ML20044H328

From kanterella
Jump to navigation Jump to search
Rev a to 30-Month Stability Spec for Rosemount Models 1152, 1153 & 1154 Pressure Transmitters.
ML20044H328
Person / Time
Site: Peach Bottom Constellation icon.png
Issue date: 02/23/1990
From: Baldry I, Hanshaw J, Resong M
ROSEMOUNT, INC.
To:
Shared Package
ML20044H326 List:
References
D8900126, D8900126-RA, NUDOCS 9306080189
Download: ML20044H328 (29)


Text

E ATTACllMENT 1 l 1

j l

ROSEMOUNT INC.

r 12001 Technology Dr'<o Eden Prairie, MN 55344 U.SA (612) 941-5560 TWX: 4310012 or 4310024 l FAX: (612) E28 20%

C Rosemount  :

N U C i_ E A R O P E R A T I O N S G R O U P 30 MONTH STABILITY SPECIFICATION FOR ROSEMOUNT MODEL 1152, 1153 AND 1154 PRESSURE TRANSMITTERS ROSEMOUNT REPORT D8900126 REVISION A Originated By L.b '.7bb& Date I//2!7d Ian Baldry - Design Engineer Approved by Eng. / 6 Y /iIf Mf' Date .2 /d J/p p Mark Resong -

Nuclear Opd$ations Manager 4

Approved by G.A. jf M g NLft'/,) /40 t*4 Date J gjf3 Hanchaw - Quality Assurance 9306080189 930528 PDR ADOCK 05000277 P PDR

REVISION STATUS SHEET  ;

1

t. A Et1T NUMBER 08900126 30 Month Stability Specification for DOCUMENT TITLE Pqsemount Model 1152, 1153 and 1154 Pressure Transmitters I
s. l REVISION CHANGE / DESCRIPTION PAGE/ PARAGRAPH APPROVED BY DATE l A. See following page i

o

+

l i

_A .

t R EV! S I O ~~ STATUS .

ROSER tOUNT

. JRT D8900126 30 moi!TM STADlLfiY CPECIFICATION FOR ROSEtavuNT MODEL 1152,1153 AND 1154 TRANCMITTERb .

ENG

.t E!!G SUPV GA IH'TG E F FEC"'IVE REV PAGE P AF. AG RI.PH CII.'JIGE DESCilIPTION APP APP APP AFP DATE 1

4 I

r"jj !6 !slW bll!/ 0YIYl$ o/ a A 1-15 All C::1ginal Release H,i.Vqol? j /,jei '"/

no ~r '

t/ncho 2/nn/_1i I

i m

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . _ _ _ _ _ _ _ _ .m__ -

t I

e.  ;

i

'ff 3L?, OF CONTE 1P.PS PAGE' 1.0 SCOPE 1 1.O P'c FERENCES 6 1 ,

3.O TEST DESCRIPTION 1 4.O CONCLUSION 15 P

I i

5

?

.i 1

l l

1

'1

.PAGE i

~

l ROSEMOUNT-REPORT D8900120-

9 30 HONTH STABILITY SPECIFICATION FOR ROSEMOUNT MODEL 1152, 1153 AND 1154 TRESSURE TRANSMITTERS ROSEMCUNT REPORT D8900126 RETI3 ION A C 1.0 SCOPE This report documents the testing that was performed to demonstrate the new stability specification of 10.2% URL-for 30 months for Rosemount Model 1152, 1153 and.1154 transmitters. The former specification of 10.25% URL:for 6 months, including accuracy, was based on test results from the Model 1151 (Ref. 2.1). The new specification does not include accuracy.

2.0 REFERENCES

The revision level of the reference listed below were current at the time of release- of this report.

2.1 Rosemount Report 78223, Revision A. "Long. Term Test Results for Pressure Transmitters Rosemount' Model 1151." ~

3.0 TEST DESCRIPTION Test units consisted of four 1153 Series B transmitters,-

model number 1153GB6PA and serial. numbers 402720, 402721, 402722, 402723, all calibrated 0-to 100 psig. .The transmitters were powered with 34 V and output' voltage of the transmitter was neasured over a 500 ohm. resistor.

Response of the transmitter to an input pressure-of 50 pci 3 psi was recorded daily for the first week of. the test, weekly .f er the next six -months, and monthlyLfor.the duration of the test. Ambient-temperature was also recorded. Calibration checks at 20% span increments weref made between 0 and 100% span at the beginning and end of the test.

The test was criginally scheduled to run 18 months.

Input pressure was removed after 18 months and a calibration-check performed. A request was:made to extend-the test out to 30 months so another' calibration check was perf ormed prior to pressurizing the transmitters to 50 psi again. No adjustment'was made to the calibrations of the test units during the test interruption. Calibration data was recorded again af ter the test was over.

Transmitter output voltages neasured during the first 18 months of the test are shown in Table 1 along with the output shifts. Output shifts are referenced to the output voltage measured at the beginning of the test.

All of the output shifts are within the new stability st:ecificaticn of 20.2?; URL ( .016 V). Anbient

$cperaturac ranged from 70 to 82 F Results frca the extension of the test to 30 months are.

shown in Table 2. Output shifts again are referenced to

  • the cutput voltage measured at the beginning of the test.

However, the shifts are adjusted for the change in output cbserved between the last naasurerent.befora the exrension and the first measurement of the extension due '

to snut-down and start-up of pressure source.

For example, the output measured after 18 months for S/N 402720 was 5.990 V. After the pressure source was reapplied to the transmitter, the output was 5.996 V.

The output s_ift referenced to the beginning of the test is +0.006 7 (5.996 - 5.990 V). To determine the cutput shift due to drift, this value is adjusted by subtracting the 0.006 V cutput shift due to the change in pressure, resulting in an cutput drift of 0.000 V (0.006 - 0.006V).

All of the output shifts in Table 2 are within the new stability specification of 10.2% URL (i.016 V). A graph of the output drift is shown in Figura 1. .Anbient tenparature ranged frca 67-76 F.

The calibration checks made at the beginning of the test- '

are shown in Table 3 and meet the accuracy specification i0.25% span (10.020 V). Calibration checks nade after 18 ncnths are shcun in Table 4, prior to the extension'to 30 .

nonths in Table 5, and after 30.ncnths in Table 6. All naen the ceabined effects of accuracy (10.25% span) and '

drift (i0. 2 % URL) .

original da:a 13 stored in Engineering Test File ZTr.24.0.

4 I

l

. ROSFHOUNT FIPORT,D89001.26- . .- . . _ .

.PAGE 2, ,

TABLE 1 - TRANSHITTER OUTPUT . DRIFT 0-18 MONTHS OUTPUT-(V)

OUTPUT SHIFT (V)-

TIME GZN 402720 402721 402722 402723 DAY 1 5.990 6.000 5.992 (* 5.990

.000 .000 .000 .000 DAY 2 5.990 6.000- 5.993 5.990

.000 .000 +.001 .000 DAY 3 5.990 6.000 5.993 5.991

.000 .000 +.001 +.001 DAY 4 5.990 6.000 5.993 5.991

.000 .000 +.001 +.001 DAY 5 5.990 6.000 5.993 5.989

.000 .000 +.001 .001 DAY 8 5.992 6.001 5.995 5.991

+.002 +.001 +.003 +.001 WEEK 2 5.993 6.001 5.997 5.992-

+.003 +.001 -+.005 +.002 WEEK 3 5.991 6.001 5.996 5.991

+.001 +.001 +.004 +.001.

WEEK 4 5.994 6.002 5.997 5.989

+.004 +.002 +.005 .001 WEEK 5 5.991 5.999 5.994 5.990.

+.001 .001 +.002- .000 WEEK 6 5'.992 6.000 5.994 5.989

+.002 .000 +.002 .001 NEEK 7 5.993 6.000 5.995 5.991

+.003 .000 +.003 +.001' WEEK 8 5.994 6.001 5.997 5.992

+.004 +.001 +.005 +.002 WEEK 9 5.993 5.999 5.996 5.990

+.003 .001 +.004 . 000 WEEK 10 5.994 5.999 5.996- 5.990

+.004 .001 +.004 .000 WEEK 11 5.992 6.000 5.995 5.990

+.002 .000 +.003 .000 ROSEMOUNT REFORT D8900126 PAGE 3

TADLE 1 (CONT'D) - TT3.NSMITTER OUTPUT DRIFT 0-18 MONTHS-OUTPUT (V) '

OUTPUT SHIFT (V) '

TIME S/N 4QR720 402721 402722 402723-WEEK 12 5.992 -

5.999 5.997 5.090 ,

+.002 .001 +.005 .000 WEEK 13 5.993 5.999 5.997 5.990

+.003 .001 +.005 .000 WEEK 14 5.993 5.999 5.997 5.990

+.003 .001 +.005 .000 WEEK 15 5.993 5.999 5.997 5.990 1

+.003 .001 +.005 .000 WEEK 16 5.994 6.000 5.998 5.991

+.004 .000 +.006 +.001- -

WEEK 17 5.993 6.000 5.998 5.991 l

+.003 .000 +.006 +.001 WEEK 18 5.993 6.000 5.997- 5.990

+.003 .000 +.005 .000 WEEK 19 5.993 6.000 5.996 5.990

+.003 .000 + 004 .000 l

WEEK 20 5.993 6.000 5.997 5.990

+.003 .000 +.005 .000 WEEK 21 5.993 5.999 5.997 5.990 ,

?

+.003 .001 +.005 .000 WEEK 22 5.993 5.999 5.997 .5.990

+.003 .001 +.005 .000 WEEK 23 5.993 5.999 5.997 5.989

+.003 .001 +.005 .001 WEEK 24 5.993 5.999 5.997 '5.989 -I

+.003 001 +.005- .001

~ WEEK 25 5.993 5.999 5.998 5.990 i

+.003 .001 +.006 .000-MOUTH 7 5.992 5.998 5.997 5.989

+.002 .002 +.005 .001 MONTH 8 5.992 5.998 5.996 5.986 't

+.002 .002 +.004 .004 l R SEMOUNTJEPORT D8900126 _ __ _ _ . _ _ ,

.PAGE-4 ,

f .' )

. i i

TABLE 1 (CONT'D) - T'4ANSMITTER OUTPUT DRIFT 0-18 MONTHS f OUTPUT (V) '

OUTPUT SHIFT (V)

. TIME S/N 402720 402721 402722 402723 MONTH 9 NR NR NR HR c, MONTH 10 5.992 5.996 5.997 5.987 *

+.002 .004 +.005 .003 MONTH 11 5.993 5.997 5.998 5.988

+.003 .003 +.006. .002 MONTE 12 5.993 5.994 5.996 5.986

+.003 .006 +.004 .004 MONTH 13 5.996 5.995 5.998 5.988

+.006 .005 +.006 .002 MONTH 14 5.994 5.996 5.996 5.986 ,

+.004 .004 +.004 '.004 MONTH 15 5.992 5.996 5.996 5.986

+.002 .004 +.004 .004 MCNTH 16 6.003 5.995 6.000 5.988

+.013 .005 +.008 .002 MONTH 17 NR NR NR NR MONTH 18 5.990 5.994 5.999 5.986 .

.000 .006- +.007 .004 1

i h

l 1

1 1

RQHE40UNT~ REPORT D8900126 pAGE 5 -

?

TABLE 2 . TRJdTSMIT"'ZR OUTPUT DRIFT EXTENSION TO 3 0 ' MONTHS OUTPUT (V)

OUTPUT SHIFT (V)

Eq_ S/N 402720 402721 402722 '402723 )

DAY 1 5.996 5.990 5.995 5.979 c l

.000 .006 +.007 .004 >

DAY 2 5.995 5.989 5.995 5.977 ~

.001 .007 +.007 .006-DAY 3 liR NR NR NR I 1

DAY 4 5.993 5.987 5.992 5.977 '!

.003 .009 +.004 .006 .t i

MONTH 19 5.994 5.998 5.993 5.978

.002 +.002 +.005 .005'. i MONTH 20 5.995 5.991 5.995 5.979

.001 .005 +.007 .004 .

?

MONTH 21 5.994 5.997 5.998 5.982 i

.002 +.001 +.010 .001 'l MONTH 22 NR NR NR NR'- l MONTH 23 5.993 5.998 6.000 5.988 i

.003 +,002 +.012 +.005 j MONTH 24 5.992 5.998 6.000. 5.988

.004 +.002 +.012 +.005 MONTH 25 5.938 5.995 5.996 5.985'

.008 .001 + 008

. +.002 i

MONTH 26 5.S92 5.997 6.000 5.987

.004 +.001 +.012 +.004 a MONTH 27 NR 1R NR- NR.

MONTH 13 5.993 5.997 6.002 5.988'  !

.003 +.001 .+.014 +,005 l

MONTH 29 5.984 5.992 5.994 5.981

.012 .004 +.006 .002

  • 1 MONTH 20 5.991 5.996 5.999 5.98o  ;

.005 .000 +.011 +.005 l

l EnSE40UNT. REPORT D8900126 PAG 316 j

TABLE 3 - INITIAL ACCURACY CHECK INPUT, % SPAN 0% 20% 40% 60% 80% 100%

. IDEAL OUTPUT (V) 2.000 3.600 5.200 6.800 8.400 10.000 S/N 402720 INCREASING INPUT ACTUAL' OUTPUT (V) 1.995 3.592 5.188 6.785 8.383 9.986 VOLTAGE SHIFT .005 .008 .012 .015 .017 .014 DECPIASIliG INPUT ACTUAL OUTPUT (V) 1.996 3.595 5.192 6.789 8.386 9.'986-VOLTAGE SHIFT .004 .005 .008 .011 .014 .014 INCREASING INPUT ACTUAL OUTPUT (V) 1.995 3.593 5.190 '6.787 8.385 9.988. l VOLTAGE SHIFT .005 .007 .010 .013 .015 .012 {

S/N 402721 INCREASING INPUT ACTUAL OUTPUT (V) 1.995 3.592 5.196 6.797 8.393 9.990 VOLTAGE SHIFT .005 .008 .004 .003 .007 .010 DECREASING. INPUT ACTUAL OUTPUT (V) 1.997 3.596 5.199 6.800 8'.395. 9.990 VOLTAGE SHIFT .003 .004 .001 .000 .005 .010 l INCREASING INPUT ACTUAL OUTPUT (V) 1.997 3.594 5.197 6.799 8.395- 9.991 VOLTAGE SHIFT .003 .006 .003 ' .001 .0051 .009 S/N 402722 {

INCREASING INPUT ACTUAL OUTPUT (V) 1.997 3.593 5.191 6.791' 8.390 9.993 .:

VOLTAGE SHIFT .003 .007 .'009 .009- .010 -.CO7 DECREASING INPUT {

ACTUAL OUTPUT (V) 1.$98 3.596- 5.194 6.794 -8.391 9.993 i VOLTAGE SHIFT ' .002 .004 .006 .006 .'009 .007  !

INCREASING INPUT ACTUAL OUTPUT (V) 1.998 3.595 5.193 6.793 8.392 9.998 '

VOLTAGE SHIFT .002 .005 .007 .007 .008 ~ .002 6

L b - ' -

i TAT L.d 3 (CONT'D) INITIAL ACCURACY CHECK INPUT,~% SPAN 0% 20% 40% 60%- 80% .100%

2.000 3.600 5.200 6,800 8.400 10.000 IDEAL CUTPUT (V)

S/N 4C2723-

.HCREASING INPUT T

ACTUAL OUTPUT' (V) 1.996 3.592 5.189 6.786 8.386 9.992 VOLTAGE SHIFT .004 .008 .011 .014 - . 01'4 .008 DECREASING INPUT ACTUAL OUTPUT (V) 1.998 3.595 5.191 6.789 8.388 9.992 VOLTAGE SHIFT .002 .005 .009 .011 .012 -.008.

INCREASING INPU'"

ACTUAL OUTPUT (V) 1.997 3.594 5.192 6.788 8.388 9.994 -

.I VOLTAGE SHIFT .003 .006 .008 .012 .012 .006 i

a f

P t

't P

i I

L I

h s

4 RbSEMOUNT RET..RT D8900126 PAGE 8.

TABLE 4 - ACCURACY CHECK AFTER 18 MONTHS .

INPUT, % SPAN 0% 20% 40% 60% 80% 100%

IDEAL OUTPUT (V) 2.000- 3.600 5.200 6.800 8.400 10.000 -

G/N 402720 INCF2ASING INPUT ACTUAL OUTPUT (V) 2.000 3.S94 5.190 6.787. 8.382 9.984-  !

VOLTAGE SHIFT .000 .006 .010 .013 .018 .016 i

DECREASING INPUT ACTUAL OUTPUT (V) 2.001 3.599 5.194 6.789 8.385 9.984 VOLTAGE SHIFT +.001 .001 .006 .011 .015. .016-INCREASING INPUT -i ACTUAL OUTPUT (V) 2.001 3.597 5.192 6.787 8.333 9.984 I

VOLTAGE SHIFT +.001 .003 .008 .013 .017 .016 S/N 4D2721 INCREASING INPUT ACTUAL OUTPUT iV) 1.997 3.592 5.194 6.794 8.387 9.983 VOLTAGE SHIFT .003 .008 .006 .006 .013' .017 DECREASING INPUT ACTUAL OUTPUT (V) 1.997 3.594 5.197 6.797- 8.390 .9.983-I VOLTAGE SHIFT .003 .006- .003 .003 .010 .017 INCREASING INPUT ACTUAL OUTPUT (V) 1.997 3.593 5.195 6.794 8.389 9.984 VOLTAGE SHIFT .003 .007 .005 ' -.006 .011 .016 S/N 402722 ,

s INCREASING INPUT '

ACTUAL OUTPUT (V) 2.007 02 5.197 6.795 .

8.390 9.992 VOLTAGE SHIFT +.007 +.002 .003 .005 .010 .008 DECREASING INPUT #

ACTUAL OUTPUT (7) 2.007 3.603 5.199 6.797 8.393 9.992- '

VOLTAGE SHIFT t.007 +.003 .001 .003 .007' .008 INCREASING INPUT  !

ACTUAL OUTPUT (V) 2.007 3.602 5.198 6.795 8.391 9.992

' +.002 VOLTAGE SHIFT . +.007 .002 .005 .009 .008 I

b i

N MPORTiD89.00126'_ ._., _.

PAGE, ,93 ,

r 3

t i

i TABLE.4 ( CONT ' D) - ACCURACY CHECK AFTER 18 MONTHS.

INPUT, % SPAN 0%. 20% 40% 60% 80% 100%  !

IDEAL OUTPJJT (V) 2.000 -3.600 5.200 6.800 8.400 10.000 S/N 402723 .

INCREASING IMPUT  :

ACTUAL OUTPUT (V) 1.955 3.593 5.187 6.783 8.382 9.987 I VOLTAGE SHIFT .005 .007 .013 .017 .018 .013  :

DECREASING INPUT ACTUAL OUTPUT (V) 1.995 3.593 5.187 6.786 8.384 9.987 VOLTAGE SHIFT .005 .007 .013 .014 .016 .013

)

INCREASIITG INPUT ACTUAL OUTPUT (V) 1.995 3.592 5.187 6.784 8.383 9.987 VOLTAGE SHIFT .005 .008 .013 .016 .017 .013' '

a k

P 4

L t

l t

i l

ROSEMOUNT REPORT D89,00126 pAgg.10

- . . . - - . . . . . - - . . . . . - . .. . ~ . . ~ -. , ,. . _ _ - ~ .

4 TABLE 5 - ACCURACY CHECK BEFORE TEST EXTENSION INPUT, % SPAN 0% 20% 40% 60% 80% 100%

IDEAL _OUTPJUT (vi 2.000 3.600 5.200 6.800 8.400 10.000 i D/N 402720 INCREASING INPUT ACTUAL OUTPUT (V) 2.001 3.600 5.198 6.796- 8.383- -9.985 VOLTAGE SHIFT +.001 .000 .002 .004 .017 .015  :

DECPEASING INPUT ACTUAL OUTPUT (V) 1.999 3.596 5.193 6.788 8.385 9.985.

VOLTAGE SHIFT .001 .004 .007 .012 .015 .015  ;

INCREASING INPUT ,

ACTUAL OUTPUT (V) 1.999 3.595 5.198 6.786 8.382 9.984.

VOLTAGE SHIFT .001 .005 .002 .014 .018 .016  !

4 S/N 402721 INCREASING INPUT ACTUAL OUTPUT (V) 1.999 3.597 5.202 6.'803 '8.390- '9.985 VOLTAGE SHIFT .001 .003 +.002 +.003 . ,010 .015 ,

DECREASING INPUT  :

ACTUAL OUTPUT (V) 1.996 3.593 5.197 6.796 8.390 9.985 VOLTAGE SHIFT .004 .007 .003 .004 .010 .015 INCREASING INPUT >

ACTUAL OUTPUT (V) .:. 9 9 6 3.592- 5.195 16.793 8.388 9.984 '

VOLTAGE SHIFT .004 .000 .005 .007 .012 .016  ;

S/N 402722 INCREASING INPUT

. ACTUAL CUTPUT (V) 2.008 3.605 5.203 6.802 8.390 9.991 VOLTAGE SHIFT +.003 +.005 +.003 +.002 .010 .009 DECREASING INPUT  ;

ACTUAL OUTPUT (V) 2.006 3.601 ~5.198 6.795 .8.391 9.991~

-VOLTAGE SHIFT +.006 +.001 .002 .005 .~009 -.009 INCREASING INPUT ACTUAL OUTPUT (V) 2.006 3.600 5.196 6.792 8.398 9.990 ,

VOLTAGE SHIFT +.006. .000 .004 .008 .002 - .010 ,

4 NOSE %DHbCL.REPART DS90012 6 _ _ _ _

_pA_Gg L ___ _

i i.-

TABLE 5 .(CONT' D) - ACCURACY CHECK'BEFORE TEST EXTENSION:

INPUT, % SPAN 0% 20% 40% 60% 80% 100%-  ;

2.000 3.600 5.200 6.800 8.400 10.000 JJNAL OUTPUT (V)

S/N 402723 INCREASING' INPUT .

ACTUAL OUTPUT (V) 1.994 3.591 5.188 6.785 8.373 .9.976 VOLTAGE SHI7T .006 .009 .012 .015 .027- .024

.i DECREASING INPUT ACTUAL OUTPUT (v) 1.991 3.588 5.182 6.777 8.374 9.976- ,

VCLTAGE SHIFT .009 .012 .018 .023 = .026 .024 ,

INCREASING INPUT '

ACTUAL OUTPUT (V) 1.991 3.386 5.180 6.775 8.372 9.975

-VOLTAGE SHIFT .009 .014 .020 .025 .028 .025 i

i i

m 26 . PAG'E ' 12 -

TABLE 6 - ACCURACY CHECK AFTER 30 MONTHS -

INPUT, % SPAN 0%- 20% 40% 60%. 80%- 100%

IDEAL OUTPUT (V) 2.000 3.600 5.200 6.800 8.400 10.000 S/N 402720 INCREASING INPUT ACTUAL OUTPUT (V) 2.000 3.597 5.193 6.788 8.385 9.986 VOLTAGE SHIFT .000 .003- .007- .012 .015 .014 DECREASING INPUT ..

ACTUAL OUTPUT (V) 1.999 3.598 5.195 6.791 8.387 9.986 VOLTAGE SHIFT .001 .002 .005 .009 .013 .014 INCREASING INPUT ACTUAL OUTPUT (V) 1.999 3.597 5.193 6.788 8.386 9.987.

VOLTAGE SHIFT .001 .003 .007 .012 .014

.013 S/N 402721 INCREASING INfUT ACTUAL OUTPUT (V) 1.995 3.592 5.195 '6.798 8.391- .9.986'

'IOLTAGE SHIF',' .C05 .008 .005 .002 . .009 .014-DECREASING INPUT ACTUAL OUTPUT (V)- 1.995 3.594 5.198 6.797 8.393 9'986 VOLTAGE SHIFT .005 .006 .002 .003 .007 .014.

IN SIASING INPUT AUTUAL OUTPUT (V) 1.995 3.592 5.196 6.795 8.392 9.987

.008 005  ;;

VOLTAGE SHIFT .005 .004 .008 .013 i

S/N 402722 INCREASING INPUT ACTUAL CUTPLT (V) 2.007 3.603 5.200 6.798 8.397 9.993 VOLTAGE SHIFT +.007 +.003 .000 .002 .003 .002 DECREASING INPUT ACTUAL CUTPUT (V) 2.007 3.604 5.202 6.' 10 8.398 9.998 VOL'iAGE SHIFT +.007 +.004 +.002 0 .002 .002 INCREASING INPUT ACTUAL OUTPUT (V) 2.007 3.603 5.200- 6.798 8.397 9.999-VOLTAGE SHIFT +.007 4 003 .000 - 002 .003. .001.

l

--m - - -. __.

._rew u s_ d

3

  • ~

s . 4 g.

r TABLE 6 (CONT ' D) --ACCURACY f. HECK AFTER.30 MONTHS 1 INPUT,.% SPAN 0% 20%- 40% 60% 80% 100%

IDEAL CUTPUT (V) 2.000 3 . 6 0'O 5.200 6.800 8.400 10.000 i

S/N 402723 c

IIICREASING INPUT-ACTUAL OUTPUT (V) 1.994 3.591 5.188 6.786 8.3S6- L9'.992 VOLTAGE SHIFT .006 .009 .012 .014 .014 .008 DECREASING INPUT ACTUAL OUTPUT (V) 1.998 3.592 5.190 6.788 8.388 9.992-VOLTAGE SHIFT .002 .008 .010 .012 .012 -.008-INCREASING INPUT ACTUAL OUTPUT (V) 1.998 3.591 '5.188 6.786 8.386 9.992-VOLTAGE SHIFT .002 .009 .012 .014 .014 .008 l i

6 I

4

?

t 6

4

eb

.I TABLE 6 (CONT' D) -

ACCURACY CHECK AFTER- 30 MONTHS INPUT,-% SPAN 0% 20% 40% 60% 80% 100% ,

IDEAL OUTPUT (V) 2.000- 3.600 5.200 6.800 8.400- 10.000' S/M 402723 .

c.

INCREASING INPUT ACTUAL OUTPUT (V) 1.994 3.591 5.188 6.786 8.386 9.992 VOLTAGE SHIFT .005 .009 .012 .014 .014 .008 ,

DECPIASING INPUT ACTUAL OUTPUT (V) 1.998 3.592 5.190 6.788 8.388 9 999 VOLTAGE SHIFT .002 .008 .010 ' .012 .012 $008 3 INCREASING INPUT

  • ACTUAL OUTPUT (V) 1.998 3.591 5.188 6.786 8.386 9.992 VOLTAGE SHIFT .002 .009 .012 .014 .014 .008

'I e

0 h

I l

l 1

-l 1

)

l I

e_e 1 .n n.1 w svcmLS.A _

40 CONCLUSION Based on the test results documented in this report and the similarity in design between the Model 1152, 1153,- ,

and 1154' transmitters, it has been demonstrated that the .

Rocer.ount Model 1152, 1153, and 1154 transmitters will c; moet a new stability specification of 10.2% URL.

e i

F

)

I i

+

I J

I k

~ ?_ OiOI , - . . . , _ . _1 E .

4 l

ATTACHMENT 2 PAGE 1 OF 4 Data for Acoustic Monitors installed on Peach Pottom Units 2&3 l

1. results of Drift projection: ,

Manufacture NDT Model No. 104DC-M1 IIITERVAL OISD SQRT SMAZ (MONTHS) MEAN (% of SPAN) 1 -0.050000 0.076376 2 -7.100000 7.100000 11 -0.523077 0.947206 12 -1.375000 3.031392 13 -0.400000 0.741620 18 -0.225000 0.399929 24 -0.660000 1.319276 25 -0.766667 0.872417 45 0.150000 0.792149

2. Raw input data for Peach Bottom Units 2 & 3 TEST DATE AS-LEFT VALUE AS- FOUND VALUE INSTRUMENT NUMBER (Yr/ Month / Day)

POS-3-2-70A 85/02/20 199 199 POS-3-2-70A 86/01/30 198 198 POS-3-2-70A 89/11/08 204 185 POS-3-2-70A 90/11/04 204 204 POS-3 2-70B 85/02/20 200 200 POS-3-2-70B 86/01/30 198 198 POS-3-2-70B 89/11/08 196 196 POS-3-2-70B 90/11/03 200 200 POS-3-2-70B 90/11/17 202 170 POS-3-2-71A 8E/ue/20 203 203 POS-3-2-71A 86/01/30 202 202 POS-3-2-71A 89/11/16 202 17r 6

POS-3-2-71B 85/02/20 201 201 POS-3-2-71B 86/01/30 201 201 POS-3-2-71B 89/11/16 202 198 POS-3-2-71C 85/02/20 207 207 L

ATTACHMENT 2 PAGE 2 0F 4 TEST DATE AS-LEFT VALUE AS-FOUND VALUE INSTRUMENT NUMBER (Yr/ Month / Day)

POS-3-2-71C 86/01/30 198 207 POS-3-2-71C 89/11/07 201 201 POS-3-2-71C 90/11/03 209 141 POS-3-2-71D 85/02/20 205 205 POS-3-2-71D 86/01/30 199 204 POS-3-2-71D 89/11/07 204 204 POS-3-2-71D 90/11/03 204 130 POS-3-2-71E 85/02/20 208 208 POS-3-2-71E 86/01/30 200 195 POS-3-2-71E 89/11/08 201 201 POS-3-2-71E 90/09/06 1 206 206 l

POS-3-2-71E 90/11/04 201 135 POS-3-2-71F 85/02/20 206 206 POS-3-2-71F 86/01/30 200 192 POS-3-2-71F 89/11/08 197 197 POS-3-2-71F 90/09/06 197 197 POS-3-2-71F 90/11/04 201 126 POS-3-2-71G 85/02/20 197 197 POS-3-2-71G 86/01/30 200 178 P05-3-2-71G 89/11/10 206 177 POS-3-2-71G 90/11/04 205 205 POS-3-2-71H 85/02/20 196 196 POS-3-2-71H 86/01/30 199 177 POS-3-2-71H 89/11/10 205 176 POS-3-2-71H 90/11/04 205 166 POS-3-2-71J 85/02/20 200 200 POS-3-2-71J 86/01/30 199 199 POS-3-2-71J 89/11/08 199 199 POS-3-2-71J 90/11/04 200 200 POS-3-2-71K 85/02/20 195 195 ,-

POS-3-2-71K 86/01/30 198 198 POS-3-2-71K 89/11/08 198 198 POS 2 -71K 90/11/04 198 93 POS-3-2-71L 65/02/20 201 201 POS-3-2-71L 86/01/30 201 201

ATTACHMENT 2 PAGE 3 OF 4 TEST DATE AS-LEFT VALUE AS-FOUND VALUE INSTRUMENT NUMBER (Yr/ Month / Day)

POS-3-2-71L 89/11/08 205 185 POS-3-2-71L 90/11/04 205 188 POS-2-2-70A 83/11/30 205 205 POS-2-2-70A 85/05/23 200 202 POS-2-2-70A 87/12/14 208 208 POS-2-2-70A 89/03/01 199 199 POS-2-2-70A 90/03/17 200 200

'POS-2-2-70A 91/03/08 200 200 POS-2-2-70B 83/11/30 203 203 POS-2-2-70B 85/05/23 203 203 POS-2-2-70B 89/03/01 199 199 POS-2-2-70B 90/03/17 192 180 POS-2-2-70B 91/03/08 197 197 POS-2-2-71A 83/11/30 201 201 POS-2-2-71A 85/05/23 201 204 ,

POS-2-2-71A 89/02/22 208 208 '

POS-2-2-71A 90/03/11 197 197 POS-2-2-71A 91/03/08 197 197 POS-2-2-71B 83/11/30 203 203 POS-2-2-71B 85/05/23 200 206 POS-2-2-71B 89/02/22 196 196 POS-2-2-71B 90/03/11 201 201 J

POS-2-2-71B 91/03/08 201 201 POS-2-2-71C 83/11/30 202 202 POS-2-2-71C 85/05/23 201 200 POS-2-2-71C 89/03/01 206 206 POS-2-2-71C 90/03/17 205 205 POS-2-2-71C 91/03/04 203 203 POS-2-2-71C 91/03/08 203 203 POS-2-2-71C 91/04/15 203 203 POS-2-2-71D 83/11/30 201 201 POS-2-2-71D 85/05/23 201 199 POS-2-2-71D 89/03/01 206 206 POS-2-2-71D 90/03/17 200 200 gPOS-2-2-71D 91/03/04 198 198 9

  • i ATTACIU4ENT 2 PAGE 4 OF 4 TEST DATE AS-LEFT VALUE AS-FOUND VALUE INSTRUMENT NUMBER (Yr/ Month / Day)

POS-2-2-71D 91/03/08 200 200 POS-2-2-71D 91/04/15 197 197 POS-2-2-71E 83/11/30 207 207 POS-2-2-71E 85/05/23 201 199 POS-2-2-71E 89/03/01 199 199 POS-2-2-71E 90/03/11 192 176 POS-2-2-71E 91/03/06 200 190 POS-2-2-71F 83/11/30 205 205 POS-2-2-71F 85/05/23 201 201 POS-2-2-71F 89/03/01 200 200 POS-2-2-71F 90/03/11 194 175 POS-2-2-71F 91/03/06 191 191 POS-2-2-71G 83/11/30 203 203 POS-2-2-71G 85/05/23 201 202 POS-2-2-71G 89/03/01 197 197 POS-2-2-71G 90/03/17 193 196 POS-2-2-71H 83/11/30 203 203 POS-2-2-71H 85/05/23 201 201 POS-2-2-71H 89/03/01 ?ql 201 POS-2-2-71H 90/03/17 196 133 POS-2-2-71J 83/11/30 203 203 POS-2-2-71J 85/05/23 200 200 POS-2-2-71J 89/03/09 199 199 POS-2-2-71J 90/03/19 195 195 POS-2-2-71J 91/03/08 206 206 POS-2-2-71K 83/11/30 204 204 POS-2-2-71K 85/05/23 200 198 I POS-2-2-71K 89/03/09 199 199 POS-2-2-71K 90/03/19 198 198 POS-2-2-71K 91/03/08 201 201 POS-2-2-71L 83/11/30 204 204 POS-2-2-71L 85/05/23 201 199 POS-2-2-71L 89/03/01 199 199 POS-2-2-71L 90/03/17 197 197 POS-2-2-71L 91/03/08 198 199 i l

l

ATTACHMENT 3~

\

<~ ,

/

///(/

WsinuuENTs NNw c

A suas K lN EM CTR cs EERVICES July 15,1992 John Carolan Philadelphia Electric Mail Stop 63A-1 965 Chesterbrook Blvd.

Wayne, PA 19087  ;

Subject:

Applicability of Kinemetrics' solid state instrumentation to a 30-month calibration interval.

Reference:

Request by Steve Kincaid (Philadelphia Electric) on July 7,1992 for transmittal of '

this information to you.

Dear Mr. Carolan.

The design of the Kinemetrics Model SSA-3 Strong Motion Accelerograph is in full accordance with USNRC Reg. Guide 1.12 (1974), ANSI ANS 2.2-1978 and ANSI ANS 2.2-1988.

This solid state accelerograph permits response spectra calculations and plotting to be performed on-site within minutes following an earthquake event. When integrated with the Kinemetrics Model SSP-1 Playback Computer, the EPRI CAV analysis, OBE analysis, response spectra calculations and printed plots with the earthquake response spectra vs. the plant design criteria all are executed automatically immediately following the recorded event; using spreadsheet parameters preprogrammed into the computer by plant engineem Recently (Januan 1992) the USNRC staff released Draft Regulatory Guide DG 1016 for public comment. Under this guide, the staff allows four (4) hours for detennination of exceedance of OBE criteria for sites with the ability to provide response spectra data within that time frame. Further, i i

EPRI's proposed cummulative absolute velocity (CAV) analysis, with minor modifications, is identified by the staff as an acceptable method for detennining whether or not the earthquake energy l was suffi:ient to cause damage. This is important at sites where the OBE is likely to be exceeded at higher frequencies (which are less damaging to civil structures). l The SSA-3 accelerograph does not use the Kinemetrics Model TS-3 (electmmagnetic) Seismic Trigger.

If the TS-3 Seismic Switch is required for a Level 1 OBE indicator, then the drift and secondary calibration issues addressed in my previous letter are applicable. It is my interpretation of Draft Regulatory Guide DG-1016 that plants which upgrade to the solid state instrumentation and have the ability to provide response spectra data from a sensor mounted at the containment foundation (or l freefield site if there is soil interaction at the containment foundation) will be allowed four hours for )

determinaCon of OBE exceedance. Thus, determination of OBE exceedance is based tipon analysis of i de pmvided by the instrumentation identified ir $NSI ANS/121988 as being the most authoritative;  !

the time history accelerograp't. In such case, the seismic switch need only be operated to meet j existing licensing requirements.

l u - - , _n,m.,_.emnwe c ,.nu m a o o ny p = a_ e. .n a.33,n vetev ev.un, meno.r. oen_ c.,,.,.gnsn._e. _1

e * <

. .  ?

John Carolan ,

July 15,1992 Page 2 of 2 l 1

It is Kinemetrics' position that the design of the SSA-3 Seismic Monitoring System is capable of operating in a calibratable manner for an additional 12 months beyond the currently practiced 18 '

month calibration interval. Because the SSA-3 does not use an electromagnetic triggering device, Kinemetrics considers the SSA-3 to be superior to the SMA-3 for such applications.

Few SMA-3 systems have been sold in the last two to three years, fewer nuclear power plants going on line and customers are opting for the newer digital instrumentation. It is dierefore, inevitable that the FM cassette recording instrumentation will be obsoleted sometime in the near future. Given this condition, the following points conceming the SSA-3 will be of inten:st to you:

-The SSA-3 is seismically qualified to IEEE 344-1987.

- " " is designed to directly retrofit most Model SMA-3 FM cassette recording systems.

-All remote Kinemetrics FBA-3 sensor packages and the existine cabline directly mate to the newer solid state instrumentation.

-Each accelerograph record section has an intemal digital trigger algorithm which directly' monitors each channel out of the assigned remote accelerometer package.

Thus, use of the solid state instrumentation greatly improves the plant's post-event performance,  ;

provides higher quality data, reduces the instrumentation to be operated and, provides redundancy in .

t the triggering operation.

f I appreciate the opportunity to discuss the application of Kinemetrics' instrumentation for your project.

Please let me know if any further infomiation is required.

i Sincyclyr (y '

V' l/n, ,

y u

\, .;

Rod Me.Till Manager of Services RAM:1pc enciosures: noted cc: John Diehl, Vice President, Kinemetrics, Inc.

Ian Standley, Manager of Engineering, Kinemetrics,Inc.

w a - ,,.wn -

,- e , e > --m-n - --n , , n ,- e

i ATTACHMENT 4 b

p,1 ljN FG '92 07:ISAM GE-Ef41 JOSE-tIINPEE.408 925 2060 9 GE Nuclast Energy l

l cer.ent recucc cmsg 115 Curtner Ausnue, !an .bo. () G5125

[ l

)

6-5-92 J. Carolan Philadelphia Electric Company 965 Checterbrook Blvd Wayne, PA 19087 John, Ac you requested the 30 nonth (24 + 25%) information for the 3 The drift values NUMAC (LCRM, LPJi and LDS) devices ir provided.

do not include contributions due to the sensors.

For the LDS (Lock Dctcction System) NUMAC the error in the performance specification is 0.7 F. This specified random value

's fo" ~ M nthF 2 *" is Eainly due to thO A-D Conversions. The value for 30 nonths would therefore be S U (0.7"F) or 1,6 F.

For the LCRM and LRM the attached 2 pages describe the '

considerations for 30 month drift for the NUMACs.

Please feel free to call if you have any questions.

Thanks,

.~

.L. L ong Lead Setpoint Methodology Engr u_ .

LIMERICK TRIP PATH DRIFT RATES )l j

TOR NUMAC LCRM 304A3701G003 AND LRM 304A3700G022 INTRODUCTION l

Overall drif t within either the Logarithriic Count Rate Meter or the Logarithmic Radiation Monitor (LRM)

(LCRM) 304A370lG003 304A3700G022 may be broken down into three component parts:

1. Drif t occurring from signal input to digital representation of the signal within the instruments's CPU (Computer)

Module. Once the signal is in digital form there isThe no further drif t until output signals are generated. l digital representation of the naasured signal may be vioWod I on the instrument's front panel. i This component part is of concern since it involvos the trip l function and will be discussed below.

2. Drif t in analog outputs (to recorders, neters, process computers) after digital to analog conversion.

Analog outputs signals are not used for any trip or control f uncuous 'aad their relai ef circuit 2 la not add nors thr.:

0.1% of linear full scale per month to overall drift (from measured input to analog output) .

3. Drift in discrete output signals (ie, trips) generated as a result of trip comparisons within the CPU Module.

There is no drif t associated with trip output circuits since they are entirely digital. .

Loc COUNT RATE METER (Lffil.

Input pulses from an associated detector enter the LCRM's Discriminator Module where they discriminated by pulse height and than digitally processed. Pulse counts areCPU sent to the CPU timing is crystal Module whereThe count rates are deternincd.

process just described is not known to controlled.

contribute to overall instrument drift rate as it pertains to the Measurements made on similar Discrininator and trip function, l CPU Modules in a NUMAC Source Range Monitor (an instrunent

) showed that there was no drift over a 30 day similar to the LCRM) period.

l l

l l

l l

1

1 g g7:1Wtl GE-EAfI' E-iIIIIPEE4 403+925GOUJ P.3 J l 1 LOG PAD MONTTOR (T/RM ) Input current fron an associated detector enters the LRM's l Fentoammeter Module where it is converted to a voltage proportional to t.he logarithm of the current. This voltage is, ' in turn, converted to a digital value by the LRM's Analog Module. The digital value is then read by the CPU Module where further , signal processing occurs. Based on testing, the process just j dcccribed contributes a drift of 1 percent of point per nonth  ! to overall instrument drift. This converts to an 18 month value ' of less than 4.3 porcent fot- the trip function.

                                                                                   ]

TRIP FOINT COMPARISONS The following applies to both the LCPJi and LPJ4. 1

  ' Trip set points are entered numerically via the instrunent's                   l front panel koyboard and display. Entered values are immediately                ;

converted from ASCII to binary format and stored in the CPU's l memory. All trip comparisons are made by the CPU using bintry l numbers. There are no drif ts accociated aith the above procans. I I l l l I l i l l l .l}}