ML20151D122

From kanterella
Jump to navigation Jump to search
SER on West Valley Demonstration Project Liquid Waste Treatment Sys
ML20151D122
Person / Time
Issue date: 04/30/1988
From:
NRC OFFICE OF NUCLEAR MATERIAL SAFETY & SAFEGUARDS (NMSS)
To:
Shared Package
ML20151D120 List:
References
REF-PROJ-M-32 NUDOCS 8804130403
Download: ML20151D122 (46)


Text

_ _ _ _ _ _ _ _

SAFETY EVALVATION REPORT ON THE WEST VALLEY DEMONSTRATION PROJECT LIQUID WASTE TREATMENT SYSTEM PROJECT M-32 U.S. NUCLEAR REGULATORY COMMISSI1N OFFICE OF NUCLEAR MATERIAL SAFETY AND SAFEGUARDS APRIL 1988 l

l 3'

8804130403 880406 l M 32 PDR ,

i i

1

. l TABLE OF CONTENTS l l

Section g I 1 INTRODUCTION ............................................ ....... 1 2 THE LIQUID WASTE TREATMENT SYSTEM ............................... 2 2.1 The Physical System ........................ ............... 3 2.2 The LWTS Process ................................... ... ... 7 3 PERFORMANCE EVALUATION ..... ................ ................... 10 3.1 Normal Operating Conditions .. ............................ 11 3.1.1 Processing High TOS Streams ................ ........ 12 3.1.2 Processing Low TDS Feed Streams ..... ............... 16 3.2 Accident Conditions ........................................ li 3.2.1 Initiating Events ................................... 17 3.2.2 Accident Evaluations ................................ 19 I 4 ADMINISTRATIVE PROCEDURES .... .................................. 20 APPENDIX A - Tables of Effluent Radionuclide Concentrations............ 24 REFERENCES ........................................................... 22 i

i

1 INTRODUCTION The U.S. Department of Energy (00E) is conducting a high-level radioactive waste solidification demonstration program at the Western New York Nuclear Service Center. Two major elements of this program are the removal of cesium from neutralized liquid high-level waste and the incorporation of the cesium, along with highly radioactive sludge, into borosilicate glass. Low-level radioactive waste produced in this process will generally be separated into an effluent stream suitable for release to the environment and a stream for in orporation into cement for near surface disposal. 'he processing of low-level waste streams will be accomplished in the Liquid Waste Treatment System (LWTS) using a combination of filtration, evaporation and ion exchange.

This safety evaluation report (SER) addresses the public health and safety impacts of operating the LWTS. The primary source of information for this review was the West Valley Demonstration (WVDP) Project Safety Analysis Report, Volume IV, Part H, Liquid Waste freatment System, Rev. 1. Additional information was obtained in site visits, from the LWTS Design Criteria document, and from other documents as referenced. The Safety Analysis Report (SAR) describes the structures, equipment, and procedures used ir, operating the LWTS, and estimates the quantities, characteristics, and impacts of LWTS discharges under normal and accident operating conditions.

This SER presents an overview of LWTS equipment, configurations, and ooerating procedures and an evaluation of the impact of the radionuclide releases that will occur in LWTS operation. Evaluation of the impact of releases under normal and accident conditions includes an independent estimation of release quantities and dose commitments for a maximally exposed individual and for the general population. The offsitt dose consequences are compared to applicable standards.

1

i t

Conclusions The conclusions of this safety evaluation can be summarized as follows:

1. The impacts of LWTS operation on public health and safety under normal conditions are expected to be small. When operated in a mode that produces '

max wym liquid releases, estimated maximum individual ar.d population doses are 5.15 E-3 mrem and 33.1 person-mrem, respectively. When ooerated in a mode that produces maximum air releases, estimated maximum individual and population doses are 1.76 x E-3 mrem and 15.4 person-mrem, respectively.

These doses are far below background levels.

2. Evaluation of the impacts of potential accidents that could be caused by LWTS operation also indicates that operating the system will not pose a threat to public health and safety. Auidents evaluated included rupture of transfer piping, failure of a major holding tank, and failure of the vessel off gas system HEPA filter. Maximum individual doses estimated for these accidents range from 0.01 to 1.5 mrem.
3. The staff's independent o.7alysis of effluent radionuclide concentrations and dose commitments supported the values presented by DOE in the SAR.

2 THE LIQUID WASTE TREATMENT SYSTEM The purpose of the LWTS is to process low-level and transuranic-contaminated liquid waste streams. In many cases, the radioactivity will be concentrated in an evaporator, with the evaporator bottoms being solidified in cement or borosilicate glass. The evaporator overheads, along with streams not processed in the evaporator, will be filtered, treated in ion exchangers, and made avail-able for recycle in the plant or release to the environment.

The processing route through the LWTS depends on the radiologic characteristics and level of total dissolved solids (TOS) in the feed stream. High TOS streams are categorized as containing from 500 ppm to 40 wt% solids, depending on ionic species. Low TOS streams are categorized as having less than 500 - 5000 ppm solids, depending on ionic species. Streams containing greater than 40 wt% TOS can be charged directly to the Cement Solidification System (CSS) without processing in the LWTS. In addition to the ability to process both high and 2

low TOS liquids the LWTS can be operated in recycle and non-recycle modes. In non-recycle mode the treated liquid effluent would be discharged through the existing lagoon system. In recycle mode system components would be reconfigured and the treated liquid effluent would be available for use as process water.

Schematics of the non-recycle and recycle systems are presented in Figures 2-1

and 2-2, respectively.

2.1 The Physical System [

The LWTS will use existing equipment and systems for collecting waste water and l handling decontaminated water prior to release. New equipment has been installed for processing collected waste water. The majority of the new LWTS ,

equipment is located in the existing Process Building. The principal location is Extraction Cell 3 (XC3). This heavily shielded cell contains an evaporator and .:eolite for treating high total dissolved solids feed as well as a filter, ;

zeolite, and resin for treatment of low total dissolved solids feed. Supporting equipment, such as the backup feed tank for the high TOS system and the concentrate receiver tank, are located in the uranium product cell. Pumps for the evaporator feed and concentrate are located in the shielded uranium loadout pump room.- Pumps for the transfer of resin and fil'.er backwash slurries are located in a shielded area in the upper warm aisle. An ion exchange fill hopper

! (s located above XC3 in the extraction chemical room. The product purification cell is used as a valve gallery to support the operation of the LWTS equipment in XC3.

The main plant ventilation system supplies air to the Process Building in a

manner such that flow is from the least active areas to the most active areas.

Fresh air is filtered and distributed on a once-through basis to the least active areas, which include the control room, stairways, analytical aisles, and Process Building offices. These areas undergo approximately ten air changes per hour and are maintained under slight positive pressure. Air flow is then directed to sligntly more active areas, such as the operating aisles and laboratory, which are maintained at a slight negative pressure. Air from the operating aisles is drawn through the cell access aisle, the lower warm aisle, and finally XC3, which is maintained at the highest negative pressure.

3

I k

n ln

-e -

!e 0 -> '

n ---> I

! 3 <

a i x+

1 t

i

. u ~

t s

t 4'

i i8l

~:

i

a
i. s. .a . s i a c s  ;

c .. . .

6 i _s: l _

a j

.i =

I I N h! a f I  :

.x

=

- E r =  :

as

= 3 _A i 1 i T ig l

. - t I i -->  !!!I r-l'
l  ? - .

-c  !

1 e 3 5 3-v -: i I A [

Ia .

.le:,lt l .! ,s:  :

4 n  !  !

y Ir i

. .I ,

J

.I.I.".

8 Figure 2.1 LWT5 Without Recycle 1

4 i

i _ _. _ _ .

3 l4 l

!n

A

^ l  :

~t I

V

!- l .I I,I:!n

i- 4 l3:

t l

a i

sj

!. 9

: i I  :  :

.- a  ; 6 e7  :

]t x! . ,

il lI -

s

  • w x x

1 I

1 a e s ai -

g :!

L 1 ___ e -

->  ;!l .

i e  :

i-a

I a ,

r.-

. t

.z-

, __, 3.:

.::: ~

t 4

^ \

i e., :n !.. l~

L

, ,a I I - a

!  : s. .le:,lI l l l_I!,

i e

i' O 6

l v Ir
ie  : :I i
1 2

i Figure 2.2 1.WTS With Recycle .

5 i

q 4

- , .., . - ..._-_-_m,..........,,.m. . - - _ _ - - - . . _ _ _ - . . , . - - . . _ _ . . . - . , _ _ _ . . . . . . - . . - . - _ _

._ .~ .- .. . . _ . .

XC3 is exhausted to the plant stack via a humidifier / washer, scrubber or heater, and two parallel banks of roughing and HEPA filters. The roughing filters serve to remove larger particles, while the HEPA filters are designed to remove  !

0.3 micron particles with 99.95% efficiency, f Vessel offgas will be vented to the Vessel Offgas System located in the former reprocessing plant. Vent lines from the vessels will be free-draining back to the vessels. The system is composed of a condenser, a knock-out pot, scrubber, cyclone, heater, and two HEPA filters and exhausters in parallel. The parallel  ;

arrangement allows for continued operation while one filter is being changed out. t Exhaust gas is further filtered through a seconti bank of backup HEPA filters in -

parallel prior to release from the plant stack. The system will be operated at a negative pressure to ensure confinement of airborne radioactive material and I 1

hazardous chemicals. The following vessels in the LWTS are vented to the V0G: i e

  • Evaporator 31017
  • Tank 5015B
  • Distillate Surge Tank 71-0-005
  • Tank 702 f
  • Filter 71-V-010
  • Tank SD15A1
  • Organic lon Exchanger 71-D-001
  • Tank 5015A2 i
  • Zeolite Ion Exchanger 71-0-002
  • Tank 0009 ,
  • Zeolite Ion Exchanger 71-D-003
  • Low TOS Feed Tank 71-0-011 l
  • Filter Backwash Tank 71-0-008
  • Tank 35104 ,
  • Spent Resin Tank 71-0-006
  • Spent Zeolite Tank 71-0-007 ,

The LWTS has an instrumentation and control system that will allow the entire LWTS to be started, operated, monitored, and shut down from a central area. A programmable logic controller will be used to monitor the measured process ,

variables and to help control the process.

l srea radiation monitors, continuous air monitors, and isokinetic stack monitors ,

will be used to monitor the effectiveness of the radioactivity confinement system. Activity monitors will alarm in the control room and will alert the  !

operators to any potential problems.  !

I 6

L

2.2 The LWTS Process Operations Without Recycle l

Some of the equipment required for recycling water decontaminated in the LWTS will not be installed when the LWTS begins operating, so at least the first feed streams processed (principally the decontaminated supernatant) will be treated on a once-through basis. Water treated in the LWTS in this mode will be routed through the laaoon system and the Low-Level Waste Treatment Facility (also called the 02 Plant) prior to discharge into Buttermilk Creek. Based on the evaluations presented in this SER, the ccncentrations of all radioisotopes in water released to Buttermilk Creek will be below the limits of 10 CFR 20, the NRC's standards for protection of the public from radiation.

l High TDS Liquid Processing l

High TDS liquids will include decentaminated supernatant and the sludge washes from the STS, as well as melter feed concentrator overheads and the melter off-gas stream from the Vitrification Facility. Decontaminated supernatant will l

l constitute the largest volume of liquid to be processed and largest amount of l radioactivity, with a total volume of 2.1E+06 liters at a concentration of 10.8 pCi/ml radioactivity, assuming a cesium decontamination factor of 1,000 i and no removal of other radioactive constituents in the Supernatant Treatement System. The melter feed concentrator overheads will contain the highest I concentration of radioactivity, with 1.7E+06 liters at 14.8 pCi/ml, assuming a distribution coefficient in the feed concentrator of 1,000 for all nonvolatile

, solutes. (See Table 3-1.)

l The melter off gas stream will be routed through Tank 5015B (56,950 liters capacity) where it will be pH adjusted to neutralize N0 scrubber x

solution before being charged to the evaporator. The other feed streams will .e routed through Tank 35104 (22,000 liters capacity) and charged to the evaporator.

Tank 702 is available as surge volume to augment the capacity of Tank 35104.

Flexible use of the feed tanks is made possible by cross-ties between them via the product purification cell distribution manifold. The high TDS feed tanks are also linked with the low TDS feed tank for cases in which feed streams do not meet high TDS criteria.

7

High TOS solutions will be fed to Evaporator 31017 on evaporator level control.

Three bubble-cap trays and a mesh pad will eliminate entrained liquid and mist.

The mesh pad is equipped with a differential pressure indicator-controller to regulate recycle water rinsing. The overheads condenser will be cooled with cooling water on overheads temperature control at about 110'F.

Condensed overheads will be collected in the Distillate Surge Tank 71-0-005, which is divided into two sections, the startup side and the run side. During startup, the distillate is recirculated back to the evaporator until operations l are stabilized. During normal operations, the distillate is charged from the run side of the surge tank to the Zeolite Ion Exchanger 71-0-003 via Pump 71-P-15 on surge tank level control. This ion exchanger is dedicated to evaporator distillate processing, and is equipped with a differential pressure indicator and an effluent radiation monitor. Effluent will be routed through the j interceptors, the 02 Plant, and the lagoon system for surface discharge via i Lagoon 3 once acceptability criteria have been met.

Evaporator bottoms concentrates at about 230 F will be cooled with water to about

) 110*F and charged on specific gravity control to intermediate storage in Tanks 5015A1 or 5015A2 in the uranium product cell. A recycle water or steam flush is available in the event that concentrate flow is restricted or blocked due to crystallization in the cooler tubes. High TOS solutions will be concentrated to a maximum of 46 wt% dissolved solids in the evaporator. Concentrates are

{ limited to 50 pCi/mi Cs-137 in the LWTS in order to meet shielding requirements l in the CSS. Melter feed concentrator overhead evaporator concentrates will be i returned to the Vitrification Facility. Concentrates to be transferred to CSS will, if they meet waste form requirements, be pumped to the CSS Waste Dispensing l Vessel.

j Low TOS Liquid Processing i

! Low TOS feed streams will include liquids from the interceptors and from Alternate l Tank 50158. Interceptor contents will include liquids from plant drains, the new CSS sump drain, and bypass fluids from the filter / ion exchange train described below. The interceptor contents will be transferred to either the low TOS Feed Tank 71-0-011 or directly to Filter 71-0-010.

8

The stacked disc filter will be fed from the feed tank on level control at a design rate of 38 liters / minute and is to remove particles up to 5 microns in size. The filter will periodically be backwashed with high pressure water to the backwash Storage Tank 71-D-008 once differential pressure reaches 107 psi.

The system is protected from excessive backflush pressure by relief to the XC3  ;

sump pit. Low TDS liquids will be decanted by means of a standpipe and routed to Tank 50158. The backwash storage tank holds a volume of 300 gallons at the level of the standpipe, which corresponds to approximately one batch volume of solids for the CSS Waste Dispensing Vessel.

Filtered liquid will be charged to the Organic Ion Exchanger 71-0-001 on flow control for remov~' of cations such as magnesium, calcium, and iron. Significant i amounts of Sr-90 will also be removed. Both feed and effluent will be monitored l for hardness. The inlet is equipped with a radiation monitor so that off-spec material (greater than 3 E-07 pCi/ml gross beta) can be routed to the inter-ceptors or Tank 50158 to avoid the zeolite ion exchange bed, i

The organic ion exchanger effluent will be charged to the Zeolite Ion Exchanger 71-0-002, which will remove residual amounts of Cs-137 and Sr-90. The Zeolite Ion Exchanger is equipped with a downstream radiation monitor. Effluent will be routed to the interceptors, the LLWTF (02 Plant), and to the lagoon system prior to surface discharge via Lagoon 3 once acceptability criteria have been met.

Recycle Operations In recycle mode the flow through the evaporator / ion exchange and filter / ion exchange trains would be identical to that of the non-recycle mode, but disposi-tion of the effluent would be different. Off-spec effluent would be routed to Tank 5015B or the interceptors. On-spec ef fluent would be routed to Batch Moni-toring Tanks 71-0-015 and 71-0-016 for sampling prior to final disposition.

On-spec liquid would subsequently go to Lagoons 4 and 5 for use as process recycle water, release through the roof top evaporator to the plant stack, or surface release via Lagoon 3 if the capacity of the rooftop evaporator is exceeded.

9

l I

Fresh and Spent Resin and Zeolite Handling l 4

j Fresh zeolite and organic resin will be charged to a common ion exchanger fill i

hopper and loaded into the appropriate ion exchanger by the use of demineralized ,

water or utility air. Spent resins and zeolite will be sluiced from the f

exchangers using recycle water and utility air to the spent resin tank and the  !

spent zeolite tank.

The spent exchange material will be dewatered to a specified  ;

level and pumped to the CSS Waste Dispensing Vessel.

3 PERFORMANCE EVALUATION '

i 4

i This section contains an evaluation of radionuclide release rates and impacts i {

on public health and safety for LWTS operation in both normal operating and .

j accident conditions. The evaluation of impacts for normal operating conditions

, considers both the once-through and recycle configurations of the LWTS system. ,

J Operation in the once-through mode would produce the maximum release of radio- ,.

active liquid effluent, while operation in the recycle mode would produce the

' maximum airborne releases. The evaluation of accidents considers the struc-  !

tural stability of the facility and its resistance to natural ind internally- l initiated events, including earthquake, tornado, criticality, fire, and explo-l sion. The impacts of normal operation of the LWTS were quantified through j estimation of radionuclide concentrations in effluent streams and estimation of doses to the maximally exposed individual and the surrounding population. The f normal operating doses were calculated as 50 year committed dose due to radio-activity released during one year of operation. -

i i

3.1 Normal Operating Conditions '

The present design of the LWTS provides two processing routes for inco:ning t liquid waste streams. The first route removes radionuclides in an evaporator  ;

j and a zeolite ion exchanger. Although intended primarily for processing streams  ;

with high total dissolved solids content, this route could be used for all streams not readily decontaminated in a filter / ion exchange scheme. The j evaporator will produce a bottoms concentrate that can be incorporated into j l

cement and disposed as low-level waste, and a condensed overhead stream that i fi will be passed through an ion exchanger and released to the environment in i 1

liquid or vapor form. Evaluation of disposal of the low-level cement waste is I

10

not included in this document. The second route, intended for low TOS liquids, will remove radionuclides with a stacked disk metallic filter, and organic and zeolitic ion exchangers arranged in series. This processing route will also produce an effluent that can be released to the environment in liquid or vapor form. During the initial operation of the LWTS system both processing routes will release effluent in liquid form. In future years a roof-top evaporator may be installed downstream of the high and low TDS ion exchangers, and vapor phase releases would then be possible. Consequently, evaluation of LWTS normal operational releases involved consideration of the four combinations of high and low TOS stream effluents in liquid and vapor form.

In addition to the projected feed stream characteristics, public health and safety impacts depend on the expected equipment radionuclide separation efficiencies, and the extent of dilution prior to release to an unrestricted area. For liquid release, dilution will occur in the treatment system lagoons and in onsite surface water. For air releases dilution will occur in the main plant stack and in the course of airborne transport. The equipment separation efficiencies used in this evaluation were a decontamination factor (DF) of 50,000 for dissolved solids in the LWTS evaporator and a DF of 1,000 for cesium and strontium in the zeolite ion exchangers. A 0F of 1,000, typical of equipment 5

in this service, was assumed for the roof-top evaporator since the available equipment and process data were not sufficient to support a more exact analysis.

Liquid release dilution factors for each stream were calculated using an annual 7

Lagoon 3 discharge of 50 million liters. Comparisons with 10 CFR 20 guidelines for liquid releases were based upon Lagoon 3 outlet concentrations. This is a conservativeapproachsincedilutionjnButtermilkCreek,anonsitestreamwithan average annual flow of 4.1E10 liters, will be substantial. Vapor release dilution factors for each feed stream were calculated based on a main plant stack flow rate of 3.9E11 liters / year.

3.1.1 Processing High TDS Streams The primary streams presently identified as high TDS liquids include decon-taminated supernatant from Tank 80-2. three liquid batches to be produced in washing the sludge in Tank 80-2, and the condensed overheads from the concentrator feed makeup tank (CFMUT) used in the vitrification process. In addition to these 11

streams, process building decontamination streams, though not actually high in dissolved solids, will probably be processed in e high TOS system because of their high concentrations of some radionuclides. Each of these streams will be concentrated to a differing extent in the LWTS evaporator, producing differing amounts of the condensed overheads that are eventually released from the LWTS.

Mass balances based on the projected evaporator de-entrainment efficiency, bottoms solids content, and inlet stream characteristics were used to calculate effluent stream flow rate and composition.

The characteristics of the decontaminated supernatant were estimated based on the radionuclide content information in the LWTS SAR, on the volume calculated 2

from measured Tank 80-2 liquid and solid densities and interface positions, and on an assumed approach distance (0.3 meter) for decanting liquid from Tank 80-2 solids. The maximum evaporator bottoms solids content for this stream was taken to be the 46 weight percent. (Recent discussions with the DOE indicate that the maximum evaporator bottoms solids content will actually be 39 weight percent, so the following effluent calculations ba w d on 46 weight percent will be conservative.) The compositions of the sludge wash liquids were estimated 2

based on reported wash volumes, on the expected decantation approach distance, on the composition and volume of supernatant remaining in Tank 80-2, and on the degree of solubilization of sludge components. Based on reported solubilization measurements, a concentration of 40 nCi/ml of alpha emitters was assumed for the second and third wash solutions. The concentration of the evaporator bottoms estimated for the first wash solution was the decontaminated supernatant limit of 46 wt%, but the concentration projected for the second and third wash solutions may be limited by constraints on the content of alpha emitting nuclides in the cement waste. The evaporator bottoms solids contents estimated for the second and third wash solutions were 31 and 14 wt%, respr:tively. The quantities and composition of process building decontamination salutions were those reported 6

in the Waste Stream Data Sheets. Evaporator mass and activity balances for the decontamination solution streams was based on the assumption that the bottoms had an activity level of 50 pCi/ml. The concentration of the CFMUT stream was based on the reported contents of Tank 80-2, Tank 80-4 and the STS zeolite, on the projected solids content of the waste slurry (10 wt%), and on an assumed s

CFMUT distribution coefficient of 1,000.

12

l The evaporator bottoms solids content for the CFMUT feed stream was assumed to be i

fixed by the 50 pCi/ml limit set for shielding purposes. This bottoms stream was assumed to be recycled to the vitrification process. For each of the above streams the volumes arid radionuclide contents estimated for inlet to the LWTS were 6

in agreement with WV0P estimates. Summaries of the NRC estimates of the characteristics of the high TDS LWTS feed and effluent rtreams are presented in Tables 3-1 and 3-2, respectively.

The public health and safety impacts of releasing high TOS feed stream LWTS effluents to water and air are summarized in Table 3-3. These impacts were calculated using the decontamination factors, dilution factors, and stream characteristics described above, and distribution and dose models described in 9 to NRC evaluations of other aspects of the WV0P. '

The first column of each table, labeled 10 CFR 20 sum of fractions, was determined by taking the predicted concentration of a radionuclide at the Lagoon 3 outlet, dividing by the 10 CFR 20 concentration limit for that radionuclide, and adding the resulting fractions for all radionuclides expected to be present. Doses for each stream were calculated as annual averages with only that stream providing radionuclide releases for that year. The predicted doses are low enough that no possible scheduling could produce unacceptable public health and safety impacts. Predicted concentrations of indiviaual radionuclides and comparisors with individual 10 CFR 20 limits are presented in Appendix A.

4 13

Table 3-1 LWTS high TOS feed stream characteristics Solids Specific Total  !

Total mass content activity activity Stream (kg) (wt %) (microcurie /ml) (curies)

Decontaminated 2,632,050 39.5 10.8 2.5E4 Supernatant First Sludge 470,280 14.7 2.96 1.3E3 Wash Second Sludge 634,776 6.3 1.20 7.6E2 Wash Third Sludge 620,145 2. 6 0.49 3.1E2 Wash CFMUT 1,704,627 0.01 14.8 2.5E4 Overheads Table 3-2 LWTS high TDS evaporator overheads characteristics Total mass Specific activity Total activity Stream (kg) (microcuries/ml) (curies)

Decontaminated 371,928 4.2E-2 15.6 Supernatant First Sludge 320,260 1.2E-2 3.7 Wash Second Sludge 506,310 4.7E-3 2.4 Wash Third Sludge 506,793 1.2E-3 0.6 Wash CFMUT 1,577,418 1.3E-4 6.9 Overheads 14

Table 3-3 High TOS LWTS impacts, normal operating conditions Stream Water release Air release 10 CFR 20 Maximum Population 10 CFR 20 Maximum Population sum of individual dose sum of individual dose fractions dose (per-rem) fractions dose (per-rem)

(rem) (rem)

Decontam- 1.1E-1 6.0E-7 9.3E-3 6.7E-7 9.7E-7 8.5E-3 inated Supernatant First 2.7E-2 1.4E-7 2.2E-3 1.6E-7 2.3E-7 2.0E-3 Sludge Wash Second 1.7E-2 9.0E-8 1.4E-3 1.0E-7 1.5E-7 1.3E-3

  • Sludge Wash Third 7.0E-3 3.7E-8 5.8E-4 4.1E-8 6.0E-8 5.3E-4 Sludge Wash CFMUT 6.2E-2 5.4E-6 2.4E-2 3.2E-7 4.5E-7 3.9E-3 Overheads Table 3-4 Occontamination solution LWTS impacts, normal operating conditions (assuming treatment on high TOS side)

Stream Water release Air .elease 10 CFR 20 Maximum Population 10 CFR 20 Maximum Population sum of individual dose sum of individual dose fractions dose (per-rem) fractions dose (per-rem)

(rem) (rem)

XC-2 2.2E-3 5.0E-8 1.5E-3 5.7E-8 1.4E-8 1.3E-4 Solution CPC 3.9E-5 2.8E-8 3.0E-5 3.3E-10 1.2E-10 1.0E-6 Solution PMC 6.4E-5 4.6E-8 4.9E-5 5.5E-10 1.9E-10 1.7E-6 Solution 2.1E-6 GPC 7.9E-5 5.8E-8 5.9E-5 6.6E-10 2.3E-10 i

Solutien 15 l

The public health and safety impacts of processing orocess building decontamina-tion solutions in the high TDS systen are summarized in Table 3-4. The evaporator overheads effluent concentrations and the doses associated with these streams are low enough that releasing these streams will pose no threat to public health and safety.

3.1.2 Processing Low TOS Feed Streams The low TOS feed streams presently identified for LWTS processing include streams generated in decontamination of the Process Building and in decontamination of drums in the CSS. The CSS decontamination solutions are not well characterized but are expected to have low radionuclide levels and negligible public health and safety impacts when processed in the LWTS. The Process Building decontamination solutions may have significant concentrations of plutonium and cesium, and will probably require treatment prior to release. Processing in the low TOS system ,

will remove suspended particulates, cesium, and strontium but will not reduce  ;

the concentration of other radionuclides eu:ept through use of the roof-top evaporator.

The quantities and radionuclide composition of process building decontamination solutions used in this evaluation were those presented in the Waste Stream Data 6

Sheets. For some of these streams the predicted annual average concentration levels evaluated at the Lagoon 3 outfall would exceed 10 CFR 20 guidelines if these streams were processed in the low TOS system. In addition, the projected maximum individual doses exceed the small fractions of the average annual ,

background dose that generally serve as the benchmark for defining acceptable release levels. This result indicates that liquids with the characteristics of the process building decontamination streams should be processed in the high TDS system, aad the DOE has made a verbal commitment that such will be the practice. Results presented in Table 3-4 show that processing these streams in the high TOS system would result in negligible impact on public health.

16

3.2 Accident Conditions The SAR evaluates the consequences of several LWTS-selated accidents, including pipe failures, tank failures, filter fires, and filter failures. We have reviewed the SAR analyses and have concluded that the accidents considered bound the range of credible LWTS accidents and that the assumptions made in predicting doses are conservative. We have also conducted an independent evaluation of the consequences of four LWTS-related accidents. The results of these analyses are summarized in Tables 3-5 and 3-6 and discussed in the following paragraphs. The results show that operation of the LWTS will not pose a serious risk to public health and safety.

3.2.1 Initiating Events The accident evaluation considered earthquake, tornado, fire, explosion, equipment failure, and human error. Previous evaluations of the seismic competence of the Process Building have concluded that the main process cells are capable of withstanding horizontal accelerations exceeding the design 9 11 12 basis of 0.1 g. ' '

Previous NRC evalustions of the impact of tornado winds and missiles concluded that the building walls could withstand the effects of severe tornado. This earlier analysis iJentified potential vulnerabilities in the ventilation system which were corrected at that time.

The SAR identifies electrical insulation, lubrication oil, and the organic ion exchange resin as the only potential fire hazards in the LWTS system. The SAR i '50 states that the LWTS will have fire detection, alarm and suppression systems cummensurate with the pctential risk. The limited quantities of combustibles present in the system and the containment provided by the stainless steel vessels combine to produce a low level of fire risk for the 'WTS.

4 17

Table 3 5 Impacts of pipe rupturo accidents Nuclide Tank 80-3/ Tank 35104 transfer pipe LWTS/ CSS transfer pipe Maximum Maximum Tctal individual Total individual release dose release dose (curies) (rem) (curies) (rem)

H-3 4.25E-3 1.23E-7 2.97E-3 8.60E-8 C-14 5.98E-6 1.49E-11 4.17E-6 1.04E-11 Sr-90 1.26E-4 6.94E-5 8.82E-5 4.85E-5 Tc-99 6.97E-5 2.37E-7 4.88E-5 1.66E-7 I-129 9.16E-9 3.57E-10 6.41E-9 2.50E-10 Cs-137 3.16E-4 2.34E-6 2.21E-4 1.63E-6 Pu-238 5.54E-6 7.20E-4 3,88E-6 5.04E-4 Pu-239 1.11E-6 1.55E-4 7.74E-7 1.08E-4 Pu-240 8.16E-7 1.14E-4 5.70E-6 7.98E-4 Po-241 6.36E-5 1.91E-4 4.45E-5 1.33E-4 Table 3-6 Impacts of tank and filter failure accidents Failure of vessel Nuclide Failure of evaporator bottoms tank off gas HEPA filter Maximum Maximum Total individual Total individual release dose release dose (curies) (rem) (curies) (rem)

H-3 2.22E-4 1.29E-11 - -

C-14 9.44E-9 3.96E-14 - -

Sr-90 3.04E-1 3.34E-4 3.44E-3 3.78E-6 Tc-99 4.31E-6 4.22E-9 1.90E-3 1.86E-6 I-129 7.45E-9 1.34E-11 2.50E-7 4.50E-10 Cs-137 3.21E-1 4.81E-4 8.62E-3 1.29E-5 Pu-238 2.91E-4 7.5GE-6 1.51E-4 3.93E-6 Pu-239 7.11E-5 2.06E-6 3.01E-5 8.73E-7 Pu-240 5.43E-5 1.58E-6 2.22E-5 6.44E-7 Pu-241 3.57E-3 2.14E-6 1.73E-3 1.04E-6 18

3.2.2 Accident Evaluations 3.2.2.1 Rupture of the STS/LWTS Transfer Pipe In terms of total volume and activity the decontaminated supernatant represents the largest stream to be processed in the LWTS. For this reason rupture of the Tank 80-3 to Tank 35104 pipe was assumed to occur during the transfer of this 13 stream. The LWTS Design Criteria specify that the transfer process will occur batchwise with flow rate not to exceed 120 liters / min and batch volume not to exceed 15,000 liters. Although the pipe is buried, this evaluation will presume that a rupture results in loss of 15,000 liters to the ground surface with subsequent evaporation and atmospheric dispersion. Estimation of the rate 14 of evaporation was based on a correlation dependent primarily on input of solar radiation. A partition coefficient of 1000 was applied to estimate the entrainment rate of dissolved solids. The evaluation predicted a maximum individual dose of approximately one mrem with an exposure time of two hours.

3.2.2.2 Rupture of the LlTS/ CSS Transfer Pipe Rupture of the LVTS to CSS pipe was assumed to occur during the transfer of concentrated decontaminated supernatant. The LWTS Design Criteria specifies a 13 transfer rate of 75 liters / min. An accident duration of two hours was assumed, leading to a spill of 9,000 liters. Evaporation and entrainment of radionuclides and airborne dispersion offsite constituted the exposure pathway.

The evaluation predicted a maximum individual dose of approximately two mrem.

3.2.2.3 Failure of the Evaporator Bottoms Tank Failure of the evaporator bottoms holding tank in the Uranium Process Cell was assumed to occur during the processing of the CFMUT overheads. The activity of this liquid was assumed to be 50 microcuries/ml with a volume of 38,000 liters. '

Evaporation of liquid would cause radionuclides to be entrained (partition coeffi-cient = 1000) into the main plant ventilation system. The ventilation system, including a scrubber, roughing filter, and HEPA filter, was assumed to have a decontamination factor of 2000. The evaluation predicted a maximum individual dose of 0.5 mrem for a 2-hour exposure time.

19

3.2.2.4 Failure of the Vessel Off-Gas System HEPA Filter During normal operation radionuclides are released to the vessel off gas ventilatinn system from venting of the LWTS tanks, evaporators, and columns. The release mechanism is entrainment of radionuclides into evaporating water characterized by a partition coefficient of 1000. Analysis of this mechanism allowed develop-ment of an estimate of the activity tran;ferred to the vessel off gas system HEPA filter from Tank 35104 during LWTS processing of decontaminated supernatant.

The analysis incorporated estimates of evaporation rate and processing time.

The accident scenario assumed failure of the filter with complete loss of all activity transferred from the LWTS. The evaluation predicted a maximum individual dose of 0.01 millirem for a 2-hour exposure time, e

4 ADMINISTRATIVE PROCEDURES Project-level administrative procedures are documented in Volumes I and II of the West Valley Demonstration Project SAR, and in the West Valley Nuclear Services Radiological Controls Manual and Industrial Hygiene and Safety Manual. These procedures address the implementation of 00E Orders, including guidance for the application of the as-low-as-is-reasonably-achievable (/.LARA) principle to radiation exposure, implementation of health p'tysics programs, and development of safety classification systems. The NRC staff has reviewed these general 10 16 procedures in previous Safety Evaluation Reports ' and has found them adequate to protect public health and safety. Some particular administrative aspects of the LWTS have been considered as part of this report, as described below.

Specific LWTS Operational Safety Requirements are in place to limit worker radiation exposure to 0.25 mrem /hr or less, to protect against criticality, and to ensure that effluent release limits are not exceeded. The worker exposure limits will be met mainly by controlling the Cs-137 concentration of the LWTS feed streams. Criticality will be prevented by measuring fissile material concentrations at key locations and comparing them to predetermined safe levels.

The safe levels ha been confirmed by the NRC staff in a previous Safety Evaluation Report. Excessive crystallization of fissile-bearing salts in the 20

evaporator will be prevented by limiting the solids content of the evaporator bottoms. Concentrations of all important radionuclides will be measured in samples taken from the lagoon system before any releases of effluent to Buttermilk Creek. If operating in the recycle mode, effluent will not be transferred to the rooftop evaporator unless gross beta activity is below a safe level (3E-7 pCi/ml).

Several administrative areas relevant to the LWTS have been evaluated in the course of monitoring visits to the site by NRC Staff. Emergency planning, operator training, quality assurance, and preoperational equipment testing have been assessed for the West Valley Demonstration Project as a whole and found to be adeauate to protect public safety.

1 4

L 1

21

REFERENCES

1. Dooley, 0.A., "Safety Analysis For Liquid Waste Treatment System, Rev. 1,"

West Valley Nuclear Services Co., Inc., West Valley, NY, WV0P-049, November 1987.

2. Rykken, L.E., "High-level Waste Characterization At West Valley," West Valley Nuclear Services Co., Inc., West Valley, NY, 00E/NE/44139-14, June 2, 1986.
3. Eisenstatt, L.E., "Description Of The West Valley Demonstration Project Reference High-Level Waste Form And Canister," West Valley Nuclear Servicas Co., Inc., West Valley, NY, 00E/NE/44139-26, July 28, 1986.
4. DesCamp, V.D., "Design Criteria, Vitrification Of High-Level Waste," West Valley Nuclear Services Co., Inc., West Valley, NY, WVHS-0C-022, December 1985.
5. American National Standards Institute, "Guidance For Defining Safety Related Features Of Nuclear Fuel Cycle Facilities," N 46.1, 1980.
6. Saha, A.K., "RTS Waste Stream Data Sheets, Rev. 4," West Valley Nuclear Services Co. , Inc. , West Valley, NY, HH:86:0056, March 27,1986.
7. "1986 Environmental Monitoring Report," West Valley Demonstration Project, West Valley Nuclear Services Co., Inc., West Valley, NY, WV0P-040, March 1987.
8. "Environmental Assessment for Disposal of Project Low-Level Waste,"

WVDP-045, West Valley Demonstration Project, West Valley, NY, February 1986.

22

9. "Safety Evaluatic- Report on the Dormant West Valley Reprocessing Facility," U.S. Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards, January 1982.
10. "Safety Evaluation Report on the West Valley Demonstration Project Supernatant Treatment System," U.S. Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards, September 1987.
11. "West '* alley Demonstration Project Safety Analysis Report, Vol. II, Existing Plant And Operations, Rev. I," West Valley Nuclear Services Co.,

Inc., West valley, NY, April 1985.

12. Wimpey, J.F., "Rationale For Design Basis Earthquake for A Waste Processing Plant Located At West Valley, NY," letter report to P. Loysen, February 28, 1985.
13. Burn, P., "Design Criteria, Liquid Waste Treatment System," West Valley Nuclear Services Co., Inc., West Valley, NY, WVNS-0C-025, April 3, 1986.
14. Weisner,C.J.,[fydrometeorology,ChapmanHall,Ltd., London,UK,1970.
15. Dooley, D.A., "West Valley Operational Safety Requirements, Rev. 0," West Valley Nuclear Services Co., Inc., West Valley, NY, HE:88:0031, February 10, 1988.
16. "Safety Evaluation Report on the West Valley Demonstration Project Principal Design Criteria and Management Organization," U.S. Nuclear Regulatory Commission, Office of Nuclear Material safety and Safeguards, April 1987, 23

APPENDIX A TABLES OF EFFLUENT RADIONUCLIOE CONCENTRATIONS 24

Table A-1 LWTS Stream Conditions; Decontaminated Supernatant, Liquid Release CONCENTRATIONS, microcuries/mi NUCLIOE 10CFR20 INLET LAGOON 3 EXIT / LIMIT LIMIT EXIT H-3 3.00E-03 4.3SE-02 3.23E-04 1.08E-01 C-14 8.00E-04 6.16E-02 9.09E-09 1.14E-05 Ni-63 3.00E-05 4.00E-01 5.90E-08 1.97E-03 Se-79 1.00E+40 2.55E-02 3.77E-09 3.77E-49 Sr-90 3.00E-07 1.30E+00 1.92E-10 6.39E-04 Y-90 2.00E-05 1.30E+00 1.92E-10 9.59E-06 Zr-93 8.00E-04 1.15E-02 1.70E-09 2.12E-06 Nb-93m 4.00E-04 7.15E-03 1.06E-09 2.64E-06 Tc-99 3.00E-04 7.19E-01 1.06E-07 3.54E-04 Ru-106 1.00E-05 4.94E-05 7.30E-12 7.30E-07 Rh-106 1.00E+40 4.94E-05 7.30E-12 7.30E-52 Pd-107 1.00E+40 4.90E-06 7.23E-13 7.23E-53 Cd-113m 1.00E+40 1.08E-03 1.60E-10 1.60E-50 .

Sn-121m 1.00E+40 7.91E-06 1.17E-12 1.17E-52 Sb-125 1.00E-04 2.20E-02 3.25E-09 3.25E-05 Te-125m 2.00E-04 5.39E-03 7.96E-10 3.98E-06 Sb-126 1.00E+40 6.38E-06 9.43E-13 9.43E-53 Sb-126m 1.00E+40 4.54E-05 6.70E-12 6.70E-52 Sn-126 1.00E+40 4.54E-05 6.70E-12 6.70E-52

!-129 6.00E-08 9.44E-05 1.39E-11 2,32E-04 Cs-134 9.00E-06 6.2SE-03 9.23E-13 1.03E-07 Cs-135 1.00E-04 7.01E-C5 1.04E-14 1.04E-10 Cs-137 2.00E-05 3.26E+00 4.82E-10 2.41E-05 Ba-137m 1.00E+40 3.09E+00 4.56E-10 4.56E-50 Ce-144 1.00E-05 9.39E-09 1.39E-15 1.39E-10 P r-144 1.00E+40 9.39E-09 1.39E-15 1.39E-55 Pm-146 1.00E+40 2.14E-05 3.17E-12 3.17E-52 Pm-147 2.00E-04 2.57E-01 3.79E-08 1.90E-04 Sm-151 4.00E-04 2.26E-04 3.34E-11 8.35E-68 Eu-152 8.00E-05 2.05E-05 3.03E-12 3.79E-08 Eu-154 2.00E-05 6.47E-03 9.56E-10 4.78E-05 Eu-155 2.00E-04 1.07E-03 1.57E-10 7.87E-07 Th-231 2.00E-04 2.88E-06 4.25E-13 2.13E-09 Th-234 2.00E-05 2.57E-05 3.79E-12 1.90E-07 U-232 3.00E-05 1.41E-04 2.06E-11 6.93E-07 U-233 3.00E-05 2.24E-04 3.31E-11 1.10E-06 U-234 3.00E-05 1.26E-04 1.86E-11 6.19E-07 U-235 3.00E-05 2.88E-06 4.25E-13 1.42E-08 U-236 3.00E-05 8.58E-06 1.27E-12 4.23E-08 U-238 4.00E-05 2.57E-05 3.79E-12 9.48E-08 Pu-234m 1.00E+40 2.57E-05 3.79E-12 3.79E-52 Pu-236 1.00E+40 6.11E-06 9.03E-13 9.03E-53 Pu-238 5.00E-06 5.71E-02 8.43E-09 1.69E-03 Pu-239 5.00E-06 1.14E-02 1.69E-09 3.37E-04 Pu-240 5.00E-06 8.41E-03 1.24E-09 2.48E-04 Pu-241 2.00E-04 6.56E-01 9.69E-08 4.85E-04 Pu-242 5.00E-06 1.14E-05 1.69E-12 3.37E-07 TOTAL 1.13E+01 3.24E-04 1.14E-01 25

Table A-2 LWTS Stream Conditions; First Sludge Wash, Liquid Release CONCENTRATIONS, microcuries/mi NUCLIOE 10CFR20 INLET LAGOON 3 EXIT / LIMIT LIMIT EXIT H-3 3.00E-03 1.20E-02 7.63E-05 2.54E-02 C-14 8.00E-01 1.69E-02 2.15E-09 2.68E-06 Ni-63 3.00E-05 1.09E-01 1.39E-08 4.65E-04 Se-79 1.00E+40 7.00E-03 8.90E-10 8.90E-50 Sr-90 3,00E-07 3.56E-01 4.53E-11 1.51E-04 Y-90 2.00E-05 3.56E-01 4.53E-11 2.27E-06 Zr-93 8.00E-04 3.15E-03 4.01E-10 5.02E-07 Nb-93m 4.00E-04 1.96E-03 2.49E-10 6.23E-07 Tc-99 3.00E-04 1.97E-01 2.51E-08 8.36E-05 Ru-106 1.00E-05 1.35E-05 1.72E-12 1.72E-07 Rh-106 1.00E+40 1.35E-05 1.72E-12 1.72E-52 Pd-107 1.00E+40 1.34E-06 1.71E-13 1.71E-53 Cd-113m 1.00E+40 2.97E-04 3.78E-11 3.78E-51 Sn-121m 1.00E+40 2.17E-06 2.76E-13 2.76E-53 Sb-125 1.00E-04 6.03E-03 7.68E-10 7.68E-06 Te-125m 2.00E-04 1.48E-03 1.88E-10 9.41E-07 Sb-126 1.00E+40 1.75E-06 2.23E-13 2.23E-53 53-126m 1.00E+40 1.24E-05 1.58E-12 1.58E-52 Sn-126 1.00E+40 1.24E-05 1.58E-12 1.58E-52 I-129 6.00E-08 2.59E-05 3.29E-12 5.49E-05 Cs-134 9.00E-06 1.71E-03 2.18E-13 2.42E-08 Cs-135 1.00E-04 1.92E-05 2.45E-15 2.45E-11 Cs-137 2.00E-05 8.94E-01 1.14E-10 5.69E-06 Ba-137m 1.00E+40 8.46E-01 1.08E-10 1.08E-50 Ce-144 1.00E-05 2.57E-09 3.28E-16 3.28E-11 Pr-144 1.00E+40 2.57E-09 3.28E-16 3.28E-56 Pm-146 1.00E+40 5.87E-06 7.48E-13 7.48E-53 Pm-147 2.00E-04 7.03E-02 8.95E-09 4.48E-05 Sm-151 4.00E-04 6.19E-05 7.89E-12 1.97E-08 Eu-152 8.00E-05 5.63E-06 7.16E-13 8.96E-09 Eu-154 2.00E-05 1.77E-03 2.26E-10 1.13E-05 Eu-155 2.00E-04 2.92E-04 3.72E-11 1.86E-07 Th-231 2.00E-04 7.89E-07 1.00E-13 5.02E-10 Th-234 2.00E-05 7.03E-06 8.95E-13 4.48E-08 U-232 3.00E-05 3.85E-05 4.91E-12 1.64E-07 U-233 3.00E-05 6.13E-05 7.81E-12 2.60E-07 U-234 3.00E-05 3.45E-05 4.39E-12 1.46E-07 U-235 3.00E-05 7.89E-07 1.00E-13 3.35E-09 U-236 3.00E-05 2.35E-06 2.99E-13 9.98E-09 U-238 4.00E-05 7.03E-06 8.95E-13 2.24E-08 Pu-234m 1.00E+40 7.03E-06 8.95E-13 8.95E-53 Pu-236 1.00E+40 1.67E-06 2.13E-13 2.13E-53 Pu-238 5.00E-06 1.5EE-02 1.99E-09 3.98E-04 Pu-239 5.00E-06 3.13E-03 3.98E-10 7.96E-05 Pu-240 5.00E-06 2.30E-03 2.93E-10 5.86E-05 Pu-241 2.00E-04 1.80E-01 2.29E-08 1.14E-04 Pu-242 5.00E-06 3.13E-06 3.98E-13 7.96E-08 TOTAL 3.08E+00 7.64E-05 2.69E-02 26

Table A-3 LWTS High TOS Stream Conditions; Second Sludge Wash, Liquid Release CONCENTRATIONS, microcuries/mi NUCLIOE 10CFR20 FEED LAGOON 3 EXIT / LIMIT LIMIT EXIT H-3 3.00E-03 4.88E-03 4.89E-05 1.63E-02 C-14 8.00E-04 6.87E-03 1.38E-09 1.72E-06 Ni-63 3.00E-05 4.46E-02 8.93E-09 2.98E-04 Se-79 1.00E+40 2.85E-03 5.71E-10 5.71E-50 Sr-90 3.00E-07 1.45E-01 2.90E-11 9.68E-05 Y-90 2.00E-05 1.45E-01 2.90E-11 1.45E-06 Z r-93 8.00E-04 1.28E-03 2.57E-10 3.22E-07 Nb-93m 4.00E-04 7.97E-04 1.60E-10 3.99E-07 Tc-99 3.00E-04 8.02E-02 1.61E-08 5.36E-05 Ru-106 1.00E-05 5.51E-06 1.11E-12 1.11E-07 Rh-106 1.00E+40 5.51E 06 1.11E-12 1.11E-52 Pd-107 1.00E+40 5.46E-07 1.10E-13 1.10E-53 Cd-113m 1.00E+40 1.21E-04 2.42E-11 2.42E-51 Sn-121m 1.00E+40 8.82E-07 1.77E-13 1.77E-53 Sb-125 1.00E-04 2.46E-03 4.92E-10 4.92E-06 l Te-125m 2.00E-04 6.01E-04 1.21E-10 6.03E-07 Sb-126 1.00E+40 7.12E-07 1.43E-13 1.43E-53 Sb-126m 1.00E+40 5.06E-06 1.02E-12 1.02E-52 Sn-126 1.00E+40 5.06E-06 1.02E-12 1.02E-52 I-129 6.00E-08 1.05E-05 2.11E-12 3.52E-05 Cs-134 9.00E-06 6.97E-04 1.40E-13 1.55E-08 Cs-135 1.00E-04 7.82E-06 1.57E-15 1.57E-11 Cs-137 2.00E-05 3.64E-01 7.30E-11 3.65E-06 Ba-137m 1.00E+40 3.44E-01 6.90E-11 6.90E-51 Ce-144 1.00E-05 1.05E-09 2.10E-16 2.10E-11 P r-144 1.00E+40 1.05E-09 2.10E-16 2.10E-56 Pm-146 1.00E+40 2.39E-06 4.79E-13 4.79E-53 m-147 2.00E-04 2.86E-02 5.74E-09 2.87E-05 Sm-151 4.00E-04 2.52E-05 5.05E-12 1.26E-08 Eu-152 8.00E-05 2.29E-06 4.59E-13 5.74E-0?

Eu-154 2.00E-05 7.22E-04 1.45E-10 7.24E-06 Eu-155 2.00E-04 1.19E-04 2.38E-11 1.19E-07 Th-231 2.00E-04 3.21E-07 6.44E-14 3.22E-10 Th-234 2.00E-05 2.86E-06 5.74E-13 2.87E-08 U-232 3.00E-05 1.57E-05 3.15E-12 1.05E-07 U-233 3.00E-05 2.50E-05 5.00E-12 1.67E-07 U-234 3.00E-05 1.40E-05 2.81E-12 9.38E-08 U-235 3.00E-05 3.21E-07 6.44E-14 2.15E-09 U-236 3.00E-05 9.57E-07 1.92E-13 6.40E-09 U-238 4.00E-05 2.86E-06 5.74E-13 1.43E-08 Pu-234m 1.00E+40 2.86E-06 5.74E-13 5.74E-53 Pu-236 1.00E+40 6.82E-07 1.37E-13 1.37E-53 Pu-238 5.00E-06 6.37E-03 1.28E-09 2.55E-04 Pu-239 5.00E-06 1.27E-03 2.55E-10 5.11E-05 Pu-240 5.00E-06 9.37E-04 1.88E-10 3.76E-05 Pu-241 2.00E-04 7.32E-02 1.47E-08 7.34E-05 Pu-242 5.00E-06 1.27E-06 2.55E-13 5.11E-08 TOTAL 1.25E+00 4.90E-05 1.73E-02 27

Table A-4 LWTS High TDS Stream Conditions: Third Sludge Wash, Liquid Release i i CONCENTRATIONS, microcuries/ml r 4

NUCLIOE 10CFR20 FEED LAGOON 3 EXIT / LIMIT  !

LIMIT EXIT  !

! H-3 3.00E-03 1.99E-03 1.99E-05 6.65E-03  !

! C-14 8.00E-04 2.79E-03 5.61E-10 7.01E-07  !

! Ni-63 3.00E-05 1.815-02 3.64E-09 1.21E-04  ;

i Se-79 1.00E+40 1.16E-03 2.33E-10 2.33E-50  ;

S r- 90 3.00E-07 5.90E-02 1.18E-11 3.94E-05  !

Y-90 2.00E-05 5.90E-02 1.18E-11 5.92E-07 Zr-93 8.00E-04 5.22E-04 1.05E-10 1.31E-07 ,

1 Nb-93m 4.00E-04 3.24E-04 6.51E-11 1.63E-07 l' Tc-99 3.00E-04 3.26E-02 6.55E-09 2.18E-05 i Ru-106 1.00E-05 2.24E-96 4.50E-13 4.50E-08  :'

Rh-106 1.00E+40 2.24E-06 4.50E-13 4.50E-53 Pd-107 1,00E+40 2.22E-07 4.46E-14 4.46E-54 l 1

Cd 113m 1.00E+40 4.92E-05 9.J7E-12 9.87E-52 Sn-121m 1.00E+40 3.59E-07 7.21E-14 7.21E-54 Sb-125 1.00E-04 1.00E-03 2.01E-10 2.01E-06 I

! Te-125m 2.00E-04 2.45E-04 4.91E-11 2.46E-07  :

Sb-126 1.00E+40 2.90E-07 5.81E-14 5.81E-54 i Sb-126m 1.00E+40 2.06E-06 4.13E-13 4.13E-53 Sn-126 1.00E+40 2.06E-03 4.13E-13 4.13E-53 j I-129 6.00E-08 4.28E-06 8.60E-13 1.43E-05 .

j Cs-134 9.00E-06 2.84E-04 5.69E-14 6.32E-09 i Cs-135 1.00E-04 3.18E-06 6.39E-16 6.39E-12  !

3 Cs-137 2.00E-05 1.48E-01 2.97E-11 1.49E-06 i Ba-137m 1.00E+40 1.40E-01 2.81E-11 2.81E-51 Ce-144 1.00E-05 4.26E-10 8.56E-17 8.56E-12  :

] Pr-144 1.00E+40 4.26E-10 8.56E-17 8.56E-57 i

Pm-146 1.00E+40 9.73E-07 1.95E-13 1.95E-53 l J Pm-147 2.00E-04 1.16E-02 2.34E-09 1.17E-05 r i Sm-151 4.00E-04 1.03E-05 2.06E-12 5.15E-09 t Eu-152 8.00E-05 9.32E-07 1.87E-13 2.34E-09  !

! Eu-154 2.00E-05 2.94E-04 5.90E-11 2.95E-06 i i Eu-155 2.00E-04 4.83E-05 9.70E-12 4.85E-08 Th-231 2.00E-04 1.31E-07  ?.62E-14 1.31E-10 1 Th-234 2.00E-05 1.16E-06 2.34E-13 1.17E-08 l U-232 3.00E-05 6.39E-06 1.28E-12 4.27E-08  !

l U-233 3.00E-05 1.02E-05 2.04E-12 6.80E-08 U-234 3.00E-05 5.71E-06 1.15E-12 3.82E-08 U-235 3.00E-05 1.31E-07 2.62E-14 6.75E-10 i U-236 3.00E-05 3.90E-07 7.82E-14 2.61E-09 {

l U-238 4.00E-05 1.16E-06 2.34E-13 5.84E-09 <

! Pu-234m 1.00E+40 1.16E-06 2.34E-13 2.34E-53

Pu-236 1.00E+40 2.77E-07 5.57E-14 5.57E-54 Pu-238 5.00E-06 2.59E-03 5.20E-10 1.04E-04 Pu-239 5.00E-06 5.18E-04 1.04E-10 2.03E-05 I Pu-240 5.00E-06 3.81E-04 7.66E-11 1.53E-05 [

Pu-241 2.00E-04 2.98E-02 5.98E-09 2.99E-05 (

Pu-242 5.00E-06 5.18E-07 1.04E-13 2.08E-08

! TOTAL 5.11E-01 2.00E-05 7.03E-03  !

I  !

28 [

\

f

Table A-5 LWTS High 105 Conditions; CFMUT Overheads, Liquid Release CONCENTRATIONS, microcuries/mi NUCLIDE 10CFR20 FEE 0 LAGOON 3 EXIT / LIMIT LIMIT EXIT H-3 3.00E-03 4.35E-03 1.33E-04 4.43E-02 C-14 8.00E-04 1.10E-07 6.73E-14 8.42E-11 Fe-55 8.00E-04 7.50E-04 4.59E-10 5.73E-07 Co-60 5.00E-05 5.48E-04 3.35E-10 6.70E-06 Ni-59 2.00E-04 9.76E-06 5.97E-12 2.98E-08 Ni-63 3.00E-05 3.80E-03 2.33E-09 7.75E-05 Se-79 1.00E+40 1.61E-06 9.85E-13 9.85E-53 Sr-90 3.00E-07 3.53E+00 2.16E-09 7.20E-03 Y-90 2.00E-05 3.53E+00 2.16E-09 1.08E-04 Zr-93 8.00E-04 1.18E-04 7.23E-11 9.04E-08 Nb-93m 4.00E-04 7.21E-05 4.41E-11 1.10E-07 Tc-99 3.00E-04 5.00E-05 3.06E-11 1.02E-07 Ru-106 1.00E-05 6.30E-05 3.85E-11 3.85E-06 Rh-106 1.00E+40 6.30E-05 3.85E-11 3.85E-51 Pd-107 1.00E+40 6.30E-07 3.85E-13 3.85E-53 Cd-113m 1.00E+40 1.03E-03 6.29E-10 6.29E-50 Sn-121m 1.00E+40 3.60E-07 2.20E-13 2.20E-53 Sb-125 1.00E-04 2.30E-03 1.41E-09 1.;1E-05 Te-125m 2.00E-04 5.14E-04 3.15E-10 1.57E-06 Sb-126 1.00E+40 2.71E-05 1.66E-11 1.66E-51 Sb-126m 1.00E+40 2.07E-05 1.27E-11 1.27E-51 Sn-126 1.00E+40 2.07E-05 1.27E-11 1.27E-51 1-129 6.00E-08 8.65E-08 5.29E-14 8.82E-07 CF-134 9.00E-06 6.83E-03 4.18E-12 4.64E-07 Cs-135 1.00E-04 7.74E-05 4.73E-14 4.73E-10 Cs-137 2.00E-05 3.72E+00 2.28E-09 1.14E-04 Ba-137m 1.00E+40 3.55E+00 2.17E-09 2.17E-49 Ce-144 1.00E-05 6.78E-06 4.15E-12 4.15E-07 Pr-144 1.00E+40 6.78E-06 4.45E-12 4.15E-52 Pm-146 1.00E+40 7.45E-06 4.56E-12 4.56E-52 Pm-147 2.00E-04 1.53E-01 9.38E-08 4.69E-04 Sm-151 4.00E-04 1.03E-01 6.32E-08 1.58E-04 Eu-152 8.00E-05 2.25E-04 1.38E-10 1.72E-06 Eu-154 2.00E-05 6.39E-02 3.91E-08 1.96E-03

^

Eu-155 2.00E-04 1.14E-02 7.00E-09 3.50E-05 Th-231 2.00E-04 4.53E-08 2.77E-14 1.39E-10 Th-232 2.00E-06 7.88E-07 4.82E-13 2.41E-07 Th-234 2.00E-05 3.85E-07 2.35E-13 1.18E-08 U-232 3.00E-05 3.43E-06 2.10E-12 7.00E-08 U-233 3.00E-05 4.32E-06 2.64E-12 8.81E-08 U-234 3.00E-05 2.03E-06 1.24E-12 4.14E-08 U-235 3.00E-05 4.53E-08 2.77E-14 9.23E-10 0-236 3.00E-05 1.35E-07 8.23E-14 2.74E-09 U-238 4.00E-05 3.80E-07 2.32E-13 5.81E-09 Np-236 1.00E+40 5,91E-08 3.62E-14 3.62E-54 Np-237 3.00E-06 1,26E-05 7.73E-12 2.58E-06 Np-239 1.00E-04 2.40E-03 1.47E-09 1.47E-05 Pu-236 1.00E+40 4.00E-07 2.44E-13 2.44E-53

, Pu-238 5.00E-06 3.36E-03 2.05E-09 4.11D 04 29 1

Table A-5 LWTS High TOS Conditions; CFMUT Overheads, Liquid Release (cont'd)

CONCENTRATIONS, microcuries/ml NUCLIDE 10CFR20 FEED LAGOON 3 EXIT / LIMIT LIMIT EXIT Pu-239 5.00E-06 8.27E-04 5.06E-10 1.01E-04 Pu-240 5.00E-06 6.30E-04 3.85E-10 7.70E-05 Pu-241 2.00E-04 4.13E-02 2.53E-08 1.26E-04 Pu-242 5.00E-06 8.22E-07 5.03E-13 1.01E-07 Am-241 4.00E-06 3.33E-02 2.03E-08 5.09E-03 Am-242 1.00E-04 4.17E-04 2.55E-10 2.55E-06 Am-242m 4.00E-06 4.17E-04 2.55E-10 6.37E-05 Am-243 4.00E-06 2.41E-03 1.47E-09 3.68E-04 Cm-242 2.00E-05 3.49E-04 2.13E-10 1.07E-05 Cm-243 5.00E-06 1.50E-05 9.18E-12 1.84E-06 Cm-244 7.00E-06 9.62E-03 5.88E-09 8.40E-04 Cm-245 4.00E-06 1.16E-06 7.12E-13 1.78E-07 ,

Cm-246 4.00E-06 1.84E-07 1.12E-13 2.81E-08 TOTAL 1.48E+01 1.33E-04 6.16E-02 30

Table A-6 LWTS Stream Conditions; XC-2 Decontamination Solution, Liquid Release CONCENTRATIONS, microcuries/ml i NUCLIOE 10CFR20 INLET LAGOON 3 EXIT / LIMIT LIMIT EXIT Co-60 5.00E-05 8.40E-04 7.01E-12 1.40E-07 i Cs-137 2.00E-05 1.38E-03 1.15E-14 5.76E-10 Ba-137m 1.00E+40 1.29E-03 1.08E-14 1.08E-54 U-235 3.00E-05 6.00E-04 5.01E-12 1.67E-07 Pu-238 5.00E-06 1.20E+00 1.00E-08 2.00E-03 Pu-239 5.00E-06 8.70E-02 7.26E-10 1.45E-04 i Pu-241 2.00E-04 6.70E-01 5.59E-09 2.80E-05 TOTAL 1.96E+00 1.63E-08 2.18E-03 l

31

l Table A-7 LWTS Stream Conditions; CPC Decontamination Solution, Liquid Release  ;

P CONCENTRATIONS, microcuries/ml NUCLIDE 10CFR20 INLET LAGOON 3 EXIT /L HIT LIMIT EXIT C-14 8.00E-04 1.63E-07 1.18E-14 1.47E-11 4 Fe-55 8.00E-04 1.12E-03 8.08E-11 1.01E-07 Co-60 5.00E-05 5.43E-06 3.92E-13 7.83E-09 Ni-59 2.00E-04 9.60E-05 6.92E-12 3.46E-08 Ni-63 3.00E-05 7.40E-03 5.34E-10 1.78E-05 S r-90 3.00E-07 6.77E-06 4.88E-16 1.63E-09 Y-90 2.00E-05 6.77E-06 4.88E-16 2.44E-11 Z r-93 8.00E-04 5.33E-04 3.84E-11 4.80E-08 Tc-99 3.00E-04 1.86E-06 1.34E-13 4.47E-10 Sb-125 1.00E-04 5.25E-06 3.79E-13 3.79E-09 Te-125m 2.00E-04 1.16E-06 8,36E-14 4.18E-10 Cs 134 9.00E-06 1.63E-05 1.18E-15 1.31E-10 i Cs-137 2.00E-05 1.07E+00 7.71E-11 3.86E-06 Ba-137m 1.00E+40 1.00E+00 7.21E-11 7.21E-51 -

Pm-147 2.00E-04 3.61E-04 2.60E-11 1.30E-07 Sm-151 4.00E-04 2.45E-04 1.77E-11 4.42E-08 Eu-154 2.00E-05 1.52E-04 1.10E-11 5.48E-07 U-233 3.00E-05 1.97E-06 1.42E-13 4.73E-09 t U-235 3.00E-05 2.56E-08 1.85E-15 6.15E-11 U-238 4,00E-05 2.45E-07 1.77E-14 4.42E-10 ,

~

Pu-238 5.00E-06 4.20E-04 3.03E-11 6.06E-06 Pu-239 5.00E-06 1.07E-04 7.71E-12 1.54E-06 Pu-240 5.00E-06 8.30E-05 5.98E-12 1.20E-06 Pu-241 2.00E-04 5.60E-03 4.04E-10 2.02E-06 Am-241 4.00E-06 3.16E-04 2.28E-11 5.70E 06 Am-242 1.00E-04 2.55E-05 1.84E-12 1.84E-08 TOTAL 2.09E+00 1.34E-09 3.91E-05 i.

i 32 l f

Table A-8 LWTS Stream Conditions; PMC Decontamination Solution, Liquid Release CONCENTRATIONS, microcuries/ml NUCLIDE 10CFR20 INLET LAGOON 3 EXIT / LIMIT LIMIT EXIT C-14 8.00E-04 5.70E-07 1.92E-14 2.40E-11 Fe-55 8.00E-04 4.00E-03 1.34E-10 1.68E-07 Co-60 5.00E-05 1.90E-05 6.39E-13 1.28E-08 Ni-59 2.00E-04 3.30E-04 1.11E-11 5.55E-08 Ni-63 3.00E-05 2.60E-02 8.74E-10 2.91E-05 Sr-90 3.00E-07 2.40E-05 8.07E-16 2.69E-09 Y-90 2.00E-05 2.40E-05 8.07E-16 4.03E-11 Z r-93 8.00E-04 1.80E-03 6.05E-11 7.56E-08 Tc-99 3.00E-04 6.50E-06 2.18E-13 7.28E-10 Te-125m 2.00E-04 4.00E-06 1.34E-13 6.72E-10 Cs-134 9.00E-06 5.70E-05 1.92E-15 2.13E-10 Cs-137 2.00E-05 3.68E+00 1.24E-10 6.19E-06 Ba-137m 1.00E+40 3.44E+00 1.16E-10 1.16E-50 Pm-147 2.00E-04 1.30E-03 4.37E-11 2.18E-07 Sm-151 4.00E 04 8.50E-04 2.86E-11 7.14E-08 4 Eu-154 2.00E-05 5.20E-04 1.75E-11 8.74E-07 U-233 3.00E-05 6.88E-06 2.31E-13 7.71E-09 U-235 3.00E-05 8.90E-08 2.99E-15 9.97E-11 U-238 4.00E-05 8.50E-07 2.86E-14 7.14E-10 Pu-238 5.00E-06 1.50E-03 5.04E-11 1.01E-05 Pu-239 5.00E-06 3.70E-04 1.24E-11 2.49E-06 Pu-240 5.00E-06 2.90E-04 9.75E-12 1.95E-06 Pu-241 2.00E-04 1.90E-02 6.39E-10 3.19E-06 Am-241 4.00E-06 1.10E-03 3.70E-11 9.24E-06 Cm-244 7.00E-06 8.80E-05 2.96E-12 4.23E-07 TOTAL 7.18E+00 2.16E-09 6.42E-05 33

Table A-9 LWTS Stream Conditions; GPC Decontamination Solution, Liquid Release CONCENTRATIONS, microcuries/ml NUCLIOE 10CFR20 INLET LAGOON 3 EXIT / LIMIT LIMIT EXIT C-14 8.00E-04 1.02E-06 2.42E-14 3.02E-11 Fe-55 8.00E-04 7.30E-03 1.73E-10 2.16E-07 Co-60 5.00E-05 3.40E-05 8.06E-13 1.61E-08 Ni-59 2.00E-04 6.00E-04 1.42E-11 7.11E-08 Ni-63 3.00E-05 4.60E-02 1.09E-09 3.64E-05 S r-90 3.00E-07 4.20E-05 9.96E-16 3.32E-09 Y-90 2.00E-05 4.20E-05 9.96E-16 4.98E-11 Zr-93 8.00E-04 3.30E-03 7.82E-11 9.78E-08 Tc-99 3.00E-04 1.15E-05 2.73E-13 9.09E-10 Sb-125 1.00E-04 3.30E-05 7.82E-13 7.82E-09 Te-125m 2.00E-04 7.10E-06 1.68E-13 8.42E-10 Cs-134 9.00E-06 1.00E-04 2.37E-15 2.63E-10 ,

Cs-137 2.00E-05 6.54E+00 1.55E-10 7.75E-06 Ba-137m 1.00E+40 6.11E+00 1.45E-10 1.45E-50 Pm-147 2.00E-04 2.20E-03 5.22E-11 2.61E-07 Sm-151 4.00E-04 1.49E-03 3.53E-11 8.83E-08 Eu-154 2.00E-05 9.30E-04 2.21E-11 1.10E-06 U-233 3.00E-05 1.20E-05 2.85E-13 9.48E-09  :

U-235 3.00E-05 1.56E-07 3.70E-15 1.23E-10 U-238 4.00E-05 1.49E-06 3.53E-14 8.83E-10 Pu-238 5.00E-06 2.50E-03 5.93E-11 1.19E-05 Pu-239 5.00E-06 6.50E-04 1.54E-11 3.08E-06 Pu-240 5.00E-06 5.10E-04 1.21E-11 2.42E-06 Pu-241 2.00E-04 3.50E-02 8.30E-10 4.15E-06 Am-241 4.00E-06 1.90E-03 4.51E-11 1.13E-05 Cm-244 7.00E-06 1.56E-04 3.70E-12 5.28E-07 TOTAL 1.28E+01 2.73E-09 7.93E-05 i

{

t 34

Table A-10 LWTS Stream Conditions; Decontaminated Supernatant, Air Release CONCENTRATIONS, microcuries/ml NUCLIOE 10CFR20 INLET LAG 0ON 3 EXIT / LIMIT LIMIT EXIT H-3 2.00E-07 4.38E-02 1.18E-13 5.92E-07 C-14 1.00E-07 6.16E-02 3.33E-21 3.33E-14 Ni-63 2.00E-09 4.00E-01 2.16E-20 1.08E-11 Se-79 1.00E+40 2.55E-02 1.38E-21 1.38E-61 Sr-90 3.00E-11 1.30E+00 7.02E-23 2.34E-12 Y-90 4.00E-09 1.30E+00 7.02E-23 1.76E-14 Z r-93 4.00E-09 1.15E-02 6.22E-22 1.56E-13 Nb-93m 4.00E-09 7.15E-03 3.86E-22 9.66E-14 Tc-99 7.00E-08 7.19E-01 3.89E-20 5.55E-13 Ru-106 3.00E-09 4.94E-05 2.67E-24 8.91E-16 Rh-106 1.00E+40 4.94E-05 2.67E-24 2.67E-64 Pd-107 1.00E+40 4.90E-06 2.65E-25 2.65E-65 Cd-113m 1.00E+40 1.08E-03 5.86E-23 5.86E-63 .

Sn-121m 1.00E+40 7.91E-06 4.28E-25 4.28E-65 Sb-125 2.00E-08 2.20E-02 1.19E-21 5.95E-14 Te-125m 1.00E-08 5.39E-03 2.92E-22 2.92E-14 Sb-126 1.00E+40 6.38E-06 3.45E-25 3.45E-65 Sb-126m 1.00E+40 4.54E-05 2.45E-24 2.45E-64 Sn-126 1.00E+40 4.54E-05 2.45E-24 2.45E-64 I-129 2.00E-11 9.44E-05 5.10E-24 2.55E-13 Cs-134 1.00E-09 6.25E-03 3.38E-25 3.38E-16 Cs-135 2.00E-08 7.01E-05 3.79E-27 1.90E-19 Cs-137 2.00E-09 3.26E+00 1.76E-22 8.82E-14 Ba-137m 1.00E+40 3.09E+00 1.67E-22 1.67E-62 Ce-144 3.00E-10 9.39E-09 5.08E-28 1.69E-18 Pr-144 1.00E+40 9.39E-09 5.08E-28 5.08E-68 Pm-146 1.00E+40 2.14E-05 1.16E-24 1.16E-64 Pm-147 2.00E-09 2.57E-01 1.39E-20 6.94E-12 Sm-151 2.00E-09 2 26E-04 1.22E-23 6.11E-15 Eu-152 4.00E-10 2.05E-05 1.11E-24 2.78E-15 Eu-154 1.00E-10 6.47E-03 3.50E-22 3.50E-12 Eu-155 3.00E-09 1.07E-03 5.76E-23 1.92E-14

. Th-231 5.00E-08 2.88E-06 1.56E-25 3.12E-18 Th-234 2.00E-09 2.57E-05 1.39E-24 6.94E-16 U-232 3.00E-12 1.41E-04 7.61E-24 2.54E-12 U-233 2.00E-11 2.24E-04 1.21E-23 6.05E-13 U-234 2.00E-11 1.26E-04 6.80E-24 3.40E-13 U-235 2.00E-11 2.88E-06 1.56E-25 7.79E-15 U-236 2.00E-11 8.58E-06 4.64E-25 2.32E-14 U-238 3.00E-12 2.57E-05 1.39E-24 4.62E-13 Pu-234m 1.00E+40 2.57E-05 1.39E-24 1.39E-64 Pu-226 1.00E+40 6.11E-06 3.30E-25 3.30E-65 Pu-238 7.00E-14 5.71E-02 3.09E-21 4.41E-08 Pu-239 6.00E-14 1.14E-02 6.17E-22 1.03E-08 Pu-240 6.00E-14 8.41E-03 4.54E-22 7.57E-09 Pu-241 3.00E-12 6.56E-01 3.55E-20 1.18E-08 Pu-242 6.00E-14 1.14E-05 6.17E-25 1.03L-11 ,

TOTAL 1.13E+01 1.18E-13 6.65E-07 35

Table A-11 LWTS Stream Conditions; First Sludge Wash, Air Release CONCENTRATIONS, microcuries/ml NUCLIDE 10CFR20 INLET LAG 0ON 3 EXIT / LIMIT LIMIT EXIT H-3 2.00E-07 1.20E-02 2.79E-14 1.40E-07 C-14 1.00E-07 1.69E-02 7.65E-22 7.85E-15 Ni-63 2.00E-09 1.09E-01 5.10E-21 2.55E-12 Se-79 1.00E+40 7.00E-03 3.26E-22 3.26E-62 Sr-90 3.00E-11 3.56E-01 1.66E-23 5.52E-13 Y-90 4.00E-09 3.56E-01 1.66E-23 4.14E-15 Z r-93 4.00E-09 3.15E-03 1.47E-22 3.67E-14 Nb-93m 4.00E-09 1.96E-03 9.12E-23 2.28E-14 Tc-99 7.00E-08 1.97E-01 4.17E-21 1.31E-13 Ru-106 3.00E-09 1.35E-05 6.31E-25 2.10E-16 Rh-106 1.00E+40 1.35E-05 6.31E-25 6.31E-65 Pd-107 1.00E+40 1.34E-06 6.25E-26 6.25E-66 Cd-113m 1.00E+40 2.97E-04 1.38E-23 1.38E-63 Sn-121m 1.00E+40 2.17E-06 1.01E-25 1.01E-65 Sb-125 2.00E-08 6.03E-03 2.81E-22 1.40E-14 i

Te-125m 1.00E-08 1.48E-03 6.88E-23 6.88E-15 Sb-126 1.00E+40 1.75E-06 8.14E-26 8.14E-66 Sb-126m 1.00E+40 1.24E-05 5.79E-25 5.79E-65 Sn-126 1.00E+40 1.24E-05 5.79E-25 5.79E-65 I-129 2.00E-11 2.59E-05 1.20E-24 6.02E-14 Cs-134 1.00E-09 1.71E-03 7.97E-26 7.97E-17 Cs-135 2.00E-08 1.92E-05 8.94E-28 4.47E-20 Cs-137 2.00E-09 8.94E-01 4.16E-23 2.08E-14 Ba-137m 1.00E+40 8.46E-01 3.94E-23 3.94E-63 Ce-144 3.00E-10 2.57E-09 1.20E-28 3.99E-19 Pr-144 1.00E+40 2.57E-09 1.20E-28 1.20E-68 Pm-146 1.00E+40 5.87E-06 2.73E-25 2.73E-65 Pm-147 2.00E-09 7.03E-02 3.27E-21 1.64E-12 Sm-151 2.00E-09 6.19E-05 2.88E-24 1.44E-15 Eu-152 4.00E-10 5.63E-06 2.62E-25 6.55E-16 Eu-154 1.00E-10 1.77E-03 8.26E-23 8.26E-13 Eu-155 3.00E-09 2.92E-04 1.36E-23 4.53E-15 Th-231 5.00E-08 7.89E-07 3.68E-26 7.35E-19 Th-234 2.00E-09 7.03E-06 3.27E-25 1.64E-16 U-232 3.00E-12 3.85E-05 1.79E-24 5.98E-13

, U-233 2.00E-11 6.13E-05 2.86E-24 1.43E-13 l U-234 2.00E-11 3.45E-05 1.61E-24 8.03E-14 l U-235 2.00E-11 7.89E-07 3.68E-26 1.84E-15 l U-236 2.00E-11 2.35E-06 1.10E-25 5.48E-15 i U-238 3.00E-12 7.03E-06 3.27E-25 1.09E-13 Pu-234m 1.00E+40 7.03E-06 3.27E-25 3.27E-65 Pu-236 1.00E+40 1.67E-06 7.80E-26 7.80E 66 l Pu-238 7.00E-14 1.56E-02 7.28E-22 1.04E-08 i Pu-239 6.00E-14 3.13E-03 1.46E-22 2.43E-09 Pu-240 6.00E-14 2.30E-03 1.07E-22 1.79E-09 Pu-241 3.00E-12 1.80E-01 8.37E-21 2.79E-09 Pu-242 6.00E-14 3.13E-06 1.46E-25 2.43E-12 TOTAL 3.08E+00 2.79E-14 1.57E-07 36

Table A-12 LWTS Stream Conditions; Second Sludge Wash, Air Release CONCENTRATIONS, microcuries/mi NUCLIOE 10CFR20 INLET LAGOON 3 EXIT / LIMIT LIMIT EXIT H-3 2.00E-07 4.88E-03 1.80E-14 8.98E-08 C-14 1.00E-07 6.87E-03 5.05E-22 5.05E-15 Ni-63 2.00E-09 4.46E-02 3.28E-21 1.64E-12 Se-79 1.00E+40 2.85E-03 2.09E-22 2.09E-62 S r-90 3.00E-11 1.45E-01 1.07E-23 3.55E-13 Y-90 4.00E-09 1.45E-01 1.07E-23 2.66E-15 Zr-93 4.00E-09 1.28E-03 9.44E-23 2.36E-14 Nb-93m 4.00E-09 7.97E-04 5.86E-23 1.47E-14 Tc-99 7.00E-08 8.02E-02 5.90E-21 8.43E-14 Ru-106 3.00E-09 5.51E-06 4.06E-25 1.35E-16 Rh-106 1.00E+40 5.51E-06 4.06E-25 4.06E-65 Pd-107 1.00E+40 5.46E-07 4.026-26 4.02E-66 Cd-113m 1.00E+40 1.21E-04 8.89E-24 8.89E-64 1 Sn-121m 1.00E+40 8.82E-07 6.49E-26 6.49E-66 Sb-125 2.00E-08 2.46E-03 1.81E-22 9.04E-15 Te-125m 1.00E-08 6.01E-04 4.43E-23 4.43E-15 Sb-126 1.00E+40 7.12E-07 5.24E-26 5.24E-66 Sb-126m 1.00E+40 5.06E-06 3.72E-25 3.72E-65 Sn-126 1.00E+40 5.06E-06 3.72E-25 3.72E-65 I-129 2.00E-11 1.05E-05 7.74E-25 3.07E-14 Cs-134 1.00E-09 6.97E-04 5.13E-26 5.13E-17 Cs-135 2.00E-08 7.82E-06 5.75E-28 2.88E-20

Cs-137 2.00E-09 3.64E-01 2.68E-23 1.34E-14 Ba-137m 1.00E+40 3.44E-01 2.53E-23 2.53E-63 Ce-144 3.00E-10 1.05E-09 7.71E-29 2.57E-19 Pr-144 1.00E+40 1.05E-09 7.71E-29 7.71E-69 Pm-146 1.00E+40 2.39E-06 1.76E-25 1.76E-65 Pm-147 2.00E-09 2.86E-02 2.11E-21 1.05E-12 Sm-151 2.00E-09 2.52E-05 1.86E-24 9.28E-16 Eu-152 4.00E-10 2.29E-06 1.69E-25 4.21E-16 Eu-154 1.00E-10 7.22E-04 5.31E-23 5.31E-13 Eu-155 3.00E-09 1.19E-04 8.74E-24 2.91E-15 Th-231 5.00E-08 3.21E-07 2.36E-26 4.73E-19 Th-234 2.00E-09 2.86E-06 2.11E-25 1.05E-16 U-232 3.00E-12 1.57E-05 1.15E-24 3.85E-13 U-233 2.00E-11 2.50E-05 1.84E-24 9.18E-14 U-234 2.00E-11 1.40E-05 1.03E-24 5.16E-14 U-235 2.00E-11 3.21E-07 2.36E-26 1.18E-15 U-236 2.00E-11 9.57E-07 7.04E-26 3.52E-15 U-238 3.00E-12 2.86E-06 2.11E-25 7.02E-14 Pu-234m 1.00E+40 2.86E-06 2.11E-25 2.11E-65 Pu-236 1.00E+40 6.82E-07 5.02E-26 5.02E-66 Pu-238 7.00E-14 6.37E-03 4.68E-22 6.69E-09 Pu-239 6.00E-14 1.27E-03 9.37E-23 1.56E-09 Pu-240 6.00E-14 9.37E-04 6.90E-23 1.15E-09 i

Pu-241 3.00E-12 7.32E-02 5.38E-21 1.79E-09 Pu-242 6.00E-14 1.27E-06 9.37E-26 1.56E-12 TOTAL 1.25E+00 1.80E-14 1.01E-07 37

. -._. . _ _ _ . . _ _ . _ _ _ _ _ .__ _ _ _ _ _ _ . . ~ _ , _ . , _ ._ .. __ , . _ . . _ . _ _ _., _

~_

l Table A-13 LWTS Stream Conditions; Third Sludge Wash, Air Release CONCENTRATIONS, microcuries/ml NUCLIOE 10CFR20 INLET LAG 0ON 3 EXIT / LIMIT LIMIT EXIT H-3 2.00E-07 1.99E-03 7.32E-15 3.66E-08 C-14 1.00E-07 2.79E-03 2.06E-22 2.06E-15 Ni-63 2.00E-09 1.81E-02 1.34E-21 6.68E-13 Se-79 1.00E+40 1.16E-03 8.53E-23 8.53E-63 Sr-90 3.00E-11 5.90E-02 4.34E-24 1.45E-13 Y-90 4.00E-09 5.90E-02 4.34E-24 1.09E-15 Zr-93 4.00E-09 5.22E-04 3.85E-23 9.62E-15 Nb-93m 4.00E-09 3.24E-04 2.39E-23 5.97E-15 Tc-99 7.00E-08 3.26E-02 2.40E-21 3.43E-14 Ru-106 3.00E-09 2.24E-06 1.65E-25 5.51E-17 Rh-106 1.00E+40 2.24E-06 1.65E-25 1.65E-65 Pd-107 1.00E+40 2.22E-07 1.64E-26 1.64E-66 Cd-113m 1.00E+40 4.92E-05 3.62E-24 3.62E-64 ,

Sn-121m 1.00E+40 3.59E-07 2.64E-26 2.64E-66 Sb-125 2.00E-08 1.00E-03 7.36E-23 3.68E-15 '

Te-125m 1.00E-08 2.45E-04 1.80E-23 1.80E-15 '

Sb-126 1.00E+40 2.90E-07 2.13E-26 2.13E-66 Sb-126m 1.00E+40 2.06E-06 1.52E-25 1.52E-65 Sn-126 1.00E+40 2.06E-06 1.52E-25 1.52E-65 I-129 2.00E-11 4.28E-06 3.16E-25 1.58E-14 Cs-134 1.00E-09 2.84E-04 2.09E-26 2.09E-17 Cs-135 2.00E-08 3.18E-06 2.34E-28 1.17E-20 Cs-137 2.00E-09 1.48E-01 1.09E-23 5.45E-15 Ba-137m 1.00E+40 1.40E-01 1.03E-23 1.03E-63 Ce-144 3.00E-10 4.26E-10 3.14E-29 1.05E-19 Pr-144 1.00E+40 4.26E-10 3.14E-29 3.14E-69 Pm-146 1.00E+40 9.73E-07 7.17E-26 7.17E-66 Pm-147 2.00E-09 1.16E-02 8.58E-22 4.29E-13 Sm-151 2.00E-09 1.03E-05 7.56E-25 3.78E-16 Eu-152 4.00E-10 9.32E-07 6.87E-26 1.72E-16 i Eu-154 1.00E-10 2.94E-04 2.16E-23 2.16E-13 i Eu-155 3.00E-09 4.83E-05 3.56E-24 1.19E-15 Th-231 5.00E-08 1.31E-07 9.63E-27 1.93E-19 Th-234 2.00E-09 1.16E-06 8.58E-26 4.29E-17 U-232 3.00E-12 6.39E-06 4.70E-25 1.57E-13 U-233 2.00E-11 1.02E-05 7.48E-25 3.74E-14 U-234 2.00E-11 5.71E-06 4.21E-25 2.10E-14 U-235 2.00E-11 1.31E-07 9.63E-27 4.82E-16 U-236 2.00E-11 3.90E-07 2.87E-26 1.43E-15 U-238 3.00E-12 1.16E-06 8.58E-26 2.86E-14 Pu-234m 1.00E+40 1.16E-06 8.58E-26 8.58E-66 Pu-236 1.00E+40 2.77E-07 2.04E-26 2.04E-66 Pu-238 7.00E-14 2.59E-03 1.91E-22 2.73E-09 Pu-239 6.00E-14 5.18E-04 3.82E-23 6.36E-10 Pu-240 6.00E-14 3.81E-04 2.81E-23 4.68E-10 Pu-241 3.00E-12 2.98E-02 2.19E-21 7.31E-10 Pu-242 6.00E-14 5.18E-07 3.82E-26 6.36E-13 TOTAL 5.11E-01 7.32E-15 4.11E-08 38 5

Table A-14 LWTS Stream Conditions, CFMUT Overheads, Air Release CONCENTRATONS, microcuries/ml NUCLIDE 10CFR20 INLET LAG 0ON 3 EXIT / LIMIT LIMIT EXIT H-3 2.00E-07 4.35E-03 4.97E-14 2.49E-07 C-14 1.00E-07 1.10E-07 2.52E-26 2.52E-19 Fe-55 3.00E-08 7.50E-04 1.72E-22 5.72E-15 Co-60 1.00E-08 5.48E-04 1.25E-22 1.25E-14 Ni-59 2.00E-08 9.76E-06 2.23E-24 1.12E-16 Ni-63 2.00E-09 3.80E-03 8.70E-22 4.35E-13 Se-79 1.00E+40 1.61E-06 3.69E-25 3.69E-65 Sr-90 3.00E-11 3.53E+00 8.09E-22 2.70E-11 Y-90 4.00E-09 3.53E+00 8.09E-22 2.02E-13 Z r-93 4.00E-09 1.18E-04 2.71E-23 6.77E-15 Nb-93m 4.00E-09 7.21E-05 ' 65E-23

. 4.13E-15 Tc-99 1.00E-08 5.00E-05 1.14E-23 1.63E-16 Ru-106 3.00E-09 6.30E-05 1.44E-23 4.80E-15 Rh-106 1.00E+40 6.30E-05 1.44E-23 1.44E-63 Pd-107 1.00E+40 6.30E-07 1.44E-25 1.44E-65 Cd-113m 1.00E+40 1.03E-03 2.35E-22 2.35E-62 Sn-121m 1.00E+40 3.60E-07 8.24E-26 8.24E-66 Sb-125 2.00E-08 2.30E-03 5.27E-22 2.64E-14 Te-125m 1.00E-08 5.14E-04 1.18E-22 1.18E-14 Sb-126 1.00E+40 2.71E-05 6.21E-24 6.21E-64 Sb-126m 1.00E+40 2.07E-05 4.74E-24 4.74E-64 Sn-126 1.00E+40 2.07E-05 4.74E-24 4.74E-64 I-129 2.00E-11 8.65E-08 1.98E-26 9.90E-16 Cs-134 1.00E-09 6.83E-03 1.56E-24 1.56E-15 Cs-135 2.00E-08 7.74E-05 1.77E-26 8.86E-19 Cs-137 2.00E-09 3.72E+00 8.52E-22 4.26E-13 Ba-137m 1.00E+40 3.55E+00 8.13E-22 8.13E-62 Ce-144 3.00E-10 6.78E-06 1.55E-24 5.17E-15 Pr-144 1.00E+40 6.78E-06 1.55E-24 1.55E-64 Pm-146 1.00E+40 7.45E-06 1.71E-24 1.71E-64 Pm-147 2.00E-09 1.53E-01 3.51E-20 1.76E-11 Sm-151 2.00E-09 1.03E-01 2.37E-20 1.18E-11 '

Eu-152 4.00E-10 2.25E-04 5.15E-23 1. c.95-13 Eu-154 1.00E-10 6.39E-02 1.46E-20 1.46E-10 Eu-155 3.00E-09 1.14E-02 2.62E-21 8.73E-13 Th-231 5.00E-08 4.53E-08 1.04E-26 2.07E-19 Th-232 1.00E-12 7.88E-07 1.80E-25 1.80E-13 Th-234 2.00E-09 3.85E-07 8.80E-26 4.40E-17 U-232 3.00E-12 3.43E-06 7.86E-25 2.62E-13 U-233 2.00E-11 4.32E-06 9.89E-25 4.95E-14 U-234 2.00E-11 2.03E-06 4.64E-25 2.32E-14 U-235 2.00E-11 4.53E-08 1.04E-26 5.18E-16 U-236 2.00E-11 1.35E-07 3.08E-26 1.54E-15 U-238 3.00E-12 3.80E-07 8.69E-26 2.90E-14 Np-236 1.00E+40 5.91E-08 1.35E-26 1.35E-66 Np-237 1.00E-13 1.26E-05 2.89E-24 2.89E-11 Np-239 3.00E-08 2.40E-03 5.50E-22 1.83E-14 Pu-236 1.00E+40 4.00E-07 9.14E-26 9.14E-66 Pu-238 7.00E-14 3.36E-03 7.68E-22 1.10E-08 r 39

Table A-14 LWTS Stream Conditions, CFMUT Overheads, Air Release (Cont'd)

CONCENTRATONS, microcuries/ml NUCLIDE 10CFR20 INLET LAG 0ON 3 EXIT / LIMIT LIMIT EXIT Pu-239 6.00E-14 8.27E-04 1.89E-22 3.15E-09 Pu-240 6.00E-14 6.30E-04 1.44E-22 2.40E-09 Pu-241 3.00E-12 4.13E-02 9.45E-21 3.15E-09 Pu-242 6.00E-14 8.22E-07 1.88E-25 3.14E-12 Am-241 2.00E-13 3.33E-02 7.61E-21 3.81E-08 Am-242 1.00E-09 4.17E-04 9.54E-23 9.54E-14 Am-242m 2.00E-13 4.17E-04 9.54E-23 4.77E-10 Am-243 2.00E-13 2.41E-03 5.51E-22 2.76E-09 Cm-242 4.00E-12 3.49E-04 7.99E-23 2.00E-11 Cm-243 2.00E-13 1.50E-05 3.43E-24 1.72E-11 Cm-244 3.00E-13 9.62E-03 2.20E-21 7.34E-09 Cm-245 2.00E-13 1.16E-06 2.66E-25 1.33E-12 .

Cm-246 2.00E-13 1.84E-07 4.20E-26 2.10E-13 TOTAL 1.48E+01 4.97E-14 3.17E-07 l

4 l

l 40 l

. . ~ - . . . -. . =_. ._

Table A-15 LWTS Stream Conditions; XC-2 Decontamination Solution, Air Release CONCENTRATIONS, microcuries/ml NUCLI0E 10CFR20 INLET LAGOON 3 EXIT / LIMIT LIMIT EXIT Co-60 1.00E-08 8.40E-04 2.55E-24 2.55E-16 Cs-137 2.00E-09 1.38E-03 4.19E-27 2.09E-18 '

Ba-137m 1.00E+40 1.29E-03 3.92E-27 3.92E-67 U-235 2.00E-11 6.00E-04 1.82E-24 9.11E-14 Pu-238 7.00E-14 1.20E+00 3.64E-21 5.20E-08 Pu-239 6.00E-14 8.70E-02 2.64E-22 4.40E-09 Pu-241 3.00E-12 6.70E-01 2.03E-21 6.78E-10 TOTAL 1.96E+00 5.94E-21 5.71E-08 i

k b

1 I

Y 41

. . .. -.._ _ . - . _ _ . _ . _ _ _ . . _ _ _ . _ _ , _ _ . ~ . _ . _ _ . . . . _ . _ _ . _ , _ _ _ _ _ . _ _ _ . _ _ _ _ _ _ _ _ . . _ _

Table A-16 LWTS Stream Conditions; CPC Decontamination Solution, Air Release

, CONCENTRATIONS, microcuries/ml NUCLIDE 10CFR20 INLET LAGOON 3 EXIT / LIMIT LIMIT EXIT C-14 1.00E-07 1.63E-07 4.29E-27 4.29E-20 Fe-55 3.00E-08 1.12E-03 2.95E-23 9.82E-16 Co-60 1.00E-08 5.43E-06 1.43E-25 1.43E-17 Ni-59 2.00E-08 9.60E-05 2.536-24 1.26E-16 Ni-63 2.00E-09 7.40E-03 1.95E-22 9.73E-14 Sr-90 3.00E-11 6.77E-06 1.78E-28 5.94E-18 Y-90 4.00E-09 6.77E-06 1.78E-28 4.45E-20 Z r-93 4.00E-09 5.33E-04 1.40E-23 3.50E-15 Tc-99 7.00E-08 1.86E-06 4.89E-26 6.99E-19 Sb-125 2.00E-08 5.25E-06 1.38E-25 6.90E-18 Te-125m 1.00E-08 1.16E-06 3.05E-26 3.05E-18 Cs-134 1.00E-09 1.63E-05 4.30E-28 4.30E-19 Cs-137 2.00E-09 1.07E+00 2.81E-23 1.41E-14 Ba-137m 1.00E+40 1.00E+00 2.63E-23 2.63E-63 Pm-147 2.00E-09 3.61E-04 9.50E-24 4.75E-15 Sm-151 2.00E-09 2.45E-04 6.44E-24 3.22E-15 Eu-154 1.00E-10 1.52E-04 4.00E-24 4.00E-14 U-233 2.00E-11 1.97E-06 5.18E-26 2.59E-15 U-235 2.00E-11 2.56E-08 6.73E-28 3.37E-17 U-238 3.00E-12 2.45E-07 6.44E-27 2.15E-15 Pu-238 7.00E-14 4.20E-04 1.10E-23 1.58E-10 Pu-239 6.00E-14 1.07E-04 2.81E-24 4.69E-11 Pu-240 6.00E-14 8.30E-05 2.18E-24 3.64E-11 Pu-241 3.00E-12 5.60E-03 1.47E-22 4.91E-11 Am-241 2.00E-13 3.16E-04 8.31E-24 4.16E-11 Am-242 1.00E-09 2.55E-05 6.71E-25 6.71E-16 TOTAL 2.09E+00 4.88E-22 3.32E-10 42

Table A-17 LWTS Stream Conditions; PMC Decontamination Solution, Air Release CONCENTRATIONS, microcuries/ml NUCLIDE 10CFR20 INLET LAG 0ON 3 EXIT / LIMIT LIMIT EXIT C-14 1.00E-07 5.70E-07 6.98E-27 6.98E-20 Fe-55 3.00E-08 4.00E-03 4.90E-23 1.63E-15 Co-60 1.00E-08 1.90E-05 2.33E-25 2.33E-17 Ni-59 2.00E-08 3.30E-04 4.04E-24 2.02E-16 Ni-63 2.00E-09 2.60E-02 3.18E-22 1.59E-13 S r-90 3.00E-11 2.40E-05 2.94E-28 9.79E-18 Y-90 4,00E-09 2.40E-05 2.94E-28 7.34E-20 Z r-93 4.00E-09 1.80E-03 2.20E-23 5.51E-15 Tc-99 7.00E-08 6.50E-06 7.96E-26 1.14E-18 Sb-125 2.00E-08 1.80E-05 2.20E-25 1.10E-17 Te-125m 1.00E-08 4.00E-06 4.90E-26 4.90E-18 Cs-134 1.00E-09 5.70E-05 6.98E-28 6.98E-19 Cs-137 2.00E-09 3.68E+00 4.50E-23 2.25E-14 Ba-137m 1.00E+40. 3.44E+00 4.21E-23 4.21E-63 Pm-147 2.00E-09 1.30E-03 1.59E-23 7.96E-15 Sm-151 2.00E-09 8.50E-04 1.04E-23 5.20E-15 Eu-154 1.00E-10 5.20E-04 6.37E-24 6.37E-14 U-233 2.00E-11 6.88E-06 8.42E-26 4.21E-15 U-235 2.00E-11 8.90E-08 1.09E-27 5.45E-17 ,

U-238 3.00E-12 8.50E-07 1.04E-26 3.47E-15 Pu-238 7.00E-14 1.50E-03 1.84E-23 2.62E-10 Pu-239 6.00E-14 3.70E-04 4.53E-24 7.55E-11 Pu-240 6.00E-14 2.90E-04 3.55E-24 5.92E-11 Pu-241 3.00E-12 1.90E-02 2.33E-22 7.75E-11 '

Am-241 2.00E-13 1.10E-03 1.35E-23 6.73E-11 Cm-244 3.00E-13 8.80E-05 1.08E-24 3.59E-12 TOTAL 7.18E+00 7.87E-22 5.46E-10 5

e 43 ,

I

Table A-18 LWTS Stream Conditions; GPC Decontamination Solution, Air Release CONCENTRATIONS, microcuries/ml NUCLIOE 10CFR20 INLET LAGOON 3 EXIT / LIMIT LIMIT EXIT C-14 1.00E-07 1.02E-06 8.80E-27 8.80E-20 Fe-55 3.00E-08 7.30E-03 6.30E-23 2.10E-15 Co-60 1.00E-08 3.40E-05 2.93E-25 2.93E-17 Ni-59 2.00E-08 6.00E-04 5.18E-24 2.59E-16 Ni-63 2.00E-09 4.60E-02 3.97E-22 1.98E-13 Sr-90 3.00E-11 4.20E-05 3.62E-28 1.21E-17 Y-90 4.00E-09 4.20E-05 3.62E-28 9.06E-20 Zr-93 4.00E-09 3.30E-03 2.85E-23 7.12E-15 Tc-99 7.00E-08 1.15E-05 9.92E-26 1.42E-18 Sb-125 2.00E-08 3.30E-05 2.85E-25 1.42E-17 Te-125m 1.00E-08 7.10E-06 6.13E-26 6.13E-18 Cs-134 1.00E-09 1.00E-04 8.63E-28 8.63E-19 Cs-137 2.00E-09 6.54E+00 5.64E-23 2.82E-14 Ba-137m 1.00E+4P 6.11E+00 5.27E-23 5.27E-63 Pm-147 2.00E-09 2.20E-03 1.90E-23 9.49E-15 Sm-151 2.00E-09 1.49E-03 1.29E-23 6.43E-15 Eu-154 1.00E-10 9.30E-04 8.03E-24 8.03E-14 U-233 2.00E-11 1.20E-05 1.04E-25 5.18E-15 U-235 2.00E-11 1.56E-07 1.35E-27 6.73E-17 U-238 3.00E-12 1.49E-06 1.29E-26 4.29E-15 Pu-238 7.00E-14 2.50E-03 2.16E-23 3.08E-10 Pu-239 6.00E-14 6,50E-04 5.61E-24 9.35E-11 Pu-240 6.00E-14 5.10E-04 4.40E-24 7.34E-11 Pu-241 3.00E-12 3.50E-02 3.02E-22 1.01E-10 Am-241 2.00E-13 1.90E-03 1.64E-23 8.20E-11 Cm-244 3.00E-13 1.56E-04 1.35E-24 4.49E-12 TOTAL 1.28E+01 9.95E-22 6.63E-10 44