ML20246N942
ML20246N942 | |
Person / Time | |
---|---|
Site: | Haddam Neck File:Connecticut Yankee Atomic Power Co icon.png |
Issue date: | 08/31/1989 |
From: | Reinhold T, Shaaban A, Twisdale L APPLIED RESEARCH ASSOCIATES, INC. |
To: | |
Shared Package | |
ML20246N926 | List: |
References | |
5422, NUDOCS 8909110005 | |
Download: ML20246N942 (166) | |
Text
{{#Wiki_filter:ca_.u. a ~w w.o - - - - - - - - - - - - - - - - - - - - - - - - i
- l '"] , i -;. -3 J
3l
,a l.,,
t s b. l: . l 2
. 3 ms
,I
, _ _ . . " ~ ~ ~ . I., ! ,i hM -
- i i
.l. ,, -l
- i
- )
4 .i 18M ,I , 1 i. qw 4 T 4 ; 3, ..,, 1 L _ _,_._ - - _ _ . _ . _ _ - - - - - - - - i,. i i 4 ,. 3 ,.. i l i i o, s 1 ,; 1 1 i ,
; 1 r.
i
, a I ?,,
1, s i J ( l
.i t - ~. "a* EngineeringandAppliedSc:ence , 1s b
8909110005 890830 v ros noocxOs*ggs P
, 5 a a
4 August 1989 Report 5422 TORNADO MISSILE RISK ANALYSIS OF THE BAF AND AFW SAFE-SHUTDOWN SYSTEMS AT THE CONNECTICUT-YANKEE ATOMIC POWER STATION Prepared for Northeast Utilities Service Company P.O. Box 270 Hartford, Connecticut 06141-0270 Under P. O. Number 837258 Technical Project Leader- G. A. Flannery Prepared by L. A.Twisdale T. A. Reinhold A. H. Shaaban H. C. Chen M. B. Hardy Applied Research Associates,Inc. Southeast Division 6404 Falls of Neuse Road, Suite 200 Raleigh, North Carolina 27615
~
EXECUTIVE
SUMMARY
This report documents the results of a tornado missile risk analysis of
' the Bleed and Feed (BAF) and Auxiliary Feedwater (AFW) safe shutdown.
systems at the Connecticut Yankee (CY) Atomic Power Station. This analysis is based on the "1990" plant operational configuration that includes a new protected Switchgear Building and protection for Electrical Safety Train B. The TORMIS methodology was used to estimate probabilities of tornado missile damage to the CY structures and components comprising. these systems. The TORMiS methodology has been reviewed and accepted by the NRC for nuclear power plant tornado risk assessment. The - CY TORMIS analysis is based upon site-specific tornado characteristics, detailed plant walkdowns and surveys of potantial missile sources. BAF and AFW system failure logic, in the form of' Boolean expressions, were developed for both systems and account for all the required non-protected safe-shutdown components. These expressions are essentially compound union events. Hence, damage to a single component generally results in the scoring of damage to the entire system. A Probabilistic Risk Assessment (PRA) analysis has also been performed that takes into account operator actions and random failures of components, in addition to tornado-missile initiated events. The results of the PRA analysis are reported separately. The most vulnerable plant areas that contain vital shutdown components are the Old Switchgear Room and Cable Spreading Areas.
.Among the 70 targets that completely describe the piping, A and B Electrical Train, and other components of the AFW and BAF systems, there are a total of 10 targets with individual damage probabilities greater than 1 x 10-5 per year.
Seventeen targets have damage probabilities between 9 x 104 and 1 x 10-6 per year. The remaining 43 safety-related targets have damage probabilities less than 9 x 10-7 per year. Tables 5-1 and 5-2 summarize these individual component damage probabilities. I The TORM S estimate of the BAF system damage probability for the 1990 plant configuration is P(BAF) = 1.4 x 10-4 per year. Key contributors to BAF system damage are the Old Switchgear, Cable Spreading Area, and
- RWST. Protection of the Old Switchgear and Cable Spreading Areas would reduce the BAF system damage probability to 5.1 x 10-5 per year. If the RWST is also protected, the BAF system damage probability reduces to 8.9 x 10-6 per year.
ii
The ARV system damage probability is estimated as P(ARV) = .5.8 x 10-5 per. year. Damage' to the RWST is a key contributor to AFW damage. Protection of the RWST reduces P(AFW) to 1.7 x 10 5 per year. If the Ground Level AFB, Service Water Piping H, and DWST (above shield wall) are also protected, P(AFW) reduces to 8.3 x 104 per year.- - L Since either of the BAF and AFW systems could be used to shut the plant down following a tornado strike, the probabilities of damaging both systems in the same tornado' event has also been analyzed. : For the base . (-1990) case, P(BAF ^ AFW) = 5.7 x 10 5. - Protection of RWST, Cable Spread, and Old Switchgear Roorn reduces P(BAF A AFW) to 8.4 x 10-6 Additional protection of Ground Level AFB, Service Water Piping H and DWST (above shield wall) reduce P(BAF ^ AFW) to 6.5 x 10-6 per year. Other protection options and sequences can be investigated to reduce these system damage probabilities further. Optimal protection schemes can be identified by considering both risk reduction potential and cost of protection. These mean probability estimates of damage are subject to uncertainties ~ arising from the Monte Carlo simulation' sample size, modeling and data uncertainties. However, these uncertainties are felt to be more than compensated for as a result of the conservative nature of the TORMIS methodology and the conservative inputs and damage criteria used in the CY analysis. I lii
TORNADO RISK ANALYSIS OF THE FEED AND BLEED I SAFE-SHUTDOWN SYSTEM AT THE CONNECTICUT YANKEE ATOMIC POWER STATION TABLE OF CONTENTS r. Section 1. INTRODUCTION 1- 1 jg 1.1 Background 1- 1 !E 1.2 Objective 1- 2 1.3 Review of Bleed and Feed System 1-3 1.4 Review of the Auxiliary Feedwater System 1- 4 1.5 Scope of Work 1- 7 l 1.6 Report Organization 1-8
- 2. TORNADO SUBREGION IDENTIFICATION AND WINDSPEED FREQUENCY ANALYSIS 2- 1 I 2.1 2.2 Introduction CY Subregion 2- 1 2- 1 2.2.1 Tornado Mappings 2- 3 2.2.2 Subregion Identification 2- 3 2.2.3 Risk Index 2- 9 2.2.4 Multiple Comparison Tests 2-9 2.2.5 Confidence Intervals 2-10 2.3 Development of TORMIS Tornado Data Set 2-13 2.3.1 Unadjusted Occurrence Rates 2-13 I 2.3.2 2.3.3 Annual Reporting Trend Unrated F-Scale Events 2-17 2-17 2.3.4 Analysis of F-Scale Classification Errors I 2.3.5 FinrJ TORMIS Data Inputs 2-17 2-19 2.4 Tornado Windspeed Frequency Curve 2-19 2.4.1 Single Point Target 2-19 2.4.2 TORMIS Comparison for CY Plant 2-26 2.4.3 Discussion 2-26 I
iV
TABLE OF CONTENTS (Continued) Page. Section 3. TORMIS METHODOLOGY AND CY FAILURE CRITERIA 3-1 3.1 . Introduction. 3- 1 3.2 . Target Combinations for BAF System Damage 3- 1 3.3 Target Combinations for AFW System Damage- ' 3- 2 3.4 Failure Damage Criteria 3- 3 3.5- Failure Windspeeds for Metal Siding 3-5 3.5.1 Wind Pressures and Suetions 3- 5 3.5.2 Resistance of Metal Siding to Wind Pressures 3-7 3.6 Failure Windspeeds for Block Walls 3-9 3.6.1 Wind Pressures and Suctions 3-9 3.6.2 Resistance of Block Walls to Lateral Wind Pressures 3-10 3.7 Failure Windspeeds of Ventilation Stack 3-14 3.8 Resistance of Block Walls to Missile Impact - 3-14
- 4. MISSILE CHARACTERIZATION AND PLANT MODEL 4- 1
' 4.1 Missile Characterization- 4- 1 4.L1 Missile Spectrum 4- 1 4.1.2 Survey- Results 4- 8 4.1.3 Review of TORMIS Injection Methodology 4-13 4.1.4 Structure Origin Missiles 4-13 4.1.5 Missile Injection Height 4-14 4.2 Plant Model Description 4-20 4.2.1 Review of CY Damage Criteria 4-20 4.2.2 Target Description 4-21 4.3 TORMIS Control Data 4-23
- 5. RESULTS AND CONCLUSIONS 5- 1 5.1 Individual Component Damage Probabilities 5- 1 5.2 BAF System Damage Probability 5- 5 5.3 AFW System Damage Probability 5- 5 v
TABLE OF CONTENTS (Continued) Page 5.4 BAF A AFW System Damage 5-5 5.5 Sensitivity Analysis 5-9 5.5.1 BAF System 5-9 5.5.2 AFW System 5-9 5.5.3 Summary and Combined Systems 5-10 5.6 Summary 5-10
- 6. REFERENCES 6- 1 APPENDIX A TORNADO PATH DIRECTION, LENGTH AND WIDTH TABLES A-1 B
SUMMARY
OF VENT STACK WIND CAPACITY ANALYSIS B-1 C DOCUMENT CONTROL DRAWINGS LIST C-1 D CAD FIGURES OF TORMIS PLANT MODEL D-1 l l l l l l vi
l LIST OF TABLES Table Pace 2-1 95% Confidence Intervals for Tornado Occurrence Rates 2-14 2-2 Number of Reported Tornadoes 2-17 2-3 Updated F-Scale Relative Frequencies 2-19 2-4 Adjusted Occurrence Rates and Windspeed Intervals for TORMIS Simulations 2-20 2-5 Summary of CY Tornado Windspeed Parameters 2-22 2-6 Probability Distribution of Tornado Windspeed
- Frequencies-Single Point Target 2-23 3-1 Failure Wind Velocities (MPH) for Positive Wind Pressures on Masonry Walls with No Axial Load 3-14 3-2 Failure Wind Velocities (MPH) for Masonry Walls Subjected to Axial Loads 3-15 3-3 Maximum Vales of the Variables Used in Dimensioning TORMIS-CY 3-20 4-1 Connecticut Yankee Missile Origin Zone and Target Envelope Coordinates 4- 4 4-2 Zone Definitions, Connecticut Yankee Power Station 4- 5 4-3 Basic Missile Set and Subset Description 4- 6 4-4 Tornado Missile Subset Characteristics 4- 8 4-5 Missile Distribution by Zone 4-12 4-6 Assumed Unrestrained Missile Distribution from Structure Failure 4-15 4-7 Missile Distribution by Structure 4-16 l
4-8 Injection Height Intervals Above Plant Grade 4-19 4-9 Injection Height Intervals Above Structure Top 4-20 4-10 Failure Windspeeds for Safety Related Targets 4-22 4-11 Target Description 4-24 4-12 Variance Reduction Parameters 4-36 5-1 Base Case Damage Probabilities 5- 2 5-2 Feed ad Bleed Components Damage Probability Reduction 5- 5 5-3 l Potential Reductions in Feed and Bleed System Damage Probability 5- 8 vii
LIST OF TABLES (Continued) Table P_ age A-1 Tornado Direction Frequencies A- 3 A-2 CY Subregion Cumulative Distribution fPLI F(PLiF) A-4 A-3 CY Subregion Distribution fPlyl PL,F(Pt yl PL,F) for F1Tornadoes A- 5 l A-4 CY Subregion Distribution fPlyl PL,F(P gyl Pt,F) for l F2 Tornadoes A-6 A-5 CY Subregion Distribution fPlylPL,F(P tyl Pt,F) for F3 Tornadoes A- 7 A-6 CY Subregion Distribution fPlylPL,F(P i vl PL,F) for F4 Tornadoes A-8 A-7 CY Subregion Distribution fPtyl PL,F(P tyl PL,F) for F5Tornadoes A-9
)
i i viii !
LIST OF FIGURES Figure Pace-2 Methodology for Tornado Windspeed Risk Analysis. 2- 2 2-2 F-Scale Tornado Mapping 2- 4 .
; 2-3 '- . Path Length Tornado Mapping 2- 5 2-4 Path Width Tornado Mapping 2- 6 2-5 Path Direction Tornado Mapping 2- 7 2-6 Concentric Cells for Homogeneity Tests 2- 8 2-7 One Degree Cell Block $ 2-12 ~
2-8 ' Homogeneous' Subregion for CY Plant 2-15. 2-9 Probability Distribution of Tornado Frequencies - Single Point Targets 2-24 2-10 Mean Windspeed Frequency - CY Plant Targets 2-26 4-1 Connecticut Yankee Site Plan 4- 2 4-2 Tornado Missile Zones and Target Polygon 4- 3 4-3 Sample Tornado Missile Survey Form 4- 9 4-4 Photographs Taken From the Service Building Roof 4-10 4-5 Plan View of CY Targets- 4-34 1 iX
- 1. INTRODUCTION la Backgrcund The Connecticut Yankee Atomic Power Station (CY) is a 582-MWe pressurized water reactor plant located at Haddam Neck, Connecticut, approximately 25 miles south of Hartford. The plant went into operation in 1968 and is one of eleven nuclear power plants designed in the early 1960s that have been included in the Nuclear Regulatory Commission's (NRC)
Systematic Evaluation Program (SEP). 'ho SEP was initiated by the NRC to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The SEP review is intended to provide (1) an assessment of the significance of differences between current technical positions on safety issues and those that existed when a particular plant was licensed, (2) a basis for deciding how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. The important topics in the SEP include tornado wind and missile effects. The results of the Nuclear Regulatory Commission SEP evaluations for CY regarding Topic II-2.A (Severe Weather Phenomena), Topic III-2 (Wind and Tornado Loadings) and Topic II-4.A (Tornado Missiles) are contained in Refs.1,2, and 3. Based on these reviews and work performed by Northeast Utilities, the following structures and components were found to be adequately protected from the effects of tornado missiles [2]:
- 1. Reactor coolant pressuie boundary
- 2. Reactor core and individual fuel assemblies located within the core
- 3. Chemical and volume control system
- 4. Emergency diesel generators and their corresponding switchgear
- 5. Component cooling water system (with the exception of its surge tank)
- 6. Primary pressure control and relief system
- 7. Residual heat removal system
- 8. Spent fuel storage pool
- 9. Boron injection system
- 10. Control room
- 11. Spent fuel pit cooling system
- 12. Gaseous radwaste treatment system.
The following systems were found not to meet the current criteria for tornado missile protection [2): ) 1. Atmospheric dump valve (ADV) and associated steam vent path l piping located in the Auxiliary Feedwater Building
- 2. Main Steam and Feedwater Isolation Valves
- 3. Auxiliary Feedwater System 1
1-1
1 I
- 4. Water Sources - Demineralized water storage tank, primary water storage tank, and primarv uater transfer pump
- 5. Service Water System l 6. Emergency Switchgear Room including portions of the emergency l power distribution system
- 7. Safe Shutdown instrumentation
- 8. Control Air System
- 9. Cantrol Rod Drive System
- 10. Life Support Equipment for the Control Room.
In conjunction with this evaluation, Northeast Utilities Service Company (NUSCO) performed a review of the CY structures, equipment, and piping systems required to shut down the plant following a tornado strike. Three methods of safe shutdown at CY were identified as: (1) main feedwater system, (2) auxiliary feedwater system, and (3) bleed and feed system. Preliminary analyses of the CY shutdown systems for tornado missile effects began in 1984. The TORMIS methodology, discussed subsequently, was used to estimate probabilities of safety-related component and system damage at CY. Initially, the " Bleed and Feed" (BAF) shutdown system was analyzed and an interim report issued in 1986. Following the completion of that study, the " Auxiliary Feedwater" (AFW) system was evaluated. These initial studies provided an indication of the most vulnerable components and systems. The cable spreading areas and old switchgear room were the highest contributors to the BAF shutdown system damage probability. Based on these results, and other NRC requirements, such as Appendix R, concruction of a new Switchgear Building was begun in 1986. This reinforced concrete building was built to current tornado protection criteria. Electrical Safety Train B was also protected via the construction of underground duct banks and protected conduit runs. The new Switchgear l Building will be operational prior to startup following the late 1989 scheduled l plant outage (cycle 15 reload). The analysis performed herein is based on the "1990" plant operational configuration (protected Switchgear building and Train B) following cycle 15 reload. Portions of the BAF and AFW systems not protected for tornadoes have been explicitly modeled to assess their vulnerability to tornado missile effects. This report documents the TORMIS analysis of BAF and AFW based on the 1990 CY plant configuration. 1.2 Objective The objective of this study is to quantify the probabilities of damage from tornado generated missiles to (1) components, (2) systems, and j (3) combined components / systems of the BAF and AFW shutdown systems for the 1990 plant configuration. By developing a detailed model of the plant and the system failure logic, coupled with site specific tornado wind and l 1-2
1
, i missile analyses, the probabilities of damage to key components and systems ' have been estimated. These probabilities can now be reviewed for acceptability and, if needed, reductions in the failure probabilities can be achieved by upgrading one or more of these components that are the main .
contributors to the overall system failure probability. Hence, the approach 1 adapted for CY follows a cost-riak-benefit analysis that has been suggested as a viable method for making safety upgrade dad =hs in the SEP. L3 Review of Bleed and Feed System The bleed and feed method is a means of cooling the reactor core down
. to residual heat removal (RHR) system operating conditions in the event that the steam generators are unavailable to remove core decay heat. The bleed and feed system could be used to safely shut the plant down if the capability to inject feedwater and auxiliary feedwater into the steam generator was lost.
Such an incident would result in a full reactor trip followed by a gradual reactor coolant system (RCS) temperature and pressure rise as the secondary side of the steam generators boils dry. If all attempts to restore main feedwater and auxiliary feedwater are unsuccessful, the operator begins bleed and feed when the RCS pressure approaches the power operated relieve valve (PORV) setpoint of 2285 psia, or the core exit temperature approaches 575'F, whichever comes first.
.The operator begins bleed and feed by starting at least one charging pump or at least one high pressure safety injection (HPSI) pump and then holding open just one PORV and its associated block valve. Pump suction is taken from the refueling water storage tank (RWST). The PORV flow decreases pressurizer pressure and increases charging or HPSI flow level until pressurizer is full and water enters the PORV and two-phase flow is dWrged. The discharge flow is ploed to the pressurizer relief tank (PRT).
Eventually, the tank rupture disc fai:s and passes water and steam into the containment. If the charging pump (s) were stopped and low pressure safety injection (LPSI) pump (s) were started by a safety injection signal, the operator shuts off the LPSI pump (s) and restarts the charging pump (s). After about 100,000 L I gallons have been pumped from the RWST, the operator aligns the . containment sump to the RHR system to the charging pumps or HPSI pumps
. to the RCS for high head recirculation. When the RCS conditions fall below 300*F and 300 psig, the operator switches to long term cooling.
Using the bleed and feed system, the following equipment is the minimum required for plant cooldown: 1-3
- 1. Control Room
- 2. Switchgear
- 3. One Emergency Diesel Generator
- 4. Safe Shutdown Instrumentation
- 5. One PORV and Air Accumulator System
- 6. One Charging Pump
- 7. One HPSI Pump
- 8. One RHR Pump and Heat Exchanger
- 9. One Service Water Pump
- 10. Containment Air Coolers and Fans
- 11. RWST
- 12. All piping, valves, cables, controls and other supporting equipment required to operate the above equipment during feed and bleed operations.
Based on these requirements, the following set of unprotected components and areas necessary for the safe shutdown of CY have been postulated as targets for tornado wind and missile effects analysis:
- 1. Old Switchgear Room j
- 2. Cable Spreading Areas
- 3. RWST
- 4. LPSI, HPSI Unprotected Piping
- 5. Service Water Pump Motors A, B, C, and D ;
- 6. Service Water Piping i
- 7. Fire Pump Discharge Piping 4 Tornado wind failures of the Vent Stack was also included since its collapse could impact the RWST, LPSI-HPSI piping, or Service Water Piping areas. ,
Other components and/or areas were excluded from this analysis on the basis that they (1) were not needed for plant shutdown using the "BAF" system or (2) had previously been found to be resistant to tornado wind and missile effects, as described in Section 1.1. 1.4 Review of the Auxiliary Feedwater System The Auxiliary Feedwater System (AFW) is designed to provide water to the steam generators when the Main Feedwater System is shutdown or providing insufficient water inventory, and in the event offsite electrical I i power is lost. The system is sized to provide for Reactor Coolant System l (RCS) heat removal following reactor shutdown. The system is comprised of two turbine driven auxiliary feedwater pumps taking suction from the Demineralized Water Storage Tank and ; injecting into the four steam generators through the feedwater bypass lines. l An alternate path supplies water through a motor operated valve to the main 1 1-4 i
feedwater piping downstream of the feedwater check valve inside containment. Motive power for each pump is supplied by a steam driven turbine using steam generated by decay heat from the steam generators and exhausting to atmosphere. The operation of the ARV, is divided into three modes; remote-manual, local-manual, and automatic. The manual modes of operation are normally used for surveillance, maintenance testing, and during plant heatup and cooldown, but will normally be used to allow the operator to take manual control of auxiliary feedwater after an auto-initiation. Aatomatic initiation of auxiliary feed occurs for any one of the four conditions: (1) Two of four steam generator level transmitters in the same train indicate a water level less than 45% on wide range level (2). Both Main Feedwater pump breakers are open (3) Loss of offsite power (4) Loss of control air pressure. Upon auto-initiation of ARV, the four control valves in the main feed regulating bypass line open, establishing a flow path from the ARV pumps to each steam generator. Additionally, the steam admission valves to the ARV turbines open providing steam to the turbine. Steam to the turbine driven pumps is taken from all four main steam lines upstream of the main steam isolation valves. The four taps from the main steam line form a common header. The header is normally split in such a manner that two steam generators supply one turbine pump while the other two steam generators supply the remaining turbine pump. The auxiliary feedwater system has both automatic and manual initiation (from the control room) for .til conditions. On loss of control air, for whatever reason, the turbine driven pumps will start due to the fail-open feature of the steam inlet valves and deliver ARV through the main feedwater bypass control valves, which also fail open on loss of air. No i electrical power is necessary to operate the turbine admission valves because l the controls at the panel mechanically initiate or remove control air. The primary source of water is from the Demineralized Water Storage Tank (minimum capacity 50,000 gallons by Technical Specifications) which is always lined up to the pump suction header via locked open, manually operated values. The secondary source of water is the Primary Water Storage 1-5
Tank (minimum volume of 80,000 gallons by Technical Specifications) which must be transferred to the Demineralized Water Storage Tank before use. As a backup to these sources, the Recycled Primary Water Storage Tank (100,000 gallons maximum capacity) is normally available. Water from this tank must also be transferred to the Demineralized Water Storage Tank before use. Long term sources of makeup water include the Water Treatment System, using a well pump, the well pump without use of the Water Treatment System and a diesel driven fire protection system pump. All AFW water sources must eventually be delivered via the Demineralized Water Storage Tank. No electric power sources are required for valve operation or turbine pump startup for injection into the main feedwater bypass flow path. To use the alternate flow path, directly to the feedwater inlet piping at the steam generators, a single motor operated valve with manual positioning capability is used. Additionally, a manual valve must be closed. The overall design of the AFW including the Demineralized Water Storage Tank and Primary Water Storage Tank, are considered to be seismic Category I based on the plant original design basis. Compressed air is used to operate the steam inlet valves to the terry turbines and the main feedwater bypass line control valves. These valves are opened or closed at the control panel by controlling the air pressure from the compressed air header to the valve operators. All valves fail in the open position upon loss of air pressure. The compressed air system includes three air compressors and three air receivers for control air. All of the compressors can be powered by the diesel generators. The AFW pumps have a self-contained lube oil pumping system (shaft driven) and self-contained bearing oil cooling system. The cooling system draws cold auxiliary feedwater from the pump first stage discharge, circulates l through all necessary pump and turbine bearings, and returns to the AFW pump suction. The pumps, however, will start and operate for an unspecified time without cooling water. The TORMIS modeling of the unprotected AFW components required for shutdown include the following: 1
- 1. RWST
- 2. LPSI, HPSI Unprotected Piping
- 3. Service Water Pump Motor D
- 4. Service Water Piping l
- 5. Fire Pump Discharge Piping '
j 6. DWST Makeup Water Piping
- 7. DWST (Above Shield Wall)
- 8. Electric AFP Piping 1-6
- 9. AFB - Ground Level
- 10. AFB - Vent Pipes Similarly to the BAF system, the Vent Stack was included in the AFW system failure logic since its collapse could damage the RWST, LPSI-HPSI Piping, or the Service Water Piping.
Additional information and background on the AFW and BAF modeling is contained in the following NUSCO lette.s:
- 1. ~ Flannery, G. A. (NUSCO) letter to L. A. Twisdale (ARA), " Connecticut Yankee Tornado Wind and Missile Protection," NUSCO, Berlin, Connecticut, 2 March 1989.
- 2. Flannery, G. A. (NUSCO) letter to L. A. Twisdale (ARA), " Connecticut Yankee Tornado Wind and Missile Protection," NUSCO, Berlin, Connec'dcut,5 May 1989.
1.5 Scope of Work The tornado missile analysis of CY reported herein utilized the TORMIS methodology [4, 5]. The TORMIS methodology enables an assessment of three principal damaging effects of tornadoes: wind, central core pressure drop, and missiles. Wind and pressure drop effects are treated by inputting the failure windspeeds of components, missile sources, or adjacent structures vulnerable to wind / pressure effects, such as steel frame metal-sided structures or masonry walls. If the windspeed at the target exceeds its failure windspeed, the target is assumed to be damaged. Missile effects are treated in the code through damage calculations for each missile that hits a safety-related target. If a single missile scabs or perforates a l component it is assumed to be damaged. These calculations are done within the code by simulating a large number of tornado strikes on the plant and scoring the damage to each target for each tornado strike. From these statistics, the damage probabilities are estimated for each target as well as for the entire system. The TORMIS methodology has been reviewed and accepted by the NRC and has been applied to a number of plants in the U.S. Using CY plant drawings and NUSCO identified safe shutdown components, the probabilistic study consisted of the following tasks:
- 1. Tornado Wind Hazard. A site-specific tornado analysis was performed to develop tornado occurrence rates, path length, width, and direction data for the TORMIS analysis. These results were also developed into a reference tornado windspeed frequency curve for single point targets.
1-7
- 2. Missile Characterization and Plant Survey. A general missile spectrum
[4] was used to characterize the potential missiles at the CY site. This spectrum includes the NRC missiles as a subset. A plant survey was conducted to characterize the potential missiles at the site. Based on the results of this survey, a conservative characterization of the potential missiles was developed and documented.
- 3. Plant Model. A model of the plant was developed to describe the missile origin zones, plant structures, safety-related components, and structure-origin sources of missiles.
- 4. TORMIS Simulations and Analysis. Using the results of Tasks 1,2, and 3, the TORMIS simulation methodology was used to generate damage probabilities for tornado missile effects for each of the modeled targets and further analysis was performed to estimate certain compound damage event probabilities.
1.6 Report Organization This report summarizes the data developed and the results generated in the TORMIS and related analyses. The tornado subregion data for CY and developed tornado inputs for TORMIS are presented in Section 2. Section 3 summarizes the failure criteria adapted for the CY safety-related targets and structure origin missiles. The plant model, missile data, and damage criteria used for each safety related structure are given in Section 4. The results of the TORMIS simulations and conclusions are given in Section 5. Section 6 contains the references. Appendix A summarizes the CY subregion tornado data. Appendix B summarizes the Vent Stack wind capacity analysis. The Document Control List for CY drawings used in the TORMIS modeling is given in Appendix C. Computer-Aided-Design (CAD) drawings of the TORMIS plant model are given in Appendix D. l l 1-8
- 2. TORNADO SUBREGION IDENTIFICATION AND WINDSPEED FREQUENCY ANALYSIS 2.1 Introduction The CY Atomic Power Station is located in south central Connecticut at latitude 41 28' 57" N and longitude 72 29' 57" W. The plant is located on the north edge of the Connecticut . River in rolling and heavily wooded terrain, about 15 miles inland from Long Island Sound. Plant grade is at elevation 21 ft MSL. The terrain in the vicinity of the plant !s characterized by hills with elevations 200-400 ft and some peaks at 600-700 ft MSL.
A site specific analysis was performed to generate a tornado data set for the TORMIS analysis of CY. The National Severe Storms Forecast Center (NSSFC) tape [6] for the years 1950-1982 was used as the basic source of data for this investigation. These data have been carefully screened to eliminate errors and outliers in the record fields. In addition, corrections have been introduced to account for reporting efficiency, time series, and other potential errors resulting from the indirect characteristics of the available data. The
- procedures basically follow the approach developed in Ref. 5 and enhanced in Ref. 7 for tornado windspeed risk analysis using the TORRISK methodology.
Figure 2-1 summarizes the overall approach for the CY site-specific tornado l hazard analysis. ' The basic outputs of this site-specific analysis for CY included the following:
- 1. Tornado data set for TORMIS missile risk analysis
- 2. A reference tornado windspeed frequency curve for the CY subregion.
The latter output has been developed using the CY TORMIS tornado data set as the basic input to the TORRISK computer code. The following subsections sununarize these results. 2.2 CY Subregion The first step in the development of a site-specific tornado data set is the identification of an appropriate tornado subregion. The main considerations followed herein in the subregion identification process I include: first, that the subregion contain the plant; second, that the subregion be homogeneous with respect to key tornado characterisFcs; and third, that the subregion be large enough to contain sufficient data for quantitative analysis. Additional considerations are that the region have convenient l l 2-1
L }~
- 1. Identify Subregion
. Homogeneous Sufficient Robust I
o e
- 2. Analyze Macro Subregion Data 3. Use Micro Data Base Occurrence Rate Windfield Model Intensity Path Length Intensiy Variation Path Length F-Scale Windspeeds Path Width Path Length Transformations.
Path Direction Path Width Transformations l v
- 4. Model and Analyze Uncertainties Model Uncertainties Implicit Model Errors Occurrence Rate Uncertainties Annual Reporting Trend Unrated F-Scale Events
- F-Scale Classification Errors Random Encounter Errors F-Scale Windspeed Uncertainties Random Uncertainties e
- 5. Perform TORRISK Simulations Model Uncertainties - Outer Loop Random Uncertainties - Inner Loop Figure 2-1. Methodology for Tornado Windspeed Risk Analysis 2-2
geometric properties like connectedness and convexity. Our approach was to start with such a region, larger than necessary, and by formal procedure, reduce its area until the main requirement of homogeneity is satisfied. Some smoothing could then be used, if needed, to give the final region the desired geometric properties. Accordingly, a 7 degree latitude-longitude " square" area, centered at the plant, was selected to begin the process. 2.2.1 Tornado Mappings. ' The 7 degree area data came from the NSSFC data base of tornado activity for the years,1950 to 1982. These data contain tornado intensity estimates (F-scales. F = 0,1 ,5), damage path dimensions, and other useful statistics. Where the data permitted, the geodetic path length and direction of each tornado was computed [8). If a tornado's path mid-point occurred in the area, then that tornado was included in the area's data base. A total of 491 tornadoes were reported in this area during this period. Many of these tornadoes had some data missing. There were no F-5 tornadoes reported in the area for these years. Plots of measures of tornado activity versus tornado mean latitude and longitude show the area to be heterogeneous in tornado activity with seemingly higher activity along the coast. Figures 2-2 through 2-5 illustrate the variation of F-scale, path length, path width, and path direction for the combined data set with an over-laid grid of 142 = 196 cells, each measuring 1/2 square. The plant site (41.48 N,72.50 W) is at the vertex of the four center cells. 2.2.2 Subregion Identification. The data represented in Figs. 2-2 through 2-4 provide the basis for subregion identification for CY. To facilitate analysis, seven concentric " square" areas of (1 )2, (2*)2, .. (7o)2, were constructed from the cells and used (by subsetting) to define 7 disjoint, " square doughnut" subregions from which the final, homogeneous region would be deter mined. These subregions are shown in Fig. 2-6. Cells over water were counted to 1 factor out any large bodies of water in assessing risk per unit land area. Since the cells and subregions are not really square but trapezoidal on a
- curved surface, their areas in planar units need adjustments to reflect the curvature of the earth and latitude corrections. A weighted mean was used to correct for elliptical aberration in earth curvature
(90 - 0)r, + 0 rp p+ p' r _- '
~
(2-1) 90 2 where the p's are the latitudes bounding the area of interest. The earth's radii at the poles and equator are rp = 3,949.99 miles and re = 3,963.34 miles [8], 2-3
Rf C'seNGUL All CDORD184LTE PHCJE CT ION OF 7 DLbRtL Rf BION PLCT OF MEAN 1,AfeMEAN LUN b Y M L.0L 15 VALUE OF F SCALE G.O+--~l------l------i-----I------I------I-g-s------s-----s------ 1 I a j 1 I I t l 1 11 l e---- e
----~ i -- t ----l------i~-
I s i e 1 i i i t. 1 & I I 21i Id i i 1 f 1 1 1 & t 1 i i i /} t s i i 4 I I $j 1 i l 8 1 i e i 1 6 j 1 1 I I e
, 182 I i )t ..5,__.i-,._',--1--,_-.--.i--..--i..__t--....--.-_;-__.-i.-__-i-_.._1,.--...e.e_.1_..___,----.i..
t 1/ 1 1 1 IL 1 1 I l: I 6 . 1 i 1 s 21 1 t 4/ I I e i e I a t i i 11 1 e i l' I i i 4 1 I i f i i t - i ' i i e t 1 e a l i t I a i i i i i 44.G +----f------t------l-1 e 11 1 e a t i
- ------l------I -----8------l----2-2------t------t =t------l------s----- e--
t i i i I I I I i i e it i 11 1 4 i i 1 1 I I 2 i l i i 1 1 i l' 1 i e4 i i i l I i i i l i i 1 1 I e I i 4 1 i1 6 I I i i l I . I I li 1 4 & 1 1 1 I I i 43.5 +----I t t - Ii -- 19 --e l - ----- il - e -- - - l -- ---- l -- e ---e l -- -- --& l f- e -- t -- ~~ - - 8 2 ----- t r ----- l --- - -- i ------ - - - --- i - - l I 1 a a t1 2s. 12 e i i a i a l l 1 12 I a P ile i i t ll 122 a i i f 4 it i a 24 BJ t i 1 l '1 i 4 i i t i t e et a t , 1 3 t! t a t i E2 , 6 a e i e3.e +----t _-- i------i-----i-----i------i--<2--------p.--------1~ ------se-e---.------i------ ------i- . i : i i e 3 2 i e i I i (i e i 1 la 1 29 - i i e i i ee j1 i i i 1 2 2 1it e 'e i i I i i i I & I i 8 21 !! I'
~
1 4 1 1"&l1221 l')t i 3 I e i i e i e3 1 i 1 e &v 1 P1 1 213 1s 7 - i i y u.3 i._-- ,_.0-__,- ,___-1,---___.__-3_i-.!_-e____-1-3,1 1-_,-.1__0 ,,1-__ ,-.____,-___--,_ _ _.-,__. e i O 4 1 1 I I I 64 i Li 0 1 1 4 2 &l a f f I I e i 4 i e i t i i s4 i 121 112 & 11 1 1 1 ,,' I t t h i i i i 1 i A 1 1 i &i i e la ea i 1 e i e 4 4 8 I a i k2 2 12111 1 lie 3 1 l 1, I s a i i
- u. o . - l ___ --. . . _ __ _ ,1_ _ ___ # t _1 - e ] , - a _.1. i __ ____ i - v_ _:r__1 1.- , e _e _- ,
O i i i a -,-____..-__ e i i i 1 i 3e e i i i i F2 ei - i a . . 4 8 s 1 21 1 6 -l li i 1 1 &1 i i t t i M l i 2 i If I i 't 1 & Alle! ' e
. Il s i 1 ,. t 6 6 n
i i i E . 1.3 ._--_i ,____q
, , si 1 eu -,--____i______,____,,___-,3CYSt,_ation 12
_-__- ___,_e___,__.:_,
.ee y, i i N 1 I l E1 3 . I 2 11 f 11 1 ~ t ' i 1 i
4 1 & i I ' I i (2 JM i e
" %~l 'i 1
l 1 i L A i ei i- i I ji 1. - T _ i j i [i t 1 i 1 i y I i 1 1 1 1
.1, e . ---- 1. _ _ - . .. _3J_ . . . .. ~ i -.--- a is - t i c : ----- - i - - 4. e ib e 1 J g i i e i I i '
le 1----.7------i-----i------i-----i-----t------i--- 1 I i 2? I & 3 all Eli! ' i 'i 1 U '1 t I t i i t i T I I til 1 3 1 1 I 1 E e e .t' s e t i i i i u i te i 1 el i 1 o
&- 4-- i e i t i .11 - t 9 i D I e Eel i 4* 1 e 1 # 6 i e i i i i i i i E 40.5 +----1--1-1-1 - ---6---~~-1 -a------t------i------t------t------i -t------r------l--------
1 61 E 21 i "I i 6 i i 1 i i ! I I I et & 11' & I 21 f I I i i I i i i t i i 62 Pe 1 1/2 1 1 et i i 1 6 e I i 4 4 n e a 1 Eet 13 ' 1 1 ,1 e i i i i i i 1 e e e . e + ---- t - --- 4 3 i - - --+ - f--- t a l e - - - e ------ 1i --- --- a - --- ~ i - ~ ~-- - - - -- e - ---- - i -- --- t --- --- * - -- - -- r- - - i - - - e i 2 1 1& 1 i & I e e i i 1 i e i I e 1 1 1 : I 1 I I I I I i i a g e 3 t' s e 6 1 1 I I i e 6 e t i 11( a 4 i i e i t i e a i i
- 39. 5 .--.. i- ea-g'l ---ee-i------1--_ - , -i------ -----i-_----i----_-i----~ ------l e 1 a i i--------
1 l 4 1 8 1E i i 4 e i i i 1 i i 1 6 1 11 e i1 e2 -1 e i i I e i t i t i i 1 12 ' 1) i ! I i 1 i i I t t t t 4 i 6 & el i I 2 1
- t i a t I 1 a e i i 3 g , o . ... . i .. _2 21 -- - -a--- - s ---- -- i ----- - l - - - - - - - -- -- - -- - i -- - - I - - -- - I------a- --#------i---
a i 1 i 1- i i s i i
- a i 1 I I ei e I i e i i i l i t i I i I Is el 4 i a i t i i i i i I e a 1 i i t i f I I I 1 t i i 9 8 I l 38.5 +----1--e n .---112i a --1---- ~ l I i
-I------1-~~--I-----I----I-----I-~---1-~~~--8-~~-8--~--'--- {
s gt i i 1 t i i I t i i i t 6 I 1 i1 11 I i 1 i i I e i I 8 t i i i 11 / f I t I I i i l i I t 8 i e i ill I i 4 3 1 I i i 8 4 t t i 33,3.___i.....-i_-----e....--i------l......i-.----a-----t------l-----n------l------e------l------l------t--- _..-....---.....__-.........._--..---.--.-.-.......--+-.......-.....---...------+------+---...---
-76.e -75.5 -75.e -74.5 -74. e -73.5 -73.0 -72. 5 - 7E. 0 -71.5 - 71. e -78.5 -7e.e -69.5 e TORNADO MEAN LONGI TUDE Figure 2-2. F-Scale Tornado Mapping 2-4
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - )
5
.n6.CTANeutan coonDINatt pnUJECTION 05 7 DEeREE Rt.e10N '
PLOT OF MEAN LAT+MEAN LON ' liVMEsDI. 16 VALUE OF DATH LEN s tS . e + --- 1 ------ 1 ~ ~ ~ -- I * ~ - 1 ---- 4 --- --- 4 . y-- l ------ t = = 3- I ---~e 6-
'l' 8-e 4- '1 4 E2 88 6 ---] I ---- t -- e - 1t 1 ---- t -----
e 1-- I 1- [all31 1 1 1 a t i~
.t -
4 2 1 ,1
; 1 1 s 1 I t !- I I . l /
i 6: ';n I i- e e a 4 I. I I i i 4 s" 1 8 a 1 1 I t1 e..,.___,.- ,_ .__,.. ._{ 1
.-t _-1 . _ _,- ,---_-.I 6 /1 16 1 e I se 's .. 1_...._,- .),__ _ _ e1 1__.e i j i . ie e i i
I : 6/ t i ~.. I i. i- t 1 i
.I i ~/ 1 t , i Se e t . -1 I 't i 4- 'l^ '4 t . t' et i 1 e i -t 1 t- I t 4 l' e. t '4 I i 1 1 i t
t- 1 I t i
'44. ,.----t-- ~ ~ l--~ ~-1-- . Il 1 .I i at a' 6 i t i - l 1 ---- 6 ---
- 4.I - --- i - I ---.1 - --
1 i 2- ~~ ~ t ---- e- t .- = 1 ----.- 1 ---- I t -- . i t- 2 4 1 l 1 14 )9 e i e1 i. i 1 i ! $ l e i e e i ei e 's a 1 I i 4 4 t 2e t~9 4' I 1 ' 1 3.3 ~ .. , _ _ _ te 1 6 . I 1 [ t .I le ei e 8: e ei i 4 10._l____ _ i.1 _ - ,- ._, -- ,-..__,=. 1_ 1 I i 1- ,e_..l........-l.-__.t..-.. e i t i 6- ..
-t i 4. 4 4-5 4 1j i te 2 t! le a e l' e et i 1 2113 i el 858 I s
- f. I I 2 le 6 en el i a 1 I l' i e 8 1 4 4 I t i 1 4 I t i l 1 i e 43.e + ---t-.-- -1.- ---t 1.----
-l 1 1 I se V I a i !
li --. 1 -- s1 -.e -- l6 ------'l t ---- 3 -- .1 -- 1 ---- s e-e--- t ---- l ---- s -- il i
- t. 4 I . 4 --
1 1 1 82 03 2 21 e I I 1 4 i f I e 1 1 8 4 I l - i 1 I7 \e 's e e este - V e 4 4 4 5-1 s@3'"I7 1 i 8 I I e4 -t ! 1 i
'* e ~11'31 e21 2# 1 1 I e 7 42.S+----I-----4----.1--
i. e 12 2 24 i Ret et- /l I 8 4 O t ----e 1 ----- 4 --- 8 -- 1 --- ! - e-301--4 -@--82-1 -a- s ---
- l. 4' I i l 1 12 t 4-R I I e 1-
- 4. e t 4 e el a t i i t i 1 i' 1. #2 e sits 112 2 le i ek, t N. I i I I i A
4 1 l e a e- 1 I - 26 3 1 e3 0 3 l i i I- 1 3 a 1 1 I l D 62. 9 +-- C -- - t ----- l ---- 6 3~.- 3- be -2.J 191 32- .-le 91..e._. 1- s t( 3 1 1 1. I pt t 6 o- .I 8 5 1 l : i ei e2
----TO-et--te--i.--l------l- - i . -~ ~ a --- .I I 5.
e , ii si 's t ei i . I ed I ee e i 1 20se e 2 I I i l
-M i i 1 i 1 i il n ,a3 9 ;l e t --- es 1 1 y 11 4' I"e 6. I c .- I e t- 6 i- .ie r 1 2 12 CY $katl05 i t12 se e i ~
a 4 i . eI . -.- t'-; r ----.i l .--- t I.- .. .- 1.. ..--2ii ----2 iil-- -.- e It ----- 4is.... - iI - -. . . - w- i -.l ' .* '* s - W- -1 ........--. .; L I I l i
< b 1(i ( :la 'a e/1~,21-#'(~
l
- i ~t "% t t i
t .t-4' I Ie 1- t
. A. I a i 1 .
7 i
) i i g, a Ce : 6 1 8 t y
y, e . .
..l...e._ti.- - .l.... N. g ..e(.t V) j .. ... _ rJ i i ..c.,p.__.g ......i......I_.... .. .__,-....,-
e a e i e I la i e1 i e e ela t ill / ,1 7 .1 i...
'T t I s1 e ee 1
t ~ 1.,
' I i 1 4 'I l t
- u. ,e e 1 af' e t t i e i i i e.
I Ie t a eg 'e_ i a i s i e : i i e 2e2 ; i eet - ey i i t i i e i g - 43, 3 . . e.- 1 1 .-.-4 ....._ , - i i
..-~.1~._..t .l.._.... _...., ... i...
t 11 1 El i, 1 I; i t t 6-I e -t ) ! 1 -13'3 3 1 Et .I a a i I i I e 11 el a /2 I 2 et i t i e a i t 2 ei I / e a lt t t 6- I Legend in Mon i
- 40. 8 4 -- --821 ----- (J--- 13 4 8 ----01 -- -----i- ---l- -- -l-i i e ,1 . e na e i 1 ;i i e i .t
----.1-----i---
i i I L0,, 21 se # I i 1l 1t I i e i n ,3 1,
,,3 I
1 4 : ef 2 I I 4 i n 1 I e e lejl i e f a i i t t 2 1 },1 3.3 3.?-9.9 i^ 8 i 3 9. 5t +---- l -e 1 - Q'n '--t s e - t ne' 6
----- f---l -i .----- t ----- l ------ s -- : s- 3 10 33 6 -~~ e - -
4 t i i ' e 1 2 ed e A s i e i 4 32-99 8 I te ; 4- /# s i t '
$ 100-315 6 3M-999 ' ' -l 2 ee i g i 3. I i i i t 6 i i 39.,.....i. -- ieee- \ -. . i . .-- l --- I __ -- i . -- . i . - - . . 4 -_ - -- - i . .
6 ie I". I i i t I *
..._e.----,---
i i i .4 4 4 6 1 4 i t 1 l i I 4 14 ee 1 i l 1 1 4 I I l 4 I I
't 4 I i I I a
- 36. S + t ~ 9--- t --8 31 1 ------ 8 t t
--I----~~t- -I----- 1- -I-----1---- 1------t - I l D ~ ' -l i -t---
l 1 1 1 I i 1 I t i I I 4 e I - el t i 4 t i 1 1 4 t t a l I la a i 6 I i i l n 4 i l I I & 4 I ets 4 I I i i t I ag . g ...- - _t.. l..-.- l 4 5 i i I 76.0 -75.3
.i.....l....._i....-_t----#--....i..-...I-----e.----t- ...........-.....~....---+...........+ ...- ..---..+ -4.---..t--- -75. e -74.5 -74.e -73.5 -73.0 -72.5 -72.e -71. 5 -71. 0 -70 5 -78.8 -69.5 -6 9. e TORNADO MEAN LONGITUDE Figure 2-3. Path Length Tornado Mapping 2-5
fil CT ANGUL A4 CDORDINATE PROJECTION Of 7 Dr.9RU M eI ON PLOT OF ME4N LAT *ME.4N LON SYMBOL IS VALUE OF PATH WID (5.0 +----l------a-I i i 71- P ~- ~ i i ----- l ----- i - l -- r - t -33 -- - - * -- -ic-- --i - - - ~ 7 1 -i---l-BR-----l----~ l-- 1 8 8/ 1 i t 1 t l216 12 i 2
$ jl i : I e 3 e i i el i , 1 4 :s a l i e # 1 a 1 ) i i 1 '1 I i /I I 4 1 I l 2 e 4 e 4,4,3 .. .-s.- ..:.. 1..l-.-...I e a I
( 112 I I I ll l 1 5 13 _s- .s-.....s .....l.--...e-.-. ~.7 e ---- .e s
/
i el.3.. 1......s._ _..l _ 8 l if 4 6 13 1 i a i n a s e I e1 1 i if 8 ( l i 4 i i 4 i 1 et I ei i 4 t 6 i l I t e e i e i l i 1 1 e i i i i i i i i 1 1 a 44,4 1 i i 11 e i i 11
...,-.....l.._._l. .-- l .._.l____.-l 1
t i t i
..__s.--..l...12--....i...1----..-l......,----.1.__-1--
i e e e i e 1 i 2 l I 2 4 2 11 l 1~ l I I 2 I i l i 1 I i 2 I l' 1 i e1 I ( l l i i e9 4 1 1 1 es i l i 1 a 1 4 62 1 I i i s t 6 42 2i e 1 0 - i i 4 3 , 3 +-. - l .. .. _ . l . 3 3 -- l ..- .. . l . 3 ... ) . --. . g -.1.. 1 - . . . _1 - g - - l - _. . 13. ._-. , j.. _..i-1 1 I I I I I i i i 61 Il el s' t i i a i 4 2 1 1 2 22 I I 232
- 13 101 18' a l i t i 1 13 4 14 i
3 I I I 1 i 1 1 i I i l l i i 1 el I i 1 l e i e I i 1j t a l I 43.3 +----t 1------l------l-- ---t------l---1--l------1,------2---e--1------21-1 t 7--8------l------l------t--- i 1 1 I I 3 2 , I i 2 4 2 e2 2 2A_. 2 8 I I I i 4 2 i i 1 I e i i i it 1-1 e i e 03:1 3 'e t i 4 i i i i 2 i i i t Ifl""T30 ~ 1 l' 1 1 ~1e323 M s e 1 I e i 22 i e I e 2; el i 1 1 11 I T 4 2. 5 + - --- l ------ l -- l --- l - --- -- l -----e t - s----1-1--e---2------1-21 --
--2--et-1----l-1 I-e -I------t---
a O l 1 i 4 3 13 i I 4 e 2 1 4 e1t e 1 I : a i GI I 2 I 1 i t a3 12 e les 1 1 i N 1 e l- 1 I e 6 1 I i 4 1 1 1 1 6 24 8 1 il et i i
## I l 1 1 I 6 l 1 1 1._4 -. . 1. i d 1, e 1 2 . O l 2._
D 42. e + 4 1 1 i Ot i 1
---- 1 ------ 12--~ - t 2- 2 -21 1 g e ---- T---~ - 't~ 2 ie--1~l -t --t------i---
O 6 1 i i I t I i 2 i 12 1 4 4 El '8 i l 1 1 4 13 1 11 2 8 1 1211 0 51 1 I t si 1 e i M l i et i l i1 f e2 13311 e s g2 /3i O. 4 I E i A 41.o +-- .i .--._i i l i e il 1 1 P2 i CY Stat,on i i i i
~ > i .
i N I
.i_ ..._2- -i_____.,... -3i--_.-.g ... ,.._ _.,.1- L i _.7.:-i_.--.., ,- , . .
1 1 l N 11 El 1 la 1-a -t i e ,1 I I L I i i 1 l \ t1 2 i e! -d'_. 6 4 I t i i 1 12 1 i ' t 4 2 ' s" ~ $ .. I At t t i i A T .3.O ._ 1 i e 1..... 1---0.-8 i i i
-t_.._.
st [1e i si - 1 a 1 t I 1 t
,1.1,.-__......__g....a___..._-_-.,__.l......,-_...._.......
1 I i1 1 226 31 314 3111 _ .4 I e vi S- 1 I I ( l 8 i T I I -11 1^ 22 1 1 3 iL e , 1 1 1 t t I l I ll D I I il 6 1 let I 1 2 t 221 1 11, -[Ql . _2 . _ s ii 1 8 1 I i 1 i e i i 1 1 a E O.5 +----1-~1-2-8-- 3- 1 .4-----l------l--- --l----- i---- l I --l-~---8--- l- 1 31 8 1 I i e i i i i e t 8 1 3 82 3 3 4 21 a l i i e i t i 13 il 1 1 2 6 2 Il I t 8 e I i a i e 1er se 1 - 4 a : I kW9 i
+a. e +---- l ---- 141 - #-. 2318- E t - -- -l--~~-t------t------l----
6
--t----~i"-
1 i -4 2 El 1 1 1 'I i i I i
~ #
b Nb
- I i I O 6-17 8 1
! l 1 I 121 e il 23 3 1 e a i i , , 6 6 e i 1 e i 1 18-55 , l ) I i 2 2e i e i i 1 1 i i
? 56-175 , ,
- 39. 5 ,+- -- l - 2e n -- Nt ---2e- t ----- - l ------ t ------ i - -:------i------l---. 3 176-556 _ _ _ , . _ - - . . . . . .
I I g.- , 4 1 i e 3 .9 mun i I t I 4 1 1 12 8 i t i i t b b ~3 1 i i 12 e at t i l i i , 6 3. 2- 9. 9 i 8 1 3 11 1 6:1 a i i i 1 1 I 39,e + . 1- 111.-.--l. ... . ..._ ......i.._.. .....__ i
......l..- --- ------i. .
I $ e I l' 8 I i i I 4 i I e i 1 ei i i I i i i l I l 4 6 31 18 1 6 I i e i e 4 i i i 1 e a i a i i I 4 1 38.5 +----l--0 --l--- I -----t------l------l------l--- 1 1 D ' 1224-t - i I I i 1 I
---t I
I--- i 4 8 2 6 2 si i I e e i e i ' t i Il 1 4 I I I I I 8 i e i e12 I t i i I a i i e t 4 i t 38,9+.._l....._e-.....t.-.---s-....l--..-.i------l-.----i...---t------------------l------l------l------i---
. ...+._....+- -+-...-.+..........-..+---..-+..---+--..--+------+----~~+---.--+------+------+------+--- -76. e -75.5 -75.8 -74.5 -74.0 -73.5 -73.0 -72.5 -72.0 ~ 71. 5 -71.e -72.5 -70.0 -69.5 -69. e TORNADO MEAN L ONG I TUDE Figure 2-4. Path Width Tornado Mapping 2-6 4
l _ _ _ _ _ _ _ _ _ - _ - _ - _ - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - ~ ~ ~ ~ ~ ~
RE.CT RNGUL Alt COORDINATE DROJELT!uN 06 7 DEB 5 TEE Rt810N PLOT Or MEAN LAT.MEf.N LON S YMEsOL IE VALUE OF PATH Dlh 4 5. 9 + --- - l -- ~ ~ - l ----- -----I-~~--t----~l------l--~~~t~---l----- f I i l i t t
'. 1 .-----l-~--l---.-f.----I-----l---
- l. i I f f I I I> t (
. i 3 . I ) I !2 2 f.I I 1 .6 4 . I i 1 8 /1 4 & 1 4 4 ( l 1 (l . I 2 4 I
5 .I . ... . .. y....2........_,..__.i..___1_.,_.i____,___.l 4 f a 4 .
. t t I s... I I ,
s 4,. t . l . I 4 I/ l I i 12 . t . 1 4 I i i _. 1 1 l' i 1 i 1 . . . 1 1 4 6 4 t l 1 1 I .t 1 i ! 4 1 I I I i i 1 i i l e i i t t i a l 7 1 8 g.,O 3 . 6 I e I iO. I i
+..-g..._-t.... .g... ..,... ._g. . .4 a g , .. . . g . _ _ _ 1.
I I 4 i I
. 3. g . . _ . g . _ . , . g . _ __ a . . . . .. I _ . . . . . g .j, ./. , g _ . . 1 I I i 3 4 t 0 .2 1. . !! 'I I . 6 1 7 I i s '.8 _
e I l 4 4 . 1 I . l .,l i I i t 6 i I 1
. . t .. I l I I i 1 I f I I 4 I 43.5 +---.I 4 4 l. . l . l . . I I t =l-....-i......t_,--_1_...._.--e... . :--...__..e, .. ; -
I i i i
. .l__.. 3 ....
t 6 1 1 . I 8 i I I t 1 Il .. . I i 1
. . .8 1 4 2.22 I 4 11.
i i d S 12 l I
.I I I t .I t 1 i l .h /l I I i 1 ( .4 4 I l
ll
.-.....g......t..._..g.-_l..l......g.....&...,_..
L 4 43, 3 + 1 ..g2_
. 9 1 1 ..V l i i i I ,,..g_....;......l.....l...
4 4 5 1 1 2. 3 I 'l . I 2 .B& 2f I i i 1 8 . I 4 I L 6 . . l ... ..l. &<. i e i 1 . I i 4 1 1 8 i T-~s! T . 1 a i . . .2..el a ui e a 1 i 1 . 3 1 . t . .3 1 El i B. 2 .1 T (2. 5 + I 6 6 i t------I.---I--~~-1----.t- 1--.-8-.*--.- .-2..- .- ..-8--- . 0 I I I 4 i 1 17
-----1= 1---
R 1 .I . I 1 . 6 . I i I i. 1 I I i 6 e e 17 i ...l .21 4. l If f N I i i . I I I 1 ! , 4 . l i 21 se a e 4 1 . .. 4 \ l I e i p 44,g +_..: 5 1 1 6 23 .-- .r.. ._,BB 1 . I 1 1 71 i e
= 1.._.. g .~. .. I 2 -~~ ~ I . - 1 . . I . - 3s - I ~~ ~ -- I - h :27I' . . -- I . ~ . -- f ----- I ----- I \
O 6 4 4 i i l
--I-~
i 6 29 .1 . I I si i vi i i I 4 i .1 I . . t i 8. 4 . 1
- i 1 4 4 I l' l I i . . i i . 1 .p i i ,
1
. I s .. .e u i i . .E 1 0 I. e.i. ..CY Station e- Li.
1.e ..... . I i - N _t a..__...._.,..._.1._...l... _ ,... _ . . l . . . . _ , _ .y; ,' ......,_.i.....I_....I___..... i . I t 2, 2 .. m. i i . I i . , x, . 1 . 6
. . u_.
B. I o. -.- 1 i i - .o i I L i i I. I 1 1 0 . A i 'y I f l
'.,s ~ 'l 1 -
I ", a t I I i 8 i ('fl. 4 4 . I 1 ~I% i /. t ' 4 i e T es ) , p .. .. . . .- 3_.. . .g.... l t 1 1
....tw.. ., gI..--..g. y..3.~.s s..._ -1....._a.
3 6 32 I . 3 I .4. I...-..l_.....l....._e..-
.l.. l- I s.J l I t i 1 l % 1 / 4 4 4 U i . . . . . . I v' . . 1 I I I I I e i 1 4 . .. i 21 D I & . 1.1 I t
_ _._ f ' 8 4 4 4
.. . 1 I ( l i E 43. 5 + .-.-3 ----I- I i t - 6~---l~-~~1-~~t---- --.1---~~l---
1 . 81 1 2 1 6 1 i i I a # 2 t :
. 28 1 1 1 13 6 t t t i 1. .. . . i i 1
2 i 2 .I I i 4 8 4 i& 3.1 I I 1 . . I i t i L ($. @ .--- 6--- .24- 6 -- . E l 1 - 4 i
.s.-- --l- ---.1----- ---
1 i I 1 . . f_.S . .1 . l . 4 i t 8 8
---l-~-~4--
I
.k i I . I i 4
8 4 I I .4' i l I I t i. 1 i 1 1 i i 3 l 6 I 4 I
..(t . I ( l 1 39.5+----l...--t--..-I------t-----t------n------i------t.-----i----
1 1 4 g 2 0 8 1 1 1 1 1.
--l------l---
I 6 I ( l i I . . ,1 i 5 W ' ' 1
. . i i i i -f 1 1 i. l . I i 3 l . 1 l ? t I 8 2 .. I l 3. i 1 I 1 0 1 i I 5 39,3.....i___........__1.....i....._g_ 6 8 1 1 3...-._6......l...__ i.... 7 ...i.--...l.-.
I I i l 3 I i i 1 . I I 1 i i a 4
=in h fficient date 1 i I I t I i . I .. I i i i I 4 e I i I i e I i i i 8 8 i i I i t i 38.5 + ---l- .---l. 1 ~.821--- --l----~ l 1 1 ~ 1 -
l-----l--~~~l- -I------l----~l------l------l-----l-I i 1 "'l a i I t--- 1 e i i 1 1 i e . t 5 .' l I e 1 i t i 4 1 6 I 6 f. t I 1 1 8 8 4 a l i I t i I I 4 4 i 1 e
. l. i 1 1 l i I i t i 1 4 e 33.0....g_.....s._..l............l...........I............g--..l......i......l....._t......t....-.-.. .__....__ . _---. .......__ ._. _. ...._..................~.--. ......__ ........_. ~ 76. 9 ~ 75. 5 -75.9 -74.5 -74. e -73.5 -73.e 72.5 72. e -73.5 ,_.....+.--
- 71. e -7e.5 78. e -69.S -L9.e TORNADO ME.We LONGITUDE Figure 2-5. Path Direction Tornado Mapping 2-7
- "s;;c. .g,g~
- m. ~i., .....,,,,- :;
f.... . . -
. M - . . m,.....- . . . - .,,m,., .
A i r. N .
-., . f.o- . . . - - . . .
__-___n
.,. .p.-. ,, .. ~. - . , .
7.. t
. .. j .~ .
g . ,,, m- -
,3 . .. , y i. - " ~~ , , , , , , , , , , . -.. , . , e, ,g .a- -- ,,6' ,, .. ..r r. 9..ye - ...:-. . . .. . -~ .-_ .. ,,,,, ., 6 c - . .1 . ,, .r
- f. a r., s
. o. -- . ~ . . .. + , * = . . ,.. j.,,,_,,,.. .g y ?* .. . ,j . .I ... ...g,.,. , , .- , , ., * .
g .. i . ,. r ,. .,
.4.
a O t.,,,, ..
. .. I,. ,.
l 3. w .w i-- w.
- A. - . 4 ..~ . ..,, ,
- 2. m. .. .
-u.. . , ,i . . ., . ._, 3 "~ . . . ' s.b - e.- $ . .- . , . ,. ., a u .r . , ,,, 2; m. , . . ...? g . . ,n ~'
- i. '. ' _ y- " . i.- .
'~"u. .?,y, .m. , ,s= 4 a.
- s. .a e , o., ;,
. . ~ . , , ~u n...... ._m . . .. r - .~. . - iw . m,,. . ..t y ,, f. _ ~ . .-
- t,..-
. . , .. . . ~ - .- ,3. , . s ~r. - . . . . . . . r. . .4..... . ~ - .- .. ~
u,..,c,5 n. ,'s' ' ~c v
~ . . . ' ,e a . . .;w. ,.
we.-
- - ~ ~ . .. ..,,, ,., , i, . -. -. ..;- . . e~.. .. , . . ,sa.... . .. .,, ~...- ; e. . . . . ~. . - .. .g %. .: .e , s.. .. ~ - . - . # *'~ *4,, A ) p..: .. >5
- M t
s
- Ann , ,.n e, . - . . ;j 8'***,I* . . . . . u. . ,..,
(. .. : .- .4h
.u,.n ,, t.t a W0 ""*. ..- . .~ . . - ;,~ y c . ,.'.r .
y.,,;
- - - :, u ',
~.a. . .n. / - u.- . ~.uii.. . ,,,,,,,
- v. .w . , . , . w., ,. ..
1
- l. .e .c- .
. . < .i L ,.: . ,, y e . ....... g 5 i 4
C70N
- 6. .
- y. ..- ..
)
i.,.i
- b.- , . -
o ..
- t. . -_
% u~' ;..
1 Figure 2-6. Concentric Cells for Homogeneity Tests 2-8 1 _ _ _ _ _ _ _ . ___ 5
i respectively. Assuming the sides of the trapezoidal area are congruent with the latitudes and longitudes (Ns) bounding it, the area is [8]: g _ A '- A 2x r2 sin $'- sin d (2-2) 360 Using Eqs. 2-1 and 2-2, a land factor Lk was also used to reflect the percent land in a subregion. Areas of the seven disjoint subregions, Sk, were computed by subtraction. l- ) 2.2.3 Risk Index. To test subregion homogeneity, a risk index was devised that could be computed for each tornado, averaged over each subregion, and could be used in statistical procedures like " multiple comparison" or "mean separation" tests. The subregion means have standard errors due to tornado-to-tornado variation. The risk index for subregion k and tornado i was defined by:
"k Ai Rti = Lx Sk Y (tornado strike /yr) (2-3) where nk = number of tornadoes in subregion k; Lk Sk = area of subregion k, adjusted for effective land area; Af = path area of tornado i; and Y = 33, the number of years in the data base. An interpretation of R ki is that it is "the estimated, annual point probability of a tornado strike in subregion k, given that all of the subregion tornadoes are like tornado i". The subregion mean is thus n
[A i E(Rti ) = i.1 (24 Lt Sk Y i.e., "the estimated, annual point probability of a tornado strike in subregion k". Variation in E(Rki) from subregion to subregion results from different tornado path areas and occurrence rates. l 2.2.4 Multiple Comparison Tests. The seven subregions contained,in order, 25, 81, 90, 75,59,64, and 97 tornadoes. Tornadoes were drawn from the L ' newly combined data set and assigned to the subregion containing their mean path latitude / longitude point. The SAS General Linear Models procedure [10] was used to analyze the data, and the Duncan-Waller, Least Significant Difference (LSD), and Tukey multiple comparison tests [10,11] were performed at the default a = 0.05 level. Analysis of variance showed subregion membership to be a poor indicator of tornado risk, and the three tests, though 2-9
l differing somewhat in their assumptions, agreed that the seven subregion mean risks were not significantly different. Inspection of the tornado mappings, Figs. 2-2 through 2-5, shows what appears to be a band of increased risk along the coast from Delaware to Maine. This diagonal pattern raises the issue that the use of concentric, symmetric subregions about the plant could average out trends associated with latitude and longitude. Consequently all subregions, except the central one containing the plant were divided by quadrant into four, angled subregions, one for each corner of the original " square doughnut" This subdivision produced 25 subregions. An analysis of the new, recomputed E(R k), k = 1, ,25, produced l the same results seen previously, i.e., no significant differences. Thus, although there appears to be differences in risk from quadrant to quadrant, the small samples and large path area variation from tornado to tornado tend to mask any quantitative differences between these small subregions. To make sure the shape of the subregions was not contributing to the i lack of subregional differences a new shape was tried. The 196 cells were recombined into 49 one degree squares, or blocks of four cells each. As before, multiple comparison tests were used to try to find some subregion of the original 7 square that contained the central I square and had its risk characteristics but more data. The block-shaped subregions were no better than the L-shaped sub-regions at finding differences. The subregions under consideration are simply too small to detect significant differences. 2.2.5 Confidence Intervals. As a further check on the validity of the multiple comparison statistical tests, confidence intervals were computed. As pointed out in Ref. 9, confidence intervals may be more useful than significance tests in multiple comparisons. Confidence intervals show the degree of uncertainty in each comparison in an easily interpretable way, and make it easier to assess the practical significance of a difference as well as the statistical significance. Under the usual assumption of normality for the distribution of sample means and the additional assumption of equal variances, one finds that two sample means must be about three mean standard deviations apart to reject the hypothesis of equal population means. However, this rule must be modified if the two sample variances are not equal. Figure 2-7 illustrates the block groups and numbering scheme for the comparison tests. Confidence intervals were used for tornado occurrence rates to compare 1 blocks. Assuming tornado occurrences are distributed as a Poisson arrival process within each block and using the normal l approximation to the Poisson, we find insufficient data in some blocks to I 2-10 '
I
. . . . , . . . . se --..
Ns. !Pa l .. N f._.... ,% M A
,,,:, ,a.~ . . . a : ."- .. . , . :,, ,y.n, . .
3, ..:. . , I
"+ .- ; . ~ , m,- .*- - .- .a . ,. -
q,. C l a y l -
. m-~ .,~ w . - - . . .- ,, . . . . - j ..g .- ~ g- 4., . , ,. ;., . . ~
71 '~'~ 72 .fi3. . .. m R- . .7 4) .- . . .
'75 --7b. . .~. :7L - ~~ ..y.. ,
I
. . .4 . u. / , ,-~ .e.
s
.y - . . . ~ .a. . . -
o j. . .. e ..--.- , - _ _
'~~'
k 66 I %. i& a 'Bi .~62.. a-~..~. s
' 6*J, . S .I. , 64
- ,t.
t- . , . ~ . r.a u.t- . .-r.-;
'" *'~~t4 c =
67 4 -.
.c..
e ,'"'. w
. - ,i pleters m... I'* h.ws.
9si .
.i 5. - j ,. wa. ,,,,,,,,.5 A
5 . ..A C r."aa,"4"* O...... i m .,,, w., h -e
~' .'-'" t'.- _ '61 52' [. 5},o;~. '. Y3._. A. ._(p . '%5; , ' . . , . . 56 -. 57 I
w . . .. . .y -
* *e b'as*b '
gestv, t 1e 4 ,,, 7 3 . . . , .,,, .; -
,,, u. o. . ,!.! . 1k.... . ii.u.-i ..~ +-~ =I(..1 -.. t -,
C Af 1 *(; ,* .* j i,y
. . . . , , , , , , _ - * *.,,,,,,,,,,,;..., ..c...<...g; > ..-+ e . , , . . u.. ,~
l'-
.;;.,,y+-
- r. .:. ..,.,.4'* s ,,, , j. .... . .....
, "~""~41 s N27. . r, . 34. .. -
4 .: .
.
- 45 46 47
~ .-. ..... . .'.N., I A i N.+..,-
o rw uma . . I
* * . * , fu e's ..rk g it .e.h.b.,.e.4 -
S ( 9 sa.eese, ih.,,e..,6 VI...ns. s j,
- ~ . ,, m u '
64 T
<p.,...,.,'.,..:.,.s t*Q**-*- ~ . .
g
*y tee 37_'
l I *
,, " ........m
- % ; .1, .ih..n. J. . <.. -*
'~~3'1 i..'A .,,a,. , b e> .- 32 33 34 35 36 ;..y u: c . . . .s f . ., .
p .,. , 3
. e, .......
t;g .' ' t / 21 22 23 24 25 26 27 I m,, . . . I, ,: - , L. - . .
- mi~
c - I .
% . n.,." - - - ~ 11 12 13 14 15 16 17_. . p I Figure 2-7. One Degree Cell Blocks 2-11
. allow the normal approximation. Conjoining those blocks gave sufficient data (E 2 9)[12]. Since R ~ Poisson (n) An N {n,n) the occurrence rate /mi2, v can be approximated by v ' 4 N ,A [L, LL Ai where N ( , c2) denotes a normal distribution and A is the block area. Using this procedure a standardized v, denoted v', and corresponding to the tornado occurrence rate per 3600 mi2 (a typical 1 block size) for the 33 year period,is thus normally distributed p <; y /n 3600, n 3600(
s A A - The Poisson assumption implies different variances for block groups that have different means, so a question arose as to how to compare the confidence intervals. For example, suppose block I contains the plant and block 2 is some other group, and the usual 95 percent confidence interval is constructed for the means of each. The assumed hypothesis that i = 2 can be rejected in a comparison of each block against the one centaining the plant if their two confidence intervals do not overlap. This comparison outcome is similar to the statistic (vi'- v2') exceeding its 95 percent confidence interval which can be normally apprgximaad as [i2 4 vi + n'] . However, due to the inequality, 40 1' + v2' 6 Yvi' + 402', the confidence level for the overlap technique is larger than 0.95. This overlap procedure to define the region is an attempt to compensate for the fact that 2 tests of homogeneity [11] reject the Poisson assumption for occurrence rates since the variances are too large, no doubt due to the " contagious" characteristic of tornado occurrences [14]. These larger variances imply smaller actual confidence levels for the comparisons of confidence intervals which might be offset by using the more conservative over-lap technique.1 I The overall confidence level is also decreased by the fact that all blocks (v2') are tested against the same block (vi') inducing dependence among the pairwise test results. 2-12
Table 2-1 summarizes the results of the confidence interval comparison test. The 95 percent confidence intervals were computed using the normal approximation when no tabulated values were available for exact Poisson 95 percent confidence intervals [13]. For the base cell containing the plant, the normalized two sided 95 percent interval on v'is 21,46 tornadoes per 3,600 square miles per 33 year period. Using nonoverlap of the confidence intervals as the rejection criteria,6 blocks noted in Table 2-1 are rejected based on the assumed hypothesis of equal means. Two blocks located in Maine (76 and 77) are marginal. Based on multiple comparison tests that were later performed on state-wide data, Maine was found to have significantly lower risks than the other New England states. Hence, we exclude the marginal blocks (76 and 77) from the CY subregion. The defined homogeneous region includes the band of increased tornado activity along the coast from Delaware to Maine, as illustrated in Fig. 2-8. The land area in Fig. 2-8 covers 40,984 square miles and represents the subregion selected for the CY tornado risk assessment. 2.3 Development of TORMIS Tornado Data Set With a homogeneous subregion defined for CY, the next step involves the development of the required tornado data for the TORMIS analysis. This data includes F-scale occurrence rates and path length, width, and directional i data. As described in Ref. 5, a series of corrections are applied to these data to account for errors and potential unconservatisms. The following subsections summarize this analysis. In Section 2.4, the results are presented in the form of a reference tornado windspeed frequency curve for the CY tornado subregion analysis. 2.3.1 Unadjusted Occurrence Rates. For the CY subregion, a total of 364 tornadoes were reported in the 33 year period 1950-82, as noted in Table 2-2. This leads to a basic unadjusted occurrence rate in units of tornadoes per year as v = n/fo = 364/33 = 11.0 tornadoes / year. This occurrence rate will be adjusted to reflect tornado reporting time series and unreported events. First, however, it is useful to assess the fundamental uncertainty in v. The confidence limits on the Poisson parameter vto can be estimated from tables of the x2 distribution. However, when viois greater than about 9, the Poisson distribution can be approximated by the normal distribution with = vto ,= o
= Yvto , (for example, see Ref.12). For the CY subregion vio = 364; hence the uncertainty in v can be modeled with a normal distribution. For example, j the two-sided 95 percent confidence interval on to is [345,383]. Transforming l
these numbers to occurrence rates per unit area per unit time yields v = 2.7 x 10-4 tornadocs/sq mi/yr with uncertainty distribution f(v) modeled as a standard normal distribution o = 1.0 and oo= 0.05. l l 2-13
TABLE 2-1. 95% CONFIDENCE INTERVALS - FOR TORNADO OCCURRENCE RATES Block Area 95% Conf. Int. (v') Ho Numbers 1 (sq mi) v v' min. max. Decision 11 3,136 17 20 12 31 21 3,350 39 42 30 57 22 2,319 10 16 9 26 31 3,627 36 36 25 50 32 3,627 37 37 26 51 33,34 1,632 11 24 15 36 41,42 7,145 16 8 3 16 Reject 43 3,358 21 23 14 35 44 2,679 24 32 21 46 (base cell) 45,46 3,573 10 10 4 19 Reject 51,52,53 10,550 29 10 4 19 Reject 54 3,517 52 53 38 68 55 3,517 58 59 43 75 56 879 9 37 26 51 61,62,63 10,379 19 7 2 15 Reject 64 3,460 13 14 7 24 65 3,460 20 21 13 2 66 2,422 17 25 16 37 71,72,73 9,082 13 5 1 2 Reject 74,75 6,803 11 6 2 14 Reject 76 3,401 13 14 7 24 Marginal 77 3,401 16 17 9 28 Marginal l Block number = mn where m and n are increasing from bottom to top and left to right, respectively (see Fig. 2-7). Blocks not listed had either no tornado occurrences or no land area. I i 2-14
i
- 4. . ...~ .
.*m,*, .
p# e..r . .
* ** ; ' p *,e.u * * **= ,. . . . . .4. o ,. g, y , _., .~ 3 -, , , . , . t, .
m,.
~,,,~.- 4. w .r ..==,%. o r -- - 73* . s * ^ l7 .
hN --*1* 3 f. f- . . . . . . . , ; e....
< /. .. , y,, *****- i ( %, *" ,
jj sa., i n _
*** *.e* \ .s gv es . , _p , t R * .** ., . ...,, t ****'**
- y W' h, ***" sa . ,
.', . . . , 8- 4 .e- 6- t ew . ...
[ - e.
.4.,,-
0
,, r . , ,., * .7 '*! '*g* ~ , .
a ., !, ., w. p . 4.- o
. ,p., I,. - e, : . . ,,,,, .. e s..~ , ,., * *3 l ~'--. ... - w: } , .~ , e . -. ,, s.-
Q . . . .
.- se .. /*- .
p ,,,,,,
% g .. . ,[. ., +. ( .-<8a.u.s=t w
m, O I ., w y,, '-* " g . .. '%~ - - -
~- ~ ,,,.. ~,~. . . g r.~. . I ,, n,,,
e , h=au.. , s . p . ,. , . . . , ,., ,t k. 6=.. . 4 ~s +
.. ., ...s g ,.,.in .h .,g'..,,. . o .. T e.
g-. - s e, w t1 .
,s... $c .
A9 ,* ,f ,,. . ;r, gg,,,u. ,,,,~.Ih**== ka.me%, 3 e w...
-- t ca im ,o W. - - i., I . .ta=*h, M - s e ,,a n. s. **"- ** * * / - ea ,,,,,,5, . ,A . . remh wir'. 3 8'""" / .s / c g & 7 *( ,, , s n ,o **y -4 . , . , docenster . ,;,, ,w * *amem
{_ *t. 3,,,,,,,s.g
. J**i c"2 g+ ---.,)
- u. g,,,., -
.ia g
- m-
,6 T ! '"*.?..,g . 65 , g aer i ,y w , ...
i.,,
""~*** ,a-7,..;-g,y.Ius,4a.e *~ ==.
si ' ( u ,w f;*'*'**, 4,,*t l ek, g'hs, -,,,,,,,I'...'s,
. q *,,,5,*,,, ",[ a'
- w. oDir,anga , ' * %**_ * .. . I saw, ,, C'." v 8== nm n; .a. **.e*
e % a it.r..h "
.. g af.. *"" # . . t)Ws Ries.=.ae. . he n. - A a .'e'sigsp H * ,.
j .,,.%,- %
,,a , , . s a ra . .. ,.
b=. e i n. g Aa eH. ,* I ,.A~ $ i%a e
- r*** *- 4'**
*- ws g ,, .l h'"Fu issut - *"W* , %, 4 s,, , pCe t hovrha p i Elu .. '.,,( p ***,a,,s.,, . m== v .H**'s.wo ~ % kvadmg e m .$ .
4
%,,,,,' *** h * * (L" u'****** .o P.i alate:g.PHIA *t.,,', . .
g%. - a,,
. 8 8 ** 8'*" . . \,
t,;. yn. ,: q * ~
,u.
oy *.
._ .~
I a ; .. - . . . . _ . . . . 1
.4 ....;
ao4. * ,ig ,E < l
, i . ;. , . . .... ,. 4. .:
- r
\ . p=.-.
.n.. )- (
l r __
""ILy .Y J. . .
s Figure 2-8. Homogeneous Subregion for CY Plant 2-15
TABLE 2-2. NUMBER OF REPORTED TORNADOES
' Intensity Number of Tornadoes Category Reported,1950-1982 (F-Scale)
Unrated 21 F- 1 F0 45
. F1 178 F2 100 F3 17 F4 2 F5 0 Total Rated 343 Total 364 i
i 1 2-16
.j
2.3.2 Annual Reporting Trend. The time series of the reported tornadoes indicates a trend toward increasing occurrence rate over the 1950-1982 year period. This increase in reported frequency is probably the result of increasing population density, improved storm reporting networks and techniques, more trained observers, and the establishment of community warning systems. Time series analysis in Ref. 6 notes a weak statistical hint of an 8- to 10-year cycle in tornado activity. Hence, to estimate detrended frequency, we need to average over at least an 8-10 year period for the most recent years. To estimate this detrended reported frequency over at least one cycle, we use the maximum backward average beginning with the last year in the data set. The maximum occurs for the 13 year period (1970-1982) and corresponds to 12.8 tornadoes /yr. This difference represents a 16 percent increase over the 33 year average, which we assume is due to increased reporting efficiency. Hence, the adjusted occurrence rate to reflect reporting trend is 1.16 x (2.7 x 10-4) = 3.13 x 104 tornadoes /sq mi/yr. 2.3.3 Unrated F-Scale Events. The system for reporting and classifying tornadoes suggests that unrated events are generally the less severe storms, which damage smaller areas and receive less attention and documentation. In Ref. 4, the percentage of unrated storms constitute about 8,9,13, and 26 percent of the reported events in the tornado Regions A, B, C, and D, respectively. These statistics tend to support the concept that the populations of unrated events are less severe since Region D has the highest relative frequency of F , Fo, and F1 storms. For the CY subregion, 21 of the 364 tornadoes were unrated. We conservatively assume that these unrated storms have the same F-scale distribution as the rated storms. The adjusted F-scale distribution for unrated events is given in Table 2-3. 2.3.4 Analysis of F-Scale Classification Errors. Since the F-scale assignments in the tornado data record are based upon interpretations of the available evidence of tornado damage characteristics, storm misclassifications and nonexisting or insufficient damage evidence are potentially important factors in predicting true tornado risk. In Refs. 4 and 5, a model of F-scale classification errors was developed that accounted for misclassifications and l potential underclassifications due to insufficient damage evidence at the l location of maximum storm intensity. Using this methodology, updated F-scale distributions have been developed for the CY data. Table 2-3 summarizes the results of the sequential updates for direct classification and random encounter errors. To reflect the estimated 81 percent reporting efficiency, the occurrence rate is further increased by 1/0.81 = 1.23, which yields 3.8 x 104t ornadoes/sq mi/yr. 2-17
TABLE 2-3. UPDATED F-SCALE RELATIVE FREQUENCIES Sequentially Updated Distributions for: Unrated Direct Random Final F-Scale Reported Events Classification Encounter Distribution Intensity Distribution (F) Errors (F) Errors (F") (F"') Missing 0.058 0 0 0 0 sF0 0.126 0.134 0.2498 0.2436 0.1969 F1 0.489 0.519 0.3612 0.3552 0.2872 F2 0.275 0.291 0.2641 0.3960 0.3202 F3 0.047 0.050 0.0978 0.1860 0.1504 F4 0.005 0.GJ6 0.0239 0.0056 0.0408 2FS 0 0 0.0032 0.0057 0.0045 Total 1.000 1.000 1.0000 1.23691 1.0000 I The inverse of the cumulative random encounter F-scale frequencies is the reporting efficiency, which is conservatively estimated as 81 percent for the CY Subregion for the 1970-1982 year period 2-18
2.3.5 Final TORMIS Data Inputs. The final step in the development of the TORMIS data set involves the' conversion of the F'" distribution to local tornado ~ occurrence rates and the analysis of the path length, width, and
~ directional data from the CY- subregion. The adjustment for path length intensity variation is summarized in -Table 2-4 in the form of local state tornado occurrence rates. There are the final occurrence rates input directly into the TORMIS analysis and can be compared to the regional rates given in Table I-31 of Ref. 5. We note that the CY subregion occurrence rates are slightly higher than the mean Region C rates, reflecting the increased band of tornado activity along the New England coast. The path length, width, and direction data have been statistically analyzed and are summarized in-Appendix A for the CY subregion.
2.4 Tornado Windspeed Frequency Curve Using the methods and data described in the previous sections, probability distributions of tornado windspeed frequencies for the CY subregion have been calculated using the TORRISK computer code. Table 2-5 summarizes the main input data used in the TORRISK calculations for CY. Tornado windspeed frequencies have been estimated by simulating m = 200 model histories with n = 50 tornado strikes of each F-scale intensity, F1 -+ F5. For the windspeed exceedance calculations, six windspeeds were analyzed in
- the simulations: 73,100,150,200,250, and 300 mph. These windspeeds are denoted V i*and correspond to structural damage producing gusts (several second time averages) at a height of 33 ft above grade.
2.4.1- Single Point Target. The TORRISK generated windspeed frequencies for a single point target are summarized in Table 2-6 and Fig. 2-9. The term
" single point target" means that the target has no plan area; hence, these single point frequencies are thus independent of the target size and geometry.
It is emphasized that these point target frequencies are unconservative when used to estimate risks to an entire site such as CY.- From Fig. 2-9, one can estimate the windspeeds corresponding to diffaent mean excecdance probability levels, PT (v 2 Vi '). For 10-4 to 10-7 per year, these windspeeds are: 2-19
Mean Probability of Windspeed, Vi ' Exceedance (yr-1) (mph) 1x10-4 95 1x10^5 165 1x10-6 222 1x10-7 280 The uncertainty statistics on the PT (v 2 V i') were generated using the TORRISK methodology with both model and random uncertainties. The probability distribution of the frequencies in Table 2-6 and Fig. 2-9 should thus be interpreted as follows: (1) 5th Percentile - 5 percent of the windspeed exceedance frequencies for V i* are less than this value. (2) Median - 50 percent of the windspeed exceedance frequencies for Vi
- are less than this value.
(3) Mean - The expected value of the Vi* windspeed exceedance frequency, i.e., <PT (v 2 V i")>. (4) 95th Percentile - 95 percent of the windspeed exceedance probabilities for V f' are less than this value. (5) Standard Deviation - The second moment about the mean is the variance and is a measure of the dispersion of the PT (v 2 Vi ') probabilities. Table c-6 gives the standard deviation, which is the square root of the variance. , It is emphasized that these statistics describe a probability distribution of windspeed exceedance frequencies PT (v 2 V i*). For each set of model parameters,200 tornado strikes on the plant were simulated and P T (v 2 Vi) was computed for each V'i windspeed. A total of 200 such simulations were performed, generat!ng 200 values of PT(v 2 Vi) for each windspeed. The distribution of the values can be described by a set of curves (Fig. 2-9) and statistics (Table 2-6) that characterize the current state of knowledge in the estimation procedure. l 2-20
' TABLE 2-4. ADJUSTED OCCURRENCE RATES AND WINDSPEED INTERVALS FOR TORMIS SIMULATIONS Local ' Tornado Occurrence Rate F-Scale Intensity (per sq mi per yr) Windspeed F0 1.80x104 40-73 F1 1.06x104 73-103 F2 6.76x10-5 103-135 F3 2.20x10-5 135-168 F4 3.57x104 168-209 . 2 F5 2.66x10-7 209-277 A11 3.80x104 40-277 l
l' ) 1 2-21 f
s m ? 3: o N-l TABLE 2-5.'.
SUMMARY
OF CY TORNADO WINDSPEED PARAMETERS
$ Subregion: -
- q. +
; Longitude: . 72.50 W -Latitude: 41.48 N Area = 40,984 sq mi Data Base:- ' Macro: -1950-1982 NSSFC 33 years total ' 364 reported tornadoes Micro: ' Path Length Intensity - 150 tornadoes Windfield ~ 5 tornadoes Occurrence Rate:
Reported = 11.0 tor /yr in subregion
= 2.7 x 104/sq mi/yr--
95%. Uncertainties (2.6 x 104,2.8 x 104/sq mi/yr) Annual Reported Trend = 1.16 x 2.7 x 104 = 3.1 x 104 . Reporting Efficiency = 1.24 x 3.7 x 104 = 3.8 x 104 F-Scale Frequencies: Lower Median Upper (P=0.143) (P=0.571) (P=0.286) F0 0.3526 0.1969 0.2319 F1 0.3104- 0.2872 0.2885 F2 0.2199 0.3202 0.2899
- F3 0.1025 0.1504 0.1386 F4- 0.1320 0.0408 0.0431 F5 0.0014 0.0045 0.036G 2-22 m m_-_ ._m._--- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ' - - -
l I i TABLE 2-5.
SUMMARY
OF CY TORNADO WINDSPEED PARAMETERS 1 (Continued) F-Scale Windspeeds: Lower Median Upper , F-Scale . (P=0.286) (P=0.571) (P=0.143) ' 0 40-65 40-73 40-73 1 65-96 73-103 73-112 2 96-114 103-135 112-157 3 114-139 135-168 157-206 4 139-181 168-209 206-260 5 181-236 209-277 260-318 Path Variables: Subregion data - 364 tornadoes Length f(PtiF) Width f(P tyl P L,F) Direction f(pt) Implicit Model Erron Lognormal Distribution - nc = 1.00 pc = 1.28 oc= 1.03 i 2-23
TABLE 2-6. PROBABILITY DISTRIBUTION OF TORNADO WINDSPEED FREQUENCIES - SINGLE POINT TARGET Probability Distribution Statistics on PT(v 2 Vi) V*i Tornado Windspeed Exceedance Probability (per yr) Windspeed at 33 ft Above Grade Windspeed (mph) Percentiles
~ Fastest I
l Quarter 5th 50th 95th Mean Standard Mile (Median) Deviation 73 5.4x10-5 1.9x10-4 6.3x104 21.104 2.1x10-4 100 1.6x10-5 6.2x10-5 2.1x104 8.4x10-5 7.1x10-5 150 1.9x10-6 1.2x10-5 5.7x10-5 1.8x10-5 2.0x10-5 200 7.6x10-8 1.3x10-6 1.3x10-5 3.1x10-6 5.0x10-6 250 - 6.2x10-8 2.2x104 3.9x10-7 8.6x10-7 300 - - 7.8x10-8 1.4x10-8 4.6x10-8 l l l 2-24
"- IO Ti t- + .I i ~
ll -l 4 - l- l 4 ll4llll 4
)lllll4 i
Connecticut Yankee Plant Single Point Target 30 -2 _
~~
i i l ! _ i i -__.
!' j 3g -3 _ _ - ~
jl y _
- s i 7s -
s. N p -
.w i. - - N -
x _ w N-o s , E \ g to-4 2 -: w s g ._ N i i . _ u s N -
', T. .N s N .g 95th Percentile' ~
M m
's N N j -
y ~'
\ i !
N ~ e- N \ \ gl! U t3 18 - 5 - N N \ ( y j \ \ ! a -.
\ ,
g -
! \. ;
I - m ; ~
\ ; \
3 -
\
g , -- 5 _._ 5th Percentile \ , __
\ g 10 - 5 ._
g \ _ I' \ ! I
\ ~_ \ \i 2 \
g! -
\ _ \ \! -
le *I __
~ \ \k \ Mean Tj ig- s ' 1 i ' i !' ' '!' '!! ! 'I ' I' ! ' ' k 'I ' ' ' ' ' ! ' ' t'I
se lee 150 200 300 40 0 Windspeed, Vi * (mph) Figure 2-9. Probability Distribution of Tornado Frequencies - Single Point Targets 2-25
2.4.2 TORMIS Comparison for CY Plant. Using the CY tornado subregion data, a windspeed frequency curve can be developed for the safety related targets at the plant. A plant target envelope (described in detail in Section 4) is drawn around the safety related targets. Both the TORRISK and TORMIS computer codes have been used to generate a mean windspeed curve, as illustrated in Fig. 2-10. The results agree very well and differ only slightly due to statistical sampling errors and an approximation used in TORMIS to improve the calculational efficiency of the code for missile risk assessments. The effect of finite target size increases the probability by factors of about 4 over the point target results at the higher windspeeds. The curve in Fig. 2-10 represents the tornado windspeed frequencies that are used in the tornado risk assessment for CY. The windspeeds corresponding to the following mean prob ability levels are: Mean Probability Windspeed, Vi ' of Exceedance (yr-1) (mph) 1x104 115 1x10-5 185 1x10-6 245 1x10-7 290 Hence, the effect of plant target size is about a 20 mph increase in windspeed over the single point target results. 2.4.3 Discussion. These site-specific tornado windspeed curves and uncertainty bands are somewhat higher than those produced by Mcdonald [15]. For example, Mcdonald gives tornado windspeeds of 120,184, and 245 mph, corresponding to annual exceedance probabilities (for single point targets) of 10-5,10-6, and 10-7 These windspeeds are about 40 mph less than those given on p. 2-22 of this report. There are numerous reasons for these differences; for example, see the review comments on NUREG 1 CR-3058 [16]. More recently, the NRC staff presented their estimates of 10-5 windspeeds for the SEP plants at the April 4-5,1983 meeting before the ACRS. Their windspeed for CY was 168 mph, which is only slightly greater than the 165 mph developed herein. Based on these comparisons, the tornado windspeed curves developed herein are judged to be quite reasonable and within the uncertainty intervals associated with these types of estimates. When the size of 'he plant is taken into account, the 10-5 windspeeds are conservative compared to the NRC estimates. For example, the windspeed corresponding to 1 x 10-5 annual exceedance probability is l'85 mph. Thus, the TORMIS and TORRISK generated curves, presented in Fig. 2-10, are judged to provide state of the art tornado wind hazard curves for the CY tornado missile analysis. ) 2-26 )
gg-1 21 6-1 l6 'l' 4 j . I j. 6 1l1lll6l1 1l1l6l4l1 Connecticut Yankee Plant Plant Target 10-2 _ _
- t l
1 le-3 _ 71 - i
~
3 _
~
A i ;
. l _
h . - h u TORMIS l
- g. if-4 -: -
,o _
u - o i -- E. - l'
.@ - TORRISK _
e I
.o V .
O 10 - 5 _ 1 i : m - i W - . o - I g _ e v. c - 3 - l . _ _ 10 - 8 - i _ i :_ 1 1 - - L is-7 - i _ V 5
\ ' ?
le-s
' I l'I !l ! ! 'I'liI ' Il ! ! ;I t!!! ';i'! I 56 100 150 200 300 40 0 Windspeed, Vi * (mph',
Figure 2-10. Mean Windspeed Frequency - CY Plant Targets 2-27
- 3. TORMIS METHODOLOGY AND CY DAMAGE CRITERIA 3.1 Introduction The TORMIS methodology for estimating the probabilities of tornado missile related events has been developed for application to nuclear power plant risk analysis. The complete documentation of the basic TORMIS methodology is contained in Refs. 4,5, and 17. The TORMIS methodology has been reviewed and accepted for nuclear power plant analyses, as discussed in an NRC Safety Evaluation Report [19]. Each of the comments in Ref.19 has been addressed to assure conservatism in the CY analysis; i.e., (1) site-specific tornado characteristics and F-scale windspeeds, (2) enhanced near ground tornado wind- speeds, and (3) site-specific missiles, based on a plant survey.
The TORMIS methodology is used herein to assess the tornado missile risk to the auxiliary feedwater (AFW) and the bleed and feed (BAF) safe shutdown systems at CY. In the TORMIS methodology, the damage events for tornado missile scoring are defined by specifying (1) targets and target-combinations and (2) the damage criteria for each individual target. The target combinations and the damage criteria used for each safety related target are presented in this section. 3.2 Target Combinations for BAF System Damage As described in Section 1, the following targets have been identified as part of the BAF system in the TORMIS analysis: TORMIS Target Number Description 1,2,3,4,49 Cable Spreading Areas 5 Old Switchgear Room 6,7,8,9,10 RWST 11 LPSI, HPSI Piping 12 Service Water Pump Motors A, B and C 13 Service Water Pump Motor D 14,15,16 Service Water Piping to D.G. 17,18,19,20 Service Water Piping in PAB 21,22 Service Water Piping PAB to Containment 23 Fire Pump Discharge Piping I 3-1
One additional target, the Vent Stack (Target 46), has also been considered in the BAF system analysis due to its height above grade (173 ft) and wind exposure and the fact that its collapse could result in damage to the RWST, LPSI-HPSI Piping, or Service Water Piping. It is noted that the collapse of other non-safety related structures has not been considered at.this time. The detailed information on target type, geometry, and material for each target noted above is given in Section 4. These targets are connected in series in the system damage event with the exception that both Targets 12 and 13 must be damaged in the same tornado event for system failure. Hence, we denote the base damage event for the BAF safe-shutdown system as P(BAF) = C1 v C2 v C3 v C4 v C 5v C6 v C7 v C8 v C9v C10 v C1 1 v (C 12 ^ C13) v C14vC15 v C16 v C17vC18 v C19 v C20 v C21 V C22 v C23 v C46 v C49 (3-1) where Ci denotes damage or failure of component i due to tornado wind or missile effects. In Eq. 3-1, "v" denotes the union operation and "A" denotes the intersection operation. Hence, with the exception of Targets 12 and 13, system damage occurs if any single component is damaged. As described in Section 1, several other targets that could lead to damage of the BAF safe-shutdown system were considered by NUSCO and found to be protected from tornado effects. Hence, the above targets include those that were specified for explicit analysis in the TORMIS tornado risk analysis. 3.3 Target Combinations for AFW System Damage The following targets are modeled for the TORMIS analysis of the AFW system: TORMIS Target Number Description ' l 6,7,8,9,10 RWST l 11 LPSI- HPSI Piping l 13 Service Water Pump Motor D l 14,15,16 Service Water Piping to D.G. 17,18,19,20 Service Water Piping in PAB 21,22 Service Water Piping PAB to Containment 23 Fire Pump Discharge Piping i 3-2 _ _ _ _ _ - . - - . - . - - . 3
TORMIS Targct Number Description 24,25,26 DWST Makeup Water Piping 27 DWST 28,29,30,31,32 Electric AFP Piping 33 AFB - Ground level 34,35,36,37 AFB - Vent Pipes The Vent Stack Target (46) is also included for the same reasons as mentioned in Section 3.2. These targets are connected in series except for the redundance of the vent pipes. Damage to the AFW systems is given by P(AFW) = C 6v C7 v Cs v C v C10 9 V C11 V C13 V C14 V C15 V C16 v C 17 v C1s v C19 v C20 v C21 v C22 v C23 v C24 v l C23 v C26 v C27 v C28 v C29 v C30 v C31 v C32 v C33 V (C34 ^ C35) v (C3 6 ^ C37) v C46 (3-2) i 3.4 Target Damage Criteria The TORMIS methodology evaluates target damage due to tornado missile impact by scoring the following events:
- 1. Missile hit, or impact, on the target.
- 2. Missile hit on the target with impact velocity V i > V(.
- 3. Local effects missile damage,i.e., perforation of steel targets and either scabbing or perforation of reinforced concrete targets, for each of four target wall thicknesses.
l 4. Velocity exceedance for 4 impact speeds for the automobile missile.1 This damage assessment capability has been used in the CY safe-shutdown systems analysis. In addition, a windspeed (wind pressure) failure mode can be analyzed using the TORMIS post processor, TORSCR. Thus each target can potentially be damaged as a result of direct wind effects and/or missile impact effects. I The automobile is considered a " soft" missile that induces an overall structural response failure mode, in contrast to local penetration failure caused by semi-rigid or "hard" missiles. 3-3
s At CY, the targets considered in the TORMIS analysis fall into two categories: (1) rooms enclosing safety-related equipment and (2) pressure tanks, pump motors and piping. Category (1) targets are vulnerable to both wind and missile effects and, hence, both failure modes are relevant. If the local wind pressures exceed the capacity of the structure, then the safety-related components inside the roe:a are assumed to be damaged. In addition, if the wall is perforated or scabbed by a missile at windspeeds less than the target capacity, then the target is also assumed to be damaged. Category (2) targets are equipment targets that are not vulnerable to wind pressure failures. They are vulnerable to missile and debris impact that could perforate the component wall. For these targets, missile induced damage is the failure mode of interest. For Category 1 targets, the component damage event Ci is C=WvMi i i (3-3) where Wi denotes a wind pressure induced failure or collapse of the wall, roof, or structure and M idenotes a missile induced scabbing or perforation of the barriers surrounding the safety-related component. For Category 2 targets, Eq. 3-3 reduces to Ci = Mi (3-4) since these targets are not assumed to be vulnerable to wind pressures, but c N to impact by missiles. A summary table of individual target damage criteria is presented below: Target Description Damage Criteria Wind Missile (M i) (Wi) Scabbing Perforation Cable Spreading Areas *
- i Old Switchgear Room *
- l Vent Stack
- RWST .
l LPSI, HPSI Piping . l Service Water Pump Motors . Service Water Piping . Fire Pump Discharge Piping
- DWST .
DWST Piping
- Electric AFP Piping
- AFB - Ground level
- AFB - Vent Pipes e 3-4
Hence, the Cable Spreading Areas and Switchgear Rooms are assumed to be
' damaged if (1) the local windspeeds (V) exceed the failure windspeed (Vf) of the block wall or metal siding or (2) if missiles scab or perforate these barriers prior to windspeed failure. Only the wind pressure failure mode. is considered for the Vent Stack. The other components represent metal-sided pump motors, tanks, and piping. These targets are assumed to be dan.sged if their walls are perforated by a tornado missile. The pipe and tinK wall thicknesses are set equal to the actual wall thicknesses. For the service mter pump motors, the minimum wall thicknesses are conservatively set equal to the siding thickness of the Screenwell House. The perforation calculation is performed in TORMIS for each missile impact, as described in Refs. 4 and 5.
Using the above damage criteria, several plant-specific inputs are needed in the TORMIS assessment of the CY safe-shutdown system:
- 1. Failure windspeed V ffor metal siding targets
- 2. Failure windspeed Vf for block wall targets
- 3. Failure windspeed Vr for the Vent Stack
- 4. Missile impact resistance of block wall targets.
The following sections summarize the parameters used in the CY analysis. Other aspects of the failure criteria, such as missile impact resistance of concrete and metal targets, are an integral part of the accepted TORMIS methodology. 3.5 Failure Windspeeds for Metal Siding Engineered structures at CY with metal siding include the Turbine Building, Screenwell, Primary Auxiliary Building (PAB), Waste Processing Building, New and Spent Fuel Building, HP Facilities, and Service Building. l Failure of the siding creates potential missiles and may expose certain components to potential wind or missile effects. 3.5.1 Wind Pressures and Suctions. For metal siding, failures are expected to occur first at the corners under the action of suction or negative wind pressures. Because of the nature of attachment, the walls are expected to have considerably larger resistane to positive (directed toward the interior of the building) than to negative wind pressures. Also, once the corners fail, the internal pressure will drop thus reducing the net loads on the side and leeward panels but significantly increasing the loads on the windward panels. Consequently, the expected sequence of failure would be corners followed by J windward panels and possibly some additional failures of side and leeward I. panels. An additional aspect is that failure of the corners could lead to significant loads on interior walls rather than directly on the windward walls if the building is broken into reasonably well sealed rooms. 3-5
The relatively high suctions that have been observed at corners of buildings as opposed to wall surfaces away from the corners are directly related to flow separation at the corners. Consequently, high suction coefficients can be expected at the corners of the Turbine. Building and the Screenwell House of the Connecticut Yankee Plant but it is likely that similar high suction coefficients would not occur et corners of the Service Building or PAB because of shielding by the Turbine Building, the Auxiliary Bay and Containment. However, without conducting special wind tunnel tests it is not possible to define the magnitudes of the pressure coefficients which would occur at the corners of these potentially sheltered buildings. A conservative approach has been adopted for this study and typical corner suction pressure coefficients that are based on flow separation at the corners have been used. The metal siding panels are nominally two feet wide and are supported by horizontal structural members spaced at roughly eight to nine feet centers. Consequently, the surface area for area reduction of pressure coefficients is less than 20 sq ft and no reduction is taken. The 1982 edition of ANSI A58.1[17] lists suction pressure coefficients for corners as -2.0 for buildings less than 60 feet tall and -2.5 and -1.8 for two zones at the corners of buildings taller than 60 feet. Numerous wind tunnel tests have indicated that the value of -2.5 for corners of buildings taller than 60 feet are too conservative. A better general approximation is the value of -2.0 listed in the 1980 edition of the Uniform Building Code. For areas away from corners pressure coefficients given in Ref.17 range from -1.1 for buildings taller than 60 ft to - 1.5 for buildings shorter than 60 ft. A value of -1.3 is considered appropriate for the Service Building and PAB because of shielding by the Turbine Building and Containment. These coefficients include a gust factor which accounts for both large suctions due to flow separation and for wind gust effects and are intended for l use with fastest mile windspeeds. Since the tornado winds simulated in TORMIS are peak or at least fastest 1/4 mile windspeeds, the wind gust contribution to the pressure coefficient must be removed in order to obtain the appropriate value. Thus, the code pressure coefficients should be multiplied by a factor of approximately 0.87 for use with fastest 1/4 mile l windspeeds. The resulting negative or suction pressure coefficient for use in estimating wind loads on the corners of the buildings with metal siding is Cp j
= -1.75 and for other areas is Cp = -1.13. An internal pressure must also be included and the appropriate pressure coefficient for a sealed building is Cp = -
- 22. Consequently, net pressure coefficients of C p = -2.0 for corners and C p=-
1.35 for other areas are used in the subsequent analysis. These coefficients are designed for use with the reference velocity pressure at the top of the t 3-6 _ _ - - - - - - - - - - - - - - - - - - - - _ - - - - - - - - -- - --]
building. Due to the relatively uniform velocity profile of tornado winds the reference velocity for the tornado at an elevation of 10 m is used. l l The pressure coefficients determined above are used in the following equation [18] to calculate the wind pressure acting on the wall surface p = f p V,2GC p (3-5) where p = wind pressure per unit area; G = gust factor = 1.0 for tornado winds; V2= wind velocity at height z above ground (10 meters for tornado winds since the profile is assumed to be uniform); and p = air density. Substituting appropriate values, Eq. 3-5 reduces to: p = -0.00512 y2 (psf), for corners, (3-6a) and p = -0.00346 y2 (psf), for other areas, (3-6b) where V = Vz at z = 10 m. 3.5.2 Resistance of Metal Siding to Wind Pressures. The capacity of the metal siding to resist wind loads is dependent on the connections of the siding to the support structure. Typically, the siding will fail at the attachment points by either the metal tearing around the screw or by the head of the screw punching through the metal sheet. The insulated galbestos siding which is used at the Connecticut Yankee Plant generally consists of a 22 gage interior steel sheet,1-1/2 in. of glass fiber insulation and an exterior 24 gage steel sheet. The interior sheet is two feet wide and attached with self taping screws to the support structure. Typical support is two screws at the top, two at the bottom and two at an inter-mediate support. The typical distance between supports is about 8.5 ft. The exterior sheeting is attached to the interior sheet using 18 gage sub-girts. Failure of the wall is considered to occur when the interior layer pulls away from the support structure. l Many factors influence the ultimate strength of the metal siding l meluding workmanship in installing the siding and previous load history. The load history can influence the strength through fatigue of the material around the fasteners. Consequently, it is difficult to prescribe a specific failure load. However, an upper bound can be derived from laboratory test on new materials carefully installed in a representative manner. While test results on this specific siding were not available, a series of tests were performed on a i 3-7
m siding system for the Robert E. Nuclear Pcwer Plant [20], which also utilized a 22 gage interior sted panel and fasteners at essentially the same horizontal spacing. The primary difference in the test layout was that the spacing between supports was 7.0 ft as opposed to the nominal 8.5 ft utilized at the Connecticut Yankee plant. Since the siding is significantly deformed at failure and the material generally tears around the connector, membrane type action is assumed and the load capacity of the Ginna panels has been reduced by the ratio of 7/8.5. Typical uniform pressures at failure corrected for the span are expected to be 66 psf. Assuming that the panels can resist 66 psf of uniform load, the failure windspeed for corners is estimated from Vf= (66 psf /0.00512) i/2, (3-7a) which yields V f= 113 mph. If a strength reduction of 25 percent is applied to account for workmanship and fatigue (i.e., resistance equals 49.5 psf), the failure windspeed is estimated as 98 mph for corners. Similarly, the failure windspeed for areas other than corners is given by Vf=(66 psf /0.00346)1/2 (3-7b) which give a resulting failure windspeed of 138 mph. A strength reduction of 10 percent is considered more appropriate for these areas since wind loads previously experienced by the panels will be lower. Reducing the 66 psf load by 10 percent produces 59.4 psf and the corresponding failure windspeed would be about 130 mph. These basic windspeeds will be used in Section 4 to estimate failure windspeeds for safety-related as well as structure origin missile targets. As a final point, we note that the major areas of uncertainty contained in this analysis of failure windspeeds for metal siding are:
- 1. Plant-specific pressure coefficients
- 2. Influence of workmanship on resistance to lateral loads
- 3. Fatigue of the material around the fasteners.
Conservatism included in the analysis are:
- 1. Pressure coefficients assume separa+ ion of high velocity tornado winds at the corners of the building.
- 2. No area reduction of pressures has been allowed.
- 3. Only the strength of the interior panel is used in estimating wall resistance to lateral loads.
- 4. Reduction in material strength of 25 and 10 percent were taken to help eccount for workmanship and fatigue effects.
3-8
1 Hence, we believe these windspeeds are somewhat conservative estimates for the CY plant. 3.6 Failure Windspeeds for Block Walls The concreie masonry block walls that enclose the cable-spreading and switchgear areas are internal walls. Hence, for these block walls to be exposed to significant tornado wind pressures and to missile effects, external walls (typically galbestos siding) must fail first. Once these external walls fail, the pressures would be altered and transferred (with potentially some attenuation) to the internal walls, creating the potential for block wall failure. The following analysis summarizes the windspeed failure criteria used for the CY block walls. 3.6.1 Wind Pressures and Suctions In the preceding section on metal siding, an external pressure coefficient of -1.75 was selected for use in estimating wind loads on siding at the corners. When the corner siding fails, it could be assumed that pressures corresponding to this pressure coefficient would be transmitted into the building and result in loads on the interior block walls which are equal to those experienced by the siding before it failed. However, this assumption is extremely conservative and should be considered as an upper bound on the loading. The pressure coefficient for calculating pres-sures on an interior wall, given failure of the exterior siding, is expected to be reduced both because the area of the failure zone is likely to exceed 20 square ft and because it is likely that failure of the corner siding would change the aerodynamics of the flow around the corner resulting in smaller magnitude pressure coefficients. A wind tunnel model study of internal pressures in low rise buildings [21] produced results which indicated that wl.ile internal pressures fluctuate significantly, their overall magnitudes are generally less than that of the local external pressures. The codes have long recognized this reduction by specifying lower internal pressure coefficients than corresponding external pressure coefficients. In order to produce reasonable estimates of pressure coefficients for calculating loads on interior walls, estimates will be made both from reduced external pressurcs and from code specified internal pressure coefficients. Based on a review of building code specified reductions in external cladding pressure coefficients with wall area [18), a factor of 0.75 is considered an appropriate reduction. The resulting external pressure coefficient would be
-1.3 instead of the -1.75 value selected in the preceding section. In many cases i it would still be appropriate to include an internal pressure coefficient of 0.22
) to account for pressures on the opposite face of the interior wall. Thus, the net pressure coefficient would be about -1.5. For a building with significantly i more openings on one side than on others, ANSI A58.1-1982 [18] specifies 1 3-9
peak pressure coefficients of +0.75 and -0.25. The value of -0.25 is considered to be nonconservative, and a value of -0.75 is considered more appropriate if openings are on the side walls relative to the wind flow. These pressure coefficients are intended for use with fastest mile windspeeds and would be i0.65 for use with tornado windspeeds. Again, it would be appropriate in many instances to include an internal pressure coefficient of 0.22 to account for pressures on the opposite side of an interior wall. The resulting net pressure for interior walls would be approximately i0.9. If both the windward and leeward exterior walls fail and a single relatively well sealed interior wall remains between the two faces, the net loads on the interior wall could be significantly larger. Substituting an internal pressure of 0.65 for the 0.22 value used in the preceding paragraph would produce net pressure coefficients of -1.95 and -1.3 instead of the values of -1.5 and -0.9. Given these ranges of values, a net pressure coefficient of -1.5 was selected for use in estimating the loads on the interior block walls. The wind pressures based on the coefficient of -1.5 and Eq. 3-5 are given by p = -0.00384 V2 (psf) . (3-8) 3.6.2 Resistance of Block Walls to Lateral Wind Pressures The capacity of unreinforced concrete masonry walls to resist lateral loads depends on either the tensile strength of the mortar and block or the axial load and compressive strength of the mortar and block or some combination of the two. For low axial loads, the resistance to lateral loads is almost entirely dependent on the tensile strength of the mortar and the bonds between the blocks and the mortar. As the axial load increases toward 40 percent of the compressive capacity of the wall, the resistance to lateral loads increases rapidly. For axial . loads greater than 40 percent of the compressive capacity, theory predicts a l decrease in the resistance to lateral loads although tests have indicated that the resistance may remain high for axial loads significantly higher than 40 percent of the compressive capacity. Procedures for estimating the lateral load capacity of masonry walls l have been developed in Refs. 22 and 23. For relatively low axial loads, the lateral moment capacity of solid block walls can be estimated from: M = EL 'l - 1.3 E (3-9a) 2i Pw or M = l-(s P, + P) (3-9b) 6 3-10
whichever is greater. For hollow block walls M = PL 'I - gP-P, (3-10a) 2i-where g = 2 1 41" 2T or At1 or M = E (s P, + F) (3-10b) At whichever is greater. In the above equations, M = maximum moment capacity; P = applied vertical compressive load; f = thickness of wall; Po = short wall axial load capacity; s = ratio of tensile strength to axial compressive strength; A = area of net section; and In = moment of inertia of section based on uncracked net section. For small axial loads and the thicknesses and heights of walls around the safety related areas, reductions in capacity for slenderness effects are small and have been neglected in the above equations. For concrete, Ref. 23 suggests typical values of tensile strength are between 3Vfc' and 3.5Vfc'. Tests results on masonry walls reported in Refs. 22 and 23 suggest that for masonry walls, the tensile strength is actually 1/5th to 1/7th of the value given by 34fc'. Actual values of s inferred from tests of block walls using a common masonry concrete mortar were between 0.011 and 0.017. Typical compressive strengths for blocks removed from the Connecticut Yankee plant and described in Ref. 25 were found to be about 2,500 psi based on the net area. No information is available on the mortar. Assuming that the mortar is a typical masonry mortar and that results of prism tests in Ref. 22 would provide reasonable estimates of wall compressive strength to block compressive strength, the resulting compressive strength of the walls would be approximately 1,000 psi. Using a value of 1,000 psi for the compressive strength and a value of 0.015 for s, the following minimum moment capacities (provided the mortar is not cracked or debonded from the blocks) can be estimated: l l 3-11
Block Wall Type Moment Capacity (ft -Ibs/ft of wall) 8 Inch Solid 152.5 12 Inch Solid 348.7 8 Inch Hollow 110.5 12 Inch Hollow 238.0 Assuming that the wind loads are applied uniformly over the wall and that the ends of the walls are fixed, the maximum moment in the middle of the wall will be M = 1.fi (3-11) 28 where P = uniform wind load per square foot. A field walkdown of block walls for safety related structures indicated a comparable level of fixity to the connections in the tests [22,23] which were considered fixed for development of the mathematical model. Substituting Eq. 3-8 for P, the equation becomes M = -0.00240 V2 f 2 , Table 3-1 outlines the calculated failure windspeeds for unreinforced masonry walls of various heights and type of block. These values are considered to be reasonable for upper floors at the CY plant because the roofs are supported on separate steel frames. Consequently, little or no axia load would be applied to the masonry walls. For walls on lower floors, it is expected that creep of the upper floor deck will impose axial loads in the walls even if they are initially not loadbearing. For example, a 1,000 lbs per foot load acting on the walls would increase the moment capacities of the walls to the following approximate values: 333 ft-lbs/ft for 8 inch walls and 500 ft-lb/ft for 12 inch walls. Note that for these Icw loads the reduction in capacity due to the compressive stresses is quite small. For an l axial load of 2,000 lbs per ft, the moment capacities would approximately l double. Table 3-2 provides estimated failure windspeeds for the 8 and 12 inch block walls subjected to 1,000 and 2,000 lbs per foot axial loads. The major areas of uncertainty contained in this analysis of winaspeed failure criteria for interior block walls are: 3-12
- 1. Strength of mortar.
- 2. Cracking of walls or broken bond between blocks and mortar has been neglected.
- 3. Reductions in exterior pressures for application to interior walls are difficult to quantify.
- 4. Tops and bottoms of walls are assumed fixed and thus, the moments at the middle of the walls are reduced by 50 percent over pin ended connections.
Conservatism included in the analysis nre:
- 1. Low axial loads are assumed and the weight of the wall is neglected.
- 2. Weak mortar is assumed and actual bond will be better for filled concrete block than for solid blocks joined by mortar which were used in the tests upon which strength data is based.
- 3. Conservative pressures and minimal reductions have been utilized. A range of values is investigated.
TABLE 3-1. FAILURE WIND VELOCITIES (MPH) FOR POSITIVE WIND PRESSURES ON MASONRY WALLS WITH NO AXIAL LOAD Wall Height (ft) Wall Type 8ft 10 ft 12 ft 14 ft 16 ft 8 inch solid 100 mph 80 mph 66 mph 57 mph 50 mph 8 inch hollow 85 mph 68 mph 57 mph 48 mph 42 mph 12 inch solid 151 mp 120 mph 100 mph 86 mph 75 mph 12 inch hollow 124 mph 100 mph 83 mph 71 mph 62 mph 3-13
TABLE 3-2. FAILURE WIND VELOCITIES (MPH) FOR MASONRY-WALLS SUBJECTED TO AXIAL LOADS
-M Wall Height (ft)
Wall Thickness Axial Load (Ibs/ft) 8 ft 10 ft 12 ft 14 ft 16 ft 8 inch 1,000 147 mph 118 mph 98 mph 84 mph 75 mph 12 inch 1,000 180 mph 144 mph 120 mph 103 mph 90 mph 8 inch 2,90 208 mph 167 mph 139 mph 119 mph 104 mph 12 inch 2,000 255 mph 204 mph 170 mph 146 mph 128 mph 3.7 Failure Windspeed of Ventilation Stack The 6 ft diameter ventilation stack located on the northeast side of the contain.nent structure, rises 173 ft above plant grade. The stack is supported at the base and by a pinned strut to the containment structure at an elevation of 97 ft above grade. Although the stack is not a safety-related structure,its collapse due to tornado or missile impact could result in damage to safety-related components in that area of the plant. A wind load capacity analysis of the stack has been performed to assess its vulnerability to severe winds. Appendix B summarizes the results of this analysis. The weakest element is the pin in the support strut. For the worst case wind direction (normal to strut), the failure windspeed is estimated as 286 mph. This windspeed is used in the TORMIS analysis. Tornado windspeeds at the stack location that exceed 286 mph at 10 m elevation are assumed to fail the stack. As indicated by Eqs. 3-1 and 3-2, stack wind failure is L conservatively assumed to result in damage to the BAF and AFW system, respectively.
)
3.8 Resistance of Block Walls to Missile Impact At windspeeds less than Vf, the block walls enclosing the Cable Spreading and Switchgear Rooms remain in place and have some degree of structural resistance to debris impact. Since Vf is relatively low for masonry block walls, debris that would impact the walls when the local windspeed is 3-14 l
less than Vf is expected to be principally light weight materials and missiles with high flight parameters (effective drag area to weipt ratio, Cd A/W). Nevertheless, because of the relatively low capacity of r,a,onry block walls to lateral loads, a simple model is needed to assess the potential breaching of the safety related block walls at CY by missiles produced by tornado winds for V < Vf.. Since the walls are assumed to have failed when V < Vf, their response to impacts of higher energy missiles is of no practical significance to the system failure model adapted for CY. Tornado missile impact tests on masonry block walls and other targets were conducted at Sandia Laboratories in 1975 and 1976 [26]. Three of these tests were on 8 in. filled 2,500 psi masonry block walls. The results of these tests are summarized below: Impact Wall Missile Weight Obs) Speed (mph) Response 8" x 20' rolled metal 105 151 0.25" penetration; siding cracking 2" .x 12" x 12' wood plank 52 105 3" penetration; cracking 2" x 12" x 12' wood plank 52 100 5" penetration; cracking The impact location of each test was in an area containing no steel reinforcement. The above data is all the information we were able to uncover for this study regarding tornado-missile type impact on masonry block walls. Since only 3 data points are available, simple comparisons to an existing empirical model on concrete impact is all that has been attempted herein. As a starting _ point, the TORMIS-NDRC model [5] for reinforced concrete is compared to the observed Sandia results for block walls. The NDRC model predicts scabbing for the metal siding missile and no backface scabbing for the plank missiles. These predictions do not agree at all with the observed results. However, it should be noted that the prediction of scabbing for the siding missile results from the conservative assumption that the metal missile is rigid whereas the rolled-siding missile crushed considerably on impact in the Sandia test. In addition, it should be noted that the plank impacts were conducted on the same block wall after the siding missile impact, which had previously resulted in a horizontal crack across the 10 ft dimension of the wall backface. Hence, some cumulative weakening of the wall was experienced on each succeeding impact, a factor not considered in the NDRC formula. 3-15
In the absence of additional data in the low velocity tornado missile impact regimes, the following rule is used to model the CY block walls. The equivalent thickness of reinforced concrete at CY is taken as 1/3 of the filled block wall thickness. Hence, a 12 in. filled block wall is modeled as a 4 in. reinforced concrete wall and an' 8 in.. filled wall as a 2.67 in reinforced concrete wall. For reinforced masonry walls, the equivalent reinforced concrete thickness was taken as 1/2 of the reinforced block wall thickness. This approach is felt to be conservative when used with the NDRC scabbing equations for reinforced >.oncrete walls. l 3-16 _ _ _ - - _ - - - - - - _ - - - - - - - - _ - - - - - - i
- 4. MISSILE CHARACTERIZATION AND PLANT MODEL l 4.1 Missile Characterization i
On November 28 and 29,1984, a detailed site survey of the Connecticut Yankee Nuclear Power Station was carried out for the purposes of characterizing the targets and docurnenting the potential wind-borne missile sources. Subsequent plant walkdowns were also held in 1986 and 1987. A final walkdown to validate the current plant configuration was made on 15 February 1989. Figure 4-1, taken from the plot plan for the Connecticut Yankee site, illustrates the general arrangement of the Station. The plant is bounded on plant west by the Connecticut River and on plant east by a large wooded area. Consistent with the TORMIS methodology for specifying the site and missile origin zones, an inertial, Cartesian reference system was established, under the convention that the y-axis is parallel to plant north (true north is 310 degrees counterclockwise from plant north) and the positive x-direction is plant east. The plant site extending to the river on the west and to approximately 2,000 ft from the nearest safety-related target in the other directions was divided into 21 missile zones and the targets to be analyzed for tornado wind and missile damage were enclosed in a target polygon. The missile origin zones and the target polygon enveloping the safety-related targets are shown in Fig. 4-2. Table 4-1 gives the coordinates of the 44 points that are shown in Fig. 4-2. The zone connectivity array is given in Table 4-2 for the 21 missile origin zones. Figure 4-3 shows an enlargemen't of the safety related target polygon. Detailed surveys of all zones except the peripheral ones (15,17,18,19, 20 and 21) were carried out to characterize potential missile sources that are typical at the plant. Visual inspections of the Service, Primary Auxiliary, Turbine, Screenwell, and Office and Engineering Buildings were made. In addition, aerial and ground photographs were used to estimate potential missile populations in the remote zones. 4.1.1 Missile Spectrum. The basic missile spectrum developed by Twisdale, et al. [4], consisting of 26 aerodynamic sets composed of various prismatic shapes and three material types, was used as the basis for missile characterization. Each aerodynamic set was divided into from one to five subsets on the basis of the depth or diameter dimension, d, as indicated in Table 4-3. It is noted that each of the seven NRC missiles [27] can be specified as a member of this missile spectrum by proper specification of the depth dimension, d, the weight per unit length, w, and the minimum missile cross-sectional area, Amin (and a minct correction introduced for the 4-in by 12-in wood beam). 4-1
i l - M -
; -+ > k. m , .. / ;5I # e: ' ! . P KIM.ARY %distrEdit STufus.E %
setw to a m l ' ~' l PCHANGER ARE A
#f E ll72& LS-FW It \ w s LL /
AelusA
-10Pt DeteWeGER l (LatfT IEO.1) t l g%g l ' ~*- __
3 etrurLDes CJWITY CtutTN y\we Acgsps yr [CDwt tapa
' is*ie g s % ATE A SlostMEK } getssg pn j s ' ***" ALT \
N s . __.1, . _ i NN PC.A LA (1>ow)s k % Def'OeJTAMesuttees .
~ n~2'*dr."*h cw/ j r5 ~
TQ";y ., ura i I 0E75 h _r:1 e.li,w - gg j i
'd soo m wxsresgp g, y g Q- * * ** I i @+KE .-- - * ;- i^ _ l> = 'i' *
- j g ,
w; h Q mm x i f- h _r
' 04EAD Srostpet
_ _k k 6 I - , , g ,s . s fY *
#E d*G J *6li ~
b r WAR M USE a i
'N r fy,Mt Qep W5 "co= -
vaa .NN\ s .- ININ AERATED l:wuk{s'37 'gf_ at AcToct chraiu y N; M ,- , s (oW NN:f pgPE '" s*(
~-
8Ie b t{ sigta; 2( eW2 ..._5M rb i hx MN' MN ff C
?
tsovv _IANK -' hmedEt
/ s 5 aPcx.m TRACTOR ,,g g, , g 2.-'1 , App ~.- ]
kaLp ed6 8 #
< ,$ U 'if t 4 #-
U O %~ ' ~~
" B'E #^ 'T '
u i w>-n = " -
%. [ g'b n( ,a Nt"oMgjh.+in-*g)Ng3 e A D 'IM g i 1 1 A 7
bIA!Ml l' g ' .
..tl 4 MUt Md FEED P.M HMfiC- ~ yp f
C {GUI TINEY g ,, g, ( "2 'F6 P
, ( hD 'T7-VEHT Eooip(optit,pe)
_g _ l y - p u.w.c o
- twEoL RM SEpMCE BLDG - w. h l f @ FLa)
GstavNo F(, g' j
- a- es l l 4' "
l j NDI Dlt.SEL - i GEtt BLOG sq f.A I - ------
---,mn- - -M -AI NT. - - - - ., ~ ~ ~ wa a .p, ~~
g . t" in sT. ~ ~.'.~~.~~~ ___..
.%,,,_. . Aveuntf. BO.LE.WL.PCCA... . aw .____...x > Tac poou f , ____ . _
m ROO M l 55.TR A8 3 FORMER - g , , TJAB:NE BUILDING I
! m' w.,m[ f _
O - *- '
.I l 1 ; tvaem s tw. wo.i ~* ' ~ ~ ~ ~ ~
l g E%iwEEldeG y . . _ l ( 'Q i 7-" e. ytw , 7.______)
, ,s -7 . ;8 Ii i . * ~. poon I 8 8 05coNNscT Sa' itch -- / w_
nat
. /gr-wm T$mstann Q ,x l ,4 r,
l: - j .30 r- , , g / , , 7--
- j. l 16 .>-- i ; seat e
- , e n .e w , or r,e, l ,
l '.
, * **
- u N- '
i g-v- i
, ', l , , . _ . . . _ .-=~e.- , , -
W LINI $ / N c,itmamu, ; 1, ,i l, u,_ ,/ l 7 _ . _ . _ ,_ _ . .... _ . _ __. . _ , _ ,! , . _. ,3,_ _ . . 0 8 8 i W H D50- - W . _ _ _..j ,'- , CwAnweas t. net P.swsv tLL o e 2 u ar , , I g 2 'k'=i w etsweet ~'~ - W- -- - - . -_.:, ==-~_ -= =Ti ._= = . 1 _m : -
. 4'A -
l Figure 4-1. Connecticut Yankee Site Plan 4-2
I ' Y: (ft) 40 39 38 15 2000 ~
' 2000 31 32 28 27 33 Pond- 13 29 26 16 1000" 14 12 l7 30 10 12 12 13 4 9 Y- ' 3i N -. 42 43 14 15 6 21 1
Target 2 3 Polygon 16 7
<v y 9
2 8 6 i r 1819 20 5 1000
! x 2000 (ft) 10 11 23 44 43 20 2
21 34
-1000 -- 18 / l 35 36 -2000 Figure 4-2. Tornado Missile Zones and Target Polygon 4-3
TABLE 4-1. CONNECTICUT YANKEE MISSILE ORIGIN ZONE COORDINATES Zone X Y Zone X Y Coordina te (ft) (ft) Coordinate (ft) (ft) 1 362 429 23 750 -153 2 362 1 74 24 750 437 3 565 174 25 750 1204 4 565 429 26 462 1204 5 565 0 27 750 1645 6 721 0 28 462 1645 7 640 429 29 136 1204 8 640 495 30 136 589 9 362 495 31 80 1645 10 462 589 32 136 1645 11 80 589 33 0 1645 12 80 495 34 0 -705 13 167 495 35 0 -1905 14 167 397 36 750 -1905 15 362 397 37 2600 -1905 16 167 130 38 2600 2495 17 362 130 39 750 2495 18 80 0 40 0 2495 19 167 0 41 1167 -153 20 362 0 42 1167 437 21 80 -646 43 2600 437 22 362 -439 44 2600 -153 m l
\t s ^
TABLE 4-2; ZONE CONNECTIVITY BY COORDINATES 1 l,. Zone Coordinate Numbers Zone Coordinate Numbers - 1- 1-2-3-4-1 12 26-10-24-25-26
' 2.' 4-5-6-7-4 13 28-26-25-27-28 '3- 7-8-9-1-7 .14 29-30-10-26-29 l
4 8-10-11-12-8 15 40-33-27-39-40 5- 13-14-15-9-13 16 31-11-30-32-31 6 23-24-42-41-23 17 33-34-21-31-33 7 12-18-19-13-12 18 34-35-36-23-34'- 8 16-19-20-17 19 24-39-38-43-24 9 2-20-5-3-2' 20 36-37-44-23-36
.10 18-21-22-20 21 41-42-43-44-41 11 20-22-23-6-20 l
r 4-5
7 8 f n g a 6
'I l', _
p: o l I 9 q _ Z . f3
=1. 4 2 3 x
Coordinate (f t) Point X Y 1 33 217 2 266 119 3 336 119 4 477 183 i 5 562 356 6 531 405 7 331 436 8 180 401 9 33 278 l Figure 4-3. Safety Related Target Envelope 4-6
d
- TABLE 4-3. BASIC MISSILE SET AND SUBSET DESCRIPTION Basic - Basic Missile Sets - Subset on d (in.)
j- Aerodynamic General . Cross-Section Impact Final Sd
~
Shape Set . Description b/d Variation Material Number a b c d e
.1. Steel 1 <1 (1,2) (2,12] (12,20] >20 Rod d . Cylinder T wood 2 <13 (13,17) (17.49) >48 Pipe Steel 3 <3 (3,6) (6,12] (12,241 >24.
Concrete 4' >0 Steel 5 <24 (24,48] >48 Box, T wood 6 <6 (6,ui >u Rectangle Beam Steel 7 <4 >4 i+d+1 ( >0
~
Concrete 8 l I bd 0 Wood 9 <12 >12-
- 1. > I I Steel 10 <24 (24,72] >72 1 . ==
pg b=d/10 ,,_.] Wood 11 >0 6dM [* Stec1 12 <36 (36,72] >72 Wood 13 <48 >48 Wide 1 I-Shape g, , I$ Steel 14 <6 (6,12]
.Ande l Angle jk *I-Steel 15 >0 Channel Channel Steel -16 <8 (8,20] >20 }1Td Concrete 17 >0 ,
i
>0 !
Pipe Frame Steel 18 Rect. Frame d Steel 19 >0 Frame, Truss Rect. Frame T wooa 20 >0
)
Pipe Frame Steel 21 <54 >54 l Hd i Rect. Frame [OIO Y f. cel 22 <48 >48 T Rect. Frame Wood 23 >0 1 Sphere ' Sphere Op Steel 24 >0 Vehide
^ 's Oi -i d+ 4 Steci 25 >0 Tree Tree t Wood 26 4
94 1 4-7
The 54 set-subset combinations were then reduced to a collection of 22 site-specific final missile subsets; the pertinent information for missile transport and damage calculations for these missile subsets are shown in Tabla 4-4. This information reflects the characteristics of the seven NRC missiles (Subsets 1,4,6,7,8,11 and 21) and 14 missiles with characteristics typical of a composite of missiles at seven other plants surveyed previously as documented in Ref. 4. For example, all potential missiles that had been classified in aerodynamic set 1, subsets a or b, were reduced to the NRC 1-in rebar missile; all potential missiles classified in aerodynamic set 1c were reduced to a 10.02-in rod weighing 38.64 lb/ft with length to depth ratios ranging uniformly from 4.0 to 10.0 (characteristic primarily of bottled gas cylinders); and so on. This reduction of the data provides a general set of missiles that includes the NRC missiles, which are modeled with the exact dimensions and properties as given in Ref. 27, and a probabilistic spectrum of 14 other missiles with a relatively broad range of aerodynamic shapes and damage properties and with a probabilistic specification of ratio of missile length to depth. During the zone surveys, each potential missile was classified into one of the 22 aerodynamic subset categories. 4.1.2 Survey Results. The surveys were carried out by visual inspection of the zones, during which information on the numbers of missiles and storage conditions was recorded on data forms of the type found in Fig. 4-4. In addition, photographs were taken to document specific potential missile sources. In Fig. 4-5, a few representative photographs are shown. Figure 4-5(a) is a view looking plant north from the roof of the Service Building and shows the roof of the Diesel Generator Building in the foreground, much of Zone 14 (mostly parking area) and part of Zones 4 and 12. In Fig. 4-5(b), the roof of the PA3 is visible in the foreground and the Waste Processing Building and the Warehouse are shown. Figure 4-5(c) provides an eastward view of the roofs of the PAB and HP Facilities, Containment, the RWST and certain piping (including exposed service water piping running between the PAB and Containment). In Fig. 4-5(d), a southward view of the Service Warehouse, the west edge c? Zone 1 and parts of Zones 9,11 and 18 in the background can be seen. The largest vehicle missile population is in the parking areas of the parameter zones; the numbers of vehicles in other zones were also counted and entered on the missile survey forms. The results of the missile population survey is given in Table 4-5. In constructing this table, potential missiles from the failure of trailers and certain smaller non-engineered structures were accounted for; many of the larger structures (e.g., warehouses and office buildings) were considered separately as missile sources, as described in the following subsections. 4-8 l
TABLE 4-4. TORNADO MISSILE SUBSET CHARACTERISTICS Weight Final per Unit Length / Depth Missile Aero Description Depth Length A, Susbet Set (Typical) d (in) (Ib/ft) (in ) Minimum Maximum 2 1* 1a Rebar 1.00 2.67 0.79 36.0 36.0 2 1c Gas Cylinder 10.02 38.64 9.45 4.0 10.0 3 Id DN m, Tank 19.98 23.55 31L60 2.3 6.0 4* 2b UItility Pole 13.50 32.06 143.10 31.1 31.1 5 2c Cable Reel 42.21 140.70 126.60 0.5 0.6 6* 3b 3" Pipe 3.50 7.58 2.20 34.3 34.3 7* 3c 6" Pipe 6.63 18.90 5.60 27.2 27.2 8' 3d 12 " Pipe 12.75 49.60 14.60 14.1 14.1 9 5b Storage Bin 38.40 112.50 40.50 1.0 11.4 10 8a Concrete Frag. 36.00 326.25 324.00 1.0 3.0 11' 9a Wood Beam 12.00 9.50 48.00 12.0 12.0 12 11 a Wood Plank 12.00 3.30 12 00 8.0 12.0 13 12 a Metal Siding 48.00 25.00 24.00 2.0 4.0 14 13 a Plywood Sheet 48.00 15.02 50.74 2.0 2.0 15 14 b Wide Flange 11.29 27.87 8.16 8.0 60.0 16 16 a Channel Section 5.11 11.88 3.49 9.0 80.0 17 18 a Small Eqpt. 46.48 44.02 4.63 1.2 13.3 18 19 a Large Eqpt. 67.07 88.67 15.70 0.3 18.8 39 22 a Steel Frame, Grating 43.31 12.37 2.22 1.0 7.5 20 22 b Large St. Frame 97.41 47.23 11.00 1.0 5.0 21* 25 a Vehicle 66.00 250.00 2574.00 2.9 2.9 22 26 a Tree 8.00 35.00 50.27 30.0 90.0
- Denotes membership in NRC standard spectrum of missiles.
l l. 4-9
i l t a o T y l l i ad t e nn e i.
%uqt r r
e e s s bR u S y By B d m ed ye u . ek evr ce i mv) l ef t t xE( a iuh
?SC M m r
o F y e vr u Y m.v) u S e E V mef i l t l i s nE( s R i i U M M S a _ E d L a I S n r S o I T M l e O p D m a A r s S N b e e . R l 4-O mfo u is s 4 T i e N M r u g i F et aie l l s s n sb iiu FMS n ei o l t i s ip n g e s r c
. t e o n m
_ i Mce s r e k d n le e n a o e l i a n Fr m n a k i g e e it n h g c S n S p p a e t t it r F a r o D i B e e la d d a q c G l y T, P R e l l e e ip ge e t B P S o lF e E E / e i N o n e le m hty le r C pip r d d e e c a w e n a l l t t e P a c P P " r n o o n a l g m S. hi n i a b s u b o o o o t e y d a r e a r a g e i o t a i h m r S 12 F L V l 2 R G D U C 3" "6 CW W M t P Z 1 S l P WC pg ll 1 l \ L
4
.W. ~ 3.7 ~.
w, y , v: - y
- em M-4 r -
4 *y"G, G , , I . ;
- - ~ . - - - . .. - .4 (a) ' View Looking N (b) View Looking NE P .M i 'l , ,f: ' ~ . g }w. 'J' '
l . f*'*$lfE , ? 42 %u l r w j Ihygf 3
, . .,1-em ig.r. s F. 3: , mi .9 i Y * 'f~
_ _\.- !1._ _- H.~g .._lh
~ k\ L ._ - _- . _ _ .
(c) View Lenkiao E (d) tiew lookir'9 S Figure 4-5. Photographs Taken From the Service Building Roof 4-11
1 2 0 0 0 0 2 0 0 0 0 0 0 0 6 60 0 0 0 0 0 0 0 0 0 06 0 0 1 1, 4, 1 1 0 0 0 0 05 0 0 0 O 0 0 5 757 0 0 0 0 0 0 0 0 0 0 0 2 ' 0 0 7 3 3 5, 0, 7 9 9 0 0 0 05 0 0 0 O 0 0 57 5 0 0 0 0 0 0 0 0 0 0 0 1 7 7 0 0 3 3 5, 0, 7 9 8 1 0 0. 21 60 0 2 0 O 2 0 02 0 5 8 2 5 5 4 0 0 3 0 0 1 1 . 6 6 1 0, 2, 1 1
'3 7 0 0 6 0 3 0 O 2 0 0 3 25 3 0 1 6 31 0 6 0 0 1 1 1 1 3 1 6 1 9 2 1 1
4 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 4 9 4 5 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 2 0 1 2 9 3 4 1 0 0 7 0 0 0 5 0 2 0 0 0 0 0 0 0 0 0 0 0 4 0 1 - 1 8 3 E e N n . o 3 0 0 4 04 3 0 0 0 0 0 05 0 0 0 0 0 0 5 0 0 0 04 2 O Z 1 4 Z n ~ 1 Y ig 2 0 0 2 0 0 4 0 1 8 0 0 8 7 2 0 1 5 3 0 1 4 0 6 B i r 1 9 5 7 1 4 0 2 1 5 8 0 7 6 4 7 3 1 2 5 1 6 2 1 2 1 8, N O 1 O e 1 0 7 7 0 1 2 1 3 6 0 0 9 8 3 61 1 0 6 2 1 2 0 5 I l 1 6 2 6 6 1 6 0 2 4 4 2 2 1 9 T i s 2 2 2 2 2 1 U 5, is 1 B I M 0 R 1 0 0 57 07 1 5 4 3 3 0 1 2 0 6 0 5 0 1 2 1 2 0 1 T S 3 7 1 7 2 8 2 2 5 4 1 2 1 0 8, I D . 1 E 9 0 0 1 0 8 0 1 02 0 1 4 2 0 0 70 5 0 1 4 0 04 25 5 2 0 2 21 0 3 0 L I 1 6 1 1 S 1, 1 S I M 8 0 2 61 92 0 7 9 3 30 6 0 7 1 7 2 0 9 9 1 3 4 0 0 3 1 7 4 0 17 5 1 9 4 1 1 5 7 5-4 E 7 0 5 0 21 0 0 0 2 0 4 0 70 0 0 76 5 04 5 2 1 0 2 0 6 L . - 0 4 6 B A 6 0 0 0 0 50 0 0 0 0 0 5 5 0 2 02 - 0 0 0 0 0 0 0 0 T 0 0 _ 5 6 5 0 0 5 20 0 2 4 20 2 0 7 7 2 l 0 1 5 0 0 0 0 0 6 3 8 4 2 i 0 4 9 1 1 1 t 1 7 4 0 0 2 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 2 1 3 0 0 3 10 0 0 1 10 0 0 8 9 9 1 0 7 0 1 2 1 0 0 2 6 1 8 3 4 2 2 2 _ 3 0 0 0 0 4 0 0 01 5 2 2 3 1 7 2 02 65 30 70 0 6 4 332 5 4 0 40 1 3 4 1 5 6 304 2 U 0 5 621 1 9 0 6 4 42 8 1 0 5 251 1 4 0 1 0 1 2 3 2 1 6 _ t r e n e e n mkn gn eh gee ..c . t e d l a t m o n l o e eB i e a i S an S qp qp t a P e o e p eB P idS d i l i r _ R lee E gF t l ly P e e t oF e ip bra sC ul mtyle PipPipi g r d d o n l n c s o o a wde na a gt l r n a r nc o l c s i b n o et l eia regh i ee r l a R CDUC3iini e a r i a -
- - 2 to o lyi h ma t
a e r t e r o D 6 1 S CWWMP , WCS L Gl VT T l e t _ is se sb 1 2 3 4 5 6 7 8 9 0 1 2 3 1 41 5 6 1 7 8 91 0 2 i u 1 MS 1 1 1 1 1 1 2 2 2 _ t5
4.1.3 Review of TORMIS Injection Methodology. In Refs. 4 and 5, various models for missile injection are discussed. Essentially, a distinction can be made between potential missiles stored without significant physical constraints, which are thus relatively free to respond to the wind forces of a passing tornado, and those stored such that release to the windfield requires that some significant restraints be overcome, such as building failure. The first population, designated N' and called minimally-restrained missiles, includes those objects whose motions can be assumed to be dependent upon the individual aerodynamic response of each object and whose injection motion is not substantially blocked by other obstacles. For this population, the objective of the injection methodology is to provide missile release conditions to the tornado that are conservative and also account for the inherent prediction uncertainties in the complex injection process. The sewnd population, denoted N' and called significantly-restrained missiles, basically includes all those potential missiles whose responses to the tornado would depend significantly on the response of adjacent objects, in addition to their own aerodynamic characteristics. Additional restraint forces must be overcome prior to the motion of the objects and subsequent restraints may impede transport. The injection methodology for this class accounts for the magnitude and the sequential nature of these restraining effects. Reference 5 describes an injection model for minimally-restrained missiles Oat is designed to release potential missiles to the windfield at a time that would be expected to lead to maximum missile transport. This
" optimum transport" model is intended to lead to conservative estimates of hit and damage probabilities. The N" injection model releases missiles only when a certain specified or sampled restraint force is exceeded; if the restraint force is not exceeded, the missile is not injected and no missile transport occurs. In the CY study, the surveyed population is simulated using the optimum transport injection model, i.e., all the characterized missiles are treated as members of the N' population. Consistent with this conservative analysis, the number of missiles assumed to result from structure failure is less than the total number of structural components in the building.
4.1.4 Structure Origin Missiles. Structures that would be expected to suffer near-complete failure include warehouses, trailers, and other non-engineered buildings. Structures that are expected to experience minor to moderate damage include the engineered non-safety related plant structures with either block wall or metal siding exteriors. At Connecticut Yankee, these buildings include the Service Building, the Turbine Building and Auxiliary Bay, the Screenwell, the Office Building and the Guardhouse, and parts of the PA B, HP Facilities, Waste Processing Building, New Engineering Building / Warehouse, and New and Spent Fuel Building. Based on past experience of similarly designed structures, one would expect local failures in the window glass, siding, flashing, and/or metal trim that would result in 4-13
tearing of the siding with light weight girts, purlin, and siding type missiles. This wind-induced failure was discussed in Section 3. The numbers of minimally restrained missiles assumed to result from failure of these types of structures are given in Table 4-6(a) for the specified reference floor areas. The contents of such structures also represent sources of
} olential missiles, once the structure fails. On the basis of detailed surveys of typical structures at other nuclear plants [Refs. 28 and 29],25 potential missiles are assumed to be available per 1000 sf of floor area of warehouse / shop-type structures and 20 missile per 1000 sf from modular / office buildings from structure contents. The total numbers of unrestrained missiles assumed to result from structure failure, including those from the building contents, are given in Table 4-6(b) for five classes of structures. Table 4-6 was used to estimate the numbers of missiles from trailers, shacks, etc. that are included in the zone missile distributions of Table 4-5. In addition, Table 4-6 was used to specify the structure-origin missile distributions.
Twenty-three structures or portions of structures were identified for the specification of structure-origin missiles. The assumed missile distributions for these structures are given in Table 4-7. In constructing Table 4-7, actual survey results of building contents were used, where available (Turbine Building and Service Warehouse); otherwise, Table 4-6(b) was used to estimate missile distributions from structures and contents based on structure floor areas. 4.1.5 Missile Injection Height. The height at which missiles are injected is assumed uniformly distributed over specified intervals above local grade elevation by missile subset and missile origin zone. The TORMIS code samples injection height with respect to the inertial frame origin (z = 0), given the missile subset and zone. The plant base elevation is taken to be 21 ft; thus, the inertial system origin is placed at this elevation. Since TORMIS does not explicitly model tornado movement vertically as grade elevation changes, the tornadoes are all assumed to translate over the z = 0 plane. Grade does not change substantially over most of the Connecticut Yankee site, except for the sudden elevation change near the west boundary of Zone 6. Thus, grade is taken as constant at 21 ft (z = 0) in all zones except Zone 6 which is modeled as being at elevation 100 ft (z = 79). Table 4-8 gives the minimum and maximum injection heights above grade for each missile ' subset and zone. In Table 4-9 the minimum and maximum injection heights above the injection elevation for the structure-origin missiles are given. 4-14
1a l t a 506285 o 25424 r E T l i e - 202200585400 8 R a s a r 1 1 4 U e r le T n L Ala n6 t 308 1
- 58 I eea1 A c nM h
C F e r E fel x R exs t U Rt r ue4 e - 3280 r) aec ~ 1 2 l 202270008400 5 T e yh 1 1 ui 1 1 1 1 6 C PlPS df f U s le M(oO g R i sl an s T i t i 3 200 - 50 S Med f mis 1 1 1 1 M r o s O bedk g R moa1 on2 - 5500 n F 1 1 1 1 i NuWP l d i) N Sp cho 1 22507052421 1 O I d s' n i ts S 1 1 1 1 1 8 o 05 - 7 T o 1 - 1 a( U W"e1 l P B I R .l T A) S s afs 300000 I 303544 D er( r e t 31 g E eA a n m' e i d L a r r i s )p S I a A o 1 22507052421 7 S P r d h 1 1 1 1 1 6 o oS o I M l i e a r u g n l F. o w( f t D F id 000000 1 59788 f e q E i S R s N I .% r e A p r A ) ) e p R r s n e g )- t T c o n i t n o e id l u S e al cF t n 122502024421 5 s e E e c r r 000000 o S d 1 1 4 r feat F l R n 000000 C ai t n o N o R e q 000060 1 1 1 1 1 e r eW d t U l A S ( t u M( e e c m D r u u r ) u g s E l i ng g S t k s s a e a - M F y i n di idi n g n D i s U er r o Sid Si S i d l i e S u g 1 u n c l i S t a1 o e n s c e et at t l h c t o s A u r t a Meg n it p M ( ed i C - Mi e m ge c . pm t I 6-
. S g e eeL- s
( s ir c k nt c i a nmknh niS Spt et . g n m n m amm g le s e a eeBelad idl q qra 4 o r i d r aa i n i s D T, R p e B P S o e E E F i l a it a E f d a Fr r FFe d l i s mlePga ddl onl ee ootawnlagg t o r t e ubnra i o o o e yha r i s L le l C-l el ym B u M r T n e - B eeear r a DC3SWWMPCSLImam t l l i s e t r a p A i s r u Sty S o rF rl a t o t e e n T M t c u vth pd eu agm oao ol d i T b s 35691 2346780 1 1 11 1 1 1 2 O
) r eie ) u
( a S t HLTWTM r b( S 1 L.
I I
. E 0b 0 r g) . 554003307044 2 .2 892481 21 1330 1 ~
ui9 1 5 3 1 - 2 Td( B I I
. S. 3340022000301 71 10501 12200 3 9 rb g 1 1 3 3 9 ud) 8 1
TlB( I I s ie 002 033009 00393 0273 0200 6 8 Pt i ) 1 5 9Hl c7 i ( a F . I 1 r E e pe R pd U I 7US) 9 i t 6 032000001 0007207543000 4 3 C B s( U Aa R PE T I I S E Y N B B 032000001 0007207543000 4 N % PA e( r, 5) 3 O e r p I u p T t c U U u B I I I t r R S T B N, S 5 r) I 9 PAe4 02200000000021 02521 000 7 D p( 1 E p L I U S S I I I M W
. N, 032000001 0003203543000 7- 4 B r) 6 2
4 9 PAe( p 3 E p L B U A I I T S, 3 Be)r 054000001 0003303065000 0 9 A P p p( 2 1 1 1 6 U I I l a e s 2 t s o) a p1 0000000000007000000000 1 7 1 9 WiDs( I I i n o r e mk t e ge et i n o c e t ip d n e l loee e e pB ei n a nniSh get . . t nS pp m a r eel ad c s i l y P y R p pi et iip e BPid lal qq S oF eEEn gF e r l _ D e rCmt a be as rultaii i b 2nniro n grddl o i lePP na c oota wdenla aeigt gueed o ooe yih m ar ar rl l n a e e T t a o RGDUC361 - - SCWWMPWCSl t l Gl VT r I l lete is s 1 23456789 01 2 34 i sb 1 1 5678901 1 1 1 1 1 1 121 22 2 u MS i5
ll1 l l a 069035304008331 231 381 4035330 0 0 t 04741 85738 o 2 1 2 8 2 5 0,4 3,4 1 2 9, T 1 1 5 I i
. e gs3 2 n u=
EoM 9 484 99 3 b R 0 436 0 696031 313 04 7 4 1 00 2 4 00303 9 1 00 1 1 wmA eat 1 1 1 0 6, 1 NWN I 1 3W 1
)
2 0000000000003003000000 6 1 W ( 2 r I i
- e 2 ri w )1 0000000000004004000000 8 1 a o2 1 t ST(
I t g 1 1 Bn) Fi0 0000000000004004000000 8 1 Ai( d2
) S d
e I t d u 0H ) 9 0070440040048405740700 8 l c n 1W 1 0 1 33 8 363 1 363 2 1 5 7 o I i C ( E R 9dG8 0l
) 0000000000008008000000 6 1
U 1 OD0 I I I C - B U 8 pe) 000001 000001 2002000000 7 R s7 T S 0 uo 1 mu0 Y Ph I 1 B A' e - N r u 7 pe) s6 00000700000720021 00000 O t 0 1 mu0 2 2 5 6 I T c uo u Ph U t r B I S I K n i l s el 5 0000020000029009200000 4 i %e 1 r e )0 1 3 D S c w E I e L I S S x y )4 I 5 00305500201 58962921 300 1 1 2 45 1 654 906 3 M 0 u a0 1 2 21 1, 1AB 1 7- e I i s 4 u E o L eh) 4 ic d3 00600600501 00004200000 4 B 0f f r 2 2 5 9333 05 4 a0 1 1 1 1 1 8 A 1 OuG T I i l e u 3 &F) 2 0080770020074708470800 9 0 wtn0 1 e e 1 1 4 1 81 1 1 31 7 3 Np S I i e 2 i nW) .1 665002406055701 28I1 321 0 331 4 3 0 1 b g0 2 2 5 2 rd ul TB I i n t e i o n r t e o e mk geh e c. . t i d e l n a nnS get m PoeRep epi ee pB eel t n l ei i nS pp a ip l i t BPid ad al qq l r r y e S oF eEE gF e rCmi ePPiiPgrddlc oootawdenlna agt eiecn gi c y l l b s ulibnnir n na s a t l rh e a l e r a ea rt aii 2- - - o o ooe yih ma r 2em t D o RGDUC361 SCWWMPWCSLG1VT t l I T t et is e l s 1 2345678 d1 2345678901 2 sb e 1 1 1 1 1 1 1 1 1 222 i u MS
,aN ,E
TABLE 4-8. INJECTION HEICHT INTERVALS ABOVE PLANT CRADE Zore No. 1 23 4.5 6 7 8 9 10 11 12 13 14 - 15 16 17 - 18 19 20 21' i-~ Missile Subset Minimum / Maximum Injection Ileight (feet) 1- mb 1 1 1 1 1 max 7 2 25 6 6 2 ~ min 4 1 1 1 1 1 max 10 ;5 25 5 5 5 3 min 1 1.1 2 1 3 1 1 3 1 1 1 2 1 1 1 max 4 24 12 3 24 3 25 4 8 24 12 4 3 10 15 12 4 min 10 1 5 1 to 10 10 max 60 20 40 10 6! 50 60 5 mb 1 1 1 1 1 1 2 1 max 14 20 2 2 24 12 4 15 6 min 1 1 1' 1 1 1 2 1 1 1 1 max 7 24 12 24 25 6 5 24 12 15 12 7 mb 1 2 5 5 5 1 1 1 1 5 max 4 3 15 15 15 15 10 2 2 15 8 mb 1 1 1 1 1 max 2 4 2 30 30 9 mb 1 1 1 1 2 1 1 1 1 1 2 1 1 max 4 24 12 24 4 25 10 3 24 12 4 15 12 10 min 1 1 1 max 6 10 5 11 min 1 1 1 ~ 1 10 2 1 1 1 1 1 1 1 1 1 10 10 10 max 3 24 12 24 60 6 25 5 20 24 8 2 15 5 (4 60 60 12 min 1 1 1 1 10 1 1 1 1 1 1 2 1 1 10 10 10 max 2 24 12 24 60 6 24 5 20 24 12 5 15 12 60 60 60 13 min 10 1 1 1 1 1 2 1 1 1 1 max 15 24 12 24 25 3 5 24 12 15 12 14 min 1 1 1 1 1 1 1 1 1 1 1 1 max 3 24 12 24 8 25 4 6. 24 12 15 12 15 min 1 1 10 1 1 1 1 2 max 3 3 20 10 60 10 2 5 16 min 1 1 1 1 1 1 1 1 1 1 1 max 10 24 12 24 24 10 60 24 12 15 12 17 min 1 1 1 1 2 1 1 1 1 1 2 1 1 max 4 24 12 24 15 25 10 3 24 ' 12 3 15 12 18 min 2 1 2 2 1 1 2 1 1 2 1 1 max 6 25 6 4 25 6 4 24 12 10 10 15 19 min 2 4' 1 1 1 1 1 1 1 max 6 50 2 10 25 2 60 10 5 20 min 1 1 1 1 1 1 1 1 2 max 25 3 20 6 60 24 15 15 5 21 min 5 5 5 5 5 5 5 5 5 5 5 max 10 10 10 10 10 10 10 10 10 to 10 l 22 min 10 10 10 10 max j 60 60 60 (O 4-18
a
' TABLE 4.9. INJECTION HE1 Gilt FOR STRUCTURE ORIGIN MISSILES Structure Origin No. 92 93 94 95 96-97 98 99 102 103 104 105 106 107 108 109 110 til 112 113 114 ~ Top of ' ' Structure 32 15 15~ 15 15 32 1 26 1 1 0.5 0.5 0.5 133- 1 0.5 0.5 0.5 1 Elevation Above Grade (ft)
Missile Subset - Iniection Heicht (feet) 1 mm 38 max 42 2 - min 1 1 1 1 1 max 5 5 5 5 38 3 min 1 1 1 1 1 2 1 1 1 1 1 max 4 4. 4 4 2 51 29 30 25 15 29 4 min ' max 5 nn 1 1 1 1 1 max 2 29 25 15 29 6 min ~ 1 2 1 1 1 1 1 1 1 1 max 2 51 29 30 40 12 12 12 15 29 7- min 40 max 49 8 min max 9 min 1 1 1 1 1 1 1 1 1 1
. max 4 4 4 2 51 29 30 20 15 29 10 min max 11 min - 1 1 20 1 max 51 30 25 29 12- min 1 1 1 1 1 1 1 1 1 1 max ' 2 51 20 30 40 12 12 12 15 29
- 13 ndn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1.
max 2 18 18 18 18 2 100 29 30 40 8 12 12 4 15 26 10 20 29 14 min 1 1 1 1 1 1 1 1 1 1 1 max 6 6 6 6 2 51 29 30 25 15 29 15 : min 1 20 max 44 25
' 16 nun - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1 i max 2 18 18 18 18 2 100 29 30 40 8 12 12 4 15 26 10 20 29 l-17 min 1 1 1 1 1 1 1 1 1 1 1 1 1 1 max 8 8 8 8 2 51 29 30 40 12 12 12 15 20 l
18 min 1 1 1 1 1 1 2 1 1 1 max 8 8 8 8 2 5 29 25 15 29 19 min 1 1 1 1 1 20 1 max 6 6 6 6 44 25 8 20 min 1 3 1 1 1 1 max 2 49 29 25 15 29 21 min 3 max 7 22 min max 4-19
i f 4.2 Plant Model Description i i A model of the relevant CY Plant structures and components was l developed consistent with the TORMIS modeling conventions. The target areas were identified from drawings provided by NUSCO. The drawing list is l given as Appendix C. The safety-related targets were inspected during the plant walk-down. Target surfaces were modeled as either reinforced concrete, metal, or imaginary (missile passes through with no change in momentum). t In TORMIS, a facility is modeled by specifying a number of individual structures / components, called targets. E.tsically the required input includes:
- Target Geometry
- Material Properties
- Damage / Failure Criteria
- Missile Impact Failure Windspeed This section summarizes the descriptive parameters for the CY Plant targets.
In addition, the damage criterion is reviewed for each safety-related target, based on the information presented in Section 3. 4.2.1 Review of CY Damage Criteria. The damage criteria and results of the failure windspeed analysis for block walls and metal siding were described in Section 3. For missile effects, a scabbing criteria was specified for block walls enclosing the Switchgear and Cable Spreading areas and a perforation criteria was specified for the metal components. For wind pressure effects, failure windspeeds were estimated for safety related enclosures and other buildings that could provide a source of missiles. These estimates are based on the results of the failure windspeed analysis for metal siding and block walls discuesed in Sections 3.4 and 3.5. I A summary of the failure windspeeds of safety related targets is presented in Table 4-10. The failure windspeed for the Old Switchgear Room (Target 4) is based on possible high negative pressures at the exposed West edges where the building extends above the PAB. The failure windspeeds for Cable Spreading Areas A and B correspond to failure of the metal siding due l to wind loads which are not associated with the higher corner loads. The failure windspeed for the Vent Stack (Target 46) is based on an analysis of the stack and support strut for lateral wind loads. The failure velocity is 286 mph. 1 In the TORMIS analysis, the maximum freefield windspeed that is produced as each tornado tracks through the plant is calculated at the center of each building with metal siding or block walls. For the safety-related targets, if this local windspeed is less than the windspeed listed 4-20
r r r e e e S n r n r n r t T s E o c o c o c el l a G t n d d d Ww ) n R e e e e d k i A n s o s o s o e s c p T o p p p ol o f p x x x pb o D m e e e xey e E o r T 'o o o u A C n n n nb l i L l - - - od a a e E R i c g n g n g n gw n f r t i i i i o a Y i r d d d dl l e C i i i i h T S S S S fo e ( s E l l l l s r F a a a ta eu t A t e t e t e e gl i u r S R M M M Mdef a S t O F S D E d E e P ee) S r ph D l us p 0 3 0 3 0 3 0 0 6 8 id N I anm Fi( 1 1 1 1 2 W W E R U L I A F A B C m n a a a o 0 i o e r e r e r o 1 t p A A A R 4 i r r g g g a E c s n n n e L e i i i G B d d d A D a e a e a e h k T t e r r r c c g p p p i t t a r S S S w S a e e e S T l b l b l b d t n a a a l e C C C O V r t e eb g 2 6 r 1 3 5 a m u 4 T N {
l 1 i in Table 4-10, the enclosure remains intact and vulnerable to missile impact effects. However,if the peak local windspeed exceeds the Vf windspeed listed in Table 4-10, the target is assumed to be damaged. In addition to inissile hit probabilities, damage probabilities were estimated for missile damage to four thicknesses of each real wall enclosing the targets. Thus, various levels of residual protection were considered within TORMIS. For certain targets such as the pipes and pumps which are relatively small, target dimensions were increased and the probability of hitting the actual target area was determined by an area ratio procedure. { 4.2.2 Target Description. One Hundred Fourteen targets were modeled, consisting of seventy potentially vulnerable " safety-related" targets, twenty-one targetr that provide shielding and twenty-three " structure-origin" targets that may fail under the tornado winds and become sources of missiles. Table 4-11 lists these targets by category. Heights for structures that may fail were generally specified as 0.5 to 1 ft, simulating the post- failure condition where injection height above the structure would correspond roughly to injection height above grade. However for structures consisting partly of poured reinforced concrete wallr and/or elevated floor slabs, the structure height is the height to the top of the concrete wall or floor slab. A complete description of the targets is given in Table 4-12. The summary forms used in the TORMIS target modeling are given in Appendix D. The reference point for each target is at the base elevation of the southwest corner of each rectangular parallelepiped target and the base elevauva of the center of the cylinder for cylindrical targetss (Containment, DWST, RWST and Vent Stack). The dimensions WX, WY, and WZ give the modeled building dimensions from the reference point in the x , y , and z-directions, respectively, for the rectangular parallelepiped targets; for cylinders, WX is the cylinder radius and WZ is the height of the cylindrical surface. The surface material designators are: -1 for imaginary,0 for reinforced concrete and 1 for steel plate. The surface thickness is denoted "Thk" and the thickness increment (for the four damage states considered in TORMIS) is denoted "Thk Inc.". For the damage criteria column, S = scabbing and P = perforation. The ka column is a varianze reduction parameter that reflects enlarged geometric modeling of small targets (ka < 1) in TORMIS. A series of computer-aided plan, elevation, and perspective views were developed from the TORMIS data set to aid in model and input checking. A subset of these figures are given in Appendix D. ) The Cable Spreading Area has been modeled as four separate targets: J the large volume above the first-floor flexicore ceiling (Target 1); the part of the east hallway that extends southward to the edge of the HP facility (Target 4-22
2); the exposed part of the east hallway south of the HP facility (Target 3); and the region just below the second-floor slab that has structural steel around the perimeter (Targets 14 and 49). In this way, different wall materials and thicknesses, as well as failure windspeeds are specified and the overall probability of damaging the Cable Spreading Area is simply the probability of damaging at least one of the component parts. The RWST has been modeled as five targets, one each corresponding to a constant thickness ring. The four service water pump motors have been modeled as two targets (Target 12 = Pump Motors A, B, and C and Target 13 = Pump Motor D). All the piping runs have been modeled as rectangular parallelepiped targets with factors to account for the ratios (ka)of actual-pipe to modeled-target exposed surface areas. It is also noted that the Turbine Building modeled as various shielding and structure-origin targets. The turbine itself and associated piping and equipment that would remain in place were modeled as Target 82; the Mezzanine and operating floor slabs were also modeled as Targets 85 and 86; the rest of the building around the turbine equipment was modeled as four structure-origin targets, from which siding, girt sections and building contents are assumed to be a source of missiles. Failure windspeeds were specified for the " structure-origin" targets except for the old warehouse which is assumed to fail in any tornado. The failure wind speeds for the structure-origin targets and the safety-related targets are listed in Table 4-12 under the "Vf" column. In most cases, the structures have exposed corners and a failure windspeed of 115 mph has been specified rather than a value of 100 mph because all missiles assigned to the structure are conservatively considered available once the building fails, even if the building were to fail only partially, and because the conservative optimum transport injection model was employed for all missiles. A failure windspeed of 130 mph is used for the PAB and HP Facilities Building because the buildings are relatively well shielded. A higher failure windspeed is assumed for the Waste Disposal Building because the metal siding covers )' poured concrete walls and the siding is expected to act like a rainscreen for which lower loads are expected [30]. i 4.3 TORMIS Control Data j The missile and plant data described in this section and the tornado occurrence data discussed in Section 2 provide the basic inputs to the TORMIS simulations. Control data are also needed for the variance reduction procedures used in the analysis. As described in Refs. 4 and 5, TORMIS uses i variance reduction procedures to improve the efficiency of the Monte Carlo 4-23 i _ _ _ _ - _ _ _ _ _ _ _ -_ i
calculations.' These procedures produce unbiased statistical estimates of the target damage probabilities. For the Connecticut Yankee analysis the variance reduction parameters shown in Table 4-13 were used. These parameters were chosen in an attempt to maximize the efficiency of TORMIS. 9 The TORMIS analysis provides for multiple level damage assessments
- for each target. The missile penetration analysis is performed on 4 thickness levels (JDAMC = 3,4,5, and 6 in TORMIS) for each safety-related target. Table 4-14 summarizes the inputs for each target damage level and identifies the base case corresponding to the current plant configuration.
l b 4-24
TABLE 4-11. SEQUENTIAL NUMBERING OF STRUCTURES, SAFETY-RELATED TARGETS, SHIELDING TARGETS, STRUCTURES WITH MISSILE SOURCES AND SAFETY RELATED STRUCTURES SUBJECTED TO WINDSPEED FAILURES Strucaire Number New Description ISafety IShield ISourre IFail 1 Cable Spreading Area A 1 1 2 Cable Spreading Area B 2 2 3 Cable Spreading Area C 3 3 4 Steel Around Cable Spread,5 4 5 Old Switchgear Room 5 4 6 RWST-Ring 1 (Bottom) 6 7 RWST-Ring 2 7 8 RWST-Ring 3 8 9 RWST-Ring 4 9 10 RWST-Ring 5 (Top) 10 11 LPSI, HPSI Piping (External to PAB) 11 12 Service WaterPump Motors A, B, & C 12 13 ServiceWater Pump Motor D 13 14 Service Water Piping A -To DG 14 15 Service Water Piping B - To DG 15 16 Service Water Piping C- To DG 16 17 Service Water Piping D (in PAB) 17 18 Service Water Piping E (in PAB) 18 19 Service Water Piping F(in PAB) 19 20 Service Water Piping G (in PAB) 20 21 Service Water Piping H (PAB-Containment) 21 22 ServiceWaterPipingI(PAB-Containment) 22 l 23 Fire Pump Discharge l Piping (Screenwell House) 23 24 DWST Makeup Water Loss: 4" Takeoff Lines SW Col.1/Dx in Service Boiler Room 24 25 DWSTMakeupWaterless: 3" Takeoff Lines SW Col. 4/D 25 26 DWST Makeup Water Imss: Parallel 4" Takeoff Lines SW Col. 4/D 26 27 DWST: Above Shield Wall 27 4-25
TABLE 4-11. SEQUENTIAL NUMBERING OF STRUCTURES, SAFETY-RELATED TARGETS, SHIELDING TARGETS, STRUCTURES WITH MISSILE SOURCES AND SAFETY RELATED STRUCTURES SUBJECTED TO WINDSPEED FAILURES (1989) Structure Number New Description ISafety IShield ISource IFail 28 Electric AFP 6" Feedline West of DWST 28 29 Electric AFP 6" Feedline South of DWST 29 30 AFP Bypass Line 1" North of DWST 30 31 Electric AFP Bypass 1-1/2" Line 31 Horizontal Run 32 Electric AFP Bypass 1-1/2" Line 32 Vertical Run 33 AFB, Ground Level-Pumps & Take-off 33 Piping 34 AFB, Vent Pipes West, A 34 35 AFB, Vent Pipes East, A 35 36 AFB, Vent Pipes West, B 36 37 AFB, Vent Pipes East, B 37 38 CCW Heat Exchangers 38 (PAB Bldg) 39 CCW Surge Tank 39 (PAB Bldg) 40 CCW Piping (1/2"- 4") 40 41 CCW Piping (6"- 16") 41 42 Raceway Vertican Run over DG Bldg 42 l 43 Raceway West Run 43 1 44 Raceway South Run 44 1 45 Raceway Vertical Run Against SW Bldg 45 l 46 Vent Stack (NE Containment) 46 5 47 Service Water MOV/1 x 2 Control Cables 47 (Horizontal Run) 48 Service Water MOV/1 x 2 Contml Cables 48 (Vertical Run) 49 Steel Around Cable Spread, B 49 50 Main Feedwater Piping- From 50 Containment to Service Bldg. 51 Main Feedwater Piping - North-South 51 Run Over Service Bldg. 4-26
~/
- TABLE 4-11. SEQUENTIAL' NUMBERING OF STRUCTURES, SAFETY-RELATED
-TARGETS, SHIELDING TARGETS, STRUCTURES WITH MISSILE SOURCES AND SAFETY RELATED STRUCTURES SUBJECTED TO WINDSPEED FAILURES (1989)
Structure 1 Number New Description ISafety IShield ISource IFail 52 Main Feedwater Piping - Enter Turbine 52 Building to Isolation Values 53- Main Feedwater 18" Lines From Main 53 Header to Feed Pumps (Upper Run) 54 Main Feedwater 18" Lines from Main 54 Header to Feedpumps (Lower Run) 55 Aux. Feedwater Piping (192" and 3") in SE 55 Turbine Bldg To Main Feedwater Lines 56 Aux. Feedwater Piping (3")in SE 56 Turbine Bldg.- West Run 57 Aux. Feedwater Piping (3")in SE 57 Turbine Bldg.- North Run 58 Aux. Feedwater Piping (3 ") East Col. 3/D 58 in Maintenance Shop 59 Purge Valves (NE Containment) 59 60 Main Steam Line Upstmam of MSTV 60
& Takeoff Piping to AF Pumps 61 Main Steam Piping from Containment to 61 Turbine Bldg.
62 Main Steam Piping Nonh-South 62
- to Header in Turbine Bldg.
63 Main Steam Piping East-West from Header 63 in the Turbine Bldg 64 Main Steam Piping North-South to 64 the Upward Turn 65 Main Steam Piping From EL 51'-6" to 65 66'-6" (Vertical Run) 66 Main Steam Piping From Venical Run to 66 Gove rnor Valves 67 Mait Steam Takeoffs at EL 37'-6" 67 SE Quadmnt 68 Main Steam Takeoffs at EL 37'-6" 68 SW Quadrant 69 Main Steam Takeoffs at EL 27'-6" 69 NE Quadrant 70 Main Steam Takeoffs at EL 70=NUMSAF l 37-6" NW Quadrant 1 4-27
' TABLE 4-11. SEQUENTIAL NUMBERING OF STRUCTURES, ' SAFETY-RELATED ' TARGETS,: SHIELDING TARGETS, STRUCTURES WITH MISSILE SOURCES AND SAFETY RELATED STRUCTURES SUBJECTED TO WINDSPEED FAILURES (1989)
Structure
-l Number New Desc7:ption ISafety IShield ISource IFail_
71 Containment 1 72 Diesel Generator Bldg, 2 North 73 DieselGenerator Bldg, 3 South 74 Control Room 4 75 HP Facilities,Imwer 5 76 PAB, Lower 6 77 PAB, Upper, NW 7 78 PAB, Upper, NE 8 79 Wall Around Tank TK-16, RCA Yard 9 80 Wall Amund Tanks, RCA Yani 10 81 ElevatorShaft 11 82 Turbine 32 83 Condenser 33 34 PurgeValue Shield Wall 14 85 Turbine Bldg, Mezzanine 15 86 Turbine Bldg, Operating 16 Floor 87' GuillotineWall- AFB 17 88 DWSTOctagonal Shield 18 89 New Switchgea: Facility 19
'90 DG Bldg. AirIntake Protection 20 Structure 91 Shield Wall (NE DWST) 21 92 Waste Disposal Bldg 1 6 93 . PAB Upper, S 2 7 94 PAB Upper, NW 3 8 l
95 PAB Upper, N 4 9 l 96 PAB Upper, NE 5 10 97 PAB Upper East Side 6 11
1 TABLE 4-il. SEQUENTIAL NUMBERING OF STRUCTURES, SAFETY-RELATED TARGETS, SHIELDING = TARGETS, STRUCTURES WITH MISSILE SOURCES AND SAFETY RELATED STRUCTURES SUBJECTED TO WINDSPEED FAILURES (1989) Structure Number New , Description ISafety IShield ISource IFail 98- HP Facilities, Upper 7 12 99 Turbine Bldg, S 8 13 100 Turbine Bldg, E - 9 14 101 Turbine Bldg, N 10 15 402 Tur!@e Bldg, W 11 16 103 New & Spent Fuel Bldg 12 17 104 Office Bldg and Guardhouse 13 18 105 Aux Bay / Service / Maintenance Shop 14 19~ 106 Screenwell 15 20 107 Pumpwell A 16 21 108 Pumpwell B 17 22 109 Old Diesel Generator 18 23 Bldg 110 Old Warehouse 19 111 AFB Siding 20 24 112 Stairtower 21 25 113 Walkway 22 26 114 New Engineering / Warehouse Bldg. 23=NTARM127uNFAILI l P . l 1 These parameters correspond to F5, F4, and F3 tmnadoes. For F2 tornadoes, NTARM=21 (less Targets 92 and 109, and NFAIL = 24 (less targets 5,46, and lle' For F1 tornadoc2, NTARM=2 (Targets 110 and 114) and NFAIL
= 2 (Targets 5 and 114). These diffemnces reflect the predicted failum windspeeds of these targets and TORMIS ,
modeling of these targets. 4-29
e g - a m* a SSSPSS SSPSS - ' SSPSS - PPP - - - STPPS DG' c I n) 555 222 kh (n 01 10.0 i 2 0.0 1 01 1
)
J 0000 1 1 1 1 1 0
- 0. 0.2.0 0 1 1 01 1 0 1 1 1 000000 01 1 1 1 0001 T .
4 4 555 4 " k ) 7375 37 7 375 7 7 77 5 55 h n 6. 3 6 0 35 6 360 6 3 33 2 0 0 T (i 252065 524260 520 ' 260 0 0000 0 1 0 00
~ .
e c . a f r u ht g) 000000 000000 5,5,5,0,0,0 000m0 000 5,5,0,5,0, 00 000 000 000 00 5, 5, 0, 5, 0, 0 0000 0 0 00 0, 0, 0, 00 000 00 000 5, 0, 0 S ns i 222633, t r (p e - 3 22623 3 226 3 23 6 66 3 33 26 663 3 33 S l
't ep 0001 00 000001 -
001 001 - 1 1 1 1 1 1 01 1 a y L N MT O . I o 1 23456 1 23456 1 23 456 1 23456 1 2 3 T N I I 7 7 7 7 R ) - Vp fs9 0 0 0 6 C 9 9 4 S ( 1 1 1 1 E D . T z 0 1 5 5 2 8 1 E W 8 1 8 1 G s n R o A is n y 5 7 9 3 4 4 0 0 3 0 T eW 2 1 1 1
. m 2 i 1
D x 5 7 7 1 2 4 5 6 6 E W - j L ) B ft Z 58 0 0 5 5 A ( t 8 1 0 2 T i n o 0 4 0 0 P 7 7 7 5 e Y 2 1 3 2 2 9 4 c
't n 2 e er g e 1 6 6 1 0 r f 0 5 5 0 0 a e X 3 3 3 3 3 T R c
g g g ib n n a r in C A a - n id i d d a e io a a a d n e g t ip rp e e r e r u a r h c r p p o i t c sA sC sB r d w a s e le a le a i ca l e a e s m _ D ba ear b er b er r d o Ca a a a ep Or o _ l C t C S S S IMe p 1 1 1 1 1 R y OT T
. 1 2 3 4 5 o
N t8 ll
e g8 n a P -- P - - P - - P - - PP - PP - PP - P - PP D nN . c - 5 5 5 5 55 I n) 2 1 2 1 2 1 2 1 22 1 1 kh (n i 3 0 3 0 3 0 3 0 33 00 00 1 1 00 1 1 0 1 000
- 1 1 T 000 000 000 000 000 000000 000000 4
5 k) 3 3 2 7 55 55 0 000 h n 0 0 0 0 8 3 77 77 5 555
) T i ( 5 4 3 2 1 3 33 33 0 - 0 D '
000 0 00 000 00 0 0 00 00 0000 00 0000 E e c U f a ht . 000 0 0 00 000 00 0 0 00 00 0000 00 0000 N I r u g) nis 0, 0 0, 0 0, 0 0, 0 0 0, 0, 00 0, 0, 00 0, 0, 0 0, 000 0, T S ep 0 0 0 0 0 0 00 00 6 66 tr( 1 1 1 1 1 1 33 33 3 333 N S O - C l
't e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a p
( - - - - - - - - - - . y N MT O . 1 23 1 23 1 23 1 2 3 23 I r o 1 1 2 3456 1 23456 N W R rs
)
C Vp f - - S ( E D - 6 6 6 6 6 T z 1 1 1 1 3 E W 7 7 7 7 7 8 8 G s n R o A i s y 0 0 0 0 0 4 5 T nW e 1 5 2 im- 2 1 D x 5 5 5 5 5 4 7 7 7 7 7 9 E W 1 1 1 1 1 8 8 L ) 2 6 2 8 4 0 0 B f t Z 1 3 4 6 A ( t 9 6 1 3 2 0 3 T n io P 6 6 6 8 5 4 5 e Y 5 3 5 3 5 3 3 4 2 3 2 2 c 4 4
't n 2 2 e e r
_ g e 3 3 3 3 3 7 6 _ r f 3 3 3 3 3 2 3 _ a e X 5 5 5 5 5 4 T R g) nB f ipa s n re C, 50 - it o p 1 g n) 2 g n 3 g n 4 g n 5 g n ipP I St o t a B, 1 i r imr ir ir i r i r ) Pl a wA = c s To T T T T o p H, nr es c pE A e t S S S S T e _ St i I D WB o W W W W( St x vm R r R( R R R R P L( E euA S pT S Mpe I 4 4 4 4 4 1 1 R y OT T o 6 7 8 9 0 1 2 1 1 1 N
r e -
- P - PPP - P - PPPPPP PPPPPP PPPPP D mN'PPP a
c I n)n . - ki (i 000 0 000 0 000000 000000 00000 1 1 1 1 1 1 1 D 000000 000000 1 1 1 1 1 1 1 000000 1 1 1 1 1 1 000000 1 1 1 1 1 000000 k) 000 0 000 0 000000 000000 55555 h n 555 5 555 5 555 555 8 88888 77 7
) T( i 000000000 0 222 2 2 22 2 22 2 22222 33 3 D 000000 000 000 0 00000 00 0 E e c
U a ht 000000 000000 000 000 0 00000 f 00 000 N r u g)i 000 0, 0, 0, 0 0, 000 0, 0, 0, 0 0, 000 000 0, 0, 0, 0,0,0 0 00000 0, 0,0,0,0,0 00 000 I S ns 0, 0, 0 T r (p 666 e 333 6 3 000 333 0 3 000 000, 333 333 0 00000, 3 33333 00 000 33 333 N S t O C ( l' e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a p t - - - y N MT O . I o 1 23456 1 23436 1 23 456 1 23456 1 2 3 T N P I R ,s
)
C S VP - I ( E D 5 T E z 2 2 W 8 1 3 3 1 G s n R o A i s n y T eW m 58 4 5 6 2 4 8 2 i 1 D x 4 5 E W 8 6 6 9 8 L ) 0 0 9 9 B f t Z 5 4 A ( t 1 T i n o 4 5 5 0 6 P 3 8 9 9 8 eY c 2 6 3 6 3 3 3 t n t e e r g e 6 5 5 5 8 3 r f 8 5 1 6 _ a eX 7 8 9 3 T R 2 2 2 _ f _ s n re 5 A C _ o t 0 B D itp aw 1 g g g g)B
- n iG nG n iG n i
r e DA p i p p ipP A c c pE iD iD iD po po p o i pn Ds ivmR e r WT WT WT W( i euA S pT S S S S - S Mpe I _ 1 1 1 1 1 R y _ OT T
- o. 3 1
4 1 5 1 6 1 7 1 N p$. l l l ll
,[, i li !ll;;
see a ' mwPPPPPP a r PPPPP - PPPPP - PPPPP - PPPPP Dc c I n)n . k 000000 00000 00000 00000 00000 h (i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 T 000000 000000 000000 000000 000000 k) 000000 55555 55555 00000 00000 777777 77777 77777 88 888 88 8 h n 333333 33333 333 33 22
) T i (
000000 000000 22 2.2 2 2 000 000 00 0000 00 0 D e E c ' U f a r ht g) 000000 000000 000000 00000 000 000 000 00 00 0000 00 000 00 00 0 0 N I u ni s 0,0,0,0,0,0, 000000 0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 S ep 00000 000 09 00 000 00 0 T ~ r( 333333 33333 333 32 3 3333 33 3 N t - S O C 1
*t e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a p
( - - - y N MT O . I o 1 23456 1 23456 1 23 456 1 2 3456 1 2 3 T N P I R ,s
)
C Vp f S ( E D 5 T z 1 5 2 8 E W 1 6 1 1 7 G s n R io A s y 2 2 8 5 3 T nW e 1 1 2 2 m 2 i 1 D x 2 2 6 6 0 0 E 4 W1 1 1 1 1 L ) 1 5 5 0 4 B f t Z 2 4 4 1 A ( t n 1 1 _ T i o 6 8 0 9 8 0 5 P 3 5 3 3 3 3 3 e Y 3 c it a e e r 6 0 5 8 8 _ g e 7 0 7 7 7 r f 5 4 _ a e X 3 4 4 T R n n n - o Eg) F G Hi a I i a g) g) g t gt n n n it p nB nB nB in o io ir iA p ipa iA p ipC ) pC ) c s iP ip P iP ipB n - e p p pB n t t _ DW S (n i W S i (n W S i (n WA S( Pm e WA S( P e m S I Mp1 e 1 1 1 1 R y OT T 9 0 2
- o. 8 1 1 2 1
2 2 N ah
,l
- 0. 0 0.0 0 0 0 ri*
a - m" e PPPPP - PPPPP - PPPPPP 1 1 1 1 1 - PP DG' c I n)n ki 00000 00000 000000 00000 00 h( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T 000000 000000 000000 000000 000 55555 77777 5 k) 7777 7 7 h n 66666 33333 3333 3 8 5 T (i 33333 33333 333 33 3 3333 3 1 2 00000 0 000000 000 00 0 0000 00 0. e c a ht 00000 0 000000 000 f r 00000 00 0 0000 00 000 g) 00000 000 00 0 0000 0 00 u ni s 0,0,0,0,0, 0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0, 0, 0, S t r e (p 00000 33333 66666 33333 666 333 66 6 33 3 6666 6 3333 3 00 1 1 S l' e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a p t 1 1 1 y N MT O . I o 1 23456 1 23456 1 23 45 6 1 234 56 1 2 T N P I R ) C V,sp -f S ( E D ' T z 2 5 5 E W 1 5 3 5 3 3 G s n R ios A n y 4 4 T eW 7 1 9 0 2 im 1 D 5 x 4 8 7 E W 1 4 1 8 2 1 L ) 0 5 7 5 0 B f t Z 0 0 A ( t n T io 5 5 8 6 3 P 2 6 8 9 0 e Y c 2 2 2 1 1 1 '. t. t n e g e m 5 4 5 3 2 0 _ r f 3 8 9 2 a e X 1 2 2 4 _ T R l 3
)
e gu s s s n in o p u e p u e n p e o ipH e inf o )g, u s v e i e e it p pl le ka sfsLr ed k s L k s n ol ip m egw nl a sf a s" i b r c s u ar n MofLorB eoe Mof l e o Mo4L Ll f AW _ e ph e e TrkCc S e a i Trk Se a Trlef o S el a e T Sl D ec r s rc water v t WaT t DW"4(Ne Wt rk a a a Wi S iiS Fd( S D W"3 DWPT DS I Me p 1 1 1 1 4 R y OT T o 3 4 5 6 7 2 2 2 2 2 N
. ,4A
0
- 0. 0 0 0 0 0.
0 00 0.000 0 00. e g* - m PPPPPP'- P - PPP - PPPPPP DaNPPPPPP a PPPPP c I n)n . ki 000000 000000 0 000 000000 000000 h( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T 000000 000000 00000O 000000 000000 k) 222222 222222 9 999 h 333333 333333 7 7 77 444444 4 44444
) T in (
000000 009000 1 000 00O 1 1 1 22 2.222 2. 2 2 D e 00 0000 00 00 E c - U f a ht 000000 0000 0 000 000 0 J0000 00 000 N I r u g) nis 000000 0,0,0,0,0,0, 0,0,0,0,E0, 0000 0 0 0, 0 00 0, 0, 0, 0 00000 0, 0,0,0,0,0 , 00 0000 0, 0, S ep 666666 66666 0 0 0 00 6 66666 66 6 T r( 333333 33333 0 3 3 33 3 33333 33 3 N t S O ' C lt e 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 ( a p y N MT O o 1 23456 I 1 23456 1 23 456 1 2 3456 1 2 34 r I' N I R ,s
)
C V pf - - - - S ( E D 5 T z E G s W4 4 9 3 8 2 n R o A i s y n 2 3 7 T e W1 1 2
. m 2 i 1
D x 4 E W5 4 6 6 6 4 4 L ) 5 5 0 2 5 B f t Z 1 1 A ( t T i n o 5 5 5 5 5 P 5 5 6 8 7 e Y 81 8 1 1 2 8 8 c 1 1
' n t
e e r 5 5 7 8 8 g e 1 r f 1 6 4 1 1 a e X 04 0 4 4 _ T R 4 1 n
) )
T e l a u T " S n t R n "6 n i S 6 l o P W LssS)T " o " a i t W P D P 2 z P2 c ipFAeD r nf F Anefo pW a F /i A 11 o r F /1 A 1 it r e c s e icUo r t icuh r Bf yD icr ssH - icr s s V a - t D cds t e e e t cd u le eeSo P o t c a e pne nu t c e pne l EF( eW EF( F . A(N EBUR l y EBU l y S I Mep1 R y 1 1 1 1 OT T
. 8 9 0 1 2 o 2 2 3 3 3 N
ag l
e g8 ~ a SP P P P - PPPPP - PPPPP - D mN a PPPPP - PPP c n) I ki n 0 000 00000 00000 00000 00000 h( T 012O0000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 000000 000000 000000 000000 k ') 55555 55555 55555 55 55 01 66666 h n 6666 6 66 666 66 66 T (i 6 300000 1 1 1 33333 3333 3 33 333 33 3 000000 0000 00 00 0000 00 00 e c . . a ht 000000 000000 0O00 00 00 0000 00 f r 00000 00000 0J 00 0 00 000 0 g ) 00 00 u n s i 0,0,0,0,0, 0,0,0,0,0, 0,0,/ ) 0 0, 0, 0, 0, 0, 0, 0, 0,
) S e p 36666 00000 0000 f 1 1 1 U0 00 00 r ( 3333 33333 D t S '
3333 3 33 333 33 33 E U N l'ta ep 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I y T MT N . O o 1 23456 1 23456 1 234 56 1 2 3456 1 2 34 C ( N
)
N V pf
,s O
I ( r F I 3 3 5 5 5 R z 0 5 5 5 C W 1 2 2 '7 2 S s E n o D is n y 0 2 0 2 0 T e W 9 1 1 1 1 E m 4 G i D R x 1 A W 1 3 3 3 3 T
) 0 5 5 5 5 2 f
( t Z 1 1 1 1 1 t 2 2 2 2 4 n E io 5 2 4 8 8 P 6 3 3 7 7 L e Y 3 2 2 2 2 B c 2 n A tt e e T g e r r f 7 0 m 6 1 6 0 6 1 a e X 4 4 4 4 4 T R s f s f s e s s f s f n s e _ e ip e s s _ o d pf p 4 p 4 6 p 4 ip 4 it p nmf u o ip 6 t = ip 6 p 6 i r o rPk ue t n = n e t n = t n = c s g- a g eAA v ,E v A,RE A eB v A e A e ,l Tn B sR t
, , E vB E B B s R t
D FB veedni ip Bt sR, _ t FeA s Al aP AwT F AeTaA F eA AwT F AeTaA S Mpe I - 1 1 1 1 1 _ Ry _ OT T 3 4 5 6 7
- o. 3 3 3 3 3 N
9g
000O00 0 000 00000 000000 e' e s m" PPPPPP PPPPPP a - P P P P P, - PPPPPP PPPPP D C' c I n)n 888888 33333 ki 777777 000000 33333 777777 h( M4 4 ( 4 44 0 0 0.0.0 1 1 1 1 1 1 66666 0 0.0 0.0 333333 1 1 1 1 1 1 000000 T 0000O0 000000 000000 000000 1 1 1 1 1 000000
'k ) '
777 77 888888 h n 000000 22 2222 77 77 555555 44 4 44 33 3333 4 4 4 T (i 5 5. 5 5 5. 5 2 2.2 2 2. 2 1 1 1 1 1 44 4444 00 00 000000 000000 000 000 00 0000 O0 00 e c a ht 000000 f r g) 000000 000 000 00 0000 000000 000000 000000 000 00 u nis 0,0 0,0,0 0 0,0 0,0,0 0, 0, 0, 0, 0, 0, 00 0000 0, 0,0,0,0,0, 00 0, 0, 0 0
) S ep 7 7,7 7 7,7, 7 7,7 7 7,7 r( 666 66 66 6666 33 3 D t S .
222222 222222 333 33 33 3333 33 3 E U 1t e N I a p1 y 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T MT N . O o 1 23456 1 23456 1 234 56 1 2 3456 1 2 34 C ( N N ,s VP( -
)
O I I - T - P I R z C S s W19 - 8 4 6 4 2 E n o D is n y T E eW16 6 1 2 1 0 2 4 m G i D R x A W 8 1 1 0 5 3 7 5 2 T
)
2 1 f ( t Z 5 4 5 4 5 0 5 4 2 t 1 1 2 1 4 n E io 0 0 7 9 P 5 L e Y 40 0 4 6 3 5 3 3 B c 2 A t n 4
. t e e T g e r f r
6 8 4 7 9 0 8 9 9 2 a e X 3 3 4 3 3 T R
) g B k l ad A n c l n P a iB T t r
io ( s e g n g eG t ip t a ege r g r i) p" n ip VDr r c Hn a u i4 i ) ye a v S P P"6 s e Wh WB
)
W2 " W 1 wo e n _ D CE Ccx CA P C/ C" c a u C( C( 1 C (6 - RR s I e n" py - oT T 1 1 1 1 1 _ o 8 9 0 1 2 3 3 N 4 4 4 sQ i
0 . e g . . a PPPPPP n P - PPPP PP - - PPPP -
- N P P P P P P s -
D c I n)n ki 000000 000000 0 0000 00 0000 h( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 55 1 1 1 1 T 000000 000000 000000 000 000000 8 8888 55 k) 888888 888888 7 7777 22 7777 h n 777777 777777 4 4 4 4 4 6 6 0 000 4 4 4 44 4 4 4 4 4 4 4 0 0 0. 0.0 1 1 1 1 1 1 T i ( 0.0.0.0 0 0 00000.S 000 000 0 00 00 000 0 e c - f a ' 000000 000000 000 000 0 00 00 000 0 000000 000000 r u tnk 0,0,0,0,0,0 , 0,0,0,0,0,0, 0 0, 0 000 0,0,0,0 , 0 0 0, 0, 0 000 0, 0, 0, 0,
) S ep 333333 333333 333333 3 3 333 6 6 0 000 r( 333333 3 3 333 D t S -
3 3 1 1 1 1 E U lt e 1 1 1 1 1 1 1 1 1 1 1 1 N I a p y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T MT N . O o 1 23456 1 23456 1 23 456 1 23 1 2 345 6 C N (
)
N Vp f
,s - - - 1 0
O I ( 4 4 T P I 0 R z 5 5 5 4 C S s W 3 3 7 2 7 1 3 E n o D is y n 8 0 5 " 3 T E eW 0 2 2 m G i D R - x 2 5 A W 2 8 8 4 2 T
) 5 5 6 0 4 2' . t f
( 2 2 2 2 2 2 1 1 t 4 n E io 5 5 5 3 8 P 7 '. 7 3 6 L e Y 1 '9 9 3 3 B c n 4 3 3 A t t e e T g r f r e 7 0 7 0 7 0 0 1 5 2 a e X 3 3 3 5 7 _ T R 2
)
t n n ) n r r n r u e s u n e n eR - it o p v u OR eu vR O h vl Oc a m n kc tia t r e a2.bl leR a a t W& Ctno i i ys yt yt r a n r a e a u a e c o t o e1 lo z e ewW SC s c w S, w e V, ri e v V nor t i t D cG a c aG c aG n E rOoH VeN e RD RD RD 3 SMC( S I Me R y p 1 1 1 1 1 OT T
. 3 4 5 6 7 o 4 4 4 4 4 N
eM
0O 000000 0 0 000000 e g8 - a PPPPP - PP - - PPPPPP PPPPPP PPPPP D mN a c I n) 55 kh (n
~ .
i 00000 22 000000 000000 000000
. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T 000000 000000 000000 000000 000000 k) 55 777777 777777 777777 h n 77777 77 888 888 8 88888 88 88 00000 33 4 44 4 4. 4 4 4 4444 44 4 T (i 0 1 1 1 1 1 000000 000 000 0 00000 00 0 e
c ' f a ht 000000 000000 000 000 0 00000 00 0 r g) 00000 00 000 000 0 00000 00 0 u ns i 0,0,0,0,0 0, 0, 0, 0, 0, 0,0,0, 0, 0,0,0,0,0, 0, 0, S 00000,
)
D t r (p e 1 1 1 1 1 66 33 666 666 333 333 6 66666 3 33333 66 33 6 3 E S U l' e -1 1 1 1 1 1 1 1 1 1 1 1 N I t a p y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T MT N . O o 1 23456 1 23456 1 23 456 1 23456 1 2 34 C ( N N Vp f
,s )
O I ( T P I - 5 R z 1 C s W 1 2 4 4 4 S n E o D is y n 3 5 8 7 4 T E eW 7 2 3 1 1 2 m G D i R x 3 9 A W3 5 8 2 1 2 4 T 5 5 5
)
t 5 5 2 f ( Z 2 8 0 0 0 1 t 1 2 2 2 4 n E io 8 0 7 2 5 5 P . 6 4 2 2 L e Y 3 3 2 1 1 B c n A 2 t e e T g e r f r 5 2 9 0 8 1 8 1 7 6 a e X 72 3 3 3 2 T R le r t s b a een r e n r e ev _ s CB t a m g. t a r u t a l a n r e )n Wind _ o ea2 t l b u d a aB l Wh WVn it p aR ner dt d u t iW&C r l l a u oA r ene eoi c e o e S d ei et o c s c e1 ocri ada FCv F - F a r h l e iVt v t e er n e in tr no imS n e r l D is rOoV e SMC( t SS ep ao Mf o r t MN a o aI Mto S I Me R y p1 1 1 1 1 - OT T
. 8 9 0 1 2 o 4 4 5 5 5 N
n.@
000000 000000 00000 e g a - PPPPPP PPPPPP PPPPPP PPPP D mN'PPPPPP a
~
c I n)n - k 000000 000000 000000 000000 000000 h (i 2 2 2.2 2 2 222.222 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T' 000000 000000 000000 000000 000000 k) 888888 888888 333333 333333 h n 555555 T (i . 55.5555 222 2. 2. 2 2 2222 2 2. 2 000000 O00000 000 000 0 0000 0 00 000 e c ' f a ht 000000 000000 000 000 0 00000 00 0 r g) 000000 000000 000 000 0 00000 00 0 u i 0,0,0,0,0,0, 0,0,0,0,0,0, 0, 0, 0, 0,0,0 0, 0,0,0,0,0 0, 0, 0
) S ns 666666 e 666666 666 666, 6 66666, 66 6 D tr (p 333333 333333 333 333 3 33333 33 3 E S -
U l' e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 N I t a p y 1 1 1 1 1 1 1 1 1 1 T MT N . 2' 3456 O o 1 1 23456 1 23 456 1 23456 1 2 34 C N (
)
N , V.(.fP s - - - - - O m l I R z 5 5 C s W 5 5 4 4 '4 S n E o - D is n y 2 2 9 4 5 T E eW m
'6 7 2 2 3
1 G i D 'x R - 6 6 6 1 A W 1 2 1 2 4 T
) 3 5 5 5 5 2 f
( t Z 2 - 9 0 1 1 1 t 2 2 2 4 n E io 8 6 5 9 8 0 P 3 4 7 7 L e Y 2 1 1 1 1 B c n A t t e e 7 - T g e r f r 7 1 7 5 6 5 6 5 7 - a e X 2 2 7 7 9 _ T R 2 2 2 r e - o r r . s r e n n r e n t t e o t e ing en te i t e in u _ a mtr amt r a) ld i ab r u abr R i n o W o e s )n rd p W rd o ep s )n W 3" B L WTuR WuT hr d den N t pdf a u df u t s t es e mR es ea mRr e ni F d eE e d eE o c ee FnHu Pe r ee ir s FnHu Pe e ab r n F "2 u ia FeSn W . F eS n N e nL i nd p i inL ind w . x) .i g .i g D ia" ia ep a" a eeo x/T u1 M u" d x) u" d eU M18 MF( M8 MF( A (1Eo A (3 B l 1 l St A (3 lB S I Mpe _ 1 1 1 1 1 _ R y _ OT T 3 4 5 6 7 o 5 5 5 5 5 N ag l ,' , ,
e g8 a PPPPPP PPPPP - PPPPP - PPPPPP PPPPP a D mN. c ' I n)n 000000 55555 22222 0%00% 6 66 000000 000000 ki 1 1 1 1 1 1 1 1 1 1 1 33333 1 1 1 1 1 1 1 1 1 1 1 h( T 000000 000000 000000 000000 000000 55555 999999 999999 k) 22222 1 1 1 1 1 1 1 1 1 1 1 1 h n 2000000 2 2. 2 2 2 1 1 1 1 1 333 33 2. 2 2 2 2.2 2. 2 2 T (i 000000 000 000 1 1 1 1 1 1 1 1 1 e c 000000 000000 000 000 0 00000 00 0 f a ht 000000 00000 000 00 0 00000 00 0 r g) 0,0,0,0,0 0, 0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0, 0, 0, 0 u 66666 55555 666 66 6 66666
) S n e p r (
i s 33333h 22222 333 33 3 33333 66 33 6 3 D S t E U 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 N l't ep - I a y T MT N . 1 23456 1 23456 1 23 456 1 2 3456 1 2 3 O o ~ C N (
) 5 N V pf ,s - -
1 O I ( 2 2 T P I R z 5 5 3 C s W 1 9 2 6 6 S n E io D s n y 4 2 0 3 0 3 5 6 T E e W' 1 m G i D 5 R x 4 1 2 1 1 3 1 4 2 A W - T
)
8 8 2 1
. t f
( Z 50 1 1 1 2 2 t 4 n E io 0 5 6 6 6 _ P 7 1 4 4 7 _ L e Y 1 2 2 2 2 B c n 3 A tt e e 5 7 7 2 2 T g e r r f 1 0 4 4 0 4 7 2 7 2 a e X 3 _ T R
)
t s r n e n _ e e i . n a t s m L g . d en f h _ i t o Wf vi a mo m d l B mt ao H r ip et do D l an t ama e a e o e t ten r c Fe a/ s Vo t S e t S gn S g t s eC nt rV i E 3 g inb nn h e in D ux )" _ t rE isT a ipr ia ip l o a pS u i A( C 3 P(uN MUM MPT MPSi s i Mpe - 2 1 _ 1 i R y - ) rT 1 o 8 9 0 1 2 N5 5 6 6 6 9e
! l
0 0 O 00
-. e g8 a PPPPPP PPPPPP PPPPPP PPPPP mNPPP'PPP a
D c . I n)n 000000 555555 ki h( T 1 1 1 1 1 1 000000 000000 1 1 1 000000
.'.1 1 1 000000 1 1 1 1 1 1 000000 000000 1 1 1 1 1 1 000000 777777 1 1 1 1 1 000000 k) 555555 555555 555555 555555 222222 n 222222 222222 222 222 22 2 22 2 66 6 h
T (i 6 6. 6.6 6.6 6.6.6 6. 6. 6 6 6.6 666 66 6666 1 1 1 000000 000000 000 000 00 0000 00 0 e c f a ht 000000 000000 000 000 0 00000 00 0 r g) 000000 000000 000 000 0 00000 00 0 u nis 0,0,0,0,0,0 666666, 0,0,0,0,0,0, 0, 0, 0, 0,0,0 , 0, 0,0,0,0,0 0, 0, 0
) S ep 666666 666 666 6 66666, 66 6 r( 333333 333333 333 333 3 33333 33 D S t
3 E U l' e 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 N I t a p y 1 1 1 T MT N . O o 1 23456 1 23456 1 23 456 1 2 3456 1 2 3 C ( N
)
N Vp f
,s O
I ( F F I R 2 . 1 0 C S s W 6 6 1 1 6 E n o
. D is n y 6 8 8 8 eW1 1
T 2 2 6 E m G i D R x A W90 5 2 5 2 3 3 7 2 T
) 8 8 4 0 5 2 f
( t Z 2 2 3 4 7 1 1 t 4 n E io 1 3 3 2 2 P 4 9 6 1 1 _ L e Y 3 3 3 2 1 B c A t n t e e _ T g e r f r 6 0 6 0 6 0 2 0 3 3 2 2 2 2 2 _ a e X T R t t s dr m s n e e a n Wr hw-a " 6
)
n o ovl r t L d r m nuV a f o -
'- E a it mt e mtr p m1 u mt u p aaasd a oU a5 R aR r o a a Q i
r eEe eNo e l e l es t c S gH t t a t S ac nr t f E Sg t SEL "6 c Sf in m *6 it S neo s innh n e ni e D inn a ipom i a ipur t ou ao e 6 r i t r v a eo ik a a7 6 MPf r MPST i Mf oV r t ( MVG MT3 S Mpe I 1 1 1 1 1 R y OT T
. 3 4 5 6 7 o 6 6 6 6 6 N
ah
00 000-0 0000 000000 e g PPPPPP PPPPPP PPPPPP n aN'
. a D
c. I n)n 555555 777777 555555 777777 555555 777777 ki 222222 222222 222222 h( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0. 0 0.0000 T 000000 000000 000000 220 222220 555555 555555 555555 4 4 4 4 4 4 4 4 4 4 4 4 4 4 k ) h n 00000 0 33333 3 00000N 000 4 4 00 M T (i 333333 333 33 3 4 4 4 44 4 4
- 00000 0 000000 000 00 0 2 20 2 222 20 e
c - f a ht 00000 0 000000 000 00 0 0 00 0 000 00 r g )' 00000 0 000000 000 00 0 0 0 0 000 0 u 0,0,0,0,0, 0, 0,0,0,0,0,0, 0,0,0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, S n is 66666 6 666666 666 66 6
) e p 33333 3 333333 333 33 3 3 3 333 3 D t r ( 3 E S U l' e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 01 0 000 01 N
I t a p y T MT N . O o 1 2345 6 1 23456 1 23 45 6 1 23 1 2345 6 N C (
)
N js - - - - - V pf O I ( T P I 0 R z 0 0 C s - W 6 6 6 1 2 S n E o D is n y 8 8 8 0 5 T E eW 6 6 6 8 5 m G i D R x 7 7 7 0 5 A W 2 2 2 7 4 T 5 5
) 5 0 0 t
Z 7 7 7 2 f ( 1 1 1 1 t 4 n E io 2 6 5 5 1 6 8 P 7 7 2 L e Y 1 2 3 2 2 4 B c 3 A tt n e e 2 3 T g e r r f 8 3 2 2 8 8 8 0 0 a e X 1 1 4 3 T R r t o n t _ n t t n n t a o a n r itp mt a a a r mt a a a r mt a a d r e e n d i r es" t f a e s ', da t f es" t f a u m n e g c Sf 6 u Sf u Sf 6 Q i N, s o 7't o7 a l e _ e ne3o7Q nc3 Q . t s g D i akaLW i ak aL E ne3W ik a aL n o ied MTES MTEN MTEN C Dlb S Me I p 1 1 1 3 1 R y OT T 8 9 0 1 2 o 6 6 7 7 7 N i "gto
,' l
e gi " ar ma "* D C' c. I n)n ki h( 0 0 0 0.0 0. 0.0 0000 00000 00000 T 202020 222220 2222O0 222220 222220 k) h n ' 4 4 0 66002 660 02 T. (i 202030 1 1 2220 1 1 2 220 2 222 1 1 1 1 0 0 22 22 - 1 1 1 e c f a ht 000000 000000 000 000 0 0000 0 00 000 r g) i 0 0 0 00000 000 0 0 0000 00 000 u ns 0, 0, 0, 0,0,0,0,0, 0, 0, 0, 0, 0, 0,0,0,0, 0, 0, 0 S
)
D t r (p e 3 3 3 33333 333 3 3 3333 33 333 E S U l' e 01 01- 01 000001 000 01 1- - 0 0000 1 N I t a p y 00 000 T MT N . O o 1 23456 1 23456 1 23 456 1 23456 1 2 3 C ( N N Vp f
,s )
0 7 ( 1 P I 5 5 R z 0 8 5 4 7 C s
-W 2 1 8 1 1 S n E o D is n
y 5 5 9 0 5 T E eW 0 3 5 8 3 7 2 m G D i R x 5 8 8 6 4 A W 2 8 4 4 1 5 2 T
) 0 5 0 0 5 2 f
( t Z 8 3 4 1 t 1 4 n _ E io 5 9 4 3 8 P 7 3 1 5 9 _ L B eY c 9 3 3 3 3 3 n A 2 t e e T g e r f r 0 0 7 7 4 6 2 6 9 4 a eX 3 2 3 3 3 T R-r o - W n t a io r m s N, t e o e r r ip n e o r it e e r g i p c l l w p s l S, o r i c o u e e . a r l - D s g t f e ied n P w D B o A A .. Db 1 C Hlo P P S imp e 1 1 1 1 1 R y OT T
. 3 4 5 6 7 o 7 7 7 7 7 N
9g
r e D m N' a c I n)n k h (i 00.000 0 00 0000 00000 1 1 1 1 T 222220 202200 222200 1 1 1 1 1 0 00000 k) h n T(i 66666 2 22 222 2 . 333330 1 01 1 00 1 1 1 1 00 4 444 40 1 1 1 e c ' f a ht 000000 000000 000 000 0 00000 00 0 r g) 00000 0 00 000 0 0 0000 00 000 u nis 0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 5, 5,5,5,5, 0, 0, 0
) S ep 33333 3 33 333 3 2 2222 66 666 D t r( -
33 333 E S U l' e 000001 01 001 1 000 01 1 0 00001 00 0 N I t a p y T MT N . O o 1 23456 1 23456 1 23 456 1 23456 1 2 3 C ( N
)
N Vp f
,s O
I ( T P I 5 5 5 R z 7 8 0 8 8 C S s W1 1 1 3 3 E n o . D i s n y 2 4 5 4 0 T eW2 4 3 2 7 E m. 3 G i D R x 7 A T W19 5 5 6 9 0 3 5 0 0 0
)
t 0 2 f ( Z 41 1 t 4 n E io 1 0 3 2 5 3 7 5 P 4 9 3 1 L eY 4 8 4 B c n 3 2 A tt e e 0 T g e r f r 3 4 2 0 1 6 7 9 9 a eX 4 5 5 2 1 T R : n dr e _ E a m n N t ip d Y f - o , d , a u i n1 nA h q ip e u 6dr t s p - uC r e r p c oKa r Y oR r o e n u s a , t e B la T, l k A l l k s a v i br _ D A a nC a na le u P WtaR Wt E T s j _ ie _ p1 1 1 1 1 _ y mT
. 8 9 0 1 2 o 7 7 8 8 8 N
_ sh
,i) ; ;)llI'jl) ijllljllI)l ;
i11{ y -* e g* a D mN a . c. I n)n ki 0000 h( 1 1 1 1 0.000 0.0.0. 0.0 0.0. 0.0.0 0.0.0 0.0 T 000000 222200 222220 222220 222220 k) hn 0. 0. 0. 0 T (i 2222 22222 1 11 100 1 1 1 1 00 666660 666660 1 1 1 1 1 0 e c - f a ht 000000 000000 000000 000000 000000 r g) 0000 0000 00000 00000 00000 u ni s 0,0,0,0,- 0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
) S ep 6666 3333 33333 33333 33333 tr(
3333 D S E U . N l'ta e p 011 1 1 1 - - 00001 1 - - 009001 - 000001 - 000001 - I y T MT N . O. o 123456 1 23456 1 23456 1 23456 123456 C ( N s
,s) e N Vp f - - - - -
c r O ( u o n S Y l e I R z 8 0 5 5 2 is is C s W 3 2 0 0 2 M S. n E o 4 D is n y 0 4 7 7 7 1 1 T E eW 4 1 1 2 6 6 2 2 2 m 9 G i D 5 s R x 0 8 9 0 1 t e A W 8 2 2 1 1 g r T a
) 0 0 6 8 0 T, 2 f
( t Z 1 3 ld 1
- t n ie 4 i h E o 7 1 0 0 5 S P 8 3 3 3 4 L
B eY c 1 3 1 1 2 1 9 A 't n - e e T g r f r e - 0 8 9 4 8 4 7 6 8 8 7 1 a eX 1 4 2 1 3 t s T R e g r a r l l
- T, n g . o go a d e
o s e d e dl w t i t r e vl l l l f e a p a a l bn bg l e s n i r c n e Vw ed en na i eni nt i t R y s e dn gl i bz i a br lo t r e r z i B l e D o uh i ue r upe uF f a C PS Tm To GA S S 0 Me I 7 p 1 2 1 1 1 - R y OT T 1 s
. t
( , e g 3 4 5 f. 7 o 8 8 8 8 8 r N a _ T ah !f1!\il li1
e g a m a N' ' D C' c: I n) n - - kh (i 000.0 - 00.000 1 1 1 1 1 1 00.000 0000. T- 222200 222220 . 000000 222220 222220 k) 5 55555 n 2222 h T i ( 44444 7 7. 7. 7 7. 7 22 222 44 444 1 1 1 1 00 222220 1 1 1 1 1 1 1 1 1 1 1 0 22 2220 e c - _ - . f a ht 000000 000000 0 000 00 00 0000 00 0 r g) 0000 00000 0 000 00 00 000 u 0,0,0,0, 0,0,0,0,0, f 0,0,0, 0, 0, 0, 0, 0, 0, 0, 22 222 S n s i 3333 33333 0 000 00
) e r
p 3 333 33 33 333 D t ( E S U e 00001 1. N l'ta p - - 000001 - 1 1_1 1 1 1 1 1 1 1 1 1 00 0001 I y T M T N .
~
O o 1 23456 1 23456 l ' 234 56 1 2 3456 1 2 345 C ( N
) - - - 7 N ,s V pf -
4 O I ( 3 2 F F I 5 5 5 R z 9 0 2 2 C S s W1 2 9 1 3 E n o D i s n y 7 4 3 8 2 T E e W2 6 1 1 3 m G i D R x A W27 4 3 9 1 3 2 4 T
) 0 0 0 0 0 2
t f Z - 2 ( 1 t 4 n E io 5 8 2 9 2 4 2 2 P 9 3 L e Y 81 4 4 2 4 B c n A 5t e e T g e r r f 5 6 7 0 3 3 6 1 6 1 4 7 1 4 a e X 04 T R l a r n n a o l n e it a o go g ir ce ) s o o h A. o l p it c t T ip t c t gP rre laS is g WW i r o w y d n c s T d s d u dD i l et ed _ e Sl it B k c t D Wih e wl ec i G aur lee i si au l hN t _ Ds Nf a DintS S( Wb S I Mp1 e 1 1 2 1 - R y OT - T
. 8 9 0 1 2 o 8 8 9 9 9 N
3AN l'
e g a m*k a DG . c I n)n ki h( - T 000000 000000 000000 000000 000000 k) h n . - Ti ( 000000 000000 000 000 0 0000O 00 00 e c . a f ht 000000 000000 000 000 0 0000O 00 0 r g)
- . u ns i S
)
D t r (p e E S U l' e 1 1 1 1 1 1 1 1 1 1 1 1 1' N I t a y p - - - - - - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T MT N - o 1 23456 O 1 23456 1 23 456 1 23456 1 2 34 C ( N
)
N Vpf 0
,s 7 7 7 7 7 O
I ( 9 0 9 0 9 0 9 0 9 T 1 1 1 1 1 P I R z 5 5 5 5 5 C S s W0 0 0 0 0 E n o D is n y 4 4 4 4 3 T eW 3 E m-G i D R x A T W79 1 3 2 2 0 4 4
)
t 5 5 5 5 5 2 f ( Z 41 4 1 4 4 4 1 t 1 1 1 n 4 i E o 5 3 8 8 8 5 P 1 1 1 5 _ L e Y 3 4 4 4 3 B c A 2 n t e e T g e r f r 7 9 2 6 0 2 4 6 6 0 a e X 3 3 4 4 5 T R n W E N io S, N, N, t r r r r, r p ep e p e p e e pe ir p c p p p p pd se u u u u UiS _ D B A P B A P B A P B A P Bt s Aa PE SI Mp1 e 1 1 1 1 R y OT T
. 3 4 5 6 7 o 9 9 9 9 9 N
ag l ll.
a g8 a DmW c a I n) kh (n i 002000 0 ~ 0.0.0 0 0 222220 00.000 222220 00000 222220 0.0.0. 222220 T k) h n 2 T (i 001 000 666660 6 666 60 66 6660 66 6660 e c a ht . 000000 000000 0 00000 0 0000 00 0000 0e f r g ) 0 00000 0 0000 000 00 000 u n i s 0, 0,0,0,0,0, 0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, ) S e (p 3 33333 3 333 3 37 333 33 333 r D S i E U l e 1 1 01 1 1 000001 0 000 01 00 0001 00 001 N I
't a p y T MT N .
1 23456 1 23456 O o 1 234 56 1 2 3456 1 2 345 N C ( [
) 7 7 7 7 7 N ,s V fp 09 8 0 8 0 O
I ( 1 6 1 9 1 6 1 9 1 T P I 5 R z 3 C s W 2 1 1 1 1 S n E o D
^
is y n 9 6 0 1 0 T e W 3 2 9 1 5 9 1 E m G i D 5 R x 4 0 9 0 8 A T W4 1 1 2 1 1 2
) 5 0 0 0 0 2
t f ( Z 8 1 t 4 n E io 4 7 6 6 5 6 6 P 1 4 5 L e Y 3 1 1 3 1 B c n A t t e e 7 7 7 T g r r e 4 6 6 8 4 6 6 e X. 3 f a 1 2 1 1 T R - n , g g g g o se d d d d it l l l p i it b b b lb ir l i e e e e c c r in h n in h n s af e i i t e p bt br st btr b s D P p r u uo u a u or r e Hu Ts Tc Tn Tuw S Mpe I 1 1 1 1 1 R y OT T
. 8 9 0 1 2 o 9 9 0 0 0 N 1 1 1 3Ae
e ga a mw ar Dc ' c I n)n kh (i 0 0 0 0.- 0000.0 00.000 00.00 222200 000000 222220 222220 222220 T k ) h n T (i 888800 000000 6 666 60 66 6660 66 6660 e c - f a ht 000000 000000 0 000 00 00 0000 00 00 r g ) 0000 0 000 0 00 000 00 00 u n s i 0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
) S e p 3333 3 333 3 33 333 33 33 r
D S t ( . E U e 00001 1 N l't a p - - - 1 1 1 1 1 1
- - - - - - 0 000 01 -
00 0001 - 00 0001 I y T MT N . O o 1 23456 1 23456 i 234 56 1 2 3456 1 2 345 C ( N
,s) 7 7 N V p 86 8 7
8 7 8 7 8 O I f ( 1 6 1 6 1 6 1 6 1 T ' P I R z 6 5 5 C S s W2 1 1 0 0 E n o D is n y 8 8 0 6 0 T E e m W1 1 8 1 8 1 7 7 G i D 5 R x 8 6 5 2 A W4 4 8 1 2 1 T .
) . 0 0 0 0 0 2 f
( t Z 1 t 4 n E io 6 5 0 1 7 P 4 4 9 2 2 L e Y 1 3 2 2 B c n A s t e e T g e r f r 1 6 6 1 7 7 5 2 5 4 _ a e X 5 1 2 2 . T R-p l e eo _ u ich f vS n t r e ec _ o n it e p ps
/.
gs d u e s
/yan l l
a A l le i r l o a n w c & b h b.te n w p s ed n e e w g. ic r xi e m D ed f a f u ua r c u Nb l Og AM S P S I Me R y p1 1 1 1 1 OT T
. 3 4 5 6 7 o 0 0 0 0 0 N 1 1 1 1 1 ,6o l
e gi a ar e mt ai r Dc c I n)n ki 0.0 0.0.0 0 0.0.0 0 h( 222220 1 1 1 1 1 0 000000 000000 000000 T .. k) 4 h ni 77 5 66 0 T ( 656660 722700 0 000 00 00 0000 00 0000 e c . a ht 000000 000000 0 000 00 00 0000 f r 00000 00000 00 0000 g ) S u n i s 0,0,0,0,0, 33333 5,5,5,5,0, 22226 r (p
) e 3 D S t
E U N l't e000001 00001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a p I y T MT N . O o1 23456 1 23456 1 234 56 1 2 3456 1 2 345 C ( N
)
N ,s V fp& 6 7 2 1
- 7 8
7 O I ( 1 1 2 6 1 8 6 1 T P I 5 R z 5 3 5 5 C S s W0 1 1 0 0 E n o D is n y 4 5 0 2 9 T e W 5 4 4 1 E m 2 1 G i D . R x 3 0 A W2 1 3 2 1 1 9 1 T
)
t 0 0 0 5 0 2 f ( Z 1 2 1 t 2 4 n E io 6 5 8 0 3 P 1 7 2 4 2 _ L e Y 2 9 5 2 4 B c n 3 A t t e e T g e r f r 5 4 9 2 7 5 0 0 1 5 a e X 3 4 4 3 _ T R g e s n d u _ o B l o - i t l l b h g r i pl e er s o e r i n e r w et a d w c s p ia o e d re W is t r D mu ldn ld B F i a P Og e O A S t SI Mp1 e 1 1 1 1 R y OT T
. 8 9 0 1 2 o0 0 1 1 1 N1 1 1 1 1 y ._.
e a" g m t" i ai 3 DC c I n) kh (n i 000000 000O00 T - k) n h T i( 000000 000000 e c f a ht 000000 000000 r g ) u n p i s
) S e r
D S t ( E U l e 1 1 1 1 1 1 1 1 1 1 1 1 N I
't a p y T MT N .
1 23456 O o 1 23456 C ( N
)
N ,s V pf 8 7 7 6 O ( 6 1 4 1 m l I R z 5 C s W 0 1 S n E o D is n 7 0 T e W 3 2 E m 1 G i D R x 5 3 A W 6 2 T
) 0 0 2 f
( t Z 2 1 t 4 n E io 6 8 P 8 6 L e Y 3 5 B c n A 2 t e e T g e r f r 1 5 8 1 a e X 3 2 . T R
/
g . ng - id _ n rl eB _ o e _ it ne i s ip y gu r a no c s w Eh e D e k la wr ea W NW S I Me R y p 1 1 DT 1 3 4 o 1 1 N 1 1 e$ ,l ll!
TABLE 4-13. VARIANCE REDUCTION PARAMLTERS Parameters Jylication Tednme F1 D 13 F4 15 Tornado intensity Sequential Samphng m 500 500 500 500 500 m 110 100 90 80 80 n 55,000 50,000 45,000 40,000 40,000 Windspeed Straightforward No variance reduction Samphrg Tornado Offset importance Samphng Y. 0.4, all ILScales Tornado threction Straightforward No variance reduction Acaual Missile Sample Parameter by F-Sacle Masile Zone SequentialSamphng Zone,i Number 3 F1 T2 F3 F4 F5 Subpopulation 1 632 6,800 5,400 4,400 3,400 3,400 2 435 2,800 1,900 1,900 2,100 2,100 3 322 4,800 3,800 2,700 1,800 1,800 4 12 1,000 1,000 1,000 1,000 1,000 5 796 4,800 4,400 3,000 1,800 1,800 6 600 800 900 1,000 1,162 1,262 7 606 4,800 3,800 2,800 2,000 1,900 8 753 1,000 1,000 1,000 1,000 1,000 9 1,103 1,000 1,000 1,000 1,000 1,000 to 1,801 200 500 500 500 500 11 1,595 600 700 800 900 1,000 12 1,826 200 500 500 500 500 13 142 100 200 200 200 200 14 38 100 200 200 200 200 15 39 100 200 200 200 200 16 49 100 200 200 200 200 17 411 2,340 1,559 1,492 1,000 900 18 1,266 100 200 200 200 200 19 9,000 100 100 200 200 200 20 9,000 100 100 200 200 200 21 LM 10Q M 220 22Q 22Q t Total 31,826 31,940 27,759 23,692 19,762 19J62 Structure,j 92 17 .. 200 600 600 93 94 700 1,000 1,400 1,400 94 26 400 600 750 700 95 17 400 600 750 700 96 34 400 600 750 750 97 34 400 600 750 750 98 56 700 1,000 1,400 1,400 99 133 100 300 500 500 100 231 400 600 900 900 101 240 600 700 900 900 102 234 400 400 500 500 103 379 100 300 500 500 104 844 400 600 750 750 105 1,111 700 1,400 2,000 2,000 106 34 700 1,100 1,400 1,400 107 65 7JD 800 980 980 , 108 7 200 200 150 150 1 109 16 .. 500 500 500 l 110 758 1,000 500 500 500 500 111 8 508 608 708 808 112 8 400 400 400 400 , 113 6 400 400 400 400 l 114 .1 102 2.000 100 600 FQQ 1 020 Total 5,954 3,000 9,508 14,008 18,288 18,488 Tota 37J80 34,940 37,267 37,700 38,050 38,250 l ! Orientation Straightforward 5 1.0, au F-Scales l Missue Type Straightforward No variance reduction
' Injedionllaight i.e.; rtanceSampling w 2.0, all F-Scales impact Orient. Straightforward No variance reduction l Trajectory Term. Runalan Roulette Prr 0.5, all F-Scales 1
I For F2 tomadoes, the number of structure origin missiles is 5.921 (less targets 92 and 109) For F1 tornadoes, the number of structure origin missiks is 2,360, accounting fur urgens 110 and I14. 4-53 l l
J TABLE 4-14. DAMAGE LEVEL OFTIONS FOR SAFETY RELATED TARGETS Target Damage Level 1 Number Description 1 2 3 4 4 1 Cable Spreading Ama A B a se = 2.67 " t h k 3.67" thk 4.67" thk 5.67" thk B a se = 5.33 " t h k 6.33" thk 7.33" thk 8.33" thk B e se = 2.67 " t h k 3.67" thk 4.67" thk 5.67" thk Base o.es4"thk 0.254" thk 0.454" thk 0.654" thk B a se = 6.00 " t b k 7.00" thk 8.00" thk 9.00" thk B a se = 5.00 " i h k 6.00" thk 7.00" thk 8.00" thk 2 Cable Spreading Area B B a se = 5.33 " t h k 6.33" thk 7.33" thk 8.33" thk B a se = 2.67 " t b k 3.67" thk 4.67" thk 5.67" thk Base =4.00"thk 5.00" thk 6.00" thk 7.00" thk B a s e = 2.67 " ih k 3.67" thk 4.67" thk 5.67" thk B a se = 6.0 0 " t h k 7.00" thk 8.00" thk 9.00" thk 0 0 0 0 3 Cable Spreading Area C B a s e = 5.33 " t h k 6.33" thk 7.33" tbk 8.33" thk B a se = 2.67 " t h k 3.67" thk 4.67" thk 5.67" thk Base o.es4"thk 0.254" thk 0.454" thk 0.654" thk Bases 2.67"thk 3.67" thk 4.67" thk 5.67" thk Base = 6" thk 7" thk 8" thk 9" thk 0 0 0 0 4 Steel Around Cable s ase.o.37sashk 0.5" thk 0.625"thk 0.75" thk l Spread,5 5 Old Swi:chgear Room Base =12" thk 13" thk 14" thk 15" thk Base.o.os4"thk 0.154" thk 0.254" thk 0.354" thk sase c.o54"thk 0.154 thk 0.254" thk 0.354" thk s a se.o.os4
- th k 0.154" thk 0.254" thk 0.354" thk
- B a s e = 14 " t h k 15" thk 16"thk 17"thk l
0 0 0 0 6 l RWST-Ring 1 (Bottom) s a se.o.s o 4 " t h k 0.535" thk 0.567" thk 0.598" thk I Bose = current plant configuration; thk = material thickness; d= pipe diameter; multiple entries for cach target implies that each target surface has different parameters. 4-54
TABLE 4-14. DAMAGE LEVEL OFFIONS FOR SAFETY RELATED TARGETS Target Damage Level 1 Number Description 1 2 3 4 7 RWST-Ring 2 sese o.cos"thk 0.434" thk 0.465" thk 0.496" thk 8 RWST-Ring 3 sese o.303 sht 0.334" thk 0.366" thk 0.397" thk 9 RWST-Ring 4 s s. o.202"thk 0.233" thk 0.265" thk 0.296" thk 10 RWST-Ring 5 (Top) s.ne-o.t s75"thk 0.2875" thk 0.3875" thk 0.4875" thk sese o.25"thk 035" thk 0.45" thk 0.55" thk 0 0 0 0 11 LPSI, HPSI Piping (External to s ...o.37sashk 0.475" thk 0.575" thk 0.675" thk PAB) 12 Senice Water Pump Motors s se o.os" thk 0.15" thk 0.25" thk 0.35"thk A, B, & C 13 Service Water Pump Motor sese o.es" thk 0.15" thk 0.25" thk 0.35" tbk D 14 Service Water Piping A -To DG s se o.2so"thk 0.380" thk 0.480" thk 0.580" thk 15 Service Water Piping B - To DG s....o.2 s o" t h k 0.380" thk 0.480" thk 0.580" thk 16 Senice Water Piping C- To DG s....o.2so"thk 0.380" thk 0.480" thk 0.5S0" thk 17 Service Water Piping D (in PAB) s se o.375"thk 0.475"thk 0.575" thk 0.675" thk 18 Senice WaterPiping E (in PAB) sise o.svo"thk 0.470" thk 0.570" thk 0.670" thk 19 Service Water Piping F(in PAB) s se o.37s"thk 0.475" thk 0.575" thk 0.675" thk 20 Service Water Piping G (in PAB) sese o.37s"thk 0.475" thk 0.575" thk 0.675" thk 21 Service Water Piping H (PAB- s se o.2so"thk 0.380" thk 0.480" thk 0.580" thk Containment) 22 Service Water Piping I(PAB- s se o.2so"thk 0380" thk 0.480" thk 0.580" thk Containment) 23 Fire Pump Discharge mise o.365"thk 0.465" thk 0.565" thk 0.665" thk Piping (Screenwell House) 24 DWS1 Makeup Water Loss: 4" s se 4"o 0.437" thk 0.537" tttk 0.637" thk Takeoff Lines SW Col.1/Dx in (0337" thk) Senice Boiler Room 25 DWST Makeup Water Loss: 3" s... 3"o 0.400" thk 0.500" thk 0.600" thk Takeoff Lines SW Col. 4/D (03" thk) 26 DWST Makeup WaterIAss: sese 4"4 0.437" thk 0.537" thk 0.637" thk Parallel 4" Takeoff Lines (0337" tw) SW Col. 4/D 1 Base = current plant configuration; thk = material thickness; d= pipe diameter; multiple entries for each target implies that cach target surface has different parameters. 4-55
TABLE 4-14. DAMAGE LEVEL OFI' IONS FOR SAFETY RELATED TARGETS Target Damage L: vel 1 Number Description 1 2 3 4 27 DWST: Above Shield Wall s ...o.is7s"thk 0.2875" thk 0.3875" thk 0.4875" thk s.u -0.2 5" thk 0.35" thk 0.45" thk 0.55" thk 0 0 0 0 28 Electric AFP 6" Feedline West of s..e 6"d 0.532" thk 0.632" thk 0.732* thk DWST (0.432" thk) 29 Electric AFP 6" Feedline South of s... 6" d 0.532" thk 0.632" thk 0.732" thk DWST (0.432" thk) 30 AFP Bypass Line 1" North of s. 1" d 0.279" thk 0.379" thk 0.479" thk DWST (0.179" thk) l 31 Electric AFP Bypass 1-1/2" Line n.se 1/2"d 0.300" thk : 0.400" thk 0.500" thk Hodzontal Rma (0.2" thk) 32 Electric AFP bypass 1-1/2" Line n u a vz"4 0.300" thk 0.400" thk 0.500" thk Vertical Run (0.2" thk) 33 AFB, Gmund Level-Pumps
& Take- off Piping 0.1" thk n .s e w 0.2" t h k 0.3" thk 0.4" thk 34 AFB, Vent Pipes West, A sese o.36s"thL 0.465"thk 0.565"thk 0.665"thk 35 AFB, Vent Pipes East, A s. e o.36sathk 0.465"thk 0.565"thk 0.665"thk 36 AFB, Vent Pipes West, B sen o.365"thk 0.465"thk 0.565"thk 0.665"thk 37 AFB, Vent Pipes East, B s n o.36s"thk 0.465"thk 0.565"thk 0.665"thk 38 CCW Feat Exchangers n u o.s"thk 0.5478"thk 0.5956"thk 0.6434"thk (PAB Jid3) 39 CCW Surge Tank s u o.25"thk 0.35"thk 0.45"thk 0.55"thk (PAB Bldg) 40 CCW Piping (1/2"- 4") s n n2"4 -2"d -21/2*d 4"d l (0.147" thk) (0.2103" thk) 0.2736"thk) (0.3369"thk) 1 41 CCW Piping (6" - 16") s... 6"o -9"d ~12"d 16"d (0.423" thk) (0.56" thk) 0.697" thk) (0.834" thk) 42 Raceway Vertical Run over DG s u o.eds"thk 0.148"thk D.248"thk 0.348"thk Bldg 43 Raceway West Run n .... a.e 4 s" t h k 0.148"thk 0.248"thk 0.',43"thk 44 Raceway South Run s u o.cas"te.k 0.148"thi 0.248"thk 0.348"thk 45 Raceway Venical Run Against SW Bldg m . n = 0.o d s" t h k 0.148"thk 0.248"thk 0.348"thk 1 Base = current lant confi6 son; thk = materia; thickness; d= pipe diameter; multiple entrics for each target implies that cach larget surface has different parameters.
4
TABLE 4-14. DAMAGE LEVEL Ol'rIONS FOR SAFETY RELATED TARGETS Target Damage level 1 Number Description 1 2 3 4 46 Vent Stack NE Containment 0.1624"thk 0.2125"thk 0.2625"thi s eser o.3125" 47 Service Water MOV 1&2 Control Cables (Horizontal Run) n.se o.to7"thk 0.207"thk 0.307"thk 0.407"thk 48 Service Water MOV 1&2 Control Cables (Venical Run) n .... o. i o 7" t h k 0.207"thk 0.307"thk 0.407"thk 49 Steel Around Cable Spread, B s. e.o.375"th k 0.5" thk 0.625" thk 0.75" thk 50 Main Feedwater Piping- From 0.487"thk 0.587"thk nu..e4 7s- 0.787"thk Containment to Service Bldg. 51 Main Feedwater Piping-North- 0.487"thk 0.587"thk s o. o.67s- 0.787"thk South Run Over Seivice Bldg. 52 Main Feedwater Piping - 0.487"thk 0.587"thk s....e.67s- 0.787" EnterTurbine Building to Isolation Values 53 Main Feedwater 18" Lines From 0.538"thk 0.738"thk u .. o.93 " 1.138"thk Main Header to Feed Pumps (Upper Run) 54 Main Feedwater 18" Lines from 0.538"thk 0.738"thk c ue.o.93: 1.138"thk Main Header to Feedpamps (Lower Run) 55 Aux. Feedwater Piping s se 1 ilza d 3" d 0.4" thk 0.5" thk (11/2 & 3")in SE Turbine Bldg (0.2" thk) (0.3" thk) To Main Feed water Lines 56 Aux. Feedwater Piping (3in)in 1 1/2" d Base =3"d 0.4" thk 0.5" thk SE Turbine Bldg.- West Run (0.2" thi) (0.3" thk) 57 Aux. Feedwater Piping (3in)in 1 1/2" d Base =3"d 0.4" thk 0.5" thk SE Turbine Bldg.- North Run (0.2" thk) (0.3" thk) 58 Aux.Feedwater Piping (3 in) East 11/2" d n.se 3"d 0.4" thk 0.5" thk Col. 3/D in Maintenance Shop (0.2" thk) (0.3" thk) 59 Purge Valves 0.125"thk B a s e = o.2 5" t h k 0.375"thk 0.5"thk 60 Main Steam Line - From Base =3"a ~12 d -18"d 24"d Containtnent to MSTV (0.3" thk) (0.606"thk) (0.912"thk) (1.219"thk) l 61 Main Steam Piping from Con- n.se=24"o tainment to Turbine Bldg. (1.219"thk) 1.319" thk 1.419 thk 1.519 thk 62 Main Steam Piping North-South s.se=24"a to Header (1.219"thk) 1.319" thk 1.419"thk 1.519" thk 63 Main Steam Piping East-West s se=30"o from Header in the Turbine Bldg (0.625"thk) 0.725"thk 0.825"thk 0.925"thk 64 Main Steam Piping Noah-South s .. 30"o to the Upward Turn (0.625"thk) 0.725"thk 0.825"thk 0.925"thk 1 Base = current plant cor: figuration; thk = material thickncss; d= pipe diameter; multiple entries for each target implies that each target surface has different parameters. 4-57
l I TABLE 4-14. DAMAGE LEVEL OIrTIONS FOR SAFETY RELATED TARGETS Target Damage Level 1 Number Description 1 2 3 4 65 Main Steam Piping Fmm s... 30 d , EL 5l'-6" to 66'-6" (0.625"thk) 0.725"thk 0.825"thk 0.925"thk (Vertical Run) 66 Main Steam Piping From Vertical n... 30 d Run to Govemor Valves (0.625"thk) 0.725"thk 0.825"thk 0.925"thk 67 Main Steam Takeoffs at EL ~3/4"d n.e4d -8"d 12"d 37'-6" SE Quadrant (0.162"thk) 0.337"thk 0.512"thk 0.687"thk 68 Main Steam Takeoffs at EL -3/4"d B.se=6 d ~9"d 12"d 37'-6" SW Quadrant (0.3045"thk) (0.432"thk) (0.56"thk) (0.687"thk) 69 Main St:am Takeoffs at EL ~3/4"d Base 6 d -9"d 12"d 27'-6" NE Quadrant (0.3045*thk) (0.432"thk) (0.56"thk) (0.687"dik) 70 Main Steam Takeoffs at EL ~3/4"d c.se 6 4 -9"d 12"d 37'-6" NW Quadrant (0.3045"thk) (0.432*thk) (0.56"thk) (0.687"thk) t 1 Ilase = current plant configuration; thk = material thickness; d= pipe diameter; multipic entries for each target implies that cach target surface has different parameters. l 4-58
- 5. RESULTS AND CONCLUSIONS 5.1 Individual Component Damage Probabilities The site-specific tornado characteristics, component failure criteria, and plant and ~ missile data described in the previous secfions have been developed into TORMIS data sets. These data sets have been carefully checked and submitted in five simulation runs, one for each F-scale, of the TORMIS code to estimate the damage probabilities to the CY safety related
~
targets. As noted in Table 4-12,40,000 missile histories were simulated for the 15 windspeed intensity,4-0,000 histories for F4 intensity,45,000 histories for the F3 intensity,50,000 histories for the F2 intensity, and 50,000 histories for the F1 intensity; thus, a total of 230,000 missile histories were simulated over all five F-scales. The basic results for individual targets are summarized in Table 5-1. Damage probability?s are given for each of the 70 safety related targets for the base case (1990) plant configurations. These individual target damage probabilities represent the annual frequency of that target being damaged according to its damage criterion, as discussed in Sections 3 and 4. The probabilities in Table 5-1 are thus estimates of P(C) i where the event Ci denotes damage to the ith target. The probabilities given in Tabte 5-1 are estimates of the mean frequency of damage. These mean estimates are subject to two types of uncertainties: (1) sampling errors due to the limited sample size in the Monte Carlo procedure used in TORMIS, and (2) modeling uncertainties in the overall raodel and input data and assumptions The first type of unc. uinty has been directly estimated in the usual manner using the sample variance calculated by TORMIS. For example, the two-sided 95 percent confidence interval on the mean estimate of damage is {3.0 x 10-5,6.7 x 10-5) for Target I and (2.5 x 10-5,5.8 x 10-5) for Target 2. That is, we can state that, given the TORMIS model and inputs, the true mean frequency of damage lies between 3.0 x 10-5 and 6.7 x 10-5 per year for Target 1 and between 2.5 x 10-5 and 5.8 x 10-5 per year for Target 2, with probability 0.95. These uncertainty intervals are solely a function of the number of simulations performed in the TORMIS analysis. For the simulation sample sizes used in the CY analysis, the 95 percent confidence bounds are within a factor of 11/2 to l 2 of the mean probability for almost all targets. l The second source of uncertainty in the results in Table 5-1 involves the model and data inputs used in the analysis. In PRA studies, this source of uncertainty is generally referred to as modeling uncertainty. The effects of these sources of uncertainty are often important in PRA assessments. For this study, every effort has been made to shade the inputs conservatively in order 5-1
TABLE 5-1. COMPONENT DAMAGE PROBABILITIES Target Damage Number Description Probability (yr-1) 1 Cable Spreading Area A 4.8 x 10-5 2 Cale Spreading Area li 4.1 x 10-5 3 Cable Spreading Area C 4.1 x 10-5 4 Steel Around Cable Spread,5 5.0 x 10-7 5 Old Switchgear Room 1.2 x 10-4 6 RWST-Ring 1 - (Bottom) 2.8 x 10-6 7 RWST-Ring 2 1.2 x 10-5 8 kWST-Ring 3 7.4 x 104 9 RWST-Ring 4 1.6 x 10-5 10 RWST-Ring 5 (Top) 2.5 x 10-5 11 LPSI, HPSI Piping (External to PAB) 4.3 x 10-7 12 Service Water Pump Motors A , B, & C 2.7 x 10-5 13 Service Water Pump Motor D 3.1 x 10-6 14 Service Water Piping A -To DG 3.0 x 10-9 15 Service Water Piping B - To DG
- 16, Service Water Piping C-To DG
- 17 Service Water Piping D (in PAB) 1.1 x 10-7 18 Service Water Piping E (in PAB) 1.1 x 10-6 19 Service Water Piping F(in PAB) 4.0 x 10-8 20 Service Water Piping G (in PAB) 2.8 x 104 21 Service Water Piping H (PAB Containment) 3.9 x 104 22 Service Water Piping I (PAB Containment) 8.4 x 10-7 23 Fire Pump Discharge Piping (Screenwell House) 3.3 x 10-7 24 DWST Makeup Waterloss: 4" Takeoff Lines SW Col.1/Dx in Service Boiler Room
- l i 25 DWST Makeup Water Loss: 3" Takeoff
' Lines SW Col. 4/D 7.5 x 10-8 26 DWST Makeup Waterloss: Parallel 4" l
- Takeoff Lines SW Col. 4/D i_ 27 DWST: Above Shield Wall 3.9 x 104 I 28 Electric AFP 6" Feedline West of DWST
- 29 Electric AFP 6" Feedline South of DWST *
- Denotes no damages resuhed in the TORMIS simulations.
5-2
TABLES-1. COMPONENT DAMAGE PROBABILITIES (Continued) Target Damage Number Description Probability (yr -1) 30 A' Bypass Line 1" North of DWST 7.1 x 10-9 31 Eh : c AFP Bypass 1-1/2" Line He izontal Run 2.5 x 10-8 32 Electric AFP Bypass 1-1/2" Line Vertical Run
- 33 AFB, Ground Izvel-Pumps & Take-off.
Piping 8.1 x 10-6 l 34 AFB, Vent Pipes West, A 2.4 x 10-6 35 AFB, Vent Pipes East, A 8.7 x 10 9 36 AFB, Vent Pipes West, B 3.5 x 10-6 37 AFB, Vent Pipes East, B 8.5 x 10-7 38 - CCW Heat Exchangets 1.7 x 10-7 (PAB Bldg) 39 CCW Surge Tank 2.0 x 10-6 (PAB Bldg) 40- CCW Piping (1/2"- 4 *) 4.2 x 10-7 41 CCW Piping (6"- 16") 9.3 x 100 42' Raceway Vertical Run over DO Bldg 3.3 x 10-6 43 Racetvay West Run 1.6 x 10 6 44 Rac"vay South Run 6.3 x'10-6 45 Raceway Vertical Run Against SW Bldg 1.5 x 10-5 46
- Vent Stack (NE Containment) 47 Service Water MOV/1 x 2 Control Cables (Horizontal Run) 5.7 x 10-7 48 Service Water MGV/1 x 2 Control Cables (Vertical Run) 3.1 x 10-7
(~ 49 Steel Around Cable Spread, B 2.3 x 10-8 50- Main Feedwater Piping- From Containment to Service Bldg. 3.2 x 10-8 51 Main Feedwater Piping- North-South Run Over Service Bldg. 2.0 x 10-7 52 Main Feedwater Piping - Enter Turbine Building toIsolation Values 1.8 x 10-9
" Denotes no damages resulted in the TORMIS simulations.
5-3
TABLE 5-1. COMPONENT DAMAGE PROBABILITIES (Concluded) Target Damage Number Description Probability (yr -1) 53 Main Feedwater 18" Lines From Main
' Header to Feed Pumps (Upper Run)
- 54 Main Feedwater 18" Lines from Main 4 Header to Feedpumps (Lower Run) 1.1 x 10-9 55 Aux. Feedwater Piping (11/2" and 3") in SE Turbine Bldg To Main FeedwaterLines 3.5 x 10-6 56 Aux. Feedwater Piping (3") in SE Turbine Bldg.- West Run 4.8 x 10-9 57 Aux. Feedwater Piping (3")in SE Turbine Bldg.- North Run 6.0 x 10-8 58 Aux. Feedwater Piping (3 ") East Col. 3/D in Maintenance Shop 1.4 x 10-8 59 Purge Valves (NE Containment) 1.5 x 10-7 60 Main Steam Line Upstream of MSTV
& Takeoff Piping to AF Pumps 3.5 x 10-6 61 Main Steam Piping from Containment to Turbine Bldg. 7.3 x 10+ -62 Main Steam Piping North-South to Headerin Turbine Bldg.
- 63 - Main Steam Piping East-West from Header in the Turbine Bldg 6.1 x 10-7 64 Main Steam Piping North-South to the Upward Turn
- 65 Main Steam Piping From EL 51'-6" to 66'-6" (Vertical Run) 1.5 x 10-8 66 Main Steam Piping From Vertical Run to Governor Valves 2.2 x 10-8 67 Main Steam Takeoffs at EL 37'-6" SE Quadrant 1.5 x 10-8 68 Main Steam Takeoffs at EL 37'-6" 1.6 x 10-9 l SW Quadrant 69 Main Steam Takeoffs at EL 27'-6" NE Quadrant 1.1 x 10-7 70 Main Steam Takeoffs at EL 37-6" NW Quadrant 1.3 x 10-6
- Denotes no damages resulted in the TORMIS simulations.
5-4 i _ _ _ _ - - - I
to avoid basic questions on model uncertainties. As mentioned earlier, TORMIS has been used conservatively, consistent with the NRC review in 1 Ref.19. A rank order of the safety-related components in Table 5-1 has been generated .and is shown in Table 5-2. - The Old Switchgear Room has the highest probability of tornado induced damage and hence a rank of one. The Cable Spreading area targets are next highest, and so on. Nine targets were not ' damaged; these are listed at the end and are shown with equal rank of 61. As a final point, it is important to realize that these individual P(C) i probabilities cannot simply be added to obtain compound events because Table 1 provides no information on the joint union and intersection events. For example, the probability of damaging either Target 1 or Target 2 or both Targets 1 and 2 in the same tornado event is P(C1 v C2) = P(C1) + P(C2)- P(Ci A C2), (5-1) which requires information on P(Ci A C2). When the correlation between events is high, such as for nearby targets, the P(C I A C2 ) term may be significant and a' simple addition of P(Ci) is often overly conservative. The TORMIS methodology provides exact treatment of correlation among targets and hence provides exact solutions of compound system events, such as Eqs. 3-1 and 3-2 for the BAF and AFW systems. 5.2. BAF System Damage Probability The compound event representing BAF system damage used in the TORMIS analysis is given by Eq. 3-1. It is essentially a compound union (series) event with the , aption of the redundancy provided by the service water pump motors (Targets 12 and 13). The TORMIS estimate of BAF system damage according to Eq. 3-1 and the base case 1990 plant configuration is P(BAF) = 1.4 x 10-4 per year. The two-sided 95 percent confidence interval (based on the TORMfS simulation sample size only, i.e., - no modeling uncertainties) on P(BAF) is (6.7 x 10-5,2.2 x 104}. 5.3 AFW System Damage Probability The TORMIS estimate of damage to the AFW system, represented by the compound event in Eq. 3-2, is P(AFW) = 5.8 x 10-5 per year. The two-sided - 95 percent confidence interval on P(AFW) is (3.6 x 10-5,7,9 x 10-5}, 5-5
TABLE 5-2. RANK ORDER OF COMPONENT DAMAGE PROBABILITY Rank Target Damage Order Number Description Probability (yr -1)
'l 5 Old Switchgear Room 1.2 x 104 ~2 1 Cable Spreading Area A 4.8 x 10-5 3 2 Cable Spreading Area B 4.1 x 10-5 4 3 Cable Spreaoing Area C 4.1 x 10-5 .5 12 Service Water Pump Motors A , B, & C 2.7 x 10-5 6 10 RWST-Ring 5 (Top) 2.5 x 10-5 7 9 RWST-Ring 4 1.6 x 10-5 8 45 Raceway Vertical Run Against SW Bldg 1.5 x 10-5 9 7 RWST-Ring 2 1.2 x 10-5 10 33 AFB, Ground level-Pumps & Take-off Piping 8.1 x 10-6 -11 8 RWST-Ring 3 7.4 x 10-6 12 44 Raceway South Run 6.3 x 10-6 13 21 Service Water Piping H (PAB Containment) 3.9 x 10-6 14 27 DWST: Above Shield Wall 3.9 x :0-6 15 60 Main Steam Line Upstream of MSTV & Takeoff Piping to AF Pumps 3.5 x 10-6 16 36 AFB, Vent Pipes West, B 3.5 x 10-6 17 55 Aux. Feedwater Piping (11/2" and 3") in SE Turbine Bldg To Main Feedwater Lines 3.5 x 10-6 18 42 Raceway Vertical Run over DO Bldg 3.3 x 10-6 19 13 Service Water Pump Motor D 3.1 x 10-6 20 6 RWST-Ring 1 - (Bottom) ?.8 x 10-6 21 20 Service Water Piping G (in PAB) 2.8 x 10-6 22 34 AFB, Vent Pipes West, A 2.4 x 10-6 23 39 CCW Surge Tank 2.0 x 10-6 (PAB Bldg) l 24 43 Raceway West Run 1.6 x 10-6 25 70 Main Steam Takeoffs at EL 37'-6" NW Quadrant 1.3 x 10-6 26 18 Service Water Piping E (in PAB) 1.1 x 10-6 27 41 CCW Piping (6" - 16") 9 3 x 10-7
- Denotes no damages resulted in the TORMIS simulations.
5-6
TABLE 5-2. RANK ORDER OF COMPONENT DAMAGE PROB ABILITY l Rank Target . Damage c Order Number ' Description Probability (yr -1)
-28 37 AFB, Vent Pipes East, B 8.5 x 10-7
- 29. .22 Service Water Piping I (PAB Containment) 8.4 x 10-7 30- 63 Main S;eam Piping East-West fmm Header in the Turbine Bldg 6.1 x 10-7 31 47 Service Water MOV/1 x 2 Control Cables (Horizontal Run) 5.7 x 10-7 32 4 Steel Amund Cable Spread,5 5.0 x 10-7 33- 11 LPSI, HPSI Piping (External to PAB) 4.3 x 10-7 34 40 CCW Piping (1/2"- 4") 4.2 x 10-7 35 23 Fire Pump Discharge Piping (Screenwell House) 3.3 x 10-7 36 48 Service Water MOV/1 x 2 Contml Cables (Vertical Run) 3.1 x 10-7 37 51 Main Feedwater Piping - North-South Run Over Service Bldg. 2.0 x 10-7
-38 38 CCW Heat Exchangers 1.7 x 10-7 (PAB Bldg) 39 59 Purge Valves'(NE Containment) 1.5 x 10-7 40 17 Service Water Piping D (in PAB) 1.1 x 10-7 41 69 Main Steam Takeoffs at EL 27'-6" NE Quadrant 1.1 x 10-7 42 25 DWST Makeup Waterloss: 3" Takeoff Lines SW Col. 4/D 7.5 x 10-8 43 57 Aux. Feedwater Piping (3")in SE Turbine Bldg.- North Run 6.0 x 10-8 44 19 Service Water Piping F(in PAB) 4.0 x 10-8 , 45 50 Main Feedwater Piping- From Containment to Service Bldg. 3.2 x 10-8 46 31 Electric AFP Bypass 1-1/2" Line Horizontal Run 2.5 x 10-8 47 49 Steel Around Cable Spread, B 2.3 x 10-8 l
48 66 Main Steam Piping Fmm Vertical Run to Govemor Valves 2.2 x 10-8 49 65 Main Steam Piping Fmm EL 51'-6" to 66'-6" (Vertical Run) 1.5 x 10-8
- Denotes no damages resulted in the TORMIS simulations.
5-7
TABLE 5-2. RANK ORDER OF COMPONENT DAMAGE PROBABILITY Rank Target Damage Order Number Description Pmbability (yr -1) 50 67 Main S*..an Takeoffs at EL 37'-6" SE Quadrant 1.5 x 10-8 51 58 Aux. Feedwater Piping (3 ") East Col. 3/D in Maintenance Shop 1.4 x 10-8 52 35 AFB, Vent Pipes East, A 8.7 x 10-9 53 61 Main Steam Piping from Containment to Turbine Bldg. 7.3 x 10-9 54 30 AFP Bypass Line 1" North of DWST 7.1 x 10-9 55 56 Aux. Feedwater Piping (3")in SE Turbine Bldg.- West Run 4.8 x 10-9 56 14 Service Water Pining A -To DG 3.0 x 10-9 57 52 Main Feedwater Piping - Enter Turbine Building to holation Values 1.8 x 10-9 58 68 Main Steam Takeoffs at EL 37'-6" 1.6 x 10-9 SW Quadmnt 59 54 Main Feedwater 18" Lines fmm Main Header to Feedpumps (Lower Run) 1.1 x 104 60 la Service Water Piping B - To DG
- 61 16 Service Water Piping C- To DG
- 61 24 DWST Makeup Water Loss: 4" Takeoff Lines SW Col.1/Dx in Service Boiler Room 61 26 DWST Makeup WaterLoss: Parallel 4" Takeoff Lines SW Col. 4/D 61 28 Electric AFP 6" Feedline West of DWST
- 61 29 Electric AFP 6" Feedline South of DWST
- 61 32 Electric AFP Bypass 1-1/2" Line Venical Run 46
- 61 Vent Stack (NE Containment) 61 53 Main Feedwater 18" Lines From Main Header to Feed Pumps (Upper Run)
- l 61 62 Main Steam Piping Nonh-South I to Headerin Turbine Bldg.
- 51 64 Main Steam Piping North-South to the Upward Turn
\
- Denotes no damages resulted in the'IORMIS simulations.
5-8 j
5.4 BAF A AFW System Damage As discussed in Section 1, both the BAF and the AFW systems could be used to shut the plant down, following a tornado, provided that needed components and systems survive. An analysis has thus been made of the compound event represented by the intersection of Eqs. 3-1 and 3-2. The resulting damage probability is P(BAF n AFW) = 5.7 x 10-5 with a 95 confidence interval (3.6 x 10-5,7.9 x 10-5}. Hence, due to the higher probability of damage of the BAF system, essentially no improvement in damage. probability is gained through an "and" intersection of the two systems.1 5.5 Sensitivity Analysis Several sensitivity runs have been made on the 1990 plant configuration, as described in the following paragraphs. 5.5.1 BAF System. From Table 5-2, the highest ranked contributors to BAF damage are the Old Switchgear Room, Cable Spreading Area, and RWST. (i) Protection of Cable Spread and Old Switchgear Room. These interior rooms are main contributors to the damage probability to the BAF System. Deletion of targets 1,2,3, and 5 from Eq. 3-1 reduces the damage probability to 5.8 x 10-5 per year. That is, if targets 1, 2, 3, and 5 are fully protected from tornado effects, P(BAF) = 5.1 x 10-5 per year. (ii) Further Protection, Including RWST. When targets 6-10 are also deleted from Eq. 3-1, the BAF system damage probability reduces to 8.9 x 10-6 per year. (iii) Further Protection, including Service Water Piping H. The next highest ranked contributor to BAF System damage is Target 21, which l represents a portion of the external service water piping run from PAB to l Containment. Delection of Target 21 from Eq. 3-1 reduces the BAF sptem damage probability to 7.0 x 10-6 per year. 1The mean estimates to two decimal places are P(AFW) = 5.77 x 10-s and P(BAF A AFW)
= 5.75 x 10-sper year, hence P(BAF A AFW) s P(AFW), consistent with probability theory.
5-9
5.5.2 AFW System. Protection of the RWST, Ground Level AFB, Service Water Piping H, and Unprotected Portion of the DWST have been ] j investigated for the AFW System. (i) Protection of RWST. The failure of AFW is strongly influenced by damage to the RWST (components 6-10). TORSCR was run with components 6-10 deleted from Eq. 3-2. This provides an estimate of AFW damage assuming the RWST is hardened for tornado missile protection, or alternatively, less conservative damage criteria are developed. The resulting AFW system damage probability is 1.7 x 10-5 per year. (ii) Protection of RWST and Ground Level AFB. Missile penetration into the ground level of the AFB is the next largest contributor to AFW damage. The above case was run with target 33 (as well as targets 6-10) deleted from Eq. 3-2. The AFW system damage probability reduces to 1.3 x 10-5 per year. (iii) Further Protection, Including Service Water Piping H and Unprotected Portion of DWST. When targets 21 and 27 are also deleted from Eq. 3-2, the AFW system damage probability reduces to 8.3 x 104 per year. 5.5.3 Summary and Combined Systems. Table 5-3 summarizes the BAF and AFW systems results for the 1990 plant configuration. By protecting the Cable Spreading Areas and Old Switchgear Room, BAF has a smaller damage probability than AFW and the combined- P(BAF A AFW) is the same as P (BAF) = 5.1 x 10-5 By further protecting the RWST, both systems are
. improved somewhat and P(BAF A AFW) = 8.4 x 10-6 Protection of the Ground Level AFB further improves AFW relaibility but has no change on the combined system failure probability. Further protection (Case 5) reduces the combined system damage probability to 6.5 x 104 per year.
l It is noted that further sensitivity analysis can be perfcrmed using the TORSCR postprocessor. The results in Table 5-3 are given to indicate how protection, hardening of certain components, or other actions can improve overall system performance. For example, from Table 5-3 consideration of alternate RWST water supply (or reserve tank volume) and relocation of vital switchgear are also measures that could be considered in. addition to local protection of specific components. To use this information in a risk-cost-benefit analysis, one would need to estimate the cost for each such upgrade and plot damage probability vs upgrade cost. Such.a diagram would
~
5-10
facilitate the recogn; tion of plateaus and/or cliffs in the curve and the identification of the point at which marginal reductions in risk are no longer cost effective. Table 5-3. Summary of System Damage Probabilities Damage Probability (yr-1) Case AFW BAF BAF^ AFW
- 1. Base 5.8 x 10-5 1.4 x 104 5.7 x 10-5
- 2. Protection of Cable Spread and Old Switchgear (Base) 5.1 x 10-5 5.1 x 10-5
- 3. Case 2 + Protection of RWST 1.7 x 10-5 8.9 x 104 8.4 x 10-6
- 4. Case 3 + Protection of Ground Level AFB 1.3 x 10-5 8.9 x 10-6 8.4 x 10-6
- 5. Case 4 + Protection of Service Water Piping H and DWST Above Shield Wall 8.3 x 10-6 7.0 x 10-6 6.5 x 10-6 5.6 Summary The TORMIS methodology has been used to estimate probabilities of tornado wind and missile damage to CY structures, equipment, and piping '
systems needed to shutdown the plant using the BAF and AFW systems. This analysis was based upon site-specific tornado characteristics and a plant , survey of potential missile sources. Tables 5-1,5-2 and 5-3 summarize the key results. The mean estimates of damage to both components and systems are i based on a plant-specific TORMIS analysis, which is felt to be conservative for many reasons, which include:
- 1. The TORMIS methodology has been judged [19] to be conservative with respect to missile risk analysis provided, "the tornado wind velocity ranges assumed in the calculations are defensible given the present state of the art" and "the assumptions concerning the locations and numbers of potential missiles present at the site are plausible."
l 5-11 9
The first provisic:n has been addressed by developing a site-specific tornado wind hazard curve. The second has been met by performing a detailed site survey, and conservatively applying the results of that I survey to all future operating periods. All the postulated missiles at CY were treated 4 minimally I' 2. restrained, in which each sampled missile is injected near the peak aerodynamic forces, thus maximizing the transport range and impact l speed, and consequently the damage frequency.
- 3. The enissile injection heights used in the study were chosen conservatively.
- 4. The tornado windfield parameters in TORMIS were adjusted to
'l increase the wind profile in the lowest 10 m. The original profiles :- TORMIS are believed to be representative of surface boundary conditions and empirical models. Hence, the adjustment used in this .a lg study is felt to be added conservatism.
- 5. The damage criteria adopted fe the individual components were I wind / pressure failures and missile scabbing of block walls and missile perforation of metal components. Hence, the Cable Spreading and Switchgear Targets are assumed to be damaged if a single wall is I scabbed. Similarly, a perforation in piping is defined as damage. These criteria provide an added margin of conservatism in the analysis.
- 6. No credit has been taken for repair of minimally damaged components, even though hours would be available to effect repairs in the BAF system.
The degree of conservatism associated with each of these items has not I been quantified, but it is believed that removal of all these conservatism would produce a substantial reduction in the estimated frequencies, and hence, the results quoted here should be regarded as conservative bounds. I I I I 5 12 I
k
}_k ' t -6. REFERENCES 1
- 1. Crutchfield, D. M.,'(NRC) letter to W. C. Council (NUSCO), "Haddam Neck. SEP Topic II-2.A, Severe Weather Phenomena", December 8,
.1980. ..
- 2. ' Crutchfield, D. M., (NRC) letter to W. G. Council (NUSCO), "SEP Topic III-4.A, Tornado Missiles - Haddam Neck", August 2,1982.
- 3. Crutchfield, D. M., (NRC) letter to W. G.' Council (NUSCO), "SEP Topic III-2, Wind and Tornado Loadings - Hadam Neck Plant", September 2, 1982.
- 4. Twisdale, L. A., et al., " Tornado Missile Risk Analysis", NP-768 and NP-769, Electric Power Research Institute, Palo Alto, California, May 1978.
- 5. Twisdale, L. A., and Dunn, W. L., " Tornado Missile Simulation and Design Methodology", EPRI NP-2005, Electric Power Research Institute, Palo Alto, California, August 1981.
- 6. ' Kelly, D. L., Schaefer, J. T., McNulty, R. P., Doswell, C. A., III, and Abbey, -
R. F., Jr., "An Augmented Tornado Climatology", Monthly Weather Review, Vol.106, August 1978, pp.1172-1183. 7.. Twisdale, L.' A., and Dunn, W. L., "Probabilistic Analysis of Tornado Wind Risks", Tournal of Structural Engineering, Vol.109, NO. 2, February 1983.
- 8. Davis, R. E., Foote, F. S.,- and Kelly, J. W., Surveying: Theory and Practice. 5th Edition, McGraw-Hill, New York, New York,1966, pp. 412-413.
- 9. ' Selby, S. M., Standard Mathematical Tables. The Chemical Rubber Company, Cleveland, Ohio,1972.
10.- SAS User's Guide: Statistics. SAS Institute, Cary, North Carolina,1982.
- 11. Steel, R. G. D., and Torrie, J. H., Principles and Procedures of Statistics, McGraw-Hill, New York,1960.
- 12. Hald, A., Statistical Theory with Engineering Applications, John Wiley ;
and Sons, New York, New York,1952.
.13. Box, G. E. P., Hunter, W. G., and Hunter, J. S., Statistics for Experiments.
John Wiley and Sons, New York, New York,1978. i l 6-1 l l
1
- 14. Thom, H. C. S., " Tornado Probabilities", Monthly Weather Review, Office of Climatology, U. S. Weather Bureau, Washington, D.C.,
October-December,1963. ! l
- 15. Mcdonald, J. R., " Tornado and Straight Wind Hazard Probability for Haddam Neck Nuclear Power Reactor Site, Connecticut", Institute for Disaster Research, Texas Tech University, Lubbock, Texas, May,1980.
- 16. Mcdonald, J. R., "A Methodology for Tornado Hazard Probability Assessment", NUREG/CR-3058, U. S. Nuclear Regulatory Commission, Washington, D.C., October,1983.
- 17. Twisdale, L. A., " Risk-Based Design Against Tornado Missiles",
Preprint 3596,- Civil Engineering and Nuclear Power, ASCE, Boston, Massachusetts, April,1979.
- 18. American National Standards Institute, Minimum Desien Loads for Buildines and Other Structures ANSI A58.1 - 1982. New York, New York, ISi82.
- 19. U. S. Nuclear Regulatory Commission Safety Evaluation Report, "EPRI Topical Reports Concerning Tornado Missile Probabilistic Risk Assessment Methodology", Transmittal Memo dated October 26,1983 from L. S. Rubenstein, Assistant Director for Core and Plant Systems, Division of Systems Integration, to F. J. Miraglia, Assistant Director for Safety Assessment, Division of Systems Integration.
- 20. Pittsburgh Testing Laboratory, " Uniform Load Tests on Wall Panels",
Attachment D to the Structural Reanalysis Program for the Robert E. Ginna Nuclear Power Plant, January 11,1983.
- 21. Stathopoulos, T., Surry, D., and Davenport, A. G., " Internal Pressure Characteristics of Low-Rise Buildings Due to Wind Action",
l Proceedings 5th International Conference on Wind Engineering, l Pergamon Press, Vol.1,1980, pp. 451-463.
- 22. Yokel, F. Y., and Mathey, R. G., and Dikkers, R. D., " Strength of Masonry Walls Under Compressive and Transverse Loads", Building Science Series 34. National Bureau of Standards, Washington, D.C.,
March,1971. ,
- 23. Fattal, S. G., and Cattaneo, L. E., " Structural Performance of Masonry Walls Under Compressive and Flexure", Building Science Series 73.
National Bureau of Standards, Washington, D. C., June,1976. 6-2
. 24. Winter, G., and Nilson, A. H., Design of Concrete Structures. McGraw- , Hill, New York, New York,1972, pp. 20-21.
L l 25. Briggs Associates, Inc., Letter Report Giving Laboratory Test Results for
. Concrete Block Utilized at the Connecticut Yankee Plant, Norwell, MA., December,1984.
- 26. Clark, J. E., " Tornado Miscile Impact Barrier Evaluation", Sandia Laboratories, Division 93375, February,1976.
- 27. U. S. Nuclear Regulatory Commission, Standard Review Plan.
" Missiles Generated by. Natural Phenomena", Section 3.5.1.4, Washing, D.C., November,1975.
- 28. Twisdale, L. A., Dunn, W. L., Hardy, M. B., and Frank, R. A., " Extreme Wind and Missile Analysis of Limerick Generating Station Spray Pond Networks and Cooling Towers", Final Report C586, Applied Research Associates, Inc., Raleigh, North Carolina, March,1984.
- 29. Twisdale, L. A., Dunn, W. L., and Hardy, M, B., " Tornado Missile Risk Analysis of Millstone Unit 3 Emergency Generator Enclosure Openings", Final Summary Report, Applied Research Associates, Inc.,
Raleigh, North Carolina, March,1985.
- 30. Irwin, P. A., Schuyler, G. D., and Wawzonek, M. A., "A Wind Tunnel Investigation of Rainscreen Wall Systems", Morrison Hershfield
. Limited Report 483-01021, for National Research Council of Canada, . Guelph, Ontario, Canada, April,1984.
- 31. Fujita, T. T., and Pearson, A. D., "Results of FPP Classification of 1971 and 1972 Tornadoes," Presented at the October 1973, AMS Eight Conference on Severe Local Storms, Denver, Co.
- 32. Twisdale, L. A., " Probability of Facility Damage From Extreme Wind Effects," ASCE Tournal of Structural Engineering, Vol.114, No.10, October 1988.
6-3
p 1 l l APPENDIX A TORNADO PATH DIRECTION, LENGTH AND WIDTH TABLES i I L 1 f
. . _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - . -. s
I 1-APPENDIX A 1 l TORNADO PATH DIRECTION, LENGTH AND WIDTH TABLES The path direction, length and width tables used in the CY TORMIS analysis are summarized in Tables A-1 through A-7. These data are taken directly from the CY subregion data analysis whcre feasible. These data have been smoothed where necessary through log-probability plots. The path length (P L) and width (Pw) categories are based on the FPP Classification System (31), as is used in the NSSFC database (6) and the TORMIS methodology (4,5,7,32). The following table summarizes the path width and length categories of the FPP Classification System. Pearson Path Length Pearson Path Width PL Range (mi) PW Range (mi) POL 0.3 s L s 0.9 Pw0 .003 s W s .009 P1L 1.0 s L s 3.1 Pwl 0.01 s W s 0.031 PL2 3.2 s L s 9.9 Pw2 0.032 s W s 0.099 P3L 10 s L s31 Pw3 0.10 s W s 0.31 PL4 32 s L s99 Pw4 0.32 s W s 0.99 PL5 100 s L s315 Pw5 1.0 s W s 3.1 l l 8 A-2
._ny . .- - - . - - - -- ._ TABLE A-1. TORNADO DIRECTION FREQUENCIES Gj Direction Compass Reported Point Frequencies E 0.315 NE 0.413 N 0.065 NW 0.022 W. 0.011 SW - S - SE 0.174 TABLE A-2. CY SUBREGION CUMULATIVE DISTRIBUTION fray (PtIF) [Pur(Pt lF) PL Category F1 F2 F3 F4 F5
@LO 0.472 0.298 0.240 0.110 0.040 P1 L 0.859 0.660 0.500 0.310 0.160
- l. P2 L 0.957 0.947 0.800 0.620 0.420 P3 L 0.994 0.989 0.945 0.850 0.690 l
P4 L 1.000 1.000 0.990 0.965 0.900 !. P5 L - . 1.000 1.000 1.000 l l' , (- A-3 - _ _ _ _ _ _ . .__ b
i r TABLE A-3. CY SUBREGION DISTRIBUTION fewipudPw1Pt ,F)FOR F2 TORNADOES fewivu fPw1Pt,F) Pw Category 'P LO PL1 PL2 P3 L P4L PL5 Pw0 0.470 0.320 0.210 0.150 0.120 0.090 Pwl 0.760- 0.630 0.500 0.400 0.330 0.290
' Pw2 0.940 0.870 0.860 0.720 0.660 0.610 Pw3 0.990 0.974 0.950 0.910 0.880 0.850 Pw4 1.000 1.000 1.000 0.990 0.980 0.940 Pw5- - -
0 1.000 1.000 1.000 TABLE A-4. CY SUBREGION DISTRIBUTION [p,ipufPwIP t,F)FOR F2TORNADOES fewirugjPwlPt,F2) L Fw Category PO L PL1 P2L P3 L PL4 P5L l Pw0 0.170 0.120 0.070 0.040 0.020 0.010 Pwl 0.600 0.490 0.340 0.240 0.170 0.110 Pw2 0.930 0.895 0.760 0.660 0.580 0.480 Fw3 0.990 0.985 0.960 0.930 0.890 0.840 Pw4 1.000 1.00 0.995 0.990 0.985 0.980 PwS - - 1.000 1.000 1.000 1.000 } A-4
TABLE A-5. CY SUBREGION DISTRIBUTION lewieur (PwIPpF)FOR F3 TORNADOES [PwIPvF(PwiPpF 3 3) PW Category PLO PL1 P2 L P3 L P4 L P5L Pw0 0.250 0.130 0.070 0.020 0.010 0.005 Pwl 0.660 0.450 0.310 0.170 0.060 0.020 Pw2 0.940 0.820 0.730 0.560 0.360 0.150 Pw3 - 0.995 0.970 0.940 0.890 0.770 0.550 Pw4 1.000 0.995 0.990 0.980 0.970 0.930 PwS - 1.000 1.000 1.000 1.000 1.000 TABLE A-6. CY SUBREGION DISTRIBUTION frwiru r(PwI Pt.,F)FOR F4 TORNADOES fp,ipur,(PwI PnF4) Pw Category PO L P1t P2 L P3 L P4 L P5L Pw0 0.250 0.180 0.130 0.060 0.020 0.005 Pwl 0.600 0.500 0.380 0.230 0.120 0.050 Pw2 0.900 0.840 0.750 0.670 0.430 0.260 l Pw3 0.990 0.970 0.940 0.870 0.760 0.600 Pw4 1.000 1.00 0.990 0.980 0.960 0.900 Fw5 - - 1.000 1.000 1.000 1.000 A-5
TABLE A-7. CY SUBREGION DISTRIBUTION PwlPLipPy 1Pg ,F) FOR 5F TORNADOES Pwl PL5,F (Py l Pg5,F ) Pw. Category ' PO L P1L P2L P3 L P4L P5L Fw0 0.200 0.100 0.070 0.040 0.010 0.005 Fwl 0.500 0.400 0.250 0.170 0.100 0.070 Fw2 0.800 0.700 0.600 0.500 0.300 0.250 Fw3 0.950 0.850 0.800 0.700 0.650 0.520 Pw4 0.990 0.980 0.950 0.980 0.870 0.820 Fw5 - 1.000 1.000 '1.000 1.000 1.000 1.000 i A-6
,, - 4p.e,,m-n -m- .. .
l 1 e
..n t !..
R.i-' i f I;~ APPENDIX B
SUMMARY
OF VENT STACK WIND CAPACITY ANALYSIS } c [:. t-I t I' r
- e ..
c 3., , 2 s b. y ' APPENDIX B y
SUMMARY
OF VENT STACK WIND CAPACITY ANALYSIS To determine the critical capacity of the stack against wind, four steps were carried out.~ These steps are: Step 1 - Identify the most critical failure mode for the strut system and its capacity. Several possible failure events on the strut system were checked; they are: axial strength of the strut member including yield, ultimate, and buckling. strength of the connections including: pin between strut members welds between strut members, welds between strut and stiffening. ring, and bolt and weld between strut and containment. The most critical component was found to be the pin between strut
. members for both tension and compression in the strut. Thus the capacity of strut system is governed by the shear strength of pin,110 kips.
Due to the nature of pin shear failure, the failure of strut may be considered as brittle. By further analysis, the whole strut system may be treated as a weakest link system, i.e., once a strut fails, the whole strut system will fail. Based on these conclusions, the capacity of the strut system for different wind directions is derived. Let Ru denote the ultimate capacity of l strut system, (i.e., the ultimate reaction that can be sustained at the strut-stack connection) one obtains
' for 0* s 0 < 22.5*
Ru = f 154.92/cose (1) 219.06/(cos0 + sin 0) for 22.5 s 0 s 90 where 0 is measured according to Fig.1. B-L
l i I I _ _.______ _ _ _ _ x Wind l I y Figure 1 Herein, the struts are assumed simply supported. Only a quadrant of the space is considered since the capacity is symmetric about X and Y axes. From Eq. (1), one can see that the strut system has the worst capacity 154.9 kips at 0 = 0 and 45 and maximum capacity 219.06 kips at 0 = 90 . Step 2- Identify the most critical failure mode for the stack and its capacity. Failure modes that have been checked include: e first yield bending moment My = 4531.6ft - kip plastic bending moment Mu = 5794.8 ft - kip Should local buckling happen, the bucl: ling moment Mb will be bounded by My< M < 3 Mu and it would be an inelastic buckling. Conservatively, one may choose My as the critical bending moment for the stack, but if local buckling is not the issue, the ultimate bending capacity Mu i could be used. I It is difficult to check the bending capacity provided by the base anchor. However, whether it can provide sufficient bending resistance or not has only a minor effect on the total critical capacity of the whole system as one will see in the following. B-3 _ _ _ _ _ N
Step 3 - Determine the critical capacity in terms of wind intensity for two boundary conditions at the stack's base,'i.e., fixed ar.d hinged ends, under two loading cases. Two loading cases were considered: (1) Uniform windload along the full length of the stack and (2) uniform windload from the sinit support to the top of the stack. Fixed base: Base Anchor is so strong that struts will fail first. (L. C. = loading Case) L. C.1: Analysis shows that failure of the strut system will govern, i.e. when the strut fails, the stack at the base will also fail due to bending. This gives a critical wind intensity. qc = h- kip /ft 157.1 where Ru is obtained from Eq.1. L.C.2: If M yis chosen to be the critical capacity for stack (as opposed to Mu, then for 0 s 0 < 79.95 , the strut failure governs and gives qc = 120.6R p u gj jfg for 79.95 s 0 s 90 , local buckling of the stack governs and gives qc = 1.567 kip /ft If Mu is chosen to be the critical capacity for the stack, the strut failure governs all around. Thus qcis again found to be qc = 120.6R p u gj jjg Hinged base: Base anchor will turn to a hinge first. L. C.1: The strut failure governs all around and gives
- qc = d " kip /ft l 154.41
- l. B-4 L
L C. 2: lim is y chosen to be the critical capacity for stack, then for 0 s 0 < 65.8*, the strut failure governs and gives Ru qc = 105.74 y;pjjg for 65.8 s e s 90 , local buckling of the stack governs and gives qc = 1.567 kip /ft If Mu is chosen to be the critical capacity of the stack, then for 0 s 0 < 88.03 , the strut failure governs and gives Ru qc = 105.74 g;pjgg for 88.03 s 0 s 90 , the bending failure of the stack at the cross-section where the struts attach to it governs. It gives qc = 2.004 kip /ft One may notice that by assuming a hinged base, the stack system has a higher overall capacity. Also by inspecting the details of the base anchorage, the hinge base seems to be the most realistic assumpti on. Step 4 - Results Table A-1 summarizes the results for the case with hinge base and loading case 1. In this case, the strut failure governs in all directions. Table A-1. Wind Imad Capacity I d 0 ge (kip /ft) V (mph) 0 0.363 1.003 286 90 0.682 1.41 339 l B-5
If 0 is considered as'a random variable with a p.d.f.
-i f0 (0) =2r-l- for 0 s 0 s 2x the first two moments of gc can be obtained. Assuming a hinged base and loading case 1 the moments are:
pec = 108 kiP /ft 2
<r, g = 0.0096(kip /ft)2 trac = 0.098 kip /ft c.o.v. = 0.0909 The windspeeds in Table A-1 are estimated by Fs = Lp V 2Ca DL 2
or Fs/L = qc = 1-p V Cg D 2 and hence y (9cYA
~ 1/2 p Cg D Flow is supercritical and hence Cd can be conservatively estimated at 0.8.
Using D = 6 ft, standard air density, and conversion factors for V in mph yield V - 9 qc1 /2 where qc has units of lbs/ft. 1 1 B-6 '
m-- ---r.---- .. -----w---- --- -- ---- - APPENDIX C DOCUMENT CONTROL DRAWINGS LIST l \; /
1IiI1 -
/
n oe i is s u 0 0 1 1 25664567 0 1 981 887775966566 2 vs eI 1 2 2 R 4 5 O
. C 5 S 4 U 9
5 N TTE m CNL I a EE J I F d d OLT a RCN P H E I f o L n C w . o 1. .2. 3 3 g d T, hhh h .l p S gB a SSS, n
. a d t B uc e l
ge M yyy a a a o d r e c BBBy it a l A i c Fs u l ih y . .a v Br ut og nl in t p aaa xx. xB o e l e FeI iT a Becuuu . n ci pl d v o t r x e i r xAArAAAu 1 2 gn gnSl l g . . rB e ei L o R u O p o u A dg ug&g &g.& g& A g hh e SSS c e di lBi dS p& n wB R n
. u& ewee l . . ,i T T l i
d ggs vnr e c N l a &l . Bbl dddl l g . l 2dd o e gu. xB wNc ,S v ri . O i r geeBBBd 1 2 iu .lBBiS, l t dAc e t s , e r m C e dii n ee n eB l a uNl sS T A Br bb l r nnn i i i e hh. Bec h S eevls
. cc ,ii lei a l
B yF r
. at ls et e .iaia n t
l t N e e uu bbb r r rin S,S,i gvvEt e gu x mniDe t nTTu uub s.s . vd r r e a Degm E eBSS&DdAr rl ee i i S r pt M ib u t e t eS l PS e& U e e r oo s uiit n n T,T. t s s s T,T,l nnn eDD , c nn a u s e s,s, n s&B y
.e al r s& , D s&n ieTaa ooosd eel n s r O
C k n a nnoal ne l f vviii let t t cc c ah a at l ie mmiviiP i a rtt ool s tic cf r ef r e e nt i miw&o . a t a si cl eA vr D la aPPrl EEee et ecSFFD r r eS,S ecc - S o S, O P D N ,i o e E ,arl ee Y.P n nt l e Pnort t f hht lSSS l l Dt r r r r s oooonl l l t a vn s nn s s c.s a S s e
, , t l
o ot a oo o ul a al l ar l s nvl n CPSPRNSWWWGDDDDPWWlEPPPMlPEWlPG l i l i ooooaaa e a a aia leaa ne l l l l o 721000000001 01 34 5666901 1 1 4661 1 1 1 1 1 123801 22223333342372 t nN e 000000000000000000000000000 00444444444444444444 4444 44 4 iG l 1- 1-1 1 1 1 1- 1-1 1 -1 1 1
- 1- 1-1 1 -1 1 1 CW 4000000000000000000000000000 3333333333333333333333333333 D 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21 666666666666666666666666666 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r 1 23 4567891 01 2345678901 234 5678 Ab e - - 1 1 1 1 - - - 22222222-
- - - - - - - 2-Rm YYYYYYYYYYYYYYYYYYYYYYYYYYYY CCCCCCCCCCCCCCCCCCCCCCCCCCCC Au N /
de de 5 e vd r t 8
/ 5 ai o Dc eec e 8 8 /
2
/ 5 /
RR 3 4 _ h jllllll
- /
n io e s u 2 885 1 98 : 01 6 0 6477735 4 iv ss 1 234423433l' 1 1 2 eI 2 R 4 5 O
.C 5 S 4
9 U 5 N TTE CNL EEF J I I OLT RCN P 1 2 E hh I L SS C - nn. 1 22 e e 1 2 2 f f 2 GG . 1 23 h .h oo hh S SS h. h. h
. l l 1 2 h e s s e ,SSS . . ,S, c c S
e e ,
. . . . . ga dg . , , , . y g ls ii gg gggd e
e e SS i a 1 23DD1 234
. . . . . dd ddd l B yBl Bl l l l
d B J' a aa t e hhh. wwhhhh BB BBBe l l r e e a i e SSS e eSSSS ee e e eilnin n T r rec D , . , N N g, g, , , i r gg L AAA & ggg nnnii rin r n n n n in ibb i i c v v cv cbibib i r x r r O ggg. . . s iiiAApppp ppp iii r u ruer re re T, u uu u R ddd n PPP&&PPPP iii i i ii TT A T, T T BBBl 1 .iotc l l a a a r r aa a a m , " , S, " S S, 6" "6 6"6 N e eeh e1 2 r re ree e e t t re r e cr e r o"666"6"6'- o - - - - 7 '7 '9' O nnnS ,S hh. .AAAa aAAAA R '1 '1 '1 '1 '1 33 5 9 s C ibbb i i
.l e e eWWe e e e r22222 5 e ekkkk h gEEEEE el .
a a a . a .l r r r gl SS gggg 1
.l. l T a ggg , l N u u udl T,T,T,B W,ns. s a a al e ekkk uu nn n nS,hbbbbb ,a l. l. l. l EEEl.E bb s .
E n n nnnFFa a a a a a a a al a lala lat e s t M n n oesii s c a i gg .T,T T,T,tn iwSSSSS U ooic cLLTTTt iit i i t t l l SSDeiL r r D t a vidd s rs es ee s, s s e t t rr es e oo ro r C O a a v rl v v e eic a a n n n r r r e e nn n n mS1FFFFFl -
- l. l
- l. 1
. oo o oa ot le lel S aYYiiiAAiiiieT .LLLggLLLLgGnddddd l
nnFFl D EE E s F n unn z. zz.z Fl.FW t t t s n .cs scddd r ar a rii n ndddd aR uu u u r r sa as e la P. i i a ppa a a a r r r r r r Rooooo r r r r e r e ppi e e EEWPHMMYYYiiPPYYYYAAGGGGGMMOO - ' o t nN e iG 4456422444881 44 4 7777774 4 0000701 1 1 11 11 1 72224 4401 224 l CW 4 00000000001 22222 D 1 0000000000000000 4- -44 1 1 1 1 1 440000000555573
- - - 222222222222355$5555555 0000000000 3 33 33 33333 3333333 33- - - - - - - - 3 333333 - - - - - - - - - -
0000000000000000000000000000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6666666666666666666666666666 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r ab e 9901 2345678 901 234 5678 901 2345 Ab Rm 223333333333444
- - - - - - - - - - - - - - - - - - - - - - - - - - - 44444 44 555555 AuNYYYYYYYYYYYYYYYYYYYYYYYYYYYY CCCCCCCCCCCCCCCCCCCCCCCCCCCC /
de de e vd r tai o Dc eec e RR h
.Li
lll)
/
n oe
~
is u i s vs ei 521 233377845732361 4237844554 2 2 R 4 O 5
. C 5 S 4
9 U 5 N TTE g CNL I d EE F J I l B I OLT l h. RCN P e u S, E I F s L 1 t n t e 23" C g 099h 1 1 1 e D hh. 6 "6 f o d l 1 46 . . . S ,S p & S, S '- '1- o B , . hhh . s s22
, 1 R
e hhh SSS g& gd s
. l l m cm f S. S,S . , . .gggBwB . . l d
l t c ii t a tal. 1 .& 1 234 o i voo oo gd .gggddd e e e eEE" . . . . 6hhhh c R o S r eRr RdlBBB d d l l l BBBu l l eNe u l S DD&& SSSS m "0 1 0 * '5 . s . , yyyF" ,F 2'- h .& s s& '. 0 3 st . s s l . l it oo ,eyB
. l a yyyr 0t E t r
ommi era ra raiii r r t a aae7n e'- n 2 S nn00 .ee e e t t t L nRoRoBc ol o . B yi il i i l l l iiip4 l l p . ,iiEE nt ool t l
.l E DDDD e a a a&&&&
f l CoRpe iii xxx O r rf a x xx uuuSl .SI
.Ea ce ct t t
i eciOuuuAAA& E&h,n aaa nnncccc l R , t s s. .s. .s s N T "6 rc. :r.E uil qvi r u x "6
,AAA yyyr r ryyyw&wS@PSS , , , s s t t t t t O
9 Ct n A '1 - r r r a a a e e ls ar ree rPPP ela a S,S,S,S, l l a e e e e 5 f,Co & S,d 2 a a a m m m N 0" N,iPAAA l C o p" m m m ir i
- a . . . . . . .
- l. r ri ,s '5 s e . ee eggggggg Er os ,o6 t
T n- l
.iii r r rPPPl 3l ngggddddddd N l h a E P, P, P, s s st a .iDd a a a al l l l l l l - - i '1 , , ,i g
E s s t aS 2 nb alsl ls sl iiieEe n l l l t
.F,kkkBBBBBBB .Dd se annnl l l l l l l l l M iie" a aD6l dl .i a iii a a aat aD a a as a s sa s as aa s s a U t e
t
*- El St t t e e t t s
FiTTTooooooo e&eioooppppppp DDe&9 b ul eeeDDDe&t i t C s 5 aBF DDD l e ee nDn anit s s s s s s s aca tnnn t O i iiiiii D &&oE c n s si nl .l Sri ed&&&t r r rP a&lPCFiiiee e e el t t r t oooDDDDDDD t t ee ee e nnt b ov u snn s s nnn ccc .n na sf d .iiit r a a an ooodl t t t t t t aa cel a lore o orPddd s s s saaaaaa s s s a l l oa PPSSFSGPPPCCCFPRYH.dddAAAWWWWWWW l l l o t nN e iG 56785701 1 1 777923499990000000 CW 2222334 4 44 l 444677781 1 1 2222222 0000000000000000001 1 01 1 1 1 1 1 1 D 0000000000000000000000000000 5555555555555555555555555555 3333333333333333333333333333 0000000000000000000000000000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - r 6666666666666666666666666666 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ab e ab Ab 678901 23456778901 23456678901 Rm Au 5- 555666666666667 77 777-YYYYYYYYYYYYYYYYYYYYYYYYYYYY
- - 7 88 - -
N CCCCCCCCCCCCCCCCCCCCCCCCCCCC
/
de de te vd r ai o Dccee e RR 2 IIl l
l: J
/
n oe 6321 is i s u 1 1 523544523966601 1 1 i 1 1 0 1 v s 2 eI 2 R 4 O 5
. C &
5 S s 4 J v 9 5 W I 2 le 2 3E s
. f TTE h .l g o Shl a _
CNL I 1 0 ,W.S g
. d l 2 1
EE J I F h S 1 9 d B I 2 h. I 2345 c t e OLT ,&&i. k l B c e hh S ,hhhhh S RCN P
.9 38 B .
i v g. s
. SS nSSSSS .
E t n r . g . , .g
. o , , . , .
1 it s l sl ls s ls h I 8.s. s.cn o ed g gg . L d d l s l l l C Sl Bl d .g l ddl ciiiiiaaS a aa C n5 oooo &eB d B l l BB B et t t t t i o .CCCC , nl l gec yyet l t r e e e e e . , oDDDDDg t aS he nnn ee g . m ei oB r r u n P d R2 nb r a a rh. i r t l ldi v v giiFe o sccc
.l e e ed s s ccB le s. wwwl e br u nob ot r r
edii x x n l l t m diiiii s s Et e e ee t t t B h S u T, C n o S l l B uuei n nMMMMMn a e
&DBBB x . c , . T, 2 " , ot r C n & AApa St n r i t
o& l i t e s n&laaaA a sWWWy l l l ll u i g wd sh 6 " Coro S, B D" l t e S '1 6
, ol r naa l
t yr ry& oC Ts&&&&b r r rs rs rs s rT r u T 6 4. 9 'ss, nommwr fo vvv e vv" ee ee t l P t r " e '- ooooo6 L gelcddd a 6 ce sa9E '- l 5t eC oCiie r ro s,P P,N c3 sCCCCC'7 - O R i n S,i
.hhh I I e ci ci i m r - i '1 f f .l. D s,e , , at .
t r o s s s s s
, , , , ,3 T d l gSSS P, 4OB5 gEg.. . . enit giL e ei nR ns .s . geh t peee pt t eel.
t t t s&lE 'm ua a a aaE l N id s, S. ul mmms El ' D D maii O BBoooo n sSGGGGGg i b at n gn 'r a 'm 'm L 2 l l n C ooois a el i F 'rF Fr &F1& & g& r aa e nnnnni l l T aaRRRacoSD s s t nl P ml
. Ft grDDPt eei t
pooooom iiiii oor r ri c cc cc r a t t t N ppa aaf t c aF r r n no t co E M s s eeei iiGGGoSl DD d ir&oFeo&D8 e o nLF a . in o a noonn l l immlokk- i r r aaFaaYrPPPPPF d cce aooooo r t e ee eF t t r r r rl t t U C t e e chhhM t s siii c t cc t t . z l z.P m.a nFnFlPiiFF&SS ur z rf a a . t t l t f t t t t f.ddddd z . O a a wwwt r e dnl ope epole z eo e e vv e ec oee onnioooooe e noooooz D WWSSSS MFCOMOREESSRVVRFFFFFM l t t l l l l l B A o 006667 671 534584551 08 2666665 228 88 2 31 0022221 334546000006 t nN 1 1 0000 009991 0 0C1 000000 - 1 1 1 1 1 S1 000000000000 leg i 555551
- - - - - - 55555555F555555555555 1 1 1 91 1 1 1 1 1 1 CW 333333 393333339333333333333 D 000000 1 1 1 1 1 1 090000009000000000000 1 81 1 1 1 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 666666 606666660666666666666 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01 23 4 5 r 234567 Ab e 888888 - - - - - -
8901 8899999999991 23456789000000%00 1 1 1 1 1 1 1 1 78 Rm YYYYYY - - - - - - - - - - - - - - - - - - - - - Au CCCCCC YYYYYYYYYYYYYYYYYYYYY CCCCCCCCCCCCCCCCCCCCC N
/
de de te vd r 5 ai o Dccee e 8 _ RR
/
8
/
4 O" It
/
n o e 0 is is u 1 01 52252221 1 51231 000208 001 1 1 v s 2 eI 2 R 4 O 5 f
.C o 5S o 4 U 9
R ls 5 N d n i a 7
- : a t 4
TTE: e 1 CNL 2 6" D ' 4 2 h I f '- 7
& S EE F J I o 3 5 661 6 .7 s 1
A, OLT 2 . .h . n 3h 2 S RCN P t c l E hS h,S l a 1 f, 3 4 1 E e S s.P7 1 4 I L S t a .
,0 9l 0, gt r 1 h o S ,R o 6 . K s g d ah h4 '6 T C 1 n ld &&l s 2 S4, 1 4 ,
- h. s B
8 9&lB P S k g1 1 k n S i P g r l . l ool
.9 v
g"2 , 5 n n aih. t A . 1 h 5h . a g
. o CCo el rd 1 1 TaSo - S4 ST in t
a 1 23 1 , 84 .1 , d d r ehhh . . . enn- CSBmh. , o l r e 2KA h.Amo s&ut l B l i u nSSS e el e xh S8 mFre ts t a 1
.T1S - o 1 t t
e Gt ee, etewe w a c " ,1 h o. 4 ,4 i e A '6 A 1 tot l t ebb na t t
.Ba r2 s m7 S KAKB me k ,N,T1 Tta e e e t t ei e r r rBBDf y i
ibr S l f 1 T u
- x. l Oat 0S
. s -
a h t 1 - uf s c c cl l r r h nk k,4 ,l nKnkF l l L ToA e ooo a a la ei mo2 n n nl et ah . a n l
, ,F a eS tat aT T ,TO5 a 'o O o y i r p pKk" hn R
T 6" Rra1 DCCCWWWiP , , . , , ,b n u *Z a0
. S .o T* 0 te W e, mf gm.2 ls, rl un oh ognka5 '1
- a. 3 Woo
'7 n gggddd r .
N 3id i r hh
.i n n nl e le l u g1 N
O l i P SS aiii t edddiiiT,l e d 1 c i r" f PiRiai HTDrS, 3 h C
.l Eus n nn e, ,
eDiiiSSS l l l hhh n B hkDo0 f '- e pde m u e' o T gB oiibBBB u u u a e S c 3 a0 s0 n oi uAo 3i l m6 hg "0- sk f t lt a r mmmPi aT0i l l l r e r N n ri t l l r r ooo v c 3 a r vG" 0D "x l '5 I 3 a a i E i mta icOO o a u uS ooooooyr it rh on 0*6 r h M a r ei rf - - &ar t t t a aRRRe e r re e oC e rer e r r rKS,Vt saff o c a f t
.Em'h' u0 g53 oC xf B
U F ndl nn nnaaann t l f lt C l
. e oc le aioe e e e e e o ed I
e moBSS ol e e i n3 m i 3 "0 oo Hr u n,a '6 fo '5 oB l O D FGMwwt
- z. le c e GGG GGGi e n se es eschhh nndl t
a Gta err a r l sl l 3 R r dl ch e or sA e P k" x m3, mh t l l c c ei e oS z s n s re a mhc nd0t el oI e ie ru e r e t t t r u e e eiii u eb 0 t Ict c t c c oiiiwwwoia on e n - c '5 oh on ip e MDSSSFDDDSSSFDFWDAGE 1" D3BSDAP o t nN e 523 1 1 iG l 6 74 001 2229991 699900031 38 13 188 1 18888 1 1 8 1 888888 1 1 1 1 1 1 CW 0000000000001 1 1 4 66 66662220099999999999999 1 00000000000000 D 5555555552225525555555555555 333 33 3333333 33 3 333333 33333 33 0000000000000000000000000000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6666666666666666666666666666 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r Ab e 901 23 45678 901 2345678 01 1 1 1 1 1 1 1 1 1 2222222222333 3333 901 23 4 56 Rm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 AuNYYYYYYYYYYYYYYYYYYYYYYYYYYYY CCCCCCCCCCCCCCCCCCCCCCCCCCCC
/
de de taivd e e o r Dc ec e RR h , i
/
n o e ' i s u 1 1 1 1 i s 1 i 1 i 1 1 42o01 1 - 0O0O000oO0o1 vs eI 2 2 R 4 5 O
. C 5S N 4
9 U 4 . 5N K 4 A 1 4 TTE - J A 5 A h 4 NPQRS S 1 CNL 1 2 50 h. EE J I I F 01 22 .SS hh. 01 AAAAA e, s S OLT . H . h. 1 5 5555 u , RCN hh , , 0 0000 oe SSii c c A ShS 1 1 1 1 P L E I 0 ) ) , , t r rt e eG 5 07l , , LM1. hhhh.Hs 0AAh pou io n L S SSSS mH 9 WWmmA1 &&55 t 61 a C , v hh 1 &&oos s5 h 69 100 1 r58 e88 88 76, P e ull o SS .EEI h( ( I 0 S : s s: . . d e e e e n wCDn 44,S ,33 oonn1 .B nenSS ehh a e n n n n io pAAe
## ##iih ii , ,HLLLLt m4 c i iii R t t t 1 - LL 4 g t
e e et s e e ca c aS,S t , ,AByyyyyt P1 e u66 1 n a a o o A E g. g. 1 pppppr s . o l l l i 2345 GGnnttaWa l l
.d e ,GGLL hh dd44 pppppP - - u ehhl I
l t . . . . nnr r c c l l u u uu nSS i u iT hhhhh. oo as oo ee gg; xBBEESSSSS r L ei
- y. ly,Be L
SSSSSii t c c t i Et cit c nnEE a a t x x.c hh c er er er er eFhl ri r c ppc O ggg44 n ni in## too# oo HHHH e e3 e e t t t t uux x a a a a a oI s up upi v t t t t t R i AAEEWWWWWf r T ddd e e r r e r r PP l i iia l l t t a PP ta mmRRr e eHHdd e e c c c c c pe r e t a t a e ee eel y DSS e pii r rS N u uuGGddGdd oo oo oo t s sRRa aHHiiiiipmAA3 t O BBD nnoon yy e e v vv vv 1 C l a s s s l l a a ooRRiFRr ol SS ooHHtoor r r r r u ur r - t t t e e e e eSPoo3 t t
- e er e ret e r ere ret r rSSSSS re re a aL it it T oooc cl l - - t cl l- t t t t r r N pppe t te 'r 'r te 'r 'r t t t a a a a a a a a t t t t e e e e e a a e n n n n nt t n n eC E is is is o oa t
ta oa t M DDDrPPMMPMMeee r r taWWWWWWWWmmmmmWWe e e e e ennn nn e e e n GGl Pa U e eedd t t .
.d . . c c c c c c c c a a a a a c cl i i iii l C s s s oo scc a a a ooiioiir t
s o c ciiiiiiii r rs sr rvr vr vvvv r t t vv n n n n n v rvr se se ot t t ii e e r O e e e e e e e e ooooo e eii o D WWWRRMMRMMSSSSSSSSCCCCCSSDDR
- o. 8 8 8 333333399 1 1 1 21 1 1 1 1 1 1 1 1 1 1 6 t
nN 66688 8888 8663333333333333336 0000000000002222222222222220 e iG l 9999999999220000000000000004 5555555555227222222222222221 CW333 33333333333333333333 33333 D 0000000000000000000000000000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6666666666666666666666666666 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r 33378 901 4 442345678901 444 41 44 41234 5678 901 234 555555555566666 Ab e 1- 1-1 1 1 1
- - - - 1 1 1 -
1 1 1 1 1 1 1- 1 - - RmYYYYYYYYYYYYYYYYYYYYYYYYYYYY Au N CCCCCCCCCCCCCCCCCCCCCCCCCCCC
/
de de 5 5 e vd r 8
/
8
/
taie o 2 0 Dc ec e 2
/
1
/
5 RR 4 Q"
/
n iu oe s i s v s 1 1 1 1 1 1 1 1 5554 43 3 807733000 2 1 2 eI 2 R 4 O 5
. C . ,
3 S 2 . h g 4 9 U h. G S d 5 N S D g l B 7
- : : d l TTE n o
n. o & lB e u h S CNL I it it g br F , g EE J I F aI a v v 333d u t n t n d OLT oh. o f f f lB T e io l B RCN nS n e e n ooo . y S p J e P E RsRi o 1 23b r r l o c I L n goga t ccc u t t t r e & t r i v C init i n v 8 0 e e eT T, t n n r e d vl l adn .o93 . 4.S S,S o
, ,t dr e C o .Sl s g ,i iu oiehh h 111 .
m d s a BeB n uRSS S ,hhhd. . . g a n & me t
- 2. Y i l
g s,s, sSSSl a t c B oD eRe n nn n ,B h , t uRo& S,DB n e . icv .gidii ci oo o" i666! o S t x I e vl t rd ri a a9 r '6 '6 t t a - - - ' c g C . Ays l el e u r r 6 w inW r t c r n h i T t S es BSB uu3 gg u222 g n e d B t o u r ysio r t it S
- s. cl eiihil. l .
- l. e l c
a t 2 a mc g L it i i aicfnnSfnEEEr f c iuA e S . meSe n Drvt er voo s onnnS BP R t hihr i O a S,. Ps C h d eSDeCCnCaaa r e ol PPP m e , . nme l R Sl l l l l m i s
. c i u
T e rrr e e gn r i t N kc1 3&s nenaei na t a nr a ooo s t b r s t t s 1
.t l
a d omA 79 B O o 2 oPPuPloooy uy y h el i g ,455 y C L31
;s -
i t a eei eFFF g l l S r TS r r S r S, tDBtc e eAdghhhi r r .
.a r
T 4- e3 vnnf n gggt e e e e sl cS SSSi l n 2iLeiiniLLoLddd eai vll pB.l e , s,s, xu LClE uu C uBBBWa WW t t t N a a a n E
/ - - -
l l l W iWr Lr ryS W q atou e ai r u s n ggA 1
. . n M Lloo&NNleNeeee l
CCCsdd n adiii cccc1 c c ee e c e ns oiiydd r U e oi& ErHl iuiuma i t l l
.ii vv v a s&nl C
O n a a nnatneePt al aa t e r vvvv r r rh r r el a ee e eS e e3 iSrh eS 4. W s a a t e n e l e eBBi l PlPP l Pl l uun u S S S,S SS eMDiu or Gw t r D eeP ai e eii n c c - c v cns c. v t mes revvg t s si s rfooi o f l e nnLn snnnI s sD DD l l DI i
. t l FRRTUUNUPPPP aaa& i i - i lo ooonnun && r r r r & e oie uic e e r SCMEFDSSSA l l l l PP P o
t nN e 700822226664 44 4 1 408901 2222 A iG l 67770000444 1 1 1 1 201 234 0004 CW 000000000000 444499994446 00 66 0 6 1 000 0444 A49997 00000 D 1 1 1 1 1 1 22 - - 2- 21 - - - 1 -F1 - - 1 1 1 2 - 333333333333 33 3 3333 933333 000000000000 1 1 1 1 1 1 1 1 1 1 1 1 00 0 0000900000 1 1 1 1 1 1 1 81 1 1 1 1 666666666666 66 6 6666066666 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r 5678901 23456 78 9 01 23 456789 Ab e 666667777777 1 1 1 1 1 1 1 1 1 1 1 1 77 1 1 7 1 8888 88888 8 1 1 1 1 1 1 1 1 1 1 Rm YYYYYYYYYYYY Au YY Y YYYYYYYYYY N CCCCCCCCCCCC CC C CCCCCCCCCC
/
de de e vd r taieo Dc ec e RR ' O" Il! !t l
!1Il /
n e oe 221 5331 2 2 6 l b is i s u 1 1 2 i 2 56324 21 34 ig0 v s le 2 ei l 2 R I 4 O 5 c t C t s 5 S c im a e c 4 9 U S is e e r A 5 N s S P 1 t
. g 5
- : : n k n 2-TTE a n i CNL l P a t s K EEF I l i J I t
s P x T OLT a t s E o c RCN a , P 1 2371 1 45 e r c n a ) ) ) )) N E e 23456 kA I L hhhhhh. S,SSSSS S h& 2P. P r l P g m hhhhh SSSSS
) )
1 2 n1 a - C , , , ggg . , , s g n n o o ( ( ( ( ( hh T52 n nngggsl
. . ,l i s s s s s SS5 -
i i iddd e a i t s g.3i. e l R t t t t r r r r r t ( ( 2 - f, o K ooooo nn dddl l l l iii uuuyyy BBBoW l l Ny r t i E x dhC r a e ppppp ooKoT it it T R k B S ,de ppppp l g c c e na BBBr r a rl a a an & h u u uu u e e eeiiir o nnniii l l roilsc a e t t c SSSSS ee eee gr t oo0 e&mT t o e xx xesna l w t i l iii e at r l e ef e w ppppp nPPr2Dh - g i T t bbb r r r uuu eM uuu G , N, nD R Sr iiiii PPPPPis ddddd ooKhi uddTigH L T,T,T,Ayr A yA y& sn s n G e&s naf no r r r r r oa a H 0' O s nnn s s a r r a a s o io l s iol P re a a aaaHn YYYYY r m0' 3 R T ooommmni iii t t t i i i r r ri v oa t t a v e s nt oa gu ei v n s j /. / /. 1 gggggaTT K t eoo1 0 - 3 o x o l r r N t a aaPPP c o ddd e n n iDc t
,e noio r l ddddd l l l l l P ooTx -
O nnns s sS e e sS ,R e ho Ec n BBBBB r&s f f s n s p- '5 C r r r r
,R .R . i i o '2 l l l u uuiii e e ce e l l 52 oooaa a s s .
l isa c gk.S T N FFFt e e ei t t e g. i g t .t o r a a s. t t t t pa ai a a ut e et t ann s E t t t nnn DDDi t dDd s iDil ei dl n o t wwwwwS DDnluPlP d a a eeiB&BDgc BlaD neddddd l l l e eeee pee t e e ee c i M mmmte ee a e n ae P ca e e ecei t t e t t e ol U iiipppr r rFc c cc .i c im F.iv c i l FFFFFP e r rF a r m C mP . x. x x. .dx i v v rc ncdnre nt o s t x O u u u n n n P. e qqqooo EEECCCHS r r e a r P. e FHS r i el ouuuuua ooae o t D S SPAAAAAYCCYGB o 77777794 6 562 23456AABA 678888881 1 2 8 1 1 1 44483 3 579 904 44442665 t nN e 00000001 00000000 1 0 1 01 1 00 0000000 1 01 1 1 1 1 ACCC 1 0 iG 55555555 5- 555 9 l CW - - - - - - - - 33333333 3 333
- - - 51 555 55FF.
33333339999b3
- - - FFe5- - l -
D 00000000 1 1 1 1 1 1 1 1 0 1 000 00000009999 ig0 1 1 1 66666666 6 666 1 1 1 1 1 1 168S88 e1 666666600001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01 234567 8 901 2345678901 234 r e 99999999 9 900 000000001 1 1 1 1 1 1 1 1 1 1 1 1 1- 22 Ab - - - - - - - - 1
- - - 2222222222222 Rm YYYYYYYY Y YYY YYYYYYYYYYYYY Au CCCCCCCC C CCC CCCCCCCCCCCCC N /
de de 6 e vd r tai o 8
/
Dc e 4 ec e
/
2 RR 1 O* l t
/
n l e le io eu 00O003 0i1 bb i i 1 is s 1 00 gg2 1 99AAABA225 vs eI lle le 1 2 I 1 2 R 4 O 5
.C -
5 S K s 4 U s s s e 9 T n n nit 5 N . s oo oi o l iiit t t il c TTE N i t a c c c e e e a CNL I A k n d f o D e SSS F g EE J I F 1 T a E n o d &&&ni OLT s5 R nI 2 n n nt s RCN kn 2 - r dt g a . a a lai P te n n hh. l PPP l x TaKT E S I L s a A it a l ASS gg s s s E n P yyyo C mk on n k S o n n a a a t 321 A l gii t a e n F nii pp wwwt ul s t e e t AAoT t ht a y r iPP kkk oi T e yt ah ehhe l l a d t ip aa l a a 1 1 Bh g e o t s u P pp e 55
- - t ai W m u B a o y n mm WWWLD e, SS e ,
22l- - Fl gf i k n z m r a o u u iPP &&&ayt ct t KK ' n o ni n e L t r r r e e r rer am o e e e wt ic it T kk0 xu T "o30lpR i o Tu B r ht a e d e s idd d d e e e e wwwc eS c n cnc T n oe mA l o AFF oooad ooo a n a - pCm d TTTReCCC l L T T '5 u hk an W p o pr r i n gn mtoo r r r gh ggg O R h a gi 2r '5 &o r D i mHTe i al *- 0 0 r P . u ar ar2t a a t iii t a t ins n n iii T iDfos2,d e d ig eh l u " A 6 '- S s r pt e 3 dggP dd ennh e e e e . SSSd gggiu is l ledd uu l iii l N 'H 0 2"5 i o aH rl l l S n nn s O p 8' 30 n ofno0BBeGG 2 iiiBiBBB C 3 rh a h n L "6 2 mit n - r ra F mmelsddd l l rMr ooo r T xoCa&xA f 0 x rI c oKa of d eiTg guee e x a ai niii u u aued t t a a a N pf lt
- ool g8 - r Me' 1 3 pf e t
nt n c ek chchatn SSd teLBBB gn r r r r r r c h on ue e e nn E oBl e a2 0 of -0 or yyar er ea a aei ooco S r e e t M '5 2Rr hCx 2 RP l aTww nt wra aYgg gwGGGG aii t m3 U C l,e l oS mhc pd e0 oll e mg e e l e nd r n.wwtuSS dl oiii x l i
. hh ct c ch cS el ve wo l le e s s s he onS is x siii - t t
t t O oh o i n e e SDAI n0 e ne eh uui wwwebiii D I 3 BSDS GFNNSAAMSSSNADDD 5678 45 00001 1 8 1 6 4 2 23445321 TTTTT . . . 1 1 1 1 1 1 1 1 2 8 6 HHHHHHHH
- - - - - - - - BSSSS5SS5 o
8 88 888 1 1 1 1 1 1 84 1 4 83 8 1 0 2 2AB377727999 8441 1 1 1 91 222 t nN 000000 01 004 1 0PPP1
- - 1 1 1 01 000 ieG 999999 555555 le e52 99 93 -
51 Ce2FFF55535555 1 1 4 1 66 6 CW3 - -333- - l bb33 l - - - - Vl - - - - - - - - - - - - D 000000 1 1 1 1 1 1 i gg00 i 00 Rigb 09991 33 399977777333 1 1 1 1 000 c 1c1 66 1 1 1 e1 8 8 81 1 1 1 1 1 1 1 666666 1 1 1 1 1 1 11 1 1 1 1 1 66KlSI 600033 1 1 l 1 1 1 1 888881 1 1 333666 5678 90 1 23 4 5678 901 234 5678 90 r 1 1 1 1 1 2 2222 2 22 22333333333 34 Ab e 222222
- - - - - - 2222 - - - - 2222222222222222 RmYYYYYY YYYY YYYYYYYYYYYYYYYY
_ / Au CCCCCC N CCCC CCCCCCCCCCCCCCCC de de 6 7 8 8
/
e t ai vd r / 9 5 o D cee ce 1 2 /
/
2 2 1 RR 1 g' ..-
,l ,' l ,
/
n o e 4 is i s u ' vs eI 454856403I 01 00000 00000 9 6 2 1 3 1 3 2 1 2 R 4 5 O
. C 5S 4
9 U 5 N - b a TTE: t P a CNL I e m e m EE F J I ls H t s t e s OLT i a R y y RCN P t e m e H S g S g E D ts R n n I L y o m i i e lo C 'f 6 S t s o lo t s o - s r B r e o y o '1 n ls lt oi e I lo C C S R2 x t sR itataie Fr o g t n n 2 l r 1 2d l n Et e 3 4 v A C e n e n i n h. ia t t t e e ee ad e s el t eDe 1
- le o o l
o S Dr eb t 4- p p p o h h "6 *anhS,iSnee &a C nnsW s s e SS oh s , E m m m nd l i T t , t . t s
.'0 ,5 s30 t .t s a v s oogen egg S
a 4- C o C o nI t ioe&T e .tcS nt h s o ee . l e et i t e a cl it i n n o 3-m m nh e r ot L O DDEE.DlEDc e oa aBTe l iS oh hI rc A a r a r oSt p s oi rot c S e t R t
&&ta a&.&&idh .Cc x x&t a f 1 5
g a g a msP a nS n o CP - o 1 T sc.tc . ssasnnt asc sant scMrAnaoc NEEaI AWg t iD i D dor gc eh a N t e et t 6 C n pn ya n O e el l SS PPSPS n . .. oo gepHe H el - 5A ooo mB nr r Ao 5 in a t C ggggg. ggid . . - it oi r en oi g T N g. T ddddddd c t mggElo8 & "4 2 aL a t ai .d eB on n se o2 5&4-tnn e on l t 5 ib r sl N l l l l l l l e ot E BBBBBBBt rCliirC o l o o g6 N 3 4Nmima
, Druf eB M
l l l l l l l a a a s s s s s s sP a a a a r to air rCCa c oon4 2 5 -51 2 - 5 ul t u wTsDr oR l i U oooooood t e et hN1 NA1 t r ut r s r s PF l o&a&t ra t C pppppppon mn n c2C21 CI - e . e eI O ns amDs t s s s s s s s oe nic n O v ne O n e x iiiiiiioe 5 55 D DDDDDDDFG l S o o nE1 A1- " 1
- A- &R&L io S tee e ee Gt e /
t l e e e e e e e .l s pp C8CC*2 g g t a ncr s e t t t t l a a ts s s a as as as a t t s P. s e es n r E. i r mm oo AeAAei n - n ip in ip ei n n s i pa o a ie a WWWWWWWSDSCC t "2 L 1 "8 L P i i P OMCPDM l BA EE AA CZXWV 55 EDDDD 00 55 555 o 3.421 5761 1 1 00000 1 1 1 1 1 3 4 81 2 t iG nN e HHIL HHHHH SSSSSSS5 HH SS L I HHHI HL H HHH l 00000009 1 91 1 SSSSSS S SSS CW222222204033 1 1 1 1 1 1 1 00322 1 1 1 1 1 8 333330 8 0 8 4 681 3 002 44 0 D 00000004 555555551 222 4000 222220 000006 222222 0 6 000000 606 44 0
- - - - - - - - - - - - - - - - 2- 22 51 1 2 33 333333 3333 3 3 3333 3 333 33 3 000000000000 1 1 1 1 1 1 1 1 1 1 1 1 000000 0 000000 1 1 1 1 1 1 1
_ 666666666666 1 1 1 1 1 1 1 1 1 1 1 1 666666 6 1 666666 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r e 1 23 4 5678 901 2 Ab 444 Rm222222222222 4 4 4 444 555 3 45678 55555 5 222222 9 5 01 234 5 666666 - / N Au YYYYYYYYYYYY CCCCCCCCCCCC YYYYYY CCCCCC 2-Y C 2- 22222 YYYYYY CCCCCC de de e 9 a ivd r t 8 Dc eec e o / 7 1 RR / 3 h" l!
/
n ioe s u 9 is OOOO00 I 1 2 9 0 8 5 5 4 v s 1 1 1 4 5 2 eI 2 R 4 5 O
.C 5 S e 4 U r e e 9
5 N u r u r u n s s s s o e e s s it e c TTE: CNL m m a P s r t r u P r P e r j e I a e h e s n p n pI n EE F mt e S t igvi o wi m owia mr a e J I OLT eS n ham l V L oMu LMuAsAste, i a t a RCN t ym s i a mr
,D ,D n6 n P E M e om mA m mA a a e6 memde#
I L S e n y t s " t s nt r s e t e6 e s t e s o t n&n de C o 6. ye y s&t y y& yCAC o it S t 3 S vS o S A Se S A SS 5 VV cm je a m a mGma m5 r m5 er m&# & LL n e e a a . u a . u a r sr r I t e&t e t e os e os e e s e te
. . . .VV y S St S pS St s NeSNeS t s t t
a a a t bbbb pp uu r r uutr r oo t ei n n ni rn r n esP r we wno ndHd e TTTTSS t fa a SM i a iTia M pM a i n erP at h g ia r i hg a e e r et e c i e l t oooooo M MaeiMa eiMFeFeF t i to T t t t t t t t t t r r t mm a a m a mS a ma mHHmHHmmwmE t a j L n e en ennedd e mgge e gr r v r r nr a r r e t s a r e a r t s a a d a r r r ri r O a aEa aEa gge a e gag gi g gt a R mmmme nn a et a yeVai aiDlaia a a a gt a r iwd i wdDDiiFi& T nn iiiiHHsDD Dmi i e DsDd N t a a a a n nn n t t t mms n n pn er nnne n o eenD a ndee na nnn dnpnD s O C oooo oot niiri ooio d ibi CCCCFF r er a aTt aa e a u ah e ia",l t t t oi oa r t t o F "A i F "B io oaom a ia"A it t t t t t t a u T N 341 e e e 256 e e e a tmtnn e e t o t e nHnTn n e t t eRe1 et nA" t a n r el r e "B 1 t n t n e "r et een Pt n n ni ni ni nre mmomo m&mr r e m" iLLLLLLiTr r ar r ct n r a r n "ee nr nuee nr ru u senumanes e mme E i u ut ui ue ut o u m s s M t t t t r t r t r U mmmmmmt r s s nne nl s le nb si nr s si t t t t nbru dnoIsi dr ns nsdn sd s n a C a a a a a a ae In I eI oI uI e pI nb u oI I n n te e e e e oI oI O D SSSSSS n n t t t t nnnnDgg n n eW&&G&C&T&S&TC&TC&&C&C t g g g g g gg g iiiiiiI n n n n n n n a a a a a a&ii iipp i ip ip i ip ip ip ippn i ip MMMMMMPPP P i P P i P i P iPP i i P ABCDEF 1 1 1 1 1 1 000000 1 1 1 1 1 1 1 0 o 1 2 3 4 5 6 1 1 3 t nN e HHHHHHH SSSSSSS H S H S H S H S H S H S HH H iG 1 1 1 1 1 1 3 02 2 2 2 2 SS S l 33333301 2 23 3 CW 222222000 0000006 66 1 1 0 1 0 1 0 1 0 1 0 1 1 00 1 D 222222222 6 6 6 6 6 66 0 6
- - - - - - - - - 2- 2- 2- 2- 2- 22 2-33333 33 33 3 3 3 3 3 000000000 1 1 1 1 1 1 1 1 1 0
1 0 0 0 0 3 3 00 3 0 1 1 1 666666666 1 1 1 1 1 1 1 1 1 6 1 6 6 6 1 6 1 1 66 1 6 1 1 1 1 1 1 1 r e 678 66667 90177 234 77 5 6 7 8 9 01 Ab 2222222 7 7 7 7 7 8 8 2
- - - - 22 2- 8 Rm - - - - - 2- 2- 2- 2- 22 2-
- Au YYYYYYYYY Y Y Y Y Y YY Y N CCCCCCCCC C C C C C CC C
/
de de e vd r taie o Dc ec e RR ny
/
n io e - is u s 1 5 4 1 2 1 3 49 361 1 1 1 1 1 1 1 01 1 1 1 2 v s 1 1 1 7O2 2 eI 2 4 R 5 O
. C 5S 4 U 9
5 N TTE CNL EEF J I I OLT 22 RCN P HH E I SS t t L y n n a e e C B mm t n mlor ggii nnnt n t t n e s ot n nt a a e e e e ont Roi v iippoonn ii n nmmt m n i m n i n r Ca a L g.PPCCii i a a a t r lele R d ppr r t t t n n e lt e iovkk lB mmt oo noon t o C o ta i B Le ann u u c cCCa a C w T e e TTa ePP 324 o I c e eoo o . . . t
.d e s s L
t a n e e iddRRt t t ooo r o e e n e s O si gg nn r r r c e s s .r ve e . e e r r e NNN d e NFiiLLo nn R e a u u eFF S r r n ndd a a a d a ppp a pn e ea e it T d zSS e s oo o oir ri N n z o e gg s "6- ooPPHHsHs l l ooo H o a e ed a ssLLL t O C C M inni re l l '1 r t e r t a a - - SS mma mpa ooo eYYoo p oypt s msLMt s opta oo wwA a ad F yr r e e dd e d t t
&n a oota2 oo n .e n
eSS r r yr B yr r r r t T N ml a P CCWlE GGe e FFBF gg9798 1 7 0 B ea ea a t t t e 0 B ea e t a t eFFe os E t t e ax e ne n&b a a mmr r a u u ne ne ne nee www n ec wwrooo 1 8 r p M t S Toor n ndl ePPiiiiiinddd n e eo n iindd t t r U G pp aSo e.SS t t ggLLLLLL e e e aLL c e e e r e ei t e e a aP r r C FFFl FFn n o O T&mmR1Fd a ryyiil Hioogt nn r ere re r r r e a r looa a t t t te e yyyb te u r r e yye ef uCCinii oowwwwwwiiiTwwl iaGGn t t r r r t r r D n a a a a a a a a a a a a Dd d x l uiiCC l ddddddiii eddii l l l i l mmlP I nYYa
&o - - r r o x r ree ee e x e ee ee cuuu in e e x x x x a a uuiie e e u ue eY PCCCGGAAAAFFFFFFAAALFFAASSC t t CBDC A ACEDFGAAAZBHAC 22222 24 4 41 0000000M0M0000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 244 o 21 1 2.21 - - - - - - - - - - - - -
t nN SS H e 1 1 HHHHHH SSSSSSBF SSSSSSSSSSSSSSSS HHHHHHHHHHHHHHHI4D iG 1 1- 1-33300 - - - - - - - - - - - - CW 38 51 1 64 1 1 001 1 1 1 1 1 1 1 1 1 77 l 1 505501 332233333333333 - - D 0001 1 0000 66 4991532FF2222222222222222 000BB0000000000000000 22222222222 222001 223221
- - - - - - - - - - - - - - - - - - - - - - - - - - - 0
_ 33333333 3 9933 333333333 333 3 3 _ 000000000990000000000000000 1 1 1 1 1 1 1 1 1 88 1 1 1 1 1 1 1 1 1 1 81 1 1 1 1 1 _ 666666666006666666666666666 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1Y1 1 1 1 1 1 r Ab e 45678901 2345678 88 8 8 8 8 9999999 999 901 23 0000M000001 5678 90 _ Rm222222222222222233333 3 3
- - - - - - - - - - - - - - - - - - - - - - - - - - - 3333
_ Au YYYYYYYYYYYYYYYYYYYYYVYYYYY N CCCCCCCCCCCCCCCCCCCCCCCCCCC
/
de de te vdr ai o Dc eec e RR g1" l l '
!J /
n oe i s u i s 251 222O87877 - vs ei 2 2 4 R 5 O 5
. C S
4 9 U 5 N s
- : e TTE: i it CNL I l
i EE J I F c a e OLT F r u RCN P g1 23 t e E nt t t it e e e r I L s e e e t u ihhh S C xSSS E - - - n oaaa i o t t eee r r r t c e uAAA o 2o t yeeeHr a nnn P e LiiiS bbb , e i l t eyuur s a r r ek t a T u et o w e T T *h I l l l r n cI L eeen r O Hc vvvoi r a eexCA R T' leR LLI igeee gg23456 N Bion nnniinn . . . . O d iiiddnnnl hhhhh l SSSSS C eia aaii l c u zz z uuss s s s T i vB zeez e zBBeriiiii eee n n e nn n N r r S eaMMMrooLLLLL e E~ s g n-- nnr t t
- a arr ee r r er ee r A l U ih a aa eet nn acl l l t aa aa a t t t GG eWWWWW C t eiPPP e t
O' DwiiiS uuul t t t eeeee D' ddd eeiiiii cc cc c l k c wnnn s e re vvvvv s t a e o o o eii re reer e r SNCCCDDSSSSS
. 41 23 o HHHH t
nN e A S SSSB - - 23456 iG 528883344444 l CW 290006022222 S 0000 4 444C D F3333F522222
- 1 1 1 1 1 1 400000 973339333333 91 81 10009000000 1 1 81 1 1 1 1 1 036660666666 1 81 1 1 1 1 1 1 1 1 1 r 1 2345678901 2 Ab e 1 1 1 1 1 1 1 1 1 222 Rm 333333- - - - - 3333- - 3 Au N
YYYYYYYYYYYY-CCCCCCCCCCCC
/
de de te vd r - ai o Dc eec e RR ga^ lLlj l
-{g, :
i-i e APPENDIX D CAD FIGURES OF TORMIS PLANT MODEL
'f v'
_ J #.
,J[, /, n _ ' 'I , ,. N N
TV A . Figure D-1. All Targets - SW Perspective at 30 Elevation Angle s
- ~ ~ ~ . . . . .
m
, - / +
N[ I Figure D-2. All Targets - NW Perspective at 30 Elevation Angle 1 i D-2 l _-- -_ -- 1
I' AN
. .L L =
T TD n F~Li --1 l' 'l g m - g -
- _._ -- a R]
Is
=
Figure D-3. All Targets - Plan View D-3 __z____._ _.__:_
i i y ..
/
1o N U "a[
%c Figure D-4. Safety Related Targets - SW Perspective at 30 Elevation Angle F
AN 41 N
' 45[ h38 n ,, ~= ..
rir a @ I h-40 ( l 63 1 7 [ s2 % 0, 4
~
5 2 66 36 l 54 4 1 37 1 12 3 -60 61 I _
-g 50 3<%35
'~ g sr []25 57 28p~ f is si ss p ss a 52 24 l 1 Figure D-5. Safety Related Targets - Plan View D-4
\ ),w' _ __ /
( '?~,-,_.' n\
/
('tdr' i q: s N 'N Figure D-6. Shielding Targets - SW Perspective at 30 Elevation Angle 72
- h 79 IdUl 73 7 80 81
~
86 76 85 g3 / 82 , 87 .1
\ g71 f \ l ob 'N .
88 \ Figure D 7. Shielding Targets - Plan View D-5
O/~ / N N
\
Figure D-8. Missile Source Targets - SW Perspective at 30 Elevation Angle h 114 ' 110 9 mck112 u6 l l
,,, m ;ez gg W
TOS _ 103 107 102 _G 108 103 99 105 f Figure D-9. Missile Source Targets - Plan View D-6
- _ ______-}}