu h nrd oon f a 0

1 Tmo a r l p

s t

a deSu osea ht nl s l

cnst e i

t a s4 a et f .

i d

e b D gS bam.

taPn l

nu n mlo t

nl a d y. nt o n ueSnPes iDt e

)

i gom fi r op3 2 i bh el aat s s u o w t

o n iot aflr SuSuy A

,n t

R d n f d t i nr .

c a l s inr n n o a e sl sr invMsbvrya S e

u e not e in e o c vb is l ee ot e l

pi ot r

e s n

n c

i t

at e r ud i

s ri t t n

t c sdaie yer i mr dm pit e as n e Pmdt arte eo nth i

ht i

t a Sos o l

ege adaeo Sa r i nh garr y n n t snS l per nvtr m Da nu aqcor t

uf plcc oluub i o

c i

l p Dew.

Pr r ei rde pue is r oteyr Pp S sc t 8

(

Soh o )e l S

t d ef u a y ia a s aSn n s

m o d f .r u Sc Dis n dhdn v nt i

en h a Saddn Dta aneo cMo i i

o efo uemy a Tf e

C ne e. i l s ei st P p t c

n a ci a n(f P ,e sl r 0 .o Pd e nac euei s e i

l e San n Smbe r a t

e yi s3m le'e S e Aaol ahhs ni l S d Mido o h i h odea r t bi v h .bipv t t e

e i

u Put a a i i gd d t

TforR. a Tts nhh eTt at cv a T S a a at t

p aint a S G

yriol

.f vA y dS o y.ht i

r

.se i l i pr yP.Mtamrd r ade l y

foheDcieb i

pta vava pde l

l l ye s l e e yl l l as l pt t pt t l b a pea t

.l p eci h r noSpe s

% mr eta a miet rl muud o ii nnii p r a t om e mh n e yM e c t t i m

o Co v a en opaf 6

0- Codo si Cmmrv aa Ni t o n ehaPaa Coct n r c C

G E

R s e r U d f e

&o u y N t t n ht t e

h i

n n ei o e O f a

g g o t

n a ct n S i

e c u t M Run T e i

w n d i c r n e a r

F -

u a c c c e a c o S n T e e a d p ps p S D i

n S Sa s S n P l

p a y ye y o S s a ad a i t

n m e l p

l pu l a e o n r p o un i s si t s m r

e C in i i

t do i D Dg D o t w

et f e S n c da a a a as n t

aM t e B mh t I av i

D r as s n c Pa Ddn Dtn Di a a s P

S s

e S V Se r Se e Sv t

Se m io t D Dt a DT Dnm Di r Dts l at o

m Pa P Pui Pe Py t

o SD S& SCT SD SS I s

t 6 o 9 B 6 0 n h -

c G i o

a E t 1 1 1 1 1 1 e c P R e 5 5 5 5 5 5 U S 1

N 2

l e e g

b a 4 5 5 5 5 5 a P 2 2 2 2 2 2 T

m 0 I 2 3 4 5

_ t e 1 1 1 1 1 1 I

_ u ll

co e hn n r d eoi t T r hi o t o a eeo r r r c mb n h ma i

ppe R u q

i t

wia t ie t r t

b mnS C e wrt on i

d a i r ant p ci n y o oe ct ei R

f o

r e r e d f a ta f

estunppo sl aal e

fr om um R A m adaS l

s o ns gt i oi s

)

A ol i .l S i

t s f r e or rt i

l g . i naot s t s pg dy d S gaa is s t s en e s r vn h n e nl on niS ayensia t

r a e l i naD t u e d ai o o i i l t b r t t

se d defas mr m n c o nm t

c ht n orP dam.

t i

n n na uor S n oo s e r pS r oi t

n a n i e i

4 D ao sco eoe u accpr o

i l

i 8

l l

i t

cp 4 P em r e e r p gmh l

cnaa e t l c p wnudo n S sl ohl n og t

nadehl

(

m n

o o e i

m dt m on il pngt pn s o i Sf e r i h

St n Snt n i i

t a ri S anns e

n C t

c e

Dda Pnl t

c e T Do Pc Dt Pnc o rl a eo t

r h

Dcgaodp h i

S S ac g deR S Se S e o pt r onp e SPinh i c "s e.

e mt wmek l

d e e e hie ngA e e

l b h eh t h es o oo e aa s r a

a vs cr h i

u S Tt seinS e s S

ic s.

Tn i Toe c Nl o

.af T mW m .b a c m

y mc

.s G y

. .t ye b h i

y

. l pa l yn a ymd .f y yded" t

a i t 6

l p

l pvet l

p pn ai l

pi o l l pal l

porr i e l

pa r oin ir 9 m o

ms o nf m

o t

orm mt oc a mma r u mn oeq u mlpe da rSot 6

0 C Chb 1 ee1 C Nt e Cl o o ois Cnv Cht re osfMsh CinPacc di G

E R e U t a n s

y N n

- r t o rl a

s h o n m d ep t N o69 o t e m ht si t i

d m6 o a c mn oD a w n e0 R f o m a D- m i hdt l r e l o yt n e o oGs I i c

n S

En t r f t a it was n n F D t t n

i l iS e o y i

a P mRe o it y bag n

cm ne s

r a

l p S n

mum gN r e C

n l

i b

diat et r s P e

l p

s ea ey o ou i

m e i a D Re r g i

o n e s r n z f rS n o w m Pt q o indr y p y C i t

n ee ga aO em t

no i

t r oncR i

f ee t a a S o Bt s i l a

c o c o l

py i no r e m i

t a a o eB s c oR p D

P c r ey cS amn ic r o L Rl o in Deg Nlo O i

P r

fay s f oi t S e rt i

l f c S Sr t Sr Sr t S S D an D Dn De Dn m

tee hsa f

uoun P Po Pm Po D

P D

P t

o QCF S SC SE SC S S t 6 o 9 B 6 0 n h -

c G i o

a E t 1 1 2 2 3 3 4 5 e c P R e 5 5 5 5 5 5 5 5 U S 1

N 2

e e l

g b a 5 5 5 5 5 5 5 6 a P 2 2 2 2 2 2 2 2 T

m 6 7 8 9 0 1 2 3 t

e 1 1 1 1 2 2 2 2 I

u

lj!

11 ll1 i )l1!j) ljll1: l11 l 1 - -

~

t s

et sn' ale S .i s sb n y s .

l a' al t ni a . ahei yr t e D S .

n em i p~ r y P Drd a c e as a uo h f e s at n t 4. t f S Pa ro a

c r o' e vef -

r pd i f5na do n e s ee Sob vho t or r

ege esa enoPI dh ot y ey af n sl yvt t a i oit O p. he hf as nro pear n . -

R mb i t ain r gt cE p k t t i nt ha e ar e a n

)

a rR l

A u gd hr os ngmlr oac d s d pA l r gS n ne t

io gteee eS fdA S g e

o aoS i

d nos df S i t a wn sn eirl al eS rec t

u s ,

e sr s i an ew7 ne o e abP n ore i

c y arrs "e t ht s iSt3 i

n t

sbi h r a

h it

.e7 el e ps ic deeiA nl d a iat n n en sb0 Sib D gi uB t

t n s mteu t in o y cs o

i nsn i oiPp- t l a rhc Pnd aeP e -

iec3 cOhiG e l

oei r 5 S e u i

c o cdi3 pmip5 t

af i nl a au

( n nou o ah h t

s m

o Sv5 Sr" l n a o mf r et nR E osE l pn a i t eCSo t

t Dro Dt n i

Dal fo wlat sniU e P pairt o t

rr h n C P pn c e n o pl aN hm c a

oe t

ah TE Pnt os i

i l

e St i at c St necve ea S i l ed ee ri t

e .P.Si i he a d htehe hl oS e e

l er n rb ee bmade l nix t -

t thr a oll pf i

u I sS Tp ne S Ta o Fi Oo ar dy ye f ae .hdnRon fs ns .

.w. c ataad G .o veS .s i l peahea ylae yr y t yso r yn l -

l psipS l pbeig su

. l p l yraAio pens Si t i l t pa a t l a pe pl t

d br l e

% mda t

mnr abe al -

6 of a t mmt o u aas t m o mnDsnndc o ne mm oy t i gi odu ds r a at 0- Cod Cntht C CmStoaPiou h cf Cfop o Cb Najdt u eh

, G -

E -

R ,

U ,

N l a y us r a

dl e h -

i m S -.

i t

iavb i D'

w dr na i

S P r

P ._

e s y IV D o S 'n ._

c a - P t ht i o -

n l p yde S d e

i t

a a s a v f t t

a w c _

i i l pi o a n i

D l f p r l m

se n e r o i t

m y i DD o R o i o o 'n r a

i t

s F t

c N C o d yd r n c

e n y a r e i

t n aa l e

o a e l b

S n o c msr Ss r i

t c

l p

t n i i

r n s I d D e i re re i r u P c s S Pt e fote u y D oys A S e S Sma sm Fa tl S t

aa rl S D D Dr ims np D ep pi s D

P aa ais m Pa l P P t

o S SP BP PD S OD S - .

t 6 o 9 B 6 0- n h o c G a E i

t 5 5 5 5 5 5 5 e c P R e 5 5 5 5 5 5 5 U S 1

N 2

e e l

b n 6 6 6 a 6 6 6 6 a P 2 2 2 2 2 2 2 T

m 4 5 6 7 8 9 0 e 2 2 2 2 2 t '

2' 3 I

C ll ll  ! -

wit n e s. l 1 some e r ai s ini t gr si a t m e na ali i

b d

e dgnv z isd xe I t

t a i

u ieyed vrdr ou e eda n i n .

ev e a G pu ndoc r t met r s l a R mn g

. f aya t

n oae r o A o (u e R

l

)

ye ci v e t .

f t ab g S t d t dt 9 i t l dha y s de 9 e e cai t d a i

adaba et ic t i z

u e pot ae r sl i

l h n0 e i

n c spt r p t l amea ae iump. i gf v i n b n i

t c r t qe a ios o t u

a ol a i

n rmh t cap ct aR asyheA l

i 0 es b a l e

o i

l eo r a a ds e l i l u cdn de ot 1

c p t s st S v s c ,

wba p ac ai a i

(

c a ant n i x 5 m vns o ei s S o Se 3 Si l

s e o motoe soit ar op dtamt t

aieh D i

t c Dn m Dva n C. c yb p t ec t n P e Pi l e Pa i

l Si t

ass n Snoi S S Sa) i t

Se r e l r y Det e e eo9 e ee d Mbaoa i t t l oc Pmden8 e e h gG. e hh i

u Padipc p

.aSeit dsi S.t ui o rf i i S S 'I t y0 S Tw G ycMyds yslac t y

y yi i

.l n y

. .s ye o pi nueqS ba l

pw l l . l l l l l 6 pePaSn p pah p pb 9 mlp e pD g l mtn oade mo m mial t s m mia 6

0-omh spa CaTdSd i i ClpaS ne Cb ol e C

o ov s e o ora Cal C Cv G

E R g l U a y n o N y i d G i l

t b a y i

b h d o it a i

t e y L l l

r ay c i

i a

w y a l t ig b v h pi l a e i l

t Ss ib si mn l i

a n a c

n i

b a

sm r e Da i ai ni n a

v U t

a l ya a D a p ot s s de DrT n n i

l a ny nR a U w l a

p C eS g dn Sg o c Dn l

n Sy a dt i m

o n o f t na Pn n u n

ofe h i

o i s

st y Su o c C i t

s n n a ei l fD it a

h S e S n a oS c a o s r d T i p i t d ou nn e l f D r c E x a ca n PQr oo p o o P s i f e i i it t

a O C s e

S e S i S Sc nt S S c D

l D P aD Div i f

e iim D Da l

r u

m uP Pe P Po o t

o S QS SD DL S SG S t 6 o 9

_ B 6 0 n h -

c G o a E i

t 5 6 6 6 6 6 e c 1 P R e 5 5 5 5 5 5 7 U S 1

N 2

e e l

g b a 6 6 6 7 7 7 1 a P 2 2 2 2 2 2 3 T -

n 1 2 3 4 5 6 7

_ k J.

3 3 3 3 3 3 3

to oa omaoR Di w nd A di f r

d e an a e t p S ni t s oi no A h t n Sht hoe od pn de dol e r aiS t

e Aertosc c . i s

son e vl vt as i s nt Db f ts a R ht ec r s

. i rrt oachi i

s r s i

e ndio A en o dgr et ad S t

ain e n h ca n e xt bi os ue

. t dndnn s o x coS t ed s n1

) t i i e ntsnynr s. i a cSr6 d dl sp i ,D ht a1 e

u e ekem n ac rDo n epa l

ipyP i

si nl atiae x opc cn at se n So t t n c ge oo ah o t i l l S t s pypnl i i i

n ips r p c dto Stai t ui e i xt l aip 4 Dt c t

n a er S t u r ddc nt e mbath eunc t y n per oi t

1 Pe SS desm pf oauS pl u i

o i l

o sdD l l aeo r 3

cl u u plum c n t iintet de nP P id Stpe urf ne ue i

( n s

e m

o Su Dn Seh SsMoS DuPt e dh s i

v igla aacpna pns min i o aS S .

n C Pev sy Ps .t ne . i dnrh go aor cieoaio l t

c e Mde i

Sed,nb Sr o nt .er t eixcnt S Pt s es osl u oy l i i e e soy ii ef it rde adpri l e od e ee d h t ci ni s a t d t Ts eerso Heanf e t t hdl pA i apd i a i

u

.u stn o n Teb na i

S l t

.uS admo S Hly l G y q2 r p i

.ee c o .gl .

yS m y

. .a l

pr ein n l ymmsi t yi i pevsa pM e m. ssf r yc p& ur ae l l l l i p pd

% mrhe msr uid t mda mph se op t t et cu m mio 6 et v o si Ch iev n na oes sl oee oe yyr o r s pi n o

0- Cuwig t Cat rh Chtb C Cp e G

E y R i t

U i l

N b i

a i ht w-l h e i

t R ys g w d cg n ns nn i y i t

e an ted t s e

c go sa i l

n i nt i ie s i

b T a i dd nR a c an o p i ilp oo Cmo C a d o

m LC ao i r

o n St n t

aR y n e o Dl o o P C i Ae i l

t i s y -

t p Did t ut r i

b n a i t

n S f c pn a r g D

i r o Ac p u y u o t i i c

l e x c st P s l

o OC R E e el i r r S Db i S e t e r D nd Se S S S Fa p m on Ah t A A A Ra t

o CU DO D D D EC t 6 o 9 B 6 0 n h -

c G o a i e E t c 3 3 5 5 0 P 9; e 7 7 7 7 8 9 t

S 1

N 2

e e g

5' a 1 1 4 4 5 6 3 3 3 3 w P 3 3 m 8 9 0 2 e 3 3 1 3 t 4 4 4 4 I

(

ee a o e . tono atea nh cka t .

h h m di sS n e t t

r t ni t

iD o i

z So n Dt od yi a nb f r bie od t

od nP a i t

l i R nr pn oS eyc e i

t u oPnt CSi x os i A S

e adiase dd nhsye r s o ec i

ae t sl ieS r s van a ct ef t i t t h po ee oEnie nPad s sk e o da nt dy i

i ht ot r s dr h e l i l t o ed mlcS pa a w ul t mn eqA ac t

s ea ad o dl os e ehh e ae n sf o b s, r . t ek na u a c

ci . s doTt lbr l t c l i

a yy yd e ge om s y aP

. n S . daa er 4 ns ee inkklard ips de athO s

e i a

Dndeh g gi sa t 1 ma cnpoaiov r e de er esR.

vy t

l psE n l o Pi 3 i sb sd isA s yt an Ss hj udt r

i s n temroieidy p in s nS S i

dl a le e lasatacoem Symcrkd e r t

m o Su e s Ss p pl d o hf Tr h or i

t D b u no Dn hMi Dide nu o oeab i

c u h u C .of f

sol r e Penf ca shnt Pe v s .

mPt pen Pf hRA t

G es aiso S Sahl erf pi a of Se dn So 0

t ba rmsnmt l r e e l c

i t

ct oeky h e s,o mhit or 9 et h ei ht S

gnr n h e a e nr t c s 0

cla naao S Ttn .iYpuaY Tse Con f o Tlswi

.ue s 7 l l adt h 0-i l air aa c y yeT Sf pT yq2 .dt i

.iet n pe e eeS .cl yec yh pi nR nf r aR e l

pl el l l l de pr cai i l G l P p prin piS r E

ab nbb iiiiA m mch E eci gE mrh mv mra eg2 R

t odunuuBgdd o oaWme epn eW t o set i oo r e e oet 3 U NaeaaP C C m Q s siQ Cuw C pS Chi 5 in N .

h i

t e g

w a P

e i c l t

n u a

i l

l s

o e

r Mr p a t

r y w f o

m n t o o i r ar e e g

C C u a n r c H m o k a

o e i i t

S t S y T a i n

D n a e r e t n L P o i c a r

t n s n e y S

i n E o m a t

p u w a p u l p

i n f t

t s c m n a s r o e o i t

o c s A S D R D Dsay t

e S S S S S Sl o D D D D D D Dsp B P P P P P Pi h

S S S S S SD c 0 a 0 e 7 P 0

- n 1 1 4 7 8 8 G o

. i 4 1 1 1 1 2 2 E t

- c 3 7 7 7 7 7 2 R e 6 6 6 6 6 e U S 6 N

l b 8 a &

T 7 3 5 2 e 1 1 4 g 6 , ,

0 , 2 4, 1 a 2 1 5- 1 1 4-P 3 7

7 7 7 7 6 6 6 6 6 6

_ m

_ t e I 2 3 4 5 6

_ I e

t dret hl py o g 3 n s cn ot r s n re5 t

i sl a .

woe nts r wietnsh i n o R

orp y nl ga a y ds o est o t A h

sga n i ph Sl mshee i l

e c es t n S yn s my rc r awe R sDs c R. R. o s at e ae a oPii i i A

i l

aiwk f b S l

c S ay qiu nn e gS A A i t

h prf s pn ei aon o f eriye S S dd oi mtn i

t i

s dopr e

l ofS s s a o e doe dns ied ht t a yi sat t at .

i i

h i

ht nr4 c w yi e u e n rhdarnd gc t

i l n n ecndaay rl i e rh de pde e n n do o a

i a acdoi d e i i etri ve ntat vl . t nra t

aneh ne n 1

4 s n c il p

ega r

r sh nsR p

1 iee i i 4 1

1 uoe v e nt i n shf n scS 7

, m o

omosnedA t

n et e u i r oS it o

i Seh nt t oru et daa snrde i

o i n

o Sh ee e i

cl ss D Te u ci un t t Dt S

. nr a stsso 3

C al de i t i c c c t 7 l e ah e t e e Pn 0

l p fanmh o a t

S P sot S S S Se n.

G eoc rTr e n e ePc shtai i

t e e emo hOaheTs yac i

hsya ai e e e h gt E I

' urpes3 t

t r

S T Eta t .t e

S S Tua a t n

R .ta nnae5 dose Pf vR .oe

. . t . .

yt eot t y yn y y U s. l s )i sen o l lpla he dos aiA t

t l l l yt m

e pmPimd mi t p c p p ps m pt eEt nr eS e ur Nni hl mrOc oa r at a r c m

o oeda l t

ear oh s m o

m o

mvt or s Cla(Eol c aae i

t e pS C Ch t ar t pct n ehl C C Csien i d wiu eG c l nd a l a

c n i

an i t m o g l

p a i r r o r i

f n C e t s N t a o i mt f e c y n t

s o o n ai o on g Dt n i n L xo Cem s y i r na i l l t pa Ei a t Se r a us n dP a i sm ot Do l

t n Di p i f

i r Dr o ipe Pu i s

laiit Ao t e sf m Sq D nd - s i r un h s u e e on nu t C oI us nt r s io oa n nu osn mR n o

i c

n t

a rC it t

cS ig i t a t

it a I o1 el ny s nt t

t i

o pa ut e oS l

em C Omr t

ot p Fe f D Cy Ro o

Bne i r Ss So SaS S Se f t

SR hm 1 c De l Dn D D Da Dl ce s Pb P b Pg P PS Pm al p t

n D e Sa i SA Si n S St n St e ) r )d ) n ) ) a ) n Pp u

e Ra (V Rn

( a Ri m R Rl (P Go (C

m ( (

3-

.S l e

p p

2 u n l

e S i

o b , t A. A. A. B. B. C.

a 7 c 1 1 1 1 1 1 e

T 3 7 S 4 4 4 4 4 4 0

G E

R g U g N a 7 7 7 7 7 7 P_

_ m t

e 1 2 3 4 5 6

_ I E

s aheiyt r e s iC 2 i

nt 4. t f adeE wtc P 1 s if5na i

. doenoPI n es wlee .

7d

9. an t

a R t ef e ht S 1 ht A

ai o i O p. i 3

R R gt cEp t

vr nD s A S A e rae g gS neS u eeiP r Gm Re n

a S

s i

ht s S r

gteee n ardn S gsae eI t e e s ,

z m c

i h n i

ht an s i Stew73 i sl st t

h ie l

e )

n t e uPr i G

.e70 uS i t t a n i

3 n n e n sb dsOo e f .

(

i i i oiPp- mRE s l e a l

o 8 n

5 n

7 n

i t

af i cOiG h o .s ,n l l ib wa le 7

m o i o i o i o mfEsE r et nR o

)

t r

l oSeo rPdtaa i Si a l

i h

fo wlat sniU 3

t c

t c

t c o oArc Dv w 7 C e e e aN p r B gf t

i Pa in ol pl t

0- . S S S e n P pi Se n

)

e e ed r o u c eer e Gde e e e e ela er n h t th r a s c rompe hh m Ta d fos i

f s Eu S S S .

ht A o Tw e r

Rn y y

y

. .h t nRon ns (

y

. dolan yt er ye. s i

u Ui t l p

l p

l p l yraAio l l cl o l l .

q Nno pens Si t i

t p pooi r t pb e av e

r m~

o m

o m mnDsnndc m mdt nn cn mio a h (c C C C o oaPiou h o o oou o ab r e

t is CmSt cf C Cccf Cva b wen o

t ei d ce l e

nd ai t

e r

iu n p l a t r pG r w e oS l

y o

r u

m e o e t m t e f b p i v rD n od f H o e e t

nP i Cna S a n o - t R R oS i s

Ss i

t a i a n o i s

s gn ng Cdn , m m r e Ps a i

y i Dtn o r

m r

t e t a l a

i s s ee i t

Pe f n

o i

C r n n n DD Owe e Sme o f

n oS A Ei ht mr n i

t I S n g fD n y mS oD f v oe t a

oiu o l a fDoP i s

I P t e oP nR ht t

t q i o s nS e mS f a RS on s oe t

p I o D uy S l o i t

g n

in ai s BR i r S t co S id mb S t ot r t u

r ge a e

1 c Ds ey Ds ne D n p eD h1 c s e Pm l ea Pr id P o n t m at t

n D Se

) s t Slp So t Miv S CI I nmo )

R en e ) s ) c ) o ) )d ) (

Pe m

Ry (S

Ri (D Ra (F Rr (P R(

Rn

( a Ro (R n m e a

.le l p n 3p 2p

- p m u n ) u u S i l l

eS i o i

( o c

b C. D. E. F. A. B. B.

a 7

, t c

e 1 1 1 1 2 1 1 "n T 3 7 S 4 4 4 4 4 5 7 i o

t 0 p

- i G r c

s E e R e D U n 0 5 N a 7 7 8 8 8 1 1 e P h t

n I i m

e 0 1 2 3 e

7 8 9 1 I 1 1 t I

t o

N

~

usn

- l a

pf t d i en cidni5 ua e g3 goh e

r n n t

Poi St a e

v i

n ah t ef

_ iso r n s e a no - goi rd i

s d e

t ao d y tsi s asani r a gi t oi n t dr s aar 3 o a a ner fl e c eHu sot c h a n e g5 Rv p d s rh t a n de s i .

e iatc .t o eS ir aaen o t Aa e l

aR do u c n retosPsi t ycne t

t n aitni t

Sa t r vA e c dn l

oi oht c sd r s sS chdOt aee sS ct ne i r aec i s n a e seteEfe eh a avr ee yseS h fo t s n t ai h

i s h c

s

. n idTlehe si cep a t

y. l aleice bi e i6 s ye au at d n yt ahg e a v .

o s yf ner rt t l pafS f n l pq Si l n

i l r el olar r ap s si i r e das .

2.

3i o se D6 pi s r i

n plb es s p o si s t is d t Pn ir l

e m Sao ng t cedl SvwP f nc oe Sn So de S p p

d o Dr a c en i l rb) DoloO P

iSt Dd e dc i

t Du s miste ra w i

n e l

u C shi t aE cd G Pvie S

e n sr t eeai yi s h v v e

r Se s t t a an Sa e n Pi Sc a c

Se aS Pe Sh icdh a ee e e t 0 h a l aqauswtnve a et nrp l

et hd Me P S hn T plpesgao Sr a i

0 Eie Tn a T k 8 .la si ri

. mnd a nlr i p(R yr .g .e

.c ean a n 0- yn .t ycdt l i ato fyl ay rA l l i l yn l ym l l yo y G pt S daic aS ptemS . pl mp pie pi pb a mep i

mrD t t E c o f P den p eiri r

ni m s t

md aDR oe o m msn ml -

l R r n PA oar oa omis i

U C o S a oiCd pt rh C pi S S Cas Ct Cre Cid t N

h t

i w s e s s d e t l

b u e n c n a t

a c a n l a i r

t on t e g a P a S i

l V t su yq n l

p a c ae n i

r c t es o o n r rl e p S l

m i t

a i i t

o i r l ob st t a n C C P Cia in Ded d o f

o l

a t ,ar fi i

l a M S

n c nV e occ V yn D

i y t s t o

P o a i r

r t rn sA a i l i S

i l

p C ua ed n n t

a i t ba t

n i s f o

ClP e a D ac ri m

i r Ds ee n f

ola it v

sn e

n ed pn o c l o yic ne u OIe t

t o

s e i sb ca i

t c l at i p r oi pns T - Sr u B D ni r oa l e sC s a l

a Dl e if er e Pa i

CV h S Do RT R SF c 0 a 0 e 8 P 0

- n 1 2 3 4

. G i o 1 2 3 3 3 3 4- E t 1 1 1 1 1 1 c

2 R e 5 5 5 5 5 5 e U S N

l b

a T 2 2 2 3 3 4 g 1 1 1 1 1 1 g A A A A A A a - - - - - -

f 2 2 2 2 2 2 8 8 8 8 8 8 1 1 1 1 1 1 m

t 1 2 3 1

4 5 6 1

ud ai ieedan t

t eda nim p oid t n i v

i t

o01 ntcI d ht io i hte nu1 d s 0 T-i at a genndenmgmr ht t

s n i t al eo wtan e i e h i ot msdt eir t n0yt r s r i uc w nCtaT0 1 ee t g1 a e cg R se1 nrbe re eTn aAvl i

n r s i l n A em ysytr r e aiar dnh yab ai f r u ayt n ed u T-S pl an st ut a easc s et e l

) et r s pE rr es d i ocdai yema r s r s t s ce e rh el pt dbl ul a yt vt i v ep i ht i n n is diPc u orr u u e s s s auloida ar so t i

foSEh dOePd e n c n

yle ab s a aeas ar c s pph i l o

daR e l n om n o mc l

i t f i t

vmA eD" a or t i t a l so n

o i

piayvcr ri s r aladt e o n t t desd a yb se ors 4

4 er sPewrP pnio s l l c o i r ol l a SuhSg doc

( d v pt nit ehl s c eis au n do r l l m Sl adei eiet c r S bh o St i

h l c s on s

e n C o Dc Pin s s sn cr nl l rf r e af us a

r u u v d y.

ai Dat Ptoin i

t c

e Dno Pc cAnot r

a i t i

nt a ir4.

rd . hy"s s e 0 t i i

l e

Sirdye e c el vhe af tr o co ew Sl 3 e S So e e c e n p1 h oft nitio e n5 e et i hdr xo d

t r edel e h ss A iaoiO-T t

i u T s aO g av w eas et ue s h n n To o S Tec vr o eBi t

ydcd G .der e.iddsunr r .si yecrt

.c ri

y. ph r n nn l yngvdyteeue pr ego aib l

i io smm l pe l y

p l

ya l pisyta a c g3 ooea 0 a b el n ad0y p S pl a r 0 mt o nn d ,id ia m sa p gi ra en3 r mtn e m mu mslpi cye0 r 8 a oa e o os o e uinsdt m1 0- Caa2TdmvtrAv -

ClpS C Cv i

CcdI en E T-G E

R g U n n f i t e N od a r

e n s e e w o h di v p y t e i nr O t t a

ee B i

t l i i TrDd w t b e m n c r nys i

e a s s o c

dn na l

P e c

er la f n

n a s l c ep I a ee a f s f A ri o i

l p

dl b ua m

r d eD t y t i o n I nl o

a m

i n ar n a l p

o n g b l r at s C i o aV A n o u no s

i D

t n Mtn f al f

o i

t a iC V s S nn c u ops e gnd i

D r oo o o P c yl l ii l na u s aab t t i n

S e l pi i ca ai cd S idS i t

D si r t ra in do D P

oD n o

m i vP t

o DCV I nC S AS C t 0 o 0 B 8 0 n 1 2 2 3 1 h -

c G o 4 4 1 1 2 a E i

t 1 1 2 2 2 e c P R e 5 5 5 5 5 U S 4

N 2

5 5 6 7 7 e g 1 1 1 1 1 l

b g A A A A A a a - - - - -

P_ 2 2 2 2 2 T 8 8 8 8 8 1 1 1 1 1 m 0 1 t

e 7 8 9 1 1 I

U

r eeod l p i o e d nA r

abh at a t

c S o m n t mbn .ay y e o ce e.

s v i

r ant pcinyt dl e b S s s aa nep e l

o

. est unppogsy l l e A db na

. l scnia s R R gt n ao oi r adw i

o e. a2

)

A A i s sp doh Se t t s v y d S S ayenr g yt l o rd as cDm t

e s s A b an u e set si ra miPa e a ma ef mdmr eSs i i n c ht ht v e , i1 r .

i n n n da s ac r oir o d e e o v 2 psR t

n a u c pf oh h t b o d smA o

i l

i 7

i 7 cna aeymt l t l n a b a

n aR e eS

(

c o n n i lnadehlat pngt pn sd ni i

5 1 1 A

st uI s m o o S a yt e 1 Sehei h anns c 1

sS s o i t

i t

Dcgaodpa i l m ms DS n t e

n C S

c e

S c

e Pinh i c "seasf S

h l r s pf e e t

m.

e R

eh i

P S s. 3i i t t l

d e e e

e e

e wrn a as ek r t hrdia ao cer u ge e I

e e

I eA I t en ei ea t

eS i

u S S HmWbmoctm.ta cNo anya an S S

.i s S3

.5 Dm5 r n oo G

y.f y y .fi l l y

l y dai ed" t sih h

.edcr ce l l yht l

yn l y yc t p p par sgr p pn po pa e 0

0 m m mlperSot rn oa m mi mi mlp S o s nf Mdaabrd t

8 0- C o

C o i CdiPaccShm s h h uieo C o

C5 o3 CS o ec oseei Cds G

E R g n t y

U i d

i l

i r

o N o b a

f n

C y s sg e h d a i

u d a t n t e e gan t l i

n p a a w a R i s l S

t n y D nh P e

c r

e l a

e h aC f o t y

e n t p s

t a Ced y f s t

a nse a i

a P

i D i ao t

l a S t

a l

p r dd mM p r m o o r r s o o o r ot i f

r o

_ m o n f

s f

s bM u Fa n D s s F o r r t l Su e y C i o o Sn a yP Da t

i b a t

n t

cs t c dl a l o et l S ae a nP pt s

Pt S inr p i

r a S a e s D Fu q F t ie n i P c s ni an a n yn r e Dn s yo r Vms D S e ar e So p at i

Ss S D mhc m mff Ds mcn Des D m ue u i ri Pe iu r Ps P t

o HT H PD SR PF SA S t 0 o 0 B 8 0 n 1 2 1 2

h -

c G i o 2 2 1 1 a E t 4 4 5 5 1 1 1 e c P R e 5 5 5 5 6 6 6 U S 4-N 2

9 0 0 1 2 2 2

_ e e 1 2 2 2 2 2 2 g A A A-l A- A A A-b a - -

a P 2 2 2 2 2 2

2 T 8 8 8 8 8 8 8

_ 1 1 1 1 1 1 1 m3 i 1 4

1 5

1 6

1 7

1 8

I 9

1

_ h l

ef t sb a t o rf o o lpd i rit snan .

t t h o ni e r atyro t

no ist aimiac s r yomiPces t

f 3 s vet r Ee rl ct su do acr e f ao Pueoit S r e b l peoiO

,- o5 rda y ff nn pes rf e s . Oae vl t

eet erDe it sh n efE oo yvt p dr I t "EfLmcnPk yR aino a o wa .sn e si p a aaSe ii r Sft p e a el p A t t

)

ac l l r c )h Dyreolp d i ze i s d ph tsS vh Teh osa or wtr P s pl l e nS d nol df edihs i

eo Sar u e a gi n h c eetah e t

h n c y as "e ba et l

a s T "et lneai vr ne y"s h n ar n en a t t r r n vei n r r i

t n ode a aex sdiopet i

e i na rihdt n n a meuel o vocr o

i l

ab i recsr3 e5 t t l

poteet a e( s ota dra ne .

c l

o i i r s iBunr t i t

ah anSR

( h c pmie uw n pr d ri e e yh c spHr t msa t

m c s Sa"r o daPnDA s o ae r

Dal l t

al o Sos nr t

eo . a u a .

oa emSs r t S e

n C rd e Ppaeet i

Dta opesmol f r

mo nht aei i

is h i St ne yiae rf t c Pc c s i m yi a rpt nei n r t o

h l

e eS ea olv parS Sdy i al nl dspet m r h i

ef ri t

f n hD hl ntodoi l

d i

u TP Tpn f por ee a is pS Asnt a l I l u ahd neishf t ot e h Tia r e t n 3 G .S .o eDp ,t osS .de a gio5 l

yS pP l

yr pbeig s .a v

t w yi. aoc"y taiD l t h St n y aePD l

l yep pi zoret n gra o 0 .

uce pi Sl pwP k n MAR m mta al mdnDsd mamg gi ooPinl uy ScmS 0 t 8 oBA o u t ei v l i

e ogoa ec t e

0- CPS Cnthtssr ee C C S D a a qb th CoriiS r osn G

E R l U e v

N s s

e s e L u f h c p t o

t c o a i t e w A T S s a

y y y e a a a En c l p

l p

l p - o n s s s st t a i

a i i i i

l D D D n at mr e p

ai o r p l l l a a or m n c c ict o

i i a Fte o h h h c yI n C i t

c r c r

ci f r i a a a n at pnd l

S r e

r e ro ieN sa i

D r i i P c iH l

I l

I e Dg s n S e S S Sg n Si d D D D Da Da m P P Ph Pe t

o S S SC SR t 0 o 0 B 8 0 n h -

c G o a E i

t 1 1 1 e c 1 P R e 6 6 6 6 U S 4

N 2

2 3 3 3 e e 2 2 2 2 g

A l

b a A A A a P 2 2

2 2

T 8 8 8 8 1 1 1 1 m 1 2 3 4 t

e 2 2 2 2 I

g

, l

d a o ba Soum 5 as rf n t ri eo l p yt sg ul e n l

i d u et d S a a l i .

Dge nr vir n yD S esiR Pi b y oo n it f a b e,e

.a .oo n e. n t i k

e PMaa nt ia vst t aA r Sml n ap a a s4 t g ga(i c n

i e r S P nS yd l aoeS t p s a ns mo2 r l an a y e )e ri hb m gd o yl f r afM l

a e r goi

)

i nuD i

o p3 h c f-c edi na he s a d noP enehi f t d fn ds n t lo t

nose vda n a

nnd .

t f e in on cf fht osi u e ea n e o oio posoh t h c n r u4 m yio t

s ri ct s n c n

t t n

t c nemdf oar t ooo d ei ps n l

yof2 i

el t c t

ege s nsx d i lalo o 3 e ecnu rei t i n a l snS t ce r nn e ne nl e v d eeoo i

t r pcn o l p cirf ei rde e pi i t oyeb r s on c i pue ri t st ca t t ddit a t ieio dst i dr idair orteu

(

m f

i cs o l

S teeiei l l S tuit nc Sc anb c a t t o

t m es a pdu av s n sie c ge e

n C ede pnl Dis P ,e ytn gh isdu a a n Da oS sob aysf l

r ea Ph t c i

l h pi a Snb sl l pu s qhc le oi ud w .

or c ois r S sr e ee e c a sr ena f pept d

Er r ea v h i i

dafivepm e eh oh a h ad S et Tf orR. Syotaarrna a r

i u oed a PaTt r t Tmn r as.

e .f o vA on n t

Dl a nl ent t

G y .cl gl e .s .s n .

l pai ynb e y dS lptye s Psipor asng a a es t l l yesl yai o l yf oio aip n ei it t

0 s a t pb pl eci h Si de c r ni n t 0 mlpa l miet e tr eima mial pm a mpcde 8

0-os Ciora dt e

o rl Cvsi a en n nD oi v nlih oaec or s r a Cvdtaie d t

omt n Cieo sdc G

E n s R S o e n it g o U D a n rs oe i N P m a fl i t

St n r h a ba d h na o C t n el f n ai r o i

t eP I f

o Da C w we l d e yV f o

e eg t

n t a r t on c Bi n er R e ts a n o

n eS s T eg ic l i i

s a cd n d vn I f t au i

l p

n e ai no n a

iat ah e g i

n i f

ct a m

d ntscn t

e iC t

iS mi iSt t

o n on u d t

nf Ty ny o pef u ao et C i sm e

it u n f t ofe d e I f S

t p r rl e o r n g Qo i ya d Sa i

a f t it S n D r oEs C yle oce l ag P c s t ab M yri i t bs ao yin S

D e cl a e pi S

D l

aD p lima l

at pe c r s r a sd ve sf m ii P i if t

o DDV S Dan Ah t DA t 4 o 3 B 8 0 n h -

c G o a E i

t 1 1 1 2

e c 1 P R e 6 6 6 6 6 U S 4-N 2

3 3 3 4 4 e e g

2 2 2 2 2 A-l b a A A A A a P 2 2 2

2 T 8 8 8 8 2

8 1 1 1 1 1 m 5 6 7 8 9 e 2 2 2 t 2 2 I

E

ufoem e r s a n l

p n mn o bdnmi aea l

t t oupo t l dfi ea S eet l

h t l t o adh l pl i n o e y v oin Ddys i

n iamt a cnc sat a pnaa t e s g Pu o vg y i c

a aiHihnuderm i

t r

,oannn bml "

Si l t

npoe n m s e e -

e mi rd sih eya i

e gisit l k .s e e . p wl l t l

xh o n t t t r a c es br "t h adpca ea c a d s apin o iw c df ni

) at t

pso t

s yl eie n l

nob a a na d

e h

c es nAyoa l

.ie f l

a a mdc en xisc est ds c a yl aprh h e s sg e f o se e emae t

u e r eeain sdn o ch b p- y at Tla .

i ona gd n c n

ar b pb e rdi o l l i

t t c nl .h f-gd dixl s sw.cn e ,es o l

pr ni dn gi vk i .

t n a s e rbe ma ent a a

r pe a .aov ebAif t r ne ted d pi l e v yi t n r c o

c i

l o

sc i i

a rr e t wra ege e i

taSncb oa a cDana apnbl s e t er apc r er i

uh vnt Spdcoea r n

(

m ntevuoh e b l l st f dPtsr i i s t

,nsDf et S s o Dar e r g t

x sevmso da sSopudim g yed t s i gwP e e ad eo a e bl u r l

epv i r n C Pgv Ssarbb i

l rh g gh epnii l

l at s an oSs ea n a eiirhf didr l i

l h h et s aua cn nt if ne ae cf r n hclelahl e e e dia(

h st ra r nr t

ndt t sr l

aoee r esoi r l uiTb s Tooric a s a c st r n s dsm d af h i

u Toovio i o pd Sn ,igysgo e l

. pd a n r t s t ad ef ns a t

s ot na nno r t B.he T sn G y ef eu yeedoe

.l yt.ir l yr omc u r r oymh r a el piarla yt .o poh ri r s s lpayrsi l

p- l 0 xsa ueee .

pr ut s a uhr c t r o r oi t

0 m v h )t mae adlpt mpcodset mlpsdn o ndela ot o oe r ce npn i t 8

Camvmflop on eesis sh a osi e- v 0- Cl mudiw i n Ch bf aht opo t cuc Cdscw G

E R f U o s N se nl ob r g h ia a n

- t i e s i tar n k t

i a e c w nV e iL -

l b a r

a st n T

- e en o i

r

- c r a a w n N pl a eP V o Rd e d r l s

n i l l

p c v a f o An o i

m hi r r g oi t n pe a n t i o

o a e i gd C i rD i n s l a io n n

_ t Gr o Lp c S i p

f fh i

S l

aC c

D r od e osn f o Sa l

ym P c yr y ai o s au s e ar S e ic pno l

D pa lpa t o

l s e sl is b m i DM ie h t

o DR C DA t 0 o 0 H 8

- 0 n h o c

a G i 1 1 1 1 e E t 2 2 2 2 c

P R e 6 6 6 6 U S 4

N 2

- 5 5 5 5

- e e 2 2 2 2 g

A

- l

- b a -

A A A a P 2 2 2

2 T 8 8 8 8

- 1 1 1 1 m 0 1 2 3 t

e 3 3 3 3

_ I

_4

I a s n s S d e

i l r ei D e S

D S e i t

u gomd nl P s

u e e P

i oee n cleth S t o i z ht S

m r n n l

n d

e o ae yf i i

t u

i l

a o wh ao d e d le r t e r t e

)

d u b a

l o s.

ymps a

l s a s

u a

s o

n .

s u

d i v l r l oi e y e st u e i

d e

r e t

ne prdr sf .a t

o l a e on e t

o c a od i t n r n i

n n i n

s v

o co c dn ei e. en e e v dme e t

a n t Sr o r( e r o Sl r nf esw n n b t a a o

i l

o e a Po f ct s ic De s c o s m Al o eitie c Py n

(

m e e 9 2 Bc sdab o

h p Sl a r e

s o la c l

e Pt h ess t n

im a ep t hi s e en i

r r t e

C Sd y m e

cayo M G Td P a

n e a t ht t s ssl ai t

.x r npa .y o os ia r i l .

l p i i e

.s .s e lei f s e ds nn l l l ey l ena l ey d b e oi i a er i D S ao c Cide e t

dp b a

b a al b

a r ba al c

.e c . cp cfo cp u ia S s

.nh yov is is G l ps y Dly yot s i

l p s l i i

l p g l i p cne)n p ay pd pd 0

l pb l

p Pl a Sr e l

mi n pay p aS pn p 0

al m,a m al ak i

aS t p os o ei m r di e oa et l t os p t D toin t D 8 o5 s ur c n

0 Nd i C2 C nge Clauos oP oP Nd NS i

- Nb l NS G

E S R d D U

i e fP -

i s n N nS l t i l rf c r o ee n o

oi t i e f o

r h t n d h t l

a s s l

on m t t

a i

t o

I r n mn e Ce fI d e i M P t

n w C oo r o d g r e g

f y oi t om otna n d o n e

c n l s a op l Nid en Co ro e eh s

n a

f s

s s

n a

i l

a bs t o o lor UmC es l s y a

e s

i S

c mi y D nC ol iEtnl u b

o l r A s

l p y Ss e Drem Cro t syt a m

e v r s neon fot u t t a caS y O m n l rl ol a i l S

o o p oba l pt g s ta e A sC s

t t f s n c n C i i l

si r i s n nia oDl y

a i

h i nS r

t p Dr ea gd nn ni CrodP l

pn k ey S i r

f o oar t bV a aa od p

s ao i n t t

a fe t

D c Lf o h g Cn gf n i ri Gi n t l

B Pa P s e g ep f Cn f a igan D fS S e n aO ono r oma i

oS dnn i S f

ogo f o ot D eD e san h y ei st l

o odiio vot D ec e m sP P se s t

o Cb Uca CW US ACc a S UR U UP l

t 0 o 0 H 8 0 n 1 1 1 2 3 4 h -

c G i o 1 2 3 3 3 3 3 3 4 a E t 2 2 2 2 2 2 2 e c 2 2 P R e 6 6 6 6 6 6 6 6 6 U S 4-N 2 ,

5 6 6 6 6 6 7 7 7 e e 2 2 2 2 2 2 2 2 2 g

A l

b a -

A -

A A A A A A A a - - - - - - -

T P 2 2 2 2 2 2 2 2 2

- 8 8 8 8 8 8 8 8 8

_ 1 1 1 1 1

_ 1 1 1 1 m 4 5 6 7 8 9 0 e 3 3 3 1 2 t 3 3 3 4 4 4 I

E

hyb a os i s ht e

l adoyn a s

e r ey pnia a sa rb s ai l t y dgnpa i

n gi pR sl . t nds e

Siods i nu o eisd SA dc o p ar i

D Pcr t so

)

e SrdHf yl on os t h i

eP f sos e d

e c

n r o a ss

. et f

nEa n b u

n i a a mscnnl ooa o l an a oa t iet iii3 dn da l t i

t o r psued cihc5 ed n r o m o

et teor n an aasS c

Hhadceio gbM

(

C t n gh c i t i noP s

e e

. .t eat ia i

n e nCe r

n l

b b mis a y S l st aEhPt i

l a c

ar os e rb n i W yin e i i cf a pd d d

i l

p l

peoott e e .b d yde ppsf e rb l

u p a oi r l

pef S i.

G t t amt rapc micDni o oi a s p s sh n ue ofepeP 0

0 N Nacusd CdsS 8

0-G E sr yo R al a U n l

p oes e N i i

sCe ,h t

a c

e s s Dgt i h Uy a l nf d ed i

n it w

rl op v ono I o

e f si s L eCio t s u s eD t

c pea t n l b n opn i nt a ia iao T haib ot pS l

p n ri an i

t fSm o no t t en o Vg m i t

f o n oC o Sa l o gP C i p o ce iyas t

al nre in n

O ou r nR t hi S

c s

o n e giq s e imt c

i g

et e l

D e mdeihn n b n P D l t ea gsdc uaoe t aa sh S SP ABCT EC m 0 o 0 t

t 8

o 0 n B G i o 4 4 5 h E t c 2 2 2 c R e 6 6 6 a S e U P N 4- 7 8 8 e 2 2 2 g

2 a A -

A -

A -

l e P 2 2 2 b 8 8 8 a 1 I 1 T

m 3 4 5 t

e 4 4 4 I

g

o oa d f s r rrTu v ot idaiclul nadar ee t

i r f n i t di oie n n udsr E ce e ni t s eiynt s n cr iad t od de rdt ee animt ei ,tcf e s uth oeh sl i e co u pn e I r t t

e nb osrt eoa r t Ph rd sec o n s. ,l l S a ru eu auleo S l

Ot Pe c D R.vts nf caff i n , rf icte Ew r

o dgrai n et P

Sari a nat n oadcaMssddl t

Pr uua eeenar t i

" omro e h aP t

os u e Sor eeisl cel nnosie i i d s, to v s cg r dl sp fe otnmtal oavihvt aapes l ataSn e ek e m n a oo c h s t i ri pn r ff us y hsth tot i4 aa ge nt hl b soai i-)cedt s

c n is p p rc of a nmum:u(fqr snn ngcl aei nl p o y n sie -

a0 r 1 a "e s l

a e r S doier l r s pxnO pT e a t i l desm s fo b)e te.fai or ouAipd S m b n d n.

l a eai de3 v i

n l p sdD , t s d i

l e m inP S u P u 5 an()aic e (,ie. nt xe oDulao i t I So i ioo dBiyn Seh lcnu r( e eeyeq v n ).Dt a t

ica i

d u

o Dn Pe v sy.t no e :g vimopab r a nl r d e (s P u Srdn Dto n e3 C i it sc b ns ee t p e pi g Snbe l

St i P a o r1g0 G Se dn b a nAa ab e s t

r e Se yi t

adu f rsml l

Si cc e -

4 he s,oy t t

e n ml orosyomtuhiDe s rt ei at h h e l d ymT r

AI nt n E 2 t

ci c l 1 Ts er mis ct nu n noc atnce rsol ava oo s s .wur nt ,

8 .ue s i o a ned0 0- rdt n,oo ii o e o e p v i

dr t

. of y q2 r aei osl i o an1 p it nt oreum pprui ct n tdeo yi r t pss t -

G l

pren pn onri e as edt l pi t

E R

mrh o si in et v e

t ast u ncasanb al ut qecwt rm a rh acl o nr s i

r mcr olo uf e t ecia vr r p e oe rf mds0T ooa nt u0 1 1 U

Cuwig lPddt i c c a e pI f cecapo CCtsT0 1 N

h t

i w

e c

n y i

a it l

l i o b a

m y z o it i

n C e l i

g o

m b a c S i e

D n T l i

a R P o e s v y S

i t

p n

o A l a

i p a t

p s

m r s e

a i o c D D t s e

R S t

o S D T D D B R P P h

C S S c 4 a 1 e 8 P 0

- n

. G i o 4 1 2 5- E t 1 2 2 c

2 R e 7 7 7 U S le b N a

T e

g 6- 8 8 a 7 7 7

P

_ m t

e 1 2 3

_ I j~

e

eot o D s ou edi)

Ad Sy t ll e hit t

sl 1 i t P SnMi i t oncnlan a0 sc a a l

_ t uovoig o0 ie nS S

d t

aS Piwd fi sp b

afdet n s nmo n esu t

o ee n t

a lesh nt n ca a i

t aa ePeoce dpowfuwh t i os t

taS Snm e cpor i

nsr u

) t i pucl e orl ul t n . Me nh aept u d

ne e s eS Pauf r ot nr f e nmub hbe l

u e i f

t eotyy l

mD uP l

at svoteeo h rt e g

n c se c .

nn ne nt ev emel it i

n r i l oS e v

e v i e ecas n

i na t

n o i a dr iehih vst t bTab a i i dd rn ea b o

b o i gmt r

o cmeri namion uetpeoem n ca c

l o oh oes l l s a a g pi h ov iaia e n e. odgcec u o t t a at no r f t

( c vv uS , ,

m 5 5 s

e o S hTpo a a eM e c heaaFecC unh o n C Aw.esbSn i vP m e

m e nt nd s a n mlaE i

l DrsSr a D (u eteDS1,P n e eh I t

I t

a ,

d e

h S 9 t xr .

t e

e e

e unmaourCcmP son or y i

T pS P uPDme09 eor S S i tsio gt ai vP eE dob u m gS tIedaf f A t o S f d G .

yon e ng ro

.d yeS y y

nn ar n yD Ae p

p dcidi a ie u rb u

e ss l

4 l

piids l

p l

p w m gt P .o mSu rdde mvh lo ufl i S Sol 1

8 oMlcget n ei o t c x o ot r n m

o m

o l cnid d Cev ooonPnEe t

0- CPidcne C pi C C FdcuSaPd G

E R

U N

S h A t s i

w D s e

n c e o o r

c s n P n m o e a e n i t t a

i l

t s n o a d p '

y o i t

p t

n p m S i t e U

n r a i r

o o e t n c m u n C i t

ht e s e c o p O m D o i t

a S i f u e D t n

D r c o c o r a e e P s t D

r a

S e c a w m r dr w u D p e s a f t

c o

m m o t

o I U H S D t 4 o 1 B 8 0 n h -

c G o 2 4 5 6 a E i

t 3 e c 1 1 1 1 P R e 7 9 9 9 9 U S 5

N 2

e e l

g 8 1 2- 2- 3-b a - -

a P 7 9 9 9 9 T

m s 4 5 6 7 8 l

I

y SsMt t eP dee t ht i

rced i

l i

t Mt Ptyhee d m dnf oivan b t n r a yh el f et oi adeS l

it t ibotn nim eesM rds vi fl a ai l aiiP

) aboios aiis e t wvh e d

e nat vtat ul ir aal s y dmf r po h t

t u e e epr at ee s l a h n c hR s ut sh h est

,bsi i

t n t

.a os it l ew n a t e69 de h0 nhf i lai n l

l t

o i i l e gT o cwl eel n s.

c n m6d0n .y -

(

m 0i2iSi t n emts a ociio s o S -

v2wPi l

,nTn s g e

n C D Ep P GmAlo A ab s. l daen . oty i

l SRe r.oBel nfPh oga t

r t eSci l e dUaodt onDei pap b ba t

d pi nNst eae i i

u a Siot n namSaty t ri l u mS oia s

t l

G Mdt nrDt eo yr end eadv i

si 4 PelnuamfPnb u r

eSol a t

raat owSecS 1

8 0-eicf l heaoenev cpd mi a c ao f M pD t

xP I

' dcdb ada FsPeS G

E R

U N e c

h n a

i t

n e

w t n

i e a c

n M i

a e r

l p a w

m n f t

o o o C i t

S S n y

D i

r t e r

P c i l a s i b w S e a dr D i l

e a m R l t

o I t 4 o 1 B 8 0 n h -

c G i o

a E t 4 5 e c P R e 9 9 U S 5-N 2

e e g

l b 6- 7-a a 9 9 T P m 0 l

e 9 1 l

a" t

3. RELATIONSHIP BETWEEN THE SPDS AND THE PLANT MONITORING SYSTEM (PMS)

The SPDS is integral to the PMS and provides a continuous indication of the plant safety status during normal, abnormal and emergency operation. This section describes in detail how the PMS and SPDS are related, and how this relationship is considered during the design, implementation, testing and installation of the SPDS.

3.1 OVERVIEW OF THE PMS 3.1.1 PMS Design Overview The PMS consists of a data acquisition system front-end, dual computers and various peripherals that support multiple users. A functional block diagram of the PMS is shown in Figure 3.1-1. Figure 3.1-2 shows the flow of plant data from a sensor into the PMS for processing and to various functions supported by the PMS. The functions of the -

~

various elements in the data flow diagram are identified below.

(1) Sensor Measures environment Transmits signal (2) Input Card Receives signal from sensor Performs signal conditioning Performs some signal amplification I.ogic for open thermocouple detection (3) Analog-to-Digital Converter (ADC)

Performs remaining signal amplification Converts analog signal to digital counts (4) Intelligent Remote Control Unit (IRCU)  !

Scans signals from each card / channel Flags error conditions and open thermocouple Time-tags and signals presence of sequence-of-event (SOE)

(5) Dual High-Speed Serial Port (DHSSP)

- Acquires scan data from IRCU's )

Acquires and signals presence of SOE data

- Time-tags data buffers (6) Working Current Value Table (WCTV)

Acquire scan data from DHSSP's every 100 ms (7) Acquire SOE Data from DHSSP's as Available '

23

_ m )

se ecs i

n i

t M laoi n f h P imf o to) r 1

mer r o et W T (a C E P

d@

o R \

r e m f

tedl u

p o

s a r

I min go o

CEnC g

i a

D nC) k to& c o

i I

ta( e nl lo ero s P l B

1 mt uo o n n B

. r trC s

C l r

te u Indan a p

i m n o

C i o

) t y sF c nO c y

nee

  • gay et ( n u

f r r t eei d mpc F EOaF t ,'

S a

D n

io) ) r P s s S

1 ts t S e s u iA p

n P s

iD u

q(

d er lap r a gh

, c e

i cm ahe T. P d

he' 1

it ld h p 1

Ae S res is k w n Fie t

S R tas a y D S Pi D

(

P 1

E a i

S i M

)

C P

la e ic lo P n s .

1 hc Er n 1

e"moC T'

1 1

A r

e 3 r tu

' p m s e

r o n C di o ntab u

a co g P

1 min sn i mu o omC F

Cm o C

l

'sr * )

o e f

t a lo

  1. "p s n i

o O C uA

le b

a a: C ,j J E.

Om S

cy L E

_ O S

t '

5 P

S "1

S - w H O D I F

s t

a a

3 J8 4 D C 6 D S T M V

C 3J E  ; P AV W

=

V N=

D C 2-

  • r AC R= ( 1 2

N"^

9

), }

2 1 lJ Y

P 3

e r

u V M iT vS L

k O

C D

R A

s i F

g P

1 (J.O D H -

R 3 OJ 1

S

- S . T N R E

S M O P

  • C R

A H

f E R

u*

Illlll

(8) Write SOE Data to SOE File (9) Process Scan Data for Current Valve Table (CVT)

ADC gain / offset correction Ser.sor limit checks Engineering unir. conversion Alarm limit cheCts Data quality tagging (10) Write Data to Archive File (11) Display Selected Data (12) Generate Hardcopies of Displayed Data (13) Generate Logs and Reports (14) Generate Strip Chart Recordings PMS hardware is described in Section 3.1.2 and an overview of PMS software is presented in Section 3.1.3. PMS security is discussed in Section 3.1.4 3.1.2 PMS Ilardware 3.1.2.1 Data Acquisition System (DAS)

The DAS is the front-end of the PMS. The interface between existing plant instrumentation systems and the PMS occurs at the multiplexer located in the plant. Items (2) to (5) in Figure 3.1-2 constitute the PMS data acquisition system. Fiber optic cables between Items (4) and (5) provide for high speed data transmission and for electrical fault isolation between the field multiplexer equipment and the balance of the PMS.

3.1.2.2 PMS Comouten Dual VAX 8530 CPUs are the central processors for the PMS. One VAX 8530 is on line and the other unit is in " hot standby" and serves as a backup for the on-line CPU.

A fault affecting the on-line CPU results in an automatic fail-over to the standby CPU.

3.1.2.3 PMS Consoles and Terminals The primary interface between the user and the PMS is a CRT console. IDT l

high-resolution, color graphic terminals with local bubble memory and a touch screen l

screen interface are used at all PMS consoles at the Peach Bottom plant.

26 w____-_____-__

The PMS provides the following methods for user selection of CRT displays.

- Touch screen selection of a predefined display-select area on specified CRT displays, including index, graphic, and tabular displays.

Touch screen selection of an alarm or event message on any alarm summary display or other critical display causing a menu display of a single point functions for that point to appear on the CRT.

An Alarm Group menu display that shows which groups are in alarm. This menu allows selection of the desired alarm group by touch area activation.

Pressing a dedicated display request pushburton (programmable function key on the keyboard).

Forward and backward paging through a series of displays using the "page forward" and "page backward" pushbuttons on the keyboard.

Activation of a PREV (previous) pushbutton on the keyboard causing the display that was on view immediately prior to the current display to be recalled.

The following consoles are pan of the PMS; and serve a variety of functions as described below:

Operator's Console including three positions ,

Reactor operator's position Reactor engineer's position Emergency position Command Communications Console Reactor Engineer's Console Instrument and Controls (I&C) Console Computer Engineer's Console Technical Support Center Console Emergency Operations Facility Console In addition to the above consoles the system will include four monochrome programming terminals, and the following remote terminals:

Remote Programmmg Terminal Remote Reactor Engineer Terminal Only the Operators Console and the Command Communications Console are located in the Peach Bottom Control room.

A. Ooerator's Console The Operators Console in the control room provides three workstations positions. The conceptual console design is shown in Figure 3.1-3. The Reactor Operator's position of the Operator's Console will be used by the Reactor Operator to request SPDS displays, alarm displays, graphic display, and other displays of real-time or historical data. The Reactor Operator will also use this console position to acknowledge alarms, to request log printouts, to request real-time analog data for display on digital display devices and strip chan recorders, to control the execution of application programs, and to run on-line diagnostic programs.

27

1l .1 lI ,l ll s

- bhT i M-

  1. d

.,Iiit3!

i "s! ,-

-.'l i

I' aE

.i

. i 2'

1"' :3

.fj yW;'

= ,

4" q

5

[ - .g

i.i r 4'

_b d:'n: r; 'I i

8

..i. a hl i("ji'.[]i-l sl hi .  : i

,r. s

i.  :' .i i i i r. p.y: n

._[j 7i S b

t i

nl; a: s-+ !a -

  1. dE :;l.g il V='e.!

i p

hd* hS! in

' l :

. [

i; ii:

i!:

mi  !@ . i i= !;:

i

-i

!:ihm i!a[

I .i* ' i A s (- -

i  :

3;,

i i  : ni -g di - "':;

I L p:Q i

i t

hn r -

- :i

_ C R i

, i; 0r -

8=  ! d 1W.i; a*

sBl f ik wr!..

i

i : ,

RWA i

s  ! i o

i i  !

rs:r! ir  :"M i

aFP a ii 1nEOil m" e s n;: h.ii

i i  : i:

t ii;;

ii.l:7 Wt 8  :

-:i! .i i.f' ra 'l e ..g t::iii .N i:

7 .

Es Ja -

Fp

_ T -

E R C 9 -

1 A4 e -

tc-aI rT 7 OE 9 .

S9.

OF g I C - -

W A .

  • E .

R

/

hI I Ae 4l _ 4

) 0T L

- r 3C ' ii I

I G YI I 4 AIT MWF -

t . <

sI aS

~.

TM r .

w sS t .

1E R .

R F

W l E

E 5

(

1 81 _

5 S

W8 E7 I

\ I 8 .

,e 88 . .

l T I 90 19 . .

O A C 4T .S C t g A s .

4A e e a .

Tts . O t r sE m a GsACesg e .

rI Eas FcA e g si g;I

\ g s

. g s I

' 3 1 s

g "4 s -

4

.N s

s a

t

i v

4 l s

/

O 1t,f , s

.g o

m v

=

0

' $ I

. O '

"""~

O

. 2-

_o .

8-b 8.

O m

2 n.

E o

=

O CD

.c

'. c.

]i" .

e I' h

\

ii -

A o

I -'

f 29

The Reactor Engineer position will typically be used by the Reactor Engineer in suppon of the Reactor Operator.

The emergency position of this console will be used by the Shift Supervisor at the trip table to request and display the SPDS displays for the unit.

B. Command Communications Console (CCC)

This console provides the capability to request and display any PMS CRT display, including SPDS displays. No data entry or program control functions are permitted from this console.

C. Reactor Encineer Console The Reactor Engineer Console will be used to request any CRT display, to request historical data, and to initiate certain NSS programs or retrieve saved past NSS program outputs. The Reactor Engineer Console keyboard is equipped with a keyswitch for console security.

D. Instrument and Controls (I&C1 Console This console is used by I&C technicians for running on-line and off-line diagnostic programs, including those associated with input and output point calibration, and for troubleshooting the multiplexer. The I&C console also ,

3rovides the capability to request and view any PMS display of real-time or ~

listorical data.

E. Comouter Eneineer Console The Computer Engineer Console will be used to make additions, deletions and modifications to the data base, displays and logs; to reassign messages and logs to PMS printers; and to perform equipment mamtenance tasks such as running on-line and off-line diagnostic programs and verifying the operation of repaired equipment. This console also provides the capability to access all system i programming functions. The keyboard is equipped with keyswitches for l console security. l l

F. Technical Suncort Center Console j The PMS includes a Technical Support Center (TSC) Console. Any PMS l display, including SPDS displays may be selected from this console. I G. Emercency Operations Facility Conmle The PMS includes an EOF Console. SPDS displays and other appropriate ,

PMS displays can be selected from this console. I H. Remote Procrammine Terminal This terminal will oe used by engineers at remote PECo offices for accessing l PMS programming functions, including data base maintenance functions, I program editors and compilers, and all other programming utilities available at Peach Bottom station on the local programming terminals. This terminal also provides the capability to initiate the data link between the PMS and PECo's corporate IBM computer. The remote programming terminal includes a monochrome CRT and an I/O printer.

1 30 I

I. Remote Reactor EneineerTerminal Engineers at remote PECo offices will use this terminal to request and view  ;

CRT displays of real-time and historical data and to initiate certain PECo- i selected NSS programs. This terminal consists of a color limited-graphic CRT,  !

keyboard, and printer. I 3.1.3 PMS Software

- The PMS software is developed in FORTRAN using top-down structured design methods. The PMS software is designed for modularity and maintainability. The PMS software contains logic to perform checks on the validity of the input values, including user entries, and on the validity ofintermediate results. The PMS inhibits the output of erroneous results.

The basic organization of the PMS software is shown in Figure 3.1-4. Note that SPDS software and other applications programs interface with the applications executive software. The man machine interface (MMI) software is responsible for the user environment. The MMI software is described in this section. Software is also provided i for PMS performance monitoring, diagnostics and maintenance. These maintenance and _

f utility software packages are also described in this section. l 3.1.3.1 MMI Software The MMI software supports the following primary operational functions:

Plant monitoring via CRT displays, printed logs, summaries, video hardcopy, digital displays, and strip chart recorders.

Visual and audible alarm annunciation. i NSS and BOP program interaction. ,

Display of SPDS parameters.  !

i In addition, the following activities requiring interaction with a CRT i workstation are also supported by MMI software:

Computer system configuration control and tmubleshooting.

Data base, CRT display, and log generation and editing.

System performance monitoring.

System hardware maintenance.

System software maintenance.

The design of the MMI software allows for future expansion of functions and flexibility in interactive techniques.

31

S I

LN S AO I I I SCT SEC NPN SU F

's S

D I

P S

E R E C Y E S N S AI A A E L L B N DIT I

PP I E NI SM I

A TAI LT I

DO T N C A I U

- D A M

N E OV I

E EV S TI T Y XS A NINIT TA AM C U C AHU HL VV I LE MCC AE CPS PX MXE I D

PE A

E G RS N I

S A E I MS /T S R WT RS I

TU I AE I GO F T I

LC OP OU AO L E S R R P

NG ONG ATSI N I I I

TS AI ESV I

I H

D QOR UCC CRA AP M

i 3.1.3.2 System Performance-Monitorine Software Software is provided in each PMS computer to continuously monitor hardware and software performance in real-time with no interference with the normal functions of the system. The following is included:

PMS computer resource usage monitoring.

- - Application program resource usage monitoring l Recoverable enor momtonng -

Error rate monitoring I 3.1.3.3 Diagnostic Software On-line and off-line software are provided to check and verify the correct 3

operation of the PMS hardware.

A. On-line Diagnostics The PMS host processor provides on-line testing of PMS hardware devices without interfenng with on-line operation of the PMS or failover capability of the peripherals. If the on-line diagnostics detect that a device has failed, the (

PMS will produce an alarm and, if available, initiate an automatic failover to a .

backup device.

B. Off-line Diacnostig.s The data acquisition multiplexer and MMI console display generators are equipped with internal self-test capabilities which operate when power is applied or when the device is reset. In addition, the MMI console devices contain diagnostic capabilities to assist in isolating problems to the board level during trouble-shooting. Off-line diagnostics software is provided sufficient to isolate communication link problems between the PMS processor and data l acquisition multiplexer.

{

3.1.3.4 System Maintenance Software Software is provided for the maintenance of the data base, CRT displays, and logs. The maintenance software forms a CRT-based, conversational, user-friendly system that permits non-programming personnel to operate the programs. Security provisions are included in the maintenance roftware. One security level allows viewing but not modification of the on-line CRT displays, logs and data base. The second security level permits both viewing and generation / editing capabilities. The following maintenance software is provided:

A. Data Base Generator / Editor /Recort Writer This software includes facilities required for adding new data points, creating new data base files, adding new fields to the data base, deleting or editing data points or items in the data base or preparing user-defined reports.

33

_ _ _ - - _ _ i

B. CRT Disolav Generator / Editor This software includes facilities for generating new CRT displays and editing existing CRT static displays.

C. Los Generator /Editer This software allows the user to generate new log formats and edit existing formats. Simple calculations can be defined for values printed in logs.

l i

3.1.4 PMS Security Basic security for the PMS is provided by the following standard VAX/VMS security features: l System wide password protection User name/ Password Auto login User privileges assigned by system manager PMS data base security is fhrtherimplemented by the following measures:

Turn-on code (TOC) access based on approved TOC assignment . '

If display can be accessed, all fields can be viewed Individual field modification is allowed / disallowed based on the positions of security keyswitches mounted in the consoles.

Access to all program functions, remote programming terminal functions, and remote Reactor Engineer terminal functions are controlled by use of passwords. In addition, key switches are provided to protect against unauthorized access to data entry functions and other designated restricted functions. Data base changes are permitted only at the Operator's Console, the Computer Engineer Console, the Reactor Engineer's Console, and the Remote Programming Terminal. The PMS provides a warning indication at all consoles whenever any keyswitch is in a position permitting data entry. The Data Base Change Log prints a chronological list of all data base changes entered during the previous i i

day. This log is printed automatically. 1 3.1.5 PMS Availability The PMS is intended to exhibit an availability in excess of 0.99. That is, the ratio of total time minus downtime, to total time, shall be equal to or greater than 0.99.

The PMS configuration has no single point of failure and protects against multiple device failures where devices have high failure rates or long repair times.

34 I

u_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . _ . -- J

3.2 OVERVIEW OF THE SPDS 3.2.1 SPDS Design Overview The SPDS design basis includes the following features: b Development based upon a Human Factors Engineering Plan Use of well-designed, man-machine interface philosophy '

Use of versatile PMS static and dynamic display editors Development of a detailed SPDS safety analysis (i.e., this report)

Display design based upon extensive interaction with the end users at the Peach Bottom site Inclusion of Peach Bottom Emergency Operating Procedures (EOP) display requirements.

The SPDS is designed to function under all plant operating modes. This is accomplished by defining mode-dependent alarm and warning limits for each parameter.

Color change on the displays are keyed to the alarm and warning limits in the PMS data base. The SPDS displays recognize the current plant mode and perform color changes -

according to the appropriate limits. The four plant modes recognized by the SPDS are:  !

Run Startup Shutdown Refuel The system automatically determines the plant operating mode based on the position of the plant mode switch in the control room.

l The SPDS is designed under strict configuration management under the scrunny  !

of a Verification and Validation (V&V) program. As such, the SPDS is designed under very specific guidelines to ensure that SPDS functions are not compromised by non-SPDS l functions of the PMS. The SPDS design incorporates sufficient flexibility to permit rapid and convenient addition of new SPDS parameters and validation techniques in case of future changes. Such changes will be implemented in a controlled manner that is consistent with the V&V program goals.

3.2.2 SPDS Hardware A functional block diagram of the PMS is shown in Figure 3.1-1. As can be seen in this figure, the SPDS is dependent on the PMS data acquisition system, the PMS computers and peripherals and on the Dunatech switches that align the PMS computers to j the various consoles served by the PMS. i 1

35 I

L

Details regarding PMS hardware and the Operator's Console (the SPDS console) are presented in Section 3.1.

3.2.3 SPDS Software The SPDS is designed to utilize features and functions of the PMS to the maximum extent practical. This results in a minimum of software being developed specifically for the SPDS, while ensuring that the SPDS will be flexible and easy to maintain. Software written specifically for the SPDS includes the following:

Algorithms for calculation of the current value of external real and external logical data points, and limit checking and validation for these points.

Files for defining the x-y coordinates of two-parameter limit curves, and algorithms for limit checking with respect to these curves.

All other SPDS functions are accomplished using PMS software.

Future changes to the SPDS can be accomplished with a minimum of software revision. No software changes are needed to revise or develop new displays that utilize ,

parameters that are available in the PMS data base. All SPDS displays are generated using the PMS static and dynamic editors, thereby making most display modifications possible without the need to compile programs after the change. No assembly language programming is used.

For parameters that require detailed calculations, special external SPDS calculation programs are developed. The nature of these programs are based on specific SPDS data requirements. The external SPDS programs also perform appropriate supplementary validation processes are described in detail in the PBAPS SPDS Detailed Design Report (Ref. 2).

The SPDS extemal calculation programs are executed once per second. Intemal calculations performed by the PMS Data Acquisition Subsystem are performed at the processing frequency specified in the PMS data base definition of the point. Processing frequency is set in the data base and is readily changeable with the data base editor. All SPDS points are given a processing frequency of once per second.

3 . 2,. 4 SPDS Displays l

3.2.4.1 SPDS Disolav EgnIlat and Content l

All SPDS displays are divided into the following areas:

I i

Current Date and Time Area (CDTA)

System Alarm Area (SAA) l 36 l

1

_ - - _ _ _ _ - _ _ _ _ _ _ _ - _ . _ _ - J

1 l- -

SPDS Status Area (SSA)

General and Graphic Display Area (GGDA)

OperatorCommunication Area (OCA)

Function Key Area (FKA)

EOP Entry Condition Indicators appear in the SPDS Status Area on all SPDS displays, thereby providing an immediate overview of the functional safety status of the l plant. The SPDS menu, bar, trend, and x-y plots are presented in the general and graphic display area. j The us'e of a consistent SPDS display format is a key human factors design convention that helps the operator to rapidly focus on the desired infor nation when a new displayis called up.

SPDS displays are developed using PMS static and dynamic display editors and are driven by the PMS man-machine interface (MMI) software based on the current values and validation status of data in the PMS data base.

Data content of the SPDS displays is discussed in Section 5.

3.2.4.2 SPDS Disniav Ooeration The SPDS is designed to respond to a user request in less than 2 seconds, even under peak load conditions. Methods of selecting displays using the touch screen or keyboard are described in Section 3.1. All SPDS displays are updated at a minimum of every 2 seconds. However, alarm conditions are displayed immediately upon detection without waiting for the 2-second CRT update rate.

Operation of the SPDS displays will be thoroughly documented in the SPDS Detailed Design Report (Ref. 2). Appendix A contains black and white versions of the static portions of all SPDS displays.

3.2.4.3 SPDS Data Validation and Indiention of Validation Status SPDS data validation and methods of indicating validation status are described in Section 6.

3.2.5 SPDS Availability The SPDS shall be designed within the framework of the overall PMS and as such has an availability goalin excess of 0.99.

i 37

_ _ _ _ _ = _ - _ _ - _ .

3.3 INTERFACE BETWEEN PMS AND SPDS 3.3.1 Design Interfaces 3.3.1.1 PMS Sunnort for the SPDS Man Machine Interface The IDT terminals and associated keyboards are the basic points of interface between the user and the SPDS. Operation of an SPDS terminal is dependent on the following PMS software subsystems shown in Figure 3.1-4:

Application Executive Subsystem Display Compiler Subsystem Software Utility Subsystem Man-Machine Executive Subsystem Data Acquisition / Processing / Archiving Subsystem Data Base Subsystem Alarm Processing Subsystem SPDS Subsystems Most of these software subsystems are " transparent" to the user working at an IDT terminal ,

and therefore are not directly involved in the issue of man-machine interface design. The man-machine executive and support subsystems, and the SPDS subsystem are related to the MMI desigu, and are described below.

The Man-Machine Executive Subsystem is that portion of the PMS responsible for the outputs to and inputs from the workstation CRTs, including SPDS terminals. That is, it controls the presentation of displays which represent the current operating status and point values of the system, and the operator console functions which allow selection of requested displays. The Man-Machine Executive package is directly responsible for the following:

Process and verify IDT security levels Control display task flow Update time and date fields every second on each IDT Respond to IDTinputs from users The MMI provides feedback for all user input actions, even if only to indicate that the action, was not accepted or that the requested function has been queued. ,

Indications on the CRT display, such as text messages, color changes and flashing are provided for this purpose.

The SPDS subsystem includes software specially written to support those SPDS functions and calculations that are not supported by routines available within PMS.

38 l

c - - _ - _ - - _ _ - - - -

l l Every effort has been made in the design of the PBAPS SPDS to maximize the use of PMS routines to support SPDS operation.

3.3.1.2 PMS Current Value Table 1 The flow of plant data from sensors to the PMS current value table is described l

in Section 3.1. The current value table is the source of data for the SPDS.

f 1

3.3.2 Implementation Interfaces To the extent practical, the SPDS utilizes functions available within PMS to implement an effective SPDS. As described in Section 3.2, the SPDS will require the development of some special software. The amount of special SPDS software is held to a minimum in order to simplify the implementation of the SPDS within the PMS environment.

3.3.3 Testing Interfaces See Section 11 for a description of PMS and SPDS testing. -

3.3.4 Installation Interfaces As described in Section 3.1, the SPDS console is the Operator's Console which will be installed in the PBAPS control room. Operability of the SPDS is dependent on the satisfactory installation of all PMS hardware and software required to support SPDS operation.

39

1

)

4. INTEGRATION OF THE SPDS WITII THE PBAPS CONTROL ROOM 4.1 INFORMATION CONTENT The SPDS complements the normal control room instrumentation by providing a different way of aggregating and presenting plant information. Data presented on the SPDS is available from other control room sources.

4.2 INSTxUMENT RANGES -

The instrument ranges displayed on the SPDS, with the exception of drywell pressure, are the full instrument ranges of the respective instruments. (The range of drywell pressure on SPDS displays goes to 70 psig, instead of the fullinstrument range of 225 psig, based on the plant Emergency Operating Procedures (EOPs) described ia the PBAPS Transient Response Implementation Plan.) An analog PMS input / output list i prepared by PECo and photographs of the Peach Bottom control room instrument panels

~

were the original source documents used in defining instrument ranges for use in the PMS data base and in the SPDS display design process. The PMS data base will become the authoritative reference for analog instrument range specifications.

1 4.3 WARNING AND ALARM LIMITS Relevant warning ano alarm limits can be specified in the PMS data base for each analog and digital data point. A maximum of four limits can be specified for analog points.

Alarm High - High Alarm High

- Alann Low l -

Alarm Iow - Low A digital point is either in a normal state or an alarm state. Any alarm state that is not applicable to a particular data point is set to "NA"in die PMS data base.

PECo has chosen to set alann limits for SPDS data points to the operating limits actually set on control room instruments. This will ensure that control room instrumentation and the SPDS will have similar alarm response. The operating limits at PBAPS are set to more conservative values than those defined in the PBAPS Technical Specifications and the PBAPS Updated Final Safety Analysis Report.

40 u__________. _ _ .

4.4 LOCATION OF SPDS CONSOLE The Opera:or's Console in the PB APS control room is the SPDS console. This console does not interfere with the operator's ability to see the contml room instruments or to reach the various controls on the control room panels. See Section 3.1 for details regarding the Operator's Console.

41

5. INTEGRATION OF TIIE SPDS WITII PBAPS EMERGENCY OPERATING PROCEDURES (EOPs)

A key goal in the design of the PBAPS SPDS is to create a wstem that is closely integrated with the plant EOPs. This section provides an overview of the PBAPS EOPs and the process by which parameters were selected and organized for display by the SPDS.

5.1 OVERVIEW OF TIIE PBAPS EMERGENCY OPERATING PROCEDURES 5.1.1 General Structures of the PBAPS Emergency Operating Procedures The PBAPS Emergency Operating Procedures (EOPs) are described in detail in the PBAPS Transiat Response Implementation Plan (TRIP). The EOPs represent a complex hierarchial structme of procedures that includes the following basic elements: -

Element Procedure Scram and Post-Scram Recovery T-101 T-99 EOP Entry Procedures T-101 to T-104 EOP Contingency Procedures T-Ill to T-118 The basic organization of the PB APS EOPs is shown in Figure 5.1-1. In this figure, the various parts of the EOPs are represented by boxes. An arrow (triangle) entering the top of a box represents an entry into that particular part of the EOPs from either narmal operating conditions or from some other part of the EOPs. An arrow leaving the bottom of a box represents a transfer to some other part of the EOPs.

The organization of the individual procedures that comprise the EOPs is shown in Figure 5.1-2 to 5.1-15.

The SPDS design is being coordinated with PECO engineers responsible for updating the PBAPS EOPs to Revision 4 of the EPGs. The SPDS will match the version 1

of the EOPs in place at the time the SPDS becomes operational.

42

1i\l IV n":

IV -

V V

+ V IV w, V

V IV a V V V V 3-VIV ,. V s e

r u

IV =- V V d e

c o

r

g- V P g

n V q i t

a V IV s V r

e p

- 4 O

y

_ c n

e V

g Iv r VIV m-e -

_ m E

_ Iv - IV S

P A

_ Iv ,

B P

f k o Iv IV a V w e

V i

v r

e IV IV O v

V V 1V 1

1 5

V IV .,

. e r

u ly IV VIV :n V ig F

I V lV .

lv ,

r. lV .

V lv =. IV d i

iV

!v lv V V - V ._

iV - V

.- V V

!11 l

Entry Condition: Scram Occurs

- Mode Switch in SHUTDOWN

- Reactor Power Trip (See Below)

RCS High Pressure (1070 psig)

- RPV Low Water Level (538 above vessel zero)

Containment High Pressure (2.0 psig)

Turbine Stop Valve Closure (before 10% valve closure)

- Turbine Control Valve Fast Closure (between 550 & 850 psig)

Main Steam Une isolation Signal (Gp.1) (before 10% valve closure)

Scram Discharga volume high water level (50, + or ,1 gallon)

- Main Steam Une High Radiation Level Main Condenser Low Vacuum (23 in Hg vacuum)

Manual l i I I I I T/T T/L DW/T SCC / RA/PO T-112 PO T 100 Scram (S) l T-99 T-101 i

i REACTOR POWER TRIPS: LEGEND: T-99 Pod-Scram Recovery (PSR)

SRM: None T-101 RPV Control (RC) j IFR Upscale high-high, or inoperative T/L Torus Lave? Control Part of T-102 APRM. APRM downscale (2%)

T/T Torus Temperature Control Part of T-102 l

APRM upscale Ngh-high (0.66 flow + 54%) DW/T Drywell Temperature Controf Part of T 102 APRM inoperative (not operate of less than 14 inputs) SCC /PO SCC Plant Operation Cont.ol Part of T 103 APRM upscale in STARTUP (15%) RFFPO Plant Operation Release Control Part of T 104 T 112 Emergency Blowdown (EB) l 1

Figure 5.1-2. Procedure T-100, Scram (S) 44 I

- - - _ _ - _ _ _ - I

Ent v Con +tinn-RPV water level < -48* or unknown l

. Drywell pressure > 2 psig l Group iisolation

- Scram condtion with power > 3% or unknown RPV pressure > 1055 psig I I T-99 T1 m

,j T-101 RPV Control (RC)

GP-8 l

EXECUTE RCC, RC/L AND RC/P CONCURRENTLY I I I I I I I i T99 T 111 T-114 T-116 T 117 T 112 T 116 T 117

\

Reactor Power Control RPV Level Control RPV Pressure Control RCo RC/L RC/P T-117 T 111 T 99 LEGEND: T 99 Post-Scram Recovery (PSR)

T 100 Scram (S)

T 111 Level Restoration (LR)

T112 Emergency Blowdown (E8)

T-114 Spray Cooling (SPK)

T-118 RPV Flooding (RF)

T117 LeveUPower Control (LO)

GP8 Other Plant Procedure (Non-Emergency)

Figure 5.1-3. Procedure T-101, RPV Control (RC) 45 e __ _

T Entw condition:

i

- Torus Temp > 95* F Torus Level Outside 14.6' to 14.9'

~

- Drywell Pressure > 2 psig I Drywell Temp > 145' F l

I 1

1 T 102

~

Containment Control (CC)

. l EXECUTE T/T,T/L, DW/P, DW/T AND PC/H CONCURRENTLY I

Torus Temperature Torus Level Control Drywell Pressure Drywell Temperature Primary Containment Control T/L Control Control Hydrogen Control T/T DW/P D W/T PC/H j i i l I I I I l l T 100 T 112 T 100 T 112 GP-8 T-112 T-100 T-112 T 112 LEGEND: T-100 Scram (S)

T 112 Emergency Blowdown (EB)

GP-8 other Plant Procedure (Non-Emergency) l Figure 5.1-4. Procedure T-102, Containment Control (CC) I 46

Entrv Condaien-

. Unexplained Secondary Containment Area Radiation Level Above Alarm level

- Unexplained Reactor Building or Refueling Floor Ventiladon Exhaust Radiation Above The Alarm Level Secondary Containment Area Water Level Above The Room Flood Alarm Level

- Secondary Containment Area Temperature On Panel 2(3) 0C21 Above Alarm Level Reactor Building, Refueling Floor Or Equipment Cel1 Temperature Exhaust Temperature Above Alarm Level i I ON- ON-116 117 T-103 Secondary Containment Control (SCC)

SE 9 EXECtJTE SC/l AND SC/PO CONCURRENTLY i

Secondary Containment Secondary Containment '

isolation Control Plant Operation Control SC/l SC/PO ON- GP- T 100 T 112 GP-3 114 15 LEGENO: T 10o Scram (S)

T112 Emergency Bkmdown (EB)

GP-3 Other Plant Procedure (Non-Emergency)

GP-15 Other Plant Procedure (Non Emergency)

ON-114 Other Plant Procedure (ON-Normal Condison)

ON 116 Other Plant Procedure (ON-Normal Cond! tion)

ON-117 Other Plant Procedure (O# Normal Condidon)

SE 9 Other Plant Procedure (Non-Emergency)

Figure 5.1-5. Procedure T-103, Secondary Containment Control (SCC) 47 l

Entrv Condition:

l Vent Stack Radiation Level > High High Alarm Level

- Off Gas Stack Radiation Level > High-High Alarm Level l

l l

T 104 Radioactive Release (RR)

ON-115 .

EXECLTTE RR/V, RR/PO AND RR/O CONCURRENTLY Vent Stack Release Plant Operation Release Control Off Gas Stack l Control RR/PO Release Control RR/V RR/O I I I I I I l l l l GP- T 100 T-112 EP- EP- EP- EP- GP-3 GP-9 T-112 15 102 103 104 105 LEGEND: EP-102 OJ.or Plant Procedure (Non-Emergency) GP9 Other Plant Procedure (Non-Emergency)

EP-103 Other Plant Procedure (Non-Emergency) GP 15 Other Plant Procedure (Non-Emergency)

EP 104 Other Plant Procedure (Non-Emergency) ON-115 Other Plant Procedure (Off-Normal Condtion)

EP 105 Other Plant Procedure (Non-Emergency) T 100 Scram (S)

GP-3 Other Plant Procedure (Non-Emergency) T 112 Emergency Blowdown (EB) i l

Figure 5.1-6. Procedure T-104, Radioactive Release (RR) 48

l l l T 100 RC/P T-115 T 99 Post Scram Recovery (PSR)

T-101 ROO T-115 GP-2 GP-3 GP-8 GP-11 LEGEND: T-100 Scram (S)

T-101 RPV Control (RC)

AC/O Reactor Power Contrd Part d T 101 RC/P RPV Pressure Control Part of T 101 GP2 Other Plant Procedure (Non-Emergency)

GP-3 Other Plant Procedure (NorFEmergency)

GP-8 Other Plant Procedure (Non-Emergency)

GP-11E Other Plant Procedure (Non-Emergency)

Figure 5.1-7. Procedure T-99, Post-Scram Recovery (PSR) 49 t

k_________._._._______

l 1

4 I

l RC/L W

T-111 Level Restoration (LR)

RC/L T-112 T-113 T-114 330 psi 0 100 psi 0 Pressure High P ssu[e Pressure Low nt, , ,

Level To R W W Increasing T-112 T 112 To T-112 To T-112

,y,,

o-~ T. , , 1. ,4 LEGEND: RC/L RPV Level Control Part of T-101 T-112 Emergency Blowdown (EB)

T-113 Blowdown Cooling (BK)

T 114 Spray Cooling (SPK)

Figure 5.1-8. Procedure T-111, Level Restoration (LR) 50

l l I I I I I I I I I I T/T T/L DW/P DW/T DW/H SC/ RR/ FHO T-111 T 113 T '114 T 117 PO PO T-112 Emergency Blowdown (EB) -

8W .g[t T-100 RC/P T-116 i LEGEND: T-100 Scram (S)

RC/P RPV Pressure Control Part of T-101 DW/P Drywell Pressure Control Part of T 102 DW/T Drywe'l Ternperature Contred Part of T-102 T/L Torus Level Control Part of T 102 T/T Torus Ternperature Control Part of T-102 SC/PO SCC Plant Operation Control Part of T 103 RFVPO Plant Operation Release Control Part of T-104 FRO Off-Gas Stack Release Centrol Part c,f T 104 T 111 Level Restoration (LR)

T-113 Blowdown Cooling (BK)

T 114 Spray Cooling (SPK) i T-116 RPV Floodn;(RF)  !

T 117 Level / Power Control (LO) l I

l i

Figure 5.1-9. Procedure T-112, Emergency Blowdown (EB) 51 L_ __ _ __ _ - -

f i

i l

17 i

T 113 l l

T 112 l l

LEGEND: T-111 Level Restoration (LR)

T112 Emergency Blowdown (EB)

Figure 5.1-10. Procedure T-113, Blowdown Cooling (BK) l T7 T-114 RC/L T 112 LEGEND: RC/L RPV Level Control Part of T-101 T-111 Level Restoration (LR)

T 112 EmerDency Blowdown (EB)

Figure 5.1-11. Procedure T-114, Spray Cooling (SPK) 52

i T-99 T-115 T-99 LEGEND: T-99 Post-Scram Reo:wery (PSR)

I Figure 5.1-12. Procedure T-115, Alternate Cooldown (AK) i l i T-112 T-117 v

T-116 l

RC/L AC/P T 117 T 118 l

LEGEND: RC/L RPV Level Control Part of T 101 RC/P RPV Pressure Control Part of T 101 T-112 Emergency Blowdown (EB)

T 117 Level / Power Control (LO)

T-118 Primary Containment Flooding Figure 5.1-13. Procedure T-116, RPV Flooding (RF) 53

1 I RCC T-116 T-117 RC/L RC/P T 112 T-116 T-118 LE,GEND: RCC Reactor Power Control Part of T-101 RC/L RPV Level Control Part of T 101 RC/P RPV Pressure Control Part of T 101 T-112 Emergency Blowdown (EB) - .

T-116 RPV Floofing (RF)

T 118 Pnmary Containment Flooding Figure 5.1-14. Procedure T-117, Level / Power Control (LO) l l T-116 T 117 T-118 LEGEND: T-116 RPV Flooding (RF)

T-117 LeveVPower Control (LO) i Figure 5.1-15. Procedure T-118, Primary Containment Flooding  !

)

54 l

I l

J

5.1.2 Uses of Information in the PBAPS Emergency Operating Procedures Plant information required by the PBAPS EOPs is used in the following four basic ways:

to determine the existence of an EOP entry condition from a normal power operating plant state to determine the need to transfer to, or implement concurrently, a different part of the the EOPs (or other plant procedures) after initial entry into the EOPs to establish proximity to multiple-parameter limit curves or decision points specified in the EOPs to support step-by-step imp'ementation of a specific part of the EOPs PECo has chosen to support all four of these information needs with the SPDS.

5.2 SPDS PARAMETER SELECTION This section describes the process for selecting the SPDS input parameters and demonstrates how these parameters are sufficient to assess safety status of the plant for a wide range of events, including symptoms of severe accidents.

In connection with SPDS data, the term " variable" refers to one of the redundant measurements of the same physical condition, while the term "psrameter" refers to the calculated, validated value representing a combination of redundant variables. Each parameter value is developed using the data validation method described in Section 6.

The values of parameters used by the SPDS are calculated either directly by the PMS Data Acquisition subsystem or by an independent SPDS calculation program. To the extent practical, redundant variables are used in the calculation of each parameter. The SPDS parameters are named data points in the PMS data base and are available to other PMS functions without interfering with SPDS operations The parameters displayed on the SPDS were selected by PECo by a process that considered the following factors:

i Actual plant information needed by control room operators to assess safety function status and implement symptom-oriented Emergency Operating Procedures (EOPs)

Compatibility of specific parameters with a logical display hierarchy Availability ofinformation on the PMS computers Availability of information from other control room sources.

A thorough review of the PBAPS EOPs was conducted by PECo, and all information needs were identified for: (a) entry into the EOPs from a normal power operating state, (b) transferring to, or concurrently implementing a different part of the 25 u________---_-_--_---_------_-_--------------------------------------------- - ~

EOPs following initial EOP entry, and (c) performing specific steps within the EOPs. The specific plant variables to be provided on the SPDS are summarized in Table 5.2-1.

5.3 Functional Design of the SPDS Displays in Relation to Emergency Operating Procedure Data Requirements 5.3.1 Display Hierarchy The SPDS displays are designed in a hierarchy as shown in Figure 5.3-1. The primary display is a phtnt overview which provides a quick evaluation of the overall safety status of the plant, including the status of five EOP Entry Condition Indicators that reflect the current status of entry conditions for procedures T-100 to T-104. A set of procedure level displays provides more detailed information on the status of entry conditions for each procedure, thereby providing a more direct indication of the nature of an abnormal condition. A set of branch level displays, where applicable, provide information for use by the operators while performing a panicular section of the EOPs. (In the case of T-103 and

~

T-104 all information required to perform the branches is already present on the procedure ,

level display.) The SPDS also contains a set of contingency and supporting displays which constitute the lowest level of the display hierarchy. Included in this set are: (a) displays that support procedure T-99 and contingency procedt:res T-111 to T-118, (b) two parameter (x-y) limit curves that are referenced in the EOPs, and (c) concise data summaries to support specific parts of the EOPs. The x-y plots display the proximity of the plant to certain multi-parameter limits specified in the plant EOPs.

5.3.2 Communication Linkages Among Displays In comparing the SPDS display hierarchy in Figure 5.3-1 with the EOP organization in Figure 5.1-1,it should be evident that the SPDS display hierarchy mirrors that basic organization of the EOPs with regard to the following:

- Major EOP elements T-100 to T-104 Branch procedures RC/Q, RC/L, RC/P, T/r, T/C, DW/r, DW/P and PC/H

- Post scram recovery procedure T-99 .

Contingency procedures T-111 to T-118 In addition the SPDS display hierarchy includes the following supporting displays:

l x-y plots displays Heat Capacity Limits Heat Capacity Level Limit (HEATCAPL) 56

Table 5.2-1. Summary of Plant Data Available on the PBAPS SPDS ,

Parameter (I) Type (2)

APRM Power Analog .

SRM Count Rate Analog SRMs Insened Digital Mode Switch Digital (4-points)

Scram Digital Manual Scram Dbital Altemate Rod Insertion (ARI) A Initiated Digital Altemate Rod Insertion (ARI) B Initiated Digital All Rods To or Past 02 Digital i

Scram Reset .

Digital Standby Liquid ControlTank Level Digital Standby Liquid Control Discharge Pressure Digital l

RPV Level Analog RPV Pressure Analog Minimum Altemate RPV Flooding Pressure Digital RPV Tempemture Analog .

Steam Dome Temperature (Tsat) Analog Bottom Head Drain Temperature Analog i Cooldown Rate Analog 1 Recire. Pump Stan Digital Recire. Pump A Status Digital Recire. A Flow Analog Recire. A Temperature Analog l Recire. Pump B Status Digital Recim. B Flow

! Analog i Recire. B Temperature Analog i Recire. System Flow (Total) Analog Main Steam Lines (MSLs) Isolated Digital j Main Steam Lines (MSLs)Not Closed . Digital Main Steam Drains Digital RWCU Status Digital RWCU Dump Flow Analog j I

Drywell Pressure Analog  !

Drywell AirTemperature Analog DrywelJ Hydrogen Concentration Analog Drywell Oxygen Concentration Analog 1 Torus Pressure Analog RPV to Torus Delta P Analog Torus Temperature Analog Torus Water Level Analog Torus Hydrogen Concentration Analog Torus Oxygen Concentration Analog (Continued) 57

I Table 5.21. Summary of Plant Data Available on the PBAPS SPDS (Continued)

Parameter (I) Type (2) -

Containment Water level Analog Delta T(HC) Analog DrywellInstrument Nitrogen Digital Instrument Nitrogen Digital HPCIInitiation Digital 1

' HPCI Flow Analog

~

' RCIC Initiation Digital RCIC Flow Analog ADS Initiation Digital SRVs Open Digital SVs Open Digital Core Spray A Initiation Digital Core Spray A Flow Analog Core Spray B Initiation Digital .

Core Spray B Flow Analog - .

Core Spray Pumps On Digital RHR Imuanon Digital RHR (LPCI) A Flow Analog RHR (LPCI) B Flow Analog Torus Spray A Flow Analog Torus Spray B Flow Analog Torus Cooling Flow (Total) Analog RHR Pumps On Digital RHR S/D Cooling Interlocks Clear Digital Total Feedwater Flow Analog Condensate Pumps On Digital Condensate Flow Analog Control Rod Drive Pump Flow Analog Cire. Water Pumps On Digital CST Level Analog Off-Gas Stack Radiation Analog l Off-Gas Flow Analog Vent Stack Radiation q Analog  ;

Vent Stack Flow Analog SBOTS Flow Analog Reactor Bldg. Delta P Analog Reactor Bldg. Exhaust Flow Analog

. Refueling Floor Delta P Analog Refueling Floor Exhaust Flow Analog Control Room Radiation Analog SJAE Radiation Analog l (Continued)  !

I 58

Table 5.21. Summary of Plant Data Available on the PBAPS SPDS (Continued)

Parameter (l) Type (2)

Main Steam Line Rad Trip Digital Main Steam Line Radiation Analog Secondary Containment Area Radiation (various areas) Analog Secondary Contamment Equipment Room Temperature Analog (various areas)

Ventilation Exhaust Temperature (various areas) Analog Secondary Containment Equipment Room Flood Status Digital (various level alarms)

Toms Room Level Analog Reactor Building Sump Status Digital OverallIsolation Status Group I(MSLs Isolated) Digital Group II Digital Group III Digital Isolation Status (Initiated, Complete and All Valves Closed)

Group I , Main Steam Digital Group IIA , RWCU Digital Group IIB , Shutdown Cooling Digital Group IIC , Feedwater Longpath Recirculation Digital Group IID , Miscellaneous Digital Group III , Secondary Containment Digital Individual Isolation Valve Status (Initiated, Status)

Inboard Valves Digital Outboard Valves Digital Generator Load Analog Condenser Vacuum Analog Turbine Trip Digital Generator Lockout Digital 13 kV Transfer Digital Diesel Start Digital Turbine Bypass Valve Position Analog {i i

NOTES: (1)A parameter may be a field input point or a point calculated by the SPDS.

(2)An analog point is available as a source for displaying a current value, or for driving a bar chart, trend plot, or an x-y plot. A digital point is available for driving a status box or for input to a calculation requiring status information.

(3) Initiating signals and valve position for Isolation Groups I, II and III, as defined by the Technical Specifications, will be provided. For isolation  :

valves less than three inches in diameter, the position indication may be l indirect.

59

PLANT PROCEDURE BRANCH CONTINGENCY RELATIONSHIP OF LEVEL LEVEL LEVEL AND SUPPORTING CONTINGENCY DISPLAYS DISPLAY DISPLAYS DISPLAYS DISPLAYS TO OTHER DISPLAYS l TOPLEVEL H->{ T-100 H ->l T-99 H ->{ T-101 l l T-111 H -->{ T-101 l

->l T-115 T-112 l ->l l ]

->l RPVPRLMT l ->l T-113 l

->l GRP ISOL l ->l T-114 l tj GRP ISOL l ->lPCWTRLMTl l T-101 l l T-112 H ->l T-100 l

->l T-101 RC/O T-117 l--- ->l l--->{ l ->l T-101 l )

->l RC/L H ->{ T-111 l ->l T-116 l

->l T-112 l

->l HP NPSH l l T-113 H.->l T-112 l

->{ RHR-NPSH l

-+l CS NPSH l [ T-114 H ->l T 101 -l

-+{ PCWTRLMTl ->{ T-112 l

->l RC/P H T-99 l q GRP iSOL l l T-115 H T-99 l

->{ T-102 H-+{ T/T H ->{ T-100 l

->l T-112 l l T-116 H ->{ T-101 l

->{ HEATCAPT l ->l T-117 l

->l HP NPSH l ->l T 118 l

->l RHR NPSH l ->l UNCOVTIM l

->l CS-NPSH l ->lPCWTRLMTl

->{ T/L H ->{ T-100 l l T-117 H ->l T-101 l T-112 T-112 j l

->{ l ->l l

->{D/W SPRAY l ->l T-116 l

->{ HEATCAPL l ->l T-118 l

->l HP NPSH l ->lPCWTRLMTl

->{ RHR-NPSH j l T-118 l--->lPCWTRLMTl CONTINUED ON PAGE 2 I

->{ PCWTRLMTl Figure 5.31. Expected Peach Bottom SPDS Display Hierarchy.

60 i

PLANT FROCEDURE BRANCH CONTINGENCY RELATIONSHIP OF LEVEL LEVEL LEVEL AND SUPPORTING CONTINGENCY DISPLAYS DISPLAY DISPLAYS DISPLAYS DISPLAYS TO OTHER DISPLAYS r 3 CONTINUED FROM PAGE 1 l t J

->l DWTF H ->l T 100 l l GRP ISOL H->l GRPl l

->l T-112 l ->l GRP llABC l

->lD/W SPRAY l ->l GRPllD l

->l HP NPSH l ->l GRP ill l

->{ RHR NPSH l

->l CS-NPSH l l

->l DW/P H->l T-112 l

->lD/W SPRAY l

->{ HP-NPSH l

->{ RHR-NPSH j

->l CS NPSH l

->l DW/H H ->l T-112 l

->lD,W SPRAY l

->l T-103 l M T 100 l

->l T-112 l

->l ARM'S l

->l TEMP /LVL l

-+l GRP ISOL l

->l SCC TABLE l .

->l T-104 l d T 100 l

->{ T 112 l

->l EP-TABLE l

->l GRP ISOL l

->l ARM'S l Figure 5.3-1. Expected Peach Bottom SPDS Display Hierarchy (continued).

61 l

_ _ _ _ _ - - _ - - - - - - - - )

- ~ _ . . _ _ _ _

Heat Capacity Temperature Limit (HEATCAI7T)

Primary Containment Limits Drywell Spray Initiation Pressure Limit (D/WSPRAY)

Primary Containment Water Level Limit (PCWTRLMT)

RPV Pressurization Limit (RPVPRLMT)

Maximum Core Uncovery time (UNCOVTIM)

Concise data summaries Core Spray NPSH Limits (CS-NPSH)

RHR NPSH Limits (RHR-NPSH)

HPCI/RCIC NPSH Limits (HP-NPSH)

Group Isolation Status (GRP ISOL)

Group I Summary (GRP I)

Group IIA, IIB, IIC Summary (GRP IIABC)

Group IID Summary (GRP IID)

Group III Summary (GRP III)

Secondary Containment Area Radiation Monitors (ARM's)

Secondary Containment Temperatun: and Level (TEMP /LVL)

Secondary Containment Action Levels (SCC TABLE)

Radiation Release Action Levels (EP TABLE)

The operator can access a particular SPDS display by means of the keyboard or by touch areas on the CRT touch screen. The basic methods described in Section 3.1 for ~

calling up a particular PMS display also apply to the SPDS. The following touch screen linkages are incorporated in the SPDS displays:

Touch points are provided on all SPDS displays for direct access to the following displays:

SPDS menu T-100 T-101 T-102

- T-103

- T-104 A touch poirt for direct access to the Plant Overview display is provided on all SPDS displays except the Plant Overview display.

Touch points are provided on displays as needed to provide the down-links defined in Figure 5.3-1 (i.e. from a higher level display to related subordinate displays. Up-links are provided by the touch points described above.

5.3.3 Aggregation of Data in Individual Displays The data content and usage of data in the SPDS displays related to primary, branch, and contingency EOPs is listed in Table 5.3-1. Additional plant data is presented in supponing display (x-y plot displays and data summaries). The listing of plant variables in Table 5.2-1 is a summary of the plant variables available on all SPDS displays.

62

Table 5.31. Aggregation and Usage of Data in the.PBAPS SPDS Displays DISPLAY DATA IN USAGE IN DISPLAY DISPLAY Plant Overview Reactor Power (APRM) Analog + Bar RPV Ixvel Analog + Bar RPV Pressure Analog + Bar Drywell Pressure Analog + Bar Condenser Vacuum Analog + Bar Off-gas Stack Radiation Analog + Bar Vent Stack Radiation Analog + Bar T-100 Scram RPV Ievel Analog + Bar RPV Pressure Analog + Bar Condenser Vacuum Analog + Bar SRM Count Rate Analog + Bar Total Feedwater Flow Analog CRD Flow Analog HPCI Flow Analog RCIC Flow Analog Condensate Flow Analog Core Spray A Flow Analog Core Spray B Flow Analog LPCI A Flow Analog LPCI B Flow Analog Torus Cooling Flow Analog Generator Load Analog Scram Status Group II and IIIIsolation Status Mode Switch Status SRMs Inserted Status 13 kV Transfer Status ,

Turbine Trip Status -

Generator Lockout Status I Instrument Nitrogen Status SRVs Open Status T-101 RPV Control Reactor Power (APRM) Analog + Bar RPV Ievel Analog + Bar RPV Pressure Analog + Bar Drywell Pressure Analog  !

Scram Status HPCIInitiation Status  !

RCIC Initiation Status ADS Initiation Status RHR Initiation Status (Continued) ,

63

i Table 5.31. Aggregation and Usage of Data in the PBAPS SPDS Displays (Continued)

DISPLAY DATA IN USAGE IN.

DISPLAY DISPLAY-T-101 RPV Control Core Spray A Initiation Status (Continued) Core Spray B Initiation Status Diesel Start Status 13 kV Transfer Status Mode Switch Status

'SRMs Inserted Status T-102 Primary Torus Temperatum Analog + Bar

. Containment Control Torus Level Analog + Bar Drywell Pressure Analog + Bar DrywellTemperature Analog + Bar Drywell Hydrogen Analog + Bar

T-103 Secondary Off-Gas Stack Radiation Analog + Bar + Tmnd

~

Containment Control Vent Stack Radiation Analog + Bar + Trend RPVIevel Analog RPV Pressure Analog Vent Stack Flow Analog SBGTS Flow Analog Reactor Bldg. Delta P Analog Refueling Floor Delta P Analog Torus Level Analog CST Level Analog Reactor Bldg. Exhaust Flow Analog Refueling Floor Exhaust Flow Analog Recire. Flow A Analog 3 Recire. Flow B Analog i Group IIIIsolation Status 13 kV Transfer Status Scram Status T-104 Radiation Release Vent Stack Radiation Analog + Bar + Trend Off-Gas Stack Radiation Analog + Bar + Trend Control Room Radiation Analog + Bar + Trend Reactor Power (APRM) Analog SBGTS Flow Analog Vent Stack Flow Analog Reactor Bldg. Exhaust Flow Analog Refueling Floor Exhaust Flow Analog RPV Pressum Analog Recire. System Flow (Total) Analog (Continued) 64 L_________ _ _

I Table 5.3-1. Aggregation and Usage of Data in the PBAPS SPDS Displays (Continued)

DISPLAY DATA IN USAGE IN DISPLAY DISPLAY l

T-104 Radiation Release SJAE Radiation Analog Analog (Continued) Main Steam Line Rad Trip Analog Off-Gas Flow Analog Group IIIIsolation Status Scram Status  ;

13 kV Transfer Status RC/Q Reactivity Control APRM Power Analog + Bar + Trend SRM Count Rate Analog + Bar + Trend Torus Temperature Analog SBLC Pressure Analog SBLC Tank Level Analog Turbine Trip Status Generator Lockout Status ~

Recire. Pump A Status Recire. Pump B Status All Rods To or Past 02 Status RWCU Status Status SRMs Inserted Status Scram Reset Status ARI-A Initiated Status ARI-B Initiated Status RC/L Pressure Control RPV Ievel Analog + Bar + Trend Feedwater Flow Analog CRD Flow Analog HPCI Flow Analog RCIC Flow Analog Condensate Flow Analog Core Spray A Flow Analog Core Spray B Flow Analog {

LPCI-A Flow Analog l LPCI-B Flow Analog l 1

RC/P RPV Pressure RPV Pressure Analog + Bar + Trend Control Total Torus Cooling Flow Analog Condenser Vacuum Analog SBLC Tank Level Analog Main Steam Line Rad Analog RPV Level Analog APRM Analog SRM Analog (Continued) 65 l l

l Table 5.3-1. Aggregation and Usage of Data in the PBAPS SPDS Displays (Continued)

DISPLAY DATA IN USAGE IN DISPLAY DISPLAY RC/P RPV Pressure SRVs Open Status Control (Continued) SVs Open Status MSLs Not Closed Status All Rods To or Past 02 Status Main Steam Line Rad Trips Status SRMs Inserted Status Drywell Inst. Nitrogen Status .l I

T/I' Torus Temperature Torus Temperature Analog + Bar + Trend Torus Cooling Flow (Total) Analog Turbine Inlet Pressure Analog HPCI Flow Analog RCIC Flow Analog RPV Pressure Analog Recire. Flow A Analog Recire. Flow B Analog SRVs Open Status SVs Open Status Scram Status 13 kV Transfer Status T/L Torus Level Torus Izvel Analog + Bar + Trend )

Drywell Pressure Analog Delta T(HC) Analog Torus Temperature Analog RHR-A Flow Analog RHR-B Flow Analog Core Spray A Flow Analog Core Spray B Flow Analog HPCI Flow Analog RCIC Flow Analog Torus Spray A Flow Analog Torus Spray B Flow Analog Contamment I2 vel Analog Torus Pressure Analog Drywell AirTemperature Analog Recire. Flow A Analog Recire. Flow B Analog Scram Status DW/P Defwell Pressure Drywell Pressure Analog + Bar + Trend Torus Pressure Analog + Bar + Trend Torus Spray A Flow Analog 66 l

L______-____ __ >

i Table 5.3-1. Aggregation and Usage of Data in the PBAPS SPDS Displays (Continued)

DISPLAY. DATA IN USAGE IN DISPLAY DISPLAY DW/P Drywell Pressure Torus Spray B Flow Analog (Continued) Drywell AirTemperature Analog Torus Level Analog Recire. Pump A Status Recire. Pump B Status DW/I'Drywell DrywellTemperature Analog + Bar + Trend Temperature Drywell AirTemperature Analog Torus Pressure Analog Drywell Pressure Analog Torus Level Analog Recire. Flow A Analog

, Recire. Flow B Analog 13 kV Transfer Status Manual Scram Status .

DW/H Drywell Drywell Hydrogen Analog + Bar + Trend Drywell Oxygen Analog + Bar + Trend Torus Hydrogen Analog + Bar + Trend Torus Oxygen Analog + Bar + Trend SBGT Flow Analog Torus Level Analog Torus Spray A Flow Analog Torus Spray B Flow Analog Drywell Pressure Analog Drywell AirTemperature Analog -

Torus Pressure Analog Recire. Pump A Status Recire. Pump B Status i

T-99 Post-Scram . Recire. Flow A Analog Restoration Recire. Flow B Analog RPV Level Analog q

Reactor Power (APRM) Analog  ;

SRM Count Rate Analog CRD Flow Analog RPV Pressure Analog Cooldown Rate Analog Bottom Head Drain Temp. Analog Recire. A Temp. Analog Recire. B Temp. Analog (Continued) l 67 l

l l

l C_ _u_._m-_____ - ___.

h o

Table 5.31. Aggregation and Usage of Data in the PBAPS SPDS Displays (Continued)

DISPLAY DATA IN USAGE IN-DISPLAY DISPLAY T-99 Post-Scram Steam Dome Analog Restoration (Continued) Turbine Bypass Valve Position - Analog HPCI Flow Analog RCIC Flow Analog RWCU Dump Flow . Analog-Feedwater Flow Analog Condensate Flow Analog Off-Gas Stack Radiation Analog Vent Stack Radiation Analog SRVs Open Status SRMs Inserted Status Condensate Pumps On Status Cire. Water Pumps On Status All Rods To or Past 02 Status Recire. Pump Start Status

. RHR S/D Cooling Interlocks Status _ ,

Cleared T. t il Level Restoration Condensate Flow Analog Core Spray A Flow Analog Core Spray B Flow Analog LPCI A Flow Analog LPCI B Flow Analog RPV Level Analog HPCI Flow Analog RCIC Flow Analog RPV Pressum Analog CRD Flow Analog RPV Pressure at 330 psig Status RPV Pressure at 100 psig Status RPV Level at 0 psig Status RPV Level at -130 psig Status i RPV Level at -172 psig Status T-112 Emergency CRD Flow. Analog i Blowdown Condenser Vacuum Analog I Turbine Bypass Valve Position Analog Torus Pressure Analog RPV Pressure Analog RPV 12 vel Analog (Continued) 68 i

_____-__-D

' Table 5.3 1. Aggregation and Usage of Data in the PBAPS SPDS Displays (Continued)

DISPLAY DATA IN USAGE IN DISPLAY DISPLAY T-112 Emergency Reactor Scram Status Blowdown (Continued) MSLs Not Closed Status Torus Level at 5.5 ft. Status RPV to Torus Delta P at 50 psid Status SRVs Open Status T-113 Blowdown RPV Level Analog Cooling RPV Pressure Analog RPV Level at-280" Status SRVs Open Status RPV Pressure at 700 psig Status T-114 Spray Cooling Core Spray A Flow Analog '

Core Spray B Flow Analog  ;

LPCI A Flow Analog LPCI B Flow Analog HPCI Flow Analog  !

RCIC Flow Analog .

Total Condensate Flow Analog I RPV Level Analog RPV Pressure Analog  :

RPV Pressure at 105 psig Status RPV Level at-172" Status i T-115 Altemate Shutdown Torus Spray A Flow Analog Cooling Torus Spray B Flow Analog RPV Level Analog CRD Flow Analog Total Condensate Flow Analog j Core Spray A Flow Analog  ;

Core Spray B Flow Analog i LPCI A Flow Analog 1 LPCI B Flow Analog i Cooldown Rate Analog RPV Pressure Analog  !

Torus Pressure Analog i l Torus Temperature Analog Torus Temp. at 100'F Status 'l" MSLs Isolated Status Main Steam Drains Status (Continued)

, 69 1

L ._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __

Table SJ-1. Aggregation and Usage of Data in the PBAPS SPDS Displays (Continued)

DISPLAY DATA IN USAGE IN DISPLAY DISPLAY T-115 Alternate Shutdown SRVs Open . Status Cooling (Continued) RPV to Torus Delta P at 50 psid Status RPV Pressure at 150 psig Status RPV Pressure at 50 psig Statur T-116 RPV Flooding RWCU Dump Flow Analog Turbine Bypass Valve Position Analog CRD Flow Analog RPV Level ' Analog Total Condensate Flow Analog LPCI A Flow Analog .

LPCI B Flow Analog Com Spray A Flow Analog Core Spray B Flow Analog APRM Power Analog ~

SRM Count Rate Analog RPV Pressure Analog Torus Pressum Analog SRVs Open Status MSLs Isolated Status Main Steam Drains Status All Rods To or Past 02 Status Min. Alt. RPV Flooding Pressum Status Torus Pressure at 49 psig Status RPV to Torus Delta P at 80 psid Status T-117 Level / Power RPV Ixvel Analog Control. APRM Power Analog Total Condensate Flow Analog Core Spray A Flow Analog Core Spray B Flow Analog LPCI A Flow Analog LPCI B Flow Analog HPCI Flow Analog RCIC Flow Analog CRD Flow Analog SBLC Tank Level Analog SBLC Discharge Pressure Analog Total Feedwater Flow Analog RPV Pressure Analog Torus Temperature Analog 70 L .____=______ -

Table 5.31. Aggregation and Usage of Data in the PBAPS SPDS Displays (Continued)

DISPLAY DATA IN USAGE IN DISPLAY DISPLAY

'T-117 Level / Power Drywell Pressure Analog Control (Continued) Condenser Vacuum Analog APRM Power at 8% Status APRM Power at 3% Status Torus Temp. at 110*F Status SRVs Open Status Drywell Pressure at 2 psig Status RPV Level at -172" Status All Rods To or Past 02 Status RPV Level at 0" Status RPV Level at -130" Status RPV Pressure at 150 psig Status RPV Pressure at 50 psig Status Min. Alt. RPV Flooding Press. Status MSLs Not Closed Status T-118 Primary Containment Water Level Analog Containment Flooding RPV Level Analog TotM Condensate Flow Analog RCIC Flow Analog Core Spray A Flow Analog Core Spray B Flow Analog LPCI A Flow Analog LPCI B Flow Analog CRD Flow Analog MSLs Not Closed Status Main Steam Drains Status 71

5.4 RELATIONSHIP TO NUREG 0737, SUPPLEMENT 1 CRITICAL SAFETY FUNCTIONS In Sections 5.1 to 5.3, information needs were defined for supporting the implementation of the PBAPS Emergency Operating Procedures. The information needs of

{

EOPs are user-oriented in that this information allows control room operators to determine the need for specific operator actions in response to actual plant conditions. In contrast,

)

j knowledge of safety function status is more of an abstract engineering concern, and is not as closely related to specific operator actions as the EOP entry conditions. To aid in

- integrating the symptom-oriented emergency operating procedures with the SPDS,it is l important to define the relationships that exist between the EOP entry conditions and safety functions. These relationships are summarized in Table 5.4-1.

It should be very clear from Table 5.4-1 that the EOPs and the safety functions will define different bases for aggregating plant data in SPDS displays. For example, plant data related to the reactivity control safety function encompasses only a portion of the plant data related to procedure T-101 (RPV Control) entry conditions. It is reasonable, however, to relate the reactivity control safety function with the reactor power control (RC/Q) sub- [

element of procedure T-101. Relatively high reactor power following a scram demand is a type of condition that would indicate a problem uniquely associated with the reactivity control safety function. As required by the EOPs, the existence of this (or any other) RPV control entry condition will concurrently invoke reactor power contml (RC/Q), RPV water l level control (RC/L), and RPV pressure control (RC/P). This example serves to emphasize that there is not a 1-to-1 correspondence between EOP entry conditions and safety functions. This lack of correspondence requires tradeoffs when defining the SPDS display I

characteristics and data aggregation so that the displays can support the operator in EOP implementation and meet the NRCs guideline for displaying information related to safety function status. The PBAPS SPDS displays achieve both goals.

l l

l 72 L_________-____-_

Tabb 5.4-1. R litionship B2 tween NUREG-0737, Suppismsnt 1 Safety Functions and Peach Bottom 2 and 3 Emergency Operating Procedures i

~

NUREG-0737, Supp.1 PBAPS EMERGENCY MAJOR SUB-ELEMENT OF l SAFETY FUNCTION (1) OPERATING EMERGENCY OPERATING i PR OC ED U R ES(2) PROCEDURES (2) {

T-100 Scram (S) None Reactivity Control

]

Reactor Power Control (RC/O) I Reactor Core Cooliry and Heat Removal from the T-101 RPV Control (RC) RPV Level Control (RC/L)

Primary System Syste n I tegr y RPV Pressure Control (RC/P) l Torus Temperature '

Control (T/T)

Torus Level Control (T/L)

T-102 Containment Control Drywell Pressure Control (CC) (DW/P)

Drywell Temperature Containment Conditions Control (DW/T)

Primary Containment Hydrogen Control (PC/H)

Secondary Containment T-103 Secondary Containment Isolation Control (SC/l)

Control (SCC) Secondary Containment Plant Operation Control (SC/PO) l Vent Stack Release Control {

T-104 Radioactive (RR/V)

Radioactivity Control Release (RR) l Plant Operation Release Control (RR/PO)

Off-gas Stack Release Control (RR/O)

NOTES: (1) Safety functions listed in Section 4.1 of NUREG-0737, Supplement 1 (Generic Letter 82 33),

" Requirements for Emergency Response Capability," U.S. IJuclear Regulatory Commission, December 17,1982.

(2) Based on Peach Bottom 2 and 3 Transient Response implementation Plan.

73

I

6. SPDS DATA VALIDATION As described in Section 3, the SPDS is an application that is run on the PMS.

Most data validation functions are performed by the PMS Supplementary data validation is incorporated into special calculations that are performed specifically for the SPDS. This  ;

I section describes the methods to ensure that valid data is displayed by the SPDS.

6.1 BASIC DATA VALIDATION FUNCTIONS OF THE PMS l The PMS checks the validity of all data points by performing quality and limit  !

checks. Each time a field input point is sampled, a data quality code is appended to the current value. The quality code is based on the comparison of the point's current value to its alarm and engineering limits defined in the PMS data base, and to the value of a redundant point,if applicable. Quality codes are listed in Table 6-1.

The data validation scheme has the following characteristics:

Capable of processing up to a maximum of ten inputs for each parameter Capable of processing all combinations of data quality, with a suitable message displayed if there is not at least one input with good quality

- Capable of handling all combination of inputs with the same or different ranges Capable of recognizing and rejecting bypassed measurement channels (e.g.,

APRM channels) based on a digital input i

- Capable of including non-Class IE input signals in the data validation calculation and providing a warning indication if any non-Class 1E signals are used in the calculation.

Most SPDS parameters are calculated from two or more input vadables. In most cases an SPDS calculation rejects " unhealthy" inputs from the calculation and proceeds with the remaining " healthy" inputs. A point is considered unhealthy ifits quality code is any of the Magenta quality codes listed in Table 6-1. For SPDS calculations, substitute values are also rejected as unhealthy. (This is a special case applicable only to SPDS calculated points.) If all inputs to a calculation are unhealthy, a quality of NCAL (i.e. can not be calculated) is assigned to the calculated point, and the current value is not upda._J in the PMS Current Value Table.

The quality of a calculated point is determined as follows. If all inputs are unhealthy a quality code of NCAL is assigned. If at least one input is healthy, but has an REDU quality code (failed redundant point check), a quality code of REDU is assigned. If there is at least one healthy input and no inputs with en REDU quality, then the quality of the calculated point is calculated by the Data Acquisition system by performing limit checking on the calculated value, in the same manner as for a field input point.

74

_ _ _ _ ___ m

Table 6-1 Definition of PMS Quality Codes Quality.-

Description Color UNK Unknown; point not yet processed Magenta DEL Point deleted from processing Magenta INVL Multiplexer hardware error Magenta RDER Sensor read error Magenta OTC Open thermocouple Magenta BAD Input counts exceed sensor range, or illegal Magenta state for a multistate input HRL Point exceeds high reasonable limits Magenta .

LRL Point exceeds low reasonable limits Magenta ~

NCAL Derived point not calculable Magenta REDU Point fails redundant point check White HIHI Point above high emergency range Red LOLO Point below low emergency range Red ALM State / Change-of-State alarm (digital point) Red HALM Point above normal operating range Yellow LALM Point below normal operating range Yellow SUB Substitute value for point Blue DALM Point deleted from alarm checks Cyan INHB Alarm inhibited by cutout point Cyan GOOD Point passes all above checks Cyan 75

The SPDS displays use color to indicate the quality of the points. Color

. conventions are listed in Table 6-1. In this way, a point in alarm is automatically displayed

. in yellow or red because of the color associated with the quality code.

6.2 SUPPLEMENTARY SPDS DATA VALIDATION -

Algorithms developed specially for the SPDS are used to perform calculations that are not supported by available PMS calculational routines. These SPDS algorithms generally reject " unhealthy" input points as described in Section 6.1 and attempt to produce a " healthy" output. The special SPDS algorithms therefore provide the same level of data validation as described in Section 6.1.

e rY 76

7. SPDS HUMAN FACTORS ENGINEERING The SPDS is designed to meet the human factors requirements of NUREG-0737, Supplement 1 (Ref.1) and NUREG-0800 (Ref. 5). SPDS displays are developed based upon a detailed Human Factors Engineering Plan which is concerned with such display aspects as readability, symbol and character size, use of colors, grouping of data and usability of data. The Human Factors Engineering Plan also is concerned'with the integration of the SPDS with the overall Plant Monitoring System.

This section describes the efforts made to ensure that the SPDS meets all applicable human factors criteria.

7.1 HUMAN FACTORS ENGINEERING PLAN At the start of the PBAPS PMS/SPDS project, the Human Factors Engineering Plan (Ref 7) was developed based on NRC requirements and guidelines established in NUREG-0700 and NUREG-0737, Supplement 1 (Refs 4 and 1). This Human Factors Engineering Plan serves as the basis for the human factors design and review activities performed during this project. -

7.2 HUMAN FACTORS ENGINEERING INPUT FROM PECo ACTIVITIES ~

7.2.1 PECo Involvement in the SPDS Design Process The PECO engineering and operating staff has taken an active role in design and human factors engineering of the PBAPS SPDS. Lead engineers at the PBAPS site and the PECo corporate engineering offices have had direct input into the SPDS design process and have served as the principal source of engineering review by PECo. On many occasions the plant operating staff reviewed the developing SPDS design to ensure that the system would meet user needs.

Major PECo contributions to the human factors engineering design of the PBAPS SPDS include the following:

Integration with EOPs Parameter selection {

j Development of display hierarchy

- l

' Development of data content and basic format ofindividual displays I Solicitation of operatorinput to the SPDS design process {

Review and approval of SPDS displays prior to delivery of the PMS and )

SPDS.

l Since the design of the SPDS corresponds one for one with the trip procedures (that is, all l information associated with one branch of a procedure appears on one display), a separate task analysis for SPDS is not required.

77

7.2.2 Function Validation Testing of SPDS The functional validation of the PECo SPDS will be perfomied after installation at PBAPS using simulated data to drive the SPDS displays during a man-in-the-loop review process involving the plant operating and engineering staff. The Dynamic Capability Test described in Section 11 will be conducted during the Factory Acceptance Test to verify PECo's ability to perform SPDS functional validation testing after installation of the SPDS at the Peach Bottom site. The plant data to drive the SPDS displays during the man-in-the-loop test will be adapted from simulator data. The reviewer comments will be documented on Display Characteristics Questionnaires from the Human Factors Engineering Plan (Ref 7).

7.3 INCORPORATION OF HUMAN FACTORS DESIGN AND OPERATIONAL FEATURES DURING EVOLUTION OF THE SAIC PMS AND SPDS FOR BOILING WATER REACTORS The PMS/SPDS installed at PBAPS is an evolutionary SAIC product that benefitted from human factors design and development activities and human factors .

I reviews on prior projects. Major elements of this development cycle are discussed in this section.

7.3.1 Grand Gulf Emergency Response Information System (ERIS)

The Grand Gulf ERIS, which included an SPDS, was developed while NRC requirements for the SPDS were still in the formative stage. This early system was built by SAIC using dual SEL 32/27 CPUs, Ramtek terminals and a Validyne data acquisition system. This project led to the development of the original architecture for the S AIC PMS for use with SEL computers and the Validyne data acquisition front end. Basic features of -

the man-machine interface were developed to meet requirements established by the users of the system.

The Grand Gulf SPDS displays were developed largely by the utility (Mississippi Power and Light Co.) with support from SAIC in the areas of: (a) parameter selection, (b) specification of basic operating capabilities of bar, trend, and tabular data displays, (c) basic display design, and (d) human factors review of prototype displays.

The monitoring reg drements of the SPDS were developed based on a review of the plant accident analysis, and a comparison with actual control room monitoring capabilities, NRC guidelines in the July 1980 draft Rev. 2 version of Regulatory Guide 1.97 (Ref 8), and other NRC guidelines related to the planned Nuclear Data Link (NDL). Working meetings with plant engineering and operating staff members led to the definition of the initial set of SPDS displays implemented at Grand Gulf. These working meetings provided important 78

l insight into the general types of display features and operating characteristics needed to create a reasonable man-machine interface environment.

l 7.3.2 Dynamic Screening Program for EPRI/BWR Owners Group l

In the Dynamic Screening Program, SAIC took basic SPDS display concepts developed by the BWR Owners Group (BWROG), developed detailed SPDS display designs which included some features from the Grand Gulf SPDS, and developed man-machine interface software and other software to drive these displays in simulated real-time using data from the Browns Ferry Simulator. The types of displays evaluated in this -

l project include: (a) bar charts, (b) trend plots, (c) x-y plots, (d) mimics, (e) Safety Function Indicator (SFI) boxes, (f) equipment status indicator boxes, and (g) iconic.

Using review procedures developed by human factors specialists from Sandia National Laboratories, all SPDS displays were " screened" by operating and engineering personnel from BWR utilities. The results of these technical and human factors reviews were 1 incorporated by SAIC in the design of an improved Graphic Display System (GDS) that

! was tested at the Perry simulator. Details of the Dynamic Screening Program and the ~ '

l program results are described fully in ALO-1003 (Ref 9).

The hardware for the Dynamic Screening Project included a single PDP 11/23 l and multiple Ramtek terminals. All plant data to drive the SPDS displays was collected on I tape during simulated accident conditions at the Browns Ferry Simulator, and transferred to disk for use during the ectual screening. There was no data acquisition system.

This particular project led to the definition of the three level hierarchy of BWR SPDS displays which included Safety Function Indicators (SFIs) at the bottom of all SPDS l

displays. In SAIC's present BWR SPDS design these SFIs actually constitute the SPDS

" overview" display required by the NRC. This basic philosophy _ was validated by results '

of the Dynamic Screening Program.

The basic three-level display hierarchy developed in the Dynamic Screening Program has carried through to SAICs present design of the BWR SPDS displays. For example, the Level 1 displays contain general plant data that is most useful during normal plant operations. The Level 2 displays are related directly to the safety functions identified <

l l in NUREG-0737, Supplement 1 (Ref 1) and to the entry conditions from normal plant j operation into the symptom- oriented BWR Emergency Operating Procedures (EOPs). The Level 3 displays support the detailed implementation of the EOPs and contain the x-y plots and other information needed by the operator at key decision points in the EOPs.

I 79 1

l 7.3.3 Perry Simulator Testing for EPRUBWR Owners Group I In this program, SAIC installed the hardware from the Dynamic Screening Program at the Perry Simulator and updated the GDS displays to reflect the lessons learned I during the screening of the earlier displays. This time the GDS displays were installed in a control room environment, and were driven directly by the Perry Simulator. The updated GDS displays were again evaluated by operating and engineering perscnnel from BWR utilities and tests were conducted of control room crew efficiency with and without the GDS. Details of this program are reponed in ALO-1019 (Ref 10). Included in this repon are human factors considerations and guidelines that were developed from the results of the i GDS simulator evaluation program. These basic guidelines were factored into the design of S AIC's next BWR SPDS project at the Fermi 2 nuclear plant.

)

7.3.4 Fermi 2 Emergency Response Information System (ERIS)

The Fermi 2 ERIS includes an SPDS subsystem that was designed to meet current NRC requirements. The ERIS hardware included dual SEL 32/7780 CPUs, Industrial Data Terminal (IDT) consoles and a Validyne data acquisition system. This panicular system represented a great improvement over the system installed at Grand Gulf, and included the capability for automatic fail-over to the backup computer in the event of a l failure of the primary computer. PMS architecture was updated to incorporate greater i l

flexibility in the static and dynamic display editors, a more powerful data base, and_

improved man-machine interface (MMI) features. The PMS software was revised to incorporate mature routines from the SEL POWERPLEX software. Funher PMS changes were necessary to interface with and take advantage of features of the IDT consoles. The IDTs included several improvements over the Ramtek terminals, including: (a) local bubble memory for storing display statics, and (b) greater resolution. The bubble memory reduced the amount of communications needed between the host CPU and the terminalin order to I bring up a new display, and hence, improved the responsiveness of the PMS. The resulting PMS configuration served as the baseline for the Cooper Nuclear Station (CNS) )

PMS and the systems installed at the Shearon Harris and H.B. Robinson PWR plants.

The SPDS displays for Fermi 2 were developed based on the results of the BWROG displays that were tested at the Perry simulator. These displays retained the j three-level display hierarchy and Safety Functions Indicators at the bottom of all displays.

Display development was supported by SAIC, but final display design was largely the role of the utility engineering staff. Final display design incorporated improvements based on:

(a) the current versions of the plant-specific symptom-oriented Emergency Operating I

l 80 l

L__________ _ J

Procedures, (b) current NRC human factors guidelines, and (c) reviews by the Fermi 2 operating staff.

Fermi 2 SPDS displays thus represented a funher maturing of the BWROG displays in areas of interfacing with EOPs and the control room environment, and user involvement in the design and human factors engineering process.

7.3.5 Shearon Harris and H.B. Robinson Emergency Response Facility Information Systems (ERFIS)

The ERFIS installations at Shearon Harris and H.B. Robinson were the first such systems delivered by S AIC to a PWR plant. A new data acquisition / data concentrator front-end from Computer Products Inc. (CPI) was introduced in these projects, and was carried over to the CNS project. This new front-end provided the opponunity to unload certain data handling and communications tasks from the host CPU and improve the performance of the PMS. In these projects, the SAIC SPDS design team gained funher experience in implementing current NRC human factors guidelines and working with utility engineering and operating staff to develop an effective man-machine interface to suppon _

PMS and SPDS operation.

7.3.6 Cooper Nuclear Station (CNS) Plant Management Information -

System (PMIS)

The baseline for the CNS PMIS was the SEL-based system installed at the Fermi 2 nuclear plant. Significant changes were required to transpon the SEL-based PMIS to the dual VAX computers used for the CNS PMIS. Major changes also were made to improve the data base as a result of experience gained at Fermi 2. The CNS data base became the baseline for subsequent PMIS projects. Other evolutionary changes were implemented on the CNS PMIS to improve the man-machine interface, the flexibility of display editors, and the speed of the SPDS.

The CNS SPDS displays were developed by S AIC by starting with the Fermi 2 displays, developing prototype displays for CNS with the aid of direct human factors input on the S AIC project team, and then working with CNS engineering and operating staff to produce the final displays which were tailored to the CNS application.

Independent validation and verification (V&V) activities during PMIS/SPDS development, man-in-the-loop SPDS testing at CNS, and a final human factors review of the SPDS displays at CNS completed the evolutionary design, engineering development, and human factors development of the CNS PMIS and the SPDS subsystem.

81

7.3.7 Duane Arnold Process Computer Replacement The process computer upgrade for the Duane Arnold Nuclear Power Plant involved installation of a VAX 8600 with IDT terminals incorporating a touch screen capability and evolutionary upgrades to the man-machine interface (MMI) and other portions of SAIC PMIS. The touch screen capability and the MMI and PMIS upgrades become part of the baseline PBAPS PMS.

m I

82

)

8. ISOLATION OF TIIE PMS AND SPDS FROM EQUIPMENT AND SENSORS IN SAFETY SYSTEMS ,

I The PMS derives some of its input data from Class IE instrumentation and control systems and some from Non-class IE systems. These interfaces are shown I schematically in Figure 8-1. To maintain the integrity of the Class IE systems and to optimize the availability of data sources for the PMS, the following approaches are taken in the design of the PMS: j i

A. Termination of Field Inouts. General Class IE inputs are terminated to Class IE multiplexer (MUXs E and F in Figure 8-1).

Non-class IE inputs are terminated to Non-class IE multiplexer (MUXs A, s B, C and D in Figure 8-1).

l s B. Termination of Redundant Field Inouts Redundant field inputs (i.e. redundant instrument channels monitoring the same parameter) are terminated to different multiplexer so that loss of a single multiplexer will not result in unavailability of data on an important plant parameter.

C. Electrical and Physical Separation of Class 1E and Non-class 1E Multiplexer The two class IE multiplexer are powered from two different Class IE power sources.

The Non-class 1E multiplexer are powered from Non-class IE power sources.

The Class IE multiplexer cabinets are physically separate from each other and from the Non-class IE multiplexer.

D. Isolation Between Multiolexers and PMS Computers Optical transmitter / receiver units and fiber optic cables connect the multiplexer (Class IE and Non-class IE) to tae PMS computers, and provide effective fault isolation.

83

input from

  • Non 1E ----> To CPU A Non-1 E --> MUX Instruments --* A ->

-~< T; CPU B '

From .->

Non-1E

-> CPU MUXs

-> A m

input from

  • Non-1E ---> To CPU A '

Non 1E -, MUX '

instruments _, B

--- To CPU B From ->

Non 1E -> CPU Input from ~* Non-1 E -----> To CPU A MUXs

_, B Non 1E , MUX Instruments C >

-* --- -> To CPU B _,___ ,

.q Input from

  • Non-1E ----> To CPU A Non 1E _, MUX Instruments D 4

l

,.m .- s~* 1E Input from 1E , MUX Instruments E

....._....-* 1E Input from 1E  ! , MUX Instruments ~ p t

Fiber Optic Cables

-l CLASS 1E PART OF PMS l:

1 I

Figure 8-1. Identification of Class 1E Portion of the PBAPS PMS 84 i

_ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ ]

l i

s '

9. PMS AND SPDS DOCUMENTATION i

Comprehensive documentation is provided for all PMS and SPDS hardware and software. All documentation is customized to accurately describe the PMS as installed at PBAPS. This documentation is' intended to support PECo's goal of having complete 4 t

. operational and maintenance knowledge of the PMS and SPDS so that after the system has -!

been installed and accepted, PECo's technical staff can use, modify and maintain the system without assistance from outside vendors.

Documentation to be provided willinclude the following:

System Functional Description Document Hardware Documentation Software Documentation, including source code listings PMS Users Manual Test Documentation Verification and Validation Documentation SPDS Safety Analysis (this report)

SPDS Detailed Design Report , ,

1 i

85 L______-____---

10. PMS AND SPDS TRAINING r

10.1 TRAINING MANAGEMENT L PECo has responsibility for overall training management related to the SPDS.

10.2 . TRAINING PROGRAM Detailed PMS/SPDS training courses will be presented by SAIC to PECo personnel to prepare them for acceptance and operation of the PMS/SPDS. Content of the S AIC training courses will be reviewed and approved by PECo prior to the actual training sessions. PECo supplements the SPDS training with other courses related to emergency

' response, emergency operating procedures, and implementation of control room upgrades.

The following training courses relevant to the PMS and SPDS will be presented:

A. System orientation seminar Comprehensive overview for PECo staff B. Overall system maintenance trainine Use of diagnostic software

- Trouble shooting C. Hardware trainine Individual courses devoted to particular equipment D. Software trainine Basic programming and software courses Operating system (VAX/VMS)

Data base generation and maintenance Display generation and maintenance Log generation and maintenance  !

Applications software SPDS BOP ,

- NSSS System generation software PECo applications software E. Operatorinstructo trainine i

l 86

11. PMS AND SPDS TESTING Test plans and procedures for both factory and field tests will be developed and d documented to insure that each test and demonstration is comprehensive, based on the functions to be exercised, and that any part of the test or demonstration can be readily repeated. The factory and field testing includes both the PMS and SPDS.

11.1 FACTORY TESTING Factory testing is conducted prior to delivery of the PMS and SPDS to the Peach Bottom site. Factory testing includes three tests as shown in Figure 11-1. Major aspects of each test are discussed below.

4 11.1.1 Functional Performance Test The functional performance test will be comprised of three major test categories:

(a) the basic PMS test, (b) the dynamic validation capability test, and (c) the performance test.

A. Basic PMS Test The basic PMS test will include inspection and comprehensive testing of all hardware and software.

B, Dynamic Validation Caoability Test The PMS has the capability to read a time sequence of values of selected input variables from magnetic tape and to operate on this data as if it were real-time SPDS input data. This capability wil) be used to perform dynamic validation tests in the field and is therefore, referred to as the dynamic validation capability. As part of the functional performance test, PECo representatives will conduct a test of the dynamic validation capability of the PMS. The purpose of the dynamic validation capability is to present to the Reactor Operator, during a period of unit outage, realistic scenarios of dynamically changing SPDS displays similar to displays that would occur during plant accidents. No PMS functions other than SPDS are utilized when the dynamic j validation capability is used in the field.

C. System Performance Test System performance will be demonstrated during normal and peak operating conditions by creating appropriate loading on the system. PMS performance will be measured using the system performance-monitoring software.- During these tests, the PMS will be expected to satisfy all specified spare utilization, spare capacity, and timing requirements. ,

87 i

- r s

- N o P

O I

s S T T e D A S i nc P D E .p S UT s A

V .

I 4

o T .

E C d. T MA N e.

L. .

EMT T S g u.

S R E .r Y OT v AF S FR E

P -- )

l y

n O

T e

. A n F n 2

, t i

o n ns U

(

a E n n E

t

o. o O

E Aq s e . e. C A- wn Y C L C u en in e RN A N NA o wu a

.oF v e,. o

.s O AT OM TS C r T T S I S T .

.i ses n ness S

A M S dwu I

C P E T OTR E rp u ss A E C T C P E aows e

N F B T . w r f

F C U R Hws ssnn A '

F E P -_- _

lo e

.)

.n ;-

c S

Y S CT I DM P

MIL T S*

9 A B S o N AE C E( -

Y P T P n D A o C

n. n nc o t

b

. u.

r v .e p

D do u

E nsn T M n. ee A E T a. w R T S G S Y TE

.e e

. o n

E uc T S N

I I l l

11.1.2 Integrated System Test -

The integrated system test will be performed following the successful completion of the functional performance test. The integrated system test is intended to assure PECo that the PMS is free of problems caused by interactions among the various software tasks and the hardware while the system is operating successfully as an integrated whole. Successful operation of the system occurs when all PMS functions can be performed concurrently.

11.1.3 SPDS Validation Test Testing in support of V&V activities will be conductui in conjunction with other factory tests.

11.2 FIELD TESTING Field testing will be conducted after installation of the PMS and SPDS at the Peach Bottom site. Field testing will include the following tests: (a) field installation test, (b) field perfonnance test. (c) field verification test, and (d) availability test.

11.2.1 Field Installation Test The field installation test will demonstrate the operation of all PMS functions.

All hardware will be demonstrated to be operational by running off-line and on-line diagnostics.

I1.2.2 Field Performance Test .

i After a field update period, PECo will conduct the field performance test. This test includes any parts of the functional performance test which were not performed as part of the field installation test. The field performance test concentrate on those areas of system operation that were simulated or only partially tested in the factory (e.g., system timing and loading while communicating with a full complement of multiplexer, and system reaction to actual field conditions). The validity of factory test results determined by calculation or extrapolation will be examined.

I1.2.3 Field Verification Test These activities include the development of an installation verification test plan, the field verification that each input signal is properly connected and that the signal range is consistent with the design, and the performance of any other testing required by the V&V i Plan. ,

89

11.2.4- Availability Test Following successful completion of the field performance test, a 2200-hour test will be conducted to verify the ability of the PMS to meet its availability goal.

11.3 PERIODIC TESTING The PMS includes the capability for performing periodic testing of the SPDS.

Data files containing test scenarios for the Dynamic Validation Capability Test and the SPDS Validation Test will be maintained on the system. These test scenarios can be j implemented at any time of the plant's choosing. The test procedures will explain the purpose and expected results of each step of the test scenarios.

e i

r 90 j

r.-

12. REFERENCES l 1.. NUREG-0737, Supplement 1, " Requirements for Emergency Response Capability,"

l USNRC, December,1982.

2. Peach Bottom Atomic Power Station SPDS Detailed Design Report
3. NUREG-0696, " Functional Criteria for Emergency Response Facilities," USNRC, February,1981
4. NUREG-0700, " Guidelines for Control Room Design Reviews", USNRC, September,1981 .
5. NUREG-0800, " Standard Review Plan for the Review of Safety Analysis Reports for. Nuclear Power Plants," Section 18.2, " Safety Parameter Display System (SPDS)," USNRC, November,1984.
6. NUREG-0814, " Methodology for Evaluation of Emergency Response Facilities",
USNRC, August,1981.
7. Peach Bottom Atomic Power Station SPDS Human Factors Engineering Plan, Document 510-9100000-10, May 15,1987.
8. USNRC Regulatory Guide 1.97 " Instrumentation for Light Water Cooled Nuclear Power Plants to Assess Plant and Envi:mns Conditions During and Following an Accident".
9. Buckley, D.W. Lobner, P.R., Hope, E., and Roy, G., "BWR Graphic Display System Dynamic Screen Program, " ALO-1003, Sandia National Laboratories, February,1982.

~~

10. Mullee, G.R., and Aburomia, M.M., " Simulator Evaluation of the Boiling Water Reactor Owner's Group (BWROG) Graphic Display System (GDS)", ALO-1019, Sandia National Laboratories, May,1983.

91

l l

APPENDIX A ,

}

SPDS DISPLAYS l 1

i h

l i

t i

i I

II i

A-1

Su Y T

DH I ee VE)

Sn IS4 TA0 CE1 AL-0ET 0 IR(

D UEHT STRCK RADIATI0H 0 A 0 R - - 1

  • 0 n 0 0 o N
  • 0 o 0 0 P
  • 8 s 9 2 C T

NL) OG STACK RRDIATION OO3 S CR0 - - P T1 - - - - - . _ - C

.N- ' 5 4 3 2 s 1 COT * + + + + , o, .-

1 EC(

S

" E E E e E g E l

E I COHDEHSER UACUUM G l

H i

- N R

  • 5 0 ' o 5 o I T 3 2 2 1 s E HL)

OO2 U CR0 O .T1 IOT N- D RYWELL PRESS U RE RC( G I

P - - S T

l 0

  • 0 0

0 0

2 P

i 7 8

  • 9 3 2 1 .-

R L -

R PV PRE SSU RE P L)

G

- - I O1 - S UR0

  • 0 0

o P

PT1

  • 0 0 RH-
  • 1 C(

R PU LEU EL

- - N I

l

' o 0 0 s

" w 0 0 w2 T 2 2e3

)

I F 0 A0 R EACT0R PO WER R1 C-ST - - */

( - - _ - - - -

s 0 o, o o 0 o 2

1 0 s w 2 1

sN f ,

Y ll SU T H T DN I A eE 1 VE) / 1MMt1Mt11 MM t t T

St IS4 iPPPPPPPPPW t

S TAO MGGGGGGGGGM CEI L AL- O OET S IR( I D

A P R O R S

I t

G D N I E P W WWI IHT I T

i O

L WWWWWLLO OOL TEETg H ICRRR R T P I t L) FWOOOOOFFOD &ISF g E OO3 CRO OLLLLL CR WNXE 2P U IM WLFFFFFAD O ISI H HO P L TI FF - SL NI VI R

. N- ICDRBIIU A EsKD Ts COT TDCIN- - CCRH RPDi R SV SGMS1TgIS i

EC( ORPCOSSPPOE CROR3U NR I S TCHRCCCLLTG I

A P

1 3- T NL )

OO 2 CR O

.TN IT- g Rn COUHT RATE IO S i RC ( - - P

P C t - . - - -

i s s 3 1 o t

-i_ + + * + + + -

1 E g " E E E E T C O ;g DEtiSER UACUUT 1 G

L ) - -

H O I ~ - ' - - - -

N UR O

  • s s o 5 o I PT I 3 2 a t RN -

O T C ( W-T R Pv PRESS URE G I

~ - S 0 0 o P 0 0 s 5 1

)

MO A B pPy LEUEL R I C - N ST - -

RW e _ - - _ -

I EE (

s o o 0 , s VI o 0 o2 OV t 2 3

- - 3_ -

,e"

SU Y DH T G T l

I .

eE 1 SF VE)

IS4 I

S h S

TA0 P CE1 L

_ AL- O OET S

IR( I D

A P R R G

P

/ E T C

R R

U . . . .ARCR R HM T S TT . .TTTETE NL) S I ITTIISFIS H OO3 E HNIINN XWH 3S CR0 R IINHIIL SI CP t

T1 P EU H u

1 II t

. N- AIC ABSKE COT W RCISR- - E D R EC(

S D

/

CPCDHSSI30m SHRARCCD1 1 T

I F

1 R H 0 H S P

~t R H T-I NL )

I OO2 L CR 0 P T 1

. N- C

/

C P IOT RC (

R I C H R S P / P I

C H P

H 1

0 RP PRESSURE G

1 -

L ) ~ _

I O 1 S

- UR 0

  • o 0

o P PT 1

  • o 0 T RN -

O T o

g 5

C (

Q

/ RP LEUEL C

R - _ N I

0 o o

F0 h 6

g A0 T 2 N[

)

1 W 00 f

R1 p E CTOR POWER C- _.

RW ST - . ~4 EE ( - - - _

VI 5 0 ." 0 0 o o OV 2 0 ' 6 5 2 1 1

?4

1 i 1 SU nN 5T R eE 1 I

E St VE) TL IS4 AE TA0 WV CE1 E AL- Cl OET /

L IR( H P D e O A R

C P

R T

I SS H

I CP H

O- T .

H t) TORUS H2 C OC3 CR0 - - */.

T1 - - _ -

o

.N- T o s , s T COT EC( W

/ 2 s ,

~

l S . D H l - R S H

E R P H

I l

DRYWELL H2 .

H -

0 s

s o

  • /.

I s ,

2 C-T A HL)

OO2 I

CH

- T CR0 T1 P

/

R S

/ P I

.N- W DRYWELL TENP I D C H i

IOT F 0 RC(

P ~ - G E

P H

C ' -

  • 0 ,

0 0

o o

0 D

" 0 9 3 2 s 5

Y I WA DRYWELL PREES /R

- R L) L g

G I

DP S

P ~

O1 / - - - S

~ ~

P UR0 T *

  • o,

, 0 0 2

- FT1 # '

  • 3 2 1 -

RN-

- OT P C(

A C EL 2 TORUS LEUEL T TV 0 - E A E

- - . E E L H

- 1 1 5 o ' t F 2 8. s

- - T

- /

T N0

) T P A

A0 7ORUS TENP CP1 R1 F t C- - - G TE RW ST ' - - E AT EE ( - -

o o o D E VI OU 0

3 2

0 0

2 s

t s s H

?w l ll1ll

S Y RR T

DW PE I GNMDDTTHH IFFIIEE//MN T

A SN VE) NSCCSSEERRPP T IS4 IPKSPPFFNNGG S TA0 CE1 L AL- O OET S L' IR(

D I

O A R

P R

P O L G

T EF L P HAB O X- - S PALE XHEWW I

1 R I UKW OO R 0 T NL) LSCOoRVLERLL ESAL OEE OFF IE IF

/

PL C OO3 CR0 VETFGOLVGO IX 1U f

ERS DL EDLCC EL T1 LP SLFSLLFRR T

.N- .

TTB U D UK pug II T COT EC( UUNG LRT LCC O I

S PPE6XFOSXFEE R3 l RRUSRRTCRRRR G1 E

I S

H, 'N R

I O A P T A r.

HL1 OO2 Tg CR0 0 U E HT STACK RAD 0 I

.T1 H- 0 N 1

I IOT - -

1 O 0 .. RC( ~ - .

4 IS N

C P

  • o o 0' o 0 P

TL C3

  • o 0 o E i
  • s o, ' z C EV E CL O G STACK R AD S

- - P C - -

,. - - - - - C T 5 O E 3 2 1 1

+ + + + + + + -

L) E E E E E E E E S UR0 O1 '

PT1 RN-

- OT C(

3i

~i 1 .,

E t

- I T

T N0

)

._ 2 1

1 A 0 .

R 1 T C -

R ST ,,

E (

V .

O 3e*

Y SU T DN I M H H G H 4 M T eE VE) F / / I 1 t / F A SN IS4 C tR1RF SP PG R FO CK T TA0 *4 K 1 t S Il CE1 L AL- O OET S IR( I D

A P R R G

O O E R L H - L S F X E F PW S

E H T NL)

OO3 NC K A

T X

H E R E R S Y U S O S S D G O E A D S I O R L T F R

I I

R E

F X

S

't t

CR0 N S D L R C R A A I R L T1

.H- T L F P R R G I N U A T B I E A K E COT EC( N N L U C R L F R P S R E X F P E J S F U R R R R S N O N.S C 3 1

E I

, L f

g C T p00({ D B L H A O p - _ R

.. T I p ' .

1 P

T ' 3 , o i 1 T i g NL)

OO2

+

E m ,,_ +

E E

- 2_

g E

t

- p CR0 I

g .T1 IOT H-0 S A C RAD S

P s -

E RC( - - - .

1'

_ - C 1 P 6 S 9 1 g

+

t

, + + + + , _

' . E E E E E g E f- g 0 g T g T h K RA 0

. 0 1

- _ 8

- - - _ - ~ . 1 o 0 , 0 o t P

o 0 , 0 l L) o e , 5 C

' O1 l UR0 o O PT1 RN- ,

I OT C( ,2 T ,

E t

I

,s T 2

)

- 1 N0 1 A0 ,

R1 T C- , e RW ST -

EE I VI ,

OV o n

1ll!lI 1i SU Y DH T FG I

eE VE) GI SN IS4 ES TA0 D P P.

CE1 AL-OET IR(

D A

R P RB D L / P M ITPPO2STT E C

O T R PS 1S rut 11T0URETT TOuu r

TESII R NL1 OO3 r

EE TRR EC KPPSTASEHN DSTNRII T

l CR0 T1 S PT HOCCOASI ILRRRP 1AD t

.H- UCC D II usa- -

l COT 0 EC( RL OB RHCCLRCMRII R S .

TSR TGRRAtEEELOWRCMA RSS C .

i .

T I T 1 HL) 8 OO2 L 1

CR0 /

T1 C

.N- gRl i COUHT RATE T IOT RC(

R S

P C P 6 5' ,

3 2

1 0

1

- C R +

E

+

E g

+

E t

E

+

E E

+

E E APRH POWER P - -  %

- . ~ - - - -

s o

  • 0 o 0 0

- L) 2 o g

  • 5 w 2 O1 3 UR0 PT1 E! RN- -

7 OT 1 C( 1 C G -, -

/ . T F C R

._ E 1

- t I

)

T t0 t

A0 .

R1 C-RW ST ._

EE (

VI .

OU Pcn ll llll l

SU Y R DN T H E I

eE VE1 / M M M M M M M M TL ST1 IS4 i P P P P P P P P t

AE TA0 M G G G G G G G G WV CE1 E AL- C1

/

OET P IR(

D A

R H

' P SS

/ CP L C WW H R OO O T HL)

W W W W W L L W O O O O O F F P OO3 CR0 W

O O L L L L L L F F F F F A B T i T1

.H-L F

F I C D A D I I 1

COT D C I N - - C C 0

EC(

S W R P C O S S P P RH F C H R C C C L L HS C RP I L

E I T C

I i NL) CH OO2 RS E CR0 L

/ / P 1

.T1 IOT N- C R

IH C

P RC( H i P l

[' pPU LE L

'- q' N

}

o *

~

0*

^~ I F0 s o g

Ao 0 T 2 3 L) _ - -

O1 o UR0

[ PT1 RN- '

OT C(

-i ' 2_

Q 2 P _ /

C

  • 1 1

R ', -

T E

1 t

I

', T

)

1 _

t0 A0 '

1 R1 1 C- ', 1 RW ST _ -

(

EE T VI OU ',g 3E

Y SU T G R DH I H H eE 1 VE) 1 t / S St IS4 PN RN 1P TA0 GI%t I%C CE1 AL-OET IR(

D A

R L W LN D SD P

O /

C O UO SLNLI S

LO2IT2 PE P T . R UFU T R R UKA LE H CT0R RH T E T NL)

OO3 OGCNIEW TNAADVO ENTST ST l

CR0 PEODSDNS l

T1 IUTAEP OPNOAAIH LL RL O RPR I 0 .N-COT AODC TONLLURt 1

i 1

s s VsLLRLfiW s

C EC(

S OCOBSPPR RySLOSR/

T- CSF1 RAS SSt1A 1 tSD E-P U

S T HL)

S OO2 CR0 L E .T1 N-

/

C P IOT RC(

R P P l

i RPV PRESSURE G I

P

  • o S

P P

  • o o

0 0

5 0

L)

  • s O1

- UR0 PT1 RN- .

OT P C( 2 9

9 Q -

T s .

~t C R

P .*

E1

. t I

.s T

)

t -

t 0 A0 .

R1 C- .s RW ST -

(

EE .

VI OU o t

>~

?  ; i

,' ,i

SU Y T G G nN I eE 1 UE) M I 1 MINT f

1 S1 IS4 P SPPSPP S TA0 G PGGPGG CE1 AL-OET Ch IR( H D e A C R P R S H G T AB H N E E- -

L RWW R P E H I

T .

L H U O O. R O IEWWSLL N E P HL)

GO3 O C EULLE ROOSFF EH F PE X U CR0

.T1 SWIS NSFFRCC OP PRR Of1U T .N- T UODEIC C COT .

/ II s AK I RLRRCIUCC VsR R EC(

S .

W D OFUPPCPEE RUC3 T T HRRRR SSS1 C H R S P I

/ P E C H P

P l

H l

E T P NL ) A T OO2 CR0 P C

W

/ TE S

.T1 IOT N- W D

AT E

RC( H U P P i i

7ORUS TENP F T ~ G E

0 3

8 o

s

~

o s

- D

- - L) L 2 2 t

  • O1 /

_ UR0 T o PT1 T RN-OT C( 's T '

2 i 2

_ 1

- E 1

' M -

T I T

_ / s T

) T E N0 -

A0

- R1 C-RW ST 2 EE ( -

VI '

OV o s

>w f't

I' ji) 1Il!

1a SU Y R T GFF TGF DH I E' eE VE) IGGMMMNMMMMEIGMN TL SH IS4 SEEPPPPPPPPESEPP PDDGGGGGGGGFPDCG AE WV TA0 E CE1 CL AL- /

OET P IR( H D /

A C R' P

_ H

_ SS OO AB CP E LL P- - H R) FF SMWW T

UCPWW LSEOO NL) SHt1OOWWWWASEETLL OO3 S( ELLOOOO VR FF ETTFFLLLLRREPR CR0 T1 R FFFFPPL I C C' T PASAB SS SARRN L .H-COT / TU-WLRRR-ABIC TU CIRRNRWCCR IIA RH L EC( W eEOHHSSPCOOOO/EEC H S i S D DDTRRCCHRTTCTDRRS RP H .

I.

i .

L C 5

C H

?. . T R S 1 NL) / P I

1 OO2 P C H CR0 e P

.T1 l

i N- W D

H l

i IOT RC(

T P P A L C E

- TV TORUS LEUEL T AE E L E H E

L - -

F s o 5'

  • 2 t  :

L) L O1 /

T UR0 PT1 T o WA Y

RN- . /R OT DP C( .s S 2

.t

- E1

. t T I 1 T

/ .e t T -

N0 -

A0 .

2 R1 5 1 C- 2 1 RW ST - -

EE ( T VI OU o 3

DU _

Il l, i l l ! o

SU Y T G F T DN I eE VE)

I M 1 t G E H SN IS4 S P P E E SS TA0 P G G D F CE1 RL-CW OET I R( H D /

A C R P OO R D RH S L L P H P S F F M L P P R H E T S

E A D T V U u E E N 1 t

P NL)

OO3 R

P R R R L E P P U CR0 P P I C C S .T1 COT N- T

/

S U

S S R S R R U I I C

I R R R W R C C S E S C. (

W D O O T T O

T D T R R e O E E C H R S E I(P C H R P P H L T HL) Y L OO2 CR 0 P WR e R E T 1

.N-

/

W TO RUS PRESS G DP S

D l

I IOT -

- S .

l RC( - - ~ - ~

P Y P o 7

3 o

z P

D pRYWELL PRESS G I

- . - ' . - S P

- s o o

  • o 2 o s s L) L 2 z t
  • O1 /

P OR0 T o PT1 RN- '

l i

OT i C( s D i 2

1

- E1

' t T I

/ e s

T 2

) T 1 1

t 0 - 1 R0 '

R 1 , T C - 2 RW ST EE -

t VI OU 0 3

Yg

SU Y T F G G T DN I PE VE) G I I E 1 t N H SN IS4 E S S E P P SS D P P F G G TA0 CP CE1 H AL-OET IR( H D /

A C R P H

E P R 0 MS R P P M E

S S

L W W E O O R M

R H

U T NL)

T E S P

V L L E C S E F F F S T OO3 CR0 R

I P E R

L C C X

A T1 T' R S P S R R U I C P

. H-COT .

W W

U R

U W R C C I K R I C H EC( D / O e O E E 3 R S F_ S D T D T R R 1 M / P PI I

H l

E E

T T HL) Y OO2 P WR L CR 0 T 1 - / R D P L . N -

W S IOT D E

l RC(

P i

i

DRYWELL TEt1P F l

G i

- - E L

o

- o-

  • o

~

0 0

o w

D L) L

  • w
  • 2 ,

- O1 /

UR0 T PT1 RN-T OT C(

,s 1

l i

f ,1 2

- E

, M T I

/ e T 2

) T ,s 1

i l 0 - 1 A0 ,

R1 9 T C - ,2 RW ST -

EE (

VI OV 0 3

> 5

sJ R Y T M T G F G ol I F E M M I G I eE VE) C E P P S E S sN IS4 S F G G P D P TA0 CE1 AL-OET I R( H D /

A C R P O O A B L L E P I L F F R M S P P Y I

E U E S 1 r M A T' W V A B S T E u U ' R E HL)

OO3 O E L L R R E R P S R P P P S

G CR0 F P P R I C C

.T1 S S S P A S R R O COT H- T

/ T U U I I

. P> EC(

S W

D G S O RO O R R W S T T T D D T R R e WRO E CE C l

Y TaPUS O ;.

H -

e 4 . "

L T HL ) T 0RUS H2 L OO2 CR 0 P ~ -  :

E / - '

T1 W

  • s o s lt .N- D A a t i IOT RC( DRYW ELL 02 Y P

- ~  :

P

)

  • c *

- ~

1 DRYW E LL H2 L) L 0 s o s 2 i t O1 /

H UR0 PT1 T o RH- '

2

OT 1 I C( 1 P ' s_ -

T z

i_ E 1

t T I

/ 8 T

) T M0 3_

A 0 '

R 1 ,

C -

RW ST i_

(

EE '

VI OV o 3

l l!ll <

SU Y DN T T I

eE VE) A SF 1 S 1 T IS4 t S

TA0 P P CE1 C C L AL- O OET S IR( I D

1 A P 1

R R

[

0 }G[

S T T H H OO D

E S

ET H 4 t

0O3 L) S S' TS RT R

A RI 1 Pt F CR0 T1 P P1 M f H AI 1GE O Tt NL D UL I

U .N-COT D U u E P P S SI IC L L D R A P R

T EC( T i t 2 T P P OS A S R E R I0 E M 1C OK t R K S E H E T E S A T ST E P PP S U uE CC O K A C

E P O

NI S A DS R N W OA C C S DL

/R C

A T

S P s sD C E RP i r

A I IC R RH SE T

T S T U M N R ILR R C CE RN N l

R R O LO C E ET HI G E l T S S C C A S R R R O U NL)

A OO2 CR0 P .T1 N-C IOT RC(

S P R R 1 1 1 GHFFFF H t t StI /GGGG 1 t t t1 1 / M T PPN PPSFEEEE GGI%CGPO DDDD PPP#P 1 GGGTG S

O P L)

O1 UR0 PT1

- RN-OT S C(  ?

t I

I

- E -

T )

T

>' T H A l t

- E R SS0 W AD R T EDPPTSI O T - - E A ET WW W R RADEE 1

t t1( AT PI L

F OO O URATTEYS 1

) LLLPT S E t BOWWP W 10 FFE NWSNHADO POOt1 O t

A0 VRUOEW - DE LLuWL R1 CCEOOLROt1CC N EFFDOF C- RRLTCFPDORR1 t I U L ST II C LTIIASLICUFD RW CCUA1DUOTCCERRCIC t N EE (

EEPERRPOOEETUUPCWWO VI RRRRSCRCBRRST HRRFC OU 3i5

SU Y

T DH I eE 1 VE)

SF IS4 TR0 CE1 AL- R OET E IR( T D

A W R

1 P l

1 0

G T I "

1 HL) S 0 2" OO3 P T CR0 T1 "

3 7 1 1 A .N-COT E0 0 0 - -

P EC( R1 e e e S U O SR L L L SO E E E T I R0 E E E V V V S P3 L L L 3

U E Pe P P P U U U P T NL)

R R R R OO2 CR0 L .T1 N-E I

IOT RC(

i P E 1 t

1 t

1 t

1 t

1 t

1 t

1 t

G I 1 t

4 L P P P P P N P P S P 1 G G G G G I G G P G 1 T

L) 1 O1 UR0 1

PT1 RN- 3 1

OT 1 C( 1 T

T E

WW R O O U

) WW W L L L W W S 1 2

10 O O O F F E O O S W 1 t

A0 L L L V L L E O -

R1 F F F A D E F F R L T

C- - - L P F D A B I I I C RW ST N - - C C U C I U D

(

EE O S S P P P P C P R VI C C C L L R H R R C OU

_ P"

- l l

Y

- SU T DN I eE VE)

_ SF I IS4 TA0

- CE1

- AL-OET

- IR(

D

)

_ f R

1 1

_ 1 l

T T 0' NL) F D OO3 D E

Po 1..

CR0 N S.

_ 1 T1 1 D S

N- t

- A S S 0 COT ECt R L e U C C RD .

- L S S 'L OI H B T O

O TS E L P P A' N O O T S T0 Y C s A L R U U

E S 1O Pe R 5

V s

C I T R t T R S l NL)

OO2

_ E CR0 G .T1 IOT N-P

- RC(

P EI G

H G G 1 I I l

Pt N S S H E G I  % P F I L)

O1 UR0 i' PT1 1 RH- 6 OT 1 1 C( 1

- 1 t

T T U U SO E N

C SI R A AT U E U PI S R YS S U

) R SO E S L t

r0 WE P R S E A 0 O S E P E V R 1 L N HE R E C - F E IU S P L D BL U RW ST D N RA R U U XE

(

R O UV O P P I C C T T R R O' V Yg

.IlIi j] !IIj SU Y DN T I

PE 1 VE)

St IS4 TA0 CE1 AL-OET IR(

D A

R C G I

l l

T' NL) "

S P

. } - OO3 0 CR0 8 0

[ - T1 2 0

.N- .

7 O- COT EC( .

e e

O' S L N S -

( E V

E P

S E

E O R L P l

s l

l U V U l, P R P T R S R C NL)

OO2 h CR0 T1 l.

l, .N-IOT O P RC(

[ G b N S I

I P 3 L)

O1

{ UR0 PT1

[ RH- 2 OT 1 C( 1

'l T E

R U

) L S 10 E S t

A0 V E R1 E R C- L P RW ST U U EE (

P P VI R R OU YG l ;ll l , ll lll

SU Y T

DN I eE 1 VE)

St IS4 T A0 CE1 A L-OET IR(

D A

R G

I T S j NL) P l

i OO3 2" CR0 5 7 I

T1 0 1 1

1

.N- -

COT l

EC( e e

~i S S L i

S E E V i

R E i

P L U U

- P P i

T R R I

rt i t L)

OO2

- CR0 F

IOT

.T1 N-1

~ RC(

- P 1 1 1 G

t t t M M M 1 t I P P P P P P P N S G G G G G G G I P 1

1 L) 1 O1 VR0 PT1

- RH-OT 2 T C( 1 1

T W

O L

F E W W R O O D U

) W W L L W W N L S M0 O O F F O O O E S A0 L L L L C V E R1 F F A D F F E R C- - - L L P ST A D I I I C A RW - - C C C I T U U EE (

S S P P P C O P P VI C C L L H R T R R OV P

SU Y DN T I

PE VE)

SN IS4 TA0 CE1 AL-0ET IR(

D A

Gl R

l I F G G E I G L T D S I O NL)

OO3 0 S

H P P S P

O CR0 T1 0

1 I

R A 0

5 0 C .H- D R 1 5 COT eE D S EC( T t U e9 ,

S P A r RD D

~

1 t L A H OI S S E O E E TS S S T S T P P E E I S O O R R S S U sH s T0 P P 5

R L I V U U U O S A R P@ P P E T NL)

T N 1 S R F R R T OO2 CR0 A

l T1

.N-i IOT RC(

R P R

E 1 t N M M nM M M /

H G G F I I G T P P H P P p P P P F S S E G G I G G G G G G O P P D L

A L)

O1

- UR0 PT1 RN-OT 9 5 C( 9 1 W W T O O 1 L L F F W

- O E A B L E R T Y G F T E U W W A R S A N D O O R U S P

) R I L N W W L L S E 1 t

N0 P L E W O O O F F H S R E A 0 S O V O C L L W E P T R 1 O E L F F A D O R C - S C L F L - - D P S S ST U A A D I I L U U RW R R U D T - - C C O U R R EE (

O O P R O S S P P O P O O VI T T R C T C C L L C R T T OV

}"U

SU Y DH T I

eE VE)

SN IS4 TA0 CE1 AL-OET IR( R D

E A TL R AE

- WV E

_ G C1

/

I P

S T E P NL) S

]- OO3 H U PI R. 9 P U i

CR0 I RS 4 O U- A S A C I

.T1 COT N- D R E D -

EE 9 TR S NE Ut1 EC( T O2 AP S U I D S H

A 1t T0 H L A RG E O S R ET R

0 E O E ST EN R T O P S T DS TI P C 0 O I S OA LD O RP AO S T .

L s sN O U U L I LR HL R U F R S A LO 1F 1O P T S M 1 A t f T R NL)

I OO2 I CR0 T1 P .H-ICT P RC(

P GG

- M 1 t M nM nn S I I P P N P P P p p P S S G */. G I G G G G G *4 C P P

~t 1

L) 8 1

O1 1 OR0 1

- PT1 -

RN- T T OT C(

WSISN W 7 O E E 1 O L T R 1 L AT F A E U F PI YS W

D O O W R R R S U S T

) P B L N L L i M W E T S E N0 M W E O F F f O W N S R A0 U E O V C L L O U E P R1 D N L E A 5F F P O R C-I F L L - - C P S ST U D A I I A B 1 f U RW ( C R D U T C C - - R 1 U Rf EE U U R P O P P S S P R P O VI R T C R T L L C C A S R T OV P ;p llllLl

i' li ,

l'  : jI1j j' i)! I 1 i I

,11! -

~

sU Y T

- nH I

. eE VE) sF 1 IS4

- TA0 CE1 AL- R 0ET E IR( T D A A W R

L /

P O F G G R T E

D G I G SI E TI HL)

OO3  %%0 I

S 2" 0" PS UR P PU CR0 1 P 7 3 0 RS D I

T1 831 1 " 1 50 SE O .N-COT eEe 2 - 0 - 1 5 EE S TR O C EC( e e O2 e 8 e e AP L S RR P 1 . T0 -

H C EEr HSL LLSS RG -

WWEES E ST E E S S EN T .

P OOTP E V DS V V E E TI O PP S

OREOAEER R LD N E t t MU s P L RP L L P P AO O s W R R R U W U LR U U U U HL L PPOR / P S O T AAT S D R RO RRRRN P P P P IF N NL)

P OO2 CR0 L

.T1 IOT N-RC(

E I

P G

GHGFGH i

1Mt111MM1 t tt t I /IGI 8 E N PPPPPPPP S#SESN I%GGGGGGGG%PNPDPI 1

1 L T

- L)

O1 UR0 PT1

? RN- s 1

OT l C( i 1 -

T

- S W LS T O L

EE VRW F EPOE E WW L LR Rt 1 RD OO HFUPUU 2

) LENWWLLWW KC SMSU 10 EWOOOFFOOWHSWSESC 1 f

H0 UOCLL LLOAIFETEA 1 R1 EP FFABFFLTD R RU T C- L L 1

- - F LPSP ST tAADIIIC CCA U D RW URT- CCCIDLLTURWN EE (

PPOSSPPPCRDSOPO/O VI RATCCLLHRCSSTkTDC OV _

>'S L I,llllill!jl l -

l!!

SU Y nN T I

eE VE)

SM IS4 TA0 CE1 AL-3 OET l

i IR(

D f

A l R i

l O

O T L NL)

OO3

_ S H

I F CR0 A T1 D R

.N- S D COT .

L T EC(

S C 1 t

l A

l T E El O

N T

S l

s H l

t I l

S H I

T M 1 t

HL)

A OO2 CR0 T

I .T1 H-r IOT

i. RC(
i. P

~ . T H H i

E 1 t / l f MM 1 t M /

E N P # P P P P P #

F I G 1 t G G G G G M i

F L)

O1 F UR0 PT1 RN-OT

- C(

. L E

V W

1 O E L W 1 L F O R

L WW

- D F OO

) E L N W W W L L T M0 T E O W O O O F F W A V C F L L L O A0 WE F F F A B L R1 L L L - - F C- T A A C RI D I I RW ST N U T T - - C C D

(

EE O F O O C S S P P R VI C R T T R C C L L C OV P

1 _

_ ( o 3U n D' N T 'o PE I g m

St 1 VE)

IS4 TR0 mt o

s p

CE1 f

_ AL- -

e

- OET

_ IR(

D M

T A

R 'i f o

T' s i '

a S H o S W 5 E T 5 R liL)

t. ' P 0O3 T 0 U
  • CR0 n 5 P l

l

.T1 COT N-E l'

2 R l EC(

- S

- l

- - , , - . - - - o

{ o o 0 , , 0 o o o o '

2 s 0 , , 7 e s w 3

  • 2 2 2 , , 1 g s t 1 *

[

ORUS [NP F E

D T

[ l t L) 0O2 f

CR0 T1 o l .H- g l IOT

} RC( T P 1 s l

{

i I

a F l

i G

l o E

! s D t

L.

' s L 2 I

L) L I O1 i 0 UR0 b PT1 T 1

2 I

R4 -

t .

k 0T t' s 1 C( h i C

tr H o (

t T Tt -

a t

L i

t 5

) 0 tt0  : * ' 3 2 * * *

  • 7 i *
  • 1 1 *
  • A0 R1 T C -

y ST US EL E

( E F

y i

T SU Y t i

DH T i l

T I

PE VE) L E Sl 1 IS4 E TR0 L F CE1 E' AL- 'L OET L IR(

D A F' P E

S R f E

T i

A T l.

t e

L I

T L l l E lJ V l

T O E I l L) t L OO3 s L CR0 T T1 Vi N

.N- l t

O COT l C

T l

EC(

S i

V f

l E

l l G l

COHT PRESSURE I l S I P T

NL)

A OO2 CR0 Tl T1

.N- 0 i IOT f s

l. RC( l l

'l P l i

G

~i_ L 0 S I

L 4 P 3

Fj i

J.

[ .

0 t

R l

L)

O1 i

t 3

l UR0 f j

PT1 1 RN- 4 0

. OT 1 2 S

[ C( S I'

[

'e E h R F P t

0 S 1 S

U u . R O

L i

T

) ,

i 0

1 r0 0 o 0 o o 0 R0 0 s 0 s o 4 3 2 2 a t R1 C -

RU ST F EE ( RHR HX OUTLET G VI E D

OU p

l

SU Y T

nN eE I

VE) _

SM IS4 TA0 CE1 AL-OET IR(

D A

R T

I i

l T

I HL)

OO3 L CR0 T1

.N-I COT f EC(

S O

I .

F .

1 F

Z T NL)

I OO2 CR0 P .T1 N-0 3 _

U IOT RC(

9 1

S P T 0 0 G S l l

l 2

1 I

S E I L 0 P 0

P e t

i 0

1

'P l T

a 0

L) H 0 O1 2 8 UR0 1 PT1 P' RN-OT 6

11 0

0 E P C(

0 5

E 6 R U

F 0 S F

0 S 4 E R

1' F

0 P F

0 2 U P

R

) - - - ('

M0 0 0 0 0 A0 0 0 0 0 -

R1 6 5

  • 3 C-RW ST EE VI

( RPV E" n

o OV

_ p

SU Y DH T F F 1 F F I

PE VE) G N G t G N G 1 t

SN IS4 E P E P E P E P TA0 D G D G D G D G CE1 AL-OET IR(

D A S R T I

S N T I I

L N P P P P H T

I 1 t M O 1 t

1 t O L E E T E ' E NL) T W T W. TW TW S OO3 T  : O  : O S '

O  : O P CR0 N AS L 8S L N AS L BS L N

.T1 COT N-E R PR U F PR U F I G PR U F PR U F U P

EC( R OO S OO S R OO S OO S

i. S U OT C OT C A OT C OT C S C L L 1 t L L- C T

4 I AUG CS LOOP B OW 0 0

I 0

f 1 I 5'

  • 3 2

1 o

T . N P

L NL)

OO2 G CR 0 i T 1 f

.N - AUG CS LO OP A (OW 0 IO T 0

? RC (

F - -

0 1

I' -

t

} ' 9 3 2 1 o l

N l P G

f'

[ TOR US T ENPEhT pE i

F L ) - - G O 1 - - . ' _ - E UR 0 o 0 o , o D PT 1 3 0 , , 3 RH - 2 2 g

  • O T C (

T OR US P RESS E G

I

' ' - - - , ' - S

  • ' o o o
  • o P
  • 8 s
  • 3 *

)

t r 0 A 0 TOR US LEUEL R1 T C- E RW ST - ~

- . E EE (

t s o

~

s 1

F UI 2 i t OV il

1!ll 4 SU Y T

DH PE1 St I

VE)

F G 1t E P

@t E P 1

F 1 G t E P F

G t E P 1

IS4 D G D G D G D G TR0 CE1 RL-OET IR(

D A S R T I

S 1 t

T i l L N i

t P P P O I M O 1 t

1 t

T EW W T EW EW S i

t OO3 L)

L T  :

T O L  :

NO L S  :

T O L :

T O L

P 1

t CR0 i l RS F BS F N AS F BS F u T1 E U I U U P

. N-COT R

R PR R PW R G R

PR R PR R R

OO H OO H OO H OO H S EC(

S U

C OT R O L L R A 1

OT R OT R L L H

R _

T t l 0 l

AUG HR LOOP 6 PLOW 0 i

0 1

l 2

o

. ~

' 9 2

o

  • 1 1 t t L T NL)

P G

OO2 CR0 H T1

. N- AVG RHR LOOP A PLOW 0 S IOT RC(

0 0

P l

P 2

o

' 9 2

o 1

1 1 t t l

P G

P H TORUS [FPER 1 T pE F

P L)

O1

~ - _ ~ _

G E

UR0

  • 0 o , 0 D PT1 3 0 , , 3 RN- 2 2 1

TORUS pESSU E G

I

- - S

' - _ , ~ -

P

~

o

  • o g
  • 7 * * * *

)

10 t

R0 TORUS hUEL R1 T C- - - E RW ST E EE ( t 5 0 s t F VI 2 1 1 OU

!lllllE

SU Y DH T F F F F I

eE 1 VE) GM GM GM G t 1 Sr IS4 E P E P E P E P TA0 D G D G D G D G CE1 AL- -

OET R R R R R R R R IR( E E E E E E E E D -

T T T T T T A T T R A A A A S A A A A L L L L T L L L1 I

S M T I I

L I

I P P P - P 1

W 1 W O MW W S

I 1 T -

L t

E O t

E O T E O t

E O NL) T L T L T L T L T OO3 CR0 T

N S F

S F S F F H S S l

l .T1 COT N- E R

U I IR C CR
U C I

I G

U I IR C CR
  • U C I

i R CO P IO C R CO P IO C EC( U PT H CT R A PT H CT R l S C H R 1 t H R L

RCIC pL0W H -

~ - -

l

- 1 f

P S

~ -

0' 0 0 0 o o G T 0 0 0 0 o

  • P l NL)

OO2 7 5 5 9 s

  • i CR 0 T 1 .

.N - HP CI p L0W 0 IOT 0 C RC (

P - -

0 1

I - _ - . - - -

' s

  • 3 2 s o M C P G

F I TORUS TEM PERATU E F

L )

- - G C O 1 - - ~ - _ - E UR 0 0 0 0 , o D FI PT 1 RN -

O T 3

2 0

2

' 0 1 -

3 3 C (

TORUS P RESSURE G

I

- ' - - - - ~ - S 0

  • 0 o o o
  • o P 7 8 5 w s 2 *

)

1 t 0 A0 7ORUS LEV EL R1 T C- E RW ST - -

- - ' E EE (

1 s *

~

' 1 F

VI 2 a

&o

1li!

' 4 SU Y nN T I

eE 1 VE) >

St IS4 S TA0 E CE1 UD AL- LE OET AS IR( VO D L A LC R L A

S T NL)

U OO3 CR0 N

O E T T1 I T

.N- T E A COT EC(

A PL L1 T S Ot S O S I C

1 ,

f O T I NL)

OO2 HD T CR0 T1 OE I T A IOT N- TA AI L RC(

P LT OI O SN

I S

I P L)

C U UR0 O1 R I S T

N O PT1 RN-N G C

E U

O O

C P OT C(

O I

T 1

t A

N I

R E H Y la E L H A R P T O T L A I S O A L D R C P E N C H U G C O S I C D H S C E

D A W / O 1 E 1

t R S L 1 T S

)

10 t

A0 P R1 U A S C D I C- O I I I I I I

'R W ST R I I I I I EE ( G VI OV m

?U lll ll!

(

SU DH T I - S eE 1 St VE) -U T IS4 - A TA0 T CE1 - S AL-OET -

IR(

D &D A RE R A T OA BI TT I U

O IH T -

NL) A6CD 7A6CD OO3 - 66667019999 CR0 88887439999 T1 - E

. N- - - - - - - - 0000 COT - U 22222228888 L - - - - - - - - - - -

i EC(

S - A 00000000000

- V AAAAt1AAAAAA R' .

A i

l i

I

- S

- U U T NL) -A T

S OO2 CR0

- ST I

.T1 IOT N-

- D RC( DE P RT AA P 0I 6T U HI IN O I P -

A0CD 688CD

] - 00004918888 1 L) 88887339999 O1 -

E - - - - - - - 0000 UR0 U 22222228888 PT1 L - - - - - - - - - - -

RH- A 00000000000 OT U AAAA11AAAAAA C(

E ABCD LE NPL EEEEI tP 1 HHHNAAl1 IIIIRSA

)

LLLLD SEEEE 1 t1 t P LLLL 10 t t rt rt1O1PPPP A0 AARAAOAtt l tt 1 1 11 R1 EEEEELEAAAA C- I TTTTT TSSSS RW ST SSSSSCS EE ( P R ADCD VI UE NNNNNIN- - - -

OV ON III IICIRRRR RI AAAAAEAHHHH GL 1 1 1 tt t Hf1Rt 1RRRR

?w ii

Y

_ SU T DH

_ I - S P

-U

- SE VE)

IS4 T TA0 - A CE1 T AL- -S

_ 0ET -

IR(

D DD A RE R AT OA DI T T

_ UI O IH T -

NL1 86CD 7A6CD OO3 - 66667019999 CR0 88887439999 COT

.T1N-

- E - - - - - -

- U 22222229999 0000 EC( L - - - - - - - - - - -

S - A 00000000000

?l - V hAAAt1AAAAAA Rl l i l

[ - S j

- U

_ l_ T T NL) -A OO2 - ST CR0 T1 -

J

.N- - D IOT RC( DE P RT AA T-

[

oI l

l_

eT t I IN Q I

?

{

A0CD 6A6CD G L)

O1 00004918888 88887339999 UR0 E - - - - - 0000 PT1 U 22222229999 RN- L - - - - - -

OT A 00000000000 C( U AAAAtAAAAAA 1 E

ABCD .LE NPL EEEEI NNHHRAt 1F t

IIIIRSa

) LLLLD SEEEE t P LLLL t 0 1t t t t t1t tOttPPPP t

A0 RAAAAOAt 1 1 1 1 t t t R1 EEEEELEAAAA C- I TTTTT TSSSS RW ST SSSSSCS E ( P R ABCD uE NNNHNIN- - - -

MIV OH RI IIIIICIRRRR AAARAEAHHHH cL 1 1 1 1 tt t t 1 1 tRtRRRR PO i

SU Y T

DH I - S - S S' PE1 St VE)

IS4

-U T

-U T - TU TA0 - A - A - A CE1 T T T AL- -S -S -S OET - - -

IR( &D DD &D D

A RE AT RE RE R A T AT O IA B

O IA B

O3 I B

i TT T T T IT P UI UI U O IH O IN O IH R

I T l

HL) 88 73 A6 l OO3 - 16 - 13 - 88 CR0 - - - - - 33 I

T1 - -

E 22 E 00 E - -

U .N-COT

- U L

11

- U L

11

- U 22 L - -

S EC(

S

- A 00

- V 1 1 t1

- A 00

- V 1 1 t t

- R 00

- U 1 1 tt C

I I - S S - S T

- U T

- TU -UT

_ NL) -A -A -A

- OO2 CR0

- ST - ST - ST D .T1 - - -

_ I IOT RC(

H-DE RT

- D DE RT

- D DE RT

- D I P GA AA AA OI OI OI BT BT BT

- t I HI HI IN IH IH A

I I I I - - -

5 -

82 I

L) 1 13 O1 E 2 E 00 E UR0 U 1 -U 11 U PT1 P RH-OT L

A 0

- L A 00 1 1

- - L A

U C( V 1 t - V t T V AB O N HH P O TT AA

~i 2 I T PP C

U GG S HN OO 1 T G LL t

t0 TE LY A0 A EL B CA C RR R1 I LT I R I EE

- C- I HU I DP I TT RW ST IO /S AA EE ( P P S P WW

- VI UE UU UE D UE DD OV ON CC Ol RA OH EE RI WW RI HE RI EE GL RR GL RH GL FF i'

\l 1'

SU Y DH T S

- TU I

_ PE VE)

_ Sh IS4 TA0 - A CE1 - S T

_ AL-

_ DET -

IR(

_ D DD A RE

_ R AT

. O IA B

_ TT

_ UI

_ O IH T

_ NL) 1A6 OO3 - 537998 CR0 T1 - 98 666 E

- 4999

.H- -U S221222 COT p EC(

S L P-

- R I000000 R - U TAAtAAA 1 l

_ l l

J U

S

- UT

$ T HL) -A OO2 - ST CR0 D T1

, H-

- 2

_ }

IOT - D RC( DE t i

_ j P RT n

_ AA OI BT U

P

_ HI

_ [ IH

_ I

_ l i,

'I -

0 P -

L) 4 2 7~

O1 98-

] UR0 E - 4 l

PT1 U 221 RN- L - - -

OT A 000 1 C( V AAF P

U H

_ SSA HHE

_ IIL AACAB SRR - -

1 EDDR22 f10 H EHH A0 D IPRT R1 I HIOATT2 C- I CUOWSSN AQL NN RW ST EE ( P 1 t EFSIIS VI UE U U OH PWWRWWR OU RI I /eO//O GL TDDTDDT

?$

SU Y DH T I - S eE VE) -U St 1 IS4 T TA0 - A CE1 T AL- -S OET -

IR(

D DD A RE R AT OA BI TT I U

ON I T -

NL) 1A6 OO3 - 537998 CR0 Y .T1 N-

- U E 98

- - 4%99 S221333 66 COT - - - - -

P EC(

S -A L P-I000000 TAAt AA81 R

I

- U I

I I

U S

- UT S T HL) -A OO2 - ST CR0 D T1 -

3 1

.N- - D IOT RC( DE t 1 P RT i AA n OI BT U P HI IH U i I

li 0

P L)

O1

- 427 98-

] UR0 E - - 4 l

PT1 U 221 RH- L - - -

OT R 00O C( '

U AAN P

U N

SSA HNE IIL AACAB SRR - -

)

EDDR22 10 t N EHN A0 D IPRT R1 I HIOATT2 C- I CUOWSSH RW ST AQL NN P 1EFSIIS EIE O' V

(

UE OF t

PWWRWWR U U

_ RI I eeO/eO GL TDDTDDT

?M

1l l;l ,i j iiI I1 ll j

qla SU Y DH T I - S eE St 1 VE) -U T IS4 - A TA0 T CE1 - S AL-OET -

IR( &D D

A RE R AT OA BI TT UI OH I

_ T. G NL) A A 742289 OO3 - 0742559193801565665 CR0 - 1011301212780444444 T1 E 5555255555991000000 Y .N-COT - U L

2222422222228222222

- - - - - - - - - - - / - - - - -

P EC(

S

-A

- V 0000000000U 0000000 AAAAA8AAAAS $AAAAA8 A

i 1

_ 1 I

_ U S

- TU S

T

-A

_ HL)

OO2 CR0

- ST 2 I

I

.T1 IOT H-

- D i t

RC( DE RT n

U I P AA OI BT P HI IH U I G D O -

B A 8833170 P L)

- 963100 001102 1

2 1

7 6565666 3 1 UR0 O1 E U

555515 5 222282 2 6 %000000 2 4222222 444444 PT1 L - - - - - - - - - - - - - -

RN- A 0000U0 0 U U000000 OT V AAAAS8 A S SAAAAAA .

C( _

R R T T T I2I2 YSYS _

S AHAH LULUT T U - - - - PAPAS S A Y Y PHPHUY U HNL L UXUXAL A XOP P SESEHP GGRREt XF HTEIP P XN TU U P

) TEEECS S U DDOO S 10 t N UGU E ELLOOL A0 I EE RSE E KE LBBLLLE R1 I U G G AL P 1 FFEG C-ST I U

" U G" P HU R2 2RU R tPf1 1 tRR AOOLL U CR RW ( P 1PSS P P "A STTEEPP EE UE VI UUT 1S CCUUI OU ON WWRRSW R DAAFFUW RI //OONe O 2'2 AEEEEQ/

GL DDTTID T H0 CRRRRED

}'g _

,llll!ll l  ! -

SU Y DN T S eE 1 ST I

VE)

IS4

- UT TA0 A CE1 T AL- -S OET --

IR( &D D

A RE R AT O IR B

TTI l1l U 0N I T

G NL) R A- 742289 OO3 - 0742559193801565665 CR0 1011301212780444444 T1 -

E 5555255555991000000 Y . N-COT - LV 3333533333339333333

- - - - - - - - - /-

R EC(

S

- A 0000C00000U U000000

- V AAAAAAAAAAS SAAAAAA R

I l

i I

U S

- TU S T NL) -A OO2 CR0

-T S 3 I T1 -

I

.N- - D t

i IOT DE n RC( RT I -

P AA U 0I 6T P HI IN U I G D O -

B R A833170 P L)

O1 963100 001102 1

2 1

7 6565666 6444444 G UR0 PT1 E 555515

- U 333393 3 5 6 9000000 3 5333333 L - - - - - - - - - - - - - - -

RN- U U000000 OT - l H 9000U0 AAAASA A 0 S SAAAAAA C(

R R T T T I2I2 YSYS S AHAH LULUT T U - - - - PAPAS S A Y Y PHPHUY U HNL L UXUXAL A XOP P SESEHP HTEIP P XP XN TU U P GGRREU

) TEEECS S U DDOO S N0 N UGU E ELLOOL A0 I EE RSE E KE LBBLLLE R1 I UG" U G G AL P FFEG C- I R2P2R R f1F NRR CR RW ST " U HU U f AOOLL U EE ( P 1PSS P P " A STTEEPP VI UE UUT 1S CCUUI OU OH WWRRSW R DAAFFUW RI //OONe O 22 AEEEEQ/

GL DDTTID T H0 CRRRRED P w*

l'

SU Y T R R R R R R R R R nH I H H H H H H H H H

- eE / / / e /

VE) / / / /

- St 1 IS4 TA0 R

1 t

RI F

R 1

F RI R F

1 t

RRRW 1

F I

F 1

r t CE1 S AL-0ET R IR(

D O A R

T I

1 T B L 1

S L I O 0 T R S U L O l

t L) O E A A P 1

0O3 O C V C E 1

CR0 L C S R G F A . N t. O D

.T1 N- R A T I D COT EC(

. GG N D O F .

T R A

R T R

D R S I T D L S T O S T A

P O

L L G P  :

A R R : E A L U S  :

E S O N O I 5

E O P T 5' F UHE*S X C 4 1 r E L P L E

R 6 1

O C 9 A 1 W E R 3 A U L U U 2 E F E F E T U B E R R U H R E D O T E U E S U S R F R R HL)

OO2 E

L E

L E

L A CR0 T1 E E E

.N-IOT T

l RC(

P R R R R R R R R R R R R R l

H H H H H H H H H H H H H

/ / / / / / / / / / / / /

E l

R t

1 R1 T

R 1R R1 R 1R t t t I

F 1

t RI I

R1 t

R 1

t R1 R 1R T t 1

t l

l l

I L1 A UR0 O1 T

l PT1 RN-l OT t 1 H H C( r r T T 0 0 O 0 O U R OO C P T R R S S H R N I

P t E 1 t

1 t E E I S S S 1 t t

r 1 t 0 0 i l L L T S S

. T O 0 0 0 O G G / E E G R O 0 R R O N N S C C A C D A R R R A A S C C E L P1 P P1 I I E A A R

B P P1 # 1 P R R C A E. t0 r

)

O # #1 l

t u1 R T T C . .

d' A0 R1 6

R C O

T S l

P P l P P D A P 6' S t  :

S ' A SR S C C 5 P E E W R /D C- 1 C U I C - - B 1 3 I P P RW ST 9 A R C I R R - 1 C C 1 U P EE (

E O P C H H S / / Q D D I VI U R T H R R R C U A D U E R R T OU E E E L L L E E E l(

~

SU Y T R R R R R R R R DN I H H H H H H H H eE 1 VE) / / / / / / / /

SF IS4 R 1

R1 R 1

R1 R 1

R1 R R I I TA0 F F F t t T I F CE1 S AL-0ET R IR(

D O A R

T I

I T L 1

S L O 0 T R S U O NL) O E A P 1

OO3 O C V E 1

CR0 L C S R G T1 F A . N O D

.N- R A T I D COT EC(

G G N D O F T

A R T R

D A S I T D L S T S

A P

O L L G P  :

A R R : E A L U

S E S O N O I E O U H '

L P L

'5 P T '5 F X 4 1 t E E R 6 1

O C 9 A 1 W E 3 2

A U L U E F E F E T U D E R R U H R E D U

T E U E S R F R R NL)

OO2 E

L E

L E

L A CR0 E E E

.T1 IOT H-T l

RC(

P R R R R R R R R R R R R R l

H H H H H H H H H H H H H

/ / / / / / / / / / / / /

E l R

1

(

R1 t

R R R R R 1

t 1

t 1

t 1

t F R

1 t

R1 r

R 1

F R R 1

t 1

t R1 t

l l

l I

L)

A UR0 O1 TI PT1 RH-f OT 1 1 H H C( T T O

t t 0 0 R U 0 0 OO C P 1

t T

N R R S H S P

1 1 uE 1 t t E E I S S S t 1

t 1 0 0 t

1 t L L T S S

. T O O O O 0 GG / E E G R O O R R O H N S C C A C D A R R R A A S C C E L P1 P P1 I I E A A R E )

D t 0

P 1

t P1 1 t U ut t P 1

R R T T C

C . .

A S 10 t t

A0 6 R C uuP P U :  : A S S D R1 O P P P ' S S R R /

C- ' T S D A 6 C C 5' P E E W ST 1 C U I C - - A 1 3 I P P RW 9 A R C I R R - 1 D C 1 U P EE (

E O P C H H S / / Q D D I VI U R T H R R R C U S A U E R R T OV E E E L L L E E E

}"$

SU Y T

DN I FFF FFF eE 1 VE1 GGG GGG St IS4 EEE EEE N TA0 DDD DDD I CE1 '

AL-OET IR(

D L A E R  :

S l

P E

1 t

E T

L U Ti t

OO3 L) /

PUPSXX THH S Ht1NN S H i

CR0 1

t 1

t UEEHU OOOOMNt1N F I l

T1 0HOA XT OOOOOO0O L F R l

.N- CSCHRGEA RRRROO0O E U R l

COT A XOD T RRRR V SND t

i EC( AWBEOLLStrPPPP E I S- K LBL O1Rt1 Nl1PPPPt111L t t GRT DCDNF EDOt UUu11NN00O DRH RCORPPPPt2uUUOOOt LDE t

/ A/O 1 F ' FBFILO O PPPPRRR0 B 1 t

5 TETPLSRRRR O RP I

9UUUAUCIFUHHHHSSSSICPR ROI I

1CCCLFAU RRRRRCCCCCIN OOU E WWWIEEQSO PCUS TLQ URRRTRREUTABCDABCDHRSU E N R CFE T T l4 L) L E O R A O E OO2 E U T T R CR0 T I T1

. N-l IOT

~

RC(

[ P l FF FFFF FFFFFF FFFFF FFFFF 1 GGGGGG GGGGGG GGGGG GGGGG 1 EEEEEE EEEEEE EEEEE EEEEE I DDDDDD DDDDDD DDDDD DDDDD 1

t

~i T

I L)

O1 l UR0 l

PT1

_ [

[ Rti-

[ 0T 11 l C( t t O0 1 t 1N t

OONNR RR BC DBC RRRR T U

- , NNNI YY YYY 11NN t t UUUU/ EERP

[ LL LLL OOOO II / /U GG OOOO l

PP PPP SSUU EEXE

[ PP PPP UU UUU RRRR MN BBLLO L XRRHU H- - L

) ' , SSSSSM PPPP OOOOS HHNR

_ 1 E: 11Nt 1 t t 11 t t SSI L0OEU

NN rNiT i l uuUuO0 S1rII OHHG 1

t f0 0 1TT TTTS6" PPPPOO:YT t

OSS SSSY RR' SS .

. :O

.H' PRBRY ES

- R1 O S' RRRR 5 HS 5 S C-

- RW ST RCCCII 1HHHHCI3UN I6LUUU EE (

II ICCR9RRRRIC1CIRRC1ECCCR

- SCC CPPH CP WAHHP UWWWH VI URR RHHRUABCDRHURt1RRHUFRRRR OU R E E E O L L L T E E E 21-

lllllll

- Su Y S

- Dt i T L P 1 I

PE VE) E t

- ST 1 IS4 V E TA0 E T

- CE1 L RL- l llllll OET I R( I t

O

- D T S A R C A

D A

L E R

E O V

llllll

_ ' B A

E T NL) A E L

L OO3 CR0 E R

V E

T1 A L 1 . N-1 COT EC( lllllll 0 S 1 P) 5 5 5 5 5 5 0 0 1

t F 3 3 3 3 3 3 9 5 T Eo T( 1 1 1 1 1 1 1 1 C

A T

)

R lllll NL) DH 4 4 4 4 4 4 4 4 4 OO2 A 0 0 10 0 1 0 01 0 0 0 T CR0 Rb 1 1 1 1 1 1 l

l IOT

.T11 t -

t

(

E I

RC(

P lllll 7"

l l 3" "4 6" 3" *

' ' ' 1 i

L 1 3' 3 2 l l E 0" 5" V

R E L

'0 1

2 T 1 5 0" 5" 1 1 i

L) '

2" l O1 2' l l 2 UR0 O PT1 RN-lllll

'2 C OT 3 3 S C( 1 r

1 t

1 r

0 0 0

. 0 0 0 R R R C Y Y P E s s tA A t

r f R R 1

r u 3 6 9 5 5 5 S A E

0 0 P P S 0 0 S S 1 1 1 R R R R G G G t

)

A E E O D D D t0 1 r R R R R L L L A0 0 H H O O C B B BI R1 0 R R C C C- R C R R R RW ST C D C D R O O O EE (

S T T T VI U R R R R I C C C OV R O O O O C A A A O P E E E T A B A B H R R R P

l

lllllll sJ R Y S T L P Dt I eE 1 VE) E M st V

~

IS4 TA0 CE1 E

L h RL- t llllll OET t O

IR( I D T S A R C R RR D

L E Ei-V O llllll i B R

E T l

l L) R E L

L OO3 CR0 E R E V

T1 R L

! .N-1 COT EC( lllllll 0 S 1 P) 5 5 5 5 5 5 0 0 MF 3 3 13 3 3 31 9 5 T Eo T(

1 1 1 1 1 1 C

A lllll

)

T R NL) DH 4 4 4 4 4 4 4 4 4 OO2 R / 0 0 10 0 0 01 0 0 0 T CR0 RR 1 1 1 1 1 1 1 I

l

.T1 IOT N-1 1

(

E I RC(

P lllll 0 4 l

1 '

i 1 1

I L 3' '2 1

E 6" 5" 5 5" V '

A E L

0 1 3' 3' "

2 T L) 3" 4 I

'3 2 2" l O1 UR0 2' O PT1 Ri-t lllll C OT 3 3 1S C( t 1

t M O O O

. O O O R R R C Y Y P E S M

S R R M 5 5 5 M R R U 3 6 9 E: R O O P P S 1 1 1 E O O S S R R R R G G G

)

R E E O D D D M0 1 t R R R R L L L R0 O H H O O C B B B P1 O R R C C I C- R C R R R RW ST C D C D R O O O EE ( S T T T VI U R R R R I C C C OV R O O O O C A A R O P E E E T R B R D H R R R l

Ii li j;

- L E

E L

S SU DN PE SM S

T I

T 4

t Y

VE)

IS4 TA0 CE1 AL-OET IR(

D A

R OO3 CR0 COT EC(

L)

T1

.N- .

K C

R T

S T

N E

U 1

t P

C 4

E 5

7 8

+

1

9 LR 9 L9 7 B7 G2 X2 D-BR NR XN HH RO TO tN Er1 OP RP RC 0C1 F

H 5

YE ME L0 O0 O3 F1 E>

S RE AE t

R G

D A

E>

S R-9 R

5 t

R HO E T

I - A W

H5 E 10 1

01 SC 2-

>- S/

RR TC O

FH C E

S1t N1 AP I .

EC L

E5 RE S 1 L

- R.

7 T 0

R EI O I2 0 YS S

E EE AU O DE S

I>

S 1

H T

I 1

t WR E N

I 07 SL 29 EE RR TC FH C O L 9 T 2

>- S/

R EI O I3 E 1 DE St N1 AP I .

EC L

E6 RE S E

S A

E R.

S RU O S

I>

YS 1

H T

I 1

1 t

WR E H

FH C E

AP EC L

E7 RE S O L 9 T 07 SC 29 EE 2

>- S/

R EI RR TC O I4 S1t N1 I

0 YS E

S A

E R.

AU DE S

I>

S 1

EK EK LE . O. LE LE _

LI LI T6 AT T6 AT4 T6 AT _

l EP EP N HR N t A N HA l RS RS O> RR O> RR O> AR C C C O F=

I F=

I N

U=

N

U

N

U

=

I T T NL) 1 5 K5

1
R  :  :

2 _

OO2 0 C0 HO E H E H E i t _

i CR0 - A- T S T S T S n R

7 T7 I - A A A

.T1 I I i

t - :1 S1 K-W 1 L E WR E WR E U _

IOT - O L O L RC( C0 G0 N5 E H E H E E P A-TR O-R I0 1 - R.

t l i t

R.

I 1

F R.

S SR l R t 7 T 7 T 7 T K R 01 SC 02 SC 02 SC .

A C R

S P

GH HN OO TO 2-0 EE S

21 EE 7 S 21 EE 7 S E T S

C MS ES

>- S/

R EI

>- S/

R EI

> - S/

R EI L 3

+

OP RP RR TC RR TC RR TC S RC OC O AU O AU O AU E

L) R E F N FH C FH C Ftt C _

O1 G 4 3 O I2 O I3 O I4 P UR0 PT1 F 3 YE 1Et L8 O0 E

SS N7 DE E SS N7 DE E

?S N7 DE Rt( - F 5 H R RP I AP I RP I OT O O1 F6 EC 9 EC 9 EC 9 D C( E> E>

L E5 S

I>

L E8 S

I>

L E9 S

I>

R S AE AE S RE S YS RE S 0 YS RE S 0 YS P EK EK LI LI

. O. LE T1 AT T1 AT LE T1 AT4 LE EP EP N HA N NA N S A RS RS O> RR O> AR O> AR C C C F= F= 4 t = = N= = N= .

I I U U U

)

10 r H Y Y A0 G L C LC R1 I 1t AT H AH C-ST HR UN EE RE RW EE A SE TG EG _

(

HL UV I R NR VI OU GA NE SE EE1 I U N Gt H E E

?$

l jj lll llll1 ll'lll  : I l1 ll ll f l l1ll

,I ii1 l I i  ;' )l l)jl; i i i1 j

SU Y  : :R  :  :

DN T G I HO E H E H E eE VE) D T S T S T S St 1 IS4 9 L9 I - A I A I A TA0 :9 7 B7 9

W E WR E WR E CE1 1 L O L O L AL- G3 X3 H5 E H E N E OET D- R- 10 l - I -

IR( LR R t - R.

1 i t R. 1 t R.

D BR NR 7 T 9 T 9 T A 1 A 01 SC 07 SC 07 SC R K t

P XH HH 2- EE 29 EE 29 EE RO TO 0 S 3 S C

A C

11 Et1

>- S/

R EI

>- S/

R EI

>3- S/

S T 3 tt R EI S S +

E 0P RD RC 0C1 RR TC O AU RR TC O AU O RR TC AU F FH C FH C FH C L T T

N 0 5 t

5 O I2 O I3 O I4 E NL) E 0 YE 1Et E 1 DE E 1 DE E DE OO3 U L0 00 St N1 St N1 S1t N1 CR0 1 N R AP I . AP I . AP I . 1 T1 O3 F1 EC L S 1 EC S

1 EC _

E COT

.N- E> E>

S S E5 I>

L E6 I>

L E7 S

I>

RE S RE S RE S L EC(

S AE AE 0 YS 0 YS YS EK EK LE LE . O. LE LI LI T6 AT T6 AT T6 AT 1

EP EP N NA N HA N HA 1 RS RS O> AR O> AR O> AR C C C 0 F= F= N= = N= = N =

1 I I U U U=

T T NL) 1 5 K5

1
R  :  :

C OO2 CR0 0 C0

- A-HO E T S H

T E

S H

T E

S 3 A .T1 H-7 T7

1 S1 I - A W E I

WR E A I WR E A t i

IOT K- - 1 L O L O L n RC( C0 G0 H5 E H E H E U E P A-TR O-R I0 1 - R.

l i

R.

l -

i R.

S 1 t t SR NR 7 T 7 T 7 T K A 01 SC 02 SC 02 SC A C A

S P

GH HH OO TO 2-0 EE S

217 EE S

21 EE 7 S E T S

C 1 tS ES

>- S/

R EI

> - S/

R EI

> - S/

R EI L S 3

+

0P RP RC 0C1 RR TC O AU O RR TC AU RR TC O AU E L)

O1 A

G E F 4

t 3

FH C O I2 FN C O I3 FN C O I4 P UR0 PT1 F 3 YE 1Et L8 00 E

SS N7 DE E SS N7 DE E SS N7 DE RN- F 5 N R AP I AP I AP I OT 0 O1 F6 EC 9 EC 9 EC 9 D C( E> E>

L E5 S

I>

L E8 S

I>

L E9 S

I>

R S AE AE S RE S 0 YS RE S 0 YS RE S P EK EK LI LI T1 AT LE T1 AT LE T1 AT

0. Y LES EP EP N HA N HA N HA RS RS O> RR O> AR O> AR C C C F= F= N= = N= . N .

I I U U U=

)

i0 r H Y Y A0 G C R1 L AT N LC C-I1 HR t

UN EE AH RW ST SE TG RE EE (

HL A

UV EG I

R HR VI OU GR HE SE EE I U 1 F Gr 1

H E E

>gw l1 L

1 l 0

Y 0 SU T 0 D4 t I 0 PE VE) 1 S1 1 IS4 a TA0

CE1 AL- /

OET IR( '

D i A

R f'

[ 0

[ 0 l

l 0) 1 t t

[ T '

I

' t L) t M l

0O3 -

(

CR0 ,

i T1 t J

.t -

t / l cot

, 0 i

EC( D S T l

U

/

l H l

i S 1

_ 0R

'l 0O 1 T l_ C A

T

_ l l

1 t L) E -

j OO2 R 1, CR0 "

R

.T1

(

- - E t

IOT T

[ RC( F P A l

1 E i

M -

I t 0T -

1

~

_ l l

_ j L) -

! O1 -

]

UR0

_ l PT1 .

_ j Rti - _

OT _

C( _

l

[

j I ,

1 0 0 0 0 0 4 3 2 1

)

M0 M Y R0 R U EEEl )

R1 M RVMl

_ C- I I RW ST X OOI M EE VI

(

RCCT(

M i

t OU U

>1m I il -