ML20058G348

From kanterella
Jump to navigation Jump to search
Nonproprietary VIPRE/WRB-1 DNBR Thermal Limit for Westinghouse Fuel Types, for Oct 1993
ML20058G348
Person / Time
Site: Haddam Neck File:Connecticut Yankee Atomic Power Co icon.png
Issue date: 10/31/1993
From:
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML19311B214 List:
References
NUDOCS 9312090187
Download: ML20058G348 (84)


Text

-.

WESTfNGHOUSE PROPRIETARY CLASS 3 i

l i

i h

l VIPRE/WRB-1 DNBR THERMAL LIMIT FOR WESTINGHOUSE FUEL TYPES j

i

)

NORTHEAST UTILITIES SERVICE COMPANY

)

BERLIN, CONNECTICUT OCTOBER 1993 NON-PROPRIETARY l

m en.xcon 9312090187 931129 P

j PDR ADOCK 05000213 j; PDR p

,,m

= --

DISCLAIMER The information contained in this topical report was prepared for the specific requirements of Northeast Utilities Service Company (NUSCO) and its affiliated -

companies, and may contain materials subject to privately owned rights. Any _

use of all or any portion of the information, analyses, methodology or data contained in this topical report by third parties shall be undertaken at such party's sole risk. NUSCO AND ITS AFFILIATED COMPANIES HEREBY DISCLAIM ANY LIABILITY (INCLUDING B'UT NOT LIMITED TO TORT, CONTRACT, STATUTE, OR COURSE OF DEALING) OR WARRANTY (WHETHER EXPRESS OR IMPLIED) FOR THE ACCURACY, j

COMPLETENESS, SUITABILITY FOR A PARTICULAR PURPOSE OR MERCHANTABILITY OF THE INFORMATION.

mwe ii j

l J

i 5

)

f l

i F

1 PROPRIETARY NOTICE i

This document contains information proprietary to Northeast Utilities and I

Westinghouse Electric Corporation. It is furnished in confidence solely for the j

purpose or purposes stated and is to be returned upon request. This document and enclosed information is not to be reproduced, transmitted, disclosed, or used otherwise in whole or in part without authorization of Northeast Utilities Service Company, Safety Analysis Branch, and Westinghouse Electric Corpora-l tion.

i i

I i

5N ST9CEdxOED

~_

l i

ABSTRACT l

The Westinghouse rod bundle critical heat flux (CHF) correla;.on WRB-1 has been used in conjunction with the VIPRE thermal-hydraulic subchannel computer code tu determine a 95/95 thermal limit for Westinghouse fuel types t

i of interest. The applicable Westinghouse fuel types include 14X14,15X15, and j

17X17 uptimized fuel assemblies (OFA), and 15X15 and 17X17 R-Grid low l

parasitic (LOPAR) fuel assemblies. For these fuel types, Westinghouse

{

calculated a thermal limit of 1.17 using the THINC computer code. Our efforts to reproduce Westinghouse's methodology and results through the use of WRB-1 and VIPRE yield a resulting thermal limit of 1.17. This 95/95 thermal limit

-l value will be used by Northeast Utilities Services Company in app 5 cable FSAR reload transient analyses for the Haddam Neck Plant.

j

-I I

I I

,m m j

w

R t

i l

.1 TABLE OF CONTENTS SECTION AND TOPIC PAGE 1.0 I NT R OD U CTION......................................

1 j

i

2.0 CONCLUSION

3 l

3 3.0 METHOD OF DEVELOPMENT OF DESIGN CRITERIA.......

4 3.1 Form of WRB-1...

4 i

3.2 Database Development....

6 l

1 3.3 Statistical Analysis......................

10 i

3.3.1 Background.................................

10 1

3.3.2 Statistical Analysis Methodology 10 l

4.0 DESIGN CRITERlON..........

21 i

5.0 REFERENCES

22 APPENDIX A: C H F DATA S U M M ARY.......................... 25 i

e x.a v

,I

a,.

4 4

i t

i I

LIST OF TABLES

?

PAGE i

[

TABLE 1 WRB-1 CHF DATABASE

SUMMARY

7 TABLE 2 ANALYSIS OF VARIANCE I................

14 t

TABLE 3 ANALYSIS OF VARIANCE 11...........

15 t

TABLE 4 STATISTICAL RESULTS FOR THE WRB-1 CORRELATION... 16 f

A

'l f

I i

5 i

)

i I

Vi sitcB4 K mD t

J

LIST OF FIGURES-PAGE I

FIGURE 1 CROSS-SECTIONS OF CHF TEST SECTIONS..........

8 FIGURE 2 TEST SECTION NONUNIFORM HEAT FLUX DI STR I B UTI O N S.............................

9 s

FIGURE 3 MEASURED VERSUS PREDICTED CRITICAL HEAT FLUX. 17 FIGURE 4 MEASURED-TO-PREDICTED CRITICAL HEAT FLUX f

VERSUS LOCAL OUALITY...................

18 FIGURE 5 MEASURED-TO-PREDICTED CRITICAL HEAT FLUX VERSUS LOCAL MASS VELOCITY...............

19 j

FIGURE 6 MEASURED-TO-PREDICTED CRITICAL HEAT FLUX VERSUS P RESSU R E............................. 20 t

i l

l l

t i

I l

I V55 l

~

3T3CE4x 080

1.0 INTRODUCTION

Northeast Utilities Service Company (NUSCO) has developed the capability and received NRC approval to perform FSAR reload transient analyses for the Haddam Neck Plant using the computer codes RETRAN (2,15) and VIPRE (3,16). RETRAN is a transient thermal-hydraulic analysis code which is used to calculate parameters such as pressure, enthalpy, mass flow and power for a transient. These parameters are then used in the VIPRE thermal-nydraulic subchannel analysis code to calculate departure from nucleate boiling ratios. In performing transient analyses, it is desired that the calculated minimum depar-ture from nuclear boiling ratio (MDNBR) remains greater than an established referenced value. The purpose of this report is to develop that established reference value, which is referred to as the 95/95 thermal limit, for the WRB-1 critical heat flux (CHF) correlation.

In previous reload transient analyses, NUSCO used the W-3L CHF correlation.

However, because the WRB-1 correlation h6s been shown to be more accurate in predicting DNBR (4) for the fuel types of interest, NUSCO has decided to incorporate the WRB-1 CHF correlation into its version of VIPRE. Since the WRB-1 CHF correlation was not included within the scope of the NRC Safety Evaluation Report (SER) for PWR VIPRE analysis (17), this report provides justification for NUSCO's use of VIPRE/WRB-1 in future FSAR/ Reload analy-ses.

To determine the 95/95 thermal limit, NUSCO first obtained the WRB-1 correla-tion, experimental database and all associated documentation (4-14) from Westinghouse. The WRB-1 CHF experimental tests performed and previously modeled by Westinghouse using the THINC Code (4), were then modeled using VIPRE. From the VIPRE subchannel analysis of the WRB-1 database, a mean, standard deviation and effective degrees of freedom were calculated.

1 ex =a

i These values were then used to calculate the 95% probability with 95% confi-dence (95/95) thermal limit value.

I l

i j

i f

i

?

i 1

l

)

t

)

s l

6 f

l l

h

}

1 I

I v

I r

)

h I

-l 2

ST9C24X MD S

1 1

2.0 CONCLUSION

The WRB-1 CHF correlation has been incorporated into VIPRE and applied to 1108 rod bundle data points. These data points define a data base that represents 14X14,15X15, and 17X17 OFA, and 15X15 and 17X17 R-Grid LOPAR fuel types. To meet the 95/95 reactor design criteria, a MDNBR limit of 1.17 has been established. This limit will be used for future FSAR/ Reload l

analyses.

i l

l i

h l

?

1 P

hk I t

3.0 METHOD OF DEVELOPMENT OF DESIGN CRITERIA 3.1 Form of WRB-1 The WRB-1 CHF correlation was developed from experimental test data obtained from Westinghouse R mixing vane grid test sections. The form of the WRB-1 correlation incorporated into VIPRE is given in Equation 1:

q"(WRB-1),pggy,g,, g, Gu_g,G**X (Egn.1}

a 8

8 8

10 10 10

where, PERFAC = the performance factor ( a function of fuel rod O.D.) which is given as follows:

_ % C-PERFAC =

for 0.422 and 0.400 inch O.D. rods PERFAC =

for 0.374 and 0.360 inen O.D. rods A, = Experimentally determined value that is a function of the system pressure and geometry.

8 = Constant value multiplier on a local mass velocity term (GJ.

3 B, = Experimentally determined value that is a function of the system pressure and geometry.

4

Tecsax ono

i

/

A,=

A=

B-4 i

a, G 5

RANGE OF VARIABLES Pressure 1440 s P s 2490 psia Local Mass Velocity 0.9 sG,/10 s 3.7 lb/ft hr.

i 5

2 Local Quality

-0.2 s X% s0.3 I

Heated Length, Inlet to CHF Location L s 14 feet g

Grid Spacing 13 s g, s 32 inches Equivalent Hydraulic Diameter 0.37 s D, s 0.60 inches i

I Equivalent Heated Hydraulic Diameter 0.46 s D s 0.58 inches n

and:

q" = critical heat flux (MBTU/(hr ft'))

j d, = distance from the most recent upstream mixing vane grid (in.)

5 maux=a i

=

3.2 Database Development i

j The CHF data used in this calculation were obtained from Refer-ences 413. This CHF database was assembled from experiments carried out at the Columbia University Heat Transfer Laboratory and was

)

used for developing the WRB-1 (Westinghouse Rod Bundle) CHF corre-

)

4 lation (4).

The WRB-1 CHF database is applicable to 14X14,15X15, and l

17X17 OFA, and 15X15 and 17X17 R-Grid Low Parasitic (LOPAR) fuel types (4). A total of 1108 data points from 22 different test assemblies are used. All of the test assemblies were either 8 or 14 ft. in heated length, with grid spacing varying from 13 to 32 inches. The axial heat flux profiles were either uniform, cosine. or usinu. The bundle test sections were all in the shape of rectangular array rod bundles, and rod.

outside diameters of 0.360,0.374,0.400, and 0.422 inches were used.

I Both 4X4 and 5X5 rod bundle arrays were tested using a typical ces! (all rods heated) or a coldwall cell (one interior rod unheated, simulating a control rod thimble tube).

j i

Table 1 provides a geometrical description of each test assembly includ-1 ing rod outer diameter, rod length, mixing vane grid spacing, axial heat flux profile type, configuration type, and appropriate reference. Figure 1 I

shows a general drawing of the test assembly cross-sections, and

]

Figure 2 shows the various non-uniform axial power profiles used in the analyses.

'l 4

[,h6d I. W m,

a---

TABLE 1 WRB-1 CHF DATABASE

SUMMARY

Test Rod O.D.

Im g,

Heat Flux Confiauration

inct, ft inch Profile ConfiaurationN Ref.

A-1 0.374 14 22 UNIF TYP-SX5 5

A-2 0.374 14 26 UNIF TYP-SX5 6

A-3 0.374 8

22 UNIF TYP - SX5 5

A-4 0.374,

8 26 UNIF TYP-5X5 6

A-5 0.374 14 22 COSINE TYP - SX5 5

A-6 0.422 8

20 COSINE TYP - 4X4 7

A-7 0.422 8

20 USINU TYP - 4X4 7

2 A-8 0.422 8

26 USINU TYP - 4X4 7

A-9 0.422 14 26 USINU TYP - 4X4 7

A-10 0.422 14 20 USINU TYP - 4X4 4

A-11 0.422 14 13 USINU TYP - 4X4 13 A-12 0.422 14 32 USINU TYP - 4X4 7

A-13 0.422 8

32 USINU TYP - 4X4 7

A-14 0.422 14 26 USINU TYP - 4X4 9

A-15 0.422 14 26 UNIF TYP - 4X4 6

A-16 0.422 14 26 USINU TH - 4X4 7

A-17 0.422 14 32 USINU TH - 4X4 7

A-18 0.374 14 22 COSINE TH-SX5 5

A-19 0.374 8

26 UNIF TH-5X5 6

A 20 0.360 14 20 COSINE TYP-SX5 12 A-21 0.360 14 20 COSINE TH - SX5 12 A-22 0.400 14 26 COSINE TYP - 4X4 4

(a)

TYP - Typical Cell TH - Thimble Cell 7

3T9CBdKDhD

FIGURE 1 CROSS-SECTIONS OF CHF TEST SECTIONS EX4 TYPICAL CELL 4X4 THlHBLE CELL

@@@S OSS@

GGGG 8888

@@@G SSQ+@

888G G 8/8 8 unnu m an l

SX5 TYPICAL CELL 5X5 THIMBLE CELL eeeee eeeee

@@888 88@@@

@M@G G

@@@GG

@GG@@

I"P" ~

@8GG

@GGG@

@GG@G 8

mcuxmo

FIGURE 2 TEST SECTION NONUNIFORM HEAT FLUX DISTRIBUTIONS R

~

f i

/

2 O

/

a 2 WW%

/

o a==

2

/

85

/

2

/

?

i f

I

/

0 1i

/

o2 5

/

I

/

5 i

1

/

/

2 m

/

G.

/

5 e

/

a

/

l o

/

I w

/

O O*

li E

~

i

/

u.

/

2 I

,/

8;

~~

~

I

,/

I

/

g5 1

/

ew

/

/ e a

\\

l N

g

\\

/

ac

\\ f A

8U

~~

/ \\

z"

\\

S2 I

\\

i N

o

\\

\\

\\

S5

\\

\\

O sN

\\

N

\\

o J

~

g N

N N

%\\

[

N \\

- e s

n O

i 3

a a

a e

ouYa xn131Y3H 3DYH3AY-01-1Y001 'UAY6/003 9

reux==

3.3 Statistical Analysis 3.3.1 Background The methodology used here is the same as that used by the NRC in their safety evaluation of the Westinghouse development of the WRB-1 correlation (18). There is shown to be a significant test section to test section variation in the data. Therefore, the total variance is calculated as the sum of two components, one component to account for variance within a given test series and a second component to account for the observed variance among the test series. The combined degrees of freedom is calculated from the variance and the degrees of freedom for each component. The method of Owen (1)is then used to calculate the 95/95 correlation limit for the WRB-1 CHF correlation.

3.3.2 Statistical Analysis Methodology 1

An analysis of variance has been applied to the measured-to-predicted critical heat flux (M/P) values of the WRB-1 database to determine if the test section variation is statistically significant. The null hypothesis that there is no test section effect was tested by forming the ratio:

y, Variance of the data among test Sedes Variance of the datJ WIlhin test Series F was calculated using the results of a classical analysis of variance.

The analysis of variance table shown in Tables 2 and 3 was constructed i

10 nea.x mo f

]

]

using the procedures outlined in Reference 19. The numerator of the F ratio is the mean square of the "among test series" component given in Table 3. The denominator is the mean square of the "within test series" component. Therefore, F = 0.088 = 13.50 0.00614 The result was an F of 13.50 with 21 degrees of freedom in the numera-tor and 1086 degrees of freedom in the denominator. At the 5% signifi-cance lerci, the critical value of F is 1.57. Therefore, the test section effect is significant at the 5% level.

Following the procedure outlined in Reference 18, the total variance was calculated as:

S2 2

m=S,+S, i

2 variance within the test series about the mean value S,

=

22 2

E(N - 1)Sf f

=0.00614

=

22 E(N - 1) f h1 2

variance among the test series means S,

=

11 ram mo I

i T

22 f 22 12 b(Nb (M/b/

22.58348 _ (22.2727)2= 0.001653 i.i i.i 22 y

21 22 22 21 22 22 s

number of data points in test series i N,

=

(M/P), =

mean measured-to-predicted critical heat flux ratio for test series i 1

S,2 variance of the individual measured-to-predicted critical heat

=

flux ratios about the mean for test series i The effective degrees of freedom was calculated as:

F = (S23)2 (0.00614 + 0.00165)2 2

v

= M9

=

r sj sj 0.00614 0.001652 2

p- + j A 1086 21 w

degrees of freedom within the test series = 1108-22 = 1086 F.

=

degrees of freedom among the test series means = 22-1 =

F,

=

21 The total variance calculated in this manner was 0.00779 with 369 degrees of freedom. Using the method of Owen (1), the 95/95 correla-tion limit DNBR calculation gives:

4 ib 3?iCBaX mD

I 1

= 1.170 DNBR** = (M/P),, -K Sr 1.0124-1.783(0.0883)

=

where r

22.2727/22 = 1.0124 (M/P),,

=

1.783 for 369 degrees of freedom K

=

(0.00779) = 0.0883 i

S

=

7 The resulting 95/95 correlation limit DNBR is 1.170. The results are summarized in Table 4.

Appendix A gives the input conditions and VIPRE/WRB-1 calculated measured-to-predicted critical heat flux ratio (M/P) for each test run.

Figure 3 shows the measured critical heat flux plotted against the pre-dicted values. Figures 4,5, and 6 show the M/P plotted against fluid parameters quality, flow, and pressure, respectively. The absence of any noticeable trends in the data indicates that VIPRE/WRB-1 does not show a significant bias to these fluid parameters.

)

2 13 net,.xme l

..JJ m

u

+

.*4 Ei-a

--Mw-

-w a

i TABLE 2 ANALYSIS OF VARIANCE I I

I Ti TEST (M/P) avg i

SERIES (M/P) AVG N

  • N T'/N (M/P)' avg I (M/P):

gr 3

Table A1 1.03081 71 73.1882 75.4438 1.062589 75.786949 0.00490 0.07000

-l Table A2 1.04176 73 76.0486 79.2246 1.085269 79.734274 ' O.00707 0.08412 Table A3 1.07655 67 72.1292 77.6510 1.158971 78.100078 0.00630 0.08248 Table A4 1.01305 78 79.0179 80.0491 1.026270 80.528390 0.00622 0.07889 Table A5 0,97339 74 72.0311 70.1147 0.947496 70.529781 0.00568 0.07539 Table A6 1.01654 33 33.5460 34.1012 1.033369 34.178758 0.00242 0.04923 Table A7 0.99065 33 32.6916 32.3861 0.981397 32.474993 0.00277 0.05269 Tablo AB 1.07487 36 38.6954 41.5926 1.155352 41.928004 0.00958 0.09787 l

Table A9 1.05884 35 37.0596 39.2405 1.121158 39.487114 0.00725 0.08515 Table A10 1.00286 36 36.1030 36.2063 1.005731 36.484827 0.00795 0.08920 Table A11 0.95307 38 36.2169 34.5176 0.908358 34.728096 0.00568 0.07541 j

Table A12 1.02251 38 38.8557 39.7307 1.045545 39.957017 0.00611 0.07820 Table A13 0.99788 31 30.9343 30.8688 0.995770 31.000940 0.00440 0.06634 Table A14 1.04406 71 74.1284 77.3948 1.090068 77.868270 0.00676 0.08223 Table A15 0.96937 42 40.7136 39.4066 0.939682 39.631946 0.00403 0.06349 l

Table A16 0.97651 39 38.0839 37.1895 0.953577 37.292092 0.00269 0.05195 i

Table A17 0.95427 37 35.3083 33.6940 0.910649 33.935850 0.00671 0.08196 Table A18 0.97218 70 68.0530 66.1602 0.945146 66.513601 0.00512 0.07156 i

Table A19 1.08145 68 73.5389 79.5290 1.169544 80.242467 0.01064 0.10319 Table A20 0.99205 63 62.4997 62 0034 0.984182 62.533974 0.00855 0.09249

)

Table A21 0.97716 38 37.1324 36.2846 0.954858 36.378659 0.00254 0.05041 Table A22 1.05285 37 38.9555 41.0143 1.108496 41.214655 0.00556 0.07459 SUM 22.2727 1108 1124.93 1143.86 22.58348 1150.5307 l

)

i i

r i

e i

14 i

mca.x ma

4 1

r S

TABLE 3 ANALYSIS OF VARIANCE ll

}

Sum of Degrees Mean Source Souares of Freedom Souare Among j

22 T*

IN Test g _ i_ _ i-i p-1 = 21 0.0829 A1 N, 22 i

Series EN i

h1

= 1143.86 (1124.93)*/1108

= 1.74 Within um 22 T*

fIM -

N-p=1086 0.00614 Test 3

Series j

i i

= 1150.5307-1143.86

= 6.67 i

N,

= number of data points in test series i i

(M/P),

= individual measured-to-predicted critical 1

heat flux ratio T,

= sum of the individual measured-to-predicted critical heat flux ratios in test series i N

= IN, (=1108) p

= number of test series (=22) mcux ce 15

)

d TABLE 4 STATISTICAL RESULTS FOR THE WRB-1 CORRELATION Rod Axial WRB1/

WRB1/

Test Rod O.D.

Length Heat VIPRE VIPRE No.

(in.)

Flux Config.

N M/P S

g)

A-1 14 C.374 UNIF 5 TY 71 1.03031 0.0700 A2 14 0.374 UNIF 5 TY 73 1.04176 0.08412 A3 8

0.374 UNIF 5 TY 67 1.07655 0.08248 A-4 8

0.374 UNIF 5 TY 78 1.01305 0.07889 A-5 14 0.374 COS 5 TY 74 0.97339 0.07539 A-6 8

0.422 COS 4 TY 33 1.01654 0.04923 A-7 8

0.422 USINU 4 TY 33 0.99065 0.05269 A8 8

0.422 USINU 4 TY 36 1.07487 0.09787 A-9 14 0.422 USINU 4 TY 35 1.05884 0.08515 A-10 14 0.422 USINU 4 TY 36 1.00286 0.08920 A 11 14 0.422 USINU 4 TY 38 0.95307 0.07541 A-12 14 0.422 USINU 4 TY 38 1.02251 0.07820 A-13 8

0.422 USINU 4 TY 31 0.99788 0.06634 l

A 14 14 0.422 USINU 4 TY 71 1.04406 0.08223 l

A 15 14 0.422 UNIF 4 TY 42 0.96937 0.06349 l

A-16 14 0.422 USINU 4 TH 39 0.97651 0.05195 r

A-17 14 0.422 USINU 4TH 37 0.95427 0.08196 A 18 14 0.374 COS 5TH 70 0.97218 0.07156 A-19 8

0.374 UNIF 5 TH 68 1.08145 0.10319 A-20 14 0.360 COS 5 TY 63 0.99205 0.09249 A-21 14 0.360 COS 5 TH 38 0.97716 0.05041 A-22 14 0.400 COS 4 TY 37 1.05285 0.07459 Group Statistics (Not assuming pootability) 1.0124 0.0883 THERMAL LIMIT (F = 369, Kp = 1.783) = 1.170 i

16 stacux mo

FIGURE 3 MEASURED VERSUS PREDICTED CRITICAL HEAT FLUX A

x

\\

Os

\\

\\

N

\\

Ob

'\\

~

1 CJ '

C Ogh g

~

g r0 0

-~

~

DG;, -

?

kr o

.o m4 D g,,. _,_, N U

d x

s y

3

  • 4 s

A g

o e

~d D

o o

E 2

n g

N'

_No

___ g o

l t

i _,j l

i o

m x;

N o

O e

n N

v e

N J

a d

d 6

6 6

6 d

d d

d e

(r d-JH/naqw) xnig avaH Paanseau a

i 17 mcwmo

1 FIGURE 4 MEASURED-TO-PREDICTED CRITICAL HEAT FLUX VERSUS LOCAL QUALITY To D

D m o a

5 d

a as a

g o

o a

a-O

_q O

00 m

o et _

ec IE hE8 n#J x

o ao Ep y

?""]!

Og l' J 3

O p fjC O

h 3

.2 05 ao mm g

3 - - _ ~_

o ae a8 oa t

a @%J O

0 CD 2 o

9 ao 8

o r

N

'S I

I t

i e

o s

9 O

N g

g y

d/V4 neux wo 3g

FIGURE 5 MEASURED-TO-PREDICTED CRITICAL HEAT FLUX VERSUS LOCAL MASS VELOCITY w

m o

D b

k a

m&a o o

.n v

a a

g a

m E-5tc 3

.o Oi l

o Y

i D

o Q

o

@ Da

_N a

U g

.r.awer s:

a

.N o

N oa

. w.o f

1 1

1 1

I I

I n

m N

e m

N J

J o

o o

l d/W 19 atecs.x =

1 l

t i

FIGURE 6 MEASURED-TO-PREDICTED CRITICAL HEAT FLUX VERSUS PRESSURE j

l C

CU l

WA5 e _+%pe a

O D

N C

h O

~

O Q

S or D

b h$

_m e-

%3

~

o a

a m

g, b

b b

O L1 T.

9 N

D

~

o o

o d/N 20 rwux: 3 1

i 4.0 DESIGN CRITERION The 95/95 design criterion for the Westinghouse reactor cores provides that DNB will not occur with a 95% probability confidence level. This criterion is satisfied by calculating a limiting value of MDNBR with Owen's method. Owen 1

has provided tables which give values of K, such that at least a given propor-

{

tion of the population is greater than {(M/P),,- KgS) with confidence (y), where (M/P),, and S are the sample mean and standard deviation, respectively (1,4).

When this method was carried out using all 1108 data points, the results

}

T indicate that a reactor core with the fuel types of interest and modeled with the VIPRE/WRB-1 combination would satisfy the design criterion if no FSAR transients result in a MDNBR of less than 1.17.

4

(

4 i

s i

i l

i j

21

=ux=a

-s-wr--

c

---r..-

i

~

5.0 REFERENCES

1.

D. B. Owen,

  • Factors for One-Sided Tolerance Limits and for Variables

)

Sampling Plans," SCR-607, Sandia National Laboratories, March,1963.

2.

RETRAN-02: A Program for Transient Thermal Hydraulic Analysis of Complex Fluid Flow Systems, Vol.1,2,3, and 4. EPRI NP-1850, Palo Alto, California, November,1988.

i 3.

VIPRE-01: A Thermal-Hydraulic Code for Reactor Cores; Vol.1,2,3, and 4. EPRI NP-2511, August,1989.

i 4.

Motley, F. E., Hill, K. W., Cadek, F. F. and Shefcheck, J., *New Westinghouse Correlation WRB-1 for Predicting Critical Heat Flux in Rod i

Bundles with Mixing Vane Grids," WCAP-8762-P-A (Westinghouse Proprietary), July,1984.

a 5.

Motley, F. E., Wenzel, A. H. and Cadek, F. F., " Critical Heat Flux Testing of 17X17 Fuel Assembly Geometry with 22 inch Grid Spacing," WCAP-8536 (Westinghouse Proprietary), May,1975.

j 6.

Hill, K. W., Motley, F. E., Cadek, F. F. and Wenzel, A. H., "Effect of t

17X17 Fuel Assembly Geometry on DNB," WCAP-8296-P-A (Westinghouse Proprietary), February,1975 7.

Cadek, F. F. and Motley, F. E, "DNB Test Results for New Mixing Vane j

Grids (R)," WCAP-7695-P-A (Westinghouse Proprietary), January,1975.

veuxxo 22 i

l l

8.

Cadek, F. F. and Motley, F. E., "DNB Test Results for R Grid Thimble j

Cold Wall Cells," WCAP-7695 Add.1-P-A (Westinghouse Proprietary),

January,1975.

9.

Hill, K. W., Motley, F. E. and Cadek, F. F., " Evaluation of DNB Test i

Repeatability," WCAP-8168-P-A (Westinghouse Proprietary), April,1975.

10.

Rosal, E. R., Cermak, J. O. and Tong, L. S.,

  • Rod Bundle Axial Non-Uniform Heat Flux DNB Tests and Data," WCAP-7411-R1-P-A, January, 1975.

l l

l 11.

Cadek, F. F. and Motley, F. E., " Application of Modified Spacer Factor to i

L-Grid Typical and Cold Wall Cell DNB," WCAP-7988-P-A (Westinghouse Proprietary), January,1975.

t 12.

Davidson, S. L. and lorii, J. A., " Verification Testing and Analysis of the j

17X17 Optimized Fuel Assembly," WCAP-9401-P-A (Westinghouse

{

Proprietary), Approved Version, August,1981.

i i 3.

EPRI NP-2609,

  • Parametric Study of CHF Data"- Volume 3, Part 1:

Critical Heat Flux Data, Septomber,1982.

l

'l 14.

Westinghouse Report SPE-93-494, "NUSCO-CY Engineering Services -

l VIPRE WRB-1 Revised Report," dated 9/10/93, by L. M. Shenton, J. F.

l Connelley, and P. Schueren.

I t

15.

Letter from Alan B. Wang (NRC) to Edward J. Mroczka (CYAPCO),

i

  • Safety Evaluation for Northeast Utilities Topical Report 140-1, 'NUSCO l

l f

mcaxmo 23 I

J

.= -.

k Thermal Hydraulic Model Qualification, Volume 1 (RETRAN)," July 26, 1988.

16.

Letter from Francis M. Akstulewicz (NRC) to John F. Opeka (CYAPCO),

"'NUSCO Thermal Hydraulic Model Qualification, Volume ll (VIPRE),"

Topical Report NUSCO 140-2," October 16,1986.

17.

" Acceptance for Referencing of Licensing Topical Report, EPRI NP-2511-CCM, VIPRE-01: A Thermal-Hydraulic Analysis Code for Reactor Cores, i

Vol.1,2,3, and 4," letter from C. E. Rossi (NRC) to J. A. Blaisdell (UGRA), May 1,1986, Nuclear Regulatory Commission.

18.

Letter, J. F. Stolz (NRC) to C. Eicheidinger (W), " Safety Evaluation Report on WRB-1 Critical Heat Flux Corre'ation," April 19,1978.

i 19.

C. A. Bennett and N. L. Franklin, " Statistical Analysis in Chemistry and i

the Chemical Industry," pages 327-329, John Wiley and Son, New York, New York,1954.

4 i

i l

l l

4 3tsC84X unD 1

= -.

f i

i

=?

APPENDIX A: CHF DATA

SUMMARY

f in this Appendix, the resuhs for each test section experiment using VIPRE/WRB-1 are given.

l i

f s

e I

}

i i

e n

r k

i 1

'i i

e 4

l I

st cr.a on::

25 1

I 4

TABLE A1 SYSTEM INLET INLET AVERAGE MIN HOT HUT AX1AL LOCAL LOCAL MEA 5URED FRFD.M MIP CASE F1tI55URE EN TH ALFY M ASS FLUX HEAT RATE DNBR CHANNEL FOD LL' VEL MASS FLUX QUA11TY HEAT FLUX HEAT F1.UX b

netsum ris twettim m twsttsw m

/

(PstA)

(BTU /LBW rutsu m m

<strwr m O.925 1

0.848 2

0.969 3

1.039 4

1.000 5

1.064-6 1.161 7

0.974 8

0.949 9

0.882 10 0.968 11 0.913 12 0.988 13 C.925 14 0.979 s

15 0.972 16 1.008 17 0.984 18 1.043 19 1.092 20 1.089 21 1.062 22 1.026 23 1.053 24 1.120 25 1.032 26 0.893 27 0.990 28 0.991 29

TABLE A1 SY3 TEM DfLET INLET AVERAGE MLN HOT HOT AXIAL LOCAL LOCAL MEASURED PREDKTED MrP CASE FRESSL'RE ENTHALPY MASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL M A55 FLUX QUAUTY HEAT FLUX HEAT FLUX rutsu m tra Samtm4Ta twetva

/

pstA)_

(BTU /LBM) futsuu rts

<smstem 30 31 32 33 34 0.958

_5 o

36 37 1.003 38 1.044 39 1.104 40 1.063 41 1.150 42 1.015 43 1.180 44 1.067 45 1.040 46 0.987 47 1.052 48 0.996 49 1.044 50 1.027

- i 51 1.052 52 1.044-53 1.061 54 1.011 55 0.997 56 1.013 57 1.084 58 mm

.- u m.

+--e-ar e41 r

,mw - r ww *v 4-"e*

TABLE A1 SYSTDI INLET INLET AVERAGE MIN HOT HUT AX1AL LOCAL LOCAL MEASURED MtEDICTED M7 CASE fitES$URE ENTHALFY MA5S FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUALITY HEAT FLUX HEAT FLUX (b,C)

_ asu.

(sTUum suumm wwm wuwam umwm umsg 1.081 59 1.052 60 1 J '4 61 1.1. 2 62 1.218 63 0.997 64 0.989 65 1.046 66 1.140 67 1.099 68 1.078 69 70 0.987 1.140 71

t TABLE A2 SYSTDf INLET INLET AVERAGE MIN HUT HUT AXLAL LOCAL IDCAL MEASURED MtEDICTED M/P CASE PRES 5URE ENTHALFY M ASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL M ASS RUX QUA11TY HEAT FLUX MEAT FLUX tutsum nn (writ w rn oestt)9e rra _.

(PSLA)._

(trTU/LBM) cutsumsta estr a c i n 1

1.168 2

1.016 3

1.065 4

0.976 5

1.072 6

1.151 7

1.152 8

1.089 9

0.962 10 0.978 11 0.988 12 1.025 13 1.090 14 0.975 15 0.897 16 1.075 17 1.047 18 0.978 19 0.882 20 1.125 21 1.130 22 1.235 23 1.045 24 1.033 25 1.123-26 '

1.126 27 1.131 28 1.033 29.

TABLE A2 SYSTD4 INLET INLET AVERAGE MIN HUT HOT AXIAL LOCAL LOCAL M~A5URED PREDICTED MT CASE T1tE55URE ENTHALPY MASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUAUTY HEAT FLUX HEAT FLUX

[b,C) l uts u m r.2

==mm ns msww trn_

es:A) omJttsu) utsum nn smur m 1.026 30 1.018 31 0.846 32 1.135 33 1.110 34 1.130 35 1.087 36 1.148 37 0.971 38 1.088 39 0.881 40 0.930 41 0.936 42 1.028 43 1.009 44 0.949 45 1.059 46 1.030 47 1.071 48 0.955 49 0.995 50 1.024 51 1.069 52 1.034 53 1.038 54 0.995 55 0.996 56 0.977 57 1.149 58

TABLE A2 SYSTD4 IMtJT INLET AVERAGE MIN HUT HOT AXtAL LOCAL LOCAL MEASURED PREDICTED h./P CASE PRESSURE ENTHAlfY MA55 FLUX HEAT RATE DNBR CHANNEL ROD LEVEL M ASS FLUX QUA11TY HEAT FLUX HEAT FLUX Nimuwe rTn twsttwa rra matuw nn

. (b,C)

EE (ETU/LBM)

Mtsuw FTa (stimc4T) 1.154 59 0.839 60 0.957 61 1.100 62 1.136 63 1.113 64 1.085 65 1.045 66 1.080 67 0.979 68 1.014 69 1.063 70 0.956 71 1.143 72 0.931 73

~

7 MD w

y 9

y

A-TABLE A3 SYSTEM IN11T INLET AVERAGE MIN HUT HOT AX1AL LOCAL LOCAL MEASURED PREDICTED M/P CASE PRES 5URE ENTHALPY M ASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL M ASS FLUX QUAIJTY HEAT FLUX HEAT FLUX (kC -

futJu verTs curruma rTs watu,atin (PstA)

(BTU /LBM) tutsuunsta

<ttttssem 1.017 1

1.050 2

1.072 3

1.105 4

1.006 5

1.097 6

1.110 7

1.101 8

0.959 9

1.089 10 1.099 11 1.195 12 13 1.160 14 1.156 1.171 16 1.201 17 1.073 18 1.081 g

1.063 20 1.135 21 1.193 1.198 1.127 24 1.210 25 26 1.150' 28 1.131 g

TABLE A3 SYTTD4 INLET INLET AVERAGE MtN HOT HOT AX1AL LOCAL LOCAL MEASURED FREDICTED M/P CASE FRES$URE ENTHALPY M ASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUALITY HEAT FLUX HEAT FLUX

[bc st2u m eta mutv9enn Mutuonna j

(PSLA) _

OfTU/LBM) wLsuw ns omine m 1.092 30 1.144-31 1.143 32 1.078 33 1.037 34 1.088 35 1.088 36 1.041 37 0.907 38 0.993 39 0.918 40 1.000 41 0.948 42 1.085 43 1.065 44 1.178 45 1.050 46 0.803 47 0.968 48 0.967 49 1.020 50 1.022 51 0.972 52 1.179 53 1.099 54 1.148 55 1.030 56 1.128 57 1.120 58

TABLE A3 SYSTEM INLET INLET AVERAGE MIN HOT HOT AX1AL LOCAL II) CAL MEA 5URED PREDICTED

%?

CASE PRES 3URE ENTHALPY MASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUAllTY HEAT FLUX HEAT FLUX (h

Wisumna Nettnana amme na j

(PstA)._

(BTU /LBM)

W12M a rta critmem 1.216 59 1.149.

60 1.036 61 1.109 62 1.063 63 0.967 64 0.992 65 1.022 66 1.091 67

as 7 m

TABLE A4 SYSTD4 INLET INLET AVERAGE MtN HUT HOT AX1AL LOCAL LOCAL MEASURED PREDICT 1D M/P CASE MLESSURE ENTHALPY MASS FIUX HEAT RATE DNBR CHANNEL ROD LEVEL MA35 FLUX QUALITY HEAT FLUX HEAT FLUX

( b, C.

misum rrd Numarts mem1m m.

(Psia)

(BTUILBM) misu m vTa (smsten 1.037 1

0.934 2

0.908 3

0.937 4

0.871 5

912 6

361 7

0.942 8

0.945 9

1.049 10 1.002 11 1.075 12 0.958 13 0.992 14 0.987 15 1.076 16 1.017 17 0.978 18 1.029 19 1.027 20 1.010 21 0.994 22 0.915 23 1.036 24 0.871 25 0.987 26 1.055 27 0.816 28 0.856 29

~.

TABLE A4 SYSTEM INLET INLET AVERAGE MIN MUT HOT AX1AL 1.DCAL LOCAL MEASL1tED PREDICTED M/P CASE F1tE55URE ENTHALPY MASS FLUX HEAT RATE DNPR CHANNEL ROD LEVEL MASS RUX QUALITY HEAT FLUX HEAT FLUX

((c, (PSIA)

(TTU/LBM) mtsum ns critwe m utsusam rummmm mmwam 0.996 30 0.912 31 1.075 32 0.807 33 0.981 34 1.010 35 1.024 36 1.004 37 1.078 38 0.981 39.

1.040 40 1.070 41 1.143 42 1.055 43 0.968 6

44 0.963 45 1.237 46 1.075 47 1.070 48 1.034 49 1.053 50 1.085 51 1.028 52 1.017 53 0.976 54 1,015 55 1.081 56 0.931 57 1 017 1

58 Ww-


2 u

- ----- 1 z.---

TABl.E A4 SYSTEM INLET INLET AVDtAGE MIN HOT HOT AX1AL IDCAL IDCAL MEASURED F9tED9CTED MT CASE 11tESSURE ENTHALPY M ASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUALTTY HEAT FLUX HEAT FLUX

(,bg (PstA)

(BTU /LEM) tutsu n rra att m r4ti

<wtsum ns rueTo m sra swatuse tts 59 1.072 60 1.108 61 1.040 62 0.839 63 1.036 64 1.047 65 1.120 66 1.147 67-1.163 68 1.050 69 1.079 70 1.045 7

1.127 7:

1.057 73 0.945 74 1.002 75 1.038 76 1.039 77 1.078 78 1.082 i

., w

TABLE A5 SYSTEM INLET INLET AVERAGE MIN HOT Hcrr AX1AL LOCAL LOCAL MEASURED MtIDETED M,7 CASE F1tESSURE ENTHALPY MASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUAUTT HEAT FLUX HEAT FLUX (4c.)

estAn arrun.no muumm snmem muu= rra mmmm unum 0.921 1

0.918 2

0.954 3

0.884 4

1.005 5

1.013 6

0.854 7

0.915 8

0.910 9

1.004 10 1.078 11 0.824 12 0.858 13 0.936 14 0.921 15 0.948 16 0.800 17 0.870 18 0.879 19 0.866 20 0.912 21 0.983 22 0.997 23 0.913 24 0.969 25 0.928 26 0.928 27 0.967 28 i

0.950 l

29 l

l

t TABLE A5 SYSTD4 INLET INLET AVERAGE MIN HOT HOT AX1AL IDCAL 1.OCAL MEASURED PREDICTED M/F CASE MtES$URE ENTMALPY MASS FLUX HEAT RATE DNBR DIANNEL ROD LEVEL M A53 TLUX QUAlfTY HEAT FLUX HEAT FLUX

( bj(-

(PSIA)

(BTU /LBM)

MLautiaFT3 STUttC m MLSW m FT3 NSTttMffD 4tWTUMR FFD 1.096 30 1.061 31 1.019 32 1.043 33 1.050 34 1.026 35 1.012 36 0.964 37 0.981 38 1.025 39 0.987 40 0.967 41 0.886 42 0.860 43 0.899 44 1.020 45 1.083 46 1.051 47 1.029 48 0.974 49 1.080 50 0.931 51 1.076 52 1.152 53 0.981 54 1.067 55 0.901 56 1.000 57 1.008 58

TABLE A5 SYSTD4 INLET INLET AVERAGE MIN HOT HOT AX1AL LOCAL LOCAL MEASURED PREDICTED MT CASE litESSURE ENTHALPY MASS FLUX HEAT RATE DNBR C11ANNEL ROD LEVEL MASS FLUX QUALTTY HEATFLUX HEAT FLUX kC.)

futsu m m tusiv e rta rummam (Ps!A)

(ETU/LBM) mtmum rta

( mt1me m 0.924 59 0.925 60 0.876 61 1.026 62 1.009 63 1.057 64 0.951 65 1.123 66 1.067 67 0.906 68 1.052 69 0.958 70 1.067 71 0.906 72 1.024 73 1.027 74 I

l i

-g TABLE A6 SYSTD4 INLET INLET AVERAGE MIN HOT HOT AX1AL LOCAL IDCAL MEASL1 LED MtEDICTED M/F CASE 11tEs3UltE ENTHALPY MASS FLUX HEAT R ATE DNBR CHANNEL ROD LEV ~ct MA53 FLUX QUAtJTY HEAT FLUX HEAT FLUX

(

(PstA)

(BTU /LBM) tutsuma m

<m ste m tutsumm mwm segresem 1

0.927 2

0.974 3

0.877 4

1.013 5

1.017 6

1.102 7

1.032 1.095 8

9 1.090 10 0.997 11 1.048 12 0.978 13 0.977 1.013 14 15 0.987 16 1.005 17 1.008 18 1.030 19 1.002 1.046 20 21 1.057.

1.111 22 1.082 23 0.964 24 1.008 25 1.004 26 0.991 27 1.033 28 1.061 29

4

.2

  • m O Cn e c) M CD CD b

c) O CD CD A

d*dd 5&

d 5 5B x E

.aase

!i x s dh

% :a 5b a

$es 3'i 2

$4$

B8

==

5 a#

x5 t

ai5 a

9de aa2 1 bI B5e 55$

f3

\\

5 a

1e i

LIJ

-8 g

oe-Nn y

a nnnn i

p u

TABLE A7 SYSTEM INLET INLET AVDtAGE MIN HUT HOT AXiad.

LOCAL LOCAL MEASURED MtEDICTED M/P CASE F1tE55URE ENTHALPY M ASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL M ASS FLUX QUALTTY HEAT FLUX HEAT FLUX

[k,c )

(PSIA)

(BTU /LBM) wtsu m m rurusrin ostsu m FTn oestuimm oestt;4am d

1 0.861 2

0.965 3

0.974 4

0.972 5

0.936 6

1.061 7

1.043 8

0.917 9

0.995 10 1.003 11 0.922 12 0.985 13 1.013 14 0.880 15 0.985 16 1.024 17 0.942 18 0.931 19 0.974 20 0.990 21 1.007 22 1.003 23 1.001 24 1.004 25 1.048 26 0.954 27 1.021 28 1.062 29 1.000

-n w

-se-a w-

TABLE A7 5Y5TD4 INLET INLET AVFRAGE MIN HOT HOT AX1AL LOCAL LOCAL MEASURED F1GDICTED M/P CASE I1LESSURE ENDIALPY MASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL M ASS FLUX QUAISTY HEAT FLUX HEAT FLUX f

(P51A)

(BTU /LBM) tutsu m nn attwc m NLBM M M3 CWRTU M Ft3 CWm*e M3 _

1.031 30 1.051 31 1.047 32 1.090 33 t

i 1

r

TABLE A8 5YSTEM INLET INLET AVERAGE MIN HOT HOT AX1AL LOCAL LOCAL MEASURED PREDICTED MIP CASE PRE 53URE ENTHALPY M ASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL M A55 FLUX QUAIJTY HEAT FLUX HEAT FLUX O,C.)

rutsuu rts twatvaa rts twstvoe sta (PSIA) _

(BTU /LBM) rutsu m sra esTusretti 1.003 1

1.058 2

1.028 3

1.078 4

1.060 5

1.117 6

1.043 7

1.056 8

1.067 9

1.056 10 1.052 11 0.995 12 0.992 13 0.951 14 1.007 15 0.959 16 0.983 17 1.004 18 1.012 19 1.019 ~

20 1.040 21 1.053 22 1.174 23 1.255 24 1.203 25 1.167 26 1.163 27 1.071 28 1.061 f

29

TABLE A8 SYSTEM INLET LNLET AVERAGE MIN HOT HOT AXIAL IDCAL LOCAL MEASURED PRED9CTTD WP CASE PRES 5URE ENTHAIJY MAS 3 FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLtTX QUAUTY HEAT FLUX HEAT FLUX

~ -~~

~

[(c)

(PSIA)

(BTU /t.BM) tutsu m m artwat) twisu mm ossit a rra em 30 1.177 31 1.042 32 1.003 33 1.006 1.039 34 1.321 4

35 36 1.384 h

~ '

' ' - ~

~

- ~ ~ - -

TABLE A9 ST5 TIM DiLET INLET AVERAGE MN HOT HOT AXtAL LOCAL LOCAL MEASURED MEDICTED M/F CASE FRE55URE ENTHALPY MASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUAlfrY HEAT FLUX HEAT FLUX (b k (P5tA)

OrTU/LBM) tutsuia rtD MTU3tC-FT) tut 3Mim ITD fM51U M TTD (kifU15773 j

1.080 1

1.114 2

0.962 3

1.127 4

1.087 5

1.110 6

1.202 7

1.134 8

1.180 9

1.080 10 1.149 11 1.025 12 1.053 13 0.964 14 1.039 15 1.118 16 1.133 17 1.101 18 1.085 19 1.16G 20 1.108 21 1.041 22 1.071 23 1.007 24 1.014 25 1.000 26 0.988 27 0.977 28 0.823 29

..=

TABLE A9 SYSTD4 INLET th1ET AVERAGE MIN HOT HOT AXIAL IDCAL LOCAL MEA 5L4JD MEDICTED RT Cash ITIASURE ENTHALPY M ASS RUX HEAT R ATE DNBR CHANNEL ROD LEVEL MASS RUX QUA11TY HEAT RUX HEAT RUX

[h,C.)

, PSIA)

(BTU /LBM) tutsu w fra trntur m twisu w ns (Wyn'*Arft assTUw 4Ta

(

1.090 30 1.055 31 0.996 32 0.877 33 0.939 34 1.165 35

^

~

--=e-w c--r

x

, q%.c, 1'

i n

0 s:

.e x

O

^

IMAGE EVALUATION ge.h

!/

\\////

TEST TARGET (MT-3)

,/ 'y?

s{g q,,

.y&$p

/jf,/p,

'kff

~

^

y)Y kTgg%

l.O

'22 W

l,l o L:= z

!!!! l.8

?.C mi ll 1.25 Flw.4

!! 1.6 l

\\!

a+

w=

l l

4

--- 15 om m -----

4 6"

/gb 1

l:

f

//p 4

4$f's.',

6\\

/p g

n

+

c.

't-b' j

(-

^

h jj, ay '

f(4 i

i

/,

y i

., pa u;&iE5h

y A, 1-1 IMAGE EVALUATION

~'%

\\/g/

/

TEST TARGET (MT-3) h

,p-R;ljf$'

8

\\'

4kg q

I.0 m

spq

!$ l.8_

lh j l.25

!! l.4 llll 1.6 h -.=

ih sus h

4 150mm - - - - - - - - - - - - -

4 6"

~ - - - - - - -

m s

O l)

\\

f 6r v;e y

2 x

g D

f/

" L.

~

n

,p I

_I

Ay 1,

4 IMAGE EVALUATION O

Y,,

TEST TARGET (MT-3)

/

< ' !::/ 4

///

y, JQ gV 4

+

<v l.0 22 E20 l,l u =:

iM1 1.2 5

!Il 1.4

!!i 1.6 luse

!!Pme 4

.--- 150mm 4-6"

%g',,

f

//p byj, ",

. e

f4

+

- ),

zg o

G.

\\'O r

IMAGE EVALUATION

[g/

Q

.g TEST TARGET (MT-3)

/

+

o eg (g//

e M> g,,

o 4

w I.0 2.0 ll 1.1 ll l ' l.B IA I.l 1.6 i m _--.

=.

lF 150mm

.\\

l l

~

s

+

4

~

(

gg

,g\\sggb s

or 1

f pc/w o

p c

,9 NxN c.

///f 4

o' g

.s 0-b' t'

/

t s

'~-

- 'l

,/.

es' TABLE A10 SYSTEM INLET INLET AVERAGE MIN HOT HOT AXIAL IDCAL LOCAL MEA 5tMtED PREEMr.TED M/F CASE PRESSURE ENTHALFY M ASS FLifX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUALITY HEAT FLUX HEAT FLUX (h c,)

wuumna mett,wm earvens j

(PSIA) _

(BTU /LBM) w o u m rrn estumcm 1

- l 1.122 1.043 2

0.985 3

0.903 4

1.011 5

0.980 6

1.035 7

1.040 8

1.051 9

1.103 10 1.093 11 1.093 12 1.136 13 1.044 14 1.111 15 I.063 1

16 I046 17 1.002 18 1.051 19 0.793 20 1.028 21 1.015 22 1.036 23 0.960 24 1.033 25 0.917 26 0.812 27 0.829 28 0.857 29 rv

--w---ww

-e,

,n----

v,

,u--w-e r

e---n

-.s--

a~w mr,-ecw

,-w n-s.<--.

qw -

>w, w

w:

i TABLE A10 SYSTEM DfLET INLET AVDtAGE MIN HOT Hof AX1AL IDCAL LOCAL MEASURED. MtEDICTED

. M/F CASE PRE 55URE ENTHALPY - MASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUAIJrY HEAT FLUX HEAT FLUX (h,t.).'

(PSIA)

(IITU/LBM) mtsme tia twituc-m Mtsuomna Neftmana twertueens 30

.1.034 31 1.099 32 0.860-33 1.024 34 0.994 35 0.958 36 0.940 f

s 4

'v-w<

s

- - --, --i

....-er--..

,m-v

,v mw--w-n~

---,,--*r

---wwe+*~r

-"=

w

+.ev..-.r-

,,yww-%-w

-w-r-yeeyn, +,, - -

%.m-----e..,

- ww w-t e 1

w v

v e

,-v--n1 erw+

w e i e-s

=wev-'r ve-i,ww*ev-w er w w w w ~r viv - * & tv-,

-- www - e v w=

w

-e

A TABLE All SYSTD4 INLET INLET AVERAGE MIN ITUT IIUT AXIAL LOCAL IDCAL MEASURED PREDICTED M/P CASE 31tES$URE ENTitALPY M ASS FLUX llEAT RATE DNBR CllANNEL ItOD LEVEL M Ass FLUX QUALITY IIEAT FLUX HEATFLUX (kg.,)

MD4m MD MBTU4mnD MgTU49 MD (PSIA)

(ITTU/LBM)

MtsM m FTD (RitWW-m 1.162 1

0.923 2

1.030 3

0.942 4

1.007 5

0.862 i

6 0.863 7

0.969 8

0.988 9

0.946 10 0.873 11 0.906 12 0.894 13 0.790 14 0.892 15 0.996 16 0.932 17 0.928 18 0.981 19 0.974 20 1.009 1

l 21 0.947 22 0.935 23 0.925 24 1.007 l

25 0.929 26 0.997 1

27 1.093 28 0.911 29 l

~.

TABLE A11 SYS1D4 D=*LET INLET AVERAGE MIN HOT HOT AXtAt LOCAL LOCAL MEASURED MtEDICITD M/F CASE PRESSURE ENTHALPY Mass FLUX HEAT RATE DNBR GIANNEL RCD LEVEL MASS FLUX QUALITY HEAT FLLT HEAT FLUX (bp)

(PSIA) __

(BTU /LBM)

Nt.auva4TD tennte rn twtmu varrn ruettmm4Tn oatuve m 0.935 30 0.921 31 1.045 32 1.018 33 0.882 34 1.062 35 1.047 36 0.838 37 O.860 38 1

TABLE A12 SYTTT){

INLET INLET AVERAGE MIN It0T HOT AXIAL LOCAL LOCAL MEASURED PREDICTED M/F CASE FRESSURE ENTHALPY MASS FLUX HEAT RATE DNRR CHANNEL ROD LEVEL MASS FLUX QUALITY HEAT FLUX HEAT FLUX (k C.)'

(PSIA)

(BTU /LBM) ocuMm nn ornustent mtaumna 04simana oesTUmm 0.977 1

0.974-2 1.132 3

1.129 4

1.051 5

1.132 6

1.009 7

1.109 8

1.174 9

1.126 10 1.078 11 1.202 12 0.972 13 1.022 14 1.082 15 0.998 16 0.984 17 0.951 18 1.034 19 0.888 20 1.052 21 1.073 22 0.997 23 0.874 24 1.023 25 1.022 26 1.045 27 1.029 28 1.009 29 l

~

. m.

TABLE A12 SYNTD4 INLET INLET AVERAGE MIN 110T 11(TT ANIAL LOCAL LOCAL MEASURED PREDICTED M/F CASE 11tE53URE ENTIIALPY MASS FLUX llEAT RATE DNBR CilANNEL ROD LEVEL M At* TLUX QUALITY llEAi FLUX HEAT FLUX h

(F51A)

(BTU /LBM) 04uq1m rim esTUmcrt) 0.c.w imira motvam Fra Neitne rft 30

- ~ ~

1.007 1.023 31 0.973 32 0.910 33 0.950 34 0.948 35 0.960 36 0.882 37 1.051 38

l TABLE A13 SYSTDt INLLT INLET AVERAGE MIN HUT IIOT AX1AL LOCAL IDCAL MEASURED FREDICTED M/F CASE FRESSURE EPrTHALPY MASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MAS 5 FLUX QUALIFY HEAT FLUX HEAT FLUX (l,,c)

(P51A)

(IIIVILBM)

NtJM Mna mitPsrcM)

NtD4m na NWTUM FTD MBTUna nn 0.807 1

  • O.925 2

0.877 3

0.905 4

0.936 5

0.943 6

0.986 7

0.980 8

1.131 9

0.953 10 1.011 11 0.970 12 0.949 13 1.010 14 0.991 15 1.031 16 1.041 17 1.012 18 1.075 19 1.030 20 1.037 21 1.087 22 1.069 23 1.022 24 1.065 25 0.988 26 1.023 27 1.063 28 1.036 29

(75 70 P

90

/

M 01 D X n E U n T L i

C F u I

a D T E A w R E e P H m D X a E U r r R L U F ne S T m A A E E o MH m Y

L T A 3 C

1A OL UQ X a L U n L

A F m C

S u D.

S s 1

A t

M N L L A E I

V X E A L T D O O H R LE T N 0

l NA I

HC R

N B I

N M

D E

E T m G A A R r R

e E T V A w E m A

H X a U n T L E F m L

S u N S A s I

t M w Y

)

P M T L B E A L L H

/

N T V T

I N R E

(

E MR

)

3 E U A T 5 I

1 S 5 S E P AY

(

t S 1 T

E LB E

01 S

33 A

A T

C

i TABLE A14 SYSTD4 INLET INLET AVERAGE MIN HUT HOT AX1AL LOCAL LOCAL MEASURED PREDICTED -

M/F CASE PRESSURE ENTHALPY MASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL M ASS FLUX QUALITT HEAT FLUX HEAT FLUX (kg,)

(PSIA)

(ETU/LBM) nat.sMim*Ta GTUSEc m (MtmMSa m) otttV4m fra fusTtwe na 1.080 1

1.148-2 1.143 3

1.090 4

1.124 5

1.107 6

1.025' 7

1.040 8

1.074 9

1.122 10 1.130-11 4

1.015 12 1.081 13 1.097 14 1.162 15 1.136 16 0.953 17 1.010 18 1.033 19 1.064 20 1

1.116 l

21 0.951 22 1.005 23 1.033' 24 1.064 25 1.082 26 1.038 ~

27 1.122 28 1.030 29

.-. u.

TABLE A14 SYSTEM INLET INLET AVERAGE MIN 140T IlUT AXIAL IDCAL thCAL MEASURED PREDKTED M/P CASE PRES 5URE ENTIIALPY M ASS FLUX 11 EAT RATE DNBR CilANNEL ROD LEVEL M ASS FLUX QUALITY IIEAT FLUX llEAT FLUX

(

(PSIA)

(BTU /LRM) staw w rtn tutvecm etsum nn rununwrra twstvasi na 30 1.152 31 1.148 32 1.129 33 0.983 34 0.992 35 1.058 36 1.109 37 1.095 38 1.044 39 0.988 40 1.202 41 1.113 42 1.204 43 1.142 44 0.994 45 1.031 46 1.006 47 1.079 48 1.052 49 1.033 50 1.004 51 0.971 52 0.925 53 0.929 54 0.960 55 0.822 56 0.779 57 0.954 58 1.007

TABLE A14 SYSTEM INLET INIIT AVERAGE MIN HOT HOT AXIAL LOCAL LOCAL MEASURED FREDICTT.D M!P CASE FRESSURE ENTMALPY MASS TLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUALITY llEAT FLUX HEAT FLUX O'51A)

(BTU /LBM)

Ntsumna rtTuate-rti stauw nn wetum ns wsTuam-na

($

1.020 59 0.930 60 0.990 61 1.004 62 0.984 63 1.011 64 0.932 65 0.928 66 0.963 67 1.069 68 1.167 69 1.118 70 1.033 71 w

n

-~v 4-m 1,

,v.

, -, +

,,,g-,

TABLE A15 SYSTDI INLET INLET AVERAGE MIN HUT HOT AXIAL LOCAL LOCAL MEASURED PREDICTED M/P CASE 11tES5URE ENTHALPY MASS FLUX HEAT RATE DNBR CHA?4NEL ROD LEVEL M ASS FLtY QUALTTY HEAT FLUX HEAT FLUX

(

(PSIA)

(BTU /LBM) wtsuw rin esit"str rn tut. sum rin tustuset rin wrrume rra 1

1.056 2

0.960 3

0.901 4

0.881 5

0.983 6

1.017 7

0.806 8

0.979 9

1.037 10 0.892 11 0.970 12 1.030 13 1.007 14 1.065 15 0.958 16 0.989 17 1.036 18 1.049 19 0.985 20 1.064 21 1.014 22 0.945 23 0.974 24 1.033 25

0.926 26 O.973 27 0.986 l

28 0.960 1

29 0.917 l

~

't TABLE A15 sysTtM mirT mtET AvmAGE Mm HUT HOT AXIAL LOCAL LDCAL MEASURED PREDCTED WP CASE PRE 53URE ENTHALFY Mass FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUALITY HEAT FLUX HEAT FLUX (kC (PSIA)

(BTU /LBM)

NtJewita na rewsre m stau1m rta m nUna-rTa msnma nn 0.933 30 0.855 31 32 0.954 0.864 33 34 0.920 35 0.841 1.007 36 37 1.052 38 1.009 39 1.015 40 0.970 41 0.956 42 0.953

TABLE A16 SYSTEM INLET INLET AVERAGE MIN HUT 110T AXIAL LOCAL LOCAL MEASURED PREDICTED M/F CASE FRE53URE ENTHALPY M ASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUAIJTY HEATPLUX HEAT FLUX (hC.

(PStA)

(NTU/LBM) wt24m na (stusrm muum nn werUw4TD muttne nn 0.923 1

0.985 2

0.934 3

0.928 4

0.895.

5 1.005 6

0.961 7

1.002 8

0.940 9

1.053 10 1.000 11 1.054 12 0.954 13 0.990 14 0.998 15 0.969 16 0.899 17 0.925 18 1.070 19 0.9 21 20 1.020 21 1.076 22 0.916 23 1.022 24 1.047 25 1.076 26 1.027 27 0.964 28 29

_j 0.978

TABLE A16 SY:: TEM INLET INLET AVERAGE MIN HOT HUT AXIAL LOCAL LOCAL MEASURED PREDICTED M/P CASE PRESSURE ENT11ALPY MASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUALTTY HEAT FLUX HEAT FLUX 0.973[

(TStA)

(BTU /LBM) tutsu m n a amisten) rut.au m nd rununna tunume nn 30 31 0.883 32 0.953 1.009 33 34 0.965 35 0.923 36 0.934 37 0.943 38 0.981 39 0.986

TABLE A17 SYSTEM INLET INLET

/O ERAGE MIN HOT HOT AXIAL LOCAL LOCAL MEASURED MtEDICTED M/F CASE 11tE55URE EtmlALPY M A$S FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUALITY HEAT FLUX HEAT FLUX (PSIA)

(BTU /LBM) iwt.su1m ria tarviste rn tutsuun rra m urusa tra cwwttne rrn (bA 0.825 1

0.905 2

0.850 3

0.916 4

0.952 5

0.867 6

0.939 7

1.008 8

0.974 9

1.048 10 0.884 11 0.916 12 0.915 13 0.951 14 0.821 15 0.900 16 0.992 17 1.024 18 1.036 19 0.959 20 0.788 21 0.913 22 0.929 23 0.928 i

24 1.000 l

25 1.092 26 0.837 27 0.930 28 1.013 29 I

TABLE A17 SYSTD4 INLET INLET AVIRAGE MIN IIUT IfOT AXIAL IDCAL LOCAL MEASURED PREDICTED M/F CA5E 11tE55URE ENTHALPY Mass FLUX llEAT RATE DNBR CHANNEL ROD LEVEL Mass FLUX QUALITY HEAT FLUX HEAT FLUX

[b,c)

(TSIA)

(BTUILBM) wtsMHa na mTurstra NLauem FTm meTv.4mm manns4Ta 1.059 30 1.034 31 32 1.042 1.064 33 34 0.921 35 1.110 36 1.071 37 0.897 i

=.

TABLE A18 SY3 TEM INLET INLET AVERAGE MIN HOT HOT AXIAL LOCAL LOCAL MEASURED FREDICTED M/F CASE PRES 5URE ENTHALPY M ASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUAllTY HEAT FLUX HEAT FLUX (k,<.,)

oste grUn.sw) maann erumem m au w tra mru=nn

=ru nn 1

0.978 2

1.021 3

1.026 4

0.988 5

0.874 i

6 0.977 7

1.022 8

0.942 9

0.877 10 0.846-7 11 0.940 12 1.068' 13 0.935 i

14 0.851 15 0.986

- t 16 0.963 17 1.028-18 1.053 19 0.949 l

20 1.126 21 1.012 22 0.920 23 1.153 24 1.016 25 0.902 26 0.922 27 1.017 28 0.987 29

_ 0.964 c

m w.

m

---m v-mv..-

-,_.,m...._.,..

~.~r.

...,,.-....,-..,_4...

m _ _, _......

.. m o

TABLE A18 SYSTEM INLET INLET AVERAGE MIN IIUT HOT AXIAL LOCAL IDCAL MEASURED PREDICTED M/F CASE PRES 5URE ENTTIALPY M ASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUALITY HEAT FLUX HEAT FLUX (b,c -

(PSIA)

(BTU /LBM) 04tsumm rTn tsTvec m rutsuam tra ossiven tra (wettam-rra s

0.938-30 0.993 31 0.962 32 0.870 33 1.032 34 0.902

- p 35 0.913 36 0.875 37-1.000 38 1.007 39 0.846 40 0.902 41 0.895-42 1.010 43 0.855 44 1.077 45 0.897 46 0.926 47 1.074 48 0.957 49 0.917 50 0.948 51 0.868 52 0.957 53 0.989 54 0.912 55 1.096 56 0.994 57 1.016 58

+-.r4,

..ee r,

%.s-9+-

w.-*.

+we

,c.-.s.

,--.,y

-ie,m-e.

-,.,e e

--L.

,.m om

-ee.

..=..w.m.,3.e

,4.w.

..~.,%.w>---.e.

re

---e.

..,w-s,-.

~+,.,,is

.w

,ec.

TABLE A18 SYSTEM INLET INLET AVERAGE MIN HOT HOT AXtAL LOCAL LOCAL MEASURED FREDICTED M/P CASE mESSURE ENillALPY MAS 5 n.UX IIEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUA1JTY HEAT FLUX HEAT FLUX (k

(PSIA)

(BTU /LBM) tutsu m rra remstern ruuum nn tuswSm rra mesmsena bu 0.960 0.915 60 61 0.918 1.032 62 0.988 63 64 1.077 65 0.944 66 1.043 1.055 67 68 1.046 69 0.995 70 1.106 e

m m

a nr-m-

m-r--s,e---

de-m-u-am.

e-er w

+w m - - - -

r--

TABLE A19 SYSTEM INLET INLET AVERAGE MIN HOT 110T AXIAL LOCAL IDCAL MEASL1 TID FftEDICTED M/F CASE f1tES3URE ENTHALFY M ASS FLUX HEAT R ATE DNBR CHANNEL ROD LEVEL MA55 FLUX QUALTTY llEAT F1UX HEAT FLUX kC,)

(PSIA)

(NTU/LBM) rutsusarra turvstrm wtswSes sTa merunam murttis-rTa 1

1.145 2

1.058 3

1.079 4

1.134 5

1.111 6

1.059 7

1.062 8

1.068 9

0.827 10 0.896 11 0.998 12 0.976 13 0.943 14 0.991 15 1.151 16 1.008 17 1.133 18 1.040 19 1.230 20 1.142 21 1.046 22 1.043 23 1.062-24 1.011 25 0.881 26 0.953 27 1.206 1.147 28 29

__ _ 1.187

TABLE A19

. SY3 TEM INLET INLET AVERAGE MIN HUT HOT AXIAL LOCAL LOCAL MEASURED PREDeCTED M/F CASE FRE55URE ENTHALPY MASS FLUX llEAT RATE DNBR ClfANNEL ROD LEVEL MASS FLUX QUALITY HEAT FLUX HEAT FLUX

( b,c,,)

(PSIA)

(NTU/LBMf tut *M a rin mitnrem futeu m 4Ta rusttwat4Ta rusnuwsTa 30 1.088 31 1.050 32 0.907--

33 1.031 34 1.004 35 1.046' 36 1.115 37 1.015 38 1.047.

39 1.015 1.004' 40 i

41 0.986 42 0.974' 43 1.146-44 1.186 45 1.161 46 1.122 47 1.118 48 1.124 49 1.122 50 1.102 51 1.103 52 0.991 53 1.168 54 1.287 55 1.205 56 1.344

~57 1.282 1.210 58

T TABLE A19 SYSTEM INLET INLET AVERAGE MIN HOT HUF AXIAL RECAL LOCAL MEASURED HLEDIC'ITD M/F CASE FRE53URE ENTHALPY M ASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL M ASS FLUX QUAUTY HEAT FLUX HEAT FLUX tutsu m tTn tusmaa rTm tuumam m

(

(PstA)

(BTU /LBM) tutsu m rta mmste rt) 1.093 59 1.101 60 1.024 61 0.929 62 1.011 63 1.205 64 1.128 65 1.212 66 1.293 67 1.004 68

TABLE A20 SYSTD4 INLET INLLT AVTJtAGE MIN HUT HUT AXIAL LOCAL LOCAL MEASURED PREDICTED M/F '

CASE FftE53URE ENTHALPY MASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUALITY HEAT FLUX - HEATFLUX (k

(PSIA)

(BTU /LBM) fut.suiam

<stume-m set.nu wam rusivistm enrrtwem 0.831-1 0.895 2

0.880 3

0.947 4

0.888 5

6 0.931 0.938 7

0.976 8

0.820-9 0.804 10 0.850 11 0.908 12 0.845 13 0.940 14 0.891 15 0.861 16 0.976 17 18 0.970 0.964 19 1.000 20 1.000 21 1.033 22 1.136 23 1.110 24 1.043.

25 0.988-26 1.028 27 0.982 28 0.933 29 i

TABLE A20 SYSTDI INLET INLET AVIRAGE MIN IMT IRTT AXIAL LOCAL LDCAL MEASURED PREDICTED M/P CASE PRESSURE ENTHALFY MASS FLUX IIEAT RATE DNPR CllANNEL ROD LEVEL MA5S FLUX QUALITY HEAT FLUX HEAT FLUX (L,c, mt2MSarm meTuom rin twertvia n a (PstA) _ _ _ OrTU/LBM)

<wtswSm rm

<sttmr m 1.GJO 30 0.962 31 1.017 32 0.880 33 1.029 34 1.230 35 1.122 36 1.056 37 0.990 38 1.100 39 1.192 40 1.143 41 1.138 42 1.056 43 1.040 44 1.106 45 1.026 46 0.966 47 0.983 48 1.007 49 0.969 50 0.960 51 0,994 52 1.014 53 1.001 54 0.960 55 0,994 56 1.158 57 0.954 58 e--

..c w-y

+--aa-, - - - - -. - + -

-s-* - - +-

v -,

---*.-e-n~

ms-e--.-----e

=---en ee+.n

-e.-

a

--u-- - - - -


a-J

3

).

c.

j h

(81 082 71 626 P

09090

/

M 1 01 01 D X a E U r r T L C F e I

a D T v E A t

R E su F H c

D X a E U tr R L e

U F S T v A A re E E MH w Y

L T A l C

lA OL UQ X n L U n L

A m

F C

S D.

u S

s A i I

M wt L L A E 1

V X E A L T D U O H R L

E T N U N H A HC R

N B IM ND T>

E

)

T t

G A r

A R c r RE T s V A u f

E e A

H r

X a U r t

T L E F m L

5 u N 5 m

I A

t e

M m EM Y

)

T I

B E A L L H U

/

N T T I

N B E

(

E 4

R 0DU

)

A T 3 1

S 5 s 2

E P AY

(

t S 1 F E

L B

E 901 23 S

56666 A

A T

C

TABLE A21 CASE SYSTEM INLET INLET AVERAGE MIN HOT HOT AXIAL LOCAL LDCAL MEASURED FREDICTED M/P CASE 11tE55URE ENTHALFY M ASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUALTTY HEAT FLUX HEAT FLUX O

(PSIA)

(BTU /LBM)

Mtmu m rfa intuvem MLAMM FT3 MRTU40t TT2 MBTU4m f7D 0.904 1

0.908 2

1.041 3

1.013 4

0.975 5

1.012 6

1.094 7

1.015 8

0.962 9

0.872 10 0.971 11 1.019 12 0.905 13 0.939 14 0.970 15 0.991 16 i O.954 17 0.980 18 1.003 19 0.928 20 0.954 21 0.968 22 1.024 23 1.006 24 1.056 25 C.957 26 0.921 27 0.963 l

28 1.012-29 I

TABLE A21 CASE SYSTEM INLET INLET AVERAGE MIN l{0T IlUT AXIAL LOCAL LOCAL MEASURED PREDICTED M/P CASE FRESSURE ENTHALPY MASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUALITY HEAT FLUX HEAT FLUX (hC)

(PSIA)

(BTU /LBM) mtsu tm tTn mmstr m Mtsusa rin mmma tin msttinana j

30 0.909 31 1.087 32 0.976 33 0.950 34 1.027 35 1.005 36 0.957 37 0.979 38 0.924 1

l l

l

... ~..

TABLE A22

$YSTEM IN1ET INLET AVERAGE MIN HOT HOT AX1AL LOCAL IDCAL MEASURED PREDKTED M/F CASE I1tE53URE ENTHALPY M ASS FLUX HEAT RATE DNBR CHANNEL ROD LEVEL M ASS FLUX QUALITY HEAT FLUX HEAT FLUX

((,d wt2W m *TD writ'wrTa wtTtmana

&stA)

(BTU /LBM) mtJww rin sitessc47) 1.048 1.163 2

3 1.096 4

1.115 5

6 1.094 7

8 1.136 g

1.109 0.989 1.107 13 1.097 15 16 1.105 g

18 1.073 g

20 0.863 0.914 23 1.063 25 26 1.024 27 28 1.010 g

SYSTEM INLET INLET AVERAGE MIN HUF HOT AX1AL IDCAL LOCAL MEASURED PREDICTED M/P TABLE A22 CASE FRESSURE ENTHALFY MAS 5 FLUX HEAT RATE DNBR CHANNEL ROD LEVEL MASS FLUX QUALKY HEAT FLUX HEAT FLUX newtuve nn psenwar:3._

(kC.)

ruisuwt m (PSIA)

WTU/LBM) estantat rra mtnte-m 0.962 1.140 =

30 1.054' 31 0.957-32 0.934-33 1.041-34 1.104 35 1.145 36 37-W 5

1 f

i b

=

..---,.~~-4~

.......w...

-,,-c.,-~-,-

,-.~,mm=.-.---rv.-w-+-

.--v~weEw'...-,,vr.-

-o*v-

-='~-.

ar-.--~==.--. -mm-e----.w -mm

... -