ML20135E271

From kanterella
Jump to navigation Jump to search
Evaluation of Intakes by Two Workers at CT Yankee Atomic Power Co
ML20135E271
Person / Time
Site: Haddam Neck File:Connecticut Yankee Atomic Power Co icon.png
Issue date: 12/26/1996
From:
CONNECTICUT YANKEE ATOMIC POWER CO.
To:
Shared Package
ML20135E267 List:
References
NUDOCS 9703060389
Download: ML20135E271 (242)


Text

. . .. ._- . .

Evaluation ofIntakes by Two Workers at Connecticut Yankee Atomic '

Power Company Prepared for Connecticut Yankee Atomic Power Company by I

George E. Chabot and Clayton S. French l

4 Dec. 26, 1996 9

m 9703060389 97022G PDR ADOCKOS00g3 8

. Table of. Contents Executiv e S ummary............. .. ........... . .......... .... ........................................ .... ....... 1 Introduction...........................................................................................................4 Methods and Assumptions Radionuclides of Concern................ ................. ....................................... 6 Considerations and Assumptions Regarding Bioassay Models................ 6 Respiratory Tract Clearance Classification................. ............................ 8 Substantiation of Norespirable Fraction.................................................... 9 Relationship between 60Co Activity and Alpha-Emitting Radionuclides................................................................ 12 Input and O u tpu t Data.. ........ ...... .. ...... .... .... ...... .. .... ........ .. .. .................. .. .. 14

. . Calculation of CEDES and CDEs............................................................ 14 Results and Discussion Summary of Dose and Intake Results......................................... ............15

' Radionuclide Contributors to Dose...................... ...................................19 Uranium Chemical Toxicity...... ............................................................... 19 Confidenc e in Re sults....... ...................... .... ........ .. .................. .......... .... .... 21 Conclusions and Recommendation s..................................................................... 23 Appendix A Relationships Among Bioassay Measurements, Intakes, and Intake-Dependent Quantities................................................ 35 References...........................................................................................................54 Appendix B1 INDOS Output Results for Cases Discussed in

. Main R ep on. .. .. .. .. .. ...... ...... .. . . .. .. .. .. .. .. .. . . . . .... .. .. .. .... .. .. .. .... .... .. .. .. 5 5 Appendix B2 INDOS Output Results for Additional Cases An alyzed..... .. . ... .. .... .... .. .. .. . ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .... .. .. .. . 131 t

l I

l

. Table of Contents (cont.)

i Appendix C1 LSModel Output Results for Cases Discussed in * ,

i M ain Repon. .. .... .. .. .... .. .. .. .. .. .... .. ... ... .. .. .. ... . .. .. .. .. .. . ... .. .. .. .. .. .. .. . . .. 192 1

, Appendix C2 LSModel Output Results for Additional Cases

, An alyzed. .. .. .... .. .. .. . . .. . ..... .. .. .... .... .. .... .... .. .. .. .. .. .. .. . . .. .. .. .. .. .. .. .. .. .. . 209 i E

l i

d a

5 i j 1  !

. i

?- l i e i

4 i

i

Executive Summary ,

I This report includes analyses of exposures of two individuals to a mixture of radionuclides j encountered during a job conducted at Connecticut Yankee Atomic Power Company's I

Haddam Neck Plant on Nov. 2,1996. He exposures occurred during an operation in the fuel i

transfer canal in which the affected workers became involved in picking up and bagging i loose, miscellaneous debris in the area. As we understand the situation, the cleanup went j rather beyond the original intent of the job, particularly insofar as the workers did some cmde

scraping and removal of deteriorating / loose paint and other surface debris.

4

}

The work resulted in intakes of mixed radionuclides, including "Co, "Pu, "Pu, Am, I '"Cm, and mixed uranium isotopes. An air sampler in operation during the job was analyzed by Connecticut Yankee for gamma emitters and showed the activity to be dominated t

by "Co with much smaller amounts of other activation products and some fission products, j Analysis of the air sample for transuranic activity was performed by Teledyne Brown lh Engineering Environmental Services. Fecal samples collected from the involved individuals were sent to Thermo Nutech for analyses for "Co, "Pu, "Pu, Am, '"Cm, ""'U, "U, j and "U. Whole body counting of the individuals was performed by Connecticut Yankee; i

"Co was the only significant radionuclide identified in the process.

i l Our maximum estimates of committed effective dose equivalents (CEDE) to workers 1 and 2, a

l- based on fecal analyses and for the respiratory tract clearance classifications we deemed most j appropriate, were 440 mrem and 250 mrem, respectively. The maximum estimated a

committed dose equivalents (CDE) to bone surfaces, based on fecal analyses, were 5.4 rem j and 3.0 rem, respectively, for workers 1 and 2. These are the doses that we are recommending as doses of record for the two workers. A second set of analyses, based on i

j the debris activity ratio technique described below, produced CEDE estimates to workers 1 and 2 of 120 mrem and 110 mrem, respectively; respective CDEs to bone surfaces for j workers 1 and 2 were 1.5 rem and 1.3 rem.

I i

l-k a

__ _ _.- _._ _ .. _ -_. _ . _ _ - _ . . - _ _ . . . . _...m._ _ . _._

l 4

For the ,Classi uranium assumed in our analyses, considering chemical toxicity, the mass intakes by workers 1 and 2 translated to approxirhately 0.5% and 0.7%, respectively, of the l-value adopted in the Health Physics Society Standard N13.22-1995 " Bioassay Programs for l Uranium". In comparison to the 10CFR20.1201(c) restriction on weekly intake *of soluble

uraniam, the uranium intakes for workers 1 and 2 represented 0.4% and 0.5%, respectively, of s

i the limit. If the uranium had been all class W material, the values for workers 1 and 2 would

! have been 4% and 7%, respectively, of the HPS standard value and 3%and 6%, respectively,

! of the 10CFR20.1201(c) limit.

i The fecal data were used in acceptable bioassay models to obtain the estimates of intakes received by both individuals. For the transuranic radionuclides, these, evaluated intakes represented primarily respirable intakes. The correlations of intakes with fecal excretion results were performed using the computer code INDOS (Skrable Enterprises,1986). Results of the in-vivo counting clearly showed that a significant portion of the intake of"Co was nonrespirable; this nonrespirable fraction was treated as an effective ingestion. We .

{

mathematically separated nonrespirable and respirable fractions using software called LSModel (K.A.L Inc.,1995). The nonrespirable to respirable ratio obtained for "Co then I was used to estimate nonrespirable intakes for the other radionuclides of concem. The ratio 1 l

was applied to the respirable intake estimates obtained from fecal data to obtain respective '

nonrespirable activity intakes, treated as ingestion intakes. A second set of analyses were performed in which we used the respirable and nonrespirable fractions from the LSModel analysis, together with the activity ratio of each respective radionuclide ofinterest to "Co obtained from analysis of the debris samples, to estimate respective radionuclide intakes..

These analyses yielded lower estimates ofintakes and committed dose equivalents than those 6btained from fecal results. As discussed in the report, the lower estimates may be closer to the actualintakes of the workers.

We have concluded that the intakes, CEDES, and CDEs sustained by the workers were well below regulatory limits. The possible range of CEDE values for worker 1, based on our best estimates, was from 2.4% to 8.8% of the regulatory limit; similarly, for worker 2 the range of 2 i i

CEDE vilues was from 2.2% to 5% of the limit. The range of CDE values for worker 1 was from 3.0% to 11% of the regulatory limit; for w6rker 2 the range was from 2.6% to 6.0% of the limit. Percentages that intakes represented of respective stochastic-based ALIs for worker 1, when summed together for all radionuclides of interest, ranged from 1.4% to 8.8%; ,

similar quantities related to nonstochastic ALIs ranged from 3% to 11%. For worker 2 the ranges of similarly estimated values based on stochastic limitations were from 2.2% to 5.0%,

and the nonstochastic-based estimations ranged from 2.6% to 6.0%.

The rationale for methods used and the assumptions and decisions we made are elaborated upon in the body of the repon.

i n.

e 3

._ _ _ _ _ . _ . . _ ._= _ _ _ _ _ . _ . _. _ ._. .___._ ._ .. _ . _ _ ._..__. _

t t, . .

4 Introduc.tion .

s -

On Nov. 8,1996 we met with representatives of Connecticut Yankee Atomic Power Company (CY) and Nonheast Utilines Service Company (NUSCO) who briefed us regarding an incident that had occurred on Nov. 2,1996 in which two workers were exposed to area and airborne contamination. De workers had sustained intakes of "Co, confirmed by in-vivo  ;

i counting. In addition, air sample data confirmed the presence of alpha-emitting radioactivity.

- Fecal samples obtained six days following the event showed the presence of "Co along with I "Pu,2"Pu, "Am, '"Cm, and mixed uranium isotopes. Two additional fecal samples were i

[ collected from each of the affected workers, and in-vivo counting W continued on a regular i basis. As analytical data became available it was forwarded by Connectat Yankee personnel  !

4 l to us for consideration and evaluation. Rese data included results of fecal analyses j performed by an independent vendor, Thermo NUtech; results of air sample and debris J

analyses, performed by a second independent vendor, Teledyne Brown Engineering

( Environmental Services, and results ofin-vivo counting performed by CY staff. Additional 4  !

l descriptive information also was provided by CY personnel. We met a second time with CY ]

and NUSCO personnel on Dec. 6,1996 to discuss the information that had been provided and j to clarify some questions we had.

I l The exposures of the workers occurred when they were cleaning up debris in the fuel transfer

?

j canal. It is our understanding that the workers were to pick up foreign objects that might '

mterfere with operation of the fuel transfer system. In the course of their work they

apparently decided to do a more thorough cleanup of the area and proceeded to pick up small j debris, including loose and deteriorating paint. He debris was scooped up in the workers' j hands and transferred to a plastic waste bag. During this operation, which lasted about 25 f minutes, a fixed air paniculate sampler was operating. 'he sampler was about six to seven

l feet above floor level and quite distant from the workers during much of the work (from a  !

f:

few feet to about 40 feet as workers walked in the work area). He nature of the cleanup

)

! i 4

i e

l q

work and the~ physical characteristics of the debris being scooped up would have, expectedly,  !

generated paniculate semsol concentrations that would have been highly localized and would l

- likely have dispped off sharply with distance from the workers. larger panicuptes might have settled rather quickly, and one would not expect that the air sample results could be used to estimate intakes by the workers. l We have analyzed the data and information presented to us with the goal of providing  !

acceptably sound estimates of the radionuclide intakes and associated committed dose equivalent consequences of the exposures of the two workers. Analyses using the fecal data, f

as well as the in-vivo data, have been carried out using the computer program INDOS I (Skrable Enterprises,1986). A description of the technical basis for correlating intakes and committed dose equivalents wius bioassay data is included as Appendix A to this report. We  !

also have used a computer program called LSModel (also referred to here as LSM) (K.A.L., I Inc.,1995) to separate the respirable and nonrespirable fractions of worker intakes. This is  ;

discussed funher in the report.

C The data can be analyzed in several ways, depending on assumptions made about respiratory tract-clearance classification of paniculates, the distribution of "Co activity in the body during in-vivo counting, and the relative magnitudes of the respirable and nonrespirable fractions of intakes. We have perfonned a variety of analyses to investigate the effects of such assumptions, and these are included in Appendices B1, B2, C1, and C2 to the repon. In the main body of the repon we have included only selected cases that show our estimates of intakes, committed effective dose equivalents (CEDE) and committed dose equivalents (CDE),

based on reasonable assumptions, and cases that demonstrate cenain points that we feel are  !

imponant. Supporting information for these cases is in Appendices B1 and C1. The additional information in Appendices B2 and C2 is provided for completeness and to allow 1

comparisons of the effects of other assumptions.

iI 5

1

Methods and Assumptions Radionuclides of Concern The radionuclides considered in the .malyses included "Co, * *U, "U, "U, "Pu, * *Pu, "Am, and *Cm. While gamma spectral analysis of debris and air samples showed that other fission products and activation products were present, the amounts of these were very smallin relationship to "Co activity and in consideration of respective ALIs, and have been neglected in our analyses. All the ALIs for the uranium isotopes are essentially the same, and these isotopes have been combined together in most of our analyses. For purposes of evaluating ma:s intakes, where chemical toxicity was a concem, we liistinguished among the uranium isotopes. Pure beta-emitting radionuclides, most notably "Sr "Y, were not evaluated by CY or by an outside vendor at the time of preparation of this report. It is our understanding that an outside vendor is performing some such analyses at the present time.

Given the quantities of other fission products, particularly "7Cs, seen in air and debris samples, we would not expect sufficient "Sr intakes to have a significant effect on results and conclusions that we have made.

(Note: We received strontium results after this report was completed. Please see addendum, page 24a.)

Considerations and Assumptions Regarding Bioassay Models The assesment of respirable intakes, CEDES, and CDEs in this report have been made under the assumption that the respirable aerosol is characterized as a one micrometer AMAD particle size distribution, consistent with the regulatory requirements when the actual particle size distribution has not been explicitly evaluated. 'Ihe respiratory tract model of the International Commission on Radiological Protection (ICRP,1978) has been used to predict respirable aerosol deposition in and translocation from the sections of the tract. Similarly, ICRP's (1978) gastrointestinal (GI) tract model was used to predict transport within and out 6

of the GI trac 5 Metabolic models for systemic burdens of activity accepted by the ICRP were used to predict behavior of radionuclides within systemic tissues.

Since transport of radionuclides occurs out of the respiratory tract and out of the GI tract into systemic circulation, it is necessary to incorporate appropriate metabolic models that describe retention in systemic tissue compartments. For cobalt we have used the retention function as given in ICRP (1978):

R(t) = 0.5 exp(-0.693 t/0.5) + 03 exp(-0.693 t/6) +0.1 exp( 0.693 t/60) + 0.1 exp( 0.693 t/800),

where t is in days. The ICRP recommends a value for fa, the fraction of cobalt aburbed out

}l of the GI tract to systemic circu!ation, of 0.05 for both Class W and Class Y materials. For

,, plutonium, we have used the fecal excretion function of Durbin as given in ICRP Publication i

54 (ICRP,1988) in order to generate a pseudo-uptake retention function, using the method described by Skrable et al. (Skrable et al.,1987). The derived retention function is c' R(t) = 0.141 exp(-0.693 t/2) + 0.124 exp(-0.693 t/6.6) + 0.079 exp( 0.693 t/56)

+ 0.0897 exp(-0.693 t/380) + 0.5663 exp( 0.693 t/4000),

where't is in days. As per ICRP's recommendations, we have used the plutonium metabolic model for americium and curium with an associated Class W value for f, of 10'8(ICRP,

, 1988); the Class Y value for f3 for plutonium was taken as 10-5 (ICRP,1988). The parameter values that describe the retention function for a given element are required data in the INDOS

_ program. No metabolic model is required for uranium since the INDOS evaluations of uranium and the transuranics have been through the fecal bioassay results, and ICRP models for uranium assume that the F, value, the fraction of systemic excretion via the fecal pathway, is zero so that there is no systemic fecal excretion of uranium. Reference man characteristics are embodied in all the model assumptions.

I

~

The regulatory annua 1 limits on intake (ALI) are based on the assumed one micrometer 7

i AMAD. distribution. It is clear from the bioassay data, considering both the in-vivo counting

' results and fecal excretion measurements and analyses, that a si l mificant portion of the "Co  !

intake for each affected worker was of a nonrespirable nature. Most of this fraction was quickly excreted from the body. While the data alone cannot rezclve whether this fraction was actually taken in by inhalation or by direct ingestion, the end result is the same -- i.e., the activity represented by this fraction was swallowed and cleared through the gastrointestinal tract. The committed doses associated with the nonrespirable fraction are most sensibly evaluated by treating the associated respective activity as an ingestion and comparing the activity intake to the respective ALI for ingestion. It is not appropriate to combine the

)

1 nonrespirable portion of an intake with the respirable fraction for the purpose of comparing 1 the intake with the inhalation ALI since the latter assumes a rerpirable aerosol, as noted above.

Considerations regarding exposure to uranium included chemical toxicity restrictions for wiuch the kidneys are the organs of concern. We have used the guidance of the Standard ,

i HPS N13.22-1995 (Health Physics Society,1996) " Bioassay Programs for Uranium" in  ;

assessing the significance of the uranium intakes. As described in the Results and Discussion section, we have compared mass intakes to the single daily inhalation intake limit for soluble uranium that represents the threshold for possible transient renal damage. We have made the comparison for the lower solubility compounds of uranium, appropriate here, by calculating the quantities transferred to systemic circulation and comparing these to that expected for Class D material at the intake limit. Similar comparisons also were made f.o the 10CFR20.1201(e) weekly intake limit of 10 mg of soluble uranium.

Respiratory Tract Clearance Classification Where ICRP (1978) has specified single transportability classes for particular elements, we have adopted them. Thus, for intakes of americium and curium we have assumed Class W paniculates. For uranium isotopes Class D, W, and Y are all possible, depending on the 8

a i

chemical forrk of the radionucl3. Given that the fuel matrix is an oxide, it is most likely

that contaminants of uranium and plutonium that'got from the fuel to the transfer canal were in the oxide' forms, probably UO2 and PuO2 . Even possible so-called " tramp" uranium, l l

l originally on extemal fuel bundle surfaces, would expectedly have been present as the oxide. l

. These compounds are quite refractory in character and resistant to easy transformation to j other chemical forms. They fall into the Class Y category. The chemical state of the "Co, an activation product, is more difficult to predict, although it is likely to have been present initially as an oxide, a Class W material. However, depending on the history of the cobalt before and after its appearance in the transfer canal, chemical transformations could have j resulted in a Class Y compound. Uncertainties or misassignments in the classifications of uranium and cobalt particulates are not very important in the analyses. The radioisotopes of
uranium and cobalt contribute very little to calculated CDEs to bone surfaces, regardless of clearance classification. If the cobalt and uranium were misassigned as Class Y rather than i

Class W, the maximum effect would be an approximate 15% overestimate in the CEDE.

4 We have performed analyses under different assumptions. In the body of the report we have provided analysis results for two groupings of particle classifications. In one case we have i

assumed that all particulate activity was comprised of Class W material. This is probably I

unrealistic, especially for the plutonium isotopes, but we have included the analysis because it

{ establishes an upper bound on the CDE to bone surfaces since the most restrictive ALIs for

Class W plutonium, americium, and curium are based on the nonstochastic bone dose limit.

! In the second case we have treated cobalt, plutonium, and uranium isotopes as Class Y materials and americium and curium as Class W; we believe this classification leads to more realistic estimates of evaluated quantities.

i l Substantiation of Nonrespirable Fraction i

The in-vivo counting results (see Table 1) for both affected workers show similar pattems.

I i

The initial-measurements made about two hours following initiation of the work confirmed 1

i

I I

easily n:+tsurable amounts of "Co,411 nCi for worker 1 and 1080 nCi for worker 2. For  !

each of the individuals, the activity of "Co in the body decreased rapidly over the first few

days following in'take and within a week reached a slowly declining level, ultimately
representing about two to three percent of the initial measured burden.

'We attempted to fit all the in-vivo data for each individual under the assumption that the entire intake was characterized as the standard one micrometer AMAD distribution. Seven f different scenarios were analyzed for each worker. These differed as to the assumptions made about the respiratory tract clearance class of the particulates (W or Y) and the assumptions l

regarding what part of the body was viewed by the detectors and influential in affecting their l

responses. The assumption as to particle class does not have a very.large effect on 1 interpreted intakes. Larger effects are evident when assumptions about the distribution of

, activity in the body are changed. The results of these analyses are summarized in the first l

and third subtables of Table 2. The designations regarding intake modes and assumed portions '

I of the body contributing to detector responses are defined below:

j .

! 1. Lungs - The intake was by inhalation, and the detectors viewed activity in j -

the mid and lower portions of the respiratory tract; j ,

2. Ingestion - The intake was an ingestion intake, and detectors viewed activity
in the systemic whole body and the GI tract;
3. WB(wo/NP) - The intake was by inhalation, and activity in the nasal-pharyngeal section was excluded from view by the detectors, and 4

, 4. WB(with NP) - The intake was by inhalation, and activity in the nasal-pharyngeal

, section was included in the view of the detectors.

i The operation of the CY in-vivo counting system was its usual mode with counts

! accumulating from both detectors. The efficiency used was that obtained for the calibration l source in the lung location. Review of the whole body counter calibration data provided by j CY showed that the overall efficiencies for detecting "Co activity differed by only about 10%

j when the activity was in the lung location compared to being in the GI tract position. No i

10 l

v 4 i j

l l

. _. _ . . _ _ _ _ _ _ . . _ _ _ _ _ _ _ . . . _ _ _ . _ . _ _ _ _ . _ ______s l

attempt.was inade to account separately for the part of the activity that might have been j systemically distributed during counting - i.e., an'y such activity was assumed to be detected I

l' with the same efficiency as that obtained during lung calibration. For many of,the measurements this was not unreasonable since the measurements were heavily weighted by 4

activity in the respiratory tract and/or GI tract, particularly for inhaled Class W or Y particles 2

as were important for the cases of concern. The analyses included in the body of the report  ;

j  !

are for the " Lungs" designation above. In general, this selection produced the highest intake  !

l estimates.

i, i t

j The results of our attempts to fit the observed data to a reference man inhalation model i showed gross inconsistencies with the model assumptions. This can be seen in Figures 1 and I f j 2 which contain comparisons of the measured data with the model fit for the case denoted i

i Lungs-Class Y for workers 1 and 2, respectively. In the same figures a much better fit of 1

t the data to the assumed model is depicted when the entire intake is treated as an ingestion intake. This is consistent with the rapid clearance observed for a large fraction of the activity )

evaluated by in-vivo counting. The ingestion model naturally underpredicts the burden of I l

d activity at times beyond a few days when the GI tract has been largely cleared of ingested material if a portion of the intake was actually respirable, as was the situation for the i

exposures ofinterest here. Because the f3 value for cobalt is 0.05, however, a measurable j pcrtion of the ingestion intake is present in systemic tissues, and this produces better j

agreement of the longer term data for ingestion than would be the case if f, were zero.

The nonrespirable (ingestion) and respirable fractions were separated using the weighted least i

squares fitting computer program LSModel. In using the program for this application, all the j data available to us at the time of analysis from the in-vivo "Co assessments were input. It 1

was assumed that any nonrespirable component would follow the ICRP reference man models I i
for ingestion, while the respirable component was assumed to be represented by an inhalation intake of the standard on micrometer AMAD particle distribution with 1CRP clearance and

] metabolic models used to predict behavior. Data were appropriately weighted, and the 4

l program solved the system of simultaneous' equations for the two quantities ofinterest. The I i

j 11 j j I

i

program' outputs the evaluated respirable and nonrespirable activities, along with statistical uncertainties associated with the estimates. Figuies 1 and 2 also show the effects of assuming respirable and nonrespirable components in the model, and the good agreement obtained with the data. The model curves are closer to the observed data points at the longer time intervals, I l

especially for worker 1 whose nonrespirable intake was less than that for worker 2, es discussed in the Results and Discussion section.

Relationship between "Co Activity and Alpha-Emitting Radionuclides i

The uranium isotopes and transuranic radionuclides in the amounts involved in these

exposures were not measurable by in-vivo counting, and the fecal data have been used in one approach to estimate intakes associated with the respirable fraction of inhaled aerosols. Since the earliest fecal samples were obtained six days following the incident, the early clearance of the respiratory tract was not discernible, and it was therefore not possible to ascertain whether a significant nonrespirable fraction of material representing uranium and the transuranics was

( present as it was in the case of "Co.

i Witti the intent of presenting an acceptably conservative estimate of all intakes and associated committed dose equivalents from the exposures, we have assumed that a significant fraction of the intakes of alpha-emitters was nonrespirable. 'Ihe nonrespirable fraction of each of the alpha emitters was assumed to be equal to that obtained for "Co from the analysis discussed l

earlier.

In addition to the in-vivo data and the fecal results, information regarding the relative amounts of "Co and alpha emitters also were available from the analyses of the debris samples carried out by an independent vendor, Teledyne Brown Engineering Environmental Services and from analysis of the air sample taken during the worker exposure. All five of the debris samples showed the same trends for the transuranic activities with the, activity ranking 2"Am > 2"Pu > '"Cm > 2"Pu. The respective ratios of each given radionuclide 12 l.

~

i 1 . activity.to "Co activity (as well as the respective ratios for "Co activity to each of the given  ;

- radionuclide activities) are given in Table 3. He air sample data included a similar trend t

j among relative activities of the transuranics. Rather surprising is the observation that the  ;

e respective "Co to transuranic' activity ratios for air do not appear statistically different from-  ;

t those for the debris, although the uncertainties in the debris ratios are, admittedly, quite high. l The air sample activity ratios provided by CY for sample #110201, taken during the exposure i period, are summarized below:

"Co to Transuranic Radionuclide Activity Ratio Radionuclide Ratio Pu-238 603 Pu-239 1446 Am-241 362 Cm-244 657 One certainly would not expect that the concentrations of respective radionuclides at the air sampling location would be representative of the highly localized concentrations in the vicinities of the workers. He fact, however, that the "Co to transuranic ratios are similar for the air sample and the debris provides some evidence that the activity distribution among particles of different physical sizes and characteristics is relatively constant, since many of the larger airborne particles generated near the workers would settle before reaching the air sampler and very large particles or fragments in the debris would not have become r.irlome.

This provides some additional confidence that activity debris ratios are a reasonable way to translate "Co intakes to uranium and transuranic activity intakes.

13

1 l

. . j input and Output' Data ,

l Data supplied to u' s by CY staff were used in our analyses. In-vivo counting results, based on scans performed by CY personnel, are summarized in Table I. Fecal analyses were performed by Thermo NUtech, and the results provided to us are summarized in Tables 4,5, and 6. In cases where results were reported as negative values or as less than MDA, we assigned values of zero to those entries. Debris results from Teledyne Brown Engineering Environmental Services were transmitted to us from CY and are summarized, along with useful activity ratios, in Table 3. The significant digits shown in all input bioassay data are consistent with those provided to us by CY.

Output results, such as those generated by INDOS, were maintained with enough significant digits to avoid roundoff errors when the results were used in subsequent calculations. Fmal resuhs, summarized in the body of the report and including intakes, CEDES and CDEs, have been rounded to two significant digits, one more than is justified by the single digit significance of the ALIs.

,{

Calculation of CEDES and CDEs All committed dose equivalents were calculated by the common method of multiplying the ratio of the intake of a particular radionuclide to its ALI by the respective stochastic or nonstochastic dose equivalent limit associated with the ALI. In the case of bone surfaces the nonstochastic dose limit is 50 rem, and in the case where stochastic restrictions apply the limit is 5 rem.

For the cases involving cobalt, uranium, and plutonium isotopes as Class Y material and uranium or cobalt as Class W material, the published respective ALIs are the stochastic-based values. In the interest of using consistent methodology we also calculated effective ALIs that would apply if bone surface dose was limiting for these radionuclide intakes. This was done 14

on the basis d bone surface dose information available in Federal Guidance Repon No.11 (U.S. EPA,1988). The derived ALIs are shown in boldface type at the top of Table 7. These ALIs were used in the usual fashion to assess the committed bone surface dose equivalent for inhalation of these classes of radionuclides.

  • l 1

1 1

Results and Discussion  !

Summary of Dose and Intake Results 8

i Results obtained for estimated intakes, CEDES, and CDEs to bone surfaces for workers 1 and 2 are summarized in Tables 7a and 7b, respectively. Results of both 'the assumed particle l classifications (all Class W and mixture of Class W and Class Y) are given as well as results

l for the two methods of calculation (fecal based analysis and debris ratio based analysis). '

l The results from fecal analysis include the respective inhalation intake estimates h, representative of the respirable component, and the ingestion intake estimates representative

] of the nonrespirable component for each radionuclide. The inhalation component was evaluated from INDOS; the INDOS output results for the cases here are contained in Appendix B1. The ingestion intakes were obtained by multiplying the i..halation intake by the nonrespirable to respirable activity ratio derived from the LSM analysis. The LSM output results for the cases of interest are given in Appendix C1; the B-matrix output in the LSM results contains the evaluated inhalation and ingestion intakes used to get the required ratios.

The respective intakes also are summarized in the second and fourth subtables of Table 2.

The ingestion to inhalation intake ratios used are summarized on the following page:

i 15

' Ingestion / Inhalation Intake Ratio Particle Clearance Classification Worker 1 Worker 2 e

Class W Am, Cm 8.9 28.9

+ Class Y Co, U, Pu  !

All Class W 8.1 27.6 1 l

l As noted earlier, we have recommended the Class W and Y mix as most likely representative  !

of the distribution of radionuclide clearance classifications. The dose results for both the above clearance classifications, based on the fecal excretion analysis and taken from Table 7 are summarized below:

i Fecal based Analysis Results C

1 Committed Dose Equivalent (rem)

Particle Clearance Classification Dose Quantity Worker 1 Worker 2 P

Class W Am, Cm CEDE 0.44 0.25

+ Class Y Co, U, Pu CDE (bone surfaces) 5.4 3.0 All Class W CEDE 0.50 0.24 CDE (bone surfaces) 7.8 3.5 It is clear that there is relatively little difference in CEDE results between the two clearance classifications. The most significant effect is an approximate 45% increase in estimated dose to bone surfaces for worker 1 and about a 20% increase for worker 2 for the Class W category compared to the mixed Class W and Y classification. The smaller increase for worker 2 is related to the fact that the ingestion to inhalation ratio was more than three times 16

j 1

larger for wofker 2 than for worker 1. The calculated value of the "nonstochastic All" for Class Y plutonium is about three times greater than the nonstochastic ALI for class W plutonium; therefore, in changing from Class Y to Class W plutonium, the worger whose

[

inhalation intake to ingestion intake ratio was larger would show the greater relative increase in CDE to bone surfaces. The committed dose equivalent results obtained from the debris

activity ratio technique, also given in detail in Table 7, are summarized below

l 4

i Debris Activity Ratio-based Analysis Results Committed Dose Equivalent (rem)

Particle Clearance Classification Dose Quantity Worker 1 Worker 2 1

j Class W Am, Cm CEDE 0.12 0.11

+ Class Y Co, U, Pu CDE (bone surfaces) 1.5 a

1.3 i

r All Class W CEDE 0.15 0.13 i (

CDE (bone surfaces) 2.2 1.7 I

j As discussed earlier, there is some substantiation, from comparison of the air sample data and 1

i

, the debris data, of the fact that the activity distribution among particles of likely different size I

) characteristics was relatively constant. If this is the case then the above committed dose l i

] equivalent values may be better estimates of the actual committed doses to the workers than )

! the results from the fecal-ban' analysis. Because of the rather large uncertainties in the l j debris ratios, the firmness of fnis conclusion is in some doubt, and we provide the above  !

j results primarily as a reasonably sound estimate of the minimum dose equivalent commitments engendered by the workers. For worker 1 the fecal-based method yielded doses 3 to 4 times greater than did the debris ratio method, and for worker two the comparable i

factor was about two. Considering the differences in approach and the inherent uncertainties in the data, we feel these levels of agreement are quite acceptable.

~

17 i

e 4

i - -

i The intakes o[the radionuclides of interest also are given in detail in Table 7. The fraction of each intake relative to its respective ALI is an' indication of the significance of a particular intake. The' sum 'of all such fractions for a given exposum situation must be legs than unity to be within regulatory allowances. These summations are summarized below for the two analysis techniques and the two workers:

Sum of Ratios of Radionuclide Intakes to Respective ALIs l

Analytical Method Clearance Class. I I / S.ALI I I / N-ALI  !

Worker 1 Worker 2 Worker 1 Worker 2 Fecal-based Class W Am, Cm 0.088 0.050 0.11 0.060

+ Class Y Co, U, Pu i

Fecal-based All Class W 0.10 0.048 0.16 0.070 Debris Ratio Class W Am, Cm 0.024 0.022 0.030 0.026

+ Class Y Co, U, Pu Debris Ratio All Class W 0.030 0.026 0.044 0.034 1 4

The above msults are fundamentally indicative of the ratios of the calculated committed dose equivalents to their respective dose equivalent limits.

Ultimate doses and combined fractional intakes (relative to ALIs) for worker 1 are higher in all cases than those for worker 2. This is in spite of the fact that the in-vivo counting results (Table 1) for worker 2 showed significantly higher burdens of "Co than were evident for worker 1. The clear explanation, supported by the msults of the LSM interpmtation of the inhalation and ingestion components, is that worker 2 had a considerably higher nonmspirable 18

intake than db worker 1. TMs is obvious from the ingestion / inhalation ratios summarized above. In addition, de absolute values of the inthkes of respirable radionuclides by worker I were significantly higher for all radionuclides than those of worker 2. Since the ALIs for inhalation are much more restrictive than the ALIs for ingestion, most notably fbr the transuranic nuclides for which the inhalation ALIs are 100 to 200 times smaller than the ingestion ALIs , the consequential dose commitments per unit inhalation intake are proportionately higher than the dose commitments per unit ingestion intake. The worker 1 inhalation intakes of transuranics were typically no less than 40% higher than those for worker 2, while the ingestion to inhalation ratio for worker 2 was about 3 times higher than that for worker 1. Thus, one would expect the dose projections for worker 1 to exceed those for worker 2. .

Radionuclide Contributors to Dose

]

Upon a cursory review of the results in Table 7, we can see that, regardless of clearance

{ classification, combined uranium isotopes contribute negligibly to practically all committed dose equivalents and combined intakes. Indeed, the only case for which uranium makes any statistically influential contribution to committed dose equivalent is for Class Y uranium and the fecal-based analyses, wherein uranium contributed about 6% of the CEDE for worker I and about 8% for worker 2. The largest fraction of the calculated CEDES comes from the transuranics, collectively accounting for between about 75% and 95% of total committed dose equivalents. Virtually all of the remaining CEDE is contributed by "Co. Essentially 100%

of the CDE to bone surfaces comes from the transuranic radionuclides .

in all cases.

Uranium Chemical Toxicity There is a concern with the potential for toxic chemical effects of uranium when it is taken up in the systemic circulation and transferred to the kidneys which are subject to the toxic effects at sufficiently.high levels. The Health Physics Society has published standard HPS 19

l l

\

\

N13.22.1995,""Bionssay Programs for Uranium". In it they have reviewed research related to chemical toxicity of uranium and concluded that a single daily inhalation intake of 8 mg of Class D pardculates (respirable size equivalent to one micrometer AMAD based on stated fractional translocation to systemic circulation) is representative of the threshold for transient injury or effects to the kidneys. De 10CFR20.1201(c) limit for intake of soluble uranium in a one week period is 10 mg. For inhalation of one micrometer AMAD Class D material by reference man, the fraction 0.484 of the intake gets transferred to systemic circulation; based on an 8 mg intake this represents 3.9 mg. For Class W material this fraction would be 0.146, and for Class Y material the fraction would be 0.0512.

For worker 1 we have estimated an inhalation intake of 0.21 nCi of total Class Y uranium and an ingestion intake of 1.9 nCi (see Table 7). Using the isotopic uranium activity results for the first fecal sample for worker 1, we have evaluated a fractional activity mix of 0.548

    • U,0.0535 "U, and 0.398 "U. Using this mix, we can determine the mass of inhaled uranium to have been 0.26 mg. The quantity transferred to systemic circulation would have p" been 0.013 mg (i.e.,0.26x0.0512). Doing similarly for the ingestion intake we determine the ingested quantity to have been 2.32 mg; for the ICRP f, value of 0.002, the mass transferred from the GI tract to systemic circulation would have been 0.0046 mg. Thus, for the combined inhalation and ingestion intakes,0.018 mg of total uranium would have passed to systemic circulation; this represents 0.5% of the limiting value of 3.9 mg in the HPS standard. By a similar rationale the combined intakes would represent about 0.4% of the  !

limiting value associated with the10CFR20.1201(c) restriction. If all the uranium exposure had been to Class W material, employing an analogous analysis to that done for Cla:,: 'i' material, we would obtain a value of 0.26 mg inhaled with 0.038 mg of this transferred to  !

systemic circulation; the ingestion component would have resulted in 2.08 mg ingested and l

0.10 mg of this distributed systemically (based on an ICRP f, value of 0.05). Rus, for the I Class W assumption, the uranium transferred to systemic circulation would have represented about 4% of the HPS standard limit and about 3% of the'10CFR20.1201(c) limit.

For worker 2 the uranium. isotopic activity mix for the first fecal sample was 0.585 **U, 20

. . . mm ,, . cu ,

2 0.0354 "U, sd 0.380 2"U. The inhaladon and ingestion intakes estimated from fecal analyses were 0.16 nCi and 4.6 nCi, respectively,'of Class Y uranium. Using the same methodology as above we evaluate the total uranium transferred to systemic cirtulation to have been 0.026 mg or 0.7% of the permissible 3.9 mg. The comparable percentage of the 10CFR20.1201(c)Imit would have been about 0.5%. If all of the uranium exposure for worker 2 had been to Class W material, the quantity distributed systemically would have been 0.28 mg, about 7% of the 3.9 mg HPS standard value and about 6% of the 10CFR20.1201(e) limit. '

Confidence in Results We believe the decisions we have made regarding the approaches to analyzing the data and the subsequent analyses of the available data are valid and reasonable. Because of unavoidable unc:nainties embodied in the bioassay data, itself, deviations fmm reference man characteristics, practicallimitations as to the quantity of data available, and because of cenain

{ propagated errors transmitted th:ough a panicular analysis into the result, inevitable uncenainties exist in the results presented here as they do in any results from attempts to correlate bioassay measurements with intakes and intake-dependent quantities.

Biological variability is a reality that affects all bioassay data. A given individual may demonstrate characteristics quite different from reference man. 'Ihe fecal-based analyses are cenainly affected by this variability. For example, the second fecal sample for worker 2 had a mass of only 32 grams, despite being a presumed 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> sample, and four radionuclides showed no detectable activity in the sample. Activities of five radionuclides reported for the third sample for worker 2 showed higher activities than the respective values for ti.e second sample taken earlier in time. Such irregularities are not unusual in excreta measurements, especially for feces, and they naturally affect the accuracy and precision of analytical resul ts.

Only three fecal samples were available from each worker, although additional samples taken at later times would not have been very useful since most of the imponant radionuclides 21

would h, ave b5en at or below minimum detectable activities, as reported by the vendor.

Samples taken sooner after the exposure might have been helpful in estimating the nonrespirable intales of transuranic elements, but decisions as to the significance of the exposure had to be reasonably made before a course of action was developed. For both workers the fecal analysis results of INDOS were heavily influenced by the results of the first fecal sample. The average relative experimental (one sigma) uncertainty in the transuranic activities, based on the INDOS evaluations for worker 1 and the Class W, Y mixture was only about 10%. For worker 2 the comparable value was almost 25%, the higher uncertainty being partly due to the greater inherent uncertainties in the raw data for worker 2.

The in-vivo results for "Co are important because they have been used to establish the relative importance of the nonrespirable and respirable intakes. The ratio of these two was used to estimate the nonrespirable intakes of the non-cobalt radionuclides from their respective respirable intakes determined from either the fecal-based INDOS evaluation or the debris activity ratios. The amounts of"Co in the bodies of both workers were sufficient to yield reasonable counting statistics, but uncertainties as to distribution of the activity in the body and associated uncertainties in detection efficiencies produce uncertainties in interpreted results. As noted earlier, we assumed that the in-vivo detectors were primarily influenced by activity in the respiratory tract (excluding the nasal-pharyngeal region). This assumption j yielded the highest intake estimates when the LSM program was implemented. Because the nonrespirable "Co intakes for both workers were much greater than the respirable intakes, there is a legitimate concern that the uncertainty in the r:anation of the smaller inhalation component, affected greatly by the errors in the large value measurements made at the earlier times, may be so large as to preclude confidence in the result. For worker 1 the estimated relative standard deviation in the inhalation intake was 37%, while that for worker 2, for whom the nomespirable fraction was considerably larger, was 140%. It is important to note that, in light of this large uncertainty, it is possible that the actual respirable intake for worker 2 was zero. At the same time,if the actual respirable intake had been significantly greater than the value determined, it would have been evaluated with greater statistical certainty .

Some confidence can be gained in the values estimated from the LSM analysis by doing a 22

m . _ _ .

separate,calcuiation in which we attempt to predict the quantity of activity expected in the body at r wm than a week af ter exposure (when rhost of the nonrespirable intake has been cleared from the GI tract) by using the LSM resolved ingestion and inhalation components of activity. As an example we will consider the measured burden of 20.7 nCi fo/ worker 2 at 10 days following exposure. If the respiratory tract model of the ICRP (1978) is used in conjunction with the metabolic model for cobalt and the recommended 3f value of 0.05, we can calculate an expected fraction of an inhaled one micrometer AMAD panicle distribution of 0.148 to be present at 10 days following intake of Class Y "Co. The fraction of an ingestion intake expected to be present at 10 days after intake would be 0.0143. If we apply these fractions to the LSM resolved inhalation and ingestion activities of worker 2 for Class Y cobalt,32 nCi and 910 nCi, respectively, we obtain an expected body burden (systemic plus respiratory tract) of 17.7 nCi in reasonably good agreement with the measured value of 20.7 nCi. The same procedure applied to worker 1 at 10 days following intake yields a predicted burden of 12.1 nCi compared to the observed 12.7 nCi, showing excellent agreement and being partially indicative of the lesser uncertainty in the LSM resolved values

(. for worker 1.

Conclusions and Recommendations On the basis of the analyses we have performed we have concluded that the maximum intakes and associated committed dose equivalents to either of tle two workers did not exceed about 10% of the applicable regulatory limits and may have been as low as about 3% of the limits.

These two estimates were based on two different calculational techniques, one based on fecal excretion measurements, which yielded the higher estimates, and the other based on activity ratios measured in the debris samples. To make a technically sound analysis of the provided bioassay data we determined that it was appropriate and necessary to separate the nonrespirable components of activity, treated as ingestion, from the inhalation components for each worker. The inhaled respirable components largely determined the dose consequences of the intakei, although-the ingestion components dominated the activity intakes by about 9 to 1 23

~

l for worker 1 and about 30 to 1 for worker 2.

We made the asssmption of Class Y"Co paniculates, and this had some effect on results,  !

although it was no: large. Since worker 2 is still available, CY personnel may

  • ant to obtain an occasional in-vivo count at later times to confirm whether the cobalt is behaving as l.

Class Y material. This should be determinable because of the much longer half life for j Class Y material compared to Class W material in the pulmonary part of the lung (500 days

vs. 50 days), although the analysis is somewhat complicated by the fact that the large ingestion intake, coupled with the f value of 0.05 has led to systemic activity,10% of which i

is retained with an 800 day biological half life in the body according to the metabolic model I for cobalt.

4 i

Given the rather unusual circumstances of the exposure event responsible for the intakes by l the two workers, we feel that the CY staff acted reasonably and responsibly. The exposure to

transuranic activity is not a common event at the site and, understandably some time was p"" required before personnel could make a firm technical decision that fecal sampling was warranted. The time lapse of six days between the exposure and the collection of the first
fecal samples was not extreme, but it was sufficiently long . hat any early excretion associated with upper respiratory tract clearance or ingestion was missed. The incident will no doubt serve to sensitize personnel to similar events in the future and allow them to develop and 3 implement procedures best suited to evaluating potential irttakes of transuranic materials, t

E We have found our interactions with the CY and NUSCO personnel to be friendly and productive. In particular, Ms. Learay Rayburn Silvia and Mr. Ira L. Haas, our technical contacts, have been extremely helpful in providing us with the required data, information, and explanations as necessary so that we could perform the required andyses. We thank them for their kind assistance.

1 a .

4 24 4

.' Addendum: Strontium Results We received the results of strontium analyses of air and debris samples after wf had  ;

completed the report and delayed sending the report for one day so that we could review and >

t analyze those results. We are including a summary of our findings in this addendum.

~

i

\

t The samples were analyzed by Teledyne Brown Engineering Environmental Services. We ~!

used the reported activities in the debris samples to quantify the potential significance of the l

radiostrontium intakes. Only one sample showed any"Sr at a level greater than the MDA, j

and that sample activity was sufficiently small to have no impact on our results.

. i N

The analyses were performed in the same fashion earlier described as the second method--i.e.,

i we calculated the average "Sr to "Co activity ratio for the five debris samples, and used the  !

j ratio to estimate the respirable intakes of "Sr by multiplying the respirable intake value  !

obtained from the LSModel results for "Co by the ratio. The nonrespirable to respirable  !

activity ratio obtained from LSModel was used to estimate a nonrespirable intake for "Sr. 5 i Since no fecal analyses were performed for "Sr, we could not do a reasonable analysis based f on fecal measurements. The method we used, however, provides a reasonable determination

of the relative contribution of"Sr to calculated quantities. The intake to dose conversions

{

were done for Class Y strontium for which the stochastic ALI is most restrictive; we used an j f 3value of 0.3 for the ingestion (nonrespirable) intake.

1 l

The reported "Sr activities for the debris samples are summarized on the following page.

24a l

l

.' Reported "Sr Specific Activities in Debris kmples Sample Identification "Sr specific activity (pCi/g) ,

l 2-C (1.7 0.2)x10 2 5-A (6.5 0.1)x10-2 8-B (4.810.1)x10 '

8-D (5.0 i 0.1)x10-'

5-D (4.9 0.1)x10

i The results of our analyses of the intake and dose consequences for workers 1 and 2 are summarized below:

"Sr Intakes and Committed Dose Equivalents I

{7 "Sr/"Co Ratio Respirable Intake Nonresp. Intake CEDE (rem) CDE(rem)

(nci) (nci) (bone surfaces)  !

Worker 1 7.1x10-' O.31 2.8 7.4x104 4.7x10-8

- l l

l Worker 2 7.1x10-8 0.22 6.5 1.1x10-8 1.1x10 2  !

When the total dose commitments from all radionuclides, including "Sr, were summed  :

together for workers 1 and 2, respectively, we found no statistically significant difference.s i

from those respective totals contained in Table 7 and summarized previously in the Results and Discussion section. For worker 1 the "Sr CEDE represented 0.6% of the total CEDE, and the "Sr CDE to bene surfaces comprised 0.3% of the total CDE to bone surfaces. For worker 2 the comparable values were 0.97% of the CEDE and 0.83% of the CDE to bone surfaces. . .

4 24b

4 Table L Bionssay Data for Two Workers Exposed to Fission Products, Activation Products, cad Transuranic Radionuclides.in the Fuel Transfer Canal of a Pressurized Nuclear Power Reactor

~

Exposure Date and Time: 11/2/96 09:00 -

1 Lung Counbg Data for Worker 1 Date/ Time Elapsed Time (days) Lung Activity (nCi)  % E!rorf12 c) 11/2/96 10:28 0.061 411.1 2 11/3/96 06:47 0.91 3433 2 11/4B6 09:29 2.0 1063 5 11/536 08:26 3.0 51.28 5 11/6/96 15:06 43 24.59 11 11/7S 6 14:54 5.2 18.42 13 11/8S 6 15:05 63 16.94 14 11/11/96 12:26 9.1 16.73 7 11/12 S 6 18:24 10.0 12.74 14 11/15S 6 15:27 13.0 11.78 15 Lung Counting Data for Worker 2 b.

Date/ rime Elapsed Time (days) Lung Activity (nCi)  % Error fi 2 c) 11/2S 6 10:33 0.065 1080 1 11/2 S 6 15:23 0.27 990.5 1 11/4 S 6 08:53 2.0 174.2 3 11/5S 6 08:17 3.0 40.47 8 11/6/96 15:53 43 3033 9 11/IS6 14:15 5.2 23.21 11 11/BS6 15:13 63 23.10 8 11/116 6 14:44 9.2 20.79 7 11/12 S 6 15:07 103 20.67 7 11/14 S 6 15:33 123 20.75 10 11/15 9 6 14:47 13.2 21.64 7 ,

11/19 9 6 14:57 17.2 21.00 11/20J96 08:12 18.0 16.88 l 11/2196 08:21 19.0 17.62 l l

25 l i

Tcble 2. Res lts cfIs-Viva Centing ud Linear Statistical Model (LSM) An: lyses 4

i

~

i Results feir Worker 1 i

Results,from Whole Body Counter:

. Co-60 Intakes'in nCi

Lungs - Class Y 5.7E+02
  • Lungs - Class W 6.lE+02 1 Ingestion 4.3E+02 i

WB(wo/NP)- Class Y 3.8E+02

{ WB(wo/NP)- Class W 3.7E+02

WB(with NP)- Class Y 3.4E+02
WB(with NP)- Class W 3.3E+02 Results from Separation of Respirable and Non-Respirable Intakes of Co60 in nCi Inhalation % st.dev. Ingestion % st.dev. Ratio

.! LSM(Y Lungs,Ing) 4.4E+01 3.6E+01 3.9E+02 5.4E+00 8.9E40

LSM(Y WB w/o NP,Ing) 3.5E+01 4.3E+01 3.9E+02 6.6E+00 1.1E+01 l LSM(Y WB with NP,Ing) 3.8E+01 4.2E+01 3.8E+02 7.lE+00 1.0E+01 l LSM(W Lungs,Ing) 4.8E+01 3.7E+01 3.9E+02 5.6E+00 8.lE+00 LSM(W WB w/o NP,Ing) 3.4E+01 4.3E+01 3.9E+02 6.6E+00 1.2E+01 LSM(W WB with NP,Ing) 3.5E+01 4.2E+01 3.8E+02 7.0E40 1.1E+01

(,

Results for Worker 2 .

Results from Whole Body Counter:

Co-60 Intakes in nCi Lungs - Class Y 1.0E+03 Lungs - Class W l.lE+03 Ingestion 9.4E+02 WB(wo/NP)- Class Y 7.9E+02 WB(wo/NP)- Class W 7.7E+02 WB(with NP)- Class Y 6.9E+02 WB(with NP)- Class W 6.8E+02 Results from Separation of Respirable and Non-Respirable Intakes of Co60 in nCi Inhalation % st.dev. Ingestion % st.dev. Ratio {

LSM(Y Lungs,Ing) 3.2E+01 1.2E@2 9.1E+02 8.8E+00 2.9E+01 l LSM(Y WB w/o NP,Ing) 1.7E+01 2.1E+02 9.2E+02 9.3E+00 5.5E+01 l LSM(Y WB with NP,Ing) 2.l E+01 1.8E+02 9.lE-K)2 9.7E+00 4.4E+01 LSM(W Lungs,Ing) 3.3E+01 1.4E+02 9.lE+02 8.9E+00 2.8E+01 l LSM(W WB w/o-NP,Ing) 1.5E+01 2.3E+02 9.2E+02 9.3E+00 6.1E+01 i LSM(W WB with NP,Ing) 1.9E+01 1.9E+02 9.1E+02 9.7E%0 4.9E+01  ;

i 26

____.__.._.__.s _ _ _ . _ . . . . _ . _ . . _ _ . . . . _ _ _ _

7 Tcble 3. Specific Activity MessIrements bd Activity Ratios fer Frel Ccul Debris Sample Specific Activity Measurements, Ci/g i Number Co-60 Cs-137 Mn-54 s Pu-238 Pu-239 Am-241 Cm-242 Cm-244 U-234 2-C 6.2E+00 3.8E-02 83E-03 2.2E-03 1.0E-02 2.8E-04 6.0E-03 .,

  • 5-A 5.5E+01 1.2E+00 - 4.lE-01 1.2E-01 5.lE-02 1.3E-01 4.8E-04 73E-02 -

5-D 2.9E+01 5.6E-01 6.8E-02 2.5E-02 9.lE-02 4.0E-04 5.6E-02 3.lE-05 *. ~

8-B 1.2E+02 3.4E+00 1.9E-01 1.0E-01 33E-01 9.4E-04 1.5E-01

. 8-D 13E+02 1.3E+00 4.6E+00 1.4E-01 6.7E-02 1.6E-01 5.7E-04 7.0E-02 4.lE-05 (;

r Sample Specific Activity Ratio of Each Radionuclide Relative to Co-60 Number Co-60 Cs-137 Mn-54 Pu-238 IPu-239 Am-241 Cm-242 Cm-244 U-234 2-C 1.0E+00 6.1E-03 1.3E-03 B.5E-04 1.6E-03 4.5E-05 9.6E-04 .

5-A 1.0E+00 2.2E-02 7.5E-03 2.2E-03 93E-04 2.4E-03 8.8E-06 13 E-03 5-D 1.0E+00 1.9E-02 2.4E-03 B.7E-04 3.1E-03 1.4E-05 1.9E-03 1.1E-06 i 8-B 1.0E+00 2.9E-02 1.6E-03 B.6E-04 2.8E-03 8.lE-06 13 E-03 l 0 8-D 1.0E+00 9.8E-03 3.5E-02 1.lE-03 5.lE-04 1.2E-03 43E-06 53E-04 3.lE-07

  • mean 1.0E+00 1.7E-02 2.1E-02 1.7E-03 7.0E-04 2.2E-03 1.6E-05 1.2E-03 6.9E-07 ,

standard error 0.0E+00 4.2E-03 1.4E-02 2.5E-04 1.1E-04 3.7E-04 7.4E-06 2.3E-04 3.8E-07

% st. error 0.0 24.2 64.7 14.4 163 163 46.2 19.1 55.1

.i  !

Sample Specific Activity Ratio of Co-60 Relative to Each Radionuclide Number Co-60 Cs-137 Mn-54 Pu-238 Pu-239 Am-241 Cm-242 Cm-244 U-234 2-C 1.0E+00 1.6E+02 7.5E+02 2.8E+03 6.2E+02 2.2E+04 1.0E+03 5-A 1.0E+00 4.5E+01 13E+02 4.6E+02 1..l E+03 4.2E+02 1.lE+05 7.5E+02 I 5-D 1.0E+00 5.2E+01 43E+02 12E+03 3.2E+02 7.2E+04 5.2E+02 9.3E+05 8-B 1.0E+00 3.4E+01 6.lE+02 1.2E+03 3.5E+02 1.2E+05 7.7E+02 8-D 1.0E+00 1.0E+02 2.9E+01 9.4E+02 2L0E+03 8.3E+02 2.3E+05 1.9E+03 3EE+06 mean 1.0E+00 7.9E+01 8.lE401 6.4E+02 IL6E+03 5.lE+02 1.lE+05 9.9E+02 2.IE+06 sim. dad error 0.0E+00 2.4E+01 5.2E+01 9.6E+01 3t4E+02 9.5E+01 3.5E+04 2.4E+02 1.lE+06  !

% st. error 0.0 30.5 64.7 15.1 :20.8 18.8 30.8 24.0 55.1  !

t i

I Table 4.- Bionssay Data for Two Workers Exposed to Fission Products, Activation Products and '  :

i- Transuranic Radionuclides in the Fuel Transfer danal of a Pressurized Nuclear Power Reactor e

. Daily Fecal Sample 5081 - Worker 1, sample mass = 128.46 g Nuclide Sample Date/ Time Elapsed Time Sample Activity  % Error Stand.Dev.

days nCi i 20 nCi  ;

Co-60 11/8/96 6:30 5.9 1.79E+00 3.6 3.3E-02 l 4 U-233,234 11/8/96 6:30 5.9 9.40E-04 26 1.2E-04

]

l U-235 11/8/96 6:30 5.9 9.18E-05 120 5.5E-05 i i U-238 11/8/96 6:30 5.9 6.83E-04 31 1.1E-04

Pu-238 11/8/96 6:30 5.9 7.1SE-03 16 5.9E-04
Pu-239,240 11/8/96 6:30 5.9 3.30E-03 22 3.7E-04 j l Am-241 11/8/96 6:30 5.9 6.32E-03 17 5.4E-04 Cm-244 fl1/8/96 6:30 5.9 3.23E-03 24 3.9E-04 j Daily Fecal Sample 5081 - Worker 2, sample mass = 163.09 g j Nuclide dample Date/ Time Eiapsed Time Tenple Activity  % Error Stand.Dev.

i days nCi *2o nCi j h. Co-60 11/8/96 11:30 6.1 8.25E-01 12 5.1E-02 l U-233,234 11/8/96 11:30 6.1 8.93E-04 27 1.2E-04

[ U-235 11/8/96 11:30 6.1 5.40E-05 134 3.6E-05 1 U-238 11/8/96 11:30 6.1 5.80E-04 31 9.1E-05 j Pu-238 11/8/96 11:30 6.1 1.67E-03 20 1.7E-04 l Pu-239,240 11/8/96 11:30 6.1 4.85E-04 36 8.8E-05

~

I Am-241 11/8/96 11:30 3.21E-03 6.1 18 2.8E-04

! Cm-244 11/8/96 11:30 6,1 1.98E-03 23 2.3E-04 i

i i

l l

i 4

j 28 i

- l

t 4

Table 5. Blons5y Data for Two Workers Exposed to Fission Products, Activation Products and Transuranic Radionuclides in the Fuel Transfer Canal of a Pressurized Nuclear Power Reactor Daily Fecal Sample 5082 - Worker 1, sample mass = 114.51 g Nuclide Sample Date/ rime Elapsed Time Sample Activity  % Error Stand.Dev.

4 days nCi 2e nCi Co-60 11/12/96 6:30 9.9 1.05E-01 34 1.8E-02

! U-233,234 11/12/96 6:30 9.9 7.57E-04 35 1.3E-04 U-235 11/12/96 6:30 9.9 0.00E+00 2.2E-05

U-238 11/12/96 6
30 9.9 5.54E-04 40 1.1E-04 Pu-238 11/12/96 6:30 9.9 4.68E-04 59 1.48-04

{ Pu-239,240 11/12/96 6:30 9.9 1.70E-04 98 8.3E-05 Am-241 11/12/96 6:30 9.9 4.42E-04 50 1.1E-04 Cm-244 11/12/96 6:30 9.9 3.99E-04 45 9.0E-05

Daily Fecal Sample 5082 - Worker 2, sample mass = 31.82 g

) Nuclide Sample Dateffime Elapsed Time Sample Activity  % Error Stand.Dev.

days nCi 1 2o nCi b Co-60 U-233,234 11/12/96 11:30' M 0.00E+00 11/12/96 11:30 10.1 1.78E-04 78 6.9E-05' U-235 11/12/96 11:30 10.1 0.00E+00 1.7E-05

U-238 11/12/96 11
30 10.1 2.20E-04 50 5.5E-05 Pu-238 11/12/96 11:30 10.1 0.00E+00 4.0E-05 Pu-239,240 11/12/96 11:30 10.1 4.00E-05 134 2.7E-05 Am-241 11/12/96 11:30 10.1 4.71E-05 111 2.6E-05

'Cm-244 11/12/96 11:30 10.1 0.00E+00 1.0E-05 j

a 29

Table 6. Bionss y Data for Two Workers Exposed to Fission Products, Activation Products and Transuranic Radionuclides in the Fuel Transfer Canal of a Pressurized Nuclear Power Reactor e

Daily Fecal Sample 5083 - Worker 1, sample mass = 103.98 g Nuclide Sample Date/ Time Elapsed Time Sample Activity  % Error Stand.Dev.

days nCi 2o nCi Co-60 11/15/96 6:30 12.9 1.58E-02 66 5.2E-03 U-233,234 11/15/96 6:30 12.9 6.29E-04 11 3.5E-05 U-235 11/15/96 6:30 12.9 1.55E-05 100 7.8E-06 U-238 11/15/96 6:30 12.9 5.44E-04 11 3.1E-05 3

Pu-238 11/15/96 6:30 12.9 7.09E-05 80 2.8E-05 Pu-239,240 11/15/96 6:30 12.9 0.00E+00 2.1E-05 Am-241 11/15/96 6:30 12.9 5.55E-05 120 3.3E-05 Cm-244 11/15/96 6:30 12.9 8.90E-05 75 3.4E-05 Daily Fecal Sample 5083 - Worker 2, sample mass = 70.86 g 3

Nuclide Sample Date/fime Elapsed Time Sample Activity  % Error Stand.Dev.

,.. days nCi 2 2e nCi

k" Co-60 1l/15/96 11
30 13,1 0.00E+00 U-233,2.44 11/15/96 11:30 13.1 4.00E-04 14 2.8E-05 U-235 11/15/96 11:30 13.1 2.78E-05 58 8.0E-06 U-238 11/15/96 11:30 13.1 3.09E-04 15 2.3E-05 Pu-238 11/15/96 11:30 13.1 8.63E-05 86 3.7E-05 Pu-239,240 11/15/96 11:30 13.1 1.23E-05 401 2.5E-05 Am-241 11/15/96 11:30 13.1 4.38E-05 100 2.2E-05 Cm-244 11/15/96 11:30 13.1 1.46E-05 200 1.5E-05 e

O 30

S Tcble 7c. Inteke Estimites (nCi) anu Doss Estimr.tes (rem) f::r Werk.r 1 Nuclide Co-60 Pu-238 Pu-239.240 U Am-241 Cm-244 S-ALI for Inhalation of Class W Compounds (nCi) 200000 10 10 700 10 20 N-ALI for Inhalation of Class W Compounds (nCi) 4000000 7 6 4000 6 10 S-ALI for Inhalation of Class Y Compounds (nCi) 30000 20 20 40 N/A N/A N-ALI for Irihalation of Class Y Compounds (nCi) 1000000 20 20 10000 N/A N/A S-ALI for Ingestion (nCi) 200000 2000 1000 20000 1000 3000 -

900 800 10000 800 1000

  • N-ALI for Ingestion (nCi) 10000000 S-ALI = Stochastic All. N-ALI = Non-Stochastic ALI B: sed on Dose to Bone Surfaces (Values in Bold Type Derived from Federal Guidance Report 11)

Results for Class W Compounds of All Nuclides:

Inhalation intakes Estimated from Analyses of 24h Fecal Samples. Ingestion Intakes Estimated by Ratios Derived from Co-60 In Vivo Bionssay. '

Co-60 Pa-238 Pu-239,240 U Am-24 I Cm-244 Inhalation intake Estimates (nCi) 8.8E401 3.5E-01 1.6E-01 2.lE-Ol 3.lE-01 1.7E-01 Ingestion Intake Estimates (nCi) 7.l E+02 2.9E+00 1.3 E+00 1.7E+00 2.5E+00 1.4E+00 Total CEDE (rem) 2.0E-02 1.8E-01 8.6E-02 1.9E-03 1.7E-01 4.5E-02 0.50 CDE to Bone Surfaces (rem) 4.7E-03 2.7E+00 1.4E+00 1.lE-02 2.8E +00 9.2E-01 7.8 Co-60 Intakes Estimated from Linear Statistical Model ofIn Vivo Bionssay. Other Intakes Estimated from Co-60 Intakes Using Debris Activity Ratios.

3 Co-(1 Pu-238 Pu-239,249 U Am-241 Cm-244 Inhalation Intake Estimates (nCi) 4.8EF 8.3E-02 3.4 E-02 6.2E-05 1.lE-01 5.9E-02 Ingestion Intake Estimates (nCi) 3.9E+ 2 ,

6.7E-01 2.8 E-01 5.0E-04 8.8 E-01 4.8E-01 Total CEDE (rem) 1.lE-02 4.3 E-02 1.8E-02 5.7E-07 5.8E-02 1.5E-02 0.15 CDE to Bone Surfaces (rem) 2.6E-03 6.3 E-01 3.0E-01 3.3 E-06 9.6E-01 3.2E-01 2.2 Results for Class W Compounds of Am, Cm and Class Y Compounds of Co, Pu, and U:

t Inhalation intakes Estimated from Analyses of 24h Fecal Samples. Ingestion Intakes Estimated by Ratios Derived from Co-60 in Vivo Bionssay. 1 Co-60 Pu-238 Pu-239,240 U Am-241 Cm-244 Inhalation intake Estimates (nCi) 1.0E+02 3.9E-01 1.8E-01 2.lE-01 3.lE-01 1.7E-01 Ingestion Intake Estimates (nCi) 8.9E+02 3.5 E+00 1.6E+00 1.9E+00 2.8E+00 1.5E+00 Total CEDE (rem) 3.9E-02 1.lE-01 5.2E-02 2.7E-02 1.7E-01 4.5E-02 0.44 CDE to Bone Surfaces (rem) 9.5E-03 1.2E+00 5.4E-01 1.lE-02 2.8E+00 9.2E-04 5.4 Co-60 Intakes Estimated from Linear Statistical Model ofIn Vivo Bionssay. Other Intakes Estimated from Co-60 Intakes Using Debris Activity Ratios.  ;

Co-60 Pu-238 Pu-239,240 U Am-241 Cm-244  !

Inhalation Intake Estimates (nCi) 4.4E401 7.6E-02 3. l E-02 5.7E-05 9.9E-02 5.4E-02 Ingestion Intake Estimates (nCi) 3.9E+02 6.7E-01 2.8 E-01 5.lE-04 8.8E-01 4.8E-01 Total CEDE (rem) 1.7E-02 2.lE-02 9.2E-03 7.2E-06 5.4 E-02 1.4E-02 0.12 CDE to Bone Surfaces (rem) 4.2E-03 2.3 E-01 9.5E-02 2.8E-06 8.8E-01 2.9E-01 1.5 W

r

Table 7b. Int:ks Estimstes (nCi) enu Dose Estimrtes (rem) for Werk:r 2 Nuclide Cc-60 Pu-238 Pu-239,240 U Am-241 Cm-244 S-ALI for Inhalation of Class W Compounds (nCi) 200000 10 10 700 10 20 N-ALI for Inhalation of Class W Compounds (nCi) 4000000 7 6 4000 6 10 S-ALI for Inhalation of Class Y Compounds (nCi) 30000 20 20 40 N/A N/A N-ALI for Inhalation of Class Y Compounds (nCi) 1000000 20 20 10000 N/A N/A .

S-ALI for Ingestion (nCi) 200000 2000 1000 20000 1000 3000 -

N-ALI for Ingestion (nCi) 10000000 900 800 10000 800 1000 i S-ALI - Stochastic ALI, N-ALI = Non-Stochastic ALI Based on Dose to Bone Surfaces (Values in Bold Type Derived from Federal Guidance Report I I)

Results for Class W Compounds of All Nuclides:

Inhalation Intakes Estimated from Analyses of 24h Fecal Samples. Ingestion Intskes Estimated by Ratios Derived from Co-60 In Vivo Bionssay.

Co-60 Pu-238 Pu-239,240 U Am-24 I Cm-244 Inhalation Intake Estimates (nCi) 4.2E+01 9.0E-02 2.8E-02 1.5E-01 1.7E-01 1.0E-01 Ingestion Intake Estimates (nCi) 1.2 E+03 2.5E+00 7.6E-01 4.l E+00 4.7E+00 2.8E+00 Total CEDE (rem) 3.0E-02 5.lE-02 1.8E-02 2.lE-03 1.lE-01 3.0E-02 0.24 CDE to Bone Surfaces (rem) 6.4E-03 7.8E-01 2.8E-01 2.2E-02 1.7E+00 6.6E-01 3.5 M Co-60 Intakes Estimated fron Linear Statistical Model ofIn Vivo Bioassay Other Intakes Estimated from Co-60 Intakes Using Debris Activity Ratios.

I Co-60 Pa-238 Pu-239,240 U Am-241 Cm-244 inhalation Intake Estimates (nCi) 3.3 E+01 5.7E-02 2.3 E-02 4.3 E-05 7.4E-02 4.0E-02 Ingestion Intake Estimates (nCi) 9. lE+02 1.6E+00 6.4E-01 1.2E-03 2.0E+00 1.lE+00 Total CEDE (rem) 2.4 E-02 3.2E-02 1.5 E-02 6.0E-07 4.7E-02 1.2E-02 0.13 '

CDE to Bone Surfaces (rem) 5.0E-03 4.9 E-01 2.3E-01 6.4 E-06 7.4E-01 2.6E-0I 1.7 Results for ClasF8 Compounds of Am, Cm and Class Y Compounds of Co, Pu, and U:

Inhalation Intakes Estimated from Analyses of 24h FecalSamples. Ingestion Intakes Estimated by Ratios Derived from Co-60 In Vivo Bionssay. '

Co-60 Pu-238 Pu-239,240 U Am-241 Cm-244 inhalation Intake Estimates (nCi) 5.0E+01 1.05-01 3.2E-02 1.6E-01 1.7E-01 1.0E-01 Ingestion intake Estimates (nCi) 1.5E+03 3.0E+00 9.2E-01 4.6E+00 4.9E+00 3.0E+00 Total CEDE.(rem) 4.5E-02 3.3E-02 1.2E-02 2.l E-02 1.lE-01 3.lE-02 0.25 CDE 'to Bone Surfaces (rem) 9 WE-03 4.3 E-01 1.4 E-01 2.4 E-02 1.7E+00 6.6E-01. 3.0 t Co-601ntakes Estimated from Linear Statistical Model ofIn Vivo Bionssay. Other Intakes Estimated from Co-60 Intakes Using Debris Activity Ratios.

Co-60 Pu-238 Pu-239,240 U Am-241 Cm-244 Inhalation Intake Estimates (nCi) 3.2E+01 5.4E-02 2.2E-02 4.lE-05 7.0E-02 3.8E-02 Ingestion intake Estimates (nCi) 9.l E+02 1.6E+00 6.4 E-01 1.2E-03 2.0E+00 1.IE+00 Total CEDE (rem) 2.8E-02 1.7E-02 8.8 E-03 5.4 E-06 4.5E-02 I.lE-02 0.11 I CDE to Bone Surfaces (rem) 6.lE-03 2.2E 01 9.6E-02 6.l E-06 7.lE-01 2.5E-01 1.3

)

O 500 Figure 1. In Vivo Co-60 Measurements for Worker 1 and Model Expectation Curves , -

e 00 -

Inhalation Curve Based on Class Y Cobalt.

Combined Inhalation and Ingestion Curve Based on Linear Statistical lWxlel ,

Separation ofRespimble (Class Y) and Non-Respirable (Ingestion) Intakes.

3 300 -

i M

u 8

- 200 -

100 -

Inhalation Intake e'

, Inhalat n and Ingestion Intake * ,

0 -

Ingestion Intake i l l I I I i 0 2 4 6 8 10 12 14 Time After Intake, days

'r%- &

cq 1200 Figure 2. In Vivo Co-60 Me'surements a for Worker 2 and Model Expectation Curves .

e. -

1000 e

Inhalation Curve Based on Class Y Cobalt.

Combined Inhalation and Ingestion Curve Based on Linear Statistical Model 800 -

SePamtion ofRespirable (Class Y) and Non-Respimble (Ingestion) Intakes.

g .

C Y

w M 600 -

  • 8

' D

E U 400 -

200 -

Inhalation intake g- Inhalation and Ingestioh Intake

  • -: e e e =

0 =_we_

ingestion Intake l I I I I I I I I I O 2 4 6 8 10 12 14 16 18 20 Time After Intake, days .

i

1 s

l I

, APPENDIX A i

RELATIONSHIPS AMONG BIOASSAY MEASUREMENTS, l 4

lc INTAKES, AND INTAKE-DEPENDENT QUANTITIES '

4 i

l 1

35 1

~

i i

~

i. .

Apphications and Limitations of Bioassay Data and Models

~

Depending upon the radionuclides and bioassay procedures, bioassay data are in most cases i quite limited, particularly with regard to determining an individual worker's metabolic model.

This limitation is true even when significant intakes occur. Time delays are iniolved in the transport of a radionuclide from one body compartment to another, including complex clearance pathways from the respiratory tract, absorption into the systemic circulation,

deposition in systemic organs and tissues, recycling back to extracellular fluid and the blood, and final excretion from the body by various pathways. These metabolic complexities make j it difficult or impossible to determine an exposed worker's metabolic model and parameter j values from the available bioassay data. The only practical alternative, in most situations, is

, to use information relating to the physical and biochemical characteristics of radionuclides I along with applicable Reference Man or more appropriate metabolic models and parameter

] values to estimate the intake and corresponding internal radiation doses. The lack of adequate j metabolic information for exposed workers can caurc considerable uncertainty in the

! estimation of their intakes from bioassay data, particularly from their excretion or in vitro j bicassay data. ~

Principk Intake, Metabolic, and Excretion Pathways and Retention Functions 2

Figure 1 gives a summary of the principle intake, metabolic, and excretion pathways of stable j or radioactive elements. His summary is being reviewed here to show how this general

,. information can be extended to a more specific multi-compartmental model that can be used

, in the generation of specific intake retention functions i(t) needed for the design and conduct j of bioassay and internal dose assessment programs. The acute intake retention function i(t) gives the ratio, <q(t)/I> ,of the expected content <q(t)> of a bioassay compartment to an intake I, i.e., the fraction of an intake expected to be present at time t in either an in vivo or

in vitro bioassay compartment. The numerical value of any type of intake retention function is represented by the acronym IRF. Except for tritiated water vapor for which significant absorption through the skin occurs, occasional uptakes of other radionuclides through wounds, j or difficult to justify ingestion intakes of radionuclides, the major intake pathway is by j inhalation of airborne radioactivity. He fractions of inhaled radioactMy that deposit in the i

< various regions of the respiratory tract depend primarily on the particle size distribution of the l l carrier aerosol. The radioactive aerosol particle size distribution is most often described by a  !

log-normal distribution, as characterized by its activity median aerodynamic diameter )

(AMAD) and geometric standard deviation. These parameters for the aerosol determine the l j fractional depositions in the nasopharyngeal (NP), tracheobronchial (TB), and pulmonary (P) l j regions of the respiratory tract. For the purpose of deriving the annual limit on intake (ALI) l

and derived air concentration (DAC) of a radionuclide, the ICRP assumes in its Publication l j

30 an AMAD of I pm and geometric standard deviation of 4.5 or less for which the expected percentage depositions of an intake are 30% in the NP,8% in the TB, and 25% in the P region of the respiratory tract. Thus, a total of 63% of an intake is expected to be deposited j and 37% exhaled. Because of the longer retention of radionuclides in the pulmonary 1 36 1

4 W

. - - - . , - ,.., ,. , - - - - , , - . . , - - ----e-,- -

v

...=..=:-_ ^

-.- -- ---. :2:- G - - - -

~^ ^

^

Wounds, Ingestion Inhelation Skin Absorption If  !

Exhalation y git, ny di Res iretory '_. Entry l y 9 g rect Mechanical i Clearance z Dissolution Processes and Absorption y Processes GI Pulmonary y

  • Lymph Tract Nodes I

U V y 4

Blood jl dl il N p y y y J

+ Bile + Liver Kidneys Skin Other Organs l y v y 1

Urine p Sweet Hair Feces 4

, Figure A1. Schematic representation of routes of entry, metabolic pathways, andpossible bioassay samples for internally deposited radionuclides.

l 37

I i

' region when sIompared to other regions and the possible uptake into the systemic circulation, the puhhonary deposition generally has the greatest radiobiological or dose significance. His situation is panicularly true for intakes of Class i transuranic materials whose fractional j absorption'fi from the gastrointestinal tract is very small (f3 = 0.00001 for insoluble forms of

plutonium).
  • For inhalation intakes of non-respirable aerosols having AMADs above about 20 pm, i

most of the deposition is in the NP region. The depositions in the NP and TB regions are rapidly cleared primarily to the gastrointestinal tract, where the radionuclide then may be absorbed into the blood or excreted with the feces. Thus, the AMAD of the aerosolis an

' important parameter needed for the interpretation of either in vivo or in vitro bioassay data and the estimation of intemal radiation doses. Absorption of radionuclides into body fluids and the circulating blood occurs by translocation through membranes within the respiratory tract, which depends on both the solubility of the carrier aerosol and the chemical form of the l radionuclide itself, The term transportability is used to describe this entire absorption process. The ICRP describes the absorption from certain compartments within the pulmonary

  • region by certain clearance half-times that depend only on the chemical compound form of the radioelement. For the purpose of calculating the ALIs and DACs,' chemical compound i

forms are designated as class D, class W, or class Y and are assigned specific clearance half-times respectively of 0.5 days,50 days, and 500 days from certain compartments in the j

pulmonary region of the lungs (ICRP,1979).

l The term uptake is used to describe the amount and passage of a radionuclide across i

body membranes into the systemic circulation or blood, e.g., by absorption from

l f- compartments in the respiratory and gastrointestinal tracts. In general, Class D compounds  !

lV have the largest absorption while class Y compounds the least absorption into the systemic j circulation. Once, a radionuclide enters the blood, it may be deposited in various systemic 4 organs and tissues iri the body. As shown by the arrows in Figure Al and depending on the

.' effective half-life of the radionuclide, a portion of the radionuclide deposited in an organ or  !

tissue may be recycled back to the blood, where it then may be deposited in some other organ I

- or tissue, the same organ or tissue, or be excreted from the body by various pathways. The l

1 term systemic contamination refers to the presence and amount of the radionuclide within l

' systemic organs and tissues and the systemic circulation. This systemic contamination is  !

distinguished from external contamination on the skin, on the surface of epithelial tissues i within the respiratory and gastrointestinal tracts, and within the contents of the segments of

the gastrointestinal tract. '

Because of the recycling of a radioelement between systemic compartments, the gross systemic retention of the whole body following a single acute uptake as well as the retention within individual systemic organs and tissues are complicated functions of the time after an j

uptake. As a consequence, stable element uptake retention functions R(t) that give the fraction of an acute uptake expected to be present in an organ, tissue, or the systemic body at some time t after that acute uptake are often described by a sum of exponential terms with constant coefficients. Stable element uptake retention functions R,(t) for the systemic whole body can be obtained from information in ICRP Publication 30. Uptake retention functions and

systemic excretion func6ons also are summarized in ICRP Publication 54 (ICRP,1988).

! 38 y _,,--,c._ v ,_ # -- . _ -- _- -

1 Although' exhalation, perspiration, and hair can be used for excretion or in vitro bioassa , urine and fecal excretion are the princip,le excretion compartments that are riormally used. Urinalysis provides an indication of recent uptake of radionuclides or the biological clearance of systemic organs or tissues. After a short time following r. single acute inhalation intake, most urinary excretion may reflect primarily recent uptake from the resjpratory and gastrointestinal tracts. Following a long chronic exposure to relatively transportable radionuclides, the urinary excretion may reflect primarily the clearance of systemic organs and tissues. Provided that a radionuclide has a sufficiently large absorption and is not retained too long in systemic compartments and provided that a sufficiently large fraction F,

of systemic excretion of the radionuclide passes with the urine into the bladder, urinalysis can

, be a useful routine bioassay procedure. Unfortunately, this is not the situation for Plutonium and other transuranic elements which are strongly retained by liver and bone. For suspected, possibly large exposures to such elements, urine bioassay should be used to estimate the 1

respective uptakes and systemic burdens.

Following an inhalation intake, fecal excretion containing a radionuclide is comprised of 1 both systemic fecal excretion and direct clearance of the radionuclide from companments I within the respiratory tract. The early fecal excretion of a radionuclide will consist primarily of respiratory tract clearance while later excretion will consist of greater amounts of systemic excretion depending upon the transportability of the radionuclide and the fraction F, of systemic excretion by the fecal pathway. Regardless of the transportability and chemical compound form, a large fraction of an inhalation intake of a radionuclide will pass directly to fecal excretion if the fraction fa of absorption into the blood from the gastrointestinal tract is ,

not too large. Measurements of a gamma emitter in the lungs and radionuclides in fecal

k. samples, e.g., alpha emitting transuranics and the gamma emitter whose lung burden is measured, can be used to estimate the deposit i on of all radionuclides in the lungs. This application of fecal bioassay is a good reason for obtaining fecal samples for later analysis anytime significant internal radiation exposures are suspected, especially when adequate air sampling data are not available.

As indicated in Figure Al, a certain fraction of systemic fecal excretion occurs by the biliary excretion pathway, the fraction and amount depending on the content of the liver.

Thus, the fraction F, of systemic excretion by the fecal pathway and consequently the fractions by all other pathways may be complicated functions of the time after an uptake.

The urinary fraction F, and the fecal fraction F, of systemic excretion are parameter values that must be known to properly interpret in vitro bioassay data. Unfonunately, such information often is lacking. Alternatively. a urinary excretion function that incorporates the fraction F, of systemic excretion by the urine pathway or a fecal excretion function that incorporates the fraction F, of systemic excretion by the fecal pathway can be used for the interpretation of urinalysis data or fecal data respectively even when the fractions F, and F, are not constant with time (Skrable et al.,1987).

Intake retention functions 1(t) for systemic companments or systemic excretion compartments are derived below from a multi-companmental model that incorporates the uptake retention function R,(t) for the systemic whole body. Because the uptake retention function R,(t) incorporates the dynamic process of recycling between systemic compartments, the deriveil intake retention function 1(t) for a radionuclide also incorporates this recycling.

39 d

e l For an in ritri excretion coirMoest, the content <q(t)> refers to the amount of the radionuclide expected to present at time t in the accumulated excretion of that in ritro compartment. Except for the fact that the only removal of a radionuclide from an in ritro excretion compartment is radioactive decay, each excretion ccmpartment is treated just like any in rico compartment, where biological removal of a radionuclide also is assumed to take place. As shown later, the same catenary kinetics equation can be used to obtafn the expected contents <q(t)> and intake retention functions i(t) of all in vivo and in ritro bioassay compartments of interest.

Multi-compartmental Catenary Model For the purpose of developing specific bioassay models and intake retention functions, the general metabolic model depicted in Figure Al must be expressed in a more specific structured form that includes values of all metabolic parameter values. Ideally, this form should be consistent with the models used for the derivation of the ALIs and DACs in ICRP Publication 30, which uses models applicable to a reference individual normally referred to as Reference Man (ICRP,1975). The multi-compartmental model shown in Figure A2 is consistent with the general metabolic model depicted in Figure Al and, in most l regards, the models in ICRP Publication 30. It can be used along with a simple recursive L catenary kinetics equation to completely describe the metabolism ~of radionuclides from intake i

l to excretion, accounting for the delay in uptake from compastments in the respiratory and i j gastmintestinal tracts and the recycling of radioelements between systemic compartments i p (Skrable et al.,1988).

i (J The multi-compmenental model depicted in Figure A2 by various one-way catenary

pathways from intake to excretion is used in the INDOS computer code to generste numerical

! l values or IRFs from the intake retention functions. Intake pathways can include, for example, inhalation, ingestion, and absorption from a wound. A one-way catenary system means a chain of compartments in which the radioelement is depicted to move in only one direction. 'Ihe last compartment of all catenary systems is designated in Figure A2 as the total excretion compartment, which may be thought of as a bucket where all excretion is collected. Although only one-way transfers between compartments are depicted, the model does in fact account for the recycling of elements between systemic compartments by use of a systemic uptake retention function R,(t) for the whole body whose parameter values incorporate this recycling. This function R,(t) is shown at the bottom of Figure A2 as a sum of m exponential terms. The word compartment is used in its mathematical sense, and it may or may not represent a real, structured, physiological entity in the body. A compartment for example may describe a particular chemical form, a particular pathway, or a mathematical and non'-descriptive, systemic compartment represented by an exponential exp(%t) in the ,

systemic uptake retention function R,(t) for the whole body.

Linear first order kinetics is used to describe the metabolism of elements within compartments of the respiratory and GI tracts and the systemic whole body. The redundancy implied in the term systemic whole body is used to distinguish systemic c,ontamination from that present on epithelial tissues in the respiratory and GI tracts or within the contents of segments of the GI tract. Arrows in Figure A2 leaving a compartment show the specific

~

wen = I. '

wwi= I bI I '

If

  • - e b g
S(1) - -
  • o,I o o e-- e d

[ SI(2) -*

9

  • -
  • f --* ULI(3) h e --* g n LLI(4)
  • - 3 Lyiph Nodes p

Uptake g a a g u )

u u u o 'Fq z is 2s - - - - -

is ---- ms Wound or Skin l

(. E Systemic Excretion 1-F E

a 7 u u Total Exoretion Comp. Feces (5) m l Rg (t) - {Cgg e'it  : for Systemic WB  !

i-1 l

4 Figure A2. Multi-compartmental catenary modelfor the metabolism of radionuclides from intake to excretion.

Symbols a-+j u respiratory tract compartments; 1-+4 m GI tract compartments; and IS-+mS e systemic compartments. The systemic uptake retention function Rs(t) for the WB is comprised of exponentials exp(- a,t) with coefficients Ca, which give the effective fractions of an uptake U that deposit in each i*

systemic companment (i = 1 to m). Each exponential exp(- a,t) in Rs(t) is treated as an effective deposition retention function of a non-specific systemic compartment iS that can be modeled to be cleared directly to systemic l

, excretion E at an instantaneous fractional rate given by the rate constant a, in each exponential term of Rs(t). The symbols F, and (1-F,) are the effective fractions of systemic excretion by the fecal and all other pathways respectively.

41

4 compartmentE biological removal pathways, each of which is characterized by a specific .

! biological translocation rate constant k,,ri. A panicular translocation rate constant k,,ri is  !

calculated from the product of the total biological clearance rate constant K, of the stable element for the phrticular compartment 'p' and the fractional clearance, F,,yi, by the pathway

~

p -+ p+1 of interest. The total biological clearance rate constant K, is calculatqsl from the reported total biological clearance half-time. In addition to biological removal, radioelements

, are removed from each catenary compartment by radioactive decay as characterized by the ,

i physical decay constant A for the radioelement. .

The metabolic pathways involving inhalation intakes and depositions into vanous regions of the respiratory tract are shown on the upper left, and the pathways involving

! ingestion intakes are shown on the right in Figure A2. Inhalation involves, in general, eight i.; compartments of deposition in the respiratory tract, each of which initiates a separate catenary (C) system. Parameter values for the respiratory tract compartments are given in ICRP Publication 30. They depend on the chemical compound form of the radionuclide as >

! well as the particle size distribution of the inhaled radioactive aerosol. A significant portion of respirable aerosols deposit in compartments in the pulmonary region or deep lungs, and

this deposition is the major contributor of the dose from relatively non-transportable i t

radionuclides that have a small absorption fraction if from the small intestine to the blood. i i For insoluble forms of radionuclides like the oxides of2"Pu (f, = 0.00001), essentially all of i

[ the effective dose to the whole body results from this pulmonary deposition. This explains 3 why the ALI for ingestion (f, = 0.00001) for insoluble forms of 2"Pu is about 5000 times the 2

l ALI for inhalation of class Y, I pm AMAD aerosols of "Pu. Thus, non-respirable forms of 2

j

~

irisoluble "Pu that deposit in the upper respiratory tract and are rapidly cleared to the GI tract to fecal excretion result in a very small dose in comparison to the dose from respirable aerosols of 2"Pu. (Note that while we are using Class Y 2"Pu as an example here and in some of the following discussion, most of the points we are making also refer to Class W 2 2 trans' uranic materials such as "Am and "Cm.)

The fraction Fc of an inhalation intake that is deposited in a given respiratory tract compartment is calculated from the product of the fraction 'D' that deposits in the indicated region and the fraction 'F' cleared from that region by the indicated pathway, e.g., Fe is calculated from the product D, F, for compartment g in the pulmonary region P. For 1 pm AMAD, class Y aerosols, the fraction Fc of the intake deposited in compartment g is calculated from the product (0.25)(0.4) or as Ocl. Therefore,10% of an inhalation intake of soch aerosols are expected to be deposited in compartment g. Compartment g is cleared with a half clearance time of 500 days indirectly through compartment d to the GI tract. The half-clearance time of compartment d is only 0.2 days. Depending on the value of the fractional l

absorption f from the small intestine into the blood and the amount of systemic fecal i l excretion, the clearance of compartment g may represent the only significant contribution to fecal excretion after about 3 weeks to several years following an inhalation intake of respirable aerosols. All other compartments in the respiratory tract that clear to the GI tract  ;

will have already been cleared by these times. Certainly, it is not reasonable to expect that a 2

worker will clear "Pu with the same behavior described for compartment g in the ICRP  !

Publication 30 respiratory tract model for Reference Man. Given no further information and the limitation of fecal bioassay data in real exposure cases, the ICRP models have been used 42

f> .

! in this report o estimate intakes from the measurements of the transuranic radionuclides in incremental fecal samples obtained from the two. workers exposed at the Connecticut Yankee  ;

i plant. Uncertainties in these estimated intakes depend on the accuracy of the model structure )

as well as in systematic errors associated with chosen parameter values, i.e., prputrily the i 0.25 fractional deposition D, in the pulmonary region, the fractional clearance f raction F, of l 0.4, and the half-clearance time of 500 days (50 days for Class W) specified for this j compartment g in the respiratory tract model.

l ' Parameter values for the metabolism of radionuclides in the gastrointestinal (GI) tract

' are given in ICRP Publicadon 30 in its general GI tract model and in the description of the metabolism of different compounds of elements ofinterest. An oral intake begins with one

[ compartment of deposition, the stomach, from where a radioelement is translocated from one i

segment of the gastrointestinal tract to another and, m f' ally, to the feces, which is designated here as compartment 5 and considered as part of the total excretion compartment E. In ICRP i Publication 30, instantaneous uniform mixing and linear first order kinetics are assumed to

[ apply to the metabolism of radionuclides in each segment of the tract. He mean residence l times for the contents of the GI tract segments are specified as I h,4 h,13 h, and 24 h j respectively for the stomach, small intestine, upper large intestine, anii lower large intestine.

The sum of the mean residence times for the four GI tract segments is 42 hours4.861111e-4 days <br />0.0117 hours <br />6.944444e-5 weeks <br />1.5981e-5 months <br />. Herefore, a

deposition of an insoluble radionuclide compound in the stomach is rapidly cleared to fecal i

i excretion following either an oral intake or following translocation of the radionuclide from  !

}

compartments in the respiratory tract. The ICRP assumption of instantaneous uniform mixing of a radionuclide with the contents in each segment of the GI tract causes an overestimate in the early fecal excretion. Despite this limitation of the ICRP GI tract model, it has been used

]{

% in this report for the interpretation of fecal bioassay data in terms of estimated intakes.

Absorption of a radioelement into the blood is normally considered to occur only in the small j j intestine. If the fraction f of 3 an ingested compound of an element that is absorbed into the blood is given as unity, then absorption is considered to occur directly from the stomach,  !

which pathway is shown by a broken arrow to the upper right in Figure A2.  :

l Absorption of radioelements into the systemic circulation via all pathways is shown in Figure A2 to lead to a horizontal line designated by the word Uptake, i.e., absorption into the l systemic circulation, which itself is identified by the lower case letter 's' on either side of this i

line. This line is not to be mistaken as a compartment, e.g., as the systemic circulation, i blood, or the so called transfer compartment in the ICRP Publication 30 systemic models. In l reality, the systemic circulation or blood cannot be identified specifically in the model shown i in Figure 2 because its retention is included as part of the systemic uptake retention function l R,(t) for the whole body. The uptake line is used only to show the partitioning of an uptake acconting to the coefficients C in each of the IS systemic compartments. All catenary

pathways that lead to absorption into the systemic circulation combine on this uptake line and  ;

y then divide into the systemic compartments represented by the m exponential terms in the systemic uptake retention function R,(t) for the whole body shown at the bottom of Figure 2 4

for the stable element. De word compartment is used, as already mentioned, in its j mathematical sense, and it may or may not represent a real, structured, physiological entity in 1

the body. For example, individual exponential terms in tt , systemic uptake retention function

] R,(t) for the whole body are correctly treated collectively as mathematical catenary i

q 43 4

, - - - , , - - -- + . , .. ., -.~, , , - , - . . - , , . . - . , ~ . -

~

companments even though they cannot be individually associated with any one structured organ or tissue in the body. The translocation rate constant that describes transfer into one of the systemic catenary compartments IS of the whole body is obtained by multiplying the total translocation rare constant that describes transfer from a particular feed compargnent to the i

systemic circulation by the coefficient C, of the exponential term in R,(t) that pertains to that panicular systemic compartment iS. De stable element deposition retention function fcr each iS systemic compartment of the whole body, thus, is treated simply as the exponential term exp(- a,t) in R,(t).

i Atoms of a radioelement leaving each of the systemic compartments of the whole body are shown to go directly to systemic excretion designated in Figure 2 by a horizontal line

! identified by the upper case letter E. The translocation rate constant km,a that describes the

fractional rate of excretion from each iS companment is simply the effective rate constant a s i of the i* exponential term of R,(t). The horizontal excretion bar, i.e., the line identified by
E, is necessary for designating what fraction of systemic excretion leaves the body via the j fecal excretion pathway and what fraction leaves by all other pathways, e.g., taine,  ;

perspiration, and exhalation. The fraction F, of systemic excretion via the fecal pathway is '

i shown to enter the top of the upper large intestine. The primary systemic fecal excretion I

pathway may be biliary excretion, which actually passes into the duodenum or first pan of the i

small intestine. Because the small intestine is the GI tract segment where absorption into the blood is generally assumed to take place, the systemic fecal excretion pathway is shown here to effectively bypass the small intestine. Thus, the fecal fraction F, of total systemic excretion

! should be considered as an effective value.

I All systemic excretion as well as direct fecal excretion is shown to eventually end up in i the compartment that is designated as the total excretion compartment. This compartment is treated as any other catenary companment. De total removal rate constant kg that describes l removal from this companment is set equal to the physical decay constant A for a radio-i element or zero for a stable element.

Radioelement Intake Retention Function i,(t)for n* Catenary Compartment A number of mathematical techniques and computer programs can be used to calculate the contents and number of nuclear transformations in the in vivo and in vitro compartments shown in the multi-companmental model depicted in Figure A2. The mathematical technique
employed here uses a concise catenary kinetics equation whose recursive nature and algebraic i form lends itself to programming on scientific calculators and microcomputers. With mmor j modifications in the exponential functions embodied in the equation, it can be used to l j calculate the contents or number of nuclear transformations in compartments of the model I depicted in Figure A2 or in any other models that employ linear first order kinetics. The catenary kinetics equation shown below has the advantage of being easily extended to other types of intake retention functions of intestst, e.g., an incremental fecal excretion function can j be obtained from the accumulated fecal excretion function simply by replacing each  ;

exponential by another time function, which is called a replacementfunction. The concise '

, catenary kinetics equation shown below can be applied to all of those catenary pathways in 1 Figure A2 that lead to an n* companment to obtain the radioelement intake retention function l 1 1

i

)

i,(t) for that compartment and for all in rire and in vidro compartments:

t n-t n

. I (C) n ,

  • < "()>=

y F, k,, ,r2

~

  • ie #

gg)

! ( k, - kj) .

i l

5]3 l where:

a 1,(t) a <q,(t)/I> = fraction of a single acute intake I expected to be present at time t in n*

compartment due to contributions from all chains C,

<q,(t)> m expectation content of n* compartment at time t, l C e one of the chains that leads to the n* catenary companment of interest,

, Fc " fraction of intake deposited into the first companment of chain C,

k,,,.i a rate constant that describes translocation of element from the p* to the (p+1)*

l- companment,

[ kj u rate constant that describes total removal of radioelement from the j* compartment,

. which equals Kj +1, where Kj is the total biological removal rate constant and A is the

]

decay constant of the radionuclide, and where the H products are defined:

n-1 H k,,.i n (ku)(ku) .(k,_u) for n > 1; otherwise H m 1;

. f, P=1

)

i *

H (k,- k )j m (k 3- k )(k j -2 k;) .(k. - k) forj p # j and n > 1; otherwise H = 1.

j p=1-i Pdj The intake function I,(t) is used in the INDOS code to generate values of various types

of intake retention fractions or IRF values needed for the design and conduct of bioassay programs. When the index n represents an accumulated excretion compartment such as urine or feces, the replacement function for the exponential in equation I that transforms i,(t) to an I incremental excretion function i,*(t) for the panicular excredon sample is given by

~

  • j e *> * - e *> ( * - '
  • 3 e-A'* , (2) I where: i At a the time interval from (t-At) to t over which the incremental sample of excretion by a particular pathway is collected and found to have some observed activity q*(t). I i

Bus, the incremental excretion function I,*(t) for the particular incremental excretion sample  !

is obtained by substituting for the exponential in equation 1 the replacement function shown i by equation 2:

45

I.

t .- a-2 m s

II(C) * < q;(c) .y > " [ F y *,, r { g ,-a,e _ ,a te-ae),aae )(3) e , ,

[

M(*r-*3) v3

, a

. where:

j 1,*(t) a the ratio of the expected content <q*(t)> of a particular incremental excretion sample

! relative to an acute intake I, i.e., the fraction of the acute intake expected to be l present in the incremental sample at time t after the intake.

L The INDOS program is able to calculate IRF values for use in association with various bioassay measurements , including in-vivo measurements and excreta measurements.of the l worker. Part of the INDOS output for the cases we have run in association with the CY exposures includes the IRF values.-

i As an example, Table Al gives fecal bioassay IRF values for irihalation and ingestion intakes ofinsoluble forms of 2"Pu at various times after an acute intake. They were l calculated by the INDOS program "IRF" using a pseudo systemic retention function derived from Durbin's excretion function (ICRP,1988) . Values are shown for (1) incremental j samples of feces collected over a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> sampling period and (2) accumulated fecal-l excretion. Values shown for fecal excretion are several orders of magnitude higher than the l .- values that would apply to urinary excretion, which makes fecal bioassay a much more 4

J. > sensitive procedure than urinalysis. As an example application of these fecal IRF values, let us assume a worker's 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> fecal sample, collected 10 days after a suspected exposure 2

yields an activity q'(t) of I pCi of "Pu. The intake retention fraction or IRF value j applicable to the hypothetical fecal sample is 9.89x10 d from values shown in Table Al for a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> incremental sample of feces collected 10 days after an acute inhalation intake. Thus, j the worker's intake I is estimated by simply multiplying the measurement of 1 pCi by about j 1000 or by more accurately calculating the intake

i

, y , q' ( c) ,

q* ( t) , q' ( c) ,

1 pCi

= 1010 pCi = 37 Bq. l i i*(t) < q* ( t) y IRF 9.89x10~4 l

I '

The expected committed effective dose equivalent can be estimated by comparison of the intake with the ALI for Class Y 8"Pu; therefore, the worker's committed effective dose equivalent is estimated from this single intake estimate I:

Hs(50) = I (5 rem /ALI) = (1010 pCi)(5 rem /20,000 pCi) = 0.25 rem.

The committed dose equivalent to bone surfaces wo,uld have been 2.5 rem for the above case since the nonstochastic ALI for Class Y 2"Pu is the same as the stochastic value, and the nonstochastic dose limit is 50 rem. i

i iz

Table A1. Fecal bioassay IRF valuesfor acute Pu-239 inhalation and ingestion intakes.

i -

j . Inhalation Intake Ingestion Intake FRACTION OF INTAKE PRESENT IN

, TIME AFTER INCREMENTAL ACCUMULATED INCREMENTAL ACCUMULATED 1 INTAKE FECES FECES FECES FECES (days)

1 5.096E-02 5.096E-02 2.866E-01 2.8665-01

} 2 1.573E-01 2.083E-01 3.898E-01 6.763E-01 3 1.283E-01 3.365E-01 1.949E-01 8.712E-01 4 7.231E-02 4.088E-01 7.985E-02 9.511E-01 i 5 3.587E-02 4.447E-01 3.066E-02 9.818E-01 i 6 1.705E-02 4.618E-01 1.148E-02 9.932E-01 l 7 8.059E-03 4.698E-01 4.257E-03 9.975E-01

8 3.865E-03 4.737E-01 1.571E-03 9.991E-01 9 1.909E-03 4.756E-01 5.787E-04 9.997E-01 i 10 9.887E-04 4.766E-01 2.130E-04 9.999E-01 i 11 5.510E-04 4.771E-01 7.840E-05 9.999E-01 i 12 3.404E-04 4.775E-01 2.885E-05 1.000E+01 13 2.381E-04 4

4.777E-01 1.062E-05 1.000E+01 14 1.879E-04 4.779E-01 3.911E-06 1.000E+01 16 1.506E-04 4.782E-01 5.339E-07 1.000E+01 18 1.409E-04 4.785E-01 7.614E-08 1.000E+01 20 1.381E-04 4.788E-01 1.357E-08 1.000E+01 25 1.360E-04 4.795E-01 2.771E-09 1.000E+01 C ,- 30 1.348E-04 4.801E-01 2.0295-09 1.000E+01 35 1.338E-04 4.808E-01 1.618E-09 1.000E+01-40 1.328E-04 4.815E-01 1.358E-09 1.000E+01 45, 1.318E-04 4.821E-01 1.187E-09 1.000E+01 50 1.309E-04 4.828E-01 1.069E-09 1.000E+01 60 1.291E-04 4.841E-01 9.197E-10 1.000E+01 70 - 1.273E-04 4.854E-01 8.241E-10 1.000E+01 80 1.255E-04 4.866E-01 7.522E-10 1.000E+01 90 1.238E-04 4.879E-01 6.928E-10 1.000E+01 100 1.221E-04 4.891E-01 6.416E-10 1.000E+01 120 1.188E-04 4.915E-01 5.567E-10 1.000E+01 140 1.156E-04 4.939E-01 4.895E-10 1.000E+01 160 1.124E-04 4.961E-01 4.359E-10 1.000E+01 180 1.094E-04 4.984B-01 3.930E-10 1.000E+01 200 1.064E-04 5.005E-01 3.585E-10 1.000E+01 220 1.035E-04 5.026E-01 3.304E-10 1.000E+01 240 1.007E-04 5.046E-01 3.075E-10 1.000E+01 260 9.802E-05 5.066E-01 2.887E-10 1.000E+01 280 9.537E-05 5.086E-01 2.730E-1^ 1.000E+01 300 9.280E-05 5.104E-01 2.5993-it 1.000E+01 320 9.030E-05 5.123E-01 2.488E-10 1.000E+01 340 8.786E-05 5.141E-01 2.393E-10 1.000E+01 365 8.491E-05 5.162E-01 2.291E-10 1.000E+01 NOTE: Calculations are based upon an fi 'value of 0.00001, Durbin's fecal excretion function, and 1 pm AMAD, class Y aerosols.

47

. _ _ _ . . __ _ _ _ . _ . . _ _ _ _ _ _ . . . _ _ .. _ __._ . ._ - 1. _ _

I a

Of, ten w5en a worker has an inhalation intake, all or at least a good ponion of the inta i is in the form of non-respirable aerosols that deposit in the upper respiratory tract, which then clear rapidly to the GI tract and fecal excretion. Fmm a radiological dose consideration, the non-respirable poition of the intake can be treated as ingestion intake. As can ly observed from the IRF values plotted below in Figure A3 over the first week following an acute ingestion or inhalation intake, most if not all of either intake will have already been excreted  !

by the end of the first week. As already indicated in the discussion above, the effective '

{

ingestion portion of an inhalation intake of mostly non-respirable aemsols has little if any dose consequence in comparison to the dose that results from the respirable portion of that

inhalation intake. Estimates of the respirable ponion of an intake from early fecal samples  !

! comprised of mostly non-respirable aerosols can grossly overestimate the respirable intake and i its associated dose. Rus, one might be tempted to delay fecal sampling for two weeks prior j to taking any fecal samples; however, all data are useful in the evaluation of significant intakes of plutonium and other transuranic elements, especially if adequate and representative air sampling data are not available to characterize all of the radionuclides that a worker might

have inhaled. We recommend that 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> fecal sampling be initiated immediately when an  !

exposure greater than 40 DAC-h of transuranic radionuclides occurs and the magnitude of the

! intake is not known.

He INDOS computer code has been used to generate other incremental IRF values for i 1

fecal excretion of 2"Pu over a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> period following either an acute ingestion or acute  ;

i inhalation intake. For both intake pathways, a value of 0.00001 was used for the fraction fi l l of absorption from the GI tract to the blood. This is the value specified for insoluble,

(

u relatively non-transportable forms of plutonium (ICRP,1986). For inhalation, an intake of '

class Y, I pm AMAD aerosols was r.ssumed in all of the calculations. Figure A3 gives a linear plot of the ingestion and inhalation IRF values over a 14 day period, and Figure A4 i

shows a semi-log plot of values over a 100 day period. The much larger ingestion values in

! comjarison to the inhalation values over the first four days result panially from the fact that i only 63% of an inhalation intake deposits in the respiratory tract, and only pan of this i l deposition is rapidly cleared to the GI tract and fecal excretion. De plot of the ingestion l i IRFs over the first week demonstrates the importance of obtaining fecal samples bmediately

, after a suspected ingestion intake. Between 4 and 5 days, the IRF values for ingestion and

[ inhalation become equal. Hereafter, the inhalation IRFs exceed the ingestion values because

of the rapid clearance of the GI tract. After 6 days,24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> incremental fecal excretion 8

samples are expected to contain less than 1% of either an inhalation or ingestion intake.

Figures A5 and A6 give over a 90 day period semi-log plots of the components of the

! 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> fecal samples: direct fecal excretion, the systemic fecal excretion, and the total fecal excretion for respectively an ingestion intake and an inhalation intake. Direct fecal excretion l means that excretion not including the systemic excretion ponion. Up to about 20 days, the

totu fecal excretion in Figure A5 for ingestion intakes is shown to be dominated by direct .

! Iecal excretion. Thereafter, a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> fecal excretion sample is dominated by the systemic

] .

k i

i 48 1

y _ - _... . . _ _ _

l 0.5 a

_c

" 0.4 - InsestionIntake i

a i

  • E O

.m: 0.3 -

M

=

.5

. e  :

g 0.2 - I

m I

.0 5 0.1 -  :

.5 4

o

~

c f

- .2 InhalationIntake

( M 0.0 I I I I I I I l l l l l l l 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time AfterIntake, days l

Figure A3. Fecal bioassay IRF valuesfor acute Pu-239 inhalation and ingestion intakes.

Calculations shown in a linear plot over 14 days are based upon an if value of 0.00001, Durbin's fecal excretion function, and 1 m AMAD, class Y aerosols.

49

. 1 lE+0

., IE e  !

o l

a l

b IE m l

~

es O

f IE l InhalationIntake Q IE .E e

S lE O W IE o IE s

[O e I 3 IE N Ingestion Intake 1E '

l l l l l l l l l 0 10 20 30 40 50 60 70 80 90 100 i Time After Intake, days Figure A4. Fecal bioassay IRF valuesfor acute Pu-239 inhalation and ingestion intakes.

Calculations shown in a semi-log plot over 90 days are based upon an fi value of 0.00001, Durbin's fecal excretion function, and I pm AMAD, class Y aerosols.

~

50

fecal excretiod at a value slightly larger than the very small value of lx104 For inhalation intakes, the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> fecal samples out to 90 days.are dominated by direct fecal excretion, the  ;

systemic contribution never exceeding 1% of the total excretion. '

The time' dependence of the IRF values can be very useful in assisting personnel in ,

making decisions about the types and frequencies of bioassay measurements appropriate in particular exposure situations. We have shown representative results for only fecal excretion of plutonium, following inhalation and ingestion. As noted earlier, the INDOS program can be used for generating IRF tables for other radionuclides and other bioassay measurements.

Thus, complete IRF tables could be ge.7erated to show the time-dependent behavior of"Co in

~

reference man over extended times rculowing exposure by inhalation or ingestion for comparisons with r.n 'asured in-vivo data. Obviously, such presentations can also be helpful in assessing the behavior of different inhalation classes of respirable aerosols, and these can be useful in evaluating exposures that have occurred in which transportability classes of inhaled materials are not known. l I

i j

C O

e 51 l

l

- ~ ..... .. .. . . -

l 1

I

! IE+0 IE . i i

lE '

i lE l IE - IE 8 IE A

.c IE ,

N 1E Total Fecal Excretion -Ingestion Intake I 1E systemic recal E

- Excretion

'g IE 3 lE-Il -  !

@* IE m o IE $c IE Direct Fecal Excretion l I

Co IE l e IE #c.

o

'~'

$ IE l

[ IE IE '

1E '

l I l l l l l l l 0 10 20 30 40 50 60 70 80 90 100 Time AfterIntake, days Figure A5. Components offecal excretion qfter an acute Pu-239 ingestion intake.

Calculations shown in a semi-log plot over 90 days are based upon an if value of 0.00001 and Durbin's fecal excretion function. 1 e

S 52

~

lE+0 IE l - .

.2 1

ii 1E g Total Fecal Excretion -Inhalation Intake 1

% 1

.c IE , Direct Fecal Excretion (Indistinguishable from Total)

N i " lE I

.6 e {

S o

lE Systnnic Fecal Excretion

$ IE  !

v Y lE.8 -

.5

, IE m a y IE '

A lE II l l l l l l l l l 0 10 20 30 40 50 60 70 80 90 100 Time AflerIntake, days Figure A6. Components offecal excretion qfter an acute Pu-239 inhalation intake.

Calculations shown in a semi-log plot over 90 days are based upon an f value of 0.00001, Durbin's fecal excretion function, and 1 m AMAD, class Y aerosols.

53

~

. References Health Physics Society. Bioassay Programs for Uranium. McLean, Va. ; American National Standard HPS N13.22-1995; 1996.

  • K.A.L., Inc. LSModel. Dracut, MA; 1995 (available from authors).

International Commission on Radiological Protection. Report of the Task Group on Reference Man. New York: Pergamon Press; ICRP Publication 23; 1975. '

l International Commission on Radiological Protection. Limits for I Intakes of Radionuclides by W rkers.

o New York: Pergamon Press; ICRP Publication 30, Part 1; 1978.

International Commission on Radiological Protection. The  !

Metabolism of Plutonium and Related Elements. New York: Pergamon Press; ICRP Publication 48; 1986.

International Commission on Radiological Protection. Individual Monitoring for Intakes of Radionuclides by Workers: Design und Interpretation. New York: Pergamon Press; ICRP Publication 54; l 1988. '

r-(' Skrable, K.W., Sun, L.C., Chabot, G.E., French, C.S.,and LaBone, T.R. Pseudo uptake retention functions for the whole body for estimating intakes from excretion bioassay data. Rad. Protection Dosimetry 18 (3 ) : 133-139; 1987.

Skrable Enterprises. INDOS Internal Dosimetry Computer Programs.

Chelmsford, MA; 1986.

U.S. Environmental Protection Agency. Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion. Federal Guidance Report 11. Office of Radiation Programs, EPA, Washington, DC 20460, 1988.

~

54 we-- .

9

! l Appendix B1 INDOS Output Results i i

for g.

Cases Discussed in Main Report h

5 55

t. . . . .

l \

K.A.L., Inc.

Worker 1, Lung, Class Y INTAKE EVALUATION 1 1

                                                            • RADIONUCLIDE **************I***************

Co-60 PHYSICAL HALF-LIFE = 1.925E+003 DAYS  !

1

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************ I ACUTE INHALATION INTAKE OF 1.0L .iICRON AMAD AEROSOL I i

FRACTION OF INTAKE DEPOSI') FD IN LUNGS = 0.630

DNP = 0.300 DTB = 0.080 DP = 0.250  !

i STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED I 100.0% CLASS Y WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002  :

STOCHASTIC (INHALATION) ALI = 3.000E+004 nCi l

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

NONE NEEDED C

                                                          • INTAKE ESTIMATE ****************************

L l

INTAKE ESTIMATED FROM LUNG BIOASSAY '

ESTIMATE OF INTAKE FROM ITERATIVE i

WEIGHTED FIT OF DATA = 5.692E+002 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 1.921E+002 nCi 2

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 1.9E-002 COMMITTED EFFECTIVE DOSE EQUIVALENT = 9.486E-002 rem 56

  • ~~~~

_ _ .. - - - . . - - - - - - - - - - - - - - ' ^ - ~

PAGE'2 i

K.A.L., Inc.

Worker 1, Lung, Class Y a

INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF Co-60 LUNG BIOASSAY s

j TIME ITERATIVE POST WEIGHTED-FIT  !

BIOASSAY ERROR RETENTION EXPECTATION '

INTAKE MEASUREMENT MEASUREMENT FRACTION MEASUREMENT l (DAYS) (nCi) (nCi) (nCi) 4 0.06 4.111E+002 7.000E+000 3.137E-001 1.785E+002-

0.91 3 433E+002 8.200E+000 2.188E-001 1.245E+002 2.02 1.063E+002 4.800E+000 1.805E-001 1.027E+002 2.98 5.128E+001 2.700E+000 1.652E-001 9.405E+001 3 4.25 2.459E+001 2.600E+000 1.557E-001 8.863E+001 5.25 1.842E+001 2.400E+000 1.522E-001 8.664E+001 6.25 1.694E+001 2.400E+000 1.504E-001 8.559E+001 i 9.14- 1.673E+001 1.200E+000 1.484E-001 8.444E+001 10.40 1.274E+001 1.800E+000 1.480E-001 8.422E+001 13.30 1.178E+001 1.800E+000 1.473E-001 8.383E+001 l

l, 4

4 4

e b

57 4._. . . . . . _ . . _ _ . . . . . . .

a-,.... ~ , - + .-- - ,

l l

l i

WDGP D=* OgPt e ac> m .m::p  ;

s -

o o

O a a a -

O a e 1 i

1 l

O O

O h

1

."".. -as 1 2 O I

& O 1 g i 3 O T .

+ i m l-

  • 1 m

2 V M O

% O O

C

  • % O g O

a as 1

\

M C ,

O i

O O

e O One

==e O ST3 O g lup 23>

w D=4 C

FT5 2::

e.a. ETE N> >=e C"a O 2:

O ==e m

O

  • TI s=e "4

4 8

58

-- - - -- - - ~~- - - ~ ~ ~ *

  • I K.A.L., Inc.

Worker 1, Lung, Class W I INTAKE EVALUATION

      • *************************** RADIONUCLIDE ****************************** I Co-60 PHYSICAL HALF-LIFE = 1.925E+003 DAYS ,

l

                  • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL 5

FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 l DNP = 0.300 DTB = 0.080 DP = 0.250 j STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS W WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002 STOCHASTIC (INHALATION) ALI = 2.000E+005 nCi l 1

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

NONE NEEDED l C * * * * * * * * * * * * * * * * * * * * * * * * * * * *

  • I NTAKE E ST I MATE * * * * * * * * * * * * * * * * * * * * * * * * * * *
  • i INTAKE ESTIMATED FROM LUNG BIOASSAY ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 6.102E+002 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 2.035E+002 nCi
                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 3.1E-003 COMMITTED EFFECTIVE DOSE EQUIVALENT = 1.526E-002 rem O

4 59 O

PAGE 2

, ._- K.A.L., Inc.

W6rker 1, Lung, Class W

. INTAK3 ESTIIMTED FROM STATISTICAL EVALUATION OF Co-60 LUNG BIOASSAY ,

TIME ITERATIVE POST BIOASSAY WEIGHTED-FIT

' ERROR RETENTION EX'.;!.MATION INTAKE MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (nCi) (nCi)-

....______________. __________.___________ ._________.(nCi) ......._

0.06 4.111E+002 7.000E+000 2.825E-001 0.91 3.433E+002 1.724E+002 8.200E+000 2.158E-001 1.317E+002 2.02 1.063E+002 4.800E+000 2.98 1.773E-001 1.082E+002 5.128E+001 2.700E+000 1.605E-001 )

4.25 2.459E+001 9.793E+001 1 2.600E+000 1.488E-001 9.082E+001 5.25 1.842E+001 2.400E+000 1.437E-001 8.769E+001 (

6.25 1.694E+001 2.400E+000 1

9.14 1.402E-001 8.558E+001 1.673E+001 1.200E+000 1.337E-001 8.157E+001 10.40 1.274E+001 1.800E+000 13.30 1.314E-001 8.016E+001 1.178E+001 1.800E+000 1.264E-001 7.713E+001 0

O e

60

~ ~ ~ ~ ~ ~

.- - -- - ---- ~~~ ~~' ~~ ~ ~ ~ ~ '

. . _ - . . . -. . . - . . _ .. _- . . - . . . . , ~ . .. - . . - + - . . . . . . , . .._

if d

i MDCF D=* Omeon .ng O O O O O O O O

' " - - . . . . g w

O O

O d

h

~

2 y, O .

O llE> O g 49 tb

"'1 i m m A

  • Et:p 4

e O

C

"*5 O tb s

j l

O GA M

C,, ,

f C

O 4

! +

E e O D=4

  • oe O Frg C g 3ICI
=>

-e M

C FT3 2lll

      • #TE M s-e O

m E:

C w Frt O

$ i *'.rt 4

8 9

61

l l

l

,- K.A.L., Inc.

Worker 1, WB., Ingestion

INTAKE EVALUATION
                                                            • RADIONUCLIDE ****************************** a Co-60 PHYSICAL HALF-LIFE = 1.925E+003 DAYS l
                        • l RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************ l ACUTE INGESTION INTAKE STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 1 1

WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002 STOCHASTIC (INGESTION) ALI = 5.000E+005 nCi  !

l PARAMETERS FOR SYSTEMIC MODEL **********************

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 1 5.000E-001 2

5.000E-001

-2 3.000E-001 6.000E+000 i 3 1.000E-001 6.000E+001 4 1.000E-001 8.000E+002 i l

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM WHOLE-BODY BIOASSAY ESTIMATE OF INTAKE FROM ITERATIVE '

WEIGHTED FIT OF DATA = 4.264E+002 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 3.164E+001 nCi

                                                        • DOSIMETRY RESULTS ***************************

I FRACTION OF STOCHASTIC ALI = 8.5E-004 COMMITTED EFFECTIVE DOSE EQUIVALENT = 4.264E-003 rem e

4 62

~ - ~ ~ ~ " "

. _ . - -~w -

..u_ =...:_:.=: - -- -

l PAGE 2 j

, K.A.L., Inc.

Worker 1, WB, Ingestion INTAKE ESTIMATED FROM STATISTICAL EVALUATION,OF Co-60 WHOLE-BODY BIOASSAY TIME ITERATIVE POST BIOASSAY WEIGHTED-FIT ERROR RETENTION EXPECTATION INTAKE MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (nCi) (nCi)

______________..__.______________..._(nCi) ________

0.06 4.111E+002 7.000E+000 9.998E-001 4.263E+002 O.91 3.433E+002 8.200E+000 7.513E-001 2.02 1.063E+002 3.203E+002 4.800E+000 3.263E-001 1.391E+002 2.98 5.128E+001 2.700E+000 1.464E-001 6.240E+001 1

i 4.25 2.459E+001 2.600E+000 5.602E-002 2.389E+001 5.25 1.842E4.001 2.400E+000 3.197E-002 6.25 1.694E+001 1.363E+001 2.400E+000 2.240E-002 9.550E+000 i

{' 9.14 1.673E+001 1.200E+000 1.528E-002 6.515E+000 10.40 1.274E+001 1.800E+000 1.425E-002 6.077E+000 j

13.30 1.178E+001 1.800E+000 1.264E-002 5.390E+000 i

I

> y r

d t

E 9

1 1

i g,,,..w m- e "* "

1 l

l

- i 4

- ~ ~- ._o-- . _ . O ..m _.m: ,

8 E E 8

E E E E E E O w -

O w -

O a -

O a 1

4 O b O T C

.,I

-I

. M 2 O O

O

, "D O i

  • et J

fin M

m h DC i it:p M o O g

i O M

g O g i &

4 b

aLA s-*. T 1 O

. g.. .

O O

O O

h 1

f

  • O j M

^ e O M l O h .Et2

_ae D=4 1

1 m

E

' e.a. M

  1. .M #"r*t d

C E O -*

m C

M e-o h "*

.=SE 8

O

\

64

_ _ _ _ _ _ = _ - . . . - - - - - . _ . . . . . _ - - - - - -

1 K.A.L., Inc.

~

Worker 1, Co60 Feces, Class Y INTAKE EVALUATION e

                                                            • RADIONUCLIDE ******************************

Co-60 '

PHYSICAL HALF-LIFE = 1.925E+003 DAYS

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS Y WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002

. STOCHASTIC (INHALATION) ALI = 3.000E+004 nCi

                                                      • SYSTEMIC EXCRETION ************+**************

FRACTIOM OF SYSTEMIC EXCRETION THROUGH FECES = 0.20 1

C.

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

, COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 1 5.000E-001 5.000E-001 2 3.000E-001 6.000E+000 3 1.000E-001 6.000E+001 4 1.000E-001 8.000E+002

, ***************************** INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE - - -

WEIGHTED FIT OF DATA = i~.006E+002 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 4.371E+000 nCi

, **************************** DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 3.4E-003 COMMITTED EFFECTIVE DOSE EQUIVALENT = 1.676E-002 rem 4

65

+

PAGE 2

~

K.A.L., Inc.

Worker 1, Co60 Feces, Class Y INiAKE ESTIMATED FROM STATISTICAL EVALUATION OF Co-60 INCREMENTAL FECES DATA ,

ITERATIVE TIME FECES WEIGHTED-FIT POST COLLECTION BICASSAY ERROR RETENTION EXPECTATION INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT i

l (DAYS) (DAYS) (nCi) (nCi) (nCi)  !

_________________________________________________________________________ j 5.90 1.00 1.790E+000 3.300E+002 1.761E-002 1.771E+000 9.90 1.00 1.050E-001 1.800E-002 1.091E-003 1.097E-001 12.90 {

1.00 1.580E-002 5.200E-003 2.995E-004 3.012E-002 i

d4 l

66 3

__,. ... - - - *I 7.._.._

N-D2WM -W i") m "T9 F.4E t@, D-. O gg e o r=y .mp P f @ ** M ** e*

  • e4 y y R R R R 5 o

5 o

5L*

5 6

6 e

6 6

. e 3

O N

8Me

~

O 2 O O

lI>

+

O alm)

  • 1 .

o WTB C DC o V

O W

C

'M

." eld >

& O

% O w  ?

o k

O O

e=0 V .=ag M M e a. B5 wtp

. 2>

o FT9 m o DC e=e "itP c )

FFE fv3 sF"t

-a E I 3 gT3 M e=4 m )

N D Z

_ _ . - _ _ _ _ _ _ - _ _ _ . _ w- I o e o 3

t- "T3 C w=e BTW ==e em  %

W . h 8

I l

A.

I 67 s

_- K.A.L., Inc.

Worke'r 1, Co60 Feces, Class W INTAKE EVALUATION

                                                            • RADIONUCLIDE **************I***************

1 Co-60 PHYSICAL HALF-LIFE = 1.925E+003 DAYS RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

4 ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL l FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630-DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS W WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002 STOCHASTIC (INHALATION) ALI = 2.000E+005 nCi

                                                      • SYSTEMIC EXCRETION ***************************

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.20

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 1 5.000E-001 5.000E-001 1 2 3.000E-001 6.000E+000 3 1.000E-001 6.000E+001 4 1.000E-001 8.000E+002

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 8.767E+001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 1.937E+001 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 4.4E-004 COMMITTED EFFECTIVE DOSE EQUIVALENT = 2.192E-003 rem 68

. - . . . ~ . ._ .. . .

PAGE 2 1

1

. . 1 K.A.L., Inc.

l

)

Worker 1, Co60 Feces, Class W INTAKE ESTIMATED FROM STATISTICAL EVALUATION GF Co-60 INCREMENTAL FECES DATA

. \

d i

ITERATIVE i ' TIME FECES WEIGHTED-FIT POST COLLECTION BIOASSAY ERROR RETENTION EXPECTATION

' INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT

, (DAYS) (DAYS) (nCi) (nCi) (nCi) 5.90 1.00 1.790E+000 3.300E+002 1.789E-002 1.569E+000 I 9.90 1.00 1.050E-001 1.800E-062 2.387E-003 2.092E-001 12.90 1.00 1.580E-002- 5.200E-003 1.518E-003 1.331E-001 r

.)

l l

i e'

4 1

i l

69

a , i. '

e$Ha5 1a *F 92 f 06.oC iCn 2 4 6 8'

1 1

1 1 1 _

- 0 0 0 0 0 2 9

E E E E 0 6 8 _

- - - 0 0 0 0 0 - 0 0 0 0 0 0 0 0

. 1 1 1 1

- - - - - - - - 2 6 _

0 0 > +

0 _

7

. 0 T

i 0

n 0 e

A f

t .

e 8

_ r E

x 0

0 0

p o

- s u

r

,e 9

_- d 0 a 0

- y 0 s

1 (

0 * )

_ 0 _

0 _

e

(

I

) T 1 E 1  : R 0

0 E

X P

A T

I V

, E C

E _

I H A E

. T I 1 I G 2 D H

. H T

,- 0 E 0 U D .

A l

. F U I _

E T 1 < _

3-^

0

}

0 _

_ E

3

.~ K.A.L., Inc.

~

Worker 1, U in Feces, Class Y INTAKE EVALUATION '

o

                                                            • RADIONUCLIDE ****************************e*

U PHYSICAL HALF-LIFE = 1.000E+010 DAYS RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS Y WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 2.000E-003 STOCHASTIC (INHALATION) ALI = 4.000E+001 nCi

                                                      • SYSTEMIC EXCRETION ***************************

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.00

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

i i

NONE.NEEDED

                • '********************* INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 2.147E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 4.153E-001 nCi ,

                                                        • DOSIMETRY RESULTS ***************************

1 FRACTION OF STOCHASTIC ALI = 5.4E-003 COMMITTED EFFECTIVE DOSE EQUIVALENT = 2.683E-002 rem .

l i

f

's 71 l

4 e+e

. . . .... - . . _ . . - . . - . . . _ - . -. - . . _ _ - . .~ . - . ~ - ~ . - . -

PAGE 2

~

K.A.L., Inc.

Worker 1, U in Feces, Class Y e

I.NTAKE ESTIMATED FROM STATISTICAL EVALUATION OF i U INCREMENTAL FECES DATA TIME ITERATIVE FECES POST WEIGHTED-FIT e

COLLECTION BIOASSAY ERROR RETENTION EXPECTATION INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (DAYS) (nCi) (nCi) (nCi) 5.90 1.00 1.710E-003 4.135E-002 9.90 1.00 1.832E-002 3.934E-003 1.310E-003 3.606E-002 1.045E-003 2.244E-004 12.90 1.00 1.190E-003 3.450E-002 2.413E-004 5.180E-005 1

l 1

1 4

O e

72

l I:

M 2 -W 2 AA M -aA & rts *T1 Dr.4E N> D. c .mp  !

1 N>

. ss A

w e w

W W

e -

O + v O ,

O l I

N  !

O O

O 3>

m art

@ (M>

  • 1
  • O RTE O JC O 1:p ac>

m C

  • N O 4d>

a O O O

". , O

> A O

O a

A

>=4 V w

  • (T1
  • II 7tp
  • 3D FTW ==e C E3C 9=#
  • its C FT9 FT3 r"b w 2ll:
2> NTE

--e e-4 p M M E:3 Z

.N :2: ==e O FTI O C 4llp l2>

r" "TE C e=e FT3 w W . -

8 1

e 73

. . _= . - ~

l

. K.A.L., Inc. l

. 1 Worker 1 U in Feces, Class W

. i INTAKE EVALUATION 4

                                                            • RADIONUCLIDE ******************************

U PHYSICAL HALF-LIFE = 1.000E+010 DAYS l

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL i FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630

, DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS W WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002  ;

STOCHASTIC (INHALATION) ALI = 7.000E+002 nCi '

s

                                                      • SYSTEMIC EXCRETION **********'****************

i FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.00

                                          • PARAMETERS FOR SYSTEMIC MODEL *********^^;**********

NONE.NEEDED i

                                                          • INTAKE ESTIMATE *'***************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 2.070E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 1.782E-001 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 3.0E-004 COMMITTED EFFECTIVE DOSE EQUIVALENT u 1.479E-003 rem 74

i PAGE 2

~

K.A.L., Inc.

t Worker 1, U in Feces, Class W '

INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF  !

l U INCREMENTAL FECES DATA

  • i i

TIME ITERATIVE ~ i FECES POST WEIGHTED-FIT )

. COLLECTION BIOASSM ERROR RETENTION EXPECTATION

. INTAKE PERIOD MEASUREMENT . MEASUREMENT FRACTION MEASUREMENT (DAYS) (DAYS) (nCi) (nCi) (nCi) 5.90 1.00 1.710E-003 4.135E-002 1.708E-002 3.535E-003 9.90 1.00 1.310E-003 3.606E-002 2.022E-003 4.185E-004 12.90 1.00 1.190E-003 3.450E-002 1.239E-003 2.564E-004 l

I d

i l

. j l

75

A sA 2 4a a _ m + J_ m s

=

  • e i

N M W1'=8 b +

M# "-#

N>

. -se

R, R, O O W W O + v O

1

' M

  • O O

3 3 <>

2 i

=9m 49 sp eMk 7

  • O m o DC O V

j O a

w Cl::

M O 4.D O O en O M n i

t

.* A

.C - h O

O 4

eM V ===e

    • M e* I8 l4p

+ lE>

O m e O DC D-e "W C mm f"%

4 ===e 3::ll llE> m y

-4 e-e M M 4

p E:3 "Ill 818'e O

o C O 3

r"" "TB El e=e m ==4 e a. A W

. v

)

4 J

d i

76 4

. 2 K.A.L., Inc.

Worker 1, Pur239 Y Feces INTAKE EVALUATION .

                                                            • RADIONUCLIDE ******************************

Pu-239 PHYSICAL HALF-LIFE = 8.800E+006 DAYS  !

l RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************ l l

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS Y WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 1.000E-005 STOCHASTIC (INHALATION) ALI = 2.000E+001 nCi

                                                      • SYSTEMIC EXCRETION *************************** i FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12
                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

1

- COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS)

______________________________________________________ {

2 1.240E-001 6.600E+000 3 7.900E-002 5.600E+001 4 8.970E-002 3.800E+002 5 5.663E-001 4.000E+003

                                                          • INTAKE ESTIMATE *****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 1.764E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 1.431E-002 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 8.8E-003 COMMITTED EFFECTIVE DOSE EQUIVALENT = 4.409E-002 rem 77

PAGE 2 K.A.L., Inc. ,

Worker 1, Pu;239 Y Feces INTAKE ESTIMATED FROM STATISTICAL EVALUATION @F Pu-239 INCREMENTAL FECES DATA TIME ITERATIVE FECES POST WEIGHTED-FIT COLLECTION BIOASSAY ERROR RETENTION EXPECTATION -

INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (DAYS) (nCi) (nCi) (nCi) 5.90 1.00 3.300E-003 3.700E-004 1.838E-002 3.241E-003 9.90 1.00 1.700E-004 8.300E-005 1.053E-003 1.857E-004 12.90 1.00 0.000E+000 1.000E+000 2.454E-004 4.328E-005 i 1

\

l I

\

78 _

1 O

'$Hi5 1aCtF h9i "i 332uP In 2 9 0 0 E

- E.

3 0

g 6

_ 0 0

(*

)

0 7

T 0

i 0

n 0 e

A

- f t

e 8 r .

0 E 0 x 0 p

o s

u r

,e .

9 _

d 0 a 0 s y 0 s

1 (

0 0

0

(

I

) T 1 E 1  : R

. A 0 E T 0 X I P V E E C i I l A E T I 1 I G 2 O H N T 0 E 0 U D A

L F U I E l 1 '

3 : 1 0

0 E _

3 4

K.A.L., Inc.

. l 4

Worker 1, Pu239 W Feces INTAKE EVALUATION  !

a

                                                            • RADIONUCLIDE ****************************** i Pu-239 PHYSICAL HALF-LIFE = 8.800E+006 DAYS 4
                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************ i ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 4 STANDARD ICRP 30 RESPIRATORY TRACT AlD GI TRACT MODELS USED

' 100.0% CLASS W WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 1.000E-003 STOCHASTIC (INHALATION) ALI = 1.000E+001 nCi l

                                                      • SYSTEMIC EXCRETION *************************** I FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12 i
                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) l 1 1.410E-001 2.000E+000 1

2 1.240E-001 6.600E+000 3 7.900E-002 5.600E+001 l 4 8.970E-002 3.800E+002

! 5 5.663E-001 4.000E+003 4

                                                          • INTAKE ESTIMATE ****************************

1 INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 1.585E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 3.657E-002 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 1,GE-002 COMMITTED EFFECTIVE DOSE EQUIVALENT = 7.924E-002 rem 80

_ . . - . ~ . _ . . . . _ ._ _ _ . - _ - _ _ . _ . . _ . _ . _ _ . _ . _ . . _ . _ . ..__ ._. . . . . . . .

PAGE 2 i 4

)

' ~

, K.A.L., Inc.

r .

Worker 1, Pu239 W Feces INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF Pu-239 INCREMENTAL FECES DATA

  • ITERATIVE TIME FECES WEIGHTED-FIT POST COLLECTION BIOASSAY ERROR RETENTION EXPECTATION INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (DAYS) (nCi) (nCi) (nCi) 5.90 1.00 3.300E-003 33.700E-004 1.828E-002 2.898E-003 9.90 1.00 1.700E-004 8.300E-005 2.235E-003 3.543E-004 12.90 -1.00 0.000E+000 1.000E+000 1.374E-003 2.178E-004 I

~

81 .

I

4 _e A , - , . - ,,__,._w _ 1.. - - ,m__ . s a O

e N - V ::E & 4/D = = & b m "r5 ::F-4B r@- D == . W 4ADN>c "its -.M 3

-N> .es O

4AA O A

- }

O v +

O O

.N

  • O O

g O

n

3>

=%

are n eDO M .

O FFI O DC O V

O C

9 i

[ to O

O x O w

. v ,

O O -

l A

S=6 V a-4 M M BE My M

  • 2>

O FT5 --e O .)C M "43 C FT1 FT3

("t

-e I::

llp FTl

.. M p >=r. O M

o E

2: -e O M o C O
3>

f" "r3 C >-e FFI ==e em A W ll V

8 O

k 82

2 l

, K.A.L., Inc.

l Worker 1, Pu!238 Y Feces INTAKE EVALUATION I l

                                                            • RADIONUCLIDE ****************************** l 1

Pu-238  !

PHYSICAL HALF-LIFE = 3.200E+004 DAYS l

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL j FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS Y WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 1.000E-005 STOCHASTIC (INHALATION) ALI = 2.000E+001 nCi

                                                      • SYSTEMIC EXCRETION *************************** I FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12 C
                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

COMPARTMENT COEFFICIENT EIOLOGICAL HALF-LIFE (DAYS)

. 1 1.410E-001 2.000E+000 2 1.240E-001 6.60^ 000 3 7.900E-002 5.6008+001 4 8.970E-002 3.800E+002 5 5.663E-001 4.000E+003

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 3.908E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 1.197E-002 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 2.0E-002 COMMITTED EFFECTIVE DOSE EQUIVALENT = 9.771E-002 rem 83

PAGE 2 K.A.L., Inc.

Worker 1, Pu!238 Y Feces INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF 1-Pu-238 INCREMENTAL FECES DATA

  • s N

I ITERATIVE TIME FECES WEIGHTED-FIT POST. COLLECTION BIOASSAY ERROR RETENTION EXPECTATION INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT i

(DAYS) (DAYS) (nCi) (nCi) (nCi)

!' 5.90 .1.00 7.150E-003 5.900E-004 1.838E-002 7.182E-003 9.90 1.00 4.680E-004 1.400E-004 1.053E-003 4.115E-004 12.90- 1.00 7.090E-005 2.800E-005 2.453E-004 9.588E-005 i

3 l

J T

4 e

S 84

p O

WS 4

n-==e.. -- e h n. ,, ' r n- = - . wwe, _.no

~ .

6 w 6 w 6 w 6 3

w

.8 i

N O

a O

s N.

g o

n.

2>

-h est

  1. D 80 @

M .

O m o DC O V

st:>

Mi C

[ .

4t>

.. gp O M O D

p e

O A

94 V W

" CT1

  • 88 DICI
  • 3>

FT5 .-e O DC eq "its ac:

TTE FT3 A

==e 2::

X> RTE

-e e-e n=*= 9=4 m M D Z

'Y. ==4 O FT5 C C EllP l2>

F "Tl C n=e FT5 .-e e-a- -

W 3 8

e 85

4 1

K.A.L., Inc.

Worker 1, Pu!238 W Feces INTAKE EVALUATION a

                                                            • RADIONUCLIDE ******************************

Pu-238 PHYSICAL HALF-LIFE = 3.200E+004 DAYS

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************ l ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL l l

FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630  :

DNP = 0.300 DTB = 0.080 DP = 0.250 l STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED  !

l 100.0% CLASS W WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 1.000E-003  !

STOCHASTIC (INHALATION) ALI = 1.000E+001 nCi

                                                      • SYSTEMIC EXCRETION ***************************

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 1 1.410E-001 2.000E+000 i 2 1.240E-001 6.600E+000 3 7.900E-002 5.600E+001 4 8.970E-002 3.800E+002 5 5.663E-001 4.000E+003

                                                          • INTAKE ESTIMATE **********************'******

l INTAKE ESTIMATED FROM INCREMENTAL FECES DATA  !

ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 3.512E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 6.714E-002 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 3.5E-002 COMMITTED EFFECTIVE DOSE EQUIVALENT = 1.756E-001 rem s

86

. _ . - . - . _ _ _ _ _ _ . _ - - - _. _ _ _ - - . . .. ..._.m.._.-... ..._ _ -. _ .

PAGE 2 i

~

.' K.A.L., Inc.

~

Worker 1, Pu-238 W Feces l

INTAKE ESTIMATED FROM STATISTICAL EVALUATION 8F Pu-238 INCREMENTAL FECES DATA l

TIME FECES ITERATIVE j POST COLLECTION WEIGHTED-FIT BIOASSAY ERROR RETENTION EXPECTATION INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION (DAYS) MEASUREMENT I (DAYS) (nCi) (nCi) (nCi 5.90 1.00 7.150E-003 5.900E-004

...........--).... .

!- 9.90 1.828E-002 6.421E-003 I 1.00 4.680E-004 1.400E-004 2.235E-003 12.90 7.850E-004 1.00 7.090E-005 2.800E-005 1.374E-003 4.826E-004 l i 4

i I

4

  • 4 i

+

t 4

k e

i 4

l I

\

i 1

t l 87

i '!!  !

e$ Nag IaCeF h 1 2' "i 832 ( iCn

. 2 1 6 8 0 0 0 0 E E E

- - - f-0 0 0 0 3 3 -

3 3 6 (

0 )

0 0

7 T 0 i

0 M 0 e

A f

t .

e 8 r .

0 E 0 .

x 0 .

p o

s u -

r .

e 3 d 0 a 0 y 0 .

s -

4 1

0 0

+(

)

0 .

(

I

) T 1 E 1  : R A

0 E T 0 X I P V E E C

T N A E T I 1 I G _

2 O H N T 0 E 0 U D A

' L F U I E T 1 (

3

^ )

0 .

0

1

~

K.A.L., Inc.

~

Worker 1, Am-241 W Feces INTAKE EVALUATIOJ a

                                                            • RADIONUCLIDE ******************************

Am-241 PHYSICAL HALF-LIFE = 1.580E4005 DAYS l ************ RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS W WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 1.000E-003 STOCHASTIC (INHALATION) ALI = 1.000E+001 nCi

                                                      • SYSTEMIC EXCRETION ***************************

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12

( J

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

i COMPARTMENT COEFFICIENT EIOLOGICAL HALF-LIFE (DAYS)

. 1 1.410E-001 2.000E+000 <

2 1.240E-001 6.600E+000 l 3 7.900E-002 5.600E+001 4 8.970E-002 3.800E+002 5 5.663E-001 4.000E+003

                                                          • INTAKE ESTIMATE ****************************

l INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 3.114E-001 nCi l EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 5.878E-002 nCi  !

                                                        • DOSIMETRY RESULTS ***************************

I FRACTION OF STOCHASTIC ALI = 3.1E-002 COMMITTED EFFECTIVE DOSE EQUIVALENT = 1.557E-001 rem 89

PAGE 2 r

~

j .' K.A.L., Inc.

i 1

Worker 1, Am-241 W Feces l 1

INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF .

Am-241 INCREMENTAL FECES DATA a

1  ;

1 i 4

ITERATIVE

TIME FECES WEIGHTED-FIT

. POST COLLECTION BIOASSAY ERROR RETENTION EXPECTATION INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT l..

1 (DAYS) (DAYS) (nCi) (nCi) (nCi) 5.90 1.00 6.320E-003 5.400E-004 1.828E-002 5.693E-003 '

i 9.90 1.00 4.420E-004 1.100E-004 2.235E-003 6.961E-004 12.90 1.00 5.550E-005 3.300E-005 1.374E-003 4.280E-004 1 i  !

l i

i' i

  • i l i

4 ,

e i

j j l I

h i

s a

a 1

3 3

J v

3 a

G 4

90

- . _ . _ , , . . . . . . ~ _ . . - ~ . . . . - . . . .- ..

t l

i

@ W llE W 4#s -W W"t @ "Tl D"-5E P[ D. e.s. 4e %1p:E :X> .m:lllp 9 -*'

f* :o*

R R R R 6

w 6 w 6 w 6 i

w .

t o v g

i O O

%,8 O

g o

n.

"5>

-h Wi> 4C>

7 .

O ST9 C DC C "Cp atl>

C 7

f %D b

o

. . . . x o M A

.O hv O

O e

A D=4 v w gT3 e ,a. O8 :111 3

  • 3>

O STE -e O DC D=e "W aCll WT5 WT5 A

w I:

3> fTE

--e og w M A p C3 Ell

. :E: w O N o C C lE>

P *TS E::ll e=4 fv3 --e w A I W .

h

.v  !

8 1

i 1

1 l

l l I

1 1

91

~

K.A.L., Inc.

~

Worker 1, Cm-244 W Feces INTAKE EVALUATION *

                                                            • RADIONUCLIDE ******************************

Cm-244 PHYSICAL HALF-LIFE = 6.610E+003 DAYS

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT 1/DDELS USED 100.0% CLASS W WITH FRACTIONAL UPTAKE FROM UI TRACT (F1) = 1.000E-003 STOCHASTIC (INHALATION) ALI = 2.000E+001 nCi

                                                      • SYSTEMIC EXCRETION ***************************

PRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12 h.

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS)

. 1 1.410E-001 2.000E+000 2 1.240E-001 6.600E+000 3 7.900E-002 5.600E+001 4 8.970E-002 3.800E+002 5 5.663E-003 4.000E+003

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 1.699E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 1.923E-002 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 0.5E-003 COMMITTED EFFECTIVE DOSE EQUIVALENT = 4.248E-002 rem 92

PAGE 2

. K.A.L., Inc.

~

Worker 1, Cm-244 W Feces INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF Cm-244 INCREMENTAL FECES DATA ITERATIVE TIME FECES WEIGHTED-FI'.

POST COLLECTION BIOASSAY ERROR RETENTION EXPECTATION INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (DAYS) (nCi) (nCi) (nCi) 5.90 1.00 3.230E-003 3.900E-004 1.827E-002 3.105E-003 9.90 1.00 3.990E-004 9.000E-005 2.233E-003 3.795E-004 12.30 1.00 8.900E-005 3.400E-005 1.373E-003 2.333E-004

/

i

~

. l l

93 l

-  !; 5 4  ; ,

e Ha5 laCtF h$o " i 112HC In 2

. 1 0 0 E E 0

3 4 3

6 _

0 0

(.

) _

0 7 .

T 0 i

0 n 0 _

e .

A f

t e 8 _

r . .

0 E 0 x 0 p

o _

s .

u .

r

,e 9 d 0 a 0 _

y 0 s _

1 0

(*

0 0

(

I

) T 1 E 1  : R

. A 0 E i 0 X  !

P U E E C l I l A E T I 1 I G 2 D H H T 0 E 0 U D A

l t

F l I E T 1

3 0

+(

)

0 A

I

~

j . K.A.L., Inc.

. Worker 2, Lur5gs, Class Y INTAKE EVALUATION ,

                                                            • RADIONUCLIDE ******************************

Co-60 PHYSICAL HALF-LIFE = 1.925E+003 DAYS RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL t

FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED

' 100.0% CLASS Y WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002 STOCHASTIC (INHALATION) ALI = 3.000E+004 nCi

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************  !

NONE NEEDED h ***************************** INTAKE ESTIMATE **************************** i INTA'KE ESTIMATED FROM LUNG BIOASSAY l ESTIMATE OF INTAKE FROM ITERATIVE I WEIGHTED FIT OF DATA = 1.032E+003 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 3.952E+002 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 3.4E-002 COMMITTED EFFECTIVE DOSE EQUIVALENT = 1.721E-001 rem a

k 95

( PAGE 2 K.A.L., Inc.

) . Worker 2, Lungs, Class Y

  • a INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF Co-60 LUNG BIOASSAY ITERATIVE

, TIME WEIGHTED-FIT

POST BIOASSAY ERROR RETENTION EXPECTATION 1

l 1

INTAKE MEASUREMENT MEASUREMENT FRACTION MEASUREMENT  !

~(DAYS) (nCi) (nCi) (nCi) '

0.06 1.080E+003 1.300E+001 3.128E-001 3.229E+002 i 0.27 9.905E+002 9.900E+000 2.755E-001 2.844E+002 i

2.00 1.742E+002 4.400E+000 1.809E-001 1.868E+002 2.97 4.047E+001 3.300E+000 1.654E-001 1.707E+002 4.29 3.033E+001 2.800E+000 1.555E-001 1.606E+002

5.22 2.321E+001 2.600E+000 1.523E-001 1.572E+002 '
.6.26 2.310E+001 1.800E+000 1.504E-001 1.552E+002 9.24 2.079E+001 1.500E+000 1.483E-001 1.531E+002 10.30 2.067E+001 1.500E+000 1.480E-001 1.528E+002  ;

12.30 2.075E+001 2.100E+000 1.475E-001 1.523E+002 1 3

13.20 2.164E+001 1.500E+000 1.473E-001 1.521E+002  !

17.20 2.100E+001 2.000E+000 .1.465E-001 1.512E+002 i

(. 18.00 1.688E+001 2.000E+000 1.463E-001 1.510E+002

[ L_. 19.00 1.762E+001 2.000E+000 1.461E-001 1.508E+002 1

)

i e ,

4 1

4

) -

~'

l 96 4

,a _.Aw Ja 4. ..a. 4- 4 J - .aA - - _s__2_ . _ . a a*. # d A. - d. .w 4 m w a - . a,6m.

j . .

j

  • a
  1. ~

% %dh.D C f"" D == a O slPt e O ("h - (") D

, N> -88 e==. e-a.

8 8

. .$ E R

m l s

W _

s%

W I

y -

=

  • 1 O l i O

O h

O .

O

  • .$ j i

==e T O . .

2 O O

g m

et- '

Ha 9

e0cm Frt .

DC O V O 8CD O 4%

C

  • h O

Ca. o m

- O h-

.. M j

M O

O '

I

. h

. M C l O

JU 2

w M

M M C e FTl o ryg l

>=e "

1 Ce D h 2 W

O

-h

  • O M.e w

O 8

97

. - - . -. . .-~ -

~

K.A.L., Inc.

Worker 2, Ldngs, Class W INTAKE EVALUATION

                                                            • RADIONUCLIDE ******************************

a Co-60 PHYSICAL HALF-LIFE = 1.925E+003 DAYS RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ***A********

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS W WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002 l STOCHASTIC (INHALATION) ALI = 2.000E+005 nCi '

4 PARAMETERS FOR SYSTEMIC MODEL **********************

NONE NEEDED i

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM LUNG BIOASSAY ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 1.143E+003 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 4.306E+002 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 5.7E-003 COMMITTED EFFECTIVE DOSE EQUIVALENT = 2.857E-002 rem 1

i 1

I 4

e a

98

4 PAGE 2 i t

i

. K.A.L., Inc.

l

^

Worker 2, Lungs, Class W j -

INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF Co-60 LUNG BIOASSAY e  :

TIME ITERATIVE i POST EIOASSAY WEIGHTED-FIT  !

ERROR RETENTION EXPECTATION INTAKE MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (nci) (nCi)  !

0.06 1.080E+003

...................--...(nCi) ......--

1.300E+001 2.819E-001 3.222E+002 0.27 9.905E+002 9.900E+000 2.596E-001 2.00 1.742E+002 2.967E+002 4.400E+000 1.778E-001 2.032E+002 2.97 4.047E+001 3.300E+000 1.606E-001 4.29 3.033E+001 1.836E+002 i 2.800E+000 1.486E-001 1.698E+002 I S.22 2.321E+001 2.600E+000 1.438E-001 1.644E+002 6.26 2.310E+001 1.800E+000 1.402E-001 1.602E+002 9.24 2.079E+001 1.500E+000 1.335E-001 1.526E+002 {

10.30 2.067E+001 1.500E+000 1.315E-001 1.503E+002 12.30 2.075E+001 2.100E+000 1.281E-001 1.464E+002 13.20 2.164E+001 1.500E+000 1.266E-001 1.447E+002 17.20 2.100E+001 2.000E+000 18.00 1.201E-001 1.373E+002 1.688E+001 2.000E+000 1.188E-001 1.358E+002 h 19.00 1.762E+001 2.000E+000 1.173E-001 1.341E+002 e,

l k

99

. - - - - . - = , _ . C..,., _ .,_, ,

E f g g .- t-O a -

O O

a m w &

w

$a' w

O '

O O

h 4 O

O 1 O

O ..h l

- -e m 6

=

& =

O -

l llD o g i m o et

& i 9

FTI .

N O D C O o C

7 A O 7 g .O . .

m O w O &

. l

  • i P4 O

h e 4 O

O **

FT1 MP "D

-e 9=4 C

C O ==

ET9 g are y M M Z e w

.DO O .h BT3 O

O "Pt s $ mmG O'4

.O .

8 a

100

1 i

K.A.L., Inc.

Worker 2, Co60 feces, Class Y INTAKE EVALUATION a

                                                            • RADIONUCLIDE ******************************

Co-60 PHYSICAL HALF-LIFE = 1.925E+003 DAYS

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DT3 = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS Y WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002 STOCHASTIC (INHALATION) ALI = 3.000E+004 nCi

                                                      • SYSTEMIC EXCRETION ***************************

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.20

(~ t

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS)

, 1 5.000E-001 5.000E-001 2 3.000E-001 6.000E+000 3 1.000E-001 6.000E+001 4 1.000E-001 8.000E+002

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT O.2 DATA = 5.022E+001 nCi EXPERIMENTAL EPROR IN INTAKE ESTIMATE = 1.022E+001 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 1.7E-003 COMMITTED EFFECTIVE DOSE EQUIVALENT = 8.3'707-003 rem 101

+km

~

  • ~

K.A.L., Inc.

Worker 2, Co60 feces, Class W INTAKE EVALUATION a

                                                            • RADIONUCLIDE ******************************

Co-60 PHYSICAL HALF-LIFE = 1.925E+003 DAYS i ************ RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED  !

4 100.0% CLASS W WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002  ;

STOCHASTIC (INHALATION) ALI = 2.000E+005 nCi

                                                      • SYSTEMIC EXCRETION ***************************

l FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.20 l (i

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS)

. 1 5.000E-001 5.000E-001 2 3.000E-001 6.000E+000 3 1.000E-001 6.000E+001 4 1.000E-001 8.000E+002

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 4.249E+001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 1.473E+001 nCi

                                                        • DOSIMETRY RESULTS ***************?***********

FRACTION OF STOCHASTIC ALI = 2.1E-004 COMMITTED EFFECTIVE DOSE EQUIVALENT = 1.062E-003 rem I

k 104

PAGE 2 4

K.A.L., Inc.

Worker 2, Co60 Feces, Class W INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF Co-60 INCREMENTAL FECES DATA a

ITERATIVE

. TIME . FECES WEIGHTED-FIT

, POST COLLECTION BIOASSAY ERROR RETENTION EXPECTATION INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (DAYS) (nCi) (nCi? (nCi) i 6.10 1.00 8.250E-001 5.100E-002 1.566E-002 6.652E-001 10.10 1.00 0.000E+000 1.000E+000 2.264E-003 9.619E-002 l 13.10 1.00 0.000E+000 1.000E+000 1.497E-003 6.362E-002 l

l I

i l

I

)

l l

O 1

4 101

n 1.000 ITERATIVE WEIGHTED FII C

i (): EXPECIATIDH UALUE f 8.0E-01"*

4 6

0 C)

6.0E-01 n

2' 99 h .0E-01 $

F e

i .c 2.0E-01" a

I g ()

a

" 7.000 8.000 9.000 10.00 11.00 12.00 13.00 14.00 Time After Exposure, days .

e U

, .. , y-,w. y - w- + - -- * -

2

~

. I K.A.L., Inc.

Worke"r 2, U in Feces, Class W INTAKE EVALUATION e

                                                            • RADIONUCLIDE ****************************"*

U PHYSICAL HALF-LIFE = 1.000E+010 DAYS RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS W WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002 STOCHASTIC (INHALATION) ALI = 7.000E+002 nCi

                                                      • SYSTEMIC EXCRETION ***************************

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.00 0

                                          • PARAMETERS FOR SYSTEMIC MODEL ***************w******

NONE.NEEDED

                • '********************* INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 1.478E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 8.976E-002 nCi l

                                                        • DOSIMETRY RESULTS *************************** ,

FRACTION OF STOCHASTIC ALI = 2.1E-004 COMMITTED EFFECTIVE DOSE EQUIVALENT = 1.056E-003 rem l

107 l

PAGE 2 K.A.L., Inc.

Worker 2, U in Feces, Class W ^

INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF i U INCREMENTAL FECES DATA

  • TIME ITERATIVE FECES POST

-WEIGHTED-FIT -

COLLECTION BIOASSAY ERROR RETENTION EXPECTATION

, INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION

' MEASUREMENT (DAYS) (DAYS) (nCi) (nCi) (nCi)

.6.10 1.00 1.530E-003 3.899E-002 10.10 1.00 1.490E-002 2.202E-003 3.980E-004 1.995E-002 1.906E-003 2.818E-004 I

!! 13.10 1.00 7.370E-004 2.715E-002 1- 1.223E-003 1.808E-004 ,

  • a f

I f

I

~

108 ,

. -. .-. . . . . , - . . . - . . . ~ ~n~-., . _ _ - .. .. . . . , - -

l 4

. I 4

%@-D2&M a=. & (4 m "TE. llF.es M 3-. E:ll == . r"b D V4

. =0 R R 6

w 6 w

n - 95 h v i

i i

J N

,\

O O .

l i

l l

. i e ag 4 O 2

r> )

I ."E>

m '

d *

  1. > W J

M

  • l O 1

!' m O

=>c O l V o

44 C

9

[ e+

O g . A

-I g

y O C V h W

M  !

i <-

ea  !

i .

O s

4 O

i i ^

M V ==4

" FFE j M 30 MR

  • :E>

3 FTW ==e O .3C beg

% C t'l FFE

.t"%

e Ell:

I> FTl

--e og e+ M M W J U E a :E: == o O

O v h C M

O lID F *TB C o- e FT9 ==e e*

=0 8

e e

109

l l

K.A.L., Inc.

Worker 2, U in Feces, Class Y INTAKE EVALUATION , l i

                                                            • RADIONUCLIDE ******************************

U PHYSICAL HALF-LIFE = 1.000E+010 DAYS RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICR18 30 RESPIRATORY TRACT AND GI TRACT MODELS USED

{

100.0% CLASS Y WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 2.000E-003 STOCHASTIC (INHALATION) ALI = 4.000E+001 nCi

                                                      • SYSTEMIC EXCRETION ***************************

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.00 l l

l

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

NONE NEEDED l

l

                                                          • INTAKE ESTIMATE ****************************

l INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE I WEIGHTED FIT OF DATA = 1.575E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 2.601E-001 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 3.9E-003 COMMITTED EFFECTIVE DOSE EQUIVALENT = 1.969E-002 rem 110

PAGE 2 I

) -

K.A.L., Inc.  ;

I Worker 2, U in Feces, class Y ]

, i INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF i U INCREMENTAL FECES DATA

  • j f, l ITERATIVE
TIME FECES WEIGHTED-FIT 1

i POST j COLLECTION. BIOASSAY ERROR- RETENTION EXPECTATION l INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT j (DAYS) (nCi)

(DAYS) (nCi) (DCi) l .._____ _.... _..___._. ____._... _ .....____..... __________..._. __ ... )

6.10 1.00

' 1.530E-003 3.899E-002 1.577E-002 2 . 4,84 E- 0 03 10.10 1.00 3.980E-004 1.995E-002 9.219E-004 "

. 452E-004 '

13.10 1.00 7.370E-004 2.715E-002 2.274E-004 3.582E-005 i

}

i a

l I

i l

111

l l

. =

1 W G -V "E & b -- W n & M. T-M N> D. c .m3 N

4 R R 6

w 6 w

w n w

$ v a t

e O

, o O

i 4C>

a

"* O

.E 4

a O

d N

-h

M O tidh

,1 fTE O DC O 3 D o

b4

,,g~._ _ . - , . - - . . -.

"T.

O se O

w f O O V & <

% l M

W e <

O O

e A e4 V W

  • B71 II pitp N
  • llID O M ==4 O DC e4 I "U C '

m gT3 f">

w E l2> m

=~e e=e p e=e M W E3 X

. a w Z ==e O

O -

- $ e l'1 O

2>

f"" "T1 C e=e FFI *=4 e5 i 8

e 4

112 t'

1

~

\ -

K.A.L., Inc.

Worker 2, Pu!239 Y Feces

~

g INTAKE EVALUATION j

                                                            • RADIONUCLIDE ****************************** >

2 Pu-239 1 PHYSICAL HALF-LIFE = 8.800E+006 DAYS  !

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************  !

ACUTE 7.NHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL .!

FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS Y WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 1.000E-005 I

STOCHASTIC (INHALATION) ALI = 2.000E+001 nCi

                                                      • SYSTEMIC EXCRETION ***************************

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12 1 I

                                          • PARAMETERS FOR SYSTEMIC MODEL ********************** {

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS)  !

______________________________________________________ )

1 1.410E-001 2.000E+000 i 2 1.240E-001 6.600E+000 3 7.900E-002 5.600E+001 1 4 8.970E-002 3.800E+002 5 5.663E-001 4.000E+003 4

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA

' ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 3.165E-002 nCi l EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 2.676E-003 nCi

't

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 1.6E-003 COMMITTED EFFECTIVE DOSE EQUIVALENT = 7.913E-003 rem 113

I PAGE 2

] . .' K.A.L., Inc.

Worker 2, Pu-239 Y Feces j -

INTAKE ESTIMATED FROM STATISTICAL E'1ALUATION OF i Pu-239 INCREMENTAL FECES DATA a ITERATIVE i

TIME FECES WEIGHTED-FIT POST COLLECTION BIOASSAY ERROR RETENTION EXPECTATION INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (DAYS) (nCi) (nCi) (nCi) 6.10 1.00 4.850E-004 8.800E-005 1.582E-002 5.006E-004 10.10 1.00 4.000E-005 2.700E-005 9.291E-004 2.941E-005 13.10 1.00 1.230E-005 2.500E-005 2.314E-004 7.323E-006 f

(:-

B e

114

1 i

f e

n 6.0E-09 ITERATIVE llEIGHTED FIT j ( ) : EiiPECIATIDH UALUE P Q u

2 3

31.0E-04

, i n

~2 1

h 3

2.0E-01 F

e

.C a

I s O i 8 H

7.000 8.000 9.000 10.00 ij00 12.00 13.00 H.M

'. Tine After Exposure, days L'

1 l

1

- K.A.L., Inc. 1

. l Worker 2, Pue239 W Feces INTAKE EVALUATION

                                                            • RADIONUCLI DE * * * * * * * * * * * * * * ** * * * * * * * * * * * * *
  • Pu-239 PHYSICAL HALF-LIFE = 8.800E+006 DAYS
                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS W WITH FRACTIONAL UPTAKE FROM GI TRNCT (F1) = 1.000E-003 STOCHASTIC (INHALATION) ALI = 1.000E+001 nCi l

                                                      • SYSTEMIC EXCRETION ***************************  !

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 1 1.410E-001 2.000E+000 2 1.240E-001 6.600E+000 3 7.900E-002 5.600E+001 4 8.970E-002 3.800E+002 5 5.663E-001 4.000E+003

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 2.765E-002 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 4.381E-003 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 2.8E-003 COMMITTED EFFECTIVE DOSE EQUIVALENT = 1.382E-002 rem

~

l l

1 116

PAGE 2

~

K.A.L., Inc. l

. i Worker 2, Pu!239 W Feces i i

INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF l Pu-239 INCREMENTAL FECES DATA i

  • j 1

1 ITERATIVE TIME FECES WEIGHTED-FIT !

POST COLLECTION BIOASSAY ERROR RETENTION EXPECTATION INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT I (DAYS) (DAYS) (nCi) (nCi) (nCi) 6.10 1.00 4.850E-004 8.800E-005 1.597E-002 4.415E-004 l 10.10 1.00 4.000E-005 2.700E-005 2.110E-003 5.835E-005 13.10 1.00 1.230E-005 2.500E-005 1.356E-003 3.749E-005 l l

0 4

I h

117

. - 4 s. e m 4 .._J- _.__s - J A ,. 4 m.

i e

4 D

  1. -V2WM -W h G "TB 7 5C r@,, D. Ad> W P@ c 101 -.m3 D@

.es syg y h N

4 O O

O

! I eDC>

W o i O '

6

.m

+

et 1 (Em L

""E .d> 1 O I ET9 O DC C U

O C

"*E a

(> ,

O

  • A g

4 4

'. y gp O C

hV w l s

t

  • so o

a

. A e=4 V e4

" M OI :sp

  • 3>

d o m w O .DC, q s,g-e WTl ITE d"%

-w X"

, 3> FTB w e -e M &=C C4 W< Q Z e

O O

-h,r s M M BT3 c O 3>

V *M C e-o 3T3 e om 4

8 a

t $

118

1 I

' l K.A.L., Inc. l

. \

Worker 2, Pu!238 Y Feces INTAKE EVALUATION

)

, a l

                                                            • RADIONUCLIDE ******************************

Pu-238 l

, PHYSICAL HALF-LIFE = 3.200E+004 DAYS

]

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

. ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630

DNP = 0.300 DTB = 0.080 DD = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS Y WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 1.000E-005 )

STOCHASTIC (INHALATION) ALI = 2.000E+001 nCi I

                                                      • SYSTEMIC EXCRETION ***************************

1 FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

- COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 1 1.410E-001 2.000E+000 2 1.240E-001 6.600E+000 3 7.900E-002 5.600E+001 l 4 8.970E-002 3.800E+002 5 5.663E-001 4.000E+003 i

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 1.035E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 2.812E-002 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 5.2E-003 COMMITTED EFFECTIVE DOSE EQUIVALENT = 2.587E-002 rem 119

. .. . - . - _ - . . . - . - _ - . ~ . ..=...- . .. . . . . . . .. . . -. .

< PAGE 2

~

K.A.L., Inc.

, Worker 2, Pur238 Y Feces INiAKE ESTIMATED FROM STATISTICAL EVALUATION OF

Pu-238 INCREMENTAL FECES DATA a 4

i ITERATIVE TIME FECES WEIGHTED-FIT POST COLLECTION BIOASSAY ERROR RETENTION EXPECTATION INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT i (DAYS) (DAYS) (nCi) (nCi) (nCi)

., 6.10 1.00 1.670E-003 1.700E-004 1.581E-002 1.636E-003 i'

10.10 1.00 0.000E+000 1.000E+000 9.289E-004 9.611E-005

. 13.10 1.00 8.630E-005 3.700E-005 2.313E-004 2.393E-005 0

i i

1

} >

f i

1 b-i

. 1 120

a 4 i4 , i i, 't  :

- B e$M,5 1aCeF h9I ni 832uP In

. 2

- 0 E

0 3

(  ?

)*

- 7 0

0

. 0 8

T 0

i 0

n 0 e

A f

t

- e 9 r

0 E 0 x 0 p

o s

u

m. r

,e 1

, 0

.- d 0 _ _

- a 0 )

y

- s m

1

,- s' 1

, 0 0

- e

(

I

) T

,- 1 E 2  : R A

,. 0 E i 0 X  !

m.

P U E E C

I H A E T I 1 I G 3 D H H

A

- T 0 E 0 . U D A

L F U I E T 1

1 0

0 n-

I 1 l K.A.L., Inc.

Worker 2, Pu 238 W Feces

, INTAKE EVALUATION i

                                                            • RADIONUCLIDE ***************#************** l i

Pu-238 .

PHYSICAL HALF-LIFE = 3.200E+004 DAYS- I r

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

1 i i

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL I

FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 )

DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 4

100.0% CLASS W WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 1.000E-003 l

, STOCHASTIC (INHALATION) ALI = 1.000E+001 nCi I

I

                                                      • SYSTEMIC EXCRETION ***************************

l FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12

, (T -

l ********************* PARAMETERS FOR SYSTEMIC MODEL **********************

4

- COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS)

...................................................... 1 1

1 1.410E-001 2.000E+000 2 1.240E-001 6.600E+000 3 7.900E-002 5.600E+001 - - - - --

4 8.970E-002 3.800E+002 5 5.663E-001 4.000E+003

                                                          • INTAKE ESTIMATE ****************************  !

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 9.038E-002 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 2.348E-002 nCi o*************************** DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 9.0E-003 COMMITTED EFFECTIVE DOSE EQUIVALENT = 4.519E-002 rem 122

. - .. . .-- ~. - - - - . . - .. . .- ... . . - -

PAGE 2 i

~

K.A.L., Inc. .

Worker 2, Pu;238 W Feces

~

i INiAKE ESTIMATED FROM STATISTICAL EVALUATION OF  !

Pu-238 INCREMENTAL FECES DATA ,

ITERATIVE TIME FECES WEIGHTED-FIT '

POST- COLLECTION BIDASSAY ERROR RETENTION EXPECTATION INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASLTEMENT (DAYS) (DAYS) (nCi) (nCi) (nCi) 6.10 1.00 1.670E-003 1.700E-004 1.597E-002 1.443E-003 10.10 1.00 0.000E+000 1.000E+000 2.110E-003 1.907E-004 e.

13.10 1.00 8.630E-005 3.700E-005 1.356E-003 1.225E-004 i

5

(.

i

' ~

1 h

e

(

123

s. m -,.a.- 2 a - t.+ - r 2 o s ,,

6 O

  • 6 a -= = . m -- h a. ,. r,+ =, _. w m c ., . n =,

. f*

R 6

w

^

, -a v

N O

O O

I eo e i M

~ C -

2 O j

= 4 I
    • w set as 4d>

"4 .

O m O i De C

'L::p C j we .

C

" 91

[ em O

g . . .

a

. y O l R g C V  ;

% i e*

e e

O A

M V M em pq QS JO

. 2>

o m --e o DC e-e "9 sC:::

f't m M

-e 2:

I> FTl

-e e-a M M M W G X

  • ::E: -e O FT3 O C tllp
D r" N1 C M ETE --e om 4

8 e

5 e

124 s

1 K.A.L., Inc.

Worker 2, Am:241 W Feces l

\

INTAKE EVALUATION

                                                            • RADIONUCLIDE **************I***************

Am-241 PHYSICAL HALF-LIFE = 1.580E+005 DAYS

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL l FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS W WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 1.000E-003 STOCHASTIC (INHALATION) ALI = 1.000E+001 nCi

                                                      • SYSTEMIC EXCRETION **********s****************

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

i

- COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 1 1.410E-001 2,000E+000 2 1.240E-001 6.600E+000 3 7.900E-002 5.600E+001 4 8.970E-002 3.800E+002 5 5.663E-001 4.000E+003

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 1.699E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 4.734E-002 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 1.7E-002 COMMITTED EFFECTIVE DOSE EQUIVALENT = 8.493E-002 rem 125  ;

PAGE 2 1

K.A.L., Inc.

Worker 2, Am:241 N Feces INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF l Am-241 INCREMENTAL FECES DATA ,

ITERATIVE  !

TIME FECES WEIGHTED-FIT  ;

POST COLLECTION BICASSAY ERROR RETENTION EXPECTATION INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (DAYS) (nCi) (nCi) ' (nCi) 6.10 1.00 3.210E-003 -2.800E-004 1.597E-002 2.712E-003 10.10 1.00 4.710E-005 2.600E-005 2.110E-003 3.585E-004 13.10 1.00 4.380E-005 2.200E-005 1.356E-003 2.303E-004 I

i l

/'*.  ;

i l

1 l

I 1

l 1

e I

126 l

a.. _. -

u. ua.m. 2 A_ a a a

" e W %N U@ N* @ em . Me$M@$ em p@ @

.gs '

s o

w 6 w

- n v e .a M

O ,

O i i

i

===e O

~=g.

  • O O

3>

=%

et (D W 9

  • O M C DC O

'it:p C

wt C

7

  • n O

g . . -

A

.. y O h x O v W

i I

e-~

O A

e4 v a me M

g 8I 7tp

" "R>

o M ==e O DE! ***

"U c M M M

M 2lll

."I> M

==4 e=e M >=e GFD W E::3 :X:

- A llEl -e O h M O v c O

Ek r- *T3 El::: e- e M ==e m
  • W 8

e 127

3

, K.A.L., Inc.

Worker 2, cme 44 W Feces 4

INTAKE EVALUATION e

                                                            • RADIONUCLIDE ******************************

Cm-244 PHYSICAL HALF-LIFE - 6.610E+003 DAYS 4

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************
ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL )

i FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 I DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30- RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS W WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 1.000E-003 STOCHASTIC (INHAIATION) ALI = 2.000E+001 nCi 6

                        • *************** SYSTEMIC EXCRETION *************************** ,

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12  !

1(~t i

j o******************** PARAMETERS FOR SYSTEMIC MODEL **********************

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS)

] , 1 1.410E-001 2.000E+000 l 2 1.240E-001 6.600E+000 3 7.900E-002 5.600E+001 4 8.970E-002 3.800E+002 5 5.663E-001 4.000E+003 1

o

                                                          • INTAKE ESTIMATE ****************************

1 l INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 1.027E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 3.248E-002 nCi l

                                                        • DOSIMETRY RESULTS ***************************

4 FRACTION OF STOCHASTIC ALI = 5.1E-003 COMMITTED EFFECTIVE DOSE EQUIVALENT = 2.568E-002 rem 4

l l

128 1

1

I PAGE 2 j

~ \

, K.A.L., Inc. 1 Worker 2, Cmi44 W Feces INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF Cm-244 INCREMENTAL FECES DATA i

ITERATIVE i TIME FECES WEIGHTED-FIT POST COLLECTION  !

BIOASSAY ERROR RETENTION EXPECTATION l INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT  !

(DAYS) (DAYS) (nCi) (nCi) (nCi) 6.10 1.00 1.980E-003 2.300E-004 1.596E-002 1.639E-003 10.10 1.00 0.000E+000 1.000E+000 2.108E-003 2.165E-004 13.10 1.00 1.460E-005 1.500E-005 1.354E-003 1.391E-004 i l

I O

6 0

e l

129

n 2.0E @ + ITERATIVE WEIGHTED FIT C

i (): EXPECTATION UALUE C

H

()

2 4

4 i

n

't o '

9 h

C i

F t

.C a

I 5)

S

()

i  ::

H .

7.000 8.000 9.000 10.00 11.00 12.00 13.00 H.M Tine After Exposure, days '

5

\

. m._ ._;_ _ - . .

i

l 4

' l i

i

Appendix B2 i

j n

l
1 4
INDOS Output Results i for l lC l 3

Additional Cases Analyzed i

0 I

\

131

d

  • K.A.L., Inc.

1 Worker 1, WB with NP, Class Y INTAKE EVALUATION , l

                                                            • RADIONUCLIDE ******************************

Co-60 PHYSICAL HALF-LIFE = 1.925E+003 DAYS

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************
ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL 1

i

FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS Y WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002 STOCHASTIC (INHALATION) ALI = 3.000E+004 nCi

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 2 3.000E-001 6.000E+000 3 1.000E-001 6.000E+001 4 1.000E-001 8.000E+002

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM WHOLE-BODY BIOASSAY ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 3.407E+002 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 7.962E+001 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI i 1.1E-002 COMMITTED EFFECTIVE DOSE EQUIVALENT = 5.679E-002 rem S

132

4 s

PAGE 2

." K.A.L., Inc.

l Worker 1,WBwithNP, Class Y INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF Co-60 WHOLE-BODY BIOASSAY a  !

ITERATIVE l 1

TIME WEIGHTED-FIT e POST BIOASSAY ERROR RETENTION EXPECTATION

! INTAKE MEASUREMENT- MEASUREMENT FRACTION MEASUREMENT (DAYS) (nCi) (nCi) (nCi)

, 0.06 4.111E+002 7.000E+000 6.299E-001 2.146E+002 I 0.91 3.433E+002 8.200E+000 5.873E-001 2.001E+002 2.02 1.063E+002 4.800E+000 4.176E-001 1.423E+002 2.98 5.128E+001 2.700E+000 2.979E-001 1.015E+002  ;

4.25 2.459E+001 2.600E+000 2.145E-001 7.308E+001 5.25 1.842E+001 2.400E+000 1.852E-001- 6.309E+001 6.25 1.694E+001 2.400E+000 1.710E-001 5.825E+001 i 9.14 1.673E+001 1.200E+000 1.584E-001 5.399E+001 1 10.40 1.274E+001 1.800E+000 1.569E-001 5.344E+001

?

1 13.30 1.178E+001 1.800E+000 1.549E-001 5.276E+001 s ,

a 4

e a

4 J

  • 4 i

133

I t

= -= _..._m==,_. .,_...,.,_.m.

F sE a E E E E E $

8 -

- a -

. a r

h w

h h o T C

! h l

C

=

I

, o l O "E> O f

-h e9-l FD l ~1 m h Mo -

@)

W O l C

O o g

  1. D m

O sn M

" ot>

l . =

l O I O l O i

c

>"4

.O M O M O & N T DED

--4 D=4 C

FT5 2::

a-* m PO M

. aln O  :::

O ==*

m Itl:p "T1 o-e h --a 4

O O

l l

4 134 i

l

,- K.A.L., Inc.

Workbr 1, WB with NP, Class W INTAKE EVALUATION l

                                                        • RADIONUCLIDE *************I****************

Co-60 PHYSICAL HALF-LIFE = 1.925E+003 DAYS

                    • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

)

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL i

FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS W WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002 STOCHASTIC (INHALATION) ALI = 2.000E+005 nCi

                                    • PARAMETERS FOR SYSTEMIC MODEL **********************

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS)

)

2 3.000E-001 6.000E+000 3 1.000E-001 6.000E+001 4 1.000E-001 8.000E+002

                                                    • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM WHOLE-BODY BIOASSAY ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 3.338E+002 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 8.138E+001 nCi

                                                  • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 1.7E-003 COMMITTED EFFECTIVE DOSE EQUIVALENT = 8.346E-003 rem i

4 e

4 4

135

PAGE 2

_~ K.A.L'., Inc.

Worker 1, WB with NP, Class W INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF Co-60 WHOLE-BODY BIOASSAY TIME ITERATIVE POST WEIGHTED-FIT BIOASSAY ERROR RETENTION EXPECTATION INTAKE MEASUREMENT MEASUREMENT FRACTION MEASUREMENT 4

(DAYS) (nCi) -

(nCi) (nCi) 0.06 4.111E+002 7.000E+000 6.281E-001 8 2.097E+002 0.91 3.433E+002 8.200E+000 5.740E-001 1.916E+002 2.02 1.063E+002 4.800E+000 4.205E-001 1.404E+002 l 2.98 5.128E+001 2.700E+000 3.111E-001 1.038E+002 4.25 2.459E+001 2.600E+000 2.316E-001 7.731E+001 5.25 1.842E+001 2.400E+000 2.016E-001 6.730E+001 6.25 1.694E+001 2.400E+000 1.855E-001 6.194E+001 9.14 1.673E+001 1.200E+000 1.664E-001 5.555E+001 10.40 1.274E+001 1.800E+000 1.620E-001 5.409E+001 13.30 1.178E+001 1.800E+000 1.541E-001 5.146E+001 C

4 9

4 9

e 136

--m .m.na-w &m.n- w- J .m a -- ea 64 awa a.a. m.--,k.,--, A - - - - ,

4 L4--_.--a-- 4-a,---Ge- - - . . L, an-Es A - 4 h a L* v---,,6 mb- 8A -4 1

1 I

4 e

6

~= == -==-n = _. ...O,.n _ .,_, ,  !

8 E E E g s u O E E f I O

O a -

O O a -

O i . . .

4 .

3 i $ I w

=

1 O

1 O j O i h 4

1

  • "* ,qs j = = .

U O 4 O .

l =g, O Y a m 4 W. l IfD I 9

FW1 5

e  !

O g 8 +

a.

  • i l

dllh.

EL8 I x ,

C-[ o ece O

O I l

i w <

O B=4 J e ==e O 079 Stp O g 3>

-e D=4 C

ITI lE:

o-a WT1 h) *=*

. acrt C E O * --e BTU C

'TE e=e a6 8

e 137

14-DEC-96

_- K.A.L., Inc.

Worker 1, WB w/o NP, Class Y INTARE EVALUATION a

                                                            • RADIONUCLIDE ******************************

Co-60 PHYSICAL HALF-LIFE = 1.925E+003 DAYS 1

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS Y WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E 002 STOCHASTIC (INHA.LATION) ALI = 3.000E+004 nCi

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS)

(. 1 2

5.000E-001 3.000E-001 5.000E-001 6.000E+000 3 1.000E-001 6.000E+001

, 4 1.000E-001 8.000E+002

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM WHOLE-BODY BIOASSAY ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 3.847E+002 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 1.210E+002 nCi o*************************** DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 1.3E-002 COMMITTED EFFECTIVE DOSE EQUIVALENT = 6.411E-002 rem e

138

PAGE 2  !

- K. A.L. , Inc.

i Worker 1, WB w/o NP, Class Y i

- INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF .

Co-60 WHOLE-BODY BIOASSAY ,

i TIME ITERATIVE <

POST WEIGHTED-FIT l BIOASSAY ERROR RETENTION EXPECTATION INTAKE MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (nCi) (nCi) (nCi)  !


..........-- t 0.06 4.111E+002 7.000E+000 3.627E-001 1.395E+002 3.433E+002 0.91 8.200E+000 5.258E-001 2.022E+002 l 2.02 1.063E+002 4.800E+000 4.087E-001 1.572E+002 j 2.98 5.12BE+001 2.700E+000 2.962E-001 1.140E+002  !

4.25 2.459E+001 2.600E+000 2.143E-001 8.244E+001 I 5.25 1.842E+001 2.400E+000 1.851E-001 7.121E+001 .t 6.25 1.694E+001 2.400E+000 1.710E-001 6.576E+001 9.14 1. 673 E+ 0 01 1.200E+000 1.584E-001 {

6.095E+001 10.40 1.274E+001 1.800E+000 1.569E-001 6.034E+001 l 1.178E+001 1

13.30 1.800E+000 1.549E-001 5.957E+001 l i

C b

I 1

I

.I i

1.)9

l l

,= m . _.m . _. m m , ._...,.m _.m :,

8 sE . E E E s a - -

E E

E 5

1 I 1 lt w

. i o i o 1 1

1 i

l 1

i = -

o

  • o l o ,
m>

5

+ .

art-i 7

m h D E o

o

,e o +

O ELs

C

  • oc>

O O

e O

O O g lutz 3>

D=0 C:l FT'8 Z::

em rT9 M M

  • eft o 2ll o =e tvg e o
  • TS e-o

+ ~

=53

. a 8

l e

0 e

Y i

140 1 ,

1 K.A.L., Inc'.

Worker 1, WB w/o NP, Class W l

INTAKE EVALUATION l

e l ****************************** RADIONUCLIDE ******************************  ;

i Co-60 1

i PHYSICAL HALF-LIFE = 1.925E+003 DAYS '

l

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

l ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL j FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS W WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002 STOCHASTIC (INHALATION) ALI = 2.000E+005 nCi *

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 2 3.000E-001 6.000E+000  !

3 1.000E-001 6.000E+001 I

.. 4 1.000E-001 8.000E+002

                                                          • INTAKE ESTIMATE ****************************

l INTAKE ESTIMATED FROM WHOLE-BODY BIOASSAY ESTIMATE OF INTAKE FROM ITERATIVE i WEIGHTED FIT OF DATA = 3.717E+002 nCi '

EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 1.169E+002 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION'OF STOCHASTIC ALI = 1.9E-003 COMMITTED EFFECTIVE DOSE EQUIVALENT = 9.292E-003 rem 4

O O

141

. . . . - - .-. .. - - - - . - - ._- - . . = _ -

PAGE 2 J K.A.L., Inc.

, l Worker 1, WB w/o NP, Class W INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF Co-60 WHOLE-BODY BIOASSAY * '

TIME ITERATIVE POST BIOASSAY WEIGHTED-FIT ERROR RETENTION EXPECTATION

, INTAKE MEASUREMENT MEASUREMENT FRACTION VEASUREMENT (DAYS) (nCi) (nCi) i

______________________________________________________(nCi) ________

0.06 4.111E+002 7.000E+000 3.848E-001 1.430E+002 4

0.91 3.433E+002 8.200E+000 5.180E-001 1.926E+002 2.02 1.06LE+002 4.800E+000 4.123E-001 1.533E+002 2.98 5.120E+001 2.700E+000 3.095E-001 1.150E+002

4.25 2.459E+001 2.600E+000 2.314E-001 8.602E+001 5.25 1.842E+001 2.400E+000 2.016E-001 7.492E+001 6.25 1.694E+001 2.400E+000 1.855E-001 6.896E+001 9.14 1.673E+001 1.200E+000 1.664E-001 6.185E+001 10.40 1.274E+001 1.800E+000 1.620E-001 6.023E+001 13.30 1.178E+001 1.800E+000 1.541E-001 5.730E+001 n

e 142

4,,p2 ,_,a-.d-,46-4 *

""*"d-'--J9- - -

  • 3 9

e o:= mm - ac-n :x . a= w. om.on .n=  ;

.E s

8 $

- -$ 5 w

o O

h a h o ,

s> O
    • =

O 7

m h o a E

, 8 $ i O i au M

M a

.DO O 1 o

O 4 l M

C .-.

  • ==e O m lElp C

$ "I>

M C

M 2=

M m N e M

- A O  ::E" O M M

O T1 M

h M

4 8

143

( .

~

. K.A.L., Inc.

l .

Worker 1, Co60 Feces, Ing.

INTAKE EVALUATION a

                                                            • RADIONUCLIDE ******************************

1 Co-60  ;

PHYSICAL HALF-LIFE = 1.925E+003 DAYS

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INGESTION INTAKE STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002 STOCHASTIC (INGESTION) ALI = 5.000E+005 nCi

                                                      • SYSTEMIC EXCRETION ***************************

FRACTION OF SYSTEMIC EXCRETION THRCUGH FECES = 0.20 I I

1 l

{~;*********************PARAMETERSFORSYSTEMICMODEL**********************

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 1 5.000E-001 5.000E-001 2 3.000E-001 6.000E+000

- 3 1.000E-001 6.000E+001 4 1.000E-001 8.000E+002

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 1.492E+002 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 1.578E+001 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 3.0E-004 COMMITTED EFFECTIVE DOSE EQUIVALENT = 1.492E-003 rem e

144

l PAGE-2 1 1

K.A.L.,.Inc. l

, Worker 1, Co60 Feces, Ing.

INTAKE ESTIMATED FROM STATISTICAL EVALUATION Gl' '

Co-60 INCREMENTAL FECES DATA

l ITERATIVE .

TIME FECES WEIGHTED-FIT I POST COLLECTION BIOASSAY ERROR ' RETENTION EXPECTATION  :

INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (DAYS) (nCi) (nCi) (nCi) 5.90 1 00 1.790E+000 3.300E+002. 1.231E-002 1.836E+000  ;

! 9.90 1.00 1.050E-001 1.800E-002 3.799E-004 5.666E-002-  !

12.90 1.00 1.580E-002 5.200E-003 1.239E-004 1.848E-002- ,

l i

6 i

l l

t

~!'

t i

t l

l i

145  !

l.. 1 I

a-v:xem -cnam =r m' s _. Om.on . n ::,

.* -" *

  • r r r r & P a

4 4

_ _6 k

I

- 1 O

l O N

g O a

CED

-93 l *

r.
  • i 7 .

O FT1 O DC O U

O l  %

c l

I = *

\ .

eL8 M

>=

O O

e O

D=4 V w FTg

>* es IB MP

xp O ETS e O DC >=e

__ sty c FT3 gT3 n

-e 2::

  • 3> ret w o-e p 9=4 M M M Z

. :E:

  • O q;;;p C ltJ
Ep r" "T9 C:l: >=e P. ' ' .=e

_ a W I 8

l l l

! .. l l

146 i

1

- K.A.L., Inc.  !

Worker 1, U in Feces, Ing.

. l INTAKE EVALUATION l

                                                            • RADIONUCLIDE ******************************

. U PHYSICAL HALF-LIFE = 1.000E+010 DAYS i

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

l ACUTE INGESTION INTAKE l STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED l

WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002 l STOCHASTIC (INGESTION) ALI = 2.000E+001 nCi I

                                                      • SYSTEMIC EXCRETION ***************************

2 FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.00

                                          • PARAMETERS FOR SYSTEMIC MODEL ********************** l NONE NEEDED
                                                          • INTAKE ESTIMATE ****************************

INTAK5 ESTIMATED FROM INCREMENTAL FECES DATA 4

ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 3.463E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 2.356E+000 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 1.7E-002 l COMMITTED EFFECTIVE DOSE EQUIVALENT = 8.657E-002 rem l

\

l 4

147 i

l

_. _ .. . _ _ . _ . - . . _ . _ . _ .. . _ _ _ _ _ . _ _ _ _ _ _ __ _ ., . . _ _ _ _m . . _ _.

PAGE 2

~

. K.A.L., Inc. F

, Worker 1, U in Feces, Ing.

INTAKE ESTIMATED FROM STATISTICAL EVALUATION QF U INCREMENTAL FECES DATA ITERATIVE TIME FECES WEIGHTED-FIT POST COLLECTION BIOASSAY ERROR RETENTION EXPECTATION INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (DAYS) (nCi) (nCi) (nCi)

~ ~ ~~~~~~

j[9h'~~~~~[~oh [75bE-Ob5 kI5bbbbbb 5kbhbbb5 k55bbb05 9.90 1.00 1.310E-003 3.606E-002 2.214E-004 7.668E-005 12.90 1.00 1.190E-003 3.450E-002 1.103E-005 3.819E-006

(.$'

i i

l l .

3 148 l

l l

J- % w e - e-- .- mm .--A.l,

. e.Am-.-- M. - *w.mm d,en - A4* --ee--,- pA E a-. - a w a.am a a e

dB O

M e ==- V 2 & 4/a .- W Ob @ "Tl" 7 4r M 3-. C .-. m 3 M. -W acPb

\

' 6 W

6 W 6 w

t en -

o $ v l i

O I C

l l

i N '

==4 O

g o n.

3  !

+

M na a00 9 e o I FTB C l DC C U l o

C '

9

[ 4d>

O O

x O e-=  %

d'

= C .

. 1 # h ,

O O

d 6=4 V. w FT5

  • 3 BT3  %

O DC e- e

  • 101 C FTW ETE M

w 2:  :

2 m 1

, --e e-o i p.m. M M I Q Z M. 2  %

O M o C C D

r"* "T1 C o-e FTB w w <  %

W u 8

1 .

i l .. .

149

4 1

K.A.L., Inc.

Worker 1, Pu236 Feces, Ing.

INTAKE EVALUATION o***************************** RADIONUCLIDE **************#***************

Pu-239 PHYSICAL HALF-LIFE = 8.800E+006 DAYS

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INGESTION INTAKE STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 1.000E-003 I STOCHASTIC (INGESTION) ALI = 8.000E+002 nCi

                                                      • SYSTEMIC EXCRETION ***************************

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12 l l

l l

                                          • PARAMETERS FOR SYSTEMIC MODEL ********* ***** *******

{

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 1 1.410E-001 2.000E+000 2 1.240E-001 6.600E+000 l 3 7.900E-002 5.600E+001 l 4 8.970E-002 3.800E+002  !

5 5.663E-001 4.000E+003

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE  !

WEIGHTED FIT OF DATA = 2.687E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 4.385E-002 nCi

                                                        • DOSIMETRY RESULTS 1**************************

FRACTION OF STOCHASTIC ALI - 'E-004 COMMITTED EFFECTIVE DOSE Egi.'!Va,ENT = 1.679E-003 rem e

i O 150

PAGE 2 ,

K.A.L., Inc.

Worker 1, Pu236 Feces, Ing.

INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF ,

i Pu-239 INCREMENTAL FECES DATA . i I

ITERATIVE i TIME FECES WEIGHTED-FIT

! POST COLLECTION BIOASSAY ERROR RETENTION EXPECTATION INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (DAYS) (nCi) (nCi) (nCi)

___________ .___. .._____________________________________.._____._ ...... 1 5.90 1.00 3.300E-003 3.700E-004 1.266E-002 3.403E-003 9.90 1.00 1.700E-004 8.300E-005 2.365E-004 6.354E-005 ,

12.90 1.00 0.000E+000 1.000E+000 1.254E-005 3.371E-006 I

i i 4.

9' l

t I

i i

151

  • 1PM'5 laCeF hi2 "i 932up iCn 2

9 0 0 E E 0

3 -

I 3

6 0 .I

}

0 0

7 T

0

. 0 i

n 0 e

. A f

t e 8 r .

0 E 0 p

x o

s u

0 r

- e 9 d 0

- a 0 y 0 s

-V

- 1 (

t 0

. . i*

0 0

(

I

~ ) T 1

E

R

- 1 0 E X

A T

I 0 P U E E C

T ~W A E T I 1 I G 2 D H H T 0 E 0 U D A

L F U I E T 1 :

3  :

Im"

l 2

~

K.A.L., Inc.

Worker 1, Pu-258 Feces, Ing.

INTAKE EVALUATION ,

                                                            • RADIONUCLIDE ******************************

Pu-238 I PHYSICAL HALF-LIFE = 3.200E+004 DAYS RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************ J ACUTE INGESTION INTAKE STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED l WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 1.000E-003 l STOCHASTIC (INGESTION) ALI = 9.000E+002 nCi

                                                      • SYSTEMIC EXCRETION *************************** )

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

C.

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 1 1.410E-001 2.000E+000 2 1.240E-001 6.600E+000 ,

, 3 7.900E-002 5.600E+001  !

4 8.970E-002 3.800E+002 l 5 5.663E-001 4.000E+003 1

I

                                                          • INTAKE ESTIMATE **************************** l INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 5.955E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 1.744E-001 nCi
                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 6.6E-004 COMMITTED EFFECTIVE DOSE EQUIVALENT = 3.308E-003 rem 153

_ . , - _- . = . _ . _ . _ _ _ _ _ . . . _ . _ _ _ _ _ _ _ _ _ _ . - ._ _ _ _ _ _ . . _ _ _ .

PAGE 2 K.A.L., Inc.

~

Worker 1, Pu-238 Feces, Ing. L i

INTAKE ESTIMATED FROM STATISTICAL' EVALUATION OF Pu-238 INCREMENTAL FECES DATA

  • 4 i 4

J k.

ITERATIVE TIME FECES WEIGHTED-FIT POST COLLECTION BIOASSAY ERROR RETENTION EXPECTATION i INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (DAYS) (nCi) (nCi) (nCi) .

5.90 1.00 7.150E-003 5.900E-004 1.266E-002 7.541E-003 -

9.90 1.00 4.680E-004 1.400E-004 2.364E-004 1.408E-004  !

12.90 1.00 7.090E-005 2.800E-005 1.254E-005 7.468E-006 i

i i

I r

l l

l 154 l

-  !: --  !!, li i  ; i: : iil ' 1 1 ! 4 e " ! laceF h92 "i 832uP iCn 2

9 6 8

- 0 0 .0 0 E E E E 4

3 0

3 0

3 4 -

-- - " f -

6 ( .

- 0 . )

0

- 0 7

. T 0

i 0 -

0 _

n e

A

. f -

t

. e 8 r .

0 E 0

. x 0 p

- o _

s u

- r e 9

._ d 0 a 1

- A y

s 0

- 1 #

% 0 0

I+

0

(

- )

I T

E 1

1

R A

( E T 0

1 X I P U E E C

I N A E T I 1 . I G 2 O H N T 0 E .

0 U D A

L F _

U I _

E T 1

3 0

N 0

l 0.

3 1

l K.A.L., Inc.

i Worker 1, Am-241 Feces, Ing.

INTAKE EVALUATION

                                                            • RADIONUCLIDE ****************************** 1 l

Am-241 PHYSICAL HALF-LIFE = 1.580E+005 DAYS l

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INGESTION INTAKE  ;

i STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED l WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 1.000E-004 STOCHASTIC (INGESTION) ALI = 1.000E+003 nCi

                                                      • SYSTEMIC EXCRETION ***************************

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

C; 1 l

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) i 1 1.410E-001 2.000E+000 2 1.240E-001 6.600E+000

, 3 7.900E-002 5.600E+001 4 8.970E-002 3.800E+002 5 5.663E-001 4.000E+003

                                                          • INTAKE ESTIMATE **************************** i INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 5.276E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 1.580E-001 nCi
                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 5.3E-004 COMMITTED EFFECTIVE DOSE EQUIVALENT = 2.638E-003 rem a

e 156

! PAGE 2 r

l

  • K.A.L., Inc.

Worker 1, Am-241 Feces, Ing.

'IN5AKE ESTIMATED FROM STATISTICAL EVALUATION OF

  • Am-241 INCREMENTAL FECES DATA l

ITERATIVE TIME FECES WEIGHTED-FIT POST COLLECTION BIOASSAY ERROR RETENTION EXPECTATION INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT i (DAYS) (DAYS) (nCi) (nCi) (nCi)

! _____________________ _______ .________ .____.._________________ ._____ . )

1

5.90 1.00 6.320E-003 5.400E-004 1.267E-002 6.687E-003 9.90 1.00 4.420E-004 1.100E-004 2.355E-004 1.243E-004 12.90 1.00 5.550E-005 3.300E-005 1.181E-005 6.229E-006 l

l l

e 6

\

l 157

* ----~^

g u .. -~

' t -' ~; l'. ':g '; L' , _ _ ' "" ", " - ' ' " " " " * , , ,

i l

s e

4 O =W 2 & 4#D - W b 4 "T9 F .es>@- D. om.es p@:lE :3> .n 3 M 4s e soo 6

w 6 w 6 w b w

m ,%

O 4 v O

O N

g O n.

ID ate art [

run ano 7

  • O FFt O DC O V

O W

C 9

f Ra>

e b o W

.O O

. s$

O v%

o=4 V ==4 F

.FE
=>

'o O

m DC w

"O C FFE M sf"D

-e 2:

"E> m

==e e-o M >=6 M N E3 :X:

  • ::E: ==e O M O C etllp
3>

F"" *TI C e-e FFI =-e e*

  • W

8 4

158

~

K.A.L., Inc.

Worker 1, Cm244 Feces, Ing.

INTAKE EVALUATION a

                                                            • RADIONUCLIDE ******************************

Cm-244 PHYSICAL HALF-LIFE = 6.610E+003 DAYS

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INGESTION INTAKE  !

l STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED l WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 1.000E-003 STOCHASTIC (INGESTION) ALI = 3.000E+003 nCi

                                                      • SYSTEMIC EXCRETION ***************************

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12 1

I

{I ********************* PARAMETERS FOR SYSTEMIC MODEL **********************

1 COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) l 1 1.410E-001 2.000E+000 2 1.240E-001 6.600E+000

, 3 7.900E-002 5.600E+001 4 8.970E-002 3.800E+002 l 5

5.663E-001 4.000E+003

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 2.881E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 2.026E-001 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 9.6E-005 COMMITTED EFFECTIVE DOSE EQUIVALENT = 4.802E-004 rem 159

PAGE 2 '

4 . .

K.A.L., Inc.

Worker 1, Cm244 Feces, Ing.  !

' INTAKE ESTIMATED FROM STAT'4STICAL EVALUATION OF i

Cm-244 INCREMENTAL FECES DATA

  • t ITERATIVE TIME FECES WEIGHTED-FIT POST COLLECTION BIOASSAY ERROR RETENTION EXPECTATION 4 INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT a

(DAYS) (DAYS) (nCi) (nCi) (nCi) i 5.90 1.00 3.230E-003 3.900E-004 1.266E-002 3.646E-003 9.90 1.00 3.990E-004 9.000E-005 2.362E-004 6.806E-005

] 12.90 1.00 8.900E-005 3.400E-005 1.253E-005 3.609E-006 4

l l

4 C

4 I

4 i

a I

e 9

160

.-o

I i

n1.0E-Of- ITERATIVE ilEIGHTED FIT C

i () ( ) : EXPECTATION UALUE 2

9 4

i i n 2.0E-03 2

1 3

~

i h

, F

, e

.C a

I O

" 6.000 7.000 8.000 9.000 10.00 11.00 12.00 13.00

. e fiHe After Exposure, days .

O . _ _ . . .- ..

O

- K.A.L., Inc.

Worfer 2, WB with NP, CIass Y

[V]

INTAKE EVALUATION

                                                            • RADIONUCLIDE **************I***************

Co 60 PHYSICAL HALF-LIFE = 1.925E+003 DAYS t

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS Y WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002 STOCHASTIC (INHALATION) ALI = 3.000E+004 nCi

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 2 3.000E-001 6.000E+000 i 3 1.000E-001 6.000E+001 l

, 4 1.000E-001 8.000E+002 '

                                                          • INTAKE ESTIMATE ****************************

l INTAKE ESTIMATED FROM WHOLE-BODY BIOASSAY ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 6.887E+002 nCi i EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 1.950E+002 nCi o*************************** DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 2.3E-002 COMMITTED EFFECTIVE DOSE EQUIVALENT = 1.148E-001 rem 162

. - . . - . . . - .. .. . . - ~ ~ - - .-- ~~. - .~ . . -. - - -

PAGE 2

_- K.A.L., Inc.

Worker 2, WB with NP, Class Y j

INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF Co-60 WHOLE-BODY BIOASSAY a P

ITERATIVE TIME I

POST WEIGHTED-FIT BIOASSAY ERROR RETENTION EXPECTATION i

INTAKE MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (nCi)

(DAYS) (nC1) (nCi) ,

.............................................................. l 0.06 1.080E+003 1.300E+001 6.299E-001 4.338E+002 0.27 9.905E+002 9.900E+000 6.286E-001 4.330E+002  !

2.00 1.742E+002 4.400E+000 4.207E-001 2.897E+002 2.97 4.047E+001 3.300E+000 2.989E-001 2.059E+002 4.29 3.033E+001 2.800E+000 2.129E-001 1.466E+002 5.22 2.321E+001 2.600E+000 1.858E-001 1.279E+002 6.26 2.310E+001 )

1.800E+000 1.709E-001 1.177E+002 l 9.24 2.079E+001 1.500E+000 1.583E-001' 1.090E+002 10.30 2.067E+001 1.500E+000 1.570E-001 1.081E+002 12.30 2.075E+001 2.100E+000 1.554E-001 '1.070E+002 1

13.20 2.164E+001 1.500E+000 1.549E-001 1.067E+002  :

17.20 2.100E+001 2.000E+000 1.531E-001 1.055E+002  !

18.00 1.688E+001- 2.000E+000 1.528E-001 1.053E+002 19.00 1.762E+001 2.000E+000 1.525E-001 1.050E+002 i

t e

e O

163

- - ---. ..-<.. . --.......=

- - ; ., . . e > . - .

l

. i NX WD -.hC % n -lp . ggq, g =- om.om _.m.  ;

E E E g r a

r  !

- s -

m w - $,"

g T

M e

o

- h 4

4 i

o 4

o ..g i

o 1

i

  • W 2

E' m

e O O

- . o e

& j m

DC o

4 V o O o

,i 49 d C M

h' h

, a O .$

1 i ~c o

.M . .

o o =

h 4

  • e=4 o --e M

TIP

X>

.- e 9-4 C

  • M o E O

e M

o-e m

h  ::c

- -e eC> m o .$ o o *TE ow g ==4 M

o E

164

K.A.L., Inc.

q .

Work'er 2, WB with NP, Class W 1

. I INTAKE EVALUATION

                                                            • RADIONUCLIDE *************************a=*** l Co-60 I PHYSICAL HALF-LIFE = 1.925E+003 DAYS  !
                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STMCARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELO USED 100.0% CLASS W WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002 STOCHASTIC (INHALATION) ALI = 2.000E+005 nCi

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 2 3.000E-001 6.000E+000 3 1.000E-001 6.000E+001

, 4 1.000E-001 8.000E+002

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM WHOLE-BODY BIOASSAY l ESTIMATE OF INTAKE FROM ITERATIVE l WEIGHTED FIT OF DATA = 6.812E+002 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 1.963E+002 nCi i eo************************** DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 3.4E-003 COMMITTED EFFECTIVE DOSE EQUIVALENT = 1.703E-002 rem e

o -

165

PAGE 2 i i

i K.A.L., Inc.

fs i

  • (

Workir 2, WB with NP, Class W 4

INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF l Co-60 WHOLE-BODY BIOASSAY

  • l 1

ITERATIVE i TIME WEIGHTED-FIT ,

POST BIOASSAY ERROR RETENTION EXPECTATION '

INTAKE MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (nCi) (nCi) (nci) i 0.06 1.080E+003 1.300E+001 6.280E-001 4.278E+002 '

O.27 9.905E+002 9.900E+000 6.205E-001 4.227E+002 2.00 1.742E+002 4.400E+000 4.232E-001 2.883E+002 4.047E+001 l 2.97 3.300E+000 3.120E-001 2.125E+002 4.29 3.033E+001 2.800E+000 2.300E-001 1.567E+002 5.22 2.321E+001 2.600E+000 2.022E-001 1.378E+002 6.26 2.310E+001 1.800E+000 1.854E-001 1.263E+002  !

9.24 2.079E+001 1.500E+000 1.660E-001 1.131E+002 10.30 2.067E+001 1.500E+000 1.624E-001 1.106E+002 '

12.30 2.075E+001 2.100E+000 1.567E-001 1.067E+002 13.20 2.164E+001 1.500E+000 1.544E-001 1.052E+002 l 17.20 2.100E+001 2.000E+000 1.454E-001 9.907E+001 l 18.00 1.688E+001 2.000E+000 1.438E-001 9.796E+001 19.00 1.762E+001 2.000E+000 1.418E-001 9.661E+001

( )

i e

e O

166

I d

i 4

. -- - = _.O . _.e . _. . . _ . Q , . ,_, _ . , . , .

i .E E ~E E r r j

O O

O O

m n w &

w.

T f

1 M

O O $

O I h l

.Se j

. I J

1 O . -h O

O h h

= a O

4 O . -

N

+ C 3

  • W1"

. s i acc>

fTE .

DC O V O O O W

C h

? M O

i f

x O

o &

e-a.

M h

c O T h

M

.Sl

. e=e O .=e O fT3 35 llD

-e M

.A M O

O E fT1 e-o .

m i h z M --e O fT3 O

-$ O O *T9 o-o M

C 8

. \

i l

1 I

h I

167

K.A.L., Inc.

i q Worker 2, WB w/o NP, Class Y INTAKE EVALUATION

                                                            • RADIONUCLIDE *************I****************

Co-60 PHYSICAL HALF-LIFE = 1.925E+003 DAYS

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 i

STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS Y WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002 STOCHASTIC (INHALATION) ALI = 3.000E+004 nCi l

l o********************

PARAMETERS FOR SYSTEMIC MODEL **********************

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 1 5.000E-001 5.000E-001  ;

2 3.000E-001 6.000E+000 l 3 1.000E-001 6.000E+001 d-4 1.000E-001 8.000E+002 o**************************** INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM WHOLE-BODY BIOASSAY ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 7.896E+002 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 2.939E+002 nCi f

                                                        • DOSIMETRY RESULTS *************************** .

1 FRACTION OF STOCHASTIC ALI = 2.6E-002 l COMMITTED EFFECTIVE DOSE EQUIVALENT = 1.316E-001 rem  !

1 J

l 168

PAGE 2

,- K.A.L., Inc.

Worker 2, WB w/o NP, Class Y INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF

] Co-60 WHOLE-BODY BIOASSAY a

4

, ITERATIVE TIME WEIGHTED-FIT POST BIOASSAY ERROR RETENTION EXPECTATION INTAKE MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (nCi) (nCi) (nCi) 0.06 1.080E+003 1.300E+001 3.644E-001 2.878E+002 0.27 9.905E+002 9.900E+000 4.414E-001 3.485E+002 2.00 1.742E+002 4.400E+000 4.114E-001 3.248E+002

, 2.97 4.047E+001 3.300E+000 2.972E-001 2.346E+002 4.29 3.033E+001 2.800E+000 2.127E-001 1.679E+002 5.22 2.321E+001 2.600E+000 1.857E-001 1.467E+002 6.26 2.310E+001 1.800E+000 1.709E-001 1.349E+002 9.24 2.079E+001 1.500E+000 1.583E-001 1.250E+002 I

10.30 2.067E+001 1.500E+000 1.570E-001

)

1.239E+002 i

. 12.30 2.0752+001 2.100E+000 1.554E-001 1.227E+002

+

13.20 2.164E+001 1.500E+000 1.549E-001 1.223E+002 i 17.20 2.100E+001 2.000E+000 1.531E-001' 1.209E+002 l 18.00 1.688E+001 2.000E+000 1.528E-001 1.207E+002

(' 19.00 1.762E+001 2.000E+000 1.525E-001 1.204E+002  !

(!) i

-~

169

4 a.m_._.A .a. -& .a_._,... a__a.u____.a_ _ aJ- KAAa _A -- r.- -a., ._A+__e 2A64 g4; a _4d m as > --a w-ma e vmwim a,._. . . m 4

4 l .

a

~*

b"OEO WE D -. qq,g _,

V if f E E r a

r m

O a -

O a w - s w-s 4

e h

  • i O

O h

v A O h

1 O 4

O ..h i

e A

. y 2 O

,' e e O . -

lE> O $

+ O 1' e .

u ft

  • 4 m

O l

  • O 1 O O I  %

4 C

1 m"4 h

- - l i

i a .

O as g (

/, c O .

m }

5 O T' e 4

==4 O FT1

stp 3>

==g

> D=4 C

fTW O

F.T3

$ C%

. x O O O *TS

>=e M

O 8

e 1

i i

l I

l 170  !

I I

f

,- K.A.L., Inc.

1 Worker 2, WB w/o NP, Class W INTAKE EVALUATION l

                                                            • RADIONUCLIDE *************I**************** '

Co-60 '

PHYSICAL HALF-LIFE = 1.925E+003 DAYS

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INHALATION INTAKE OF 1.00 MICRON AMAD AEROSOL FRACTION OF INTAKE DEPOSITED IN LUNGS = 0.630 DNP = 0.300 DTB = 0.080 DP = 0.250 STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED 100.0% CLASS W WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002 l STOCHASTIC (INHALATION) ALI = 2.000E+005 nCi

                                          • PARAMETERS FOR SYSTEMIC MODEL **********************

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 1 5.000E-001 5.000E-001 2 3.000E-001 6.000E+000 3 1.000E-001 6.000E+001 4 1,000E-001 8.000E+002 l

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM WHOLE-BODY BIOASSAY ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 7.696E+002 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 2.828E+002 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 3.8E-003 COMMITTED EFFECTIVE DOSE EQUIVALENT = 1.924E-002 rem O

171

PAGE 2

,- K.A.L., Inc.

Worker 2, WB w/o NP, Class W INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF Co-60 WHOLE-BODY BIOASSAY a

}

TIM 5 ITERATIVE POST WEIGHTED-FIT BIOASSAY ERROR RETENTION EXPECTATION INTAKE MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (nCi) (nci) (nCi) 0.06 1.080E+003 1.300E+001 3.864E-001 2.974E+002 0.27 9.905E+002 9.900E+000 4.502E-001 3.465E+002 2.00 1.742E+002 4.400E+000 4.148E-001 3.192E+002 2.97 4.047E+001 3.300E+000 3.104E-001 2.389E+002 4.29 3.033E+001 2.800E+000 2.298E-001 1.769E+002 5.22 2.321E+001 2.600E+000 2.022E-001 1.556E+002 6.26 2.310E+001 1.800E+000 1.854E-001 1.427E+002 9.24 2.079E+001 1.500E+000 1.660E-001 1.278E+002 10.30 2.067E+001 1.500E+000 1.624E-001 1.250E+002 12.30 2.075E+001 2.100E+000 1.567E-001 1.206E+002 13.20 2.164E+001 1.500E+000 1.544E-001 1.188E+002 17.20 2.100E+001 2.000E+000 1.454E-001 1.119E+002 18.00 1.688E+001 2.000E+000 1.438E-001 1.107E+002 19.00 1.762E+001 2.000E+000 1.418E-001 1.092E+002 4

4 i

O O

172

4

-- - -. - c a- a - . . _. om.. , _. m .

F E

s f

a

's o

a o

r a

r m

w &

w

, a 4

i f

O 1 o o

. h 1 o a n

-l o $

o k,

i

. h a , .

i .

+

r "I>

m o.h O

o i

e A, R

  • ec.

FT1 .

$ M o t:p o 1

O o I M c

h 1

g .o O

a.s w o h i f - 1 I I a .ro . . I

! .- o 1

1 h

i -

j + 5E

. . g

. ==4 l

< C m '

l

. s>

t=a. ==.4 pe C

.O m 4

o o M i M e=e

_ =

l e "

m

. CD .h

, o o "F5 s >=e

! T ==4 04

.i O

8 1

e 1

i 1

173 4

4

~ .. -. . .- ._, . _ _ _ .

1 3 )

y .

. K.A.L., Inc.

(h

\- /

Worker 2, Co60 in Feces, Ing. 1 INTAKE EVALUATION , l t

o***************************** RADIONUCLIDE ****************************** I Co-60 PHYSICAL HALF-LIFE = 1.925E+003 DAYS

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

I ACUTE INGESTION INTAKE l l

STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002 STOCHASTIC (INGESTION) ALI = 5.000E+005 nCi

                                                      • SYSTEMIC EXCRETION ***************************

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.20 (d( ********************* PARAMETERS FOR SYSTEMIC MODEL **********************

V COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 1 5.000E-001 5.000E-001 2 3.000E-001 6.000E+000 3 1.000E-001 6.000E+001 4 1.000E-001 8.000E+002

                                                          • INTAKE ESTIMATE **************************** l INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 7.787E+001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 1.167E+001 nCi
                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 1.6E-004 COMMITTED EFFECTIVE DOSE EQUIVALENT = 7.787E-004 rem 174

.a4 ,A aw w a.-raeA4M.e - -e+wE_. _h L44 ea- .&.a..~n,e.- X s ~* _a .._aam.&4a.,u --,h24 r ., .. ._3JA . ._ m- ua 44. .A,.e a

4 4

di

, N -

.-=:=cw - c n n. ,, =r J =,_. O.n ..no 4

r+  :- e ~ -

R R R R a

6

- 6 6

6 h,

3 - - -

n =

i v h l I

.u O

O O

OCs g- O Ek

-h

@ E.d>

7 -

O FTt O 3C O V

O

,c *

\

O , 1 1

O O

O i-4w O e **

>=*=

O 4

a-.e V W

    • FFE M 85 343
  • 3>

O STg --.e O aC Dqp Gm=e c

ITS FTI A

-e E M> FFI

==e D-e p D=e G w E2 X

, i s X W O l l N o . s C O 2>

f"* "FB C e=4 FF3 ==s e-a=

e5 8

176

(~] , K.A.L., Inc.

lU l

Worker 2, U in Feces, Ing. 1 i

INTAKE EVALUATION

                                                            • RADIONUCLIDE ******************************

U I PHYSICAL HALF-LIFE = 1.000E+010 DAYS l \

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INGESTION INTAKE i

STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 5.000E-002 1 STOCHASTIC (INGESTION) ALI = 2.000E+001 nCi I

                                                      • SYSTEMIC EXCRETION ***************************

l FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.00 e******************** PARAMETERS FOR SYSTEMIC MODEL **********************

NONE NEEDED

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 2.671E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 1.742E+000 nCi

                                                        • DOSIMETRY RESULTS ***t***********************

FRACTION OF STOCHASTIC ALI = 1.3E-002 COMMITTED EFFECTIVE DOSE EQUIVALENT = 6.679E-002 rem 177

.. .- . . . . - - . . . - . ~ . - . - .. . . - . . - - . . . . . . . - . . . . . . _ . .

r .

I l- PAGE 2

~

. K.A.L., Inc.

.fN Worker 2, U in Feces, Ing.

V .

INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF U INCREMENTAL FECES DATA ITERATIVE

TIME FECES WEIGHTED-FIT POST COLLECTION BIOASSAY ERROR RETENTION EXPECTATION INTAKE PERIOD MEASUREMENT . MEASUREMENT FRACTION MEASUREMENT (DAYS) (DAYS) (nCi) (nCi) (nCi) l 6.10 1.00 1.530E-003 3.899E-002 9.785E-003 2.614E-003 10.10 1.00 3.980E-004 1.995E-002 1.813E-004' 4.844E-005 17 ;0 7.370E-004 1.00 2.715E-002 9.030E-006 2.412E-006 i

o 9

4 e

~

O 178

i i - 3 < ,: 1  ;. ii. ii . , ';: : i i 4 !11 i

- s Na> IaCeF. h12 ni U ,.C n

. . 2 4

' .0 0

- E E 0

3 0

(

7

= , _

) _

7 0

0 _

0 _

8 _

T 0 i 0 t

t 0

e A

f t

e 9 r .

0 E 0 _

x 0 _

p o _

s u

r

,e 1 0

d . '

a y

0 0  ? +

s 1

1 0

0 .

(

I

) T _

1 E _

2  : R A

0 E T -

0 X I _

P V E E C

T i -

l A E T I _

1 I G 3 O H

. ' N T 0

, E 0 U D -

A L F U I E T 1

1

.0 0

-R

1 3

K.A.L., Inc. l V]

[

Wor er 2, Pu-239 Feces, Ing.

INTAKE EVALUATION-o***************************** RADIONUCLIDE **************I***************

Pu-239 '

PHYSICAL HALF-LIFE = 9.800E+006 DAYS 1

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************ I ACUTE INGESTION INTAKE STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 1.000E-003 STOCHASTIC (INGESTION) ALI = 8.000E+002 nCi
                                                      • SYSTEMIC EXCRETION *************************** 1 I

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12 i

{ ********************* PARAMETERS FOR SYSTEMIC MODEL ********************** j

! *$^**55_______!![$5I!!53.____!!!I3SICn Hu{g}{g MAYS)

_ j 1 1.410E-001 2.000E+000 2 1.240E-001 6.600E+000 3 7.900E-002 5.600E+001 4 8.970E-002 3.800E+002

, 5 5.663E-001 4.000E+003 4

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA i ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 5.070E-002 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 2.930E-002 nCi

                                                        • DOSIMETRY RESULTS *************************** ,

FRACTION OF STOCHASTIC ALI = 6.3E-005 COMMITTED EFFECTIVE DOSE EQUIVALENT = 3.169E-004 rem

+

k.

180

1 PAGE 2

~

, K.A.L., Inc.

Worker 2, Pu-239 Feces, Ing.

INTAKE ESTIMATED FROM STATISTICAL EVALUATION'OF  !

Pu-239 INCREMENTAL FECES DATA a ITERATIVE I TIME FECES WEIGHTED-FIT i POST COLLECTION BIOASSAY ERROR RETENTION EXPECTATION I INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (DAYS) (nCi) (nCi) (nCi)

....._......____............_____.......______________________.._..._____ l 6.10 1.00 4.850E-004 8.800E-005 1.039E-002 5.269E-004 10.10 1.00 4.000E-005 2.700E-005 1.938E-004 9.828E-006 13.10 1.00 1.230E-005 2.500E-005 1.040E-005 5.272E-007

~ -

5 181 P-

9 ,- l '
; ':!! ,;>> i; :': !

li

_o e Na5 IaCeF h 1 2' n a. 932uP iCn -

- 2 1 6 0 0 0

- E E E 0

1 0

1

-- g D "

- )

7 0

0 0

8 l 0 i

0 _

n 0 e _

A f

t .

e 9 -

r .

0 E 0 x 0 p

o s

u r .

e 1 0

o c+

d 0 a 0 s _

y s _

1 1

0 0

(

I

) T 1 E 2  : R

. A 0 E I 0 X I .

P U .

E E C i I l A E T I 1 I G 3 O H

. ' N T 0 E 0 ' A U D A .

L F U I E T 1

9 0 _

0 0

~2

l i

1 l

~

[ . K.A.L., Inc. I

()N ~

l Worker 2, Pu-238 Feces, Ing. )

INTAKE EVALUATION l

{

                                                            • RADIONUCLIDE ***************S-**************

Pu-238 I PHYSICAL HEF-LIFE = 3.200E+004 DAYS I

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INGESTION INTAKE STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 1.000E-003 STOCHASTIC (INGESTION) ALI = 9.000E+002 nCi

                                                      • SYSTEMIC EXCRETION ***************************

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12

(~

                                          • PARAMETERS FOR SYSTEMIC MODEL **************L;******

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 1 1 1.410E-001 2.000E+000 l 2 1.240E-001 6.600E+000  :

3 7.900E-002 5.600E+001 l 4 8.970E-002 3.800E+002  ;

5 5.663E-001 4.000E+003

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 1.658E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 1.809E-001 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 1.BE-004 COMMITTED EFFECTIVE DOSE EQUIVALENT = 9.209E-004 rem

'b 183 ,

PAGE 2 i

i K.A.L., Inc.

O

. Worker.2, Pu-238 Feces, Ing.

.I INTAKE ESTIMATED FROM STATISTICAL EVALUATION dF Pu-238 INCREMENTAL FECES DATA-

' ITERATIVE TIME FECES WEIGHTED-FIT POST COLLECTION BIOASSAY ERROR RETENTION ' EXPECTATION j INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT 1

(DAYS) (DAYS) (nCi) (nCi) (nCi) 6.10 1.00 1.670E-003 1.700E-004 1.039E-002 1.722E-003 10.10 1.00 0.000E+000 1.000E+000 1.938E-004 3.212E-005 13.10 1.00 8.630E-005 3.700E-005 1.040E-005 1.723E-006 1

.I.

J.

1 i

i i

V i

4 1

4 b

J h

1 i

5 t

e 4

1 i

d 184 l

.a 4 ea A_4 4-&M aa-.*A--4__a .A&A- ._+@A 4M-e.-si d---,--o4A A--.ieAmai,4 4A-42 -d4--J-.44 4sSphe2+-.. iJ -Ah-4+4 A#Ad..4 --A-6mm4W4 Wm >.ma m. as a .am -alm. -,-442.K-m--%4em..- -- a,,w..aw,--esa.-a mm 4

0 i

1 i .

4

~

, @ "U :E & M = & ft O *Tt 2".sE P@ D. eDO W P@ g:: *1p .mp t

r+

i E 1 A ll ..

( "

e i

d N

O O

O 80 0 M

O

/ o O

  • ED

-h art

& El.d>

  • 1 .

O STt O DC O "4:7 aCD C

  • M

[ p C

g . . %

y O l I g O d e

O O

O G==e V .=us

" B79 II 347

  • 3>

e ITU ==e O DC e-4 "4p C ET9 STt Ef"'t

--e I'::

3> fTU

-e og om M A W E:3 3ll

. s  % 2 ==e O

o - h e o FT3 3>

f""" "rt C e=e FFE .e em e5 8

e 2

1

l 1

1 K.A.L., Inc.

( ) -

V , Worker 2, Am-241 Feces, Ing. I l

INTAKE EVALUATION ,

                                                            • RADIONUCLIDE ******************************

Am-241 PHYSICAL HALF-LIFE = 1.580E+005 DAYS

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INGESTION INTAKE STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 1.000E-004 STOCHASTIC (INGESTION) ALI = 1.000E+003 nCi

                                                      • SYSTEMIC EXCRETION ***************************

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12 l

1 l

e"N ********************* PARAMETERS FOR SYSTEMIC MODEL **********************

~

COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 1 1.410E-001 2.000E+000 2 1.240E-001 6.600E+000 3 7.900E-002 5.600E+001 4 8.970E-002 3.800E+002 5 5.663E-001 4.000E+003

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 3.113E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 9.027E-002 nCi

                                                        • DOSIMETRY RESULTS *************************** l FRACTION OF STOCHASTIC ALI = 3.1E-004 COMMITTED EFFECTIVE DOSE EQUIVALENT = 1.557E-003 rem I D v

186

~. . . . . , . . . .

1 i

PAGE-2

~

Q V

K.A.L., Inc.

, Worker 2, Am-241 Feces, Ing.

INTAKE ESTIMATED FROM STATISTICAL EVALUATION OF l Am-241 INCREMENTAL FECES DATA ITERATIVE TIME FECES WEIGHTED-FIT POST COLLECTION BIOASSAY ERROR RETENTION EXPECTATION INTAKE PERIOD ' MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (DAYS) (nCi) (nCi) (nCi) 6.10 1.00 3.210E-003 2.800E-004 1.040E-002 3.238E-003-10.10 1.00 4.710E-005 2.600E-005 1.929E-004 6.004E-005 13.10 1.00 4.380E-005 2.200E-005 9.680E-006 3.013E-006 1

l l

m O

187  !

! . '; !j i i : i  ;!, 1!!1:I,4 i! !;j :ll , Y J } ; !1I

. e

-O .

e$H,5 IaceF h 1 2' 2

0 E-n i. II2NA ;Cn 4

.0 E

0 O 3

" f -

w _

- 7

. 0 _

. 0 _

0

- 8

- T i

0 0

n 0 e _

A f -

t e S r .

0 E 0 _

p x 0 o

s u

r _

,e 1 _

d 0 . -

0 u

t y a 0 O

s _

1 _

1

~

0 0

e

(

l

) i 1 E .

2 R A

0 E I 0 X  !

P U _

E E C i I l A E _

T I 1 I G 3 O H

, N T 0

0 , - U E

D R _

L F _

U I E I 1

1 0

0 O

2 K.A.L., Inc.

(n)

\~/

~

, Worker 2, Cm244 Feces, Ing.

INTAKE EVALUATION *

                                                            • RADIONUCLIDE ******************************

Cm-244 PHYSICAL HALF-LIFE = 6.610E+003 DAYS

                        • RESPIRATORY AND GI TRACT INPUT - DOSIMETRY INPUT ************

ACUTE INGESTION INTAKE STANDARD ICRP 30 RESPIRATORY TRACT AND GI TRACT MODELS USED WITH FRACTIONAL UPTAKE FROM GI TRACT (F1) = 1.000E-003 STOCHASTIC (INGESTION) ALI = 3.000E+003 nCi

                                                      • SYSTEMIC EXCRETION ***************************

FRACTION OF SYSTEMIC EXCRETION THROUGH FECES = 0.12

("'s ********************* PARAMETERS FOR SYSTEMIC MODEL **********************

V COMPARTMENT COEFFICIENT BIOLOGICAL HALF-LIFE (DAYS) 1 1.410E-001 2.000E+000 2 1.240E-001 6.600E+000 3 7.900E-002 5.600E+001 4 8.970E-002 3.800E+002 5 5.663E-001 4.000E+003

                                                          • INTAKE ESTIMATE ****************************

INTAKE ESTIMATED FROM INCREMENTAL FECES DATA ESTIMATE OF INTAKE FROM ITERATIVE WEIGHTED FIT OF DATA = 1.884E-001 nCi EXPERIMENTAL ERROR IN INTAKE ESTIMATE = 3.246E-002 nCi

                                                        • DOSIMETRY RESULTS ***************************

FRACTION OF STOCHASTIC ALI = 6.3E-005 COMMITTED EFFECTIVE DOSE EQUIVALENT = 3.139E-004 rem d

189

I PAGE 2 K.A.L., Inc.

Os ,- Worker 2, Cm244 Feces, Ing.

INTAKE ESTIMATED FROM STATISTICAL EVALUATION 9F Cm-244 INCREMENTAL FECES DATA ITERATIVE TIME FECES WEIGHTED-FIT POST COLLECTION BIOASSAY ERROR RETENTION EXPECTATION {

INTAKE PERIOD MEASUREMENT MEASUREMENT FRACTION MEASUREMENT (DAYS) (DAYS) (nCi) (nCi) (nCi) 6.10 1.00 1.980E-003 2.300E-004 1.039E-002 1.956E-003

.10.10 1.00 0.000E+000 1.000E+000 1.936E-004 3.647E-005 - ,

13.10 1.00 1.460E-005 1.500E-005 1.038E-005 1.956E-006 1

l l

l 4

1 i

4 e

190

i .

ee 4

i a

4 Appendix C1

]

s b

i l

l LSModel Output Results i

4 l for Cases Discussed in Main Report 1

l l

t 4

e 192

LSModel'Ou ut: Worker 1 - Class W-Lung Bioassay Page1 LINEAR STATISTICAL MODEL PROGRAM RESULTS A weighted fit was performed. .

Weighting variances were calculated from expectation values.

The input independent variable matrix, X:

X1,1 : 2.825E-0001 X1,2 : 9.998E-0001 X2,1 : 2.158E-0001 X2,2 : 7.513E-0001 X3,1 : 1.773E-0001 X3,2 : 3.263E-0001 X4,1 : 1.605E-0001 X4,2 : 1.464E-0001 X5,1 : 1.488E-0001 X5,2 : 5.602E-0002 X6,1 : 1.437E-0001 X6,2 : 3.197E-0002 X7,1 : 1.402E-0001 X7,2 : 2.240E-0002 X8,1 : 1.337E-0001 X8,2 : 1.528E-0002 X9,1 : 1.314E-0001 X9,2 : 1.425E-0002 X10,1: 1.264E-0001 X10,2: 1.264E-0002 The input dependent variable matrix, Y:

Y1,1 : 4.111E+0002 Y2,1 : 3.433E+0002 Y3,1 : 1.063E+0002 C1 Y4,1 : 5.128E+0001 YS,1 : 2.459E+0001 Y6,1 : 1.842E+0001 Y7,1 : 1.694E+0001 Y8,1 : 1.673E+0001 Y9,1*: 1.274E+0001 Y10,1: 1.178E+0001 The variance matrix, Vary:

Vary 1,1 : 4.062E+0002 Vary 2,1 : 3.054E+0002 .

Vary 3,1 : 1.367E+0002 Vary 4,1 : 6.523E+0001 VarYS,1 : 2 919E+0001 Vary 6,1 : 1.950E+0001 Vary 7,1 : 1.557E+0001 Vary 8,1 : 1.246E+0001 Vary 9,1 : 1.195E+0001 Vary 10,1: 1.107E+0001 The elements of the B or beta matrix (fitting parameters):

B1,1 : 4.835E+0001

- B2,1 : 3.926E+0002 1

193

LSModelOu ut: Worker 1 - Class W- Lung Bioassay Page 2 The elements.of the expectation value matrix, <Y>: ,

a

<Y>1,1 : 4.062E+0002

<Y>2,1 : 3.054E+0002 '

<Y>3,1 : 1.367E+0002

<Y>4,1 : 6.523E+0001

<Y>5,1 : 2.919E+0001

<Y>6,1 : 1.950E+0001

<Y>7,1 : 1.557E+0001

<Y>8,1 : 1.246E+0001 '

<Y>9,1 : 1.195E+0001

<Y>10,1: 1.107E+0001 The elements of the residual matrix, R:

R1,1 : 4.942E+0000  !

R2,1 : 3.792E+0001  !

R3,1  : -3.037E+0001 l R4,1  : -1.395E+0001  !

R5,1  : -4.597E+0000 i R6,1  : -1.078E+0000 l R7,1 : 1.368E+0000 R8,1 : 4.267E+0000 R9,1 : 7.927E-0001 R10,1: 7.065E-0001 The elements of the Z-score residual matrix, R/o: I I

R/ ci ,* 1 : 2.452E-0001 i R/c2,1 : 2.170E+0000 R/o3,1 : -2.598E+0000 R/o4,1 : -1.728E+0000 R/o5,1 : -8.508E-0001 R/o6,1 : -2.442E-0001 R/o7,1 : 3.465E-0001 R/o8,1 : 1.209E+0000 R/o9,1 : 2.293E-0001 )

R/o10,1: 2.123E-0001 The elements of the theoretical covariance matrix, ThCov:

ThCov1,1 : 1.522E+0002 ThCov1,2 : -8.601E+0001 ThCov2,1 : -8.601E+0001 ThCov2,2 : 2:253E+0002 The elements of the theoretical variance matrix, ThVar:

ThVarl,1 : 1.522E+0002

s. ThVar2,1 : 2.253E+0002 194

a .

J

' ~

LSModel Output: Worker 1 - Class W-Lung Bioassay Page 3 i The elements of the correlation coefficient matrix, Corr:

Corr 1,1 : 1.000E+0000 Corr 1,2 : -4.644E-0001 .

Corr 2,1 : -4.644E-0001 Corr 2,2 : 1.000E+0000

~

The elements of the experimental covariance matrix, ExCov:

ExCov1,1 : 3.228E+0002 ExCov1,2 : -1.824E+0002 i ExCov2,1 : -1.824E+0002 ExCov2,2 : 4.778E+0002 The elements of the experimental variance matrix, ExVar: j ExVarl,1 : 3.228E+0002 i ExVar2,1 : 4.778E+0002 1 The Chi-square value = 1.697E+0001 The reduced Chi-square value = 2.121E+0000 i

1

Results of weighted fit with weighting variances calculated from i expectation values multiplied by the reduced Chi-Square value. )

i '

The variance matrix, Vary: )

Vary 1,1
8.613E+0002 Vary 2,'  : 6.476E+0002 Vr.r?3,1  : 2.898E+0002 4 Vary 4,1  : 1.383E+0002

] VarYS,1 : 6.189E+0001 Vary 6,1 : 4.135E+0001 Vary 7,1 : 3.302E+0001 Vary 8,1 : 2.643E+0001 Vary 9,1 : 2.534E+0001 Vary 10,1: 2.348E+0001 The elements of the Z-score residual matrix, R/o:

R/ol,1 : 1.684E-0001 R/c2,1 : 1.490E+0000 R/o3,1 : -1.784E+0000 R/04,1 : -1.186E+0000 1 R/o5,1 : -5.843E-0001 i R/06,1 : -1.677E-0001 R/o7,1 : 2.380E-0001 R/o8,1 : 8.300E-0001 1 R/o9,1 : 1.575E-0001 I R/o10,1: 1.458E-0001 s

195 i

i

? - - , , _

_ _ . . _ . _ . . - . . . _ . . . . _ _ _ - _ _ _ _ _ . _ .-..__.___._______.__m__-.. _.

1

=

LSModel Output: Worker 1 - Class W- Lung Bioassay Page 4 l The elegents of the theoretical covariance matrix, ThCov: I j l

ThCov1,1 : 3.228E+0002 ThCov1,2 : -1.824E+0002 ,

l - ThCov2,1 : -1.824E+0002 ThCov2,2 : 4.778E+0002 .

i I The elements of the theoretical variance matrix, ThVar:

1 ThVarl,1 : 3.228E+0002  :

ThVar2,1 : 4.778E+0002  !

t i The Chi-square value = # of degrees of freedom = 8.000E+0000 1

The reduced Chi-square value = 1.000E+0000 l

l f

lC 4

i l

l I

I 1

196

LSModel Outhut: Worker 1 - Class Y-Lung Bioassay Page1 LINEAR STATIST.ICAL MODEL PROGRAM RESULTS A weighted fit was performed.

  • Weighting variances were calculated from expectation values.

The input independent variable matrix, X:

X1,1 : 3.137E-0001 X1,2  : 9.998E-0001 X2,1 : 2.188E-0001 X2,2  : 7.513E-0001 X3,1 : 1.805E-0001 X3,2  : 3.263E-0001 X4,1 : 1.652E-0001 X4,2  : 1.464E-0001 X5,1 : 1.557E-0001 X5,2  : 5.602E-0002 X6,1 : 1.522E-0001 X6,2  : 3.197E-0002 X7,1 : 1.504E-0001 X7,2  : 2.240E-0002 X8,1 : 1.484E-0001 X8,2  : 1.528E-0002 X9,1 : 1.480E-0001 X9,2  : 1.425E-0002 ,

X10,1: 1.473E-0001 X10,2: '1.264E-0002 '

The input dependent variable matrix, Y:

Y1,1 : 4.111E+0002 Y2,1 : 3.433E+0002 Y3,1 : 1.063E+0002

{~i s Y4,1 : 5.128E+0001' YS,1 : 2.459E+0001 Y6,1 : 1.842E+0001 Y7,1 : 1.694E+0001 Y8,1 : 1.673E+0001 Y9,1 : 1.274E+0001 Y10,1: 1.178E+0001 The variance matrix, Vary:

Vary 1,1 : 4.070E+0002 Vary 2,1 : - 3.051E+0002 Vary 3,1 : 1.363E+0002 Vary 4,1 : 6.488E+0001 Vary 5,1 : 2.892E+0001 Vary 6,1 : 1.931E+0001 Vary 7,1 : 1.547E+0001 Vary 8,1 : 1.258E+0001 Vary 9,1 : 1.216E+0001 Vary 10,1: 1.149E+0001 The elements of the B or beta matrix (fitting parameters):

B1,1 : 4.428E+0001  !

B2,1 : 3.932E+0002 197

LSModel Outfut: Worker 1 - Clus Y - Lung Bioassay Page 2 The elements of the expectation vaIue matrix, <Y>:

<Y>1,1 : 4.070E+0002

<Y>2,1 : 3.051E+0002 *

<Y>3,1 : 1.363E+0002

<Y>4,1 : 6.488E+0001

<Y>5,1 : 2.892E+0001

<Y>6,1 : 1.931E+0001

<Y>7,1 : 1.547E+0001

<Y>8,1 : 1.258E+0001

<Y>9,1 : 1.216E+0001

<Y>10,1: 1.149E+0001 The elements of the residual matrix, R:

R1,1 : 4.101E+0000 R2,1 : 3.821E+0001 R3,1 : -2.999E+0001 R4,1 : -1.360E+0001 RS,1 : -4.330E+0000 R6,1 : -8.893E-0001 R7,1 : 1.473E+0000 RB,1 : 4.151E+0000 C R9,1 : 5.840E-0001 R10,1: 2.880E-0001 The' elements of the Z-score residual matrix, R/o:

R/olf1 : 2.033E-0001 R/o2,1 : 2.188E+0000 R/o3,1 : -2.569E+0000 R/c4,1 : -1.688E+0000 R/05,1 : -8.052E-0001 R/06,1 : -2.024E-0001 R/o7,1 : 3.746E-0001 R/oB,1 : 1.170E+0000 R/o9,1 : 1.675E-0001 R/o10,1: 8.495E-0002 The elements of the theoretical covariance matrix, ThCov:

ThCov1,1 : 1.257E+0002 ThCov1,2 : -7.553E+0001 ThCov2,1 : -7.553E+0001 ThCov2,2 : 2.220E+0002 l The elements of the theoretical variance matrix, ThVar:

ThVarl,1 : 1.257E+0002 ThVar2,1 : 2.220E+0002

198 ,

l l

l

LSModelOu ut: Worker 1 - Class Y - Lung Bioassay Page 3 The elements of the correlation coefficient matrix, Corr:

Corr 1,1 : 1.000E+0000 Corr 1,2 : -4.521E-0001

  • Corr 2,1 : -4.521E-0001 Corr 2,2 : 1.000E+0000 (

The elements of the experimental covariance matrix, ExCov: I i

ExCov1,1 : 2.594E+0002 ExCov1,2 : -1.559E+0002 ExCov2,1 : -1.559E+0002 ExCov2,2 : 4.583E+0002  !

The elements of the experimental variance matrix, ExVar:

ExVarl,1 : 2.594E+0002 ExVar2,1 : 4.583E+0002 i The Chi-square value = 1.651E+0001  ;

The reduced Chi-square value = 2.064E+0000 l l

l Results of weighted fit with weighting variances calculated from l expectation values multiplied by the reduced Chi-Square value.

The variance matrix, Vary:

Vary 1,1 : 8.400E+0002 Vary 2,1 : 6.296E+0002 Vary 3,1 : 2.813E+0002 Vary 4,1 : 1.339E+0002 VarYS,1 : 5.969E+0001 Vary 6,1 : 3.985E+0001 Vary 7,1 : 3.192E+0001 Vary 8,1 : 2.596E+0001 Vary 9,1 : 2.509E+0001 Vary 10,1: 2.372E+0001 The elements of the Z-score residual matrix, R/o:

R/ol,1,: 1.415E-0001 R/c2,1 : 1.523E+0000 R/o3,1 : -1.788E+0000 i R/o4,1 : -1.175E+0000 R/o5,1 : -5.605E-0001 R/o6,1 : -1.409E-0001 R/o7,1 : 2.608E-0001  ;

R/o8,1 : 8.148E-0001  !

R/o9,1 : 1.166E-0001  !

R/o10,1: 5.913E-0002 .

i l

199 3

LSModel Outfut: Worker 1 - Class Y- Lung Bioassay _

Page 4 The elements of the theoretical covariance matrix, ThCov:

ThCov1,1 : 2.594E+0002 ThCov1,2 : -1.559E+0002

  • ThCov2,1 : -1.559E+0002 ThCov2,2 : 4.583E+0002 ,

The elements of the theoretical variance matrix, ThVar: i ThVarl,1 : 2.594E+0002 ThVar2,1 : 4.583E+0002  ;

The Chi-square value = # of degrees of freedom = 8.000E+0000 i The reduced Chi-square value = 1.000E+0000 i

I l

l l

.- \

S l

l

. i i

200 I

LSModel'Ou ut: Worker 2 - Glass W-Lung Bioassay Page1 LINEAR STATISTICAL MODEL PROGRAM RESULTS A weighted fit was performed.

Weighting variances were calculated from expectation vafues.

The input independent variable matrix, X:

X1,1 : 2.819E-0001 X1,2 : 9.997E-0001 X2,1 : 2.596E-0001 X2,2 : 9.836E-0001 X3,1 : 1.778E-0001 X3,2 : 3.317E-0001 X4,1 : 1.606E-0001 X4,2 : 1.476E-0001 X5,1 : 1.486E-0001 X5,2 : 5.456E-0002 X6,1 : 1.438E-0001 X6,2 : 3.241E-0002 X7,1 : 1.402E-0001 X7,2 : 2.234E-0002 X8,1 : 1.335E-0001 X8,2 : 1.518E-0002 X9,1 : 1.315E-0001 X9,2 : 1.432E-0002 X10,1: 1.281E-0001 X10,2: 1.313E-0002 X11,1: 1.266E-0001 X11,2: 1.269E-0002 X12,1: 1.201E-0001 X12,2: 1.117E-0002 X13,1: 1.188E-0001 X13,2: 1.094E-0002 X14,1: 1.173E-0001 X14,2: 1.067E-0002 The input dependent variable matrix, Y:

Y1,1  : 1.080E+0003 Y2,1  : 9.905E+0002 Y3,1  : 1.742E+0002 Y4,1  : 4.047E+0001 YS,1 * : 3.033E+0001 Y6,1 : 2.321E+0001 i Y7,1 : 2.310E+0001 Y8,1 : 2.079E+0001 Y9,1 : 2.067E+0001 Y10,1: 2.075E+0001 Y11,1: 2.164E+0001 Y12,1: 2.100E+0001 Y13,1: 1.688E+0001 Y14,1: 1.762E+0001 The variance matrix, Vary:

Vary 1,1 : 9.221E+0002 Vary 2,1 : 9.067E+0002 Vary 3,1 : 3.087E+0002 Vary 4,1~: 1.401E+0002 VarYS,1 : 5.473E+0001 Vary 6,1 : 3.435E+0001 Vary 7,1 : 2.504E+0001 201

l LSModel Output: Worker 2 - Class W- Lung Bioassay Page 2 Vary 8,1 ; 1.828E+0001 Vary 9,1 : 1.743E+0001 Vary 10,1: 1.623E+0001 a Vary 11,1: 1.578E+0001  ;

Vary 12,1: 1.417E+0001 '

Vary 13,1: 1.392E+0001 Vary 14,1: 1.362E+0001 The elements of the B or beta matrix (fitting parameters)1 B1,1 : 3.308E+0001 B2,1 : 9.131E+0002 The~ elements of the expectation value matrix, <Y>:

<Y>1,1 : 9.221E+0002

<Y>2,1 : 9.067E+0002

<Y>3,1 : 3.087E+0002

<Y>4,1 : 1.401E+0002

<Y>5,1 : 5.473E+0001

<Y>6,1 : 3.435E+0001

<Y>7,1 : 2.504E+0001 1 <Y>8,1 : 1.828E+0001

<Y>9,1 : 1.743E+0001 I

<Y>10,1: 1.623E+0001  !

<Y>11,1: 1.578E+0001

<Y>12,1: 1.417E+0001 I

<Y>13,1: 1.392E+0001

<Y>14,1: 1.362E+0001 i

The elements of the residual matrix, R: i R1,1 : 1.579E+0002 l R2,1 : 8.382E+0001 R3,1 : -1.345E+0002 <

R4,1 : -9.961E+0001  !

RS,1 : -2.440E+0001 R6,1 : -1.114E+0001 R7,1 : -1.936E+0000 R8,1 : 2.513E+0000 R9,1 : 3.244E+0000 R10,1: 4.523E+0000 i R11,1: 5.865E+0000 R12,1: 6.828E+0000 R13,1: '2.961E+0000 R14,1: 3.997E+0000 s

202

~

LSModel Output: Worker 2 - Class W- Lung Bioassay Page 3 The elements.of the Z-score residual matrix, R/o:

R/ol,1 : 5.199E+0000

  • i R/c2,1 : 2.784E+0000 l R/o3,1 : -7.657E+0000 R/04,1 : -8.416E+0000 R/o5,1 : -3.299E+0000 R/o6,1 : -1.901E+0000 R/o7,1 : -3.870E-0001 R/o8,1 : 5.878E-0001 R/o9,1 : 7.772E-0001 R/o10,1: 1.123E+0000 R/c11,1: 1.477E+0000 R/o12,1: 1.814E+0000 R/o13,1: 7.935E-0001 R/o14,1: 1.083E+0000 The elements of the theoretical covariance matrix, ThCov:

ThCov1,1 : 1.286E+0002 ThCov1,2 : -9.334E+0001 ThCov2,1 : -9.334E+0001 ThCov2,2 : 4.200E+0002

(" . The elements of the theoretical variance matrix, ThVar:

ThVarl,1 : 1.286E+0002 ThVar2,1 : 4.200E+0002 The elements of the correlation coefficient matrix, Corr:

Corr 1,1 : 1.000E+0000 Corr 1,2 : -4.016E-0001 Corr 2,1 : -4.016E-0001 Corr 2,2 : 1.000E+0000 The elements of the experimental covariance matrix, ExCov:

ExCov1,1 : 2.018E+0003 ExCov1,2 : -1.465E+0003 ExCov2,1 : -1.465E+0003 ExCov2,2 : 6.594E+0003 The elements of the experimental variance matrix, ExVar:

ExVarl,1 : 2.018E+0003 ExVar2,1 : 6.594E+0003 The Chi-square value = 1.884E+0002 The reduced Chi-square value = 1.570E+0001

~

203

' ~

4 . . _

LSModel Output: Worker 2 - Glass W -Lung Bioassay Page 4

.Results.of weighted fit with weighting variances calculated from j

expectation , values multiplied by the reduced Chi-Square value. J e 1 f The variance matrix, Vary:

Vary 1,1 : 1.448E+0004 Vary 2,l': 1.423E+0004 Vary 3,1 : 4.847E+0003 Vary 4,1 : 2.199E+0003 4-Vary 5,1 : 8.592E+0002 i Vary 6,1 : 5.392E+0002

! Vary 7,1 : 3.930E+0002 Vary 8,1 : 2.869E+0002'

Vary 9,1
2.735E+0002 l Vary 10,1: 2.547E+0002
Vary 11,1
2.476E+0002 Vary 12,1: 2.225E+0002
Vary 13,1
2.185E+0002 j- -Vary 14,1: 2.139E+0002 LThe elements of the Z-score residual matrix, R/c:

'{ .o R/ci,1 : 1.312E+0000 R/c2,1 : 7.026E-0001 R/o3,1 : -1.933E+0000

'R/o4,1 : -2.124E+0000 R/o5,1 : -8.325E-0001

'R/c6,1 : -4.797E-0001 R/o7/1 : -9.767E-0002

'R/o8,1 : 1.484E-0001 R/09,1 : 1.962E-0001 R/o10,1: 2.834E-0001 R/c11,1: 3.727E-0001 R/o12,1: 4.577E-0001 R/o13,1: 2.003E-0001 "

R/o14,1: 2.733E-0001 The elements of the theoretical covariance matrix, ThCov: l ThCov1,1 : 2.0L.E+0003 ThCov1,2 : -1.465E+0003 ThCov2,1 : -1.465E+0003 l ThCov2,2 : 6.594E+0003 i The elements of the theoretical variance matrix, ThVar:  !

ThVarl,1 : 2.018E+0003 ThVar2,1 : 6.594E+0003 The Chi-square value = # of degrees of freedom = 1.200E+0001 The reduced Chi-square value = 1.000E+0000 l

2 04

l LSModel Output: Worker 2 - Class Y - Lung Bioasay Page 1 l

- 1 LINEAR STATISTICAL MODEL PROGRAM RESULTS i

d A weighted fit _was performed.

i Weighting variances were calculated from expectation values.

The input independent variable matrix, X

X1,1 : 3.128E-0001 X1,2 : 9.997E-0001 X2,1 : 2.755E-0001 X2,2 : 9.836E-0001 X3,1 : 1.809E-0001 X3,2 : 3.317E-0001 X4,1 : 1.654E-0001 X4,2 : 1.476E-0001 l X5,1~: 1.555E-0001 X5,2 : 5.456E-0002

X6,1
1.523E-0001 X6,2 : 3.241E-0002 1.504E-0001 2.234E-0002

^

X7,1 : X7,2 :

2 X8,1 : 1.483E-0001 X8,2 : 1.518E-0002 X9,1 : 1.480E-0001 X9,2 : 1.432E-0002 X10,1: 1.475E-0001 X10,2: 1.313E-0002 X11,1: 1.473E-0001 X11,2: 1.269E-0002 X12,1: 1.465E-0001 X12,2: 1.117E-0002 X13,1: 1.463E-0001 X13,2: 1.094E-0002 X14,1: 1.461E-0001 X14,2: 1.067E-0002

.. The input dependent variable matrix, Y:

Y1,1 : 1.080E+0003 Y2,1 : 9.905E+0002 Y3,1 : 1.742E+0002 Y4,1 : 4.047E+0001 Y5,1*: 3.033E+0001 Y6,1 : 2.321E+0001 Y7,1 : 2.310E+0001 Y8,1 : 2.079E+0001 Y9,1 : 2.067E+0001 Y10,1: 2.075E+0001 Y11,1: 2.164E+0001 Y12,1: 2.100E+0001

  • Y13,1: 1.688E+0001 Y14,1: 1.762E+0001 LThe variance matrix, Vary:

l Vary 1,1 : 9.212E+0002 Vary 2,1 : 9,053E+0002 Vary 3,1 : 3.081E+0002 Vary 4,1* : 1.398E+0002 Vary 5,1 : 5.464E+0001 Vary 6,1 : 3.434E+0001 Vary 7,1 : 2.511E+0001 205

~

LSModel' Output: Worker 2 - Glass Y - Lung Bioasay Page 2 Vary 8,1.: 1,.851E+0001 Vary 9,1 : 1.772E+0001 Vary 10,1: 1.662E+0001 Vary 11,1: 1.621E+0001 Vary 12,1: 1.480E+0001 ,

Vary 13,1: 1.458E+0001 Vary 14,1: 1.433E+0001 The elements of the B or beta matrix (fitting parameters): l B1,1 : 3.152E+0001 I B2,1 : 9.116E+0002 1

i The elements of the expectation value matrix, <Y>:

l 1

<Y>1,1 : 9.212E+0002 I

<Y>2,1 : 9.053E+0002  !

<Y>3,1 : 3.081E+0002

<Y>4,1 : 1.398i+0002

<Y>5,1 : 5.464E+0001

<Y>6,1 : 3.434E+0001

<Y>7,1 : 2.511E+0001

[{ <Y>8,1 : 1.851E+0001

<Y>9,1 : 1.772E+0001

<Y>10,1: 1.662E+0001

<Y>11,1: 1.621E+0001

<Y>12,1: 1.480E+0001

<Y>13,1: 1.458E+0001

<Y>14,1: 1.433E+0001 The elements of the residual matrix, R: )

1 R1,1 : 1.58EE 0002 R2,1 : 8.519E+0001 I R3,1  : -1.339E+0002 )

R4,1  : -9.929E+0001  !

R5,1  : -2.431E+0001 R6,1  : -1.113E+0001 R7,1  : -2.005E+0000 R8,1 : 2.278E+0000 R9,1 : 2.951E+0000 R10,1: 4.132E+0000 R11,1: 5.429E+0000 -

R12,1: 6.200E+0000 R13,1: *2.296E+0000 R14,1: 3.288E+0000 .

\..

206

l LSModel Outputi Worker 2 - Class Y-Lung Bioasay Page 3

)

The elements of.the Z-score residual matrix, R/o:

]

R/ol,1 : 5.234E+0000 R/o2,1 : 2.831E+0000 R/o3,1 : -7.627E+0000 R/o4,1 : -8.399E+0000 R/o5,1 : -3.288E+0000 R/06,1 : -1.900E+0000 R/o7,1 : -4.002E-0001 R/o8,1 : 5.294E-0001 R/o9,1 : 7.011E-0001 E/o10,1: 1.014E+0000' R/o11,1: -1.348E+0000 R/o12,1: 1.612E+0000 R/o13,1: 6.012E-0001 R/o14,1: 8.686E-0001- .

The elements of the theoretical covariance matrix, ThCov:

ThCov1,1 : 9.786E+0001 ThCov1,2 : -7.729E+0001 ThCov2,1 : -7.729E+0001 ThCov2,2 : 4.131E+0002 I l

The elements of the theoretical variance matrix, Thvar:

{ 'o i

ThVarl,1 : .9.786E+0001 ThVar2,1 :

4.131E+0002 The elements of the correlation coefficient matrix, Corr:

Corr 1,1 : 1.000E+0000 Corr 1,2 : -3.844E-0001 Corr 2,1 : -3.844E-0001 Corr 2,2 : 1.000E+0000 The elements of the experimental covariance matrix, ExCov:

ExCovi,1 : 1.517E+0003 ExCov1,2 : -1.198E+0003 ExCov2,1 -1.198E+0003 ExCov2,2 : 6.404E+0003 The elements of the experimental variance matrix, ExVar:

ExVarl,1 : 1.517E+0003 ExVar2,1 : 6.404E+0003 The Chi-square value = 1.860E+0002 The reduced Chi-square value = 1.550E+0001 207

~ - - - .

LSMod

  • Outfut: Worker 2 - Class Y -Lung Bioasay Page 4 Results.of weighted fit with weighting varia- es calculated from expectation values multiplied by the reduccu chi-Square value.

s The variance matrix, Vary:

Vary 1,1 : 1.428E+0004 Vary 2,1 : 1.403E+0004 Vary 3,1 : 4.776E+0003 Vary 4,1 : 2.167E+0003 Vary 5,1 : 8.470E+0002 Vary 6,1 : 5.324E+0002 Vary 7,1 : 3.892E+0002 Vary 8,1 : 2.870E+0002 Vary 9,1 : 2.747E+0002 Vary 10,1: 2.576E+0002 >

Vary 11,1: 2.513E+0002-Vary 12,1: 2.294E+0002 Vary 13,1: 2.261E+0002 Vary 14,1: 2.222E+0002 The elements of the Z-score residual matrix, R/o:

0 R/ci,1 : 1.329E+0000

{C. R/c2,1 : 7.191E-0001 R/o3,1 : -1.937E+0000 R/04,1 : -2.133E+0000 R/o5,1 : -8.352E-0001 R/o6,1 : -4.826E-0001 '

R/o7,1 : -1.016E-0001 R/o8,1 : 1.345E-0001 R/c9,1 : 1.781E-0001 R/o10,1: 2.574E-0001 R/o11,1: 3.425E-0001 R/o12,1: 4.093E-0001 R/o13,1: 1.527E-0001 R/o14,1: 2.206E-0001 The elements of the theoretical covariance matrix, ThCov:

Thcov1,1 : 1.517E+0003 ThCov1,2 : -1.198E+0003 ThCov2,1 : -1.198E+0003 ThCov2,2 : 6.404E+0003 The elements of the theoretical variance matrix, ThVar:

ThVarl,1 : 1 517E+0003 ThVar2,1 : 6.404E+0003 l

s. The Chi-square value = # of degrees of freedom = 1.200E+0001 The reduced Chi-square value = 1.000E+0000 208  ;

i t

I 1 .

i

1 Appendix C2 1

LSModel Output Results for C

Additional a"888 Analyzed t

0 k

209

d LSModgl Ouhut: Worker 1 - Clus W- Whole Body with NP Page1 LINEAR STATISTICAL MODEL PROGRAM RESULTS

! A weighted fit was performed.

. Weighting variances were calculated from expectation values.

The input independent variable matrix, X:

X1,1 : 6.281E-0001 X1,2 : 9.998E-0001 X2,1 : 5.740E-0001 X2,2 : 7.513E-0001 X3,1 : 4.205E-0001 X3,2 : 3.263E-0001 X4,1 : 3.111E-0001 X4,2 : 1.464E-0001 X5,1 : 2.316E-0001 X5,2 : 5.602E-0002 X6,1 : 2.016E-0001 X6,2 : 3.197E-0002 X7,1 : 1.855E-0001 X7,2 : 2.240E-0002 X8,1 : 1.664E-0001 X8,2 : 1.528E-0002 X9,1 : 1.620E-0001 X9,2 : 1.425E-0002 X10,1: 1.541E-0001 X10,2: 1.264E-0002 The input dependent variable matrix, Y:

Y1,1  : 4.111E+0002 Y2,1  : 3.433E+0002 Y3,1  : 1.063E+0002 C Y4,1  : 5.128E+0001 YS,1  : 2.459E+0001 Y6,1  : 1.842E+0001 Y 7,1 : 1.694E+0001 Y8,1 : 1.673E+0001 Y 9,1. : 1.274E+0001 Y10,1: 1.178E+0001 The variance matrix, Vary:  !

Vary 1,1 : 4.033E+0002 Vary 2,1 : 3.067E+0002 Vary 3,1 : 1.393E+0002

  • Vary 4,1 : 6.681E+0001 Vary 5,1 : 2.955E+0001 Vary 6,1 : 1.932E+0001 Vary 7,1 : 1.510E+0001 l Vary 8,1 : 1.171E+0001  ;

Vary 9,1 : 1.116E+0001 Vary 10,1: 1.027E+0001 The elements of the B or beta matrix (fitting parameters): I B1,1 : 3.538E+0001 -

B2,1 : 3.812E+0002 210

1 1

LSModel Ouhut: Worker 1 - Class W- Whole Body with NP Page 2 The elements of the expectation value matrix, <Y>:

<Y>1,1 : 4.033E+0002

<Y>2,1 : 3.067E+0002

]

<Y>3,1 : 1.393E+0002

. <Y>4,1 : 6.681E+0001

<Y>5,1 : 2.955E+0001

<Y>6,1-: 1.932E+0001 1 <Y>7,1 : 1.510E+0001

<Y>B,1 : 1.171E+0001

<Y>9,1 : 1.116E+0001

<Y>10,1: 1.027E+0001 The elements of the residual matrix, R:

R1,1  : 7.781E+0000 R2,1  : 3.662E+0001 R3,1  : -3.295E+0001 R4,1  : -1.553E+0001 RS,1  : -4.958E+0000 R6,1  : -8.989E-0001 R7,1  : 1.839E+0000 RB.1  : 5.018E+0000

- R9,1 -

1.577E+0000 R.' s , . . 1.510E+0000 The* elements of the Z-score residual matrix, R/o: ,

1 R/ol,1 : 3.875E-0001 R/c2,1 : 2.091E+0000 i R/o3,1 : -2.793E+0000 '

R/o4,1 : -1.900E+0000 R/o5,1 : -9.120E-0001 R/o6,1 : -2.045E-0001 R/o7,1 : 4.731E-0001 R/o8,1 : 1.466E+0000 R/c9,1 : 4.719E-0001 R/o10,1: 4.711E-0001  ;

The elements of the theoretical covariance matrix, ThCov:

ThCov1,1 : 9.099E+0001 ThCov1,2 : -1.013E+0002 ThCov2,1 : -1.013E+0002 ThCov2,2 : 2.898E+0002 The elements of the theoretical variance matrix, Thvar:

Thvarl,1 : 9.099E+0001 '

. ThVar2,1 : 2.898E+0002 211

i e

~ LSModel Output: Worker 1 - Class W- hie Body with NP Page 3 '

~

The elements of the correlation coefficient matrix, Corr:  ;

i

, Corr 1,1 : 1.000E+0000 Corri,2 : -6.239E-0001 Corr 2,1 : -6.239E-0001 *

l. _ Corr 2,2 : 1.000E+0000 j The elements of the experimental covariance matrix, ExCov:

ExCov1,1 : 2.232E+0002 ExCov1,2 : -2.485E+0002 ExCov2,1 : -2.485E+0002 ExCov2,2 : 7.108E+0002 The elements of the experimental variance matrix, ExVar: '

ExVarl,1 : 2.232E+0002 ExVar2,1 : 7.108E+0002 4

The Chi-square value = 1.362E+0001  :

The reduced Chi-square value = 2.453E+0000 Results of weighted fit with weighting variances calculated from expectation values multiplied by the reduced Chi-Square value. '

The variance matrix, Vary:

Vary 1,1 : 9.893E+0002 Vary 2,1 : 7.523E+0002 Vary 3,1 : 3.416E+0002 Vary 4,1 : 1.639E+0002 Vary 5,1 : 7.248E+0001 Vary 6,1 : 4.739E+0001 Vary 7,1 : 3.704E+0001 Vary 8,1 : 2.873E+0001 Vary 9,1 : 2.738E+0001 Vary 10,1: 2.519E+0001 The elements of the Z-score residual matrix, R/o:

R/ol,1 : 2.474E-0001 R/c2,1 : 1.335E+0000 R/o3,1 : -1.783E+0000 R/o4,1 : -1.213E+0000 R/o5,1 : -5.823E-0001 R/o6,1 : -1.306E-0001 R/o7,1 : 3.021E-0001 R/c8,1 : 9.363E-0001 R/o9,1 : 3.013E-0001 R/o10,1: 3.008E-0001 212

LSModel Outhut: Worker 1 - Class W- Whole Body with NP Page 4 The elements of the theoretical covariance matrix, ThCov:

ThCov1,1 : 2.232E+0002 ThCov1,2 : -2.485E+0002 ThCov2,1 : -2.485E+0002 ThCov2,2 : 7.108E+0002 The_ elements of the theoretical variance matrix, ThVar:

ThVarl,1 : 2.232E+0002 ThVar2,1 : 7.108E+0002 The Chi-square value = # of degrees of freedom = 8.000E+0000 The reduced Chi-square value = 1.000E+0000

(::

9 l

0 4

213

/ LSModel Output: Worker 1 - Class Y - Whole Body with NP Page1

~

LINEAR STATISTICAL MODEL PROGRAM RESULTS A weighted fit was performed. , I Weighting variances were calculated from expectation values.

The input independent variable matrix, X:

X1,1 : 6.299E-0001 X1,2 : 9.998E-0001 X2,1 : 5.873E-0001 X2,2 : 7.513E-0001 X3,1 : 4.176E-0001 X3,2 : 3.263E-0001 X4,1 : 2.979E-0001 X4,2 : 1.464E-0001 X5,1 : 2.145E-0001 X5,2 : 5.602E-0002 X6,1 : 1.852E-0001 X6,2 : 3.197E-0002 X7,1 : 1.710E-0001 X7,2 : 2.240E-0002 X8,1 : 1.584E-0001 X8,2 : 1.528E-0002 X9,1 : 1.569E-0001 X9,2 : 1.425E-0002 X10,1: 1.549E-0001 X10,2: 1.264E-0002 The input dependent variable matrix, Y:

Y1,1 : 4.111E+0002 Y2,1 : 3.433E+0002

. Y3,1 : 1.063E+0002 Y4,1 : 5.128E+0001 Y5,1 : 2.459E+0001 Y6,1 : 1.842E+0001 Y7,1 : 1.694E+0001 Y8,1 : 1.673E+0001 Y9,1.: 1.274E+0001 I Y10,1: 1.178E+0001 The variance matrix, Vary:

Vary 1,1  : 4.029E+0002 Vary 2,1  : 3.071E+0002 i Vary 3,1 : 1.395E+0002 l Vary 4,1  : 6.673E+0001 '

VarYS,1 : 2.931E+0001 Vary 6,1 : 1.909E+0001 Vary 7,1 : 1.492E+0001 Vary 8,1 : 1.175E+0001 Vary 9,1 : 1.130E+0001 Vary 10,1: 1.062E+0001 The elements of the B or beta matrix (fitting parameters): l B1,1 : 3.758E+0001 B2,1 :. 3.793E+0002 214

/ LSMod,1 Ouhut: Worker 1 - Class Y- Whole Body with NP Page 2 The elements of the expectation value matrix, <Y>:

<Y>1,1 : 4.029E+0002 e

<Y>2,1 : 3.071E+0002 j <Y>3,1 : 1.395E+0002 ,

<Y>4,1 : 6.673E+0001

<Y>5,1 : 2.931E+0001

<Y>6,1 : 1.909E+0001

<Y>7,1 : 1.492E+0001

<Y>8,1 : 1.175E+0001 ,

<Y>9,1 : 1.130E+0001

<Y>10,1: 1.062E+0001 1

The elements of the residual matrix, R:

R1,1 : 8.170E+0000 R2,1 : 3.624E+0001 R3,1  : -3.317E+0001 R4,1  : -1.545E+0001 ,

R5,1  : -4.721E+0000 R6,1  : -6.669E-0001 87,1 : 2.017E+0000

.. R8,1 : 4.981E+0000 R9,1 : 1.438E+0000 R10,1: 1.164E+0000 .

The~ elements of the Z-score residual matrix, R/o:

R/ol,1 : 4.070E-0001 R/o2,1 : 2.068E+0000 '

R/o3,1 : -2.809E+0000 i R/c4,1 : -1.891E+0000 l R/o5,1 : -8.720E-0001 R/o6,1 : -1.527E-0001 R/07,1 : 5.221E-0001

  • R/o8,1 : 1.453E+0000
  • R/o9,1 : 4.279E-0001 R/010, ?. : 3.573E-0001 The elements of the theoretical covariance matrix, ThCov:

ThCov1,1 : 1.021E+0002 ThCov1,2 : -1.119E+0002 ThCov2,1 : -1.119E+0002 ThCov2,2 : 2.997E+0002 The elements of the theoretical variance matrix, ThVar:

ThVarl,1 : 1.021E+0002 ThVar2,1 : 2.997E+0002 i

I 215 1

4 LSModel Output: Worker 1 - Class Y- Whole Body with NP Page 3 The elements of the correlation coefficient matrix, Corr:

Corri,1 : 1.000E+0000 Corr 1,2 : -6.399E-0001 a Corr 2,1 : -6.399E-0001 Corr 2,2 : 1.000E+0000 ,

The elements of the experimental covariance matrix, ExCov:

1 ExCov1,1 : 2.474E+0002 ExCov1,2 : -2.712E+0002

} ExCov2,1 : -2.712E+0002 ExCov2,2 : 7.262E+0002 i

The elements of the experimental variance matrix, ExVar:

ExVarl,1 : 2.474E+0002 ExVar2,1 : 7.262E+0002 f

The Chi-square value = 1.939E+0001 The reduced Chi-square value = 2.423E+0000 '

Results of weighted fit with weighting variances calculated from -

expectation values multiplied by the reduced Chi-Square value, i The variance matrix, Vary:

j Vary 1,1 : 9.764E+0002 Vary 2,1 : 7.441E+0002 Vary 3,1 : 3.380E+0002 '

c Vary 4,1 : 1.617E+0002 Vary 5,1 : 7.103E+0001 Vary 6,1 : 4.625E+0001 Vary 7,1 : 3.616E+0001  ;

Vary 8,1 : 2.847E+0001 <

Vary 9,1 : 2.739E+0001 Vary 10,1: 2.573E+0001 The elements of the Z-score residual matrix, R/o:

R/ol,1 : 2.615E-0001 R/c2,1 : 1.328E+0000 R/o3,1 : -1.804E+0000 R/o4,1 : -1.215E+0000 R/o5,1 : -5.602E-0001 R/o6,1 : -9.806E-0002 R/o7,1 : 3.354E-0001 R/c8,1 : 9.336E-0001 R/c9,1 : 2.749E-0001 .

R/c10,1: 2.295E-0001 l

216 i

I

1 l

i e

LSModel Ouhut: Worker 1 - Class Y-Whole Body with NP Page 4 ,

i The elements of the theoretical covariance matrix, ThCov:

, j ThCov1,1 : 2.474E+0002 ThCov1,2 : -2.712E+0002 .

ThCov2,1 : -2.712E+0002 ThCov2,2 : 7.262E+0002 The elements of the theoretical variance matrix, Thvar:

ThVarl,1 : 2.474E+0002 ThVar2,1 : 7.262E+0002 The Chi-square value = # of degrees of freedom = 8.000E+0000 The reduced Ch3-square value = 1.000E+0000 l

e 6

217

/ . LSModel Outhut: Worker 1 - Class W- Whole Body w/o NP Page1

~

LINEAR-STATISTICAL MODEL PROGRAM RESULTS A weighted fit was performed. .

Weighting variances were calculated from expectation values.

The-input independent variable. matrix, X:

X1,1 : 3.848E-0001 X1,2 : 9.998E-0001 X2,1 : 5.180E-0001 X2,2 : 7.513E-0001 X3,1 : 4.123E-0001- X3,2 : 3.263E-0001 l X4,1 : 3.095E-0001 X4,2 : 1.464E-0001 X5,1 : . 2.314E-0001 X5,2 : 5.602E-0002 X6,1 : 2.016E-0001 X6,2.: 3.197E-0002 X7,1 : 1.855E-0001 X7,2~: 2.240E-0002 X8,1 : 1.664E-0001 X8,2 : 1.528E-0002 X9,1 : 1.620E-0001 X9,2 : 1.425E-0002 l X10,1: 1.541E-0001 X10,2: 1.264E-0002 The input dependent variable matrix, Y:

Y1,1 : 4.111E+0002 Y2,1 : 3.433E+0002 Y3,1 : 1.063E+0002 C.~ t.

Y4,1 : 5.128E+0001 YS,1 : 2.459E+0001 Y6,1 : 1.842E+0001 Y7,1 : 1.694E+0001 YB,1 : 1.673E+0001 Y9,1 : 1.274E+0001 Y10,1: 1.178E+0001 The variance matrix, Vary:

Vary 1,1 : 4.006E+0002 Vary 2,1 : 3.088E+0002 Vary 3,1 : 1.404E+0002 Vary 4,1 : 6.718E+0001 Vary 5,1 : 2.951E+0001 Vary 6,1 : 1.918E+0001 Vary 7,1 : 1.493E+0001 I Vary 8,1 : 1.153E+0001 Vary 9,1 : 1.098E+0001 Vary 10,1: 1.009E+0001 The elements of the B or beta matrix (fitting parameters):

B1,1 : 3.366E+0001 B2,1 :. 3.878E+0002 1 218 1 1

1 l

l f LSModel Ouhut: Worker 1 - Class W- Whole Body w/o NP Page 2

~

The elements of the expectation va1ue matrix, <Y>:

<Y>1,1 : 4.006E+0002 a

<Y>2,1 : 3.088E+0002

<Y>3,1 : 1.404E+0002

<Y>4,1 : 6.718E+0001

<Y>5,1 : 2.951E+0001

<Y>6,1 : 1.918E+0001

<Y>7,1 : 1.493E+0001

<Y>B,1 : 1.153E+0001

<Y>9,1 : 1.098E+0001 l

<Y>10,1: 1.009E+0001 The elements of the residual matrix, R:

R1,1 : 1.047E+0001 R2,1 : 3.455E+0001 R3,1 : -3.410E+0001 1 i

R4,1 : -1.590E+0001 R5,1 : -4.920E+0000 l R6,1 : -7.618E-0001 R7,1 : 2.011E+0000 '

~

RB,1 : 5.205E+0000 R9,1 : 1.762E+0000 R10,1: 1.692E+0000 The' elements of the Z-score residual matrix, R/o:  :

R/ol,1 : 5.232E-0001 l R/o2,1 : 1.966E+0000 R/o3,1 : -2.878E+0000 R/o4,1 : -1.940E+0000 R/o5,1 : -9.057E-0001 R/o6,1 : -1.739E-0001 R/o7,1 : 5.204E-0001 R/o8,1 : 1.533E+0000 l R/c9,1 : 5.318E-0001 R/o10,1: 5.328E-0001 The elements of the theoretical covariance matrix, ThCov:

ThCov1,1 : 8.443E+0001 ThCov1,2 : ~8.267E+0001 ThCov2,1 : -8.267E+0001 ThCov2,2 : 2.580E+0002 The elements of the theoretical variance matrix, ThVar:

ThVarl,1 : 8.443E+0001 ThVar2,1 : 2.580E+0002 219

I I/ LSModel Ouhut: Worker 1 - Class W- Whole Body w/o NP Page 3 The elements of the correlation coefficient matrix, Corr:

I Corr 1,1 : 1.000E+0000 Corr 1,2 : -5.602E-0001 Corr 2,1 : -5.602E-0001

  • Corr 2,2 : 1.000E+0000 l The elements of the experimental covariance matrix, ExCov:

ExCov1,1 : 2.134E+0002 ExCov1,2 : -2.090E+0002 l ExCov2,1 : -2.090E+0002 ExCov2,2 : 6.522E+0002 '

1 i

The elements of the experimental variance matrix, ExVar:

ExVarl,1 : 2.134E+0002 ExVar2,1 : 6.522E+0002 ,

1 The Chi-square value = 2.022E+0001 The reduced Chi-square value = 2.528E+0000 i Results of weighted fit with weighting variances calculated from expectation values multiplied by the reduced Chi-Square value.

The variance matrix, Vary:

Vary 1,1 : 1.013E+0003 Vary 2,1 : 7.806E+0002 Vary 3,1 : 3.549E+0002 l Vary 4,1 : 1.698E+0002 VarYS,1 : 7.461E+0001 Vary 6,1 : 4.849E+0001 Vary 7,1 : 3.774E+0001 ,

Vary 8,1 : 2.914E+0001 '

Vary 9,1 : 2.775E+0001 Vary 10,1: 2.550E+0001 The elements of the Z-score residual matrix, R/o:

R/ol,1 : 3.290E-0001 R/o2,1 : 1.236E+0000 R/o3,1 : -1.810E+0000 R/o4,1 : -1.220E+0000 R/o5,1 : -5.696E-0001 R/o6,1 : -1.094E-0001 R/o7,1 : 3.273E-0001 R/o8,1 < 9.642E-0001 R/o9,1 : 3.345E-0001 R/o10,1: 3.351E-0001 220

LSModel Oufput: Worker 1 - Class W- Whole Body w/o NP Page 4

.The elements of the theoretical covariance matrix, ThCov:

ThCov1,1 : 2.134E+0002 ThCov1,2 : -2.090E+0002

  • ThCov2,1 : -2.090E+0002 ThCov2,2 : 6.522E+0002 The elements of the theoretical variance matrix, ThVar:
  • ThVarl,1 : 2.134E+0002 ThVar2,1 : 6.522E+0002 The Chi-square value = # of degrees of freedom = 8.000E+0000 ,

The reduced Chi-square value = 1.000E+0000 '

(:

i I

O j

i 221

LSModel Ouhut:Worker 1 - Class Y- Whole Body w/o NP Page1 LINEAR STATISTICAL MODEL PROGRAM RESULTS l

A weighted fit was performed.

  • i Weighting varianc.?s were. calculated from expectation values.

The input independent variable matrix, X:

X1,1 : 3.627E-0001 X1,2 : 9.998E-0001 l X2,1 : 5.258E-0001 X2,2 : 7.513E-0001 X3,1 : 4.087E-0001 X3,2 : 3.263E-0001 X4,1 : 2.962E-0001 X4,2 : 1.464E-0001 X5,1 : 2.143E-0001 X5,2 : 5.602E-0002 X6,1 : 1.851E-0001 X6,2 : 3.197E-0002 X7,1 : 1.7]OE-0001 X7,2 : 2.240E-0002 '

X8,1 : 1.584E-0001 X8,2 : 1.528E-0002 X9,1 : 1.569E-0001 X9,2 : 1.425E-0002 X10,1: 1.549E-0001 X10,2: 1.264E-0002 The input dependent variable matrix, Y:

Y1,1  : 4.111E+0002 Y2,1  : 3.433E+0002

(

L Y3,1 Y4,1 1.063E+0002 5.128E+0001 Y S ,-1  : 2.459E+0001 Y6,1 : 1.842E+0001 Y7,1 : 1.694E+0001 Y8,1 : 1.673E+0001 Y9,1 : 1.274E+0001 Y10,1: 1.178E+0001 The variance matrix, Vary:

Vary 1,1 : 3.999E+0002 Vary 2,1 : 3.095E+0002 .

Vary 3,1 : 1.408E+0002 Vary 4,1 : 6.716E+0001 Vary 5,1 : 2.928E+0001 Vary 6,1 : 1.893E+0001 Vary 7,1 : 1.473E+0001 Vary 8,1 : 1.153E+0001 Vary 9,1 : 1.107E+0001 '

Vary 10,1: 1.038E+0001 The elements of the B or beta matrix (fitting parameters):

B1,1 : 3.542E+0001 B2,1 : 3.871E+0002 222

2

  1. LSModpl Ouhut: Worker 1 - Class Y - Whole Body w/o NP Page 2 The elements of the expectation value matrix, <Y>:

<Y>1,1 : 3.999E+0002 .

<Y>2,1 : 3.095E+0002

<Y>3,1 : 1.408E+0002

<Y>4,1 . 6.716E+0001

<Y>5,1 : 2.928E+0001

<Y>6,1 : 1.893E+0001

<Y>7,1 : 1.473E+0001 i <Y>B,1 : 1.153E+0001

<Y>9,1 : 1.107E+0001

<Y>10,1: 1.038E+0001  !

, The elements of the residual matrix, R:

R1,1 : 1.123E+0001 R2,1  : 3.385E+0001 R3,1  : -3.449E+0001 R4,1  :'-1.588E+0001 RS.1 : -4.685E+0000 R6,1 : -5.114E-0001 R7,1 : 2.213E+0000

(

(

R8,1 : 5.205E+0000 R9,1 : 1.667E+0000 R10,1: 1.401E+0000 i 1

The" elements of the Z-score residual matrix, R/c:

R/oirl : 5.616E-0001 i R/c2,1 : 1.924E+0000 l R/o3,1 : -2.906E+0000  !

R/04,1 : -1.938E+0000 R/o5,1 : -8.659E-0001 R/o6,1 : -1.175E-0001 R/o7,1 : 5.765E-0001 R/o8,1 : 1.533E+0000 R/o9,1 : 5.009E-0001 R/o10,1: 4.348E-0001 The elements of the theoretical covariance matrix, ThCov: 1' ThCov1,1 : 9.341E+0001 ThCov1,2 : -8.863E+0001 i ThCov2,1 : -8.863E+0001 ThCov2,2 : 2.611E+0002 The elements of the. theoretical variance matrix, ThVar: l 4

Thvarl,1 : 9.341E+0001 -  !

ThVar2,1 : 2. 611E+'b 002 223

LSModel Ouiput: Worker 1 - Class Y- Whole Body w/o NP Page 3 The elements of the correlation c$ efficient matrix, Corr:

Corri,1 : 1.000E+0000 Corr 1,2 : -5.675E-0001

  • Corr 2,1 : -5.675E-0001 Corr 2,2 : 1.000E+0000 The elements of the experimental covariance matrix, ExCov:

ExCov1,1 : 2.348E+0002 ExCov1,2 : -2.228E+0002 ExCov2,1 : -2.228E+0002 ExCov2,2 : 6.564E+0002 I

The elements.of the experimental variance matrix, ExVar:

ExVarl,1 : 2.348E+0002 ExVar2,1 : 6.564E+0002 The Chi-square value = 2.011E+0001 The reduced Chi-square value = 2.513E+0000 I Results of weighted fit with weighting variances calculated from expectation values multiplied by the reduced Chi-Square value. i

. The variance matrix, Vary:

Vary 1,1  : 1.005E+0003  !

Vary 2,1  : 7.778E+0002 i

Vary 3,1 : 3.539E+0002 i Vary 4,1 : 1.680E+0002 VarYS,1 : 7.358E+0001 Vary 6,1 : 4.758E+0001 Vary 7,1 : 3.702E+0001 Vary 8,1 : 2.897E+0001 Vary 9,1 : 2.783E+0001 Vary 10,1: 2.609E+0001 The elements of the Z-score residual matrix, R/o:

R/ol,1 : 3.543E-0001 R/c2,1 : 1.214E+0000 R/o3,1 : -1.833E+0000 R/o4,1 : -1.222E+0000 i R/o5,1 : -5.462E-0001 '

R/o6,1 : -7.413E-0002 R/o7,1 : 3.637E-0001 R/o8,1 : 9.671E-0001 R/o9,1 : 3.159E-0001  !

R/o10,1: 2.743E-0001 224 -

. . _ _ _ . . _ _ . _ _ -._..-. _ ___ . . . _ . _ _ . . -_ m - -.

LSMod,el Ouhut: Worker 1 - Class Y - Whole Body w/o NP . Page 4 The elements of the theoretical covariance' matrix, ThCov:

ThCov1,1 : 2.348E+0002 ThCov1,2 : -2.228E+0002 e

-ThCov2,1 : -2.228E+0002 ThCov2,2 : 6.564E+0002 The elements of the theoretical variance matrix, Thvar:

ThVarl,1 : 2.348E+0002 Thvar2,1 : 6.564E+0002 '

The Chi-square value = # of degrees of freedom = 8.000E+0000 The reduced Chi-square value = 1.000E+0000 t

't G

I

'en p 225

~

LSModgl Output: Worker 2 - Class W- Whole Body with NP Page1

~

LINEAR STATISTICAL MODEL PROGRAM RESULTS

. A weighted fit was performed. a 2

Weighting variances were calculated from expectation values.

The input independent variable matrix, X:

X1,1 : 6.280E-0001 X1,2 : 9.997E-0001 X2,1 : 6.205E-0001 X2,2 : 9.836E-0001 X3,1 : 4.232E-0001 X3,2 : 3.317E-0001 4

X4,1 : 3.120E-0001 X4,2 : 1.476E-0001 X5,1 : 2.300E-0001 X5,2 : 5.456E-0002 X6,1 : 2.022E-0001 X6,2 : 3.241E-0002 X7,1 : 1.854E-0001 X7,2 : 2.234E-0002 s X8,1 : 1.660E-0001 X8,2 : 1.518E-0002 X9,1 : 1.624E-0001 X9,2 : 1.432E-0002 X10,1: 1.567E-0001 X10,2: 1.313E-0002 X11,1: 1.544E-0001 X11,2: 1.269E-0002 X12,1: 1.454E-0001 X12,2: 1.117E-0002 i

413,1: 1.438E-0001 X13,2: 1.094E-0002 X14,1: 1.418E-0001 X14,2: 1.067E-0002 j {r The input dependent variable matrix, Y:

Y1,1  : 1.080E+0003 Y2,1  : 9.905E+0002 Y3,1  : 1.742E+0002

, Y4,1  : 4.047E+0001

. Y5,1. : 3.033E+0001 4 Y6,1 : 2.321E+0001 l Y7,1 : 2.310E+0001  !

Y8,1 : 2.079E+0001 '

Y9,1 : 2.067E+0001 l Y10,1: 2.075E+0001 I Y11,1: 2.164E+0001 )

{ Y12,1: 2.100E+0001 i Y13,1: 1.688E+0001  !

1.762E+0001 Y14,1:

The variance matrix, Vary:

Vary 1,1  : 9.260E+0002 Vary 2,1  : 9.112E+0002 Vary 3,1  : 3.112E+0002 Vary 4,1  : 1.408E+0002 VarYS,1 : 5.418E+0001 Vary 6,1 : 3.340E+0001 Vary 7,1 : 2.3877+0001 226

LSModel Odput: Worker 2 - Class W - Whole Body with NP - Page 2 Vary 8,1.: 1.697E+0001 Vary 9,1 : l'. 612E+ 0001 Vary 10,1: 1.492E+0001 e i

Vary 11,1: 1.448E+0001 Vary 12,1: 1.292E+0001 Vary 13,1: 1.268E+0001 Vary 14,1: 1.240E+0001 The elements of the B or beta matrix (fitting parameters):

B1,1 : 1.859E+0001 B2,1 : 9.146E+0002 The elements of the expectation value matrix, <Y>: i i

<Y>1,1  : 9.260E+0002

<Y>2,1  : 9.112E+0002

<Y>3,1  : 3.112E+0002

<Y>4,1  : 1.40BE+0002

<Y>5,1  : 5.418E+0001

<Y>6,1  : 3.340E+0001

<Y>7,1  : 2.388E+0001

<Y>8,1 : 1.697E+0001

<Y>9,1 : 1.612E+0001

<Y>10,1: 1.492E+0001

<Y>11,1: 1.44BE+0001

<Y>12,1: 1.292E+0001

<Y>13,1: 1.26BE+0001

<Y>14,1: 1.240E+0001 The elements of the residual matrix, R:

R1,1 : 1.540E+0002 R2,1 : 7.934E+0001

  • R3,1 : -1.370E+0002 R4,1 : -1.003E+0002

{

l R5,1 : -2.385E+0001 R6,1 : -1.019E+0001 I R7,1 : -7.794E-0001

)

R8,1 : 3.820E+0000 l R9,1 : 4.553E+0000 R10,1: 5.828E+0000 i R11,1: 7.163E+0000 R12,1: 8.081E+0000 l R13,1: - 4 . 2 01E+.0 000 i R14,1: 5.225E+0000 ea 227

i i

l LSModel Output: Worker 2 - Class W- Whole Body with NP Page 3 l -

l The elements of the Z-score residual matrix, R/o:

R/ol,1 : 3,060E+0000 .

R/02,1 : 2.629E+0000 R/o3,1 : -7.768E+0000 R/o4,1 : -8.455E+0000 R/c5,1 : -3.240E+0000 R/06,1 : -1.763E+0000 R/o7,1 : -1.595E-0001 R/o8,1 : 9.273E-0001 R/09,1 : 1.134E+0000 R/o10,1: 1.509E+0000 R/o11,1: 1.883E+0000 R/o12,1: 2.248E+0000 R/o13,1: 1.180E+0000 R/014,1: 1.484E+0000 The e.anents of the theoretical covariance matrix, ThCov:

ThCov1,1 : 8.028E+0001 ThCov1,2 : -1.038E+0002 ThCov2,1 : -1.038E+0002 ThCov2,2 : 4.872E+0002

(- The elements of the theoretical variance matrix, ThVar:

ThVarl,1 : 8.028E+0001 ThV,ar2,1  : 4.872E+0002 The elements of the correlatio" coefficient matrix, Corr:

Corri,1 : 1.000E+0000 Corri,2 : -5.250E-0001 Corr 2,1 : -5.250E-0001 Corr 2,2 : 1.000E+0000 The elements of the experimental covariance matrix, ExCov:

ExCov1,1 : 1.302E+0003 ExCov1,2 : -1.684E+0003 ExCov2,1 : -1.684E+0003 ExCov2,2 : 7.900E+0003 The elements of the experimental variance matrix, ExVar:

ExVarl,1 : 1.302E+0003 ExVar2,1 : 7.900E+0003 The Chi-square value = 1.946E+0002 The reduced Chi-square value = 1.622E+0001 228

~

~ ,

LSModel Output: Worker 2 - Class W- Whole Body with NP Page 4 Results.of weighted fit with weighting variances calculated from expectation' values multiplied by the reduced Chi-Square value.

e The variance matrix, Vary:

Vary 1,1  : 1.502E+0004 Vary 2,1  : 1.478E+0004 Vary 3,1  : 5.047E+0003 Vary 4,1  : 2.283E+0003 VarYS,1 : 8.786E+0002 Vary 6,1 : 5.417E+0002 Vary 7,1 : 3.872E+0002 Vary 8,1 : 2.752E+0002

. Vary 9,1 : 2.614E+0002 Vary 10,1: 2.420E+0002 Vary 11,1: 2.348E+0002 VarYJ2,1: 2.095E+0002 Vary 13,1: 2.056E+0002  !

Vary 14,1: 2.010E+0002 The elements of the Z-score residual matrix, R/o: 1 R/ci,1 : 1.257E+0000 f,;. R/o2,1 : 6.527E-0001 R/o3,1 : -1.929E+0000 R/c4,1 : -2.100E+0000 R/os,1 : -8.046E-0001 R/o6,1 : -4.379E-0001 R/o7,1 : -3.961E-0002 R/o8,1 : 2.303E-0001 R/o9,1 : 2.817E-0001 R/o10,1: 3.746E-0001 R/o11,1: 4.675E-0001 R/o12,1: 5.583E-0001 R/c13,1: 2.929E-0001 R/o14,1: 3.685E-0001 The elements of the theoretical covariance matrix, ThCov:

ThCov1,1 : 1.302E+0003 ThCov1,2 : -1.684E+0003 ThCov2,1 : -1.684E+0003 ThCov2,2 : 7.900E+0003 The elements of the theoretical variance matrix, ThVar:

l ThVarl,1 : 1.302E+0003 ThVar2,1 : 7.900E+0003 The Chi-square value = # of degrees of freedom = 1.200E+0001 l

The reduced Chi-square value = 1.000E+0000 229

/

LSModel Ouhut:Worker 2 - Class Y- Whole Body with NP Page1

~

LINEAR STATISTICAL MODEL PROGRAM RESULTS A weighted fit-was performed. .

. Weighting variances were calculated from expectation values. 1 i

The input independent variable matrix, X:

X1,1 : 6.299E-0001 X1,2 : 9.997E-0001 X2,1 : 6.286E-0001 X2,2 : 9.836E-0001 X3,1 : 4.207E-0001 X3,2 : 3.317E-0001 X4,1 : 2.989E-0001 X4,2 : 1.476E-0001 X5,1 : 2.129E-0001 X5,2 : 5.456E-0002 X6,1 : 1.858E-0001 X6,2 : 3.241E-0002 X7,1 : 1.709E-0001 X7,2 : 2.234E-0002 ,

X8,1 : 1.583E-0001 X8,2 : 1.518E-0002 X9,1 : 1.570E-0001 X9,2 : 1.432E-0002 X10,1: 1.554E-0001 X10,2: 1.313E-0002 X11,1: 1.549E-0001 X11,2: 1.269E-0002 X12,1: 1.531E-0001 X12,2: 1.117E-0002 X13,1: 1.528E-0001 X13,2: 1.094E-0002 X14,1: 1.525E-0001 X14,2: 1.067E-0002

~

The input dependent variable matrix, Y: <

' 1 Y1,1 : 1.080E+0003 Y2,1 : 9.905E+0002 Y3,1 : 1.742E+0002 Y4,1 : 4.047E+0001 Y5,1 : 3.033E+0001 Y6,1 : 2.321E+0001 Y7,1 : 2.310E+0001 Y8,1 : 2.079E+0001 Y9,1 : 2.067E+0001 Y10,1: 2.075E+0001 Y11,1: 2.164E+0001 Y12,1: 2.100E+0001 Y13,1: 1.68BE+0001 Y14,1: 1.762E+0001 The variance matrix, Vary:

Vary 1,1 : 9.249E+0002 Vary 2,1 : 9.101E+0002 Vary 3,1 : 3.112E+0002 Vary 4,1 : 1.408E+0002 Vary 5,1 : 5.415E+0001 Vary 6,1 : 3.339E+0001 Vary 7,1 : 2.390E+0001 250

- - -- . - . . - ~ . -. - --

/

LSModel Ouhut: Worker 2 - Class Y- Whole Body with NP Page 2 Vary 8,1.: 1.711E+0001 Vary 9,1 : 1.630E+0001

-Vary 10,1: 1.518E+0001

  • Vary 11,1: 1.477E+0001 Vary 12,1: 1.334E+0001 Vary 13,1: 1.313E+0001 Vary 14,1: 1.287E+0001 l The elements of the B or beta matrix (fitting parameters):

B1,1 : 2.060E+0001 B2,1 : 9.122E+0002 The elements of the expectation value matrix, <Y>:

<Y>1,1 : 9.249E+0002

<Y>2,1 : 9.101E+0002

<Y>3,1 : 3.112E+0002

<Y>4,1 : 1.408E+0002

<Y>5,1 : 5.415E+0001

<Y>6,1 : 3.339E+0001

<Y>7,1 : 2.390E+0001

<Y>8,1 : 1 711E+0001 C'- <Y>9,1 : 1.630E+0001

<Y>10,1: 1.518E+0001

<Y>11,1: 1.477E+0001

<Y>12,1: 1.334E+0001 l

<Y>13,1: 1.313E+0001

<Y>14,1: 1.287E+0001 The elements of the residual matrix, R: l R1,1  : 1.551E+0002  ;

R2,1  : 8.036E+0001 R3,1  : -1.370E+000?

R4,1  : -1.003E+0002 R5,1  : -2.382E+0001 R6,1 : -1.018E+0001 R7,1 : -7.988E-0001 R8,1 : 3.682E+0000 R9,1 : 4.373E+0000 R10,1: 5.571E+0000 R11,1: 6.873E+0000  ;

R12,1: 7.657E+0000 i R13,1: '3.753E+0000 R14,1: 4.745E+0000 231

LSModel Ouhut:Worke 2 - Class Y- Whole Body with NP Page 3

~

The elements of the Z-score residual matrix, R/o:

R/ol,1 : 5.102E+0000

  • R/c2,1 : 2.664E+0000 R/o3,1 : -7.767E+0000 R/o4,1 : -8.455E+0000 R/05,1 : --3.237E+0000 R/06,1 : -1.762E+0000 R/o7,1 : -1.634E-0001 R/o8,1 : 8.901E-0001 R/o9,1 : 1.083E+0000 R/o10,1: 1.430E+0000 R/o11,1: 1.789E+0000 R/o12,1: 2.096E+0000 R/o13,1: 1.036E+0000 R/o14,1: 1.322E+0000 The elements of the theoretical covariance matrix, ThCov:

ThCov1,1 : 8.257E+0001 ThCov1,2 : -1.050E+0002 ThCov2,1 : -1.050E+0002 ThCov2,2 : 4.862E+0002 The elements of the theoretical variance matrix, ThVar:

ThVarl,1 : 8.257E+0001 ThVari,1 :

4.862E+0002 The elements of the correlation coefficient matrix, Corr:

Corri,1 : 1.000E+0000 Corr 1,2 : -5.239E-0001 Corr 2,1 : -5.239E-0001 Corr 2,2 : 1.000E+0000 The elements of the experimental covariance matrix, ExCov:

ExCov1,1 : 1.328E+0003 ExCov1,2 : -1.688E+0003 ExCov2,1 : -1.688E+0003 ExCov2,2 : 7.819E+0003 The elements of the experimental variance matrix, ExVar:

ExVarl,1 : 1.328E+0003 ExVar2,1 : 7.819E+0003 The Chi-square value = 1.930E+0002 The reduced Chi-square value = 1.608E+0001 232 1

l

I LSModel Ouhut:Worker 2 - Class Y- Whole Body with NP Page 4 Results,of weighted fit with weighting variances calculated from expectation values multiplied by the reduced Chi-Square value.

e The variance matrix, Vary:

l Vary 1,1 : 1.487E+0004 Vary 2,1 : 1.464E+0004 Vary 3,1 : 5.005E+0003  !

, Vary 4,1 : 2.264E+0003 I

. VarYS,1 : 8.709E+0002 Vary 6,1 : 5.370E+0002

' {

Vary 7,1 : 3.843E+0002 i Vary 8,1 : 2.751E+0002 Vary 9,1 : 2.621E+0002 Vary 10,1: 2.441E+0002 4

Vary 11,1: 2.375E+0002

, Vary 12,1: 2.146E+0002 Vary 13,1: 2.111E+0002 Vary 14,1: 2.070E+0002 4

The elements of the Z-score residual matrix, R/o:

(~ R/ol,1 : 1.272E+0000

( R/c2,1 : 6.642E-0001 R/o3,1 : -1.937E+0000 R/o4,1 : -2.108E+0000 R/o'5,1 : -8.073E-0001

, R/o6,1 : -4.394E-0001 4

R/o731 : -4.075E-0002 R/o8,1 : 2.220E-0001 R/o9,1 : 2.701E-0001

R/c10,1
3.566E-0001 R/o11,1: 4.460E-0001 R/o12,1: 5.227E-0001 R/o13,1: 2.583E-0001
  • R/o14,1: 3.298E-0001 The elements of the theoretical covariance matrix, ThCov:

~

ThCov1,1 : 1.328E+0003 ThCov1,2 : -1.688E+0003 ThCov2,1 : -1.688E+0003 ThCov2,2 : 7.819E+0003 The elements of the theoretical variance matrix, ThVar:

ThVarl,i : 1.328E+0003 ThVar2,1 : 7.819E+0003 The Chi-square value = # of degrees of freedom = 1.200E+0001 The reduced Chi-square value = 1.000E+0000 233

LSModel Ouhut: Worker 2 - Class W- Whole Body w/o NP Page1 LINEAR STATISTICAL MODEL PROGRAM RESULTS A weighted fit was performed.

  • Weighting variances were calculated from expectation values.

The input independent variable matrix, X:

X1,1 : 3.864E-0001 X1,2 : 9.997E-0001 X2,1 : 4.502E-0001 X2,2 : 9.836E-0001 X3,1 : 4.148E-0001 X3,2 : 3.317E-0001 X4,1 : 3.104E-0001 X4,2 : 1.476E-0001 X5,1 : 2.298E-0001 X5,2 : 5.456E-0002 X6,1 : 2.022E-0001 X6,2 : 3.241E-0002 X7,1 : 1.854E-0001 X7,2 : 2.234E-0002 X8,1 : 1.660E-0001 X8,2 : 1.518E-0002 X9,1 : 1.624E-0001 X9,2 : 1.432E-0002 X10,1: 1.567E-0001 X10,2: 1.313E-0002 I X11,1: 1.544E-0001 X11,2: 1.269E-0002 X12,1: 1.454E-0001 X12,2: 1.117E-0002 X13,1: 1.438E-0001 X13,2: 1.094E-0002 X14,1: 1.418E-0001 X14,2: 1.067E-0002 The input dependent variable matrix, Y:

Y1,1 : 1.080E+0003 i Y2,1 : 9.905E+0002  !

Y3,1 : 1.742E+0002 Y4,1 : 4.047E+0001 YS,1*: 3.033E+0001 Y6,1 : 2.321E+0001 Y7,1 : 2.310E+0001 Y8,1 : 2.079E+0001 Y9,1 : 2.067E+0001 Y10,1: 2.075E+0001 Y11,1: 2.164E+0001 .

Y12,1: 2.100E+0001 Y13,1: 1.688E+0001 Y14,1: 1.762E+0001 The variance matrix, Vary:

Vary 1,1 : 9.273E+0002 Vary 2,1 : 9.134E+0002 Vary 3,1 : 3.120E+0002 Vary 4,l': 1.408E+0002 Vary 5,1 : 5.378E+0001 .

Vary 6,1 : 3.295E+0001 Vary 7,1 : 2.341E+0001 234

l

( LSModel Ouhut: Worker 2- Class W- Whole Body w/o NP Page 2 Vary 8,1,: 1.652E+0001 l Vary 3,1 : l'. 567E+ 00 01 Vary 10,1: 1.449E+0001 .

X '05E+0001

! Vary 11,1:

Vary 12,1: _.251E+0001 Vary 13,1: 1.227E+0001 i Vary 14,1: 1.199E+0001 The elements of the B or beta matrix (fitting parameters):

B1,1 : 1.522E+0001 B2,1 : 9.217E+0002 i The elements of the expectation value matrix, <Y>:

1 <Y>1,1 : 9.273E+0002

<Y>2,1
9.134E+0002

, <Y>3,1 : 3.120E+0002

<Y>4,1 : 1.408E+0002 i

<Y>5,1 : 5.378E+0001 i <Y>6,1 : 3.295E+0001  !

<Y>7,1 : 2.341E+0001

<Y>8,1.: 1.652E+0001

'C.. <Y>9,1 : 1.567E+0001

<Y>10,1: 1.449E+0001

<Y>11,1: 1.405E+0001

<Y>12,1: 1.251E+0001

<Y>13,1: 1.227E+0001

<Y>14,1: 1.199E+0001 The elements of the residual matrix, R:

R1,1 : 1.527E+0002 R2,1 : 7.70BE+0001 ,

R3,1 : -1.378E+0002 '

R4,1 : -1.003E+0002 R5,1 : -2,345E+0001 R6,1 : -9.739E+0000 R7,1 : -3.122E-0001 RB,1 : 4.272E+0000 R9,1 : 5.000E+0000 R10,1: 6.263E+0000 R11,1: 7.594E+0000

  • R12,1: 8.492E+0000 R13,1: 4.608E+0000 R14,1: 5.627E+0000 235

l j / - LSMod9 1 Ouhut: Worker 2 - Class W- Whole Body w/o NP Page 3

.The elements of the Z-score residual matrix, R/o:

R/ol,1 : 5.015E+0000

  • R/o2,1 : 2.550E+0000 R/o3,1 : -7.803E+0000 R/o4,1 : -8.453E+0000 R/o5,1 : -3.198E+0000 R/o6,1 : -1.697E+0000 R/o7,1 : -6.453E-0002 R/o8,1 : 1.051E+0000 R/o9,1 : j 1.263E+0000 '

R/o10,1: 1.646E+0000 R/o11,1: 2.026E+0000 R/o12,1: 2.401E+0000 R/o13,1: 1.315E+0000 R/o14,1: 1.625E+0000 i

The elec9nts of the theoretical covariance matrix, ThCov:

J ThCov1,1 : 7.46CE+0001 ThCov1,2 : -8.551E+0001 ThCov2,1 : -8.551E+0001 ThCov2,2 : 4.510E+0002 The elements of the theoretical variance matrix, ThVar:

ThVarl,1 : 7.468E+0001 ThVar2,1 : 4.510E+0002 The elements of the correlation coefficient matrix, Corr:

Corri,1 : 1.000E+0000 Corri,2 : -4.660E-0001 Corr 2,1 : -4.660E-0001 Corr 2,2 : 1.000E+0000 The elements of the experimental covariance matrix, ExCov:

ExCov1,1 : 1.224E+0003 ExCov1,2 : -1.402E+0003 .

ExCov2,1 : -1.402E+0003 ExCov2,2 : 7.394E+0003 The elements of the experimental variance matrix,. ExVar:

ExVarl,1 : 1.224E+0003 ExVar2,1 : 7.394E+0003 The Chi-square value = 1.968E+0002 The reduced Chi-square value = 1.640E+0001 l

236

LSModel Ouhut: Worker 2 - Class W- Whole Body w/o NP Page 4

~

l Results of weighted fit with weighting variances calculated from j expectation values multiplied by the reduced Chi-Square value.

e The variance matrix, Vary:

Vary 1,1 : 1.520E+0004 Vary 2,1 : 1.498E+0004 Vary 3,1 : 5.116E+0003 Vary 4,1 : 2.308E+0003 Vary 5,1 : 8.819E+0002 )

Vary 6,1 : 5.403E+0002 l Vary 7,1 : 3.839E+0002 l Vary 8,1 : 2.708E+0002 I Vary 9,1 : 2.569E+0002 l Vary 10,1: 2.375E+0002 Vary 11,1: 2.303E+0002 Vary 12,1: 2.051E+0002 Vary 13,1: 2.012E+0002 Vary 14,1: 1.966E+0002 The elements of the Z-score residual matrix, R/o:

R/ol,1 : 1.238E+0000 C.7

- R/o2,1 : 6.298E-0001 R/o3,1 : -1.927E+0000 R/o4,1 : -2.088E+0000 R/o5,1 : -7.898E-0001 l

R/o6,1 : -4.190E-0001 '

R/o7,1 : -1.594E-0002 R/o8,1 : 2.596E-0001 R/o9,1 : 3.119E-0001 R/o10,1: 4.064E-0001 R/o11,1: 5.004E-0001 R/o12,1: 5.930E-0001 R/o13,1: 3.T,49E-0001 R/o14,1: 4.013E-0001 The elements of the theoretical covariance matrix, ThCov:

ThCov1,1 : 1.224E+0003 ThCov1,2 : -1.402E+0003 ThCov2,1 : -1.402E+0003 ThCov2,2 : 7.394E+0003 The elements of the theoretical variance matrix, Thvar:

l ThVarl,1 : 1.224E+0003 i ThVar2,1 : ~7.394E+0003 The Chi-square value = # of degrees of freedom = 1.200E+0001 i The reduced Chi-square value = 1.000E+0000 237 l

l

l i

l LSMod 91 Oufput: Worker 2 - Class Y - Whole Body w/o NP Page 1 l

LINEAR STATISTICAL MODEL PROGRAM RESULTS A weighted fit was performed. e j Weighting variances were calculated from expectation values.  !

i The input independent variable matrix, X:

X1,1 : 3.644E-0001 XI,2 : 9.997E-0001 4 X2,1 : 4.414E-0001 X2,2 : 9.836E-0001 X3,1 : 4.114E-0001 X3,2 : 3.317E-0001 X4,1 : 2.972E-0001 X4,2 : 1.476E-0001  !

X5,1 : 2.127E-0001 X5,2 : 5.456E-0002 j X6,1 : 1.857E-0001 X6,2 : 3.241E-0002 i X7,1 : 1.709E-0001 X7,2 : 2.234E-0002 X8,1 : 1.583E-0001 X8,2 : 1.518E-0002 X9,1 : 1.570E-0001 X9,2 : 1.432E-0002 ]

X10,1: 1.554E-0001 X10,2: 1.313E-0002 X11,1: 1.549E-0001 X11,2: 1.269E-0002 X12,1: 1.531E-0001 X12,2: 1.117E-0002 l X13,1: 1.528E-0001 X13,2: 1.094E-0002 X14,1: 1.525E-0001 X14,2: 1.067E-0002 The input dependent variable matrix, Y:

Y1,1  : 1.080E+0003 Y2,1  : 9.905E+0002 Y3,1  : 1.742E+0002 Y4,1  : 4.047E+0001 YS,1. : 3.033E+0001 Y6,1 : 2.321E+0001 Y7,1 : 2.310E+0001 Y8,1 : 2.079E+0001 Y9,1 : 2.067E+0001 Y10,1: 2.075E+0001 Y11,1: 2.164E+0001 Y12,1: 2.100E+0001 Y13,1: 1.688E+0001 Y14,1: 1.762E+0001 The variance matrix, Vary:

Vary 1,1  : 9.262E+0002 Vary 2,1  : 9.126E+0002 Vary 3,1  : 3.122E+0002 l Vary 4,1  : 1.408E+0002 Vary 5,1  : 5.378E+0001 Vary 6,1  : 3.294E+0001 Vary 7,.1 : 2.342E+0001 i

i l

238 i

. LSModel Ouhut: Worker 2 - Class Y- Whole Body w/o NP Page 2 Vary 8,1,: 1.662E+0001 Vary 9,1 : l'.581E+0001 Vary 10,1: 1.469E+0001 a Vary 11,1: 1.427E+0001 Vary 12,1: 1.284E+0001 Vary 13,1: 1.263E+0001 Vary 14,1: 1.237E+0001 The elements of the B or beta matrix (fitting parameters):

B1,1 : 1.675E+0001 B2,1 : 9.203E+0002 The elements of the expectation value matrix, <Y>:

<Y>1,1 : 9.262E+0002

<Y>2,1 : 9.126E+0002

<Y>3,1 : 3.122E+0002  !

<Y>4,1 : 1.408E+0002 l

<Y>5,1 : 5.378E+0001 l

<Y>6,1 : 3.294E+0001 I

<Y>7,1 : 2.342E+0001

.. <Y>S,1 : 1.662E+0001

<Y>9,1 : 1.581E+0001

<Y>10,1: 1.469E+0001

<Y>11,1: 1.427E+0001

<Y>12,1: 1.284E+0001

<Y>13,1: 1.263E+0001

<Y>14,1: 1.237E+0001  ;

The elements of the residual matrix, R:

R1,1 : 1.538E+0002 R2,1 : 7.786E+0001 R3,1 : -1.380E+0002

  • R4,1 : -1.003E+0002 R5,1 : -2.345E+0001 R6,1 : -9.729E+0000 R7,1 : -3.229E-0001 R8,1 : 4.168E+0000 R9,1 : 4.861E+0000 R10,1: 6.063E+0000 R11,1: 7.366E+0000 R12,1: 8.155E+0000 ,

R13,1: 4.252E+0000 R14,1: 5.246E+0000 239

< LSModel Output: Worker 2 - Class Y- Whole Body w/o NP Page 3

~

The elements of the Z-score residual matrix, R/o:

i R/ol,1 : 5.055E+0000' a R/o2,1 : 2.577E+0000 R/o3,1 : -7.809E+0000 R/04,1 : -8.456E+0000 R/o5,1 : -3.197E+0000 R/o6,1 : -1.695E+0000 R/o7,1 : -6.672E-0002 R/c8,1 : 1.022E+0000 R/o9,1 : 1.223E+0000 R/o10,1: 1.582E+0000 R/o11,1: 1.950E+0000 R/o12,1: 2.276E+0000 i R/o13,1: 1.197E+0000 '

R/o14,1: 1.491E+0000 The elements of the theoretical covariance matrix, ThCov:

ThCov1,1 : 7.618E+0001 ThCov1,2 : -8.442E+0001 ThCov2,1 : -8.442E+0001 ThCov2,2 : 4.465E+0002 I

. i

.1t The elements of the theoretical variance matrix, ThVar: I ThVarl,1 : 7.618E+0001 ThVar2,1 : 4.465E+0002 The elements of the correlation coefficient matrix, Corr:

Corr 1,1 : 1.000E+0000 Corr 1,2 : -4.577E-0001 Corr 2,1 : -4.577E-0001 Corr 2,2 : 1.000E+0000 The elements of the experimental covariance matrix, ExCov:

ExCov1,1 : 1.241E+0003 ExCov1,2 : -1.375E+0003 ExCov2,1 : -1.375E+0003 ExCov2,2 : 7.273E+0003 The elements of the experimental variance matrix, ExVar:

ExVarl,1 : 1.241E+0003 ExVar2,1 : 7.273E40003 The Chi-square value = 1.955E+0002 The reduced Chi-square value = 1.629E+0001 240

I LSModel Ou[put: Worker 2 - Class Y- Whole Body w/o NP Page 4 Results,of weighted fit with weighting variances calculated from expectation values multiplied by the reduced Chi-Square value.

s The variance matrix, Vary:

Vary 1,1 : 1.509E+0004 Vary 2,1 : 1.487E+0004 Vary 3,1 : 5.085E+0003 Vary 4,1 : 2.294E+0003 Vary 5,1 : 8.759E+0002 Vary 6,1 : 5.365E+0002 Vary 7,1 : 3.815E+0002 Vary 8,1 : 2.707E+0002 Vary 9,1 : 2.575E+0002 Vary 10,1: 2.392E+0002 Vary 11,1: 2.325E+0002 Vary 12,1: 2.092E+0002 Vary 13,1: 2.057E+0002 Vary 14,1: 2.016E+0002

s. The elements of the Z-score residual matrix, R/o:

( R/ol,1 : 1.253E+0000

( R/o2,1 :

R/o3,1 :

6.386E-0001

-1.935E+0000 h R/o4,1 : -2.095E+0000 R/05,1 : -7.922E-0001 R/06,1 : -4.200E-0001 R/o7,1 : -1.653E-0002 R/o8,1 : 2.533E-0001 R/o9,1 : 3.029E-0001 '

R/o10,1: 3 320E-0001 R/o11,1: 4 831E-0001 R/o12,1: 5.638E-0001 R/o13,1: 2.965E-0001 i 1

R/o14,1: 3.695E-0001 The elements of the theoretical covariance matrix, ThCov:

ThCov1,1 : 1.241E+0003 ThCov1,2 : -1.375E+0003 I ThCov2,1 : -1.375E+0003 ThCov2,2 : 7.273E+0003 l

l The elements of the theoretical variance matrix, ThVar:

I ThVarl,-1 : 1.241E+0003 ThVar2,1 : 7.273E+0003 The Chi-square value = # of degrees of freedom = . 200E+0001 The reduced Chi-square value = 1.000E+0000 l

241