ML20207T144

From kanterella
Jump to navigation Jump to search
Exam Rept 50-327/OL-86-04 on 861215-17.Exam results:2 of 2 Reactor Operators Passed & 4 of 5 Senior Reactor Operators Passed
ML20207T144
Person / Time
Site: Sequoyah Tennessee Valley Authority icon.png
Issue date: 02/06/1987
From: Bill Dean, Munro J
NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION II)
To:
Shared Package
ML20207T141 List:
References
50-327-OL-86-04, 50-327-OL-86-4, NUDOCS 8703230247
Download: ML20207T144 (186)


Text

ENCLOSURE 1 EXAMINATION REPORT 327/0L-86-04 Facility Licensee: Tennessee Valley Authority Facility Name: Sequoyah Nuclear Plant Facility Docket No.: 50-327 Written, oral and simulator examinations were administered at Sequoyah Nuclear Plant near Soddy-Daisy, Tennessee.

Chief Examiner: -

I William M. Dean Date Signed Approved by: cP!6!f7 JotWf F. Munro, Sdction Chief Dats Signed Summary:

Examinations on December 15-17, 1986 Written and operating (oral and simulator) examinations were administered to two Reactor Operators (RO) and one Senior Reactor Operator (SRO). An operating examination was administered to one SRO. A complete written re-examination was administered to one SR0; a Section 8 written re-examination was administered to one SR0; a simulator re-examination was administered to one SRO.

Based on the results described above, 2 of 2 R0s passed and 4 of 5 SR0s passed.

B703230247 670224 PDR ADOCK 05000327 l

PDR i

i l

I REPORT DETAILS

1. Facility Employees Contacted:
  • P. R. Wallace, Plant Manager
  • L. M.-Nobles, Plant Superintendent
  • C. H. Noe, Chief,.0perator Training
  • C. O. Brewer, Operations Training Manager
  • Attended Exit _ Meeting
2. Examiners:
  • W. M. Dean D._J. Nelson L. L. Lawyer C. Shiraki (HQ)

J.Whittemore(RIV)

  • Chief Examiner
3. Examination Review Meeting

- At the conclusion of .the' written examinations, the examiners provided your training staff with a copy of the written examination and answer key for review. The comments made by the facility reviewers are included as Enclosure 3 to this report, and the NRC Resolutions to these comments are listed below,

a. R0 Examination (applicable SR0 questions in parentheses)
1. Question 1.03 (5.02)

Comment accepted. Original answer key responses based on actual power vs. instrument vice instrument vs. actual power as stated in the question.

2. Question 1.04 (5.03)

Comment accepted. Typographical error 'n the answer key will be corrected.

3. Question 1.10(5.10)

Comment accepted. Note that curves provided by utility showing temperature and doppler defects for cycle 4 core were not provided with original material sent to the NRC. Part (a) is deleted.

2

4. Question 1.11(5.11)

Comment accepted. Question did not delineate between fast and thermal fission. The recomended additional answer will also be accepted, with same tolerances as original answer key.

5. Question 1.12-Comment accepted. Answer key will require 4 of 5 correct answers.
6. Question 1.14 Recommended answer is equivalent to existing answer key. No change required.
7. Question 1.15(5.12)

Comment accepted. Error in answer key corrected.

8. Question 1.17(5.15)

Comment not accepted. The question affirmatively states that rod worth remains essentially constant, negating effects from temperatures, poisons, etc.

9. Question 1.20 Recommended answers are equivalent to existing answer key. No change to answer key is required.

i

10. Question 2.04 Comment accepted. Based on additional material provided, either b or c will be accepted as correct.
11. Question 2.07(6.08)

Inadvertent use of another facility's valve numbers is mitigated by utilization of the valve name. Though this particular problem generated little confusion, we agree that these mistakes need to be avoided.

12. Question 2.12 Comment accepted. Based on additional material provided by the facility, recommended additional answers will also be accepted.

Lesson plan should be modified to reflect this information.

13. Question 2.14(6.11)

Comment accepted. Based on information contained in Technical Specifications, the band for part c will be 1185-1285 psig.

3

14. Question 2.17 (6.13)

Comment accepted. Recent change to A01-3B is not reflected in the referenced system description. As there are no other ECCS related components removed from service, and the question asks for four responses, the candidates will not be penalized for listing the two components which are removed from service, but not necessarily tagged out.

15. Question 2.19(6.17)

The order of elements in the Air Cleanup Unit is considered important to the overall effective operation of these accident mitigating components. However, based on facility supplied drawing, the electric heating element will be removed from the answer key. System description should be changed to reflect the actual plant conditions.

16. Question 3.05 Comment accepted. Based on additional reference material provided, recommended answer will be accepted. System description should be changed to reflect this additional alarm.
17. Question 3.07 Comment accepted. Confusing wording in facility's system description resulted in erroneous answer key.
18. Question 3.11(6.12)

Comment accepted. Based on system drawing provided, additional answers will be accepted.

19. Question 3.15 (6.15)

Comment accepted. Based on system drawings provided by the facility demonstrating an EDG lockout will not occur, question is deleted.

20. Question 3.16 Comment accepted. Part 4 of answer key was based on another facility and should have been deleted from the answer key.
21. Question 3.17 (6.16)

Comment accepted. Based on system drawings provided, 6.9 KV bus l lockout will be deleted from the answer key. Bus under-voltage will be considered an equivalent answer to bus stripping.

l

4

-22. Question 4.05(7.06)

Comment accepted. Question symbology may confuse candidates and cause them to think that question is asking for "2 out of 4" vice "2 and 4" S/Gs.

23. Question 4.15 Recommended answer is equivalent to existing answer key. No change required.
24. Question 4.20(7.19)

Comment accepted. Based on additional material provided, recommended answer will be accepted as 1 of 2 correct answers.

25. Question 4.21 Coninent accepted. Typographical errors in answer key will be corrected.
b. SR0 Examination
1. Question 5.07 Connent not accepted. The question clearly states use of an E0L critical baron concentration vice a BOL boron concentration.

Typically, these values are different by hundreds of pnm.

2. Question 5.22 Sketch was inadvertently omitted from the answer key. Facility provided drawing is equivalent to desired response.
3. Question 5.23 Comment accepted. An acceptable range of (+1.0,-0.5%) will be added to answer key.
4. Question 6.06 Comment accepted. Based on controller modification not reflected in system descriptions, question will be deleted.
5. Question 6.10 Recommended answer is equivalent to existing answer key. No change required.

e 1

5

6. Question 7.08 Comment accepted. Based on drawing provided, answer key will be changed as recommended.
7. Question 7.13 Comment accepted. Even though fuel movement less than 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> after shutdown is discussed in the referenced procedure, it is agreed that this answer may not be elicited as such an occurrence would not be feasible based on Technical Specification require-ments. Reasonable third answers will be accepted in lieu of this response.
8. Question 7.20 Comment not accepted. A key factor discussed in the Westinghouse Background Information for FR-H-1 " Response to Loss of Secondary Heat Sink", is the effectiveness of the energy removal of the PORVs during bleed and feed procedures. Though the specific phrase given in the answer key is not identically stated, this is a well known phenomenon discussed in Westinghouse accident analysis. An additional answer that will be accepted, as stated on page 55 of the above reference is " higher pressure produced by RCP operation will reduce SI flow and increase inventory lost through the PORVs".
9. Question 8.05 Comment accepted. Question should have said "only plant Health Physicist" to elicit response in answer key. Answer will be changed as recommended.

C. Post Examination Review Review of the written examinations following their administration resulted in minor technical or administrative changes to Question Numbers 2.22 (6.21),6.20,7.12,8.22and8.23,tobetterreflecttheanswerselicited by the questions.

l l

f l

L

6

4. Exit Meeting

.At the conclusion of the site visit the examiners met with representatives of the plant staff to discuss the results of the examination.

The inadequate nature of some of the training material supplied by the facility to the NRC was addressed. Forty-six percent (11 of 24) of the changes made to the answer key were a direct result of incomplete or insufficient training material. It was determined that selected training material presented to the candidates prior to their pre-license training would be appropriate for examination development. Additionally, a complete set of system drawings and logic prints should be made av:ilable to the examiners to supplement the system descriptions typically provided.

There was a generic weaknesses noted during the simulator examinations. The area of below normal performance was in the use of annunciator response procedures by the operators.

The cooperation given to the examiners and the effort to ensure an atmos-phere in the control room conducive to oral examinations was also noted and appreciated.

The licensee did identify as proprietary some of the material provided to the examiners in their examination comments.

e F-l (LC-7 U. S. NUCLEAR REGULATORY COMMISSION j

SENIOR REACTOR OPERATOR LICENSE EXAMINATION FACILITY: _gggugyAH_1h2____________

REACTOR TYPE: _PWB-Wggd________________

DATE ADMINISTERED: _ghf12/1g________________

EXAMINER: _ DEAN2 _W M_______________

CANDIDATE: _________________________

INSIBygIIggg_Ig_Q8NQ1981gi Use separate paper for the answers. Write answers on one side only.

Staple question sheet on top of the answer sheets. Points for each question are indicated in parentheses after the question. The passing grade requires at least 70% in each category and a final grade of at least 80%. Examination papers will be picked up six (6) hours after the examination starts.

% OF CATEGORY  % OF CANDIDATE'S CATEGORY

__Y6LUE_ _IDI6L ___SGOBE___ _Y6LUE__ ______________G61EGQ8Y_____________

A9,oo

_S2_Ef__ _2dsh2 ___________ ________ 5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND THERMODYNAMICS 7,q.O

_29 ASS __ _2Exig ___________ ________ 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION

_29199__ _2Ez19 ___________ ________ 7. PROCEDURES - NORMAL, ADNORMAL, ~,

EMERGENCY AND RADIOLOGICAL CONTROL

_39199__ _2Ezl9 ___________ ________ 8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS

. M. __ ___________

Totals Final Grade All work done on this examination is my own. I have neither given nor received aid.

Candidate's Signature

E NRC RULES AND GUIDELINES FOR LICENSE EXAMINATIONS During the administration of this examination the following rules apply:

' 1. Cheating on the examination means an automatic denial of your application and could result in more severe penalties.

2. Restroom trips are to be_ limited and only one candidate at a time may leave. .You must avoid all contacts with anyone outside the examination room to avoid even the appearance or possibility of cheating.
3. Use black ink or dark pencil 90 1 y to facilitate legible reproductions.
4. Print your name in the blank provided on the cover sheet of the examination.
5. Fill in the date on the cover sheet of the examination (if necessary).
6. Use only the paper provided for answers.
7. Print your name in the upper right-hand corner of the first page of each section of the answer sheet.
8. Consecutively number each answer sheet, write "End of Category __" as appropriate, start each category on a Ogg page, write 90lY 90 902 EidE of the paper, and write "Last Page" on the last answer sheet.
9. Number each answer as to category and number, for example, 1.4, 6.3.
10. Skip at least thtgg lines between each answer.
11. Separate answer sheets from pad and place % finished answer sheets face down on your desk or table.
12. Use abbreviations on.y if they are commonly used in facility litetetytg.

~

13. The point value for each question is indicated in parentheses after the question and can be used as a guide for the depth of answer required.
14. Show all calculations, methods, or assumptions used to obtain an answer to mathematical problems whether indicated in the question or not.
15. Partial credit may be given. Therefore, ANSWER ALL PARTS OF THE DUESTION AND DO NOT LEAVE ANY ANSWER BLANK.
16. If parts of the examination are not clear as to intent, ask questions of the gggmlngt only.
17. You must sign the statement on the cover sheet that indicates that the work is your own and you have not received or been given assistance in completing the examination. This must be done after the examination has been completed.

t-

18. When you complete your examination, you shall a.. Assemble your examination as follows:

I (1) Enam questions on top.

(2) Exam aids - figures, tables, etc.

! (3) Answer pages including figures which are part of the answer.

l .- b. Turn in your copy of the examination and all pages used to answer the-examination questions.

. c. Turn in all scrap paper and toe balance of the paper that you did t

not use for answering the questions.

d. Leave the examination area, as-defined by the examiner. If after leaving, you are'found in this area while the examination is still-in progress, your license may be denied or revoked.

t s

?

I o

l l

I I

i I

L e

P

---n, + , - - - , ,,,,,,,n w..n-...._-,._.-w,n.,,.,-,w,-,. -

._,, ,,_ ,n n _ _,, _ r n y,, w e ,,_,.-,_,,,.,.,,.,,_,_,,,m,,,.,,, ,...-,,,,_e,.,-_-_-n,,,

r i

-Dl__IMEQBy_QE_NQCLE@B_EQWEB_ELONI_QEEB@llgN3 _ELQ1pS2_8NQ_ PAGE IUEB599XNGblCS i

OUESTION 5.01 (1.00)

The reactor is critical at 10,000 cps when a S/G PORV fails open.

Assuming BOL conditions, no rod motion, and no reactor trip, choose the answer below that best describes the values of Tavg and nuclear power for the resulting new steady state. (POAH = point of adding heat).

a. Final Tavg greater than initial Tavg, Final power above PGAH.
b. Final Tavg greater than initial Tavg, Final power at POAH.
c. Final Tavg less than initial Tavg, Final power at POAH.
d. Final Tavg less than initial Tavg, Final power above POAH.

QUESTION- 5.02 (1.50) l Indicate whether the following will cause the power range instrument to be indicating HIGHER, LOWER or the SAMC as actual power, if the instrument l

has been adjusted to 100*/. based on a calculated calorimetric.

a. If the feedwater temperature used in t'he calorimetric was higher than actual feedwater temperature.
b. If the reactor coolant pump heat input used in the calorimetric is omitted.
c. If the steam flow used in the calorimetric was lower than actual.

l i

QUESTION 5.03 (1.00)

I Attached Figure # 219 shows a power history and four possible xenon l traces (reactivity vs time) . Select (a, b, c, or d) the curve that correctly displays the expected.nenon transient for the given power history.

QUESTION 5.04 (1.00)

For the Cycle 4 core, what is the main core design reason that the pellet swell and clad creep effects override the Pu-240 buildup /U-230 depletion effects and make the Doppler Only Power Coefficient less negative? ,

(***** CATEGORY 05 CONTINUED ON NEXT PAGE num**)

D,,__IUE96Y_DE_NQGLE68_EQWEB_EL@N1_QEg6@llgN i _E(UlDSi_ONQ PAGE 5 IUEBMODYNOMIGS QUESTION 5.05 (1.00)

Which of the attached graphs correctly shows the relationship of the Isothermal Moderator Temperature Coefficient (MTC) to the Moderator Only MTC?

DUESTION 5.06 (1.50)

Describe what happens to the following when their condition at the inlet to a REAL turbine is compared to their condition at the turbine outlet.

(i . e. Increase, Decrease or No Change) a) Enthalpy (0.5 b) Entropy (0.5 c) Quality (0.5 OUESTION 5.07 (1.50)

An ECC is calculated for a startup follow (ng a reactor trip from 50%

power equilibrium xenon (BOL). Indicate if the actual critical rod posi tio:

will be HIGHER, LOWER or the SAME from the calculated position for each of the following situations. Use attached curves as appropriate and treat each case individually.

~

a) Xenon reactivity curve for trip from 100% is used to calculate conditions to startup 20 hours2.314815e-4 days <br />0.00556 hours <br />3.306878e-5 weeks <br />7.61e-6 months <br /> after the trip, b) Boron worth at EOL is used vice BOL worth.(Dilution is required to reach desired Boron concentration in both cases) c) The EOL critical Doron Concentration is used instead of the BOL critical Baron concentration.

(***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)

.Dz__INEQBY_QE_Nyg6E88_EgWEB_EL8NI_QEEB81]QN3_ELyIDSa_8Np PAGE .c IUEBdggyN8digg OUESTION 5.08 (1.50)

Unit 1 is at 90% power with control rods in MANUAL when the turbine is ramped down to 60%. Indicate whether the parameters below will increase,

. decrease or remain the same during both the initial response (first 30 seconds of the transient) and after turbine power has stabililzed relative to the i ni t i,a1 conditions. (Assume the following: No changes to boron /xeno:

Loop-transport time is 10 seconds No operator actions)

NOTE: No answer required where it is already filled in below.

Initial Response Steady State a) S/G Pressure NO ANSWER RORD b) Reactor Power NO ANSWER RORD c) Tcold '

d) Tavg OUESTION 5.09 (1.00)

What two fuel rod related parameters, excluding power limitations, should be maintained within limits to minimize cladding stress and strain?

(setpoints not required)

QUESTION 5.10 ( 1. 0 :,, lO

  • a) W M ot--COntnitator N t+1 h iret-b) What is the major cause of the existence of a void defect?

OUESTION 5.11 (1.50)

List the three main sources of fission neutrons in the core at end of life; and indicate their approximate contribution (in %) to power.

l QUESTION 5.12 (1.00)

When performing a reactor startup to full power that commenced 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> after a trip from full power equilibrium conditions, a 2%/ min ramp rate

! .was used. If a 0.5%/ min ramp rate was used instead, how would that affect the magnitude and time of occurrence of the xenon concentration dip?

(***** CATEGORY 05 CONTINUED ON NEXT PAGE +****)

[DI__lHEQBy_QE_NUGLEARPOWERPLANTQEEB@IlgN2_ELQ1QQ3_@NQ PAGE ]

IUEBd99YN001GS QUESTION 5.13 (1.00)

Identify the nuclides composing the secondary source utili:ed in your reactor and describe how this source is " regenerated".

.OUESTION 5.14 (1.50)

What are the'two factors associated with the energy at which delayed neutrons are born that affect the value of Beta Bar Effective and what effect do they have?

DUESTION 5.15 (1.00)

If reactor power increases.from 50% to.100%, the average flux in the reactor doubles. With this average flux increase, why does the rod worth remain essentially constant.

QUESTION 5.16 (2.00)

Unit 1 has just restarted following a refueling outage while Unit 2 is near EOL. Answer the following regarding'the differences in plant respons(

between the two. units (explain your answers) -

a) At a steady power level of 10EE(-8) amps during a startup, equal reactivity additions are made (approximately 100 pcm). Which Unit )

will have the LOWER steady state startup rate?

b) At 50% power, a control rod (100 pcm) drops. Assuming NO RUNBACK or OPERATOR ACTION, which Unit will have the HIGHER steady state Tavg?

OUESTION 5.17 (1.00)

What is the reason that Tech Specs allow up to two hours of operation with a Quadrant Power Tilt Ratio in excess of 1.027 9

(***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)

4 D1__IMEQ6Y_QE_NQGLE98_EQWE6_EL@N1_QEgB9119N3 _ELQ1pS2_8NQ PAGE (

IMEBUQQyNGb1GS QUESTION 5.18 (2.00)

a. During natural circulation, EXPLAIN how it is possible to form a bubble in the reactor' vessel head when indications show that the RCS is subcooled?
b. How will pressurizer level respond, (INCREASE, DECREASE, or REMAIN THE SAME) if_the backup heaters are energized with a bubble in the reactor vessel head? Assume normal pressurizer level and briefly EXPLAIN your answer.

.OUESTION 5.19 (1.50)

Assume the plant is at a steady state power level of 75%, with rod control in MANUAL and the plant in BOL, when a 15% step increase in turbine load i

occurs. DESCRIBE and EXPLAIN the behavior of the following parameters during the first several minutes of the transient. Assume MTC is -3 pcm/F and NO RX TRIP occurs.

I a) Tutm b)- margin to DNB i

l QUESTION 5.20 (1.50) a) Why is 2200 degrees F given as the 10CFR50 peak cladding limitation during an accident condition? (0. 51

~

! b) The Tech Spec limit on F(n) Delta h is 1.49C1.0 + .3(1-P)3 where P represents fraction of rated power. Why does this limit increase l as power decreases for a given RCS flow rate? ( i . O!

OUESTION 5.21 (1.50)

Attached is a typical boiling curve for water as it approaches, then exceeds, the DND point. What are the thermodynamic conditions that causes a) The decrease in heat transfer rate in Region III?

l L b) The increase in heat transfer rate in Region IV7 l

l (***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)

I

PAGE !

Di_. IBE 98L 9E _ N9GL E 06_E 9WE B_EL ONI_ DEE 60119N4_ELUIDD2_8ND ISEBdQDYN951GS f

OUESTION 5.22 (1.00)

Maku.a sketch of the temperature profile along the length of a counter flot heat exchanger f or both the cooling medium and the fluid being cooled.

QUESTION 5.23 (1.00)

The pressurizer " A" PORV partially opens to a throttl'ing position during operations at 85% power. Assuming Duench Tank pressure is 20 puia and satur ation conditions in the pressuri:er correspond to 2240 psia, what is the quality of the steam on the downstream side of the PORV7 Show all calculations.

s1 I L

  • 5 b

i i

i I

i O

(****a END OF CATEGORY 05 *****)

6I__ELONI_DYSIEDS_ DES 1964_C9NIS964_9ND_INSIBUNENI611DN PAGE (

QUESTION 6.01 (1.00)

RHR inlet isolation valves 74-1 and 74-2 each have an independent RCS pressure transmitter associated with them. Which of the following statements describing the effects of the transmitter associated with 74-1 failing high is correct?

a. If both 74-1 and 74-2 are open, they will shut,
b. If open, 74-1 will shut and if closed, 74-2 will not be able to be opened.
c. If both 74-1 and 74-2 are shut, neither one will be able to be opened.
d. If open, 74-1 will shut, but 74-2 can be positioned as desired.
e. 74-1 can be positioned as desired by the operator, but 74-2 bill not be ebic to be opened if it is shut.

QUESTION 6.02 (1.00)

Which statement below regarding pressurizer-pressure control is correct?

s

a. ALL 4 channels provide input to the SI low pressure signal.
b. ALL 4 channels can be utilized to control the operation of the spray valves.
c. ALL 4 channels send their signals through an Isolation Amplifier after supplying input to their respectivo protective circuit.
d. ALL 4 channels can supply input to PORV Interlock circuitry to provent PORVs lifting at low pressures.

(***** CATELORY 06 CONTINUED ON NEXT PAGE *****-)

h _ _ E L 9NI,, @y @lg t!@_ Qg @lgy4_ G QU16 gL 4_9ND_INSI69t}g NI@llQN PAGE $

t l

L QUESTION 6.03. (1.00) i Which of the following statements correctly states the purpose of the YELLOW li ght associated with the spent fuel building area radiation monitor thannel modules (RP-30 Modules)?

l a. If the indicated radiation levels exceed a setpoint between l the normal level and the high setpoint, this light actuates.

b. If the indicated radiation levels exceed a setpoint above the-high setpoint, this light actuates.
c. If the indicated radiation levels drop below a setpoint betwee)

O and normal levels (indicating a circuit failure), this light actuates.

d. If the detector source solenoid is energized, enposing the detector source for a channel check, this light actuates.
e. This is-the power available light and is always on as long as power to the channel module exists.

QUESTION 6.04 (1.00)

Which one of the following correctly descr,1bes the detector construction of a Particulate, Gas, Iodine (PIG) radiation monitor?

a) One scintillation detector utilizing three diHerent energy Jandwidths(windows) for sensitivity to different isotopes.

^

b) One scintillation detector utilizing two different energy bandwidths for particulate and Iodine detection and a GM tube for gaseous detection.

c) Two separate scintillation detectors for particulate and Iodine detection and a GM tube for ganeous detection.

d) Three separate scintillation detectors f or each monitored group of radio nuclides.

3

(***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)

g hp__ELONI_SygigdS_ DESIGN _3 CONTROL 2_@ND_INSTRUMENTATigN PAGE 1Q QUESTION 6.05 (1.00)

Which one of the following' describes how the AFW system is prevented from feeding a faulted S/G7 a) Operator action is required to isolate AFW when a faulted S/G is detected.

b) Pressure switches on the AFW discharge lines will automatically close the loop level control valves when low AFW discharge pressure is detected, c) Level transmitters on the S/G wide range level instrument will automatically close the loop level control valve when a low level is detected in a S/G.

d) Flow transmitters on the AFW discharge lines will automatically close the loop level control valves when excessive flow is detected in AFW discharge piping.

QUESTION 6.06 (1.00)

Which one of e graphs A-D in igure 603 corrje y depicts the Pressuriz Pressure contro system, Master ontroller output signal, based u n the demand sigpdl shown?

QUESTION 6.07 (1.50)

Indicate whether the following situations will ARM ONLY, ARM AND ACTUATE or HAVE NO EFFECT on the steam dump system.

a) 80% power, 7.5%/ min ramp decrease in turbine load for 5 minutes, Tavg> Tref by 7 degrees F, steam dumps in Tavg mode of operation b) Hot Zero Power, Tavg=549 degrees F, steam dumps in STM PRESS mode with 1005 psig set into the steam pressure controles, et e a,m J wup , in Tuvu . ' ~r c) Turbine trap, Tavg=542 degreen, steam dumps in Tavg mode

(*a*** CATEGORY 06 CONTINUED ON NEXT PAGE =***m)

m

$I__ELONI_Sy@lgd@_QFQ1GN_QQNIBQL3_8NQ_lNSIBQUEN18IlgN i PAGE 1 o-DUESTION 6.~ O5 (1.50)

Indicate whether the following CVCS-valves will FAIL OPEN, CLO3ED or AS IS on'a Loss of Instrument Air.

l (.1-91) a) Low Pressure Letdown Valve (PCV-6464 b) Charging Flow Control Valve ( W' ' 12; ; (AW E~

c) Letdown Orifice' Isolation Valves (E, 2vv A, L .ou C4 l (rev- st-1ay 7 5,'PV)

QUESTION 6.09; (1.25)

Fill in the blanks to complete the-following statements concerning fuel handling interlocks:

a) The refueling canal lifting arm is interlocked with the _____. The-lifting arm cannot be lifted unless the _____ is in the _____ position' or the crane is _____. (1.0 l

b) Bridge and trolley drive operation is prevented except when _____

are actuated. (0.25 l

I l QUESTION 6.10 (1.50)

Fill in the blanks in the statement below'concerning the Containment Air Return Systems Both fans are actuated upon an _____ actuation signal but are delayed l starting for _____ minutes. They continuously draw air from the dome of the containment vessel and from the following pocketed

, spaces _____, _____, _____ and _____.

l DUESTION 6.11 (1.00)

{

i Provide the system pressures at which the following ECC5 components will start to inject following a LOCA: (use criteria stated in EOPs) i a) SI Pumps

! b) RHR pumps c) Upper Head injection i

OUESTION 6.12 (1.50)

Whr4t 4 signals will automatically initiate the operation of the Auxiliary Du11 ding Gas Treatment System? ,

(***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)

L

61__ELONI,,SySlgd5_QESIGS_CQNIBQL2_@NQ_INSIBudgNI911QN it PAGE QUESTION 6.13 (1.00)

Wh t 4 different ECCS related components are tagged out at low pressures to help prevent inadvertant over pressurication at low temperatures?

DUESTION 6.14 (1.00)

What.are the 5 analyses that can be performed online by the Post Accident Monitoring System?

QUESTION 6.15 (1."Of An SI signal wac enerated due to a tr nsient caused by an undepv61tage condition on e 2A-A 6.9KV Bus. .ptt ing this transient, the 2A CHG Pump breaker et d closed causing anj EDG lockout.(all other 1p were removed, What 5 (tions must the operat P take to load equipmen)'$n that bus using the 2 A EDG7 OUESTION 6.16  ; . 50 7 (I*Eb a) Aside from operating the control switqh or breaker, list the 4 devices which directly cause a RCP trip. Be specific in identifying relays which cause the RCP to trip. (1.0) b) Why is there a 120 second time delay in starting a RCP once oil lift pressure has reached a sufficient pressure? ( 0. 5)

OUESTION 6.17 M TH (44 .Ed a) Describe the order of processing elements in the Air Cleanup, Units through which air is drawn by the Air Cleanup Subsystem.

b) How are the processing elements in an INACTIVE air cleanup unit loaded with radioactive material kept cool? (0.5

(***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)

b. __ELONI_Sy@lEDS_DE@lGN3 _CQNIBO63_@ND_INSIBudENI6110N PAGE 2 QUESTION 6.18 (2.50)

Describe all events / alarms that occur due to the following instrument failures until the reactor either trips or stabilizes. Assume no operator '}

actions and all controls are in automatic.

a) Pressuri er Level Reference Signal (Tavg) fails high while at 50% power. (0.75 b) Selected Secondary Pressuriter Level Control Channel signal fails ,. f low while at 70% power. (1.75 Q l l

O l DUESTION 6.19 (1.50)

Recent n.od i f i c at i on s to the S/G PORVs added manual operator extensions for remote operation of the valves on 2 S/Gs.

a) Which 2 S/Gs were affected by this modification? (0.5 b) What is the basis for this modification? (Include discussion of why only 2 S/G PORVs were modified)

OUESTION 6.20 (1.00)

While transf ering a new f uel assembly from the upender to the core, the Dillon Cell fails high. What actions must the operator take to disengage the gripper from the fuel when the assembly is properly placed in the core (Include location of any centrols/ components operated)

DUESTION 6.21 (1.50)

WN Describr# the flow path >fer hot leg recirculation, from the recirculation sumps to the RCS. Identify major components and any valves which can be operated from the control room. (Use only the A Train)

OUESTION 6.22 (1.50)

Describe the operation of the 6.9 VAC Emergency Dus Degraded Voltage Protection System. Include in your discussion coincidences, setpoints and any time delays that apply.

1

(..... co1sooRy e cohnNUeD oN ~Ex, eAsc .....,

63 __ELON1_SYSIEUS_QEgigh_,ggNIggg,_eNQ_IN@lBUDENI@llgN PAGE 1 QUESTION 6.23 (1.25)

Describe the recent modification made to the reactor trip breakers that affects the 125 VDC input and the reason for this modification.

l

(***** Ef4D OF CATEGORY 06 *****)

W s Zz- BB9GEDUBEE B09196991G06_G9 NIB 96 N9BdeLi 0DN9BdeL2 EdEBggNGL8NQ ~

u -

-f FAGE lj 4

.f -

QUESTION 7.01 (1.00)'

[ '

x

^

o it Which one of the f ollowing situations dor >F, ~ "

NOT require emergency borbtion '

per AOI-34.A, " Emergency Boration"? ) .' <

%c r ,1

- a) .One rod stuck in the fully withdrawn' position f ollofhng a: rx tripe s ,

f b) ROD BANK D LOW LIMIT alarm actuates as rods are driving i n' / ,

'~

automatically.

c) A steady, sustained increase in s6urce range counts with keff=.95 with no rod motion or planned dilution in progress.

d) RCS Tavg_ falls below 525 degrees at a rate of 30 degrees /hr >

after a reactor trip. (No manual cocidown in progress) k)

OUESTION 7.02 (1.00) -

WiththereactortripbreakersSHUTandtheS/GsunderNitrogenpressche. t the nitrogen must be vented off prior to opc*ning.thee MSIVs.c Which of the following is the reason for this precaution?-

a. To prevent SIS Actuation on S/G High Differential Pressure ,
b. To prevent damage to the MSIV sea %ts , ,
c. To prevent ESFAS actuation on high steamline flow ,
d. To prevent EST actu& tion on S/G Lo-Lo Level -

r OUESTION 7.03 (1.00) ,

Which one of the f ollowing conditions are the cor rect MINIMUM requirements for starting "D" RHR pump while swapping RHR purt.'pt during normfi) MODE 5 operations? '

Pump A status RCS Luval '

a) On 695' '

b) Off 695' c) On 695' 6" ,

d) Off 695' 6" ,

e) On 696' i i e v l

(*** n CATEGORY 97 CONTINUED ON NEX1 PAM *+'9*)

I u . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ . . . _ _ _ . ~ _ _ . . _ _ _ _ _ _ . . _ . _ . _ _ _ . _ _ _ _ _ _ _ _ _ . . _ . _ _ ._ ________________ _______________ _ _._

.. , c,; - -

Te,;.r.

wn -

% 1,ti

@w, '

~

Z,. _EBQGEQUSEE_:_UQBb6Li_0ENQBd@(3_gdEBQENCY_@NQ' PAGE if J WAD 196001GOL_QQNIBD6 s, y

> f i

, i .:

, s y; '

,'s~, .;  ;

y. ,

,\

57' OUESTION 4.04 ,, (1.00){.

t ~,'

Which one of. the'follcwingf is addressed in FR-Z.2, " Containment Flooding",<

as a potential source I of excessively high containment sump levels?

N-a) .b,ondensed steam from a steam break bi RCS water.from a LOCA c) RIET d) Accumbl at ors -

e) CCW i .

OUESTIGN 7.05 (1.05) n,L t ,

V ubnich one of the following' statements correctly describes the use of

, NOTES and CAUTIONS in'an EO!'?

va- -

/ sE e t

a). DOTH Notes and Cau,tions apply ONLY to the step which they precede (Unless otherwise stated in the Note / Caution) .

i

> + '- 'b) Note apply ONLY to the step they precede, whereas Cautions apply

- 'to.ALL subsequent steps (Unless otherwise stated in the Note /

p' ,' Cautior.).

,, .. l t e i '~) c Notes appy to ALL the steps thez precede, whereas Cautions ONLY app 1,y to the step they precede (Unless otherwise stated in the Nota /Ceution).

d) Notes and Cautions apply to ALL steps which they precede (Un1Ess r,tbrerwise stated in the Note / Caution).

DUMSTION 7.06 (1.00)

  • 4- - The loss of which one of the following 125 VDC Vital Battery Boards will 3 tause a reactor trip and -lso number 2/4 S/G MSIVs and main feed regulatin(

yL ]['P bypass vt Iver tclose? 3 i e t

'u v a) Unit 2, Board I

, l b)- Unit 1, Daard II

,/ #.

c) ' Uni t 1,' Board Ill d) Unit 1, Poerd IV

/ ,

, e-o

\1 m

(***n* C4TEGORY 07 CONTINUED ON NEXT PAGE *****)

,. Tv

~ , _

-r V,5

-; b x;-

[ -

. l '-

.t a: . .

, 7s P8pgEpyBES_ _ NORMAL 2 ABNORMAL2_EL4EB@EUGy_BNP,. ,

PAGE 11 88D196991G06_GOUIB96 " 6 -

v.

js '.

s ,

'p' .

'% QUESTION 7.07 , (1.00) r e  :

How long,should it take, .according'to AOI-34A,<" Emergency Boration", to reach Hot-Shutdown Conditions (Approximately 1%' shutdown) from full-power with no rods inserted, af ter , emergency boI*ation (at 75.gpm) has been initiated? 6 a). 5-8 minutes '

'b) 10-13 minutes  ;

c) .15-10 minutes

_ d) 20-23 minutes e) 25-28 minutes S

QUESTION ' . '7. 08 (2.00)

Peih["toareactor startup, with the RCS at-normal operating pressure _and

'T temperature,.the..following RCS leakages exist. For each leak listed below, indicatS whether you could STARTUP or wouls have to. remain SHUTDOWN.

(Treat each leak below as an independent event)

.;.. a) A l eak~ f romtan ,. unknown source of 1.5 GPM.

b) 6.0 GPM from a'ma'nual valve packing gland, v t c) 0.4-GPM trom one S/G.

.d) 0.1 GPH From the reactor vessel head INNER seal.

ic Y

QUESTION 7.09 (. .50) ,

TRUE or' FALSE: The turbine should be tripped as an immediate action-if.

.s T the. reactor trip breakers fail to open upon a legitimate t '

trip signal.

M s

$( '-

L.

b

'i

% l

, e [

s 4

(***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)

Zu__EB9GEDUBES_ _NQBd662_@@N9Bd@b2_EdEBGENQY_@ND PAGE 10 BOD 196991C06_CgNIBg6 OUESTION 7.10 (1.00)

Indicate whether each of the following statements regarding EOP usage is TRUE or FALSE:

a) If an expected response of an EOP can NOT be verified and the Response.

Not Obtained action can NOT be performed, the operators may continue with the procedure.

b) If a task is in progress when a transition to another procedure takes place, that task need NOT be completed.

QUESTION 7.11 (1.00)

Put the f ollowing actions associated with starting the FIRST Control Rod Drive MG set in the correct order:

1) Flash the field
2) Close the Auxiliary 150 VAC supply breaker to rod drives
3) Adjust generator voltaga
4) Close the motor circuit breaker
5) Close the generator circuit breaker

' QUESTION 7.12 (2.00)

List, in their order of preference, the four recovery techniques stated in-FR-C.1, " Inadequate Core Cooling".

QUESTION 7.13 (1.50)

AOI-29, " Dropped or Damaged Fuel Arsembly", discusses the " Worst Case" event of a dropped and damaged fuel assembly. What are the 3 criteria, that if met, could result in a radioactive release high enough to require implementation of the REP? (ie. the worst case)

(***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)

.. Zs__EB9GEDUBES_ _NgBd@L,_8BNgBd863_EdEBQgNgy_8Ng PAGE 1' B89196991G86_G9NIBg6 QUESTION 7.14 (1.50)

If a fire is reported to the control room (Assume no fire alarm actuated):

a) Wh'at information must be obtained from the caller? (0.5 b) _ What 4 immediate actions / verifications are required.in accordance with AOI-30, " Plant Fires"? (1.0 OUESTION 7.15 (1.50)

List the three conditions stated in Tech Specs which make a control rod INOPERABLE.

QUESTION 7.16 (2.00)

What are all the immediate actions / verifications if there is a need to evacuate the control room due to the presence of smoke in the control room' Assume the reactor and turbine have been tripped already.

s QUESTION 7.17 (2.00)

What are ALL the actions contained in the RESPONSE NOT OBTAINED column in FR-S.1, "ATWS", for the steps' listed below? Ensure you discuss any contingency actions stated within the RNO step itself.

a) Turbine is NOT verified as tripped.

b) Pressuri:er pressure exceeds 2335 psig.

QUESTION 7.18 (1.00)

Why is the S/G atmospheric PORV NOT isolated while perf orming E-3, "SGTR",

but is only verified shut < 1040 psig and that its controller is in AUTO?

(***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)

.. Zs__EBggEDUBES_ _NgBM863_8BNg8M862_EMEBQENGY_8ND. .PAGE 2:

BOD 196991G86_G9NIBg6 QUESTION 7.19 (1.00)

EOP E-3, "SGTR", requires the operator to maintain AFW flow to the rupture (

S/G until narrow range level is established. Provide two reasons for this procedural requirement.

QUESTION 7.20 (1.50)

The Response Not Obtained for step 1 of FR-H.1, " Response to Loss of Secondary Heat Sink" states: If ALL S/G Wide Range levels < 25%, then STOP ALL RCPs and immediately initiate f eed and bleed per steps 11 to 13.

Why are-the RCPs tripped prior to inititing feed and bleed, aside from~the fact that heat input from the pumps will be removed?

DUESTION 7.21 (1.00)

What is the major ADVANTAGE and the major DISADVANTAGE of using ES-3.3,

" Post SGTR Cooldown by Ruptured S/G Depressurization"?

QUESTION 7.22 (1.50) g ADI-23, "RCP Seal Abnormalities", states that the #2 seal should last 2e hours under full system pressure. Why then does this procedure require shutdowre of an RCP within 30 minutes of shutting the #1 seal leak-off valve? ,

OUESTION 7.23 (1.00)

What 2s the purpose of the precaution in AOI-27A, " Control Room Inacessa-bility", that states " ....if the evacuation is for a fire in the Cable Spreading Room, place HC-13-204 and HS-13-205 (M-27B) to TRIP" ?

QUESTION 7.24 (1.00)

Why is a MINIMUM of 0.2 gpm #1 seal leak off flow important when preparing to start an RCP? Include in your discussion the primary cause preventing establishment of this flow rate during startup preparations.

(***** END OF CATEGORY 07 *****)

0[__0DdlNI@IBQIlyE_BBQCEQUBEh3_CQNQ111QNga_8NQ_LidlIBIlgN@ .PAGE' 2(

OUESTION 0.01 -(1.00)

Which one of the f ollowing does NOT constitute an unreviewed- saf ety question-involving 10CFR50.59, when. evaluating proposed changes,, tests and' experiments'to the facility or facility procedures?

a. If the margin for safety, as defined.in the basis for any Tech Spec, is reduced.
b. If a possibility f or an-accident.or malfunction of a different type 4

-than initially evaluated for in the Safety Analysis Report is created.

c. If the probability of occurrence of an accident or malfunction of equipment important to safety previously evaluated in the Safety Analysis Report may be increased.
d. If the suspension of a surveillance requirement for a Limiting Condition for Operation is instituted pursuant to section 4.0.2, Surveillance Requirements of Tech Specs.

8 QUESTION 8.02 (1.00) t Which of.the following conditions requires action according to Tech Specs in less than 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> if in Mode 2 on Unit (?

a. The shutdown margin is 1.8.

. b. One Boric. Acid Transfer pump is inoperable.

c. One Shutdown rod not fully withdrawn.

i d. Primary Containment average air temperature is 140 deg. F. in the lower compartment. -

l..

l.

QUESTION 8.03 (1.00)

(.

Steam generator tube l eakage f alls under which Tech Spec leak classification below?

a. identified leakage
b. pressure boundry leakage i
1. c. controlled leakage
d. unisolable leakage ,

(***** CATEGORY 08 CONTINUED ON NEXT PAGE *****)

Nz__0Db1NISIB811Yg_889CgpUBES_CQNQlIJQNS_8NQ_(IMlI8119NG 2 2 PAGE 9

~ QUESTION 8.04 (1.00)

When would an injured worker with contamination be considered an Unusual Event?

a. If the worker is sent home.
b. If the v;orker is transported to an offsite hospital.
c. If the contamination is internal.
d. If-in addition to being contaminated, the worker's exposure is above the 10CFR2O quarterly limit.

DUESTION 8.05 (1.00)

True or-False:

a. Rad Tumbler Sets are installed on doors leading directly to high' radiation areas but not exceeding 1000 mr/hr.

b.fThe Plant Health Physicist controls the keys to the Rad Security Locks.

QUESTION 8.06 (1.50)

. True or False: '

~

a. Category "B" SCI's do NOT require the maintenance of the system status ~

file-since Category "B" SOI's may not change a system's status.

'b. Category "A" SDI's are NOT required to be present for performing tasks of a frequent or routine nature.

c. Valve and Power Availibility Checklists contained within SOI's are NOT categorized as "A" or "B"; therefore they SHOULD be present during checklist performance.

QUESTION 8.07 ( .50)

True or False:

Primary CONTAINMENT INTEGRITY shall be maintained whenever the average coolant temperature is greater than 200 degrees F.

(***** CATEGORY 08 CONTINUED ON NEXT PAGE *****)

De.__0Db1NISIBBI1YE_EBQGEQU6ggi_ggNQ111gNS,_8NQ_L10118119NS PAGE ' 2)

DUESTION 8.08 ('.50)

Fill in the blank:

According to AI-2,. Authorities and Responsibilities For Safe Operation and Shutdown of Sequoyah Nuclear Plant, in the event of a reactor trip or an unexplained power reduction,'it is the responsibility of.the _________ to analyze the cause and determine that operations can continue safely before returni ng the reactor . t o power.

QUESTION 8.09 (1.00)

What~are the Tech Spec maximum cooldown rates in any one hour for the Reactor Coolant System AND the Pressuriner?

. QUESTION 8.10 (1.b0)

List FIVE parameters / systems / conditions that have Tech Spec LCO's based upon 10CFR100, Reactor Site Criteria.

QUESTION 8.~ 1 1 - (1.00) g What local,offsite-hospital is designated as being equipped to care for

. injured personnel who are contaminated 7 l-i:

OUESTION 8.12 (2.00) l g o[ukicL 3 y Vpot* / A"O U^rl- PGrAMWL l List the parameters V #needed to calculate a total plant noble _ gaseous radiation release rate per TI-30.

l-QUESTION 8.13 (1.00) i In accordance with AI-3, Clearance Procedure, state whose instructions must be obtained prior to the operation of equipment or controls tagged with a blue operating permit tag.

l

(***** CATEGORY 08 CONTINUED ON NEXT PAGE +****)

L

8:__epdlulSIBellyE_PBQCEDUBES3_CQUpillgNS3_@Np_LidIIGIlgNS PAGE 2d QUESTION 8.14 (1.00)

After the Plant Manager, who are the first and second alternates (by title:

who may serve as Site Emergency Director?

DUESTION 8.15 (1.00)

a. What procedure is used to determine the classification of an emergency?
b. According to the REP, which emergency classification level has as one ci its purposes to " initiate predetermined actions for the public?"

OUESTION 8.16 (1.50)

What are the three boron injection flow paths that can be considered to meet the requirements of Tech Spec 3.1.2.2 (attached)?

DuESTION 8.17 (1.50)

What three SRO licensed personnel, by title, can relieve the Shift Engineer of his licensed functions, per AI-2? g OUESTION 8.18 (1.00)

According to Tech Spec 6.7, Safety Limit Violation, what two actions must take place within one hour in the event a Safety Limit is violated?

DUESTION 8.19 (1.00)

During Mode 1 operation of unit 1 it is found that 2 of 4 channels for Pressuriner Pressure High Reactor trip are inoperable due to a generic material defic 2ency (repair time 14 days). Using Tech Spec LCO's provided, determine what actions must be taken as a result of this failure? State specific LCO/ action steps which apply.

(***** CAlEGORY 08 CONTINUED ON NEXT PAGE ***++)

et__0Dd1NI@IE@IlyE_EBQGEQUBE@3_QQNQlI1QN@3_@NQ_ Lid 11@IlgN@ PAGE 2s DUESTION 8.20 (1.50)

Under what:three provisions.may an individual: be permitted to receive a total occupational dose to the whole body greater than the 10CFR2O quarterly limits?

OUESTION '8.21 (1.00)

=What is the basis f or the upper limit of containment temperature?

QUESTION 8.22 (2.00)

With unit 1 in mode 5 and one RHR loop in surveillance testing and dilutio(

taking place, -the other RHR loop becomes inoperable. What actions must i mmediately take pl ace in accordance with Tech Spec 3.4.1.4 (attached)7

-QUESTION 8.23 (2.00)

If an MR (maintenance request) made a Temporary Alteration to inoperable CSSC (Critical Systems, Structures, and Cqmponents)' equipment, what must b done (administratively) if the Temporary Alteration must. remain in effect after completion of.the MR7 Include in your explanation any

_ review / approval cycles or other administrative steps as appropriate.

QUESTION. 8.24 (1.50)

As stated in 10CFR50.54, under what conditions may actions be taken that depart from a license condition or a. technical specification, and who, as a minimum must approve such action?

QUESTION 8.25 (1.00)

With reactor power above 50% and AFD within the " doghouse" limits (Tech Spec figure 3.2-1; AFD limits as a function of rated thermal power):

What operator action is required by Tech Specs 3/4.2.1 (Axial Flux Difference) if the AFD monitor alarm becomes inoperable?

(***** END OF CATEGORY 08 *****)

(************* END OF EXAMINATION ***************)

i

1 A

It ws.n '

M t.

, , , , , y v e i t * *

  • 3
  • 3 0 to *Ac 3c. So Sc Lt. 7c to 90 '* s, %c 't o ' S i., b lo s o Tsw E (bow = d

%., B XENC4 .

, (Cha(

. i e o e i i . i a u - i a e O no Ic % %c Sc ( c, 7c bc So 'o n Lt c S te %o %%o b c 5

T \M E (heww%\

Xu w -

%e.. ' -

i O to ln *bo %c to bu 75 to % Vo St o St .. 'So 6 4. 'S o ,

t

. TtMt ( k e.u w s h ,

C l

l Ey,v h Xsw.n -

Conc. .

O 40 IQ= Ib MQ h CJ 60 70 M 90 IC o 4 %g

'Lg $g I4g 'h g Tin t (kow.sh I ei o

4 k f T(ak

, 'N.s t SL~

l N e. . . . . , , .

O go kb * 'J , %O *O- 'C 1L TkME (he4tt 1b " . . **o c

  • I8 m %c 8 l-c l

Flq2l(106-

,p i

. Time .

-t- CotQ.

T t.m e .

c.ote1r . .

.t - -

_ _. _ _ .P - -

m l , , - [ s N

., t Y = .8v - g

[ \

= . rp -

. ta y4 - rt. -

o 1 A i n a e n i f f* TAV4 TPo 60 U TAv4 rPo 6co ri o t t RMcA

\ ~ ~ ~ ~ -(t so THfttMA L

~

s C D rtee <

rey, -

'couw . cotn -

1- .t-

. e

.g . -P-

% ene. ,,,

. 84 ' '

.t V ~

  • n=

. N d

,gs- 20 .

9 e St> Tkvg sta 60) TC' TRYG TPO Go*

na Couts hRL RR MOL CORC , 600(Pm BoR0f}

5. oS

. . RM ,

TI-28 Figuro B.1.A .

. Page 1 cf 3 CYCLE 3 .

I n -- -

, M , 1 , ,

g . 1 . - I i H- ,

W , .

I 23:: --

m 9.s

, 2 . , i ,

1 I i ; _ _ j

_-. 6 ' 1 I m--  :- ' . _ - _

^

m-_m

- -N . R' , ,

p.::

_ = , -- ,

.; =

12.3 -

, . 1 1I ] 1 w

. i

,. H.-

x,. i c

i -

z. , , r m
s. .

r . ax  %

g . . . . . . . .y 3

o  : --

. u

c. 20:: l -

_ -- A -

. . 1 .: n.

, x: o _ ,  ; ,

b!

$ c --  :. _ _l: _ - E y_ 1 -

c- c:

, , 1 > , x, 1 O ' ' - ' ' ' ' ' ' a O g s:: -%

!s-

-; 1 1 I

R _e'_uL N, uf '- '

hf A, . -

s.c g

. 3 3 , I

_ U h , f ] I T I i

1 . A I J l A - -_- e I I 1 J_"_.s1 1 -) -1j i T f 1 1 I

_* i _ f 1 l I \ J 1 ] 1 t__

~~"-

T . /I # _A s I 1 I e j . Y f2', - n + M % H .- X ^^ i ,

- $.m e T ' # ] 1 1 i s XI 1 1 1 4__l__ 1 1 I N2 ] e

  • a,/ i=.-, q'

' ' e s a y I 1 i g I  ; J% 1 1 ' ] a y T I c 17:3 I

__. i.,.'I i i .I 1 i  : i

_ m.

. , . 1 1 i , v _ g 6.0

l. w g

. 4 i

i-- . . .

r ;i

.1 ,

s i , , , . e , af='

w l

1 1 1 3 7 4 1 1 i 1 1 1 1.

  1. 1 i :

1 1 . 5 i

1 R 1 g

. 1 Y E I l 1 E  % M t 1 3 . E I E 'E_J_ _. 11 I 2 E b I s I I El 1 1 1 I J I Y. 1 E I i Y% 1 a E '

1 I b # 1 1 i X T A I Ta i e t l 1 1 1 '.M

'A 2 1 1 h . A E 1 1 1

~'

m . 1 1 1x' 1  %. e I 1 1 1 em W I J. T 'k E

  • =*.

. . i I T J J i.a #1 1 I k 1 1 1 I I I E 1 I I 1 1 I t J I ) I 1 Xt j T 1

,f 1 I ,

?, - -

,q 2 4 > , , i g, 1 i s ; i 1 i . .

I .'__. I i . I I t P 1% 1.

- , ,1 , . , :

4 . I I' 1 1 J J J l i

1 E ) T X 1 , 1 1 -

I . d __ f ' i . ) _. ; a 1 i a 1 1- 1 T

, I I e I } ' I 1 dJ B l 1 1 T 1 4: - -i n . . i i .

~-==a'

- , i 1

H, i Q-

. s .

?.3 1 - ._; 1 i i i 1

- . x ', .

' : =-,-l. , ,

l ,

x. .

, -__ ga

'I 1 1 . 1 A n .I e /' I ] i i I :X ),

> l I 1 1 1  ? I 1 1 1 #

f ' '

0m

, . h1

! . , . . . 0.0

. , O tQo S ng Sakt 0 its SW I

, , o i;c

$~

c too its 8 Ah5 3 RCD BANK POSITION STEPS ' WITHDRAWN a .

D!?FERENTIAL AND INTEGRAL RCD WORTHS VS. STEPS WITHDRAWN AT BCL. HZP, NO XENCN, BANKS D, C, AND B MOVING WITH OVERLAP r

/

M.

31

5. o7M

---+---w-. . - , w,- , , , , , , - --,,wy-- _,,,-w,_ y,,,,,m,_, /_w,,_

thfpA -

e T1-28

. Figuro B.3.1 t -

Pag 2 1 of 3 j!

. .. Rev. ,51 1<

CYCi2 3' q ,

, ,. . . . . ... .... ... ... . . .- ...> . g

\ <

o

R .

l I

5 m

o, q-  : S

. e.

6  : iE

r. . r h  : >

- - a z

. d 3  : s' l n p.

- e5 z-yiha 1 4 .  : E e

EE a.

o oc

L

. .  : = oo 2

m,

mr
- B E ,g N

o p ,,

, 5e  : so.R m O,c E*5 l 2 5 5 2hE U 5e  : E E6 magame  : e y"
, s @g'd mo A N" 6 WEe o

$ Je w -o nog to .- o. w < om r>won os a-

a.  % -

anu.

. moa n. o -

< o

- e o. eog

  • a.

l p

)

. ( -

\ x w *Ef -

e. 'E a e-o
s -

3: .

I Y \ \ k  : o

. s  : o  :

-3 g . . _ .r. ,. . ,

- - ~. y o o o o

/_ d o o

/ /f *

  • o o ad

. o g e o o e o

8 o R 8 8 8 8 T T  ?  ?  ?  ? i  ; f l . H.I. MOM NON3X

,i 1

. l

SONd ,

.T.I-ZS gisn2c g 9'I 408C I DJ I jl g g ua st lh l l 8

313I'2 C P i

g l l I  ! lI I '

I  !

!  ! 1 7 o I l l ' l =.

i~ I l i i I o

I w

-1 i 1 i - l "

c i i i-

.: ? ir- 1 l 8 E

I I I

-Z l m

I C l 3 l l  !

n- j i i ' L 8, I  ! ) i l o g

Eg i i i

l  ! '

! i l i l nc O

O 1 l ) I I  ! 85 I-- 1 l \i 1- c  ! I I 5'5 C ~=

I '

\ \ '

I l r- l \ ' l z

)g oz l \ =,*

2 i l

\l 5$

01 i A m5 i-- l \ m n- '\ 82 r l 1

.\

Pm e-

  • i i l\ I i
H i -

1 l'\ ~g

- I I l \ 8,

< l I I l l \ 5d

! i I l \ l l- I i--

o i i l \ I l

I I I  ! l lN E I lTT i l i l \  ?

e 3  ! i l \ I l i I Ni h

i I

I I

I I

i I

l\

l \

I I

E

?.

3  ! I l i I 1 i i r i i i I i x ^ I

! 3- 1 l  ! I I N s g l l l l I l' I 1-  ! NI 0C.0011- 05 7301-30 579-05 219- 00 058- 05 787- 0C.527- 05 266- 00 006 e l ' )MCP( YTIVITCAER MUIRRMAS -

/

h 3 OL)^

1

- ~

+ TI-28 q3 um ,1

~

Figura B,7.1 li j a,

.4 y i;t ! ' -

ljNBh Pega 1 cf 1

  • CTCLE 3 i j 2 2 2 2
a. a, n. c. 2 R ev* 51 2 2 2
a. a. a. a. a. a. a. a.

e o " & " A  !

o o o o '

o o o o o o a e a w n o o o o

- e - - o o e er o J s a .a .a a .a a r o o o o o o o o o G o o 2 2 5 W W W o, y ---m--_ --

prus-- - - ---

_----m,,,

,l

%.1 3-__

l' S

s, !

. . I , .

l  :

a

,q . . . , , . o W

. i

a

, 'd se c l l  : z

.c r

l l  ; j l I

i . - .

. r a o i

g 2 t, . . ,

u a

.U *

. i ) o

, m

. . . , g F

, l O-

>]

I

- l' j

- a w

~

- m w

- L

\ . . . , ,.

2 m e w

l j ro u g 3 l l w o

. . . , n. c.

- m

'o g a m

{ \ . . ., ,

w c

. . . ,f o ai.

- w I l. .: .n o >

. . . , m

, . . . < p

, . . . m Z s l

, > le!

l  !

I t o > u 4 C.

1 I .

. l d. d w

m m o

.} .

\

> , 1 ..

- . u.

, i . .

o e

w L ( . ,

~

. ,a

  • E

- \I , .

g 1

< " o c.

,1 .

1

. , J I,, ,

l l

) o, >

o i

,4 E ,

W

. . . l I ,

. . . . I ,

c

. . . j o.

I I i 2 t

. s.

l L.s.sm c_-_ . ,n... ca e_An -,-.' ueo.Lr . a e e,a-mra:me.

a a = ==

o 9 =

9 a e a

'E  :.

2 .

. C. 2  %.

2 C. 2  %.

l a

/

~

l j ( H3/AOd 1N303Ed /Wdd ) 1N3lCidd300 H3/AOd "lV101 i . .

  • O

wm  ;

. TI-28 Figura B.,6.1

- P go I cf 1- '

Rev. 51 l *d "P /

2 2 22 l f R

& && 3 2

& 4 I 2 E, gJ ' '

& && & g 3 o o Oo & & L O O CO O O O L* -

=

  • o S -

CYCLE 3 - .= .a.-a e .o e a o

.a .a s .a .J r a s .a o o oo o e a e2 2 oo 2 W o

W oW o

,= - - -

_g

=

4 i .? .:/ /. /

I $

? > i .!.////  : .

ll l ,

' / '

$ o l l l l

. / / .' s e

s ) l : l

>  !  ! \

/ // a .]

1 /

s a li t i/ / s s . ... ,

o

,l l  : m a

.~ .' # # # , O

{; ,e

. . i  : a oo a w

l l y @

a

: ;/ / /
.;d

. 5 u e jj lll){/ /

sas /

5 A

~

Y o

A

. lll j ,

g-C m l; *: l l a. W D

..sa

..- s ,

.o E en o e

, o

.ll  : A w oro  %

lll ,

Y >

... , _ o QK~

  • * !/ / / o - w

..../// ,

& a W

~

lllfff

*. y -l- ,

a

-, m

.t.o. . w ,

J 3

y . . . . o A

[

jd I

r i a

(

  • ### >=

. 1 -lll ,

O

! _ 7//

' o E

l .

Y Y

  • I  ; , E 1 , ,

ll.e /:

.m- --

. - ... m .__ _ rumism p e n , ,- - -; _

- o, 1 8 9 9 9 3 0,0

~

~

r r ,

/

( W3d ) 103350 UEMOd 7V.LO1

[JY

r avac

. T1-28 .

Figuro 3.9.1 j  !

4 P:go 1 ef 1 Rev. 51 1 1 CYCLE 3 o -

o

. .. . . . . : .:. w.-  : . . ...2. -. . . -. o s, . r. N: . . . . . . .. :.

. .. ._v . . :-. . :.: .=__..

.:r=.:.: _: __ :_-. .: _ :_ . _-. . ..:.= - .: .. . .:: : =: :_. ev

. r . . \ :.: =. :.: =. _.: . =: _-- - - - ._ ___.=_:.=_::: . - =. .=_=._

._._ . .=. . ._::. = =_ _ .; .: = =_ _ _ .

=\=:.\=== ; _. _== ---
. = _ .== = :: .; -

.___=- ..___.__.._-:=_--

. :. N \ _7 _ _

- - - - ~._ = ;=. :. : . ,

  • ! - .: Y-" :V.' 9 __ . _ ,,,______..=-_.----'*:_"="-I

_ ..: :::= :--- - = =. _--._..'.=.;_.._*. -_:-

. = = \ ;. :. .\ . - .=_--- - - _ . .

.".*."=-._..Y--- -.

. , _- ,.; ,\  ;.;p, - _ _ _ _ , - -

.._g...g \.m _ _

.:... O = O '

-__-=_..

. _: = : m :\ =_- - --

- .. _\==-*-- - -

1

'-**- 's_.,,. . . _ .__

i  ; : := --- . r :2. ,--- -- _ - - _ - . _ - - - - -

t .:: --- \u=\

___. i --- ____.= = 2 O

i

--~

~y=-\- ~

\_-

_ __ -- _.._,_-:-.-.;:.=.~-- - -

O O Q c <

...: . :::- - -- == g __=_.s

. - g.

---_._._.._._:_=.=

e ._.._. -

g

--- : :: =:.: >=

. ; -- - - - - --- - ~%.-.sr-

_=-- _ - - _

=-- := u- -_ _ . _ . _ _ . . _ _ . 2

__-.._.:.... w Q

I - - * \- ,  ;--l ;

g=='s

.  : E

_._==_. O l

__=, ___.

_ 3

__ _ _ . _ . . _ _ _ _ _ - ._,_ . _ _=. _ _ = ., _ ,,., u

. _ ,. . , . _ _ . _ _y - - . . _ _

... _ _ _ _ . . . g 2

..===.==---~

__ __ _ __. r =\=& -r-.-,

_ _ - = - - ^ - *_ _ -_ .-_=_ -. _ _ --- _ . . _2::

- c.

c. Ok C-

' . :- - . ._ \.__ --_-__:=..___.__=:__---.--

O-c3

,__ =__-____-__.-_~_=._-- 3 y&.__.___

. .: : r_ _ ._

_ - . _.- 2 mo

=--- x r.-_-- - _ . _ _ _ O 3y l

' . 2.

___ i_ Y- -_ p m

, -_ ):-A_.

=v= .__ -.

. _== : o o g< gC w 2:

=_:

- \ =_\. -

=.

O >

2

=_. m  :::

M' s__ _.

-_~_~

.~_.__~~.~.T. U E

HO C E2 o

o

_ h_ \ __ , _-___.

_._- U 3: Q

.k3

.::.:- =:.\ 2 g .

2 O

o L E:-- - 1 -4__ .

E p

C e

l ._E -- p 2 E

,o c l

-=. ,.-.- - - - . .C3 Q: 1__

- * .;,V-

\

l ..

_ 1 \.

$a

. ..:---- +-\

. A g

  • y i -=:. __N=N. ~ =. o -

N_ ._.:-- o y M=: -

- - -.-- _:.: a m m

=

I l

=:: _ --M_ . _ _ _ _ - u.:: O

=-

--y:.- ..\-

~

t

-. . . , - - MA - - - - -

I;-- ! - (_

_=r _. s_s_ ._

v_ _ . . . .

C~-- . -wA

~

l -:--_.__

NIh_ __ _ NJ

\:. e\ : - .- -

l . ;. : . - - .

. . - - - - . = . -

. . . . _ . . =. =.: . . :. .-.-

....___..______=_=:r.._.:_...._.==.---_._- _ . . . . _ _ . . . . . . _ _ _ . . .

. _ . . . _ . = . .= . ..._. . = . . = . = =.:= \-

_ _ .. .: ..- : ,=. = = =. ==. . . =. _==: = .

~

O a O. 2 O. . to. o.

4 m g a o o

. i i

, i I

r (Wadmod) H180M NOMOS T(11N583ddlO e

/

6 e

0 -

nm

l -->

l l

l l

l l

7 806 i

/

/

n DNB l

a E )6

=

e

_. s__,_____

s b

~

l  %

5 /

g 10 ,

5 I

. m I '

a /

$ e-- I  ; 2 ,

II - De- M - ; 2 E 7 SINGLE-PH ASE INUCLEATE PARTIAL FILM BOILING l $ CONVECTION / BOILING FILM I

o / BO4 LING 1 8 4

IO /

I l

U )

l /

& /

fr y ,' .

/

l '

103 go3 4 100 gol 102 10 ,

e AT (*F)

(TEMPERtJURE DIFFERENCE BETWEEN FUEL ROD SURFACE AND

@ SATURATION TEMPER ATURE OF THE COOL ANT)

G.

FIGURE FND-HT-102: BOILING CURVE AND ONB AT VARIOUS PRESSURES (REV.1) 5 Z. l.

. . - ma v -./' s/eie ciiustency u (xet work I

out)/(Energy in)

_ , o o mg s o Vo t
  • 1/2 at 2

[ = mC* .

~

a = (Vf - /,)/t A = A,e 't (E = 1/2 mv A = An PE = mgn .

Vf = V, + a t * = e/t A=

an2/t1/2 = 0.693/t1/2 W = v :,P

~

A= nD 2 1/2'N

  • U *1/ S Y 4 [(gl /2 I
  • IIo))

cE = 931 sm *

. m=V avAo g = g , -n Q=ph Q = mCpat 6 = UAL T I = I,e~"*

Pwr = Wfah I=I 10~*/UL TVL = 1.3/u -

sur(t) HVL = -0.693/u P = P,10 P = P,e*/

SUR = 26.06/T SCR = 5/(1 - Kgf)

CR, = S/(1 - K,ffx)

SUR = 26e/t* + (s - p)T CRj (1 - K dfi) = CR2 II ~ "#f2)

T = (t*/s) + [(s - oV io] M = 1/(1 - Kgf) = CR j/CR, T = s/(o - s) M = (1 - Kdfo)/(1 - Kdf1) 4 T = (s - o)/(Io) SDM = ( -Kgf)/Kdf -

o = (Kdf"I)/Kdf * 'Kdf /E df t= = 10 seconos I = 0.1 seconds"I

~

o = [(t*/(T Kdf)] + [s df /(1 + T)]

l j =Id I d) 2 ,2 gd2 P = (IoV)/(3 x 1010) j I d) 22 2

I = eN R/hr = (0.5 CE)/d (meters) l R/hr = 6 CE/d2 (f,,g) .

Water Parameters Miscellaneous Conversions l 1 gal. = 8.345 lom. I curie = 3.7 x 1010 aps 1 ga;. = 3.78 liters 1 kg = 2.21 lom I ft* = 7.48 gal. 1 np = 2.54 x 103 Stu/nr .

l Density = 62.4 14/ft3 1 mw = 3.41 x 100 Btu /hr Density = 1 gm/cv lin = 2.54 cm Heat of vaporization = 970 Btu /lem *F = 9/5'C + 32 Heat of fusion = 144 Bru/lbm 'C = 5/9 (*F-32) 1 Atm = 14.7 psi = 29.9 in. Hg. 1 BTU = 778 ft-lbf I ft. H O 2

= 0.4335 lbf/in.

e = 2.718

+- - , - _ _ . . _ , ., _ _

e Volume, ft'/lb Enthafpy, StuAb Entropy. Str/lb a F emP T**P s. Evep Steam Water Evap Cesm Water Evep Ste:m Water

's hg h,p h, so s,o s,

  • t Van

-0.02 1075.5 1075.5 0.0000 2.1873 2.1873 32 0.08859 0.01602 3305 3305 32 3.00 1073.8 1076.8 0.0061 2.1706 2.1767 35 0.09991 0.01602 2948 2948 35 8 03 1071.0 1079.0 0.0162 2.1432 2.1594 40 40 0.12163 0 01602 2446 2446 13.04 1068.1 1081.2 0 0262 2.1164 2.1426 45 45 0.14744 0 01602 2037.7 2037.8 18.05 1065.3 1083.4 0 0361 2.0901 2.1262 50 50 0.17795 0 01602 1704.8 1704.8 28.06 1059.7 1087.7 0.0535 2.0391 2.0946 60 60 0.2561 0.01603 1207.6 1207.6 38.05 1054.0 1092.1 0.0745 1.9900 2.0645 70 0.3629 0.01605 868 3 868 4 70 48.04 1048.4 1096.4 0.0932 1.9426 2.0359 80 0.5068 0.01607 633.3 633.3 80 58 02 1042.7 1100.8 01115 1.8970 2.0086 60 0.6981 0.01610 468.1 468.1 90 68 00 1037.1 1105.1 0.1295 1.8530 1.9825 100 100 0.9492 0.01613 350.4 350.4 77.98 1031.4 1109.3 0.1472 1.8105 1.9577 110 110 1.2750 0.01617 265.4 265.4 87.97 1025.6 1113.6 0.1646 1.7693 1.9339 120 120 1.6927 0.01620 203.25 203.26 97.96 1019.8 1117.8 0.1817 1.7295 1.9112 130 130 2.2230 0.01625 157.32 157.33 1014.0 1122.0 0.1985 1.6910 1.8895 140 2.8892 0.01629 122.98 123.00 107.95 140 1008.2 1126.1 0.2150 1.6536 1.8686 150 3.718 0.01634 97.05 97.07 117.95 150 1002.2 1130.2 0.2313 1.6174 1.8487 160 4.741 0.01640 77.27 77.29 127.96 160 62.06 137.97 996 2 1134.2 0.2473 1.5822 1.8295 17 7 170 5.993 0.01645 62.04 1.8111 ISO 50.22 148.00 990.2 1138.2 0.2631 1.5480 180 7.511 0.01651 50.21 1.7934 100 40.96 158.04 984.1 1142.1 0.2787 1.514S 190 9.340 0.01657 40.94 1.7764 200 33.64 168.09 977.9 1146.0 0.2940 1.4824 200 11.526 0.01664 33.62 1.7600 210 27.82 178.15 971.6 1149.7 0.3091 1.4509 210 14.123 0.01671 27.80 970.3 1150.5 0.3121 1.4447 1.7568 212 14.696 0.01672 26.78 26.80 180.17 212 965.2 1153 4 0.3241 1.4201 1.7442 220 17.186 0.01678 23.13 23.15 188.23 220 958.7 1157.1 03388 13902 1.7290 230 20.779 0.01685 19.364 19.381 19833 230 952.1 1160.6 0.3533 1.3609 1.7142 240 24.968 0.01693 16.304 16.321 208.45 240 945.4 1164.0 0.3677 1.3323 1.7000 250 29.825 0.01701 13.802 13.819 218.59 250 938.6 1167.4 0.3819 13043 1.6862 260 35.427 0.01709 11.745 11.762 228.76 260 931.7 1170.6 03960 1.2769 1.6729 270 41.856 0 01718 10.042 10.060 238.95 270 249,17 924.6 1173.8 0.4098 1.2501 1.6599 280 49.200 0.01726 8.627 8.644 280 917.4 1176.8 0.4236 1.2238 1.6473 290 57.550 0.01736 7.443 7.460 259.4 290 910.0 1179.7 0.4372 1.1979 1.6351 300 67.005 C.01745 6.448 6.466 269.7 300 9b2.5 1182.5 0.4506 1.1726 1.6232 310 77.67 0.01755 5.609 5.626 280.0 310 894.8. 1185.2 0.4640 1.1477 1.6116 320 89.64 0.01766 4.896 4.914 290.4 320 878.8 1190.1 0.4902 1.0990 1.5892 340 117.99 0.01787 3.770 3.788 311.3 340 862.1 1194.4 0.5161 1.0517 1,5678 360 153 01 0.01811 2.939 2.957 332.3 360 844.5 1198.0 0.5416 1.0057 1.5473 380 195 73 0.01836 2317 2.335 353.6 380 825.9 1201.0 0.5667 0.9607 1.5274 400 0.01864 1.8444 1.8630 375.1 400 247.26 806.2 1203.1 0.5915 0.9165 1.5080 420 305.78 0.01894 1.4808 1.4997 396.9 420 785.4 1204.4 0.6161 0.8729 1.4890 440 0.01926 1.1976 1.2169 419.0 440 381.54 763.2 1204.8 0.6405 0.8299 1.4704 460 0.0196 0.9746 0.9942 441.5 460 466.9 739.6 1204.1 0 6648 0.7871 1.4516 480 0.0200 0.7972 0.8172 464.5 450 566 2 714.3 1202.2 0.6890 0.7443 1 4333 500 0.0204 0.6545 0.6749 487.9 500 680.9 687.0 1199.0 0.7133 0.7013 1.4146 520 0.0209 0.5386 05596 512.0 520 812.5 657.5 1194.3 0.7378 0.6577 13954 540 962.8 0.0215 0 4437 0 4651 536 8 540 625 3 1187.7 0.7625 0.6132 1.3757 560 0.0221 0.3651 0.3871 562.4 SCO 1133.4 589.9 1179.0 0.7876 0.5673 1.3550 550 0 0228 0.2994 0 3222 589.1 550 1326.2 617.1 550 6 1167.7 08134 05195 13330 GOO 600 1543.2 0 0236 0.2438 0.2675 620 646.9 506 3 1153.2 08403 0.46S9 1.3002 620 1786.9 0.0247 0.1962 0.2208 640 454.6 1133.7 0.8656 0.4134 1.2821 0.0260 0.1543 0.1802 679.1 640 2059 9 392.1 1107.0 0.8995 0.3502 1.2498 660 0 0277 0.1166 0 1443 714.9 660 2365.7 310.1 1068.5 0 9365 0.2720 1.2086 680 0 0304 0 0808 01112 758 5 660 2708 6

  • 172.7 995.2 0.9001 0.1490 1.1390 700 0 0366 0.0386 0.0752 822.4 700 30943 0 9060 1.0612 0 1.0612 705.5 0.0508 0 0.0508 906.0

, 705.5 3203 2 TABLE A.2 PROPERTIES OF SATURATED STEAM AND SATURATED WATER (TEMPERATURE) .

A.3

)

volume. ft'/sh Enthatpy. 9tv/lb Extepy. Sto/sb a F Energy.Cj/lb DP C:ter Ev p Steam Ceter trep Steam Cater St:em Pe*-

Pr468- Ceter Evep Steam pele Pe8e F hg hg h, sg sq e, og er,

't '6 's 3302.4 0 00 1075.5 1075 5 0 2.1872 2.1872 0 1021.3 0.0886 0.0486 32.0lft 0.01602 3302.4 0.01602 2945.5 2945 5 3 03 10738 1076 8 0 0061 2.1705 2.1766 3A3 1022.3 0.10 0.10 35.023 13.50 1025.7 45.453 0 01602 2004.7 2004.7 13 50 1067.9 1081.4 0 0271 2.1140 2.1411 0.15 0.15 2122 1028 3 0.20 53.160 0 01603 15263 1526 3 21.22 1063 5 1084.7 0 0422 2 07?8 2.1160 0.20 0 01604 1039.7 1039.7 32.54 10b7.1 1089 7 0.0641 2 016S 2.0809 37.54 1032 0 0.30 0.30 64 484 40.92 1034.7 72.869 0.01606 792.0 792.1 40.92 1052.4 1093.3 0.0799 1.9762 2 0562 0.40 0.40 0.01607 641.5 641.5 47.62 1048 6 1096 3 0 0925 1.9446 2.0370 47.62 1036 9 0.5 0.5 79.586 5324 1038.7 0.6 85.228 0 01609 540.0 540.1 53 25 1045 5 1093.7 0 1028 1.9186 2.0215 0.6 0.01610 466.93 466 94 58 10 1042 7 1100 8 0.3 1.8966 2.0033 58.10 1040.3 0.7 0.7 90 09 6239 1041.7 l

0.8 94.38 0.01611 411.67 411.69 62.39 1040.3 1102.6 01117 1.8775 1.9970 0.8 0.01612 368 41 368 43 66 24 1038.1 1104 3 0.1264 1.8606 1.9870 66J4 1042.9 0.9 0.9 98.24 I

0.01614 333 59 333 60 69.73 1036.1 1105 8 0.1326 1.8455 1.9781 69.73 1044.1 1.0 i 1.0 101.74 0.01623 173.74 173.76 94.03 1022.1 1116.2 0.1750 1.7450 1.9200 94A3 1051A 2.0 l

2.0 126 07 109 41 1056.7 3.0 3.0 141 47 0 01630 118.71 118.73 109.42 1013 2 1122 6 0.2009 1.6854 1.8864 90 63 90 64 120.92 1006 4 1127.3 0.2199 1.6428 1.8626 120.93 1060.2 4.0 4.0 152.96 0.01636 8.0 0.01641 73.515 73.53 130 20 1000.9 1131.1 0.2349 1.6094 1A443 130.18 1063.1 8.0 162 24 I

61.967 61.98 138 03 996.2 1134.2 0 2474 1.5820 1A294 138.01 1065 4' 6.0 l 6.0 170 05 0.01645 0.01649 53 634 53.65 144 83 992.1 1136 9 0.2581 1.5587 12163 14431 1067.4 7.0 ~

7.0 176 84 8.0 182 86 0 01653 47.328 47.35 150.87 988.5 1139.3 02676 1.5384 1A060 15034 1069.2 8.0 15628 1070.8 94 9.0 18827 001656 42.385 42 40 156.30 985.1 1141.4 0.2760 1.5204 1.7964 38 404 38 42 161.26 982.1 11433 0 2836 1.5043 1.7879 161.23 1072J 10 to 193 21 0.01659 0.01672 26.782 26 80 180.17 970.3 1150.5 0.3121 1.4447 1.7568 180.12 1077.6 14.696 14.696 212.00 0.01673 26 274 26.29 181.21 969.7 1150.9 0 3137 1.4415 1.7552 181.16 1077.9 15 15 213.03 20 227.96 0.01683 20 070 20 067 196 27 9601 1156.3 0.3358 1.3962 1.7320 19621 1082.0 to 80 250 34 0 01701 13.7266 13.744 218.9 945.2 1164.1 0 36S2 1.3313 1.6995 2181 1087.9 80 40 267.25 0.01715 10 4794 10 497 236.1 933 6 1169.8 03921 1.2844 1.6765 2360 1092.1 40 281.02 0.01727 8.4967 8.514 250.2 923.9 1174.1 0.4112 1.2474 J.6586 250.1 1095.3 80 l 80 7.1562 7.174 262.2 915.4 1177.6 0.4273 1.2167 1.6440 262.0 1098.0 60

! - 60 292.71 0.01738 302.93 0.01748 6.1875 6 205 272.7 907A 1180.6 0 4411 1.1905 1.6316 272.5 1100.2 70 70 281.9 1102.1 80 80 312.04 0.01757 5 4536 5 471 232.1 900.9 1183.1 0.4534 1.1675 1.6208 i

4.8777 4 895 290.7 894.6 1185.3 0.4643 1.1470 1.6113 290.4 1103.7 90 I

90 320.28 0.01766 32742 0.01774 4.4133 4.431 298.5 888.6 1187.2 0.4743 1.1284 1.6027 298.2 1105.2 100 100 120 341.27 0.01789 3 7097 3.72 8 312.6 877A 4 0 4919 1.0960 1.5879 312.2 1107.6 120 140 353 04 0 01803 3 2010 3 219 325.0 868.0 119(3V 119 0.5071 1.0681 1.5752 324 5 1109.6 140 2.834 336.1 859.0 1195.1 0.5206 1.0435 1.5641 3355 !!!!.2 160 160 363 55 0 0;815 2.8155 180 373 08 001827 2.5129 2.531 346.2 850.7 1196.9 05328 1.0215 1.5543 345.6 1112.5 180 i 2.287 355.5 842A 1198.3 0 5438 1.0016 1.5454 3543 !!!3.7 200 l 200 351.80 0 01839 2.26S9 0 01865 1A245 1A432 376.1 825 0 1201.1 0.5679 0 9585 1.5264 3753 1115.8 250  !

250 400 97 392.9 1117.2 300 300 417 35 0 01889 1.523S 1.5427 394 0 808.9 1202.9 0.5682 0.9223 1.5105 -

l 0 01913 1.3064 1.3255 409.8 794 2 12M O 0 60M 0 8909 1.4968 406.6 11181 350 350 431.73 422.7 400 i

400 44460 00193 1.14162 1.1610 424.2 760 4 1204 6 0 6217 0 8630 1.4847 111E 7 I

4t,6 28 00195 1.01224 1.0318 437.3 767.5 1204 8 06360 0 8378 1.4738 435.7 1118.9 450 450 0 9276 449.5 755.1 1204.7 06490 0 814S 1.4639 447.7 1118 8 500 520 467 01 00199 0 90787 00199 0 82183 0.8418 460.9 743.3 1204 3 06611 0 7936 1.4547 456.9 1118 6 550 55J 476 94 469.5 1116.2 600 (CO 48513 0 0201 0.74962 0.7698 471.7 732 0 12037 0.6723 0 7738 1.4461 0 63505 0 6556 491.6 710 2 12018 0692R 07377 1.4304 AS8 9 1116 9 700 <

700 ,503 02 0 0205 506 7 1115.2 800 l 800 51821 0 0209 0 54809 05690 509.8 689 6 1199 4 0 7111 0.7051 1.4163 0 4796S 0 5009 526 7 669 7 1196 4 0 7279 0 6753 1 4032 5232 1113 0 900 900 13! 95 0 0212 l

! 1000 544 M 0 0216 042435 04460 542 6 f 50 4 1192 9 07434 06476 1.3910 5.C 6 1110 4 1000 557.5 631 5 1159 1 0 757S 06216 1.3794 553 f 1107.5 1100 1100 Sit 2e 00??O 0 376f 3 0 4005 1200 t-6739 0 0223 0 34013 0 3625 571.9 613 0 1164 8 0 7714 0 5959 1.3ES3 5559 1104 3 1200 1300 L77 42 0 0227 030722 0 3299 585 6 544 6 1180 2 0.7843 05733 1.3577 550 1 !!OO 9 1300 14CD 517 07 0 0731 0 27811 0 3018 598 8 576 5 1175 3 0 7966 05507 13474 592 9 1097.1 1400 1000 596 20 0 0235 02b372 0 27/2 611.7 5584 1170 1 08055 0!253 1.3373 605 2 1033 1 1500 2000 635 80 0 0257 0 162 % 01883 672 1 4652 1133 3 0 862t 04256 1.7881 662 6 10J 6 2000 2500 '65d 1I O 02c.f 010209 01307 731 7 3616 1093 3 C9139 0 3206 1.2345 118 5 1032 9 2500 l

801 8 218 4 1070 3 09723 0IE91 1.1619 782.8 973.1 3000 i

  • 3000 695 33 0 0343 0 050/3 0 0850 906 0 0 906 0 1 0612 O 10612 8759 875 9 370s.2 l 3298 2 70147 0 0503 0 0 05Gd , _

TABLE A.3 PROPERTIES OF SATURATED STEAM AND SATURATED WATER (PRESSURE)

A.4

i l

Tempeeske, F At press.

400 SCO 800 700 000 900 1000 1100 1200 1300 1400 1500 p) 100 200 300

(

v 0.0161 392 5 452.3 511.9 571.5 631.1 690 7 3 6 68 00 1150 2 1195.7 1241.8 1288 6 13361 1384 5 (101.74) s 0.1295 2 0b09 2.1152 2 1722 2.2237 22708 2J144 e 00161 7814 90.24 102.24 114.21 126 15 138 08 150 01 161.94 173 86 185 78 197.70 2 s a 68 01 1148 6 1144 8 1741.3 1788 2 1335 9 1384 3 1433 6 1883 7 1534.7 1586 7 1639 6 (162 24) s 0.1795 1.8716 1.9369 1.9943 2.0460 2.0932 2.13G9 2.1776 2 2159 2 2521 2.2866 2.3194 2 e 0 0161 38 84 44 93 5103 57.04 63 03 69 00 74 98 80 94 86 91 92 87 98 84 10480 110.76 30 6 68 02 1146 6 11937 1240 6 12U7.8 1335.5 1384 0 1433 4 1883 5 1534 6 1586 6 1639 5 16 (192.21) s 0.1295 1.7928 1.8593 1.9173 1.9692 2.0166 2.0603 2.1011 2 1394 2 1757 2.2101 2.2430 e 0 0161 0.0166 29 899 33 963 37.985 41.966 45.978 49 964 53 946 57.926 61.905 65.882 69 A5 15 6 68 04 168 09 1892 5 1239 9 1287.3 1335 2 1383 8 1433 2 1483 4 1534.5 1586 5 1639 4 16937 0 13.03) s 0 1295 0.2940 1.8134 1.8720 1.9242 1.9717 2.0155 2.0563 2.0946 2.1309 2.1653 2.1982 2.229 v 0 0161 0 0166 22.356 25 428 28 457 31 466 34 465 37.458 40 447 43 415 46 420 49 405 52.3 to 6 68 05 16811 1191.4 1239.2 1286 9 1334.9 1383 5 1432 9 1483 2 1534.3 1586.3 1639.3 1693 p27.96) s 0.1295 0.2940 1.7805 13397 1.8921 1.9397 1.9836 2 0244 2.0628 2.0991 2.1336 2.1665 2.19 e 0 0161 0 0166 11035 12.624 14.165 15 685 17.195 18 699 20 199 21 697 23 194 24 689 2 40 h 68 10 168 15 1186 6 1236.4 1785.0 1333 6 1382.5 1432.1 1482.5 1533 7 1585.8 1638 8 19 9 67.25) s 0.1295 0 2940 1.6992 1.7608 1.8143 1.8624 1.9065 1.9476 1.9860 2.0224 2.0569 2.0899 2 e 0.0161 0 0156 7.257 8354 9.400 10 425 11 43S 12.446 13.450 14 452 15.452 16.450 17.448 60 6 68 15 168 20 1181 6 1233 5 1283.2 1332.3 1381.5 1431.3 1481.8 1533 2 1585.3 1638.4 1 (292.71) s 0.1295 0.2939 1.6492 1.7134 1.7681 1.8168 3.8612 1.9024 1.9410 1.9774 2.0120 2.0450 2.0 0.0161 0 0166 0 0175 6 218 7.018 7.794 8.560 9.319 10 075 10829 11 581 12.331 13.081 13.829 14.577 e

SO & 68 21 168 24 269.74 1230 5 128! 3 1330.9 1380 5 1430.5 1481.1 1532 6 1584.9 16380 1692.0 174 0 12.04) s 0.1295 0 2939 0.4371 1.6790 1.7349 1.7842 1A289 1 8702 1.9089 1.9454 1.9800 2.0131 2.0446 2.0 e 0.0161 0.0166 0 0175 4 935 5.588 6.216 6.833 7.443 8 050 8 655 9258 9.860 10.460 11.060 11.659 100 & 68.26 168.29 269 77 1227.4 1279.3 1329.6 1379.5 1429.7 1480.4 1532.0 1584 4 1637.6 1691.6 1 (327.42) s 0.1295 0.2939 0.4371 1.6516 1.7088 1.7586 13036 13451 1.8839 1.9205 1.9552 1.9883 2A199 2 e 0 0161 0 0166 0 0175 4 0786 4.6341 5.1637 5 6831 6.1921 6.7006 7.2060 7.7096 8.2119 8.71 2 4 120 h 68 31 168 33 265 81 1224.1 1277.4 1328.1 1378 4 1428.8 1479.8 1531.4 1583.9 1637.1 1991.3 (34327) s 0.1295 0.2939 0 4371 1.6286 1.6872 1.7376 1.7829 13246 13635 1.9001 1.9349 1.9680 1.9996 v 0.0161 0 0166 0 0175 3 4651 3 9526 4 4119 43585 5.2995 5.7364 6.1709 6 6036 7.0349 7A652 140 4 68.37 168 38 269 85 1220 8 1275.3 1326.8 1377.4 1428 0 1479.1 1530 8 15834 1636.7 1990.9 (353 04) s 0.1295 0 2939 0 4370 1.6085 1.6686 1.7196 1.7652 13071% 13461 1A828 1.9176 1.9508 1.9825 e 00161 0 0166 0 0175 3 0060 3.4413 3 8480 4.2420 4 6295 5.0132 5 3945 5.7741 6.1522 65293 160 6 68 42 168 42 269.89 1217.4 1273 3 1325 4 1376 4 1427.2 1478 4 1530.3 1582.9 1636.3 1890.5 (363 55) s 0.1234 0 2938 0 4370 1.5906 1.6522 1.7039 1.7499 1.7919 1.8310 1.8678 1.9027 1.9359 1.9676 e 0 0161 0 0166 0 0174 2 6474 3 0433 3.4093 3.7621 4.1064 4.4505 4.7907 5.1289 5.4657 5 301 180 6 68 47 168 47 269 9/ 1213 8 1271.2 1324 0 1375.3 1426 3 1477.7 1529 7 1582 4 1635.9 1640 2 (373 C81 s 01294 0.2938 04370 15743 1 6376 1.6900 1 7362 1.7784 1A176 IBi45 1.8894 1.9227 1 9545 1 e 0 0161 0 0166 0 0174 23598 2.7247 3.0583 3 3783 3 6915 4 0008 4 3077 4.6128 4.9165 52191 200 a 68 E2 168 51 269 96 1210 1 1269.0 1322f 1374.3 1425 5 1477.0 1529) 1581.9 1635 4 16898 1 (331 60) s 01294 02938 04309 1.5593 1.6242 1.6??G 1.7239 1.7663 1.8057 1.6426 1.8776 1.9109 1.942'.I j .

2 6872 2.9410 3 1909 3 4382 3 6837 3 9278 4 1709 4 4131 4.654 l

e OC161 0 0166 0 0174 0 0166 2.1504 24662 250 h 68 % 1t8 63 270 05 3/5 10 1263 5 1319 0 13716 1423 4 1475 3 1527.6 1580 6 1634 4 1688 9 174 '

(400 97) s 0:294 02937 0 4368 0.5567 1.5951 16502 1.6976 1.7405 1.7601 1 8173 1.8524 1.8d58 1.9177 1.9 l

i 1.7655 2 0044 22763 24407 2 6509 2 65S5 3 0643 3 2688 3 4721 3 67 f e 00161 0 0165 0 0174 0 0186 l

300 A (B 79 1 % 74 270 14 375 15 1237 7 1315 2 13639 1421.3 1473 6 1526 2 15794 1633 3 1688 0 174 '

(417.35) s 0.1294 0 2937 0 43.)7 C5%5 15703 1.6274 1 6758 1.7192 17591 1.7964 1.8317 1.8652 48372 1.

1.4913 17028 I gt973 2 0332 2 2652 2 4445 2.6219 2.7980 2 9730 3 1471 3.32C5 e 0 0161 0 0165 0 0174 0 0186 350 a 6892 16S85 270 24 375 21 1251 5 13114 1366 2 1419 2 1471 6 1524 7 15782 1632.3 1687.1 17 (411.73; n 01293 0 2935 0 43G7 05%4 15483 1.6077 1.6571 1.7009 1 7411 1 7787 1 8141 1.8477 12793 1.9 e 00161 0 0166 0 0174 0 0162 1 2841 14763 1.6493 1 8151 1 9759 2.1339 2.2901 2.4450 2 5937 2.

400 a 69 05 168 97 270 33 375 27 1245 1 1307 4 1363 4 1417.0 14701 1523 3 1576 9 1631.2 16S6 2 1 01293 0 2935 0 4365 05%3 1 5282 1 5901 1 6406 1 6850 1 7255 1.7632 1.7988 1.8325 13647 1.

(444 60) :

e 0 0161 0 0166 0 0174 0 0186 0 9919 1 1584 1 3037 1.4397 1.5708 1 6992 1 8256 1.9507 20746 2 1 500 6 69 32 119 14 270 51 3'5 3B 12312 12991 13573 1412 7 1466 6 1520 3 1574 4 16291 1634 4 1740 149.;I I$595 I6'23 165/8 16090 17371 1.7730 18069 lA393 18702 1.8908 (457.01) : 0129? 6 ?334 04354 0 M60 .

TABLE A.4 PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED WATER (TEMPERATURE AND PRESSURE)

A.S

.e i M pm. Temperitw2, F C/seim 600 700 800

. pol.esap) 100 300 300 400 600 900 1000 1100 3200 3300 3400 3 00

, 0 0161 0 01 % 0 0174 0 0186 0 7944 0 94 % 10726 1.1892 1.3008 14093 1 5160 1.6711 1.7252 18284 1.9308 888 6 69.58 169 42 270 70 375 49 1215 9 1290 3 1351 8 3408 3 1463 0 1517 4 1571 9 1627.0 1682 6 1738 8 1795.6 (48620) s 0.1292 02933 0 4362 0 % 57 14590 1.5329 1.5844 16351 1 6769 3.73 % 1.7517 1.7859 IA184 1.84M 1.8792 e 00161 0 0166 0 0174 0 0186 0 0704 0 7928 0 9072 1.0102 1.1078 12023 1 7948 1.3858 1.4757 1 % 47 1.6530 700 6 69 04 169 65 270 89 375 61 487 93 1281 0 1345 6 .1403 7 1859 4 1514 4 1%94 1624.8 IED7 1737.2 3794.3 (503.08) s 0 1291 0.2932 0 4MO 0 %55 0 6889 1.5090 3.% 73 1 6154 1.6580 3.6970 1 7335 1.7679 180h 18318 1 8617 e 00161 0 0166 0 0174 0 0186 0 0704 06774 0 7823 0.8759 0 9631 1.0470 1.1289 1.2093 1.2825 I3669 1.4446 800 6 70.11 169 88 271.07 375 73 48738 1271.1 1339 2 I399.1 1455 R 1511 4 1%69 1622 7 167E9 1735 0 1792.9 (5182.)

  • 0.1290 0 2930 0 4358 0 % 52 0.6885 1.4869 15484 1.5580 1 6413 1 6407 1.7175 17522 1.7851 1 8164 1.8464 e 0 0161 0.0166 0 0174 0 0186 O C234 0 5869 0 6858 0.7783 0 8504 0 9262 0 9998 10720 1.1430 1.2131 1.2825 808 6 70.37 170 10 271.26 375 E4 487.83 1260 6 1332 7 1394 4 1452 2 15C4 5 1%44 1620 6 1677.1 17341 1791.6 (531.95) s 0 1290 02929 0.4357 0. % 49 0 6881 1.4659 1.5311 1.5822 14263 1.6662 1.7033 1.7382 1.7783 16028 18329 e 00161 0 0166 0.0174 0 0186 0 0204 0 5137 0 6000 0 6875 0 7603 0 8295 0 8966 0 9622 1.0266 1.0901 1.1529 1000 6 70 63 170 33 271.44 375 96 487.79 1249 3 1325.9 1389.6 1448 5 1504.4 1 % I.9 1618 4 1675.3 1732 5 1790 3 (544.58)e 0.1269 0.2928 0.4355 0 5647 0.6876 1.4457 1.5149 1.5677 1.6126 16530 1.6905 1.7256 1.7589 1.7905 1.8207 e 00161 00166 00174 0.0185 0 0203 04531 0 5440 0 6188 06865 0 7505 0 8121 0 8723 0 9313 0 9894 1.0468 1100 4 70 90 170.56 271.63 376 08 487.75 1237.3 1318 8 3384 7 3444 7 1502 4 1559.4 1616 3 1673.5 1731.0 1789.0 (5 % 23) s 0.1269 02927 0 4353 0.5644 0.6872 1.4259 1.4996 1.5542 1.6000 1.6410 3.6797 1.7141 1.7475 1.7793 1.809,7 e 0 0161 0 0166 0.0174 00185 0 0203 0 4016 0 4905 0 5615 0 6250 0 6845 0 7418 C.7974 0 8519 0.9055 0 9584 1200 6 71.16 170.78 27]A2 376 20 487.72 1224.2 1311.5 1379.7 1440 9 1449 4 1556 9 1614.2 1671.6 1729 4 1787.6

(%7.19) s 0.1288 0.2926 0 4351 0.5642 06868 1.4061 1.4851 1.5415 1.5883 1429B 1 E79 1.7035 1.7371 1.7691 1.7996 e 0 0161 0 0166 0 0174 0 0185 0 0203 0.3176 0 4019 0.4712 0 5282 05809 0 6311 0 6798 0 7272 0.7737 0 8195 1400 6 71.68 171.24 272 19 376 44 487.65 1154.1 1296 1 1369.3 1433 2 1493 2 1551.8 1609 9 1668 0 1726.3 1785 0 1.3652 1.4575 1.53 E2 1.',670 1.6CE 1.6484 1.6845 1.7185 1.7508 1.7815 (587.07) s 0.1287 0.2923 0.4348 0.5636 0 6659 0.0161 0 0166 0.0173 0 0185 0.0202 0.0236 0.3415 0 4032 0 4555 0.5031 0 5482 0 5915 0 6336 0.6748 0.7153 e

, 1600 4 72.21 171.69 272.57 376 69 487.60 616.77 1279.4 1358.5 14252 1486.9 1546.6 1605.6 1664.3 1723.2 1782J (604.87) a 0.1286 0.2921 0.4344 0.5631 0.6851 0 3129 1.4312 1.4968 1.5478 1.5936 1.6312 1.6678 1.7022 3.7344 1.7657 e 0.0160 0.0165 0 0173 0.0185 0 0202 0.0235 0 2906 0.3500 0.3928 0.4426 0.4836 0.5229 0.5609 0.5900 0 6?43

! 1800 a 72.73 172.15 272.95 376 93 487.56 615.58 12(!.1 1347.2 1417.1 1440 6 1541.1 1601.2 1660.7 1720.1 1779.7 QE21/J2)s 0.1284 0.2918 0.4341 0.5626 0.6E3 0.8109 1.4054 1.4768 1.5302 1.5753 1.6156 1.6528 1.6876 1.7204 1.7516

. e 0 0160 0.0165 0.0173 0.0184 0.0201 0.0233 0.2488 0.3072 0.3534 0.3942 0 4320 0.4600 0.5027 0.5MS 0 5695 l

2000 6 73.26 172 60 273.32 377.19 487.53 614.48 1240.9 1353.4 1408.7 1447.1 1536.2 1596.9 1657.0 1717.0 1777.1 l (635.00) s 0.1283 0.2916 0.4337 0 5621 0.6834 0.8091 1.3794 1.4578 %I.5138 1.5603 1.6014 1.6391 1.6743 1.7075 1.7389 I e 0 0160 0.0165 0.0173 0.0184 0.0200 0.0230 0.1681 0.2293 0.2712 6.3068 0.3390 0.M92 0.3900 0 4259 0.4529 2500 6 74.57 173 74 274.27 377 82 487.50 612.08 1176.7 1303 4 1386.7 1457.5 1522.9 1585.9 1647A 1709.2 1770.4 (668.11) s 0.1280 0.2910 0.4329 0.5609 0 6815 0.8048 1.3076 1.4129 1.4766 1.5269 1.5703 1A094 1.64 % 1.6796 1.7136 e 0 0160 0.0165 0.0172 0 0183 0 0200 0.0228 0 0982 0.1759 0.2161 0.2484 0.2770 0.3033 0 3282 0.3522 0.3753 3000 A 75 83 17t S8 27522 378 47 487.52 610.08 lot,0 5 1267.0 1363.2 1440.2 1503.4 1574.8 1635 5 1701.4 17(1.8 -

(t95.33)s 0.127? 0.2904 0 4320 0.5597 0.6796 0 8009 1.1966 1.3692 1.4429 1.4975 1.5434 1.5641 1.6213 1.0561 1.6688 e 0 0160 C 0165 0.0172 0 0183 0.0199 0 0227 00335 0.1588 0.1987 0.2301 0.2576 0.2827 0.3065 0 3291 0.3510 3200 6 76 4 175.3 2756 378.7 487.5 609 4 800 8 1250 9 1353 4 1433.1 1503 8 1570.3 1634A 1698 3 17612 (705.08) s 0 1276 0 2902 0.4317 0.5592 06768 0.7994 0.9708 1.3515 1.4300 1.486G 1.5335 1.5749 14126 1.6477 1.6806 e 0 0160 0 0164 0 0172 0.0123 0 0199 0.0225 0.0307 0.1364 0 1764 0 2066 0 2326 02%3 0.2784 0 2995 0319?

3500 & 77.2 176 0 276.2 3791 487.6 608 4 779 4 1224 6 1338 2 1422 2 14955 1563.3 16292 1693 6 17b7.2 s 0.1274 02899 0 4312 0 5585 0 6777 0.7973 0 9508 1.3242 1.4112 34709 1.5194 1.5618 1.6002 1.635S 16691 e 0 0159 0 0164 0 0172 0 0182 0.0198 0 0223 0 0287 0.1052 0.1463 0.1752 0 1994 0 2210 0 2411 0 2601 0 2783 4000 A 76.5 177.2 277 1 379 8 487.7 606 5 763 0 1174 3 1311 6 1403 G 1491 3 1552 2 1619 8 1655.7 1750 6 s Di271 0 2a93 0.4304 0 5573 0 6760 0 7940 0 9343 12754 1.3807 1.4461 1497G 1.5417 1.5812 1.6177 1.6516 e D 0159 0 0164 00171 0 0181 0 01 % 0 0219 0 0268 0 0591 0 1038 0 1312 0 1529 0 1718 0 1660 0 2050 0 2203 S300 4 81 1 179 5 2791 381 2 4881 604 6 7460 1042 9 1252.9 1364 6 1452 1 15291 1E0J 9 1670 0 1737.4 s 0.1?65 0.2S61 0 4287 0 5550 0 6726 0 7880 0 9153 1.1593 1.3207 1.4001 1.4582 1.5061 15481 1.5663 1.6216 e 0 0159 0.0163 0 0170 C olbo 0 0195 0 0216 0 0256 0 0397 0.0757 0.1020 0.1221 0.1391 0 1544 0.1684 0 1817 60C0 & 63 7 181.7 281.0 362 7 APB 6 602 9 7361 9451 1168 8 1323 6 14?2 3 1505 9 15620 1654 2 17242

. e 0 1258 0 2670 04271 0 5528 0 6693 0 7826 0 9026 1.0176 1.2615 1.35N 1.4229 1.4745 1.5194 15593 1596.2 e 0 0158 0 0163 0 0170 0 0180 0 0193 00?!3 0 0248 0 0334 0 0573 0 031 A 01004 01160 0129E O1424 0.1542 7000 A 86.2 184 4 283 0 384 2 489 3 601 7 729 3 901.8 1124 9 1281 7 1392 2 1492 6 15631 1639 6 1711I a 01252 0 2859 0 4256 05507 0 6563 0 7/77 0 8926 10350 12055 131)I 11934 1.44v6 14932 1.53 4 15735 TABLE A.4 PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED WATER (TEMPERATURE AND PRESSURE) (CONTINUED)

A.6 L

m ~.

b .F II II 3.5 34 g, g n u o 36 L. ,,'.L.. ".', ~

~ d / A/ Ngr*j uco asso Ab<,N(Tk/ N // n ' / A /1 M f3%

'"  ! ?b950S I'yQ'y/f ,~ ~ s.

gALq i 3-

/MJV Uy~klf'iQf -

~

- nom+;ji;j,Q,. ~

7- i-Ma

// @g 9m Nj2 - , s- -

jy 1

47

-N/t i

r;Q l l--

. f/h% 4

/BWM7pgggtgf?' i -

Unx7w,y' MA6n7,g) '

//

/n/ -

MLW)

.//My w// /

I RMXW/7xy/'

M FN/>9 SfM 7/X/

50

'I 33 14 35 16 gy 20 21 2.2 2

. .tntropy. Btwig g FIGURE A.5 MOLLIER ENTHALPY-ENTROPY DIAGRAM A.7

s- ,

i PROPEltTIES OF WATER De.iolly e (Ibsllt')

PSIA Temp saturated _

2300 2400 2500 3000 1000 2000 2100 2200

('F) Liquid 62.909 62.93 62.951 53.056 62.637 62.846 62.867 62.888 32 62.414 62.846 62.87 62.99 62.75 62.774 62.798 62.822 50 62.38 62.55 62.465 62.559 62.390 62.409 82.427 62.446 100 61.989 62.185 62.371 60.702 60.568 60.587 60.606 80.314 60.511 60.53 60.549 200 60.118 57.859 57.882 57.998 57.767 57.79 57.813 57.836 '

300 57.310 57.537 54.373 54.529 54.249 54.28 54.311 5*.382 400 53.651 53.903 54.218 54.11 53.89 53.925 53.95 53.475 53.79 53.825 53.86 410 53.248 53.46 53.50 53.53 53.89 53.025 53.36 53.40 53.425 420 52.798 53.02 63.065 53.09 53.265 52.575 52.925 52.95 52.99 430 52.356 52.51 62.54 52.56 52.275 52.125 52.42 52.45 52.475 440 51.921 52.14 52.175 52.21 52.41 51.66 52.025 52.065 52.10 450 51.546 51.68 51.725 51.76 51.96 51.175 51.56 51.61 51.64

! 460 51.020 51.22 51.25 51.30 51.50

'* 50.70 51.1 51.14 51.175 470 50.505 80.74 50.78 50.825 51.035 80.20 50.62 50.66 50.7 480 50.00 50.265 50.31 ' 50.35 50 575 49.685 50.13 50.175 50.22 490 49.505 49.762 49.81 49.858 50.098 49.097 49.618 49.666 49.714 500 48.943 49.203 49.254 49.305 49.56 .

48.51 49.05 49.101 49.152 510 48.31 48.625 48.68 48.736 49.01 47.91 48.46 48.515 48.57 620 47.85 48.037 48.096 48.155 48.45 47.919 47.978 530 47.17 47.29 47.86 47.428 47.494 47.56 47.89  :

47.23 47.296 47.362 540 46.51 46.794 46.862 46.93 47.27 l 46.59 46.658 46.726 550 45.87 46.142 46.216 46.29 . 46.86 45.92 45.994 46.068 560 45.25 45.46 45.54 45.62 46.02 45.22 45.30 45.38 570 44.64 44.758 44.844 44.93 45.36 _

44.50 44.586 44.672 580 43.66 44.015 44.11 44.205 44.68 43.73 43 825 43.92 550 43.10 43.226 43.33 43.434 43.956 42.913 43.017 43.122 500 42.321 42.432 42.55 43.14 41.96 42.08 42.196 42.314 610 41.49 41.35 41.483 41.616 42.283 40.950 41.083 41.217 620 40.552 41.44 650 39.53 40.388 640 38491 39.26 650 37.31 38.000 660 36.01 36.52 670 34.48 34.638 633 32.744 32.144 690 30.516 TABLE A.6 PROPERTIES OF WATER, DENSITY A.8 l* '

l _ .

pr.

m. 5DJ TsE i' * -Qz__IBE9BY_9E_NUGL.E88_EQWE8_EL8NI_QEE6811QN i _ELylDQ2_8ND PAGE IUE8dQDXN8dlGS 2 ANSWERS.-- SEOUOYAH l t<2 -86/12/15-DEAN,-W M

. ANSWER. 5.01 -(1.00) d REFERENCE Westinghouse Reactor Physics, Section I-5, MTC and Power Defect' DPC, Fundamentals of Nuclear Reactor. Engineering St Lucie Reactor Physics, Secti on 7. 6 3< 7.7 039/000; A2.05(3.3/3.6)

ANSWER. -5.02 (1.50)

(. Wit

a. ~"d;~ (+.5 ea)
b. L crtb6*Wt-
c. Hi gh r- Ledt4 REFERENCE NUS Vol 4, pp 2.2-4 015/000; A1.01(3.5/3.8)

ANSWER 5.03 (1.00) 6 REFERENCE EIH: GPNT,Vol V11, Chapter 10.1-83-86 BSEP: L/P O2-2/3-A, pp 172 - 176; O2-OG-A, pp 57 - 60 Westinghouse Nuclear Reactor Theory, pp. I-5.77 - 79 Turkey Point, Reactor Core Control, pp. 4 28 OO1/OOO-K5.13 (3.7/4.0)

_. c ,,, ,

A , i

, ~

%__INEQ6Y_QE_NQGLE06_EQWE8_ELONI_QEEB8IlgN 3 _E(Q1QS 3 ,6NQ .;? j .PAGE . 2l INEBdQQyN@d1GS- .

- ANSWERS -- SEQUO AH ' it<2 -86/12/15-DEAN, WM -

p, y }

y /

ANSWER" 5.~04 (1.00) '

, J (A 1ow:1eakage 1oading patter'n - has been employed which N1Oces) new fuel assemblies loaded in the cont'ter of the core (+.5). 'The w ' assemblies see

a. higher flu:: for a longer heriod (+.25), accelerating Ehel ef f ects of pellet swell and clad creep relative to earlier c7c1Ws (+.25) . 1 REFERE:JCE SON Reactor Physics Review, pp 18/19= .

001/000;.K5.49(3.4/3.7) i d ,

xh ANSWER 5.05 (1.00) *

/

.c (

s 3

,'6

  • :' i REFERENCE SON TI-28, Plant Curves, B . 8. '1 ,

001/000; K5.14(2.3/2.8) /

i. ,.

( G ANSWER- 5.06 (1.50)

., j a) Decrease (+.5 ea) -

>]

b) Increase -

y

.c) Decrease.

REFERENCE Nuclear Power Pl ant Trng Prgryn , HTFF and Therme, Sect 2C , ,

/

App At Working Properties of War.ar (2.2/2.5)' , ,

.k ANSWER 5.07 (1.50) >

i a) Lower (+.5 ea) b) Lower .

c). Higher REFERENCE ,

ST Lucie OP 0030126 and Plant Curves CNTO Reactor Core Control, Section 7 g ->

g

7 '

' p. .. 2 >

u

),j .) .

=P e.

) -

ty g ..-

%w.

5,__,,T HE QR;y CF NUCLEAF PdWER PLANT _QPERATIQL_ FLUIDS _AUD PAGE. 21

'-- Ar i

'Q

~

IHERMODYNAMICS-

' e!.

/ ~pANSWERS -- SEQU6VAH It<2 -86/12/15-DEAN,-W M

/

.:I ' ' r .

, e ,'

,.f-W _001/000; A2.07(3.6/4.2) ,'e -

. ~

L l/ f Q, ,.

'h;'~ ~

ANSWLR. 5.08 (1.50) /

rs -

a) t r,:r et.se ; (no answei-)' (6.25 ea response) b) 'a ns); decrease c' (iidi

.c) increfse; increash '

d). iT6.r ekse ; i n c r e a s'o t I'

T( f ,

-e REFE!2NCE r l

Cid0 " Thermal / Hydraulic Principles II", pp 12-39-45

/ 039/000; A2.05(3.3/3.6) .,

?

J

>/  !

r:,/., , )

NNSWER 5.09' (1.00) j- .c I

1) In te'r d al Fuel Rod GasFressure (+.5 ea)
2) Averjage Clad temperature
) ._c ,

..  ;' REFERENCE , , .

//

.i ' SON HCF revie4 pp 5 Iaf

- -001/090; K5.46(2.3/3.6%

r ',

i ,

ANSWER -' 5.10 _ t-(?c@ h k* 4 uverl m deia m  ;+.5) b) Nucleate boiling  ;

n .

. , =

.;  !( REFERENCE ,

p  % Westinghouse Reactof' Core Control, pp 3-38/42 001/000: K5.49(3.4/3.7)

^

e ,/ .

.):Sf, ,

( a

, -  !? > ANSWER 5.11 ' ( 1. RO)'

Pu-230 37% (+/-3) (+.3 for isotope, +.1 for %, +.1 for correct order)

U-235 35.5% --thermal fidsion

, U-235 8% --fast f.t :!U on OR L(-tW Wb

pu-2. 54 40 %

REFMENCE u- 2% f $%

SQ'u WDN Li cense Cert Tr-tg , " Reactor Kinetics", pp 6 d" St 1.ucie Reactor Physics Section 7.6.7; SD 1, pp 33 e ,

+o e

s 7 -' .

gyy r g -.

1,. dP ,

s

,-.y s.. m ,

L. __It!EDBi_9E_NUG L EOB _EDWE B _E66NI_QE E B911QNi FLUIDS 1_AND < -PAGE j

ItE8dDDXN!plGS .
e. -

m ANSWi$R$ -- SEQUOYAH :1842 - -86/12/15-LCAN, W M- h. '

-c'

.?

.y 3 )

001/000; K5.47 (2.9/3.4) ,

s, g.

I . ANSWER 5.12. (1.00) y .

\seqV

_ cr(+.5) at\.d occur later (+.5)

.The xenon dip.would be r i

, tf ,' REFERENCE' SON /kJBN Inst. Gui de "Revi ew of _ Core Poi sons"', . pp @/6 0 Westinghouse-Nuclear Training Operations, pp I-5.76

.Q *

~

001/000; K5.38 (3.5/4. Q

, +

.~/! d..

t ;.

-ANSWER- 5.13 (1.00)

Sb-Be Source (+.25) *-

  • when Sb-123 is activated by a ,neutro$ it produces a gamma (+.25) that .

interacts with Be-9 (+.25) that produces Be-8 and another neutron (+.25)

REFERENCE.

N SON /WBN License Certification Training, " Neutron' Sources and Subert Mult"

- ~-

y

[ 004/000;.K5.05 (2.3/2.8) . ,

it

e. q i

Q M

e. ANSWER 5.14 (1.50) m
p. 1) Delayed neutrons born at lower energies, so less likely to leak out

% providing a positive effect (+.75)

-2) Delayed neutrons are born at an average energy too low to cause f ast

-fission which provides a negative effect (+.75) i-REFERENCE 1 -SON /WBN. License Cert Trng, " Neutron Kinetics"

/

001/000; K5.47 (2.9/3.4) r i

T 4

. b:, . . .

m

  • i 'i s__IdEQBY_QE_NyGLE68_EQWEB_ELONI_QEEB811gN3 _ELylQS _@NQ i PAGE' 3@

~

IUEBdQQYN6dlGS ANSWERS -- SEQUOYAH 18<2 -86/12/15-DEAN, W M-ANSWER 5.15 (1.00)

'Decause rod' worth is proportional.to the ratio of the fl u:: at the ti'p of the rod to -the average flu >:- (0.7). A' change.in power does not significantly. change this ratio (0.3). (1.02 REFERENCE Turkey Point, Reactor Core Control, Chapter 6 001/000; K5.02(2.9/3.4)

ANSWER 5.16 (2.00) a) Unit 1-(+.5) due to a higher Beta coefficient at BOL ( + . 5 ) --

b) Unit 2-(+.5) due'to MTC being more negative, so Tavg will decrease less to add same + reactivity (+.5)

-REFERENCE Surry ND.86.2-LP-2 and 86.1-LP-9 001/000; K5.49(2.9/3.4) and K5.10(3.9/4.1)

ANSWER 5.17 (1.00)

Allows for time to-identify and correct a dropped or misaligned rod (+1.0)

REFERENCE SON TS B 3/4.2.4 EPE-OO3; PWG-5 '(2.7/3.9)

pL-

~

- 5, ' THEORY OF_NUC(EOR _PQWER_PLONT_QPERQTigN 3 _ELylDS 3 _8NII 'PAGE 3)

IHERdQDydOdlCS

_ ANSWERS - .SEQUOYAH 1&21 -86/12/15-DEAN, W M-

. ANSWER 5.18 (2.00)

a. Subcooling~.is based on core exit T/Cs or hot leg RTD readings. During natural circulation the mass of metal in the head can retain heat and keep local temperatures above saturation. The temperature indicators would not reflect this local saturated condition. (1.0)
b. Pressuri er level-decreases because~the pressuriner pressure increese will compress the vessel void and force water out of the' pressurizer.

(1.0)

' REFERENCE G.P. Heat Transfer and FF Pp 355-358 EPE-074; EA2.05(3.4/4.-2) & EA2.07(4.1/4.7)

ANSWER '5.19 (1.50)'

a) Tstm will drop rapidly ( +. 25)' as Tavg decreases in order to maintain the Delta T across the S/G tubes to provide the heat transfer to support 90*/. load demand (+.5) b) Even though pressurizer pressure decreases and power increases, which decreases the margin to saturations the large cooldown of the RCS (+.@

overcompensates fer this and the margin to DNB increases (+.25)

REFERENCE Westinghouse Transient and Accident Analysis 035/010; K1.09(3.8/4.0)

ANSWER 5.20 (1.50) a) prevent significant occurrence of zirc-water reaction (+.5) b) as power drops, the enthalpy rise across the core will be less (+.25) with smaller enthalpy increase, the coolant i s f urther f rom DNB, allowing a higher F(n) Delta h (+.75) (This allows changes in the radi al power shape for all perm 3ssable rod insertion limits)

REFERENCE SDN TS B3/4 2.2 Westinghouse Thermal / Hydraulic Principles II, pp 13-15/16 001/000; K5.46(2.3/3.6) i L

- @z__lUEOgy_gE_NUGLE88_EgWEB_E(@N1_DEEB011gN2_E(ylpS2_00p. PAGE 3 IUEBOODXN@ DIGS

-ANSWERS.---SEQUOYAH11&2 -86/12/15-DEAN, WM ANSWER 5.21 ( 1. 50) :

a) '> DNB,lhavn partial film boiling, where. the f uel- rod ' i s al' ternately covered with steam and water (+.25). Steam'has poor thermal conductiv

~ity. capabilities (+.25), so. heat transfer 1 rate drops-andLDelta T rlses

- ( + . 25):

b) As fuel surface temperatures rise, stable steam layer forms-(+.25).

causing a further-increase in fuel, rod temperatures ( +. 25)'. Event ual l y significant radiative heat transf er occurs causing 1 heat ::f er rate to incarease (+ . 25)

REFERENCE

. Westinghouse Thermal / Hydraulic Principles II, pp 13-18/20

'EP'E-074; EK1.02(4.6/4.8)

ANSWER 5.22 (1.00)

See attached sketch REFERENCE' ST Lucie Thermo Supplementary Handout,.pp 3.4-15 Appendix A, Heat Exchangers (2.4/2.7)

. ANSWER 5.23 (1.00) at 2240 psia, hg = 1115 BTU /lb (+.5 for h determination)

Lat 20 psia, for saturation conditions, hg = 1156 BTU /lb & hf = 196 from a Mollier Diagram, moisture content is approximately 5% (95% quality) calculating: (1156-1115)/(1156-196) = .043 > > 95. 7% qual i t y [4/- 0 f 7.)

(+.5 for quality determination)

REFERENCE Steam Tables and Mollier Diagram 010/000; K5.02(2.6/3.O)

e 6

9 e

~O 7

. d MH is -

0-

<T@^ n- -

w i

1 a

Cta%.

9 6

i I

i T~

l

- ~

+a W br 5_W

+.Ii f Ioe refalse k q M _4 T Ac m 4o.d

. + l2r kr 9ca.pk_sekp_/ge.s M* w

  • " wm mn-,

w,, A._ - .- -e +% -a  %=Ne- --.me--mw%e-eme-*es.-=---=me -em--  %- Na d r i

~ ~ - - . - - - . - - - . . - . - -.- . . _-- ._ . _ , _. _ ,._.. . ._ , .,__ _ ,

y- hp p a w a-h.p.. -. awn ew me

  • w w+- hh %wh-- Me5-~~4 ="-w e-**--=e=* * - - '**~ * -*=d =~ - ' - - ' "m- " *----##~**-- """M*h- * ' * ' * * -

< __~___

~~ -- ~ - -- - - - .-., m._,. _

,J, i n .-

bc__ELON1_SYSIEMS_DESISNi _CONIBOL2_@ND_lNSIB(!t}ENI@IlON ;PAGE- 3'

> ANSWERS - -f 5EDUOYAH it<2__ -86/12/15-DEAN, WM

$ ANSWER' 6.01: .(1.00)

d REFERENCE' FNP, RHR Lesson _ Plan, p p . 8 - !< 9 NA.NCRODP'88.2. "RHR System" SONP~ lesson plan "RHR System" pp 5 OO5/OOO-K4.07-(3.2/3.5)

ANSWER. 6.02 . (1.00)

C REFERENCE Westinghouse PWR Systems Manual, Sect 9.2 "PZR Pressure Contarol" 010/000'; K4. 03' (3. 8/4.1) 34 K6. 01 (2.7/3.1) 24 PWC-4 (3.6/3.7)

ANSWER 6.03 (1.00)

C REFERENCE-TPT SD68 " Radiation Monitoring and Protection System", pp 11/12 SON " Radiation Monitors / Modes of Operation", pp 5 034/000; K6.02(2.6/3.3) i ANSWER 6.04 . (1.00) d REFERENCE SON Requal 1986, week 4, day 5, " rad moniters", pp 5 t

073/000; K6.01(2.2/2.4) l l

l l

r i_.

w ~ .-

- Ib :61_iELON1_@Y@lEdQ_QESIGN2 _CQN18QL3_@NQ_lNS189dENI@IlgN PAGE 34

.. ': ANSWERS ---SEQUOYAH 162 -86/12/15-DEAN,.W M

-ANSWER 6.05 ' ( 1. 00 ) '

- (L"

-REFERENCE _ .

SON Roquall-1986.WeekE2, day 1,'" Major Modifications", pp 8/9 d61/OOO;;K4.04(3.1/3.4)

-ANSWER 6.O (1.00)

d.

REF ENCE Requal 86 Week 5/6, day 7, " Control System Theory"'

.202002 K4.08 a.7/3.4 5.03 2.4 4

/

L ANSWER 6.07 (1.50) a) Arm.and actuate

.b)' Arm and actuate c) Arm only REFERENCE Farley SD, " Steam Dump System", pp 23-28 SONP System Descrip. " Steam Dump System", pp 6-8 041/020; K4.11 (2.8/3.1) b K4.14 (2.5/2.8) & K4.17 (3.7/3.9)]

ANSWER 6.08 (1.50) a)- Open (+.5 ea)

-b)~ ~Open c) Closed

' REFERENCE NA NCRODP 88.3, "CVCS" SONP AOI-10A, pp 3-5 TPT SD13 "CVCS", pp 18, 21, 37

'000/065; EA2.08(2.9/3.3)

6 t__ELONI_GyGIEdQ_QEglGN 2_QQNIBQ63_8NQ_INGIBQUEN1811gN .PAGE 7%

ANSWERS - ,SEQUOYAH 162. -86/12/15-DEAN, WLM ANSWER- 6.09- (1.25) a) manipulator crane; manipulator crane gripper tube; fully retracted;.

over the core (+.25 ea) b) both gripper tube up position switches '( + . 2 5 )

REFERENCE

~ SONP Sys Descrip. 9.0, " Fuel Handling System" pp 5 L 7

~

034/000; K4.02 (2.5/3.3)

ANSWER 6.10 (1.50)

Containment Hi-Hi pressure; 10;~ S/G enclosures;.PZR enclosure;

' accumulator spaces; instrument room (+.25 ea)

REFERENCE Westinghouse PWR Systems Manual, sect 4.5, pp 14 022/000; PWG-4 (3.5/3.8)

ANSWER 6.11 (1.00) a) 1500 psig (+/- 25 psig) (+.33 ea) b) 180 psig (t /- 1 r e gg).

c) 1250 psig (# gg f_ g7 ,.

REFERENCE SON E-0, pp 3, Westinghouse Systems Manual, pp 4- 1 -33 J TS 3. f. f. Z.

EPE-011; EK3.12(4.4/4.6) l t

l ANSWER 6.12 (1.50) i 4 era 49 V

-Phase A Containment Isolation signal from either Unit (+.375 eat

-High Radiation signal from fuel handling bldg area rad monitors

- " " " " Aux Bldg exhaust vent rad monitors

-High Temperature in Aux Bldg Supply Fan Suction .

TkO th be $plet M *3 REFERENCE SONP Sys Descr. 4.4, " Cont Air Purif and Cleanup Sys" pp 15

"^'i'**I 9M

' pu 1)W4 45# (Ao-V /th-f o wb3 -e nrug 4 l EPE-060; PWG-10 (4.1/4.4)

L_

w I. .

62.__Eb6N1_SYSIED@_QE@l@N 3 _GQNIBQL3_8NQ_INSIBUDENI@llgN PAGE 36 ANSWERS -- SEQUOYAH 18<2. -86/12/15-DEAN, WM' ANSWER 6.13 (1.00)

-SI~ Pumps 4 (+. 25 ea)

' -ONE Centrifugal Charging Pump # .o4 % L rajusrtd h J e h .

-UHI Gags

-Col d . l eg ' Accumul ator Isolation Valvet4 REFERENCE

'SONP-System Descrip. "RCS", pp.9

-010/000; K1.02-(3.9/4.1)

LM45WER .6.14 (1.00)

1) Chlor 2 de concentration (+.2 ea) 2)- -pH 3)' Dissolved 02
4) Entrained H2
5) . Conductivity REFERENCE

. SON Requal 1986 week 4, day 1, "PASF", pp 7

' ANSWER 6.15 (1.50) 1 Open CCW pump break -(+.3 ea)

2) set SI
3) Re .t EDG loc ut
4) Star EDG
5) Manua y oad equipm .

.REFEREN SON - DST E 055; EA2.06(3. /4.1), PWG-11(4.3/4.4)

/

y L

~

__ELONI_@Y@lEUS_ DESIGN 3 _CgNIBQL 3 _8ND_JNSIBUdgN1811gN PAGE 3)

ANSWERS -- SEQUOYAH 1&2 -86/12/15-DEAN, WM ANSWER 6.16 LLJA+P O 2 c) overcurrent (+.25 eaHbr 6.9KV Bus stripping relay [uME M N **

underfrequency Fg aMTGM8 4r. hv t3u s A ut_ L u u l r eier d0 b) Ensure adequate oil flow and distribution prior to pump start (+.5)

REFERENCE SON SOI 68.2, pp 7 003/000; PWG-7(3.5/3.9) 062/000; K4.02(2.5/2.7)

ANSWER 6.17  : . 5:1 U-a) demi ster > >>rel ative humidi ty heater >>> pref il ter bank >>>HEPA f il ter ban!

>>> Carbon adsorber bank >>>rl :t.-ic h::tir.; ;1 m...m. . t >? > u cr b c r ad:r-h=r beek >>>HEPA f i l ter bank (+.125 ea) b) Two cross over air flow ducts draw air from the active air cleanup unis

(+.5)

REFERENCE SONP Sys Descrip. 4.4, " Containment Air Purif and Cleanup System" pp 7-8 027/000; A2.01 (3.0/3.3)

ANSWER 6.18 (2.50) a) Par level Hi-Low Alarm (+.25 ea)

Charging Flow increases Level increases to 60% (Limited to 100% power program) b) One Ltdn isolation valve shuts All orifice valves shut P:r Level Low, Htrs Off, Ltdn Secured alarm Heaters turn off Level rises as charging flow reduced to flow through seals P:r level Hi/ DU htrs on alarm Rx trip on high level REFERENCE Sqn Requal 1906 week 3, day 4, " Instrument Fai1ures", pp 31/34 011/000; K1.01(3.6/3.9), A2.11(3.4/3.6)

7 I

r - -

fi__ELONI_SYSIEUS_ DESIGN,_QQNIBQL3_8ND_INSIBQMENI611QN .PAGE 5 ANSWERS -- SEQUDYAH 1&2 -86/12/15-DEAN, WM L. -

l'

' ANSWER' 6.19 (1.50) i a) S/Gs #1-and.'4 (+.5) b) ( Appendi :: R requirement) .PORVs were inaccessible f or f ire in the -

West Valve. Room '(+.5)

'Only 2 S/Gs are required for safe shutdown (+.5)

' REFERENCE SON Requal 1986 week,2, day 1, " Major Modificationc", pp 5 035/010; K4.05(3.1/3.4)'

ANSWER 6.20 (1.00)

-Operate the solenoid bypasc cwitch to the "Dypass" positi on on the consol (679 (.. ..

-Use the gripper control knob on the console to operate the gripper.

REFERENCE SON LP OPL271C014, SON FHI 1-4A 034/000; 'PWG-6(2.7/3.3)

ANSWER 6.21 (1.50) l SUMP _via 63-72 to suction of A RHR pump thru A RHR HX (+.5) and either to-63-8)>>63-6(7)>>SI pump suction (+.25) or 63-172 to loops 1 and 3 (+.25) after the-SI pump >>63-156 to hot l egs s2'and /r (+. 5) l 3 REFERENCE SON ES-1.3

! EPE-011; EX3.08(3.9/4.1) l ANSWER 6.22 (1.50) 2/3 relays < 95*/. for 10 seconds if anS9 signal present (+1.0) for 5 minutes without SI(+.5) l REFERENCE SON "Di ecol Gener& tors", pp 13 062/000; K3.02(4.1/4.4)

4 '*

h __ PLANT _gy@TEMS DEgIQh_ CONTROLiLAND . INSTRUMENTATION. PAGE: 5 i

~ " ANSWERS -- SEQUDYAH-l&2 ' - 86_/12 /15-DE AN , WM

+

' ANSWER' 6.23 '(1.25)

.Added a (40 volt) relay whi ch ~ wi1l' be - actuated ' on a trip signal- .. ( + . 5 )

which willzclose contacts in the ~ 125'VDC trip circuit (+.25) e to improve reliability of RPS by adding redundancy -(4.5) (NRC required)

REFERENCE

.SDN Outage Major Modifications Lesson Plan of 1986, pp 20 012/000; K1.02(3.4/317) s

I' ; ' [fr___E80CEEW6EE_~_N06066A_6ENOBU6La_EM[BQENQY_BNQ PAGE- b 1 i86D196051G6b_GQNIBQL

. ANSWERS -- SEQUOYAH 1742 ' 86/12/15-DEAN, WM-

. ANSWER ;7.01 '(' 1. 00 ).

b REFERENCE SDN AOI-34A,._ pp 'l EPE-024; EK3.01(4.1/4.4)

ANSWER 7.02 (1.00)'

d REFERENCE.

SON-GOI-1.; pp 4

-035/010; PWG-7 (3.5/3.9)

. ANSWER 7.03 (1.00) d~

REFERENCE SON LER' 85-040-0003 SON "RHR", pp 13 005/000; PWG-7(3.5/3.8)

ANSWER' 7.04 (1.00) e

' REFERENCE FR-Z.2 i EPE-069; EK3.01(3.8/4.2)

12, PROCEQURES ' NORMAL,_ABNQRM@L,_EMgR@gNGY_@ND .PAGE- . 4)

B9919LOQ1GOL_GQNIBQL

~

ANSWERS -- SEDUDYAH 162 -86/12/15-DEAN, W M.

ANSWER 7.051 (1.00)-

b; REFERENCE ~

~ Westinghouse Usern Guide, pp'2-5 PWG-22 ( 4. 2/ 4. 2)

ANSWER 7.06 (1.00) c .br h REFERENCE SON ADI-21.7, pp 1

.EPE-058; PWG-10(4.1/4.2)

ANSWER 7.07 '(1.00)

C REFERENCE SON AOI-34A, pp 3 EPE-024; EA2.05(3.3/3.9)

ANSWER 7.08 (2.00) a) Shutdown (+.5 ea) b) Startup c) Shutdown d) G ~ L Ann S7/htn4P REFERENCE SON TS'3.4.6.2

'002/020; PWG-8 (3.5/4.4)

n. .:
Zs _B89CEDVBES_ _d98066's_6EUQBdeLx_gdEBGENGy_6ND

~

.PAGE : 4h' BOD 196091GOL1GQNIB96

. ANSWERS'-- SEDUDYAH 1&2 -86/12/15-DEAN, W M' ANSWER' '7.09' ( .50) false (+.5)-

l REFERENCE SON FR-S.1, step 3 EPE-029; PWG-11(4.5/4.7)

ANSWER 7.10 (1.00) a) True (+.5 ea) b) . False REFERENCE Westinghouse User's Guide, pp 5, 17, 18 PWG-22(4.3/4.3)

ANSWER 7.11 (1.00) 4, 1, 3, 5, 2 ( .2 for each swap required to put in correct order)

REFERENCE SDNP SOI-85.1A, pp 3 001/010; A4.01 (3.7/3.4)

ANSWER 7.12 -(2.00) 4kdb 1) Increase Injection Flow (+.3 for technique, +.2 for position) p gt N)2) Depressur1::e S/Gs l gz& 3) Start RCPs

cp) [ 4) Open RCS vent paths (PORVs)

REFERENCE FR-C.1; (TPT ODNK H-5) l EPE-074; EK1.03(4.5/4.9) i r

i t

g -

  • PAGE 45 Z___EBOCEDUBES_:_N9Bdeb2_0ENQBM963_EDEBGENGY_8NQ B00106001G86_GOUIB96 ANSWERS -- SEQUOYAH 1842 -86/12/15-DEAN, WM-

' ANSWER '7.13 (1.50)

. a n ov& c e te u hlt 1'$ answ twti4 sortM W'"

1) . 16 7:2c ' + ~ c h ' i a-- (+.5 ea)
2) Assembly from the highest core power region
3) . All fuel' rods damaged REFERENCE SON AOI-29, .pp 5, 8 ; IdtM TT "A.' 4-3 EFE-036; EK3.03(3.7/4.1)-

ANSWER 7.14- (1.50) a) Name of the caller, location and type of fire (+.5) b) Initiate.the fire alarm (+.25 ea)

Announce location / type of fire Verify / start a' fire pump Notify Public Safety REFERENCE SON AOI-30, pp 2 EPE-076; PWG-11(3.9/4.1)

ANSWER 7.15 (1.50)

1) Rod can't be moved (+ . 5 ea)
2) Rod misaligned by > 12 steps from its group demand counter
3) Rod drop time not met REFERENCE TPT TS 3.2-3 SON TS 3.1.3.1, 3.1.3.4 000/001; EK3.02(3.2/4.3)

'" Z,.__EBgggpuBgg_ _NgBuBLo_GENOBt!BLi Et!EBGENGLP,NQ PAGE (K BBD196091GOL_GONIB96 ANSWERS -- SEOUDYAH 1&2 -86/12/15-DEAN, WM i

AN5WER 7.16 (2.00)

{

-Verify steam stops closed (+.25 ea)

-Verify AFW pumps runnin and flow established

-Verify PZR pressure - hin 1900-2235

-Vorify_PZR level wi s i n 2 4 - 6 0 '/.

-Veri 4y lavg contr ling at 547 degrees  !

-Verify containm it pressure and temperature normal

~~ Verify genera r breakers open and 6.9 KV unit station service ::f errc:

-Verify Main eed isolation

-Verify mai feed pumps tripped REFERENCE SON AOI-27A, pp 1/2 EPE-069; PWG-11(4.5/4.5)

ANSWER 7.17 (2.00) a) .-Close MSIVs and bypasses (+.5 ea)

-Trip turbine from main turbine front standard

-Stop and pull-to-lock both EHC pumps at the pump control station b) (1) Verify PORV and block valves open (+.25 ea)

(2) Verify containment purge air exhaust islaated REFERENCE FR-S.1 EPE-029; PWG-11(4.5/4.7)

ANSWER 7.18 (1.00)

This allows S/G Pressure protection without having to depend on the ccde.

safeties (+.75) which could lift and not rescat causing an unisolable steam leak (+.25)

REFERENCE Westinghouse Background Document; (TPT OBNK E-16)

EPE-038; EV.3.06(4.2/4.5)

4 w.-- ,. .

Se_o REPtrwEMwT_ _],((o 80 REG 4dL W. I { __

n2D Re Que c - -- .7- to _ __ .--. .-._ .

ct) 3EsceteL TuE_enstc sztP1__wvoutD w ccoswc_ja- -

- T hnn_ Aftez_A__coM7eo& Jock OwoonoM_ Her _ _ _ _ _ - _

6 EhL. /A//n6M O_,_A_sso M L_ TEE _ cPEK R7D f% WAS MTcWT -

TKL _ Con 7tto..L- Rookt__y(+ub.- THRT _TWe . 7ve 8rAIE AWD (2E AcTD(?_ H A VE StPt AbM_ BELA) Te!PPSD ._ _

_ _ _ _.(f . o} _ .

. h .__ m ,, ,.

a n e venc n o ut_ mum en rm n _ -

w m,uacreaoos _ee _use e emewa mieae ?.

-. _ .- .__.. . --- [f. o )----

W e g. w .h.m-w.. _ _ _ _

so*spaAw._ _

stnu /+agely_ dose _all '(BS/Vs - - _ _ __ . _

_.i.__ _ _ 61. 3 Iti.26D M

- BGs_ .

anau-._.

r%/lued Pann.- ._ ._--

,,p m 2%p.. .iie a%4,_.>-_ .

.. ., , , . , ,,y, ... , ,_ , .

esu.p* * + .el- *"

w .,,.-mm4 u. .m.ee.---*h -- ._

  1. . ._+- . . . .. . - - =. . ,.. . . . . . _ , _ , .. _..,#, ,

w 4me es sam ..

sM.e .- . .mqe.eme -

g..m . , ,m o=.m-

= - - * * . % ..mp m en-pa m-.. -

, , .ea., . --

, , . ,,w

.-s 4

Z .__EBOCEQU6ES_- _lJ.gBMA(3_8ENQRMOL_i_EMERQgNGy,_OND PAGE. 4' B00106091G66_GQNIBg6 ANSWERS -- SEOUOYAH l t<2 ~B6/12/15-DEAN, WM

' ANSWER 7.-19 . (1.00) 1). (Promote thermal stratification) so ruptured S/G doesn't depressurire during couldown (+.5 eafera4s d 2)- ' Ensures S/G available as a heat sink if required

r.dme JCr'.bbig *f ImA Acs ft.dd R'FERENCE Westinghouce ERG background Document; (TPT OBNK 18)

EPE-038; EK3.06(4.2/4.0)

ANSWER 7.20 (1.50)

RCPs will keep 2 phase flow mixture (+.75) and the PORVs will not be able to release as much steam (eqergy) (+.75)

O tt. ~ ll!4Hst. ftfMunt wise.tsMr ir frWQ)M tucMME wr!~MV w our bw) tY 1r) .

REFERENCE Westinghouse background document EPE-0743 EK3.08(4.1/4.2)

ANSWER 7.21 (1.00)

1) Faster cooldown (+.5 ea)
2) Maximum radiological release REFEPENCE

. SON ES-3.1, pp 10 EPE-139; EK3.06(4.2/4.5)

ANSWER 7.22 (1.50)

Normal wear reducen this design criteria of a new seal, making it hard to predict how long it will last.(+.5) So by removing the pump from service, minimize the chance of a 162 seal f allure. (+1.0)

REFERENCE SON A01-23, pp3 003/000: PWG-7(3.S/3.9)

F j

Zz__ERQGEDURES - NORMALi_ ABNORMAL 3_ EMERGENCY AND PAGE C4 B0010L901GOL_GQNIBQL ANSWERS -- SEOUDYAH 18<2 -86/12/15-DEAN, WM ANSWER 7.23 (1.00)

This resnoves power from certain critical valves to (+ . 5) prevent any undesirable movement (+.25) due to potential wiring shorts (+.25)

REFERENCE SUN AOl-27A, pp 2 EPE-060; PWG-7(3.5/3.9)

ANSWER 7.24 (1.00)

Adequate seal film (+.5)

Clogging of the seal (+.5)

REFERENCE SON AOI-23, pp 6 003/000; A2.01(3.5/3.9)

y

~

Et__6Dd1NISIB6I1YE_EBQGEDWBESi_GQND111QNg3_@NQ_LidlIOllgNE PAGE .4 ANSWERS -- 5EDUDYAH 12<2 -86/12/15-DEAN, WM

' ANSWER 8.01 (1.00) d.

REFERENCE 10CFR50.59 LANSWER 8.02 (1.00) c.

REFERENCE North _ Anna TS 3/4 1-1,-9,-12,-22 Farley TS 3//4 Sequoyah TS-3/4 ANSWER 8.03 (1.00)

a. ,

REFERENCE FNP, TS Sequoyah TS ANSWER 8.04 (1.00) b.

REFERENCE SONP, IP-1 ANSWER 8.05 (1.00)

a. falso
b. ' - i r r TEUf' REFERENCE

'SONP Requal Trng. Inst. Notes

W ,

.- \

Es__6EdlN1316611Yg_PROCEQQBEgi_GQNQ1IlQNgi_@NQ l IMITAT1QNS PAGE 4I ANSWERS -- SEQUDYAH 1&2 -86/12/15-DEAN, WM

-ANSWER 8.06 ~(1.50) a.: false.

.b. falso

c. true REFERENCE SONP AI-4, 12.1 ANSWER 8.07 ( 50)

True REFERENCE SONP TS 3.6.1.1; Def. Table 1.1

~ ANSWER 8.08 ( .50)

-SE, Shift Engineer REFERENCE SONP AI-2,.1.1 ANSWER 8.09 (1.00) ,

L 100 dog F RCS 200 deg F Pr:r .

REFERENCE '

Sequoyah TS RCS i

Qu__9D51NIEIBOI1Yg_EBgCgggggg,_QQNQlllQN@a_@ND_bl511GIlONS :PAGE. 40 ANSWERS -- SEQUOYAH 11842 -86/12/15-DEAN, WM ANSWER 8.10 (1.50)

'1. Seismic. Instrumentation

.2. RCS Operational Leakage or SG tube leakago

3. RCS Specific Activity
4. Containment Systems or Containment Vent Systems 5.. Plant Systemt Specific Activity or Secondary Plant Activity
6. Flood Protection
7. Snubbern any 5 E0.33 nach REFERENCE SONP TS Bases SONP Requal.Trng. Inst. Notes ANSWER 8.11 (1.00)

Erlanger Medical Center REFERENCE SONP Requal Trng. . Inst. Notes; REP ANSWER B.12 (2.00)

1. U-1 and U-2 shield b1dg. gas monitors count rate.
2. U-1 and U-2 shield b1dg. stack flow rate.
3. Aun b1dg. gas monitor count rate.
4. Aux b1dg. stack flow rato.
5. Service bldg. gas monitor count rato.
6. Servico b1dg. stack flow rato.
7. U-1 and U-2 condenser vacuum cuhaust monitorn count rato.

G. condonsce vacuum'onhaust assumed to be 45 cfm cach. [0.253 each REFERENCE SONP T1-30 50NP Requal Trng. Inst Notes ANSWER G.13 (1.00)

Person holding the oporating permit.

I L

t

f.: -

.. o h_ _8Dd1NISIBOIIL/E _EB9GE DUBE L _G9N91IJ QNh _ @NQ_(ldlI@llQNE PAGE: Si ANSWERS -- SEQUOYAH 1&2 -H6/12/15-DEAN, WM .

REFERENCE SONP AI-3; 3.1.7.1.

ANSWER 8.14 (1.00) first: Plant Superintendent O & E second Operations Supervicor REFERENCE SONP Requal Trng. Inst. Notes; REP ANSWER 8.15 (1.00)

A. SON IP-1, Emergency Plan Classification Logic

b. General Emergency REFERENCE SON IP-1 SONP Requal Trng. Inst. Notest REP ANSWER 0.16 (1.50) one path from boric acid tanks via a boric acid transfer pump and a charging pump to the RCS. CO.53 two paths from the RWST via charging pumps to the RCS. [1.03 REFERENCE SONP TS 3.1.2.2 iNSWER 8.17 (1.50)
1. another SE
2. Ancistont Operations Section Supervisor
3. Operat1ons Suction Supervisor REFERENCE SONP A1~2, 1.1

b St__0Dd1NIEIBOI1YE_E89GEQQBEEa_QQNQlllQNgi_6NQ_ Lid 11611QNE PAGE 5 ANSWERS -- SEQUOYAH 1 t< 2 -86/12/15-DEAN, WM ANSWER B.18 (1.00)

a. the unit shall be.placed in at least Hot Standby within one hour.

.b. the NRC Operations Conter shall be notified (by telephone as soon en possible and in all c a s e s:,) within one hour. [0.5] cach REFERENCE SONP TS 6.7 ANSWER 8.19 (1.00)

LCO 3.0.3 applien REFERENCE North Anna t.CO 3.O.3.

FNP 3.0.3 SONP 3.O.3 ANSWER 8.20 (1.50)

1. quarterly whole body dose does not e>tened 3 rems
2. accumulated dose is less than 5(N-18) roms where N= age in years
3. form NRC-4 is complete [0.53 each REFERENCE 10CFR2O SONP Requal TRNG Inst. Notes ANSWER 0.21 (1.00) i temp. does not cntted that temp. allowablo (for the continuous duty rating specified) for equipmont and instrumentation.

REFERENCE SONP TS 13 3 / 4 . 6 . 1 . 5 SDNP Requal Trng. Inst. Notes l'

c- --

~- --

l

. . .<t, ~

O___00DINiglBQllyg_EBQCEQgBESi_GQNQlllONQ3_69Q_(ldllOIlONS PAGE 5 l

ANSWERS -- SEQUOYAH 1&2 -86/12/15-DEAN, WM ANSWER 8.22 (2.00)

(+ . b Initiate corrective action to return one loo to operabic status as soon as possibic[A,7) [p to operation AND return both Suspend all operations involving a reduction 6*WILfff/<pgl[TfQ8,p/p.,9[C1.O]

in Noron c on c dn t r a t i on y,,, 1. O ]

a.w e "fk V hEFERENCE O SDNP TS 3.4.1.4 ANSWER 8.23 (2.00)

The TA shall be entered on a PORC r evicwcd C O .B ] , Plant Manager E Q75]

approved TACF EO.5] and-t egged-in-ac c ord a nc e-wi t h- A l -t-[ 0. 5 3 .- S REFERENCE SONP Al-9 ANSWER 8.24 (1.50)

In an emergency CO.53 when this action is (i mmedi atel y) needed to protect the public CO.53 (health and safety and no action consistent with licenso conditions and technical specifications that can provide adequate or equivalent protection is immediately apparent.) Approved by a licensed senior operator. CO.5]

REFERENCE 10CFR50.54 ANSWER O.25 (1.00)

AFD (f or eech nperable channel) must be monitored and logged CO.53 at Icast once p r:r haur [0.5] (f or the firul 24 fours and at least once pc- 7.

nii nu t a- t ticr ref t er ) .

REFERENCE EUNP 16 7./4.2.1 l

,]

A

?-

o ,

, - . f' V , p U. S. NUCLEAR REGULATORY COMMISSION /t

!- - hV- REACTOR OPERATOR LICENSE EXAMINATION s FACILITY: _@EQUQYAH_j)2____________

hh REACTOR TYPE: _PWR-WEC4_______ _____ J,_

DATE ADMINISTERED _Q6/12flg,__________,_;__

EXAMINER: _QE8N1_W M_________4_____

CANDIDATE: s _____________________,,___

i. f .

INQlRUCllgNQ_lg_C8NQ199]E: /

Use separate paper for the answers. Write answers on one side only.

Staple question sheet on top of the answer sheets. Points for each question are indicated in parentheses aftnr the question. The passing '

grade requires at least 70% in each categ6ry and a final grade of at least 80%. Examination papers will be picked up six (6) hours after '

the examination starts.

% OF

~\

CATEGORY % OF CANDIDATE'S CATEGORY \,_ ; '

__YeLWE_ _19166 ___SQQRE,__ _y@(Qg__ ______________Q@IEQQ61 ____________

t.tf JE9r92__ _2E121 ___________ ________ 1. PRINCIPLES OF NUCLEAR' POWER PLANT OPERATION,JTHERMODYNAMICS, HEAT THANSFER AND FLUID FLOW Sa t f' PLANT DESIGN INCLUDING SAFETY

<22.22'__ _2Ez21 ___________ ________ 2.

- AND EMERGENCY SYSTEM 5 t7 75~

_22:29__ _23122

___________ ________ 3. IlGTRUMENTS AND CONTROLS 19 Z T .

_22tE2__ 23122 ___________ ________ 4. PROCEDURES - NORMAL, ABNORMAL, s EMERGENCY AND RADIOLOGICAL CONTROL

/M. W 112_22 _ ___________

Tot al s -

Final Grade All work done on this examination is my own. .I have neither given nor received aid. >

4 w

Candidate's Signature

___________.________.____________-_.___._-___J___. _ _ - - -

_ , c. - .-

ws , %

, I NRC RULEO AND GUI'DELINES FOR LICENSE EXAMINATIONS Dur;ing the administrat.on of this examination the f ollowing rules apply:

1. Cheati'ng 6n the examination means a, automatic denial of your application and c~oul d .rs.sul t in more msvere penalties.

- 2.- Restroom trips are to be limited and only one candidate at a time may leave. You must avoid all :ontacts with anyone outside the examination

, room to avoid even the appearance or possibility of cheating.

, 3. Use black ink or dark pencil gnly to f acilitate legible reproductions.

4. Prit:t your name in the blink provided on the cover sheet of the viami na t i on'.
5. . Fill in the date on the cover sheet of the examination (i f necessary).
6. Use only the paper provided for answers.

/ , '7. Print your name in the upper right-hand corner of the first page of each section of the answer sheet.

B. Consecutively number each answer sheet, write "End of Category __" as appropriate, start each cs.tegory on a new page, write gnly gn gng sidg (p

J of the paper, and write "Last Page" on the last answer sheet.

9. Number each answer as to category and number, for example, 1.4, 6.3.

10.* Skip at least' thtgg lines,between each answer.

11. Separate answer sheets from pad and place finished answer sheets face down on your desk or t ab l e). s 12." Use abbreviations only if they are commonly used in facility litetatute.
13. The point value for each question is indicated in parentheses after the question and can be used as a guide for the depth of answer required.

14.,Show all calculations, methods, or assumptions used to obtain an answer

, to mathtmatical problemn'whether indicated in the question or not.

15. Partial. credit may be given. Therefore, ANSWER ALL PARTS OF THE CUESTION AND DO NOT LEAVE ANY ANSWER BLANK.

s

. 16. If parts of the ep. amination are not clear as to intent, ask questions of the examLnet only..

I

17. You munt sign the statement on the cover sheet that indicates that the work is your own and you have not received or been given assistance in coincl eting the ex amination. This must be done after the examination has b een" 'c omp l et ed .

e r

't

, - . . - _ _ . - - - , - . - - - , _ . - . - - , - - - , . - - - - + - - - ~

r 9

10. 'When you complete your examination, you shall
a. Assemble your examination as follows:

(1) Exam questions on top.

(2) Exam. aids - figures, tables, etc.

(3) Answer,pages including figures which are part of the answer.

b. Turn in'your copy of the examination and all pages'used^ to answer the examination questions.
c. Turn in all scrap paper and the balance of the paper that you did not use for answering the questions.

1

d. Leave the examination area, as defined by the examiner. If after leaving, you are found in this area while the examination is still in progress, your license may be denied or revoked.

l

. \

9 f e

s e n- m- - -

1 12__ PRINCIPLES OF NUCLEAR POWER PLANT OPERATION i PAGE' 2

. THERMODYNAMICS g _ HEAT TRANSFER AND FLUID FLOW

~

l

. s. ..

l l

QUESTION 1.01 (1.00)

During a reactor startup in a subcritical reactor, the first reactivity addition caused count rate to increase from 10 cps to 16 cps. The second reactivity addition caused count rate to increase from 16 cps to 32 cps.

Which of the following statements describing the relationship between the first and second reactivity additions is correct?

a. The first reactivity addition was larger.
b. The second reactivity addition was larger.

t

c. The first and second reactivity additions were equal.
d. There is not enough data given to determine relationship between reactivity values.

QUESTION 1.02 (1.00)

The reactor is critical at 10,000 cps when a S/G PORV f ails open.

Assuming BOL conditions, no rod motion, and no reactor trip, choose the answer below that best describes the values of Tavg and nuclear power for the resulting new steady state. (PDAH = point of adding heat).

a. Final Tavg greater than initial Tayg, Final power above POAH.
b. Final Tavg greater,than initial Tavg, Final power at ,

POAH.  ;

c. Final Tavg less than initial Tavg, Final power at POAH.
d. Final Tavg less than initial Tavg, Final power above POAH.

l l

(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)

l i

I

11__EBINCIELES_QE_ NUCLE 96_EgyEB_E6@NI_ GEE 691]QN r PAGE 3 IBEBdQQYNSDJCS i _bEeI_IBeNSEgB_eNQ_E(ylp_E6QW QUESTION 1.03 (1.50)

Indicate whether the following will cause the power range instrument to be indicating HIGHER, LOWER or the SAME as actual power, if the instrument has been adjusted to 100% based on a calculated calorimetric.-

a. If the feedwater temperature used in the calorimetric was higher than actual feedwater temperature.
b. If the reactor coolant pump heat input used in the calorimetric is omi tted.
c. If the steam flow used in the calorimetric was lower than actual, e

OUESTION 1.04 (1.00)

Attached Figure # 219 shows a power history and four possible xenon traces (reactivity vs time). Sel ec t (a, b, c, or d) the curve that correctly displays the expected xenon transient for the given power history.

t QUESTION 1.05 (1.00)

Which of the f ollowing correctly describes the projected changes in the worth of the Control Banks during cycle 47 BANK A BANK B BANK C BANK D at Constant Constant Increase Increase D. Decrease Increase Increase Constant .

c. Constant Decrease Increase Constant
d. Increase Increase Increase Increase
e. Increase Increase Constant Decrease QUESTION 1.06 (1.00)

For the Cycle 4 core, what is the main core design reason that the pellet swell and clad creep effects override the Pu-240 buildup /U-238 depletien effects and make the Doppler Only Power Coefficient less negative?

(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)

I Iz__E81NQlELES_QE_NUQ(E@8_EQWE8_E(@NI_QEEB@IlgN t PAGE 4l ISEBdQDYN@d1QSt _bE@I_IB@NSEEB_@NQ_E(UlQ_E(QM l

QUESTION 1.07 (1.50)

Describe what happens to the following when their condition at the inlet

.to a REAL turbine is compared to their condition at the turbine outlet. ,

(i . e. Increase, Decrease or No Change) 1 a) Enthalpy (0.5) b) Entropy (0.5) c) Quality (0.5)

QUESTION 1.08 (1.00) a) What is the most significant method of Xenon removal while at low power l evel s?

b) What happens to samarium concentration for the first week after an increase in power level to 100% from 50%?

QUESTION 1.09 (1.00)

Unit A is at EOL while Unit B has just been 1 started up af ter a ref ueling.

Assuming a rod speed of 48 spm, both reactors are taken critical by pulling in 50 step increments and waiting 60 seconds before pulling again.

Assuming all systems and parameters are identical at the commencement of the startup, and both units are initially shutdown by 2% (delta k/k):

a) Which Unit will have the highest source range counts when criticality is reached?

b) How will critical rod heights compare in the two Units?

QUESTION 1.1O (.4 root" (

  • a)

~

Whi h pow defect ',ijVt b e m "

tributout'o the T6fhl Mrjefg ap#EOL?

b) What is the major cause of the existence of a void defect?

(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)

1___EBINCtg6ES_QE_ NUCLE @@_EQWE8_E(@NI_QEEB@IlQNt PAGE 5

., 16E8599YN@dlCgg_dg@l_18@NEEg8_@NQ_E(Q1Q_E(QW QUESTION 1.11 (1.50)

List the three main sources of fission neutrons in the core at end of life and indicate their approximate contribution (in %) to power.

QUESTION 1.12 (2.00)

List the four factors that cause the Doppler Power Coefficient to change over core life and indicate for each of these factors whether they make the Doppler Power Coefficient MORE or LESS NEGATIVE.

i QUESTION 1.13 (1.50) a) Assuming a SBLOCA has occurred, what two FLUID FLOW related factors and what two HEAT TRANSFER related factors will dictate the behavior of RCS pressure? (1.0) b) What is the driving force for the flow out of the break? (0.5)

QUESTION 1.14 (1.00) s

' List the four most significant causes of Non-condensible gas formation in the RCS during the first hour f ollowing a LOCA. Assume the PZR empties after several minutes and forced convection flow is not available. Also, pressure does not drop to a level requiring any SI tank to' inject and fuel rods have not ruptured. _

QUESTION 1.15 (1.00)

When performing a reactor startup to full power that commenced 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> after a trip from full power equilibrium conditions, a 2%/ min ramp rate was used. If a O.5%/ min ramp rate was used instead, how would that affect the magnitude and time of occurrence of the xenon concentration dip?

QUESTION 1.16 (1.50)

What are the two factors associated with the energy at which delayed neutrons are born that affect the value of Beta Bar Effective and what effect do they have?

(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)

Iz__EBINCIELES_QE_NQCLE@B_EQWEB_EL@NI_QEE8911gN i PAGE 6 ISE8DQQYN@DICS 1 _bE@l_IBBNSEEB_@NQ_ELylp_E699 4

. QUESTION 1.17 (1.00)

If reactor power increases from 50% to 100%, the average flux in the reactor doubles. With this average flux increase, why does the rod worth remain essentially constant.

QUESTION 1.18 (2.00)

Unit I has just restarted f ollowing a ref ueling outage while Unit 2 is near EOL. Answer the following regarding the differences in plant response between the two units (explain your answers):

a) At a steady power level of 10EE(-8) amps during a startup, equal reactivity additions are made (approximately 100 pcm). Which Unit will have the LOWER steady state startup rate?

b) At 50% power, a control rod (100 pcm) drops. Assuming NO RUNBACK or OPERATOR ACTION, which Unit will have the HIGHER steady state Tavg?

QUESTION 1.19 (2.00)

a. During natural circulation, EXPLAIN how it is possible to form a bubble in the reactor vessel head when indications show that the RCS is subcooled?
b. How will pressurizer level respond, (INCREASE, DECREASE, or REMAIN THE SAME) if the backup heaters are energized with a bubble in the reactor vessel head? Assume normal pressurizer level and briefly EXPLAIN your -

answer.

QUESTION 1.20 (1.00)

The attached figure shows the change in pressure across a pressurizer PORV and its associated upstream and downstream piping for various valve positions. EXPLAIN why the major pressure drop occurs in piping segment P1-P2 when the valve is slightly open, whereas the major pressure drop occurs in piping segment P2-P4 by the time the valve is fully open.

(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)

i

li__E81NQlELEg_QE_NgQ(g@B_EQWE8_E(@NI_QEE8@l1QN s 'PAGE 7

-.~ ISE85QQYN@d1Ggg_dg@I_IB@NSEg8_@NQ_E(ylp_E(QW QUESTION 1.21 -(1.50)

' Attached is a' typical boiling curve for water as it approaches, then exceeds, the DNB point. What are the thermodynamic conditions that cause:

a) The decrease in heat transfer rate in Region III?

b) The increase in heat transfer rate in Region IV?

QUESTION 1.22 (2.00)

Using the attached drawings, explain why the parameters.below exhibit the behavior represented on the graphs which show the response to_a rapid 50%

load decrease from rated power with rod control in AUTOMATIC and Steam Dumps to the Condenser. UNAVAILABLE. Assume NO operator action.

a) Why does rod motion stop at point 87 (.75) b) Why are there oscillations in steam flow, feed flow and S/G 1evel at points11-137 (1.25) 4 QUESTION 1.23 (1.00)

~

The calculated shutdown margin is 10% delta %k/k, assuming the most reactive

-control rod. worth is.1000 pcm. The Source Range count rate is 50 cps. The Shutdown Banks' rod worth is 5600 pcm. Calculate the final count rate after the Shutdown Banks are fully withdrawn. Show all work.

i i

(***** END OF CATEGORY 01 *****)

_ _ . . . _ _ _ _ _ = _ . _ , , . _ , _ _ _ . . _ . . , _ _ _ _ _ _ . - _ _ _ _ , _ . _ . . , _ . . . _ _ _ _ _ _ _ _ _ . _ . _ . _ . _ _ , . . . ,_

2 3__P(9NI_DESl@N_lNCLUDIN@_S9EEIY_9ND_EDERGENCY_@Y@lEDE PAGE O

.q~

QUESTION 2.01 (1.00)

RHR-inlet i sol ation valves 74-1 and 74-2 each have an independent RCS pressure transmitter associated with them. Which of the following statements describing.the effects of the transmitter associated with 74-1 failing high is correct?

a. If both 74-1 and 74-2 are open, they will shut.
b. If open, 74-1 will shut and if closed, 74-2 will not be able to be opened.
c. If both 74-1 and 74-2 are shut, neither one will be able to be l~ . opened.

I

d. If open, 74-1 will shut, but 74-2 can be positioned as desired.
e. 74-1 can be positioned as desired by the operator, but 74-2 will not be able to be opened if it is shut.

QUESTION 2.02 (1.00)

, Which of the following statements concerning the automatic isolation of component cooling water RCP thermal barrier flow is. correct?

a. High flow sensed in an individual thermal barrier return line will automatically close its Andividual return line isolation valve.
b. High flow sensed in an individual thermal barrier return line will automatically close the combined return line isolation valve. _
c. High flow sensed in the combined thermal barrier return line will automatically close all three individual return line isolation valves.
d. High flow sensed in the combined thermal barrier return line will automatically close the combined return line isolation valve.

1 l

l

(***** CATEGORY O2 CONTINUED ON NEXT PAGE *****)

- 2.__PL@N1_@@@l@N_lNCLy@lN]_@@ Eely _@Np_EDER@ENCy_@y@IEd@ PAGE 9 QUESTION 2.03 (1.00)

Which of the f ollowing statements correctly describes how to reset the MECHANICAL overspeed on the turbine driven AFW pump?

a. Manual l y driving in the limitorque to the closed position will automatically relatch the linkage,
b. It must be reset locally by using a lever to relatch the linkage,
c. It will reset automatically as turbine speed decreases below a pre-determined setpoint.
d. It may be reset locally, but can also be reset from a switch on RTGB 102 in the control room.

QUESTION 2.04 (1.00)

Which valve listed below is used to throttle auxiliary spray flow?

. a. FCV-62-93 (Charging FCV)

b. Spray valve from Loop 1
c. Spray valve from Loop 2
d. FCV-62-84 (Auxiliary Spray Valve)
e. You cannot throttle auxiliary spray s

QUESTION 2.05 (1.00)

Which of the following describes the basic flowpath through the Hydrogen Recombiners? --

a. Mixing chamber, pre heater, recombination region
b. Mixing chamber, recombination region, heater section
c. Pre heater, recombination region, mixing chamber
d. Pre heater, mixing chamber, recombination region
e. Pre heater, mixing chamber, heater section 4

(***** CATEGORY O2 CONTINUED ON NEXT PAGE *****)

2___P(@NI_ DESIGN _lNC(UDING_g@ Eely _@ND_ EMERGENCY _@y@lEM@ PAGE 10 i

QUESTION 2.06 (1.00)

Which one of the following correctly describes the detector construction of a Particulate, Gas, Iodine (PIG) radiation monitor 7 a) One scintillation detector utilizing three different energy bandwidths (windows) for sensitivity to different isotopes.

b) One scintillation detector utilizing two different energy bandwidths for particulate and Iodine detection and a GM tube for gaseous detection.

c) Two separate scintillation detectors for particulate and Iodine detection and a GM tube for gaseous detection.

d) Three separate scintillation detectors for each monitored group of radio _nuclides.

QUESTION 2.07 (1.50)

Indicate whether the following CVCS valves will FAIL OPEN, CLOSED or AS IS on a Loss of Instrument Air.

42 #t )

a) Low Pressure Letdown Valve (PCV-t454 b) Charging Flow Control Valve '"CV 121 (Fe v_4 2-43>\

c) Letdown Orifice Isolation Valves (GV-3CO ^., S6 (fcv -c.L it,75,74)

QUESTION 2.08 (2.50) ,

Match the RCS penetrations in Column A with the appropriate RCS loop _

segment listed in Column B. (column B items may be used more than once and more than one response per penetration may apply)

Column A Col umn B

a. Excess Letdown 1) Loop 1 cold leg
b. Pzr Surge Line 2) Loop 1 hot leg
c. Alternate Charging 3) Loop 2 intermediate leg
d. PZR Spray Line 4) Loop 2 cold leg
e. RHR Suction 5) Loop 2 hot leg
6) Loop 3 cold leg
7) Loop 3 hot leg B) Loop 4 cold leg
9) Loop 4 intermediate leg
10) Loop 4 hot leg

(***** CATEGORY O2 CONTINUED ON NEXT PAGE *****) i

2 __PL@NI_DE@lGN_lNCLUDIN@,[@[Ely_@ND_EMER@ENCY_@y@lEME. PAGE 11 QUESTION 2.09 (2.00)

List the four AUTOMATIC trips of the AFW Terry Turbine trip and throttle valve and whether the trip has to be reset MANUALLY or NOT.

QUESTION 2.10 ( .50)

What is the source of power for the automatic field flash of the emergency diesel generators?

QUESTION 2.11 (1.00)

What is the Main design purpose of the flow restricting nozzle in the Main Stean Lines?

QUESTION 2.12 (2.00) a) For_ the f ollowing loads, indicate what combination of ERCW headers (1A, 1B, 2A and/or 2B) is the NORMAL source of cooling water:

1) CCS Heat Exchanger "C"
2) EDG Heat Exchanger 2A-A
3) Containment Spray Heat Exchanger 1R b) What 5 criteria / interlocks must be met for ERCW pump KA to auto start?

QUESTION 2.13 (1.00)

Answer the f ollowing questions regarding the Pressurizer Pressure Relief System:

a) What is the purpose of the loop seal associated with the Safety Valves?

b) TRUE or FALSE: The safety valve inlets ALL tap off a common line which penetrates the upper head of the pressurizer.

I (***** CATEGORY O2 CONTINUED ON NEXT PAGE *****)

2.__E60NI_DE@l@N_lNCLUQ1NQ_@@EEIY_@ND_EME8@ENCY_@Y@lEM@ PAGE 12 9

e QUESTION 2.14 (1.00)

Provide the system pressures at which the following ECCS components will start to inject f ollowing a LOCA: (use criteria stated in EOPs) a) SI Pumps b) RHR pumps c) Upper Head Injection QUESTION 2.15 (1.50)

List the three interlocks which must be met, including applicable setpoints for switchover to the Recirculation Mode of core cooling to occur.

QUESTION 2.16 (1.25)

Where are 5 thermal sleeves associated with RCS penetrations located?

QUESTION 2.17 (1.00)

What 4 different ECCS related components are tagged out at low pressures to help prevent inadvertant over pressurizatien at low temperatures?

QUESTION 2.18 (1.00)

List the four locations from which the Post Accident Sampling System can draw samples.

QUESTION 2.19 (1.5^7di- A' a) Describe the order of processing elements in the Air Cleanup Units through which air is drawn by the Air Cleanup Subsystem. (

b) How are the processing elements in an INACTIVE air cleanup unit loaded with radioactive material kept cool? (0.5)

(***** CATEGORY O2 CONTINUED ON NEXT PAGE *****)

Zz__P($NI_DE@lGN_ INCLUDING _S$FEly_gND_EDERGENCy_SygIgdg PAGE 13 QUESTION 2.20 (2.25) a) Describe the runback process that occurs with the Main Turbine when the OT Delta T setpoint is exceeded? (1.0) b) List the two secondary runback causes c7d the process by which their J

runback occurs. (1.0) c) What does the reference indicator show after a secondary runback? (.25)

QUESTION :2.21 (1.50)

Recent modifications to the S/G PORVs added manual operator extensions for remote operation of the valves on 2 S/Gs.

a) Which 2 S/Gs were affected by this modification? ( 0.' 5 )

b) What is the basis f or this modification? (Include discussion of why only 2 S/G PORVs were modified)

C.Td)

QUESTION 2.22 H . GG) tWhof DescribeVthe flow paths f or hot leg recirculation, f rom the recirculation sumps to the RCS. Identif y major components and any valves which can be operated from the control room. (Use only the A Train)

QUESTION 2.23 (1.50) -

Provide the bases for the following precautions relating to turbine and generator operation during a plant startup:

a) Operation at less than 5% rated load should be avoided.

b) The main generator field should not be energized at less than 90%

rated speed.

c) EHC fluid should be > 70 degrees when starting an EHC pump.

l (***** END OF CATEGORY O2 *****)

I

_,--e , o - , ., - .r- 7 -----,..,,---,.r ---g - -+--m

3___ INS 189dENIS_@ND_ CONI @DLS PAGE 14

. I QUESTION 3.01 (1.00)

Which statement below regarding pressurizer pressure control . is correct?

a. ALL 4 channels provide input to the SI low pressure signal.
b. ALL 4 channels can be utilized to control the operation of the spray valves.
c. ALL 4 channels send their si gnal s through an Isolation Amplifier after supplying input to their respective protective circuit.
d. ALL 4 channels can supply input to PORV Interlock circuitry to prevent PORVs lifting at low pressures.

QUESTION 3.02 (1.00)

What set of signals below are sent to the Reactor Protection System to indicate a Turbine Trip?

a. Stop valves closed b Auto Stop Oil pressure low
b. Stop valves closed & EHC pressure low
c. Governor valves closed & Auto Stop Oil pressure low s
d. Governor valves closed & EHC pressure low M

e

(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

3i__INgIBUMENID_$Np_CQNIBQL@ PAGE 15 QUESTION 3.03 (1.00)

Which one of the f ollowing describes how the AFW system is prevented from feeding a faulted S/G?

a) Operator action is required to isolate AFW when a faulted S/G is detected.

b) Pressure switches on the AFW discharge lines will automatically close the loop level control valves when low AFW discharge pressure is detected.

c) Level transmitters on the S/G wide range level instrument will automatically close the loop l evel control valve when a low

< level is detected in a S/G.

d) Flow transmitters on the AFW discharge lines will automatically close the loop level control valves when excessive flow is detected in AFW discharge piping.

QUESTION 3.04 (1.00)

Which one of the graphs A-D in figure 603 correctly depicts the Pressurizer Pressure control system, Master Controller output signal, based upon the demand signal shown?

s QUESTION 3.05 (1.25)

Describe what happens to the coils associated with the CRDMs and what

, 2 alarms / indications actuate on an Urgent Failure of the rod control _

system.

DUESTION 3.06 (1.50)

Indicate whether the f ollowing situations will ARM ONLY, ARM AND ACTUATE or HAVE NO EFFECT on the steam dump system.

a) 80% power, 7.5%/ min ramp decrease in turbine load for 3 minutes, Tavg> Tref by 7 degrees F, steam dumps in Tavg mode of operation b) Hot Zero Power, Tavg=549 degrees F, steam dumps in STM PRESS mode with 1005 psig set into the steam pressure controles, steam dumps in

, Tavg mode.

c) Turbine trip, Tavg=542 degrees, steam dumps in Tavg mode

(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

1___INSIBUMENIg_QND_QONIBOLS PAGE 16 QUESTION 3.07 ( .50)

TRUE-or FALSE: If the upper detector on a power range NI fails low while at 75% power, the operation of the upper detector current comparator is defeated.

QUESTION 3.08 (2.50)

Match the following reactor protection and control signals in Column A to their associated logic coincidence in Column B.

COLUMN A COLUMN B

a. 2 loop loss of flow trip (per loop) 1. 1/2
2. 2/2
b. P-6 (SRM turn-on on power decrease) 3. 1/3
4. 2/3
c. P-12 (Lo-Lo Tavg on temperature decrease) 5. 1/4
6. 2/4
d. Pzr high pressure trip (pressure increase) 7. 3/4
e. PRM high power rod stop (power increase)

QUESTION 3.09 (1.50)

While at 100% power with rod control in automa, tic, the Turbine Impulse Channel supplying the rod control logic fails high. What is the ef f ect on the following rod control system components?

a) Variable Gain Unit -

b) Tavg-Tref mismatch c) Rod speed QUESTION 3.10 (1.25)

Fill in the blanks below in the statement regarding Nuclear Instrumentation requirements for critical operations:

The minimum number of operable Power Range instruments to proceed to critical oper ati ons i s _____. It is required that when greater than the P-6 setpoint, _____

Intermediate Range channels must be operable prior to exceeding _____ % power. If at 20% power and both IR channels are inoperative, then Tech Specs require ________________.

(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

-3 __INEIBUDENI@_@ND_CQUIBgL9 PAGE 17 QUESTION 3.11 (1.50)

What 4 signals will automatically initiate the operation of the Auxiliary Building Gas Treatment System?

QUESTION 3.12 (1.50)

List ALL of the signal inputs to the OT Delta T trip point calculator.

QUESTION 3.13 (1.75)

List ALL the Main Steam Isolation Signals and their setpoints.

QUESTION 3.14 (1.00)

What are the 2 inputs into the Rod Insertion Limit (RIL) circuitry?

QUESTION 3.15 (1.50)

An SI signal was generated du a transient caused by an undervoltage condition on the 2A-A 6. Bus. During this transient, the 2A CHG Pump breaker stayed clos ausing an EDG lockout.(all other loads were removed)

What 5 actions the operator take to load equipment on that bus using the 2A-A ED QUESTION 3.16 (1.50)

After making a containment entry prior to refueling, the supervisor making the entry reports he cannot hear the SR Audio Count Rate speaker inside containment. You then note that you can no longer hear a count rate in the control room either. List 3 switches / controls (including location) that may be out of position causing the problem w/ the containment audio count rate.

9

(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

3___INSIBUMENIS_9ND_CgNI69LS PAGE 10 b

QUESTION 3.17 6+r*JCrT b*

a) Aside from operating the control switch or breaker, list the.4 devices which directly cause a RCP trip. Be specific in identifying relays which cause the RCP to trip.

%(.,* ?T) b) Why is there a 120 second time delay in starting a RCP once oil lift pressure has reached a sufficient pressure? (0.5)

QUESTION 3.18 (2.50)

Describe all events / alarms that occur due to the following instrument failures until the reactor either trips or stabilizes. Assume no operator actions and all controls are in automatic, a) Pressurizer Level Reference Signal (Tavg) fails high while at 50% power. (0.75) b) Selected Secondary Pressurizer Level Control Channel signal fails low while at 70% power. (1.75)

QUESTION 3.19 (1.00)

Unit 1 is at 60% power with all controls in au.tomatic, operating normally when Pzr Pressure protection Channel III is taken out of service for testing (all associated bistables are tripped). Subsequently, the upper detector f or NI42 f ails HIGH. What happens to the turbine? Explain your answer. -

QUESTION 3.20 (1.50)

Describe the operation of the 6.9 VAC Emergency Bus Degraded Voltage Protection System. Include in your di scussi on coincidences, setpoints and any time delays that apply.

QUESTION 3.21 (1.00)

Explain why the turbine control pattern is not linear in the IMP OUT

, mode of operation while it is in the IMP IN mode. See attached drawing.

(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

L.__INSIBLJDENIO_9ND_CQNIBgLS PAGE 19 '

t QUESTION 3.22 ( .75)

Describe the-recent modification made to the reactor trip breakers that )

affects the 125 VDC' input and the reason for this modification.

i a

s 1 4 1

4 (***** END OF CATEGORY 03 *****)

1 2

. , _ , - . , , . - _ , , , _ . . _,, m_-,o .-.,,,m.-.

4 2__EBgCEQUBES_ _Ng8M9L _9BNg80961_EDE8GENCy_@NQ g PAGE 20

.. B9919LQGlC@b_CQN189L T

QUESTION 4.01 (1.00)

Which one of the following situations does NOT require emergency boration per ADI-34.A, " Emergency Boration"?

a) One rod stuck in the f ully withdrawn position f ollowing a rx trip.

b) ROD BANK D LOW LIMIT alarm actuates as rods are driving in automatically.

c) A steady, sustained increase in source range counts with keff=.95 with no rod motion or planned dilution in progress.

d) RCS Tavg falls below 525 degrees at a rate of 30 degrees /hr after a reactor trip. (No manual cooldown in progress)

QUESTION 4.02 (1.00)

Which one of the following conditions are the correct MINIMUM requirements for starting "B" RHR pump while swapping RHR pumps during normal MODE 5 operations?

Pump A status RCS Level a) On 695' b) Off 695' c) On 695' 6" s d) Off 695* 6" e) On 696' QUESTION 4.03 (1.00)

Which one of the following is addressed in FR-2.2, " Containment Fl oodi ng ",

as a potential source of excessively high containment sump l evel s?

a) Condensed steam from a steam break b) RCS water from a LOCA c) RWST d) Accumulators e) CCW D

(***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)

'4 2__PBQCgpUBES_ _NQ809L _@BNg8D@L t _gDg8GENCY_@NQ 2 PAGE 21 RADIOLOGIQ96_QQNTRQL

, QUESTION 4.04 (1.00)

Which one of the following statements correctly describes the use of NOTES and CAUTIONS in an EOP?

a) BOTH Notes and Cautions apply ONLY to the step which they precede (Unless otherwise stated in the Note / Caution).

b) Notes apply ONLY to the step they precede, whereas Cautions apply to ALL subsequent steps (Unless otherwise stated in the Note /

Caution).

c) Notes apply to ALL the steps they precede, whereas Cautions ONLY apply to the step they precede (Unless otherwise stated in the Note / Caution).

d) Notes and Cautions apply to ALL steps which they precede (Unless otherwise stated in the Note / Caution).

QUESTION 4.05 (1.00)

The loss of which one of the following 125 VDC Vital Battery Boards will cause a reactor trip and also number 2/4 S/G MSIVs and main feed regulating bypass valves to close?

a) Unit 2, Board I s b) Unit 1, Board II c) Unit 2, Board III d) Unit 1, Board IV QUESTION 4.06 (1.00)

Which one of the f ollowing correctly illustrates the behavior of the listed parameters during the first 30 seconds after a reactor trip due to a RCP Locked Rotor (NO Shaft Break) above the P-B setpoint?

Pressurizer Pressure Pressurizer Level RCP Amps a) Increase ,

Increase Increase b) Increase Increase Decrease c) Increase Decrease Decrease d) Decrease Increase Increase e) Decrease Increase Decrease t

(***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)

-4. PROCEDURES - NORMAL _ABNORMALg_

i EMERGENCY _AND PAGE 22

, ' RADIOLOGICAL CONTROL QUESTION 4.07 (1.00)

How long should it take, according to ADI-34A, " Emergency Boration", to reach Hot Shutdown Conditions (Approximately 1*/. shutdown ) from full power with no rods inserted, after emergency boration (at 75 gpm) has been initiated?

.a) 5-8 minutes b) 10-13 minutes c) 15-18 minutes d) 20-23 minutes e) 25-28 minutes QUESTION 4.08 ( .50)

TRUE or FALSE: The turbine should be tripped as an immediate action if the reactor trip breakers fail to open upon a legitimate trip signal.

QUESTION 4.09 (1.00)

Indicate whether each of the following statements regarding EOP usage is TRUE or FALSE:

\

a) If an expected response of an EOP can NOT be verified and the Response Not Obtained action can NOT be performed, the operators may continue with the procedure.

b) If a task is in progress when a transition to another procedure takes -

place, that task need NOT be completed.

QUESTION 4.10 (1.00)

Indicate whether the f ollowing statements are TRUE or FALSE:

a) Neglecting emergency situations, it is not permissable for a TVA employed individual to receive occupational exposure during a calender quarter if he has already received 3 Rem during that time.

b) An RWP is necessary to enter a Regulated Area.

(***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)

4t_,P60gEQQ6[@_;_NQ@d@(t_@gNO@d@(t_[ DEB @@NQy_@NQ PAGE 23

_.. BeQ196001Ge(_QQNIBQ(

QUESTION 4.11 (1.00)

Put the f ollowing actions associated with starting the FIRST Control Rod Drive MG set in the correct order:

1) Flash the field
2) Close the Auxiliary 150 VAC supply breaker to rod drives
3) Adjust generator voltage
4) Close the motor circuit breaker
5) Close the generator circuit breaker QUESTION 4.12 (1.50)

If a fire is reported to the control room (Assume no fire alarm actuated):

a) What information must be obtained from the caller? (0.5) b) What 4 immediate actions / verifications are required in accordance with AOI-30, " Plant Fires"7 (1.0)

QUESTION 4.13 (1.50)

Give the location of the following support menters that are manned during a plant emergency a) Local Recovery Center b) Technical Support Center c) Central Emergency Control Center (CECC) -

QUESTION 4.14 (1.25)

As stated in the facility's ALARA program, what are the FIVE MINIMUM requirements to be included in pre-job ALARA planning and which should be included by the cognizant supervisor on the pre-job ALARA planning report?

QUESTION 4.15 (1.00)

Subtriticality and Core Cooling are the two highest priority CSF Status Trees to monitor during accident conditions. List the remaining 4 CSF Status Trees in DECREASING order of priority.

(***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)

4t__PBQQEQU6ES_;_NQBd@(g_@BNQBd@(t_EdE6GENQY_@NQ PAGE 24 L

.. 609196QG1G06_QQN18QL QUESTION 4.16 42.2 1 b'# gh 5 Y' What are all the immediate a ions / verifications if there is a need to evacuate the control room e to the presence of smoke in the control room?

Assume the reactor and rbine have been tripped already.

QUESTION 4.17 (2.00)

What are ALL the actions contained in the RESPONSE NOT OBTAINED column in FR-S.1, "ATWS", for the steps listed bel ow? Ensure you discuss any contingency actions stated within the RNO step itself.

a) Turbine is NOT verified as tripped.

b) Pressurizer pressure exceeds 2335 psig.

QUESTION 4.18 (1.50)

List 5 acceptable methods by which Independent Verification of electrical breaker alignments may be accomplished.

QUESTION 4.19 (1.00) s Why is the S/G atmospheric PORV NOT isolated while perf ormi ng E-3, "SGTR",

but is only verified shut < ,1040 psig and that its controller is in AUTO 7 QUESTION 4.20 (1.00)

EOP E-3, "SGTR", requires the operator to maintain AFW flow to the ruptured S/G until narrow range level is established. Provide two reasons for this procedural requirement.

QUESTION 4.21 (1.50)

List the 5 criteria that are verified in accordance with the EOPs to ensure that Natural Circulation exists.

(***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)

..m v

4 ~ , . - -ee.s.e.i- ww ,,e m besamenxemann

--$ _ N A Ys _ WIht- A . Ab41**h_ W E W "4 m li k3 .

8sst.Wmoro ._Anaec_stLoneennjn. Lwr

@ 'f 1Wt_jogneot JwM_,_Akc 3Wxsf' _rwWke A McPt_WevL j $6#X J M L 181M6B. (l.9)

_b) mr s mm pou ex-m ,"e m _ w

_Smssiswm." 4aun/kawa w ow= _

-- a cc anw m a tw swu w r.a w m w

- fo K.0!L_ heMWMMCBerst!K_? 0t0

___ w __

. -*e. u asm.hww*e. '-

w  %---n---summ---gir=--en-mm- e-= mer,-

ne,-en==.gime-- -w-m e ee - ameeame simmme.wp m- --ememeauu-_-- -eevi -w hams,.- e* ahaum umm4 m. aus+ em Tw a--mm-'swwa-mmmm-se wt'e-+a***t-=-==weemme-e<=m-m.- amm nee -m e m - me a w , em i-p-a.emmaaem.mee.egnea-J--ee-en-eam-. es.m-=em e-- am---eesN+e-- -m-aum----a-.em= u.*m.-------+%A+

.a..--... - . . . . . . ma e.m.-->-. e. - -gw + as, u .-m -i__,ww- w.,.*ammm.me . se 4-e.,, ,we e. ---+----.g--.-h-

. A me w... 4y,--.ww---. ---. - e--mmwa -- ,-.e- . -- -- ... ,,,e4%.- = - - - -- , -- .*---.,*--ww--e.w.---ge-we.---m Wem.--r*e+-.=m. - - -e- . .a.---. . . = - - - -+ i-=-- #w, - - - - ..- , -u-. -- .. + - - -* . . * - - - --- + + .-- - .- - ----we*w- -

  • w- - * - -----e re a l-mu=umpwM is m**e = w W+ ens -w e,--e-w--*+,=.-m..-- - + - - - -wa-.--- -- =- - -*%- *i--*--=-w--a== -

% sew =-- e w e-e-. e--e--

s -w= --wow-9-*we-a-eh--,-a-- + - ---g-.---== .N.-me=-

low-w ww.em.w,,m_m.--,4 - t . #- -.. .e- .-__,rw-m . ,.--s - . -.,o,_ -= - -.,-, , - - - . ,e- . .- -e-. .

iw ege. g ,4,-. - , m- .,,, - - - - - - + - , .-,w, +-e . . . ,* , . e. ..mem+.

- , -i .- *4.-. .- .- --  %, -- -

.-mw.---e+.-o.ewa

, -w- - - , .-. .%._m,.,  % mae ge.------.p._,, - - , . _ _ - , _ m_ . - , m _.#e,m-.mmw.--,-.m.,ee nm emM,,e.ma m4m,.-.-

e < - - >--M-=6 -e- , - .~ , -.% *. . ,w --n.-we.i- ,.,q

_ew-e,wa-ae, - e -- .* ,- - +- - .- -- - w-. -

.w.-mew, 4. 6- .m,'-- wm.e-~mve4e,.s.-w we . - -_- - . - , ._-.+-- s- --e-- , - - -- ,-+--. - - , - . --- ,.- ,.- -.-:-- a,-..,

-a . .. .s,.+,.es -a n-.---+e%..- 4 e-.wn

Oz__PROCEDyRgg_ ,NQRMAL t_AgNgRMA(x_gMERGENCy_AND PAGE 25

. . BenioLogiceL_QQNISQL DUESTION 4.22 (1.00)

What is the major ADVANTAGE and the major DISADVANTAGE of using ES-3.3,

- " Post SGTR Cooldown by Ruptured S/G Depressurization"?

QUESTION 4.23 (1.50) 4DI-23, "RCP Seal Abnormalities", states that the #2 seal should last 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> under full system pressure. Why then does this procedure require shutdown of an RCP within 30 minutes of shutting the #1 seal leak-off valve?

QUESTION 4.24 (1.00)

What is the purpose of the precaution in ADI-27A, " Control Room Inacessa-bility", that states "....if the evacuation is for a fire in the Cable Spreading Room, place HC-13-204 and HS-13-205 (M-27B) to TRIP" ?

QUESTION 4.25 (1.00) i Why is a MINIMUM of 0.2 gpm #1 seal leak off flow important when preparing to start an RCP7 Include in your discussiom the primary cause preventing establishment of this flow rate during startup, preparations.

9 4

m

(***** END OF CATEGORY 04 *****)

(************* END OF EXAMINATION ***************)

3 .

., :n s

ll

.g

s. j A

shuiv.

b t. -

. . . . . . . . . i i . . i i i O go AC 30 %D $C (t, 7C th SL '* , O 'E b ' br '% o Do , ,

T5M E (kowv S) ,

L F

s '.

Eq. . ,

g XENCQ ,

(COL '

.~

. . . e s u . . . a u - u. I i r ,

O to sc w ige sg,, ( c, yc bf. So to o 4t o 'tg S to %o 4 "S c.,

i \M E (%.,wvsh Eqwv .

hw =

1 %sc. - '

1

. . . , . . . .- > . i , , , . .

O to to 'do go so su to to % Vo 't o to 5%o 6 4. '5 5

TtMr ( h e.u - si .

f, e

c:

t e

Egs.sv - '9 h.n n -

bBC.

. . . . . . . . . . . . . . 1 ,

O lo. '40 *T O Yb I 5c 'Me '%g to 44 c SO 40 Cc i ' ta o ' tg 't o TtME (kow.9) '

l

. . \

l

%. A f T (.h

)

. bs 56"

( *le.) '

U 4 i . i e i g y , ,, .g.E , q g gg *mg N,*g 6g $$ bb b bb s b 8 %e O A& l s, t og g g i

TtME ( b, c wit v \ \, ,. c, FIG 7_I t 1.ot;

n- -

. g

f s 7

D kLyt t

j i f Pt ,

PS P4 .

. ppg 33uil1ZER 1 PftES$URl2FR fELIEF

. . TAN K i .l  ; . . .

6

-l ' *

i -

, t250pebs- AP M ,

i e ,

I / p 8 0 g UN WA 9 j

' I l

, i VALVE FUt.t OPEN I e s , e e i .

I

, l

,N .

e' i

N e i

i

! PRES I \\ I  !'

e a

j i

K. j l

1 q

i i

t.,

i ~ ~ 2.e ..'

' , .r:

i -

l mvc st nty oem irwerroco) , ,

t - * ,.

. e so w. j a - i <

P3 1

?:s  %

.J-M ISTANCE 9

" ' ' ~

y SGMin~P*Pb L CGmcw Pi-fV]

. . , FI6URE FND-FF-93: 6RAPHIC ANALYSIS OF A PRESSURE DROP ACROSS '

o .

C- )

A VALVE AND PIPING SYSTEM (REV. 1) l I

, 1 i

ea

  • ' 1

[, LQ

~

~ ~ - ', ,

, , S ,' ] L t o' t g l s 10-73 l I49C .

f

4.

t e

jb l

. l 7 ,

l l

m l IC6 ,

em DNB 3 ~~ o b  !

g T _. g__>_____

- ,t' 5 I l 10 E I m

I I ~

s

$a se---- I  : C ,

i II ---De - III : IE SINGLE-PHASE INUCLEATE PARTIAL FILM BOILING

$ CONVECTION / BO! LING FILM o

g 104 ,

f BOILING l"-

l 4 l

(

L b

N

/

I l

l. 2 i ir y / .

/

103 10 0 got go2 io3 io4 l ,

e AT ('F) l (TEMPERATURE DIFFERENCE BETWEEN FUEL ROD SURFACE AND f LATURATION TEMPERATURE OF THE COOL ANT) b-FIGURE FND-HT-102: BOILING CURVE AND DNB AT VARIOUS PRESSURES t

l. (REV. 1)

(. L I. -

i S-7 ogg3 PRESSy"Il2E2 @GESSU' E (PSli) CANK "A" Q@$$ (STEPS) NUCLEAR POW 33 (%) REN3CATCQ LCf.Cp (MW) -

4 l 1. ; l 1 :1 l l l ll l 11 i i I

I  !

I. I i I.!  !  !

g i lll I l

.- i ii I \

3 2 I 2 l l l l {

' i  ! l l .- \ \

ll \ \

' i .II I ($)__

8 1 \

I i i i W \ i

! i  ! I I N \ \

i

' i T l\ l \

i I l l I I II l

0 IYll bii l Il l i i ih lll 0 2235 2000 0 230 0 too 120 0 1200 1600 ,.

TR EF - Tava - ('F) PRESSURIZER LEVEL (%) CH ARGING FLOW (GPM) STEAM DUMP (% DEMAND) il ll

! a i .

3 l in i i3 2 I l iz  ;-  ! I 2 l i l I  !. I si 1 l i ..

j

~~i \'

l iiiiii i i i i l l 100 530 578 630 0 too o 200 0

f. 7 2 R R APID LO AD DECRE ASE - 100% TO 50%, NO STE AM DUMP

[ 0683

.... - > . ,.., ....->...., .~..._.m., ...._,_, {

i 3

ll l

! i '

I il

[

I! i i

i. t oi i, i i

O

\i l i ii b h ('F-I \ \\ 6 ii T \l '

i \1 \ l 1 N J l

\- } (I I O

I il I ,

1 I '

o s a .o too o teos taso 4

_ .. I i

I i i i i i i i?23 .

R APID LO AD DECRE ASE - 100% TO 50%, NO STE AM DUMP

e -

1

. en \

1 i

(

w

?

==

l

~~

~ ~E .

  • *E

<*J

. 3

.i 8 s  :

( -

10d100 W 3110W1NO3 g

g o .

10d100 W3110W LNO3 '*

w

.., D "'

k . .:

?

t -

\

\

. .: \.

a . e7 ..

I , >

.RE O l y Y

\ . - -

o '

" o i

a li I 8

~

8 Q 10d100 W3110W1NO3 g ryg w 3 q p ()$ % ))h PAGE 0.3.2-25

10 0 7-------- ______,,_ _,_____

  • l A, .,

ej CURVE B-it.: PULSE

. l I;! CHAMEErt P8 ESSURE . . -

FEED 8 ACK "IN SERVICE" g il.

VM.VE PC/NT za Wc il . -:

O  ;!

C q W -

c R 2: .'ll* - - - - - - - - - - - - - - 'Ib ),. d I s' w t l -

O I 2'

W Rl, C ; -- a } ./

CURVE A - I.'.tPULSE CHAMBER I

' PRESEURE FEEDSACK OUT CF C: 1-SERVICE "

w- i l

- 1 l

w

I I

. 2 I l [ -

, I I c a ' l l

i

.I

_I f~ f

.s i . I I l l -

G _. _ - j

'- -=. l- --

_ _ _ I P2 l FI NO LOAD l RATED LOAD "

PERCENT OF RATED GENERATOR OUTPUT '

' STE.*d.1 FLQ':l '

IMPULSE CHA.*.13 ER PRESSURE FIGURE-III-4.10 Impulae Chamber Pressure scr::us Lo:xl !!cforence 4

III-4.26 ENTO e sus Am m' _

M .. .. . . .

y . .ma- e ./' usio cuticiency n (Net work I out)/(Energy in) 2 j.,' ,

a o r;g s o V,t

  • 1/2 at 4

[ = mC~ -

KE = 1/2 mv . a = (Vf - 73 )/t A = An A = A,et PE = m9n ,

Vf = V, + at * = s/t a = an2/t1/2 = 0.693/t1/2 g , , .p A= nD 2

  • l/2'If
  • EIE1/)IIb ))

4 [(gl /2)

  • IIO))

t.E = 931 sm -

m = V,yAo -T.x Q = m,ah I = I,e Q = mCoat 6 = UA t. T I=I,e"*

Pwr = Wfah I = I, 10-*/ M TVL = 1.3/u -

sur(t) HVL = -0.693/u P = P,10 P = P,e* U SUR = 26.06/T SCR = 5/(1 - K,ff)

CR, = 5/(1 - K,ffx)

SUR = 26e/t* + (s - p)T CR j (1 - K,ff)) = CR 2 II ~ "eff2) i T = (L*/o) + [(s - oV Io] M = 1/(1 - K,ff) = CR j/CR, ,

T = a/(p - s) M = (1 - K,ff,)/(1 - K,ff))  !

T = (s - s)/(Is) SDM = ( -K,ff)/K,ff .j o = (X,ff-1)/K,ff = AKeff/X,ff t' = 10 seconos i

. I = 0.1 seconds-I o = [(L*/(T Keff)] + [a,ff /(1 + IT)] ,

I jd) = I d P = (reV)/(3 x 1010) I j d) 2 =2Id g2 2 2

I = eN R/hr = (0.5 CE)/d (meters)

R/hr = 6 CE/d2 (f,,g) ,

Water Parameters Miscellaneous Conversions 1 gal. = 8.345 lbm. 1 curie = 3.7 x 1010 0ps 1 ga[. = 3.78 liters 1 kg = 2.21 lem 1 ft* = 7.48 gal. 1hp=2.54x103Stu/hr Density = 62.4 lbg/ft3 1 m = 3.41 x 100 5tu/hr Density = 1 gm/cW lin = 2.54 cm Heat of vaporization = 970 Stu/lem "F = 9/5'C + 32 Heat of fusion = 144 Btu /lbm 'C = 5/9 (*F-32) 1 Atm = 14.7 psi = 29.9 in. Hg. 1 BTU = 778 ft-lbf 1 ft. H 2O = 0.4335 lbf/in.

e = 2.718 .

= =w==we

a

'f Volume, ft'/Itp (Mholpy,Gty/Its EMeepy,ths/lipaF Cetet Evep Sleem Wetet (vop Seeam

', Evep Steam Water

, . e a, a. as = e,o s 3305 3305 -0.02 1075.5 1075.5 0.0000 2.1873 2.1873 32 32 0.0885fr 0.01602 2948 2948 3.00 1073.8 1076.8 0.0061 2.1706 2.1767 35 35 0.09fr91 0.01602 0 01602 2446 2446 8 03 1071.0 1079.0 0.0162 2.1432 2.1594 40 40 0.12163 2.1164 2.1426 45 0.01602 2037.7 2037.8 13.04 1068.1 1081.2 0 0262 45 0.14744 2.1262 50 1704A 1704.8 18.05 1065.3 1083.4 0.0361 2.0901 80 0.17796 0.01602 0.01603 1207.6 1207.6 28.06 1059.7 1067.7 0.0%5 2.0391 2.0946 60 60 0.2561 0.01605 868.3 868.4 38.05 1054.0 1092.1 0.0745 1.9900 2.0645 70 70 0.3629 30 633.3 633.3 48.04 1048.4 1096.4 0.0932 1.9426 2.0359 80 0.5068 0.01607 0.6981 0.01610 468.1 468.1 58.02 1042.7 1100.8 01115 1.8970 2.0086 90 90 0.1295 13530 1.9825 300 0.9492 0.01613 350.4 350.4 68 00 1037.1 1105.1 100 0.1472 13105 1.9577 110 1.2750 0.01617 265.4 265.4 77.98 1031.4 1109.3 330 203.25 203.26 87.97 1025.6 1113.6 0.1646 1.7693 1.9339 120 120 1.6927 0.01620 157.32 157.33 97.96 1019.8 1117.8 0.1817 1.7295 1.9112 130 330 2.2230 0.01625 122.98 123.00 107.95 1014.0 1122.0 0.1985 1.6910 1.8895 140 140 2.8892 0.01629 97.05 97.07 117.95 1008.2 1126.1 0.2150 1.6536 3.8686 150 ISO 3.718 0.01634 77.27 77.29 127.% 1002.2 1130.2 0.2313 1.6174 1.8487 160 360 4.741 0.01640 5.993 0.01645 62.04 62.06 137.97 996.2 1134.2 0.2473 1.5822 1.8295 17r 370 0.2631 1.5480 1A111 180 7.511 0.01651 50.21 50.22 148.00 990.2 1138.2 380 0.2787 1.5145 1.7934 ISO 9.340 0.01657 40.94 40.96 158.04 984.1 1142.1 100 1.4824 1.7764 200 0.01664 33.62 33.64 168.09 977.9 1146.0 0.2940 200 11.526 1.7600 210 0.01671 27.80 27.82 178.15 971.6 1149.7 0.3091 1.4509 210 14.123 26.78 26.80 180.17 970.3 1150.5 0.3121 1.4447 1.7568 212 212 14.696 0.01672 23.13 23.15 188.23 965.2 1153.4 0.3241 1.4201 1.7442 220 220 17.186 0.01678 19.364 19.381 198.33 958.7 1157.1 0.3388 1.3902 1.7290 230 230 20.779 0.01685 16.304 16.321 208.45 952.1 1160.6 0.3533 1.3609 1.7142 240 240 24.968 0.01693 13.802 13.819 218.59 945.4 11644 0.3677 1.3323 1.7000 250 350 29.825 0.01701 11.745 11.762 228.76 938.6 1167.4 0.3819 1.3043 1.6862 260 280 35.427 0.01709 270 10.042 10.060 238.95 931.7 1170.6 0.3960 1.2769 1.6729 270 41.856 0.01718 8.627 8.644 249.17 924.6 1173A 0.4098 1.2501 1.6599 200 280 49.200 0.01726 290 l 7.443 7.460 259.4 917.4 1176A 0.4236 1.2238 1.6473 290 57.550 OA1736 300 0.01745 6.448 6.466 269.7 910.0 1179.7 0.4372 1.1979 1.6351 300 57.005 5.626 280.0 tb2.5 1182.5 0.4506 1.1726 1.6232 310 310 77.47 0.01755 5.609 4A96 4.914 290.4 894.8. 1185.2 0.4640 1.1477 1.6116 320 320 39.64 0.01766 340 3.770 3.788 311.3 878A 1190.1 0.4902 1.0990 1.5892 340 117.99 0.01787 1,5678 360 2.939 2.957 332.3 862.1 1194.4 0.5161 1.0517

-360 153.01 0.01811 380 0.01836 2.317 ' 2.335 353.6 844.5 1198.0 0.5416 1.0057 1.5473 380 195.73 1.8630 375.1 825.9 1201.0 0.5667 0.9607 1.5274 400 400 247.26 0.01864 1.8444 1.4997 396.9 806.2 1203.1 0.5915 0.9165 1.5080 420 420 305.78 0.01894 1.4808 1.2169 419.0 785.4 1204.4 0.6161 0.8729 1.4890 440 440 381.54 0.01926 1.1976 0.9942 441.5 763.2 1204.8 0.6405 0.8299 1.4704 460 460 466.9 0.0196 0.9746 0.8172 464.5 739.6 1204.1 0 6648 0.7871 1.4516 480 480 566.2 0.0200 0.7972 0.6749 487.9 714.3 1202.2 0.6890 0.7443 1.4333 500 500 680.9 0.0204 0.6545 0.5596 512.0 687.0 1199.0 0.7133 0.7013 1.4146 520 520 812.5 0.0209 0.5386 540 0.4651 536 8 657.5 1194.3 0.7378 0.6577 1.3954 540 962.8 0.0215 0 4437 560 0.3871 562.4 625.3 1187.7 0.7625 0.6132 1.3757 SED 1133.4 0.0221 0.3651 580 0.3222 589.1 589.9 1179.0 0.7876 0.5673 1.3550 580 1326.2 0.0228 0.2994 617.1 550 6 1167.7 08134 0$195 1.3333 500 600 1543.2 0 0236 0.2428 0.2675 i

646.9 506.3 1153.2 0 8403 0.46S9 1.3002 620 620 1786.9 0 0247 0.1962 0.2208 679.1 454.6 1133.7 0.8666 0.4134 1.2821 640 640 2059 9 0.0260 0.1543 0.1802 714.9 392.1 1107.0 0.8995 0.3502 1.2458 660 660 2365.7 0 0277 0.1165 0.1443 310.1 1068.5 0.9365 0.2720 1.2086 680 j 6(s0 2708.6 0 0304 0.0808 01112 758 5 0 0752 822.4' 172.7 995.2 0.9901 0.1490 1.1390 700 I 700 3094.3 0 0366 0.0386 705.5 0 0.0508 906.0 0 S06.0 1.0612 0 1.0612 ,

. 705.5 3208 2 0.0508 i

TABLE A.2 PROPERTIES OF SATURATED STEAM AND SATURATED f WATER (TEMPERATURE) .

f A.3 i

- _ _ _ ._. m

' y Weisme, ft*/Its Enthalpy. Ste/ iip Entropy. Ste/4 s F tasegy, tev/ tin f r

N#6 . E *# Ceter Evap Steam C;ter Evey Stoom Ceter Evap Steam Caese Steam Pmes.

P*8* F 9ela At h he e, s,, sg e, e,

. 't 'e 's e

~

e.0486 32.018 0.01602 3302.4 3302.4 0.00 1075.5 1075 5 0 2.1872 2.1872 9 1021.3 e.0886 e.10 35.023 0.01602 2945.5 2945 5 3 03 10738 1076.8 0 0061 2.1705 2.1766 SA3 1022.3 4,10 0.15 45.453 0 01602 2004.7 2004.7 13.50 1067.9 1081.4 0 0271 2.1140 2.1411 13.50 1025.7 c.15 0.20 $3.160 0 01603 1526.3 1526 3 21.22 1063 5 1084.7 0 0422 2 0778 2.1160 21.22 1028.3 eJe 0.30 64 484 0.01604 1039.7 1039.7 32.54 1057.1 1089.7 0 0641 2 0168 2.0809 32.54 1032 0 030 0.40 72A69 0.01606 792.0 792.1 40.92 1052.4 1093.3 0.0799 1.9762 2.0562 40.92 1034.7 0.40 0.5 79.586 0 01607 641.5 641.5 47.62 1048 6 1096 3 0.0925 1.9446 2.0370 4742 1036.9 c.5 9.6 85.218 0 01609 540.0 540.1 53 25 1045 5 1098.7 0.1028 1.9186 2.0215 53.24 1038.7 0.6 0.7 90 09 0.01610 466.93 466 94 58 10 1042 7 1100 8 0.3 1.8966 2.0083 58.10 1040.3 0.7 0.8 94.38 0.01611 411.67 411.69 62.39 1040 3 1102.6 0.1117 1A775 1.9970 6239 1041.7 0.8 0.9 98.24 0.01612 368 41 36843 66 24 1038.1 1104.3 0.1264 1A606 1.9870 66J4 1042.9 0.9 1.0 101.74 0 01614 333.59 333 60 69.73 1036.1 1105.8 0.1326 1A455 1.9781 69.73 1044.1 1.0 2.0 126.07 0.01623 173.74 173.76 94.03 1022.1 1116.2 0.1750 1.7450 1.9200 94JD3 1051A 2.0 3.0 14147 0 01630 118 71 118 73 109.42 1013.2 1122 6 0.2009 1.6854 1.8864 109 41 1056.7 3.0 '

4.0 152.96 0.01636 90 63 90 64 120.92 1006 4 1127.3 0.2199 1.6428 1A626 120.90 1060.2 4.0 8.0 162 24 0.01641 73.515 73.53 130 20 1000.9 1131.1 0.2349 1.6094 13443 130.18 1063.1 5.0 6.0 170.05 0 01645 61.967 61.98 138 03 996.2 1134.2 0.2474 1.5820 1A294 138.01 1065.4' 6.0 7.0 176 84 0.01649 53 634 53.65 144.83 992.1 1136 9 0.2581 1.5587 1A168 14431 1067.4 7.0 ~

8.0 182 86 0.01653 47.328 47.35 150.87 988 5 1139.3 0 2676 1.5384 1A060 15034 1069.2 8.0 9.0 18827 0 01656 42.385 42.40 156.30 985.1 1141.4 0.2760 1.5204 1.7964 15628 10708 9.0 10 193 21 0 01659 38 404 38 42 161.26 982.1 1143.3 0.2836 1.5043 1.7879 161.23 10723 30

14.696 212.00 0.01672 26.782 26 80 180.17 970.3 1150 5 0.3121 1.4447 1.7568 180 12 1077.6 14.6?6 15 213.03 0.01673 26.274 26.29 181.21 969.7 1150.9 0.3137 1.4415 1.7552 181.16 1077.9 15 20 227.96 0.01683 20 070 20 067 196 27 960 1 1156.3 0.3358 1.3962 1.7320 196.21 1082.0 to 30 250.34 0.01701 13.7266 13.744 218.9 945.2 1164.1 0 3652 1.3313 1.6995 218 5 1087.9 30 40 267.25 0 01715 10.4794 10.497 236.1 933.6 1169A 0.3921 1.2844 1.6765 236 0 1092.1 40 '

80 281.02 OA1727 8.4967 8.514 250.2 923.9 1174.1 0.4112 1J474 J.6586 250.1 10953 80

- 80 292.71 0.01738 7.1562 7.174 262.2 915.4 1177.6 0.4273 1.2167 1.6440 262A 1098.0 80 70 302.93 0.01748 6.1875 6205 272.7 907A 1180.6 0 4411 1.1905 1.6316 272.5 1100.2 70 80 312.04 0.01757 5 4536 5 471 232.1 900.9 1183.1 0.4534 1.1675 1.6208 281.9 1102.1 30 90 320 28 0.01766 4.8777 4A95 290.7 894.6 1185.3 0.4643 1.1470 1.6113 290.4 1103.7 90 298.2 1105.2 888.6 11872 0.4743 1.1284 1.4027 300 100 327A2 0.01774 4.4133 4.431 298.5 120 341.27 0.01789 3.7097 3.728 312.6 877A 119 4 0.4919 1.0960 1.5879 312.2 1107.6 120 140 353 04 001803 3.2010 3 219 325.0 868.0 119 0.5071 1.0681 1.5752 3245 1109.6 140 l 160 363 55 0.01815 2.8155 2.834 336.1 859 0 1195.1 0.5206 1.0435 1.5641 335.5 1111.2 360 ISO 373 08 0.01827 2.5129 2.531 346.2 850.7 1196.9 0 5328 1.0215 1.5543 345.6 1112.5 180 '

200 3*,1.80 0 01829 2.2689 2.287 *55.5 e 842.8 1198.3 0.5438 1.0016 1.5454 3543 1113.7 300 i

250 40097 0.01865 1A245 1.8432 376.1 825 0 1201.1 0.5679 0 9585 1.5264 3753 1115.8 250 300 417 35 0 01889 1.5239 1.5427 394 0 806.9 1202.9 0.5682 0 9223 1.5105 392.9 1117.2 300 ~

350 4;-1.73 0 01913 1.3064 1.3255 409.8 7942 1204 0 0 60 % 08909 1.4968 408 6 Ii181 350 i 400 444 60 0.0193 1.14162 1.1610 424.2 760 4 1204 6 0 6217 0 8630 1.4847 422.7 111E 7 400 ,

450 4t6 28 00195 1.01224 .l.0318 437.3 767.5 1204 8 0 6360 0.8378 1.4738 435.7 1118.9 450 500 467 01 0 0198 090787 0 9276 449.5 755.1 1204 7 06490 0 814S 1.4639 447.7 1118 8 500 l

550 47694 00199 0 82183 0.8412 460.9 743.3 1204 3 0 6611 07936 1.4547 456.9 1118 6 550 400 48520 0 0201 074962 0.7699 471.7 732 0 12037 06723 0 7738 1.4461 469 5 1116.2 600  ;

700 .503 08 0 0205 0 63505 0 6556 491.6 710 2 1201 8 06928 0 7377 1.4304 4S8.9 1116 9 700 l 8 3 *., 518 21 0 0209 0.54809 05690 509.8 689 6 1193 4 07111 07051 1.4163 506 7 1115.2 800 900 D! 93 0 0212 0 4796B 05009 526 7 669 7 1196 4 0 7279 0 6753 1.4032 5232 1113 0 900 2000 544 Eb 00216 0 42435 04460 542.6 f 50 4 1192 9 07434 06476 1.3910 53'.6 1110 4 1000 '

~l 07573 06216 1.3794 553 1 1107.5 1100 1100 55! 2c' O0?20 0 375f 3 04005 557.5 6315 I159 1 1200 i:67,19 0 022) 034013 0.3625 5719 613 0 1164 8 07714 05959 1.36S3 556 9 1104 3 1200 1300 577 42 0 0227 030722 0.3299 585 6 544 6 1180 2 0.784? O5733 1.3577 550 ! 1100 9 1300 I

14C0 537 07 0 0231 0 278/1 03018 598 8 576 5 1175 3 0 7966 05507 1.3474 592 9 1037.1 1400

). 1500 $96 20 0 0235 025372 0 27/2 611.7 550 4 1170 1 0 8055 0?253 1.3373 605 2 10331 1500

2000 635b5 0 02's7 016260 0 1883 6721 465 2 1133 3 0 Bili 04256 1.7881 662 6 103 6 2000 i 2500 66d 11 0 02c.f 010209 01307 731 7 361 6 1093 3 C 9139 03206 1.2345 718.5 1032.9 2500 j

3000 695 33 0 0343 0 050/3 0 0850 801 8 218 4 1070 3 09723 01891 1.1619 182 8 973.1 3000 32'J8 2 70147 00W3 0 0 050c 906 0 0 906 0 1 0612 0 1.0612 875 9 875 9 37082 i

TABLE A.3 PROPERTIES OF SATURATED STEAM AND SATURATED .

WATER (PRESSURE)

A.4

e a V

TempershweJ Abe prose.

200 300 400 900 000 700 000 900 120 1100 3200 1300 1400 1500

( te p) 100 392 5 452.3 811.9 571.5 631.1 690 7 e 0.0361 1 4 68 00 1150 2 1195.7 1241.8 1288 6 1336 1 1384 5 (101.74) s 0.1295 2 0b09 2.1152 2.1722 2.2237 22708 2J144 e 0.0161 78 14 9014 102.24 114.21 126 15 138 08 150 01 161.94 173 86 185 78 197.70 209 52 221.53 233 45 6 6 66 01  !!48 6 1144 8 1241.3 1288 2 1335.9 1243.14336 1483 7 1534.7 1586 7 1639 6 1693 3 1748.0 1803.5 (162.24) s 0.1795 1.8716 1.9369 1.9943 2.0460 2.0932 2.1369 2.1776 2 2159 2 2521 2.2466 2.3194 2 3509 2.3411 2.4101 e 0 0161 35 84 44 93 51 03 57.04 63 03 69 00 74 98 to 94 86 91 92 87 98 84 104 80 110.76 116 72 30 4 68 02 1146 6 1193 7 1240 6 12U7.8 13355 13840 14334 14835 1534 6 1586 6 1639 5 1693.3 1747.9 1803 4 (192.21) s 0.1295 1.7928 1.8593 1.9173 1.9692 2.0166 2.0603 2.1011 2.1394 2.1757 2.2101 2.2430 2.2744 2.3046 2.333 o 0 0161 0 0166 29 89'A 33 963 37.985 41.966 45.978 49 964 53 946 57.926 61.905 65 882 69A58 73.833 77.807 16 6 68 04 168 09 1192 5 1239 9 1287.3 3335 2 13838 1433 2 1483 4 1534.5 158L 5 1639 4 16937 1747A 1803 4 (213.03) s 0 1295 0.2940 1.8134 1 8720 1.9242 1.9717 2.0155 2.0563 2.0946 2 1309 2.1653 2.1982 2.2297 2.2599 2.2890 o 0 0161 0 0166 22.356 25 428 28 457 31 466 34 465 37.458 40 447 43 435 46 420 49 405 52.388 55.370 58.352 80 6 68 05 16811 1191 4 1239.2 1286 9 1334.9 1383 5 1432 9 1483 2 1534 3 1586.3 1619.3 1693.1 17472 1803.3 (227.96) s 01295 0 2940 1.7805 1A397 1.8921 1.9397 1.9836 2 0244 2.0628 2.0991 2.1336 2.1665 2.1979 2.2282 2257 o 0 0161 0 0166 11.035 12.624 14.165 15 685 17.195 18 699 20 199 21 697 23 194 24 689 26 183 27.676 29 40 6 68 10 168 15 1186 6 1236.4 1285 0 1333 6 1382 5 14321 1482.5 1533 7 1585.8 1638 8 1992.7 1747.5 1803 (267.25) s 0.1295 02940 1.6992 1.7608 1.8143 1A624 1.9065 1.9476 1.9860 2.0224 2.0569 2.0899 2.1224 2.1516 2.1 e 0.0161 0.0156 7.257 8354 9400 10 425 11 438 12.446 13.450 14.452 15.452 16.450 17.448 18.445 19.441 60 4 68 15 16920 1181 6 1233.5 1283.2 1332.3 1381.5 1431.3 1481.8 1533 2 1585.3 1638.4 1692.4 1747.1 180 (292.71) s 0.1295 0.2939 1.6492 1.7134 1.7681 1.8168 1.8612 1.9024 1.9410 1.9774 2.0120 2.0450 2.0765 2.1068 2.

e 0.01'61 0 0166 0 0175 6 218 7.018 7.794 8560 9.319 10 075 10 829 11 581 12.331 13.081 13.829 14.577 to & 68 21 168 24 259.74 1233 5 1281 3 1330.9 1380 5 1430.5 1481.1 1532 6 1584.9 1638 0 1692.0 17462 1802.5 (312.04) s 0.1295 0 2939 0 4371 1 6790 1.7349 1.7842 1A289 1.8702 1.9089 1.9454 1.9800 2.0131 2.0446 2.0750 2.1041 e 0 0161 0.0166 0 0175 4 935 5.588 6.216 6.833 7.443 8050 8655 9.258 9A60 10.460 llJD60 11.659 100 4 68.26 168.29 269 77 1227.4 1279.3 1329.6 1379.5 1429.7 1480 4 1532.0 1584.4 1637.6 1691.6 1746.5 1802.2 (32722) s 0.1295 0.2939 0.4371 1A516 1.7088 1.7586 12036 1 3451 1 A839 1.9205 1.9552 1.9883 2A199 2.0502 2.0794 e 0 0161 0 0166 0 0175 4 0786 4.6341 5.1637 5.6831 6.1923 6.7006 7.2060 7.7096 8.2119 8.7130 9.2134 9.7130 120 h 68 31 168.33 269 81 1224.1 1277.4 1328.1 1378 4 1428.8 14792 1531.4 1583.9 1637.1 1851.3 17462 1802A (341.27) s 0.1295 0 2939 0.4371 14286 1.6872 1.7376 1.7829 1 A246 1.8635 1.9001 1.9349 1.9680 1.9996 2.0300 2.05 e 0 0161 0 0166 0 0175 34651 3 9526 4 4119 42585 5.2995 5.7364 6.1709 6.6036 7A349 7A652 7A946 8.3233 140 8 68.37 168 38 269 85 1220 8 1275.3 13268 1377.4 1428 0 1479.1 1530 8 1583 4 1636 7 1890.9 1745.9 1801 1.6035 1.6686 1.7196 1.7652 1.8071g13461 1A828 1.9176 1.9508 1.9825 2.0129 2.0421 (353 04) s 0 1295 0 2939 0 4370 e 0 0161 0 0166 0 0175 3 0060 3.4413 3.8480 4.2420 4 6295 5.0132 5.3945 5.7741 61522 6.5293 ~4.9055 7 16C 4 68 42 168 42 269.89 1217.4 1273 3 1325 4 1376 4 1427.2 1878 4 1530.3 1542.9 1636.3 1890.5 1745.6 180

..(363 55) s 0.1294 0 2938 0 4370 1.5906 1 6522 1.7039 1.7499 1.7919 1A310 1A678 1.9027 1.9359 1.9676 1.9980 2.02 e 0 0161 0 0166 0 0174 2 6474 3 0433 3 4093 3.7621 4.1064 4.4505 4.7907 5.1289 5.4657 S 2014 6.1363 6.47 180 6 68 47 168 47 269 9/ 1213 8 1271.2 1324 0 1375.3 1426.3 1477.7 1529 7 1582.4 1635.9 1640 2 1745.3 18

> (373 C81 s C1294 02938 04370 1 5743 1.6376 1.6900 1 7362 1.7784 1.8176 1.8345 1.8894 1.9227 1.9545 1.9849 2.

1 e 0 0161 0 0166 0 0174 23598 2.7247 3.0583 3 3783 3 6915 4 0008 4.3077 4.6128 4.9165 5.2191 5.5209 5.8 200 > 6812 108 51 269 96 12101 1269.0 1322 6 1374.3 1425 5 1477.0 15291 1581.9 1635 4 1689 8 1745 0 1800 (38L601 s 0 1294 0 293S 0 4359 1.5593 1.6242 1.677G 1.7239 1.7663 1.8057 1 8426 1.8776 1.9109 1.9427 1.9732 e 00161 0 0165 0 0174 0 0186 2.1504 24662 26872 2.9410 3 1909 3 4382 3 6837 3 9278 4 1709 4 4131 4.6546 250 e 68 65 1t8 63 27005 3/5 10 1263 5 1319 0 1371 6 1423 4 1475 3 1527 6 1580 6 1634.4 1688 9 1744 2 180 l

(400 97) s 01294 0 2937 04366 0 M67 1.5951 16502 1.6976 1.7405 1.7601 18173 1.8524 1.8d58 1.9177 1.9482 1.977 l

e 00161 00165 0 0174 00186 1.76 % 2 0044 2 2263 24407 2 6509 2 6585 3 0643 3 2688 3 4721 3.6746 3 87 f 300 e 66 79 1 % 74 ??v id 375.15 1257 7 1315 2 1368 9 1421.3 1473 E 1526 2 1579 4 1633 3 1688 0 1743 4 179 (417.35) s 01294 02937 04M7 C %b5 1.5703 1.6274 1 6'/58 1.7192 1.7591 1.7964 1.8317 1.8652 1 8372 1.9278 1.9 e 0 0161 0 0165 0 0174 0 0186 1 4913 1 7028 1 8973 2 0332 2 2652 2 4445 2.6219 2.7980 2.9730 3.1471 3.

350 4 68 92 ILb 85 270 24 375 21 1251 5 13114 1366 2 14192 1471 6 1524 7 15'82 1632.3 1(A7.1 1742 6 179 (411.73) . 0 1293 02935 0 4367 0 56',4 1.5483 1.t:071 1.6571 1.7009 1.7411 1 7787 1 8141 1.8477 12793 1.9s05 1.9 e 0 0161 0 0166 0 0174 0 0162 1 2841 1 4761 1 6493 1 8151 1 9759 21339 2 2901 2 4450 2 5987 2.7515 2 i

400 m 69 05 16897 270 33 37527 12451 1307.4 1363 4 1417.0 14701 1523 3 1576 9 1631.2 1636 2 51293 02935 0 4365 0 5663 1.5282 1 5901 1 6406 1 6850 11255 17632 1.7988 1.8325 12647 1.8955 1.9 l ,

(444 60)

= 0 0161 0 0166 0 0174 00186 0 9919 11584 13037 1.4397 1.5708 1 6971 38256 19507 2 0746 2 1977 2.3200 500 h 69 32 It914 270 51 375 38 12312 12991 13573 1/12 7 1466 6 1520 3 1574 4 1629 1 16S4 4 1740 3 1 (4L7.01) s 0 1292 62934 04364 O M60 1 49?! 1 55 % 1 6'23 1 65/8 1 6990 1 7371 1 7730 1 8069 1 A393 1 8702 1.893 .

TABLE A.4 PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED WATER (TEMPERATURE AND PRESSURE)

A.5

_ ~

  • e.

i

!- Abe psese, hayeestsee,2

  • Dies in*

l, i

s gese.tyist 100 300 800 a00 800 400 700 000 000 3000 1900 3300 3300 1400 1900

  • 0.0161 00lp 00174 0 0186 0 7944 0 94 % 197M 1.1892 1.300s 14093 1 5140 16211 1.7252 1 8284 1.9309 l e 380 4 69.58 169 42 270 70 375 49 1235 9 1290 3 1351 4 1408 3 1463 0 1517 4 1578 9 IH 7.0 1682.6 1738 8 1795.6 (48620) s 0.1292 02933 04362 0.M 57 14590 1.5329 1.5844 163bl 1 6769 3.71H 17517 l.78bt 83164 1.0494 13733 e 0 0161 0 0166 0 0174 0 0186 0 0204 0 7928 0 9072 1.0102 1.1078 12023 1.2948 1.3054 1.4757 1.M47 1.6530 a

300 6 69 64 let 65 270 89 375 61 487 93 1281.0 1345 6 .1403.7 lebt 4 1514 4 1M94 1624 8 16h0 7 1737.2 1794.3 003.CS) e 0 1291 0.2932 04MO 0 %55 0 6889 1.5090 3.M73 16154 14580 1.6970 17335 1.7679 180h 18318 1 9617 i e 00161 0 01H 0 0174 0 0186 0 0704 0 6774 0 7829 0.8759 O M31 1 0470 1.1289 1.2093 1.2825 13M9 1.4446 i est 6 70.11 169 88 271.07 375 73 487AJ 1273.1 13392 1399.1 1455 A 1511 4 15M 9 1977 167t. 9 1735 0 1792.9

pl32.) = 0.1290 0293C 0.43b4 0.%52 0 688b 1.4869 1.5444 1.5M0 14413 86407 1J175 13622 IJ8bl 18164 1.8464 i
  • e 0.0161 0 01 % 0 0174 0 0186 0 C234 0 5469 0 6858 0 7783 0 8504 0 9262 0 9998 10720 1.1430 1.2131 1.2625
300 & 70.37 170 10 271.26 375 24 487.83 1260 6 1332 7 1394 4 14522 1508 5 IM44 1620 6 1677.1 1734.1 1791 6 331.M)
0 1290 0.2929 0 4357 O M49 0.6881 1.4659 1.5311 1.5822 16263 16%2 1.7033 1.7382 1.7783 1 8024 18329 e 0 0161 0 01 % 0.0174 0 0186 0 0204 0 5137 0 6000 0 6875 03603 0 8295 0 8966 O M22 1.0266 1.0901 1.1529 1000 6 70 63 170 33 271.44 375 96 44739 1249.3 1325.9 1389.6 1448 5 1504 4 I H l.9 1618 4 1675.3 1732.5 1790 3 04454) s 0.1269 0.2928 0 4355 0 % 47 0.6876 1.4457 1.5149 1.5677 1.61M I6530 1.6905 1.7256 1.7589 1.7905 1.5207 e 0 0161 0 01 % 0 0174 0.0185 0 0203 0 4531 0 5440 0 6188 06465 07505 08121 0 8723 0 9313 0 9894 1.0468 1100 & 70.90 170.% 271.63 376 08 447.75 1237.3 1318 8 1344 7 1444.7 1502 4 1559.4 1616 3 1673.5 1731.0 1789.0 SW.28) e 0.1269 02927 04353 0 5644 04872 1.4259 1.4996 1.5542 1.6000 1.6410 1.6787 IJ141 1.7475 1.7793 1A09,7 e 0 0161 001M 0.0174 0.0185 0 0203 0 4016 0 4905 0.M15 06250 06845 0 7418 CJ974 0 8519 0.9055 0 9584 1200 h 71.16 17038 271.82 376.20 48732 1224.2 1311.5 13793 1440 9 1449 4 15M 9 1614.2 1671.6 1729 4 1787.6 067.19)s 0.1288 0.2926 0.4351 0.M42 0.6868 1.4061 1.485! 1.5415 1.5843 14298 1 M79 13035 1.7371 1.7691 1.7996 e 0 01(I 0 0166 0 0174 0 0185 0 0203 0.3176 0 4059 0.4712 0 5242 0 5809 0 6311 0 67M 0 7272 03737 0 8195 1400 6 7148 171 24 272.19 376 44 487.65 1194.1 12961 1369.3 1433 2 1493 2 15518 1609 9 1668 0 17M.3 1785.0 (587.07) e 0.1287 0.2923 0.4M8 05636 0 6459 13652 1.4575 1.5182 1.5670 1.6C)6 1 6484 1 6845 1.7185 1J50B 1.7815 '

e 0.0161 0.0166 0.0173 0 0185 0 0202 0.0236 0.3415 0 4032 0 4555 0.5031 0 5442 0 5915 0 6336 0.6748 0.7153 ,

1800 & 72.21 171.69 272.57 376 69 487.60 61637 1279.4 1358 5 1425.2 1486.9 1546.6 1605 6 1864.3 1723.2 1782J 9 04.87) s 0.1286 0.2921 0.4344 0.5631 0.5451 0A129 1.4312 1.4965 1.5478 13916 14312 1.6478 IJO22 1.7M4 1.7657 ,

e 0.0100 0.0165 0 0173 0.0185 0 0202 0.0235 0.2906 0.3500 0.3908 04426 04SM 0.5229 0.5609 0.5900 06?43 lage a 7233 172.15 272.95 376.93 447.H 415.58 1261.1 IM72 1417.1 1440 6 1541.1 1601.2 16603 1720.1 1779.7

$21/12) s 0.1284 0.2918 0.4M1 0 M26 OA r 3 0A109 1.4054 1.4708 1.5302 1.5753 14156 1.4628 1A876 1.7204 1.7516 e 0 0180 0.0145 0.0173 0.0184 0.0201 0.0233 0.2488 0.3072 0.MM 0.3942 0 4320 0.4880 0.14127 0.5MS 0 5095 3000 6 73.26 172.40 273.32 377.19 487.53 614 48 1240.9 1353.4 1408 7 1447.1 15M.2 1596.9 1657.0 1717.0 1777.1 535.00)s 0.1283 0.2916 0.4337 0H21 06834 OA091 1.3794 1.4578 9 3138 1.5603 1.6014 14391 14743 1J075 1.7389 e 0.0160 0.0165 0.0173 0.0184 0.0200 0.0230 0 1681 0 2293 0.2712 0.3068 0.3390 0.M92 0.3900 04259 0.4529 3500 6 74.57 173 74 274.27 377.82 487.50 612.08 11767 1903 4 13863 1457.5 1522.9 1585.9 1647A 1709.2 1770.4 4688.11) s 0.1200 0.2910 0.4329 0.5609 0 6415 0 8044 1.3076 1.4129 1.47M 1.5269 1.5703 1A094 1A4M 1.6796 1.7136 e 0 0160 0.0165 0.0172 0 0183 0 0200 0.0228 0 0082 0 1759 0.2161 0.2484 0.2770 0.3033 0.3282 0.3522 0.3753 3000 4 75 83 17t 88 275.22 378 47 487.52 410.08 1060 5 1267.0 1363.2 1440.2 1503.4 1574.8 1635 5 1701.4 17(1.8 -

(695.33) s 0.1277 0.29c4 0.4320 0 5597 0.6796 0 8009 1.1966 1.3692 1.4429 1.4976 1.5434 1.5641 1421A 1.0561 1.6488 e 0 0160 0 0165 0.0172 0.0183 0.0199 0 0227 0.0335 0.1588 01987 0.2301 0.2576 0 2827 0J065 0.3291 0 3510 3200 6 76 4 175 3 275 6 378 7 487.5 609 4 800 8 1250 9 1353 4 1433.1 1503.8 1570.3 1634A 1698.3 1761.2 (705.08) s 01276 0 2902 0 4317 0.5592 06768 0.7994 C 9708 1.3515 1.4300 1.4466 1.5335 1.5/49 14126 1.6477 1.6806 o 0 0160 0 0164 0.0172 0.0123 0 0199 0 0225 0.0307 0.1364 0 1764 0 2066 0 2326 0.2H3 0.2784 0 2995 0.319' 3500 4 77.2 176 0 276.2 3791 487.6 608 4 779 4 1224 6 13382 1422 2 1495 5 1563.3 1629.2 1693 6 17b7.2 s 0.1274 0.2899 0 4312 0 5585 0 6777 03973 0 9508 1.3242 1.4112 14709 1.5194 15618 1.6002 1.635S 1.6691 e 0 0159 0 0164 00172 0 0182 0 0198 0 0223 0 0287 01052 0 1463 0.1712 0 1994 022to 02411 0 2601 0 2783 4000 A 7e 5 177.2 277 1 379 8 487.7 606 5 7630 1174 3 1311 6 1403 C 1491.3 1552 2 1619 8 1685 7 !?50 6 s D1271 0pa93 0 4304 05573 0 6760 0 7940 0 9343 12754 1.3807 I.4461 1497C 1.5417 1.5812 1.6177 1.6516 e 0 0159 0 0164 0 0171 0 0181 0 01 % 0 0219 0 0268 0 0591 0 1038 01312 0 1529 01718 01660 0 2050 0 2203 5300 h 81 1 179 5 2791 381.2 4881 604 6 7460 1042 9 1252.9 13(4 6 1452.1 1529 1 1600 9 It 70 0 1777.4 s 0.1765 0.2661 04267 0 5550 0 6726 03820 0 9153 1.1593 1.3207 1.4001 1.4582 1.5061 1.!,481 1.5463 14216 e 0 0159 0.0163 0 0170 C 0160 0 0195 0 0216 0 0256 0 0397 0 0757 0.1020 0 1221 0.1391 0.1544 0.!654 0.1817 40C0 4 63 7 181.7 281.0 3b2 7 AP8 6 602 9 7361 9451 1168 8 1323 6 1472 3 1505 9 15620 1654 2 17242

. e 0.1254 0 2670 0 4271 0 5528 0 6693 0 7826 0 9026 1.0176 1.2615 1.35?4 1.4229 1.4745 1.5194 1.5593 1596.2 e 0 0158 0.0163 0 0170 0 0180 0 0193 00?!3 00248 0 0334 0 0573 0 031 A 0 1004 0.1160 0129E 0 1424 0.1542 7000 h 86 2 184 4 283 0 3u4 2 489 3 601 7 729 3 901.8 1124 9 1781 7 1392 2 1482 6 15631 1639 6 1711 1 8 01252 0 2859 04256 0 5607 0 6563 0 7/77 0 8926 1 0350 12055 1 31)I 11904 144u6 14938 1 53-5 1.5735 TABLE A.4 PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED WATER (TEMPERATURE AND PRESSURE) (CONTINUED)

A.6

,e >> . ,, ,, ,, p., ,..,

rT. .. &...3f,7 N/ ,-

N,J7,p'~

ye ~ < m ,,,

A ff<U' 7 h / N N '

ON / N,~/7/ ,-,//g

'~ ,-

~,

hyggyx/ N w///%, ,-

Lt n ii ,,

g

/ll ,J 'h/ N ///%j

//Y/ / /g 3400 1350 .- -

/AdQW&.ll

// twyggo-Q / -

- , N 1250 3200 1200 3150 I

.- BWM mgy,yzhn/[f?

77%$ -A 7 ..

.- KDhv -

N .-

.- MA6n 7;gg 1000

[

950 MMX 4WXW/7xy8,

'N ol/ /

- VM /my,/ 800

  • \

Id IS 16 gy 3, 20 pg ,, ,j$3

.intropy Brg/te,p FIGURE A.5 MOLLIER ENTHALPY-ENTROPY DIAGRILM A.7

)

r

,. /

PROPENTi6S OF WATER Density e palft )

8 PSIA Temp Salutated 2400 2500 3000 2300 Liquid 1000 2000 2100 2200

(*F) 62.909 62.93 62.951 63.056 62.637 82.846 62.867 62.888 32 62.414 82.846 62.87 62.99 62.55 62.75 62.774 62.798 82.822 SO 62.38 62.446 62.465 62.559 62.185 62.371 62.390 62.409 62.427 100 61.989 E 587 60.606 60.702 00.314 60.511 60.53 60.549 80.568 200 60.118 67.859 67A82 67A98 57.537 67.767 67.79 67.813 67.836 '

300 67.310 64.342 64.373 64.629 64.218 04.249 64.28 64.311 400 63.651 63.903 64.11 63.86 63A9 63.925 63.95 410 63.248 63.475 63.79 63 825 63.46 63.50 $3.53 63A9 63.025 63.36 63.J0 63.425 420 62.798 63.065 63.09 63.285 62.575 62.925 62.95 62.99 63.02 430 62.356 62.54 62.56 62.275 62.42 62.45 - 62.475 62.51 440 61.921 62.125 $2.41 62.065 62.10 62.14 62.175 62.2f 450 ' 61.546 61.66 62.025 6136 61.64 61A8 61.725 61.78 460 61.020 $1.175 61.56 61.61 6132 61.25 61.30 61.50

$0.70 61.1 61.14 61.176 470 ' ' $0.505 50.7 80.74 80.78 60A25 61A35 480 50.00 50.20 60.62 60.86 00J65 80J1 80.35 80 575 60.22 490 49.505 49.685 80.13 60.175 49.782 49A1 49.858 60.098 49.097 49.618 49.686 49.714 500 48.943 40J64 46.306 49.86 ,

48.61 40.06 40.101 49.162 40J03

  • 610 48.31 48AS 48.736 40A1 48.46 48.515 48.57 48.825 620 47.85 47.91 48.166 48.45 48.037 48.006 630 47.17 47.29 47.86 47.919 47.296 47.678 47.362 47.428 47.494 47.56 47A9 j 640 46.51 47.23 47.27  ;

46.726 46.794 46 862 46A3 45.87 46.59 46.658 '

. 650 46.142 46216 46.29 46A6 45.92 45.994 46.068 660 45.25 45.54 45.62 46.02 45.22 45.30 45.38 45.46 670 44.64 44.844 44.93 45.36 s 44.50 44.586 44.672 44.758 680 43.86 44.11 44.205 44.68 43.73 43.825 43.92 44.015 LSD 43.10 43.33 43.434 43.956 42.913 43.017 43.122 43226 600 42.321 42.432 42.55 43.14 41.96 42.08 42.196 42.314 610 41.49 41.483 41.616 42283 40.950 41.081 41.217 41.35 620 40.552 4144 630 39.53 40.388 640 38491 39.26 650 37.31 38 2 660 36.01 36.52 670 34 48 34.638 683 32.744 32.144 690 30.516 TABLE A.6 PROPERTIES OF WATER, DENSITY

. A.8

Iz__EBINGIELEE_9E_NQQ6E88_EQWE8_E69NI_QEg88IlgNi >q= GE 20

-ISEBU99YN@dlGS3_bg@I_IB@NgEE8_@NQ_E(Qlp_E(QW f f/

A h

ANSWERS -- SEQUOYAH 1&2 -86/12/15-DEAN, WM t

ANSWER 1.01. (1.00) a

~ REFERENCE HBR, Reactor Theory, Sessions 41 and 42 DPC,' Fundamentals of Nuclear Reactor Engineering, pp. 121 and 122 001/0003 K5.39(2.7/2.9)

ANSWER 1.02 (1.00)

'd REFERENCE Westinghouse Reactor Physics, Section I-5, MTC and Power Defect DPC, Fundamentals of Nuclear Reactor Engineering St Lucie Reactor Physics, Section 7.6 & 7.7

, 039/000 A2.05(3.3/3.6)

ANSWER 1.03 (1.50) hwift.

a. -Higher (+.5 ea)
b. Lc- rr A/4wc4
c. .Hi;h;;- cewyg REFERENCE NUS Vol 4, pp 2.2-4 015/000 A1.01(3.5/3.8)

ANSWER 1.04 (1.00) b 4

REFERENCE EIH: GPNT,Vol VII, Chapter 10.1-83-06 BSEP L/P O2-2/3-A, pp 172 - 176; O2-0G-A, pp 57 - 60 Westinghouse Nuclear Reactor Theory, pp. 1-5.77 - 79 Turkey Point, Reactor Core Control, pp. 4 28 i

~: 1:.__ER1NCIE(ES _QE _NUC(E@B _EQNES _E(@NI_QEEB@IlgNi PAGE 27 IME8500YNed1 Gas _HE01_IB8NSEEB_0NQ_ELW10_ELQW ANSWERS -- SEQUOYAH 1&2 -86/12/15-DEAN, WM OO1/OOO-K5.13 ~ (3.7/4.0)

~

' ANSWER -1.05 (1.00) b REFERENCE SQN Reactor Physics Revie . pp 21/22 001/000; K5.02(2.9/3.4) 1 ANSWER 1.06 (1.00) i .(A low leakage loading pattern has been employed which' places) new fuel assemblies' loaded in the center of the core (+.5). These assemblies see a higher flux for a longer. period (+.25), accelerating the effects of

. pellet swell and clad creep relative to earlier cycles (+.25)

REFERENCE SQN Reactor Physics Review, pp 18/19 i

001/000; K5.49(3.4/3.7)

~

ANSWER 1.07 (1.50) a) Decrease (+.5 ea) l b) Increase 4

c) Decrease

! REFERENCE i Nuclear Power Plant Trng Prgem, HTFF and Thermo, Sect 2C j App As Working Properties of Water (2.2/2.5)

L ANSWER 1.00 (1.00) a) Xenon Decay (+.5 wa)

b) Decreases REFERENCE St Lucio Reactor Physics Supplementary Handout #1 001/0003 K5.33(3.2/3.5) and K5.34(2.1/2.2) l l

l

[

lt__EBINCIELES_QE_NQQLg@@_EQWE8_E(@NI_QEE8@I1QNs PAGE 23

.ISEBUQQYN@diqSg_dg@l_l@@NSEEB_@NQ_E(Q1p_E(QW ANSWERS -- SEQUOYAH 1&2 -86/12/15-DEAN, WM ANSWER 1.09 (1.00) a) Will be the same (+.5 ea) b) Unit B will be higher REFERENCE Westinghouse Reactor Core Control, pp 6-23/26 Westinghouse Fundamentals of Nuclear Reactor Theory, pp 8-48/60 001/010; K5.00(2.9/3.2) & 001/000: K1.05(4.5/4.4)

ANSWER 1.10 M(0.To[)

--e t- Der p 1 wr Uwiect ( +. m r d;2.MN b) Nucleate boiling REFERENCE Westinghouse Reactor Core Control, pp 3-38/42 001/000; K5.49(3.4/3.7)

ANSWER 1.11 (1.50)

Pu-239 37% (+/-3) (+.3 for isotope, +.1 for %, +.1 for correct order)

U-235 35.5% --thermal fission U-235 8% --fast fission og.

~

c[3 7u v-E3f 90 yo 9 4-t 59 REFERENCE y y, q_tyf SON /WBN License Cert Trng, " Reactor Kinetics", pp 6 77 _p,tya St Lucie Reactor Physics Section 7.6.73 SD 1, pp 33 001/0003 K5.47 (2.9/3.4)

1___EBINCle(ES_QE_NUQ6E@6_EQWEB_E6@NI_QEE8@IlgN t PAGE 29-IHEBUQQ1Ned1GEt_HEeI_I8eNEEEB_eNQ_E6W10_E69W ANSWERS -- SEQUOYAH 1&2 -86/12/15-DEAN, WM ANSWER 1.12 (2.00) b(~ C"^1

1) Pu-240 buildup--More Negative (+.5 ea)
2) Accumulation of Fiscion Product gases--More Negative
3) Fuel Densification--More Negative 4( Less Negative G) Clad Creep-

\\>\(et.SuAh # lfu heqG4LA REFERENCE TPT Requal Lesson Plan, Cycle I, 1985 " Core Life Changes", pp 16 CNTO, " Reactor Core Control", pp 2-44/45 Surry, NO-86.2-LP-1 & LP-10 001/0003 K5.49(3.4/3.7)

ANSWER 1.13 (1.50) a) Mass flow out vs. SI flow in (+.5 ea) energy produced by decay heat vs. energy removed b) Delta P between RCS and containment REFERENCE SQN SBLOCA Analysis, pp 5 EPE-OO9 EK1.01(4.2/4.7)

ANSWER 1.14 (1.00)

1) Dissolution of H2 (due to mass loss and pressure drop) (+.25 ea)
2) Radiolysis
3) PZR vapor space expansion
4) Zirc-water reaction REFERENCE SQN EGT 222.006, pp 23 EPE-OO93 EK3.11(4.4/4.5)

lt__E81NG1ELEE_QE_NuCLEeB_EQWE8_ELONI_QEg8@IlgN g PAGE 33 IBE60991N6dlCS _ME@I_IB8N@EEB_@NQ_E(Ulp_ELQW t

ANSWERS -- SEQUOYAH 1&2 -86/12/15-DEAN, WM ANSWER 1.15 (1.00) lac A rt- '

The xenon dip would be cr:11 r (+.5) and occur later (+.5)

REFERENCE SGN/WBN Inst. Guide " Review of Core Poisons", pp 5/6 Westinghouse Nuclear Training Operations, pp I-5.76 ,

001/000; K5.38 (3.5/4.1)

ANSWER 1.16 (1.50)

1) Delayed neutrons born at lower energies, so less likely to leak out providing a positive effect (+.75)
2) Delayed neutrons are born at an average energy too low to cause fast fission which provides a negative effect (+.75)

REFERENCE SON /WBN License Cert Trng, " Neutron Kinetics" 001/0003 K5.47 (2.9/3.4)

ANSWER 1.17 (1.00)

Because rod worth is proportional to the ratio of the flux at the tip of the rod to the average flux (0.7). A change in power does not significantly change this ratio (0.3). (1.0)

REFERENCE Turkey Point, Reactor Core Control, Chapter 6 001/0003 K5.02(2.9/3.4)

ANSWER 1.18 (2.00) a) Unit 1 (+.5) due to a higher Beta coefficient at BOL (+.5) b) Unit 2 (+.5) due to MTC being more negative, so Tavg will decrease less to add same + reactivity (+.5)

REFERENCE Surry ND 86.2-LP-2 and 86.1-LP-9

l UNITED STATES

,.#j;A Hig. '%

l NUCLEAR RE20LATORY COMMISSION

.f. g REGION il

'5* g 101 MARIETTA STREET. N.W.. SulTE 2900 8 ATLANTA, GEORGIA 30323

\,...../

L

' f' a p i 8

b i ')'

' A i.

1 i, 6 -

i j

, . e ,

I se . f.* t < , 4 e 0 t 6

r +

i

, ,, s ,,

k I

i *

' 13.__ESING LEkE'S _QE _NyG(E@E _ Egg 8_E(@NI_QEg@@llQN n. PAGE.' 31 ItlE8t!QQYN001GE _HEeI_I8eNSEEB_eNQ_ELW1E_ELQN .

ANSWERS--- SEQUOYAH.1&2- -86/12/15-DEAN, WM-001/0003' K5.49(2.9/3.4) and K5.10(3.9/4.1)

ANSWER 1.19 (2.00) a.,Subcooling'is' based on core exit T/Cs or-hot leg RTD readings. During natural circulation the mass of metal in the head can retain heat and keep local temperatures ~above saturation. The temperature indicators-would not reflect this local saturated condition. (1.0)

.b. Pressurizer level decreases because the pressurizer. pressure increase will compress the vessel void and force water out of the pressurizer.

(1.0)

REFERENCE G.P. Heat Transfer and FF Pp 355-358 EPE-074 EA2.05(3.4/4.2) & EA2.07(4.1/4.7)

' ANSWER 1.20 (1.00)

When slightly open, the pressure drop is across the valve itself as there is isenthalpic expansion (+.5). As the valve is fully opened, head losses in the piping become more significant (+.5)

REFERENCE Westinghouse Thermal / Hydraulic Principles, pp 10-71/73 010/0003-K5.02(2.6/3.0)

ANSWER 1.21 (1.50) a) > DNB, have partial film boiling, where the fuel rod is alternately covered with steam and water (+.25). Steam has poor thermal conductiv-ity capabilities (+.25), so heat transfer rate drops and Delta T rises

(+.25) b) As fuel surface temperatures rise, stable steam layer forms (+.25) causing a further increase in fuel rod temperatures (+.25). Eventually, significant radiative heat transfer occurs causing heat-xfor rate to ]

incarease (+.25)

REFERENCE Westinghouse Thermal / Hydraulic Principles II, pp 13-18/20 EPE-074; EK1.02(4.6/4.8) I i

1

1___EBINQ1ELES_QE_NQQ(g@B_EQWE8_E(@NI_QEg8@l1QN t PAGE 32 IME859EXN@ digs t_dg61_IB@NSEE8_@NQ_E(Q1Q_E(QW ANSWERS -- SEQUOYAH 1&2 -86/12/15-DEAN, WM ANSWER 1.22' (2.00) a) Nuclear power is decreasing faster than turbine load, calling for a rods "out" to compensate exactly for the Tref-Tave mismatch (+.75) b) Steam pressure is periodically exceeding atmospheric steam dump setpoint because Tavg increased due to decreased heat removal (+.75)

This causes steam flow oscillations and feed flow follows steam flow

(+.25). The S/G oscillations are due to shrink and swell an the PORV opens and shuts. (+.25)

REFERENCE SQN Transient Analysis by NRC TTC 001/0003 K4.03(3.5/3.8) L 035/010; K1.09(3.8/4.0)

ANSWER 1.23 (1.00) p (i ) = .1(delta k/k) -

.01(delta k/k) = .11(delta k/k) (+.25) k(i) = 1/ ( 1-p (i ) ) = 1/(1-[ .113) = .9009 (+.25) p(f) = .11 + .056 = .054(delta k/k) (+.125) k(f) = .949 (+.125)

Cf.= Ci(1-k(i)/C1-k(f)] = 97 cps (+.25)

REFERENCE SQN Reactor Physics review, pp B-10 001/000. A1.06(4.1/4.4)

I l

l

2.__PL@NI_DESl@N_lNCLUDING_S@EEIY_6ND_EDERGENCY_SYSIEd@ PAGE 33 ANSWERS -- SEQUOYAH 1&2 -86/12/15-DEAN, WM ANSWER 2.01 (1.00) d REFERENCE FNP, RHR Lesson Plan, pp. 8&9 NA NCRODP 88.2, "RHR System" SONP lesson plan "RHR System" pp 5 OO5/OOO-K4.07 (3.2/3.5)

-ANSWER 2.02 (1.00) d REFERENCE Turkey Point, Requal Lesson Plan, RCP, Fig. 16 Westinghouse Systems Manual, pp 13.1-7 003/0003 K1.12(3.0/3.3)

ANSWER 2.03 (1.00) b

. REFERENCE ST Lucie SD117 "AFW", pp 9; CWD 8770B-326 061/000; K4.07(3.1/3.3)

ANSWER 2.04 (1.00)

,e' b o r C REFERENCE Surry ND-88.1-LP-3, pp 3.13 Westinghouse Systems Manual, pp 2.2-6 010/000; A4.01(3.7/3.5)

. Et__EL6NI_Qg@l@N_lNQ(yQ1NQ_@@Egly_@NQ_EDERQENQX_SYEl{d@ PAGE 34 ANSWERS -- SEQUOYAH 1&2 -86/12/15-DEAN, WH ANSWER 2.05 (1.00) c REFERENCE Surry ND-88.4-LP-8, pp 8.6 Westinghouse Systems Manual, pp 4.5-20 028/0003 K6.01(2.6/3.1)

ANSWER 2.06 (1.00) d REFERENCE SON Requal 1986, week 4, day 5, " rad monitors", pp 5 073/0003 K6.01(2.2/2.4)

ANSWER 2.07 (1.50) a) Open (+.5 ea) b) Open c) Closed REFERENCE NA NCRODP 08.3, "CVCS" SQNP AOI-10A, pp 3-5 TPT SD13 "CVCS", pp 18, 21, 37 000/065; EA2.OB(2.9/3.3)

- 2i__E60NI_ DESIGN _lNC(UQ1Ng_@@ Eely _@ND_EDERQENCy_@ySIEd@ PAGE 35 ANSWERS -- SEQUOYAH 1&2 -CS/12/15-DEAN, WM ANSWER 2.08 (2.50) a) 6 (+.5 ea) b) 5 c) 8 d) 1 and 4 e) 10 REFERENCE Farley SD, "RCS", Fig 7 NA NCRODP, "RCS";."ESF-ECCS"; "CVCS"; "RHR" TPT SD7 "RCS", pp 65-67; TPT DWG 5610-T-E-4501 SQN "RCS Piping", pp6/7 002/0003 K1.06(3.7/4.0); K1.09(4.1/4.1); K1.08(4.5/4.6)

ANSWER 2.09 (2.00)

-Mechanical Overspeed (+.4), manual reset (+.1)

-Electrical Overspeed (+.4), NO manual reset (+.1)

-Thermal Overload (+.4), manual reset (+.1)

-Steam Supply Transfer (+.4), NO manual reset (+.1)

REFERENCE SONP System Descrip. "AFW", pp 6 061/0003 K4.07 (3.1/3.3)

ANSWER 2.10 ( .50)

From its own 125 DC Distribution System (+.5)

REFERENCE Surry ND-90.3-LP-2, pp 2.8/9 SON " Diesel Generators", pp 8 064/0003 K1.04(3.6/3.9)

6. ._. _ _ _ _ _ _ _ _ . -- . . _ _ . _ _ _ _ _ _ _

Et__Pb8NI_Q{gigN_lNQ(QQ1N@_g6EglY_@NQ_{d(8QENQY_@YQIEd@ PAGE 36 ANSWERS -- SEQUOYAH 1&2 -C3/12/15-DEAN, WM ANSWER- 2.11 (1.00)

To limit the rate of S/G blowdown during a main steam line break (+1.0)

REFERENCE-Surry ND-89.1-LP-2, pp 2.4/5 SQN " Main Steam System", pp 6 EPE-040gEK3.01(4.2/4.5)

ANSWER 2.12 (2.00) a) (1) 2B (+.33 ea)

(2) '1A (3) 1B b) (1) SI from Train 1A or 2A (+.2 ea) / $f du'/ I~

(2) No blackout signal (3) Transfer switch on swgr in Normal (4) KA selected for operation ,

(f }sc/ fo Et$1 Ash f ho M o# O] W V 0" REFERENCE SON Requal 1986 week 1, day 4, "ERCW", pp 4-9 076/000; P6.01(3.4/3.3), K1.05(3.8/4.0), K1.19(3.6/3.7), K4.02(2.9/3.2)

ANSWER 2.13 -(1.00) a) Prevent damage from steam cutting or H2 gas acting on the seats (+.5) b) False (+.5)

REFERENCE Westinghouse systems manual, 2.2-7 010/0003 PWG-4(3.6/3.7), K1.05(3.4/3.6), K4.03(3.8/4.1)

'2___P(@NI_DESl@N_lNC(UQ1NG_S@EEIX,@NQ_EDER@ENCX_@XgIEdf PAGE 37 ANSWERS -- SEQUOYAH 1&2 -83/12/15-DEAN, WM ANSWER 2.14 (1.00) a) 1500 psig (+/- 25 psig) (+.33 ea) b) 180 psig c) 1250 psig [pfy -ir3fpcig)

REFERENCE SQN E-0, pp 3, Westinghouse Systems Manual, pp 4-1-33 EPE-Olis EK3.12(4.4/4.6)

ANSWER 2.15 (1.50)

1) RWST level < 29% (+.5)
2) Containment sump level > 11.25%
3) SI signal present REFERENCE SQN "ECCS Review", pp B EPE-011; EK3.15(4.3/4.4)

_ ANSWER 2.16 (1.25)

-Return lines from RHR loop (S1 lines) (+.25 ea)

-PZR Surge line, both ends

-PZR spray into PZR

-Chg line connection

-Aux chg line connection REFERENCE SONP Lesson Plan "RCS", pp 34/35 002/0003 K1.06 (3.7/4.0) & K1.OB (4.5/4.6) & K1.09 (4.1/4.1)

2___ELONI_QESIGN_lNGLUQ1N@_$@EgIY_@NQ_EdERGENQY_SYSIEd@ PAGE 38

' ANSWERS -- SEQUOYAH 1&2 -CS/12/15-DEAN, WM ANSWER- 2.17 (1.00)

-SI Pumps (+.25 ea)

-ONE Centrifugal gharging Pump (Nd (C(d >3

-UHI Gags (not r%d )

-Cold leg Accumulator Isolation Valves REFERENCE SQNP System Descrip. "RCS", pp 9 010/0003 K1.02 (3.9/4.1)

ANSWER 2.18 (1.00)

1) Hot leg loop 1 (+.25 ea)
2) Hot leg loop 3
3) RHR upstream of HXers
4) Containment atmosphere REFERENCE

. SON Requal 1986, week 4 day 1, "PASF", pp 4 ANSWER 2.19 M a) demi ster >>> relative humidi ty heater >>>prefil ter bank >>>HEPA fil ter bank

> > > Car b on ad sorb er bank > > > I rr t r i ; -;ieet i ng -' ---~ 6 % % %e =e'-- -d=nch=r bank >>>HEPA filter bank (+.125 ea) b) Two cross over air flow ducts draw air from the active air cleanup unit

(+.5)

REFERENCE SONP Sys Descrip. 4.4, " Containment Air Purif and Cleanup System" pp 7-8 027/000 A2.01 (3.0/3.3)

2 __P6@NI_DESl@N_lNC(UDIN@_S@ Eely _@ND_EDER@ENCX_@y@ led @ PAGE 39 ANSWER 3 -- SEQUOYAH 1&2 -C1/12/15-DEAN, WM >

? ..

, 7 f

ANSWER 2.20 (2.25) .

a) Turbine is runback for 1.5 seconds-(+.25) at 200% per minute: (+.25) waits 28.5 seconds (+.25) and repeats cycle if setpoint not t1 ear (+.26) b) -One of two MFPs trip > BOX power (+.25)

-#3 Heater Drain tank bypass to: condenser valve leaves its weat > 80%

O load (+.25) .

Turbine is runback using tae valve position limiter'(+.25) ,to 75%(+.25)"

c) Will not change from initial position (+.25)

REFERENCE SONP System Descrip. " Turbine Control", pp 20/21 045/000g K4.12 (3.3/3.6) j i

ANSWER 2.21 (1.50) .

,")

a) S/Gs #1 and 4 (+.5) - ,

b) (Appendix R requirement) PORVs were inaccessible'for fire in the ,[

West Valve Room (+.5) .

Only 2 S/Gs are required for safe shutdown (+.5) _

REFERENCE SON Requal 1986 week 2, day 1, " Major Modifications", pp 5 ,

. 1 035/010; K4.05(3.1/3.4)

- k ANSWER 2.22 td (44,441

)

SUMP via 63-72 to suction of A RHR pump thru A RHR HX (+.5) and either to 63-8)>>63-6(7)>>SI pump suction (+.25) or 63-172 to loops 1 and 3 (+ 25) after the SI pump >>63-156 to hot legs,7'andr{(+.5) 1 -

I '

REFERENCE SQN ES-1.3 q EPE-011; EX3.08(3.9/4.1) 0 1-I

- t. ,<y , ~,

f,. >,. o 21.__B /WT Dggl@N_lNQLyDINQ_@@ggIY_@ND_gt!gRGENQY_@Y@ Igd @' PAGE 40 o

i'I L ANSWERG -- SEQUDYAH 1&2 -C6/12/15-DCAN, WM i

3

.:.if{ L l.. e f{,i l ANSt(R 2.23 (1.50) j, a);. Preventogtrheatingturbinebladingdue.tohowsteamflow (+.5 ea)

! 'b) Prevent reaching the overvoltage/underfrequency setpoint on the

!. mainbank transformers.

c) Prevent excessive load on EHC pump due to trying to pump heavy fluid.

,- r ,

, i

, l'n 'lREFERENCE

!, / 'SQN GOI,-2, pp 3-St SQN G01-2 " Plant Startup", pp 7/8 045(0503@WG-7,(2.9/3.3) l I

r u l /

g

):

i g

$ (

.N ,

N .

t i

I f

f I. 6

/

cu a I ** j i

'I g

k l

< ) l l

l x

32__lN@l695ENT@_QUD_CONISOL@ PAGE 41 ANSWERS - :SEQUOYAH 1&2

+

-C4/12/15-DEAN, WM i

o //

5 ,- ,

I l ' ANSWER 3 3.01 (1.00)

C REFERENCE Westinghouse PWR Systems Manual, Sect 9.2 "PZR Pressure Contarol" 010/000; K4.03 (3.8/4.1) & K6.01 (2.7/3.1) & PWG-4 (3.6/3.7) 4 ANSWER 3.02 (1.00) a REFERENCE SQNP System Descrip. "RPS", pp 10 &-RPS Mechanical Logic Drawing -

Surry ND-93.3-LP-10, pp 10.15

\

012/000; K6.03 (3.1/3.5)

ANSWER 3.03 (1.00)

+

O_ s' x

-REFERENCE SQN Requal 1986 week 2, day 1, " Major Modifications", pp 9/9 061/000; K4.04(3.1/3.4)

(' t k ANSbER 3.04 (1.00) d.

REFERENCE ,

SQN Requal 1986 Week 5/6, day 7, " Control-System Theory" l 2O2002 K4.08 3.3/3.4 L 5.03 2.4/2.4 i

I e

3 t__lNSI6QMENIE_QND_ CONI 806@ PAGE 42 ANSWERS -- CEQUOYAH 1&2 -C6/12/15-DEAN, WM ANSWER 3.05 (1.25)

The stationary and movable grippers energize and the lift coil deenergizes

(+.75); ROD URGENT FAILURE Alarm and red lamp at power cabinet actuate (+.5) ocac9ed fu' lute Inp x. lv3 ic hblad-REFERENCE SON " Rod Control System", pp 12 OO1/050;A2.01(3.7/3.9)

ANSWER 3.06 (1.S0) a) Arm and actuate b) Arm and actuate c) Arm only REFERENCE Farley SD, " Steam Dump System", pp 23-28 SONP System Descrip. " Steam Dump System", pp 6-8 041/020; K4.11 (2.8/3.1) & K4.14 (2.5/2.8) & K4.17 (3.7/3.9)3 ANSWER 3.07 ( .50)

Alic h (+.5)

REFERENCE SQN "Excore NIs", pp 18 015/000; 6.04(3.2/3.4)

3 __IN}IBUMENI@_AND_CONIBDL@ PAGE 43 ANSWERS -- SEQUOYAH 1&2- -C6/12/15-DEAN, WM ANSWER 3.08 (2.50) a.. 4 (0.5)

b. 2 (0.5)
c. 6 (0.5)
d. -6 (0.5)
e. 5 (0.5)

REFERENCE CAT, PSM, CN-IC-IPE, pp. 2, 6, &7 (Ans-4, 2, 6, 6, 5)

FNP, SD, " Reactor Protection System", tables 1, 5, 6 (Ans-4, 2, 4, 4, 5)

SONP System Descrip, "RPS", pp 9-12 (Ans-4,2,6,6,5) 012/OOO-K6.03 (3.1/3.5) 012/OOO-K6.10 (3.3/3.5)

ANSWER 3.09 (1.50) a) Output remains at the low end of the gain (+.5 ea) b) _O degree mismatch c) Goes high to 72 steps per minute REFERENCE SON Requal 1986, week 3, day 4, " Instrument Failures"; " Rod Control" 001/000; K4.03(3.5/3.8)

ANSWER 3.10 (1.25) 3; 2; 53 (+.25 ea); no actions required (+.5)

REFERENCE SON TS 3.3-1 015/020;PWG-B(3.3/4.3)

3r__1N@IBUMENIS_AND_CONIBOb@ PAGE ?44 ANSWERS'-- SEQUOYAH 1&2. -86/12/15-DEAN, WM ANSWER 3.11 (1.50)

-Phase A Containment Isolation signal from either Unit (+.375ea)IFC'4

-High Radiation signal from fuel handling bldg area rad monitors -

Aux Bldg exhaust vent rad monitors

-High Temperature in Aux Bldg Supply Fan Suction yr REFERENCE b SONP Sys Descr. 4.4, " Cont Air Purif and Cleanup Sys" pp 15 (tv4 - T* ' '*

M EPE-060; PWG-10 (4.1/4.4) (C#t-TJ '(o3 ANSWER 3.12 (1.50)

Tavg; PZR Pressure; Dalta' Flux; Delta T at rated power; Tavg at rated power (+.3 ea)

REFERENCE Westinghouse PWR Systems Manual "RPS", pp 9-10 SONP TS Table 2.2-1 012/000; K6.11 (2.9/2.9) L A2.05 (3.1/3.2)

ANSWER 3.13 (1.75)

Hi-Hi containment pressure > 2.81 psig (+.5)

High Steam Line Flow Coincident with Low Steam Line Pressure <600 psig or Lo-Lo-Tavg <540 deg F. (+.75)

High Steam Flow setpoint is at 40% flow from 0-20% load (+.25) then linearl y f rom 40-110% fl ow f rom 20-100% load (+.25)

REFERENCE SONP PLS pp 9-11 013/000; K4.03 (3.9/4.3)

13 __ INS 16MMENIS_AND_CQNIBOLS PAGE 45 l ANSWERS -- SEQUOYAH 1&2 -86/12/15-DEAN, WM ANSWER 3.14 (1.00)

1) Auctioneered High Delta T (+.5 ea) 2)' P/A Converter Actual Rod Demand Signal REFERENCE-Surry ND-93.3-LP-3,' pp 3.25/26 SON " Rod Control" 001/000; K5.04(4.3/4.7)

ANSWER 3.15 )

1) Open CCW mp breaker (+.3 ea)
2) Reset SI
3) Reset E G lockout
4) Start DG
5) Manu ly load equipment REFER CE SON EDST EP 055; EA2.06(3.7/4.1),-PWG-11(4.3/4.4)

ANSWER 3.16 (1.50)

1) Audio multiplier on audio counter drawer (+.5ea)is. .. .y 3 )
2) . Channel selector "
3) Amplifier selectorLin rear panel on audio counter drawer

--vtri u m: contr-ol by el evater th2ft i n si d e c s. . i..i n...e. t -

REFERENCE SON OPL271C019, Fig 92.24 015/020; K6.01(2.2/2.6)

ls__lNE18MNENI@_AND_QONIB06@ PAGE- 46 ANSWERS -- SEQUOYAH 1&2 -86/12/15-DEAN, WM

/, Z f~)

ANSWER 3.17 a) overcurrent (+.25 ea) 6.9KV Bus stripping' relay udbW

""d'E* '" A"*"'L .. _ .._ . ,_

n, sr fbusm -loc V N "'~

b) Ensure adequate. oil flow and distribution prior to pump start (+.5)

REFERENCE SQN SDI 68.2, pp 7 003/000; PWG-7(3.5/3.9)

'062/000; K4.02(2.5/2.7)

ANSWER 3.18 (2.50) a) Pzr level Hi-Low Alarm (+.25 ea)

Charging Flow increases Level increases to 60% (Limited to 100% power program) b) One Ltdn isolation valve shuts All orifice valves shut Pzr Level Low, Htrs Off, Ltdn Secured alarm Heaters turn off Level rises as charging flow reduced to flow through seals Pzr level Hi/ BU htrs on alarm Rx trip on high level REFERENCE Sqn Requal 1986 week 3, day 4, " Instrument Failures", pp 31/34 011/000; K1.01(3.6/3.9), A2.11(3.4/3.6)

ANSWER 3.19 (1.00)

Turbine Trips (+.5) due to 2/4 OTDelta T logic being made up (+.5)

(Rx trip >>>> Turbine trip)

REFERENCE TPT DWG 5610-T-D-14 012/000; PWG-10(4.4/4.7) k.

r 3 __ INS 16UMENIS_AND_CgN160LS PAGE 47 ANSWERS -- SEQUOYAH.1&2 -86/12/15-DEAN,- W M ANSWER 3.20 _ (1.50) 2/3 relays < 95'/. for 10 seconds if an signal present (+1.0) for 5 minutes without SI(+.5)

REFERENCE SON " Diesel Generators", pp 13 062/000; K3.02(4.1/4.4) i ANSWER 3.21 (1.00)

In IMP IN, the reference signal is impulse pressure, which is linear with load (+.5) whereas in IMP OUT, valve position is the reference signal, which is a non-linear relationship with load due to valve design characteristics. (+.5)

REFERENCE SON " Turbine Control"; Westinghouse Systems Manual, pp 10.3-8 045/000; K4.07(2.4/2.5)

ANSWER 3.22 ( .75)

Added a (48 volt) relay which_will be actuated on a trip signal (+.5) which will.close contacts in the 125 VDC trip circuit (+.25)-

'to improve reliability of RPS by adding redundancy (+.5) (NRC required)

REFERENCE SQN Outage Major Modifications Lesson Plan of 1986, pp 20 012/000; K1.02(3.4/3.7)

4. -PROCEDORES - NORMAL _A@NQRMAl t _EMER@ENQy_ANQ t PAGE 48 BBQ196991Ce6_CQNIBQL ANSWERS -- SEQUDYAH 1&2. -86/12/15-DEAN, WM l ANSWER 4.01 (1.00) b REFERENCE SON-AOI-34A, pp.1 EPE-024; EK3.01(4.1/4.4)

ANSWER 4.02 (1.00)

'd REFERENCE SQN LER 85-040-000; SON "RHR", pp.13 005/000; PWG-7(3.5/3.8)

ANSWER 4.03 (1.00) e REFERENCE' FR-Z.2 EPE-069; EK3.01(3.8/4.2)

ANSWER 4.04 (1.00) b REFERENCE Westinghouse Users Guide, pp 2-5 PWG-22(4.2/4.2) l i

l

- . , - - . - _ _ - . _ . . - - _ . _ _ - . - , , . . . . . . . . _ - - . - . _ - . - - . _ . . . . _ . . . - - . - - . . _ . . ---.. . ~ _._,

f __P8QQEQQ85@_;_NQBd@(t_8@NQ80@(t_EdgB@gNQy_ANQ- PAGE 49 BeQ196991Ge(_QQNIBQ(

ANSWERS -- SEQUOYAH 1&2 -86/12/15-DEAN, WM ANSWER 4.05 (1.00) 1 C Or . hs REFERENCE SON AOI-21.7, pp 1 EPE-058; PWG-10(4.1/4.2)

ANSWER 4.06 (1.00) a REFERENCE SQN AOI-36, pp 1, 4/5 EPE-015; PWG-10(4.2/4.5)

ANSWER 4.07 (1.00)

C REFERENCE SQN AOI-34A, pp 3 EPE-024; EA2.05(3.3/3.9)

ANSWER 4.08 ( .50) false (+.5)

, REFERENCE l SON FR-S.1, step 3 i

EPE-029; PWG-11(4.5/4.7) l

4:__P8QQEDUBES_ _NQ8d@(t_@BNQBd@6t_EMEBGENCy_@ND PAGE 50 BODig(gglg@g_ggNIgg6 1 ANSWERS'--~SEQUDYAH 1&2~ -86/12/15-DEAN, W M ANSWER 4.09 (1.00) a) True.(+.5 ea) b) False REFERENCE Westinghouse User's Guide, pp 5, 17, 18 PWG-22(4.3/4.3)

ANSWER 4.10 (1.00) a) True- (+.5 ea) b) False REFERENCE SON RCI-1, pp 2,10 PWG-15(3.4/3.9)

ANSWER 4.11 (1.00) 4, 1, 3, 5, 2 ( .2 for each swap required to put in correct order)

REFERENCE SONP SDI-85.1A, pp 3 001/010; A4.01 (3.7/3.4)

-ANSWER 4.12 (1.50) a) Name of the caller, location and type of fire (+.5) b) Initiate the fire alarm (+.25 ea) i Announce location / type of fire Verify / start a fire pump Notify Public Safety REFERENCE SON ADI-30, pp 2 i

EPE-076; PWG-11(3.9/4.1) l l

I l

L

'4 . ' PROCEDURES - NORMAL ~t ABNORMAL _EMERGENQY_AND t PAGE 51 8001QLQQ1G06_QQN18Q('

ANSWERS -- SEQUOYAH 1&2. -86/12/15-DEAN, W M ANSWER ~4.13 (1.50).

a). POTC-(rooms 64/65) (+.5 ea) b)- 732' level outside relay room c)- Lookout Place Office Center Complex in Chattanooga (^th floor)

REFERENCE

. SON " SON. REP", pp 19-20.

PWG-36(2.9/4.7)

ANSWER 4.14 (1.25)

1) Description of job involving ~ significant radiation,etc (+.25 ea)
2) Anticipated # of personnel to do job
3) Anticipated # of. man-hours to do job 4)-Estimated radiation exposure in Man-Rem

-5) Ways considered to reduce exposure and contamination spread REFERENCE SQNP RCI-10, pp 5 PWG-16: Knowledge of facility ALARA program (3.4/3.7)

ANSWER 4.15 (1.00)

1) Heat sink (+.15 for CSF, +.1 for correct order)
2) Integrity
3) Containment
4) Inventory REFERENCE EDP-F.0, "CSF Status Trees" i

PWG-22(4.3/4.3) i i

91__P8QQgQQBg@_;_NQ@d@6t_@;Ng8M@(t_EME8@ENCY_@NQ PAGE. 52 889196991C86_CgNIBQ6_

-ANSWERS -- SEQUDYAH 1&2 -86/12/15-DEAN, WM L

_ q. .> .

ANSWER 4.16 )

-Verify steam stops el ed h(ea)bf d)

(+.25

-Verify AFW pumps ru ing and flow established

-Verify PZR pressur within 1900-2235 b* # ph0#I *

-Verify PZR level within 24-60%

-Verify Tavg co rolling at 547 degrees

-Verify conta ment pressure and temperature normal

-Verify gene ator breakers open and 6.9 KV unit station service xferred

-Verify Mai feed isolation

-Verify m n feed ~ pumps tripped REFERE E SON A -27A, pp 1/2 EPE 069; PWG-11(4.5/4.5)

ANSWER 4.17 (2.00) a) -Close MSIVs and bypasses (+.5 ea)

-Trip turbine from main turbine front standard

-Stop and pull-to-lock both EHC-pumps at the pump control station h) (1) Verify PORV and block valves-open (+.25 ea)

(2) Verify containment purge air exhaust isloated REFERENCE FR-S.1 EPE-029; PWG-11(4.5/4.7)

ANSWER 4,18 (1.50)

1) Visual inspection of breaker position (+.3 ea for any 5)
2) Breaker light indication
3) Functional Test (eg. voltmeter)
4) Local (or Remote) Instrumentation
5) Annunciators
6) Switch position REFERENCE TPT AP 031, pp 8 SON (CAF)

PWG-13: Conduct / Verify Valve Lineups (3.7/4.0)

L

q l

l

_ . . SE(YACft1iWT Q u U Tt06) RDR ._ ?O REPckfhE"Y Y* lb

_ . -_ - - - sno _eu wsarer 7.1b

/2o f5 Gudc. _ _ _.__.Y._l { ______ _ _ _ _

.- _-- ._ - _ _ Cl20 /2eQuec __ f. (O __. _

_ - .) ,

G)_DE.s cEtR f- TWE__6as Ic__ STEP 1__tAIVolt!ED lAl_ClostNG_ Af t . '

. - - . . 'l ._/iS12.I. MTE12 A_C0d720&_. Rock ftforoRTroA/. f4J'_. _ . ._ _. _

SEfrL /A//TtATED .

ASSoHf _.D{E__oPEER70FL _WAS A o'r ceFT_

- TKE _CoM.71201- .R00M_,_(7uD.._THRT_._Tl/E .7v2 8(N[ v9WD f2 EA CiM2.__M A VE <Qt?E n9kY_ BEE M 7etPP6D.__ . -

_(I.0). _

_ _.- __.---. _ _ _ . . . . - . - _-~ ..- $

b)_.WMar 3__trins v219 nor-t2.n,"cueraae__ goon _ znxeate.arr a Renuire._/exonawa 7.dt__mewoe.s rsces cuirn'THav .ro .__

w av>iu.mv_ cournoc. teos _FC A._use es gener

_ [(. 0)

.- AUS '. _e) {outiz 3/4 Porp' .sdesig tieGl_ /b2Vs_ogn O 3MJ .

l Handly._cloff_d'unA2 . _ . - . _ _ . _ . - - _ . _ - . .

l si.uu /+eeeus dox__aE_Jf A'Sivs. _ _

l - . _ . .- .._ _ _ _ . . _ - _ . . . _ -- _. _- . _ . _ . _ . _ _

l_ b)_. .DD ._. G- n n) _.. .

6765 ~ ~~

?

f(og /ffed. Pai+n a &

I NNbN //>.Z __ _ .. _. __ _ _2 l .

+ .sg.w sie.m .__N*"*'***"8 ,, , ._.e. ,e-_ p Me w,.sgy,.w + * " ' * * * * " "

  • h'** e -.g _..w=.a. _e= . * * * * . - --

?4. PROCEDURES - NORMALi_A[ NORMAL _gEMERGENCY _AND PAGE 53

, B99196991C96_CQNIBQL

-ANSWERS --iSEQUOYAH 1&2 -86/12/15-DEAN,'W M.

4.'19

~

. ANSWER (1.O0)

This allows S/G Pressure protection witho'ut'having to depend on the code:

safeties (+.75) which could lift,and not' reseat' causing an unisolable steam leak (+.25)

REFERENCE

. Westinghouse Back' ground Document; (TPT'QBNK E-16)

EPE-038; EK3.06(4.2/4.5)

. ANSWER 4.20 (1.OO) [oc esay L o f 3 1). (Promote thermal - stratification) so ruptured S/G doesn't depressurize during cooldown (+.5 ea)

) Ensures _S/G available as a' heat sink if' required 3 Ocouth Schd SCCubiug EFERENCE Westinghouse ERG Background Document; (TPT QBNK 18)

EPE-038; ' EK3. 06 ( 4. 2/ 4. 5) -

ANSWER 4.21 (1.50)

1) RCS Subcooling (+.3 ea)
2) S/G Pressure' stable or degreasing
3) That stable or decreasing
4) . Core exit T/C stable or decreasing
5) Tcold at saturation temperature for S/G pressure REFERENCE SQN E-0.3 EPE-017; EK1.01(4.4/4.6)

-ANSWER 4.22 (1.00)

1) Faster cooldown (+.5 ea)
2) Maximum radiological release i'

l l

l l

l

4 t__P8QQgQQ8[@_- NQ8d@(i_@lNQBd@(i_EMERGENQY_@NQ' -

PAGE- 54 68Q196991G86_QQNIBQ(

ANSWERS -- SEQUOYAH 1&2 -86/12/15-DEAN, W'M REFERENCE SQN ES-3.1, pp 10 EPE-138; EK3.06(4.2/4.G)

. ANSWER 4.23 (1.50)

Normal wear. reduces this design criteria of a new seal, making it hard to predict-how long it will last.(+.5): So by removing the pump from service,-

minimize the chance 'of a #2 seal failure. ( + 1. 0 ) .

-REFERENCE SQN ADI-23, pp3 003/000; PWG-7(3.5/3.9)

ANSWER 4.24' (1.00)

.This removes power from certain critical valves to (+.5) prevent any undesirable movement (+.25): due to potential wiring shorts (+.25)

REFERENCE

-SQN AOI-27A, pp 2 EPE-068; PWG-7(3.5/3.9)

ANSWER 4.25 (1.00)

Adequate seal film (+.5)

Clogging of the seal (+.5)

REFERENCE SON AOI-23, pp 6

-003/000; A2.01(3.5/3.9)

k4 ENCLOSURE 3 (86-04) t QUESTIONS - RO Requal 1.01 (1.50)

R0 License 1.03 (1.50)

SRO Requel 5.01 (1.50)

SRO License 5.02 (1.50)

Indicate whether the following will cause the power range instrument to be indicating HIGHER, LOWER or the SAME as actual power, if the instrument has been adjusted to 100% based on a calculated calorimetric,

s. If the feedwater temperature used in the calorimetric was higher than actual feedwater temperature.
b. If the reactor coolant pump heat input used in the calorimetric is omitted.
c. If the steam flow used in the calorimetric was lower than actual.

ANSWER

a. Higher
b. Lower
c. Higher REFERENCE NUS Vol 4, pp 2.2-4 015/000; A1.01 (3.5/3.8)

Answer to part a. should be lower. Using a higher feedwater temperature would cause the ah across the S/G to be lower resulting in a lower calculated (indicated) power than actual power Q = mah i

Answer to part b. should be higher. Calorimetric calculation uses the following equation reactor power Reactor Power = NSSS power - Reactor Coolant Pump Energy Input Neglecting RCP input would make indicated (calculated) power greater than actual power (Reference TI-2; attached)

Answer to part c. should be lower. The S/G heat balance uses the following equation to calculate NSSS power l

Q = moh Using a lower m would cause calculated power (indicated power) to be lower than actual power.

l 1

< 1 l

2 QUESTIONS - RO Requal 1.03 (1.00) l R0 License 1.04 (1.00)

SRO Requal 5.03 (1.00)

SRO License 5.03 (1.00)

Attached Figure #219 shows a power history and four possible renon traces (reactivity vs time). Select (a, b, c, or d) the curve that correctly displays the expected zenon transient for the given power history.

ANSWER c-REFERENCE EIH: GPNT, Vol VII, Chapter 10.1-83-86 BSEP: L/P 02-2/3-A, pp 172 - 176; 02-0G-A, pp 57 - 60 Westinghouse Nuclear Reactor Theory, pp. I-5.77 - 79 Turkey Point, Reactor Core Control, pp. 4 28 001/000-KS.13 (3.7/4.0) b is the correct answer Reference attached plot from

  • XENON (PRIME computer program of Zenon at reactivity worth as a function of time)

QUESTIONS - R0 Requal 1.07 (1.00)

RO License 1.10 (1.00)

SRO License 5.10 (1.00)

a. Which power defect is the major contributor to the Total power Defect at EOL?
b. What is the major cause of the existence of a void defect?

ANSWER

a. Doppler defect (+.5)
b. Nucleate boiling REFERENCE Westinghouse Reactor Core Control, pp 3-38/42 001/000; K5.49(3.4/3.7)

Part a. Answer should be either Moderator and Doppler make roughly the same contribution at EOL or Modere. tor is major contributor. Cycle 4 data indicates that Moderator and Doppler make roughly the same contribution at EOL (Reference attached Requal lesson plan and design report curves). However, in previous cycles, moderator !.ss always dominated at EOL.

, i QUESTIONS - RO Requal 1.10 (1.50)

RO License 1.11 (1.50)

SRO Requal 5.08 (1.50)

SRO License 5.11 (1.50)

List the three main sources of fission neutrons in the core at each end of life and indicate their approximate contribution (in %) to power. ,

ANSWER Pu-239 37% (+/-3) (+.3 for isotope, +.1 for %, + .1 for correct order)

U-235 35.5% --thermal fission U-235 81 --fast fission REFERENCE SQN/WBN License Cert Trns, " Reactor Kinetics", pp 6 St Lucie Reactor Physics Section 7.6.7; SD 11 pp 33 Question did not solicit an order nor did it solicit seperating thermal and fast fission contributions. Candidates learned cycle 4 numbers. Therefore the following numbers should be accepted: (Reference attached Figure from Requal Lesson Plan)

U-235 43%

Pu-239 40%

U-238 8%.

,_,- . _ _ . _ _ _ _ ~ . . . _ _ - _ _ _ _ _ - - - . _ . __ ___ ._- _ . - _ _ _ . . _ _ _ _ _ . .

.. i QUESTION - RO License 1.12 (2.00)

-List the four factors that cause the Doppler Power Coefficient to change over core life and indicate for each of these factors whether they make the Doppler Power coefficient MORE or LESS NEGATIVE.

ANSWER

1) Pu-240- buildup--More Negative (+.5 ea)
2) Accumulation of Fission Product gases--More negative
3) Fuel Densification --More Negative
4) Clad Creep--Less Negative REFERENCE TPT Requal Lesson Plan, Cycle I,1985 " Core Life L'hanges", pp 16 CNTO,

" Reactor Core Control", pp 2-44/45 Surry, ND-86.2-LP-1 & LP-10 001/000; K5.49(3.4/3.7)

" Pellet Swell - Less Negative" should be accepted.

l l

i l

. QUESTIONS - RO Requal 1.09 (1.00)

RO License 1.14 (1.00)

List the four most significant causes of Non-condensible gas formation in the RCS during the first hour following a LOCA. Assume the PZR empties after several minutes and forced convection flow is not available. Also, pressure does not drop to a level requiring any SI tank to inject and fuel rods have not ruptured.

' ANSWER

1) Dissolution of H2 (due to mass loss of pressure drop) (+.25 ea)
2) Radiolysis
3) PZR vapor space expansion
4) Zirc-water reaction REFERENCE SQN EGT 222.006, pp 23 EPE-009; EK3.11 (4.4/4.5)

" Gases from the pressurizer vapor space" should be accepted in lieu of

" Pressurizer Vapor Space Expansion" (Reference Requal Lesson Plan attached)

.. i QUESTIONS - R0 License 1.15 (1.00)

SRO License 5.12 (1.00)

When performing a reactor startup to full power that commenced 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> after a trip from full power equilibrium conditions, a 2%/ min ramp rate was used. If a 0.51/ min ramp rate was used instead, how would that affect the magnitude and time of occurrence of the zenon concentration dip?

ANSWER The zenon dip would be smaller (+.5) and occur later (+.5)

REFERENCE SQN/WBN Inst. Guide " Review of Core Poisons", pp 5/6 Westinghouse Nuclear Training Operations, pp I-5.76 001/000; K5.38 (3.5/4.1)

Xenon dip will be larger (Reference WNTO SNE Text Figure and plots from

  • XENON PRIME computer code of Xenon Reactivity worth as a function of time)

QUESTIONS - RO T:;--' 1.17 (1.00)

SRO License 5.15 (1.00)

If reactor power increases from 50% to 100%, the average flux in the reactor doubles. With this average flux increase, why does the rod worth remain essentially constant.

ANSWER Because rod worth is proportional to the ratio of the flux at the tip of the rod to the average flux (0.7). A change in power does not significantly change this ratio (0.3).

REFERENCE Turkey Point, Reactor Core Control, Chapter 6 001/000; K5.02(2.9/3.4)

Rod Worth will only remain constant if the flux shape does not change and Moderator Temperature, Boron Concentration, and Xenon Concentration do not change. Since rod worth does change, the question makes an invalid statement. Delete question.

(Reference Requal Lesson Plan attached)

F

_- - _ - - _- --,,-,-,w.,

1 l

QUESTIONS - R0 License 1.20 (1.00) '

SRO Requal 5.11 (1.00) 1 The attached figure shows the change in pressure across a pressurizer PORV and its associated upstream and downstream piping for various valve positions.

RIPLAIN why the major pressure drop occurs in piping segment Pl-P2 when the valve is slightly open, whereas the major pressure drop occurs in piping segment P2-P4 by the time the valve is fully open.

ANSWER When slightly open, the pressure drop is across the valve itself as there is 1senthalpic expansion (+.5). As the valve is fully opened, head losses in the piping become more significant (+.5)

REFERENCE Westinghouse Thermal / Hydraulic Principles, pp 10-71/73 010/000; K5.02(2.6/3.0)

Some credit should be given for a discussion of increased frictional losses through a throttled valve causing a larger pressure drop just downstream of the valve. Also, it is doubtful that any candidate will use the term "isenthalpic expansion" in their discussion. Answers that include discussions of unrecovered head loss due to high velocity steam passing through the throttled valve should also be considered.

4 i

f

i

_ QUESTION - RO License 2.04 (1.00)

Which valve listed below is used to throttle auxiliary spray flow?

a. FCV-62-93 (Charging FCV)
b. Spray valve from Loop 1
c. Spray valve from Loop 2

- d. FCV-62-84-(Auxiliary Spray Valve)

e. You cannot throttle auxiliary spray ANSWER d

REFERENCE Surry ND-88.1-LP-3, pp 3.13 Westinghouse Systems Manual, pp 2.2-6 010/000; A4.01(3.7/3.5)

d. is not correct. FCV-62-84 cannot be throttled.
b. and c. are both correct. Auxiliary spray flow is normally throttled by throttling either of the normal spray valves. A fully closed normal spray valve will force all of the auxiliary spray flow to the top of the pressurizer (through the spray nozzle). As either normal spray valve is throttled open, some or all of the auxiliary spray flow is diverted to the cold les depending

- on the position of the spray valve. An approximate normal spray valve position of 50% will divert all of the auxiliary spray flow to the cold leg since the auxiliary spray line is a 2 inch line and the normal spray line is a 4 inch line.

Reference SQN Drawing 47W813-1 ,

~

0

QUESTION - RO License 2.07 (1.50)

SRO License 6.08 (1.50)

Indicate whether the following CVCS valves will FAIL OPEN, CLOSED or AS IS on a Loss of Instrument Air.

a) Low Pressure Letdown Valve (PCV-145) b) Charging Flow Control Valve (HCV-121) c) Letdown Orifice Isolation Valves (CV-200 A, B and C)

ANSWER a) Open (+.5 ea.)

b) Open c) Closed REFERENCE NA NCRODP 88.3, "CVCS" SQNP AOI-10A, pp 3-5 TPT SD13 "CVCS", pp 18, 21, 37 000/065; EA2.08(2.9/3.3)

Valve numbers shown in the question are not SQN numbers. This could cause confusion during the exam. Recommend that future questions of this nature reflect SQN valve numbers.

._ ,_ .m.. , _ _ . , . . - . _ . . _ _ . . , , _ _ , _ . _ , _ _ . - - . . _ _ . _ _ . . . , , , . _ . . . - , . _ _ . , , _ _ . _ , , . - . _ . , _ . , . _ , . . . - , -,

4

, .qg, l ' '

[L QUESTION .R0 Requal 2.04t'(2.0b) - -.*

a) For the following loads, indicate what combination of ERCW headers (IA, ~

18, 2A and/or 2B) is the NORMAf, source of cooling water: .g.

t

1) CCS Heat Exchanger "C" -
2) EDG Heat Exchanger 2A-A '
3) Containment Spray Heat ExchangerilB b) What 5 criteria / interlocks must be met for ERCW pump KA to auto start?~

ANSWER s a)- (1) 2B (+.33 ea)

(2) 1A (3) 18 t

'r * :>

b) (1) SI from Train 1A or 2A (+.2 ea.)

if' >

(2) No blackout signal /

(3) Transfer switch on swgr in Normal '

s (4) KA selected for operation /

(5) Pump RA not running ,

't REFERENCE -

SQN Requal 1986 week 1,. day 4, "ERCW", pp 4-9 076/000; K1.01(3.4/3.3), K1.05(3.8/4.0), Kl.19(3.6/3.7), K4.02(2.9/3.2)

Should also accept the following: '

1) Control Board Handswitch in Auto '
2) No Lockout '
3) Control Power Available '

(Reference SQN Drawing 45N765-15) l l

l l . l l

l

~

1 :. p

'y!.'

t

.j, .t, \'a'c y.

p-

\

]-!

, t QUESTf0NS. ,

F Requal 2.06 (1.00) 20 License 2.14 (1.00)

SRO License 6.11 (1.00)

Provide the system pressures et which the following ECCS components will start to inject following a LOCA: (use criteria stated in E0Ps)

a. SI Pumps
b. RHR pumps
c. Upper Head injection U

/j ANSWER [

1500 psig (+/- 25 psig) (+.33'ea) a.

b.z 180 psig

, ci' i1250 psig i REPoi'.E.NCE SQN E-0, pp 3 liestinghouse Systems Hanual, pp 4-1-33 EPE-Oll; EK3.12(4.4/4.6)~

Shouldacceht1165psigtd1285psigforpartc.

(Roterence SQN Tech Spec LCO 3.5.1.2) 4 ff

,f' m.o g

I I

m

. . - - - - - , , - , - , , , v--- -,,- --> - , , ,, ,, , ,.- - .-- - ,,- ,,, ,, ,-,,. --.-,

i

. QUESTIONS >RO Requal 2.09 (1.00)

RO License 2.17 (1.00)

SRO License 6.13 (1.00)

What 4 different ECCS related components are tagged out at low pressures to help prevent inadvertant over pressurization at low temperatures?

ANSWER ,

-SI Pumps (+.25 ea)

-ONE Centrifugal Charging Pump

-UNI Gass

-Cold les Accumulator Isolation Valves REFERENCE SQNP System Descrip. "RCS", pp 9 001/000; K1.02 (3.9/4.1)

SQN GOI 3B only requires the SI pumps and Cold Leg Accumulator Isolation Valves to be tagged out. UHI gag motors are only required to have power removed and the one Centrifugal Charging Pump is only required to be pulled to loct. The UHI gag motors and the one Centrifugal Charging Pump can be tagged at the discretion of the Unit ASE, but are not required to be tagged.

Therefore, the only 2 required responses to this question are SI pumps and Cold Les Accumulator Isolation Valves.

4 4

=

4

[

QUESTIONS - R0 Requal. 2.11 (1.50)

RO License 2.19 (1.50)

SRO Requal 6.11 (1.50)

SRO Licenea 6.17 (1.50)

a. Describe the order of processing elements in the Air Cleanup Units through which air is drawn by the Air Cleanup Subsystem.
b. How are the processing elements in an INACTIVE air cleanup unit loaded with radioactive material kept cool?

ANSWER

a. dominster>>> relative humidity heater >>>prefilter bant>>>HEPA filter bank >>> Carbon adsorber bank >>> electric heating element >>> carbon adsorber bank >>>HEPA filter bank (+.125 ea)
b. Two cross over air flow ducts draw air from the active air cleanup unit

(+.5)

REFERENCE SQNP Sys Descrip. 4.4, " Containment Air Purif and Cleanup System" pp 7-8 027/000; A2.01 (3.0/3.3)

Part a should not require that the processing elements be listed in order. It is quite sufficient that the candidate know what the elements are, not necessarily what order they are in. Also, the electric heating element between the charcoal banks does not exist.

(Reference SQN Drawing 47W866-1) l

.~*

1 I

l

,- s-l l

l

QUESTIONS - RO Requal 3.03 (1.25)

RO License 3.05 (1.25)

Describe what happens to the coils associated with the CRDMs and what 2 alarms / indications actuate on an Urgent Failure of the rod control system.

ANSWER The stationary and movable grippers energize and the lift coil deenergizes

(+.75); ROD URGENT FAILURE Alarm and red lamp at power cabinet actuate (+.5)

REFERENCE SQN " Rod Control System", pp 12 001/050; A2.01(3.7/3.9)

" Urgent Failure lamp on Logic Cabinet" should also be accepted.

(Reference Westinghouse Rod Control Training Manual attached) 1

QUESTIONS - RO Requal 3.05 ( .50)

RO License 3.07 ( .50)

TRUE or FALSE: If the upper detector on a power range NI fails low while at 75% power, the operation of the upper detector current comparator is defeated.

ANSWER true (+.5)

REFERENCE SQN "Excore NIs", pp 18 015/000; 6.04(3.2/3.4)

Answer is False. All four detectors below 50% power are required for auto defeat. A failed detector can be manually defeated on the NIS panel, but the question implies an auto defeat.

Reference NRC Systems Manual Westinghouse NIS Training Manual

't

- , . - . . . _ _ - . __ ._~_. . _. _ _.._.__ . . _

QUESTIONS - RO Requal 3.07 (1.50)

RO License 3.11 (1.50)

SRO Requal 6.06 (1.50)

SRO License 6.12 (1.50)

What 4 signals will automatically initiate the operation of the Auxiliary Building Gas Treatment System?

ANSWER

-Phase A Containment Isolation signal from either Unit (+.375 ea)

-High Radiation signal from fuel handling bids area rad monitors

-High Radiation signal from aux Bldg exhaust vent rad monitors

-High Temperature in Aux Bldg Supply Fan Suction REFERENCE SQNP Sys Descr. 4.4, " Cont Air Purif and Cleanup Sys" pp 15 EPE-060; PWG-10 (4.1/4.4)

High Radiation from RM-90-102 and RM-90-103 (Spent Fuel Pit Rad Monitors) are separate signals. RM-90-102 will only cause 'A' train ABGTS initiation and RM-90-103 will only cause 'B' train ABGTS initiation. Therefore, credit should be given for these two signals as seperate signals. (Reference Plant Drawing 45N630-4 attached) 1

- ' & 3tq yu _

QUESTIONS - SRO Requal 6.07 (1.50)

SRO License 6.15 (1.50)

An SI signal was generated due to a transient caused by an undervoltage condition on the 2A-A 6.9KV Bus. During this transient, the 2A CHG Pump breaker stayed closed causing an EDG lockout. (all other loads were removed)

What 5 actions must the operator take to load equipment on that bus using the 2A-A EDGf ANSWER

1) Open CCW pump breaker (+.3 ea.)
2) Reset SI
3) Reset EDG lockout
4) Start EDG
5) Manually load equipment REFERENCE SQN ELEDST EPE 055; EA2.06(3.7/4.1), PWG-11(4.3/4.4)

Question implies that a D/G lockout occurred as a result of the transient. An undervoltage condition on the shutdown board or an SI signal will cause an emergency start of the D/G which will allow only Generator Differential or Engine Overspeed to trip the D/G. Also, the overcurrent relay on the Diesel Breaker will not trip the breaker unless either the normal or alternate feeder breakers are~ closed. If the Diesel is tied to the board by itself, there is no overcurrent protection on the Diesel breaker. Delete the question due to confusion caused by implication that D/G will lockout if 2A-A Charging pump breaker does not load shed.

Reference attached drawings 45N767-2 45N767-4 45N767-5 45N765-2

i

QUESTION - RO License 3.16 (1.50)

After making a containment entry prior to refueling, the supervisor making the entry reports he cannot hear the SR Audio Count Rate speaker inside containment. You then note that you can ru) longer hear a count rate in the control room either. List 3 switches / controls (including location) that may be out of position causing the problem w/ the containment audio count rate.

ANSWER

1) Audio multiplier on audio counter drawer (+.5 ea for any 3)
2) Channel selector on audio counter drawer
3) Amplifier selector in rear panel on audio counter drawer
4) Volume control by elevator shaft inside containment REFERENCE SQN OPL271C019, Fig 92.24 015/020; K6.01(2.2/2/6) 4 is definitely a wrong answer. Not only is there no such volume control switch inside containment, there is no elevator (or elevator shaft) inside containment.

jk .,^ . l(o . QD 3 W -

QUESTION - SRO License 6.16 (1.50)

a. Aside from operating the control switch or breaker, list the 4 devices which directly cause a RCP trip. Be specific in identifying relays which cause the RCP to trip.

i b. Why is there a 120 second time delay in starting a RCP once oil lift pressure has reached a sufficient pressure?

ANSWER

a. Overcurrent (+.25 ea) 6.9KY Bus stripping relay underfrequency 6.9KV Bus lockout relay
b. Ensure adequate oil flow and distribution prior to pump start (+.5)

REFERENCE SQN SOI 68.2, pp 7 003/000; PWG-7(3.5/3.9) )

062/000; K4.02(2.5/2.7)

Bus Lockout does not directly cause an RCP Trip. Unit Board differential (87) will trip and lockout the normal and alternate feeder breakers and the 480V transformer breaker but will not trip any load breakers (including the RCP 4

breaker). Overcurrent on the normal or alternate feeder breakers will trip and lockout the normal and alternate feeder breakers only. Once again, no load breakers will trip. Therefore 6.9 KV Bus lockout relay should not be a required response. Also, undervoltage should be accepted in lieu of bus stripping since bus stripping is caused by an undervoltage relay (27)

(Reference SQN Drawings 45N763-2 45N721-1 l

i

?

l 1

> - , - - - . - , . - - - - - - , - - - , . - - - ~ , . - , ,,,,----,,_--,-,--.e,,,,,,,.,,,----,,--,-,,n-

,.n---, , - - , _,n- ..

,.,---,n_,_ , ~ + - - - - - ,,, ---,----n,-- - - n -

o

  • QUESTIONS - RO Requal 4.05 (1.00)

RO License 4.05 (1.00)

SRO Requal 7.04 (1.00)

SRO License 7.06 (1.00)

The loss of which one of the following 125 VDC Vital Battery Boards will cause a reactor trip and also number 2/4 S/G MSIVs and main feed regulation bypass valves to close?

a. Unit 2, Board I
b. Unit 1 Board II
c. Unit 2. Board III
d. Unit 1, Board IV ANSWER c

REFERENCE SQN AOI-21.7, pp 1 EPE-058; PWG-10(4.1/4.2) b and c are both correct answers. Loss of 125V Vital Battery Board II will cause a reactor trip on Unit 1 and 2/4 S/G MSIVs and main feed regulating bypass valves to close.

Reference SQN AOI 21.2 1

l

QUESTION - RO License 4.15 (1.00)

Suberiticality and Core Cooling are the two highest priority CSF Status Trees to monitor during accident conditions. List the remaining 4 CSF Status Trees in DECREASING order of priority.

ANSWER

1) Heat Sink (+.15 for CSF, +.1 for correct order)
2) Integrity
3) Containment
4) Inventory REFERENCES E0P-F.0, "CSF Status Trees" PWG-22(4.3/4.3)

" Pressurized Thermal Shock (PTS)" should be accepted in lieu of Integrity since this is how SQN Status Trees are written.

1 1

}

a .-

QUESTIONS - RO Requal 4.15 (1.00)

RO License 4.20 (1.00)

SRO Requal 7.12 (1.00) 1 SRO License 7.19 (1.00) I l

l E0P E-3, "SGTR", requires the operator to maintain AFW flow to the rupture S/G l until narrow range level is established. Provide two reasons for this l procedural requirement. l l

ANSWER l

1) (Promote thermal stratification) so ruptured S/G doesn't depressurize i during cooldown (+.5 ea)
2) Ensures S/G available as a heat sink if required REFERENCE Westinghouse ERG Background Document; (TPT QBNK 18)

EPE-038; EK3.06(4.2/4.5)

Iodine Scrubbing by the liquid portion of the S/G mass should be accepted as one of the two reqired responses. AFW flow should be maintained until the tubes are covered to assure that the break is not open to the steam space so that iodine can be retained in solution to prevent exceeding offsite dose limits Reference Westinghouse Steam Generator Tube Rupture Training Manual attached.

QUESTION - R0 License 4.21 (1.50)

List the 5 criteria that are verified in accordance with the E0Ps to ensure that Natural Circulation exists.

ANSWER

1) RCS Subcooling (+.3 ea) -
2) S/G Pressure stable or increasing
3) Thot stable or increasing
4) Core exit T/C stable or decreasing
5) Teold at saturation temperature for S/G pressure REFERENCE

, SQN E-0.3 EPE-017; EK1.01(4.4/4.6) 2 should be "S/G Pressure stable or decreasing" 3 should be "Thot stable or decreasing"

QUESTIONS - SRO Requal 5.05 (1.50)

SRO License 5.07 (1.50)

AN ECC is calculated for a startup following a reactor trip from 50% power equilibrium zenon (BOL). Indicate if the actual critical rod position will be HIGHER, LOWER or the SAME from the calculated position for each of the following situations. Use attached curves as appropriate and treat each case individually,

s. Xenon reactivity curve for trip from 100% is used to calculate conditions to startup 20 hours2.314815e-4 days <br />0.00556 hours <br />3.306878e-5 weeks <br />7.61e-6 months <br /> after the trip.
b. Boron worth at E0L is used vice BOL worth. (Dilution is required to reach desired Boron concentration in both cases)
c. The EOL critical Boron Concentration is used instead of the BOL critical Boron concentration.

ANSWER

a. Lower (+ .5 ea)
b. Lower
c. Higher

! REFERENCE ST Lucie OP 0030126 and Plant Curves CNTO Reactor Core Control, Section 7 Part e cannot be answered. Critical Boron Concentration can vary greatly at BOL and EOL. There is no one BOL Critical Boron Concentration or EOL Critical Boron Concentration. Not enough information supplied to answer the question.

Delete the question.

I

---,,--.,,.~,-..,.n- . , - . . , . - - - . _ - - - _ _ . , - - - , - - , - - - - , . - - - . - - . , . - . - - . , - , - , -

il QUESTION - SRO License 5.22 (1.00)

Make a sketch of the temperature profile along the length of a counter flow heat exchanger for both the cooling medium and the fluid being cooled.

ANSWER See attached sketch REFERENCE ST Lucie Thermo Supplenentary Handout, pp 3.4-15 ,

Appendix A. Heat Exchsngers (2.4/2.7)

No attached sketch in the answer key. See attached lesson plan for suggested answer.

_ _ _ . _ _ _ . . . _ _ _ - _ _ ____. ~._.._ _ _. _ -___..____ _ _-._.__. _ _ _ ____ _ __ _ _.

QUESTION - SRO License 5.23 (1.00)

The pressure "A" PORV partially opens to a throttling position during operations at 85% power. Assuming Quench Tank pressure is 20 psia and saturation conditions in the pressurizer corresponds to 2240 psia, what is the quality of the steam on the downstream side of the PORV? Show all calculations.

ANSWER at 2240 psia, hs = 1115 BTU /lb (+.5 for h determination) at 20 psia, for saturation conditions, hg - 1156 BTU /lb & hf = 196 from a Hollier Diagram, moisture content is approximately 5% (95% quality) calculating: (1156-1115)/(1156-196) = .043 >> 95.7% quality

(+.5 for quality determination)

REFERENCE Steam Tables and Mollier Diagram 010/000; KS.02(2.6/3.0) hs = 1116.7 BIU/lba is the proper interpolation (not 1115 BTU /lbm) x = 95.9%

h-h x= f hr = 196.27 BTU /lbm hfg hgg = 960.1 BTU /lba

= 1116.7 - 196.27 960.1

= 95.9%

Range of acceptable answers is not given in the answer key

ga pud y3V QUESTION - SRO License 6.06 (1.00)

Which one of the graphs A-D in figure 603 correctly depicts the Pressurizer Pressure control system, Master controller output signal, based upon the demand signal shown?

ANSWER d.

REFERENCE SQN Requal 1986 Week 5/6, day 7. " Control System Theory" 202002 K4.08 3.3/3.4 5.03 2.4/2.4 None of the four answers is correct. The output of the pressurizer pressure controller is parabolic due to the fact that it is a proportional-integral (PI) controller. Delete question.

(Reference attached output graph, TI-41 scaling data sheet, and SQN Calibration Card).

QUESTIONS - SRO Requal 6.04 (1.50)

SRO License 6.10 (1.50)

Fill in the blanks in the statement below concerning the Containment Air Return System:

Both fans are actuated upon an actuation signal but are delayed starting for minutes. They continuously draw air from the dome of the containment vessel and from the following pocketed spaces , , ,and ANSWER Containment Hi-Hi pressure; 10; S/G enclosures; PZR enclosure; accumulator spaces; instrument room (+.25 ea)

REFERENCE Westinghouse PWR Systems Manual, sect 4.5, pp 14 022/000; PWG-4 (3.5/3.8)

Either Containment Hi-Hi Pressure or Phase B are acceptable answers.

Containment Hi-Hi Pressuro generates a Containment Isolation Phase B signal which starts the Air Return Fan Timers.

(Reference SQN Drawing 45N779-5)

QUESTION - SRO License 7.08 (2.00)

Prior to a reactor startup, with the RCS at normal operating pressure and temperature, the following RCS leakages exist. For each leak listed below, indicate whether you could STARTUP or would have to remain SHUTDOWN. (Treat each leak below as an independent event)

a. A leak from an unknown source of 1.5 GPN.
b. 6.0 GPM from a manual valve packing gland,
c. 0.4 GPM from one S/G.
d. 0.1 GPH from the reactor vessel head INNER seal.

ANSWER

a. Shutdown (+.5 ea)
b. Startup
c. Shutdown
d. Shutdown REFERENCE SQN TS 3.4.6.2 002/020; PWG-8 (3.5/4.4)

Leakage from the reactor vessel head INNER seal is not considered pressure boundary laakage since it can be isolated. Therefore, the answer to d is startup.

Reference SQN Tech Spec Definitions SQN Drawing 47W813-1

,- , e ,.y --%,.__- - _m- ...

-.p ,

.- gg-- ,,.--%-.-w-- -,--- --.y._ ..m.w__,---

, .. e QUESTIONS - SRO Requal 7.08 (1.50)

SRO License 7.13 (1.50)

AOI-29. " Dropped or Damaged Fuel Assembly", discusses the " Worst Case" event of a dropped and damaged fuel assembly. What are the 3 criteria, that if met, could result in a radioactive release high enough to require implementation of the REP? (ie. the worst case)

ANSWER

1. < 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> after shutdown (+.5 ea)
2. Assembly from the highest core power region
3. All fuel rods damaged REFERENCE SQN AOI-29, pp 5, 8 EPE-036; EK3.03(3.7/4.1)

Tech Spec LCO 3.9.3 does not allow movement of irradiated fuel in the reactor vessel unless the reactor has been suberitical at least 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br />. Therefore, the less than 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> after shutdown criteria should not be required as part of the answer.

,e. e QUESTION - SRO Requal 7.13 (1.50)

SRO License 7.20 (1.50)

The Response Not Obtained for step 1 of FR-H.1, " Response to Loss of Secondary Heat Sink" states: If ALL S/G Wide Range levels < 25%, then STOP ALL RCPs and immediately initiate feed and bleed per steps 11 to 13. Why are the RCPs tripped prior to initiating feed and bleed, aside from the fact that heat input from the pumps will be removed?

ANSWER RCPs will keep 2 phase flow mixture (+.75) and the PORVs will not be able to release as much steam (energy) (+.75)

REFERENCES Westinghouse background document EPE-074; EK3.08(4.1/4.2)

There is nothing in the Westinghouse background document that supports this answer. All of the reasons for tripping the pumps in the background document are related to RCP heat input. Delete the question.

e

,- ---v- - - q e , _- - _ ---g --c----.m-y 9 y yy- 7-- -y- - - m,wy

.a. .e QUESTIONS - SRO Requal 8.03 (1.00)

SRO License 8.05 (1.00)

True or False

a. Rad Tumbler Sets are installed on doors leading directly to high radiation areas but not exceeding 1000 ar/hr.
b. The Plant Health Physicist controls the keys to the Rad Security Locks ANSWER
a. falso
b. false REFERENCE SQNP Requal Teng. Inst. Notes Part b. is true. The Plant Health Physicist and the Shift Engineer control Keys to the Rad Security Locks.