ML20128G931

From kanterella
Jump to navigation Jump to search
Procedure Change Notice 01 to Rev 2 to 2IM-5.02-CND, Conduit & Conduit Support Design
ML20128G931
Person / Time
Site: Comanche Peak Luminant icon.png
Issue date: 08/18/1992
From: Ashley G, Pandy D, Pugh C
TEXAS UTILITIES ELECTRIC CO. (TU ELECTRIC)
To:
Shared Package
ML20127K787 List:
References
2IM-5.02-CND, NUDOCS 9302160192
Download: ML20128G931 (240)


Text

{{#Wiki_filter:~- t  ! l' FIGURE 7.2 (O) PROCEDURE CHANGE NOTICE (PCN) PCN No. 01 Page ,,,,1_ o f ,,,2

1. AFFECTED PROCEDURE
a. Number 21M 5.02-CND Revision 2
b. Title conduit and Conduit Suenort Desien
2. RECOMMENDED CHANCE (S)
a. Description / Justification for change (s):

See care 2

b. Is backfit required as a result of change (s): X Yes No (If yes explain) See Page 2 -
c. List other_ procedures affected by change (s): None
d. Originator / Extension J . Pandva Date 08/13/92
3. PACE REPIACEMENT INSTRUCTIONS
a. Remove Existing Pages (specify): 8, 11, 14, 15.- 17, 18, 23, 24, 32, 42, 45, 46, 51, 55, 58, 66, 67, 70, 77, 125, 140, 147, 176, 180.

185, 188

b. Insert New/ Revised pages (specify): 8, 11, 14, 15, 17, 18, 23, 24,

, 32, 42, 45, 46, 51, 55, 58, 66, 67, 70, 77, 125, 140, 147, 176, 180, . 185, 188 Place PCN 01 in front of main text, l t 4 AEEEQYA1, Responsibla Department Manager (s): P Aws Neua , i eliel91. L h. c. ,w p//4 i *M*, ), . Data C M.Kr eh.;g c' in ALL J 4f9t MMR !v w # -

                                                                                /f d4L Ddti
                                                                                /

Date Issue Date: 08 / 18 / 92 Effective Date: 08 / 18 f 92 2PP-1.04-2, Rev. 2-2160192 960119 A ADOCK 05000446 PDR

, .. _ ~ . - ..-._ .. .- - . _ . -- .- _ _ . . . . _ . ~ . . .. . . . _

                                                                                                               - y - -. .      ..

, sq. i 3 4 l i Page 2 of 2 1 2a. Continued Descriotion of chances i 1. Clarifications and corrections of typographical errors.

2. Corrs
tion of Prying Factors in Attachment 8.B.

i

3. Use of maximum allowables for air drops and flexible conduit lengthe in lieu of actual lengths.

i j Justification for chances {. 1. No justification required. i'

2. No.backfit required per calculation 0218-CO-0418, Revision O.
3. Backfit required. Review of issued designs required to determine e . impact.

l t 9 l 1 F i i 4 V f

                                                                                                 .<e,_,   y-<w    , ,    -r. r    .
    -                                      v         __.              y.           .w.      -

3-

l 4 I i 21M-5.02 CND O\ Revision 2 Page 1 of 238 4 i i l TU ELECTRIC- ! COMANCHE PEAK ENGINEERING UNIT 2 'n t CONDUIT AND CONDUIT SUPPORT DESIGN f

  • JOB 0217 JOB 0218 l

l h C (AN>fA b-

                                                            ~

Tll6f4I ' Preparer Date Concurrence: -

6. G Pvd# 76!7/~

i Design Verification" Date

fMGI i & fl $ f. A G M L (P) O 7.17.9/ '

TU/ElectrTc Date Approval g Date Issue Date: 07/17/91 Effective Date: 07/22/91 l E

                                                                                    \

l l

      ..  - .. ..         -.      - . .  -   . . ~ . .                  .. --     . . .                 -   -     - ..-_ .              - - _ .                   - .               .
2IM 5.02 CND l Revision 2 4 Page 2 of 238-RECORD OF REVISIONS i
 ,                REVISION 0:

Original-issue. l, REVISION 1: i Revision was made to provide a complete technical criteria for thi design , validation of Unit 2 conduit systems. No revision bars are shown for clarity. There is no impact on previous work and no backfit is required. REVISION 2: ! Revision was made to directly incorporate the technical criteria for the. design validation of Unit 2 conduit systems in one document rather than by-referencing l other criteria documents. Revision was also made to address the Pre-Engineered

Standard Design (PESD) series of S2 0910 drawing and provide guidelines for the l preparation of conduit isometrics and drawings, i
 .                This is a major revision to this procedure. No revision bars will be shown for=

clarity. l There is no impact on previous work and no backfit is required. l0 . i i a t-l 1 4 4 - e 1 4

                                                          %.n--m------e  =*-.e e ra .   # .,wsw,is.,s,.          .ww.,e-<-- -werw---w,-         y-+-See-+~em,.,       .e,e.-vym i r ew s5

1 I 21M1 5.02 CND i..- Revision 2 ~ Page-3 of 238 ! ' TABLE OF CONTENTS i-f i i: 1.0 PURPOSE . . ..... . . . . .. . . . . . . ......... -6 j 2.0 APPLICABILITY . . . . . . . . . -. . . . . . . ......... 6

3.0 REFERENCES

      ...... . .. . . . . . . . . .........                                                                                             6 i                                         3.1 REFERENCE SPECIFICATION 6.DRAVINGS .                                                 . . ..........          -

6 i 3.1.1 CODES AND STANDARDS . . . . . .....:.... .7

3.1.2 APPLICABLE CODES . . . . _ . - . . - . .......... _

7 3.1.3 APPLICABLE USNRC REGUIATORY GUIDES . 7. . . . . --7

3.1.4 TU ELECTRIC PROCEDURES AND.
SPECIFICATIONS . . . ., . . . ......... 8
3.1.5 . LICENSING DOCUMENTS FOR COMANCHE PEAK-STEAM-ELECTRIC STATION . . . . . . . . . . . . . . . . 8 l

i 3 .1. 5 . Final Safety Analysis Renort (FSAR) . . . . 8 l 3.1.6 DESICN BASIS DOCUMENTS . . . . - . , . . .. . . . . 8' ! 3.1.7 DRAWINGS . . .. . . . . . . - . _ . . . . . . . . . 9 f 3.1.8 MISCELIANEOUS DOCUMENTS . . . . ......... 9 !- 4.0 DEFINITIONS . .. . .-. _ . .....-. . . . . ,_....... 11 5.0 RESPONSIBILITIES . . ... . . .

                                                                                                       . . . . . .c . c . . . . .:. .=. . . . . .

13 t-I 6.0 INSTRUCTIONS . ... . . . . . . . . , . . . ......... .13 l- 6.1 TRAIN A AND B CONDUITS . . . . . .. . . .z . . .. . .- ,- . . . 13 l- 6.1.1 -EVALUATION-OF CONDUIT SYSTEM .~. .. .. .L . . . 13 l -6.1.1.1'. Deanen Of The ConduLt System . _ , . . . . . . 14

6.1.1.2 Eval 6ation of Condu
.t Snan. .. . . . . . . 14 '.
6.1.1.2. Selection of Conduit Span.

5 - - -- Configuration . . .. .. . . . . . . - 14 F -6.1.1.2.2: LComparison Of-Actual To i A11owables Spans .-. .-. . . . . . . 14

6.1.1.3 Evaluation of Existnna Conc uLta=. . . . . 15 l 6.1.1.4 - Da s :.en of New/Modif:.ed Conc,u:.t Systems . . . . - . . . . . . . . ... . . .c. 16 l 6.1.2 CALCULATION OF CONDUIT- LOADS (1( AND-Is) . . . . 16' i 6.1.2.1 .h . . . . . . . . . . . . _ , - . . 16 4

6.1.2.2- Addienona onduit Weinht- - C9ngiderations . .. .- . . ....: ..... .17

                                                                .6.1.2.2.1 Firewrap (Thornoblanket) . . .. .                                                                      m.-       17 L                                                                 6.1.2.2.2? Thermola - . . . . . . - - . .: . . .: . .                                                                      18=

i 6.1.2.2.3~ ECSA Eva untion .- ..c. .. . .- . . . -18 !~ 6.1.2.2.4~ 1 Bisco Seal-Evaluation .. . .. .. ... .=,' . .

                                                                                                                                                                           ...              18-
                                                     -6.1.2.3- Imad Factors . .. . . .                                                                                                      18-l                                               6.1.3            ~ CIAMP EVALUATION .                               .    .- . .. . ,.... . . -. . -. -. .          .

19 -- l 6.1.4 SUPPORT EVALUATION .-'. . .:.:.-. . .. . . . . .' .  : 21-:

6~.1.4.1- Sunnart Damian Imads - . . ..
. . . . . . . 122
                                                     -6.1.4.2 - car nrne Suenores                                           , .
                                                                                                                                   -.z.      . . .~.            . . . . ,-                  22-l                                                       6.1.4. 3 - Mocif:.ed Sunnarts                                        .x .... . . . . . . .-                             . .        123
6.1.4.4 - Inc ny:. dually Ensinnared (IN)

Support .. . .-. . . . . . . .- . . - . . . . 23

                                                                               & n Sunnarts . . . . ' . . . .. .. . . .

i -- 6 .1. 4 . 5 = 23 n :6.1.4.6 Precuanev Raouira-nts . .:. . . . ..:.c. . 23 l 6 .1. 4. 7 - A ngitudinal Imad Distribution ... . . . 24s

. 6.1.4.8 l Lotation Of nasian a r" values . . . - . . . . 24 6.1.4.9- tvaLuattoa of #=had-nt lanath For '

l l ~ Areas W:.t sFLoor Tonninn- ... . . . .. . ;24 ? 6.1.4.10 Material fronerties ._. . - . . . . . . . . - . - 25- l 6.1.5 ! EVALUATION OF JUNCTION 80X CAPACITY AND ~ .

    \                                                            JUNCTION BOX' SUPPORTS                                      . . . . . . . . . . . . .                                       26-   l
6.1.5.1: Junction Box Desian Loads . .. . . . . ' . . 26 6.1.5.2 Saisaie Innuts . . . ... . . .. . . . . . 27 l

l l

                                                                                                                                                              ..__.a..-_u...._,.._.

i i r 21M 5.02 CND Revision 2 i Page 4.of 238 i Junction Box Anchormaes .' . . . . . . . . 6.1.5.3 . 28 6.1.5.3.1 Nelson Studs . . . . . . . . . . .. 28 6.1.5.3.2 Hilti Kwik And Super Kwik Bolts . . . . . . . . . . . . . . . 28

                                      -6.1.5.3.3        Unistrut Bolts .                  . . . . . . . . . .                    28 6.1.5.4       Junction Box Frecuency                       . . . . . . . . . .                    29 Supported Junction Box . .
                                                                                    ~

6.1.5.4.1 . .. . . 29 ! 6.1.5.4.2 Unsupported Junction Box . . . , . . 29 6.1.5.4.3 Minimum Frequency Requirement .. . . . . . . . . . . 29 ! 6.1.5.5 Pull Boxes and Terminal Boxes . . . . . . . 29 1 6.1.5.6 Material _Eronerties . . . . . . . , . .. . 29 , 6.1.6 SHEAR CENTER LOCATION OF COMPOSITE CHANNELS , . . . . . . . .. . . . . . . . . . . . 30 ! 6.1.7 WELD DESIGN . .. . . .. . . . . . . . . . . 31-l 6.1.8 INTERFACE REQUIREMENTS . . . . . . . , . . . . . 31

6.1.8.1 Attachments To CTHs And MVAC Sunnorts .. . . . . . . . ., . . . . . . . . 31

. 6.1.8.2 Attac 1ments To Pine Sunnorts . . . . . . . 32 l 6.1.8.3 Attac 1ments Of Smaller Than 2" ! Riameter Train C Conduits . ... . . . . . . 32 6.1.8.4 Attachment To Other Discinline !. Suncorts With Junction Box On ISO , , . . . 32

6.1.8.5 Attac iment Mo Steel Platform ., . . ._, . 33 I- 6.1.8.6 Attac iment Mo Scread Room Frame
                                             .lREl.......,...........                                .

33

6.1. 8. 7 _ . Footurine Loads To Civil / Structural l G.Imig . , .. . .. . . . . . . . .. . . . 33-6.1.9 EVA1UATION OF CONDUIT SPAN AND SUPPORT i -- VIOLATIONS . . .. . . .-. . . . . . . . ... . - , . .33
6.1.9.1 'K' Factor Violations . . . . . . . . . . . _33

!- 6.1.9.2 Sean violations .'. . . . . . _ , .. .. . . . 34 l 6.1.9.3 Suncore Canacity violations . . . .. . . - . 35-l 6.1.10 1 DADS AND LOAD COMBINATIONS . . . . . . .-. .-. . 35 l 6.1.10.1 h n1IA . . . .. . . . . . . . . . . . . . 35_ l- 6.1.10.2 hermao' Load Considefations . . . . . . ..

                                                      -                                                                            38 l                               6.1.10.3- Conduit At Concreta Senatration .                                      . , . . .          39 i                   6.1.11               ALLOWABLE STRESSES . . . . . . . . . . . .-. . .                                           39 l                               6.1.11.1 Punchina-Shear At Tubular I                                             Connections (Main Manhar Oniv)                                . . . - , . .           40 l                               6.1.11.2 Warninn Strennes                       . . . . .. . . . . . . .                            41 l                   6.1.12-              ANCHORAGE EVALUATION . . - . - . - . .-. . . .                     . . . .                 41' l                               6.1.12.1 Elti Kvik And Sunar Kvik Rolts                                     . . _ . . . . .         41 6.1.12.2 t chmont Inmarts                       . . . . . . . . . . . . .                         -41 6.1.12.3- Nelson stad- . ..                   . . _ . . . ... . . . . .                              42 l                               6.1.12.4 . Minimum Snacinn Reauirements                                  . . . .. . .                42 6.1.12.5. Base Plate-Analysis                       . . .. . . . . . . . .                           42 i

i 6.1.13 PROCEDURE FOR RESPONSE SPECTRUM MODAL. ANALYSIS OF CONDUIT-SYSTEMS . . . . . . ..-.- . 43-l 6.1.13.1 Desien Innuts ... ... . . . . .. . . . . .. 44 l~ 6.1.13.1.1- Conduit Support Frequencies- . . . . 44

'6.1.13.1.2 . Conduit Routing
. . . . . . . . . . 44 6.1.13.1.3 Digitized Floor Response Spectra- . . . . . . . . . . . . . . .44
6.1.13.1.4 Tributa n Conduit Weights . .- -. . 45

. 6.1.13.1.5 - Conduit Sectional Properties . . .. 45

6.1.13.1.6 Computer Program . . . . . . . . . . 45

, 6.1'13.2 -Prenaration Of Comnuter Model For

STRUDL , .. . . . . . . . . . . . . . . . . .46 l s 6.1.13.2.1 ' Boundary ~ Conditions-For Computer Input . . . . . . . . . . . 46
       ' s.                             6.1.13.2.2 : Location Of Conduit Nodal i                                                         Points . . .. . . .. . . . . . . .                                           49 6.1.13.3        Data Innut For Comnuter Skeletons                                      . . . .        50~

2IM 5.02-CND Revision 2 Page 5 of 238 6.1.13.4 Outout Recuirements . . . . . . . . . . . . 52

  %                                                      6.1.14                                                             ACCEPTANCE CRITERIA . . . . . . . . . . . . . . .                                                   52 6.1.15                                                              CALCU1ATION METHOD . . . . . . . . . . . . . . .                                                   52 6.1.15.1 Evaluation Of Sunoort Loads From RSM Annivsis        . . . . . . . . . . . . . . . . .                            52 6.1.15.2                                                      Evaluation Of Conduit Forces And Moments From RSM For Scans                             . . . . .    . . . 54 6.1.15.3 Common Sunoort . . . . . . . . . . . . . .                                                                                        56 6.1.16                                                              STATIC ANALYSIS OF CONDUIT SYSTEM                                                , . . . . . . 57 6.1.16.1 Static Analysis Of Suenorts                                                                                      . . . . . . . 57 6.1.16.1.1 Generic Support . . . . . . . . . .                                                   57 6.1.16.1.2 Modified Supports . . . . . . . . .                                                   58 6.1.16.1.3 "IN" Supports . . . . . . . . . . .                                                   59 6.1.16.2 Comouter Model . . . .                                                                                  . .. . . . . . .          60 6.1.16.3 Eccentricities . . . . .. . . . .. . . .                                                                                           60 6.1.16.4 Nodal Point                                                               .= , . . . . . . . . . . . . . .                         62 6.1.16.5 Boundary Conditions . . . . . . . . . . . .                                                                                        62 6.1.16.6 KL/r Recuirements And K Factors . . . . . .                                                                                        63 6.1.16.7- Additional Notes . . . . . . . . . . . . .                                                                                        64 6.1.16.8 lead Loads For Generic Suenorts . .                                                                                       . . . . 65 6.1.16.9 Dead Loads For Modified And "IN" Suonorts         . . . . . . . . . . . . . . . . .                            65 6.1.16.10 Seinric Loads                                                                . . . . . , , . . . . . . . .                        66 6.1.16.11 Load Combinations                                                                     . . . . . . . . . . . . ,                   67 6.1.17                                                               FOOT PRINT LOADS .                          . . . . . . . . . . . . . . .                        68 6.1.18                                                               HAND CALCULATIONS                           . . . . . ..    . . . . . . . .                      68 6.1.19                                                              MISCELIANEOUS INFORMATION                                      . . . . . . . . . . .              68 6.2 TRAIN C CONDUITS . . . . . . . . . . . . . . . . . . . . .                                                                                                                                    68 6.3 GENERIC EVALUATION CUIDELINEC . . . . . . . . . .                                                                                                                       . . . .               70 6.4 EVALUATION OF UNIT 1 FCHVP RESULTS FOR APPLICABILITY TO UNIT 2 . . . . , . . . . . . . . . . . .                                                                                                              70

( 6.5 FORMAT OF CALCULATION . . . . . . . . . . . . . . . . . . 71 6.6 FORMAT OF DRAVINGS , . . . . . . . . . . . . . . . . . . . 71 6.7 CHECKINO CRITERIA . . . . . . . . , . . . . . . . . . . . 71 7.0 FIGURES , . . . . . . . . . . . . . . . . . . . . . , . . . . 72 8.0 ATTACHMENTS . . . . . . . . . . . . . . . . .. . . . . . . . . 75 9.0 RECORDS . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 76 U

_ _ _ _ _ _ _ _ _ _ . . . _ _ _ _ _ _ _ ~ . _ . __ ._ _. _._ -_ _ - . _ _ _ _ __ _ l 21M-5.02 CND' i-Revision 2 Page 6 of 238. l COMANCHE PEAK ENGINEERING { I CONDUIT AND CONDUIT SUPPORT DESIGN l i 1.0 PURPOSE I The purpose of this procedure is to provide-guidelines and criteria to be used in the analysis and desip of the Unit 2 Class 1E and/or associated Class 1E as well as Non-Class 1E specified to be l seismically supported by Specification CPES-E-2004 (all referred to-l as Train A and b), and Non Class 1E (referred to as -Train C),- conduit systems and supports at the Comanche Peak Steam Electric

'                                  Station.

[ This procedure implements-the use of the referenced TU Electric Unit 1 documents for use by ABB Impell Civil / Structural Raceways Group. i ' The latest revision-of all referenced documents is applicable in i their entirety with the addition of any clarifications denoted i herein i I 2.0 APPLICA3ILITT i

The procedure applies.to all engineering activities-for Unit 2.

Trains A, B and C at CPSES with the following clarifications:- All Unit 2 conduit systems required to support Unit 1 operation, as i l specified in Project Technical Reports -m-01 and PTR 02, are I excluded-from the-scope of this Procedure, i Unit 2 conduit systems in the Unit l~and common-areas (Unit 2 . i Recommended Scope) have already been qualified by Ebasco Services [ under.a separete contract with the exception of approximately eighty conduits as listed in ERASCO letter n e er 2 CECO-0132. For the Unit 2 Recommended Scope conduit systems, this procedure shall be applicable to those activities in support of the installation of [ ' modifications identified, the validation of those aforementioned conduits, and any miscellaneous closure activities. , The project control-and procedural interface requirements are provided in Procedure 2LN 2.00. The design documents generated under this procedure shall specify the applicable revision of all reference documents as required by he l the Impell QA manual procedure QP-3.1. In the event that any of-t l reference documents have been or are in tha-future revised, the Project Engineer or his designes shall review 'the revised reference l-document for potential impact and backfit, if required, of the < approved / issued design document. The installation-spcification for conduits and-conduit-supports are CPES-I-2004 and CPES-S-2005. l l

3.0 REFERENCES

i

                           '3.1        REFERENCE SPECIFICATION & DRAVING8-
;                                       The following sub sections list all the documents from which most of the= technical information11s derived and specified for this l
                                      -document.            Some of these. documents,e.g codes and scandards. FSAR i

sections, DBDs and USNRC Regulatory guides are governing documents.

- (j O ' Documents referenced in~ Miscellaneous Documents are mostly documents

'- used or prepared by:TU Electric's contractors while Some they were specific responsible for the design of the conduit system. c-

                        ~-      ,w w-x--ve,w     -                                                           -<--.~~.w-,-.No.~.ww~-*

a 21M.5.02-CND Rsvisicn 2 Page 7 of 238 l information contained in these miscellaneous documents may no longer be applicable and therefore shall not be considered as conflicting with this procedure. S 0910 and S2-0910 are series of generic drawings for conduit

               ' systems. S 0910 series drawings are applicable to Unit 1 and common areas, while S2 0910 are applicable to Unit 2. In addition there i

i-are S2-0910 PESD (Pre Engineered Standard Design) drawings series applicable to both Units. Within S 0910 or S2 0910 there are various suffixes (e.g. LS or JA series) which form a group of drawings pertaining to specific criteria. All these groups of drawings give some specific design (pre engineered and pre-qualified) criteria for conduit opan configurations and their support details. However, if any component of conduit systems do not meet the generic criteria specified in these drawings, then specific evaluations must be made, as described in this Procedure. l to determine their acceptability. 3.1.1 CODES AND STANDARDS The specific codes, standards and regulations identified below have ' isen used for establishing the design basis for conduit and conduit support design. 3.1.2 APPLICABLE CODES AISC American Institute of Steel Construction, 7th Edition Including Supplements No. 1, 2 and 3. AISI American Iron and Steel Institute, Cold Formed Steel Design Manual, 1968 Edition. l aO . American Welding Society, Structural AWS D1.1-79 Welding Code

  • AVS D1.3 81 American Welding Society, Structural Welding Code American Concrete Institute, Building f ACI - 318 - 71 Code Lequirements for Reinforced Concrete j

ACI - 318 - 63 American Concrete institute, Building Coda Requirements for Reinforced Concrete ANSI C80.1 Underwriter Laboratory UL-6 WW C-581d Federal Specification AVS A5.1 Class American Welding Society, Structural E-70KK Welding Code 3.1.3 APPLICABLE USNRC REGULATORY CUIDES Replatory Guide 1.29 Seismic Design Classification February, 1976 ' Regulato g Guide 1.61, Dging Values for Seismic Design of October 1973 Nuclear Power Plants Re ulator cuide 1.89, Qualification of Class 1E Equipment for Fe ruary 974 Nuclear Power Plants (;;)-

     -                _        .           .     -       .~_   .. - . .            . ..      .          ..     --

21M 5.02 CND Revision 2 Page 8 of 238 PCN 01 _ Cuide 1.92, i Rebulato Fe ruary 976 -CombiningModalRes$onsesandSpatial Components in Seism c Response Analysis , NUREG 0800 Standard Review Plan for the Review of July, 1981 Safety Analysis Reports of Nuclear Power

Plants

! 3.1.4 TU ELECTRIC PROCEDURES AND SPECIFICATIONS STA 302 Station-Records 4 2EP 5.08 Procedure for Preparation, Approval and Control of Project Calculations

2EP-2.04 Evaluating Unit 1 Post Construction

! Hardware Validation Program (PCHVP) 4 Results for Applicability to Unit 2 2EP-5.17 Reporting Attachment Loads Information - to Civil Engineering i ECE-3.26 Design Engineering Organization Statistical Sampling _ Plan ECS Sill Train C Two Inch Diameter and Smaller

  • Conduit and Conduit Support-Design
CQP EL-122 Installation and Fabrication of Conduit Raceway Systems
  • CPES-S-2001 Structural-Embedments
CPES-E 2004 Electrical Installation-CPES S-2005 Electrical Raceway Installation f CPES S-1032G Floor Response Spectra l CPE$1Mj2032&qHffyggS3" Procurensnt?andEIss tellatibnidf! Tire Barrieriandjfireproofing; Materials

3.1.5 LICENSING DOCUMENTS FOR COMANCHE PEAK STEAM ELECTRIC' STATION 3.1.5.1 Final Safety Analysis P.eoort (FSAR) l The following FSAR' sections delineate the commitment pertaining to electrical conduit raceways and the conduit supports:

a. Section 3.2, Classification of Structures, components and-Systems.
               -b.      Section 3.7B',-Seismic Design.
c. Section 3.8, Design of Category I Structures.

3.1.6 DESIGN BASIS DOCUMENTS DBD-CS-90 Conduit and Conduit Support Design Train A, B, i and Greater Than Two Inch Diameter Train C ! /~' ' Conduits-1 DBD-CS-19 Building and Secondary Vall Displacements DBD-CS 15 The Qualification of Embedments In Concrete

I 21M-5.02 CND . Revision 2  ! Page 9 of 238 l

  ,a DBD CS 81              General Structural Design Crittrh

() DBD CS-92 Seismic Design Parameters and Response Spectra Generations Seismic Adequacy of Train C conduits (2" 1 DBD-CS-93 Diameter and less) DBD CS-111 Conduit and Conduit Support Design 3.1.7 DRAWINGS S2-0910 Generic Supports Drawing Series for Unit 2 (includes individual sheets as listed on 52 0910 Sh. TC 1 Table of Contents and Sh. PESD I A Table of Contents). S 0910 Generic Supports Drawing Series for Unit 1 (includes individual sheets as listed on S-0910 and Sh. TC 1 Table of Contents) 2323 5-0786 Reinforced Concrete Typical Details and Additional Miscellaneous Details Drawing 2323 El-1800 Materials List 3.1.8 MISCELLANEOUS DOCUMENTS SAG.CP10, Ebasco Design Criteria for Seismic Category I Electrical i Conduit System [)N (~ SAG.CP12, Ebasco Design Criteria for Junction Boxes for Seismic Category I Electrical Conduit Systems - Unit 2 SAG. cpl 7, Ebasco Design Criteria For Junction Boxes for Seismic Category I electrical Conduit System SAG.CP20 Ebasco Technical Guidelines For System Analysis of Conduit Span Configurations SAG.CP21, Ebasco Technical Guidelines For Thermal Analysis of Seismic Category I Electrical Conduit System SAG.CP25, Ebasco Technical Guidelines For Seismic Category I Electrical Conduit Isometric Validation, SAG.CP29, Ebasco General Instructions For Design Verification of Electrical Conduit and Box Supports SAG.CP35, Ebasco Procedure For Conduit Isometric Design Validation Package Close Out SAC.CP2, Ebasco Design Criteria for Seismic Category I Electrical Conduit System - Unit 2 CP-SG.02, Ebasco Technical Guidelines for Seismic Category I Electrical Conduit System - Unit 2 CPE EB-FVM CS-002, Design Control of Electrical Conduit Raceways CPE-EB FVM CS 014, Design Control of Electrical Conduit-Raceways for

    .'~'/

Unit 2 Installation in Unit 1 and Common Areas

21M-5.02 CND Revision 2 Page 10 of 238 1 4 CPE EB FVM CS-033, Design Control of Electrical conduit Raceways For Unit 1 Installation In Unit 1 and Common Areas CPE ConduitEBSystem FVM CS in 056, Unit 1 and common AreasDesip Control of Modification 4 Ebesco Program 2616, User's Manual for Preprocessor of ANSYS Program for Base Plate Analysis, May 1981 Ebasco Calculation Book No. 8 entitled " Electrical Conduit and Box Supports (Support and Span Verification Procedure)" 2-EAP 003, Engineering Assessment Procedure Unit 2 Conduit Commodities i 2 EAP 022, Evaluation of Seismic Category I and II Concrete Embedments and Embedment Plates QA Manual, ABB Impell Quality Assurance Manual, Revision 18 i CCL Report No. A-699-85, Conduit Clamp Test Report, Phase I, dated l 12/17/85 CCL Report No. A-702-86, Conduit Clamp Test Report, Phase II, dated 4 4/7/86 CCL Report No. A 678-85, Seismic Qualification Test Report of

  • Conduit Support systems, Valumes I and II, dated 10/9/85 Anchor Bolt Shear and Tension Stiffness by Teledyne Engineering O Services, May 25, 1979 Ebasco Interoffice Memo JPP-86-299, dated November 7,1986 ABB IMPELL Con. Calculation No. M-27 Rev. 2, dated 5/5/87, entitled
           " Thermal Load Evaluation" i           Ebasco Calculation Book No.151, Rev.1, dated 5/15/87, entitled
           " Conduit Concrete Embedmont Requirement at Penetration" (Sh 9 of 33)

Ebasco Calculation Book No. Supt-0235 , TRW (Nelson Stud Welding DIV.) letter from H.A. Chambers to H.S. Yu 4 of Ebasco Services dated 5/20/87

Hilti Fastening System, Inc., File No. H2189 S1, Report No. 8784 dated 1/30/74 Ebasco Calculation Book No. Span 1200, Rev. O, dated 10/11/87, entitled "Ceneric Study on Revised Clamp Allowable" Genatal Engineering Catalog No. 10, Unistruc Building System, 1983 Framing Channel and Pipe Hangers, Superstruc Inc., 1974 Nelson Standard In-Stock Stud Catalog TRW Nelson Division,1985 Test Report #C-36-A, " Pipe or Condu't Clamps P 2558", Unistrut i Corporation dated 5/13/77 (O'") Ebasco Interoffice Memo SACTUC 1.9818 dated December 15, 1987 l
    -. -     . .-      .    .--      . -     - ~ , .               ._             ..

l ! IIM 5.02-CND  ! Revision 2 Page 11 of 238 O PCN 01 Ebasco Calculation Books Span 1002 and Span 1003, " Seismic Spectrum i Loading Data Base - 24 and 3t; 44 and 74 Damping" Ebasco Documentation CP JB 20. "Crouping of Electrical Seismic Category I Junction Boxes" i Ebasco Documentation CP JB 21, " Enveloping of Seismic Design Spectra" for Electrical Seismic Category I Junction box Analysis PD STRUDL Users Manual, Ebasco Documentation CP JB-27, " Documentation of STRUDL Input Parameters", for Seismic Design of Electrical Seismic Category I Junction Box Analysis i 2IM-2.00, Civil / Structural Project Control and Procedure Interface Instructions i Electrical Conductor Seal Assemblies (ECSAs), Specification No. EC-i 28 (IKT-2445, Dated July 9,1987 from Impell Corporation to R. Iotti, Ebasco) ! Ebasco Calculation Book No. Supt-0040 ! Ebasco Calculation Book No. Supt-0231 . Ebasco Calculation Book No. EB CSC-2X 08 Ebasco Calculation Book No. AS-006 ( Ebasco Calculation Book No. Span-0003 4 Ebasco Calculation Book No. Span 1012 Ebasco Calculation Book No. Span 1206 l Assessment of Conduit Clamps Installed with A 307 bolts, CPSES, By j Ebasco Service Inc. , May 16, 1989 i t PTR-01, Unit 2 Support for Unit 1 Electrical / Controls

PTR-02,-Unit 2 Required to Support Unit 1

, 2 CECO 0132, Ebasco Letter from Ceorge H. Krauss to J. Nandi, dated July 19,1989, " Unit 2 Recommended Conduit Scope" M M ill W f,M p6ks l ATP-87 01. TU QA Audit Report ATP-88 112, TU QA Audit Report ABBUmpent(Calculation 1McE021,8^ C010.253 ABBlIs # 1E N Tp gat {o p oE 02183C011005 ABB Impell Calculation No. 0218 CO-0007 f*) - ABB lapell-Calculation No. 0218-CO-0026

    %J 1

4.01 DEFINITIONS Egneric Sucoort A generic support is a support which conforms to typical details given in Drawing Series No. S2-0910 or Drawing Series No. S-0910.

                                                                          ._.m   __              _    _          _ _ .

21M 5.02 CND Revision 2 Page 12 of 238 Modified Succort , ' A modified support is a support whi:h has minor' deviations from

typical details given in Drawing Series No. S2-0910 or Drawing Series No. S-0910.

4 Individually Enrineered ("IN") Succort An individually engineered (IN) support does not conform to typical details given in Drawing Series No. 52 0910 or Drawing Series No, It is an unique S 0910 and is analyzed on a case-by case basis. support designed for specific locat,on and conditions. s i P-Delta STRUDL A finite element structural analysis program which analyzes i-structures and determines member stresses, and performs code l

  • compliance checks.

Three dimensional isometric drawing of a conduit run showing various pertinent features of the system. Common supports (those which restrain two or more conduits) will be shown - ISO ondrawing. scre than one The ISO. primary One ISO ISO will be designated will document the " primary"he the qualification of t common support ? considering all attached conduit. Remaining IS0s will be designated

" secondary IS0s.

b Conduit Dra';t;g i A drawing in a tabular form which specifies all the required inspection attributes including the conduit size, or'igin, destination, configuration and conduit supports. LE Conduit fitting used to provide a pull point at a 908 band. l

. Conduit fitting used to provide a pull point within a straight span.

! New Concreta Embedment l ) A concrete embedmont on a conduit or junction box. support installed l ! poet August 31, 1987.  ; l 4 twiatinn Concreta R=had==nt J A concrete embedmont on a conduit or junction box support installed on or prior to August 31,19't7. 1

21M 5.02 CND Revision 2 Page 13 of 238 O 5.0 RESPONSIBILITIES Civil / Structural Proiect_Enrineer

           . Responsible for ensuring that personnal assigned to the conduit project comply with this procedure. RtJerence to the Unit 2 Civll/ Structural Project Engineer is equivalent to the ABB Impe11 Proj ect Manager.

Kpeevevs h ad Discioline En4 Lag g Responsible for the implessntation of this procedure. Reference to the Unic 2 Raceways Lead Discipline Engineer (LDE) is equivalent to the ABB Impel! ?,aceways Project Engineer. Enriceers and had Enrineers Engineers and Lead Engineers are responsible for conformance with this procedure. Engineers shall perform calculations and preparo drawing

  • in accordance with Frocedure 21M 2.00.

6.0 INSTRUCTIONS 6.1 TRAIN A AND 3 CONDUITS Train A and 5 conduit raceways carry electrical cables essential to the safe shutdown of the plant. Therefore, the raceways and associated junction boxes and supports aunt be capable of O withstanding the postulated loads without impairing their performance requirements. Train A and 5 conduit general design criteria is included in Design Basis Dccument DBD CS 390. Compliance with the performance requirements of trains A and B conduit systems is accomplished by verifying the structural integrity of the conduit systen due to the combined dead weight, thermal loads, wind loads, tornado loads and seismic loads. All supports-are multidirectional, designed to resist the seismic or wind induced load in three directions. The analytical procedure described hereafter is used to determine loads and structural acaber stresses. The resulting loads and stresses are then compared to allowables -as defined by hardware manufacturers or by applicable codes. Hand calculations and engineering evaluations may be performed for the design validation of Train A and 5 conduit systems that do not meet the. requirements of Drawings S2 0910 or S-0910, 6.1.1 EVALUATION OF CONDUIT SYSTEM All Components of a conduit system need individual evaluation for their adequacy. All these components can be evaluated by comparison with generi: details / criteria given in S2-0910 E S 0910 series-drawings. In the instances when actual values exceed the criteria stipulated in S2 0910 or S 0910 series drawings, this section provides a methodology to re-evaluate these components.

21M-5.02 CND Revision 2

i. Page 14 of 238 PCN 01 6.1.1.1 Desien Of The Conduit System Condui: raceway system consists of specific components like clamps, conduit spans, conduit supports, junction boxes and junction box supports. These components need to be designed to their specific deaign criteria and then, as a system, meet all the functional and

, t;chnical criteria, stated in this procedure. l 6.1.1.2 Evaluation Of Conduit Sean The span evaluation process consists of selecting a generic LS. Series Drawing No. S 0910 (for Unit 1) ano LS Series or PESD Series , drawings from drawint No. S2-0910 (for Unit 2) that shows a

;                      configuration similar to the span being evaluated, and comparing actual spans with allowable spans given in the LS-Series Drawings.

Whenever a conduit changes direction and terminates in an air drop-i or flex conduit with no support provided between the bend and the

air drop and a coupling is present before the conduit bends, the unsupported portion of the conduit may place a torsional moment at

, the coupling during a seismic event. The inability of the coupling to resist the torsional moment could result in excessive motions at the free end of the conduit. Motions in these free end

.                      configurations would then be resisted by the cables. Neither the
,                      cables nor the terminations have been specifically designed for the loads imposed by such motions. Therefore, in such cases, additional

, supports or modification to the existing supports are needed to i compensate for the conduit overhang, f s,_f Unit 2 conduits bridging across secondary and primary walls shall be i evaluated in a fashion similar to the evaluation performed for Unit 1 conduits in EBASCO Calculation SPAN 0003. Unit 1 lessons lea ned [ shall be utilized to the extent possible. Selection Of Conduit Span Configuration 6,1,1,2,1 The following shall be considered-in the selection of conduit span j configuration:

                     -a,     A bend-less than or equal to 15' may be treated as a straight span, i
b. Spans associated with T-condulet fittings shall be treated-the same as spans associated with LBD fittings.
c. For S-0910 conduit systems, use allowable spans with BC fittings for the allowable spans with unions.

Ir~dropandtnesfib1RionduitR1hngshirper ~

                                             *CPES-Re2004fsha111betusedhMf anexiconduit Ettianiths; maximun nis 9used M thib condut t    i incorpj#Ninidrawing;52h09R8hyjFLEXL7  ~ ~~'ishall be 6.1.1.2.2    Comparison Of Actual To Allowables Spans l                       The following shall be considered in the comparison of actual to allowable conduit spans:

l (

  \,,)%
a. Span tolerance of +/-3" need not be considered for evaluating
                             . spans, supports loads and/or conduit frequency,
b. For LS series drawings, bends shown for conduit runs are schematic only (unless otherwise noted); bends may vary from 15' + to 90'.

I 21M 5.02 CND

                                                                 -Revision 2 Page 15 of 238 b 

PCN 01

c. The maximum spacing between supports shall not exceed the S1 maximum dimension shown on sheet LS 2 series of Drawing No. S2-0910 and sheet LS 5 series of Drawing No. S 0910 for supports installed in accordance with drawings S2-0910 and S 0910 respectively,
d. For multiple conduit runs of different diameters on common supports, the conduit (s) with the most stringent criteria shall govern the spans and shall be compared accordingly.
e. The minimum number of supports on a run of conduit which enters or exits a supported or unsupported junction box, shall be in accordance with Drawing No. S2-0910 or Drawing No. S-0910.
f. Use the minimum allowable span _ length among all elevations for conduit runs which may be supported at more than one elevation.
g. If as built span configuration deviates or exceeds allowable, custom evaluation shall be made per Section 6.1.9 of this procedure or ISO can be conservatively evaluated',using 1.5 x Peak "g".

6.1.1.3 Evaluation of Existing Conduits Existing conduits are those issued for construction during or prior to 1987. Existing Train A and B conduits with completed . calculations were issued prior to termination of Unit 2 work in

1987. Since then, all the efforts were put on the completion of IT Unit I work. During this effort, issues and concerns came up
   \s /           through external and internal audits as well as other activities.

These issues and concerns were resolved for Unit 1 conduits but not for Unit 2 completed calculations. A review of licensing documents (i.e., SDARs, CARS, CDFs, etc.), TAP audits (ATP 87-01 & ATP 88 112), Project Status Report (PSR), Unit 1 procedures, Unit 2 procedures and Unit 1 lessons learned has been performed. As a result of this review, a checklist of all the items with a potential impact on the existing calculations was generated and in included in Attachment 8.L. These completed calculations shall be design i validated by using any or a combination of the approaches presented in Section 6.3 of this procedure. A suggested design validation flow chart is included in Figure 7.40 Calculatt^ ;0252*dasign wa11datu tth reristing m ando c culationisisodprovides?5uidelinenfoCfutuei

                                       ~ica)bsiseiona$thesepidelinesishalinbeifo1106e cal tonifromithM Ebascolca pulattop{1sheedf - ~ ~ '

For the population of existing Unit 2 Train A and B conduits with incomplete calculctions, a suggested design validation flow chart is shown in Figure 7.41. This approach is based on a screening and/or a sampling process. The guidelines presented in Section 6.3 of this procedure shall be followed to the extent possible. A review of Unit 2 outstanding audits ATP-87-01 and ATP-88-112 indicates that there are walkdown discrepancies between some Unit 2 drawings and as built conditions. This issue shall be investigated and evaluated if deemed necessary. Evaluation shall be done in accordance with the applicable requirements of Section 6.0 of this ()

   \_/

procedure. Existing Unit 2 conduit system in Unit 2 areas have been installed. per the S2-0910 series drawing. Existing Unit 2 conduit systems in the Unit 1 and common areas have been installed per the S-0910 series of drawings.

l 21M-5.02-CND Revision 2 Page 16 of 238 1 p 6.1.1.4 Desirn of New/ Modified Conduit Systems New Train A and B conduit systems shall, in general, be routed per the S2-0910 PESD series of drawings. The PESD scries drawings are based on the criteria provided in this procedura. A conduit drawing, as shown in Figure 7.42, shall be prepared for the conduit systems routed per the PESD series drawings. General guidelines to prepare the drawings are included in Attachment A.K. If required, the S 0910 and S2 0910 series drawings may also be used to route new conduits. In this case, an isometric drawing shall be prepared per ' the general guidelines provided in Attachment 8.J. Exceptions may be justified on a case-by-case basis. When an existing conduit run is reworked (e.g. partially rerouted, or support modified), it should be designed using the design series drawings (S 0910 or S2-0910) used for the initial routing or completely qualified using the PESD series drawings. Exceptions m*./ be justified on a case-by case basis. 6.1.2 CALCULATION OF CONDUIT IDADS (14 AND L) T 6.1.2.1 Conduit Loads for all the

'               a. The determination of Conduit Loads, k and L, No. S2-09)f or S-supports shall be per "LS" series of Drawing 0910. If conduit confipration is not contained in LS series-of S2-090 drawings but is covered by LS series dwg of S-0910       '

then the equations to compute Ls & 4 from drawing S C,10 (and -

   T               vice-versa) can be used.

(V b. For double bend configurations, the calculated k and 4 loads shall not be less than the contributory weight of 1/2 the span , plus all fittings in the entire span,

c. When L t
                               & Le cannot be determined from standard span configurations shown on S 0910 or S2 0910, is & Lr shall be taken as sum of half the span of conduit on either side of the referenced support and further analyzed by equivalent static method to determine the load on the support.

I d. The conduit loads for the first two supports from the supported junction box shall be calculated by considering the condult between the junction box and the adjacent support as an overhang. his method does not account for the junction box stiffness. This results in conservative loads on the two adjacent supports. For an unsupported j Inction box, the veight of junction box shall be lumped at the end'of the overhang. There are some -cases where the conduit going into the junction box is supported by one or two supports. In these cases, the conduit system shall be evaluated as follows:

1. Sup ort loads shs11 be conAervatively hand calculated by gnoring the junction box stiffness. The total con uit loads (including weights for components such-as flexible conduit and fittings) shall be luuped'at each support. Otherwise, system analysis shall be -

performed.

2IM 5.02 CND Revision 2 Page 17 of 238 PCN 01

2. Conduit spans shall be evalu.sted by considering the in plane stiffness of the jun: tion box plate. This

' means that the junction box sl a11 be treated as a restraint in the lateral directions of the conduit. Conduit spans shall be compared tc the conduit span allowables presented in Drawings S2-0910 or S 0910. Otherwise, hand or computer calculati)ns shall be perfo rroed ,

e. The term Lug used in the 4 formula for a support represents the conduit load from the adjacent span to the support being evaluated,
f. Condait load imposed on a supported junction box is equal to half the span to the first support times the weight of

, conduit (s) entering the box. , g. The wind load effects on conduit systems located outside of the buildings have been generically evaluated in Calculation Book Span-1206 and it concluded that all generic conduit, conduit supports and junction boxes are adequate. The effect of the tornado and tornado related loads on conduit systems located outside of the buildings shall be evaluated on a case by case basis as required, See Section 6.1.10,1. I h;". 4 Airidrop'Tand ' flexible T conduit 31engthalas T sp~ecifiedlig

                       ~~                                                         ~ ~ " ~ ^

Sec tion 16 dili2fl{dEsha111belusedf~~ ~~

 /h 6.1.2.2    Additional Conduit Veicht Considerations O               In addition to the weight of conduit and cables the following additional weight due to the items given below shall be considered in the evaluation of Lt & L, .

6.1.2.2.1. Firewrap (Thermoblanket) Firewrap (thermoblanket) may be serving the function of separation barrier and/or radiation energy shield for the conduits (see

Specification CPESJMi2032).

For thermoblanket, the dry weight only shall be considered in load combinations having OBE or SSE effects. The wet weight shall be considered for dead load without OBE and SSE effects. For unit weight of thermoblanket, refer to Specification CFESjgE W. w' Dets. These unit weights do not include the conduit and Eable ~ If the exact dimensions on the extent of fireve:p coverage are not extend the firewrap to the adjacent support on either end o rewrap shown. If airdrop is partially or fully covered with firewrap, use 4' - 6" len5th to determine the firewrap weights. conduit run covered b firewrap shall be evaluated to?~ Account Any; for M I M M S aslig -

                                                  '                                   "       ~'~

m

<                                                                  2IM 5.02 CND i                                                                 Revision 2 Page 18 of 238 i   f~

s/ PCN 01 6.1.2.2.2 Thermolag Thermolag may be serving the function of separation barrier and/or radiation energy shield for the conduit,

a. For unit weight of thermolag refer to specification CPESJMf 2032.
b. If the exact dimensions on the extent of thermolag coverage are
 ,                       not available extend the thermolag to the adjacent support on i                         eithef"end~o~f thermolag shown. If airdrop is partially or fully covered with thermolag, use 4' - 6" length to determine 3

the thermolag weight. 1

Any conduit run covered by thermolag shall be evaluated tola(count
foritheladditibnal')elght.

6.1.2.2.3 ECSA Evaluation Electrical Conductor Seal Assembly (ECSA) is mounted on the conduit system to protect the cables from the environment ECSA-itself is ] qualified by Specification No. EC-28. The peak "g" values used for the qualification of ECSAs and the component weights for ECSAs are given in Figure 7,25, 6.1.2.2.4 Bisco Seal Evaluation A bisco seal is a " foam rubber type" fireproof substance. It is

    -g              used to fill a block out in a concrete slab or wall.
   \- I             The conduit is not supported by the bis'o seal and the bisco :aal does not contribute any load to the conouit.

6.1.2.3 Load Factors

a. The load-factors for various configurations, buildings and elevations are listed in Figure 7.38.- NOTE: The load factors listed in Figure 7.38 apply to supports installed-to the requirements of S 0910 drawing series. Load factors _for supports installed to the requirements of S2 0910 drawing serles kradWisttiriiteitsdiph RSM analysis ~liperf6rmed' per'Section~611.13'or'c6nditions ylCalen14tioM0218?C0i'OOO6. Uniess

, described below are met, these load factors shall be used to multiply the conduit loads (Ls and L ) obtained in Section 6.1.2 to design verify the adequacy ;of the conduit support. b Under the following condition, the Load Factor need not be applied: If the conduit system which includes conduit, and conduit supports and junction box supports, is designed by the seismic accelcration of 1.5 times the peak "g" values, from response spectrum curves. _ , + , .-..4 ., -

_ _ _ _ _ _ . .. . . . _ _ = - l 3 21M 5.02 CND Revision 2 Page 19 of 238 1 4 6.1.3 CIMP EVALUATION

a. Conduit clampa shall be design validated for dead load plus SSE l l

loads based on the conduit safety class, clamp type, bolt or i ' stud size and the material of the fasteners used in clamp. l (1) Trains A and B Conduit Systems 1 ! o The following equations shall be satisfied for all i clamp connection details except when A 307 or . unidentifiable bolts are used in clamp or when 3/8" 9 l - Nelson studs are used with C-708 S clamps: I _s 1.0 Ta ! Y_ $ 1.0 l Va ! L_ s 1.0 i La where: I T,V,L, -- Calculated ci g loads in the transverse, vertical and longitudinal directions, j Ts, Va, La -- Clamp allowable loads in the

transverse, vartical and longitudinal directions.

! Dead wei5 ht shall be added by absolute sum to the

 '                                        appropriate seismic load direction. The clamp allowable given in Figures 7.1.1 thru 7.1.10 are for both OBE and SSE-load conditions based on test results. The L direction is parallel to the conduit longitudinal axis. For the definition of V & T direction, see Figure 7.2.

1 i o The following equation shall be satisfied for C 708 S clamp with 3/8 9 Nelson studs or UNISTRUT bolts: l

                                                      +     +       s 1. 0 h*$

F 3 l [\ ty I

 .---v.     .
                   .- ._ ~.- - n-                            . - . _ - -                             . - -                -             - - - .      . ~           - ~ ... - ~

21M 5.02 CND > " Revision 2-Page 20 of 238-4 D -- Dead weight of conduit at -clamp where D -- The allowable clamp load-in the direction of .

  • l l dead weight of conduit which is either L., T or -

! . _ V. . L,T,V -- Conduit seismic loads'in the .

                                                                                         . longitudinal, transverse and vertical directions.
i. - -

l L., T., V. - Clamp A11owables in- the longitudinal,

                                                                                          . transverse and vertical directions, f

h The clamp allowables _ L,. .T.,1 V, are given in Figures 7.1.1 thru ( 7.1.10. . o o When ci g' s'are used with A 307 or unidentifiable bolts, the' clamp axial allowables

                                                                         . shall be reduced to-the percentage given-below:

i !- 1) 33% of full axial allowable =for-1/4"'$ bolts i 2)~37t"of full axial allowable for 3/8" $ bolts

                                                                          . 3) 606 of full axial allowable'for11/2" $ bolts-i 1
b .' Clamps shall be evaluated in accordance with'Part "a" using the i calculated ig and 17 and appropriate "g" values. The-l- appropriate g" values are defined as follows

i

1. -In the vertical direction:(dead load direction),

[ appropriate "g" value - 1 + g , ! 2. In the other directions,: appropriate."g" value - g , y ! The 6 is the maximum "g" value of three cogonent "g" values L obtained from the desip- "g" value table specified11n Figures ' 7.3.1 throu5h 7.3.7. .Ifithe conduit system is analyzed by RSM analysis,Jand the orientations,of conduit and supports are known, "g" values can-be obtained directly from RSM analysis in each appropriate direction.- Also,- for: conduit systems l validated by the seismic acceleration of 1.5 times =the-peak "5" l

                                          ' values; the 1.5l peak "g" valuesLfrom each appropriate direction y                                            can be used.'

I _ Figures 7.4.1-and 7.4.2 specify.the sizelof studs and bolts to . l_ < .be used in conjunction with the clamp allowables. If clamp is-- l= not adequate, replace clamp by one with a higher capacity. ' ! c.- Clamps in secondary ISO shall not be evaluated in secondary-ISO calculation packa5e.. These clampsLshall'be evaluated during= - the design validation ~of common-supports and included in the ! . primary ISO calculation package.. In secondary ISO: calculation package v reference shall be made' to the;;,rimary ISO calculation _ packa5e for clasp evaluation. When a new conduit system is

                                           -desiped Ln accordance with the requirementsiof' PESD series- of -

U -S2-0910-drawings- clamps shall be' evaluated along with the: conduit-evaluation whether it-is. primary,or secondary, i l -d. LClamp allowables using Unistrut bolts are applicable-to c, lamps

                                            .with Unistrut type _ member,

'f  ; Jx e. . C1g allowables using Hilti bolts are applicable to both RKB and HSKB. i~

              ,e--             . --             .m     y   ,    -wa          ,e..     , , . , .
                                                                                                            , ,,,,m.m.....w.,,.w...             %.., ,,      w.%, , ,e.%,.s.,.   ,,c,,,_,....,..s.,,,

21M 5.02 CND Revision 2 Page 21 of 238 O V f. Clamp allowables using Nelson studs are also applicable to clamps with A325 and/or A449 bolts. 6.1.4 SUFFORT EVALUATION Tor "IN", modified and generic conduit support, the following procedure per SAG.CP29 Section 6.3 shall be used to evaluate bolt hole edge distance and bolt stresses, and to account for the oversized bolt hole effects. , a. Bolt Hole Edge Distance For connections with more than two (2) bolts, the oversized bolt hole effect dimensions fromneed centernot of be considered bolts if the(edge to free edges "As-Built" distance) meet the edge distance requirement specified in Table 1.16.5 of the AISC Specification (7th Edition). For two (2) bolt connections, the worst edge distances to free j edges of structural membar or plate shall be computed as follows: 4 d, - d - e where: d,= Worst Edge Distance (From centerline of bolt to

nearest free sdge) d "As-Built" Edge Distance (Froo centerline of bolt to nearest free edge)
  %,,)                           e   - Termissible Bolt Hole Oversize Based on Statistical. Evaluation are shown below.          (Bolt Hole Dia - Bolt Dia)-

The minimum d, shall be considered in the design validation of support, BOLT DIAMETER BOLT HOLE OVERS 1ZE (e)- f (INCH) (INCM) { 3/8 3/16 i 3/16 l 1/2 1/8 5/8 3/16 3/4 3/8 1 1 1/4 3/8 1 1/2 3/8 If calculated A is equal to or greater than the minimum edge distance specified in Table 1.16.5 of the AISC Specification (7th Edition), the "As Built

  • edge distance is acceptable, i For cases where above requirements (as applicable) are not met, the worst edge distance shall be checked to assure that the shear stress in the not section of the connecting part produced by bolt shear load is less than 0.3 Fu. Fu is 58 h i for A36 steel.

. a _ e

      ..   - = - . . -      -      -      _ -     .            -       -. . _             .    -      .-               -   __      .

l 21M 5.02 CND Revision 2 Page 22 of 238 i s b. Bolt Stresses for Bolts in Steel to Steel Conneesions Allowable bolt stresses for bolts used in steel to steel connections shall be calculated considering the connection as a bearing connecticn with threads in the plane of shear. ] Bolts subjected to combined shear and tension loads shall satisfy the interaction formula specified in AISC Specification. Section 1.6.3. 4 i In calculating the shear in bolts for two bolt connections, the total shear force parallel to an axis common to both bolts i (excluding shear due to torsion on the connection which is 1 I applied to both bolts) shall be considered as acting on one (1)

bolt only.

! c. Bolt Stresses for Bolts in Steel to Concrete connections l Bolts subjected to combined shear and tension shall satisfy the ) interaction formula specified in Design Basis Document DBD.CS-015 and Specification CPES S 2001. In two bolt connections, the total shear force parallel to an axis common to both bolts (excluding shear due to torsion on the connection which is applied to both bolts) shall be considered as acting on one (1) bolt only. However, if the 4 shear ratio (actual shear divided by allowable shenc) is less than or equal to 0.25, the oversized bolt hole effect need not i be considered. A i Attachments to embedded plates shall be evaluated per the t

   \- /                        requirements provided in Drawing 2323 S 0786. Otherwise, send to the Civil / Structural Group for approval.

. 6.1.4.1 Suonort Damian Landa

a. Support desip loads shall consist of calculated conduit loads Lt and drawings 4 and weight of shin and' Use CSD.

Jeries of Drawing No. d0910 or filler and 52plates.0910 or Figures 7.5.1 through 7.5.2c to calculata weights of standard shim and l < filler plates when as built dimensicas are not available. ' Oversize shin and fillse pl ..:e weights must be calculated per > as built conditiona.

b. Use the smaller support capacity from the top and bottom elevations when the support is located between two different

' elevation groups. For additional clarification, see Figure 7.6. 6.1.4.2 canarie sunports

a. For generic supports, support design loads must be compared directly with the capacity of the particular generic support for appropriate building and elevation.
1. If support loads are within the capacity given in Drawing No. S2 0910 or Drawing No. S 0910 the support is adequate.
2. If calculated loads are larger than the support capacity, custos system evaluation per Section 6.1.13 can be made.

O

l l' 21M 5.02.CND Revision 2 Page 23 of 238 1' PCN.01-1 b. For support analysis using STRUDL computer analysis, see j Section 6.1.16.1 ! c. Unit 2 CSM.2a.II type conduit supports, carrying 2" $ thru 5" $ conduits, shall be design validated by assuming 3 /8" 4 Hilti .i' Kwik bolts. This applies to all. isometric drawings with revision 0 issued prior to November 6, 1986. For those i- su orts issued after this date, note 4 on S2 0910, sheet CSM. 2A I, Revision 5, shall apply. l l 6.1.4.3 Modified Sunnorts i i A modified support is a support which has-minor deviations from ] typical details given in Drawing No. S2 0910 or Drawing No. S 0910. 4 Modified supports may be design verified by comparison to the ! generic support by hand calculations provided that all corresponding i members and attributes which impact the capacity of the support can

!                                                 be demonstrated to be more conservative than those used for the j                                                  generic su criteria.            pport to moet frequency. requirements and acceptance j

6.1.4.4 Individually Engineered (IN) Suonort l j An individually engineered (IN) support is a support which does not conform No. S2 0910.ypicalto t An INdetails support givenshallinin Drawing generalNo be.S.0910

                                                                                                                                                                                    ,      evaluated  or Drawing using STRUDL Computer Analys s per Sect on 6.1.16.

f.-- 6.1.4.5 Common Sunnorts  ; l a. When verif i - a common su i support),foNsmustbetakport(generic,-modifiedorINen from all the conduits support j only primary ISO design shall contain calculations for the_ common support. Secondary.IS0s will contain computation for- . span adequacypidampo and conduit loads is and 1.r and shall i refer to the speciflci support number and the primary ISO

calculation for the structural adequacy of the common support.

When a new conduit system is designed in accordance-with the requirements of PESD series of S2 0910 drawings -clamps shall i

beevaluatedalongwiththeconduitwhetherit[sprimaryor i secondary.

! ' b. RSM' analysis does not-need to be performed for all conduits i supported by the common support. RSM analysis may be done for i the selected conduit or conduits as required.- The support must also satisfy the minimum frequenc j are not analyzed by RSM analysis.y requirement if all conduits- [ 6.1.4.6 Frequency Requirements All conduit and junction- box supports shall meet the minimum frequency requirements of 14.45 Hz-for $2 0910 supports, 16 Hz for

PESD serles supports of S2 0910 and as contained in~ Figure 7.23 for e S.0910 supports with consideration of base plate flexibility.

b ,u J-4 L-__-_ _ _ _ . . _ _ , ._ _. s gr = -,-w,r,2- r--=vy. r,--e o y ap F -Y v 1t ew as = %-qv^=~T+--e w v ' p' e k+wm- v*w-v v -o r + v v +=r~++e = *-m--*- y' w 7 :"- *N-*f-P- - i +w -

     - . . _ - - - - - - _ ~ - . - - - . .                 - - - - - . - . - -                            - - - _                 _ . - - - -

i 21H.5.02.CND Revision 2 I Page 24 of 238 i O a. For generic supports which do not meet the miniews frequency PCN 01 requirement, allowable weight of attached conduit (capacity) may be reduced until the frequency requirement uf the support

is met.
b. For modified and IN supports which do not meet the minimum
frequency requirement.
1. Re. evaluate all primary and secondary-IS0s attached to that support using the actual support frequency.

j OR

2. Modify the support to meet the minimum frequency.

requirements. , i c. A recommended computer input skeleton has been prepared to i perform the frequency analysis using the STRUDi. program (See Attachments 8.D and 8.E). 6.1.4.7 Loneitudinal Imad Distribution l Based on Unit i design validation experience, documented in EBASCO Calculation AS.006, and similarities in generic support details i included in S2 0910 and S.0910 drawing series, it can be concluded that longitudinal load distribution has no significant impact on design of conduit supports. Therefore, longitudinal load , distribution due to relative support stiffness need not be

considered in the design validation of Unit 2 conduit supports.

! 6.1.4.8 Rotation of Desian "a" Values Unless-the RSM analysis is performed to determine the actual "g"

values and the support orientation is known, the support has to be l designed in accordance with the design "g" values given in Figures 7.3.1 through 7.3.7. The design "g" values in each direction shall be rotated to envelope all conduit orientations.

When' the MstasellapMutDprients41s#!%s3shoogthe U giWaluna quesd not_ M Je n teetit f-limtS* S valuesTare w por 2 R rdes from Calculattent02154C020007 Fare'usedrYor i hs D i*PProp iatejospenselspectrLeurvealare l'

6.1.4.9 Evaluation Of Embedmant lannth For Areas With Floor Tooninn

! For areas with a 2-inch floor topping, embedmont length of bolt as measured / calculated from the top of tho' topping, shall be reduced by 2 inches in design of the support. To locate areas with 2 inch floor topping, refer to Figure 7.17.

                                           =To calculate the "Embedment Length" of bolt, the following formula shall be used:

Embedment length - length of bolt bolt projection length + nut thickness.

   -(                                       "Embedment length" is the length of Hitti Kwik bolt extending below the surface of structural concrete prior to setting (tightening).

21M 5.02.CND Revision 2 Page 25 of 238 1 6.1.4.10 Material Properties

a. Rigid conduit shall conform to ANSI C80.1 and W.C.581d.

l E - 29 x 10' psi I 3 F, - 25 kai

b. The design weight (including cable weight) anc sectional properties (per standard weight pipe properties of AISC American Institute of Steel Construction for various conduit
  • sizes are listed in Figure 7.18.
c. Welding electrode shall conform to AWS A5.1 Class E.70XX.

F - 58 kai

d. Concrete 28 day compressive strength shall be 4000 psi having a specific weight of 141 pcf.
e. The modulus of elasticity of concrete shall be 3.46 x los p g, 1
f. Nelson studs shall be cpi. or CFL type manufactured by TRW Nelson Division.
.                          F, - 50 ka t
g. Hilti Kwik and Super kwik bolts shall be as manufactured by Hilti Fastening Systems.
h. Unistrut bolts shall be manufactured by Unistruc Corporation and conform to SAE J429 Grade 2 F, - 58 kai or ASIM A.307, F, - 36 ks i .
i. Richmond inserts shall be as manufactured by Richmond Screw Anchor Co., Inc, J. Conduit clamps are as manufactured by Unistrut Corporation or Superstrut Inc.
k. Structural steel shall conform to ASTM A.36.
1. Structural tubing (square and rectangular shapes) shall be ASTM A.500 Crada R.

E - 29 x los p,g F,- 46 kai O

i i  ! 1 l 2IM.5.02.CND 4 Revision 2 ' Page 26 of 238 !O

6.1.5 EVA1JJATION OF JUNCTION BOX CAPACITY AND JUNCTION BOX SUPPORTS 6.1.5.1 Junction Bor Desien Loads
                                                        - a.             The conduit connections to the junction boxes shall be designed l                                                                          for the applicable load combinations in Section 6.1.10. Figure 7.19 lists the threaded conduit sectional properties and Figure f                                                                          7.20 provides the conduit to junction box locknut details for                                                      i connection calculations. The junction box shall be considered adequate if the conduit load on the junction box does not exceed capacity as shown in JA & JS Series drawings of Drawing                                                     !

i No. S 0910, or JS. series drawings of Drawing No. 52 0910. l i l b. The design of the junction box support shall consider - conduit the and ' weightofthejunctionboxincludingitscontent[udingits support members. The weight of ; unction box ine , contents and the conduit weight Laposed on junction box shall l be lumped at the C.G. of box. ! The tunction box support shall be considered adequate if the total load on the support does not exceed support capacity of l j JA Series and JS. Series drawings of Drawing No. S.0910, or JS. i series drawing of Drawing No. 52 0910. Further analysis shall be performed when load capacities are. 2 ! exceeded or the junction box does not meet the generic drawing i requirements. j c. The weight of contents inside junction box shall be assumed j equal to 10 lbs/f t times the largest dim 6nsion of junction box. l d. Conduit loads imposed on junction box are equal to one half of the total conduit weight between junction box and the adjacent l conduit support and shall be used for the design of junction I box support only.--

e. For the supported and unsupported boxes, the connection shall consider all forces from the computer analysis. Actual
forces / stresses shall be compared to specified code and/or j

manufacturers allowables. l f. ~ conduit capacity for the support design of smaller junction boxes can be obtained as fellows (smaller junction box has each ! of its dimensions (L. W and D) equal to or smaller than the

corresponding dimension of the ' unction box from which the conduit capacity of small junctlon box is derived): .
1. When the anchor bolt location of the junction box support l is not affected by junction box site, such as single ,
                                                                                                                                                                                             ~

' cantilever type for JS Series: \ - New conduit capacity for the smaller junction box size can l be obtained conservatively by adding the difference of weight between maximus jur.ction box size and smaller 3 junction box size to the conduit capacity corresponding to the -maximus junction box size. LO ) y -. w--- - - , - , r,w + , , - . - - -.-r .-- .- - , , , .w vw-- .- ==-,...,...,% ,# -,. w r - 3.---v.,-

2IM 5.02.CND Revision 2 Page 27 of 238 O 2. When the anchor bolt location of the junction box support is such as distance between affected by jur.ction box size,f drawing S.0910, the evo MC3 channels shown on JA.12 o ~ conduit capacity for the smaller junction box size can be calculated conservatively as follows: l a) Add conduit capacity to the corresponding maximum size junction box weight to get total weight (W )* T b) Calculate adjusted Wt. V4-Vr : d dMAX SML , Where: d SML and d MAX = Distance between two anchor points 1 ' for smaller and maximum size junction Box respectively, l c) The conduit capacity corresponding to the smaller junction box size can be obtained by subtracting the 4 smaller junction box weight from adjusted weight. i

3. For evaluation of Non. Nuclear Safety Related Seismic Category 11 junction box, if it is shown that the conduit lines entering and exiting the junction box do not fail and that the conduit and conduit supports can carry the weight of 1 unction box without catastrophic failure, then this is sudficient to conclude that the junction box will not fail.

, () 6.1.5.2 For loads and load combinations, see Section 6.1.10. saimmie Innues

a. Generic case In the m ical generic case, the seismic loads imposed upon the junction box (from the interfacing conduits) are determined by considering the conduit support flexibility and the flexibility i

of the junction box conduit interface.

1. The weight of junction box including its contents shall be considered for 1.5 tLmes peak "g" values (Figures 7.8.1 l

throu5h 7.8.7).

2. The conduit weight and dead we15 ht of support member shall be designed for design "g" values Figures 7.3.1 through 7.3.7.
b. Special and Non Typical Case In special and non m ical cases. the seismic input will be obtained by considering the combined system flexibility of the junction box / conduit system and corresponding supports,
c. Response Spectra Enveloping To avoid extensive analysis by utilizing individual building spectra, floor response spectra can be anveloped within each building and then further enveloped for all buildings f.n the-

{T

  -\--)                      vertical                  north south and east. west directions. n. e

[onofthese[saicinputshallaccountforallpossible applicat orientations of the junction boxes within any of the six

                                  , . _ . - - - -         - . , ., n .-          ,,,..w.._ . -     -     .._ ,       . , .       -. -, ,-   -

21M 5.02 CND Revision 2 Page 28 of 238 i O buildings. The qualification analysis can proceed using the more conservative overall spectral envelope first, and then using individual building envelopes with individual elevation spectra, if necessary, until qualification is achieved. Refer to Ebasco Documentation CP JB 21 for envelopin5 methods. 6.1.5.3 Junction Box Anchorares , 6.1.5.3.1 Nelson Studs

a. Nelson Studs shall be evaluated by using the equations in Section 6.1.12.3.
b. Prying action shall be considered for both concrete wall and frame mounted junction boxes. The magnitude of the prying shall be determined by generic analysis. using different generic box sizes, bolt tn es, and foundation module. The analysis shall consider multiple direction loading and shall factor in the flexibility of the Junction Box and mounting surfaces. A comparison of anchorage tension forces resulting from support conditions with and without baseplate effects will determine maximum prying action factors. (Ebasco Documentation CP.J8 27) 6.1.5.3.2 Hilti Kwik And Super Kwik Bolts
a. New concrete embedmonts shall be evaluated in accordance with the procedures listed in Design Basis Document DSD CS 15 and Specification CPES S 2001. Existing concrete embadments shall be evaluated in accordance with the procedures listed in-O Revision 2 of Specification 2323 SS 30. For Unit 2 areas, existing concrete embedmonts may be dispositioned per 2 EAP-022.
b. The actual tension should be amplified by the prying factor.
c. The factors included in load combinations of Section 6.1.10 do not apply to allowables for Hilti bolts,
d. See Figure 7.21 for spring constants for Hilti bolts,
e. For minimum spacing requirements, see Section 6.1.12.4.

6.1.5.3.3 Unistrut Bolts Unistrut bolts shall be evaluated by the following equations:

                                     'T(P.F.)1 , 18 s 1.0 Ta        , Sa where:

T.S - Actual Tension and Shear in bolt T, . S - Allowable Tension and Shear in bolt P.F. Prying Factor, see Section 6.1.5.3.1. .( ) - Allowables are listed in Figure 7.22.

21H.5.02 CND 4 Revisien 2 Page 29 of 238 6.1.5.4 Junction Box Freauenev ! 6.1.5.4.1 Supported Junction Box ! a. Typical Generic Cases Only the frequency of the conduits interfacing with the junction boxes are obtained from a 3 D model ofThe a 2spring span conduit run, with simulated support springs. constants are based upon a minimum frequency of 14.45 Hz and are applied in three translational directions at conduit j support points and at the junction box / conduit intersection. I b. Special and Non Typical Ceneric Cases The box support system frequency is obtained directly from the constructed 3 D model of junction box. conduit support systa:n. ' The stiffness of the adjacent conduit supports shall also be considered and simulated by springs attached to the ends of 3 D model for a minimum support frequency equal to 14.45 Hz in all three directions. Boundary conditions at the points of support (bolt connections), shall properly simulate the stiffness of the support in all 3 directions. The frequency of the junction box support system shall include all modes up to 33 Hz, and will be used to perform the spectra analysis. 6.1.5.4.2 Unsupported Junction Box ! A 3 D model of ' unction box conduit systems will be constructed, The stiffness oli the adjacent conduit supports shall also be r considered and simulated by springs attached to the ends of 3 D model for a minimum support frequency equal to 14.45 HZ in all three directions. The frequency of the box conduit system will be used to perform the spectra analysis and shall include all modes up to 33 , Hz. l 6.1.5.4.3 Minimum Frequency Requirement Junction box supports shall meet the minimum conduit support fraquency requirement of the building. Therefore, thevalues nunction box (Figures support members shall be designed for the desi *E" 7.3.1 throu&h 7.3.7). As an alternative, the unction box support may be designed for 1.5 times peak "g" values isted in Figures 7.8.1 through 7.8.7 for conservatism, provided that the frequency - requirement is met. 6.1.5.5 Pull Rauma mad Terminmi Baras The pull and terminal boxes shall be evaluated using the criteria in i this section. Attention shall be given to the total box weight (cables and any permanent attachment). 6.1.5.6 Material Fronartina

a. Steel sheet metal for boxes: E = 29 x 108 kai, ASIM A 569.y F - 25 ksi, Fm - 40 kai
b. Structural steel for box lugs: ASTM A 36, F, - 36 ka i, E - 29 x 103 kai
                                                                                                                    - r-mes.      ~.--a

21M.S.02 CND Revision 2 l Page 30 of 238 l c. Support structure: E - 29 x 103 ksi, ASTM A 36 F,- 36 kai ASTM A 570 Grade C . F, - 33 ka t ASTM A 500 Grede C - yF - 46 kai

d. Rigid conduit conforms to ANSI C80.1 and W.C 581d.

] ! e. The design weight (including cable weight) and sectional )' properties (per standard weight pipe properties of the AISC American Institute of Steel Construction) for various conduit sizes are listed in Figure 7.18.

f. The design weights of flexible conduit are listed in Figure 7.24
g. Nelson studs are CPL or CFL type manufactured by TRW Nelson Division, Fy- 50 kai.

l h. Hitti Kwik and Super Kwik bolts are as manufactured by Hitti ! Fastening Systems. I

1. Unistrut bolts are as manufactured by Unistrut Building System and conform to SAE J429 Grade 2. Fy - 58.0 kai or ASTM A 307, F, - 36.0 ksi.

J. Concrete 28. day compressive strength is 4000 psi, having a

specific weight of 141 pef.

j

k. Boxes and covers shall be made from steel sheet of thickness not less than the following:
Largest box dimension less than 36" 14 U.S. Gage

! largest box dimension equal to or greater than 36" and less than or equal to 48" 12 U.S. Cage Largest box dimension greater that-48" 10 U.S. Cage 6.1.6 SHEAR CENTER thCATION OF COMPOSITE CHANNELS f a. Firure 7.12 is a summary of shear center locations for the following composite sections which consist of'two channels: r  := = r

1. C6 x 8.2 and c6 x 8.2 ou
2. C8 x 11.5 and C6 x 8.2 c s
3. C6 x 8.2 and C4 x 5.4
b. Due to variation of distance "Dy", the above composite sections represent twenty two different sections used at CPSES site, l
c. Figure 7.12 also includes the information on C.G. and the area moments of inertia with respect to principal axes as indicated i by-11 1 and 12 2. l l
d. For all other composite sections, the engineer shall determine I the shear center.

O

                                                                                                                      +

21H.5.02 CND Revision 2 Page 31 of 238

  \'        6.1.7     VELD DESIGN i

Allowable stresses for velds shall be as specified in Section 6.1.11. Provision shall be made for an undersize of 1/32 inch when 4 qualifyin6 fillet velds,

s. Minimum Veld Size Velds not meeting the AVS code minimum weld sire requirements, but found through detailed analysis to have stress within the allowable stress, are acceptable from a design verification standpoint. However, a minimum acceptable structural weld (as shovn'on the As.Butit drawing) shall not be less than 1/8 inch.

Both veld and base metal thickness must be appropriately considered in weld qualification per AISC code requirements except as noted above. For fillet welds, the allowable shear stress on the base metal shall not be exceeded (See Section 1.5.3 of AISC Ths base American metal shear stress Institute of Steel Construction). allowable shall be limited to .4W for OBE and .5Fy for SSE. For full penetration welds, the allowable stresses shall be those for the base metal.

b. Varping Stresses in Anchoring Velds b
  \s,/

In cases where Etabers are subjecced to warping effects (member welded "all acound" at embedded plate or anchored plates or other members), the anchorage weld verification shall include warping stresses in addition to other stresses. For such cases, warping will cause two additional stresses in the weld. One of these will be in the same direction as, and must be added to, the shear stresses caused by direct shear. The other I. warping stress is in the same direction as, and must be added to, normal stresses caused by member axial and bending loads. These two totti weld stresses must then be combined by SRSS.

c. The stress on welds between composite channels shall be calculated by the STRUDL program. Long hand calculations are not recommended,
d. For the effective throat thickness of prequalified partial penetration bevel groove welds, see Figure 7.13.

6.1.8 INTERFACE REQUIREMENTS Conduits are sometimes connected /r tached to the supports of subsystems / systems which are in ran scope of other disciplines such as Cable Tray Hangers (CTH)-and pipe supports. 6.1.8.1 Attachments To CTMs And HVAC Sunoorts For conduit system which utilizes Cable Tray or HVAC supports, RSM analysis shall be performed for a representativa segment of the isometric which includes such Cable Tray or HVAC supports. ('~) Representative segment shall include two supports and two spans on

  \m,/                   both sides of the cable tray or HVAC support. The remaining portion of the ISO shall be qualified in accordance with these guidelines.
  - -         _ ~ ~ _ - . . . _ -         -         .       _ _   -       . - _ - _ _.-       . -             -   -

t 21M 5.02 CND Revision 2 Page 32 of 238 s PCN 01 For the RSM analysis, the actual cable tray or HVAC support configuration (stiffness and mass distribution) shall be included in the model. However, if the cable tray or HVAC displacements due to D+T Faqs at the conduit attachment' location is less than 0.25" the uln+imum conduit support f requency requirement and the conduit system can be qualified accorditig to the normal process defined in these guidelines. This approach is also applicable to the cases when there are less than two supports on either or both sides of the Cable Tray or HVAC support. The spans and two supports on both sides of the problem support should be qualified for 1.5 times peak "g", unless the actual support stiffnesses are used. I Footprint Loads (FPLs) shall be prepared by conduit design group and , provided to CTH or HVAC group for their approval. Engineerin analysis. g evaluations may be performed in lieu of detailed RSMThe loads shall be di support stiffness. 6.1.8.2 Attachments To Pine Suncorts For the cases when the conduit support is attached to a pi e support, two supports and two spans on both sides of the p a support should be qualified for 1.5 times peak "g" unless, s'hotdel support':stiffnesses:aretuaed. The remainder of the ISO'could'be O qualified,'as outlined in~theso guidelines. This approach is also applicable to the cases when there are less than two supports and two spans on either side of the pipe support. For conduits attached to pipe supports, footprint loads (FPL) shall be provided by conduit design group to Pipe Support Group for interdisciplinary review (IDR) and acceptance. 6.1.8.3 Attachments Of Smaller Than 2" Dikmeter Train C Conduits Train "C" conduits less than 2" diameter shall not be attached to seismically designed conduit supports without prior engineering approval. In cases where it is absolutely necessary to attach to these supports, FPLs and displacements (at the support location of Train "C conduit) shall be provided for acceptance. 6.1.8.4 Attachment To Other Discioline Suenorts With Junction Box On ISO The following guidelines apply to junction box support when-it is part of an ISO and the conduit is attached to another discipline support at one or more locations,

a. When the support by other discipline is the third support from the junction box, then the junction box shall be qualified  ;

according to normal process defC.sd in these guidelines.

b. When the support b other discipline is first or second support from the ; unction ox, then the junction box itself including l O content oc box and tributary conduit load should be qualified
                                       'for 1.5 times peak "g".

___ _ _ - , ~ __

21M 5.02 CND Revision 2 Page 33 of 238 4 6.1.8.5 Attachment To Steel Platform For the cases when the conduit support is attached to steel platform, steel platform response spectra shall be used. If this response spectra is not available, then conduit shall be routed to avoid support on the platform and ISO shall be design validated or conduit system shall be evaluated in a fashion accordingly,he similar to t evaluation procedure below in Section 6.1.8.6. 6.1.8.6 Attachment To Scread Regg Fraus (SRF) , l Uhen the entire conduit run is attached to SRF, the conduit span J frequency shall be equal to or greater than 28 Hg and the conduit and its supports shall be qualified by hand calculations or computer for enveloped 1.5 times peak "g" from floor elevation above and i below the framing. For conduit run partially supported by SRF, the conduit span 4 frequency requirement mentioned above is applicable to the porcion of conduit run supported by SRF only. In lieu of performing the

frequer.cy analysis for the entire conduit run, the rigid spans given in Figure 7.30 may be used to validate the conduit span frequency requirements.

Since the SRF frame has been analyzed using damping value of 46 for OBE and 74 for SSE, the conduit system may be design validated using i 1.5 times peak "g" values from 44 OBE and 7% SSE floor response The spectra curves if the entire conduit run is supported by SRT. 1.5 times peak "g" values are given in the following table: [\ 1.5 Peak "g" Values for ' Attachment to Soread Room Framina Horizontal Danninz NS EV Vertical OBE 44 1.5 1.66 1.89 SSE 74 1,74 1.74 2.55 Footprint loads for supports attached to Cable Spread Room Frame j (CSU) shall be submitted to the Civil / Structural group for approval. l 6.1.8.7 E2otorint Loada To Civil / Structural Groun As required footprint loads at conduit support anchorage location ' shall be calculated and submitted to Civil / Structural Group in accordance with Procedure 2EP 5.17. I As required, footprint loads at various steel locations (i.e., embo h d plates, structural steel and containment liner plate) shall i be calculated and submitted to the Civil / Structural Group in accordance with Procedure 2EP 5.17. 6.1.9 EVALUATION OF CONDUIT SPAN AND SUPPORT VIOLATIONS 6.1.9,1 'K' Factor Violations

                                 'K' factor is used to compute k & 13 and is shown & defined in LS series drawings of $2 0910, or M Series drawings of S 0910. It is l

a coefficient to determine reaction of conduits and their supports. (~')s q

1 2IM+5.02.CND Revision 2 Pale 34 of 238 K factor violations occur when is and Le can not be determined as [ described in Section 6.1.2. . When K. factor cannot be computed for a i particular configuration, the following method shall be used: i

a. The following method should be used when STRUDL static analysis 4
is employed per Section 6.1.16 to determine Lt and L5 for a i

conduit support. i

1. One "a" uniform load shall be applied in the system global coordinates X, Y, and Z independently.
2. The support reactions should be listed for each directional load separately.
3. When comparing with the support capacity, use the maximum reaction from the values obtained in the static run for that support. Voight of filler plate and shim plate shall 4 be included.
b. The isometric with K. factor violations shall be verified by performing RSM analysis in accordance with Section 6.1.13. "g" l

Purpose of this analysis is to confirm that the actual values at support with K factor violation are less than the design "g* values. 6.1.9.2 13,ap Violations Span violations occur when actual spans are greater than the allowable spans specified in Drawing No. 52 0910, or Drawing No. S. l () a. Tns following procedure applies to-the case when span violations occur but support design loads are adequate: l 1. Run RSM analysis. ! 2. Verify the following items: a) Support reactions versus clamp allowables. ! b) Actual "g" values versus design "g" values for supports. c) Conduit stresses versus allowables. d) Maximum resultant displacement (Dead load + Seismic)

                                                                                          =t tip of rigid overhang shall be limited to one inch (1").
3. _If itan 2.s throu5h 2.d pass, the-150 is adequate.
b. The-following procedure applies when span violations occur and support design loads exceed the support _ capacity:
1. Calculate the actual support frequency for failed.

supports. l

2. Determine support stiffnesses.
3. Run-RSM analysis.
                                                                     = _ . - _                                   --

yP'w-- -- y m oey W*=** -- 'ya SF'r

1 2IM 5.02.CND Revision 2 Page 35 of 238 O 4. Verify the following items a) Support reactions versus clamp allowables. b) Conduit stresses versus allowables. c) Evaluate the support for actual "5" values. d) Maximum resultant displacement (Dead load + Seismic) at tip of ri id overhang conduit, shall be limited to one inch (1" . 6.1.9.3 122 Port caoacity violations These violations occur when the actual calculated support design loads are greater than the conduit support espacity. The following procedure applies to the cases when the support capacity violations occur but spans are adequate,

s. Verify the problem support with as. built condition for the following items:
1. Support frequency to meet the minimum frequency i

requirements.

!                     2. Support adequacy with design "g" values.
b. If items a.1 and a.2 pass, the ISO is adequate, otherwise, follow the procedure in Section 6.1.9.2.

(} When the support capacity violations and span violations occur together, see section 6.1.9.2. l 6.1.10 LOADS AND 1 DAD COKBINATIONS 6.1.10.1 Ginstal conduxc systes, in general, shall be designed for all loads and load combinations specified in sections 6.2, 7.5 and 7.6 of DBD.CS 90, a i i The following design loads and load combinations shall be considered: I

a. Load combination for service load conditions.
1. S - D + Feqo
2. S-D+W
3. 1.55 - D + To + Feqo 4 1.5S - D + To + W where:

D- Dead weight of conduit, cable, conduit support members including overhang and cover plates and any permanent 7, attachments. (_,) Feqo - Loads generated by Operating Basis Earthquake (OBE), i

      ._     . - - - . - - - .                          - - .   - . . . .   - -          . - .               - .     - ~ . -          .

1 e J 21N.5.02.CND Revision 2 i Page 36 of 238 i iO 1 To - Thermal, ef fects and loads during normal operating or shutdown conditions, based on the most critical transient 1 or steady state condition. (See Section 6.1.10.2)

 '                                 S-        Allowable stresses. (See Section 6.1.11) j V-        Load generated by desfgn tind loads
b. Load combinations for factored load conditions. .
1. 1. 65 - D + T + Fe q s i 2. 1.6S - D + Ta + Fogo + Pa + Yj j
3. 1.6S - D + To + Vc
.'                                 4.          1.7S - D + Ta + Feqs + Pa + Yj where:

D, Fego. To. S - As defined above Ta - Thermal loads under thermal conditions generated by the postulated pipe break including To. (See Section 6.1.10.2) Feqs - Loads generated by the Safe Shutdown Earthquake (SSE) Pa - Pressure equivalent static load within or across a j O cog artment generated by che postulated pipe break including an appropriate dynamic factor to account for the dynamic natura of the load. Yj -_ Jet impingement equivalent static load in the structure i generated by the postulated pipe break, Including an appropriate dynamic factor to account for the_ dynamic nature of the load. , " Vt - Loads generated by the design tornado. Loads shall include those caused by tornado wind pressure and tornado generated missiles, i c. Load combinations for conduits cast in place in concrete slabs and walls.

1. U - 1.4 D + 1.9 Fogo 4
2. U - 0.75 [1.4 D + 1.9 Fogo + 1.7 To]

! 3. U - 1.0 (D + Teqs + To) 3 4. U - 1.0 (D + Ta + Faqs-+ Pa + Yj)

5. U - 1.0 (D + Ta + Yj) + 1.25 Pa + 1.25 Fogo 4

d

       . , -                        -,y-- -e,,-,yw-.,--       -
                                                                                             -,,,----,wn                     --,en ,,

i 21M 5.02.CND Revisicn 2 Page 37 of 238 () In addition, for conduit systems located outside of buildings, evaluation shall also be made by replacing 1.9 Fogo in equations (1) and (2) with 1.7 W and Tegs in equation (3) with Ut. ! where U- The section strength required to resist design loads and l is based on methods described in Code ACI.318 71. All  ! other nomenclature is defined in a and b above. I

d. In performing the above load combinations the following shall l be considered:

' 1. Dead load component shall be added to the SRSS of the vertical and horizontal seismic components. I 2. For load combinations shown in Section 6.1.10.1.a.3 and 6.1.10.1.a.4 and in Section 6.2.2 of DBD.CS.90, reduction of member stresses and/or reactions by the factor used for increasing the allowables is not permitted.

3. Limitations on allowables for various load combinations are specified in Section 6.4 of DBD.CS 090.
4. Methodology employed to consider the thermal effects on conduit systems is discussed in Section 6.1.10.2.
5. Conduit system subjected to jet impingement load (Y 3) shall be designed on a case by
,'                         and/or    pressure case basie.                load (Pa)l Presently          al            trains are isolated and jet

' (O _/ impingement loads (Y 3 ) have not been identified.

'            Determination of the effect of tornado and wind loads shall be as                          -

follows: l 8

1) The dynamic wind pressure, q, is defined as q-0.00256V where q is in psf and V, the wind velocity (including the l

l gust factor), is in sph.

2) The tornado wind velocit height above the ground.y A 360 is not mphassumed to vary velocity shall with be used for all-structures.

! 3) A load factor of 1.0 is used for tornado loads in the load combinations.

4) The various combinations of cornado effects which the i

structures must withstand are: W, - W, Wg '- W, Wg - W, W W. + 0. 5 W, Wg - W, + 0. 5 W, + W,

2IM 5.02.CND Revisicn 2 Page 38 of 238

     )                                                       where: -W,      Vs -- total       tornado load total tornado wind load V - tornado differential pressure load
                                                                              /, equivalent tornado missile load
5) Wind distribution for various height zones above the ground are shown below:

He15 ht Above Ground Wind Velocity (ft) (meh) 0 to 50 80 50 to 150 95 150 to 400 110 400 to 700 120 A gust factor of 1.1 is applied to the above wind velocities.

6) A static uniform wind load on the conduit system shall be taken as Ww - Ce q d (for conduit)

US - Ce q A (for junction box or conduit support) where: Uw - Uniform wind load in Ib/ft for conduit or total uniform load in Ibs for junction box or conduit support Co

                                                                         -      Coefficient of Drag (shape factor)
                                                                          =      1.0 for conduit 2* diameter or less
                                                                          -      0.8 for conduit greater than 2" diameter
                                                                          -      1.3 for junction box
                                                                          -      for all other structural shapes, see ASCE Paper e3269 (1962).

d - Diameter (o.d.) of conduit in feet A - 73tal area of junction box or conduit support

                                                                                 *indward
                                                                                  .              face.
7) Since conduit systems are airtight and missile barrier shields are to be employed, W, and V, do not need to be considered.

6.1.10.2 harmal Imad considerations

a. The following criteria shall be used to determine if thermal loads are to be considered:
1. Thermal loads due to normal operating temperature need not be considered if the conduit system meets all the conduit span and conduit support capacity requirements of the LS-Series Drawing of Drawing No. S2 0910, or Drawing No. S2-0910 and the length of the conduit is 75 feet or less between expansion joints (junction box, airdrop, pull f-t sleeve Electrical and flexible control conduit) and in Safeguard, Fuel Handling Auxiliary, Buildings. This is

(

     .  .    --       .    .. . _ -              . - -    .            -   -       _ . ~  _ _ - - - _- -- .

' 21M 5.07.CND Revision 2 Page 39 of 238

  /~'T
    ~s alsoakplicabletoReactorBuildingifthelenhthofthe condui is 45 feet or less between expansion j ints.
2. In Reactor' Building, accident temperature loads shall be l considered for conduit runs exceeding 45 feet, between expansion joints or from embedmont to expansion joint.

T 2 b. The following temperature data shall be usad when considering i thermal loads:

'                        1.         Normal Operating Temperatera a)       l'emperature differential ( 21 T) of 32'F in all buildings except Containment Building.

4 b) Temperature differential ( 41 T) of 50'F in Containment Building. c) Thermal expansion coefficient of 1.0 x 108 per 'F. The difference between steel and concrete thermal expansion coefficients is used assuming that steel and concrete both expand in steady state condition.

2. LOCA Temperature a) Temperature differential ( 41 T) of 147'F.

b) Thermal expansion coefficient of 6.5 x 10' per 'F assuming that concrete expansion is negligible in transient condition, i .' ' c) The recommended input skeleton for considering thermal loads in the computer analysis is given in 1 Attachment 8.D. 6.1.10.3 Conduit At Concrete Penetration

Load and load combinations for conduits cast in place in concrete

! slabs and walls are specified in Section 6.2.3 of DBD.CS 90. However, during final design reconciliation of Unit 1 as. built seismic conduit systems, ponstration adequacy was checked to ensure no slippage occurred which could cause the load redistribution in the system. No support modifications resulted from this study. This is documented in EEASCO calculation book no. AS 006. Based on this there is no need to check any new or existing conduits for this l type of loading criteria. 6.1.11 ALLOWABLE STILESSES Allowable stresses, S, for conduit and conduit support members including junction boxes and junction box supports shall be in accordance with the requirements specified in the AISC

                    " Specification for the Design, Fabrication and Erection of Structural Steel for Building" (except for UNISTRUT support members and junction boxes under accident conditions). The 33 percent increase in allowable stresses due to seismic loadings shall not be used. Welding 411ovables, S. shall be in accordance with AWS D1.1-79, " Structural Welding Code".

For load combinations 6.1.10.1.a.3, 6.1.10.1.a.4 and 6.1.10.1.b.1

  • g3 through 6.1.10.1.b.4, allowable stresses for conduit, welds, and gd po conduit respectivesu$y.rt members may be increased to 1.55,1.6S or 1.7SHowe

21M 5.02 CND Revision 2 Page 40 of 238 stresses shall not exceed 0.9 Fy, the allowable axial compressive stress shall not exceed 90 percent of either the ultimate buckling stress or the yield stress ano the allowable shear stress shall not exceed 0.5 Fy. Unistrut members shall be evaluated in accordance with the requirements of the AIS1 Cold Formed Steel Design Manual. Unistrut allowables that were established to validate Unit i supports shall be used to the extent possible. Additional design considerations shall be per section 8.0 of DBD CS-90 and as per the following sections, i 6.1.11.1 Punchina Shear At Tubular Connections (Main Member Oniv)

!                         a.        The allowables normal weld forces for OBE condition for stepped tubular section connections are listed in Figure 7.10.

The allowables are determined based on the punching shear requirements stipulated in Section 10.5 of Code AWS D1.1 79 The following clarifications are provided in conjunction with the allowable normal veld force table:

1. For formulae used in calculating the punching shear and nomenclature for stepped connection, see Attachment 8.A.
2. SSE allowables shall be 1.6 times OBE allowables provided they do not exceed the following limit:
     *O'                            Limit on SSE Allowables                                Main Member (1bs/in)                                 Thickn as (inchi j

4310 3 16 l 5750 14 I 7185 5 16 i 8625 38

3. When the branch member is adjacent to the open and of the main be member used. (< 2D)llowable is exceeded, provide coveronly 50 perce If the a plates at the open and of the main member, and weld all I around, usin5 a 3/16 minimum fillet weld.
4. Where possible an all around weld between TS members should be used in design,
b. No punching shear requirement for matched box connections l

whether perpendicular or skew; however, minimum edge distance from the side of branch member to the end of main member shall not be less than 2X Depth D of main member. If minimum edge distance is not met, one of the following shall be satisfied.

1. Structural weld between branch member and main member shall be evaluated by using 3 sided weld.

O

V o

21M-5.02.CND Revision 2 Page 41 of 238 O V 2. Cover plate shall be welded all around to main member by using a structural weld. STRUCTURAL COVER R A WELO RE0'D STRUCTURAL WELD MAIN MEMBER N r-NOT REO'O

                                                                                                                           \

_ _ _ _ _ _ _ _ _ . . J_

                                                  %                                  l
                                                                                            ~

s [l ~ 3 SiOES,/ V WELO i I

                                                                                              < 2C                       I I
                                                                                                                         ; i w-i i I I                                        i 1 BRANCH.                     "l                                              l'g,7 MEMBER                           g; i I l~>]

COVER I hi r i t

                                                                                       ~

I ON i i 6.1.11.2 Varninn Stressen After the static analysis results are obtained, torsional moments are found in various members. These torsional moments generate warping stresses (both normal and shear) on members with open cross O sections which have to be added to the normal and shear stresses obtained from the frame analysis done by computer. A few typical cases where warping stresses shall be considered are illustrated on Figure 7.11.1. For special cases, acceptable engineering principles shall be used. For this purpose. Figure 7.11.2 or any other approved procedure may be used. 6.1.12 ANCHORACE EVALUATION New concrete embedmonts shall be evaluated in accordance with the procedures listed in Design Basis Document DBD.CS 15 and the latest revision of Specification CPES.S.2001. Existing concrete embedsents shall be evaluated in accordance with the procedures listed in Revision 2 of Specification 2323 SS-30. For Unit 2 areas, existing concreta embedaants may be dispositioned per 2 F.AP 022. 6.1.12.1 Milti Ewik And Sumer Kvik Bolts-Procedures listed in DBD.CS.15 and CPES.S 2001 shall be used for evaluation. 6.1.12.2 Rich =and Inserts Procedures listed in DBD.CS 15 and CPES S 2001 shall be used for evaluation, n

21H 5.02 CND Revision 2 Page 42 of 238 PCN.01 6.1.12.3 Nelson Studs Nelson studs shall be evaluated by the following equationst a.

                                                      +      s 1. 0 where:

T,5 - Actual tension and resultant shear in stud (Effect ol' prying factor shall be included for T, if l any) T., S, - Stud tension and shear allowables

b. T, - 0. 60 x A,g x F,
c. S, - 0.30 x A,g x F,
d. A,g - Mean Effectivo Thread Atea (HETA)
e. META - 0.7854 [d . (0.9743/g i where:

d - Nominal Thread Diameter l N - Number of Threads per inch , Figure 7.15 list the allowables for load corbination 6.1.10.1.a.1 l calculated by the above formulae. 6.1.12.4 tiinimum Soncinn Reautrements

a. For minimum spacing requirements between Hitti bolts, between

. Hilti bolt and Richond Screw Anchors, concrete edge, abandoned I bolts or between bolt holes, and between Hilti bolt and embedded plate, see the Structural Embedment Specification j CPES.S 2001 and Procedure DBD.CS.015.

b. When minimum spacing requirements between Hilti bolts, between Hilti bolts and Richmond screw anchors, cot. crete edges j

i abandonedembeddedboltsorboltholes,andbetweenHiltibolts and embedded plates cannot be met, see the Structural Embedmona Specification CPES.S 2001 and Procedure DBD.CS.015 for reduction in allowables capacities. Ouide1&nserprovidedlin t

                                            ; ipe!MaeditoDrosethtXgpaciggye.lationsibetweAn 3wupports)
   -6.1.12.5          Base Plate Analysis Base plate analysts can be performed b'y hand calculations or by computer analysis. In either method. Hilti bolt interaction and
base plate / angle stresses shall be checked.
a. Hand Calculations The procedure'given in Attachment 8.B (approximate method) may-be used to evaluate stresses in the base plate, surface angle and anchor boits. To minimize the number of base plate.
 ,    .   . - . - - ~       , . -        .                    - - - . .   . . . .
                                                          . - - . - - - _ . - . . - _ _ - . - - _ ~ - -                                 _ . -             ..--. _ _ .

l i . 2IM 5.02.CND Revision 2 i Page 43 of 238 !O analyses, spring constants, prying factors and allowables are provided for different sizes of base plates in Attachment 8.B. If the anchorage cannot be qualified by hand calculations, or , i 4 the configuration is not covered in Attachment 8.B. a computer l l analysis may be performed. ! b. Base Plate Finite Element Analysis The computer analysis for the base plate shall be performed by l using the PD STRUDL base plate program (See Attachment 8.C for i recommended skeleton) with anchorage loads obtained from the static run. The effect of prying action and anchorage ! flexibility will be considered. The input data required to perform the static analysis consist  ; of the base plate geometry, anchor length, locations of load points and loads. The bolt spring constants shall be obtained

from the Anchor Bolt Shear and Tension Stiffness report by .

Teledyne Engineerin5 Services. May 25, 1979 provided in Flgures 7.35.1 throush The spring constant for bolts wit?. embedmont len7.35.4 th other than those provided by Telodyne, shall i^ be obtained b llnearinterpolation. Extrapulation la not allowed. Spr ng constants for Hilti Kwik and Super Kwik Bolts can be conservatively obtained from the table below. For Richmond anchors, use the values shown below. l Bolt Bolt Bolt Bolt Tension Shear i a Iygg Di - ter (in) Stiffnama (K/in) Stifhess (K/in) 461 111 Hilti 1/4 to 1.25 l Super Hilti 1/4 to 1.25 461 -111 4 Richmond 1.5 . 3460 652 i Richmond 1 2175 485 l The above values are for f*c = 4000 psi.

c. Anchoring with Bolts in Combination with Welds-When welds are used together with Hilti bolts for anchoring the base plate, welds should be designed such that total shear force is resisted by weld alone. - Tension force will.be distributed between bolts and weld according to their relative-axial stiffness.- For- the desip of the Hilti bolts, the shear i

forces shall be considered to be resisted by the Hilti bolts and welds in proportion to their shear stiffnesses. 6.1.13 PROCEDURE MR RESPONSE SPECTRUM MODAL ANALYSIS OF CONDUIT- SYSTEMS This Section provides guidelines for the Response Spectrum Modal analysis (RSM) of conduit and support assemblies.- ) The RSM analysis is used to evaluate the condult isometrics which do not, satisfy the acceptance criteria specified in Drawing No. S2 0910 or S.0910. 4

                                                               .+,-w     w.,-,,s                          --4r,25  .w,m   .h,w-,--.e,p-       -y y"-r=--y--y<-        y-
                                                                                                           . _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _l 21H.S.02 CND Revision 2 Page 44 of 238
          )                               When calculated a stem frequtncies, for conduit tsometries that are design verified by RSM analysis, ata on the soft side of the floor l

response spectra peaks, peak spectra values shall be used for thore ' corresponding modes.. All existing span allovable studies This shall study be j revisited for the impact of the soft modelling approach.  ; , was done for Unit 1 conduits and included in ESASCO Calculation Book ! SPAN 1012. Unit 1 lessons learned shall be utilized to the extent i possible when perforning the same study for Unit 2 conduits. 6.1.13.1 Dssirn Inouts 4 i .The following design inputs are required to perform the RSM analysis: Conduit Support Frequencies 6.1.13.1.1 Conduit support frequencies in three directions are used to calculate support stiffness. For conservatism, the following minimum frequency in each direction shall be used in the RSM analysis if supports meet the minimum frequency requirement:

1. Minimum support frequency for S2 9010 supports is 14.45 Hz.

Also, the minimum conduit span and conduit system frequencies for different groups shall be as follows: Group No. Conduit Conduit Systes Frequency (Hz) Span Frequency (Hz) I, II & III 13.68 2_33.0

'                                            IV                          10.24                                14.51 l                                              V                           8.81                                11.11 VI                           7.36                                 8.55 For Groups No. I, II, and III, the conduit design is governed by rigid frequency requirement (2 33.0 Hz).
2. Minimum support frequency for $2 0910. PESD series supports is 16 Kz. Design "g" values are included in ABB Impell

! Calculation 0218 CO 0007. . 3. Minimum support frequency for S 0910 supports is provided in Figure 7.23. 6.1.13.1.2 conduit Routing Conduit routing shall be that shown in the isometric drawing of the Conduit System. 6.1.13.1.3 Digitized Floor Response Spectra-For.the isometric drawing, enveloped digitized floor response spectra for all elevationa of all conduit- support locations shall be utilized for seismic inputs. Damping values of 24 for OBE and 3t for SSE shall be used. When a conduit system is spannin5 between two buildings, then enveloped response spectra of both buildings should be used. If the span between buildings is rigid conduit, dif ferential seismic building displacements will be considered in j'~'/ s, s s the, qualification. 1

i i i i 21M 5,02 CND l 1 Revision 2 l j Page 45 of 238 PCN 01 When a conduit system is crossing from ono building to the other and j a flexible cot.dult is used, then the corresponding response spectra

for each building may be used for the evaluation of the conduit i portion supported by that building. Differential seismic building
displacements may be neglected in the qualification.

l 6.1.13.1.4 Tributary conduit Weights ! and 14 shall be calculated as per ,

!                                            Conduit tributary weights (Section 6.1.2 or;from ,a; stat cOSTRW)iqanalysis.                      I

! 6.1.13.1.5 conduit Sectional Properties i

For Frequency and response spectra modal analysis, the full
sectional properties of conduits as listed in Figure 7.18 shall be-l used. However, the threaded conduit sectional properties as listed I in Figure 7.19 shall be used in the conduit stress evaluation based on the results obtained from RSM analysis.
.                                            For cases when the stress check fails, the exact location of the threads should be identified. For spans where there are no j                                           ' fittings, non threaded section properties can be used.

The conduit including the cable weight shall be represented by the

density as shown on the followin6 table

i l- Conduit Size Wt. .per Ft. ! Density I (Rigid Steel) (Including (1.BS/IN8 ) ( Cable Wt.) W/ cable wt. l Nom. dia. (in.) (LBS/rt) i 3/4 1.5 .375 1 2.0 .337 l 1 1/2 4.0 417- ! -2 5.0 .389 3 13.0 486 L 4 19.0 .499 l 5 23.0 446 i l Additional weights of BC (Figure 7.26), flexible conduits (Figure 7.24) and LBDs (Figure 7.27) shall be applied as concentrated, i 5.1.13.1.6 Computer Program ! 'Ihe- FD STRUDL computer program (henceforth referred to as "STRUDL") shall be. utilized in performing the analysis, i Recommended STRUDL Skeletons for static analysis (Attachments 8.C and 8 H) and RSM analysir (Attachments 8.D and 8.E) shall be used to-the extent possible. The STRUDL' computer program includes the following features: l a.1 Ten percent combination method for closely spaced modes,

b. Missing mass correction for rigid modes (Modal Frequency larger
than or equal to 33 Hz.)
c. "g" values from, Comparison responsa spectra ~of Design."g"is.

analys values to actual

i 21H 5.02 CND Revision 2 Page 46 of 238 O d. PCN 01 Computation of support spring constants using user input support frequency and conduit tributary weight for Ly or Lt . (See Section 6.1.2)

e. Threaded conduit sectional properties available on STRUDL dataset for AISC code checking conduit stresses.

6.1.13.2 Preparation Of Computer Model For STRUDL

a. ISO computer model shall be easy to read and concise.
b. Joint and Member Designations
1. The starting point may be assigned as point No. 1. The remaining node points should be numbered in sequence (see Section 6.1.13.2.2).

. 2. The member designation number between (two) nodal points shall be identified. The member number shall be the same as the preceding point number of the two points where possible.

3. A fictitious member and fictitious support joint shall be added to represent the stiffnesses of a conduit support.

4 Fictitious support joint number shall be equal to its associated conduit ;oint number plus 100 so as to make it readily identifiable. IN-- 5. The member designation number for the fictitious member connected to the support joint shall be same as fictitious support joint number.

c. Global coordinate Axes In setting up the shall be vertical, global X & Zcoordinates axis shall beoforiented the model, in Nthe S orY Eaxis W

direction according to Figure 7.28. 6.1.13.2.1 Boundary Conditions For Computer Input

a. Three (3) translational spring constants shall be used to simulate the conduit support stiffness.
  'O w   i

! 21M 5.02 CND i Rtvician 2 Pale 47 of 238 The spring constant shall be calculated by the following equation: (# x wt = 0.10217fg* x Vg Kg = i L i where: K = Spring constants (ibs/in.) g l Es = Support frequency (Hs) W, a Actual conduit weight (ibs) LS series drawings { for is or y (excluding the filler plate or shin plate)

;                              i - (X,Y,Z)                                                         l 1

l b. Additional weights of BCs (Figure 7.26), unions, flexible conduits (Figure 7.24) and LBDs (Figure 7.27) shall be lumped as concentrated mass or distributed weights as required.

c. In order to rencve the computer analysis singularity, torsional-restraint may be used. Tha torsional value obtained froa-analysis shall be less than 44 of the maximum allowable clamp torsional capacity shown below:
conduit Torsional Capacity '

Diameter (FC - lb)

.                        (inches) 3/4                     179 1                      219 1 1/2                     291
2 747 3 990 4 933 5 726
d. If the torsional value exceeds 44 of the maximum allowable clamp torsional capacity, the following procedure applies:

l 1. Evaluate bolt / Nelson stud adequacy of the problem support 3 to include force due to torsion using equations in Sections 6.1.12.1 and 6.1.12.3.

2. Evaluate conduit support including torsion per section 6.1.4 and/or 6.1.13.
e. Conduit Embedded in Concrete Assume three-way hinge support at the face of concrete. If the l
                        -conduit system does not pass, fixed ena support with torsional            l soment release at the face of c.oncrete may be assumed. Also,            i l

A see Section 6.1.10.3. 4

     -V

21M.5.02 CND R3visten 2 Page 48 of 238

f. Conduit Attached to a Supported Junction Box
1. The conduit connecting to Junction Box shall be assumed free in all directions for computer analysis purposes, provided the system is stable and the conduit system passes.

If the system is unstable or the conduit system does not pass, assume the following boundary conditions at the point of connection between junction box and the rigid conduit. a) Free to rotate about the three coordinate axes, b) Elastica 11y supported in three directions, two transverse and one longitudinal to conduit axis.

2. In t 'e absence of any exact data about the junction box system use the following generic spring constants:

a) For ; unction boxes attached to steel supports,k - 523 lbs/Ln in three orthogonal direction to junction box. b) For tunction boxes attached directly to concrete, k = 742 lbs/in in three orthogonal directions.

3. The junction box itself need not be designed when the generic JS. Series drawings for the junction box are used to design the box.

O When there is a non. generic junction box and it is U necessary to include an elastic support in the RSM analysis model, then the box shall be analyzed.

g. Conduit Attachod to Unsupported Junction Rox The conduit r, hall be assumed free (in all directions) at the end conneer.ing to the Junction box with a concentrated mass equal to the weight of the Junction box divided by thei number of conduits entering the junction box,
h. Pull Sleeve It shall be assumed to be continuous at the end with a threaded coupling and two way hinge joint (not support) resisting shears transverse to longitudinal axis of conduit at the other end with or without set screws.
1. Conduit Supports All conduit supports shall be assumed to be three way hinge (rigid) supports for static analysis.

For ESM analysis, the conduit support shall be assumed to be three way spring support. A very short member with properties ' expressed in appropriate stiffness matrix format shall be utilized for computer analysis, i All conduit supports will be modelled as springs aligD*d p parallel or perpendicular to the conduit axis. V .

  -~ .- .  . - . . - . . . - . _ . .         - ..      . . ~ . . . ~ . _ _ _ - -                  _ . - .            - . _ _ _   . -   - - - - .

I 21M.5.02.CND Ravisicn 2 Page 49 of 238 f.1.13.2.2 incation of Conduit Nodal Points

,                        a.            For overhang segment, two nodal points shall be specified, one at the tip of the overhang and the other at the eldspan.
h. Any segment shall have preferably three equally spaced nodal j points between tha and points. A segment is defined as straight porcion of the conduit run without turns. A single l

Saend has two segments and a double. bend has three segments. 3 The nodal spacing shall not exceed the S., when modelling the

!                                      ISO:                                                                                                      1 l                                                  CONDUIT LINCHi*                             l l                                                  1123                                         A i                                                                                                                                                 l
;                                                    3/4                                          26.2 j                                                           1                                       30.2                                          -

4 1.5 34.8 2 39.7 2.5 43.6 , 4 3 45.8 l

4 51.9
5 59.6
  • The maximum nodal spacing, S . , is calculated by the following-formula:

9,=fx x *l.' " 'y' i where: F - Cut off frequency - 33.0 Hs W - Unit weight of conduit (1bs/ inch) E - Modulus of elasticity (1bs/ inch8 ) 1 - Noment of inertia of conduit (in')

c. If additional weights, such as BC or LBD are imposed,

, additional nodal points should be added, l , d. Conduit with a bend less than or equal to 15 degrees is . considered a s';ratshe run. I l \ l i u -_ _ .

1 2IM 5.02 CND Revision 2 Page 50 of 238 1.

e. TheNodalShacingshallnotexceedtheSmaxforconduitsfire+ protected m i

covered wit . , Conduit Smax (inch) i- Size Conduit with Conduit with i Conduit with Thermolag i Dry Blanket Vet Blanket 23.0 16.8- 19.1 i 3/4" 27.0 20.2 22.6 i 1" _ 32,6 26.0 28.2 1 1/2" 37.5 30.4 32.6 2" 41.8 35.2, 37.2 2 1/2a 44.4 38.9 40.5 ! 3" i 4" 50.6 45.2 46.6 i 58.2 52.2- 53.5

                  ,5" l

, 6.1,13.3 D,pta Inout For Comeuter Skalatons i a. Mesh coordinates can be used along with' joint coordinates. s I b. Joint coordinates

1. Fill in coordinates of the conduit routing following the 4 sequence from computer model.

)

2. Fill in the offset support d oints and the corresponding node points on the conduit 1,ine.

! c. Support joint [ Input support joints from computer model.

d. Support Joint Release
1. Do not-release torsional moment if'this will'eause-i instability such as in straight conduit run..

l Do not release any moments- or forces of support-joints 4 where springs are attached.

3. Fill in the number of the applicable conduit support joints.

I ! e. Constants

1. Input modulus of elasticity (E) of 29.0E6. This value is fixed in the skeletons. The user should change this value in the input if it is different from 29.0E6.

l

2. Input density-ip Equivalent density of conduit to be used, may be
d calculated by the following equation

_ -..--____.,m

21M 5.02 CND Revision 2 Page 51 of 238 PCN 01 r, - Ve Ib/in' 12A where: Uc - Conduit weight including cable (1b/ft) A - Cross sectional area of conduit (ina ) r, - Equivalent density of conduit (Ib/in ) (See Section 6.1.13.1.5)

f. Mesh incidences can be used alcag with member incidences,
g. Member incidences are as indicated below:

STARTING AT ENDING AT 4 MEMBER NODE DOINT NODE POINT 1 1 -2 2 2 3 3 3 4

h. Mesh incidences are as shown:

(

 \-'

105* 113*/5 - 13/105 - .113 105 & 113 are fictitious support joints. 5 & 13 are sorresponding nodal points.

  • Fictitious members.
     -1. Member Properties

(

1. Member Properties are expressed with respect to local axes.
2. Include additional weight at joints -from union. LBD, cable, etc.
j. Digitized floor response spectra are contained in Ebasco Calculation Books Span 1002 and Span-1003.

The file for shock spectrum loading shall be called out as follows: BIEL1XXX - File name for spectral'eurves saved in spectrum input data disc. BI  :- Building 1.D. - See Figure 7.29 for identification number for different buildings. ELI - Elevation I.D. See Figure 7.29 for identification for different elevations in a specific building. XXX - Loading case and direction: For example, ONS for.0BE

  • in the S S direction and SVT for SSE in the vertical direction
                    . _ - _ - _ _ _ _ _ _ _ _ _ _ - _ _ - _ - _ - _ _ - . . _ _                                 - - _ = _ _ _ _ _ _ - - _ _ _ _ _ _a

21M.5.02 CND= Revisicn 2 Page 52 of 238-EXAMPi.E Input file name for spectra curves at elevation 790.50' in Safeguards building. File Name for OBE (N S direction) case -

                                                                                              "SG7900NS" File Name for SSE (E V direction) case -
                                                                                              "SG790 SEW" 6.1.13.4                                     Outuut Reauirements In order to complete the ISO design, the following outputs are required as a minimum:
a. support reactions in three directions,
b. Seismic displacements at tip of rigid-overhang conduit.
c. Conduit member forces and conduit stresses.

6.1.14 ACCEPTANCE CRITERIA Acceptance criteria shall be in accordance with this procedure and Drawing No. S2 0910 or Drawing No. S 0910. In addition, for structural member with open section, the warping stresses due to torsional moment and the reduction of flexural

                                                  -allowable due-to lateral-torsional buckling shall be considered by hand calculations.

6.1.15 CALCU1ATION METHOD-6.1.15.1 Evaluation of Sunnart Imada From H M Analvais

a. To calculate the actual "g" values, the following steps shall be followed:
1. Road the computer output of'the support reactions.
2. Determination of actual "g" values.-

Divida the seismic support reactions in three directions by the tributary weight of the conduits to obtain the-three actual "g" values. When the support capacity violation occurs, the actual "g" value-shall be obtained by dividing the support reactions by the support capacities. values can also be Alternatively, refined actual "g" lysis obtained by performing static ana of conduit system as described in Section 6.1.16. R

b. values shall be compared with the design "g" The actual values given"g"in Figures 7.3.1 through 7.3.7. In the comparison, the maximum actual ="5" valus shall-be compared with the maximum design "g" value, the medium actual "g" value shall he compared with medium design "5" value, and the minimum actual "g"tvalue shall be compared with-the minimum design "g" value re&ardless of the direction. This is performed based on
 -                                                                             the fact that in the support design validation for both OBE and SSE cases, the maximum design "g" value was applied in the weakest direction, the medium design "g" value was applied in

4 2IM 5.02-CND Revision 2 Page 53 of 238 the second weakest direction and the minimum design "g" value l O* was applied in the strongest direction of conduit supports. This is accomplished by rotating conduit support in all possible orientations. In the cases, where comparison fails, a simple calculation  ; l shall be made as follows: (L.E.) = b Ir 9u > 913 Fol ! 2 2 l (L.F. )2

  • If Fu > 924I
                          $  9 to + 9 2D i

2 2 93A 9 1A

  • 9 2A b ~

2 2 Far s 9 to+9 2D b' and (L.F.)3 = Ag+ 1 +C (33-A) g IT: 33= > (L.E.)2 Gar Ag = - (L.F. )2 8 y , f9 tn + 9*2D 93D where: Maximum, Medium and Minimum "g" from Analysis Su.-52Ae 8u - respectively I gig , gag, gan - Maximum, Medium and Minimum "5" are design "g" from Figures If (L.F.)t, (L.F.): and (L.F.)3 are less than one, then the ' support is adequate based on the Conduit generic capacity from 52-0910 packa_ge . Otherwise, Drawing No. S 0910 and Drawing No. select the largest from (L.F.)t, (L.F. )2 and (L.F. )3 as the Load Factor and design validate the support. If actual "g" values are smaller than ZPA values (Figures 7.3.8 thru 7.3.13), support shall be design verified using the ZPA ( ( values. h

                                      . . -                                             ,            ,m,

21M 5.02 CND Revision 2 Page.54 of 238 i

c. If conduit tributary weight exceeds the support capacity and the actual "g" values are less than the design "g"imum values, then

, support capacity can be increased based on the min multiplying fac. tor (MMF) provided the-support frequency requirement can be met. he (MMF) shall be the lowest value of l the following multiplying factor;(Mr)- M, = Gin or 1 Gto Gu 1 + Gu f Mr - Gm or 1 3-920 , Ga 1 + Gu Mr - Gbo or 1 +.G 3a l Ga 1 + Ga

1. Revised support capacity MF.(support capacity of Generic, l

Modified or IN support) x.M

2. If revised support capacity is greater than-support design l ' loads, support is acceptable.

! d. If the support capacity is unknown-such as for IN or Modified j sup ort, the desi n of the sup ort shall use actual "g" values. If he support or antation is own, the actual "g" values need not be rotated. Otherwise, the-actual "g" values shall be rotated in support design. i l 6.1.15.2 Evaluation Of Conduit Forces And Moments From RSM For Somns

a. The threaded conduit sectional properties as listed in Figure l

7.19 shall bs used.

b. The actual section properties may be used if there are no i fittings in.che span to question.

! c. In computing the allowable axial compressive stress, the radius

i. -

of gyration of conduit full-section may be used.- 5

d. Find envelope forces and moments cf OBE and SSE cases from RSM j analysis output.

) e. Evaluate conduit stresses by using formulae elaborated in Part l_ 5, Section 1.5 and 1.6 of AISC Specification. , f. Axial Compression and Bending i g+ + g s 1.0 (when (fa/Fa) s 0.15]. I otherwise follow AISC Specification or use j ,

                                                  .32            $2

< fa , thy , tbs Ta , Thy, , Tbs, l 4 a i

_ . . - = . . ._ - - . . - .- - . . - 3 4 i 21M-5.02-CND 1 Revision 2-Page 55 of 238

l,'

PCN 01

,                  For (OBE) Load Case 1-l                         When k1/r s C, i                  Alternatively, Fa can be. computed using Section 1.5 and Table 1 i                  of Appendix A of the AISC American Institute of Steel 4                  Construction.

1 i I 1 when n/r > cc, , j 12n ag Fa =

  1. , 23(KL/r)8 Fb = 0.6 Fy ki 2n 8 E pc g , p t cc = h EY l

1 For (SSE), (To + OBE), (Ta + OBE) and (Ta + SSE) Load Cases where: 9

 !                 Fa - The lesser of following (2) values shall be used-4 A) 1.5, 1.6, or 1.7 of (OBE) allowable stresses, but less than 0.9 Fy O*'    #    Ultimate Buckling Strength B) j                                  (E/r) 8 i'

Eb - 0.9 Fy

g. Shear Stress t

For (OBE) bad Case

                                     't   y   13    r g 13* '

i Shear + Shest gy ,, 2 Force, 1 Force, , Q , n ,4 y

                                                 %A                  25 4

4 . t) - 4 i

2IM 5.02 CND , R3 vision 2 I Page 56 of 238 l

                                                                                                                  \

(SSE). (To + OBE). (Ta + OBE). (To + SSE) and (Ta + SSE) 1

                                      ,         ,,     ,     ,2 Y            z shear      +    shear u ,     force.            Jorce.     , & , o , s ry A              25
h. Effective Length Factor in slenderness ratios for overhang, ive single and double bends,=the unbraced length and its respect K value is given in Attachment 8.F.

The slenderness ratio of the conduit in the STRUDL printout need not be checked except for overhang. For overhang, maximum slenderness ratio (KL/r) for conduits may be taken as 240 when fa/Fa < 0.15 (not applicable for conduit support seaber). fa - Computed axial stress 1 Fa - Allowable axial stress ' When fa/Fa > 0.15, maximum slenderness ratio (KL/r) shall not exceed 200. The SSE allowable shall be used for SSE loads and OBE O allowables shall be utilized for OBE loads and if necessary,- each conduit span shall be evaluated for corresponding member forces. 6.1.15.3 common Sunnert

a. Conduit Stresses Each individual conduit has to satisfy the' design' requirements stated in the procedura described in Section 6.1.15.2.
b. Support Capacity For Vartical Direction-(RL + U x (1 + cusg)] 's 1+' (C,,,i,)(q or Lr)

For Horizonral Direction [Ri +-V x (Cugg)] $ 1+ (G,,,g,)(( or Lr) where Ri - Reaction force from RSM. , Gusw - From RSM. ! G,,, g, - Design " " value (See Figures 7.3.1 through .3.7) used in support design.

21M 5.02-CND Revision 2 Page 57 of 238 i () V Is or Lt - Per generic support capacity tables p(remodified support capacity calculationincludes weight of fill U- Weight of filler plato or shim plate. The above equations are applicable to both OBE and SSE cases.

6.1.16 STATIC ANALYSIS OF CONDUIT SYSTEM This section provides Suidelines to determine the exact values of is and is at each support location. Same structural model that was used in the RSM analysis shall be utilized in static analysis.

Perform a static computer analysis with 1 "g" in each of the three directions and obtain the reactions at the support location (Ls and L). Divide the reaction (s) obtained from RSM analysis by the above computed 15 and Lr to determine actual "g" values in all three T i directions at each support location. These values ma y then be used to compare capacities as described in Section 6.1.4 6.1.16.1 Statie Analysis of Suenorts 6.1.16.1.1 Generic Support

If support configuration meets all the attributes of generic support detail of Drawing No. S2-0910 or Drawing No. S-0910, it shall be evaluated as per Section 6.1.4.2. If support does not pass, it can be custom evaluated per Section 6.1.13.

The use of the support capacities for support types CA Sa-A, CA Sa-

O
         ,                 B, CSM 2a-I, CSM-2a-IV, and CSM 2a V as shown on the S 0910 and S2 0910 generic support drawings is acceptable except when the support is on the overhang portion of a conduit run and the first interior span is a double band of length greater than S3 shown below with the l

plane of the band on the same plane as that of the support base plate. l e  ! _ ( t

                           ?.   ]ap<1 la NP -]                   s..       '

( _ E --.+ ,

                                        .e
                                                  ..     *f,.                                         ,
                      '      t      .
u. m i

[ Accentable Configuration Confinuration with Sn Limitation  ! ,O

                                                                                            )

l l 21M 5.02-CND Revision 2 Page 58 of 238 p x- PCN 01 Conduit Size Allowable S 3 5" 9'-11" 4" 8'-11" 3" 7'-8" 2" 6'-7" 1.5" 6' 7" th exceed the allowable S the support Shouldtheactualspanlenbycasebasisfor100%ofthemoment shall be design on a case-induced by the longitudinal conduit load (. CA 5A support type can be qualified alternatively per Attachment 8;I. 6.1.16.1.2 Modified Supports A modified support is a support which has minor deviations from typical details given in Drawing No. S2 0910 or Drawing S-0910,

a. Modified supports may be designed verified by comparison to the generic support by hand calculations provided that all corresponding members and attributes which impact the capacity of the support can be demonstrated to be more conservative than those used for the generic support to meet frequency requirements and acceptance criteria.
b. If only the anchorage of a modified support matches the anchorage of the generic support, the spring rate obtained'for the generic support (see Section 6.1.12.5) may be used instead f-ss of performing new analysis to calculate the spring rate at

( ) anchorage point. The procedure described in Section 6,1.12.5 is/ shall be repeated except when deviations from generic supports are such that the support frequency is not affected, in which case the minimum frequency requirement is satisfied and the frequency analysis need not be repeated,

c. When a modified support is significantly different from generic support, all aspects of the support shall be design verified as follows:
1. Set up structural model with proper boundary conditions (Hinged, fixed, or Spri..g) and critical dimensions.
2. If spring rate at anchorage point needs to be considered, see Section 6.1,16.5.
3. Fill input data for frequency analysis and static analysis with proper spring rate obtained from item (b).
4. Review the static output to verify that all members pass code check (see Figures 7.9.1.and 7.9.2 for reduction in interaction equation coefficient due to 1/32 undercut).

Add warping stresses, and other stresses due to eccentricity not considered in the model. The STRUDL computer program shall be used to calculate member and weld stresses for structures with composite channels (see Ebasco Calculation Book No. Supt-0040 for details).

5. Check anchorage (surface angle, base plate, and bolts) fs using the procedure given in Section 6.1.12.5.
k. / 6. Complete calculations for all welds, gusset plate and members not included in code check performed by STRUDL.

4 2IM-5.02 CND Revision 2 Page 59 of 238

7. Code violations, if any (such as bolt edge distance, bolt spacing, etc.) shall be identified in the calculations.

l 8. Punching shear shall be checked for TS connections and for allowable normal weld force, see Figure 7.10.

9. All member stresses shall be evaluated including 1/32" i

undercut at fillet weld locations.

10. Code check performed by STRUDL does not includeTherefore, checking the member for shear stresses due to torsion.

member shear stress shall be computed by hand calculation. be

11. For o consibensectionsbendingstressesduetotorsionshall ered in evaluating member stresses.
12. Support frequency shall be computed with the consideration of base place flexibility.

13, Base plate and anchor bolts shall be checked for adequacy.

14. Support shall be checked for all load combinations.
15. The support capacity shall be reduced by 104 for any l rotation of TS with respect to embeddaa plate or base i plate from 5' to 85'.

i

16. A325 bolts may be used instead of Nelson studs on clamps provided the torque applied is not less than that required

' for Nelson studs. (} 17. S-0910 nodified or IN supports utilizing UNISTRUT members shall be qualified by finite element analysis. A comprehensive finite element analysis of the support shall be performed by using as-built support configuration. l ' Support shall be qualified for SSE loads utilizing allowables listed below: S 0910 SUPPORT TYPE MAX. BOLT I.R. MAX. PLATE STRESS KSI I CA-1 0.76- -20.08 CA 2a 0.64 17.00 CA-2b 1.00 24.75

                       *JA-1                     1.00                      24.75
                       *JA-2                     1.00                      24.75
                       *JA-3                     1.00                      24.75
  • Maximum stress for plate elements where weld exists, shall not exceed 15.4 kai for SSE loads.

6.1.16.1.3 "IN" Supports An individuali engineered (IN) support is a support which does not conform to cal details given in Drawing No S2 0910 or Drawing No. S-0190. e procedures described in Section 6.1.16.1.2.c shall in general be used in the design verification of IN supports. Consider fixed connections for frame evaluation and use pin connections at base plate to check support frequency. (~'} v If' frequency does not meet the minimum frequency requirement, then use actual spring constants at-base place connections to calculate

21M.5.02.CND Revision 2 Page 60 of 238 'y care shculd be exercised to assess that actual the minimum support frequency, frequency is g lobal or in the components of interest and not localized for complicated supports. ! 6.1.16.2 .Comeuter Model A three dimensional STRUDL of the support shall be used with relative eccentricities between interconnected members determined in ' accordance with guidelines contained herein,

a. For generic supports the model shall be prepared using a global i axes where the Y. axis is perpendicular co the base plate or-
embedded plate as shown below.

( g .x f I = +Y t NORMAL To BASE PLATE d,g.. +Z

b. For Modified and IN supports the model shall be prepared using a -lobal axes where the Y. axis is vertical, the X & Z axes oriented in the N.S and E.W directions according to Figure 7.28.

j 6.1.16.3 Eccentricities ! Various eccentricities must be considered to realistically account for the application of loads.and interconnections between structural members. i l a. A rigid member shall be used to represent the eccentricity between the center of gravity of conduit (point of load application) and the center of gravity-of supporting member, i Any torsional moment from shear center to center of conduit not i accounted for by the use of rigid members shall be added to the model as additional corsion. [ FILLER R

SHIM t m -

1

                                                                                                   -(CNO                                     C                            N e

A m.

                                                                                                                                              -~~

i Clf.< m2 4 o ,- + cni- - M f fr.L-iCLAMP _ _ . tTS- _-- - W

                                                                               -'             ~    ,(IS           c                             ...

1

                      ,_._._._.r"-                                '

t on c SECTION A-A I d

        *h-l     OVERHANG                 -(COVERT 5

4 l r,-- .-

21M.S.02.CtID Revision 2 Page 61 of 238 O eg - Length of Rigid Link

                                                                                   -       1/2 conduit 0.D.* + b + c S       -       Overhang
                                                                                    -      1/2 (Conduit Clamp Lengths * + t) + d
  • Use 5" p max, conduit unless otherwise noted, c - Maximum combined thickness of shim plates and filler plate as shown on the drawings. If not specified, use 1 1/14" maximum for S.0910 support details and 2" maximum for S2-0910 support details, d - Maximum distance between edge of clamp and the tip of tube as shown on the drawings. (Use 2" if not specified).

t - Cover plate thickness. (Weight of the cover plate shall be lumped at the tip of the tube (TS) member).

b. Rigid member from the center of gravity of a member to the center of gravity of a connected member shall be used to represent the eccentricity between members where relative
                                                                            .=cvement is negligible (see Figures 7.31.1 and 7.31.2) .
c. the eccentricity between the centerline of For gussetsimplicity,d plate an center of gravity of connected member (strut) may be excluded from the model and the following procedure used-for verifying the members and welds-involved:

A / SUPPORTING < g g WELD 'A' WEW8ER [ GUSSET (THICKat) t

                                                                                                           ,--        p
                                                                                     --- -.+ - -.--.           1.-...._.-              --(GUSSETt
                                                                                         -e--.-.-.-.            -.-..     . . _ .     . - 4    -( LEG C 4
                                                                                       .                 .                                    o p axist
                                                                                                             . .- . - . _ . _ . _ . _ y1 o                           Loao wELO '8 f~ f
                                                                                    /4 - . - - .                                                  C.G. OF 4 STRUT (vD                                                             .

21M 5.02 CND ! Revision 2 Page 62 of 238 O (G

1. The Moment.due to the eccentricity (P x ez ) shall be taken by the strut member. The stresses due to this moment shall be manually added to stresses from computer output due to axial load (P).
2. The gusset place, weld "A" and weld "B" shall be designed for the axial load (P) plus the moment due to (Pxeg).

6.1.16.4 Nodal Point All nodal point connections shall be as follows:

a. For bracing:
1. Pin connection shall be assumad on connection with plate.

4 (See Figure 7.32.1)

2. Pin connection shall be assumed for braces velded to back of posts. (See Figure 7.31.2)

Assume one nodal point if the dimension between the top of the horizontal tier and the bottom of the diagonal brace is within d/2 inches for 2 50' and d/3 inches for < < 50' where "d" is the width of the post to which bracing is welded (see Figure 7.32.2),

b. For post to tiers:

l() All shall be fixed connections. ! 6.1.16.5 Boundary Conditions Boundary assumptions should reflect the actual anchorage configuration. Specific conditions for various anchorage configurations shall be as follows: I

a. Surface angle or base plate connection to concrete with Hilti bolts or Richmond Inserts.

The anchorage flexibility shall be considered in the analysis by introducing the spring rate at the connection in order to provida a more realistic distribution of moments throughout the entire frame. The following guidelines apply to Figure 7.7: ! 1. Spring rate values may be obtained from the table if the anchorage configuration falls within the range covered by the table.

2. The distance of the bolt from the end of the angle can vary from 2.5 inches minimum to 4.5 inches maximum.
3. If the spacing L of the anchorage does not match exactly the spacing in the table, linear interpolation between the immediately higher and lower spacing can be used.

4 The values shown in the table are acceptable when the ((_,T j_ centerline of the post is within 6 inches of the centerline of the two bolts, so long as the edge of the channel attachment is not beyond the bolt centerline.

   .      -- - .-. _-                . - -         -      - _ _ . -.                - -~. . - . - -----.                      . . .. -

1 i 21M 5.02 CND: Revision 2 Page 63 of 238

5. It must be noted that the spring rates are given in the local coordinate system of the base angle. They have to be converted to the global coordinate system of each individual STRUDL analysis.
6. If the anchorage configuration does not satisfy steps 1 through 4, then a baseplate analysis-run to obtain spring rates for each such plate shall be performed. It must be i

' noted that the spring rates as obtained are given in the i local coordinate system of base angle. They have to be converted to - the global coordinate system of each individual STRUDL analysis.

7. For steci members velded directly to embedded plates, the joint shall be assumed rigid with all anchorage i

' translations and rotations fixed.

8. Translational stiffnesses for base angle configurations in the table need not be considered in the design l
;~                                         verification.           Their impact on system frequency is insignificant for frequencies smaller than 33 Hertz for i                                            the normal load range. In addition, disregarding i

translational spring-rates in the static analysis yields sli htly 5 higher reactions, which is conservative, for ( ' marginal cases, where reduction in conservatism is required, translational spring rates can be incorporated i in the design, and will be calculated on a case by case ' basis. I 9. For " softer" anchor bolts, (specifically 1" Hilti Kvik

     /N

( ,) bolts and smaller, with an a.;horage reaction due to dead i load greater than 1 Kip), the impact of the translational i stiffness on the frequency may not be negligible. For these cases, translational stiffnesses in all three directions should routinely be incorporated in the design. j 10. Spring rate for the base plates of modified or IN supports ! with anchorage confi prations which are similar to generic supports may be obtaIned from the calculation books of the applicable generic supports, i The anchorage shall not be modelled in-the static analysis model, however, it will be checked as described in Section !. 6.1.12.5.

b. Weldad Connection l

! If a structural member is welded all around to an embedded i plate or containment liner, the connection should be assumed to j ' be fixed in all three (3) directions. l 6.1.16.6 rf3r Raouiramants And K Factors i The following applies to KL/r requirements and K values to be used in slenderness ratio calculations:

a. Compression Member KL/r Requirements i

Slenderness ratios (KL/r) for " compression members" shall be

                                     ' limited to 200 in accordance with section 1.8.4 of the AISC 2

American Institute of Steel Construction. All support members shall conservatively be considered as " compression members" i except for vertical posts as noted below.

                                                                                                    -c  r-- - , - ,,,,enne - w  .ro,,.--

, ~ . - . . ~ . ~ - - i-

                                                                                          -2IM 5.02 CND 5                                                                                           Revision 2 Page 64 of 238 t
b. Classification of support vertical post members of Trapeze, LW l and L Shape Configurations-as a " compression" or " tension"-

member shall be, based upon the axial load component. If there is any static' compressive force (due to dead load), the member. I shall be classified as a " compression member" and the

requirement-in part (a) above shall be applied.

l If a vertical post member is subject to static tension and the i combined static plus' dynamic load does not lead-to a compressive-force greater than 50% of the design compressive strength (where KL/rsis used to calculate the design l compression strength-Fa), the member is classified as a. ' " tension member". A maximum slenderness ratio (KL/r) limit of 300 is applied to these members. All other vertical post members shall be classified as-" compression members" and the j requirements of: part (a) above shall be applied, t l c. -" K" Value Determination for Slenderness Ratio Check i K values shall be determined as specified=on Figure-7.33 for l KL/r check, i d.. Compressive Stress Check Requirement Regardless of-the member classification, a full-compressive-stress check shall=be performed in accordance with AISC. American Institute of Steel Construction for any member subject' to a co rossive load, regardless of the amplitude'of the' load l l r and what er the load is staticLor-dynamic For co rossionmembers,theaokrhriste"K"valueshallbe- shall-be used, L used, or " tension members", i I Additional Notam . 6.1.16.7

a. Whenever open section members are-used, hand calculations-should be-made to check warping stresses.-. Shear stresses due to torsion are.to be checked if not already verified by the-STRUDL program,
b. When using rotational' stiffness coefficients with the frequency analysis, these spring constants should be included under j
                             " joint releases" command (See PD STRUDL Users Manual).

I c. For clarification 'in using Beta Angles, refer to Figure 7.34.

d. In the design: verification of L-shaped structural steel' members k
  • subject to bending and compression-such as bracing angle l

f-connected with a gussee plate..the required-reduetion in

                            ^a llowable bending stress about the strong axis of various angle.

i -sizes for spans from-240 to 144" are provided in Figure 7.36.1. i In calculating the-interaction: ratio,.'the allowable bending

                           ' stress about the weak axis shall be taken at 0.6 Fy-(22 ksi-for
                           -A36-steel) and the allowable compressive atross (Fa) obtained:

with consideration of torsional-buckling. - For this purpose, a i table is developed-(see Figure 7.36.2) listing the maximum p

                            - angle lengths of various angle aizes' for which torsional e

buckling needs to be considered.' The allowable load in a-3 x 3 x 3/8 angle bracing for len ths i- from 36 to 108 inches has been calculated and is provided in l- l L . __u_ _ _ - _ _ ..-. 2 _ ._- _ _ __.m.__

    - - .  ~   .-  .~          _.   -_ _      _.              -           .. --       . -   . - - _ _ - _ _ _ _ _

2IM-$.02 CND Revision 2 . Page 65 of 238 lO i' Figure 7.36.3. .For sample calculations of angle subject to bending, see Ebasco Calculation Book No. Supt 0235,

e. For all calculations:

Es (Modulus of- elasticity for steel) - 29 x 103 kai l l E (Modulus of elasticity for concrete) - 3460 kai G (Shearing Modulus of elasticity for steel) - 11.2 x 10 3 kai l

f. If any section with A used or unused bolt hole has an interaction equation coefficient larger than 0.75, the section shall be manually verified by reducing the area and moment of inertia to account for the bolt hole.
g. Whenever an as-built drawing shows that a conduit orientation l is not ponendicular to a support (skewed), the forces should be appropelately decomposed into components.

j

h. Principal axes properties shall be used in the design

' verification of all angle sections.

1. The following shall be used in modelling:

' 1. The model should be drawn in the calculations.

2. The global axes should be shown.
3. Node points should be circled. 'The starting point may be

( assigned as point number 1 and the remaining points ! numbered in sequence, j i 4. Members should have the. member number indicated by placing a-box around the member number.

5. Arrow Heads should indicate the + X Local Axis for the member. (This is determined by the way the member-incidences are input).

6.1.16.8 Dead Lands For Canarie Sunnorts . f Values specified-in the capaci n table shown on the drawing in l Drawing No.. 52-0910 or Drawing No. S 0910 which includas the weight of clamps,- shin plates, filler plates, connection bolts,- etc. , shall l be used as the dead load of conduit lump 6d at the C.C. of .the  ; l conduit. I f 6.1.16.9 b-=d - Landa For Modified And "IN" Sunnarts i e The determination of tributary conduit loads k and 4 shall be done "LS" ceries drawing of. Drawing No. S-0910 or "U " Series and as "PESD" Series of sc: wing No. S2-0910 for all supports. perl l The weight of shim and filler plates shall be esiculated based on as-built dimensions and added to the conduit loads. When standard-shim and filler plates are used. CSD series -drawings of Drawing No. S-0910 or Drawing No. S2 0910 shall be used to calculate the weights ' of the standard shin and filler plates. The weight' of structural members shall be automatically generated by 2 the STRUDL program. The weight of cover plate shall be calculated and input as mass at the tip of the tube. Conduit loads shall be , -l

21M 5.02 CND Revision 2 Page 66 of 238 \- / PCN 01 applied at the conduit location which produces maximum stress for supports. Where application of load at one location does not produce maximum stress on all structural components, the member where the load was not applied at the most critical location shall be verified manually or by making an additional computer run to print stresses only for the me='-~ under investigation. 6.1.16.10 Seismie Loads The seismic loads are calculated by multiplying the appropriate weights by the applicable accelerations in three orthogonal directions,

a. Generic Supports The design "g" values given in Figures 7.3.1 through 7.3.7 shall be rotated to account for the most critical loading conditions for the support.

The design "g" values in each direction shall be rotated to envelope all conduit orientations unless otherwise justified. However, "g" values need not be rotated provided the actual orientation of the support is known and considered and"the"Itaitations;of;Section

                                                     ' ~ '^        ~    ~

6)lf.4i8[areim.et. For supports mounted between two floor elevations, the larger of the "g" values of the floors shall be used. (N Since "g" values differ for each elevation in each building, the number of analyses required may be reduced by using the most t '--) critical set (gt, g2 gs) which will envelope all other sets. A set of enveloped design "g" values thus obtained is provided in Figure 7.37 for each building. The weight of the junction box including its contents shall be considered for 1.5 times peak "g" values while the weight of conduit and dead weight of the support is designed for the design "g" values. To simplify the SMUDL input, the weight of the 'unct ion box and contents may be multiplied by an equivalent coeffi.cient (maximum ratio between 1.5 peak "g" and design "g" in three directions) to convert the weight of the box and contents. The design "g" value is then used to obtain seismic loads for the design verifiestion of junction box supports. To reduce che number of analyses required, the equivalent coefficients for all the buildings are condansed into three groups bared on controlling a g" value and frequency and are provided in Figure 7.16.1. The buildings and elevations in each group are provided in Figure 7.16.2. When a portion of the ISO is attached to a support by other discipline or to the Spread Room Frame (SRF), the eismic loads on the next and second next supports to other discipline or SRF support shall be calculated based on the enveloped 1.5 times peak "g" values from floor elevation above and below. This may be accomplished by multiplying conduit loads (k and Lg) by a coefficient equal to the ratio of 1.5 peak "g" to design "g" and using the design "g" values in the static analysis of the support. [)'- ' For the cases when the conduit support is attached to a steel platform, steel platform response spectra should be used instead of regular floor response spectra.

21M 5.02 CND

                                                                                                                                 -Revision 2 Page 67 of 238
b. Modified and IN Supports Unless the RSM values and analysis the support is performed orientation to determine is known, the actual the support has to "g"be designverifiedinaccordancewiththedesign"gu"esineachvalues Figures 7.3.1 through 7.3.7. The design "g va given in direction shall be rotated to envelop all conduit orientations unless otherwise justified. However, "g" values need not be rotated provided the actual orientation of the support is known and considered ;andithe;11mitationsj[ofzSectiong6J1@85are? net.

The design "g" values used for IN supports shall be multiplied by a load factor as specified in Section 6.1.2.3, as applicable. For supports mounted between two floor elevations, the larger of the "g" values of the floors shall be used. Since "g" values differ for each elevation in each building, the number of analyses required may be reduced by using the most ga 83) which will envelop all other sets. A set of enveloped critical setdes (gt,ign "g"f values thus obtained is provided in Figure 7.37 for each building or S-0910 supports. The weight of the junction box including its contents shall be - considered for 1.5 times peak " " values while the weight of conduit and dead weight of-the support s designed for the design "g" values. To simplify the STRUDL input, the wei t of the nunction box and contents may be multiplied by an equiv lent coeffl.cient (maximum ratio between 1.5 peak "g" and design "g" in three O directions) to convert the weight of the box and contents. The design "g" value is then used to obtain seismic' loads for the design verification of junction box supports. To reduce the number of analyses required, the equivalent coefficients for the six buildings are condensed into three groups based on controlling "g" value and frequency and are provided in - Figure 7.16.1. The buildin -. provided in Figure 7.16.2. gs and elevations in each group areThese values are provided for-S-091 supports only. When a portion of the ISO is attached to a support by other discipline or to the Spread Room Frame (SRF), the-seismic-loads on the next and second next supports to other discipline or SRF support shall be calculated based on the enveloped 1.5 times peak "g" values from floor elevation above and bslow. This may be accomplished-by multipi ing conduit loads (It and l ratio o 1.5 peak "g" to design "g"y) by a coefficj ent equal to theand using_the design "g" values in the static analysis of the support. 6.1.16.11 Load combinations Load Combinations Within STRUDL Computer Analysis-

a. Ocneric Supports The required load combinations are identified in the computer skeleton for "g" values which require rotation (see Attachment 8 E)'and for those which do not require rotation (see Attachment 8.H).
      ._. - . - ~        .-                    -   -     -           - - - .                  - =. .-       -       . . .-
  • 21M-5.02 CND l~ Revision 2 1

Page 68 of 238 ks b. Modified and "IN" Supports 4 Specific load combination for modified and IN supports are j ' identified in the computer input skeletons prepared for "g" values which require rotation (see Attachment 8.C) and for i those which do not require rotation (see Attachmont 8.H), 6.1.17 FOOT PRINT LOADS 1 Footprint loads shall be transmitted to the Civil / Structural Group

  • and other disciplines as per the requirements of Procedure 2EP 5.17.

i 6.1.18 HAND CALCULATIONS Hand calculations and engineering evaluations may be perfor a/ in l lieu of computer analysis for the design validation of con systems.that do not meet the generic. requirements of S 091L  ! S2-i ) 0910 Drawings. 6.1.19 MISCELLANEOUS INFORMATION

  • l
a. Collecting as-built data and/or additional information to l

update isometrics shall be as per Engineering Assessment * - Procedure 2 EAP-003.

b. Public domain computer programs, such as STRUDL or ABB Impell computer programs that are approved by ABB Impell Corporation l

QA program, such as NEWCOND, shall be utilized in performing the analysis. Any computer program used must meet the quality assurance requirements of Section QP-6.0 of the Impell QA ! manual.- j c. For Unit 2 conduits that are designed in accordance with the requirements of S 0910 drawing, refer-to Design Basis Document l i DBD-CS-111 for the design criteria, l l 6.2 TRAIN C CONDUITS The Train C conduit systems and supports are not safety related and do not have to remain functional or operable during an earthquake. i- Althou @ the Train C Conduit Systems and supports-are not safety. related, they must not impede the operability of Seismic Category I i components that are safety related and may be required to remain i operable during a Safe Shutdown Earthquake. Train C Conduit general l-design criteria is included in Design Basis Document DBD-CS-090 for

-greater than 2-inch diameter conduits and Design Basis Document DSD-CS 093 for 2-inch diameter and smaller conduits.

' Existing Unit 2 Train C Conduit systems and supports will-be ! validated by the Unit 2 Civil / Structural II over I program using a  : l

                              " comparison to experience-database" type of approach. This approach will validate a large number of these conduit systems and supports through a rapid walkdown screening process. - Conduit systems and supports that do not pass this screeniu process (outliers) will be valldated by the Unit 2 Civil / Structural Electrical Raceway Group through verifying their structuralAlso        integrity due falling    to the under          combined the tiectrical dead weight and seismic loads.-

Raceway Group scope is the-evaluation of the new Train C Conduit. systems e.id supports that cannot be installed as per the generic  ; l drawings as specified in Specification CPES-S 2005. The -guidelines, criteria and procedures to be used in the- analysis and. design of Unit 2 Train conduit systems and supports, requiring i i f

       ,                                                       .--,r

l = l 2IM 5.02 CND

                                                                                                                     ' Revision 2 Page 69 of 238 O                               systems and supports that cannot-be installed'as per the generic
                                   ' drawings as'specified in Specification CPES S 2005.

The pidelines,- criteria and procedures to be used :in the analysis and desi5n of Unit 2 Trcin cor.duit systems and supports,- requiring: structural integrity verification, shall be as provided in-Engineering Technical Procedure ECS 5111 for 2 inch diameter and smaller conduits, and Section 6.1 of this procedure ~for greater than 2-inch diameter conduits.- The following clarifications apply to lar5er than_2-inch diameter l' conduits:

                                     -The following interaction equation shall be satisfied for lall clamp connection used                       in clamp       detailsorexce when 3/pt when A-307 or unidentifiable bo ts are8" 9 with C 708-S clamp.

L' ' '

                                                                                                           .SO 5 4     Tu    Pu                                                f i

where: L,T,V - Calculated ci g loads.in the axial, transverse and vertical directions Ig, T.,-V, - Clamp static ultimate capacities in the axial.- transverse and vertical directions.

O_.

Dead wei d t shall be added by absolute sum to the appropriate ' seismic load direction.- The clamp ultimate capacities are given in Fi nres 7;1~.11 through 7.1.15. For convenience, allowable clamp loab ofLequal magnitude in all-three-directions are also'given in these' tables. If_the-calculated clamp load-in all three directions are less than-the. allowable load,=the clamp is adequate and there is no need to.

                                       . evaluate _ dme _ clamp by the -interaction equation.

For C 708-S clamp, 3/8"' S Nelson studs and'UNISTRUT bolts, the clamp I adequacy shall be evaluated in accordance with-the criteria for

                                       -Trains-A and & conduit systems.

' When clamps are used with A 307 or unidantifiable bolts, the clamp adequacy shall be evaluated in accordance with the criteria for

                                        . Trains A and B conduit systems.
                                       'The adequacy for clamp types not covered herein shall be validated based on the vendor supplied test data for clamp allowables-and the acceptable method by. industry.

L The following clarifications' apply _ to 2-inch diameter and smaller l-conduits:

                                          -a. 'The following-supersedes section 6.4 of ECS-5111:

Collectins as-built data shall'he-as per Engineering Assessment. O Procedure-2-EAP-003.

1 2IH-5.02 CND Revision 2 Page 70 of 238

b. In Section 6,6.1.4 of ECS-Sill, the following paragraph is
               , m d:

Print Load (FPL) transmittals shall be prepared in a .ordance with Engineering Procedure 2EP 5.17 and submitted to civil / Structural Group for approval. New Train C conduit systems and supports shall be design validated based on the guidelines and criteria provided in this procedure. 6.3 GENERIC EVALUATION GUIDELINES This section establishes the guidelines for recommended approaches in performing generic type evaluations of conduit systems and supports. These evaluations shall be utilized in place of i,arforming detailed individual evaluations.

o Design Validation of Conduit Systems and Supports by
Comparison / Similarity Unit 2 conduit systems and supports may be desi5 n validated based on comparison / similarity for Unit 1 and Unit 2 Recommended design validated systems and supports. Unit i lessons learned shall be utilized as much as possible.

. o Design Validation of Conduit Systems and Supports Using Samplin8 Techniques , Sampling can be performed in accordence with the guidelines of Procedure ECE 3.26 (Attachment 8.B of ECE 3.26, Sampling Plan V D) to resolve issues such as procedural compliance, audit issues, component qualification, existing documentation, etc.. TheIpopuistiba rshilENT46Midersd;dibittCVilidstedIIFthe

              **16cted?samp W ieldamonstratedj oigogfotsIM tg eheleud eM desiggbasisj

. o Design Validation of Conduit Systems and Supports Using Representative / Envelope Case

,             A representative case (s) can be selected for detailed rigorous

! analysis. The representative case (s) shall be the most critical in the population in order to extrapolate the results into the rest of the population. The selection of the most critical case (s) shall be based on conduit size, conduit configuration, clamp type, support configuration, C values, design margin, etc.. The engineer, depending on the subject / issue, shall decide on the-appropriate applicable approach / combination to be used. The approach / combination used, as well as the logic behind it, shall be documented in a generic calculation / report. The generic evaluation 1 shall be based on the guidelines and criteria provided in this i procedure. 6.4 EVALUATION OF UNIT 1 PCHVP RESULTS FOR APPLICABILITY TO UNIT 2 Evaluation of Unit 1 Post Construction Hardware Validation Program ) (PCHVP) results for applicability to Unit 2 shall be done-in. Ci accordance with Unit 2 Procedure 2EP-2.04. This evaluation will  :

  -V     consider the results and leseons learned during the implementation              !

of the Unit 1 PCHVP; will develop the basis for identifying any , required field verifications of the attributes in Unit 2; and, will specify_the method-to be used for those reverifications (i.e., backfit requirements to specifications, engineering assessment procedures, etc.). I

i. .,

21M 5.02 CND 1 Revision 2 Page 71 of 238 6.5 FORMAT OF CALCUIATION Procedure 21M 2.00 in conjunction with Procedure 2EP 5.08 shall govern the preparations, approval and control of project calculations.

6.6 FORMAT OF DRAVINGS Procedure 21M 2.00 shall govern the preparations, approval and control of project drawings.

6.7 CHICKING CRITERIA

ThecheckingcriteriaingP3.6ofABBImpellQualityAssurance Manual shall be utilized uor checking of project calculations ar6 l

other applicable documents. The following general criteria shall be 4 used:

a. Originator followed defined procedures.
b. Title, rpos e , and function of the work checked are adequately describ d
>           c. Work method clearly stated and appropriate,
d. Assumptions identified. Open items flagged for subsequent

' verification where necessary.

e. Technical bases and references current and correctly selected and incorporated,
f. Technical inputs properly selected and adequately identified.

4 Any specific inputs to be axcluded are adequately identified,

g. Applicable codes, standards and regulatory requirements identified and properly used.

l

h. Analytical steps can be verified without recourse to originator,
i. Each page of the work identified and traceable to originator, date and job control number, J. All marking legible and identifiable.
k. Work clearly references any final supporting computer runs,
1. Final computer runs include input listing and output. Correct inputs used,
m. Final computer runs contain uniqua number identifier. i
n. Results consistent with inputs, technical procedures and other project criteria.
      ~
o. Results are reasonablo,
p. Revisions are clearly documented.
  )         q. Technical interface requirements in the Project Quality Plan have been satisfied, l

i

  • ^
  • 21M 5.02 CND Revision 2 f - Page-72 of 238 i

iO 4

r. Appropriate quality and. quality. assurance-requirements-specified.
                                                                                                                                                                                                 'I i

The checker shall perform the review usins the-criteria provided in-l this procedure. As part of the-check, the checker shall trace the impact of any identified errors or discrepancies throughout the item ! being checked. i i When permitted by the format of the item being checked, the checker

                                      - shall lina through or otherwise clearly identify any numerical or--

l procedural disctspancies and indicate the correct values-or-atops. j When the checking is completed, the checker-shall return the '. originals and any check copies to the originator.- The originator shall resolve any comments and make any necessary changes to the l engineering work. , After all items are resolved to tho' satisfaction of the-checker, the- - checker shall initial and date the-original work-in the. space-l ! . provided. i ! - 7.0 FIGURES The following figures are part of thic document. p j 7.1.1 CIAMP TRANSVERSE ALIDWABLE USING UNISTRUT BOLTS-t l 7.1.2 CIAMP AXIAL ALIDWABLES USING UNISTRUT BOLTS 7.1.3 CIAMP VERTICAL AL10WABLES USING UNISTUT BOLTS ' ! 7.1.4. CIAMP TRANSVERSE ALIDWABLES USING NELSON ' STUDS

  • 7.1.5 CIAMP AXIAL ALLOWABLES USINC' NELSON STUDS-b 7.1.6 - CIAMP VERTICAL- ALLOWABLES USING NELSON STUDS
- 7.1.7 CLAMP
TRANSVERSE ALIAWABLES USING HILTI-KVIKLBOLTS i 7.1.8- ~ CIAMP AKIAL ALIAWABLES USING HILTI-KVIK BOLTS L

7.1.9 CIAMP VERTICAL ALIAWABUS USING HILTI KWIK BOLTS l l 7.1.10 CIAMP ALIAWABLES (LBS) POR C-708-S WITH 3/8" 9 UNISTRUT BOLTS OR . NELSON STUDS s-l  : 7.1.11.' CIAMP ALIAWABLES (25) FOR TRAIN C CONDUITS VITH P 2558 CIAMPS AND i STANDARD BOLT SIZES ~ ~ 7.1.12 CIAMP ALINABLES (LBS) FOR TRAIN -C CONDUITS WITH P 2558 CLAMPS E - (OVERSIZED SOLT$). AND C 708N-U AND C-708 U (STANDARD BOLT): CIAMPS U 7.1.13' CIAMP ALIAUABLES (LBS) FOR TRAIN C.CONDUITf VITH C-708N-U AND C-708-U

!                                       - CLAMPS WITH OVERSIZED BOLTS.'                                                                                                                             e t

F 7.1.14- CIAMP 'ALIAWABLES -(LBS) FOR TRAIN C CONDUITS VITH C-708-S:CIAMPS WITH [ STANDARD BOLTS

7.1.15; CIAMP ALLOUABLES (12S)' FOR-TRAIN C CONDUITS WITH C-708-5 CIAMPS -VITH
                                                              '       ~

OVERSIZED BOLTSt l 7.2 DE5INITIONS OF L, V AND.T DIRECTIONS FOR CONDUIT CLAMP [ 4'w's-Sr-iew---rym-_m q+_W-.-r*9h-g--

  • m4y-y- s3 - y p4 mg-a-Wak+ m g g y N+y HM94+ t p y-aP- g a p

4 1 i -21M 5.02 CND Revision 2 Page 73 of 238 b \

. s    7.3.1   DESIGN    "g"  VALUES FOR CONDUIT SUPPORTS - ELECTRICAL CONTROL BUILDING 7.3.2   DESIGN    "g" VALUES FOR CONDUIT SUPPORTS - FUEL BUILDING 7.3.3a  DESIGN    "g" VALUES FOR CONDUIT SUPPORTS - UNIT 1 SAFEGUARDS BUILDING INCLUDING DIESEL GENERATOR BUILDING 7.3.3b  DESIGN    "g" VALUES FOR CONDUIT SUPPORTS - UNIT 2 SAFEGUARDS INCLUDING DIESEL GENERATOR BUILDING 7.3.4   DESIGN    "g" VALUES FOR CONDUIT SUPPORTS - AUXILIARY BUILDING l        7.3.5a  DESIGN    "g" VALUES FOR CONDUIT SUPPORTS - UNIT 1 CONTAINMENT BUILDING 7.4.5b  DESIGN "g" VALUES FOR CONDUIT SUPPORTS - UNIT 2 CONTAINMENT BUILDING 7.3.6a  DESIGN "g" VALUES FOR CONDUIT SUPPORTS        UNIT 1 INTERNAL STRUCTURE OF REACTOR-BUILDING 7.3.6b  DESIGN    "g" VALUES FOR CONDUIT SUPPORTS - UNIT 2 INTERNAL STR1*CTURE OF REACTOR BUILDING i        7.3.7    DESIGN    "g" VALUES FOR CONDUIT SUPPORTS - SERVICE VATER INTAKE STRUCTURE 7.3.8    ZPA VALUES FOR CONDUIT SUPPORTS      ELECTRICAL BUILDING 7.3.9    ZPA VALUES FOR CONDUIT SUPPORTS      FUEL BUILDING
  /'~N  7.3.10   ZPA VALUES FOR CONDUIT SUPPORTS - SAFEGUARDS AND DIESEL GENERATOR

[\j BUILDINGS j 7.3.11 ZPA VALUES FOR CONDUIT SUPPORTS - AUXILIARY BUILDING [ 7.3.12 ZPA VALUES FOR CONDUIT SUPPORTS - CONTAlthENT BUILDING 7.3.13 ZPA VALUES FOR CcNDUIT SUPPORTS - INTERNAL STRUCTURES OF REACTOR ! BUILDING ) 7.4.1 STANDARD AND OVERSIZED BOLT / STUD DIAMETER FOR VARIOUS TYPES OF ' CLAMPS 7.4.2 HILTI BOLT DIAMETER FOR VARIOUS TYPES OF CIAMPS < 7.5.1 FILLER PIATE AND SHIM PLATE WEIGHTS FOR S 0910 SUPPORTS - P2558/C-708-U CLAMP 7.5.2a FILLER PLATE AND SHIM PLATE WEIGHTS FOR S-0910 SUPPORTS - C-708 S CIAMP 7.5.2b MAXIMUM WEIGHT - INDIVIDUAL FILLER PIATE FUR S2 0910 SUPPORTS - 7.5.2c MAXIMUM WEIGHT - STANDARD FILLER PLATE AND STANDARD SHIM PLATE FOR S2 0910 SUPPORTS 7.6 DEFINITION OF SEISMIC INPUT-. 7.7- SPRING RATES FOR TYPICAL BASEPIATE CONFICURATIONS A 7.8.1 PEAK "g" VALUES X 1.5 - ELECTRICAL CONTROL BUIISING V '7.8.2 PEAK "g" VALUES X 1.5 - FUEL BUILDING

21M 5.02 CND Revision 2 Page 74 of 238

 / O, i     f
  'd     7.8.3  PEAK  "g" VALUES X 1.5    SAFEGUARDS BUILDING INCLUDING DIESEL GENERATOR BUILDING 7.8.4  PE/.K "g" VALUES X 1.$    AUXILIARY BUILDING 7,8.5  PEAK  "g" VALUES X 1.5 - CONIAINMENT BUILDING 7.8.6  PEAK   "g" VALUES X 1.5   INTERNAL STRUCTURES OF REACTOR BUILDING 7.8.7  PEAK   "g" VALUES X 1.5   SERVICE WATER INTAKE STRUCTURE 7.9.1  MEMBER STRENGTH LOSS DUE TO 1/32" UNDERCUT - TUBULAR SECTION 7.9.2  MEMBER STRENGTH IDSS DUE TO 1/32" UNDERCUT - CHANNEL SECTION 7.10   ALLOWABLE NORMAL WELD FORCE FOR STEPPED TUBULAR SECTION CONNECTIONS 7.11.1 TYPICAL CASES FOR WARPING CONSIDERATION 7.11.2 

SUMMARY

OF WARPING STRESS TABLES 7.12 SHEAR CENTER IDCATION OF COMPOSITE CHANNELS 7.13 EFFECTIVE THROAT THICKNESS OF PREQUALIFIED PARTIAL PENETRATION BEVEL GROOVE WELDS 7.14 NOT USED 7.15 THREADED NELSON STUD TENSION AND SHEAR ALLOWABLES (~N 7.16.1 EQUIVALENT COEFFICIENT AND "g" VALUES GROUPING FOR JUNCTION BOX 4

   ')           SUPPORTS 7.16.2 BUILDING AND ELEVATION GROUPS FOR JUNCTION BOX SUPPORTS 7.17   BUILDING AREAS W/ 2" FLOOR TOPPING ON FIDOR SLABS 7.18   CONDUIT DESIGN VEIGHT AND SECTIONAL PROPESTIES 7.19   THREADED CONDUIT SECTIONAL PROPERTIES 7.20   CONDUIT TO JUNCTION BOX IhCKNUT DETAILS 7.21   HILTI BOLT SPRING CONSTANTS 7.22   UNISTRUT BOLT TENSION AND SHEAR ALIDWABLES 7.23   MINIMUM SUPPORT IREQUENCY OF S-0910 CONDUIT SUPPORTS l         7.24    DESIGN VEIGHT FOR FLEXIBLE CONDUIT SIZES 7.25    "g" VA111ES FOR THE QUALIFICATION OF ECSAS 7.26   B.C. DESIGN WEIGHTS AND DIMENSIONS 7.27   LBD DESIGN WEIGriTS AND DIMENSIONS 7.28   ORIENTATION OF BUILDING GIABAL COORDINATES 7.29   IDENTIFICATION NUMBERS OF BUILDINGS AND FIDOR ELEVATIONS (Gl 7.30   RIGID CONDUIT SPAN

i 21M 5.02 CND Revision 2 Page 75 of 238 O 7.31.1 MEMBER ECCENTRICITIES 7.31.2 ECCENTRICITIES FOR BRACES WELDED TO THE BACK OF VERTICAL POST i-7.32.1 VORKING POINT ECCENTRICITY FOR BRACE WITH GUSSET PIATES 7.32.2 UORKING POINT ECCENTRICITY FOR BRACE WITHOUT GUSSET PIATES 7.33 K FACTOR 7.34 BETA ANGLES FOR ANGLE, CHANNEL AND TUBE SECTIONS

  • 7.35.1 SPRING CONSTANT FOR ANCHOR BOLTS-HKB TENSION

! 7.35.2 SPRING CONSTANT FOR ANCHOR BOLTS ID3 SHEAR 7.35.3 SPRING CONSTANT FOR ANCHOR BOLTS-HSKB TENSION i 7.35.4 SPRING CONSTANT FOR ANCHOR BOLTS HSKB SHEAR i 7.36.1 ALIDWABLE BENDING STRESS FOR ANGLE ABOUT AXIS 1-1 I 7.36.2 TORSIONAL BUCKLING OF ANGLE MEMBERS 7.36.3 ALIDWABLE IDAD IN ANGLE BRACING WITH GUSSET PIATE CONNECTION 7.37 ENVELOPED DESIGN "g" VALUES I 7.38 LOAD FACTORS (LF) FOR VARIOUS CONFIGURATIONS (.,.\

' 7.39 OVERALL DESIGN VALIDATION PROCESS
7.40 DESIGN VALIDATION FIDW CHART FOR CONDUITS WITH COMPLETED CALCUIATIONS 7.41 DESIGN VALIDATION FLOW CHART FOR CONDUITS WITl! INCOMPLETE CALCULATIOWS f 7.42 CONDUIT DRAVING r

! 8.0 ATTACHMENTS i 8.A FORMUIAS FOR FINDING PUNCHING SHEAR 8.B EVAIDATION OF STRESSES IN BASEPIATES, SURFACE ANGLES AND ANCHOR i MUS 8.C SKELETON FOR BASEPIATE ANALYSIS 8.D SKELETON FOR RESPCNSE SPECTRUM ANALYSIS OF CONDUIT SYSTEMS INCLUDING THERMAL EFFECTS 8.E SKELETON FOR RESPONSE SPECTRUM ANALYSIS OF CONDUIT SYSTEMS 8.F UNBRACED LENGTH AND K. VALUES FOR INPUT IN STRUDL SKELETON SKELETON FOR STATIC ANALYSIS OF CONDUIT SUPPORT FOR "g" VALUES 8.G - ROTATED 8.H SKELETON FOR STATIC ANALYSIS ON CONDUIT SUPPORT FOR "g" VALUES NOT ' O( ./ ROTATED 8.I QUALIFICATION OF CA 5A SUPPORTS [

                                                                       ,        y--   - -- - --r--tv-==e- , ,

, =- . . . - . . - - - . , . . . l 1. ' 21M 5.02.CND , Revision 2-_  !

'                                                                                    Page 76 of_238 8.J   CUIDELINES FOR PREPARATION OF CONDUIT IS0 METRICS i

I 8.K GUIDELINES FOR-PREPARATION OF CONDUIT DRAWINGS i 8.L CALCULATION PEVIEW CHECKLIST r l 1 9.0 RECORDS i When completed, documents generated in response to this procedure shall be dispositioned in accordance with the Records Management Program manual as directed by STA.302. Document turnover assigned by TU-Electric . requirements Records Management, are defined by " Category",irements to. provide the requ for each record i type. Turnover categories are defined as follows: i . o Catamorv "A" . turnover to:TU Electric Records Management ' l required within 60 days of completion of work associated with a l document or work package; ! o Catamorv "B" .. turnover as scheduled by-TU' Electric Records Management; i

j. O Catamorv "C" retained _by the-rele& sing / generating organization; and, j o Catamorv "D" - turnover not required (non records).

l All calculations are-Category "A". lO l I i l-i- I b l l p-G i . --

                                       ,-r s- -/                             -     -       - , .  .-e,.-- r--, ,wwm-.,--v- -. ,-< * - - c.,,ww
       . . .~              . . - - .      .        . - - . - _   - .         . - _ . . - . . - . .         _    - - - .     -,          . . -   -_.    . _ _ _ .     .

l r 21M 5.02 CND-Revision 2 i Page 77 of 238 LO .FICURE 7.1.1 i CIAMP TRANSVERSE ALIDWABLES (LBS.)-USING UNISTRUT BOLTS l 4 -PCN 01-CONDUIT- . NOMINAL CLAMP TYPE DIAMETER (IN.) STD P2558 C 708N U C 708 S STD

-BOLT (OVERSIZED (OVERSIZED (OVERSIZED BOLT P 2558 OR BOLT) BOLT) BOLT) C 708 S C-708 U & C 708N U l 3/4 210 340 320 X X 1 -100 160 450 X X

$ 1-1/2 290 260 460- X X f 2 420 560 600 580 480 3 450 230 1050 640 500 4 450 235 865 -630 550 5 560 240' 680 620 600 i NOTES: 1. For " oversize bolt" size see Figure 7.4.1 l 2. Above data taken from SAG.CP10, Table 1.1. i f .. 4 A i e 1

               . . , . , .                  , . ,          .-_-            -          ._...,,_;. . - , . .     -.---.~._..:_-.,,,,..,.._-._.-u.
                                                                                                                                                                 ._._s

21H.S.02 CND Revision 2 Page 78 of 238

                                                    ,  FIGURE 7.1.2 CIhtP AXIAL ALLOVABLES (LBS.) USING UNISTRUT BO. t CONDUIT                                CLAMP TYPE NOMINAL DIAMETER                      P2558 (IN.)                    (OVERSIZED     C.708N.U      C.708 S P.2558 OR        BOLT)      (OVERSIZED   (OVERSIZED C.708.U      & C 708N.U       BOLT)        BOLT)               c.708.S 280 (158)           X                 X 3/4        90 (30)       520 (192) 480 (288)           X                 X 1        180 (60)       160 (59) 360 (216)           X                 X 1 1/2       200 (66)      340 (125) 2       560 (207)      750 (450)         500            640            480 (288)

E 3 400 (148) 650 (390) 1000 600 480 (288) 4 400 (148) 675 (375) 1000 600 530 (318) 400 (148) 600 (360) 1000 600 580 (348) _ _5 _ NOTES: 1. IF A-307 OR UNIDENTIFIABLE BOLTS ARE USED, THE CLAMP AXIAL ALitNABLES AS SHOWN IN PARENTHESIS SHALL BE USED.

2. For ' oversize bolt" size, see Figure 7.4.1
3. Above data taken from SAG.CP10,'lable 1.2. -

a k O

21M.5.02.CND Revision 2 Page 79 of 238 O FICURE 7.1.3 CIAMP VERTICAL A1.LOVABLES gLBS.) USING UNISTRUT BOLTS 1 I CONDUIT CIAMP TYPE j NOMINAL ' DIAMETER P2558 (IN) (OVERSIZED C.708N.U C.708 S  ; l P.2558 OR BOLT) (OVERSIZED (OVERSIZED C.708.U & C.708N.U BOLT) BOLT) C.708.S I 320 700 X X 3/4 200 400 540 X X i 180 280 440 X X 1 1/2 280 520 1080 600 480 2 400 440 1000 1000 640 440 3 340 1000 760 620 490 4 240 1000 520 600 540 5 NOTES: 1. For " oversize bolt" size, see Figure 7.4.1

2. Above data taken from SAG.CP10. Table 1.3.

O

21M 5.02.CND Revision 2 Page 80 of 238 l I i i FIGURE 7.1.4 CLAMP TRANSVERSE AlthWABLES (LBS.) USING NELSON STUDS CONDUIT CLAMP TYPE NOMINAL DIAMETER P2558 (IN') (OVERSIZED C 708N.U C.708.S P.2558 OR BOLT) (OVERSIZED (OVERSIZED i C.708.U & C.708N.U BOLT) BOLT) C.708 5 534 640 K X 3/4 145 520 900 X X 1 150 334 819 X X l 1 1/2 100 i 665 860 1475 830 806 2 512 1112 1506 1000 900 I 3 4 631 1325 1400 950 850

750 1538 1300 880 800 5

i NOTES: 1. For " oversized bolt" size, see Figure 7.4.1

2. Above data taken from SAC.CP10. Table 1.4 k

4 4 i

    ,g

21M 5.02 CND Revision 2 l Page 81 of 238 O FICURE 7.1.5 , CIAMP AXIAL ALLOVABLES (LBS.) USING NELSON STUDS 1 4 CONDUIT CIAMP TYPE j NOMINAL DIAMETER P2558 (IN.) (OVERSIZED C 708N U C+708 S i P 2558 OR BOLT) (OVERSIZED (OVERSIZED

                                                                    & C 708N U        BOLT)                           BOLT)          C 708 S

' C 708.U 920 (552) X X 3/4 196 (64) 450 (166) 606 (363) X X 1 124 (40) 368 (136) 760 (456) X X i 1 1/2 310 (102) 440 (162) 4 2 972 (359) 1100 (660) 675 1100 886 (531) 3 433 (160) 1084 (650) 785 925 750 (450) 4 554 (205) 1354 (812) 770 925 700 (420) 5 675 (249) 1624 (974) 800 1000 650 (390) j NOTES: 1. IF A 307 OR UNIDENTIFIABLE BOLTS ARE USED. THE CLAMP AXIAL ALIAVABLES AS SHOWN IN PARENTHESIS SHALL BE USED.

2. For " oversized bolt" size, see Figure 7.4.1
3. Above data taken from SAG.CP10. Table 1.5.

l l l ( I 4

 .- ..          .    ..         .~.-  _-   -. -          - . . . - -           . . _ . . ,..      . .- - .

21H.5.02 CND Revision 2 Page 82 of 238

FICURE 7.1.6 l CIAMP VERTICAL AlthWABLES (LBS.) USINO NELSON STUDS i

! CONDUIT CLAMP TYPE

NOMINAL

~ DIAMETER P25$8 i (IN.) (OVERSIZED C 708N.U C 708-S l P.2558 OR BOLT) (OVERSIZED (OVERSIZED , C-708-U & C 70BN.U BOLT) BOLT) C 708 S l X X i 196 534 450 3/4 f 128 393 900 X X 1 100 334 819 X X 1 1/2 j 665 760 1475 830 806 2 3 512 1063 1600 1040 1000 , o 1 4 576 1300 1600 850 1000 5 640 1538 1600 680 1000 i i NOTES: 1. For " oversize bolt" size, see Figure 7.4.1

2. Above data taken from SAG.CP10, Table 1.6.

i i i t ) i 1

                            +

21M.5.02.CND Revision 2 Page 83 of 238 O FIGURE 7.1.7 CLAMP TRANSVERSE ALLOVABLES (LBS.) USING HILTI KVIK BOLTS CONDUIT CLAMP TYPE NOMINAL DIAMETER P2558 (IN.) (OVERSIZED C.708N.U P.2558 OR BOLT) (OVERSIZED C.708.U & C.708N.U BOLT) C.708.S 100 205 480 X 3/4 1 125 220 360 X 80 240 310 X 1 1/2 2 240 320 X 660 3 360 1288 X 1000 1200 X 660 4 3D 5 M6 1185 X 320 NOTES: 1. For " oversize bolt" size, see Figure 7.4.1

2. Abovs data taken from SA0.CP10, Table 1.7.

I 6 a y -g + '

  • w-y-
    .---. . - . - = _ _ _ -                             - _        - _ _ _ . - --             -   .       .-. =.        . . - . - . - . - -        .    .-.

f 2IM.S.02.cND Revision 2 Page 84 of 238 a i FIGURE 7.1.8 1 CLAMP AXIAL AL14WABl.ES (LBS.) USING HILTI KWIK BOLTS

- ~

. CONDUIT CIAMP TYPE NOMINAL DIAMETER P2558 (IN.) (OVERSIZED C.708N.U P.2558 OR BOLT) (OVERSIZED C-708.U & C 708H.U- BOLT) C.708.S 360 660 X ., 3/4 70 230 648 X i 1 125 120 780 X i

;                                     1 1/2                 130 l

250 525 X 700  ! 2 ' 1 625 3 280 800 X 4 230 800 X 625 180 800 X 1150 5 NOTES: 1. For " oversize bolt" size, see Figure 7.4.1

2. Above data taken from SAG.CP10. Table 1.8.

l 1 t e

 . . _ _   . _ _ _ _ . _ =            . . _ - _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . . _ _ . - _ _ _ . ~ .

i i 21H.S.02 CND Revision 2 Page 85 of 238 FIGURE 7.1.9 i CIAMP VERTICAL ALI4WABLES (LBS.) USING HILTI KVIK BOLTS 4 CONDUIT CLAMP TYPE i NOMINAL DIAMETER P2558 l (IN.) (OVERSIZED C.708N.U P.2558 OR BOLT) (OVERSI?ED l C.708.U & C 708N.0 BOLT) C.708.S 200 510 X 3/4 275 1 180 290 X 1 95 240 360 X 1 1/2 120 l 300 560 X 620 j 2 260 1288 X 1000 3 4 260 1200 X 630 l 260 1184 X 260 5 ! NOTES: 1. For " oversize bolt" size, see Figure 7.4.1

2. Above data taken from SAC.CP10 Table 1.9.

I i i i l O V

t l 4 21M.5.02.CND l Revision 2  ; i Page 86 of 238  ! l FIGURE 7.1.10 l i j CLAMP AL1hWABLES (LBS) FOR C.708 5 WITH 3/8" 9 UNISTRUT BOLTS OR NELSON STUDS i CONDUIT ALI4WABLE IAADS(1bs) } NOMINAL DIAMETER (IN.) L. T. V. 4 i 353 (130) 1067 1217 I 2 1167 1292 J 3 842 (311)

                                                                      $20 (192)                                  1980                                            1640-
4

! NOTES: 1. if A.307 or unidentifiable bolts are used, the clasp axial-allowables as shown in parenthesis shall be used, l i

2. Above data taken from SAG.CP10, Table 1.6a.

i i E I l i 5 4 6 1 .

   ~ - , . . ,          r..--  _..,.....-,-,,_4..,~.          ,4.-,<,..-.,    , .        ___4_._~.,_..-_.._.--,,       .--...._.,,,._4       ,,.,_,,-....--._,s                     ,,. m

O O O FIGURE 7.1.11 CIAMP ALIIWABLES (LBS) FDR TRAIN C CONDUITS WITH P-2558 CIAMPS AND STANDARD BOLT SIZES CONDUIT CONNECTION T"PE NOMINAL HILTI KVIK BOLTS DIAMETER UNIS1RITT BOLTS NELSON STUDS (IN.) T V. ALIINABLES Im T., V., ALLOWABLES Is. T., V ALIINABLES Im 2160 199 642 1746 1746 198 532 3143 3143 3/4 320 1581 (521) 2160 6178 130 371 1184 3353 202 532 3763 3100 1 424 1651 (544) 2447 2520 168 1033 1002 1002 157 400 2983 2983 1- 1/2 320 1309 (432) 2520 16471 $46 2918 8058 8058 404 1046 7640 6684. 2 767 2216 (819) 7622 6755 461 1301 5034 8592 577 2058 5273 5273 3 798 3031 (1121) 6755 11033 591 1905 4922 8558 620 2079 5647 6763 4 1059 3983 (1473) 7695 15312 690 2510 4811 8524 654 2100 6022 8254 5 1303 4936 (1826) 8635 NOTES: 1.- IF A-307 OR UNILENTIFIABLE BOLTS ARE USED. THE ALIINABLES SHALL NOT BE USED.. INSTEAD, THE CLAMP ULTIMATE IDAD IN THE IDNGITUDINAL DIRECTION, Lu, AS SHOWN IN PARENTHESIS SHALL BE USED IN THE INTERACTION EQUr. TION. <

2. Above valves taken from SAG.CPIO Table 1.10.

2IM-5.02-CND Revision 2 Page 87 of 238

N O=%. o o FIGURE 7.1.12 CIAMP ALLOWABLES (LBS) FDR TRAIN C CONDUITS WITH P-2558 CIRIPS AND OVERSIZED BOLTS AND WITH C-708N-U AND C-708-U AND STANDARD BOLTS CONNECTION TYPE CONDUIT NOMINAL NELSON STUDS HILTI KWIK BOLTS DIAMETER UNISTRUT BOLTS (IN.) T., V ALII &' ABLES I,, T V,, T., V., ALIEWABIE.S L. ALLOWABLES L. 6308 6474 6474 448 1213 6308 6220 476 1351 3/4 534 1631 (603) 6220 6158 4879 308 775 6388 5669 4377 392 1104 1 432 1309 (484) 6100 4049 4049 283 715 5499 5499 3640 399 1323 1-1/2 450 1782 (659) 3640 4655 11151 11151 945 2640 13333 13333 747 3168 (1900) 5656 5656 1268 2 4337 8900 8499 1039 2988 14402 13030 1085 3 1042 3030 (1818) 10266 19244 J668 9120 11386 1352 4680 12054 1400 6272 4 1130 3223 (1933) 12770 18602 f 8208 9341 14273 1515 6372 9707 14306 1672 5 1208 3417 (2050) 15275 17961 NOTES: 1. IF A-307 OR UNIDENTIFIABLE BOLL IE USED, THE ALLOWABLES SHAL PARENTHESIS SHALL BE USFO IN DIE INTERACTION EQUATION.

2. For " oversize bolt" size. See Figure 7.4.1
3. Above data taken frca SAG.CPIO, Table 1.11.

21M-5.02-CND Revision 2 Page 88 of 238

L l O O O FIGURE 7.1.13 , I l CIAMP ALIDWABLES (LBS) FDR TRAIN C CONDUITS WITH C-708N-U AND C-708-U CIA.WS WITH OVERSIZE BOLTS l ' CONDUIT CONNECTION TYPE , i i NOMINAL DIAMETER UNISTRIFT BOLTS NELSON STUDS HILTI KVIK BOLTS (IN.) T V. ALLOWABLES 1 T., V., ALIDUABLES L. T., V I ALIDUABLES L 3/4 465 1138 (682) 10189 10189 945 2800 11659 11659 734 1992 11214 11214 716 2303 10457 5974 566 1521 8899 8899 1 631 1783 (1069) 9227 8190 781 2280 9936 9936 689 2360 6632 6632 l 1-1/2 621 1978'(1186) 6700 6700 2 1066 2765 16099 22163 825 2026 17890 17890 . . . , 3 1044 3038 13393 13393 1035 2854 12602 18903 . . . . 4 1515 4631 17266 17880 1347 4595 10031 18637 . . . . 5 , 1978 6225 21139 22367 1443 6337 7461 18372 . . . . NOTES: 1. IF A-307 OR UNIDEPrTIFIABLE BOLTS ARE USED. THE ALIDWABLES SHALL NOT BE USED. INSTEAD. THE CIAMP ULTIMATE IDAD IN THE IDNCITUDINAL DIRECTION, Lu, AS SHOWN IN PARENTHESIS SHALL BE USED IN THE INTERACTION EQUATION.

2. For "oversi=e bolt" size, see Figure 7.4.1
3. Above data taken from SAC.CPIO, Table 1.12.

2IM-5.02-CND Revision 2 Page 89 of 238 ,

o o i  ! L r l O i FICURE 7.1.14 - i- CIAMP ALIDUABLES (LBS) FOR TRAIN C CONDUITS WITH C-708-S CIAMPS WITH STANDARD BOLTS L CONNECTION TYPE CONDUIT ' NOMINAL NELSON STUDS HILTI KVIK BOLTS . DIAMETER UNISTRUT BOLTS (IN.) L. T. V,. ALIDWABLES Is T. V. ALIDUABLES L. T. V,. ALIDUABLES 3/4 . . 1 . . 1-1/2- . . . i 861 2660 9776 9776 1227 3820 13742 13741 2 1216 3910 (2346) 12872 12872 1361 4766 13451 12041 1173 4008 13681 9658 3 1601 6376 (3825) 12872 12872 1334 4557 13084 12720 1299 4636 12930 10919 l 4 1486 6324 (3794) 11226 11226 9581 1304 4349 12717 13399 1411 5265 12180 12180 5 1357 6272 (3763) 9581

1. IF A-307 OR UNIDENTIFIABLE BOLTS ARE USED, THE ALIDUABLES SHALL NOT BE USED.

NOTES: INSTEAD. THE CIAMP ULTIMATE IDAD IN THE IDNGITUDINAL DIRECTION, Lu, AS SHOWN IN , PARENTHESIS SHALL BE USED IN THE INTERACTION EQUATION. ,

2. Ahove data taken from SAG.CP10, Table 1.13. ,

i i 2IM-5.02-CND Revision 2 Page 90 of 238 i

O FIGURE 7.1.15 l ! CIAMP ALLOWABLES (LBS) FOR TRAIN C CONDUITS WITH C-708.S CIAMPS WITH OVERSIZED BOLTS i CONDUIT CONNECTION TYPE i NOMINAL HILTI KVIK BOLTS UNISTRUT BOLTS NELSON S11?DS DIAMETER (IN.) T V ALIDWABLES Is. T,. V.. ALIDWABLES I.. T., V,. . ALIDUABLES Im 3/4 . . 1 . . . . 1-1/2 . . . . . 18085 18085 975 3620 8464 8464 . . . .. 2 1216 3328 3 2277 8644 19259 19259 1371 4700 13172 13172 . . . . 4 1906 6694 17723 17723 1582 4823 18413 18413 . . . . 1495 4744 16187 16187 1743 4947 23654 23654 . . . . 5 NOTES- 1. For " oversize bolt" size, see Figure 7.4.1

2. Above data taken from SAG.CP10. Table 1.14.

21M-5.02-CND Revision 2 Page 91 of 238 i 3 4

21M 5.02 CND Revision 2 PaSe 92 of 238 D FIGURE 7.2 DEFINITION OF L, V AND T DIRECTIONS FOR CONDUIT CIAMP l L l $ I i l i

                                 ,          l            i i                       i l
                                 .          .            i s           g i

[\  ; l  ; [\

                       %)        ;

i. e

                                                             %)

i l i

                                  !           j           i i

l I V h T

                                                             =.

I I 5 ' I I NOTE: Above figure taken from SAG.CP10, Figure 1. 01 v

O Ob n V FIC19tE 7.3.1 DESIGN "g". VAIEES FOR CONDUIT SUPPORTS-ELECTRICAL CONTROL BUIIDING 1/2 SSE, 24 DAMPING SSE, 34 DAMPING VERTICAL llORIZONTAL VERTICAL FIDOR HORIZONTAL , ELEVATION E-U N-S E-U N-S 1.19 1.98 2.50 1.82 3.00

873' 1.73 1.15 1.98 2.50 1.63 3.03 854* 1.90 0.99 1.85 1.94 1.32 2.75 '

4 830* 2.12 1.88 2.25 1.13 2.88 807' 1.58 0.75 1.92 1.65 1.04 3.10 778'-O" 1.07 0.62 4 4 807.00', 778.00' Minimum conduit support frequency for this building is 12 Hr. with the exception at elevation to be 14 Hz, 16 Hr. respectively. NOTES:

1. The design "g" values in this table have lost their directionality during the design verification cycle.

Therefore, they shall be rotated for the design of all conduit supports.

2. The design "g" values in this table apply to Unit 2 conduits that are designed in accordance with the requirements of S-0910 drawings in the Electrical Control Building.
3. Above data taken from SAG.CP10, Appendix 7.

I 21M-5.02-CND Revision 2 . Page 93 of 238 } 4 r 1 k

N O FICURE 7.3.2 DESIGN "g" VAWES FOR CONDUlT SUFFORTS - EVEL BUILDING 1/2 SSE, 24 DAMPING SSE, 34 DAMPING FwOR HORIZONTAL ELEVATION HOEIZONTAL VERTICAL VERTICAL N-S E-V N-S E-U 2.20 4.16 5.40 3.18 918'-0* 4.22 5.34 2.22 3.44 4.76 3.30 899'-6* 2.67 4.70 2.01 3.57 3.47 3.03 860'-0* 2.43 2.43 1.83 3.17 2.84 2.85 841*-0* 2.07 1.83 ' 2.75 2.43 2.75 1.79 1.53 1.79 825'-0* 2.31 2.06 2.60 1.53 1.38 1.65 810*-6* Minimum conduit support frequency for this building is 16 Hz. 3 NOTES: i values in this table have lost their directionality during the design verification cycle.

1. The design "g*

Therefore, they shall be rotated for the design of all conduit supports. l values in this table apply to Unit 2 conduits that are designed in accordance with the l 2. The design *g*f S-0910 drawings in the Fuel Building. requirements o  ; l 3. Above data taken from SAG.CPIO Appendix 7. l i i i 2IM-5.02-CND Revision 2 , Page 94 of 238 4

O l 4 FICURE 7.3.3a. DESIGN "g" VALUES FOR CONDUIT SUPPORTS - UNIT 1 SAFECUARDS BUIIEING INCLUDING DIESEL CENERATOR BUILDING 1/2 SSE, 24 DAMPING SSE, 3% DAMPINC FIDOR i ELEVATION HORIZOhTAL HORIZONTAL VERTICAL i VERTICAL E-U N-S E-U l N-S 1.95 3.27 4.13 2.88 4.25 896*-6" 2.73 1.79 3.53 3.20 2.47 4.83 2.27

           '873'-6" 2.60   2.91                               2.09                  3.91 852'-6*                2.40                  1.35                                                                                                                     i
                                                                                                                                                                                  ~

2.29 2.38 1.56 3.44 831' 1.71 1.00 2.14 1.99 1.41 3.44 810'-6" 1.47 0.94 1.20 1.23 1.04 3.42 790'-6* O.81 0.73 2.13 1.18 0.94 3.31 785'-6" G.78 0.68 0.65 1.99 1.10 1.07 3.09 773*-6* O.71 Minimum conduit support frequency for this building is 16 Hz. NOTES:

1. The design .*g" . values in this table have lost their directionality during the design verification cycle.

Therefore, they shall be rotated for the design of all conduit supports. values in this table apply to Unit 2 conduits that are designed in accordance with the , 2. The design "g"f S-0910 drawings in the Unit 1 Safeguards Building. requirements o

3. Above data taken from SAG.CP10. Appendix 7.

2IM-5.02-CND Revision 2 Page 95 of 238 1

O O O FICURE 7.3.3b DESIGN *g* VALUES FOR CONDUlT SUPPORTS - UNIT 2 SAFEGUARDS BUILDING IMCLUDING DIESEL CENERATOR BUILDING DESIGN *g* - VALUES SSE, 34 Damping 1/2 SSE 24 Damping Floor I***EI " Horizontal Vertical Horizontal Vertical N-S E-U N-S E-V ' 3.27 4 46 3.08 4.28 896*-6* 3.96 2.30 3.54 4.24 2.78 4.19 873'-6* 3.75 2.08 2.59 3.23 2.01 3.92 852'-6" 2.81 1.58 2.31 2.41 1.45 3.50 831'-6* 1.69 0.95 2.21 1.83 1.56 3.43 810'-6* 1.23 0.88 2.21 1.23 1.09 3.42 790*-6* 0.81 0.70 2.13 1.19 1.01 3.32 785'-6" 0.77 0.65 3.09 1.98 1.10 1.07 773'-6* O.71 0.54 NOTES:

1. - The 'Jesign *g* values in this table have lost their directionality during de design verification cycle.

Therefore, they shall be rotated for the design of all conduit supports. values in this table apply to Unit 2 conduits that are designed They do in netaccordance with the apply to conduits that

2. The design "g"f S2-0910 drawings in the Unit 2 Safeguards Building.

requirements o are designed in accordance with the requirements of the PESD series of S2-0910 drawings. 3 Above data taken from SAG.CP2, Table A 3.2. 2IM-5.02-CND Revision 2 Page 96 of 238

                                  -                 . _ ____ _____                . _ ~ . _ . - _ . . _ - . _ . _ _ . . _ _ . . _ . . _ .                              _ _ _ . _ _

i FIGURE 7.3.4 i DESIGN *g* VAUJES FOR CONDUIT SUPPORTS i AUXILIARY BUIISING j i 1/2 SSE, 24 DAMPING SSE, 3t DAMPING j FIDOR HORIZONTAL ELEVATION HOE 120erfAL VERTICAL i VERTICAL E-V N-S E-V , N-S , 1.79 4.08 2.64 2.30 4.87 899'-6* 1.88 2.01 4.50 l 1.53 1.38 3.86 2.44 l 886'-6* 2.76 2.26 1.64 3.65 873'-6" i 1.48 1.22 \ 1.14 2.55 2, 's0 1.72 3.40 852*-6" 1.74 2.19 2.50 1.34 3.29 , 831*-6* 1.83 0.89 . i' I 0.75 2.C5

  • 1.71 1.18 3.31 810*-6" 1.16 i 2.08 1.68 1.34 3.29 790'-6" 1.11 0.87 i t elevation 790.50' to be 14
   - Minimum conduit support frequency for this building is 12 Hr with the except on a

, dr. NOTES:  :

                        *g* values in this table have lost their directionality during the design verification cycle.
1. The design Therefore, they shall be rotated for the design of all conduit supports.
2. The design *g* values in this table apply to Unit 2 conduits that are designed in accordance with the requirements of S-0910 drawings in the Auxiliary Building.
3. Above data taken from SAG.CP10. Appendix 7. .

i 2IM-5.02-CND Revision 2 Page 97 of 238 i

O o O , FIGURE 7.3.5a i DESICN "g" VAIEES FOR CONDUIT SUPPORTS UNIT 1 CONTAINMENT BUIIDING 1/2 SSE, 24 DAMPING SSE, 34 DAnPINC , i FIDOR HORIZONTAL ELEVATION HOE 120NTAL VERTICAL s VERTICAL _ E-U N-S E-U l N-S , 3.63 1.79 2.19 4.25 1000*-6" 1.41 1.56 , 3.03 1.46 2.03 3.51 950*-7" 1.10 1.36 2.66 1.55 1.78 3.44 905'-9" 1.13 1.25 i 1.69 1.61 1.61 2.19 860'-0* 1.31 1.06 i 1.94 1.50 1.69 2.81 f 805'-6* 0.95 0.94 2.25 1.04 1.56 3.38 1 783' 0.90 0.75 i Minimum conduit support frequency for this building is 12 Hz.

i. J NOTES:

The design *g values in this table have lost their directionality during the design verification cycle. 1. j Therefore, they shall be rotated for the design of all conduit supports. values in this table apply to Unit 2 conduits that are designed in accordance with the i 2. The design "g"f S-0910 drawings in the Unit 1 Containment Building. requirements o

3. Above data taken from SAG.CP10 Appendix 7.

i 21M-5.02-CND Revision 2 , Page 98 of 238 > l I I -!

FIGURE 7.3.5b DESIGN *g" VAIEES FUR CONDUIT SUPPORTS UNIT 2 CONTAINMENT BUILDING DESIGN *g" - VAIEES 1/2 SSE, 24 Damping SSE, 31 Daning ploor

          **** "                                                                                                                                                             Horizontal              Vertical Horizontal                            Vertical E-U                                                                                     N-S                                              E-U N-S 1.44                1.58                         3.63                                                     1.79                                                2.19          4.27 1000*-6" 1.36                         2.84                                                     1.48                                                1.98          3.51 950'-7"            1.16 1.23                        2.20                                                      1.30                                               1.79          2.84 905*-9"            0.91 1.10                        1.64                                                      1.04                                               1.60          2.16 860'-O"            O.69 1.40                                                      1.22                                               1.40          2.15 805'-6*           O.98                0.94 1.18                                                       1.07                                              1.27          1.94 783'-7"           0.84                0.84 NOTES:
                     "g" values in this table have lost their directionality during the desi5n verification cycle.
1. The design

!' ' herefore, they shall be rotated for the design of all conduit supports.

2. The design *g* values in this table apply to Unit 2 conduits that are designed in accordance with theThey do not appl requirements of S2-0910 drawings in the Unit 2 Containment Building. 52-0910 drawings.
 '        are designed in accordance with the requirements of the PESD series of
3. Above data taken from SAC.CP2, Table A.3.3.

i 4 2IM-5.02-CND Revision 2 Page 99 of 238

                                                                                                                                                                                                                      \

O O O 7 FICURE 7.3.6a. DESIGN "g" VAIEES FOR CONDUIT SUPPORTS UNIT 1 INTERNAL STRUCRIRES OF REACTOR BUIISING SSE, 31 DAMPINC 1/2 SSE.24 DAMPING

       .FIDOR ELEVATION                                                                                   HORIZONTAL HORIZONTAL                                                                                      VERTICAL VERTICAL E-U                                        N-S                E-U N-S 2.24         3.13               3.13            3.29 905'-9"          2.14                    2.14 2.09                              1.88       2.81               2.81            2.84 885'-6"           1.86 1.51       2.29               2.29            2.42 860'           1.88                   1.61 1.38       1.98               1.56            2.25 832*           1.78                    1.38 2.42       1.11               1.36            2.93 808'-O*           0.84                    1.20 2.25       1.07               1.55            3.36 1.05 783'-7*           O.74 Minimum conduit support frequency for this building is 12 Hz.

NOTES: 1.. The design "g" values in this table have lost their directionality during the design verification cycle. Therefore, they shall be rotated for the design of all conduit supports. The design "g* values in this table apply to Unit 2 conduits that are designed in accordance with the 2. requirements of S-0910 drawings in the Unit 1 Reactor Building.

3. Above data taken from SAG.CP10, Appendix 7.

21M-5 02-CND Revision 2 Page 100 of 238

_. _ = ._ , i O O FICURE 7.3.6b DESIGN "g* VALUES FOR CONDUIT SUPPORTS UNIT 2 INTERNAL STRUCTURES OF REACTOR BUILDING DESIGN *g* - VALUES

                                  -1/2 SSE 24 Damping                                  SSE, 34 Damping Floor
        ***' "                                            Vertical                Horizontal               Vertical Horizontal E-U                             N-S               E-U N-S 1.83            2.24            2.61              2.65            3.24 905'-9"'           1.75 1.53            1.93            2.15              2.24            2.80 885'-6*            1.44 1.54            2.16              2.22            2.24 860'            1.61              1.61 1.11            1.28              1.45            1.65 832*-6*            O.93              1.05 1.39           1.07              1.64            2.16 808'-0*            O.83              0.96 1.26           0.82              1.55            1.95

' 783'-7* 0.49 1.05 NOTES: '

1. The design "g" values in this table have lost their directionality during the design verification cycle.

Therefore, they shall be rotated for the design of all conduit supports 2. values in this table apply to Unit 2 conduits that areThey designed in accordance with the do not apply to conduits that are The design "g"f S2-0910 drawings in the Unit 2 Reactor Building. requirements o in designed accordance with the requiressents of the PESD series of S2-0910 drawings.

3. Above data taken from SAG.CP2. Table A.3.4 I

i 2IN-5.02-CND Revision 2 l Page 101 of 238

                                                                                                                - _ _ _ _ -_-__ _- _ _]

3 FIGURE 7.3.7 DESIGN "g* VAIEES FDR CONDUIT SUPPORTS SERVICE VATER INTAKE STRUCIURE 1/2 SSE, 24 DAMPINC "'E, 34 DAMPING FIDOR ELEVATION HORIZONTAL HOE 12DKTAL VERTICAL l VERTICAL

                     ~

E-U N-S E-U j N-S 2.40 1.35 4.50 2.85 2.20 < 838*-0* '4.23 1.80 1.31 3.11 2.12 2.10 3 817'-0* 2.80 1.00 1.20 1.36 1.14 1.92 796*-0* 1.00 1.02 0.82 0.82 1.67 ) 782'-0* 0.52 0.50 .i values are 1.5 x peak i~ Minimum conduit support frequency for this building is not applicable because Design *g*

   "g" value.

NOTES: i

1. The design *
  • values 'in this table have lost their directionality during the design verification cycle.

y shall be rotated for the design of all conduit supports Therefore, i 2. The design *g* values in this table apply. to Unit 2 conduits that are designed in accordance with the " requirements of S-0910 drawings in the Service Water Intake Structure.

  .3.      Above_ data taken from SAG.CPIO, Appendix 7.

1 l 2IM-5.02-CND Revision 2 i Fage 102 of 238 i ' I a _ m- - .

FIGURE 7.3.8 , l ZPA VAIRES FOR CONDUIT SUPPORTS ELECTRICAL BUIIEING i 1/2 SSE. 24 DAMPING SSE. 34 DAMPING

                                    . FIDOR                                                                                                                       VERTICAL      HORIZONTAL                                VERTICAL ELEVATION                                            HORIZONTAL l

E-U N-S E-W N-S 0.27 0.46 0.39 0.42 0.74 873'-4* 0.25 0.24 0.42 0.34 0.37 0.67 854'-4" 0.21 l 0.17 0.18 0.30 0.28 0.29 0.54 830'-0* 0.16 0.27 0.27 0.26 0.50 807'-0" 0.15 0.11 0.27 0.21 0.20 0.50 778*-0* 0.12 NOTE: Above data taken from SAG.CF20, Attachment P. l i l l l 1 I t 21M-5.02-CND

Revision 2 Page 103 of 238 j

l i

                                                                                                '                                                                                                                                                    s         ,

r FIGURE 7.3.9 ZPA VAIDES M R CONDUIT SUPPORTS WEL BUIIDING i i  ! 1/2 SSE, 24 DAMPING SSE, 34 DAMPING nOOR HORIZONTAL ELEVATION HOE 120NTAL VEETICAL I VERTICAL E-U N-S E-V N-S 0.51 0.37 0.69 0.67 ~ 418'-0* 0.39 0.37  ! 0.34 0.57 0.60 0.50 j E99'-6* 0.30 0.33 i 0.17 0.21 0.35 0.31 0.39 860'-0* 0.20 0.19 0.30 0.29 0.36 841'-0* 0.17 0.16 , 0.18 0.24 0.26 0.35 825'-0* 0.13 0.14  ! 0.17 0.23 0.24 0.34 810*-0* 0.12 0.13 l , 1 i i Above data taken from SAC.CP20. Attachment P. NOTE: I i  : i r t I

                                                                                                                                                                                                                                                             ~

i l 1 t f 21M-5.02-CND Revision 2 i Page 104 of 238  ; I I

O O O FICURE 7.3.10 ZPA VALUES FUR CONDUIT SUPPORTS I SAFECUARDS & DIESEL CENERATOR BUILDINGS SSE, 34 DAMPINC 1/2 SSE, 24 DAMPING FLOOR HORIZONTAL ELEVATION HORIZONTAL VERTICAL VERTICAL N-S E-U N-S E-U 0.77 0.82 0.79 1.12 896*-6* 0.61 0.53 0.75 0.69 1.46 0.45 0.41 1.03 873'-6" 1.25 0.38 0.86 0.67 0.60 852*-6* 0.43 0.50 0.47 0.90 l 0.33 0.32 0.59 831' 0.74 l 0.45 0.38 0.36 810' 0.21 0.22 0.27 0.32 0.54 0.18 0.2.9 790*-6* 0.15 0.26 0.30 0.51 0.15 0.18 0.27 785'-6" 0.28 0.46 0.25 0.24 0.14 0.16 773'-6* , NOTE: Above data taken from SAC.CF20. Attachment P. 2IM- 5. 02-Ch"J Revision 2 l Page 105 of 238

O o o FIGURE 7.3.11 ZPA VAIRES FOR CONDUIT SUPPORTS AUXILIARY BUILDING  ! SSE, 31 DAMPING < FIDOR 1/2 SSE, 24 DAMPING J ELEVATION HORIZONTAL HORIZONTAL VERTICAL VERTICAL N-S E-U N-S E-U 0.55 0.65 0.77 0.34 0.42 0.50 899'-6" 0.69 0.45 0.49 0.55 886'-6" 0,30 0.35 0.44 0.45 0.67 0.27 0.29 0.43 873'-6* 0.61 0.37 0.38 0.39 852'-6" 0.25 0.24 0.34 0.31 0.59 0.22 0.19 0.31 831*-6" 0.57 0.29 0.25 0.24 0.15 0.14 810'-6" 0.20 0.48 0.11 0.26 0.22 790'-6" 0.12 NOTE: Above data taken from SAG.CP20, Attachment P. 21M-5.02-CND Revision 2 Page 106 of 138

O O FIGURE 7.3.12 ZPA VALUES FOR CONDUIT SUPPORTS CONTAINMENT BUI1 DING F 1/2 SSE, 24 DAMPING SSE, 34 DAMPING l FIDOR ELEVATION HORIZONTAL HOEIZONTAL VERTICAL VERTICAL E-U N-S E-V N-S 0.43 0.43 0.55 0.74 0.74 0.84 1000'-6" , + 0.35 0.45 0.60 0.60 0.69 950'-7" 0.34 - o 0.28 0.36 l 0.47 0.48 0.57 905'-9" 0.27 0.21 0.27 0.34 0.35 0.44 t 860'-0" 0.19 0.14 0.19 0.21 0.24 0.33 i 805'-6" 0.12 r 0.10 0.15 0.16 0.19 0.28 783'-7" 0.10 3 i NOTE: Above data taken from SAG.CF20. Attachment P. i i 4 k

                                                                                                                                                                                                                                                +

l t 21M-5.02-CND ! Revision 2 { Page 107 of 238 , I t

                                                                                                                                                                                                                                              .l

O O FIGURE 7.3.13 ZPA VALUES FOR CONDUIT SUPPOP.TS INTERNAL STRUCTURES OF REACTOR BUIIDING 1/2 SSE, 2% DAMPING SSE, 34 DAMPING

                 ,        FLDOR ELEVATION                                                                                                            HORIZONTAL HORIZONTAL                                                                                                    VERTICAL VERTICAL E-U                                      N-S                        E-U N-S 0.49                           0.74     0.64                        0.73                1.20 905'-9"                  0.43 0.41                            0.64    0.53                        0.62                0.99.

885'-6" O.37 4 0.46 0.41 0.48 0.72 860'-0" 0.28 0.31 0.27 0.29 0.34 0.44 832'-6" 0.18 0.21 O.12 0.19 0.21 0.22 0.33 808'-0" 0.12' 0.15 0.15 0.17 0.28 783'-7". 0.08 0.08 NOTE: Above data taken from SAG.CP20, Attachement P. I i . i 1 21M-5.02-CND Revision 2 ! Page 108 of 238

O- O o FIGURE 7.4.1 STANDARD AND OVERSIZE BOLT / STUD DIAMETER (IN) R)R VARIOUS TYPES OF CIAMPS i CIAMP TYPE l CLAMP l SIZE C-708N-U C-708-S

          ' (IN.)             P-2558 OR C-708-U OVERSIZED   STANDARD         UVERSIZED OVERSIZED         STANDARD STANDARD                                            BOLT / STUD BOLT / STUD       BOLT /SWD BOLT /SWD         BOLT / STUD BOLT / STUD X                 X 3/t               3/8               1/2 3/4            1/4                                                                                X 1/2          X 1/4             3/8               3/8 1

X X 3/8 3/8 1/2 1-1/4 1/4 X 1/2 X 1/4 3/8 3/8 1-1/2 5/8 1/2 5/8 1/2 2 3/8 1/2 l 5/8 1/2 5/8 3/8 1/2 1/2 2-1/2 5/8 1/2 5/8 1/2 3 3/8 1/2 5/8 1/2 5/8 1/2 1/2 4 3/8 5/8 1/2 5/8 1/2 5 3/8 1/2 NOTE: Above data taken from SAG.CP25 Attachment G. 21M-5.02-CND Revision 2 f Page 109 of 238

                                                                                                                           '~

O o o l FIGURE 7.4.2 HILTI BOLT DIAMETER MR VARIOUS TYPES OF CIAMPS CIAMP TYPE CLAMP C-708N U C-708-S

       . SIZE             F-2558 OR C-70s-U (IN)                                                           OVERSIZED   STANDARD OVERSIZED      STANDARD STANDARD                           HILTI            HILTI       HILTI HILTI             HILTI 1/2          x 1/4               3/s            3/s 3/4                                                                           X 3/s            3/s              1/2 1             1/4 1/2          X 1/4               3/8            3/s 1-1/4                                                                          x 3/s            3/s              1/2 l      1-1/2           1/4 1/2              5/s         1/2 2             3/s               1/2 1/2              5/8         1/2 2-1/2           3/s               1/2 1/2              5/8         1/2 3            3/s               1/2 1/2               5/8        1/2 4             3/s               1/2 1/2               5/8        1/2 5             3/s               1/2 NOTE:

Above data taken from SAG.CP25, Attachment H. l 21M-5.02-CND Revision 2

                                                                    " '                       Page 110 0f 238

O O O FICURE 7.5.1 FILLER PLATE AND SHIM' PIATE WEIGHTS - P2558/C-708-U CIAMP FOR S-0910 SUPPORTS FOR FOR NELSON HILTI STJDS ANCHOR BOLTS A+B+D 'A+C+D (1b) (1b) WEICHT 1* SHIM WEIGHT

                                             ' WEIGHT          1" FILLER                               (1b)
           > CIAMP     WEIGHT 1/4" FILLER                        FIATE'       (1b):        PIATE (Ib) f SIZE                 PIATE                                               U(in)xL(in)       "D" l
                       '(Ib)
                         "A"  W(in)xL(in)       '"B"          W(in)xt(in)      "C"'                                                  1 9.52    11.31       15.89 1.53           3X7-3/16"      6.11    '3X11-3/16*

3/4" .26 3 X 7-3/16" 6.35 3X11-15/32" 9.76 11.66 '16.42

                         .31   3X7-15/32"'      1.59          3X7-15/32"
              -1"                                                                                             12.06        17.05 6.65    =3X11-13/16"    10.05
                         .35   3X7-13/16"       1.66           3X7-13/16" 1-1/4"                                                                                   .10.23   12.33        17.45 1

1.71 '3X8-1/32" 6,83 3X12-1/32" - 1-1/2" .39 3:X 8-1/32" 14.74 20.98-8.32 ' 3X13-25/32" 11.72 3X9-25/32" 2.08 3X9-25/32" 2" .94 15.48 22.04 8.75 3X14-9/32" 12.15

                              .3X10-9/32"       2.19           3X10-9/32" 2-1/2"      1.14                                                                                   16.33       23.29 9.28     3X14-29/32"    12.68 3X10-29/32"      2.32          3X10-29/32" 3"       1.33                                                                                   17.82.      25.42 10.13    3X15-29/32"    13.53-3X11-29/32"       2.53         3X11-29/32"
              ;4"       1.76                                                                                   19.18      ~27.45 11.03   -3X16-31/32"     14.44 3X12-31/32"-      2.76         3X12-31/32" 5"       1.98 NOTES:                                                                                                       f S-0910
         -1.

This table applies to conduit supports that are designed in accordance with the requirements o L ' drawings.

2. ~ Above data taken from' SAG.CP25 Attachment v.

21M-5.02-CND Revision 2 Page 111 of 238 l 1 l

FICURE 7.5.2a FIT 1RR PIATE AND SHIM PIATE VEIGHTS - C-708-S CLAMP FOR S-0910 SUPPORTS FGt stat NELSON EILTI STUD 5 ANCER 90LT5 W IGET

  • 1* SSIM idEIGiff W IGET 1* FILI.ER .ItATE (1b) A+B+0 A+C+0 CIApr WINT 1/4" FILLR (1b) PIATE (ib) *Da ( Lb) (1b)

SIZE (th) PLATE "S* W(in)s L(in) "C* W(in) L(in)

                           "A"       W(is) L(is)                                                                             ....         ....

3/4* .... 1* .... 1-1/4" .... 1-1/2* .... .... 12.39 16.05 22.7s 3K10-9/18* 8.99 3214-9/16* 3E10-9/1S* 2.25 23.81 2* 1.41 3Z15-1/16* 12.81 16.75 3I11-1/18* 9.41 3E11-1/16* 2.33 25.10 2-1/2* 1.59 3115-11/16* 13.36 17.63 3X11-11/18" 9.94 3111-11/1g* 2.48 25.99 37.35 3* 1.81 3-1/4120-7/16* 18.83 3-1/4518-7/16* 15.15 3-1/4118-7/14* 3.78 28.03 40.30 4* 3.37 3-1/4X21-3/4* 20.04 l 4.00 3-1/4X17-3/4" 16.36 l S* 3.90 3-1/4E17-3/4" NOTES: f S-0910 l 1. This table applies to conduit supports that are designed in accordance with the. requireE:ents o drawings.

2. Above data taken from SAG.CP25. Attachment V.

21M-5.02-CND l Revision 2 l Page 112 of 238 l __. _m l

21M 5.02 CND Revision 2 Pay 113 of 238 O FIGURE 7.5.2b MAXIMUM VEIGHT - INDIVIDUAL FILLER PIATE FOR S2 0910 SUPPORTS (LBS) FILLER (a) STANDARD (b) PER SH. CSM 2A- (c) PER SH. LLS-7 TYPE II CIAMP TYPE CLAMP TYPE CIAMP TYPE CONDUIT SIZE P2558 C-708 S P2558 C 708-S P2558 C 708 S 6.5 - 10.0 - 8.0 - 3/4" O 7.0 - 10.0 - 8.0 - 1" O 8.0 - 11.0 - 9.0 - th" O 10.6 13.4 15.0 16.0 12.0 13.0. 2" O 12.4 15.4 17.0 19.0 14.0 15.0 3" O 14.0 20.0 19.0 21.0 16,0 17.0 4" O 15.6 22.1 21.0 23.0 17.0 19.0 O 5" O NOTES: 490 t .

1. For Sh. LLS 5, Ufiller plate - Sh x 5\ x h l112 x 12 x 121 - 2e.
2. For Sh. CSM 2a-III, weight of alternate common filler plate shall be calculated individually on a case by case basis.
3. Weight calculations for other non standard filler plates, if any, shall be done individually.

4 For filler plate details, see following sheet.

5. This table applies to conduit supports that are designed in accordance with the requirements of 52 0910 drawings.
6. Above data taken from CP SG 02, Table 1.

O v

  - . . _ . - . ~ . . -  _ . . .         .. .            . .        . _ . . . - - - . - . .            -

21M 5.02 CND 2 Revision 2 i Pap U 4 of 238 ]- i ! FIGURE 7.5.2b ' i (Continued) ! FILLER FIATE ' DETAILS FOR S2-0910 SUPPORTS i i s l TYM ( a) : STANDARD FILLER PLATE ' j L lac M { 11 + ( +1. -O l O( MIN 1 _ MN - W'C Ct 2{ ) ] .+ ( +1. -01 ^

                                  * ( TYP) l l                                                o                    .           .

! > u ':" o i li  :

                                                                                -I R.

l n w II M IL,,, j i O L CLApr i P2558 CR C-700-6 . j ( REF OW SM.CSO-ia) } FMER R i- () TO 2 THE PtWO l TYPE ( b) : FILLER PLATE PER SH.CSM-2a-II-l L- _ LeCM *{3 3 + 2 C {( +{ -{l 3 h(+d.-Y3 M 8h Wa2TO3) l _ i (TYP3 I

                                                ;iem                 I, l

f 3 _ 8 b. g8 A  !! II 4 iL. . f b CLAf9

PTS $4 OR C-TOS-4

! ( REF OW SM.CSD-la) 2 TM PtMO i ! m: F2LLER PLATE PER SM.LLS-T l 'L LsC M 2{l 3_ + ( +1. -O O IGN M 8I _ W tt +1.-O-i tTYP) .l ! o- ,

  • uT
                                                  ,.            S.

A. in i i t,_ l- 'L CLM9 P2ssa oR c-Tos-s t ( REF DWG SH. CSD-ia) FEU R i' (4 To 2 Tm reso i.

     ..                 ~ . . -        -                     .-_.s.                   - , - . _.          _ . . _ _ . - . - _ _ . , - . . . . . . . . _ - . . _ . . _ _ . - _ _ _ . . . - . . . . _ . ~ _ _ _ _ _ .

4 21M 5,02 CND Revision 2 Pap 115 of 238 O FIGURE 7.5.2c MAXIMUM VEIGHT - STANDARD FILLER PIATE AND STANDARD SHIM PLATE FOR S2 0910 SUPPORTS

                                                                                        " "wo*YEm" E-[r*4 tEr)[t.s's')

Ct. AMP TYPE CONDUIT SIZE P2558 C-709-S 1/4" e 8.4 1" e 9.0 - 10,0 1 1/2*e 13,0 18,2 2" e 15,2 18.2 3' e 4* e 17.0 23.5

s. to.O 1s.s LS E

g gym , ( L*C M ti) 3 + ( +1. -@ (TYP) m :) WarC( )) 3 + ( +1. -O , n Lg*L( +{ . -@ , O- usw +6 e -O THE ( FILLER P.+ SHIM R. ) $ 2 y  :, u 3 n ., p j; p

                                                                                                          ..         1 11                          'l   II' f

1 W MIM CLAPP _ P2554 OR C-708-4 ( TYPi ( REF DWG SH. CSD-la FILLER E l- SHIM E STAN0 Aft 0 FILLER & SMIM PLATE DETAIL W i NOTES:

1. Weight calculations of shin plates for Sh. CSD Sa-I, Sh. CSD-Sa-II, Sh.

CSD 5a-V, Sh CSD-5c-I and Sh. CSD-Sc-II shall be done individually on a case by case basis.

2. Veight calculations for other non-standard filler plates, if any, shall be done individually.
3. This table applies to conduit supports that are designed in accordance with the requirements of S2-0910 draw ngs.
4. Above data' taken from CP-SG-02, Table 2.

2iK 5.02 CND Revision 2 Pay 116 of 238 A V FIGURE 7.6 DEFINITION OF SEISMIC INPUT Aeolicabla "r" values When the conduit For response spectra Case support is For hand calculations analysis attached to: or static analysis Floor g's Floor g's A Floor Ceilinz m's Ceilinz m's B Ceiling Enveloped g's from g's from the floor C Floor & vall elevation above the floor elevation above support and below the support

                                                           - do -
                                                                                             -      do -

D Wall

                                                           - do -
                                                                                              -     do -

E Wall & Ceiling Enveloped 1.5 x g peak F Spread Room Not applicable Framing from floor elevation above & below the framing Steel Platform, Obtain Steel Platform response spectra and G Steel Stair, etc. design in accordance with this procedure. If these response spectra are n21 available, assume the support non-existent and evaluate i the ISO. H Pipe Support, Use 1.5 x g peak of applicable Floor response cable tray spectra support & similar structures NOTE: Above data taken from SAG.CP25, Attachment J. O

1 21M 5,02 CND Revision 2 3 Pay 117 of 238 FICURE 7.7 Q SPRING RATES FOR TYPICAL BASEPIATE CONFIGURATION CASE 1: 2 SOLT PATTERN .

                                                                                        /                          x

] ,

                                                                     ' : ~fiI'    '      ,Z g'/                 .
                                                                     .k
                                                                                                            . 6, -

a EMT (ta, k/ dea.) DIE (in. k / dea) DE (in. k/ dea.) 1.23 dia. AlkR,2 SIZE L 1.23 dia. 1.3 dia. 1.23 dia. 1.5 dia. 1.3 dia.

80. IILTI L--- ; SU. WILTI INSEET $0. EILII INSIET (in.) 113 171 20 41 277 631
  • L2 183 44 417 D04 152
18 21 tot 48 544 1044 172 LSESs. 75 24 22 1

453 1187 180 206 30 22 49 740 1129 184 202 36 22 48 SO4 107 134 12 27 at 283 48 457 878 144 182 18 30 30 411 1001 163 tot Lases.75 24 32 4

                                                       $2          740                1237             173                    tes 30          33 SSS                1323             178                    194 34          33                S2 244                  407              94                   128
  • 12 28 33 431 771 124 153 18 33 40

, 601 1921 143 184 L4sts.73 24 36 46 754 1228 133 173 30 30 30 4 314 1300 180 17S 34 40 $2 CASE 2: 1 BOLT PATTERN . N'1 X i Z .. y:....c

                                                                               .c.;?*-

.  ; .: 1.  :*

                                                                           ,h                               b' i
:." t(L

+ 4 Dir (La. k/ dea. ) DS (im, k/ dea) EDE (1a. h/ den.1 1.3 dia. 1.23 dia. 1.S dia. 1.23 dia. 1.$ dia. AME.E SIEE L 1.23 dia. W. RILTI MM (La.) W. M M = W. EILT! -** --- 14 17 to 180 L$ssa.73 12 --- --* 22 SS lia 9- 13 -- --* 14 at 80 185 Leses.73 12 103 --- --- s 14 21 13 14 22 72 134 L4 es.73 12 as --- --- e in 17 47

  • Rotational degree of freedoes about Z axis imust be fully released for these configurations.

NOTE: Above-data derived from SAG.CP29, Attachment 1. s s

  \

f f

                                                                                                         ,      2         ,-          -- -,    ,,

FIGURE 7.8.1 PEAK "g" VALUES x 1.5

         '                                                                                                                                        ELECTRICAL CONTROL BUILDING                                                                                  ,
                                                                                                                                                           '"g" VAlllES (1.5 X PEAK'"g")                                                                       s F0 DOR                                                                                                                                     - SSE 34 DAMPING ELEVATION-                             1/2 SSE, 24 DANPING (FT.)

VERTICAL HORIZONTAL VERTICAL  ; HORIZONTAL-11 N-S E-U , N-S E-U l 2.89 4.10 4.63 4.36 873.33 3.28 3.81 3.33 2.87 3.60 4.06 4.32 854.33 2.87 2.66 2.71 2.91 4.01 830.00 2.16 2.36 1,49 2.77 2.25 1.89 4.16 807.00 1.53 1.62 1.00 4.15 1.07 0.62 2.63 i 778.00 i NOTE: Above data taken from SAG.C*10, Table A.5.1. 4 i 4 l l i l i i l 2IM-5.02-CND  ; Revision 2

, Page 118 of 238 j .!

4

g g FIGURE 7.8.2 PEAK "g" VA W ES x 1.5 l FUEL BUIISING l "g" VAW ES-(1.5 X PEAK "g") FLOOR ELEVATION SSE, 3% DAMPING 1/2 SSE, 24 DAMPING (FT.) HORIZONTAL HORIZOfffAL VERTICAL VERTICAL , N-S E-U N-S E-W 6.26 6.77 3.20 5.34 2.20 918.00 4.22 3.32 2.23 5.35 6.20 3.60 4.69 899.50 3.53 3.07 2.01 3.60 2.38 2.34 860.00 2.83 2.85 1.85 3.17 2.09 1.86 841.00 2.42 2.74 1.78 2.73 1.79 1.55 825.00 2.07 2.56 1.62 2.33 1.52 1.29 810.50 NOTE: Above data taken from' SAG.CP10. Table A.5.2.

                                                                                                                ~

l 2IM-5.02-CND Revision 2 Page 119 of 238 l

                                                                                                                                                  .4

i j FIGURE 7.8.3 PEAK "g" VALUES x 1.5 SAFEGUARDS BUILDING INCLUDING DIESEL GENERATOR BUILDING t FIBOR "A" VALUES (1.5 X PEAK "g") ELEVATION SSE, 34 DAMPING 1/2 SSE, 2% DAMPING (FT.) HORIZONTAL HORIZONTAL VERTICAL-VERTICAL N-S E-V E-U 4 N-S 3.27 5.52 6.38 4.28 896.50 4.89 4.94 3.54 5.26 5.81 5.07 873.50 4.63 4.49 ' 3.26 4.01 4.50 4.73 - 852.50 3.50' '3.46 l 3.11 3.22 4.25  ; 2.07 2.46 2.84 3 831.50 l 2.74 2.19 2.27 4.11 810.50 1.47' 1.51 , l 1.22 1.41 3.42 0.81- 0.91 2.20 t 790.50- 3.31 2.13 1.18 1.29 0.82

                                                                         '785.50                          0.77 1.10                   1.07        3.09 0.71                                       0.65                                        1.99 j                                                                         '773.50                                                                                                                                                                                                                            i NOTE:

Above data taken froes SAG.CP10, Table A.5.3. l , h t ! i i t i j ). 21M-5.02-CND i Revision 2 i Page 120 cf 238  ; i i f 4 i

                                                                            ^
                                                                                                                                                  ~     . . _

O o O FIGURE 7.8.4 PEAK "g" VALUES x 1.5 AUXILIARY BUILDING "g" VA11JES (1.5 X PEAK "g") FIDOR SSE, 3t DAMPING ELEVATION 1/2 SSE, 2% DAMPING l (FT.) HORIZONTAL HORIZONTAL VERTICAL-VERTICAL N-S E-U N-S E-U 5.92 6.86 5.54 5.68 4.08 899.50 4.53 5.52 5.46 5.98 4.91 3.85 886.50 4.14 5.64 5.02 S.18 4.16 3.58 873.50 3.76 5.57 4.20 4.30 3.38 3.54 852.50 3.25 5.10 3.38 2.98 2.41 3.39 ' 831.50 2.54 4.64 1.64 3.18 2.09 1.52 1.27 810.50 1.34 4.51 2.87 1.68 1.11 0.87 790.50 Above data taken from SAG.CP10, Table A.5.4. NOTE: 2IM-5.02-CND Revision 2 Page 121 of 238

_ _ . _. . _ _ _ .~. . . . _ . _ . . _ _ . . . . _ _ _ _ . . . . . _ . . . . _ - _ _ _ . . _ _ _ . - . _ _ . . . . - . . _ . _ _ .-. _ _.. ___ .. - ... ____ . _. O FIGURE 7.8.5 PEAK "g" VAIEES x 1.5 CONTAINMENT BUI1EING "g" VAIEES (1.5 X PEAK "g") i FIDOR ELEVATION SSE, 31 DAMPING 1/2 SSE, 21 DAMPINC (FT.) HORIZONTAL HORIZONTAL VERTICAL VERTICAL N-S E-U N.S E-U 5.17 6.52 6.51 6.05 1000.50 5.55 5.54 4.03 5.09 5.08 4.84 950.58 4.28 4.28 3.80 3.79 4.34 3.15 3.14 3.02 ' 905.75 2.49 2.49 4.01 f 1.99 1.99 2.71 860.00 3.60 2.44 1.68 1.72 , 805.50 1.17 1.29  ! 1.54 1.56 3.35 1.05 1.17 2.26  : 783.58  ; NOTE: Above data-taken from SAG.CP10, Table A.5.5. i 4

21M-5.02-CND  !

Revision 2 Page 122 of 238 l I l

O o O i l FIGURE 7.8.6 i I PEAK "g" VAW ES x 1.5  ! INTERNAL STRUCTURES OF REACTOR BUILDING ' l ' "g" VAWES (1. 5 X PEAK "g") FIDOR ELEVATION SSE, 34 DAMPING 1/2 SSE, 24 DAMPING l (ET. ) HORIZONTAL HORIZONTAL VERTICAL VERTICAL N-S E-U t N-S E-W t 3.26 5.83 7.51 4.78 i 905.75 5.49 6.35  ! 3.07 4.88 6.16 4.51 i 885.50 4.55 5.18  ! 3.68 4.46 4.19 3.37 3.71 2.85 860.00 2.39 2.62 3.86  ! 2.11 2.12 2.62  ! 832.50-1.57 1.64 3.59  ! 1.06 1.20 2.63 i ! 808.00 3.35 2.25 1.07 1.55 1 783.58 0.74 1.06  ! I

NOTE: Above data taken free SAG.CP10. Table A.5.6. I i

,t t i  ! i 2IM-5.02-CND 4 Revision 2 i Page 123 of 238 i. i

 . - . - .         .-     .  . . .            .        . - . .              . - .                   . - . . . . . . _ - . _ . - . . - . - - . - , _ _ _ . _ , . . . . . - .                       - . . - . . .    .     . ~ . ~ . . . _ - - . . .

i 6 FIGURE 7.8.7 PEAK "g" VA111ES x 1.5  : t SERVICE WATER INTAKE STRUCTURE "g" VALUES (1.5 X PEAK "g") FIDOR . ELEVATION SSE, 3% DAMPING , ' 1/2 SSE, 24 DAMPING (FT.) , HORIZONTAL HORIZONTAL VERTICAL  ; VERTICAL N-S E-U N-S E-U 1.35 4.50 2.85 2.20  ; 838.00 4.23 2.40 t 1.31 3.11 2.12 2.10 817.00 '2.80 1.80 1.20 1.36 1.14 1.92 4 796.00 1.00 1.00 1.02 0.82 0.82 1.67  ; 4 782.00 0.52 0.50 NOTE: Above data taken from SAG.CPIO, Table A.5.7. i

                                                                                                                                                                                                                                                   ,y i

k I i e l \ 21M-5.02-CND , I Revision 2 , i Page 124 of 238 s (

   ._. -, _ _ _.         ,...._....__.-..-______-_......-.--_..-_......-_.._.__m -                                                       __     ....__.m O..                                                                              O                                                                                      I
                                                                                                 . FIGURE 7.9.1 l

i MEMBER STRENGTH 1 ASS DUE TO 1/32" UNDERCUT TUBUIAR SECTION ' PCN-01 l PERCENTAGE LOSS. , e AREA SECT. MOD. ADJUSTED INTERACTICN-MEMBER SIZE RATIO TS 2 X 2 X 0.25 14.06 14.79 0.852 i TS'3 X'3 .i.0.25 13.49 13.80 0.862 TS 4 X 4 X 0.25 13.23 13.40 0.866 t TS 5 X 5 X 0.25 13.07 13.18 0.868  ; TS 6 X 6 X 0.25- 12,97 13.05 0.870 TS'6'X'6 X O.375 12.97 8.96 0.870 TS 4 X 2 X 0.25 13.49 13.97 0.860 , TS 8 X 4 X 0.375 8.90 9.00 0.910 i TS 8 X 6'X 0.375 8.80' 8.80 0.911 i:

                 ' NOTE:                      Above data taken from SAG.CP29, Attachment F.

4 i i i i

                                                                                                                                                                                            ~

t 21M-5.02-CND Revision 2 Page 125 of 238 4

 ..               .m_.               _ , _ _ .                                               _ _     .  , _ _ . . . _ . _ _ . . _ _ _ . . _ _ . _ _ _                 . . _ . . _ .   . _ . . . . _ _ . _ . _ _ _ _ . _ . . _ _ . . _ _ _ _ - - .

O o O FIGURE 7.9.2 MEMBER STRENCTH IDSS DUE TO 1/32" UNDERCUT CHANNEL SECTION PERCENTACE IBSS "SY" ADJUSTED "A* "SX" SECT. MOD. SECT. MOD. INTERACTION RATIO MEMBER SIZE AREA 24.07 26.40 0.724 C4 X 5.4 27.64 27.40 21.08 0.726 C5 X 9 19.05 21.45 23.01 0.748 C6 X 8.2 25.15 19.47 20.29 0.772 C8 X 11.5 22.81 17.73 18.18 0.791 C10 X 15.3 20.89 18.08 21.27 0.787 MC3 X 7.1 19.58 13.77 15.72 0.843 MC6 X 16.3 15.23-NOTE: Above data taken from SAG.CP29, Attachment F. 3 2IM-5.02-CND Revision 2 Page 126 of 238 4

O O O FICURE 7.10 Af f falABLE NORMAL WELD MRCE MR STEPPED TUBUIAR SECTION CONNECTION I MAIN ALIDVABLE MAIN ALIDWABLE NORMAL MAIN ALIIAiAELE NORMAL MEMBER B-h NORMAL MEMBER B-b D WELD MRCE MEMBER B-h t, x D D WELD FORCE t, x D LBS/" t,'x D D WEID FORCE LBS/" IAS/* 1257 4507 5/16 X 7 43 1/2 X 5 4 .57 1282

                               .5          792                              4507 3/16 X 4                   845                    .5                                 .71       1527
                            .625                                     6       4695                              2611
                              .75          1055                              5366                    .86 1811                   .7
                            .875                                   .8        7042
                                                                                                      .43      1811
                                                                 .33          528           3/8 X 7            1847
                               .5          1408   3/16 X 6                    528                     .57 1/4 X 4                   1502
                                                                   .5                                 .71      2199
                            .625                                    67        597
                                                                                                      .86      3760
                              .75          1878                  .83          835
                             .875          3219                                                                 396 939          3/16 x 8  .375 1/4 x 6          33                                 .5       396
                                .5         2200                    .5         939                               422 5/16 X 4    .625          2347                     67       1061                    .625 2935                                                      .875       905
                               .75                                .83        1664
                             .875          5030                                                                 704 1467           1/4 x 8  .375 5/16 x 6         33                                 .5       704 4         634                     .5        1467                              751 3/16 x 5       .5          634                     67        1659                   .625 660                                                      .875       1607 6                                  83       2600 l

7 754

                                 .8         990                                                                 1100 2112          5/16 x 8  .375 1127    3/8 x 6       .33                                   .5      1100 4                                 .5        2112                              1173 1/4 x 5        .5         1127                   .67        2389                    .625 2515 i

1173 .875

                                 .6                                .83        3743
                                 .7         1341
                                 .8         1760 Above data taken from SAG.CP25, Attachment C.

NOTE: 2IM-5.02-CND Revision 2 Page 127 of 238

_ . _ _ _ . . . - ..._... _ _. _ _ . . _ _ . - . _ _ _ . . . . _ _ _ . . . _ . . _ . _ _ . . . . . . . . _ . - _ . . - . . . . . ._ _ _ . . . . _ . . . . _ . . . ..= . . _ FIGURE 7.10 (CONT'D) ALIDWABLE NORMAL WELD FORCE FOR STEPPED TUBULAR'SECTION CONNECTION ALIDWABLE MAIN ALIDWABLE ALIDWABLE MAIN. NORMAL MAIN MEMBER B-h NORMAL MEMBER 'B-h MEMBER B-h - NORMAL t, x D D WEIE FORCE D WELD FORCE t, X D .D URLD FORCE t. X D LBS/" LES/" LB5/" 452 3/8 X 8 .375 1584 4 1760 3/16 X 7. 43 1584 5/16'X 5 .57 462 .5

                                               .5                     -1760                                                  549                                                      625              1690
                                               .6                       1833'                                   .71                                                                 .875               3622
                                                                                                                .86          940
                                               .7                       2095
!-                                             .8                       2751 804                     1/2 x 8                        .375               2817 2535                       1/4 x 7       43                                                                                    2817 3/8 x 5           .4                                                              .57          820                                                      .5
                                                .5                      25?5                                                 977                                                    .625               3004 4
                                                .6                      2541                                    .71                                                                 .875               6438
                                                                                                                .86          1671
                                                .7                      3018                                                                                                                                                                               .

i i 3961

                                                .8 b           -  Minor width of structural tube                                                                                                                                                                                     ,

branch member (in.) tg - Thickness of branch member (in.) ? D - Width of structural tube main 'f member (in.)

                                     - 'Ihickness of main member (in.)

t, B - Beta ratio, (b/D) box sections , l

     '                 .C.           - Depth of structural tube main' i.

member'(in.) -i NOTE: Above data'taken from SAG.CP25 Attachment C. f I a t 4 r 21M-5.02-CND , Revision ? Page 128 of 238 l i ? t i ' l i r

21M-5.02 CND Revision 2 Page 129 of-238 O FIGURE 7.11.1 TYPICAL CASES FOR WARPING CONSIDERATION t

                       '                                             NO W ARPING -STRESS w                      3 Ns
         ~~-
                                               ' CHANNEL
                                  /

WARPING STRESS g FIXED-- FREE CONDITION

          ~T
                       \                      \ CHANNEL O      _ _ __ _ .                      _ _ _ _ _ .

___ __ _. __. __ 1 TP MEMBER 'A' - NO WARPING (A B

                                                            -    TYP
                                                                      -MEMBER 'B' - WARPING STRESS
                                                      ;;r                                             HINGE-HINCE CONDIT10N HANNEL Y y (TYP MEMBER 'A' '- W ARPING STRESS SB                                                                         FIXED-FREELCONDITION MMTYP MEMBER 'B'                        WARPING STRESS.

HINGE-HINGE CONDIT10N

::::: f CHANNEL NOTE:

Above data taken from SAG.CP29, Figure 2.

 -z.

f)%-

21M-5.02 0ND 4 Revision 2 i Page 130 of 238 (O FIGURE 7.11.2

SUMMARY

OF WARPING STRESS TABLES A. Channel Sections Warping stress table for channel sizes listed below have been developed for different points (0,1,2,3 see below) on the channel section for various cases (3,6,6 9) depending on the end condition. These tables are cornpiled in Ebasco Calculation Book No. Supt 0040. 1 C M SIII Cass EIS COEDITIOWB C6 x 8.2 9

                                                                               $                   /

C4 s 7.25 9 ! - > i l CASE 3 C6 s tot 6 l l_ CX L _lY C4 x 7.25 6 l 'Z 6 O MC3 s 7.1  ;; __ E6 a 12 6 f [M ' CASE 6 MC6 a 18 6 l1, __ L _ 1, MC3 s 7.1 9

                %                            MC6 s 12                9 A
                                                                                               ~i                           '

l(u l uc6 s is ' CASE 9 C6 s 8.2 3 L _g i C4 m 7.23 3 1 'igure it streassa of the f>11eetas potata are salemisted: s WARFIEE WORM &L STRESSES I ' O I 2 7 ve (81050) at potat 0

                                                                                                           & v2 (51052) at pelat 2

_______________ _3_ , 3 I ,1 (TADW1) at point 1 I ,3 (Taprt) at point 2 o' [* 2* T ** *I ** '****

  • NOTE: Above data taken from SAG.CF29, Attachment M.

O 4 I

i ' 21H 5.02 CND , " Revision 2 l Page 131 of 238  ! i

- \

j FIGURE 7.11.2 (COliT) B. Composite Channel Sections Warping stress tables for composite channel sections are compiled in i Ebasco Calculation Book No. Supt-0040. 4 4 2 t i 4 4 J f I 4 E l i ) i d i 1 4 4

  . ._               _ - .     ..         .- .--            _ _ . -    ---          - -         - -        . = -             .         -           _-

1 21M.S 02.CND 4 Revisicn 2 Page 132 of 238 F'fCURE 7.12 SHEAR CENTER IDCATION OF COMPOSITE CHANNE1.S e7 B y v p NOTE: ly-y is moment of l g , [A g,v Inertio obout the y-y oxis. s ] j K S.Cb ,g IZ-Z 1s moment of []y- l . / Inertlo obout the z-:: oxls. z I g h

                                  /1  i u
SECTIONS Oy COMPOSITE C.G. COMPOSITE 5.C.

A B (tn) Y. In. 2 In. Izz.ln 4 l yy in 4 lyz In 4 eyin, ez in. C6x 8.2 C6 x 8.2 3.837 2.344 -1.888 15.946 22.088 4.100 0.698 0.494 C6x 8.2 C6 x8.2 3.000 2.762 -1.888 14.i64 22.088 1.486 0.664 0.480 C6 x 8.2 C6x 8.2 2.000 3.262 -1.888 14.221 22.088 -1.636 0.626- 0.476 j C6x8.2 C6 x 8.2 1.000 3.762 -1.888- 16.659 22.088 -4.759 0.585' 0 .487 C6x8.2 C6x8.2 0.443 4.041- -1.888 19.048 22.088 -6.498 0.560 0.498 C6x8.2 C6x8.2 2.524 3.000 -1.888 13.895 22.088 0.000 0.645 0.476 C6x 8.2 C6 x8.2 2.324 3.100 -1.888 13.942 22.088 -0.625 0.638 0.475 C6 x8.2 C6x8.2 2.424 3.050 -1.888 13.906 22.088 -0.312 0.642 0.475 L C6x8.2 C6rB.2 2.624 2.950- -1.888 13.906 22.088 0.312 0.649 0.476

C8x11.5 C6x8.2 5.790 3.059 -1.715 40.433 23.894 8.115 0.832 0.716 C8 x i l.5 C6x8.2 4.000 3.802 -1.715 33.603 23.894 1.705 0.662 0.708 C 8 x 11.5 C6x8.2 5.000 3.387 -1.715 36.319 23.894 5.286 0.756 0.710 C8 x11.5 C6x8.2 3.000 4.218 -1.715 33.670 23.894 -1.877 0.569- 0.712 C8 x11.5 C6x8.2 2.000 4.633 -1.715 36.520 -23.894 -5.458 0.473 0.721 C8x 11.5 C6x8.2 1.000 5.048 -1.715 42.153 23.894 -9.039 0.374 'O.733 C8 x 11.5 C6x8.2 0.490 5.260 -1.715 46.098 -23.894 -10.866 0.321- 0.739

. C6x8.2 C4 x 5.4 4.165 2.371 -1.220 15.804 -7.163 2.429 0.741- 0.616 C6x 8.2 C 4 x5.4 4.000 2.437- -1.220 15.336 7.163 2.176 0.716 0.615 _ C6x8.2 C4 x 5.4 3.000 2.834 -1.220 13.600 7.163 0.643 0.570 0.616 lg C 6 x 8.2- C4 x5.4 2.000 3.230 -1.220 13.752 7.163 -0.890 0.422 0.631 , U C6x8.2 C 4 x 5.4. 1.000 3.627 -1.220 15.792 7.163 -2.423 0.263 0.657 C6 x8.2 C4 x5.4 0.435 3.851~ -1.220 17.779 7.163 -3.290 0.168 0.672 i

                                    .                                            ..             .,   .                  .-        -~ - _ _ - . -

21M 5.02-CND Revision 2 Page 133 of 238 i O FIGURE 7.12 (CONT'D) COMPOSITE C.C. PRINCIPAL AXIS SECTIONS TOTAL y 13., in 4 I,., in 4 0, (DEC.) A B 4.760 24.140 13.895 25.581 C6 X 8.2 C6 X 8.2 13.895 -10.281 C6 X 8.2 C6 X 8.2 4.760 22.358 4.760 22.415 13.895 11.294 C6 X 8.2 C6 X 8.2 13.895 30.148 C6 X 8.2 C6 X 8.2 4.760 24.852 4.760 27.242 13.895 38.417 C6 X 8.2 C6 X 8.2 13.895 0.000 C6 X 8.2 C6 X 8.2 4.760 22.088 4.760 22.136 13.895 4.359 C6 X 8.2 C6 X 8.2 13.895 2.182 C6 X 8.2 C6 X 8.2 4.760 22.100 4.760 22.100 13.895 -2.182 C6 X 8.2 C6 X 8.2 20.577 22.230 C8 X 11.5 C6 X 8.2 5.731 43.749 5.731 33.893 23.603 9.674 C8 X 11.5 C6 X 8.2 21.949 20.196 1 C8 X 11.5 C6 X 8.2 5.731 38.263 5.731 34.018 23.546 -10.502 CB X 11.5 C6 X 8.2 21.861 -20.423 C8 X 11.5 C8 X 8.2 5.731 38.552 5.731 45.871 20.176 -22.357 C8 X 11.5 C6 X 8.2 19.461 22.192 C8 X 11.5 C6 X 8.2 5.731 50.530 3.945 16.440 6.527 14.675 C6 X 8.2 C4 X 5.4 6.620 14.020 C6 X 8.2 C4 X 5.4 3.945 15.879 i 3,945 13.663 7.100 5.651 C6 X 8.2 C4 X 5.4 7.045 -7.560 C4 X 5.4 3.945 13,870 C6 X 8.2 6.529 14.661 C6 X 8.2 C4 X 5.4 3.945 16.426 3.945 18,716 6.227 15.894 ! C6 X 8.2 C4 X 5.4 NOTES: 1. 13 and I are the maximum and minimum moments of Inertia, respectivI1*y,abouttheprincipalaxes1-1and2-2. 3

2. The angle 9 is measured from the axis with the maximum moment of Inertia (either y-y or z z) to the 1-1 principal axis. O+.should always be between +45' and -45'. 9 sign convention -
3. Y and 2 are measured in Y, and Z, coordinate system.
4. ey and az are computed from the channel webs and define the location i of shear center of the composite section.
5. Above data taken from SAC.CP29, Attachment E.

4 ] 4

           \

U

                                           -   - - .              . _ = .

2IM.S.02 CND Revision 2 Page 134 of 238 O FIGURE 7.13 l EFI'ECTIVE THRCAT THICKNESS OF PREQUALIFIED PARTIAL  ! PENETRATION BEVEL GROOVE WELDS

1. Flare Bevel Groove Veld The follovirg effective throat shall be used for prequalified partial penetration .lare bevel groove welds between col.1 tormed rectangular / square tubes and:

A. Flat plate surfaces (such as embedded plate, ancho. age angle, etc.) with or without reinforcing fillet veld. B. Tube to tube matched box connections, t - Thickness of the thinner tube T - Effeer.tve throat thickness R = minimum corner radius of the tube - 2t Effective Throat Thickness T(in) l (A) Ft.:t Surface (B) Tube Minimum w/ reinforcing fillet (2) Matched thickness radius Box (3) t (in.) R (in.) T(in.) w/o reinf. O fillet (1) T (in.) ,t,, og gggi,e F (in.) T (in.) 0.16 3/16 0.29 0.25 1/4 1/2 0.35 0.31 5/16 58 0.31 1/8 0.37 38 34 0.37 18 0.40 0.5 18 0.62 0.5 12 1 0.62

 )      5/8     )      1 1/4           0.62                   ...                   ...
                                                   ~
                   +
             ~

l(

                                             .            /               A              r
                                                                                           -BRANCH MEMBER l T n                                                s
 +-b R:2t min                           R 2t min                                               (

n p

                      % FLAT                                 % FLAT                                R:2t mtn Va' SURFACE            Vs' SURFACE                            IWtm min HOR I Z.                                HORIZ
  • OR VERT.
  • OR VERT.

MAIN MEMBER

                                                                                       ~

tm 4 4 O 1. W/0 REIN FILLET 2. W I TH REIN. F ILLET 3. MATCHED BOX CONN. V

S 21H 5.02 CND

.                                                                                                      Revision 2 i

Page 135 of 238 i O FICURE 7.13 (Cotrr) NOTES: (For table on previous page).

1. As per AVS D.1.1 Tabis 2.3.1.4 for t $ 1/P T - 5/16 R.

! As per AVS D.1.1 Figure 10.13.3B and test results, for t2 5.16". T - t. l I 2. As per geometric proportions with weld penetration to 'te 1/8" groove i width level, l

3. As per AVS D.1.1 Figure 10.13.3B.

l

4. Data taken from SAG.CP29, Attachment H.

l I II. Single Bevel Croove Veldst i i ! l T

                                                                           =

E

                                                                                        -   h_ r T O '/8 A                                   ^

0 TO V8 2 %6 = =

                                                                                                             '4 R:3/32 MIN AS DET.'.lLED
                                                                                                          *O O                    2 %s AS FIT UP                                                     /        x R"

( f q 1 LOWER EDGE l FOR HORIZ. POSITION %n BTC-P4a JOINT DETAIL (ALL WELDING- POSITIONS) i e Single bevel groove welds for butt joints, T joints and corner joint The have effective throats equal to "T" 1/8 inch, where ("T 1/8 inch) $ T/2. above shall not be used for the qualification of welded standard tray clamp plates. O NOTE: Above data taken from SAG.CP29. Attachment H.

   . . - . . -       .          =   _- -.-_.. _ .       .--        - .--        _ _ . _ - . . . . . - . _     -  - _ . _ -. _,_   .

I I 21M.5.02.CND Revision 2 Page 136 of 238 FIGURE- 7.15 THREADED NE1. SON STUD TENSION AND SHEAR A1.14VABLIS i i ' SERVICE LOAD CONDITIONS OBE i STUD DIAMETER (INCHES) AND METp THREADS PER INCH (in ) TENSION SHEAR l

'                                                                          (1bs)                          (1bs)

' S - Ta S - Sa 0.032 960 480 1/4 20 0.078 2340 1170 3/8 16 0.142 4260 2130 1/2 13 0.226 6780 3390 j 5/8 11 NOTE: Above data taken from SAG.CP10. Table 2. I i I L l l l 1

                                                                                                                                    )

21H.5.02.CND Revision 2 Page 137 of 238 FIGURE 7.16.1 EQUIVALENT COEFFICIENT AND "g" PORTS VALUE GROUPING FOR JUNCTION BOX SUP DESCRIPTION OBE (2% DAMPING) SSE (34 DAMPINC) CROUF ' MAX MED MIN MAX MED MIN

                       . M.

1.5 X PEAK "g" 6.35 5.54 4.15 7.51 6.51 4.78 j 1 4 & In DESIGN "g" M 1 11 M M L11 L.l.1 1.56 1.56 1.56 1.54 1.54 1.54 EQUIVALENT CCEF. 3.81 3.28 2.89 5.10 4.36 3.50 1.5 X PEAK "g" DESIGN "g" 2.d1 L.ft1 2.41 Lil 1.Jt]. L.Q1 II A & II, 1.57 1.35 1.44 1.43 1.26 1.16 EQUIVALENT COEF. i 1.5 X PEAK "g" 2.77 2.36 2.10 4.16 2.91 2.71 j M 1.dQ L.11 2.31 IIIa & III: DESIGN "5" L.11 L.Il 1.31 1.28 1.31 1.34 1.26 1.34 EQUIVALENT COEF. NOTES: 1. Use coefficient with underlines to multiply weight of junction box and its contents to obtain equivalent weight to be used in static analysis with design "g" values.

2. Above data taken from SAC.CP29, Table 3B, i

l l v

 .            - . - -    -  --            - - - - .    . .. --.        - -         . _ . - - .         - . ~ . . .      . . . _ _   _.- . .- _ . - -                     -  _.- - - .

O O FIGURE 7.16.2 O BUILDING AND ELEVATION CROUPS FOR JUNCTION BOX SUPPORTS I. II. II. III. III. CROUP NO. I. MIN. SUPT. FREQUENCY 12 16 12 16 REQ'D (Hz) 12 16 873.33" 807.00* ELEC

                                     -                      -              854.33'                 -               830.00*                     778.00*

CONTROL BLDG (ELEV) - ' EVEL BIDG - - 860.00' - (ELEV) 841.00* 810.50' 825.00' , 831.50' - 773.50'

                                      -              896.50'                   -

SAFECUARDS 873.50' 810.50' BLDC (ELEV) 852.50' 790.50' . 785.50' 831.50' 790.50' - - AUXILIARY 899.50' - BLDG (ELEV) 886.50' i 873.50' 810.50' i ' 852.50' l 783.58' 860.00' CONTAINMENT 1000.50' - 805.50' - - BLDG (ELEV) 950.58' . 905.75'  ; 905.75' - 860.00* - i INTERNAL 832.50' STRUCTURE 885.50' 808.00' 3 (ELEV) 783.58' DIESEL - j GENERATOR 844.0' 810.50' l BLDC (ELEV) l ,

1. This table applies to junction box supports that are designed in accordance with the NOTES:

requirements of S-0910 drawings. j i

2. Above data taken from SAG.CF29 Table 3A.

l 21M-5.02-CND Revision 2 Page 138 of 238

2IM 5.02 CND Revision 2 Page 139 of 238 FICURE 7.17 l ! BUILDING AREAS V/ 2" FLDOR TOPPING ON FLDOR S1 ABS i (Areas where topping occurs are shown on Structural Design (S., 51 , and S2 i ! series) Drawings. Posted changes, including DCA 65035 for Unit 1 and common and DCA 93604 for Unit 2, shall be considered when referencing these drawings). i i i I 1 1 1 1 I 4 a

i ! 21M.S.02.CND j Revision 2 Page 140 of 238 4 I ! FIGURE 7.18 CONDUIT DESIGN WEIGHT AND SECTIONAL PROPERTIES j l PCN.01  ; I CONDUIT CONDUIT PROPERTIES I i NOMINAL OUTSIDE

DIAMETER DIAMETER CONDUIT WEIGHT
  • l
(INCHES) (IN) (LBS PER FOOT) A I S R 2

(IN ) (IN') (IN ) 8 (TN) i

3/4 1.05 1.5 .333 .037 .071. .334 j 1 1.315 2.0 .494 .087 .133 .421 1 1/2 1.90- 4.0 .799 .310 .326 .623 2 2.375 5.0 1.07 .666 .561 .787 I

3 3.5 13.0 2.23' 3.02 1,72 1.16 f 4 4.5 19.0 3,17 7.23 3.21 1.51 l 5 5.563 23.0 4.30 15.2- 5.45 1.88 l l i I

  • Including cable weight inside conduit.

() NOTE: Above data taken from SAG.CP10. Table 4. l i 4 i-t O .

21M.5.02 CND Revision 2-Page 141 of 238 O FIGURE 7.19 THREADED CONDUIT SECTIONAL PROPERTIES CONDUIT S (IN3 ) A (IN3 ) DIAMETER (IN) 0.038 0.184 3/4 0.070 0.265 1 0.184 0.454 1 1/2 0.330 0.636 2 0,573 0.925 2 1/2 0.981 1.275 3 4 1.952 1.935 3.439 2.720- , 5 NOTE: Above data taken from SAG.CP10, Table 6. O O

                   .   -     -      m___--__.-_s_--____________..__--_.-__--_--a.-

2IM 5.02.CND d Revision 2 Page 142 of 238 i l FIGURE 7.20 CONDUIT TO JUNCTION BOX IhCKNUT DETAII.S A (INCHES) B (INCHES) 4 CONDUIT (THICKNESS) DIAMETER (IN) (OUTSIDE DIA) 1.438 0.250 3/4 1.750 0.281 l 1 2.406 0.281 1 1/2 i 2.938 0.313 l 2 1 3.500 0.375 2-1/2 4.188 0.375 3 5.344 0.438 4 1 6.625 0.500 5 i NOTE: Above data taken from SAG.CP17. Table 9. I 'O 1 4 i J

1 1 21M.5.02.cND Revision 2 Page 143 of 238 1 ' FIGURE 7.21 5 I j HILTI BOLT SPRING CONSTANTS i i kg (k/in) k,(k/in)  : l BOLT SIZE /EKbEDMENT 1 1 3/8' 9 HKB 124.0 34,375 4 5/8" EMB ! 1/2" 9 HKB 630.0 130,0 l 6 1/4" EMB i 3/4" 9 HKB 87.5 67.14

9 1/4" EMB i

' NOTE: Above data taken from SAG.CP17 Table 10. i I v i i I l 1 i f 4 4 4 . I e , V. i

                                          ..                                                 ,   _ . _ . . . . _ ,       - _ . _ . . - - _ _ . . . . _ . . . . . ~ . - . ,                                ___._i

O O O FIGURE 7.22 UNISTRUT BOLT TENSION AND SHEAR ALLOWABLES TENSION ALIDWABLES (Ib) SHEAR ALIDVABIES (LBS) BOLT TENS 1LE SHEAR D+SSE D+SSE+To D+0BE D+0BE+To D+SSE D+SSE+To ( ( D+0BE D+0BE+To DIA( n) 960 1024 270 405 405 432 0.032 0.027 640 960 1/4 2340 2496 680 1020 1020 1088 0.078 0.068 1560 2340 3/8 3200* 1260 1890 1890 2016 0.142 0.126 2000* 3000* 3000* 1/2 _

  • Values limited by Unistrut Nut Strength in pullout and slip as specified in the Unistrut General Engineering Catalog.

NOTE: Above data taken from SAG. cpl 7 Table 8. l ( , 21M-5.02-CND 1 Revision 2  ! Fage 144 of 238

21H 5.02.CND Revision 2 Page 145 of 238 FIGURE 7.23 MINIMUM SUPPORT FREQUENCY OF S.0910 CONDUIT SUPPORTS Building Elevation' Support Frequency (Hz) 873'.6" 16 SG 899'.6" 12 AB 1000'.6" 12 CB IS 905'.9" 12 899'.6" 16 SG 873'.6" 12 AB 16 SG 852'.6" 885'.6" 12 i IS 12 i AB 886'.6" 950'.7" 12 i CB 918'.0" 16 i FB 852'.6" 12 i AB l j SG 831'.6" 16 ) 899'.6" 16

!                         FB i                          EC                           873'.4"                                12 IS                           860'.0"                                12 CB                           905'.9"                                12 854'.4"                                12 i                          EC SG                           810'.6"                                16 2                          AB                           831'.6"                                 12 EC                           830'.0"                                 12 j                           AB                           810'.6"                                 12
IS 832'.6" 12 FB 860'.0" 16

) EC - 807'.0" 14 i CB 860'.0" 12

!                           AB                           790'.6"                                14 f                            SG                           790'.6"                                16 EC                           776'.0"                                16 FB                           841'.0"                                16 806'.0"                                12 l                           IS CB                           805'.6"                                 12 SC                           765'.65                                 16 4

l' FB 825'.0" 16 , IS 783'.7" 12 CB 783'.7" 12

- SG 773'.6" 16 l- FB 810'.6" 16

! NOTES: 1 , 1. This table applies to conduits that are designed in accordance with the requirements of S.0910 drawings 1

2. Above data taken from SAG.CP17. Table 7.

f . f 1

     -m, ,1, --m - - - - , - -      -    ,-   w &-m., y       y  ...~y ,    .

cy,s.,v,%-,,.n, -

                                                                                                      - - , , , ,,,,.g--.wwww.~,,--..,y-- - --, .... - , , ,,w -,

21H 5.02.CND Rsvision 2 Page 146 of 238 FIGURE 7.24 DESIGN VEICHT FOR FLEXIBLE CONDUIT SIZES WEIGHT

  • CONDUIT DIAMETER (IN) LBS/FT 0.73
3/4 1.19 1

2.40 1 1/2 2.73 2 3.76 2 1/2 8.78 3 4 12.64 J 15.36

  • Including cable weight inside flexible conduit.

NOTE: Above data taken from SAC.CP17 Table 3. ('

    \

V

O O O i FIGURE 7.25 "g" VALUES FOR THE QUALIFICATION OF ECSAs a g- VALUES ECSA CONAK SEALBODY ECSA ACCESSORIES IMO MPT OBE SSE CONNECTED TO PART NUMBER L'r. LT. (2 COUPLINGS) (1b) AND 1 CIDSE NIPPLE) (Ib) A, A, A, A, A, A, ASCO SOVs N-11122-11 3/4* 2.250 0.450 5.5 3.45 6.45 6.45 4.8 7.5 h CONAX RTDs N-11097-17 3/4" 2.500 0.450 5.5 3.45 6.45 6.45 4.8 7.5 k NAMCO LIMIT N-11222-01 1" 4.500 0.800. 5.5 3.45 6.45 6.45 4.8 7.5 j SWITCHES MAGNETROL LEVEL N-11067-11 3/4" 3.500 0.450 5.5 3.45 6.45 6.45 4.8 7.5 SWITCHES, VALCOR SOV*s. TARGET 3 ROCK SOV*s NOTE: Above data taken from SAG.CF25, Attachment R. i l i l 2IM-5.02-CND Revision 2 Page 147 of 238  ;

                                                                 - = - - . - - . . _ . - - - _ _ _ _ _ _ _

21M 5,02 CND Rsvision 2 Pegs 148 of 238 FICURE 7.26 8.C. DESIGN WEICHTS AND DIMENSIONS , CONDUIT B.C. NOMINAL 8.C. 8 C. SIZE VEICHT* LENCTH DIAMETER (in.) (in.) (1bs.) (in.) 1 1/2 9.5 13.75 , 3/4 1 1/2 9.7 13.75 1 1 1 1/2 10.8 13.75 1 1/2 2 11.6 13.75 2 3 28.9 18.375. 3 4 53.3 23,75 4

  • 5.C. desi 5n weight includes conduit and cable wetShe inside B.C.

NOTE: Above data taken from SAG.CP10. Table 8. L m

l I 1  ! 21M.5.02.CND

;                                                                                                                          Rovision 2                                         i Page 149 of 238                                     l T

l FICURE 7.27 l l LBD DESIGN WEIGHTS AND DIMENSIONS CONDUIT 1

                                  . L5D         LBD          1 j             NOMINAL                                                                         DIM                                                                             ,

DIAMETER SIZE WEIGHT

  • DkM q
(in.) (in)- (1bs) (in) (in) i

! 3/4 1 1/2 13 11 1/4- 2 1/4 , 1 1 1/2 13 11.1/4 2 1/4 ,

i 1/2 1 1/2 13 11 1/4 2 1/4
2 2 -15 11 2 1/2 3 3 45 16 - 5 1/2 7 1/2 4

4 4 100 23 1/2 5 5 128 29 5 1/2 4

  • L&D design weight includes the actual lad weight plus cable weight.

NOTE: Above data taken from SAG.CF10 Table 7. t 4 t i O . t

   .---g.U4........--.%-w.--,-,-r.U---y          -
                                                      ,y,  ,_,,,,_,,,.w+' e w ww * ~*-e'-+~ee r-     v vw' m y 7mter-w-P= -ww-- vM- W**-*FtNTN"-'*P' T99"*"v4PN-*

21M.S.02.CND Revision 2 Page 150 of 238 FIGURE 7.28 ORIENTATION OF BUILDING ClDBAL COORDINATES BUILDING VERTICAL NS EV REACTOR BUILDING Z Y X INTERNAL STRUCTURFC Y Z X - SAFECUARDS Buff 3fNa Y 2 X ELECTRICAL Buff 3fNG Y Z X AUXILIARY BUILDING Y 2- X FULL BUILDING Y X 2 CONTAINMENT BUILDINC NOTE: Above data taken from SAG.CP29. Table 1. O 9 9

2!M 5.02.CND Revision 2 Page 151 of 238 4 l, i

FIGURE 7.29 l l

IDENTIFICATION NUMBERS 7F BUILDINGS AND T1h0R E1.EVATIONS l l HILDIN Bl lo ELETAf!0W ELY (llbO) ID 30 (ILV) ID RO Reester R8 903.73 DOS 803.50 00$ Solidias 860.00 660 Internel 833 Structure 433.50 004.00 804 783.S8 783 r toteOuards M SM . $4 DM Buildins ef t.M 973 G SI . H tl2 831. M 431 tit.M 818

  • 7M.M 7M 7tl.$8 78S 4

Eloetrisal IB 778.M 774 M 1 dias 473.33 475 454.33 854 i tat.H SM 4 l MP.H M7 778.08 778 i Aus111*ry AB SH.M DH ! M 1 ding MS . M tot 873.M 873 SSR. M OS8 631.M 438 i 818. M tit Fuel FE 7M.M 700 M 1 dias tit.M 918 Mt . M tot tee.H tee Mt.H M1 685.90 SSS tit.M tit Centainment CB 1000.M 100 M idias SM.M 9M M S.75 MS 660.00 See 605.50 DOS 783.58 783

                                                                                                                                    -w - pt

1 2IM 5.02 CND Revision 2 Page 152 of 238 O FIGURE 7.30 RIGID CONDUIT SPAN RE Mkts cAu Comulf IIZE spent COW Ulf CNAAAcittititCs ta p 3= e Pe s= t ne retn 3/4" e is e 1 1/r* e ) 6' P 78 7* 8' 8* 9' 3" i 48 3* 4'*11* l' te \ 1 staAIGNT kW 78 P 7' 3* 68 0* 3'*P 48 1* 68 7* timeLE DE s W/tnuf. kun 3' 1* 2 5' 2= 6'

  • P 7'*P 8' s* 98 3=

3' 1P 6' e 3

                         'pouett see wccuf. aus 3' P         3' a*      (1), (1),       I 1' P             2' 5*           7'*sa o**9"              O' toa                                                                            (6), (9),

4 wenum W/Alenor (10) 78 3* 68 0* (1), (2( 3' 5* 4'*P 78 P single BE e utNT TO 2'*58 , l'aiP * (3), (4), 4 5 m enAme (14) .i 4' 1* 78 P (1), (2) 4' 1* 48 P 58 5* 6 SleeLE ele, gences 7' 1* 3'*P te 48 68 58 5* 68 P (1),(2),

       '                                                         2'*S*              2' 10"        3'*S*           3' 11'                                               (14)
' '             7           timett a pouBLE at m t'esB000 W/G i;rJ "                                                                   5' 11"          6' 1P       78 98        88 te (14) 3' 1P                4' *P        5'*2=

8 D(utL1 SEW W/ sue 00000 to 48 P 5' 5* 6' P (1), (2), I' la 28 1P 3' 5* 3' 11" (3), (4), 9 DousLS ag e utIf TO MRMm8 (14) 18 6 g o.p (73 2' P 38*0" 1'*P 28 0 28*48 88 P 10 Platt tP e Feet Je 58 P 6' 7* 78 5* SECOW 8PM FeGN Js, 3'*P 4' 38 5' P 11 tinAl ef aus 3'*11" 4' 9" 5' P 6' P (14) seconD SPM Pecu Js, I' P 2' 10" 3' 5* 12 W/tteelt e Mm e *** P P P (9), (10) 0'*8* O'*10* P 13 title tien W/tNeenAss E

  • t* *P 18 0* 1' 0* 18 P 18 0*

1' .y je.p g'.6* 1'.e 68 0* 48 P 48 P (8) 4' 0* 48 O" 48 0* 10' P f 3'.0* 48 0*

                                                             "                                                        so P                        l' 0*

Se.p go.p

                                                                                                                      &* P            4' .y                                  ___

4 9

                                                                                                                                               ""wv   ,      _

21H+5.02.CND Revision 2 Page 153 of 238 O U FIGURE 7.30 (CONT) RIGID CONDUIT SPAN l cAa Comulf litt etnAars muMeet Coeulf CnAAAcittisflCs 3/4" s 18 s 1 1/2= p 2= s ,38 s 4= s 5= s see notes titAlpsf tuu W/tc 2'*11' 3' 9* S'ais 6'*0" 6'*0" 6'*0" (1). (2) 14 15 slueLE are W/sc i'*68 28 2* 38 P 68 0" 68 0" 6'*0" " " * "(1).

                                                                                                 " (2) 16   OcusLt see W/tc        1'*10"   2'*8'      3'
  • P 6'*0* e'*P 6'*0" *"" (1), (2),

(14) , titAIGNT tuu W/UglGu 48*1" 4 8 *1P 5'*S* 6'*0" 48 118 88 1" 8'*7= l 17 il StuaLE tem WMital 2'*9" 38 4* 3s.9" es.P 6'*118 6'*t" 5'*4 l 19 'Douett RE S W M Iou 3'*S8 4'*18 4'*0" 6'*0" 6'*11' 8'*18 88 7* (14) O'*P 0'*9" 1'*10" 28 3* 2e.3e go.9 g o.P (10), (ii) 20 CONiluucus tuu W/L W is

  • b)

(121 21 SADDLE 48 P , 48*11' S'*P 6'*7" 78 ?" 88 8" 9'*3= SPECIAL Com iflout 018tANCE TO Platt IE W is.9 go.0* 2'*4" 2'*8" 3'*08 3'*48 3'*1P Cast 5, 7. 8. 4 & 12 I DisfAmCE TO Fitti St e O'*10" 1'*P is.p go.gge 2'*4" 2'*8" ***** CASE 16 C OIITANCE TO Fitti RE W is.p go.9" I'*1* 28 48 2'*9" 3'*P 38*88 cAIE 19 f3 Lv )

i 21M.5.02.CND l Revisicn 2 4 Page 154 of 238 FICURE 7.30 (CONT) CENTRAL NOTESi (1) Figure 7.30 data taken from SAG.CP25, Attachment N. (2) For rigid spans (13) of conduit configurations not covered in this table, use allowable spans from:

              $2 0910 SH. LS. Series for Group I, 11. III SPECIFIC NOTES:

(1) For union in the span reduce table values-by 6" for 3/4" 9 to 1 1/2" 9 , and 8" for 2" 9 to 5" 9 conduits. (2) If union is within 6" of support, no reduction in table values is necessary. (3)- If 8.C. within 6' of support, no reduction in table values is necessary. (4) For B.C. in the span reduce table values by 8" for 3/4" 9 to 1 1/2" 9 and 12" for 2" 9 to 4" 9 conduits. (5) Span length next to overhang shall be l'.6" min. for 2" 9 to 5" 9- __ conduits. (6) For overhangs on both sides of single span, table values are not applicable. (7) d' not applicable for 3" 9_to 5" 9 conduits.__ (8) 41n. - l'-3" for 3" 9 to 5" 9 conduits. (9) Need not be a straight run. (10) Allowable-span lengths shall be determined by conduit run characteristic (i.e. , 31 for straight runs, 58' for bands etc.) (11) Table values are applicable for all cases on Drawing S.0910 SH. LS lie.

   - (12 ) .-

For 5" 9 conduit if (a+b) is 6" to l'6" - first span is 4' 0 max. in straight run. Rigid conduit span means frequency is greater than 33 Hz.

                              ~

(13) (14)~ See conditions A, 5, and C as applicable on sheet'll of 13 of Reference Ebasco Calculation-ER.CSC-2X.08 for max. dist. (x or y sax).. i

                                                            -----c--,_ ___
                                                                              -y-.rwy,  ,q _, , _

21H.S.02.CND Revision 2 Page 155 of 238 O FIGURE 7.31.1 MEMBER ECCENTRICITIES FACE OF CONCRETE OR Ricio BOUNDARY

                                                                                                                                                                                               )
i. t I i..,I i..i ij _;_; { POST ,

c.g. POST W NANGLES # ' I I I i 1I ' ~~~ h 6 I l _t ,1 T ER CHANNEL I l 1I /g l I g POST CHANNEL POST j l

                                                                                                                                                -g       ', ~

POST l l

                                                                           ,, aR           , ,

1 Ilg lI E' i I TIER i i (I i I I f TtER l I i IL-.il Q ILJ SECTION A A ACTUAL SUPPORT CONFIGURAfl0N FACE OF CONCRETE OR RIGIO BOUNDARY p

  • SEE FIGURE T.38.2 FOR LENGTH gM RIG 10 BAR.

OF RIG 10 BAR TO BE INPUT. AFTER RUNNING M00EL. 00 B ACK c.g. OF POSTf 94

                                                                                 /           f c.g.0F POST PIN ANO CHECK BRACE WITH AN ECCENTRICITY EOUAL TO c.g. POST
  • C'9' BRACE' a L
  • LENGTH OF RIGIO B'AR RIGIO BAR% REPRESENTING THE POST BEAM EFFECTIVE ECCENTRICITY PIN RIGIO BARE
  • LsNPOST
  • NTIER *

(NE REPRESENTING RIGIO BAR** u00EL NOTE: Above data taken from SAG.CP29, Attachment Bl. v .

                                                                                                                                                       . _ ~ _ _ _ . _ _ _ _ . . _ _ _ _ ___

21M.S.02 CND Revision 2 Page 156 of 238 O FIGURE 7.31.2 ECCENTRICITIES FOR BRACES VELDED TO THE BACK OF VERTICAL POST ['IPOST*IBRACE i i .I c g. BRACE i i iI . e

          "    l   I
                          #r b@p                                     il
                                                                     'I I               '

l l i El i ji I. l ._ fBRACE I , TIER C6 , l' g

             !                                                        !I i    i
  • l l 1 Il i A
         ---                                                 I POST _ '      l3 TIER c.g. POST U              c.9.'IER O'          ACTUAL SUPPORT DETAll                                      SECTION A+A s,

RICIO LINK W/ LENGTHed c.g. OF BR ACE Fi 7.32 2 4 c.g. OF TIER c.g.0F P0$T # RICIO LINK ss WODEL NOTE: Above data takan from SAG.CP29, Attachment B2. O

21M 5.02.cND Revision 2 Page 157 of 238 , O FIGURE 7.32.1 VORKING POINT ECCENTRIGITY FOR BRACE WITH GUSSET PLATES

                                              , -PO5T I

I I

  • I I  ! GUSSET I j PLATE '
                                                                               /

I - i I , lf' . ANGLE

                                              .*         .-                                                                                                                                        t s ',    -

l l .

                                      '     I l

1 (TIER I 1 ACTUAL SUPPORT DET All PIN NOTE 0UT OF PAPER ECCENTRICITY NOT SHOWN HERE BUT SHOULD

                                                                     - BE CONSIDERED IF IT EXISTS...

COMPUTER MODEL INPUT NOTE: Above. data taken from SAG.CP29, Attachment B3. O

  =n <+  -

t - e y , re ,e.v,-, y ,v,- y-. w w,,, , em,v,.w,, --m,n- ,,,e,., ,v.,, , , ,,,,-e- -,,--.,<w.c -

_ . _ _ .___.___.__m..- . _ __. _ _ _ _ _._ _ _. _ _ _ __ _ _ . _ _ . . _ _ . _ _ __ _ . _ . I 21M.$.02.CND t Revision 2 3 Page 158 of 238 l FIGURE 7.32.2 VORKING POINT ECCENTRICITY FOR BRACE VITHOUT GUSSET PLATES l c i i d  ! 4 Oh. j . .-;

I .-
                                                                                                   <                    //
-1 I
                                                                                                   .            </

1- . s ', -

                                                                                                          - ' cm i
                                                                               ~

g k t xo

-*- _____y --__

1

                                                                                          .       .J .      . ._._._._. ._.
                                                                                            ~     ~t~      ____________                                                ,

c.c.0F TIER g i 4., N c.g.OF POST

  • ACTUAL SUPPORT DET AIL 4

lO X<d 2FOR cd > 50' CONDiT IONS: d l i X<7 FOR c< < 50' PIN f _ PIN i-c.,_. MODEL WHEN MODEL WHEN CONDITIONS ARE NOT MET CONDITIONS ARE MET (SEE FIGURE T.31.2)

                          "~" """' * * ' * * " " ~ ' ' ^ ' ' ' ' ' ' ^ " ' ' * " " '

O

21H.5.02 CND Revision 2 Page 159 of 238 FICURE 7.33 K FACTOR c) Cont 11ever Suppert

                        '                                                                     x
              /
              ;      /

I r CHANNEL 4,( jg

                                                   .                                      1         '. i
              '           Y j

LC*LT i K 2.0 For compression memberc b)Tropeze Support with Out-of-Plone Brocing 4 ' s.@

            *N O         lL!.l)                            !l/

h 1,, ,i1 b g For this segment of post K 1.0 (for compression & tension members)

           - h$.?U.4.cd..                                o r.

For this segment of post:K s 1.0 (f or tension

                                                           ~^                                   member): K                2.1 (f or TIERS (K = 1.0)                                                                compression member) j
                                       /

NOTE: Above data taken from SAG.CP29, Attachment C. O

R ii Page 160 of 238 ( TICURE 7.34 BETA ANGLES FOR ANGl~. CHANNEL AND TUBE SECTION

       $2 0' v

at (p./

                  =

gx ,e y ,s

                             -x.                  O,
        /-              e.
                                 -                      >           m 180'
  /              /         '

g/o. /

   +x t
                        '[                 f   Ze       /           /N O
          $/                                            a 2'o-
                                                        -s          /

xe

                                                           <        v xN N

s-

  . a< $ >- s x

Q ,.

        \hN           270-         N                    N ,-

x

                                       \                                 N eN'4)

N? x

                                                                          .x<

xN' * **' u,

                                       .g

R 1i Page 161 of 238 f] v FIGURE 7.34 (CONT) 1 B : o' aYL y,/ $l. ys s/

     .x,                s
                                          /*      #-

s

                                                    /~    J 270*

xc

                                                       %s/
            * *' N         "

j x,

      %            \'                                     .r h                           %            'I        p g%                              '

x< x, 90'

 /^N                                           +X

Re[ision Page 162 of 238 O FIGURE 7.34 (CONT) G: 0'

                                               ?
                                                                                        ,/                            p/                  %

g e

                                                                                                                   ,               +X g g Zg
                         +X(

O- # s/ yo s / Xg

                                                  +X g

Nk \ ND \ l +X t O +X g NOTE: Figure 7.34 data taker: from SAG.CP29, Attachment D.

i l 2IM 5.02 CND. Revicion 2 Page 163 of 238 O FIGURE 7.35.1 ' SPRING CONSTAlff IM ANCHOR BOLTS HILTI KWIK BOLTS - IfJL11QE , i l l 4 BILlhEAR K (tbs /In) LOAD (DEFL.) AT CHAuGE IN BOLT EMBED. CaucatTE N (, \ 8 N K K SLOPf. FOR BillhEAR K (Ibe) SittuGTN Pu 4 4 LlNEAR K i SIZE DEPTN (mel) (Ibs) (Ibel (In.) (Ibs/fn) (In.) (In.) 0.019 12,370 21,000 _9,290 105 (.005) 1 1/8 2000 940 235 1/4 100,000 65,500 100 (.001)

                                                    - 1475      370        0.0039           94,900 4000 0.008            55,000              45,700    120,000     320 (.007) 6000       1760      440 0.03             24,300              12,000      86,000    300 (.025) 25/8           2000       2925       730 3354       840       0.004          210,000 4000 806        0.007          115,000,            147,000      76,500     500 (.003) 6000       3225 0.018           30,000               13,300     64.100     140 (0.012) 1 5/8          2000      2160       540 1/8                                                                                               210,000      51,700     420 (0.002) 4000       Z300      575        0.005          11L999 710        0.006          118,000 O                                         6000       2040 8'A       0.046            14,300              10,53o      56,000    400 (0.034) 4 5/8          2000       3354 4000       4950     1240        0.010          M l

6000 4700 1175 0.012 77,920 0.041 28,700 14,300 60,000 400 (0.028) 1/2 2 1/4 2000 4720 1180 l 231,250 950 (0.013) 4000 5650 1412 0.015 M 73,000 1- 0.008 214,062- ~ 6000 6050 1712 2400 0.067 35.820 14,000 47,600 400 (0.025) 6 1/4 2000 9600 l ! 4000 12600 3150 0.005 M 3875 0.060 96,080 285,710 54,820 2000 (0.007) i 6000 15500 t NOTE: Above data taken from SAG.CP29, Attachment P.

O .

I 1 i

                  -x-                 -

21M-5.02 CND Revision 2 Page 164 of 238 'p O FIGUILE 7.35.1 (CONT)

                                                                                                                                     ~

toLT Entfe. concaETE N & 4 Pg SILlutAR K (Lbs/In) LOAo (DEFL.) AT CMANE IN Sitt DEPTN STRENGTN Pu 4 4 t lNEAR 4 K K SLOPE FOR BillWE4R E (Ibe) (in.) (In.) (nel) (the) (the) (In.) (lbs/In) 5/8 2 3/4 2000 6000 1500 @ 15 10000 4000 6900 1725 ($16 107eco 6000 4200 2050 @ 06 34170C 7 3/4 2000 10000 2500 (p25 100000 4000 17000 4250 @ 30 i41700 4000 21000 5250 @ 05 50000 138200 18710 3e00 (.0275) 3/4 3 1/4 2000 8200 2050 (907 292900, 4000 10500 2625 @ 23 114100 6000 10700 26 5 gia 14asco 3c000 29e900 300 (.01) 9 1/4 2000 15700 3925 WO 3850 700000 3421 3500 (0.005) 40o0 24500 61 5 @ 70 s75cc 262500 1500 5 50 (0.02) 40o0 223 5 5504 cp3 tensco 1.0 4 1/2 2000 14300 35 5 @tt tastoo 4000 16200 4050 tyt 405000 6000 21600 5430 (pas 216000 10 1/2 2000 16500 sta 152 206250 4000 27000 6750 spel 150000 400000 53a44 5000 (o.012) 4000 35750 se57 Ip3 - 3e000 20000 11100- 200 (0.01) 11/4 5 1/2 Pico 14400 edie 1999 51111 Mono 32000 3000 (0.04) aose 23eso sole - wes 3 ease eene 33500 55 3 (Uto 44s27 140000 2st26 4000 (0.025) 10 1/2 Jose acces . ees ' tues - 445' assee . 21739 4000 (0.045) 4ees 4 oles 101 5 196 38062 225000 23437- 4500 (0.02) esse . 45000 1125e tyv5 114421 3400eo 3etes seco (0.025) NOTE: Above data taken from SAG.CP29, Attachment P. O .

21H 5.02-CND Revision 2 . Page 165 of 238 F1GURZ 7.35.2 ! SPRING CONSTANL FOR ANCHOR BOLTS HILTI KVIK BOLTS ElEAR , i 1 i I ! DOLT EMBED. CONCRETE $ l) 8 h IlllutAA K (!be/In) LOAD (DEFL.) AT CHANGE lu SIZE DEP1N STRENG1N Pu 4 4 LINEAU K g K, SLOPE FOR SILINEAR K (Lbs) , (In.) (In.) (nel) (the) (Lbs) (in.) (the/In) , l 1/4 1 1/8 2000 2230 577 0. ')*0 6,194 80,000 4,511 160 (.002) !- 4000 3440 870 0.0M 13,182 20,000 12,241 160 (.000) , 6000 4050 1012 0.011 14,107 2 5/8 2000 1750 437 0.070 4,50 29,147 4,0M in-(0.006) i 4000 2700 65 0.018 37,500 130,000 5 ,937 240 (.002) 4000 2300 575 0.014- 41,071 00,000 34,583 too (.002) 3/8 1 5/8 2000 3904 976 0.000 12,200 30,357 8,344 45 (.014) 4000 $100 12 5 0.044 28,977 220,000- 19,881 440 (.002) 4000 6200 1550 0.044 32,292 M,000 28,410 300 (.004) 4 5/8 2000 3400 ISO 0.019 44,737 246,700 5 ,700 400 (.0015) l 4000 5500 13 5 0.M0 34.375 141,250' 18,054 725 (.004) 4000 4400 1650 0.026 63,441 15,000 52,300 500 (.004) 1/2 2 1/4 2000 7400 tale 0.069 26,810 15,500 N,400 -- 900 (0.0F8) - 4000 .M0 Bn 0.0. M,M0 m,- 4..e6 ,100 (.003)

6000 9100 2275 0.054 40,630 19,440 78, 5 0 700 (.034) 4 1/4- 20ere 0000 2225 0.009 5 ,000 14.479 M ,540 -1000 (.076) 4000 10600 2400 0.020 M 600,000 77,700 1200 (.002) 4000 11500 38 5 0.022 130,700 55,000 76,790 1800 (.000) i 5/8 2 3/4 240 12200 3050 0.072 42,360 4000 11000 2950 0.011 268,200 1,000,000 1M,000 1000 (.001) 4000 12900 3225 0.025 129,000' 41,820 1M,100 900 (.011) 4 NOTE
Above data taken from SAG.CP29, Attachment P.-

c 1 Y

                                                                                                   -       -,,--m. -_ . -       -m    - ,_., _ . . - - -
                                                                                                                                                         ...a_

2IM 5.02 CND Revision 2 Page 166 of 238 FICURE 7.35.2 (CONT) 81 LINEAR K (ths/In) LOA 0 (OffL.) AT CNAmGE in 00LT EMBEO. CosCRETE N &8$ r r stort ran sittutAn K (ttr> 4 4 LINEAR K DEPTN STethETN Pu SIZE (ne() (the) (the) (In.) (the/in)

                                              <tn.)        (In.)

33,590 18,000 50,540 900 (.050) 12,900 3,225 .096 5/8 7 3/4 2,000 850,000 99,580 1,700 (.002) 3,850 .026 144,100 4,000 15,400 128,100 1,700 ( 002)

                                                                                                                 .018           20s,300          850,000 6,000     15,000      3,750 3,300               .037            89,200 31/4       2,000     13,200                                                                       137,500       2,200 (.004)                _

3/4 .020 220,000 550,000 4,000 17,600 4,400 800 (.034) 64,200 23,530 100,000 18,000 4,500 068 6,000 91,670 120,000 65,910 2,400 (.020) f,400 3,850 042 9 1/4 2, A u 250,000 56,100 1,000 (.004) 4,700 070 67,140 4,000 18,8rA 21,200 5,300 .028 109,300, 6,0% 113,640 1,0CQ,000 105,900 2,000 (.002) 30,063 7,500 066 4 1/2 2,000 144,600 1,400 (.002) g

                                                                                                                    .038          177,600           7'J0,000 4,000     21,0sJ      6,750 1,500,000     243,400       3,000 (.002) 7,625               .021          363,100 6,000     30,500 6,957                .120           57,810 10 1/2       2,000      27,750                                                                                    3,000 (.005) 43,300           600,000      57,500 4,000      35,000       4,750               .105 205,600            660,000    150,000       3,250 (.005) 37,000       9,250                  045 6,000 128,500            333,300     109,000      2,000 (.006) 2,000      37,000      9,25G                .072 1 1/4     5 1/2                                                                 116,500           312,500      96,000      2,500 (.008) 4,000      41,000 10,250                    .008 254,500        1,750,000      187,500       3,500 (.002) 6,000 - 45,500 11,375                        .044 77,800           35,330      116,100      2,000 (.060) 2,000      40,500 10,125                      *10 to 1/2                                                                   92,650 4,000      31,508      7,875                 .ws                                                      2,000 (.005) 154,700          400,000      138,300 6,000      49,500 12,375                     .000 NOTE:     Above data taken from SAG.CF29, Attachment P.

D O

                                                                                                                                                                                                          \

21M-5.02 CND Rovision 2 l Page 167 of 238 O FIGURE 7.35.3 SPRING CONSTANT ft)R ANCHOR BOLTS , HILTI SMER KVIE BOLTS - TENS 10lf SILINEAR E (Lbs/in) LOAD (DEFL.) AT CMANGE IN SOLT EMetD. CONCat' $ Li 8 N E SLort 70a SILimEAR K (the) Pu 4 4 Llw&AA #( E SIZE DEPTN SThinG1h (nel) (the) (tbe) (In.) ((be/in) (In.) (In.) 6,350 1,587 .014 113,400 1/2 3 1/4 1,500 9,200 2,300 .015 153,300 4,000 3,400 .023 147,000 75,000 227,300 900 (.012) 6,000 13,600 1,500 9,600 2,400 .050 48,000 6 1/4 15,000 3,750 .015 250,000 4,000 6,000 15,000 3,750 .010 375,000, 5,350 .019 281,600 000,000 203,000 2,000 (.0025) 1 6 1/2 2,000 21,400 35,000 8,750 .019 440,500 4,000 4,000 37,500 9,375 .020 464,800 v to 1/2 2,000 35,000 8,750 .140

                                                                                                                                                              .N5 62,500 269,400 240,000                23,910         6,000 (.025) 4,000                                        48,500 12,125 6,000                                         57,500 14,375          .030       479,200                                     .
                                                                                                                                                               .165        43,240      440,000               17,650           4,400 (.010) 8 1/8      2,000                                          28,541     7.135 I 1/4                                                                                                       234,800 4,000                                           43,000 10,750         .045 130.600       300,000               65,380            7,500 (,025) 6,000                                          47,000 11,750          .000 37,730           240,000          17,500             5,700 (.025) 13 1/8       2,000                                          41,500 10,375          .275 4,000                                          65,500 16,375           .M5      363,900
                                                                                                                                                                 .060      304,200               347,500     137,500-               15,500 (.043) 6,000                                          73,000 14,250 NOTE:      Above data taken from SAG.CP29, Attachment P.

21M.5.02-CND Revision 2 Page 168 of 238 FIGURE 7.35.4 SPRING CONSTANT M R ANCHOR BOLTS i HILTI SUPER KWIK BOLTS - SHIAR , 1 i CONCMTE $ /\ 8 h BillutAA E (Lbs/In) LOAD (DEFL.) AT CMANGE IN SOLT EMED. 4 4 LINEAR M K K SLOPE FOR tillWEAR K (Lbe) SIZE DEPTE STRENGIN Pu (in.) (In.) (nel) (tbs) (Lbs) (In.) (tbs /In) 10,000 2,500 .015 166,700 t/2 3 1/4 1500 4000 11,000 2,950 025 110,000 6000 14,000 3,500 .012 291,700 11,000 2,950 .025 110,000 400,063 47,500 2000 (0.005) 6 1/4 2000 4000 15,400 3,050 .050 77,0M 6000 10,700 2,675 .005 535,000 19,200 4,000 .0% 05,710 300,000 W ,260 1600 (0.002) 6 1/2 2000 4000 m ,250 6,5u .09 111.200 312, # 0 7', '" 2" (' "* ) 6000 34,000 8,500 .062 137,100 1,000,000 77,590 4000 (0.004) Q 10 1/2 2000 4000 27,000 32,750 6,750 8,147

                                                       .075
                                                       .054 90,000 141,200        m ,000       107,700 2500 (0.005) l 6000   x,000      s,500      .055    t u ,*

3 1/8 2000 52,420 13,105 .200 65,530 1 1/4 4000 42,000 10,500 .030 350,000 916,700 200,300 S W (0.006) Gooo 39,000 9,750 .035 270,600 . 13 1/3 2000 34,000- 9,500 .055 172,700 4000 47,000 11,750 .054 202,600 5000 47,000 11,750 .065 100,.000 NOTE: Above data taken from SAC.CP29, Attachment P.

t 21M 5.02 CND Rovision 2 Pa8e 169 of 238 O FIGURE 7.36.1 ALIDVABLE BENDING STRESS FOR ANGLE ABOUT AXIS 1 1 Fer 1 '(equiv){The Equiv F MEMBER SIZE f 1 SPAN  ! (ESI) 7*12 Fcr Kf AIII11

    & F10FERTIss 18000e4 77,      I 23           )   r           (xsi)
                                     }    II,        (Inch)                                                 l 495.5                            258.5         24          20.4 11893         24                                                                                   19.7 L3 x 3 x 3/8 4                                                                247.8                           129.3         34 48 I - 2.7931n                                         ;g                                                        gg:1         16:1          11:1 22 =.724tgg                                                                   19:3 J = .1055                                                                                                     51.7         53.8            18 120                               99.1 C* - 2.121=                                                                          82.6                     43.1        58.9          17.4 144 252.6       24.4           20.3 24                          484.1 1.31/213 g/213/8                      11619_

126.3 34.4 19.6 48 242.1 19 42.1 Ig = 4.571n 4 72 161.4 84.2 1 = 1.171g 121 63.1 48.7 18.5 96 J2= .1231n 50.5 54.4 18 120 96.8 80.7 42.1 59.6 17.5 C* = 2.475" 144 479.5 250.2 24.5 20.3 11508 24 19.6 L41413/g 48 239.8 125.1 34.6 42.3 19 OIg =12 -6. N4 1.7761g 72 96 159.8 119.5 83.4 62.6 48.9 18.4 J = .1406La 95.9 50 54'.7 17.9 120 17.4 C* = 2.828" 144 79.9 41.7 59.9 344.3 20.8 20.5 15834 24 659.9 20

  1. L 41411/g 44 330 172.2 29.5 114.8 36.1 19.5 Ig = 8.8271m4 72 220 I 2=2.2931g 86.1 41.7 19.1 96 165 J = .3333ta 68.9 44.6 18.6 120 132 C* = 2.828" 57.4 51 18.3 144 110 245.8 24.7 20.3 471.2 L515134 M 24 4: 235.6 122.e 34.9 19.6 82- 42.5 19 I t= 13.941 4 72 157.1 49.3 18.4 I 2= 3.5391m 4 94 117.8 61.5 J= .17581a 49.1 55.1 17.9 120 94.2 17.4 78.5 41 60.3 C* = 3.535* 144 NOTE:

Above data taken from SAG.CP29, Attachment Q. [G

_ _ _ _ _ -_~ ~ - . . . 7

                                                               ~
  • 21M 5.02 CND Rsvisien 2 Page 170 of 238 2

FIGURE 7.36.1 (CONT) 4

                                                                            '(equiv) The Equiv i

Fer f F SPAN NEMSER SIZE f ( KSI) F,12 Fcr KF AIII1-1

             & FROPERTIES         18000ffCe                                                  r        (MSI)
                                        / I',   *

(Inch) 23 l 639.6 333.7 21.2 20.5 15350 24 L 5 x 5 x 1/2 44 319.8 166.9 29.9 19.9 I 213.2 111.2 36.6 19.4 t = 18.01"in4 72 1 -159.9 83.4 42.3 15 J2==.4147"in4

                     .4.59"in4                        96 127.9        64.7        47.3           18.6 120 106.6        55.6        51.8           18.2 C* = 3.535"                             14*

i 1022.8 533.4 14.7 20.8 24548 24 L5I5I3f4 48 511.4 266.8 23.7 20.4 20 l Ig = 24.81a 4 , 72 340.9 177.9 29 I

                                                                -255.7         133.4       33.5          19.7 J2==1.4061m 6.5971n4                          96 204.6        106.7       37.4           19.4 120 C* = 3.535"                             144         170.5          49          41           19.1-i 984.1        513.4        17.1          20.8

' 23418 24 L 6 1 6 1 3/4 4 44' 492 256.7 24.1 20.3 . Ig = 44.8471a 4 328 171.1 29.6 20 72 I 11.5541a4 128.3 34.1 19.6 J2==1.6875La 94 246-196.8 102.7 38.1 19.3 120 l ' C* = 4.242" 144 164 85.6 41.8 19 l e i F l . 1 NOTE: Above data taken from SAG.CP29, Attachment Q. O

2IM 5.02 CND Revision 2 Page 171 of 238 l h v FIGURE 7.36.2 TORSIONAL BUCKLING OF ANGLE MEHBERS The following lists the maximum angle lengths for which torsional buckling needs to be considered. If the actual angle length is less than or equal to the length listed, the L/r shown shall be used to calculate the allowable compressive stress F(a), For lengths greater than those shown, torsional buckling is not critical. > LENGTH (L) ____ L / r ANGLE SIZE 16" 41 L 2 X 2 X 0.250 12* -31 l L 2 X 2 X 0.375 16" 33 L 2.5 X 2.5 X 0.375 37" 61 L 3 X 3 X 0.250 25" 42 L 3 X 3 X 0.375 19" 31 L 3 X 3 X 0.500 33" 47 L 3.5 X 3.5 X 0.375 65" 81 L 4 X 4 X 0.250 42" 53 L 4 X 4 X 0.375 39 L 4 X 4 X 0.500 31" 67" 67 L 5 X 5 X 0.375 49" 49 L 5 X 5 X 0.500 39" 39 L 5 X 5 X 0.625 33" 33 L 5 X 5 X 0.750 81 L 6 X 6 X 0.375 97" 72" 61 L 6 X 6 X 0.500 1 O 5 L 6 X 6 X 0.625 L 6 X 6 X 0.750 L 8 X 8 X 0.500 56" 46" 131" 47 39 82 103" 65 L 8 X 8 X 0.625 53 L 8 X 8-X 0.750 84" 63* 40 L 8 X 8 X 1.000 f If the angle fails using the above values, more rigorous analysis may be required The equations and tabular values presented above apply to equal leg angles only. Unequal leg angles shall be addressed on a case-by-case basis. NOTE: Above data taken from SAG.CP29, Attachment Q. (JN

21M 5.02-CND Revision 2 Page 172 of 238 O V. FIGURE 7.36.3 ALIDWABLE LOAD IN ANCLE BRACING VITH CUSSET PLATE CONNECTION

                                                                                            .i                       -

_.7,_._.GUSSETR% ._._, _ -ep p  ; _._._.._. . . ._.

                                                 \           BRACING 4 O

V ANGLE SPAN ALLOWABLE SIZE L LOAD P (in) (KIPS) L 3-X 3 X 3/8 36 16 48 14 60 13 72 11 84 9 96 7 108 6 NOTES:

1. Allowable load shown on the table is for OBE load combination.
2. 1.6 times allowable load shall be used for SSE load combination.
3. For calculation of allowable load, see Ebasco Calculation Book No. Supt =

0235.

  'q
  'd         Linear interpolation is acceptable.

4.

5. Above data taken from SAG.CF29, Attachment Q.

21M 5.02 CND Revision 2 Page 173 of 238 O ( FIGURE 7.37 ENVELOPED DESIGN "g" VALUES 2% DAMPING 3% DAMPING F g BUILDING OBE SSE (men.) Sr Sr Sg Sx Sr St Elect:ical 1.19* 1.98* 2.12* 1.82* 3.10* 2.50* 16Hz Control Safeguards 1.95 3.53 2.73 2.88 4.87+ 4.13 16Hz 1

Auxiliary 1,79 4.08 1.88 2.30* 4.87* 2.64* 14Hz Internal 2.14* 2.42* 2.14* 3.13* 3.36* 3.13* 12Hz Structure Containment 1.41* 3.63* 1.56* 1.79* 4.25* 2.19* 12Hz 4

Fue1 (below 2.43* 2.01* 2.43* 3.47* 3.03* 3.57* 16Hz El 860.00') I

 \     *     "g" value may be enveloped by other building.
       + Original value 4.83 was increased to 4.87 to envelope other building.

The Diesel Generator Building is contained within the Safeguard Building. NOTES: 1. This table applies to conduits that are designed in accordance with the requirements of S-0910 drawings. . 2. Above data taken from SAG.CP10, Appendix 7. J

     ~

t FIGURE 7.3b LOAD FACTORS (U) FOR VARIOUS COIIFIGURATICIts wer: cA tc sera . n 9 4,, e.,e,,s_ car s can.c. sca na -ii4 5, em..s , es -s>* sAs .,4 n e e , .aase e.,ess sease,Is..es % ,, l f top tc .ic, . , g,,,,, ts-2 s, ts-re, ts. r s,-4 ts.35 4 ts- ..c ' ts-tie L,- r s ts- sc.c Seiteinac, e,,gg - ts-:

                                                        . , e  . .,
                                                                  . win     can veu-e it                                                 ts. A ts-je,ts.neA Lt+s-34
                                                                                                                      - , = >-<o  4 ^ n'.;ge-,x..t...

t.sd-. u ,ts.sek .e cuw. . 1.37 1 37 1.5:

                                       >f 9so'-1*             1.22                                                    - i.e6 i . ,9 g .2s, 0*"T A"8 *gner            3,,,,,,,.,           g , , f,,
t. 2 7 9 9(,*-g ** t . tf. 1 07 1.25 l14 b8A"'S 315'-6' l.lf l'83 1.09 l & 1 88 1./11 t

tresset. 962'-6" g,i.g*,g.,.g * ='-==, l.05 seateAv* R _ I 87 l .O(* f .f G vf esc'-s* 1. e 5 I *T l*15 ~ I 43 l ' (* 975'-6" I II I*lT l*80 lef*

                                                                              ~

t.11 1.s 9 AvaitaAsty $ 52 '-6 " 1 10 t . t '5 g an '-g a 1. t 5 f . 4.

                                                              ~                      r                                                                       t .tG gge r.g re                                                                         1.~8>4           t.to f.15               f.51 9 ,5'-9 '              l.18                                                         12o             1 06           f.os RaAc.t.et 139               s.es                         ,

8 s s,'- 6 l.25 I .t (, ' l.16 106 l . t'6 eLa d.to ,

                                      ~ g o, *. e                g.2g                                                                                         l*I7             ,

l ** tem *4 A L. 1 12. 1.87 lagg 3.syy, 14

                                         >< $54 '-4 *                                                                      ~

1 06 l . I'> C * **'c *i- gge*-o ** 8 15

  • Imad facters (U) U istabiaisted'em 1.0 for building elevattees this sheet not are shown.

k* for the 1.5 series D: 1. l appliesties sely.

  • g*Ir *b o
  • 2.

If a conduit 1seestric comprises any one of thellconfigurations'11sted, supports for

                                                                                                                                                                            ** w thee the U for the configuration shall be applied at a
                                                                                                                                                                                                       ~j the entire run.

ises enere than one tabulated configuration,

3. If a conduit then_the largest U shallisometric e applied.
4. _

indicates LF - 1.0. S. l ' 5, Above data taken from SAG.CP25. Attachment l

2 4 21M 5.02-CND. Revision 2 Page 175 of 238 J

                                                               . FIGURE 7.39 OVERALL DESIGN VALIDATION PROCESS 4

V5tf 2 C05DUlTS k l DETILOP VSlf 2 2 PROJECT 155TRUCTIO38 DEVEL8P SAMPL194 ft3 50 DtTELOP SCittfl56 8 g , (M E Fi6.1.4e CD ED (sta 5 6.1.44) CalWLETES CALCS 18 COMPLETE (*) CALCS i l j f esutrian af Y T3 esuirla er SAMPLE 08 15 Ctstalt 8C33351547

                                  $!NILAalTT?                            CALC.

30 30 t 4 CASE ST CASE CASE ST CASE ETALBAfl08 i ETALBAftts (e.g. II SVPPORTS) i j. i 4 TES FPSATE . Y23 E1181134 CALC 45ALIFIE3? 00CWmt3T ESALIFIEDT , 4 i Ig 50 O meSIFT healff

                  *-INCLUDES CONDUITS WITE NO CALCULATIONS                                                                                             ,

I

21M 5.02-CND j F.evision 2 Page 176 of 238

 !                                                      TICURE 7.40 i                             DESIGN VALIDATION TIAW CHART FOR CONDUITS VITH COMPLETED CALCU1ATIONS I

3 A 98tf 2 C9595178 WITT CerLETES 0 0

 ,        l Cassurless                                                                                           ,

i

 !           A N IN W WWEfflAL                                                                   30    Sett CASSE 4            5415358 TS C8598tf                                              'tEJSCT                 ITALBATISS OF i              19013f5I08 Ass                                                FdEMB*                     SEFICEBCIES NLECT SAspel

~l RSA MEB? SAfrLE l TEs 1: ETALSATE ErtlE ASSW Iwas? 0F PWUtAr180 ST 18585B 88 SE1ATER WitLlsise 3e3315 ACCE ,T ATTBlarTE3 18 SITS .e. 394LEAft SAsets assIPLE FILL OUT Af1tINTES 515 G EMEELI EE8W II AF'a m m 1 8 8J WTIM 3 SITleAL ltfERAffles 842 53 EIres mis i m e

                                                                            /                                                S
                                       =

4 mu w wErr cumamer cammar j O = /esatirief sessmer A,5,, povurIn:

                          ,,            __     _. M

_ . . l., (- J A 8

                          "                         ~

O" l

                                                                                                                                         -o 2IM 5.02-CND Revision 2 Page 177 of 238 FIGURE 7.41 DESIGN VALIDATION FIDW CHART FOR CONDUITS WITH INCOMPLETE CALCULATIONS asst essssets                 m irs uits incourtats .            Isomstates
catestattees 4
t. sasw 'st staatsa sesrissaaties ass sesses

> a TaLess

s. satset Ass svusats esittsu cAsse res saca seas se seassta ses esALittas Pas s. svaLeats ashalassa er essestts at Csurastses so-este s

4 Tas arven 7:s se se ntri ot assert s m ents esssais seserte i surtsSt esPPMt Ie seattat l i

s. sesse at suppent t w s sTatsats as A
s. MLust AS C'ALsatt SlfisAL sams Fes sass CAS st ses suspear itys was a sis:Laatti l

r

s. sessants summtsuma er senests at sementses sessrtet - secsert sosseust osattriot as N s

O s.,FT _ ,7

                                                                            -                -.                        ., , . . = .       -

I 1 21M 5.02 CND Revision 2 Page 178 of 238 O FIGURE 7.42 CONDUIT DRAWING CONDUIT DRMING SUP SUP TYPE MAX SPAN SPM TYPE FITT REMARKS NO 1 O NOTES REV MG RE DV APVD RENARKS ' CHKD LDE C0ND NO. DIAM: GROUP / ORGMIRATION TO ELECTRIC REVIMER CPSES INITIAL AND GLEN ROSE, TEXA5 DATE CONDUIT DRMING CLASS I DWG NO. SH NO REV NUCLEAR SAFETY RELATED

r 2IM 5.02 CND Revision 2 Page 179 of 238 FIGURE 7.42 (CONT'D) l' CONDUTT DRANENG NOTRSS i l ll l i 4 3 O l l 4 4 DV APVD REMARKS RW DNG RE . I CHKD LDE COND No. DIMt GROUP / ORGMZ2ATION TU ELECTRIC l CPSES l RWIDfER GLEN ROSE, TEXAS \ INITIAL MD DATE CONDUIT DRMING . CLASS I SH NO REV, DWG NO. NUCLEAR SAFETY RELATED i I

                                                                                                                                                                    ~'

' 21M.S.02.CND Rcvision 2 Page 180 of 238

    -                                                                                                           6TTAC10ENT 8.A L                                                                                FORMULAS FOR FINDING PUNCHING SHEAR i

CASE 1: TIEULAR STEEL SECTION CONNECTION i b j = = REF: A.W.S. D1 1-79 SECT 10.5 b__'h'i 1 ALLOWABLE PUNCHING SHEAR STRESS ! WELDS' v i V,=4.O.(beste-V) f p l l to WHERE

                                                ~           ~

i . Fy Fy - 3.33teFy - i ba sic Yps = = l t 0.6T..6(92t) e D-D- b y , .D - g, ' Ito . D STL A 500 GR.8 i L ' Fy = 46as OR Og s 1.0 FOR $ <; .5

- 2/3 0F MIN. TENSILE STRENG W - .25
                                    = 2/3 (5gsi) = 38.67ast                                                                                   =                      - FOR S > .5 l                                                                                                                                                  g (1,, g)
  • 1.22 FOR 'T9 CODE O y = 1.0 FOR U 4; .44 '

USE 1.2 & U z 1.0 TO ENVELOPE THE

                                                                                                                                              = 1.2*             .5U - FOR U > .44 i

ALLOWABLES IN TIE FOR CONSERVATIVE DESIGN.USE TABLE CONSERVATIVELY, OR 0 f = 0.T FOR ALL U VALUES

5

[ U"(%+fb) WHERE fa AND fb ARE DEFINED ON PAGE 181. y (0.tirFy) 3.333t e x - 38.67 ) = 90.22 tg FOR. S <; .5 VP = (1X.7X O D i i .25 128.5 te= 22.55 t,.

                                                    'V                                     ,

FOR B > .5 0 (1- 6) x0-P = O (1 0) x (0.7) x 0 ALLOWABLE NORMAL WELD FORCE FORLCONN = gp t V Obs/') NOTES:- FOR S > .8. REFER TO AWS D1 1. SECT 10N 10.5. f J THE ~ COMPUTED SHEAR STRESS IS- THE ALLOWABLE LOCAL SHEAR STRESS. IT 15 STILL REQUIRED;TO MEET AISC ALLOFA8LE SHEAR STRESS.. NOTE: Above data taken from SAC.CP29, Attachament L.

                                                    ~

+ 4

            , - . , .               . . . , . ,                  , . -                                 .         _ . . , . <        -.                ,       ,.                _ . - . _ . . -             _ . - . _ . , . - . . ~ . - . . .      ,

d 21M 5.02 CND Revision 2 Page 181 of 238 ATTACHMENT 8 A (CONT) CASE 2: STEPPED TUBULAR STEEL SECTION CONNECTION ACTING PUNCHING SHEAR STRESS IN MAIN MEMBER A eger , t.h. 't 5'N O t os K a ibs K A WHERE fa=g AXIAL STRESS BRANCH MEM b S0.TS / . 2 i BENDING b_ b*/2\f bY ' i bZ/ STRESS y

                            /
  • pei p
                          /                           gl            .

(IF APPLICABLE FOR OUT OF PLANE BENDING)

          +- u                                                                      It$lN O
                             ^

lll g '. O l 25tN O p . ._ . 1. __ .

                                      . - . _f It3sid e I                  K            3 b
  • 4 SIN 9
                     \ MAIN MEM                    -_    D _                            b TS l                                                                             A   = AREA 0F CROSS SECTION OF BRANCH MEMBER 1 bY AND fbZ ARE THE MAXIMUM BENDING STRESSES IN BRANCH MEMBER DUE TO BENDING MOWENTS ABOUT Y AND Z AXES OF BRANCH WEMBER AFTER SUBSTITUTION,THEN t
                                                 +         b f = h-csin o(itstN Olt3stNe)

CALCULATED ACTING PUNCHING SHEAR FORCE IN MAIN MEMBER ([) t o < t@ (ALLOWABLE NORMAL WELD FORCE - SEE CASE 1) ( ) REF: AWS CODE D1 1-T9 SECT 10.5 NOTE: Above data taken from SAG.CP29, Attachment L.

21M 5.02-CND Ravision 2 Page 182 of 238 ATTACHMENT 8.A (CONT) ALLOWABLE NORMAL WELD FORCE PER INCH FOR STEPPED TUBULAR SECTION CONNECTION ALLOWABLE ALLOWABLE ALLOWABLE MAIN 6: NORMAL MAIN S= NORMAL MAIN S= NORMAL MEMBER , MEMBER M b WELD FORCE b WELD FORCE b WELD FORCE txD e D lbs/ Inch txD e D lbs/ Inch *cEMBER xD D lbs/ Inch

                                                                                                             .500                            792                         400            450"                        430              1 257
                                                                                                             .625                            845                       .500             450 '                     .5O              '

282 N*d .750 1055 %x5 .600 4695 N*I 7 7' O E27

                                                                                                              .875                          186 1                      .700             5366                      .860                 24
                                                                                                              .500                           40t                       .600             7042                                            I l 4.60
                                                                                                          ~.625 502                       .330                52f   '

f0 18d 1 gj4 x 4 .750 878 .500 5?fi g,7 .t' O 215'9

                                                                                                               .875                         3219
                                                                                                                                                                   *6  .670                51
                                                                                                                                                                                                                  .860               3760
                                                                                                               .500                      2200                          .830                 8! E                  . 3'r5                 3%
                                                                                                               .625                      2347                          .330                 9%        g,g          .500                  3 r, g,4                                        750                 2935                           .500                97  0                  .625                  422
                                                                                                                .575                     503C                   /d
  • O .670 -

10' i -

                                                                                                                                                                                                                   .B"5                  905 400                     63d                        .830             '

Eod .3"5 70d

                                                                                                               .500                           63d                       .330                4'i'                   .500                   TOd
                                                                          %x5                                   .600                         06C                        "500                           !"     8                                75
                                                                                                                                                                %x6                         d'i"                                                     '
                                                                                                                .700                          "

5d .670 6 FJ '.625 B"5 609

                                                                                                                .500                          19Ci                      .83C            EECC                       .3'P5                         00 400                         2"                    .33Ci              2' 2                     .500                         00
                                                                                                                 .5 %                             2"                     .500              2     2     N*O          .625
                                                                           %x5                                   .600                             T             %x6      .67':   '

211 9 .s"5 Il'3 25 5

                                                                                                                 .70?                        If    4   '
                                                                                                                                                                         .530            3D 3                       .3'r5                   5- 4
                                                                                                                 .500                       t"     i':                     43':              452                    .500                     5 .4 N*O hi
 \j                                                                                                               .500 400 s'.

G: %x7 .5 " : D

                                                                                                                                                                                 '           462 549
                                                                                                                                                                                                                    .f25
                                                                                                                                                                                                                     .I "5 16'.O 3D2
                                                                            %x5                                   .600
                                                                                                                  .700 113 209'
                                                                                                                                                                         .t GO               940                     .1.' r5             21          7
                                                                                                                                                                         .d '.'C             504                     .',00               2f         >T
                                                                                                                   .500                      2T5                          .50              820       gj3 g g       .m                 3004 400                 253!.

i g,7 .T C' srr . 575 6dl38

                                                                                                                   .50<'.                   2?3!                          .BGO              1671
                                                                            %x5                                    .60:
                                                                                                                   .T O:

264 3L' I

                                                                                                                    .500                     39b           l NOMENCLATURE FOR STEPPED TUBULAR CONNECTION:

b b - MINOR WIDTH OF STRUCTURAL TUBE BRANCH MEMBER Un.) = = t -b THICKNESS OF BRANCH MEMBER Un.) l [b I I D - WIDTH OF STRUCTURAL TUBE MAIN MEMBER Un.) h

                                                                                                                                                                                                                                         =             =
                                                                                                                                                                                                                                                         *c t -e THICKNESS OF MAIN MEMBER Un.)                                                                                                  C S - BET A RAT IO, (b/ ) BOX SECTIONS D

D C - DEPTH OF STRUCTURAL TUBE MAIN MEMBER Un.) NOTE: Above data' taken from SAG.CP29, Attachment L, . l l l

.) - 4 21M 5.02 CND Revision 2 Page 183 of 238 ATTACHMENT 8.5 EVALUATION OF STRESSES IN BASEPLATES, SURFACE ANGLES AND ANCHOR BOLTS VERIFICATION OF HILil ANCHOR BOLTS FOR SURFACE ANGLE C0fe4ECTIONS l ANGLE 15 WIN. % INCH THICK (APPLIES TO POTH HILTl KWIK AND HILTl SUPERKW110 l l THE TENSION FOPM A.AS BELOW ARE CONSERVATIVE. . l yy n Y h y Y 4 csc 4 l' Fx Fg j gYx

                                                                                                      -~x -         =                     -

y 7g-- y s_7 ! F

                                                    /g g/ 7                  j i                                        'l    '

l l.l ! i.  ! . [/ I;  ! b>o j TWO BOLTS I l l l

(WAX.4 LENGTH 2'-f) j .
                                                                                               .l                                   Ml; !

I a k b I l' i_0 l'

                                                                                              ~

! ~ yFy l [ L _; I_l _ _c_

                                                                 =    *i=                   *r..

lO

                                                                                    =

v '

                                                                ~~'                C l                                      ONE BOLT                                                                   ,,>,,
(WAX.4 LENGT*0'-9') j i

p y l FORCES Ale WOWNTS FROW COMPUTER OUTPUT f Fx FygF WxWyWz CALCULATE Wg=W y g+Fh-) ! MAX 16 90LT -TENSION W 1- " 1.15 Fy b(c+h + 1.1 g - FOR TWO BOLTS T = 2.15 3+ ( e ..= 8 INCES W 1 Fyb(c+iO M" FOR TWO 80LTS T =1Al 3+ 1.15 + 1.1 L, o = $ INCES

                                                                                                  ~
T = 1.15 b+*ic-ci ('y (c + X I + Wx- FOR DE 80LT WAXip 80LT SEAR (FOR TWO 80LTS)
                                  " Wy+Fra l>+Fx(c+B 2                           Fx 2"       W --

5a +

                                   .             L-                -

2 . O NOTE: Above data taken from SAC.CP29, Attachment G.

21M 5.02 CND Revision 2 Page 184 of 238 (Q/ ATTACHMENT 8.B (CONT)- VERIFICATION OF RICHWOM) ANCHOR BOLTS FOR SURFACE ANGLE CONNECTIONS ANGLE IS MIN. % INCH THICK (APPLIES TO ALL DI AWETERS OF RICHMONO ANCHORS) yy n T y 1,Y . g. c= c W M jj l F x Fg p 3p pn i- *h;= - - *y '7 V Fz Z# l I I t i .

                                             /                                               l l

[/ i.l I b>o TWO BOLTS I l l 1;I j (W AX.2f. LENGTH:2'-4') l _ o_ _ b _I d.Ii_G l_ I yFy l [ L L _l Y _i c_ _e,__ er_ O I

                                                                                                ~ Y" - ~ ~ '

ONE BOLT ,,>,, (WAX.JF. LENGTHS 0'-9') j-y FORCES AND WOWENTS FROW COMPUTER OUTPUT FxyF 2Fx Wy Wz M CALCULATE W'g = Wg+F(b- y ) WAXlWUW BOLT TENSION

                                                                                                               ~

T = MO + t 2 Fy b(c+i) g" FOR TWO 80LTS L (c-G) . L L . c = 8 IMS T = 2.TO + 1.20 + 1.2S oa& S 1..T0g .y,,c,,<c.x).Wa ,0 - 1 WAXIWLN SOLT SHEAR (FOR TWO BOLTS)

                ,               " Wy+Fz b+Fx(c+B 2 , ,Fx, 2' %

e

                                .         L                                                              2       .

b v NOTE: Above data taken from SAG.CP29, Attachment G.

j - ~ 21M 5.02 CND Revision 2 1 Page 185 of 238 l ATTACHMENT 8.5 (CONT) 4 VERIFICATION OF ANCHOR BOLTS SECURING SURFACE ANGLES SA5E ANGLE WITH TWO ANCHOR 801,.T5 , dT 1 8ASE JF.\ NOTES:

VW y 1.FOR cg.ot*#3 SEE TA8LE. g W F g PAGE 186
  • p y fe' F r x 2. L. C & G ARE IN INCHES. .3 w
                                                                                        ~

a 7, O 3. Wx , W k Wg ARE IN K-INCHES l 9_ . M BOLTS I I 'yIkF X y ARE g IN KIPS.

                                     ,. y / y ,.'                                                    4. W'yaWy+FG                     x
                                  / ~      L         _/
5. TRANSFER TNE FORCES ANO 2'-4' (MAX) T .

WOMENTS FOR A CO-ORDINATE $ FOR TWO 80LTS IN TENSION: STEM M GE. i 1 f - Wv 3 C

  • Fy
                                       **1\        (C-G) 2                              L             2(C-Q 4

80LT SHEAR: s. W'.(A \2 . . ".h.)'

                                          .\ 2 /                                    L     .

6ASE ANGLE WlTH OE ANCHOR 80LT BASE Jr. aY { NOTE $s

jj 1.FOR c,.og.og SEE TA8LE. NEXT gF y p "Fgg x
                                                                                        =

PAGE

w. g 2. ei. og, C & G ARE IN INCHES.

j O WqK Z 3.Mx& Mg AE IN K-INCHES , 1 m1 . s .F, ,, E Ki.s. l /* .-

                                                         / /c[

4.e's THE SMAREA DlWENSION

                             ,4           <

OF e, . FOR CE DOLT IN TEN 51086 p T . . , (,"; ) : (-P ) + ., ( * ".,5 C

                                                                                                       )

80LT SEAR - 8 S e Fx + F2 3 1 NOTE: -Above data'taken from SAG.CP29, Attachment C, c i

21M-5.02 CND Rcvisten 2 Page 186 of 238 ATTACHMENT 8 B (CONT) V, PRYING ACTION FACTORS FOR BASE ANGLES WITH TWO BOLTS TYPE & SIZE OF BOLTS BASE ANGLE L C Prying action factors (INCHES) at a2 a3 ALL SIZES OF L8 X 6 X 3/4 l'.9" 8. 1.12 2.00 1.09 HILTI KWIK & MAX SUPER KVIK L6 X 6 X 3/4 "

6. 1.09 1.69 1.06 1/4", 3/8",

1/2", 5/8", LS X $ X 3/4 "

5. 1.09 1.69 1.06 1 1/4" 1 1/2" DIA. L8 X 6 X 3/4 "
8. 1.27 3.07 1.23 RICHMOND INSERT L6 X 6 X 3/4 "
6. 1.26 2.56 1.21 LS X 5 X 3/4 "
5. 1.26 2.56 1.21 1" DIA. L8 X 6 X 3/4 "
8. 1.23 2.88 1.19 RICHMOND INSERT L6 X 6 X 3/4 " 6, 1.22 2.38 1.16 L5 X 5 X 3/4 " 5, 1.22 2.38 1.16 i

A.) (- NOTE: Above data taken from SAG.CP29, Attaclunent C.

21M-5.02-CND Revision 2 Page 187 of 238 ATTACHMENT 8 B (C01U) PRYING ACTION FACTORS FOR BASE ANGLES WITH ONE BOLT BC TS BASE ANGLE L C Prying action factors (INCHES) at at a3 ALL SIZES OF L8 X 6 X 3/4 0'-9 8. 1.11 1.15 1.08 HILTI KWIK 6 MAX SUPER KWIK K6 X 6 X 3/4

6. 1.10 1.11 1.04 1/4", 3/8",

1/2", 5/8", LS X 5 X 3/4

5. 1.10 1.11 1.04 3/4", 1",

1 1/4" L8 X 6 X 3/4 "

8. 1.20 1.67 1.15 1 1/2" DIA.

RICHMOND INSERT L6 X 6 X 3/4 "

6. 1.19 1.56 1.12 15 X 5 X 3/4 "
5. 1.19 1.56 1.12 1" DIA. L8 X 6 X 3/4 "
8. 1.17 1,55 1.12 RICHMOND INSERT L6 X 6 X 3/4 "
6. 1.16 1.47 1.11 LS X 5 X 3/4 "
5. 1.16 1.47 1.11 O

O NOTE: Above data taken from SAG.CP29, Attachment G. I

21M 5.02 CND Revision 2 Page 188 of 238 AITACHMENT 8.B (CONT) BASE PLATE'WITH 4 ANCHOR BOLTS BASE E t x o x b

                                                                                                                                                                  / J             90' /
                                                                                                                                                     . .                   O b/c{

F x y Q

                                                                                                                                                      /        f f/

[ dx / /p%' MAX (TYP) a _/ , O so't tension-a

r. 3 2dy m .s 2dru ..p4 x s
                                                                                                                                                                                                                           ~

BOLT SHEAR: 3 , ((\4[L Mzdy 2 2 jI , [Fy Mzdx

                                                                                                                                                                                                         }#[8 2(dx #qy) /            \4     2(dx2 4q 2y37, TYPE t SIZE                                                                              RASE PIATE DIMS (in)                PRYING ACTION FACTORS       l OF 501.T3 e           dx           dv          a,       a,          a,    I All sizes of Itilti                                                                                                         1.0        18 1/2     18-1/2       1.22       1.22        1.30
                     . Kvik & Super Kvik                                                                                                                sin         max           max 1-1/2" 9 Richmond                                                                                                        1.0        18 1/2     18-1/2       2.16       2.16        2.09 Insert                                                                                                                   sin          max          max 1" 9 Richmond                                                                                                            1.0        18 1/2     18 1/2       1.95       1.95        1.90 Insert                                                                                                                  min          sax          max 0  NOTE: Above data'taken from SAG.CP29, Attachment G.

1 21M 5.02-CND Revision 2 Page 189 of 238 O ATTACHRELJ 8.B (CONT) STANDARD BASE PLATE ALILVABLES

                                                                                ,           (YO                ,

l' (R ~l

                                                                                    +        4
                                                                                                           +       m X

y --:=3 =a=:  : :- { g il h

                                                                                    +         ;;            +N Z

d(T Y P) l ej [(4TT TABLE 1 PROPERTIES OF BASE PIATES MAXiulDI ECCXuTRICITY SAst SAtt PLATE ATTACNMENT (IM) EDGE DISTAuct PLATd SIZE (lu) AuCHOR SQLT D** nP* t TYPt s!ZE J1Zs et OR e2 ej + e2 d (lu) TTPE 1 9 1/2 9 1/2 1/2 MKS 1/2* 9 X 5 1/2 Ts 2 X 2 X 0.250 2 2 1/2 1 1/4 1 1/2 9 1/2 3/4 1/2* 9 X 5 1/2 13 3 1 3 X 0.250 2 2 1/2 1 1/4 f,1/2 2 9 1/2 NE3 3 to 1/2 10 1/2 1/2 isa 3/4" 9 X 5

  • Ts 3 X 3 X 0.250 2 2 1/2 1 1/2 + 1/2 10 1/2 3/4 NKB 3/4" p K 5
  • TS 3 X 3 X 0.290 2 2 1/2 1 1/2 + 1/2 4 10 1/2 5 12 12 3/4 NEB 1/2* 9 K 5 1/2 Ts 3 X 3 X 0.250 2 2 1/2 1 3/4 1 1 6 12 12 3/4 utB 3/4" 9 X 5
  • Ts 4 X 4 X 0.250 2' 2 1/2 2+1 7 12 12 1 les 3/4= 3 X 5
  • Ts 4 X 4 X 0.250 2 2 1/2 211 8 15 15 1 NES 3/4" 9 I ':
  • ft 4 I 4 X 0.250 2 2 1/2 21 1 9 15 15 1 uKa 1" p I 7 Ts 6 X 4 X 0.375 2 2 1/2 2 1/4 1 1 to 15 15 1 1/4 utB 3/4" 9 X $
  • Ts 6 X & I 0.375 2 2 1/2 21 1 11 15 15 1 1/4 NEB 1*317 Ts 6 I 6 X 0.375 2 2 1/2 2 1/4 1 1 12 9 1/2 9 1/2 1/7 usE3 1/2" p X 3 1/4 T5 2 X 2 X 0.250 2 2 1/2 1 1/4 1 1/2 13 9 1/2 91/2 3/4 usEs 1/2" 9 X 3 1/4 Ts 3 I 3 X 0.250 2 2 1/2 1 1/4 1 /2 1

o O 14 12 12 3/4 usES 1/2* O I 3 1/4 Ts 3 X 3 X 0.250 2 2 1/2 1 3/4 1 1 15 15 1 usta la p X 6 1/2 Ts 6 X 6 I 0.375 2 2 1/2 2 1/4 1 1 i 15

                                                                                                                                                                                           )

16 15 15 1 1/4 usus 1= y X 6 1/2 Ts 6 X e X 0.315 2 2 1/' 2 1/4 1 1

  • MAXIMUM EMBEDtGNT SHALL NOT EXCEED 71N
                                                                                                                     ** TOLERANCE: + 1/2, -0

21M.5.02 CND Revisten 2 Page 190 of 238 O ATTACl! MENT 8.B (CONT) STANDARD BASE P1 ATE ALIDWABLE$ TABLE 2 BASE PIATE ALIDWABLES, SPRING CONSTANTS AND PRYING FACTORS SAst PtflN8 ALLOW 44Lil (ElPS, IN*EIP) FACToa PLATE SIlf{Will(LS/IN.4tH'Lu/AAD} 6 "PE P.g F ye 'ge "e , "ye "se Egga 10 E ,, a 10 r ,y a 10 o g e, 1 F.50 T.50 3.71 13.0 13.0 51.2 2.25 3.3M 3.368 2.60 2.87 2 F.50 7.50 4.M 17.7 17.7 $1.2 6.416 12.45 12.45 2.16 2.11 3 12.82 12.80 7.49 22.6 22.6 91.5 1.60 3.834 3.838 2.02 1.91 6 12.M 12.M 8.70 49.9 49.9 91.T 2.49 8.242 8.242 1.90 1.37 5 7.M F.M 4.15 18.9 18.9 63.3 3.MT 11.75 11.73 2.32 2.37 4 12.67 12.67 8.14 M.1 M.1 99.8 2.33 10.N 10.29 2.02 1.32 T II.63 12.63 8.72 M.4 M.6 99.4 2.933 14.TT 14.TT 1.N 1.11 8 13.M 13.M 9.44 78.3 78.3 135.5 2.49 1T.75 17.75 1.76 1.27 9 21.N 21 N 12.63 92.4 92.4 203.6 5.974 37. 3 37.M 1.M 1.49 10 13.M 13.M 9.M 92.5 92.5 135.5 3.231 27.M 27.M 1.M 1.07 11 21.20 21.N 13.19 187.7 107.7 203.6 7.422 51.57 51.57 1.78 1.28 12 8.M 8.M 4.55 16.5 16.5 57.2 1,68 2.962 2.M2 2.19 2.34 13 4.N 4.N 4.46 U.1 23.1 $7.2 3.295 8.576 4.57' 2.cs 1.67 ( 14 8.M 8.M 4.55 M.6 M.6 79.8 2.4% 9.364 9.364 2.19 1.88 15 21.72 21.72 18.21 123.5 123.4 208.6 5.796 37.N 37.N 1.92 1.M l 16 21.72 21.75 19.M 143.8 143.8 208.6 7.422 51.57 51.57 1.M 1.43 l i NOTES:

1. FOR SIMULTANEOUS 14 ADS THE FOLIDWING INTERACTION FORNUIA SHALL BE SATISFIED.

Fx Fv F Mx- Mz Fx i t F y, t Fg,e + Mg, + M My t. ya t i z,. 4 l N*, MIAND M* ARE MOMENTS IN VHERE IN KIF 5NF , *FAND BASE ,F*FIATE.ARE FORCES IN KIPS, lg

l.-.-_--.- - -. _ _ . -

                                                                                                                                                                                                      .I t

i 2IN.$.02.CND s Revision 2 1 Page 191 of 236 4 ATTACHMENT 8.B (CONT) l' i' STANDARD BASE PLATE ALLOWABLES 4 TABLE 2 BASE P1 ATE AL1hWABLES, SPRING CONSTANTS AND PRYING FACTORS .i l 2. TO CALCULATE BOLT TENSION USE FOLIhWING FORMULA: 1 i Fz Mx- My T= Xa s+E Xt s, ,' 4 X at + E

di - MINIMUM BOLT -TO BOLT DISTANCE A14NG X. AXIS '

I l ds - MINIMUM BOLT TO BOLT DISTANCE A14NG Y. AXIS i i 3. AL14WANCES AND MONENTS ON THE BASE PLATE'SHALL BE FOR SSE IAAD COMBINATION AND CALCULATED AT THE C.G, OF THE ATTACHMENT. ) 4 4 4. CAPACITIES SHOWN ON TAPLE 2 DO NOT INCLUDE SELF. WEIGHT OF THE BASE P I STANDARD BASEPIATE ALIDWABLE DATA TAKEN FROM SAG.CP2$, ATTACHMENT CC. j- 5. , 1 i iO - l i 1 4 d k-t !' a I i i 4 i l-5 4 e

O .

d 5 l

  .a
             ,---4-..
                              ,,-,-._,-..,._.-,,e-.                     .   ,,.m..   .    .,. , , _ . , , , , . . . ,,r._~,.e   s         .. _ __ . , . . . , , . . _ , ,,,,,,.._w,w.....     .m. ; ,,

2IMa$ 02*cND Revision 2 Page 192 of 238 O ATTACHMENT 8.C SKELETON FOR BASEPIATE ANALYSIS NOTE: Attachtnent 8.C skeleton taken frors DDD*CS*111, Attachment 8.E. 8 PLEAM 058 8185644=*.SKLe As tug gggggion pas gAgt PLAf t ANALT$ll 8 T FILE NO. ISK ID DATE S CPss1 TITtfrit comoulT & JuncT10NSUPPORT8. 8 SAltPLATE FonN Co 5648 STATIC RUN STRt2L 'BASEPL' 'COMANCMt PEAK 81 .' TTPE SPACE FRAfE UNITS INCNf3 Ot0Ritt KlPS ALPMANUMERIC IDENTIFitt TREATMENT IT CMARACitt CG4PAtl30W G410 PolWT laJLTIPLitRS X 10000 J 100 K 1 SAltPLAff cal 0 LINE DEFINITION I Lines 1 TO 9 X J Lines 1 TO 4 T K Llut5 1 10 9 2_ te S BASEPLAft SAtt GENERAfl0N TTPE 'Sta2' Polt90N 0.3 TulCsustSS ~* I 29000 t 70VuDAfl0N 3440

!                              GRID Lllets i 1 TO 9 J1 K 1 TO 9' 4

to 0F SAM GlutRAfloll S BAMPLAff DOLT P90Pttfitt KFX KFY KF2

  • Petitulloll 0.0 ALLcnastT'UIAL -sNEAR otA 1 AT C00A0!NAft X 2~

2 AT C00E0thAft X *""*" 2 ' / 3 AT C00ncillAft X """" Z I 4 AT C00R0illATE X~ te OF 90LT PtWERTIH" Z ~*"~""" "" s BASEPLATE GUS Giu OWft 1 E 29000 Pol 0.3 TYPt 'sta2e Tul Galt LitJI I 2 TO 4 J 1 10 3 K 5 0410 Lilst i 6 TO 4 J 1 TO 3 K 5 Gal 0 LINE I5 J 1 TO 3 K 2 TO 4 onl0 Llat i5 J 1 10 3 K 610 8 te S 848tPLAft ATT etu OWtt 2 1 29000 Pol 0.3 TYPt '8962' T u l _,,,,,, GRID Lilst i 4 TO 6 J 1 TO 4 K4 GRID Llut i4 J 1 TO 4 K 4 TO 4 Galt LINE I & TO 4 J 1 TO 4 K6 0810 LINE I6 J 1 TO 4 K 4 TO 4 te 8 8 UAE FOLLOWIIIS CAP lF LOA $$ ARE NOT $1VEN AT STRUCTURAL POINT BAMPLAft CAP WB OSt & TYPt '8982e TNI 2.0 t 0.1 Pol .3 BRID Ll4 I 4 TO 6 J2 K 4 TO 4 IW RAESPLAft CAP WII Ovte 5 TYPt 'esat' TNI 2.0 E 29000000 Pol .3 GRID LIN I 4 TO 6 J & K 4 TO 6 IIS S LDABIIIS 1001 'DL*00t' BASEPLAft LOADS ORID POINT I J K FOR X T K le0M X

  • S MID PolNT I"~ J ~ K FOR X Y Z IIDH X~
  • S Y I TENS TO GIII POIIT* I ~~"J K S GRID P0lti l*~""~"J ~""~K FOR X Y Z 101 X~~
  • 8 Y"  ! IGNS TO GIII POIIT~ l ~~~J K
                              $ GRIO POINT I         J   """E            FOR X          Y        Z      101 X ~
  • S T~ I" K te OF SASEPLAffT0AR~ TDs8 TO GIII POIII" I ~~J 3 S l \ LQAellee 2001 'OL*Sgt'

! / BASEPLAft 40404 1 i l

                                                                                                                                 ,    . . . _ . . . _ . . . . u _

l i l I 21H 5.02.CND i Revision 2 { Page 193 Of 238 i iO

ATTACRMENT 8.C (CONT) i

'I l 0410 PCluf i J K FOR X Y K 101 I

  • 8 GAID Polgt i*"~ J K FOR X Y Z MGM M ~~"*
  • 8 T I~~ TEIN: To ORT 5 P0Tir I '"*J K s Galo Poluf I"~"~~J "" K Fon Y non x """" -

3 Y 7 fllut 10 GIII /0 TIT

  • 1 """J K s GRID PolWT I"""~J ~~~K FOR X Y  ! MCM N ""*
  • I $ T I IIINS TO CIT 5 POIII' 1 "~~J K END OF BAltPLAYTT045T" S

BAltPLAff PARAMEfth$ DIRECflou 0F NORMAL +Y

;                                                                     INitRIEDI Aft MINT OFF j~

COWytRGtWCE TOLitANCE 4 PERCENT essett OF CYCLE 15 OUTPUT FORMAT SAptARY LEVEL 3 3 4 SleKAA fatAflEh! 6f G ARC FACTORS FOR INT EOU ARI ,,,,,,,,,SNE , 1 3 CCDeGuf ' PREP 078 DAffi '

  1. Costuf 8 '

4 CGeeuf *e , 8 CaeENT 'CIIG BT DATE: ' te OF BAttPLATE PAluwuTsus t S $ Miuf GAttPLAft ALL DATA PLOT MYlCE Mluita WID 12 Liu 12 PLOT F0anAT ObitWTAfl0N Y UP PLOT PLANE I Et ,,,,,, t PLOT PLAME I Et PLof FORMAT BASEPUTE l PLof PLAmt Y to 0.0 d BASEPLAft ANALYSES WiflICUT Ditf0Rfl0NS WITN GA088 Itt0ULTS 4 GROUP 'MLeseP8 MFlulflou l ELinguis ALL ACTivt RAttPtAft Bast tuD Of escup DeFistflou e 1 S FOLLOWitt PIMITS DIFFERENT 90LT ALLOW 44 Lit FOR Get As 884 LQ40 LitT 1001 LIST SAGEPLAft ALL RR$ULTS i Litf DlIPLACEIENTS ALL LIST MIIICIPAL STRESSES 'MLENBP' CnAm0ES I KFI + BASEPLAft BOLT PROPERTitt KFI KFY , PREftatlS 0.0 ALLOWARTLilAL ssEAR DIA i 1 M it Poluf ! J1K 2 M ID P0luf I"~" J 1 K""" I i 3 MID POINT l ~"" J 1 K~"" ! A5M S M IS Polsf ID POINT I"T.,,,J 1 K"~",J 1*T _" S 6 M IS POINT I s3 OP soLT peoPEnts J1K-LOAS LIST 3001 LIST 840EPLAft ALL RESATS i LIST DISPLACNelift ALL I LIST M!sCIPAL Stattats 'MLEseP8 . Flul011 usettANS O

4 2IHa5.02*CND Revision 2 Page 194 of 238 i ATTACHMENT 8.D i SKELETON FOR RESPONSE SPECTRUM ANALYSIS OF CONDUIT SYSTEMS INCLUDING THERMAL EFFECTS 4 I

            !!OTE:      Attachment 8.D skeleton taken from DBD.CS*111, Attachment 8.F.                                                                                                                                               ,

l t** SKILITC4 a'It00KEL.DT' FOR Rau W/TutRIEL UtluG W17180 tuVtLC PfD eSPfCT

  • f STR@ L 'lto '
                                                               '190 EVALUAflos BT ST8Ttu R.S.N W/Tallu%L 190
                                $**** 190 WD :                                                              SEETCu NO. 4 LOCAfton I                                           he CPsts
  • Uu W SLDG .

i l**** paunER : ~ d l**** luPUT fitt MAM DISC ft I S**** PetPARED OT FILE CRI M S TYPE SPAct FRAfE ALPNAuWittic IM uftfitt TetAfutuf BT CNAAACTft CCIPAtl310s i Unif t lucuts,LBS,MOREts,f Aheluutif,Lell,$tC058  ; t*"*= =- ---- ----- -- =*** l i 1"* Tut STATEIEuf 8 START SIGN

                                                       =""*****lut              ulTN Att       'S' Elf utt CLSO4mfl OR OPfl0 MAL* * " " " = : " = " ----------
                                 $* '8TueL' CopeWsts.                                                                                                                                        ***

I t*** IF fut USER utE06 TO Utt Auf OPflotAL C0181A198 , fut '$' Slaut *** l S

  • 15 Tut ist COL. OF Ctseendet SuGJLD at REIIOWED L------ --=L-- ==

9==--=L ---==----="L ---- -- -- i

                                 $*                                      WEL GR(utTtf luPUT                                                                                                  '"

i 8* Tut GLlaAL CCORDluAf t8 smLa 84 SET UP AS FOLLOWIN u5 : I+W VRT t*

  • X Fu , & 98 tulLMues Y Z
S s ** (t)) IIIfu A8 , 28lu te , Ce d W eulLDlues Y I 2 g
.:: ..::... : - -- ____:. ._- ^: :: :_ .. .:...__- . ... __ _ .. ...

i $*** IF NGCttEART, UIEn 844YOR USE CTLimelC Coom

  • R TutTA & N spa alCAL C00m
  • R _P1 a f2

' 8*** _ __________ _ _______ _ _ I $*** Sp!FT COOmluAT88 luPUT a

                                  $* TIul 94;FT C00RDluAfte Amt terles wlTu aggPgCT TO fut OLOBAL CODeluAftt" l* ST SulFTIM TIE C00mluAftt TRAflOLAf tm4LLY X , Y & I AfA ROTATIONALLY "

TIE IEW C00mlueitt IE Joluf CDmillAfts CAu M ** **

                                  $
  • R1 ,82 4 83 As futu $0 TIE tulFT Co e luAfts S*** M Plum WITN RESPtCT
  • ,........................ ___ .:. u . . : 3 .. .
                                                                                                                                                                    .______ . .u p 9"*&_ _ _ __ -__ . _ ___. - _ _ :                               _

9"* Tut 8 TART OF CERSUIT Llut suBEL equEft1 luPUT - "---- - ----------- z { - CtaltTAuT8 t 29.0E*06 ALL ; 4 11.158*06 ALL 3 POISScu 0.3 ALL 3 FTLD 2S00C. ALL l Me RL r l CTE ALL

  • E Y Z S$5tFT C00R 978T 101 ftA I

s sof ai at a3 l SIE9s Cole 9111FT OT 101 luc S TO I lac Y lut I l SJ0luf COct selFT 191 l 8 I T I

  • i X Y Z l 94mlFT COLE SYST itt itA R3

! t sof at R2

  • SW te CDs SulFT SY tot lut lut 4

8 TO I lut T. I SJ0luf tote tulFT 100 t I T- I IE W CEu m lueitt luc , l TO X fut Y lut Z

  • TO I lut Y luc 1 lut I luc 1 IIIC I llIC
TO tuC TO E luc Y - IIIC I I lut T lac Z lac 1 TO tuC TO I luc Y - leC I 4

X luc Y llIC Z luc i TO TO X llIC Y luc I lut IIIC I IIIC TO I luc T luc TO M lut Y IIIC I I tuC T lac I luc > TO

  • ~J0luf C00mluAft8
                                          ^

4 t i l i _ . _ . . -..,...m.. _ - _ , - . . . , -m,..,.-  %,, y , . ~ w . ....m. . . _ _ - .

o 21H 5.02 CND l Revision 2 l Page 195 of 238 i l ATTACllHE!U 8.D-(CONT) 1 l ' ~$ * * ~ +++ = =

  • s

' sea~~~~++=*==****+*===**+~~t ins FOLLwloo MsN Cooncluf ts cxpoianos ufoscot use0 F l un acet s X a s** s..mmmmwuiCN aat..su.if . tt.o Fe.o.n o.t.ut.a m.o.o.ts.o.f.o.tosAL..

                                                                                                                          . m.       m               .           Coon.c..lu..ta.s.m1.Y m n.. m ...                  a:

I 5 M SM COOR 1 8 SAME A8 $NIFT SY 201 TRANS

  • l
                                                $X                              Y                         Z j                                                $                                   $AME As                                    $nlFT SY 202 TRAus
  • i tX Y Z

! 8 SAME Al $NIFT IT 203 TRANs - l $X Y Z 00lVIDE LINE s TO 1 70 1 70 i f0 s = ++ = ****d = ~ ~~~*=+=*****=*=*am*****==* i 70 i MtSN lhCIDtNCtl ' / / l / / l'

                                                                    /                  /
                                                                    /                 /

l. Meett imCIDeuCES , 9* Utte tuoute Uet $Palme Mnetts 70 SUPP0Af TNE McDELS Pat tepl sums *** SUPPORT JOINT

  • 1

' $ JOINT atLEASE 8 FOR MUM ! $ CFM LPY EFI Det Off ENZ i SIWeER RELEASE j S STA POR X Y Z Mt31 X Y I EmFMMYZMOMMTI I IW eER Ptepttfitt ' TASLE 8AltCPipge e e gu n _____ ____u;n__;_u n u;_______________________x n___________________ l s* Tiet FoLL wles IW e P90PetTIES CAN BE UES TO luPUT SPRI M MEMBER STlFFutts. **** I t * ------- ------ ------- --- "----- IW eER PetFSRftl8 STIFFutt$ MTRIX + DIAGCHAL OK Of pt RX BY RZ

                                                 $                                      Sl!FFutS8 MAftlX
  • 301A40BAL OX Of Dt RX RY R2 S If!FPuttS MAftlX
  • 10!A80ML M Of 01 RX RT kt i S STlFFIESS IIATRIX +

l 90lAalRIAL M Of DE RX Rf R2 j 8 STIFFNEtt IIATRIX

  • i telAdmAL M DT 02 RX Rf RZ S

' 8 ., 98

  • IMERTIA 0F J01uf 8 CCIst4138 Att USS TO IupWT CONCENT4ATED WIBNT$ **

! luGRTIA 0F J0luft LubrtD llERTIA 0F J0lETS FACTOR 1 A00 LlutAR X Y Z LillEAR X Y Z LINEAR X f I LIIIEAR X Y Z LigEAA X Y Z PelNT SfauCftsit DATA J PtINT OTuAMIC JOINT IIst4TIA t STEEL YAKE OFF ITEMl28 PLOT OtVICE PalNTER WI0fN 10 LEle8TN to l

f I (

i i a

                                                        ,--,_.----e             _                    ,      , _<                                                 ,w       -
                                                                                                                                                                              .6-+ - . , . -       f-,        . ,,4, ,--

4 21M 5.02 CND i Revision 2

!  '                                                                                                                                                               Page 196 of 238 1

1 l ATTACHMENT 8.D.(CON':) j i 1 l 1 4 f PLOT FORMAT TOLIRANCE $. PLOT Pe0JECTION MY 2 PLOT PROJECTION XI PLOT PROJECTION YZ

9"*ststStetttttt9998888888888888888888888839888888899999998888tStttttttttt **"*""m "****"**
  • 3*** USER f uSEAT IUPPOR T 88WEL F ILES utREAFTER ** * *
                              $* EW OF SUPPORT 8e(DEL F ILE$ 1uPUT ****=--- =**********""$$$$*
                              $ * $$$$$38988888888888888888888188888888888888888888888398888888888888

- GaCMP 'ATM' DEFlulflos I utWER ALL ACTIVE EW I 8*** DEAD LOAD CAtt WITN + Y. AXIt tu f ut UPWAAD VEETICAL DitECTlou "* j LOADI N 'DT* ' DEAD LOAD lu GLotAL

  • Y*AEls CIRECTIOu'
  • DEAD LOAD CWIPONEuf CLO Y 1.0 ST J0luf t 3 LOAD 'TO' ' uORMAL OPERATING TutRNAL LOA 08 tm REPLACE DTT la fut FOLLOWing CostAs WITu Tilt TEWERATURE DIFFEREuflAL I $*** FOR TEWORATURE DIFFERENTIAL SEE SAS.CP101 CPES IgeleEn TEy gaATURE LOAD FRA LA 0.0 Lt 1.0 AXIAL DTT
                               'lfu' SLQ40 ETA'          f ACCIDENTAL TutRRAL LO408 34 4E8 TIMPERAfunt Loto FRA LA 0.0 Lt 1.0 AX1AL DTT

! S'4TN' ) LOAD List 'DY' 'TO' SLOAD List ' Dye eTO' 'TAs ? ! STIFFutts ANALTtle REDUCED SAW j QUTPUT ST J0luf ;0UTPUT ST tesett i WTPUT MClelAL 3 i LIST REACTimet ALL 4 OUTPUT MCIIIAL S

LIST DitPLACBEuf ALL-

} LIST PEACES ALL ' 1 $5ECT10m FS ut 2 0.0 1.0 ' SList SECTigu STREtatt ALL ACTIVE leWER Scannet i SlutRTIA 0F J0luft FACT m 1 A00 S LlutAs a Y Z

                               $                                                             LluRAR X                    1                                  I 8                                                             LlutAR K                    Y                                   Z-i                                                                                                                                                             Z
                               $                                                             LluRAR X                    Y GASelflWIS l                               Spelpf 9?utfilt J0lut lutRTIA

! eBOUP '8881' MPlulflDil JOI ALL ACTivt - DTHAnlC MSN STATIC ! JOI MME OF FREWWI

                                '4NT ' If,TT,IT EIS 15178 CTCLES ASID SLE FM DTRAfilCS IllBAL AAALYllt lehX FRES 33.0

' LIST STuAIIIC ElWINALISS Lit? DTRAfilt ElWINECTOR$ ' LIST DTRAltit ugul PART FACTORS

  • 8"* TM USA 18A58 TIIE tuGCE SPECTMal Leet leaEAFTW, IEE 1311 7 1 ***

R* Colgulf SPAll VERIFICAflou 80tK WD. SPAll*100E FOR DETAILS ** 3"..*..DESCRIPfles,0F USING TIIE tuoCE_tPECTRLSI_LompluB_tnTAAAAE FILES._m APLE: "* 8*" EXTRACT LOAelus FILES Feet DATARASE Utille RAsWS FM 9* CBE + FILE IIAfE =SLDS 1.D.*tL. l.D.*0DI M *.% L 80 6 *

  • 3
  • 15 A48tlLIARY IUILDlut-
                                ** Set FILE leafE atLDS 1.D.+tL. l.D.+4311 'A852831 PE EL 52' 6                                                                        "**

3 " ' tu AultiLIAaf guttalus

                                                                                                                                                ""*'*'W*'w**_-w          __e---w-ep-av, y 7-..__     ,,,      , ,,,

i 4 21M.5.02.cND Revision 2 Page 197 of 238 ATTACHMENT 8.D-(CONT) i

                                                                                                        .m                                  . = : = _ . . = m       m.
s. .. a - _ _ _ _ _ x . a .

Utti IDENTIFitt i s** to tuvtLOP sm sullotus 1.0. Tut sPtCTRA

                                                                                          & EL.1.0.         ATsLAncs IW int        TWO stfont     tullolhe    can ELEVAf toute& s3si

' s m L0Aolmolo l sm can+ s3m s*** Dan s3m s*****= - "- -- -- - - - "*********E T RAN TW ELEV Af l0Nt , l* IF SPECTRA TO DE INVILOPt0 Att FOR NOR ! otM + $388) i { g."...................................................................... S* UttR Ntt0S TO IDENTIFT Moat TNAN TWO MTS OF ( < t** Tiet FOLLOWike C setAss Att PREPAA80 FOR ENVELOPluG SPECTRA l $* AT TWO BUILDlWG ELEVAfl0NS. f t* IF THE STRUCTURAL SflTEM ll ANCMORet AT MORE TMAN TWO SUILDING

  • S* ELEVATIONS, Usta Net 08 TO MODIFT TMt.CGetAmt BT UllmG SIMILAR BUT i $*** EXPAetD N *l.

g................................................................... I j EWVELOPE SHOCK SPECT FILit 0E 007 FACT 1.0 DLaqP

                                                                   $* INPUT DLDS ID+tL1 10 & BLD6 ID+tL210 IN TME POLLallte SLAmKS

') 86** 'EWVQBEVT' FacM COW' FILES 'Aa8520VT' ' Ae8730VT' e.g.I FRGl CGWP FILES '

                                                                   'ENV0BEVT                                OVTe e                    Off' i                                                                                                            ONS' ',                   cut 8
                                                                   'tWV0BluS8 feet CCIEP FILES '

OEve e ogge !' 'tWVQatEW' FRGI CGE' FILit *

                                                                   'ENV50tVT' 7031 CGE' FILgg e              SVT8 '                   SVT' 4
                                                                   'ENYSatuS' FRWI CGE' FILgg a              gage e                   gage
  • 'tWYS9ftW' PAGI CGW' FILgg e ggye e ggwe

! S* IWWELOPED SPECTRA LOA 0$WilePUT TMell POLLOWills Lee CAtts * ! DAfF 0.02 100 Sm0CK SPECTRUM LOAD 101 'T vtaf one IWWELOPE' ? SPECittat TRANS Y 1.0 FILE 'ENWOBEVT' 00T i to 0F DYIIA LQ40 d $ NOCK GPECTast LOAD 102 'Z*NS Ost EWYttopge i SPECTRLal TRANS I 1.0 FILg ogNV0 Bent

  • DDT 4 E G OF OYIIA LOAD

! Sal 0CK 9PECTelst LOAD 103 'M tW Int SWVELet' f SPECTIU8 TRANS X 1.0 FILE 'EsWOBetW' 00T , END OF DYuA LOAS t SuoCK 9PECintsi Lone 105 'I'WB OBE ENWOLgpge ! SPECTatse TRAmt I 1.0 FILE 'ENV0stus' DDT - I le OF DYuA LOAD i suoCK sPECTRLSE LOAS 106 sg.tW Get tuYELopt' l SPECTRLal TRAnt I 1.0 FILS 'BuvoeteW' 00T t o 0F DTRA LOAS

DAss' O.03 100 i suotz SPECTast LOAD 301 'T veti est tuVtLOPE' l SPECteLat trams Y 1.0 FILE *EevestVT' 00T

< te OF DYEA LOAS e sn0CK SPECTaal LOAD 303 et*NG SSE INVOLWE' I SPECTESI Teams a 1.0 FILE 'ENVestme' 00T j to 0F OfaA LOAD i SmCE WOCTESI L0ne 385 'X tW su tuveLtre' j SPECTSSI 70AES X 1.0 FILE 'ENv30tEW' 00T i em 0F 9?th LGAS mens spOCTast LOAD 305 'I es set tuYELopt' SPECTasl TRAss I 1.0 FILE 'Egysseus' 00T l E S OF DTRA LOAS j . SNGCK WECTR51 LOIS 306 og.gg get EWWELort' i SPECTaal TRAss I 1.0 FILE 'Buvl8EEW' DDT t o 0F DfuA LOAS

LOAS LitT ALL missles n400 cosa TO BE APP title P2 33.0 DTmA Resp AAA WITN atA i

s S DTRAMIC AllALYS18 8 f I f. t e

i 21M.5.02.CND l Revision 2 4 Page 198 Of 238 i l i ATTACHMDR 8.D (Corn) i I t i Psfup0 STAT lC tie 0CK LOAD 1101 TEN 101

>            Pstypo $ TAT lC $ NOCK LOAD 1102 TEN 102 1             PSEWO $TATIC $ NOCK LOAD 1103 TEN 103 PSEWO $TAfic SMOCK LOAD 1105 flu 105

{ PSEWO STAflC $ NOCK LOAD 1106 TEN 106 PSEWO $TATIC SNOCK LQ4D 2201 TEN 201 PSEt20 STATIC SIIOCK LQAD 2202 ftN 202 P$f 2 0 $TATIC $ MOCK LOAD 2203 ifN 203 PSEWO STATIC $ NOCK LOAD 2205 fin 205 P$tuDO $ TAT lC $ NOCK LOAD 22 % TEN 206 5 COMBINE ALL SMOCK LOADINGS l 8 LOAD COMB '0BETZxe asas 1101 1102 1103 l LOAD COMB '0BETx2' ases 1101 1105 1106 ) 1 ! LOAD Com 'stETZX' sees 2201 2202 2203 LOAD COMB 'stEYxZ' ases 2201 2205 2206 i i 3 D4dr 0.02 100 j OEutRATE REsuLTS Fat LoneltG 1101 1102 1103 800EYZX' 4 OEntaATE REsuLTs FOR LOAD!me 1101 1105 1106 '00ET%18 S.............'...........****......... ' DAdr 0.03 100 < OEISAATE RESULTS FOR LonetM 2201 2202 2203 'teEY2X' OEufRATE RE5JL18 FOR LOA 0les 2201 2205 2206 S ...............................................'sstTX2' ....... , LAllTS DimEES l GUTPUT IT JolNT ; OUTPUT BY IWWERS l 5 QBE RESULTS ' LOAS Liti '00EY2X' '0BETXZ' OUTPUT MCIIIAL 1 ' LIST REACTION ALL OUTPUT M C!stAL 3 l LitT DitP ALL-LIST FORCES ALL I SSECTION FR us 2 0.0 1.0 i R itT SECTION STRESSEE ALL ACTIVE IW WERS Unif RAelAmt ! SPECIAL unif CONVEttt0F FACTOR LEuGTN 3 E .4 LIST ACCEL ALL Uulf lucmES,MMESS [ 8 SW AESILTS l LOAS LIST '9EET2Xe egggyxte OUTPUT M CINAL 1 ' LIST REACTies ALL QUTPUT M CINAL 3

LIST DISP R L
LIST PORCES RL asBCTim Pt ut 2 0.0 1.0 I RIST WCTIOR STEESSES ALL ACTIVE IWGER LallT RAtlAES SPECIAL Latif CouYEttim FACTOR L8meTN 3E.4
LIST tsCCEL ALL uulf INC E S,00 m AES

, s...................................................................... ' 8 .. DEAD LOAS +0R. OBE AaB DEAS LOAD +0E. $$E COSinATIONS ........... i LOA 8 CSS 'D*00Ee e0849 LDAS +0BE' CIBS 'DY' 1.0 80EEY2Xe 1.0 LuAs CB S 'D*0gge e0EAS LOAS .0 bee ggge eDY' 1.0 '00EY U ' .1.0 i LOAD CGIB 'D*0BA' 'DEAS LOAS +00EA' CEBS ' Dye 1.0 'CSEYXI' .1.0 LOAS CSS 'D.0BA' '9EAS LOAS *00EAe CGS '978 1.0 '00EY1G' 1.0 LOAD CSS 'D+0SE' ' MAS LOAS +98E' CG S '97' 1.0 't W Y23e 1.0 , LOAS CG S 'D*SSE8 'DEAS LOAD . gage rxyg aDY' 1.0 'SSEYZX' .1.0 LOAD CGS 'lHSSAs eDEAD LOAS +teEA' CCIS 'DY' 1.0 'sstYXIe 1.0 LQte CGS 'D*SSA' '0EAD LOAD .38EA' COBE 'DY8 1.0 oggggyge .1.0 O

                         -. --w  -.--*r--,--.-.-_.w.,,,-m                ._mv   -,- ---      , , , , .., .~   .-  --,.,,me,,.,-,,-.-----.-.u
                                                                                                                                                   ..,+,,m._-.
i

{ - i i 21H+5.02*CND Revision 2 Page 199 of 238 i I ATTACHMENT 8.D (CONT) l 1 ' l a 8 1 8*" DEAD LOAD +monsul fptneat +ce. Det OR +0Ra BSE COMelNAfibut ****** 1 LOAD CDEs 'D+T0+00E' 'DL+womet4L f*00EI COMs '0T' 1.0 'TO' 1.0 '0NTZX' 1.0 - } LOAD C0ps 'D+TO Ogge 'DL+tscastAL f*0ege COBW '078 1.0 'TO' 1.0 '00ETZX' *1.0 l LOAD Cm W 'D+T0*08A' 'DL+NORIEL T+<eEA' f *0eEA' Cole '0y e1,0 1.0 syos

                                                                                                          'TO' 1.0 1,0'00EYXI' 0egygge .1.0 3

I LOAD COMs 'D+T0 0BA' 'DL+teoman4L COM 'Oye 1.0 i LOAD COMO 'b f0+8tE' 'DL+esonstAL T+8st' CO2 '0ye 1,0 stoe 1.0 'SSETEX) 1.0 LOAD Cee 'D+TO.gsgo 'DL+esonstAL T.ggg e CGS 'OT' 1.0 'TO' 1.0 'SSETZX' *1.0 il LOAD Cele 'D*T0+SSA8 80L+tsonstAL T+ttEAe COM ' Dye 1.0 8T0' 1.0 'SSETII' 1.0 4 LOAD Cope? 'Dd O*8SA' 'DL+as0RI44L f *t9EAe COM 'Oye 1.0 'T0' 1.0 88tETXZ' *1.0 1

;    S"* DEAD SLOAD   COIS ' pLOnbs.CCIDENTAL TA+00E' '0L+ ACCID. f THElunt             *00E' CGS+0R*       'OT' 1.0    00E
                                                                                                         'T A'.08 1.0 +0R* 'DeEYZx $$E           CoselhAfl0NS ""e"1.0 l    SLOAD Cope 'HTA*0gge eDL+ ACCID. f *00E' COBS 'OT' 1.0 'TA' 1.0 800ETZX' *1.0 i     S0040 CG S 'O+TA+0BA' 'DL+ACCip. T+0eEA' C0pm 'DT' 1.0 erge 1.0 'DeEYXZ' i.0 SLOAD COMs 'H TA OSA' 'DL* ACCID. f *00EA' CGS 'OT' 1.0 'TA' 1.0 80eEYXZe .1.0 1     SLOAD C0 4 *pTA+88E'               'DL+AcclD. T*8tE' CSS 'DT' 1.0 'TA' 1.0 'lSETZX' 1.0 SLO 40 Cape 'H TA*SSE'             'DL+ ACCID. T*Sst' Co e '078 1.0 'TA8 1.0 '8SETZX6 +1.0

.J SLQ40 CG e 'b fA+58A' 'DL+ ACCID. f *SSEA8 COIS 'DY' 1.0 'TA' 1.0 '$sEYXZ' 1.0

,    SLQA0 Cope 'D*TA*SSA' 'DL+ ACCID. f*S$5A' COMB 'OT' 1.0 'TA' 1.0 '88EYXZ8 *1.0 8

LOAD LIST '>ceE' 'D*0st' 'D+0BAe eD*0BA' *

                 'page               eD*SOE' 'H SSA' 'D'$$A' *
!'   $           'H T A*0gE '           't+TA*00E' 'H TA+00As eD+TA OSA*
  • 4 3 'D+TA+ tee' 'D+TA* Sat' 'D+TA+S8A' 'HTA*BSA8 +

1 'D+T> 00E' 'bf0 DeE' 'D+T0*0BAe opto.ceA' +

                 'H T0+00E8             'D+T0* 89E ' 'D+T0+SSA' 'HT0* 88A 8
,    CG elNE ALL 4

QUT M If Jotut QUT M M clet4L 1 i LIST REACTIONS ALL l LOAD LIST 'HOBE' 'D*0gge spagge eg.ogge } OUTM ST J0!'tf ICUTPUT OT MEMBER QUTPUT M Cile4L 3 LIST DitPLACSSNT ALL i LitT PORGS ALL ! SaECTION Pt es 2 0.0 1.0

SLIST SECTION STREtaES ALL ACTlW IWWER 1 LOAD LIST 'kSSE' 'D*SN ' 'D+tSA' '0*BSA' MPUT BY J0luf ;mlTPUT BY IWeER i QUTPUT M Cist4L 3 l LIST DISPLACS ENT ALL LitT PORCES ALL SSECTION PR Na 2 0.0 1.0 ,

KIST WCTl3 879805 8 ALL ACTl W 19 808 e LOAD LIST 'k T0+S E' 'D*TO-CBE' 'D+T0+0BA' 'b fD-CBA' t ' GUTPUT BT J0luf IIR#TPUT SY IWWER QUTPUT SEClithL 3 LIST 010PLhM ALL LIST PORCES ALL teECTlou Pt us 2 0.0 1.0 SLIST SECTIM $Tattett ALL ACTIW IWWER Lane LIST 'HT0*est' 'D*TO sage sbf0+00A' 'HT0*0BA'

;    CUTPUT BT J0lff TOUTPUT GT le egt G#TPUT BECIIIAL 3 LIST DiebtACW Wrf ALL i     LIST POR MS ALL SIECT10s Pt us 2                0.0 1.0 SLIST ISCTieu STattstt ALL ACTIM IWWER SLOA0 Liti 'D*TA+00E' 'D+TA*00E' 'H TA*00A' 'HTA CBA' SOUTPUT ST J0lWT ;QUTPUT BY IW eSt SGJTPUT DEClltAL 3 SLIST DitPLACS mit ALL SLitf PORCES ALL SeECTIOu fa us 2                0.0 1.0 t

e

                                        . _ . - - , . , - , , , , ,          , . _ . , _ ,     - ,_ ,-        m    ~ , . . _       -. , - . - . . - ~ - . _ . _ . . _             , _ . - ,

4 1 1 21H*5.02 CND Rovision 2 J Page 200 of 238 i i ATIACHMENT 8.D (CONT) i

                                            $Lltf SECfl0N Sittlett ALL ACilW ME8ett SLOS Liff 'Hf A+00E' 'HfA*$M' 'D+TA*BSA* 'HTA StA'

? tm;TPUT St J0luf ! OUTPUT B7 MEleER J SOLITPUT DECIMAL 3 SLitf Ol3PLACIIENT ALL i SLIST FORCES ALL i SM CTION FR 88 2 0.0 1.0 j SLitt SECTION STRESSES ALL ACflVE MEMett s 32....._ .____ ::__.......:..... . ::. .: _. :_:;; ......... ::.......___ , 9* CnDE CNECt!NG * , t* LY & LZ ARE UNDRACED LENGTNS FOR IUCKLiteG Aamlf IWest Y & 2 AXEB w 9

  • KY & KZ ARE EFFECityt LENGTN FACTORS FOR BUCKLil10 ABOUT Y & 2 AXtl
  • j $* DIY & CNZ ARE REDUCTION COEFFICIENTS FOR MetNS Ascui IWWER Y& I
  • i g2_::..::... .....:.....:.:....:2:_.....  :::.....:: :_.:..:.: -_....:_..

J CNAmeRs l 8*** Pe0PERflES FOR ELEstuft WifM TNRfADED BECTICH *"

IWest P90P TABLE 'CWPIPE' TYPt ' PIPE' 4

TASLE 'CW PIPI' ' ' i A00lfl0N8 i PRINT IWest MOPERfitt , i SECTION FR N8 2 0.0 1.0

                                           $*" *" **" " * *"* " "* * " " * * " "*" **" " " *= " " *** ** " " '
  • 4 PAAAfettes 800DE' 'Altge ALLI 'WR$10N' '69U1' ALL

!- 'f0R810N' 'Ytt' ALLI 'CO' 1.0 ALL j 'D*0BA8 ' oggp

                                            ' Asps e 1.0 1,3 POR   LOAopto.agge pga Los   0 *bCBE' 'D*00t'o.'D68
                                                                              'pt Dag' sp fpasAs 'p fo.0BA'
                                           'Aspe 1.6 POR LOAD 'k tSES 'D*SSE' 'b 80A' 'D*80A'
                                           'ASF' 1.6 POR LOAS 'HTessE' spf0 stE' 'eto+taA' 'HTO tea' l'A8Fe 1.6 PM LOAS 'H TA*W E8 'HTAM' 'bfMMA' 'HTA6'

! l'Asfa 1.7 POR LOAS 'k TA+SSE' 'b fA SSE' 8b fA+05A' 'H TA*SSAe l ' GIY ' 1.0 ALL ! 'GEI' 1.0 ALL ) 'FEIHK' O.6 ALL

                                           'FSteHN' O.40 ALL 3
                                           'FADt4K' O.4 ALL l                                           8 Fain 4X' O.6 ALL

) s

'rY' messe
                                           'g2'            samt l                                           'KT'            18153
'KZ' sWWE

! S

'LT' seeIn  ; 'L2' sWega l 'LT' IWWER  ; 'L2' IWWER
                                           'LYS            1935                        ; 'L2s          3g333
                                           'LT'            8See                        ; 'L2'          feeER                                                     ,

l 'Lys egga  ; eLZ8 IWes

                                           'LY'            IW W                        ; 'LZe          33 333

! ' lye 3g3g3 g *L3e 3333

                                           'LT'            seeER                       ; 'L18          IWes

' 'LT' IW W  ; 'LZe gegg S LGAD LIff 'D*(M 8 'D*W E' 'bCBA* 'B CSA' Caett CSE FOR ISI CEE ftACE 6 RESEf8115t PA!Lligt leeERS SCMCI CSE Pie IWI SEE TAACR 6 RESULT $ Ptti PAILlut pW WEtt CRAset PARAfeTERS

' Peens' O.9 ALL
                                           'Faseens' O.S'J ALL
                                           ' Fact 4M' O.9 ALL
                                           'FATnAK* 0.9 ALL A00lfleIS i

i f

_ . . - . _ _ _ . ~ _ . _ _ _ _ _ _ _ _ _ _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ __. _ _ _ _ _ _ . 4 21M.S.02.CND Revision 2 Page 201 of 238 i i i ATTACHMENT 8.D (CONT) i 1

  • I j

LOAD Lili 'kf>cag e opto.Get' 8D+f>cnA' 'D*f 0 0BA' -

<                                                             S                    'Hf A+0gg e optg.0gg e eMTA+0EA' 'D+f A ORAs                                                                               .

S 'Hf A+SSE' 'bf A.ggg a optA+ggAs spt A.ggAs . , i 'HSM8 'D*SM e op,ggAs eD* StA'

  • f i l j
                                                                                   'D+T0+ttE' 'bf0 BM' 'D+T0+SSA' 'HTO StA'
;                                                             C88tCE CIDE FOR #Eis                                                                      GEu TRACE 6 ht9ULTS FOR FAILi>S MuBEkt SCMECK CtBE FOR leni                                                                         QEN f TACE 6 RtgULf 8 FOR FAILING MEISitt FINISM NOIESSAGE l

i t i i J J l 1 6 T 4 t h I J l k i i 1 i 4 i 1 4 a

l 21M*5.02*CND

Revision 2 1 Page 202 of 238 4
!                                                                   ATTACHMENT 8.E                                                                              l SKELETON FOR RESPONSE SPECTRUM ANALYSIS OF CONDUIT SYSTEMS NOTE:      Attachment 8.E Skeleton taken from DBD*CS*111, Attachment 8.H.

'l

                             $** SKELEl0N *'ISOSEEL.DM' FOR RESP SPECT ANAL UtluG McDiflED ENVELOPED SPECT                           8
  • t tilnel ' ISO 8 ' ISO EVALUAf!DN BV SYSTEM R.S.A ISO S**** 180 No. : SKETCM 100. I l
$ * * *
  • CPSE S
  • UNIC SLDG t_ LOCAfl0N t  ;

S**** luPUT FILE NAME : DISK #: SANNER

                             $**** PtEPARED BY :                                             FILE CRE M i ffPE SPACE FRAME ALPNAaEAEERIC IDisflFIER TREATMEnf ST CNARACTER CopFARISION
                             '**lf S IleCNES LBS. DEGREES,FANREmist!T. LIM.SECfust
;                            s eeeeeeenek u u u u . u u u - . . n eeu . . = u u u . . . - . . . . . . . . . . . . . . . . - n eo***e
  • l S
  • TME STATEMEuft STARfluG WifM 't' $10N ARE ElfieER CopeENTS OR OPflouAL 1 $ * *$TRtet* CopeumDS.

S*** 17 THE USER letEDS TO USE ANY OPfitatAL Capeuaet , Tilt '88 Sleut *** S*** In fiel 1st COL. OF Copsues Sit 0ULD SE REleDVED -._ u a u.--. ..: =.... .............. eeee

                                                          .2.........-

, su.......a u.... *** j 3* Iem>EL GEOBEiRY INPUT 8" TieE CLosEL C00mlNATES Sl80ULD DE SET UP AS FOLLOWilse t

  • S*** VRT u*S FW J S*** (1) IN AS , Es , FN , & SG BUILDlIIGS Y Z X S * (11) la RS , C8 & SW IUILDildGS Y X 2 S~-""_""-"."."..--."u"==""..L------"-----"------....a____u guu: umu _.: .

uu ". ----.."****** u u.."_. u.... ueee m

,                             S*                                      SMIFT C00RDlieATES IIIPUT l                             S* Tiet SWIFT C00ADillATES ARE DEFluBB WITN RESPECT TO TNE OLtEAL COORDINATES **

' $

  • SY SNIFiluG TME C00ADlhATES TRA81SLAflotALLY X , Y & 2 AaB ROTAflDimiLY **

h S* R1, R2 & R3 As THEN , fisE MESN C00RDllsATES OR J0!af CODRDillATES ARE " S*"_DEFileED

                              ;;-                  Wlfil RESPECT
_:ee..._....._- .....::._TO Tlet  : SNIFT

___.__ C00RDIEATES Z

  • SSNIFT C00R SYIf 101 T2A X Y 8 ROT R1 R2 R3 SIESN C00R SN!FT IT 101

'i S TO X luc Y lisc I luc m35Tui CM SWIFT 111 S x Y S E C00R SYST M X Y Z *

                              $                             ROT                 R1                     R2             R3 SIESN C00R SWIFT BY 102 S          TO      M            lloc                       Y             luc          2            Ilec
                              $30 TNT C E SalFY ll2 S                  x                 Y                      z h inATES TO        X             IIIC                  Y           IIIC         2            lut TO        X             luc                   Y           lilC         Z            luc TO        I             lisc                   f          IIIC         1            lac
                                         *0        X             luc                    Y          lleC         I            IIIC TO        I             luc                    Y          llec         Z            llIC TO        I             luc                    f          IIIC         1            luc YO        X             luc                    T          IIIC         2            luc TO        I             lac                    Y          llIC         Z            lilC TO        I             luc                    Y          IWC          Z             lac TO        I             thC                    Y          llac          Z           luc TO        M              lloc                  Y           llIC         2            IIIC SJOINT C00m thATES S

S

                               !n u u u u u . . u u . . . . u u h. . . . . . u u u u . _ _ . - . u u . _ u . . . . . . .**_ n ee.

S* TME 70LLOWileG 8ESN C00RDim4fES CopensIDS MAY tt USED TO DEFlutD le0 DES

                               $*** WNICM ARE SulFTED FROI CileER totmES SY GLOBAL C00ADluATES X , Y & 2u u nee gu n..__.u.n u_. ..ne.....u u___u weeeeeeen.u u.....u..u.__.
                               $ IE$N COOR O

l \ 21M 5.02.CND

Revision 2
Page 203 of 238 l

ATTACHMENT 8.E (CONT) i l I l i . SAME At _ SWIFT ST 201 TRANS 8 .Z l 8X T EnIFT SY 202 TRANS 5 T 5AME A5 Y Z * !' 3X - _T EAME A5 5MIFT SY 203 TRAkt S _ Y _Z 8X

                                                                                                                                                                             .! 5 N00tl....m l                                                        $0lVIDE LINE i                                                        !.m                L               .L              5= .Lom L m.t.mTME                                         L AD0fflohAL                                              *
                                                         $*** IF SPttb48 Att USED 10 etPetstuf TNE SUPPORT
  • l
                                                         $* AXES. MFINING              FOR EXAMPLE     THE SPRING     , IF A Coeulf           MEMstt SitBIENT      AMESIS SUPPonTED     SNOULD                   AT DE       WGM   *** AT      lht ConDUlf 3 AND m

l $* TMt ADelflotAL LibtWODE CometCTING 1003 3 &!$1003 A DEFinis NODEfutAT X AX18 TME 0F ing L0mGiftsinAL Axis 0F f S* StomuT. TMtu m ...

                                                                                                                                                                  ..u:.u.:.:.mur i

i 9* SP.aluG. MEMBER

g. e. . . . x . : . .u :: ._ : . . : ibO.3.A.N.D.18 n _ u. Aloud TNE LouGif l suPPotf JolNT
  • sJ01st mvLEAst mon l s FOR ENZ
                                                           $                                _ KFX                  KFY              7 F1                       DOL              _ KMT j                                                                                            _ Det                  xMy                      osz s

CausIANTE I 29.0E.M ALL 1 0 11.15t+M ALL 1 Poll 805 0.3 ALL 1 FTLD 25000. ALL f Dtus . ALL l IERN luCIDimCtt

                                                                                        /                      /

s i MtMeet luCIDimCE l MWit PRINffIts TABLE AISCPIPge e _.__......;_ . m .... __ ... .: n ._ : m s

                                                             ......___....:.'.___.u__:
                                                             $* TME FOLLOWlus IWest PROPitTits AAE ustD TO INPUT $PRING IWWE
  • RX 18 UttD TO luPUT
  • 9* 1.CE12 MY tt utt0 TO REPetttWT E8810 STIFFut98 .9* *TMSlWIAL htST S* LouSITialeAL AX18 Am TQatt0m RESTRAluf 18 REeult9 TO RetWE ANALY
                                                             $*   SINEALAAITY_

p .:- _ . . .--- . ...

                                                                                                                                               -__......... __ ....:.                                             ...u:..e IW Gtt PRIPERTitS STIFFW 98 M TtlX
  • I' DIASDNAL DX 1.t1E DT 1.812 D21.512 i SIW est Peopftfitt I

S STIFFutB8 st4TRIX

  • __ __

SBI' H _ DE 1.513 DY 1.512_DZ_1.t12_ RX.-.. ( ,. - \ 9"** I, l 98"* TW POLLOWIII6 STIFFutSS 8tAftlX ColetAmt Att W W W E PelptRTill

  • 8 STIFFutB8 ftAftlX -

DT 02 IDIAsDumL DE s l PLOT DEVICE PRluftt WIDTN 10 Ltissfu 10 PLOT FoaltAT TOLERAmCE 5. PLOT PLAmt XY TieROUGN JOINT PLOT PLANE X2 fueGJGel JOINT PLOT PLANE YZ TINIGJGat JOINT

                                                                                                                       ...u u __=                              u n   ..u = = = ..... = ........

l s.. l i

       - . , . - - . - _ - . . , _. . , , , , . . .   ,           , _ , - . _ _ . . , ,                         _          , _.. - ,.               .._..,.m_.           _ - - ~ , - . , ,                         ..~.-,.-_m..-_~,_,

i l l i 2IM.5.024CND  ! i Revision 2 Page 204 cf 238

,                                                                                   ATTACHMENT 8.E (CONT) 1 d.

l 18 USED TO 1puVf ConCENTRAft0 WilGMTS *

                                                      $*** INttfl A 0F JolNf t LLMPfD M*

1 s en mmmneeeeeeee eeememm meeeeeeeemmmnmuemene enme luftflA 07 JOINTE LtMPfD I luttfl A 0F J0luf t F ACfot 1 ADO Y Z J LlWEAR X I l LlhtAR K f LlhtAt X Y  !

  )

5 PalNT STRUCTURE DATA

'.!                                                   sitti TAtt 0FF litM12E i

S... FOR PollflVE T. AXIS IN tnt UPWARD VttilCAL DIRECfl0W ... i LOADip0 'OT8 81.0 G IN GLotAL Y. Axil DIRECTION' J MAD LOAD COMPONENT GLO Y .f.0 87 MEMett . 4 LOADimG 'OR' '1.0 G IN GLOBAL R.AXtl DIRECfl0W8 DEAD LOAD COMPONENT GLO X 1.0 BT MEMeet 4 LQ4DipG '028 81.0 G IN GLOSAL Z. AXf 8 OIRECfl0N' 1 DEAD LOAD CopWhoutNT GLO 21.0 GT MEMBER

^

LOAD LitT '9f' '0E' '0!' ' i ITIFFutBS ANALT$ll REDUCED BA W

<                                                      LotD Litf 'DE' 'DT' '0Z' OUTPUT pf J0luf f(RJfPUT 8f MEsett OUTPUT Decim4L 3 Litt REACTious ALL OUTPUT DECIMAL 5

( 4 Lilf Ol8PLActm ut ALL g...:..__:....:.:..........:.:....:_...__:............_;;;.........::: List FORCES ALL ' $* TNE FOLLOWlut COut4WS ARE Utt0 TO GEuttAft TRiBWTAAY WIGNTS FRCN *** } 9"* THE SUPPORT SPaluG FORCtl INTMBUCSD WY TME funst 18 LOADiet CASES *** 9*** 'DK' , 'OT' & '0Z' ee gm

  • 9
  • Post 1 Mfhe. Utt TNE LAmeest 0F TNRSE FORCE COMPoutuft FRON THE
  • S* TNatt 1*8 LOADl M CASES A8 LL OR LT ft!8UTART "*
                                                        $***                                WIONT .

t*" *" t* luPUT TO LOCAL MAE SNEAR Ftte *** l

9"* .. **......**.............**. **

B*** (1) IP R1410 SUPMRT . luPUT 33.0 OR uteMa *" l 3* (I) IF SupecRT Past It it ut _ac OTNES __ . ___,: INPUT _  : ...::_: 12.0 or:0Tutt ___: . u . m ee, Unlf0 CYCLIS . etutRAft LluBAE SUPPORT Spel m Uslus Fogel 1 Y  ! LOCAL MAXilta tuRAR FRAG I ftN"WHNT 6 X 'OX8 Y 'OY' ! '01' e--- Uusu IluvT : .u up. I Tult. WitNTS WE WT WE OR l'" Ttle WitNf8& 7898 l 8 TRIS WI DIRECT _ _ _ Trit WI DiaRCT 1 8, ,Telt WI DIRECT ~- """" LOCAL 8tAK F000 - - - SWPERf 5ptleB ISSER P90PttflES LOCAL LluRAA A8 MWGATB l 9" luPUT SWMRT NO. PW RENSAflu IPelas CouSTANTS 60LLOW!st COcthWS TO INPUT spp0RT Spelmes *** , SerPORT Spelas IWWER P90Plafitt LOCAL LiutAA As asmsaafB 30f Det > l

                                                           $* luPUT SWPORT NO. FOR GEWRAflus SPRING 00N8tAsf 8 S

0f188 LOCAL LlWAA KF1 KFT KFI . SROTAT10 MAL pet off DEI 3"* luPUT suPPcef NO. FOR Usta luPUT SPtime Coutf ANT 8 8 PfDTEMU'MNTTTT" s O i 4

          . - _ . _   ~                       -          -        . . . . . ,                                , . . . . . ,       -m~.            -
                                                                                                                                                          ,                ,..._,__---e_,.--%               ,- r . . . , . . . _ , , , . . - -e,

_. __ . .~ _ __ _ ..____. _ _ _ _ . . _ . _ _ _ _ . _ _ _ . . . _ _ _ _ . _ _ _ _ _ _ . _ _ _ _ _ _ _ _ . _ . J 4 l 21H.5.02.CND Revision 2 i Page 205 of 238 ATTACHMENT 8.E (CONT) 4 i l s.m..ememem,mmm,~.m me .meeemmmem.mme 1 ' Sm COMPAtit0W 0F AVERADE G VALUES As DEllGN G*v& LUES FOR I 3"' geeeOETAILED m m m u ..eeD.E.SCRIPfl0N m + m ee m m e m eLEE m m mCPSESI e m eeee m f.AG.CP20 eeeeeeee Am SAG.Cd25

                                                  $"* Dell 0N G VALUE8 FOR Comulf SUPPORTS IN OlFFERENT DUILDINGS Am 9"* OF DIFFERENT FRERJENCIES ASE $NOWN IN T ABLES A.T.1 THRU A.T.6, SA                                                                            l0ELibES 8 DATA
                                                  $*"m.G.CP gee             m 10,      . nOR m O.t.hE.R ee                .weee      UP*fm0 .DA.TE .         OU.memee.mmeeeeeeeeeeeeeee.

4 O COMPARit0W SET T 'fts & YMZ CASES FOR ALL SIX tulLDlWGge O COMPAtitoW Dell 0N G YALUES Det VER _ ut _ EW _ SSE VER ~ l'8 ~ EW ~ 0 CGrARISGI TRIBUTARY WlGMT A$ GEbERATED GNULF 'ERET a DEFINiil(El J J01 ALL ACflVE i OfmAMIC DEMEE STAflC i JOI DEMEE OF FREEDGI ! '&Rgte XT,ff,ET 1 Es

  • i UNIf 8 CYCLES ,

AstEleLE F m OfuAMICS MSAi ANALT8tB MAN FRE4 33.0 i List OfuAMIC ElaEsv& LUES 2 Lilf Ofm4MIC ElW WWWCf0R$ i LIST OfmAMIC NORM PART FACTORS i 8 p ____ _______ _________________ _____........... ..................... l

t* fut UeER MAMS fut Sm0CK BPECTIRai LOADS NEREAFTER NE UNif 1*"*
                                                  *** 00mulf SPAu VERIFICAflos 300K NO. SPAm.1005 Fm OdfAILD j                                                  8"* DEscalpiIGN OF_USIse fNE SuoCK SPECTALSI LOADINE DATAAASE _FlLE8. ***

i S---------- ---- ----- ----- ---- ------------------ -- --- ------ -- l t*** _. . . _ . t*- " ---- - -- ------ - - " -- - " ------- - --- ---- - --- -- I

  • tm EXTRACT Loneles FILES PROM DATAAAtt Uslut RAMS,FOR EXAWLE:
                                                  *
  • Cet . FILE NAfg astes I.p.etL. 1.0.+03I .AaE5203I FOR EL 8528 6 ***

t

  • lu AuulLIAAT Buttelus

! t* SSE . FILE RAfE =GL86 8.9.+tL.1.0.+S3M .Aag52331 FOR BL 8528 6 ** t* 15 AtallLIARY BJitallISi~- ---- - ; ; --------- - -- ---- ------- 9- il lii-- 3....................................................................... ' t*** UEIR 104tflFIES TO ENWELOP ful SPECTRA Af TWO tulL8ite ELEVAfl0NS,& SSI , t* IUILDlus I.D. & EL. l.D. lu TNE BLANKS MFORE 031 3*"LQaelutit , t** 03t+ 831 - $** Ope

  • SSI 3.......................................................................

I -V" IF SPGCftA 70 RE BuWELOPS Aat AT NORE inAll M ELEv4 flume, 8"' UEER 1338 nome fees TWD NTS OF ( ODI

  • B30 .

9*" FIL88 TO BE IDtutIFl3 _ __ - _______ ____ ___ _ . . ______ _______ i....................................................................... 9"* TW FOLLinflut CGettet AAE PREPAAS FM EIFutLWIWS SPECTRA , 9"* AT M OUILalue ILEVAflWS. 9 " IF T M STRUCTURAL 878798 18 ANCIIORS At Mut inAN TWD EllL8teS 9"* ELEV4flous, UEER NEWS TO IEBlFT TW CGetAfst BT U51st SINILAR BUT 9*"...EMPAISS

g. Cl30thle8.

Euv8 LOPE SNOCK SPECT FILES ON DDT FACT 1.0 Dulp

                                                    ** luPUT BLD4 ID*tL1 10 & BLDS IIML21015 TW FOLLOWitt BLANKS t* e.g.I 'EWWOBEVT 8 FRGl CGF FILES                                         Off' '
                                                                                                                                            'A4852Gff' 'At4730Vf 8 OVf8
                                                     'EWWOBEVf FRGE CEBF FILES *
                                                     'ENV0BEW8' FRGI CGF FILES '                                                058'
  • Oggs
                                                     'ENV0BEEW' FRGI CSF FILES ',                                               OEW' '                OEW'
           -rw-     .+ ,-. e         . -._-. , . - - .        . _ . - - - ,.                      - , , , . , . .                       ..             -   ,_s-,--.  ..-.,6_-,_g_._,             , . , . . . , , -_.a   _ ,-m,.m,,-i.-,-ve. ee-.vs,-v c ri- e v

4 21H.5.02.cND Revision 2 Page 206 of 238 j i 1 ATTACHMENT 8.E (CONT) ,i l etwysstyT' reces ConP Fitts 8 svfe e svis i

                                         'Eurtsguge pacM COMP FILLS '                   Sut' '        SNS' j
                                        'ENV85ftW8 FROM COMP Fit!! '                    StWe e        stve l"' EWytLOPED SPECTkA LOADS *IIT"luPUT TER1EcN FOLLOWino LOAD Casts ***

DAMP 0.02 100 Sn0CK $PtCi M LOAD 101 *Y.vttT 08E IvvtLOPE' SPECT M TRAmt Y 1.0 FILE 'ENVON YT8 00T END OF OYNA LOAD SHOCK kPECTR'.pl LOAD 102 '!*ut ost tuvtLOPE'

'                                        SPECTM TRAmt Z 1.0 FILE 'tWWONNG' 007

' t o 0F DYNA LOAD SieCCK SPECTRUM LOAD 103 'M*EW Ost (WytLOPt' i SPicists f tAus x 1.0 FILE 'EnvoettW' 00T t o 0F Ofte LQ40 sie0CK BPECTM LOAD 105 'X*Ns att (WVELOPE' SPECTauM TRAnt x 1.0 FILE 'EWWOM us' 00T te of OfuA LOAD i $McCK SPtCT M LOAD 106 82+tW cet EWWELOPE' i SPtCTM TRAnt I 1.0 FILE 'tWVOSEtW' 00T i to 0F OtmK LOAD ' DAMP 0.03 100

'                                         Steam SPECTM LOAD 201 'T.vttf $18 EWWLOPt*

SPECT M trams 7 1.0 FILE 'tuvlsEVTe Def t e of DYaA LOA 0 Ses0CK SPttistst LOAD 202 'I+WS Set twytLopge r SPECTets' TRAst 1 1.0 FILE 'EWYS8ths' 00T te OF DYRA LOAD { Ses0CK BPECTaLal LQ40 203 'X tW set twytLOPt' SPECTRLat TRAmt X 1.0 FILE 'suvssetW' DDT t o 0F OftA LOAD See0CK GPECTmal LOAD POS eX WS stt ENVILOPt' SPECTRL54 TRAN$ X 1.0 FILE 'tuvsates' 007 E m 0F DYmA LOAD Suom tPECTmal LOAD 2M '! fW Set EWWEL0pga SPECTRLSI TRANG I 1.0 FILE 'tuvesttW' 00T l to 0F DTilA LQA0 LOAD Litt ALL MISSIIIS MASS Come T0 bt APP IIGIO FR 33.0 OYuA BitP AAA WITN RSA S i 8 OYmAfilt AAALillt S PetLSO 8T& TIC SuoCK LOA 0 1101 Tfu 101 PSELSO 8iATlC SNOCK LOAD 1102 Tfu 102 PSELa0 STATIC SWOCK LOAD 1103 TEN 103 Pem SO STATIC 9110m LOAS 1105 Tem 105 Pemme 8TATIC sacCE LOAS 1106 TEu 106 PERSO STATIC thom LOA 9 2201 fts 201 PsRa0 BT& TIC tuoCK LOAe 2202 Ytu 202 - P9mme STATIC sm0CK LOAD 2203 itu 203 PERSO STATIC suoCK LQAe 2205 fee 205 P9E me ffAllC tuo m Lone 2206 its 206 9

                                             $ CGellE ALL SuGE LOAelues 8-LOAS CSS 'ontTZX' lues 1101 1102 Ital LOA 8 CSS '00EYX28 mess 1101 1105 1106 LOAc Ces 'setVZm' ans 2201 2202 2203 LOAe Ca8 eastTxte ans 2201 2205 Z206 fduttATE ttEILit FOR LOAelps 1101 1102 1103 'GetTII' GautRAft etsWLTS FOR LOA 0lue 1101 1105 11M s.............................................+..'GetTx1'    .......

OtIIERAft RSSULTS FOR LQ40lmG 2201 2202 2203 'SetTEX' O

' 21M*5.02*CND < Revision 2  ! Page 207 of 238 C ATTACllMENT 8.E (C0!rt) i GlutRAf t Risults FOR LOADivo 2201 2205 2206 Yr28

3................................................'tM .......
'                                           UNif$ DEGattt CUfNT Bf JOINT I OUTNT $f MEMMRS
                                            $ ON ttIULTS LOAD Lilf 'OMitXe soggygge OUfNT DECIMAL 1 LIlf ttAcilon ALL QUfNT DECimL 3 Liti CitP ALL Lilf FORCES ALL S$tCfl0N Fa NS 2           0.0 1.0 SList $tti!ON sitt$lts ALL ACflVE petMBttl UNIT RADIANT 4                                            $PECI AL Unit CONVEttt0W FACTOR LENGIN 346.4
Litt ACCEL ALL UNif INCatt,DECatES S $$E atsuLTS LOAD Lilf '88tTZX' '8SEYX2' OUfNT DECIMAL 1 Lilf AtACTICN. ALL j OUfNT MCIIIAL 3 .

1 Lilf DISP ALL l Lilf FORCES ALL i SSECTI0tt PR WS 2 0.0 1.0 SLilf SECTION STRE9MB ALL AcilVE MEleER Unif RADIAmt FPECIAL tatif CONVEtt10N FACfot LEpGTN 3M 4 i i LlBT ACCEL ALL UNif IWCnLS,M enEES S . S". Cowid t puu 0F 4 VALut B * * "" > " . " . . . " . a S l 0 CGe* LQ40 TYM FlWD f a CO W LOAD ORIENTAfl0E FINED G COMP 1AAAATE i 3........................................................... g...................................................................... S*" DEAD LOAD +0R* Det Am MAD LOAO +0R* SM CGelRAfl0NS L MD C3e 'DL+0st' ' MAD toad +0st' Cons 'Df' 1.0 'Geff2X' "".0 1 LOAD CGS 'DL*00E8 ' DEAD Lone *0st' C05 'Of' 1.0 'OsEYZX' +1.0 LOAD CD S 'K acBEA8 ' DEAD LOAD +00EAe cg e eDf' 1.0 'OBEYX28 1.0 LOAD CGe 'M*00EA' ' MAS LOA 0 *CeEA' ttse 'Df' 1.0 '00EYKZ' *1.0 l LOAD CGe 'M+48E8 ' MAD Lohe +s M ' CG S 'Df' 1.0 'taEY2x' 1.0 LOAD CGe 'K*SSE' ' DEAD LOAS *SM e C0 5 ' Dye 1.0 'SMYZX' *1.0 LOAD CteB 'K+$ SEA 8 ' MAS LOAD *l5Ek' CD s 'Of' 1.0 'stEYX2' 1.0 LOAS CGe 'MaseEA' ' MAS LOAO *SSEA' C05 'Of' 1.0 'teEYX2' *1.0 i S L0te Litt ' K+00E'

                                                'u +3ste 'n .sgEe eg    'KgggAs
                                                                           .+00E'opt.ggAs
                                                                                    'DL+00EA' ' K+0eEA8 IXBelM ALL QUT M BY Jolst CUTM MCIIthL 1 List REACfl058 ALL LOA 0 LIBf ' M *00E' 'R*0st' 'DL*0eEA* 'R *0eEA' CRJfM ,Y Jolff 10ZP.'T ST alEMBEE MM MCIIIAL 3 Lilf DitPLACElsef ALL Lilf FCBCES ALL ENCfl0E FR st 2            0.0 1.0 SLIST MCfl00 STMBatt ALL ACilVE lesett t

S.***+.** .***+************************** LOAD Liti 'DL*SM ' 'DL*18E' 'DL+5 SEA' 'DLat MA' i

            - - - - - - - - - - -                                             -,      ,,, -         -   --.r.,.-,.-.,          ,      , , - - , . , .    -----,..v. _

4 21M*$,02.CND 4 Revision 2 Page 208 of 238 a i ATTACRHENT 8.E (CONT) J i i j OUfNT ST Joltf 10VTNT IT MEMett y OUTNT DECIMAL 3

Liti DitPLActIEENT ALL -

LitT FORCES ALL I , $ttCTION FR NS 2 0.0 1.0 i 1 StitT SECTION STatttti ALL ACTIVE MElette '

9 i g eeeemeeeemeeeeeeeeeeeeee,***eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee t* CODE CHECKlH
  • i $* LT & LI Att Ulst#Act0 LINTNS Fat tuCKLl4 A40UT MEMbit Y & I utt t l S* KY & K2 Att EFFECTivt LINTH FACfott 704 DUCKLlH A63*T T & 2 Axis
  • I

'1 te** O..tt.n & . _Ot2 _ _ _Att _ _ atDUCTion,Co.t.F.F.IC.itNTS _ x seeeees e ee . ..eeeeeeee FOR m eeeDEWlH msmm AGG)f HEMett T4 2

  • eeeeeeeeee g

CNA4eeft

                                                                                                                                                                                                                                 )

9 $*** P90Pfeilts Fat ELEMENTS WITH TNatADED SECTION *** i i leeft P90P TABLE 'CupPl>E8 TYPE 'PIPt' i TABLE 'CWPIPge e e l 1 M PalNT 1898E8 PROPitfitt SECTION FR st 2 0.0 1.0 g..................................... ..................................

.i PARAfeTtts i
                                                               ' CODE' 'AleC8 ALL; 'VER$ lou' 'HU18 ALL
                                                               'TORSlou' 'ftt' ALL; 'C8' 1.0 ALL
                                                               ' ABF' 1.0 Fat LQ48 'DL+cet' 'OL*0gge 'pteggAs opt.00tA'
                                                               'ASF8 1.6 FOR LQ48 'OL+tst' 'hetM' 'DL+8 TEA' 'R*tMA' t
                                                               'Orf 8 1.0 ALL
                                                               ' OEZ ' 1.0              ALL 4                                                               'FemAR' O.6 ALL
                                                               'F80eguge 0.60 ALL l                                                               'FACMAN' O.6 ALL

' 'FATMAN' O.6 ALL

                                                               'KYe                  sogge                                                                            .
                                                                ' EZ e ~ peggg
                                                                ' KY 8 ~ 19 888
                                                                ' Ele ] ggggg .

1 8

                                                                'LY'                    leeft                                       ;   'LI'                 189888
'LY' IWett  ; 'LZ8 leNett
'LY' leett  ; 'L2e IWMt
                                                                'LY'                    19 888                                       3  'LI'                 leett
                                                                'LY'                    8Wett                                        ;  'LZ'                  19 888 l                                                                                                                                     ;  'L2'                  19 888
'LY' Imatt pegge
                                                                ' Lye                   pegga                                        ; eLZe
                                                                'LY'                    leett                                        ; 'LZ'                   IWett

! ' lye ~ asegg  ; 'L2' IWett

S Lott LitT 'Reogge eg.00t* 'MectEA
eg.gggA' a DetE REEE Pte IWI BBS ftAm 6 RESULTS Pat FAILlH le etts

' CatelSt PARAleTatt - 'PWInt' O.9 ALL 1 epgegent' O.50 ALL

                                                                 'FAcant' O.9 ALL
                                                                 'FATM48' O.9 ALL ADD 1T101st Lote Litf 'Ketet' 'OL* tat' 'OL+tetA' 'MetetA'
Cut m CODE FOR IGN GEN TRACE 6 tiaWLTS FOR FAILlH letPstts Flulla noget9AaB d

s o l

                                                             .--._.m.       _ . ,         _.
                                                                                                   , . _ . _ . _ - . . . . _ . ,         , , -    - . _ _ ,               m.- -_. , _ . , . --, .-- - - ,- . .- _ . --

! t I 21H.5,02.CND Revision 2 i Page 209 of 238 !O ' ~ ATTACllHENT 8.F UNBRACED LENGTH AND K. VALUES FOR INPUT IN STRUDL SKELETON

                                                                                                                                                                  'h
                         ~

lt . CASE I

                                                              -g llo t MGM 862 A 6 :

( C , KY6 e f.le s .,6 LT = L% e ti b 't

                                                                                                                    . 6....     .e i nyt a f.60                                      '

t,t g a to ld LY a La a Lt s gg ,4 y, cAta i T, 6 pet unstaf A6 : g J KT6m Egg a f.10 g LY

                                                                                                                             =     Lt         a              Lt Pot, MSW6tE 64 8 Catt t                                                                                                                       a            I.t LYs a      ses Ly :. L2-           -           L2-M S W_fM_tRR. E :                                  .

KYg . = Et6 e f.to LT a L% .= 1,6 O

21M 5.02 Ct1D Revision 2 Page 210 of 238 ATTACRHDIT 8 F (CollT) T6 g4 , s 4 , i LI , CAS E S - CANTILEVtt 6 pad) A6 : c.wn c. o n 3 . L KYL = Ith = 1.10 . , 3 tg . L,Y = Li = Lt y, ~~~ ' (A48 $ b d4914 CA$t 4 - SPAd 6tf uted sunoRTS 3 6e : ICTg a Egg = 1,to LY

  • LI
  • lt casa e-me masaw sumen w/ uwe :

l l

                                                                                            *'          $EE,CAet 1 (

l s Y ew l, I h ! cA48 9 i

O .
  , ------.-,.,e,    n  ,-s. r    .a----------,-~,.,,,---,,..,-,-...,,---w--n---                      a. , , , , , -.   --,.~-.--a-.     -v--  - - - - - - - + - - - - - - - - . - . _ - - - - - - - - -
                                                          +

21M.S.02 CND I PaBe 21 o 238 ATTACHMENT 8.F (CONT) pts .,. v s. f,1 s v f e N/.

                                                  ..                  l\     $.h
                                                              /
                                                                    ^
                                                         /        0                                                   h y                                                     .

N.StGYG DSCOMM 10 00G9496tig

                                                ,               ,               . . . , T . . r. . . . . , ,, , . . .

91800 CU f9087. CAtt 4 6M . F#a s.pAdfs#9 4up &ggeigs, s O NOTE: Attachment 8.F data taken from SAG.CP25, Appendix 1 Table 1.3.

21M.5.02.CND Revision 2 l Page 212 of 238 ATTACHMENT 8.C l "g" VALUES ROTATED SKELETON FOR STATIC ANALYSIS OF CONDUIT SUPPORT FOR NOTE: Attachment 8.G. skeleton taken from SAG.CP29, Attachment K.2. 8 PLEAtt Utf 'Co@*kt.ML' SKtLtt0N FOR 0* VALUES a01DAfts Af ts CAtts 8 luput FILE N0. . Ol8K 10s

                                                             ~' BANht M AME tSTRLOL usia :' D TI~IIT '                          '

8 CPt$1 ELECTRIC CONDUlf & JUNCfl0N DON SUPPORTS ffPE SPACE FRAME g ALPNANWERIC IDENflF!tt f atATMENT ST CNARACitt CCWAAlt0N SECONDS UNITS INCNES KIPS OfGRitt, FANatN#tif, LBMk

  • Y BSNIFTC00RIflf1h1TRA X RZ R3 8 tof R1 SJOINT COOR $NIFT Bf 101 4

JolNT COONDINAfts . 1 . ' 2 . 3 . 4 . . 5 . 6 . . 1 . . 8 . . . 9 . .. . 10 . . 11 . 12 . . O V 13 to 15 16 1T . . , 18 . . 19 . . . N . . . 21 . U . . . M . . . 24 . . 25 . N . . . I 27 . . N . . . M l 30 . . . 31 . SUPPORY JOINTS

  • J0luf MLEANS P..

p N... KFI* *

  • IFY KFI .

Det m m . KFil KFY ._ EFI Det DFf IDEI 100t DIY DIZ 100t Off 83E1 Det 83ff DEt M IDE C 1 2 3 4 6

       <>                                 r 8

21H.$.02 CND 1 Revision 2 Page 213 of 238 j ATTACHMENT 8.0 (CONT) i 2 I 9 i 10 ' j 11 4 12 13 14 il 16 l 17

~

18 19 i 20 i 21 22 23 i 24 21 26 27 *

\                      25                                             .

1 29 ! 30 31 j M . 4 TYPE SPACE TRutS Mpett INCIDENCtl EME RELEAtts STA F *

  • M g STA F . . M * *
  • te F * ..* M...END8 .M**

l t 29.t3 ALL ; Polt90s 0.3 ALL ; OtWS 0.264 ALL G 11.213 ALL I CTE 0.0000065 ALL FYLD 36.0 ALL WT 44.0 ConsTAmT8 DtWS 1E*3 CONSTANT $ MTA btTA etTA

8W Sit P90PEtfits TABLE 88TEELWe ey y e TASLE *Tuttses* *T I I
  • TASLE 'TISERfCT' 'f* f* f*
  • j TABLE 'lftELC' 'C I'87YM 'CHAleIEle TASLE 'ITIEL81C' 'IIC I ' TYM 'CMAmutL' TASLg egyggtte et e l TAGLE 'SittLL' 'l 8
  • AM 100. &Y 100. A N II 1000, if 1000. 12 1000 e

AI AT AZ II IT 12 i ST 82 IIERTIA 0F JOINTS Ltsee ISETIA 0F JOINTS FACTOR 1 ADO S IIIPUT Wiest 0F COSUITS / 0G188 IN PGADS ( LDS ) LilitAs I T 2 LINEAA I T 2 LilIEAR I T 2 LIIIIAR I T 2 LlutAR I T 2 ' RTnTifB2.'fEAL DATA

'                        PLOT DEVICE PaluTER WID 10 leu 10 PLOT PROJECTION IT PLOT PROJECTION E2 J

f

i i

4 21M 5.02*CND ) Revision 2 5 Page 214 of 238 !,O ATTACHMENT 8.G (CONT) J PLof PROJECf10N YZ GaKw 'uff' OtFINifl0N J01 ALL AttlVE 4 DY W IC OtGRit $f6fic J01 Ot0Rtt OF FRitDCM

                                                                       '& RET' XT,TT,1f 4

END UNift CYCLtl ASSEMBLE FOR OTWICS MODAL ANALYlls NAX FRt0 40.0 LIST OYWIC ElWWVAtuts j Lilf DYNAMIC IIMMYtCfDRS LIST OthANIC NORN PART FACTORS SCRAmet i SlWitfl A 0F JOINTS LLMPt0 SluttflA 0F Jolufl F ACTOR 1 ADO Y 0.0 1 0.0 , S LINEAR X 0.0 ', SA00lfl0N 1 UNITS 980Rtt8 ' S DEAD L040 0F Comulf SUPPORT 18 IN af OlttCTION LOADING lUNif 't" +K DIRECTION'

!                                                                       DEAD LOAD COMP fsLO X 1.0 SY JotNf8, i                                                                        SJotNT LOADS 8                         MX                              Y            Z j;                                                                       tem ett LOA 04                                                            L 1.0 FORM X CON FRA P 1

S FORM Y CON FRA P L 1.0 S S FORCE I CW FRA P L 1.0 1 4 MM X CON FRA P L 1.0 S NON Y CON FRA P L 1.0 S 9 MON I CON FRA P L 1.0 l 1 LOA 0lM 2 ' UNIT *t' *Y DIRECfl0N' DEAD LQA0 CU F GLO Y *1.0 SY JOINTS SJOINT LOADS Z ! MON X Y S IIW GER LOADS L 1.0 l F0 MCI X CON FRA P 8 L 1.0 l 8 FORCE Y CON FRA P i FORCE I CW FRA P L 1.0 ' S Mtpl X CON FRA P L 1.0 S MEgl Y CW PRA P L 1.0 ' S S Misl  ! CON FRA P L 1.0

LO40lus 3 'uult ata +1 Diescita' DEAD LOAD CO W OLO I 1 0 Of J0lWT8 SJOINT LOADS Z MON X Y I S M L0A98 L 1.0 l PCBM N CON FRA P S

FORCE Y CON FRA P L 1.0 l' S PSCE I CON FSA P L 1.0 S fM31 X CENI PRA P L 1.0 S INBt Y CENI PRA P L 1.0 S S NON I CON FRA P L 1.0 LOAS CIBG 4 'O N LOA 0lNS +E Dit (NAX REIS)* CIB00Mf 8 + ' 1 (ies sell)' C sp0NENf8 + LOM 5 'est LOAelst +X Olt 1 LOM & '0BE LeselNG *X OlR (Niu SEII)' Ct3901ENf8 + 1 i'

^

LOM 7 'Get LOAslIIS +T Dit (NAX Sell)8 C0 90NENf8 + t LOM S 'Cet LOAtlNG *Y Dit (IED Sell)' CCBF01ENTS

  • I LOM 9 'Ost LOA 0 LNG +Y Dit (NIN 9888)' COMPONENTS +

e- _ ___. _ _ - , _ ._,,..n______....%.,y.,_,s , ,.y.,,_y.r,y__,,m, .y,,_s.,w-___,,m-c.,..fcyy.

1 i i

'                                                                                                                             IM $ .02.CND Revision 2
Page 215 of 238 i

ATTACHME!rf 8.0 (CONT) i 2 LOXFt51s 10 'Ost LOA 0lm +1 pla (nAx SEls>' COWoutuis - 3 i LOWT51s 11 'Det LO4 DING *2 Ott (MED stis)* COMP 0htuft *

3 LOK 5 TfRs it 'Ost t040 lug +1 Ola (nlN sEls)' Com>0utNTs -

i 3 i

'                                                         LollFEDs 13 'tM LQ40lM +K Dit (MAX SEtt)' C(s*0utNTS
  • 1 1
'                                                         LO W T51B 14 'S$t LOA 0lbG +M DiR (MED Sell)* COMPOWEN18
  • 1 i

LO31FUNs 15 'sst LOA 0lm +M Dit (MIN H ll)' COMPoutuft - 5l 1 LO W T!RB 16 ' Set LOA 0lWG +Y Dit (MAX Sell)' COMPoutNTS

  • I' 2 LO M 17 'SSE Lonel M *f DIR (NED Sell)' ConPoutNf8 2

i LOM 14 'sM LOADIM *Y 01R (mlN Sell)' Co routuft . 2 1 LQ E "t!Rs 19 'tSE LQ401 4 +1 Olt (MAK Mll)e CoproutNTS + i 1 3 i LO M N'sMLQ40lM+1Olt (150 Mll)' CQWoutuf 8 + 3 LO K llRB 21 *tM LOAal M +1 018 (Mlu Sell)' CO rcuENTS

  • i i 3 PelW"ITRUCTURAL DATA l

i Paluf LQ40l m DATA SilFFutts AmALYll8 REDUCE SAM i LQ40 Cope 2 'Det tats 4 9 11' ans a t 4 9 11 LOAD CG e 23 'ont tass 5 9 10' uns . l 5910 LQA0 Coe 24 808E 88814 412' ans .

;                                                            4 8 it LOA 0 CXpe 25 'Det sets 6 8 108 ans .

l i 6810 LOAD Coe 26 'ont satt 5 7 its ans . 5712 f Lohe CG e 27 'Ost SASS 4 7 it' has + 6711 i LOAD CGS at ' set sets 13 it 208 aus + 13 18 20 l LOAD Ces N 'tst SRM to 1419' IWIB

  • i

' 14 18 19 Lone QWe 30 'tes sett 13 17 218 aus - 13 17 21 Lone Coe 31 stat sett 1517 it' ans + 15 17 19 l Lee Coe 32 'tst gets 1416 lie ings . i ' to 16 21 2 LOAD cae 33 '9M Sets 1516 20' SIB - ' 15 14 20 Stages MSE,ft AaB TO M Coelum Af STREtt LEVEL

  • POLLGHES Late CAGES 1000 Malls AAE QBE & 2000 SERIES AAE SSE i LOAD cae 1001 'DL+etts 4 9 11 (Det)' COWouteft +

2 1.0 II 1.0 i L0ne to t 1002 'DL sets 4 9 11 (Ost)' CQ W outsit a 2 1.0 22 +1.0 LOAD Com 1003 'DL+sats 5 9 10 (Ost)' COW 0utsis - 2 1.0 23 1.0

'                                                               LQ40 Co e 1004 'DL sets 5 9 10 (Det)* CO W 0utsis -

2 1.0 23 +1.0 LOAD COMs 1005 '0L+sats 4 812 (Ost)' COrcutsis - ' 2 1.0 24 1.0 t i 4 yvw r vw-y p --a w - .- y - . - -

J i 21M*5.02 cND Revision 2 j i Page 216 of 238 j l ATTACIMENT 8.0 (CONT) l l I 4 LQAD cope 1006 'DL*last 4 812 (ODEP COMPontuf t

  • 2 1.0 24 +i.0 LOAD Cons tr*T 'DL+5a$$ 6 810 (Ostle COMPontuTS
  • 2 1.0 25 1.0 LOAD Com 1006 'DL*$tst 6 810 (ost)' CCMPONEuf t
  • j 2 1.0 25 + 1.0 LOAD COMB 1009 'DL+sals 5 712 (OSEP COMPontuTS
  • i 2 1.0 26 1.0 LOAD COMS 1010 'DL*stst 5 712 (OstP COMPontuTS
  • 2 1.0 26
  • 1.0 LOAD COMs 1011 'DL+ sass 6 711 (OttP CCMPontuf t
  • 2 1.0 27 1.0 LCAD CCMS 1012 'DLa$tts 6 711 (OstP COMPontuf t
  • i 2 1.0 27
  • 1.0 j LOAD COMB 2001 'DL+tals 13 18 20 (tst P COMPontuTS
  • 1 2 1.0 28 1.0

? LOAD COMB 2002 'DL*Sals 13 18 20 (tst P Co w outuft

  • 4 2 1.0 28 + 1.0 LOAD come 2003 'DL+sasl 141819 (88EP CxmPontWTt
  • l 1.0, 29 1.0 2

LOAD Com 2004 'DL SASS 14 18 19 (lat P C0pontuft

  • l 2 1.0 29 +

1.0 LOAD CGe 2005 'DL+teSS 1317 21 (letP COMPontuis a j 2 1.0 30 1.0 LOAD CSS 2006 'DL'$4881317 21 (sstP COMPontuis

  • i 2 1.0 30 + 1.0
'                                         LOAD 00m 2007 'DL+sats 15 17 19 (SSE P COMPontuis
  • 2 1.0 31 1.0

, LOAD COMB 2008 'DL stts 15 17 19 (SSE P C0pu'CutuTS *

           ;                              2          1.0 31    +1.0 i

i LOAD Cape 2009 'Dt+Sett 14 16 21 (let P COMPontuit

  • 2 1.0 12 1.0 LOAD Coos 2010 'DL sets 14 16 21 (884)8 Cou'outWT8
  • 2 1.0 32 + 1.0 LOAD C0pe 2011 'DL+ tats 15 16 20 (88E P CtMPontuT8
  • 2 1.0 33 1.0
LCAD COMB 2012 'DL sess 15 16 20 (lat P Cow outuTS
  • l 2 1.0 33 *1.0 Paluf LCADlus DATA LOADS LIST
  • i 22 10 33 sitess atsuLTS Att TO BE CoeluBD AT STRESS Livtt OtuttAft AtsuLTS
LOAD LIST *
!                                           1001 TO 1012 2001 TO 2012
  • COWlus ALL LOAD List ALL i

alTPUT DECIMAL 3 ' CUT 9VT SY JotuTS ; CUTPUT BT Imetts LIST REACTiout LOAD LIST 1001 1002 List REACTim LOAD LIST 1985 1004 LIST ttACTim LQAD LIST 1005 1006 LIST REACTi m LOAD LIST 1007 1000 LIST ttACTIou LOAD LIST 1009 1010 LIST ttACTION

                                          - LOAD LIST 1011 1012 Lilf REACTlou LOAD List 1001 TO 1012 LIST REACTION b
         -a
                                                                -                    y.                  .       .,.      -w_.y.-r.. ,,-.,,c,.e-,r.,    ygrw     e-.
 !i 21M*5.02*CND Revision 2 i                                                                                                                      Page 217 of 238
O i

ATTACHMENT 8.C (CONT) LOAD Lilf 2001 2002 Litf IEACTion

LOAD Lilf 2003 2004 Lisi etAtfl0N IJWS LI$T 2005 2006 Ll8T REACTION LOAD Liti 2007 2006 Lili stACTION LOAD LIST 2009 2010 Lili REACTION i

LOAD Lilf 2011 2012 Lisi atACTION LOAD Lisi 2001 TO 2012 i Lisi atACilom LOAD LIST 1001 TO 1012 2001 TO 2012 SECTION FR NS 2 0.01.0

  '                                          CaGJP '&LM8 OffINIT10h letM4tt$ ALL BUT                                       _

te Of GAGJP DtflNITICHI ) J ' LIST MCTitul STRitt MEMBttl '&LM'

  • 5 DL Coe Det (FOR CNECK WELD)
 '                                           LOAD Lilf
  • 1001 TO 1012 LIST FORCES titVELOPE MittBS 8 DL COM Stt (80s CIIECK WELD)

LQA0 tilf

  • 2001 TO 2012

' - f" Lilf 70RCtl ENVELOPt ME Witt PAAAMTERS

                                              ' CODE' ' AllC' ALL ; 'WR$ lou' 869U1' ALL
                                              ' TORSION' 'Ttt' ALL t 'CB' 1.0 ALL                                   *

] ' Asf' 1.6 LOAcInes 2601 TO 2012

                                               'f tlelAX' O.5 ALL
                                               'fAOIAX' O.9 ALL
                                               ' f ATitAX' O.9 ALL
                                               '
  • MAX ' *l.9 ALL PARAM TERS
                                                'LY'             MEM
                                                'LT'              MN
                                                'LT*              IEN
                                                'L18              IEN
                                                'LZ'              ISI 1
                                                'L1'              MM
                                                 ' Dri'           IWI
                                                 ' OIT '          ISI
                                                 ' Oll'            let
                                                 ' O 11 '          IWI
                                                 'KTe              egg
                                                  'KT'             ISI agye             egg egte             egg
                                                  'KZ'              IWI eg3e             egg
                                                   'tmeLCF              IWI         ~
                                                   'tsILCf '            IWI
                                                   'uuttfe              ogg LQ40 LitT
  • 1001 TO 1012 2001 TO 2012 CletCK Ctet ALL SUT etuttAft TRACI 4 atEITT7KTATCTWWieans finism moussacas O

2IM 5.02.CND Revision 2 Page 218 of 238 ATTACHMENT 8.H VALUES NOT ROTATED SKELETON FOR STATIC ANALYSIS ON CONDUIT SUPPORT FOR "g" NOTE: ACCachment 8.H. skeleton taken frota SAG.CP29, Attachment K3, S PLEASE USE ' Cote UR.SEL' AS THE SKELETON DISK ID: DATE:FOR G VALUES NOT ROTATED CASES S JWPUT FILE No. ._

                                                       $ USER :                                                            SANNER MAME I STR@L @$$ #1' S CPS $1 ELECTRIC CONDulf & JuWCT10N SOM SUPPORTS TYPE SPACE FRAME ALPMANUMERIC IDE8.'TIFIER TREATMENT F,Y CHARACTER COMPAtlSON UNITS luCHES, K!PS DEGREES, FAMREtHElf, LBM, SECOses -

X Y ._ _ Z

                                                       $$MIFTC00RSYST161TRA                                                     R2                   R3                                                                                                  I S                             ROT R1
  • SJ0 INT C00R SWIFT ST 101 JOINT C00R0thATES .

i . 3 . 3 . 4 . . 5 . . 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 . S 34 . . 15 . 16 . 17 . . 18 . ' 19 . . 20 . 21 . 22 . . 23 . . 24 . 25 . 26 . . 27 . . 28 . 29 . 30 . 31 . SUPPORT JolKTS - JOINT RELEANS P..IA...

                                                                                        ~ ' IFY                                            KFZ KFI not          ~7m                              KFY --

osZ KFZ KFE . Det DET RAZ DE Off EN - Det RNZ

                                                                                      . . _ __ O(V 1

2 3 4 S

                                                                                            - ^ - - - - - - _ , _ _ _                      __ _                      ' ' ' - - - ~ ' - - - - - - - - - - - - . - - . , , _ _ _ _ _ _ _ ,

21M 5.02-CND Revision 2 Page 219 of 238 O ATTACHMENT 8.H (CONT) 9 13 11 12 13 16 15 16 17 18 19 20 21 22 23 26 25 26 27 28 29 - 30 31 32 TYPE SPACE TRUSS IW Wft INCIDEECES ,

  • N BELEASES STA F ~ ~ M ~~~ Em F M g STA F . . M . . . Em F ~..~..M ~ ~

E 29.E3 ALL ; P0lsson 0.3 ALL ; DERS 0.2M ALL G 11.2E3 ALL ; CTE 0.0000065 ALL FYLD 36.0 ALL tut 66.C CousTANTS DENS 1E*3 CONSTANTS MTA MTA MTA IW WER PROPEhTIES TA8LE 'STEELWe ey g a TASLE 'TWEse' 'T X7

  • TASLE *TURERECT* 'T~X~M' TAALE 'STEELC' 'Cl ~T TTPE 'cuAmutt'
                        ~ TAALE 'STEELNC' 'MC X              ' TYPE 'CNNEEL' TABLE ' STEELL' 'l         8 TABLE ' STEELL 8 AK 100. AT 100.'LAN IX 1000.                IT 1000.         It 1000.

AM AT AZ IX XY 11 ST SZ llERTIA 0F JOIETS LIASW ltERTIA 0F JOINTS FACTOR 1 A00

            $ INPUT IElGNT OF CtBElulTS / 0131E8 lu PGNOS ( LS$ )

LluRAR X Y .Z LINEAR X ~ T Z LlWEAR X Y Z LIMAR X Y Z L' dAR X Y Z N DATA PLOT DEylCE PetuTER WID 10 LEN 10 PLOT PROJECTION XT PLOT P90JECTICBI XZ f

 \

l 4 1 21M 5.02 CND ' Revision 2 i Page 220 of 238 i I t , i i ATTACHMENT 8.H (CONT) i i i $ PLOT PROJECTION YZ CROUP '& RET

  • DEFINifl0N l JOI ALL ACTlvt OTNAMIC DEGREE STATIC l; J01 DECREE OF FREEDON
          '&tET' KT,YT,ZT i          END i          UNITS C M CS ASSENGLE FOR OfuAMICS

- MODAL ANALYSIS MAX FRE0 40.0 I List DYNAMIC EIGENVALUES > LIST DYNAMIC EIGENVECTORS i LIST DYNAMIC NORM PART FACTORS

          *CMANGE

- slNERT! A 0F JolNTS LtiMPED - SINERTIA 0F JotNTS FACTOR 1 ADO i S LINEAR X 0.0 Y 0.0 2 0.0 SADDIT10N UNITS DEGREES S DEAD LOAD OF CONDuff SUPPORT lif IN Y DIRECTION 1 LOADING 1 ' UNIT "G" +M DIRECTION' DEAD LOAD Ca r CLQ X 1.0 BY J0lNTS SJolNT LOADS ' S MX Y Z SIWWER LOADS ' S FORCE X COM FRA P L 1.0 4 S FORCE Y CON FRA P L 1.0

           $                FOR2 2 COM FRA P                    L    1.0 i           S                MG4     X CON FRA P                 L    1.0 S                MON     Y CON FRA P                 L    1.0 S                MON     Z CON FRA P                 L    1.0 LOADING 2 ' UNIT "G"    T DIRECTION' CEAD L.MD CGe' GLQ Y 1.0 SY J0lNTS SJOINT LOADS 8                      MON X          Y          Z l
           $NOWER LOADS S                FORCE X CON FRA P                    L 1.0 S                FORCE Y CON FRA P                    L 1.0 1
  • $ FORCE Z CON FRA P L 1.0 -

8 MON X CON FRA P L 1.0 l L 1.0 ' & INM Y CON FRA P

           $                MWI      Z CON FRA P                 L    *0 LOADING 3 ' UNIT age ,Z DIRECTION' C4AD LORD CO W GLO 1 1.0 BY JOIMTS
SJOINT LQ408 i S M3s X Y Z SIW WER LORDS S FORCE 1 CON FRA P L 1.0 S FORG V CON FRA P L 1.0 S. FORG Z CON FRA P L 1.0 x S NON I CJN FRA P L 1.0 S #10M Y CON FRA P L 1.0 5 h0M Z CON FRA P L 1.0 LOA 0 Cole 4 *Get Lonoln +E DIR* CtsFOPENTS -

l 1 " LO M 5 'Det LOADIM +Y Dit' CCWONENTS - 2 < LOM 4 '00E LOA 0lM +Z DIR8 LOMPONENTS - l 3 4 LOM T' 'SSE LOAul M *K DIA' Ca r0NEFTS . j 1 LG M S 'SSE LOADI N +Y DIR* CO W ONENTS - 1 2 LOM S 'SSE LOADING +Z Oltle i300NENTS - 4 v i d l l

   -                                                                                                 a

j: I 21H 5.02-CND j Revision 2 I f Page 221 of 238 .i I ATTACHMENT 8.H (CONT) 1 3 PRTET T5A0lNC DATA l SilFFNESS ANALYSIS kEDUCE BAND J LOAD COMB 10 'OSE SASS 4 5 6' RMS - l j 456 LOAD CD S 11 'SSE SASS 7 8 9e ang . 789 STRESS RESULTS ARE TO SE COMelNED AT STRESS LEVEL i 1 S FOLLOWING LOAD CASES 1000 SERIES ARE Ott & 2000 SERIES ARE SSE d LOAD COMB 1001 'DL+ SASS 4 5 6 (OSE)' COMPONENTS

  • 2 1.0 10 1.0 i

LOAD COMB 1002 'DL SASS 4 5 6 (OSE)' COMPONENTS

  • 2 1.0 10 1.0
LOAD COMB 2001 'DL* SASS 7 8 9 ($$E)e COMPONENTS -

1.0 11 1.0 I 2 LDAD COMB 2002 'DL SASS 7 8 9 (SSE)* COMPONENTS - i 2 1.0 11 1.0 f LGADS LIST - 10 TO 11 PRINT LOADING DATA

' GENERATE REquLTS
  • LOAD LIST -

1001 TO 1002 2001 TO 2002 COMINED ALL 4 LOAD LIST ALL cuTPUT MCIMAL i t GJTPUT BY JotNTS ; GJTPUT ST EleERS Ll5T DISPLACEMENTS, REACTIONS, FONCES 4 SECTION FR NS 2 0.0 1.0 GacuP '&LM' DEFINITION MEMERS ALL SUT l Ee CF GAGJP DEFINITice i

LIST SECTION STRESS MEMBERS 'SLM' S DL Ctse Ost (f0R CNECK WLD) i LOAD LIST -

1001 TO 1002 i LIST FCaCES ENWLOPE MEDGERS S OL Ctse SSE (fan CNECK WLO) LOAD LIST - I 2001 TO 2002 LIST FORCES ENVELOPE MEfrWAS PAAAIETEtt

            'CIIlt' 'AISC' ALL ; 'VERStege e60U1' ALL
            'Tottlous *TES' ALL * 'Cs' 1.0 ALL
            'ASF'1.6LOABlW882601TO2002
            ' FSIOtul' O.5 ALL
             'FAceAM' O.9 ALL l'            'f ATIIREt 0.9 ALL
             'Fatul'          O.9 ALL

' PARAfETERS

              'LY'                IWst
              'LT8                IEll     *

! 'LTe egg i 'L28 set ,,

               'LE'                W
               'L2'                est
               ' OIT '             Ist     _,
               'M'                 E
                ' OtZ '            IEft
                ' 0 11 '           14M j             -egye                 sgm
                'KY'               IEN egye              pag i                                   pggg

' egge lO

21M 5.02 CND Revision 2 Page 222 of 238 ATTACHMENT 8.H (CONT)

                                     .Kz'                                           Mn
                                     'KZ'                                           MM
                                     'tmLCFS                                                              MM e gug,gr e                                                            gn "JNLCF'                                                               MM LOAD LIST -

1001 TO 1002 2001 TO 2002

  • CHECK CODE ALL SUT CENERATE TRACE 6 RESULis FOR TAILihG MCMSEts FINISM NOMESSAGft

21M 5.02-CND Revision 2 Page 223 of 238 O ATTACHMENT 8.I QUALIFICATION OF CA-Sa SUPPORTS As an alternative, CA Sa Support capacities for Ca Sa are clamp capacities. support can also be qualified by one of the following methods: (1) Qualify the support using force level approach. See example A. See example B. (2) Qualify the support using stress level approach. NOTE: Attachment 8.1 data taken from SAG.CP25 Attachment BB, O O I

2IM 5.02-CND Revision 2 Page 224 of 238 ATTACHMENT 8 I (CONT) EXAMPLE A Oualification of CA-Sa Sueoort by Force Level Acoroach (a) Support No. Support Type: Ca Sa - Attached to wall (Cond Vert.) Computer Run No. Date JT. No. jV A ... s T A r h hj .J&_ 1 ) oH ' v i i s - , -i

                          .k,                        k      *...
                                                              ". .'. .'h.             .'. .h.                 . , .), = 2/, w *-,."' h.      .
            . .....h.       .          y,           ...

i M A _

                                                                                                                ; [w=-% wl0TH
                                                                 ~
                                                                                                    ~
                                                                                                                '        QF CLAMP PLAN                                                         SECTION A-A O

CONDUli SIZE HILTl BOLT SIZE __ 1 FORCE 5 AT CONOUni CENTER D.L.

  • 0,B.E. O.L.+ 5.5.: I
                                  $EISMIC                                                                         v sos s>. Tsues)

A 3upsi LT k CON 01- Gn 9v o {gv *L a x( ues>}-{gTues>} A s {gh3*bd 9N*L Sv3 *ij*k Ubs) 00sl fl0N o(@]x(i

                                                                                                  +1                                      T 0.8.E.

S.S.E. T ALLOWABLE 5 INTER. INTER-PULL OUT/BOLi' ,5MEAR/ ACTION ACTION

                                                          'v     T.           (T\2 /       '4 PU LOAO                                                                                  0            SHEAR            ,
                                                                                                                                                  < 1.0
  • C0ue*

C tin.) l (In'.) 32 (In.) 7 ,* p ' fib s)fs $* (tbs) Na. r' 'N7J * \ EA D 8I S ups) A p/P,+S'$/3 ,g yg 0.L.

  • 0.8.E.

D.L.

        + S.S.E.
  • YES - SUPPORT IS 0.K.

NO - SEE EX AuPt.E B tTH15 ATT AChuf.NT) O

                                                                                           -          - -                ~-.       . __ . ._                 ... __

l 21M 5.02 CND ! Revision 2 i. ~ Page 225 of 238 f 3-ATTACHMENT 8.I (CONT) EXAMPLE A: Oualification of CA 5a Succort by Force Level Acoroach l

(b) Support No.

1 Support Type: Ca-Sa - Attached to wall (Cond Horz.) I Date { i JT. No. Computer Run No. i t i o M: . :.- A y T.:.- g

(A ~  ;, . .
                                                                                                                                           . . . . ~ a.

i

                                                                                                                                           .:. o 1 l

Tjb- '*:' i (l ~ ., V I _

                                                                                                                      '                        D By
                                                                                                                                 .q.> ,.x ,- -.--

m i ' - " o l l * , { a n s * ',. 1 w

                                                                                                                         -A l                    f'.
                                                                        .N.-                                                                <>

x-1- ELEVAT10N SECT 10N A-A-I + HILTI BOLT ~ SIZE - i CONOUlT SIZE FORCES AT CONDutT CENTER f D.L. + 0 R L O .L. + 5.5.E. SEISWIC A obst 's008' i Gn . Sv voces ! Touttai a s

                             'T           'k-

[9hg*LT [T utti4g fv3T[9 CON 01- ' Ub s) Ob s) T10N {g xL el xLf v" o v ubs>] d l 1 O.84. 4 5.52. i. ALLOWARLE5 INTER

  • INTER-PULt. OUT/ BOLT 5 HEAR / BOLT
8. 8- P s) s) P/p,5a ,E )

n$ : - un'.r ud.) ,, 3, g in i 4 0.L. 1

                         + 0.8.E.

i- 0.L.

                         + 5.54.

E~(

                        . YES - SUPPORT' iS 0.K.

NO SEE EX AMPt.E 8 (THIS ATT ACwENT) _ __ ~ , . . . , . _ .

21M 5,02 CND

                                                                                                                                          -Revision 2-Page 226 of 238 ATI'ACHMENT 8 I (CONT)

EXAKPLE A: Oualification of CA-$a Suecort bv Force Level Aceroach (c) Support No. Support Type: Ca-Sa - Attached to ceiling JT. No. Computer Run No. Date _. ,w % wl0TH

                                                                                                                               ', OF CLAMP
                                                                                                                         ~
                             , _                        le        _,                 Y                                     _

lJ3=2/3,

                   *.e      a                                                  ,
                                                                                   *a                   '*.                                                  *8  . e i   ..                           .            .. i                                               i   .s           i Q

I y g Vk Et.EvATION SECT 10N A-A

                   - CONOUli SIZE                                                                        HILTI BOLT 512E FORCE 5 AT CONDulT CENTER SEISMIC                                             o.t. . O.B.E.                              D .t  . + 5.5.E.

t T k CON 01- Gn Ov voug o . o Anubs) v sub,ps . T3uoss 4 3uo si nesi 00s1 TION +t x(T (9 *l (9g* Tg tes)f

  • I *I-g (9g*lf(9g*
                                                   ' O.84.

5.5.E. PUI.L QUT/50LY SMEAR /B0 T ALLOWABLE 5 (NTER* L NI dit- I ACTION.. ACTION' o ne.,

                                                    -Ji ne.,
                                                                .1 2-ne.,         ,
                                                                                 * -f.2 . g, . ,{s .

V8 3

                                                                                                                    ,po.,

SHEAR s, oos, y,,. ys, ,o. ,,

                                                                                 , e , ,, , ,           o, ,,

D.L.

       + 0.S.E.
         - 0.L.
        + 5.5.E.
      . VES - SUPPORT IS 0.K.

NO - $(E EX AMPl.E B (THIS ATT ACHWENT)

J l 21M 5.02-CND .f Revision 2 Page 227 of 238 l ATTACHMENT 8.I (CONT) l ] EXAMPLE A: Oualification of CA-Sa Suovert by Force Level Acoroach j  ; (d) Support No. i Support Type: Ca-Sa Attached to floor Cornputer Run No. Date JT. No. j

                                                      *4                         e-4                                                      f T                                  A 4

A A . -4 a - t v 6

                                          "            i              (
1. ;.k5\ jn3 ,L, .J, = y3 w N:&.~\ m 1

l.s:3.. 1

                                           .         j,           .
                                                                            .-                       .r..
                                           '~                     '                A                                           l w: % WIOTH 4
                                                                               -.-                                          =i        .: of giug-ELEVATION                                                                    SECTION A-A i.O 1

CONOUli SIZE HILTl BOLT SIZE FORCE 5 AT CON 006T CENTER 0.L.

  • 0.B.L 0.L . + 5.5.E.

SEISMIC Aoubs) T As 008' l Cv vu Todess v sdDJo s

                        'T              \        CON 01-         On                      o         -

{g xt] {g xQ {g -l xt. {g ues)]-{g ML 4] ' Ubs) Obsl TION {g al ML y _ 4 0.8.E. 5.5.E. ALLOWABLE 5 INTEA- tNTER-PULL OUT/SQL[ ,5MEAR/BO T 'c " o" l gi* o 2, 2, } . 9'5 . if,' '(F.('* "+ P lbs) se SAUDs) ,ha+ fSa M'o" vis i No (In.) (In.) (In.) '

                                                                            , p tibst       s 5 Obal 0.L.
  • O.S.E.

1 O.L.

  • 5.5.E.
  • YES - SUPPORT IS 0.K.

NO - SEE ExauPLE 8 THl5 ATTACHWENT) j

^ L/
                                                                                                                 - , , ,         ,             . _ . .            .-             ,n

l l 2IM-5.02 CND-Revision 2 . Page 228 of 238

O ATTACHMENT 8.I (CONT)

EXAMPLE B: Oualification of CA Sa sucoort by Stress Level Acoroach. i y A D A y -6 l . . i.* *r. i.'

                                              "y( A3 j                            if :t.                                                                   *fe i y                                                                    -

I

                                              .                                               "I '$ ** "

o : 1.75' t

                                              !                                                                                            ji : 5.125' pi,-: a
                                                  -         - X(V)                          4                -
                                                                                                                                           )2 = 0.54' C c. 5                  /
                                     ~

l PA :- 608 9 2b / , I SA: 1021 h""~Z(T)W b *:n:f -* l i <-8 <.:.- < : .- . 5 '. I'j.k' l '. ) .Y . l 5 'N < ELEVATION SECTION A-A i SEISM IC G V ALUES (0.B.E.)*: 9 x = 2.36 g y = 2.77 g g: 2.16 (USE 2.36)

  • IN THIS EXAMPLE. G : 1.5 x PEAK l-f WHEN DESIGN G ARE USED. ROTATION OF G VALUES 15 REQUIRE 0.

FROM COMPUTER RUN. LOAO C ASES 1. 2 AND 3: F  : 88* F y : 67* F 7  : 96" l- x

(A) PULL 0UT/ BOLT (c) FROM 0.8.E.

(110UE TO Fx (V) V . (88 x 2.36) = -104" 2 2 (ii)DUE TO Fy (A)

                                          -Ao        .        (6_7 x 2.77)(1.75)                 3oi.-

(2)(0.541-2)2 (Ill> 0UE TO Fz (T)

To . (96 x 2.36MI.75) =-78=

i ), 5.125 e

                                                                                                                         - - - - - - . <         ,     e e-w.
  ..           ~ - - - . . . . - . . - - . . - -                               . _ . , . .                           .               -                  .-             -                            .                   . . . - - - . .

d 2IM 5.02 CND Revision 2 f Page 229 of 238 2- ,.I,O ATTACMENT 8.I (CONT) EXAMPLE B: Oualification of CA-Sa succort hy Stress Level Anoroach.  ; I SRSS-0F PULL OUT/ BOLT OUE_TO 0.B.E. LOA 05 l PSRSS : (104/+ (301/+ (78f : 328* i (o) FROM 0.L. (A) f AXc (67)(1.75)  : 109" { (2)(0.54) j 2 xj2 i

                                                           .'. TOTAL PULL-0UT/ BOLT = POL + PSRSS l                                                                                                                                              : 109 + 328 1-
                                                                            .-                                                                = 437"

- (8) SHEAR /80LT ] . i (c) FROM 0.B.E. (1) DUE TO Fy (A) f A , (67)(2.77)  : 93* i 2 2- ' -(in OUE TO F,., (Tl i j 1 - (96)(2.36) _ = ; p. !, ~ 2 2 (b) FROM- 0.L. ( A) 4

=_34=
                                                                                                                                              +
                                                            .'. SHEAR / BOLT =
                                                                                                       =                  (t 14)#+ (93 + 34)*

f: = g71 P S- -437 171

-+ -: 0.89 -

l INTERACTION RATIO : - P3 +35 _ 608 1021 i-o i

                                                      ,-     ,     -.  ._                 . . _ . . ~ . . . - . . - . , - . . , . . - , . _                       . . . _ _ . . . _ . . _ _ . _ . . . _ . _ . . _ . . .

21M-5.02 CND Revision 2 Page 230 of 238 ATTACHMENT 8.J GUIDELINES FOR PREPARATION OF CONDUIT IS0 METRICS, MODIFIED AND IN SUPPORT DRAWINGS The following are guidelines on how to prepare conduit isometrias (ISO), modified, and IN support drawings:

1. Information on the isometric shall be as listed below:
1. Initial " issue number" shall be "CP-01".
2. Initial issue shall generally read: Issued for Construction.
3. Conduit Support Location.

4, a. For Unit 2 conduits that are located in the Unit 2 areas (Reactor, Containment, and Safeguards building), the conduit drawint number shall be as follows: 52-0910 - 12345 - SK.01 Designates Unit 2 Unique conduit number. Sketch number This part of conduit ID comes after the alphabetical letter designating the circuit train

b. For Unit 2 conduits that are located in the comaon areas (Electrical, Fuel, Auxiliary and Service We,ter Intake buildings), the conduit drawing shall be as follows:

N- / S-0910 - 12343 - SK.01 Designates Unit 2 Unique conduit number. Sketch number recommended This part of conduit ID comes after the alphabetical letter designating the circuit train Exceptions to this numbering scheme may be made by consulting the lead.

5. Routing of conduit and location of supports and electrical fittings.

Dimensions shall be shown from conduit termination point to center lina of support attachment to center line of bend to edge of electrical fitting

  • to center line of support as applicable.
  • Electrical fittings to be located are those affecting support loading as defined in the S 0910 or, S2-0910 LS series drawings.

Each support attached to the containment liner shall have an elevation and azimuth shown on the isometric.

6. The actual angle for any bend with an angle less than 15 degrees is not required to be shown on the drawing. A bend which is less than 15 degrees will have the change of direction shown onItthe ISO and is not the an51 e will be labeled as less than 15 degrees.

required to dimension to the center line of the bend in this case. Span length from support to support must be measured along the "N center line of conduit.

7. The primary conduit number and diameter shall be included in all sketches. Also, secondary conduit number will be included.

l' 1

21M 5.02-CND Revision 2 Page 231 of 238 O ATTACHMENT 8.J (CONT'D)

8. Unique support nuabar, support type, decision points, modified -

typical and individually engineered "IN" support callouts.

9. " Seismic Category" of the conduit.
10. Junction boxes shall be shown with solid lines and support type callout on only one 150. This ISO shall also show all of-the conduit exiting the junction box. On other IS0s where the same f unction box appears, the junction box will be shown with dashed
                       .ines,
11. When more than one conduit-is attached to a typical support.--the isometric containing-the same unique identifier as the support shall note all of the conduits that share the support- using the conduit size and unique identifier (i.e., isometric SH, 05252-SK01 with support 03 list all conduits shared with that support)' .

When more than one conduit is attached to-a modified typical support or an "IN" support, the additional conduit may be shown on the applicable support drawing in lieu of noting them on the isometric.

12. For P2558 clamps, no conduit diameter will'be listed (i.e., P2558-30 the -30 will not be listed) .
13. Approximate column line location and elevation along with actual-room number listed on the isometric,
14. Horizontal, vertical and rolling offsets in degrees.

(} 15. Dimensions to fittings (excluding couplings, including size and type) and configurations to be included oh -isometric.

16. All support "L" and "a" dimensions.
17. Identify any and all fittings in bent overhangs past the last support.

II. When a typical support requires modification, minor changes to a typical support may be called out on the isometric. In lieu'of this, a modified support drawing shall be prepared. The following vill be shown on the modified typical-(as applicable): 1=. Show actual attributes of decision points. 2.- Show dimensions required to locate.Hilti or P.ichmond attachment bolts with respect to the base _ member.

a. 'Show HKR diameter and required minimum embedmont if..other than listed in Drawing S-0910 or S2-0910 General Notes. All required minimum embedmonts will be shown for HSKB. -
3. All non-standard shin plate and filler plate sizes.
4. Stud sizes, clamp types, clamp sizes and torque values.
5. ' Orientation of view.-

21M 5.02 CND Revision 2 Page 232 of 238 \ ATTACHMENT 8.J (CONT'D)

6. Location of support.
a. Room number, approximate elevation and approximate location,
b. "L" and "a" max. dimensions if applicable or dimension (s) from support mounting surface to centerline of conduit (s) .
7. Notes From the typical support drawing that is modified, delete general notes which do not apply. Also, add notes as applicable, i.e.,:
1. This support is a modification of Sh. .
2. All dimensions are i U.0.N.
8. Title Block
a. Change typical support type to unique conduit identifier and support number (i.e., CSM-2a-II to C23G12345-10).
9. All conduit run diameters and identifier (i.e. , 4" O C23G12345) for conduit supports. For junction box support list primary conduit as a minimum.
10. Any changes in structural member sizes.
11. When a conduit suppdrt is attached to another discipline's support, show the other discipline's support in phantom, list the phantomed support's number and label it as (Ref.).

III. When an "IN" support is required, an "IN" support drawing shall be prepared: A. As a minimum, the following shall be required on the "IN" Support drawing: (as applicable)

1. All conduit diameters and unique numbers. All conduit numbers that are not the main conduit number as shown as (Ref.).
2. Support mounting surface,
a. Identify if wall, floor, ceiling, etc., or to another discipline's support,
b. When a conduit support is attached to another discipline's support, show the other discipline's support in phantom, list the phantomed support's number and label it as (Ref.) .

A U

p l l !- 21M 5.02-CND-Revision 2 i" Page 233 of 238 2 E 1 ATTACHMENT 8.J (CONT'D) i i 3. Support Anchorage J l Anchor Bolts j a. Type j 1. Thru bolts i . 2. Richmond Screw Anchors- . ' 3. Expansion Anchors (Hilt! Kwik or Super Kwik Bolts)

s. HKB diameter and required minimum embedment if

,f other than listed in Drawing S 0910 or S2-0910 l-Ceneral Notes. All required minimum embedments 4 will be shown for FRKB. 1

b. Material (A-325,-A 490, etc.) tor bolts other than
i. expansion anchors.

Anchor Spacing 3 l a. Spacing between exp' ansion anchor bolts' on separate adjacent fixtures if in violation 1of Specification CPES S 2001.. i l b. Spacing between expansion- anchor bolts - and embedded plates l

                             - if in violation of Specification CPES-S-2001= requirements.

l c. Spacing between expansion anchor bolts Land the edge of concrete (including wall and floor penetrations) if in + violation of Specification CPES-S-2001 requirements. l d. Spacing between expansion anchor bolts and the heel-of the ' angles used for water tight doors and/or block openings if. in violation of Specification CPES-5-2001 requirements.- f L e. Show dimensions required to locate Hilti1or Richmond I attachment: bolts with -respect to' the base member. t . Location of embedded plate if_not in accordance with S-0910 or-

4.

l S2 0910_ General-Notes. t NOTE': Orientation of views will be clearly _ defined. Section l views willibe used as required.. i 4 LO ( 4 rE.'-

          .,               .Wy                            3.'  .     -        ,~r.      ,.-, e. . . , , .,- , .                  ,..,-,.-,,m..w      . ~ , . . .         , ,. .m,.,
                                                                                                                                                           \

21M 5.02-CND Revision 2 1 Page 234 of 238 l j ATTACHMENT 8.K GUIDELINES FOR PREPARATION OF CONDUIT DRAVINGS ~ The following are guidelines on how to prepare a conduit drawing (matrix):

1. As a minimum, the conduit drawing matrix shall contain:

o Conduit (Primary and secondary) identification number and size o Junction box identification number and size Origin and destination of conduit o o Conduit maximum spans and types i o Condulet fittings o Support numbers and types 4 I o Reference location

2. For Unit 2 conduits that are located in the Unit 2 areas (Reactor, Containment, and Safeguards building), the conduit drawing number shall be as follows:

4 S2 0910 SH. -121M_-SK.91

designates Sketch number 4

Unit 2 Uniqua conduit number. 1 \ This part of conduit ID comes after the alphabetical j latter designating the circuit train. i Exceptions to this numbering scheme may be made by. consulting the lead. j ~

3. For Unit 2 conduits that are located in the common areas (Electrical, Fuel, Auxilian and Service Water Intake buildings), the conduit drawing

! shall be as follows: S-0910-2X SH. 121M. - SK.91 l a 4 desi p ten Sketch number Unit 2 i recommended l Unique conduit number. This part of conduit ID - comes af ter the alphabetical letter desi pating the circuit train

  ~

Exceptions to this numbering scheme may be made by consulting the lead. R l (_ l t t

                                                                         -ee+
                                                     -.                       - ,._m   . , e , ,--e..        . -e   w rw==-.-e--++wer      e n-    a e=

21M 5.02 CND

  • Revision 2 Page 235 of 238
V ATTACHMENT 8 K (CONT'D) 4
4. Supports shall be numbered as -follows:
c23c12345 -

Q1 I i Sequence number l Primary conduit 3

number

'o l The sequence number shall be a unique identifier (i.e., not repeated on l the same conduit run). Support number for secondary supports shall be shown as XX S. unere XX is the support's sequence number on the primary conduit.

5. A detailed sketch of modified supports shall be provided on separate sketches of the conduit drawing. When a sketch of a modified support is prepared, the following shall be shown in general:

1.~ All conduit diameters and unique numbers. 2

2. Support mounting surface, j 3. Suppcrt structural members and dimensions.

4 Walda sizes. S. Anchor bolts size, type and embedmont length (if not per the generic drawings).. ?

6. Structural bolts si2e and material.
7. Anchor bolt spacing when in violation with the requirements of
Specification CPES-S 2001

' 8. Conduit clamp type (if not per the generic drawings). I. 9. Orientation of support with respect to (N-S), (E-W) or vertical directions. 10, All non-standard shin plate and filler plate sizes. ! 'll. Any other non-standard components and miscellaneous data. ! 6. In general, support -types shall be obtained from the PESD series of S2-0910 useddrawi m . Sup as applicable. port types from the S 0910 or S2-0910 drawings may

7. On a case by case basis, the engineer shall- review the results of the over-calculation and study the possibility of' allowing a tolerance of +6" the maximum span shown on the drawing matrix.  :

If it is determined that-this tolerance is feasible, the following note shall be added to the - drawing notes: O " INSTALLATION TOLERANCE OF +6" IS ALI4WED FOR CONSTRUCTION IF SPAN-( EXCEEDS MAX 1 MUM SPAN." 1 e -v--n-e e s6 a + g-e-,- ~ w --e,-- ev e -m- ,- ,-n-- . ,- - -~-- - er-

   --                               s-  -  J-- - - - -- - A- a -

21M 5 02 CND Rsvision 2 Page 236 cf 238 ATTACHMENT 8.K (CONT'D)

8. TU Electric's INDMS Database shall be reviewed to verify the conduit origination and termination points, conduit identification and size.

i O a ' G

                                                                                                                   ~

2IM 5.02.CND Revisicn 2 Pega 237 cf 238 ATTACHMENT 8,L b Q CA14U1ATION REVIEV CHECKLIST Calculation Mumbert Rev.: Question YES NO NA . 1. Are all generic supports design validated per latest design criteria?

2. Are all modified or IN supports qualified per latest design criteria?
3. Are conduit spans validated por latest S2-0910 span requirements or per latest design criteria?
4. Are conduit isometrics with a threaded fitting at a bent overhang adequately supported?
5. Is conduit yield stress (Fy) used smaller than or equal to 25 KSI?
6. Is conduit modulus of elasticity (E) used equal to 29x10' KSI?
                         )
                  ' ./
7. Is the correct coefficient of thermal expansion used?
8. Are clamps with reduced capacities evaluated per latest clamp capacity

' requirments?

9. Are tube steel to tube steel connections evaluated per latest design criteria? __

Corments: ABB 31"1 m PEY BY DATP CMPCTED DATE ABB N"'LL CORPOR.AT10N L_

l i 21M.S.02 CND Revision 2 Page 238 of 238 ATTACHMENT 8.L (CONT'D) Calculation Review Checklist Calculation Number Rev. Question YES NO NA

10. Is base metal shear checked for veld sllowable determination?
11. Are support stiffness' considered when conduit support is attached to a cable tray hanger (CTH) or HVAC support?
12. Is the effect of two (2) inch topping considered in support design validation?
13. Are junction boxes qualified per
 -                                                                                                               latest criteria?
14. Is the dead load of the junction box "[ I accounted for?

C 15. Is the correct weld pattern for ( junction box support checked?

                                                                                                        ,16. Are open items resolved?
17. Does the couble band span adjacent to overhang, with CSM-2a-II type support as first support, meet the reduced span allowable?
18. Does calculation conform to the latest design criteria?

Comments: O ABB ai% - REV BY DATE CMPfEED ' D AT1' 08 tuPtt t. CORPOE.ATION _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .}}