ML20128G986

From kanterella
Jump to navigation Jump to search
Ampacity of Power Cable Wrapped W/330-660 Installed as Free Air Drop
ML20128G986
Person / Time
Site: Comanche Peak Luminant icon.png
Issue date: 10/02/1992
From: Blagbrough R
STONE & WEBSTER, INC.
To:
Shared Package
ML20127K787 List:
References
16345-EE(B)-140, 16345-EE(B)-140-R04, 16345-EE(B)-140-R4, NUDOCS 9302160212
Download: ML20128G986 (172)


Text

_ _ _ - _ - _ _ _ _ _ - _ _ _ _ _ _ _ _ - - _ - _ _ _ _ _ _ - _ _ _ _.

FIGU#I 7+1 EDCN.02 CALCULATION COYER SHEET TU ELECTRIC DESIGN ENGINEERING ORGANIZATION-

  • I CALCULATION COVER SHEET paw NO. 1 o f J.8 3! CROANIZATION:

TOTAL NO. 0F PAGES M3 I! C ALCULATION NC.:

'I AFFECTED UNIT NUM0ER:

16343-EE(B)-140 SWEC 01 O i ANo COMMON

~ 18) g"y',j""T'*g"8' O2 O sOTH-REv. NC.: 4 0I 0I 7i DOES THE CALCULATION APPECT CALCULAfl0N CLAS$171 CATION-CALCULATl0N APPUES TO A DESIGN M00lPICATION A UCENSSIG DOCUMENT?

@ C"'0'"

O YES O NO O YES G NO IF YES.

u CORRESPONDENCE NO.:

O NON 5AFETY 1F YEB. DM NO.:

ei Ampacity of power ccble vrapped with 330-660 installed as free TITLE:

_rir drop.

I DESCRIPTION:

Calculates cable ampacities for free air drot.a wrapped with Thermolag 330-660 in two different installation methods and varying product

-tolerance. Free air drop vrapped conditions are compared to tray and conduit conditions to establish maximum nur.ber of cables permitted under wrap.

'2I NA 2

cEs10N CHANGE TREN0000 CODE 3 / g g /g

- T RESPONSitLE ENGINEER (S). DATE; 16 l CMECKER,DATE:

9'.v b d W.

S\\a @re e te toht/ Q QRiod M, C4m4 W

't tfa4vuh A.

Lf}tLA M. I Op A 10[2/93.

J g RESPONSISLE SUPERVISING ENG'NEER. DATE:

17 DES!QN VERIFg. DgTE:

.g 4

yg pl.L u m.

n j, pn io n m m. z -,2.

ECES.03 REY.3 PAGE 7.1 10F 1 gRO216021'2 Ng*j 9 A

ADOCK 05000446 PDR j

4 n GU N 7.2 INDEX SMEET TU ELECTRIC DESIGN ENGINEERING ORGANIZATION 32.1 cai.cutArion no.:

L2.0 Pace INDEX SHEET g33g.tgtp gy j g g gg h,g,.26i P AGES REVISED PAGES ADDED P AGES DELETED Pa ge s),15 -- 6',*7 Ms Pages 6A, 16 - 18 Pages 1B, IC, IF, 1H 4

Pages 8 - 10 11 pIL/4v Attach BB2 14 pages 3

Pages, 12 - 15 Attach BB3 18 pages ullML d

i d

i 1

J 4

PA 7.2 a 10F 1 r

CPSES UtilT 116345 EE(B) 140, Rev 4 Page Ib of 18 "Ampacity of Power Cable Wrap. W/Thermolag inst. as Fr. ' i-Do" This page has been deleted.

3 i

w I

CPSES UNIT 116M5 EE(B) 140 Rev 4 Page Ic of 18

  • Ampacity of Power Cable Wrap. W/Thermolag Irst. u Free Air D/

This page has been deleted.

s 4

6 4

Y e

4 i

i 4

4 n

'N CPSES UNTT 11045 EE(B) 140, Re t 2 Page id of )Si k

  • Ampuin of Pour Ce Wrap. WAV.xmq Inn. u Fm Air Dp' M Qi&&I QI cEAMgas Rev.1 Pages 5,7 Added " Assumption 8" stating the significance of factors A' and B'g and provided Reference for same.

Pages 8,9 Revised Tables A and B because of changes made to factors A' jh and B8 Attachment B1, pg 2 Revised " CABLE" matrix to clarify accuracy of Edc25.

Attachment B1, pp 9,13,14 Ravised factors A' and B',

and related matrices.

Attachment B2, pp 1,2,3,5, Revised matrices dependant upon 8 and 10 above revisions.

ERY Z Title page Added Rev 2 sign-off Page id, le Added summary of Rev 2 changes Page if Added new " Review Statement for safety Related Calculation" for-Rev 2.

Page 2 Changed titles of attachments for clarity Page 3-0 Modified text to agree with new attachment, re-numbering of attachment. Discussion added to cover calculation of ampacities based on 3, 4 and 5 inch conduits.

Approach to account for diversity modified to more accurately reflect plant operation. Statement of "prelimary issue" deleted, 44 since referenced document has been issued.

i

_______ ____________.__ _ ______ __.._________.___ ____.__ _ ___. _ __ _ _ _ _.a

J

  • An A CPSES UNIT 116345 EE(B) 140, Rev 2 ' age le of /

{

"Ampacity of Power Cable Wrup. W/Thermoly Inu. as Free Air Dp' J

Page 9-12 Table A, B and text revised to reflect new results. Table C added to convey results in an i

alternate fashion for use by.

construction.

Attachment A Heading revised for clarity Attachment bl, pg 1,2 Heading revised for clarity Attachment B1, pg 3,4 Revised approach to calculate i

number of cables in conduit to reflect approach in NEC and to i

calculate nunner of cables in 3,4 and 5 inch conduits.

Attachment B1, pg 5 Text added for clarity.

Attachment B1, pg 6-7 New results.

Attachment B1, pg 8 Revised to reflect results of Attachment Y d

l Attachment B1, pg 9 Results changed.

y%s Attachment B2 Completely revised-M taken from Rev 1, Attachmenc Bl. No change in methodology excepc to include thermal resistance of jacket in computation.

Results have changed.

Attachment B3 Previously called Attachment B2 in Rev 1. New results. Table headings revised for clarity.

l

- Attachment C Revised ht.ading and text for clarity.

Attachment D Revised heading for clarity.-

h ay amp &

/ CA.IQ,4a:te acity Attachment F Added to t-diversity factors.

S T

--n.,

- =

[

CPSES UNIT 116345 EE(B) 140, P.ev 4 Page If of 18

'Ampacity of Power Cable Wrap. W/Thermolag inst. as Free Air Dp*

This page has been deleted.

W 4

t 0

N v

9 N

t i

4 i

I

~

STONE f.CE85TER ENGINEERING CCCP00Afl0N CALCUL ATION SHEET

w..

- CALCUL ATION IDENTIFICATION NUMBER J,0 C R W.O. No.

OlVISION & GROUP CELCUL ATION NO.

OPTIONAL TASK CODE PAGE

//$p/5 FEC70

/ Vo Xw fe,; g i

8 5

+

If.'/ b._

a Teile Q AkW 43

  • ju cdf d 8e 3 c.L%ss l

y

)g A#Ad w.ksy v

}

it i

is l

d s

Pqe I e.

EdUowd 9

e.

tb LL% ekAw;*s 9

to 31 Y

i b*

'Y$0 (a

f n' a' a'. /r '

eLa eu mv wcau a b, lg p.d u SJs.ums W a

1 IS AM 9-.g 1,

.d@ M444 h.

c.tw IS 29 bf.YI f4=/4 -

d dlLf

'O

cgy, 3.

32 S, Y, w h 4% t4we os dW w pala kw n

Sh' YY

'*M p t e u s< % c ch m e L Cs.ble W%

n-wLn w cwa ~

wz v

et tr e %w y.Webt h 5 typ Au.m Av ep o

f 4s 44 j

l

CPSES UNIT 116345 EE(B) 140, Rev 4 Page lh of 18

'Ampacity of Power Cable Wrap. W/11ermolag Inst. as Free Air Dp*

This page has been deleted.

4 I

f l

l f

i I

t i

i

(

t 4

i k

1

.r--

y c.

1

-Q i

CPSES UNIT 1 16345-EE(SH44 REY 2 Papr 2ofW

'Ampecsy of tomw CsWe IHep, W/Themt%g trut at Ern Ab Dp' 9EILIME PAGE NO.

TITLE PAGE 1, is-tg IN DEX SwFr. T REV4DI-SEATEMENT F^E ?METX

  • A??O CAZ.

A n

_ A

_sw se, e La x

4,t h n,3 rum.

1-~-

SUMMARY

OF CHANGES Id,le ; {

h 2h g OUTLINE i

OBJECTIVE OF CALCUIATION 3

i i

METHODOLOGY 3-5 ASSUMPTIONS 5,6Q SOURCES OF DATA /REYERENCES 7,8 9 Nb k CONCLUSIONS ATTynunmT A " Cable Parameters" 9 pages ATTAR"mW1rf 31 " Interim Calculation of 5

cable Ampacity of Thermolagged Cable in Tree t

Air: Template la 9

pages ATTAcriMENT B2 " Cable Ampacity of Thermolagged Cabla in Free Air: Templata 2 12 psges ATTACEMENT E3 "Ampacity Comparison Between Free Air Thermolagged Cables and Cables in Thermolagged Raceways 17 pages ATTACEMENT C "Cahle Bundle Multiplying factors 2 pages

-ATTACEMENT D "Thermo-Lag 330-660 Emissivity F

and Thermal Conductivity" 2 pages ATTACEMENT E " Manual Confirmation of Calc-ulationA y Reviewer" 14 pages DNA ATTACEMENT F " Development of spacity Diversity Factors 2 pages l

e

+,

,,,,e-v,..

+

    • e

~

t l

i i

CPSES UNIT 116345 EE(B) 140, REV 3 Pass 2A 0 k U

'Ampedty of Power Cane Wrap. W/Thermolag Inst. as Free Mr Dp' ATTACHMENT G1 Interim Calculation of cable ampacity of Thorinolagged cable in Free Air Template 1-Modified for 8 cables Total pg= 9 ATTACHMENT G2 Cable ampacity of thermolagged cable-3/8 inch product in Free Air templato 2 Total pg= 14 4

ATTACHMENT G3 Ampacity Comparison Between Free Air Thermolagged cables.

s'3/8 inch product) and Cable j,n Thermolagged Raceway Total pg= 17 ATIACHMENT H comparicon of Ampacitime for 5/16" vs 3/8 " Thermolag product Total pg= [

ATITACHMENT I Letter from TSI 11/17/89 Total pg= {

A M A C H M E. N T W. C A \\ C o m p a d h o S % t e m o\\a g e d.

k ca w u w ec w sces Iage,r1 e$ T\\ toho\\ng on hadl\\6f less than iheet inch BI)

Tota \\ m:: W ATT AGH/MNT BB3 Lom ri son bebeen f ree &c hemo laSSed oo.Wr Goe +vec lobers ofc %ecnolag on bmb.s less %an %cee MOtd and.

ca% s 'a necmo\\assea c'mw b

%\\ PP (2 m-,-

.~

~,,

CPSES UNIT 116345 EE(B)4 40, Rev 4 Page 3 cf 18

  • Ampacity of Power C ble Wrap. W/Thermolag inst. as Free Air Dp" oBJECTIVI QI, g&qULATIoJ{

This calculation will determine the installation limit @ ! k associated with wrapping free air drops of power cables with s

Thermolag 330-660.

These limits provide the field the ability to approve a given installation involving power cables without having to che:k ampacity.

The conclusion will state restrictions with regard to the number of cables in the wrap and may make the restrictions contingent on the cables already installed in thermolagged trays, conduig3 etc.

A tiEI)ioDoLOGY w

1.

The ampacity of cables in free air when wrapped with Thermolag 330-660 will be modeled in similar fashion as cables in a conduit.

An air gap between cable and Thermolag is assumed.

References 15, 16, and 17 show how Thsrmolag is applied to cables in free air.

The wrap will not be in contact with the cable, thereby, 4

justifying the similarity of its installation with a conduit.

2.

All thermal resistance values of the cable insulation, between the cable and wrap, of the wrap, and between the wrap and air will be developed using the equations from Reference 3 (J.H. Neher, and M.H. McGrath paper) and Reference 2 (K. Petty paper).

Conservatively, no axisi heat transfer is assumed.

3.

MathCAD cottware will be used to input and arrange the source data which completely describes the cable i

parameters, e.g. conductor diameter, insulation thickness.

These are shown in template - Attachnent A, and the results are saved on a computer file in ASCII A

a for use by the templates Attachments B1, B2, d[D M 221 o

Attachment A will clearly describe the source o

e input data.

MathCADtemplateAttachmentB165bt$lbbwillcalculate 2h 4.

interin values for input into other templates.

Specifically the number of cables and conductors in a bundle, effective bundle diameters, and the maximum number of cables which can fit into a conduit are calculated.

(

f Several conditions will be calculated:

cable bundles consist of 1, 2,

3 or 5 cables, or cable bundles will be the maximum number of cables which can fit in either a 3,

4, 5,

or 6 inch conduit.

NEC definition of 40 percent cable fill in cenduit will be used to calculate the maximum number cf caolog j

d 1

Cable ampacity will be calculated for each possible bundle size discussed above using the approaches I

m

i i

CPSES UNIT I 16345 EE(B)-140, Rev 4 Page 4 of 18 "Ampacity of Power Cable Wrap Wfthermolag inst, u Free Air Op' f

outlined in Reference 3.

Due to memory limitations this jkg MathCAD template is sub-divided, with the results of ampacity calculation saied on a computer file in ASCIIformatandtransferredtotempla GA 5.

The relationship between the bundle diameter for the cables and the diameter of the individual cables is used in calculating therral resistance between cable wrap and air.

This relationship is defined on template

' /$3 Attachment C and the results saved on a computer file in i

l ASCII format and transferred into template _ Attachments w

B1 and Gl.

6.

The properties of Thermolag 330-660 are taken from Attachment D.

Since the product requires two layers wrapped longitudinally, and each layer must overlap 2 to 4 inches, the total applied thickness will be taken as 4 times the product maximum thickness.

For attachments G1, G2 and G3 product thickness data will be taken from Attachment I.

7.

Some load diversity is considered for cable bundles A

greater than 3 cables, see Assumption No.

5.

Diversity M

factors are developed and documented in MathCAD template i

A tachment F and used in MathCAD template Attachments B1 ancTGl' g The basic approach is to consider that cables 1 and 2 produce heat on the basis of 1.25 times full load current and subsequent cables produce heat on the basis i

of 1.0 times full load current.

A diversity factor is arrived by dividing this offective heat production with that based on all cables producing heat at 1.25 times full load current.

The diversity factor is used in MathCAD template Attachment Bl.

The actual number of conductors in the bundle are multiplied by this generate an effective number of diversityfactor@y()inthethermalresistance conductors for use calculations.

/g3 Once the ampacity for various numbers of cable ha_s been 8.

calculatedinMathCADtemplateAttachmentsB2,G_ndTG2%fhs it is compared against the ampacities for cables in a]

Thermolagged trays-Maintained Space, b) Thermolagged.

trays-Random Space, c) Thermolagged Conduit-Box and d)

Thermolagged Conduit-Shell.

These ampacities will be taken from DBD-EE-52, Rev.3.

Tha maximum number of cables in a free air drop which can be contained under the wrap without exceeding the ampacity of the adjoining sections of thermolagged raceway will be clearly shown on MathCAD template Attachments B3, QM e

o

,a

~,

CPSES UNIT I lb345-EE(B) M), Rev 4 Page 5 of 18 "Ampacity of Powcr Cable Wrap W/Thermolag inst, as Free Air Dp" 9.

Accuracy of file transfer between each MathCAD template will be verified by printing the files from templates and comparing results.

Computational accuracy of l

MathCAD will be verified by having the Reviewer perform a manual check of a portion of the complete calculation, selected at random using source data os input.

This manual check is included in this calculation as Attachment E.

10.

Attachments A, al, B2, B3, C, F, Qc2 'G37_and FQ are

~

~

the print outputs of MathCAD, described by Reference 19.

11.

Attachments B1, B2, and B3 cover calculations for Thermolag product thickness of 5/16 inch.

Attachments G1, G2, and G3 cover product thickness of 3/8 inch, 12.

Ampacity results in Attachment G2 were rounded to whole i

integers before ampacity comparison.

This was not done in attachment B2.

Ampacity comparison logic in Attachment G3 uses less than or equal to instead of less than from Attachment B3.

13.

Attachment DB2 uses the PRN file from B1 tr calculate

/ hi ampacity for free air drops.

It adds an e.tra layer of Thermolag for cable bundles less than three inches in diameter, per CPSES-M-2032 Rev. O and DCA 95794 Rev.

6.

Attachment BB3 uses the ampacity from Attachment BB2 and compares it to tray and conduit Ampacity.

14.

In Attachment BB3 Thermolag tray ampacities are based on i

a 40% derating factor instead of 31% as was done in Attachments B3 and G3.

Impacts on power cable size of 40% vs. 31% tray Thermolag derating factor is documented in Calc 2-EE-0053.*

i Thermolag conduit ampacities in Attachment BE3 are identical to those used in B3 and G3.

This is because it covers 3 inch and Aarger size conduits.

The thermolag conduit ampacity for 2 inch and smaller size has been changad( see calc. EE-CA-0000-3250).

ASSUMPTIONS s

1.

Trays and/or conduits are thermolagged on one or both sides.

Conduits could be boxed or shell design.

2.

Cable bundle sizes will vary, but never be larger than the number of cables that would fit in a 6 in, conduit.

  • Confinetion Required f

i l

i CFSES UNIT 116345 EE(B) 1*A Rev 4 Paac 6 of 18 Wnpacity of Power Cable Wrap. W/Thermolag Inst. as Free Air Op" l

3.

An air gap is assumed betwnen the wrap and the cable because the wrap is not flexible.

4.

For maximum thickness of product, 4 " layers" of wrap are assumed.

The wrap is applied longitudinally (eg., cigar wrap, with a 2 to 4 inch overlap for each layer).

Two layers are applied, but conservatively most sections 4

A will have 4 layers because of the overlap.

Also product g

thickness of 5/16 and 3/3 in, will be considered separately.

5.

Load diversity is considered for cable bundles y$h w

centaining more than 2 cables on the basis that third and higher number cables in the bundle carry only 1.0 times full load current at the same time as cables 1 and 2 carry 1.25 times full load. This is a reasonable assumption since:

f a.

DBD-EE-052 re@ ires all power cable to have a minimum ampacity of 1.25 x full load current (FLA).

In practica only a few cables G thp_entireM b.

~1.0 x FLA operate at 1.25 x FLA; the rest operate at or less.

6.

Thermolagged free air drops can be modelled as a conduit in the horizontal plane (conservatively, a model in the vertical direction would produce higher ampacities).

7.

Cable diameters and insulation thicknesses based on ICEA thickness, and conductor diameters will produce i

conservative e.mpacities.

It also produces the smallest possible cable diameter (smaller than that used in the database of CARDS).

8.

The equation for Rsd, thermal resistance between cable A

and thermolag, uses empirically derised constants.

M Since none of the references tested thermolag, the basis r

for selecting these constants had to be established.

These constants are assumed to depend exclusively on the thermal resistivity of conduit (or Thermolag).

Reference 20 supports this by stating "It follows therefore that a considerable variation in B for cables in single-fibre ducts may be expected depending upon the relative thermal resistivities of the duct wall and the surrounding medium, and other data which has come to the author's attention confirms this.

Thus the curve of Figure 3 for fibre duct should be considered as an upper limit."

The following Table has been developed from data contained in Reference 3.

Interpolation of this data on the basis of thermal resistivities is done to develop the A' and B' constants for Thermolag 330-660 used in

CPSES UNIT 1.t6345.EE(B).140, Rev 4 Page 6a of 18

'A:npacity of Power Cable Wrap. W/Thermolag Inst. as Free Air Dp' l

MathcAD template Attachment B2, Thermal l

Resistivity Material.LIA Airt R

1q_anLwaiti l

Fibre 5.6 0.33~

480 i

Thermolag 4.5 0.27 232 i

Transite 4.4 0.26 200 Metal conduit 3.2 0.19 2

l 9.

Three layers of 3/8" Thermolag are the maximum thickness on cable bundles of less than 3-inches in Attachments BB2 and BB3, resulting in a possible 6 layers due to i

overlap.

i 10.

DBD-052 will be revised to reflect new base-Thermolag ampacities for tray of 40% darating and 35% for conduits lass than 2a in diaineter.*

  • confirmation Required c

4 l

I l

i 1

1 4

i i

e

?e l

I i

4

[.

. i

, ~ -,

n,

,e e-r o w w~

<.~,4 e

,-n,~,,~,

9-,.

w

.y n

-n-e--

es w -

w~

~

f I%

Pqr 7ofh

}

Cr$ES UNIT! 16MME(DHM, RD'2 Mmpecuy of tone CoMe inop, W/1krmalmInst as Em M Op*

t i

t j

sovacas gz DATA /nzrnaamcas a

-l 1.

DBD-EE-052 Rev. 3. Design Basis Document " Cable Philosophy and 51stog h Criteria".

4 i

2. K.A. Petty,PAmpacity of Wrapped Cables" IEEE TranAaction, PES, j

presented at 1986 Summer Meeting j

o l

3. J.ll. Neher and M.M.McGrath. "The Calculation of the 1

Temperature Rise and Load Capability of Cable Systems." In AIEE Transaction, Part III PAS, vol. 76. New York

}

American Institute of. Electrical Engineers, October 1957, i

pp. 752-72 4

K.A. Petty, Egger Plant Electrical kafurance Bariant i

Voluna i MiKS add Cahla, Electric Power Resmarch

]

Institute, Palo Alto, CA, 1987, EL-5036 Volune 4

)

5. Power Cable Ampacities. New Yorkt 1962. Republished by i

Inatit.ite of Electrical and Electronic Engineers, IPCEA P-l 46-426(ICEA/IEEE S-135-1 62,5-135-2-62)

6. Underground Systems Reference Book Washington, D.C.,

Edison Electric--Institti.te, 1957 i

7. Ethylene Propylene Rubber-insulated Wire and Cable for the Transmission and Distribution of Electrical Energy.

Washington, D.C.INational Electrical Manufacturers lissociation, 1983. ICEA S-68-516 (NEMA WC8-1983)

8. Rubber-insulated Wire and Cable for the Transmission and Distribution of Electrical Energy.

Washington, D.C.: National Electrical Manufacturers Association, 1980.

ICEA S-19-81-(NEMA WC3-1980) 4 1

9. Cross-linked Thermosetting Polyethylene-insulated Wire and i

Cable for the Transmission and Distribution of Electrical Energy.

Washington, D.C.tNational Electrical Manufacturers Association, 1983. ICEA S-66-524-(NEMA WC7-1982)

10. - Specification 2323-ES-13 A, T av.

1, "8 KV Insulated Power Cable"

11. Specification 2323-ES-13B.2, Rev.1, " Low Voltage Power and Lighting cable"
12. Brand-Rex " Wire & Cable Engineering Guide," Publication WC-82, dated 1982 To Establish the Maximum outside Dia-
13. DCA 60035, Rev.~4, meter and Unit Weight for cable Type W-014," dated a

y.e r.

-.co-

. -. ~

,.m..,

-.-yy

,.,,,..-,,-r,

--t-rw-*-

w

-w-

---w.e..-%e.r--eer ur-w' mw vir$-i

'v-w

---veirw---'u

  • u'e

-t e---

l i

i CPSES UNTTI lutSEE(Bhlet MEY2 Page8of j

  • Ampecuy ef fomer CaMe iney. W/7hermd*8 Irut. n im Air Dr*

i 11/21/88 (note that pages 5 thru 10 contain above data l

for all cable considered in this calculation).

4

14. National Electrical Code, NFPA-70, 1987.

Datali for Wrapping Air Drop Cable."

15.

DCA 79272. Rev. 3.

Thermolag Typical

16. Drawing M1-1701, Sheets 3 and 7, Details," dated April 1989.

17.

Specification 2323-MS-38H, Rev. 2

" Cable Raceway Fire Barrier Materials."

4 i

18. Ampacities - Cables in Open-top Cable Trays.

Washing-

ton, D.C., National Electrical Manufacturers Associa-tion, 1975.

ICEA P-54-440, Rev 2 (NEMA WC 51-1975)

19. Matheoft, Inc. User's. Manual, "MathCAD, Version 2.0,"

1987.

20. F.H. Buller und J.H. Neher, "The Thermal Resistance Betvwen k Cables and a surrounding Pipe or Duct Wall," AIRE Trans-actions, Part I, Vol. 69, pp. 342-349, New York, 1950.

I S I 18 !(? !$ q ( $ 24. M d e b lK d e f 2 l.

EMNr rok i

M. h6Ckbc,dkon C96 $ ~ pi-1031 Re( q MA %M k L

Rev. G A3. C, a\\ c ubM" E E - c A- 0000 -3 A 50 po o, g 3

De.ra\\',63-Dodle,DeH N emola3condQi A m p a c.,'.h3 i

Des'gn '

4 l

M. La\\ c, A%

2-E E oos 3 g e,y, g ;, A mp q, coe C Ws.in 'Them o kged Re g

,-e

,s-,.

-,,.-,,,,e

,.-yv.,,w1g-w-

f-~,

w.--+,---+--,ce--e-ss y

j a

hb I

l9b CPSES UNIT 1 16345EE(Bhlta AEV2 Pagt 9 off!

%mpacity of Pomr Cale Wrap. W/Thermolog inst. as Free Air Op'

,.)

CONCLUSIOMdd l

a i

1. The ampacity of power cables, installed in free air and wrapped with Thermolag 330-660 are shown on Table A below.

These are for cables installed in 50 C ambient air with a separation of one bundle diameter between other bundles.

No entry indicates that resulting cable bundle would be too large (see Assumption 2).

4 i

k TMM A 1

l Power Cable Ampacity For Cable Installed in Eras Air And 3x33334 with Thermelaqr 330-660 3

( f//l,16 predke:f O M aeo) d

/hk No. of Cable Various Bundle 1

in Bundim*

Ella 12 Eit conduit Typ.a cable 1

2 1

1 E

E g

g i

i 1/C-500, 8 kV 368 348 316 289 369 369 369 348 j

1/C-350, 8 kV 299 281 255 233 299 299 281 255 l

1/C-4/0, 8 kV 223 209 190 173 223 223 209 172 i

1/C-750, 600 V 444 416 375 341 444 444 416 416 1/C-500 600 V 350 326 294 266 350 350 326 264 1/C-350 600 V 282 261 235 213 282 261 235 213 1/C-4/0 600 V 204 187 168 152 187 151 147 131 t

1/C-2/0 600 V 153 139 125 112 125 112 99 89 l

TRI-4/0 600 V 204 187 168 152 204 187 151 147 TRI-2/0 600 V 151 139 125 112 139 125 112 99 f

TRI-2 AWG 600 V 97 87 78 70 70 63-57 50 1

3/C-4 AWG 600 V 75 68 61 35 61 53 47 41 3/C-6 AWG 600 V 57 51 46 42 42 37 33 29 3/C-8 AWG 600 V 42 38 34 31 28 24 20 18 3/C-10 AWG 600 V 32 28 25 23 18 15 13-12 3/C-12 AWG 600 V 24 21 19 17 11 10 8

7 2/C-2 AWG 600 V 117 106 96 87 96 87 75 68 2/C-6 AWG 600 V 67 60 55 49 47 42 35 33 1

2/C-8 AWG 600 V 50 45 41 36 32 27 24 21 2/C-10 AWG 600 V 38 33 30 27 21 18 15 14 2/C-12 AWG 600 V 28 25 22 20 13 11 10 9

  • All 1/C cables are assumed to be bundled in groups of 3.

Therefore, when the above table indicates 3, a total of 3(3) or 9 single conductor cables would be wrapped.

I

2. Table B shows the maximum number of cables allowed in a bundle so that the ampacity.of the cable is not less than n

, -.., -... ~,,.,,., - -. - _ -,..,...,

..,,.w, r n.,,,-,

)9 b b

CPSES UNIT 1 163&EE(BbI4 REV2 Pay 10ofh l

  1. peaty of tone CaMe % W/Cwmolaglatt. at Fire Air Dr*

t

)

in adjoining thermolagged raceway.

When Table A is used 1

by Construction, no Engineering analysis of ampacity is required. No entry indicates that the raceway l

configuration is not applicable for the given size (see j

item 3 below).

j When cable bundles of mixed sizes are encountered, use as

)

the maximum number of cables the smaller number from Table B.

I TMu 3 l

)

gMaximusNumberofCablesUnderWrapSo t wr ed Amapacity > Rassway Ampasity i

pFed W M t.a s d

)

Lawerto ( 6/lls th Thermolag Ccndu Inermolag Tray Cable Size Mg Randon

&QX Shall i

5 0

I 1/C-500, 8 kV 2

5 0

1/C-350, 8 kV 3

5 0

1/C-4/0, 8 kV 5

1/C-750, 600 V 2

1 5

0 1/C-500 600 V 3

3 5

0 1/C-350 600 V 5

3 5

0 1/C-4/O 600 V 5

9 9

0 1/C-2/0 600 V 5

12 12 0

TRI-4/O 600 V 5

3 6

0 i

TRI-2/O 600 V 5

5 5

0 l

TRI-2 AWG 600 V 16 11 16 0

10 15 0

i 3/C-4 AWG 600 V 13 19 19 3/C-6 AWG 600 V 21 2:L 0

3/C-8 AWG 600 V 32 32-20 3/C-10 AWG 600 V 51 18 5

i 3/C-12 AWG 600 V 2/C-2 AWG 600 V 9 13 13-10 23 23 2/C-6 AWG 600 V 23 34 23 2/C-8 AWG 600 V 35 51 35 2/C-10 AWG 600 V 56 36 5

2/C-12 AWG 600 V 4

Note

1. All 1/C cables are assumed to be bundled in groups of 3.

Therefore when the above table indicates 3, a

total of 3/3) or 9 single conductor cables would be wrapped.

..,__m s

]

i

\\$

CPSES UNITI 163&EE(B)14 ACV2 Por 11of I

  • Ampenry of Powr CaMe Wrep. Wflhemsol.:t nst-at fne Air Dp' l

e i

4 l

3. 8 KV cables in tray are installed with maintained spacing only (see DBD-EE-052, Section 4.1.1.5 c.).

600 V cable in l

tray are installed with maintained spacing for cable size i

2 AWG and larger, and with randon lay for all smaller j

sizes (see DBD-EE-052, Section 4.2.1.6 c.).

i u

4. For assessment purposes, it may be easier in many cases to i

arrange Table a to indicate bundle sizes on a conduit size basis which are acceptable without requiring Engineering analysis. Table C presents this information assuming the i

j conduit is 40 per cent filled (by area). The following should be used in conjunction with Table C.

j t

j If cable bundle is going into an over-filled j

conduit, the next larger size conduit should be used.

For a given size conduit, if Table C shows a "0" (meaning that condition is unacceptable) in low 4 fill conduits,. it may still acceptable using the i

following analysis by Zngineerings-

)

o Next smaller conduit size must be list in i

Table 1 as "1".

ADA Y

i o Actual percent fill in conduit would be equivalent of 40 % or less when calculated cn the basis of the saw11er size. conduit i

dimensions

[

b, l

In some cases, as the conduit size increases the-bundle -

l size became acceptable. yhis occured for thermolagged conduit

'4 When the NEC diversity multipliere changed. -In. order tt' avoid I

confusion; Table a does show higher number of cables ik lower a

number of cables were unacceptable, and Table C expresses all larger conduit sizes as unacceptable.

i b

!r a

.... -.-.. ~_.. -..<

.. ~.. -..... - _ -.

- ~ ~. - ~ ~ _. - _ _ - - -

_ - -. - =.. _

d

.Tr.ble C Acpeptable Bundle Size - Expressed in Terms of Conduit Size :

[

Wrapped Ampacity in Greater Than Thermolaqqed Raceway (Ytn

( Sfil " Pro disc 4 S icv M es d 0

j Thermolag Tray Thermolag Conduit MS RANDOM BOX SHELL

[

Conduit-4 5

6 3

4 5

6 3

4 5

6 i

Size in.:

3 4

5 6

3 1

1 1

1 1

0 0

0 0

1/C-SCO, 8 kV 1

1 1

1 h

4 1

1 1

1 0

0 0

0 1/C-350, 8 kV 1

1 1

1 g

{

1 1

1 1

0 0

0 0

1/C-4/0, 8 kV 1

1-1 1

1/C-750, 600.V 1

1 1

1 1

1 0

0 1

1 1

l' O

O O

O

)

. 1/C-500 600 V 1

1 1

0 1

1 1

0 1

1 1

1 0

0 0

0 AQ i

l 1/C-350 600 V 1

1 1

1 1

1 1

0 1

1 1

1 0

0 0

0

(

[j1 1

1 1

1 0

0 0

1/C-4/O 600 V 1

1 0

0 1

1 1

1 1/C-2/0 600 V 1

1 0

0 1

1 1

10 ;1 1

0 0

1 0

0 0

' TRI-4/O 600 V 1

.1 1

0 1

1 0

6l /1 1

1 1

0 0

0 0

g

- TRI-2/O 600 V 1

1 1

0 1

1 1

9 L 1

1 1

0 1

1 0

0 l

5

[

TRI AWG 600 V 1

1 1

1 1

1 1

0 1

0 0

0 0

0 0

0

'A f

1 1

1 0

1 1

1 1

1 1

1 1

3/C-4 AWG 600 V 1

1 1

0 1

1 1

1 1

0 0

0 3/C-6 AE"600 V 1

1 1

0 1

1 1

0 0

0 0

0 3/C-8 AWG.600 V 1

1 1

0 1

1 1

0 1

A 0

0 3/C-10 AWG 600 V 1

1 1

0 1

0 0

0 0

0 0

0 g

3/C-12'A W 600 V h

2/C AE 600 V 1

1 1

0 1

1 1

0 1

1 1

1 1

1 1

1

.i I*

L 1

1 0

0 1

1 1

1 1

1 1

1

[%.

2/C-6 AMG 600 V 1

1 1

0 1

1 1

1 1

1 1

0 2/C-8 AWG 600 V l

1 1

1 0

1 1

1 1

1 1

1 0

4 1

1 1

0 1

1 0

0 0

0 0

0 k

i 2/C-10 AWG 600 V 2/C-12 A E 600 V-5 i

i l

b f

Note:

-.1 is an acceptable condition j

0 is an unacceptable condition or requires detailed Engineering Analysis.

kl i

l l

4

}

i 8

i

l

\\A CPSES UhTT 116345 EE(B) 140, Rev3 Page 13 of 7

'Ampecify of Power Cable Wrap. W/Thermolag last. as Free Air Dp' d

i j

o( produrft tMdr\\ CSS 5.

A supplemental case has been analyzed for maximum average thickness of 3/8 inch new ampacit s have been

),

calculated.

UNLESS SPECIFIC NRASUEENENTS EAVE BREN TAKEN AND DOCUNINTED TABLE A,3,C SEALL NOT BE USED. THE l

1 FOLLOWING TABLES D,B,F SEOULD BE USED INSTEAD.

d l

6. If table A of Rev 2 was used in any calculation a 5/16 inch maximum average thickness must be confirmed or a J

reanalysis of the application is required.

If table B or C was used in any application and the corresponding entry in Table E and F are bold (indicating a change has occurred) a 5/16 inch maximum average must be confirmed or reanalysis must be done.

The change in ampacity between 4

Table A and D are between 0.115 to 1.414 % decrease.

TMM D Fower Cable Ampacity FCr Cable Installed in ZKat Aix and franpad Mith Zharmelag 230-86013/s ind t *FJ Ho. of Cable Various Bundle in Bundle

  • 3133 in Eit conduit TY.2A Cable 1

2, 2

1 1

1",

3 ",

1" 1",

1/C-500, 8 kV 367 344 312 285 155 367 367 367 344 1/C-350, 8 kV 297 278 252 230 206 297 297 278 252 j

1/C-4/0, 8 kV 222 207 188 171 153 222 222 207 170 1/C-750, 600 V 441 411 371 336 299 441 441 411 411 1/C-500 600 V 348 322 290 263 234 348 348 322 261 6

1/C-350 600 V 280 258 233 210 187 280 258 233 210 1/C-4/O 600 V 203 185 167 150 133 185 150 145 130 1/C-2/0 600 V 152 138 124 111 98 124 111 98 89 TRI-4/O 600 V 203 195 167 150 133 203 185 150 145 TRI-2/O 600 V 152 138 124 111 98 138 124 111 98 l

TRI-2 AWG 600 V 97 87 78 70 61 70 63 56 50 3/C-4 AWG 600 V 74 67 61 55 48 61 53 47 41 3/C-6 AWG 600 V 57 51 46 42 37 42 37 32 28 1

3/C-8 AWG 600 V 42 34 34 30 27 28 23 20 18 3/C-10 AWG 600 V 32 28 25 22 20-18 15 13 12 3/C-12 AWG 600 V 24 21 19 17 14 11 9

8 7

d 3/C-2 AWG-600 V 116 106 95 86 76 95 86 74 67 2/C-6 AWG 600 V 67 60 54 49 43 47 41 35 32 3/C-8 AWG 600 V 50 45 40 36 32 32 27 24 21 2/C-10 AWG 600 V 38 33 30 27 24 21 17 15 13 4

2/C-12 AWG 600 V 28 25 22 20 17 13 11 9

8

  • All 1/C cables are assumed to be bundled in groups of 3.

4 I

.. ~.. -.

l b

II CPSES UNrf 116345-B) 140, Rev 3 Page 14 d7

/Thereda8 nst as Free Air Dp' I

'Ampeaty d Pom iCable Wr Therefore, when the above table indicates 3, a total of l

3(3) or 9 single conductor cables would be wrapped.

t I

TABLE E

)

4 1

Maximus Number of Cables Under Wrap so That W apped Asapacity > Raoevay Ampacity L q sti og(3/8 inch produet)

~

Thermolag Tray Thermolag conduit Cable 1113 M1 Randon AgX Shall i

5 0

1/C-500, 8 kV 2

5 0

1/C-350, 8 kV 3

5 0

1/C-4/0, 8 kV 5

1 1/C-750, 600 V 2

1 5

0 1/C-500 600 V 3

3 5

0 a

1/C-350 600 V 5

3 5

0

?

1/C-4/O 600 V 5

9 9

0 1/C-2/0 600 V 5

12 12 0

TRI-4/O 600 V 5

3 6

0 TRI-2/O 600 V 5

5 5

0 TRI-2 AWG 600 V 16 11 16 0

10 15 0

3/C-4 AWG 600 V 13 19 5

3/C-6 AWG 600 V 21 21 0

t 3/C-8 AWG 600-V 32 32 5

3/C-10 AWG 600 V 51 18 5

3/C-12 AWG 600 V 2/C-2 AWG 600 V 9

4 13 13 10 23 23 2/C-6 AWG 600 V 23 34 23 2/C-8 AWG 600 V 35 51 22 2/C-10 AWG 600 V 56 36 Se 2/C-12 AWG 600 V l

Notes 1. All 1/C cabler are assumed to be bundled in groups of 3.

Therefore when the above table indicates 3, a

total of 3(3) or 9 single conductor cables would be l

wrapped.-

This number increased from table B because of the change in the logic of the ampacity comparison.

a 1

4 4

e 4

u

,em_

,,--e-w-

-.v.v,3, - _..

+y,,,,,v.

,my--_,,~,,.,.y-

-f,..y, mp-.--.

Table F Acceptable Bundle Size - Expressed in Terms of Conduit Size :

Wrapped Ampacity is Greater Than Thermolagged Raceway Q. Lo3eG) g (3/8 inch product)

Thermolag Tray Thermolag Conduit f

MS RANDOM BOX SHEIL

-n 23 conduit Size in.:

3 4

5 6

3 4

5 6

3 4

5 6

3 4

5 6

q@

k 1

1 1

1 0

0 0

0 1/C-500, 8 kV 1

1 1

1

'I 1

1 1

1 0

0 0

0 hC 1/C-350, 8 kV 1

1 1

1 1

1 1

1 0

0 0

0 1/C-4/0, 8 kV 1

1 1

1 "9

1/C-750, 200 V 1

1 1

1 1

1 0

0 1

1 1

1 0

0 0

0

$y 1/C-500 600 V 1

1 1

0 1

1 1

0 1

1 1

1 0

0 0

0 g; m 1/C-350 600 V 1

1 1

1 1

1 1

0 1

1 1

1 0

0 0

0 g

1/C-2/O 600 v i

1 o

0 1

1 1

1 1

1 0

0 1

O O

O

-h 1/C-4/O 600 V 1

1 0

0 1

1 1

1 1

1 1

1 1

0 0

0 TRI-4/O 600 V 1

1 1

0 1

1 0

0 1

1 1

1 0

0 0

0 oE 131-2/O 600 V 1

1 1

0 1

1 1

0 1

1 1

0 1

  • 1 0

0 j[1 TRI-2 AWG 600 V 1

1 1

1 1

1 1

0 1

0 0

0 0

0 0

0

, [

1 1

1 0

1 1

1 1

1 1

1 1

g 3/C-4 AWG 600 V 1

1 1

0 1

1 1

1 1

0 0

0 5"I 3/C-6 AWG 600 V 1

1 1

0 1

1 1

0 0

0 0

0 3/C-8 AWG 600 V 1

1 1

1*

1 1

1 0.

1 1

0 0

g 3/C-10 AWG 600 V 3/C-12 AWG 600 V 1

1 1

0 1

0 0

0 0

0 0

0 k?**

2/C-2 AWG 600 V 1

1 1

0 1

1 0

0 1

1 1

1 1

1 1

1 1

1 O

O 1

1 1

l' 1

1 1

1 2/C-6 AWG 600 V 1

1 1

0 1

1 1

1 1

1 1

0 2/C-8 AWG 600 V 2/C-10 AWG 600 V 1

1 1

0 1

1 1

1 1

1 1

0 1

1 1

0 1

1 0

0 0

0 0

0 2/C-12 AWG 600 V Note:

1 is an acceptable condition is.an unacceptable condition or requires detailed Engineering Analysis.

0 in logic in cable ampacity h f M // do[#f7 '

  • This numler increased from Table C due to change YO / 2.-

4

~

I l

i A CPSES UNIT 116345 EE(B) 140, Rev 4 Page 16 of 18

' Ampacity of Power Cable Wrap. W/Thermolag Inst. as Free Air Dp' TABLE G Power Cable Ampacity for Cable Installed in Free Air and i

Wrapped with Three Layers of Thermolag 330-660 (3/8 Inch) for bundle sizes less than 3 inches No. of Cable Various Bundle 1D Bundle

  • 2113 12 fiti ggaduit Typs Cable 1

1 1

jli E

E E

E 9

1/C-500, 8 kV 359 344 312 285 367 367 367 344 1/C-350, 8 kV 291 278 252 230 297 297 278 252 1/C-4/0, 8 kV 218 207 188 171 222 222 207 170 1/C-750, 600 V 431 411 371 336 441 441 411 411 1/C-500 600 V 341 322 290 263 348 348 322 261 1/C-350 600 V 275 258 233 210 2 P.0 258 233 210 1/C-4/O 600 V 200 185 167 150 185 150 145 130 1/C-2/0 600 V 150 135 121 111 124 111 98 88 TRI-4/O 600 V 200 185 167 150 203 185 150 145 TRI-2/O 600 V 150 135 121 111 138 124 111 98 a

TRI-2 AWG 600 V 96 85 76 68 70 63 56 50 3/C-4 AWG 600 V 74 66 60 53 61 53 47 41 4

3/C-6 AWG 600 V 56 50 45 41 42 37 32 28 3/C-8 AWG 600 V 42 37 34 30 28 23 20 18 3/C-10 AWG 600 V 31 28 25 22 18 15 13 12 i

3/C-12 AWG 600 V 23 20 18 16 11 9

8 7

2/C-2 AWG 600 V 115 104 94 84 95 86 74 67 2/C-6 AWG 600 V 66 59 53 48 47 41 35 32 2/C-8 AWG 600 V 50 44 40 36 32 27 24 21 2/C-10 AWG 600 V 38 33 30 26 21 17 15 13 2/C-12 AWG 600 V 28 24 22 20 l 13 11 9

8

  • All 1/C cables are assumed to be bundled in groups of 3.

4

.. _ ~. -. _ -. _.. _ _ _ _ _ _. _ _

1 CPSES UNTT 116345-EE(D) 140, Rev 4 Page 17 of 18

'Ampacity of Power Cable Wrap.W/Ibermolag Inst. as Free Air Dp*

i TAht.? E Maximum Number of cables Under Wrap so That Wrapped Ampacity > Raceway Ampacity(2)

For 3 Layers on Bundles less than 3" (3/8 J

inch product) 3 Thermolag Tray Thermolag Conduit

. CAD.l.t Size Mg Randon Rag S.11til i

4 i

l 5

5 1/C-500, 8 kV 2

l 5

5 j

1/C-350, 8 kV 3

5 5

1/C-4/0, 8 kV 4

i 1/C-750, 600 V 2

2 5

3 j

1/C-500 600 V 4

4 5

3 1/C-350 600 V 5

5 5

3 j

1/C-4/O 600 V 9

9 9

3 j

1/C-2/0 600 V 12 12 12 3

TRI-4/O 600 V 6

6 6

3 TRI-2/O 600 V 8

8 5

3

?

TRI-2 AWG 600 V 16 16 16 5

15 15 15 i

3/C-4 AWG 600 V 19 19 5

j 3/C-6 AWG 600 V 30 21 5

3/C-8 AWG 600 V 46 20 11 3/C-10 AWG 600 V 73 18 5

6 3/C-12 AWG 600 V i

2/C-2 AWG 600 V 13 13 13 13 2/C-6 AWG 600 V 23 23 23 23 34 23 2/C-8 AWG 600 V 51 51 35 2/C-10 AWG 600 V 2

81 36 5.

l 2/C-12 AWG 600 V i

Notet 1. All 1/C cables are assumed to be bundled in groupil of 3.

Therefore when the above table indicates 3, a

i total of 3(3) or 9 single conductor cables would be wrapped.

1.

I

2. Thernolag tray derating factor is-40%-Thermolag l

shell conduit is.7.5% for all conduits except 2 inch and smaller conduit which is 35%.

s

.. _. ~ _.

.. _. _ _ _, - _. ~ _ _.

. _ _.. -..._. _ _ - __.. -. ~. _ _. _.. _

.m i

t r

i 1

i Table I l

Acceptable Bundle Size - Expressed in Terms of Conduit Size :

i f

Wrapped Ampacity is Greater Than Thermolagged Raceway

-For Three Layers of Thermonlag on Bundles less Than 3 Inches (3/8 inch product) i F

Thermolag Tray Thermolag Conduit z._

p MS RANDOM BOX SHELL Conduit B

'5. c Size in.:

3 4-5 6

3 4

5 6

3 4

5 6

3 4

5 6

4" a

?.

1 1-1 1

O O

O O

e '-

j 1/C-500,~8 kV 1

1 1

1 i

[

1 1

1 1

O O

O O

m j.-

1/C-350, 8 '. kV -

1 1

1 1

j@

1 1

1 1

O O

O O

[

1/C-4/O, 8.kV 1

1 1

1 pd 1

i-1/C-750, 600 V 1

1 1

1 1

1 1

1 1

1 1

1 O

O O

O 1/C-500 600 V.

1 1

1 1

1 1

1 1

1 1

1 1

O O

O O

SE -

1/C-350-6co.V 1

1 1

1 1

1 1

1 1

1 1

1 O

O O

O

  • k c

g

,Y 1/C-4/O 600 V.

1 1.

1 1

1 1

l' 1

1 1

1 1

1 O

O O

EE M(9

~

.1/C-2/O 600 V 1'

1 1

1 1

1 1

1 1

1 O

O 1

O O

O TRI-4/O 600 V 1

1 1

1 1

1 1

1 1

1 1

1 O

O O

O j

TRI-2/O 600'V 1

1 1

1 1

1 1

1 1

1 1

0 1

,1 O

O g'p i

BW 3/C-4 AWG 600 V.

l' 1

1 1

1 1

1 1-0 0

0 0

0 0

0 9_ "e

(

TRI-2 AWG.600 V 1

1 1

1 1

1 1

1 1

1 1

1 1

4*

{E N

l' 1

1 1

1 1

1 1

1 O

O O

l 3/C-6 AWG 600 V 3/C-8 AWG 600 V 1

1 1

1-1 1

1.

O O

O O

O 9:

1 1

1 1

1 1

O O

1 O

O O

Eg l

h 3/C-10.AWC 600 V 1

1 1-1 1

O O

O O

O O

O

{o 3/C-12 AWG 600 V.

2/C-2 AWG 600'V 1

1 1

1

- 1 1

1~

1 1

1 1

1 1.

1 1

1

~

h.

1 1

1 1

1 1

1 1

1 1

1 3

2/C-6 AWG 600 V 1

1 1

0 1

1 1

1 1

1 1

J m.

2/C-8 AWG 600 V.

1 1

1-1 1

1 1

1 1

1 1

0 5

2/C-10 AWG 600 V 1

1 1

1 1

1 O

O O

O G

O l'

2/C-12 AWG'600 V' Note:

1 is an acceptable condition-OLis an unacceptable condition or requires detailed Engineering Analysis.

j l

i l

q ~

w g

a s.

.~

3 c

-c

_ _ _ _ _. _ _ _ _ _ _ _ - ~ _

CPSES UNrr1100 EF43) 140. Asv 3 Pop 1 of 9 a

ATTADOdWTA

  • CARL 2FAAAME11Ar g

q

~

TTACIOGNT A CAB 12 PARAMETERS FOR COMANCHE PEAK ORIGIN m 1 ' Itis defines the upper lef t corner of matrices as 1,1 i

instead of default 0,0.

i

'O.813' 1/C-500,8 KV 0.681 1/C-350,8 KV s

O.528 1/C-4/0,8 KV 0.998 1/C-750,600 V 0.813 1/C-500 d

0.681 1/C-350 0.528 1/C-4/0 0.418 1/C-2/0 Conductor diameter, 0.528 TRI-4/0 inches

{

0.41P TRI-2/0 Source: ICEA S-69-516, Dc :=

0.292 TRI-2ANG Table 2-2 5

0.232 3/C-4ANG 0.184 3/C-6AWG l

0.146 3/C-8AWG 0.116 3/C-10AWG j

0.092 3/C-12AWG 0.292 2/C-2AWG 4

0.184 1/C-6AJ3 i

0.146 2/C-8AWG l

0.116 2/C-10AWG l

,0.092, 2/C-12AWG 6

'(25 + 140 + 25 + 10 + 80)*

1/C-500,8 KV (25 + 140 + 25 + 10 + 80) 1/C-350,8 KV (25 + 140 + 25 + 10 + 80) 1/C-4/0,8 KV (80 + 65) 1/C-750,600 V (65 + 65) 1/C-500 1

(65 + 65) 1/C-350

-(55 + 45) 1/C-4/0 (55 + 45) 1/C-2/0 Insulation /individua1jac-(55 + 45)

TRI-4/0 kat/ shield thickness (55 + 45)

TRI-2/0 applied over conductor, It :=

(45 + 30)

TRI-2AWG mils.

(45 + 30) 3/C-4AWG Source ICEA S-68-S16, (45 + 30) 3/C-6AWG Tables 3-1 and 4-3; for (45 + 15) 3/C-8AWG jacket of-2/C cabis, 4

(30 + 15) 3/C-10AWG Specifications'2323-ES.

(30)

_3/C-12AWG 13A and -13B.2 was used.

(45 + 30) 2/C-2AWG For 8 KV cable, semi-con-(45 + 30) 2/C-6AWG ducting thickness (25 mil)

(45 + 15) 2/C-8AWG and shield thickness (30 + 15) 2/C-10AWG (10 mil) are included.

(30) 2/C-12AWG j

i i

i

_v, s#-,--

y

cnN lwr i100 EEE) ld, b 3 hp 3 ed 9 ArrAOURNr A

  • Cast.2 PARAMrtur 8

-l l

' 0" 1/C-500,8 KV Overall jacket thickness 0

1/C-350,8 KV for 3/C cables, sails.

l 0

1/C-4/0,8 KV Sources Specification i

0 1/C-750,600 V 2323-ES-138.2.

i 0

1/C-500 i

0 1/C-350 O

1/C-4/0 j

l 0

1/C-2/0 O

TRI-4/0 1

0 TRI-2/0 i

Jt :=

0 TRI-2AW 80 3/C-4AWG 80 3/C-6AM i

60 3/C-8AM l

(0 3/C-10AWG j

60 3/C-12AWG.

80 2/C-2AWG i

60 2/C-6AWG 60 2/C-8AW 60 2/C-10AHG

,6 0, 2/C-12AWG i

l

)

'1' 1/C-500,8 TN i

j 1

1/C-350,8 KV 1

1/C-4/0,8 KV

[

1 1/C-750,600 V 1

1/C-500 l

1 1/C-350 1

1/C-4/0 1

1/C-2/0 j

l 3

TRI-4/0 Number of conductors i

3 TRI-3/0 in cable i

n' :=

3 TRI-2AWG 3

3/C-4AWG 3

3/C-6AP3 3

3/C-8AWG a

3 3/C-10AWG 3

3/C-12AWG 2

2/C-2AWG i

2 2/C-6AWG 2

- 2/C-8ANG 1

i 2

2/C-10AWG i

,2,

2/C-12AWG i

e f

4

, ~,

,...._4,

,,,y.,,

y..g,u

_.,y.

4 h

CP!En LNT 18045-EEKB>l40, Amr 2 Fay 3 of 9 i

ATTADedMrA 'CARLEPARAMr! War i

4 i

l l

l 4

'(0.05 + 0.01)'

1/C-500,8 KV (0.02 + 0.01) 1/C-350,8 KV

)

j 0.01 1/C-4/0,8 KV l

(0.1 + 0.03) 1/C-750,600 V j

o.05 + 0.01) 1/C-500 g

(0.02 + 0.01) 1/C-350

{

0.01 1/C-4/0 0

1/C-2/0 CorwActor skirt + proximity 0.01 TRI-4/0 effect (if any).

i O

TRI-2/0 Source: EPRI, " Power Plant 1

Yc =

0 TRI-2.WG Reference Series," Vol.4, 0

3/C-4AW Tables 4.14 and 4.15.

O 3/C-6AM 0

3/C-SAW i

0 3/C-10AWG 1

0 3/C 12AWG 0

2/C-2AW j

0 2/C-6AWG 0

2/C-8AWG 0

2/C-10AWG

{

0 2/C-12AWG l

'500' 1/C-500,8 KV 4

500 1/C-350,8 KV 6

500 1/C-4/0,8'KV l

500 1/C-750,600 V 500 1/C-500 500 1/C-330 500 1/C-4/0 i

500 1/C-2/0 500 TRI-4/0 Thermal registivity of insula-500 TR1-2/0 tion / individual jacket, j

pi :=

500 TRI-2AWG C-cm/ watt.

{

500 3/C-4AWG Source: ICEA P-46-426, pg. III.

500 3/C-6AWG 500

-3/C-8AWG 500

.3/C-10AWG 4

500

-3/C-12AWG i

500 2/C-2AWG i

500 2/C-6AWG-500 2/C-SAWG-500 2/C-10AWG-l,500, 2/C-12AW i

J i

s b

k j

k CPSES LNT1104EE(B)14 Amr 3 Pops 4 of 9 ATTAOIMENT A ' CAB 1J!FAAAMETYRF

~

'500' 1/C-500,8 KV j

500 1/C-350,8 KV 500 1/C 4/0,8 KV 500 1/C-750,600 V 500 1/C-500 500 1/C-350 500 1/C-4/0 500 1/C-2/0 500 TRI-4/0 Thermal resistivity of over-500 MI-2/0 all jacket, C-ca/ watt.

Pj :=

$00 TRI-2AWG Source: ICr.A P-46-426, pg. III.

500 3/C-4AWG w

l 500 3/C-6AWG l

500 3/C-8AWG 500 3/C-10AWG 500 3/C-12AWG 500 2/C'*2AWG 500 2/C-6AWG 500 2/C-BAWG 500 2/C-10AWG

,500, 2/C-12AWG "203.4' 1/C-500,8 KV 177.3 1/C-350,8 KV 107.2 1/C-4/0,8 KV 380.0 1/C-750,600 V 253.4 1/C-500 177.3 1/C-350 Cross-sectional area 107.2 1/C-4/0 of corxiuctor, sq mm.

67.43 1/C-2/0 Sourcs: ICEA P-46-426, 107.2 TRI-4/0 Table I, page II.

67.43 TRI-2/0 Ac t =

33.62 TRI-2AWG 21 15 3/C-4AWG 13.3 3/C-6AWG 8.37 3/C-8AWG 5.26 3/C-10AWG 3.31 3/C-12AWG 33.62 2/C-2AWG 13.3 2/C-6AWG a.37 2/C-8AWG 5.26 2/C-10AWG

, 3. 31, 2/C-12AWG

..-._. -_.. - -_-.... - -. - ~ -

I a

Crus (Mri m aatM14anah,ge, ArrAcomiNTA NPARAhGmuy 4

i

}

'O 0222' 1/C-500,8 KV 0.0320 1/C-350,8 KV 0.0525 1/C-4/0,8 KV 0.0148 1/C-750,600 V 0.0222 1/C-500 0.0320 1/C-350 Conductor DC resistance O.0525 1/C-4/0 at 25 dag. C, ohns/1000 0.0843 1/C-2/0 ft.

O.0525 TRI-4/0 Sourcat ICEA S-68-516, 0.0843 TRI-2/0 Table 2-13.

j j

0.169 TRI-2AW Note: Units for Mc25 0.269 3/C-4AW as input are 0/ft l

0.427 3/C-6AM i

0.479 3/C-8AM 1.040 3/C-10AM i

1.720 3/C-12AW l

0.169 2/C-2AW 0.427 2/C-6AM O.679 2/C-SAM i

1.080 2/C-10AM l, 1. 7 21.,

2/C-12AM Mc25 t=

~~

1000 a

i h-i l

i t

i 8

.m..

....e.

q cs::s UN!T I106-E2(R)14 Aar 3 % 6 d 9 ATTAQOmfrA ecAgLg FAgAgggyy,g.

i s

l m is series of equations calculates the diameter of the cable.

The maximum diameters of the cables from the specifications have purposefully not been used, since these may give non-conservative rarr ' ts.

4

)

i := 1. 21 4

It This is the diameter of the individual i

conductor, inch Djam1C t= Dc + 2*

i i

1000 I

y i

cdian

= if n'
  • 2,2-Dianic +

0 mis is the diameter of the i

i i

1000, 2-conductor cables., irch i,

i i

l Jt mis is the dia-i meter of the 3/C i

i Cdian

= if n'

% 3, 2+

+ 2.15 Diam 1C

,cdian cables, inch 2

i i

1000 1,

i, e

Cdian t= if "n '

  • 1,2.15' Diam 1C,Cdiam
  • 1 i

i i

mis is the diameter l

of the single conductor cables. formed in a bundle of three cables inch The factor, 2.15, to obtain the equivalent diameter of three conductor, or a triplex is taken from Reference 12 (Brand-Rex Publication WC-82).

)

a i

9 e -

--g-,,

e,

.~-,-r,

i crsus UNrr:1 oceans) in m,a hp 7 ate p

ArrAccasfrA acAaLarAaAustzes' g2 t

i j

As a form of comparisen only, Mav4=m Diameters for these cables from Reference 13 i

(DCA 14 t0035, Rev. 4) are identified below

]

O:=1.8 as HAY.

i Diam 1C 1

0 J Ari

'2 952'

'1 55' 1/C-500,8 KV 4

1. 2 d L 2.668 1.45 1/C-350,8 XV a
,. 0i i

2.339 1.23 1/C-4/0,8 KV L

L i

2 769 1.35 1/C-750,600 V i

..N,l 2.307 1.13 1/C-500 4

_pi L Cdiam =

2.023 0.99 1/Ca350 1

0. 4 i

1.565 1/C-4/0 0.77) 0.66 1/C-2/0

?

0. 6:

i 1.329 e

i 1.565 1.90 TRI-4/0 1.3.19 1.42 TRI-2/0 0.95 MAX :==

1.16 TRI-2AM I

0.981 1.04 3/C-4A38G j

0.878 1.00 3/C-6ANG 0.692 0.87 3/C-8AM 0.563 0.78 3/C-10AM

?

0.447 0.48 3/C-12ANG 1.044 1.16 2/C-2AM 0.788 0.89 2/C-6AM 0.651 0.75 2/C-SAWG 0.532 0.60 2/C-10AWG

,0.424

,0. 4 5, 2/C-12AWG s

Appropriate comparisons can be made as follows:

1/C cable compare MAX with Diam 1C i

2/C cable compare MAX with Cdian 3/C cable compare MAX with Cdian 4

,,r,-

4

,_..y

.n,

---e-

-e.--

,,--e,-,y-

,,..-w,,

_ _. _ _ _. _ _ _ ~.-

a 3

1 g g t M14 RM 3 MIdf ATTAODG9aA YAELSPAM j

t

,a i

i a

A.11 cable parameters are combined into a h trix. This matrix, called CABLE, will be stored and used in other templates (Attachments 81 and 82).

)

4 1

<1>

CARIE

= Rdc25 w

1 l

<2>

CABLZ

= Yc 1

1

<3>

i CABM

= Do i

i

<4>

CABLE

= Ac i

f

<5>

CA32

= n' t.

6

<6>

CABLE t= It

<7>

CABLE t= Jt

<8>

CABLE

= pi

<10>

CABU

= Diam 1C

<9>

CABLE a pj

<11>

CABLE t= Cdian

-i---'-m--wo-9=p-e w ww.

,w.,cau eew

  • .-g 3-.e m-c,=,ye.c,..m &

re-,e, y,. ww 4*g.'<,,e-

i l

l

~

a nusUptri N t* Rev2r,9at9-l l

ATTADemftA. CARL 5PARAMETERF

~

\\

I

[

i l

Rdc25 Yc Dc Ac n'

It Jt pi

,t j Dianic Cdian i

l

-5 2.22 10 0.06 0.813 253.4 1 280 0 500 500 1.373 2.95195

+

3 1

-5 I

3.2 10 0.03 0.681 177.3 1 280 0 500 500 1.241 2.66815

<a CASLE =

5.25 10 0.01 0.528 107.2 1 280 0 500 500 1.088 2.3392 A

1.48 10 0.13 0.998 380 1 145 0.500 300 1.288 2.7692

{

-5

  • =

2.22 10 0.04 0.813 253.4 1 -130 0 500 S00 1.073 2.30695 i

~5 3.2 10 0.03 0.681 177.3 1 130 0- 500 500 0.941 2.02315 l !

5.25.?.0 0.01 0.528 107.2 1 100 0 500 500 0.728 1.5652 i

5 3

4.43 10 0 0.418-67.43 1 100' 0 500 -500 0.618 1.3287

~5 5.25 10 0.01 0.528 107.2 3 100 0 500 500 0.728 1.5652 1

-5 j

8.43 10 0 0.418 67.43 3 100 0 500 500 0.618 1.*J287 s

-4 l

1.69 10 0 0.292 33.62 3 75 0 500 500 -0.442 0.9503

-4 a

2.69 10 0 0.232 21.15 3 75 80 500 500 -0.382 0.9813 i

-4 j

4.27 10 0 0.184 13.3 3 75 '80 500 500 0.334 0.8781 4

-4 6.79 10 0 0.146 8.37 3 60 60 500 500 0.266 0.6919

)

0.00108 0 0.116 5.2o 3 45 60 500 500- 0.206 0.5629 l

0.00172 0 0.092 3.31 3 30 60 500 500 0.152 0.4468 l.

-4 1.69 10 0 0.292 33.62 2 75 to 500 500 0.442 1.044

-4 1

4.27 10 0 0.184 13.3 2 75 60 500 500 0.334 0.788

-4 6.79 10 0

0. * $ 6 8.37 2 60- 60 500- 500 0.266 0.652 l

0.00108 0 0.116 5.26 2-45 60 500 500 0.206 0.532 i

[ 0.00172 0 0.092 3.31 2 30 60 500 500 0.152 0.424,

?

i l

PRNCOINIITtH := 12 PRNPRECISION- = 8 WRITEPRN(cablo) t= CABLE Tais stores matrix CABLE onto a file called' CABLE.PRN in ASCII format.

i CPSES UNIT 1 104SEE(B)o140, Rev 2 par 1 d 9 ATTAOD4ENT B1

'Intana Cakulation d caw Am@y d hW Ca% FM Templare 1 i

1 ATTA0002fT B1 INTERIM CAIEUIATION OF CABLE AMPACITY OF l

'I1 TERM 0 LAGGED CABM IN FREE AIRt j

TEKPLATE 1 1

J This templates calculates interim values for input into Template Attachment B2. Specifically, nuabar of cables and coMuctors and effective bundle diameters, and maximum number of cables which can fit into a conduit are calculated in this template.

1

r..

CABLE INPUT DATA PRNPRECISION t= 8 Files cable.prn was produced by CABLE := READPRN " cable template Attachment Al and is prn,

documented separately.

ORIGIN m 1 defines the upper cornar of a matrix as 1,1 4

j=1.7 1

!= 1. 21 n'

!= 0 Cdia2

=0 i,j 1,j Matrix CABLE is comprised of the following indicated columns.

<1>

<2>

<3>

<4>

Rdc25 := CABLE Yc = CABLE Dc 1= CABLE Ac = CABLE i

<1>

<5>

<6>

<7>

<8) n' s= CABLE It = CABLE Jt t= CABLE pi != CABLE

<9)

<10>

<1)

<11>

pj t= CABLE Dian1C t= CABLE Cdiam

!= CABLE Wherst Rdc25 Conductor de resistance at 25 deg C, O/ft Yc conductor proximity / skin effact De Cotyluctor diameter, in.

Ac conductor cross-sectional area, sq ma n'

Number of conductoics in cable It Insulation thickness, mils Jt Overall jacket thickness, mils pi Insulation thermal resistivity, C-cm/V pj Jacket therr.al resistivity, C-cm/V Diam 1C Diameter of 1/c cable or 1 cable of multi-conductor cable, in.

Cdiam overall diameter of cable, in.

1

5 1

CPSES UNIT 11945

).1% Rev 2 pese 2 d 9 ATTACHMENT B1

'Isemia Cakila4m d Asapeary WN ' __ M m Fru &

I l

Templets l' l

CABLE CHYSICAL PROPERTIt.S i

i Rdc25 Dc Ac It Jt Dia.mac ediam

~

l n/fa Ye in.

mm2 n'

all mil pi pj inch inch b

5 i

2.22 10 0.06 0.313 253.4 1 280 0 500 500 1.373 2.95195

~5 3.2 10 0.03 0.681 177.3 1 280 0 500 500 1.241 2.66815 i

~5 CA812 =

5.25 10 0.01 0.528 107.2 1 280 0 500 500 1.088 2.3392 5

+

1.48 10 0.13 0.998 380 1 145 0 500 500 1.288 2.7692 j

~5 i

1.22 10 0.06 0.813 253 4

1. 130 0 500 500 1.073 2.30695 l

~5-t 3.2 10 0.03 0.681 177.3 1-130 0 500 500 0.941 2.02315

~5 l

5.25 10 0.01 0.528 107.2 1 100 0 500 500 0.728 1.5652 l

~5 4

8.43 10 0 0.418 67.43 1

100 0 500 500 0.618 1.3287 j

-5 5.25 10 0.01 0.528 107.2 3 100 0 500 500 0.728 1.5652

--5 8.43 10 0 0.418 67.43 3 100 0 500 500 0.618 1.3287 6

l

-4 1.69 10 0 0.292 33.62-3 75 0 500 500 0.442 0.9503

~4 l

2.69 10 0 0.232 21.15 3 75 80 500 500 0.382 0.9813

-4 4.27 10 0 0.184 13.3 3 75 80 500 500 0.334 0.8781 l

-4 6.79 10 0 0.146 8.37 3 60 60 500 500 0.266 0.6919 4

l 0.00108 0 0.116 5.26 3 45 60 500 500 0.206 0.5629 O.00172 0 0.092 3.31 3 30- 60 500 500 0.152 0.4468

-4 1.69 10 0 0.292 33.62 2 75 80 500 500 0.442 1.044

-4 l

4.27 10 0 0.184 13.3 2

75' 60 500 500 0.334 0.788

~4 6.79 10-0 0.146 8.37 2 60 60 500 500 0.266 0.652 i

0.00108 0 0.116 5.26 2 45 60 500 500- 0.206 0.532 0.00172 0

0.092.

-3.31-2 30 60 500 500 0.152 0.424,

'Ihe above matrix is manually compared with the matrix CABLE of Attach-ment A to demonstrate successful data transfer.

4 I

f 9

..e

.m

. 5..

,,,--r-.

--...-m,-

,,,v.,

r.--.

,E,-

J ATTACHMID4T D1 M% 2 pass 3 q~9

^"9'"' N h =

I Cabisla Proo Aln Tonsplate P II.

BUNDIJ:0 CONEUCN5~OIAME110t j := 1..A i : = 1. 21 I

N := (1 2 3 5)

This is the n'tabar of cables in a bundle, except that 3 -

single conductors are counted N

= H as onn.

'1he numbers were i,j 1,j arbitrarily selected.

The following determines the maximum number of cablas which can f4t in a 4

conduit using tte 404 " fill by area" w

critaria (see Rafarence 14).

t l

i Acnd3 t= 7.38 Acnd5 3d 20 Area of a 3,4,5,6 inch conduit, Source: Reference 14 (NEC).

Acnd4 := 12.72 Acnd6 := 29.89 O.4 Acnd3

'0.4 Acnd3

^

N ta if n' 85 1, floor

, floor 1,5 1,1 2

2 A

Diam 1C Cdian I.s1 1,1 1,1 3 f.

T-I 4

4 0,4 Acnd4

'O.4 Acnd4 "

l 4 1, floor

, floor N

!= if n'

)

1,6 1,1 2

2 i

Diam 1C Cdiam 1,1 1,1 j

3 t-f-

4 4

0.4 Acnd5

'0.4 Acnd5

N i= if n' 88 1, floor

, floor 1,7 1,1 2

2 Diam 1C Cdian 1,1 1,1 i

T.-

3 y-4 4

l' O.4 Acnd6

'O.4 Acad6**

, floor N

= if n' 4 1, floor i,8 1,1 2

2 l

Diam 1C Cdiam 3

T-.

1,1 1,1 T.

4 4

4 5

4 4

a

+#

e v<---

s3 y

e

---p Ir3.,-..

--,-.* -,~--

,e

'w e - e

CPSRS UNrT 1 WD45 EE(B) 140, Ree 2 pass 4 d 9 ATTAQD e ft81 m r. tad =L= es Cable Ampeary d Thermelages4 Cable in Fros Alr:

j Tempiate l' y

]

j := 1

,,4 i

l N

= 15 'N
  • 0,1,N This ensures that N is nwar zero j

iej

,ind lei J

I Conduit Size:

3 4

5 6

N

  • 1 2 3 5 1

1 1

2' 1/C-500,8 KV 1 2 3 5

1 1

2 3

1/C-350,4 KV 1 2 3 5 1

1-2 4

1/C-4/0,8 RV 1 2 3 5 1

1 2

2 1/Ce750,600 V l

1 2 3 5 1

1 2

4 1/C-500 i

N=

1 2 3

5 1

2 3

5 1/C-350 A

j 1 3 3 5 2

4 6

9 1/C-4/0 g

1 2 3.5 3.

5 12; 1/C+2/0 1 2 3 5 1

2 4

6 TRI-4/0 l

1 2 3 5 2

3 5

8 TRI-2/0 1 2 3 5 4

7 11 16 TRI-2AM l

1 2 3 5 3

6 10 15 3/C-4AM -

1 2 3 5 4

8 13 19 3/C-4AM f

1 2 3 5 7

13 21 30 3/C-8A M i

1 2 3 5 11 20 32 46 3/C-10AM 1 2 3

5 18 32 51 73 3/C-12AM i

1-2 3

5 3

5 9

13 2/C-2AM 1 2 3

L 6 10 16 23 2/C-6AM 1 2 3 5 8

15 23 34 2/C-5ANG 3

1 2 3 5 13 22 35 51 2/C-10AM

,1 2 3 5 20 36 56 81, 2/C-12AM i

WRITEPRN 'N

= N

'1his stores the N matix in an ASCII file for

, prn,

use in Template Appendix B2 and B3 3

l t

i a

4 4

..~

i i

CPSES UNIT 11N

) 140, Ret 2 pass 3 of 9 ATTACHMENT B1

'laserte N=1=*ia= of Ampdry of h '~Z f M k FM Templass 1 I

i j

NNFF = RFADPRN 'NNFF Matrix NNTV defines the relationship prn,

between the number of cables in a bundle and the multiplier to obtain burvile diameter (see template Attachment C for its i

j development).

x := 1. 85

}

<1>

<2k HNTY FF(o,p)

=

NNFF

  • N o p.

X X

l n

X The above equation searchas NNFF, finds the appropriate row. and A

sets FF equal to tlw multipling variable in the second column of e::1 NNFF. This algorithm, as well as the data transfar of NNFF, is verified by manually comparing matrix N against NNFF to confirm

[

the accuracy of the resulting FF and F.

4 6

i j:=1.8 i

l F

" PF(1,j)

Redefines FF as F.

f' 9

n..

g

., ~ ~.,..

,..n, w

~-,..,n,-n-n--.,

n---,

a.., -.. -... - - -....e..,

...e,

,-an,

.c

_ ~ _

N UM L N 8)140, Rav 2 gg,

^ " ^ " "* M7d

^"W d cei.1.rm Ain

" No. of cables in a Ihandle No!"of Cables / Corstuit size 1 2 3 5 3"

4" 5"

6" j

'l 2 3 5

1 1

1 2'

1/C-500,8 KV 1 2 3 5 1

1 2

3 1/C-350,8 KV 1 2 3 5 1

1 2

4 1/C-4/0,8 KV 1 2 3 5

1 1

2 2

1/C-750,600 V 3

1 2 1 5 1

1 2

4 1/C-500 N=

1 2 3 5 1

2 3

5 1/C-350 1 2 3 5 2

4 6

9 1/C-4/0 1 2 3 5 3

5 8

12 1/C-2/0 1 2 3 5 1

2 4

6 m -4/0 g

i 1 2 3 5

2 3

5 8

m -2/0 1 2 3 5 4

7 11 16 m-2AM 1 2 3 5 3

6 10 15 3/C-4AM i 2 3 5 4

8 13 19 3/C-6AM 1 2 3 5 7 13 21 30 3/C-8AM 1 2 3 5 11 20 32 46 3/C-10AM 1 2 3 5 18 32 51 73 3/C-12AM i 2 3 5

3 5

9 13 2/C-2AM 4

1 2 3 5 6 10 16 23 2/C-6AWG 1 2 3 5 8

15 23 34 2/C-BAM A

1 2 3 5 13 22 35 51 2/C-10AWG

/_d

,1 2 3 5 20 36 56 81, 2/C-12AWG Equivalent multiplier to obtain bundle diameter = F

  • cable diameter.

Number of Cables. /

Cotxtuit Size t

1 2 3

5 3"

4" 5"

6"

'l 2 2.15 2.7 1

1 1

2' 1/C-500,8 KV 1 2 2.15 2.7 1

1-2 2.15 1/C-350,8 KV 1 2 2.15 2.7 1

1 2

2.14 1/C-4/0,8 KV 1 2 2.15 2.7 1

1 2

2 1/C-750,600 V 1 2 2.15 2.7 1

1 2

2.14 1/C-500 F=

1 2 2.15 2.7 1

2 2.15 2.7 1/C-350 1 2 2.15 2.7 2

2.14' 3

3.62 1/C-4/0 1 2 2.15 2.7 2.15 2.7 3.31 4.15 1/C-2/0 1 2 2.15 2.7 1

2 2.14 3

m -4/0 1 2 2.15 2.7 2 2.15 2.7 3.31 M -2/0 1 2 2.15 2.7 2.14 3

4 4.7 W -2AWG 1 2 2.15 2.7 2.15 3

4 4.7 3/C-4AWG 1 2 2,,15 2.7 2.14 3.31 4.41 5

3/C-6AWG 1 2 2.15 2.7 3

4.41 5.31 6.41 3/C-8AWG 1 2 2.15 2.7 4

5.31 6.7 8

3/C-10AWG 1 2 2.15 2.7_

5 6.7 8.41 10 3/C-12AWG 1

1 2 2.15 2.7 2.15 2.7 3.62 4.41 2/C-2AWG 1 2 2.15 2.7 3

4 4.7 6

2/C-6AWG i

1 2 2.15 2.7 3.31 4.7 6

7 2/C-8AWG 1 2 2.15 2.7 4.41. 5.62 7

0.41 2/C-10AWG

,1 2 2.15 2.7 5.31 7

8.7 10.41, 2/C-12AWG j

i l

l

~

... _.__ _... _ _ - _ _. _ _.. _. _. _., _.... _ _. _ __ _ _ _... _ _. _.. ~ _ _ _ _ _ - _

i CPTES tMr1 16345 p14G, Rev 2 pass 7 of 9 ATTACIDENT B1

  • Interus Calculation cd Ampanty of Tiwamolamed Cable is hes Ain i

Templats l' i

j := 1.8 Tttis redefines the nuber of n'

= if'n' 28 1,3,n' conductcra for 1/C cabl*a as 1,1 1,1 1,1, 3 for N
  • 1.

J CR.TGIN as 1 1

I nn'

= n' N

This calculates the nuater 1,j i,1 1,j of condstetors us$er the vre.p.

i 1

4 Actual number of Conductors inside Bund.le l

Su ber of Cables /

Conduit size 1_

1 5

3" 4"

5" 6"

i

'3 6 9 15 3

3 3

6' 1/C-500,8 KV 3 6 9 15 3

3 6

9 3/C-350,S KV 3 6 9 15 3

3 6

12 1/C-4/0,8 KV 3

6 9 15 3

3 6

6 1/C-750,600 V 3

6 9 15 3

3 6

12 1 0-500 1

i nn' =

3 6 9 15

?.

6 9

15 1/C-350 l

3 6 9 15 6 12 18 27 1/C-4/0 3

6 9 15 9

15 24 36 1/C-2/0 3 6 9 15 3

6 12 14 TRI-4/0 3 - 6 9 15 6

9 15 24 TRI-2/0 3

6 9 15 12 21 33 48 TRI-2AWG I

3 6 9 15 9 18 30 45 3/C-4AWG 3 6 9 15 12 24 39 57 3/C-6AWG 3

6-9 15 21 39 63 90 3/Ca8AWG j

3 6 9 15 33 60 96 138 3/C-10AWG 3 6 9 15 54 96 153 219 3/C-12AWG j

2 4 6

10 6 10 18 26 2/C-2AWG 2

4 6 10 12 20 32 46 2/C-6AWG 2-4 6 10 16 30 46 68 2/C-8AWG 2

4 6 10 26 44

-/0 102 2/C-10AWC,

,2 4

6 10 40 72 112

162, 2/C-12AWG 4

3 d

4 a

3 0

y y


_.,w-

_,e--

,-<y

i CPSES UNIT 1 16345 EE(B 140, Rev 2 pass 8 of 9

  • Interun atenlarks d Ce)Ampany M h@ Mis in Fm &

i ATTACHMENT B1 e

Template l' nn' is the actual number of conductors inside a bundle nnn' is the equivalent number of conductors for heat production basis The following acca, ants for load diversity in larger cable bundles. See template Appendix F and the Methodology section for further explaination.

i nnn'

= if 'N k 3,0.88'nn'

,nn' Mjust nn' for N=3 1,j

,1,j i,j 1, j.

4 nnn'

= if'N k 4,0.82 nn'

,nnn' Mjust nn' for N=4 i,j

,i,j 1,j 1,j, I

  • er nnn'
= if 'N t 5,0.784 nn'

,nnn' Mjust nn' for N=5 1,3

,1,3 1,3 1, j, nnn'

= if M 2 6,0.76 nn'

,nnn' Mjust nn* for N=6 A

i,j

,i,j 1,j 1, j, l!G Mjust nn' for N=7 or l

nnn'

= if M k 7,0.743 nn'

,nnn' greater, for conservatism i

i,j

,i,j i,j 1, j, no value smaller than O.743 will be usad Equivalent number of conductors in Bundle Number of Cables /

Conduit size 1 2 3

5 3"

4" 5"

6" t

'3 6 7.92 11.76 3

3 3

6' 1/C-500,8 IN 3 6 7.92 11.76 3

3

-6 7.92 1/C-350,8 KV-3 6 7.92 11.76 3

3 6

P.84 1/C-4/0,8 KV 4

3 6 7.92 11.76 3

3

_6 6

1/C-750,600 V 3 6 7.92 11.76 3

3 6

9.84 1/C-500 nnn' =

3 6 7.92 11.76 3

6 7.92 11.76 1/C-350 3

3 6 7.52 11.76 6

9.84 13.68 20.06 1/C-4/0 3 6 7.92 11.76 7.92 11.76 17.83 26.75 1/C-2/0 3 6 7.92 11.76 3

6 9.84 13.68 TRI-4/0 3 6 7.92 11.76 6

7.92 11.76 17.83 TRI-2/0 3 6 7.92~ 11.76 9.84 15.6 24.52 35.66 TRI-2AWG 3 6 7.92 11.76 7.92 13.68 22.29 33.44 3/C-4AW3 3 6 7.92 11.76 9.84 17.03 28.99 42.35 3/C-6AWG 3 6 7.92 11.76 15.6 28.99 46.01 66.87 3/C-8AWG 3 6 7.92 11.7L 24.52 44.58 71.33 102.53 3/C-10AWG 3 6 7.92 11.76 40.12 71.33 113.68 162.72 3/C-12AWG 2 4 5.28 7.84 5.28 7.84 13.37 19.32 2/C 2AWG 4

2 4 5.20 7 84 9.12 14.86 23.78 34.18 2/C-6AWG 2 4 5.28 7.84 11.89 22.29 34.18 50.52 2/C-BAWG 3 4 5.28 7.24 19.32 32.69 52.01 75.79 2/C-10AWG

,2 4

5.28 7.84 29.72 53.5 C3.22 120.37, 2/C-12AWG 4

k

CPSES UNIT 1 15345 EE(B) 140. Rev 2 page 9 of 9 NITACHMENTB1

  • Interuscalcularv= of Cable Ampecity of hy a u,%

Template l' WRITEPRN'NNN

= nnn' Prn,

Both matices nnn' and nn' are saved to an ASCII file for later use by template WRITEPRN*nn

= nn' Appendix B2 and B3 prn.

CCdian

= Cdian F

This calculates tbr 4 meter i,j i,1, i,j of a bundle of ca h, for various number of (mblus in the bundle.

Bundle diameter No. of Cables / Conduit Size 1

2 3

5 3"

4" 5"

6"

'2.95 5.9 6.35 7.97 3.95 2.95 2.95

5. 9' 1/C-500,8 KV 2.67 5.34 S.74 7.2 2.67-2.67 5.34 5.74

-1/C-350,8 KV 2.34 4.68 5.03 6.32 2.34 2.'34 4.68 5.01

.-:-4/0,8 KV 2.77 5.54 5.95 7.48 2.77 2.77 5.54' 5.54 1/C-750,600 V 2.31 4.61 4.96 6.23 2.31 2.31 4.61 4.94 1/C-500 CCdiam =

2.02 4.05 4.35 5.46 2.02 4.05 4.35 5.46 1/C-350 1.57 3.13 3.37 4.23 3.13 3.35 4.7 5.67 1/C-4/0 1.33 2.66 2.86 3.59 2.86 3.59 4.4 5.51 1/C-2/0 1.57 3.13 3.37 4.23 1.57 3.13 3.35 4.7 TRI-4/0 1.33 2.66 2.86 3.59 2.66 2.86 3.59 4.4 TRI-2/0-0.95 1.9 2.04 2.57 2.03 2.85 3.8-4.47 TRI-2AWG 0.98 1.96 2.11 2.65 2.11 2.94 3.93 4.61 3/C-4AWG 0.88 1.76 1.89 2.37 1.88 2.91 3.87 4.39 3/C-6ANG 0.69 1.38 1.49 1.87 2.08 3.05 3.67 4.44 3/C-8AWG 0.56 1.13 1.21 1.52 2.25 2.99 3.77 4.5 3/C-10AWG 0.45 0.89 0.96 1.21 2.23 2.99 3.76 4.47i 3/C-12AWG 1.04 2.09 2.24 2.82 2.24 2.82 3.78 4.6 2/C-2AWG 0.79 1.58 1.69 2.13 2.36 3.15 3.7 4.73 2/C-6AWG 0.65 1.3 1.4 1.76 2.16 3.06 3.91 4.56 2/C-EAWG 0.53 1.06 1.14 1.44 2.35 2.99 3.72 4.47 2/C-10AWG

,0.42 0.85 0.91 1.14 2.25 2.97 3.69 -4.41, 2/C-12AWG-WRITEPRN 'CCdian

= CCdiam This saver matrix CCdian for use Prn,

by template Appendix B2 l

I'

CPSES UNIT 1 16345.h)-14,Rev 2 1 d 12 ATTACINEW B2

  • Ch Ampadry d1h

- f Cabla rmAk: Template 2

_. ~

~

~

ATT.AC10E2fT B2 CAB 2 AMPACITY OF THERM 01AGGED CAR 3,' p w(ked b1 m FREE AIR: TEMPLATE 2 6 /[,,

This templates calculates the thermal resistance terms and cable ampacity. The cable ampacity is input to template Attacament B3 for comparison with ampacity of the cable in adjacent raceways sections.

I.

CABLE INPUT DATA w

PRNPRECISION := 8 Files cable.prn was produced by CAB u := READPRN' cable template-Attaqchment A and is prn,

documented separately.

ORIGIN u 1 defines the upper comer of a matrix as 1,1 j := 1. 7 i := 1. 21 n'

= 0 Cdian
= 0 i,j 1,j

.t Matrix CABLE is comprised of the following indicated columns.

<l>

<2>

<3>

<4>

Rdc25 := CABLE Yc := CABLE Du := CABLE Ac := CABLE

<l>

<5>

<6>

<7>

<8>

n'

= CABLE It := CABLE Jt := CABLE pi := CARLE

<9>

<10)

<1>

<11>

pj := CABLE Diam 1C := CABLE' Cdiam

= CABLE Where:

Rdc25 Conductor dc resistance at 25 dog C, O/ft Yc Conductor proximity / skin affoct De conductor diameter, in.

Ac conductor cross-sectional araa, sq ma n'

Number of ccnductors in cable It Insulation thickness, mils Jt overall jacket thickness, mils pi-Insulation thermal resistivity, C-cz/w pj Jacket thermal resistivity, C-cm/w Diam 1C Diameter of 1/c cable or 1 cable et multi-conductor cabie, in.

Cdiam Overall diameter of cable, in.

o

________________________________________________]

)

l CPSES UNIT 1 16345 PJ(B) 140, Rev 2 y 2 of 12 ATTACH *ENT B2

  • Cabis Ampaaey of hw '-j,Cabia m Pres Air :Templess 2 4

i CABLE PMYSICAL FROPERTIES s

Rdc25 Dc Ac It -Jt Diam 1C Cdian

~

O/ft Yc in.

mm2 n'

mil mil pi pj inch inch 5

2.22 10 0.06 0.813 253.4 1 280 0 500 500 1.373 2.95195 w

-5 3.2 10 0.03 0.681 177.3 1 280 0 500 500 1.241 2.66815

~5 a

CAB 1E =

5.25 10 0.01 0.528 107.2 1 280 0 500 500 1.088.

2.3392

-5 1.48 10 0.13 0.998 380 1 145 0 500 500 1.288 2.7692

-5 2.22 10 0.06 0.813 253.4 1

130 0 500 500 1.073 2.30G95

-5 3.2 10 0.03 0.681 177.3 1 130 0 500 500 0.941 2.02315

-5 5.25 10 0.01 0.528 107.2 1

100 0 500 500 0.728 1.5652

~5 8.43 10 0 0.418 67.43 1 100

'O 500 500 0.618 1.3287

-5 5.25 10 0.01 0.528 107.2 3

100 0 500 500 0.728 1.5652 4

-5 8.43 10 0 0.418 67.43 3

100-0 500 500 0.618 1.3287

~4 n

1.69 10 0 0.292 33.62 3

75 0 500 500 0.442 0.9503

-4 2.69 10 0 0.232 21.15 3 75 30 500 500 0.382 0.9813 i

~4 4.27 10 0 0.184 13.3 3

75 -80 500 500 0.334 0.8781

-4 6.79 10 0 0.146 8.37 3 60 60 500 500 0.266 0.6919 0.00108 0 0.116 5.26 3 (5 60 5C0 500 0.206 0.5629 i

0.00172 0 0.092 3.31 3 30 60 500 500 0.152

-0.4468

-4 1.69 10 0 0.292 33.62 2 75 80 500 500 0.442 1.044

~4 4.27 10 0 0.184 13.3 2

75 60 500 500 0.334 0.788

~4 6.79 10 0 0.146 8.37-2.

50 60 500 500 'O.266 0.652 0.532)-

0.00108 0 0.116 5.26 2 45 60 500 500 0.206 0.424 0.00172 0 0.092 3.31 2 30 60 500 500 0.152 f

The above matrix in manually compared with the _ matrix CABLE of 7.ttach-ment A to demonstrate successful data transfer.

)

CPSES UNIT 1 16345 EE(B) 140, Rev2* Cable Anapacity ME 9 _ f Cableb3 d12A

' A'ITAODENTB2 N, nnn', and CCdian were developed in template-Attachment 81

~

N t= READPRN'N nnn' t= READPRN 'NNN

.Prn.

prn.

s CCdian = READI-RN 'CCdiam prn.

No. of cables in a Bundle No. of cables / Conduit Size 1 2 3 5 3 a'4 " 5 a 6"

'l 2 3 5 1

1 1

2' 1 2 3 5 1

1 2

3 A

1 2 3 5 1

1 2

4 M

1 2 3 5 1

1 2

2 1 2 3 5 1

1 2

4 N=

1 2 3 5 1

2 3

5 1 2 3 5 2

4 6

9 1 2 3 5 3

5 8 12 1 2 3 5 1

2 4

6 1 2 3 5 2

3 5.

8 1 2 3 5 4

7 11 16 1 2 3 5 3

6 10 15 a

- 1 2 3 5 4

8 13 19 1 2 3'5 7 13 21 30 1 2 3 5 11 20 32 46 4

1 2 3 5 18 -32 51 73 1 2 3 5 3

5-9 13 1 2 3 5 6 10 16 23 1 2 3 5 8 15 23 34 1 -2 3 5 13 22 35 51

,1 2 3 5 20 36 56 81, s

._w-

R* gol ATTAGOENT B2 Equivalent No. of conductors in a Bundle No. of cables / Conduit Size 1 2 3

5 3"

4" 5"

6"

'3 6 7.92 11.76 3

3 3

6' 3

6 7.92 11.76 3

3 6

7.92 3 6 7.92 11.76 3

3 6

9.84 3 6 7.92 11.76 3

3 5

6 9

3 6 7.92 11.76 3

3 6

9.84 nnn' =

3 6 7.92 11.76 3

6 7.92 11.76 3

-6 7.92 -11.76 6

9.84 13.68-20.06 3 6 7.92 11.76 7.93 11.76 17.83 26.75 3 6 7.92 11.76 3

6 9.84

13. 68 3-6 7.92 11.76 6

7.92-11.76 17.83 e

3 6 7.92 11.76 9.84 15.6 24.52 35.66 3 6 7.92 11.76 7.92 13.68 22.29 33.44 3 6 7.92 11.76 9.84 17.83 28.98 42.35 3 6 7.92 11.76 15.6 28.98 46.81 66.47 3

6 7.92 11.76 24.52 44.58 71.33 102.53 3 6.7.93 11.76 40.12 71.33 113.64 162.72 2 4 5.28 7.84 5.28 7.84 13.37-19.32 2 4 5.28 7.84 9.12 14.86 23.78 34.18 2 4 5.28 7.44 11.89 22.29 34.18 50.52 2 4 5.28 7.84 19.32 32.6?

52.01 75.79

'A-

,2 4

5.28 7.84 29.72 53.5 83.22 120.37 E

Dinaster of cable Bundle.

No. of cables / Conduit Size J

1 2_

3 5

3" 4"

5" 6"

'2.95 5.9 6.35 7.97 2.95' 2.95.2.95

5. 9' 2.67' 5.34. 5.74 7.2 2.67-2.67 5.34-5.74

.32 2.34 2.34 4.68 5.01 6

2.34 4.64-5.03 2.77 5.54 -5.95 7.48 2.77 2.77-.5.54 5.54 2.31 4.61-4.96-6.23 2.31 2.31 4.61 4.94 CCdian =

2.02 4.05

'4.35-5.46 '2.02 4.051-4.35 5.46 1.57 3.13 -3.37~ 4.23 -3.13 -3.35:

4.7 15.67 1.33 2.66 =2.86 3.59 2.86 3.59 4.4.-5.51 1.57 3.13 3.37. 4.23 1.57 3.13-3.35

'4.7 1.33 2.66. 2.86. 3.59 2.66 2.86 3.59 4.4 0.95 1.9 2.04 2.57-2.03 2.85-3.8.4.47 0.98 -1.96 2.11 2.65 - 2.11L 2.94 0.93 4.61 0.88-1.76: 1.89 2.371 1.88.2'91 3.87 4.39 0.69 1.38

'1.49. 1.87. 2.08 '3.05 3.67 4.44 0.56 1.13 1.21-1.52 2.25 2.99 3.77 4.5 0.45' O 89: 0.96 1.21 2.23 2.99 3.76' 4.47 1.04.2.09= 2.24 2.82 2.24 2.82-3.78~

.4.6 0.791 1.58-1.69 12.13-2.36--3.15

-3.7 4.73 0.65 1.3

-1.4.1,76 2.16 3.06 3.91' 4.56 0.53 1.06 1.14

~.1.44 2.35 2.99 3.72--4.47 0.42

.0.85' O.91 1.14 2.,25 2.97'c3.69 '4.41, I

i

.L.

CPSES UNIT 1 16345.EE(B} 140, Rev 2

% bis Aspecaydn --DMb5 d12 ATTACHMENT 82 MTW2 III. Calculation of thermal resistance terms j := 1. 8

' Diam 1C ~

i thermal resLatance=of insulation Ri

= 0.012 pi
  • log C-ft/ watt w-i,j i

De Source: Reference 3 (Nehr-McGrath),

i equation 38.-

'Itereal Resistance of Insulation '

No. of cables / Conduit Size 1

2 3

-. 5 3"

4" 5"

6"

'1. 4 1.4 1.4 1.4 1.~ 4 1.4

1. 4 ' 1. 4' 1/C-500,8 KV 1.6 1.6 ' 1. 6 1.6 1.6 1.6 1.6 1.6 1/C-350,8 KV 1.9 1.9 1.9 1.9.

1.9 1.9 1.9 1.9

-1/C-4/0,8 KV 0.7 0.7 0.7 0.7. 0.7 0.7 0.7 0.7 1/C-750,600 V 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1/C-500 Ri =

0.8 0.8 0.8 0.8 0.8_

0.8 0.8 0.8 1/C-350 0.8 0.8 -0.8 0.8 0.8 0.8 0.8 0.8 1/C-4/0 6

1

'1 1

1 1

1 1

1 1/C-2/0 0.8 0.8 0.8 0.80.8-0.8' O.8 0.8 TRI-4/0 1

1 1

_1 1

1

.1 1

TRI-2/0 1.1-1.1 1.1 1.1 1.1 '1.1 ;1.1 1.1 TRI-2ANG 1.3 1.3_ 1.3 1.3~

1.3-1.3 1.3 1.3

'3/C-4ANG 1.6-1.6 1.6 1.6 -1.6 1.6 1.6

-1.6 3/C-6ANG 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 3/C-SANG 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 3/C-10ANG-1.3

1. 3.: 1.3 1.3 1.3
1. 3 - 1. 3 1.3 3/C-12ANG 1.1 1.1 1.1 1.1 1.1 1.1 1.1 -1.1 2/C-2ANG 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 2/C-6ANG 1.6 1.6 1.6 1.6 1.6 1.6 1.6-1.6 2/C-8ANG 1.5 1.5-1.5 1.5.

1.5 1.5 1.5_

1.5

-2/C-10ANG

,1. 3 1.3 1.3 1.3 1.3 1.3-1.3

1. 3,

-- 2/C-12ANG

_..__ ~ -.. _ _

CPSES UNIT 1 16345.EE(B) 140, Rev 2 6of12

  • Cabis Ampeary of he+ ' _ ' Cabis Nres Air : Toeplass 2 ATTACIOGNT B2 i

Thermal Resistance of the Jacket on 2/c and 3/C cable 4

Cdiaa I

i,1 Rj

= 'Jt > O'
  • 0.012 n' pj log i,j i

i,1 1

-3 Cdian

- 2 Jt 10 i

-ie l'

-i Thermal resistance of jacket, j

C-ft/ watt Source: Derived from w

equation -38 in Reference 3 q

(Nehr-McGrath) ' Itis first part of i

the expression is a logical statenment to only calculate Rj if a i

jacket exists.

I Thermal Resistarwe of Jacket No. of cacles / Conduit Size 1

2 3

5 3

4" 5*

6" 0

0 0

0 0

0 0

0' O

O O

O O

O O

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

'O O

O O

O O

O O

0 0

Rj =

0 0-0 0

0 0

i 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 i

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

-0 0

0 0

4 l

1.39 1.39 1.39 1.39 1,39 1.39 1.39 1.39 f

1.57 1.57 1.57 1.57 2.57 1.57 1.57 1.57 1.49-1.49 1.49 1.49 1,49 1.49 1.49 1.49 1.87 1.87 '1.87 1.87 l'.37 1.87 1.87 1.87 2.44 2.44 2.44 2.44-2.44 2.44-2.44: 2.44 l

0.87 0.87 0.87 0.87 0.87 0.87 0.87' O.87 0.86 0.86 0.86 0.86 0.86 0.86 0.86- 0.86 i

1.06 1.06 1.06 1.06 1.06 1.06. 1.06-1.06 r

1.33.1.33 1.33 1.33 1.33' 1.33 1.33 1.33

,1.73= 1.73 1.73 1.73 1.73 1.73 1.73 1.73, i

j s'

4 1

4 1

i n

....,.,..m._

CPSES UNTT 1 16345 EE(B) 140, Rev 2 pa8e 7 of 12 A7TAODENT B2

  • Cable Aspecify of Thermoingged Cabis sa Free Ah : Templats 2 A' := 4.5 B' := 0.27 factors used in Red, developed constants in 4

Table VII of Reference 3 (Nehr-McGrath). See Methodology 8 thermal resistance between A'

cable and 330-660, C-ft/ watt this assumes an airgap between Rsd

= nnn' 1,j 1,j CCdian

+ B' the two surfaces. Equation 41A 1,j from Reference 3, w

(Nehr-McGrath).

3

' 4.2 4.4 5.4 6.4 4.2 4.2 4.2 4. 4' 1/C-500,8 KV 4.6 4.8 5.9 7.1 4.6 4.6 4.8 5.9 1/C-350,8 KV 2

5.2 5.5 6.7 8

5.2 5.2 5.5 8.4 1/C-4/0,8 KV 4.4 4.6 5.7 6.8 4.4 4.4 4.6 4.6 1/C-750,600 V 4

5.2 5.5 6.8 8.1 5.2 5.2 5.5 8.5 1/C-500 Rsd =

5.9 6.3 7.7 9.2 5.9 6.3 7.7 9.2 1/C-350 l

7.4 7.9 9.8 11.8 7.9 12.2 12.4 15.2 1/C-4/0 8.4 9.2 11.4 13.7 11.4 13.7 17.2 20.8 1/C-2/0 7.4 7.9 9.8 11.8 7.4 7.9 12.2 12.4 TRI-4/0 8.4 9.2 11.4 13.7 9.2 11.4 13.7 17.2 TRI-2/0 l

11.1 12.4 15.4 18.7 19.2 22.5 27.1 33.9 TRI-2AWG 10.8' 12.1 15 18.1 15 19.2 23.9 30.8 3/C-4AWG 11.8 13.3 16.5 20 20.6 25.3 31.5 40.9 3/C-6AWG 14 16.3 20.3 24.8 29.9 39.3 53.4 64 3/C-BAWG 16.2 19.3 24.1 29.6 43.8 61.6 79.4 96.7 3/C-10AWG 18.8 23.2 29 35.8 72.1 98.4 127' 154.5 3/C-12AWG 6.8 7.6 9.4 11.4 9.4 11.4 14.9 17.8 2/C-2AWG 8.5 9.8 12.1 14.7 15.6 19.5 26.9 30.8 2/C-6AWG 9.8 11.4 14.2 17.4 22 30.1 36.8 47 2/C-8ANG 11.2 13.5 16.8 20.7 33.2 45.1 58.6 71.9 2/C-10AWG 13 16.1 20.1 24.9 53 74.3 94.6 115.6, 2/C-12AWG 4

s 4

.t

i i

gk12 b

ATTACHMENTR2

  • CaWe Am i

I e

4 THE30thL RESISTANCE OF MERMOLAG 330-660 WRAP

!. ~

j j

Btu /hr = B B :=.2931 watts Ft := 30.4785

_ cm 5

i F := -

This.is to convert degree F 9

to degrees C

~

B 1 l

K := (0.249) - -

See Attachment D (conductivity)-

Ft F 4

l 1

<er SW := -

K PW = 232.01 thermal resistivity of 330-660 wrap,C-Cm/ watt-i Tvrap := 4 0.3123 thickness of wrap, inah (4 layers of marinum thickness, see Attachment D) 4' Twrap = 1.249 f

'CCdian

+ 2 Twragi Thermal' resistance 1,j of thermolag wrap, Rw

= 0. 012 + :mn' pw log thermal O/ft a

l i,j 1,j CCdian Sources Reference 2, i,j-equation 6 j

Thermal Resistance of Wrap-No. of c h ice / Conduit Size 1

2 3

5 3a 4"

5- "

6" 5

i

'2. 2 - 2.6 3.2 3.9 2.2 2.2 2.2-

2. 6' 1/C-500,8 KV l

2.4 2.8 3.5 4.2 2.4 2.4 2.8 3.5 1/C-350,8 KV l

2.6.3.1 3.9 4.7 2.6-2.6 3.1 4.4

1/C-4/0,8 KV i--

2.3 2.7-3.4 4.1 2.3 2.3 2.7 2.7 1/C-750,600 V j.

_ 3.9 4.8 2.7 2.7 3.1 4.9 1/C-500 2.7 3.1 Rw =

2.9 3.5:

4.3 54.

2.9 3.5 4.3 5.4 1/C-350 i

3.5' 4.3 5.3 6.6 4.3 6.6 7.1 8.9 1/C-4/0 3.8 4.5-6 7.5

_.G 7.5 9.7 12.1 71/C-2/0 3.5-4.3 5.3 6.6 3.5 4.3 6.6

'7.1 TRI-4/0-3.8 4.8 6

7.5~

4.8 6

7.5 9.7 TRI-2/0 4.7 6.1-7.6-9.7 9.5 11.9.

15 19.2 TRI-2AWG 4.6-6 7.5 9.4 7.5 -10.2 13.3 17.5 3/C-4AWG-l 4.9 6.4' 8.1 10.2 10.1 13.4 17.4 23.1 3/C-6AWG 5.5 7.5-19.4 12.1 14.9 21_ 29.4 36.1 3/C-8AWG 6.1 8.5 110.7 13.8' 22.1 32.7 43.8 54.7 3/C-10ANG-6.8 9.7 -12.3 16 36.4.52.3 70.1: 87 4 3/C-12ANG~

3 3.8_

4.8 6

4.8 6

8.2 10.1

.2/C-2AWG:

i 3.5-4.6 5.8 7.4'

-8.

10.5 14.8 17.5

.2/C-6AWG 3.8 5.2 6.5 8.4 11.1-16.11 20.4 26.7 2/C-BAWG 4.2 5.8 7.4 9.6-16.9

-24 32.3 40.7 2/C-10AWG-2 4.7 6.6 8.4-11 26.8 39.5 52 65.3, 2/C-12AWG J

0

=

r--

we

-w-en 1-m

!-s.,

w e

. sv-wi-at - a hw t ~ -r -tv = w

.,-4-,--,-'e rw

--s-are s e,r er---

mt y t M ' i--v '-1 w vhv+ et-www f M W ' t

+-1r 9"'*-1v-

" T + 7 f ir* S *-w?"'

a

WE5 WIT 1 1945 EE(BF140,Rn 2 ATTACHMENTR2

% % gn=

gQ9 d12 _

A 4

Tm:RMAL RESISTANCE BEIWEEN THE THEIO8XAG AND AMBIEKr AIR Durap

= 2 Tvrap + CCdian overall diameter of wrap, in.

w 6

{

Diameter over the Wrap

-No..cf cables / Conduit Size 1

2 3

5 3

4" 5"

6"

'5. 5 8.4 8.8 10.5 5.5 5.5 5.5 8.4" 1/C-500,8 KV 5.2 7.8 8.2 9.7 5.2 5.2 -7.8 8.2 1/C-350,8 KV 4.8 7.2 7.5 8.8 4.8 4.8 7.2

  • 1. 5 1/C-4/0,8 KV 5.3 8

8.5 10 5.3 5.3 8'

8 1/C-750,600 V 4.8 7.1 7.5 8.7 4.8 4.8-7.1 7.4 1/C-500 1

Dwrap =

4.5 6.5-6.8 8 -4.5 6.5 6.8 8

1/C-350 4.1' 5.6 5.9 6.7 -5.6 5.8 7.2 8.2 1/C-4/0 3.8 5.2 5.4

.6.1 5.4 6.1 6.9_

8 1/C-2/0

=

4.1 5.6 5.9 6.7 4.1 5.6 5.8

'7.2 TRI-4/0-5 j

3.8 5.2 5.4 6.1 3.2 5.4 6.1-6.9 TRI-2/0 j

3.4 4.4 4.5 5.1 ~ 4.5 5.3 6.3 _

7 TRI-2AWG 3.5 4.5 4.6

-5.1 4.6 5.4 6.4. 7.1 3/C-4ANG 3.4 4.3 4.4 4.9 4.4 5.4 -6.4 6.9 3/C-6ANG 3.2 3.9 4

4.4 4.6 5.5 6.2 6.9 3/C-8ANG 3.1 3.6 3.7' 4

4.8 5.5 6.3 7

3/C-10ANG-2.9 3.4 -3.5 3.7 4.7 5.5 6.3 7

3/C-12ANG 3.5 4.6 4.7 5.3 4.7 5.3 L6.3 '7.1 2/C-2ANG 3.3 --4.1 4.2 4.6 4.9 5.7 6.2 7.2

.2/C-6AWG 3.2 3.8 3.9

-4.3 4.7 5.6 6.4 7.1 2/C-8ANG 3

3.6 3.6

-3.9 4.8-5.5 6.2 7

2/C-10AWG

,,2. 9 3.3 3.4 3.6 4.7.5.5 6.2 6. 9, 2/C-12AWG i

l 1

4 1

4 y

--,-.s,,~.

y-.-~2m.--

y tw.

CPSES UNIT 1 16343.EE(B)-143, Rev 2 to of12 ATTAGMENT R2 aCabis Amnean of h=='j Cshie Free Air:Tempime 2 -

( := 0.89 emissivity of Thermolag 330-660-(see Attachment D) 9.5 nnn' i,j Thornal resistance between wrap and ambient air, Rwa t=

1,j 1 + 1.7 Dwrap

-(4 + 0.41) thermal 0-ft (C-ft/ watt)-

1,j Source: Reference 3 (Nahr-McGrath, equation 42A)

Thermal Resisttnce of Wrap to Air No. of-cables / Conduit Size 1

2 3

5 3"

4" 5a 65

'2. 2 2.9 3.7 4.6 1.2 2.2 2.2 2. 9' 1/C-500,8 KV 2.3 3.1 3.9 5

2.3 2.3 3.1 3.9 1/C-350,8 KV 2.4 3.4 4.3 5.5 2.4 2.4 3.4 5.3

,3/C-4/0,8 KV 2.3 3

3.8 4.8 2.3 2.3 3

3 1/C-750,600 V 2.5-3.4 4.3

-- 5. 5 2.5 2.5 3.4 5.4 1/C-500 Rua =

2.6 3.7 4.7 6

2.6 3.7 4.7 6

1/C-350 2.9 4.2 5.4 7

4.2 6.7 7.7 10 1/C-4/0 5

-3 4.6 5.9 7.7 5.9 7.7 10.4 13.6 1/C-2/0 2.9 4.2 5.4 7

2.9 4.2 6.7 7.7 TRI-4/0 3

4.6 5.9 7.7 4.6 5.9-7.7 10.4 TRI-2/0 3.3 5.3 6.8 9.2 8.5 11.6 15.6 20.7

'IRI-2ANG

?.3 5.2 6.7 9

6.7 10 13.9' 19.

3/C-4ANG 3.4 5.5 7

9.5 8.8 13.1 18.3 24.8' 3/C-6ANG 3.5 6

7.7 10.5 13.3 20.8 30.4-38.9 3/C-8ANG 3.7 6.3 8.2 11.3 20.3 32.3 45.6 59.1 3/C-10AWG 3.8 6.7 8.7 12.2 33.3 51.6 72.8 94.3 3/C-12ANG 2.2 3.4 4.4 5.8 4.4 5.8 8.5

.11 2/C-2AWG 2.3 3.8 4.9 6.6 7.4 10.5 15.4 19.1 2/C-6AWG 2.4 4

5.2 7.2 10 15.9 21.4 28.9 2/C-8AWG 2.5 4.3 5.5 7.7 15.7-23.7 33.5 43.9 2/C-10ANG-

,2.5 4.5 5.9 G.2-24.6 38.9 53.9 70.3, 2/C-12ANG i

i l

CPSES UNIT 1 16M5 EE(B)-140, Rev 2 pass 11 of 12 ATTACHMENT B1 cCabis Amipacity of 7henac&seged Cable D Free Air : Template 2 TH150%L PISISTANCE BE1 WEEN CONDUcroR AND AXBIE.T AIR

^

Rthi := Ri.+ Rj + Rsd +'RW + Rwa thermal resistance between the conductor and outside ambiant air, thennal 0-ft (C-ft/ watt)

Thermal Rheistance Between Conductor and Air No. of cables / Conduit Size 1

2 3

-5 3 "

4" 5 "

6"-

10.11.2 -13.6 16.3 10 10 10 11.2' 1/C-500,8 KV

[10.9 12.3 14.9 17.9 10.9 10.9 12.3 14.9 1/C-550,8 KV 12.1 13.8 16.7 -20.1

.12.1 12.1 13.8 20.4 1/C-4/0,8 K9' 9.7 11.1 13.6 16.4 9.7 9.7 11.1 11.1 1/C-750,600 V 11.1 12.8 15.7-19.2 11.1 11.1 12.8 19.5 1/C-500 Rthi =

12.2_ 14.3 17.6 21.4

.12.2

'14.3 17.6 21.4 1/C-350 14.5 17.3 21.3 26.3-17.3 26.4 28 34.9 1/C-4/0 16.3-19.6 24.3 30 24.3 30 38.3 47.5 1/C-2/0 14.5 17.3 21.3 26.3 14.5 17.3 26.4 28

_TRI-4/O-16.3 19.6 -24.3 30 19,6 24.3 30 38.3 TRI-2/0 20.1 24,9

'31 3 81. 6 38.3 47 58.8 74.b TRI-2AWG

21. '4 -

26 31.9 39.3 31.9 42 53.8 70 3/C-4AWG 23.1-28.4 34.8 42.9 42.5 54.8 70.3 91.9 3/C-6AWG

{

26.2 32.8 40.4 50.4 61.2 84 116.2 142.1

~3/C-8ANG 29.4_ 37.5 46.4 58.1 89.5 129.9 172.2 213.9 3/C-10ANG 33;2' 43.3 53.7 67.7 145.5 206 273.1-340 3/C-12ANG 13.9 16.8 20.5 25.2 20.5 25.2-33.6 40.9 2/C-2AWC 16.7 20.6 25.2 31.1 33.3 42.9 59.5 69.9 2/C-6AWG 18.6 23.3 28.6 35.5 45.7-64.7 81.2' 105.2 2/C-8AWG j

20.7 26.4 -32.6 ;40.7 68.7 95.6 127.2-159.2 2/C-10AWG-

,23.2 30.3 37.4 47.2.107.5 155.7 203.5 :254.2, 2/C-12AWG' 4

6 4

1 f

e e

a s'--

m TemM 2 RRdc25

= Rdc25 Wc
= Yc Converts vector into 1,j i

1,j i

matrix.

Tc := 90 conductor temper::ture, deg. C (see DBD-EE-52)

Ta := 50 ambient temperature, deg. C (see DBD-EE-52)

Cable ampacity of Thermolag 330-660 Wrapped Cable in Free Air w

234.5 + 25 Iamp

=

(Tc - Ta).

,1 + n c

- (234.5 + Tc) 1,j

,Rthi RRdc25 i,j 1,3 1, j.

Satree:- Reference 3 (Nahr-McGrath, equation 9, with Rthi = Rea#,

delta TD = 0, Rdc expressed at temperature Tc).

WRITEPRN'imap

= Iar)

This saves Iamp in an ASCII file for use prn,

in template Atttchment B3 cable Ampacity of Wrapped Cable in Free Air i

No. of cables / Conduit Size 1

2 3

5 3"

4" 5"

6"

'369 348 316 289 369 369 369 348' 1/C-500,8 KV 299 281 255 233 299 299 281 255 1/C-350,8 KV 223 209 190 173 223 223 209 172 1/C-4/0,8 EV-444 416 375 341 444 444 416 416

'i/C-750,600 V 350 326 294 266 350 350 326 264 1/C-500 Iamp =

282 261 ~235 213 '282 261 235 213 1/C-350 204 187 168 152 187 151 147 l'31 1/C-4/0 153 139 125 112-125 112 99 89 1/C-2/0 204 187 168 152 204 187 151 147 TRI-4/0 153 139 l'.5 112 139 125. 112 99

'IRI-2/0 97 87-78 70 70 63 57 50 TRI-2AWG 75 68 61 55 61 53-47 41 3/C-4AWG 57 51 46 42 42 37 33 29 3/C-6AWG 42 38 34 31 28-34 20 18 3/C-8AWG 8:

32 28 25 23

-18 15 13 12 3/C-10AWG 24 23 19 17 11 10 8

7 3/C-12AWG 117 106 96 87 96 87 75 68 2/C-2AWG 67 60 55 49 47 42 35 33

2/C-6AWG 50 45 41 36

.32 27 24 21 2/C-8AWG 38 33 30 27 21 1B 15 14 2/C-10AWG-1

, 28 25 73 20 13 11 10 9,

2/C-12AWG

'ig i

CPSES W"' 1 16345-EE(B).140, Rev 2 page 1 of 17 ATTACHMENT B3

'Ampedry Com;mison Between Free Air Ihminolaged Cables and Cables b Thermo4 aged Raamg spumeus ATTACfD00fr B3

^

i AMPACITY COMPARISON BE'1VEEN FREE AIR '

THERM 01AGGED CABLES AND

/p r

CABLES IN THEm001AGGED RACEWAYS S[/L PMI y 64848W This templates compar$s the ampacity of thermolagged cables in free air with those of thermolagged raceway: maintained spaced tray, ransod filled tray, Thermolag 330-1 enclosed conduit (both box and shall design) 4 4

I.

CABLE INP'JT DATA PRNPRECISION := 8 Iamp :a READPRN(iamp) 1 N := READPRN(N) nn' := READPRN(hT)

The above files were produced by template Attachment-B1 : N and nn't Attachment-B2: Iamp.

6 ORIGIN m 1 definas the upper cerner of a matrix as 1,1

[

j := 1

..S i : = 1. 21 4

4 i

d 4

f

4..

CPSES UNIT 1 16M5 EE(B).140, Rev 2 2 of17 :

ATTAOO4ENT B3

'Am Between Free Air

' Cabke and Cables la j

cable Anpacity of Wrapped Cable in Free Air l

No. of Cablee / Conduit Size 1

2 3

5 3"

4" 5'

6" t

'369 348 316 _289 369 369 369 348' 1/C-500,8 KV

[

299 281 -255 233' 299-299 281= 255 1/C-350,8 KV 1

223 209 190 173 223 223 209 172 1/C-4/0,8 KV 444 416 375 341 444 444 416_ 416 1/C-750,600 V 350 326. 294 266 350 350 326 264 1/C-500 Iamp =

282 261 235 213 282 261 235 _213 1/C-350 204-187 168 '152 187-151 147 131 1/C-4/0-

}

153 139 125 112 125 112 99 89 1/C-2/0 204 187 168_ 152-204 187 151 147

-TRI-4/0 l

153 139 125 -112 139 125 112.

99 m -2/0 l

97 87

.78

-70 70 63 57 50 M -2ANG l

75 68-61 55 61 53 47 41 3/C-4ANG i

57 51 46 42 42 37 33 29 3/C-6ANG l

42 38 34 31 28 24 20 18 3/C-8ANG 32 28 25 23 18 15 13 12 3/C-10ANG 24 21 19 17 11 10 8

7 3/C-12ANG 117-106 96 47_

96

_87 75-68 2/C-2ANG j

67 60 55 49 47 42 35 33 2/C-6ANG 50 45 41 36 32 27 24 21 2/C-SANG j__

.38 33 30 27 21 18 15 14 2/C-10ANG

, 28 25 22 20 13 11 10 9,

2/C-12ANG l

1 l

Number of Cables in a Bundle 4

No. of Cablee / Conduit Size i

1 2 3 3~

4" 5"

6' l-

'l 2 3 5 1

~1' 1-2' 1/C-500,8 KV l

1 2-3 5 1

1-2 3

1/C-350,8 KV l

1 2-3 5

1 1

2 4

1/C-4/0,8 KV i

1 2 3 5-1 1

2 2

1/C-750,600 V

-i r

1 2 3 5

1 1-2' 4

1/C-500' l

N=

1-2 3 5 1-2 3

5 1/C-350 f-1 2 3 5 2

4

.6

-9 1/C-4/0 l

1 2 3 5 3

5 8 l12 1/C-2/0-i.

1 2 3 5 1-2:

-4 6

m -4/0 12 3 5 2

3 5

8 m -2/0 Note: 1/C cable are-1 2 3 4-7 11 16 m -2ANG.

bundled"in groups of

_i 1 2 3 5 3

6 10 :15 3/C-4AWG three. Therefore,=if-8-

1 2

-3 5-4. 3._13 19

.3/C-6ANG N=3 then-the actual 1 2

.3. 5 7 13 21: 30 3/C-8AWG number of cables for I

1'2 3 '5 11 20 '32 -46 3/C-10AWG-1/C is 3 x -3 = 9 '

i 1 2 3 5.

18-32 51 73 3/C-12AWG' z

1 2 3 5-

.3 5

9' 13 2/C-2AWG is 1 2 3-5-

6

10. 16 23 2/C-6AWG j

l' 2- '3 5

8 15

'23-34

?/C-8AWG 1

2.

3 5 13 22 35 -51 2/C-10AWG

,1 2 3 5 20 36 56 81 2/C-12AWG I

i.

.~

p i-e' l

.a,

.,_.....-.-a,-.-.-.-,.-

-, ~,

i l

N UNIT 1 16HvEE(BF140, Rav 2 3 a(17 i

^

g p % F"8 O CaWes and CaNesin Number of Conductors in a Burxile No. of Cables / Conduit Size

~

1 2 3 5

3 4"

5*

6"

'3 6 9 15 3

3 3

6' 1/C-500,8 KV 3 6 9 15 3

3 6

9 1/C-350.S KV 3 6 9 15' 3

3 6

12 1/C-4/0,8 KV 3 6 9 15 3

3 6

6 1/C-750,600 V-j 3 6 9 15 3

3 6

12 1/C-500 nn' =

3 6 9 15 3

6 9

15 1/C-35; 3 6 9 15 6 12 18 27 1/C-4/0 3 6 9 15 9 15 24 35 1/C-2/0 3 6 9 15 3

6 12 18

'IRI-4/0 3 6 9 15 6

9 15 24 TRI-2/0 3 6 9 15 12 21 33 48 TRI-2ANG 3 6 9 15 9 18 30 45 3/C-4AWG 3 6 9 15 12 24 39 57 3/C-6AWG 3 6 9 15 21 39 63 90 3/C-8ANG 3 6 9 15 33 60 96 138 3/C-10AWG 3 6 9 15 54 96 153 219 3/C-12AWG 2 4 6 10 6 10 18 26 2/C-2ANG 2 4 6 10 12 20 32 46 2/C-6AWG 2 4 6 10 16 30-46 68 2/C-8AWG 2 4 6 10 26 44 70 102 2/C-10AWG

,2 4 6 10 40 72 112 162, 2/C-12AWG i

i i

3

't

CPSES UNrr 1 16345 EE(B) 140, Rev 2 pass 4 of 17 ATTACHMENT B3

'Asspecky Compensee Between Free Air Thermolagged Cables nad Cables in Thennolagged Raceways'

~ $ cities of Thermolagged Maintained Spaced Tray A

Aspacity of thermolag covered 600 V cable with maintained spacing in a 50 C ambient see Reference 1 (DBD-EE-052) and Reference 18.

Development of Thermolagged Tray ampacitiais for 8 kV cable:

'515' 1/C-500, 8TV Values obtained from Reference 18, it :=

386 1/C-350, 8KV Table 33 where depth > diameter.

,265, 1/C-4/0, 8KV w

IthMS8ky := 0.90 0.69*It where:

0.90 is an11tiplier for correcting ambient temperature from 40 C to 50 C (Ref. 18, page 1).

0.69 is thermolag doratirw; factor (Ref. 1).

'319.8' IthMS8kV =

239.7

,164.6,

'320' 1/C-500,8 KV 240 1/C-350,8 KV 165 1/C-4/0,8 KV These ampacities were input from:

391 1/C-750,600 V 8 KV Cabla - calculated results of 270 1/C-500 IthMS8kv shown abover 600 V cables - from i

199 1/C-350 DBD-EE-052. A value of 999 is entered when 148 1/C-4/0 no ampacities are appropriats because the 100 1/C-2/0 cables would not be installed in 148 TRI-4/0 maintained spaced trays 100 TRI-2/0 IthMS :=

50 TRI-2ARG 999 3/C-4AWC 999 3/C-6AWG 999 3/C-BAWG 999 3/C-10AWG 999 3/C-12AWG 69 2/C-2AWG 999 2/C-6AWG 999 2/C-SAWG 999 2/C-10AWG

,999, 2/C-12AWG IIthMS

= IthMS i,j i

AMPCHK

= if 'IIthMS

< Iamp

,1, 0' i,j 1,j 1,j


.---------------------...,,--.~----------_.---------__---_J

1 CPSiS UNrr 116345 EE(B) 14 Ret 2

! of17 ATTACHMENT B3

'Ampacity Compecimon Between Free Air neolag8,d Cables and f% ism in 1

n a.,8,d -,.-

l m dCK OF CABLE AMPACITY ADEQUACY wnW MAINTAINED SPACING IN TRAY l

Ampacity c m risen with MS Tray No. of cables / Conduit Size 1 2 3 5 3 4" 5" 6"

'l 1- 0 0 1 1 1 l'

1/C-f00,8 KV 1 1 1 0 1 1 1 1 1/C-350,8 KV 1 1 1 1 1 1 1 1 1/C-4/0,8 KV 1 1 0 0 1 1 1 1 1/C-750,600 V 1 1 1 0 1 1 1 0 1/C-500 AMPCHK =

1 1 1 1 1 1 1 1 1/C-350 1 1 1 1 1 1 0 0 1/C-4/0 i

1 1 1 1 1 1 0 0 1/C-2/0 l

1 1 1 1 1 1 1 0 TRI-4/0 NOTE:

1 1 1 1 1 1 1 0 TRI-2/0 1 - Adequate cable 1 1 1 1 1 1 1 1 TRI-2AWG agacity 4

0 0 0 0 0 0 0 0 3/C-4ANG 0 - Inadequate cable 0 0 0 0 0 0 0 0 3/C-6AWG agacity O O O O O O O O 3/C-8AWG 0 0 0 0 0 0 0 0 3/C-10AWG 0 0 0 0 0 0 0 0 3/C-12AWG 1 1 1 1 1 1 1 0 2/ C-2AWG i,

0 0 0 0 0 0 0 0 2/C-6AWG 0 0 0 0 0 0 0 0 2/C-8AWG O O O O O O O O 2/C-10AWG

,0 0 0 0 0 0 0 0,

2/C-12ANG i

cmTinit

= if 'AMPCHK
  • 1, 'N 0*

1,j i,j

, 1, j, 4

~

c27.ini t

= if'Iemp 4 999,0,CaLimit 1,3 1,3 1, j.

9 4

t J

if w

--en-am mww-+

ers"m,+~

4

owee 4

CPSES UNTT 1 1945-EE(B).140 Rev 2 6 of17 1

ATTACHMENT B3

'Ampacky Comparson Bamon Fra Air Cdeu and Cablesis ThermoWgod Rmenys' 1

Limit of Number of Cable in Bundle:

~

Not to Exceed Ampacity of Cable in MS Thermolagged Tray No. of Cables / Conduit Site

~

1 2 3 5 3 4"

5" 6"

'l 2 0 0 1 1 1

2' 1/C-500,8 KV 1 2 3 0 1 1 2

3 1/C-350,8 KV 1 2 3 5 1 1 2

4 1/C-4/0,8 KV A

1 2 0 0 1 1 2

2 1/C-750,600 V 1 2 3 0 1 1 2

0 1/C-500 CaLimit =

1 2 3 5 1 2 3

5 1/C-350 1 2 3 5 2 4 0

0 1/C-4/0 1 2 3 5 3 5 0

0 1/C-2/0 1 2 3 5 1 2 4

0 TRI-4/0 The limit to the 1 2 3 5 2 3 5

0 TRI-2/0 numbsr of cables 1 2 3 5 4 7 11 16 TRI-2AWG under a wrnp, use 0 0 0 0 0 0 0

0 3/C-4ANC

- 4==

number in 0 0 0 0 0 0 0

0 3/C-6AWG a given row.

0 0 0 0 0 0 0

0 3/C-8AWG Three 1/C cables 0 0 0 0 0 0 0

0 3/C-10AWG are considered as 0 0 0 0 0 0 0

0 3/C-12AWG one (1) 3/C cable.

i 1 2 3 5 3 5 9

0 2/C-2AWG 0 0 0 0 0 0 0

0 2/C-6AWG 0 0 0 0 0 0 0

0 2/C-8AWG O O O O O O O

O 2/C-10ANG l

.o 0 0 0 0 0 0

0, 2/C-12AWG j

i i

a i

4 u

n.,

n s

v

.~.

CPSES UNIT 1 1945 EE(B)-140 Rae 2 pass 7 of 17 4

1 ATTACHMENT B3

'Ampecay Comparises Bsewses Pros Air hr.:'n f Cables and Cables in m r - ; Rae 3-Ampacities 6f thermolcgynd' Randcan I4y Tray 4

i l

kupacity of thermolag

'999' 1/C-500,8 KV covered cable with-999 1/C-350,8 KV random lay (no main-999 1/C-4/0,8 KV tained specux1), sec 420 1/C-750,600 V Reference 1 (D8D-EE-052) 290 1/C-500 l

215 1/C-350 A-A30 1/C-4/0 4

88 1/C-2/0 M

157 TRI-4/0 106 Tt.I-2/0

(

IthRS :=

54 TRI-2AWG l

44 3/C-4AW3 2

32 3/C-6AWG i

20 3/C-SANG 12 3/C-10AWG j

8 3/C-12AWG l

75 2/C-2AWG 36 2/C-6AWG 24 2/C-8ANG 4

15 2/C-10ANG 9,

2/C-12AWG i

1 s

i 4

I i

l r

4 4-

,-en._-

y

,ew r

,-ns-av e.,- e

CPSES UNrr 1 16345-EE(B) 140, Rev 2 pegs 4 of 17 ATTACHMENT B3

'Ampesiry Compareon Between Free Air h- '- --- f m w m la memoinesedRunw y -

IIthPA

= IthRS i,j i

l AMPCHK t= if'IIthRS

< Iamp

,1 0" i,j i,j 1,j f

Ampacity W rison with Randon TH-Tray w

No. of Cables / Conduit Size ~

1 2 3 5 -3 4" 5" 6" 4

1 i

'O O O O O O O O'

.1/C-500,8 KV j

0 0 0 0 0 0 0 0 1/C-350,8 KV O O O O O O O O 1/C-4/0,8 KV 1 0 0 0 1 1 0 0 1/C-750,600 V 1 1 1 0 1 1 1 0 1/C-500-i AMPCHK =

1 1 1 0 1 1 1 0 1/C-350 1 1 1 1 1 1 1 1 1/C-4/0 l

1 1 1 1 1 1 1 1 1/C-2/0 1 1 1 0 1 1 0 0 TRI-4/0 1 1 1 1 1 1

'l 0

TRI-2/0 1

1 1 1 l' 1 1 0 TRI-2ANG

. 1 1 1 1 1 1 1 0 3/C-4AWG 1 1 1 1 1 1 1 0 3/C-6ANG N0111 1 1 1 1 1 1 1 0 3/C-8AWG 1 - Adequate cable 1 1 1 1 1 1 1 0 3/C-10AWG aspecity 1 1 1 1 1 1 1 0 3/C-12ANG 0 - Inadequate cable 1 1 1 1 1 1 1 0 2/C 7.AWG ampacity 1 1 1 1 1 1 0 0 2/C-GmG J

1 1 1 1 1 1 1 0 2/C-8AWG 1 1 1 1 1 1 1 0 2/C-10AWG

,1 1 1 1 1 1 1 0,

2/C-12ANG rar4=4t

= if 'AMPGK
  • 1,

'N

', 0' i,j 1,3

,, i, j, CaLimit s= if'Iamp

  • 999,0,afimit i,j i,j i, j, 4

J.

1.

I e

l i

. -.. ~

-,1

J CPSES UNIT 1 16345-EE(B) 140, Rev 2 pass 9 o(17 ypesy Co.N,h. Prw Air Nrmolagpd C& and Canes is Amm M

= _ ue f

Limit of Ntnaber of Cable in Bundle:

Not to Exceed Ampecity of Cable in Randesa lay h ermolagged Tray 4

Ilo. of Cables / Conduit Size 1 2 3 5 3

4" 5"

6"

'O O O O O

O O

O' 1/C-500,8 KV 0 0 0 0 0

0 0

0 1/C-350,8 KV O O O O O

O O

O 1/C-4/0,8 KV 1 0 0 0 1

1 0

0 1/C-750,600 V A

1 2 3 0 1

1 2

0 1/C-500 6,d CMAmit =

1 2 3 0 1

2 3

0 1/C-350 1 2 3

5 3

4 6

9 1/C-4/0 1

1 2 3 5 3

5 8

12 1/C-2/0 1 2 3 0 1

2 0

0 TRI-4/0 h e limit to the 1 2 3 5 2

3 5

0 TRI-2/0 number of cables 1-2 3

5 4

7 11 0

TRI-2KA3 urxiar a vrap,_ use 1 2 3 5

'3 6 10 0

3/C-4ANG 13ax:lJeust r. unbar in 4

l 1 2 3 5 4

8 13 0

3/C-6AW a given row.

1 2 3 5 7

13 21 0

3/C-M M W ree 1/C cables 1 2 3 5 11 20 32 0

3/C-10AM are considered as l 2 3 5 18 32 0, 3/C-12ANG one (1) 3/C cable, 1 2 3 5 3

5 9

0 2/C-2AWG 1 2 3 5 6 10 0

0 2/C-6AWG 1 2 3 5 8

15 23 0

2/C-SAM i 2 3 5 la 22 35 0

2/C-10AwG

,1 2 3 5 -20 36 S6 0,

2/C-12AM l

a l

4 i

1 1

e,,,.

s

+,-..w

CPS 23 LIMT 1 1634EE(BF14 Ret 2 pese 10 of 17 ATTAOD4!NT B3 Cm Between Free Air hM7:mwmg Ampacities of Cable in Thaeolagged conduit (Box Imign)

+

4 Rsfarence 1 (DBD-EC-052)

~33 8' 1/C-500,8 KV ampacity for thrae conductors 277 1/C-350,8 KV in conduit, enclosed in l

205 1/C-4/0,8 KV Therm) lag 330-660, Box Design i

428 1/C-750,600 V 341 1/C-500 275 1/C-35')

A 199 1/C-4/0 146 1/C-2/0 199 TRI-4/0 146 TRI.3/0 IthCD =

93 TRI-2AWG 65 3/C-4AWG i

49 3/C-6AWG 37 3/C-6AWG 26 3/C-10ANG 20 3/C-12ANG es 2/C-2AWG 49 2/C-6AWG 37 2/C-8AWG 26 2/C-10AWG

, 2 0, 2/C-12AwG b

d

)

I 4

4 1

9 4-4 t

w, e--

(

CPSES UNIT 1 1634kEFJB) 14 Re 2 pep 11 of 17 ATTACHMENT B3

'Ampacity Comparison Between Free Air sw='-j Cabbs and CablN in l

The followirq equations produce multipying factors _ for multiple cables in a conduit CDamp

= 0 i,j CDamp
= if'nn'

< 3.01,1,CDamp i,j i,j 1, j, CDamp

= if 'nn'

> 3.01,0.8,CDamp c,

i,j i,j i, j, CDamp

= if 'nn'

> 6.01,0.7,CDemp i,j i,j 1, j, l

CDamp

= if 'nn'

> 24.01,0.6,CDamp i,j 1,j 1, j, l

CDamp

= if'nn'

> 42.1,0.5,CDamp 1,j i,j 1, j, l

S Conde.it Angacity Multiplying Factors For More than 3 conductors in a Conduit 4

No. of Cables / Conduit Site 1

2 3

5 3

4" 5"

6"

'l 0.8 0.7 C.7 1

1 1

0. 8' 1/C-500,8 KV 1

0.8 0.7 0.7 1

1 0.8 0.7 1/C-350,0 KV 1

0.0 0.7 0.7 1

1 0.8 0.7 1/C-4/0,8 KV 1

0.8 0.7 0.7 1

1 0.8 0.8 1/C-750,600 V i

1 -0.8 0.7 0.7 1

1 0.8 0.7 1/C-500 5

CDamp =

1 0.8 0.7 0.7 1

0.8 0.7 0.7 1/C-350

- NEC aulti-1 0.8 0.7 0.7 0.8 0.7 0.7 0.6 1/C-4/0 plying factor 1

0.8 0.7 0.7 0.7 0.7 0.7- 0.6 1/C-2/0 for multiple 1

.0.8 0.7 0.7 1

0.S 0.7 0.7 TRI-4/0 conductors in 1

0.8 0.7 0.7 0.8 0.7 0.7 0.7 TRI-2/0 conduit 1

0.8 0.7 0.7 0.7 0.7 0.6 0.5 TRI-2AWG 1- 0.8 0.7 0.7 0.7 0.7 -0.6 0.5 3/C-4KAG 1

0.8 0.7 0.7 0.7 0.7 0.6 0.5 3/C-6AWG 1

0.8 0.7 0.7 0.7 0.6 0.5 0.5 3/C-8AWG 1- 0.8 0.7 0.7 0.6 0.5 0.5 0.5 3/C-10AWG 1

0.8 0.7-0.7 0.5 0.5 0.5 0.5

.3/C-12AWG 1

0.8 0.8 0.7 0.8 0.7 0.7 0.6 2/C-2AWG 1

0.8 0.8 0.7 0.7 0.7 0.6 0.5 2/C-6AWG 1

0.8

-0.8 0.7 0.7 0.6 0.5 0.5 2/C-8AWG 1

0.8 0.8 0.7 0.6 0.5 0.5 0.5 2/C-10AWG i

,,1 0.8 0.8 0.7 0.6 0.5 0.5

0. 5, 2/C-12AWG i

.m.

.. m-m--

m

s, a

r. e,

.w1.a.ws...a.x a.a-.u.a.

n +

r

.x s -- u

--spa..u>

a a.,+

--.w..


s.. awn.-+a..

s

.,a.-

a

.s i

J CP5ES UNIT 1 16345 EE(B) 14 Rev 2 E=2 M 17 1

ATTACmmerra3 h ouky % s m re 4

%,,4 m.,

Thermotagend Racewsp' i

ItIdD l

IIthCD

= CDamp i,j 1,3 i

i 4'

Thermolagg*1 Arpacities in Conduit 15cx Design) i No. of Cables / Conduft Siza 1

2 3

5 3

4" 5"

6" a

d j

338 270 237 237 338 338 338 270' 1/C-500,8 K7 l

277 222 194 194 277 277 222 194 1/C-350,8 XV l

205 164 144 144 205 205 164 144-1/C-4/0,8 KV 428.342 300 300 428 428 342 342 1/C-750,600 V 341 273 239 239 341 341 273 239 1/C-500 IIthCD =

275 220 193 193 275 220 193 193 1/C-350 z

l 199 153 139 139 159 139 -135 119 1/C 4/0

)

146 117 102 102 102 102 103 88 1/C-2/0 A

j 199.159 139 139 199-159 139 139 TRI-4/ 0 146 117 102-102 117 102 102 102 TRI-2/0 93 74 65 65 65 65 56 47 TRI-2ANG 65 52 46 46 46 46 39 33 3/C-4ANG j

49 39 34 34 34 34 29 25 3/C-6ANG 6

22 19.

19 3/C-BANG 2

j 37 30 26 26

, 26 21 18 18 16 13 13 13 3/C-10 mfg 4

do 16 14 14 10 10 10 30 3/C-12ANG 63 70 70 62 70 62 62 53 2/C-2A!9G 49 39 39 34 34' 34 29 25 2/C-6AlfG 37 30 30 26 26 22 19 19 2/C-BANG-i 26 21 21 18 16 13 13 13 2/C-10ANG

, 20 16 16 14 12 10 20 lo.

2/C-12ANG i

t 1

4 AMPCHK

= if'IIthCD

< Iamp 1, 0*

Ampacity Comparison l

i j i,j i j equation 1

i J

h i

i

l CPSES UNrr1 16345 EE(8).140, Rev2 13 of17 ATTAC20GNT B3 Betwoss Free Air Cables and Cablesin 1

- Ampacity C h rison with Thermolagged Conduit (Box Design)

N E of Cables / Conduit Size'~

1 2 3 5 3 4" 5" 6" "1

1 1 1 1 1 1 l'

1/C-500,8 KV 1 1 1 1 1 1 1 1 1/C-350,8 KV i

1 1 1 1 1 1 1 1 1/C-4/0,8 KV i

1 1 1 1 1 1 1 1 1/C-750,600 V 1 1 1 1 1 1 1 1 1/C-500 AMPChX =

1 1 1 1 1 1 1 1 1/C-330 1 1 1 1 1 1 1 1 1/C-4/0 1 1 1 1 1 1 0 1 1/C-2/0 1 1 1 1 1 1 1 1

TRI-4/0 1 1 1 1 1 1 1 0 TRI-2/0 1 1 1 1 1 0 1 1 TRI-2AWG 1 1 1 1 1 1 1 1 3/C-4AWG 1

1 1 1 1 1 1 1 3/C-6AWG 1 1 1 1 1 1 1 0 3/C-BANG L71'E:

1 1 1 1 1 1 1 0 3/C-10AWG 1 - Adequate cable 1 1 1 1 1 0 0 0 3/C-12AWG ampacity 1 1 1 1 1 1 1 1 2/C-2Ami 0 - Inadequata cable 1 1 1 1 1 1 1 1 2/C-6K G ampacity 1 1 1 1 1 1 1 1 2/C-8Ad3 1 1 1 1 1 1 1 1 2/C-10MG

,1 1 1 1 1 1 0 0,

2/C-12.AWG i

i b

d emfinit

= if'AMPCHK 41,

'N

', 0' i,j 1,j

, 1, j, f

enf.4mit

= $' 'Iamp 4 999,0,c27init i,j i,j i, j,

+

1 4

s 9

2

CP5E3 UNIT 116M5 EE(B) 140,Rev 2 14 of17 ATTACHMENT B3

'Ampacity Compenson Betwen Free Air olagged Cables and Cableain NE'C Rusways' 4

1 a

Limit of Number of Cable in Bundle:

Not to Exceed Ampacity of Cabla in i

Thermolagged Conduit (Box Design)

No. of Cables / Conduit Size i

1 2 3 5

3 4"

5" 6*

'l 2 3 5 1

1 1

2' 1/C-500,8 XV 1 2 3 5 1

1 2

3 1/C-350,8 KV 1 2 3 5 1

1 2

4 1/C-4/0,0 KV 1 2 3 5 1

1 2

2 1/C-750,600 V 1 2 3 5 1

1 2

4 1/C-500 CaLimit =

1 2 3 5 1

2 3

5 1/C-350 l

1 2 3 5 2

4 6

9 1/C-4/0 1 2 3 5 3

5 0 12 1/C-2/0 1 2 3 5 1

2 4

6 TRI-4/0

'Its limit to ths 1 2 3 5 2

3 5

0 TRI-2/0 ntamber of cables i

1 2 3 5 4

0 11 16

'IRI-2AWG under a wrap, use 1 2 3 5 3

6 10 15 3/C-4ANG.

mavf== number in 1 2 3 5 4

8-13 19 3/C-6AWG a given row.

j 1 2 3 5 7 13 21 0

3/C-8AWG

'ltree 1/C cablos 1 2 3 5 11 20 32 0

3/C-10AWG are considered as l

1 2 3 5 18 0

0 0

3/C-12ANG one (1) 3/C cable.

1 2 3 5 3

5 9 13 "t/C-2AdG j

1-2 3 5

6 10 16 23 2/C-6ANG 1 2 3 5 8 15 23 34 2/C-8AWG j

1 2 3 5 13 22 35 51 2/C-10AWG g

,1 2 3 5 20 36

'O 0,

2/C-12AWG n

i s

J e

d

.n.w,,

l CPSEJ Uttrr 3 1045 EE(B)140, Ret 2 g 13 of17 ATTAODONT B3

'Ampedty Comyntinoo Goreses Prce Air alegged Celes and Caks la

%erraolagged nacenys' I

Ampacities of Cable in Thamolagged conduit (Shell Design) 1 0.925 Referem.e 1 CDBD-A-052, Rev 3 IIthCDahall := -

IIthCD page 22, sect:,on 4.1.2.6 g.) provides 0.6 relative factors for shell vs box design.

Thermolagged Ampacities in Conduit (Shell Design)

Hu. of Cables [~ Conduit Size 1

2 3

5 3"

4" 5"

6"

'391 313 374 274 391 391 391 313' 1/C-500,8 KV 320 25G 224 224 's20 320 256 224 1/C-3f0,8 KV 237 190 166 166 237 237 190 166 1/C+4/0,8 KV 495 396 346 346 495 495 396 396 1/C-750,600 V 394 315 273 275 394 394 315 276 1/C-500 IIthcosH1 =

318 254 223 223 318 254 223 223 1/C-350 5

230 184 151 161 184 161 161 138 1/C-4/0 169 135 118 118 118 118 118 101 1/C-2/0 230 184 161 161 230 184 161 161 TRI-4/0 169 135 118 118 135 118 118 118 TRI-2/0 108 BC 75 75 75 75 65 54 TRI-2AWG 75 60 53 53 53 53 45 38 3/C-4AWG

$7 45 40 40 40 40 34 28 3/C-6AWG 43 34 30 30 30 26 21 21 3/C-8AWG 30 24 21 21 13 15 15 15 3/C-10AWG 23 19 16 16 12 12 12 12 3/C-12AW 102 81 81 71 81 71 71 61 2/C-2AWG 57 45 45 40 40 40 34 28 2/C-tiAWG 43 34 34 30 30 26 21 22 2/C-8AWG 30 24 24 21 18 15 15 15 2/C-10AWG

, 23 19 19 16 14 12 12 12, 2/C-12AWG t

l CPSES UNTT 1 1695 EE(B).140, Ret 2 16c417 ATTACitMENT B3 Anspedry Compedaos Eetusa Free Air 1 tmol4 god Cables and Cablesin Thermolaged hv l

I' d,1, O'

= 1f'IIthconhall

< Iamp t

i,j I'd i

~

i w

Ampacity Comparison with thermolagged Corxtuit (Shell Design)

No. of Cables / Conduit STzT 3

i 1 2 3 5 3 4" 5" 5" l

'O 1 1 1 0 0 0 l'

1/C-500,3 KV 0 1 1 1 0 0 1 1 1/C-350,8 KV 0 1 1 1 0 0 1 1 1/C-4/0,8 KV 0 1 1 0 0 0 1 1 1/C-750,600 V 0 1 1 0 0 0 1 0 1/C-500 AMIctK =

0 1 1 0 0 1 1 0 3/C-350 1/C-4/0 0 1 1 0 1 0 0 <

0 1 1 0 1 0 0 0 1/C-2/0 0 1 1 0 0 1 0 0 TRI-4/0 0 '1 1 0 1 1 0 0 TRI-2/0 0 1 1 0 0 0 0 0 TRI-1AWG NCyrE:

6 0 1 1 1 1 1 1 1 3/C-4AWG 1 - Adequate cable 1 1 1 1 1 0 0 1 3/C-6AWG ampacity 0 1 1 1 0 0

($

0 3/C-8AWG 0 - Inadequate cable 1 1 1 1 1 1 4 0 3/C-10AWG ampacity 1 1 1 1 0 0 0 0 3/C-12AWG 1 1 1 1 1 1 1 1 2/C-2AWG 1 1 1 1 1 1 1 1 2/C-6AWG 1

1 1 1 1 1 1 0 2/C-8AWG 1 1 1 1 1 1 1 0 2/C-10AWG

,1 1 1 1 0 0 0 0,

2/C-12AWG 1

Catimit

= if'AMPCHK 41, 'N

", 0' i,j 1,j

, i, j, CaLimit

= if 'Iamp 4 999,0,CaLimit 1,j i,j 1, j, 1

v

. ~ _

i CPSES UNIT 1 16345 EE(B) 140, Rev 2 pass 19 of 19 l

ATTACHMENT 83 Ampacity Coss Betwess Free Air Nrmolagpd Cab and Calu la hermanaged

~~

i 4

l 1.init of mamba.r of Cable in D,1rdles l

Nct to Itucced Aaracity of Cable in l

Thereolegged conduit (shall Design) 1 l

1 No, of cables / corduit Size 1 2 3 5 3

4" 5"

6"

'O 2 3 5 0

0 0

2' 2/C-500,8 KV 4

0 2 3 5 0

0 2

3 1/C-350,8 KV o 2 3

5 0

0 2

4 1/C-4/0,8 KV-l 0 2 3

0 0

0 2

2 1/C-750,600 V i

i 0 2 3 0 0

0 2

0 1/C-500

)

l c'afAmit =

0 2 3 0 0

2 3

0 1/C-350 0 2 3 0 2

0 0

0 1/C-4/0 0 2 3 0 3

0 0

0 1/C-2/0 i

0 2 3 0 0

2 0

0 TRI-4/0 The limit to the 0 2 3

0 2

3 0.

O TRI-2/0 runabar of cables 0

2-3 0 0

0 0

0 TRI-2AWG under a vrap, use j

0 2 3 5 3

6 10 15 3/C-4ANG mawi== number in l

1 2 3 5 4

0 0 19 3/C-6AWG a giveu row.

0 2 3 5 0

0 0

0 3/C-SANG Three 1/C cables 1 2 35 11 20 0

0 3/C-10ANG are considered as 1 2 3 5 0

0 0

0 3/C-12ANG one (1) 3/C cable.

3 1 2 3 5 3

5 9 13 3/C-2AWG-

)

1 2 3 5 6 10 16 23 2/C-6ANG h

3 2 3 5 8

15 23 0

2/C-SAWG l

.1 2 3 5 13 22 35 0

2/C-10ANG i

,1 2 3 5 0

0 0

0, 2/C-12AWG i

40 i

I i

i i

l IIthCDahell

,Iamp i

(15,j)-

(15,j) x M'

' \\

~~-

l l

10 0

N 50 (15,j}

e 1

-r.,

. +...

w,%-..

,m..,,.

.y-4..

...e.a,.

,o-3 y

,--w s

2 CPSES INT 1 16MS EE(B) 140, Ret 2 pass 1 of 2 ATTACHMENT C

'CaWe BvMk MT,% Pacsars' ATTACHNEWt C i

CABLs BUNDI2 ML'IPLYING EAC'! ORS t

The relationship between the bundle diameter and cable j

diameter of individual cable is e own 1.n matrix NNFF1, h

i NNYM 'rNTF3, and NNTF4. These ars-taken frous Ren 4.a 2iBrand-Rax Publication WC-82, Tr.ble 34).

No.

No.

F No.

F o

1 1'

'26 6'

'51 8.41' 2

2 27 6.15 52 8.41 l

i 3 2.15 28 6.41 53 8.7 4 2.14 29 6.41 54 8.7 4

5 2.7 30 6.41 55 8.7 i

6 3

31 6.7 56 8.7 7

3 32 6.7 57 9

8 3.31 33 6.7 58 9

9 3.62 34 7

59 9

l 10 4

35 7

60 9

l 11 4

36 7

61 9

12 4.15 37 7

62 9.31 NNFF1 :=

13 4.41 NNFF2 :=

38 7331 NNFF3 =

63 9.31 14 4.41 39 7.31 64 9.31 l

15 4.7 40 7.31 65 9.31 16' 4.7 41 7.62 66 9.62 17.'

5 42 7.62 67 9.62 t

18 5

43 7.62 68 9.62 19 5

44 8

69 9.62 20 5.31 45 8

70 10 l

21 S.31 46 8

71 10 22 5.62 47 8

72 10 l

23 6

48 8.15 73 i 24 6

49 8.15 74 10 l

,25 6,

,50 8.41,

,75 10.2, i

i l

No.

F

'76 10.2' r

77 10.2 78 10.41 79 10.41 80 10.41 NNFF4 :=

81 10.41 82 10.41 83 10.7 84 10.7

,85 10.7, t

i l

1 t

9 c3,,,9-r, r--,---

w--,,,-r y

p

._p

,,...,,.,..,-cm---

--r_

y

CPSES UNIT 1 16345 EE(B) 140 Rev 2 pass 2 of 2 ATTACIDdENT C

'Cabis Bamus Meldplying Factort 7

1.,25 j := 1. 10 m:=1.2 CRIGIN e 1 i :=

NNFF t= NNFF1 NNFF

= NNFF2 (25+1),a i,a NNTF
= NNFF3 1

(50+1),a 1,a l

NNFF t= NNFF4 (75+j),a j,a i

i J

i e

.I 4

e i

!!NFF This stores this matrix in an WRITEPRN(NNFF)

=

ASCII file for input to taglate Appendix B1 1

9 6

t I

l i,

l

)

+

4

{

i 1

.n,

,r

..w n.,

f

.... is...w s.. < un

-Aou 5

"IWCY* W

[Mi$$ t vtf h.O

<*pd &g y,,,

ATTACHNDfT D l

Page 1 of 2 i.

14 March 1989 4

TU 11sstric P.O. Sou 1001 l

Clea Rees, Ta.zas 76043 Attentions Mr. Esa Jones

Subject:

TED0f0-1.As 330-660 Flast 31anket Dear Mr. Joneer na folle,wf.sg is in follow, to my letter of March 9,1989, at the regoats of Mr. Tia Wright.

I The TWXRH0-1.10 330-660 Flemi 31ar.ket fypically exhibits the following propertiset purface Entssivity 0.49 S ervel Ceaductivity 2.49 x 10-1 1*U/yt/Er/y*

i If yed have any questions, please do not heattets to contact se.

l Tours truly,

)

lf"f:D i

R. A.

hast l

Assistant to the President i

l Mt./sas i

l ACGwiABLE MARGINAL QUALITY M Avi DATE, _-

10/3/c THlW.AL SCftNCE INC.

  • 2200 CA5$1N$ Ot,. ST,10Vli, MO 65026 * (314) 3491233 Te!4u Com#< 44 2384. Ovem 20H01. Te4 cop 4r (314) 34f.1207

+

www.-

,-e-,.

-n n

,,v-------,---

.,am.

AMACID0Dff D/

c.sd!.Nh_1f),jh!E(M",M0,

.l'w uv-c.u wswo ry no rumww.cr gj e=so 2 et 2 h-i

[.ex

{~"t

,. [.

re

i. ;g g

',r E

r w

'4,

} {v n

1.

u 9@99

., [

I t!

I4 N

h N

II h

D E

Ft 3 f,p g

't r

??

k h,

h,

! f?

f if LE C r "

Q i

a.

=

a

s a

g

,g,fE l

$P*,

I f

(.[

5L 4

c*

s E

f k e

e.

=

f er

.t 1-f

i 5 C

's n

?

2-

~

g r

E, 7 2

~

L

/.[f f I

6.

E gi! I C

r tL

. 4 i g
  • A 35,
    • f.
  • zi'

)

pti2 F.

E

{l Q

{$

1* I i

s 2

t it

rr 7

e.

a.

~.

=l 4

1 i

b b

b (D*

-f'I g

tu s

c, q

q pJ

('

0 a

? '. P

<Nl,

- ' g{

M f

s.

9

'4 M

M

  • 4 C

-r f

S.

B 5

g (Q,. 3 y

  • h 3

4

    • M

'4n!

+

1

=

Lit.

k N

P 3

3 E

R I, t, "

3 ABLE MARGINALQUALITY l'.~

MIT}H DATE 'Ola/%

i.

C, y

y y

p-E

,t I

'P N

I= -

f f ',*k.

p.

w v

"'t y

y' iv

'r-~v' y

-m P

e

~

m

.. _. - - _ -. -........... - - -. _... ~.. ~ -.. -. _. - -. - - -

. ~. -.. - ~. -.... - - -

i

$ TONE A WEBSTER ENCINEE AING CORPOR AT10N 1

i CALCUL.ATION SHEET a soie as 1

l C ALCUL.'.fl0N 10ENTIFICAfl0N NUMBER I

i J.0. 0 R w.0. No.

OlVISION O QMOUP CALCUL ATION NO.

OPfl0NAL TASK CODE PAGE l

No34.f WD

/ 9 o, L 1.

.x.s.x ae tr 1

AWA.'M/)]h0L/7*

Af*

3

,,@,/,,fAJJA L CO AJf/d9)M7/OA) d f C/)LC uLftf/04.l< alm W. 2 8Y 2.a& Ul @ ) Ell i

f 6

/Wl.$ /$7Yi}()t*/12RH]' /LOJIDY #9 M)nt N LJett. CN gtit o f TH.K*

h O)<TMCr*D 727)hh.A1K$

USED /H 7hef Palei~MahtM r/esu d5 77)enT*

i

//18/d BODY Cf 7HK CMt CUL4'f/0AJ.

7)+r1 sf74tcN4)tA4' USCK 7?to" s*b3/AM/ML /94-da R /7?t+1.t UJ K D )^I 7Her /?947 d Body cf H Coup wrrou.. reu,t.cg s,w ur Dem /3 usaro I

7 A h7HacR 7kMs) 7?t.47 7Matarn J /*Wons 7. var /Jassaft97Asr.)

i oRossrr.

s> 7?ns,wes.synne, %uun.cfr

  • sra.ro,e t,tsur r

l

/tvo s.nacn.

e er

?D.AleVIDinf' (8MC.*$7WWC'/ 4U/7N '746,W4L. C/folit.A. of 7HaC 6 6 97/11 Co t2.LuL#770s.s, 7ttn* Jerrtd* C&.WL.aC.%

l PLhtVledl fjfusf n

/htA C/yGC6K=0 $ 4. M % Y$hsn

~7;>IC'f of22l 1

l t,

1/c - 4/s swa,

+ >e v

  1. 1 t.

cos suurrio,~1 i

l CQ MtI DG"el.

h" Cd ND O i 1"",

)

i 2,

3 / c - 4 A t44,,

6 co V i

I ff

'f,

,2.{C = / D MWA, fe dD W j

SO 7}f$ & M bad)Nd 5 0 UALt't$ f f 7?F f.$

f y gA,,t"f)P/ GD fobg 7)tt[

i

/9h1001 l*ofd LaEE *

$1 I*

C 88L4,I*

T#M/*

'/c A,9 V 3 /c * &&nd _

2-ic. ~/o MW.

/0

. A. 7rei2u71r cms ~ I cart 2 cns47 1

.~

l Ale 3f.

0 n o S2Sv/O

0,A *.9 sto '

/,6 % x10~3

~

Ye 0,01 0

0-

.D$

oiS2&

O. l fr 4 C e l!6 19 L

/ 0 7* 2.

13,3 So 2 L j.

n'

/

3

~h Tt 2tro nto' 95 xic' 4.5* >< t o Jt o

ec to

,o.l

.5cm sad SCO

,.* j.

CSD Stro 500 4

4

+

e

~

.is~

e.

,,~.-e

-.r...

..w.,

J, j

sf oNE & QEBSTER ENGINEEntNO CCD0R AT10N i

CALCULATION SHEET 4 seis es C ALCUL ATION IDENTIFIC&fl0N NUW9ER J.O. 0 R W.O. NO.

OlVISION O GROUP C ALCUL Afl0N NO.

OPTIONAL TASK CODE PAGE Ar(8)

Mo.Dev 2 M

_o *= M j

M34f 477%CH d'

I cnaLa DiemerK.lf l 1

8 3

0,6294Xw(SS1/4012hIbta&*to i

CMC 1:

D so.~ d.

i

=

0,C2P+ C*ShO

\\

i

  • /,0 &P 1,,

e 2s MIO

  • 2,/.G(0,194 +

OS4 30>lo CME 2 '.

b s e.m 2

=

Co /60 + L/[* 0,23 4 i

0,)40+ 0,~1/0/

'o 0 P */ P I,,, -

=

M Ov//6+ 2A(3 0 eIS)"/d + 40 sr/0**

d&f(2!

Didm 3 m

3x C 0,//6* d,090 e d,064) 1

+

i A* 0,2(,(,

0,.C32. i n i

tf j

is

/Jert,'

,Foi.c.4St.t.,

.T Co,abuc*re,LC //nvec.*

i Plomczt of 2,ITv/,0H

  • 2,33 92,,

si tt n

b

^

n it C u t.u u+TZ 'Thht m a nsas.u._m_. Numect. a !" cnsor in A 4 resou er CN#/'

A/g, *./N7 [ d, 4 x Al, M h

imu. ore n/

(

\\

q

/

33 n

a sauf 4 4.22 Q 3,7)29 n

/m ( /2,42 )

I 37 5 JJ n

Nb"/Y !

$/NCY h/,) int" (0ANCML (8".YW *$$$ $$$)O$ %' O b i

/s) dd.a v P.s, e t=~ 7xus, 7WC / Jam.esnt o/*

  • 6200 d.5 09 Df124E '

/1,*

43 4?

46 we rw,rw

,c r-w

+w or n

,v,-

g

---=,----g,n--w4,

i J

i-STONE & WEBSTER ENGINEERING CORFOR ATION j

CALCULATION SHEET l

. n.

C ALCUL ATION IDENTIFICATION NUWSER 3

l-J,0, 0 64 W.O. N O.

Olvill0N & GROUP CALCUL ATION NO.

OPflONAL TASK CODE PAGE l

JL14f AYl2) 146 2cv 2.

An of: 14 i

  1. r7:9N l

CMg 2,*

AJ JWr f d A

  • 2h t4

~

w

/ 7 =(cof7FO*)

j

( (-

4

/

d 6

1 i

  • / u 7" dL 22A

}

2,42J4 i

JNT ( /}o 0 O 1.

40 II

}'f 4

a l

ir

{

is

/NTfnn4a25.H (o,U1Wl)J CA$f 2

  • AJp I

( (\\

nd i

1 4

/

4 it

}

/N7* [ 4 4,114 is 6

i

\\ 0 o St 91 to

( f/,9/7)

  • /W n

,f/

Il Swbts :Di m n t)trat.

Pne12)23 :

l 8

C$p /,-

44 C p.nuctues (/2 3)

-+

2.,14 se d4(~ 2 ;

/9 de MDucrog.1-

- +

5*.

f u

l cAsd~2.*.

f*I Co NDucToLL

.-> - ?Al n

i 34 35 i

' 10 17 3.

39 40 4(

1-8I e

1

^'

4h a4 4$

x

' 46 1

i.

a

.m

.. =, -

<-,ew--w.+-e.-+-r-,

,mr.,,w,-.

-y y

y

.m--.

,wr+,

,.,,-w,,,-m,,,,4r-c y--c c

,wa w

rr w.=e.--

=

w

i 1 TONE & CES$TER EN0lNEEQlNO *,0RDOQA?l0N CALCULATION SHEET i'

4 w. m C ALCUL ATION IDENTIFICATION NLMOER J.O.OR W.O.No.

OlVI510N & GROUP C ALCUL ATION NO.

OPflCNAL TASK CODE PAGE l

/(,39f 23?"(2)

J40, Peru 2-.

M

<sti j4

--A77MCN..G' l

C M. cut M t' bih?tsrr 7 :

4 CMo* 1 :

/2 cencvcTses ( 4 tftwPs of 3 cavaverue D i

f/Nc2

@v.r/ N tt r A t o ur* e f T N i e v c o.u n ucca n t wI L.L. $1 (8NRYN$ 7)hf* C 9 0aY '[laln' O.!f*

]

( 3 /intst'.cy,s.nm), cou.sopat 4 cvabucgon,1 canen

}

cet.e osermA biwtsir v, :rms w roasri ii pivacor y = Cot 2s /2 '

= 9,84 CdNDUcross @ lo).iutt 4 i.

CMC 2 :

G coH2uen2.s

( /9 tituut.5 of 3 conausiveT)

.6 i

hiviat. af Y

  • C,74 3 * /7 ><3

= 44 35'*/

com oc7M1 G A2PFfA i,

(Mt 3.'

/0 9 cc.ubueTvsts (.S1 CQoup.t o P 2 cCwDue:D2N 8i DIV e tssT't = d. 7 4.2.s [ 14 1 i

.= 75. ~79f.

copoverotts e 1,.;th F49 i

,4 se 8S k

("A.LLU LA1*nt 3 U NDLsf 3i W @"sTR I

=

ff 2

cMrt :

7)sem s L H

  • 2. 33 92 (cc)

S, 0D G

=

30

'8 i

ckssr 2-:

viw - Co. Q&7 trl 4,290f 1

(cQ u

n der I,'

2>i m 6

&. 4 i x o. G '2.

4,47i

(.c0 3

St

$9 40 4

4:

et el 44 1

4g m... - - -.

~. -

i 1

e i

STONE & WEOSTER ENGINEERING C02202ATION i

CALCULATION SHEET i

j cat.utAttoN IDENTIMCATION NuksER j

J.o. o M w.o. NO.

DIVit 0N & 090VP CALCUL AT;0N NO.

OPTIONAL TASK C50k PAGE

)

/4.N.t" 453'~C8)

/4O 2s7V. 2.

m j4 hmen a-8 4

, '/It.cuut1G* 7?r s'.& m it, b ncw.uctr e f Thre cT" i

(

g 2

5 4

i CM*/.t.

THis M u ' coaf/Ccsurns H m is u 6 TPce o T' pycenafe w :

j i

e 1

g) e d e

i eo 4

I C o ? ~)VI ii 1

M$ o 0/2)<3s f5D e/s l

_'s

'8 eMi.2 '

J 0 t?P/,2x0,OPO, is 2

d,o 12.w3xcraw p,73f9 S

i is A

l1

/.

~ /..C*)2d ie I

CD o

l (M 6T' 3 '.

f2} : c, o 12e 2x C2.1D x lo o, f3 L o,G2 - 2e 0,04c o,os*L*1.A C730 m Qo l110 l

in

/.3322 er 30 st 33 I

34 SS I

in h.

41 38 I'

i !.

40 di et

- 43 44 4$

es e

.m.,

_,.,_...,,_r

,..._,,,,.,,,,,.,/-,,,,,,,._..-,,.,

-.-,.e.

STONE IL CE85TEf1 ENGINEERING COOP 0R ATION CALCULATION SHEET s w.

C ALCUL ATION IDENTIFIC ATION NUMBER J.O. O R W.O. N O, DIVISION & GROUP C ALCUL ATION NO.

CPTIONAL TASK CODE l' A G F..,,h.,

/$,3#f

_n' C B) 1 4 o,,/.m 2.

xa, on /+

.M##.

s cpu vi 41r 7xzen.mn nasu m a nt or msuxiou

/, o&F A ' ' 0 012 ^9D

  • l0) cmc ~.t :

J o,c y o,oile 12ro r o,3 /39 9

=

h ??'s y

=

f o, ir4 +2s(AC+3bbJo' i

c w 2;

.gz. c. oeu can< Ag

,,,e4

= 0, c 1 '2.+ i?.10 s 0, 23193

's Jr 5.C3h

=

o, o> u. suo* h s (/o, //t,# A. (so+ir),10.*7 cesn:

Dc 6

o.Its

,e

= d, O t.2.d 5 20^ C,2 4 Vil

'V 30 7

),4944j>

s 44 il

( h M C)l,0ffl/ $hWM$l,,

W A$ T$.R 4 &* A & sl W Csf84.5 Am 7Jtnito!)OL nd

_%'t 0 - la c. O

====-

i4 's 4, f l

2': 0, 2-2 n

ko C@s*I l A s.l

  • 9 H '

f, o t.. + c,v n

i 3g h I"

n Au f C d %.'

AsE = 42'3D 4,39 + c An n

le 4 0,99.0 4I CASG$.'

s),,* ? S' b A

~~~~

4

.e O y)

.1 7/, prJf

=

4

STONE & WE8 STER ENGINEERING CORPOR Afl0N CALCULATION SHEET

/

a we es C ALCUL Atl0N IDENTIFIC Afl0N NUWSER 7

J 0. O R w.0. ho.

OlVillON Te GROUP CALCUL5fl0NNO.

OPTIONAL TASK CODE PAGE

/k]W W (A)

}$ o, Ann' 2,*

AM 0f 14

.AMWs t

CALcut.A7G' 7>)Ca!DIMt. /2mt7?vwJ d M 13b ~ 4&Q Luyt*

f. Coo I + 2< /s 2A9 CA$C l e' dw

  • C. o 12 9 2 A ~ 2 3 2,0 l
  • l0 % i s

Q<

C, o I c, of 2,*. a), f-ef a 2 3 2 o f ^ d, / 757:,')

4 ?)3/

ii (4,3912Al,2A9 c As t 2 ;' R ws o, o n,< 42.36 232, o 8

  • lo 5

4.39 a o ioIle 42.3fA 7,.32 oI x 0 * / 957 3

~ 23,066I is i.

CWK3: 2w 2 6,0 /2.d 7f 79

  • 231.08 d /og 447 +h I,149_

0

4. A"1 It

= o.oi 2.x 7f,79 4 232.0 i x o, /ff.ro

> -90, 6f 21.,

i.

!?

QLcut.+ni' o_utribc D,'nmdrat. of 330-c.4,o (Jany 30 s

Casc) I Di ew =

2 ^ / 2 4 *2 + 5. o I'

7. ED S

=

se ce< 2 :

ni e. w. w s.3, 4,9??'

c W 3,'

a/sm = 2 * /s ;.4 -) 4 -9,1 7 40

.k'

?

48 43 44 46 46

.--wi._.amus amm us u-.s mm.w.mammism--.a-.r.a m.amm muluu i i num iumium -

M

STONE IL CE857ER ENGINEEQlNG CORD 00Afl0N CALCULATION SHEET a soir a

~

C ALCUL ATION 10ENTIFICATl0N huMSER J.0. O R W.O. NO.

OlVill0N O QROUP CALCUL ATION HQ.

OPTIONAL TASK CODE PAGE

/434f d'!3i~(B) 14b, 2aru 2 200<

oF /4

  1. 77 M M d '_

t j"//))ff) V) W Of.f]O " $s h 0 *, 0, 0 I

C42.co w1G 7?taEE *s e u A 5;5I5 7 4 M d A

  • M M U L10 % Q r.vo em & Gu1*,a12

?

9A 9.f 4 CMafI I $we =

/+ /,1s 7s SDR # Qcoty +0 4 *)

~

10 93,4P / / 7, fi? A7 3

13 f, 313 4

=

9,r., 42. If l,

[W j.f j, y n 6, g f f >< (,9 9 e o A O 4 02.,3W// 4. 22.2f

=

to

24. UCD$

l s

48 9,ra 7f.79 W EI AWG

/+),"]*(,.94.1*(.t4rOA')

7.zo, cror/ M. 3e9.1

'j 43 90A7 39 30 cn.cuan 7ysaemm-ans ts7na.cc acnxa >

t C o * 'D u c'T* 't ""o

?"' d' cur - +'! -

A,, = /. H3 9 + 9, st 64 + 4, h3 D A.3116 + 6 S

cesc/ !

y

= 24 3970 n

i.

cgsy2. ! Ag,

> /, f53 (

  • Wo, f 9 fB + 22, o 6's + 24. P cor+ /,572r 9/, Eft (

ai

/,9965.s 71. 952Ss 40,Stu + 43 904 7'l ?:22.

Cnst 3.'

2-g, c.

> /59feif 46 I

y..__

i j

{

STONE 8. WEBSTER ENelNEEMING CORPORATION i

CALCULATION SHEET 4

a we es C ALCUL 4710N IDENTIFIC ATION NUW4ER g

'~~ J.0. 0 R W.0. N O.

OlvlBl0N 0 0ROUP CALCUL ATION NO.

OPfl0NAL TASM CODE PAGE i

i

/4345' EWp)

/40, 2.nt 2 Xux d& M A T M.x f i

a e

kY U $.uk h

NkkN (khl.$_ hYN YY_fYb f

J hA i

234,T* 2d 1

CMf t l Z,9 00 -C& u (us,,os.wo-Q.o.ob M4.[4 90

'8 M

2

'~

I

/08t0 g

o l

0,35b94 i

4 i.

/7/.9760 l

=.

1 i.

I 19 lbbYO E*

}.

[gg Q j 3""

to s

l

_ 9/. ffff
  • 4,27*iod ^[l+ d b 3.24 #

vz.

e

_o_,sen-i.

=

/[sNb,.

89 l

2 fn C C %

=

t.

m //g i

n

\\,.

MM i

Oc t 3,*

'Zg,Y l= /39,3 L Pf,. d.cosof e Q+4)

  • 311 f,

ij St

~ VL n

/03&O j

4 se

/3i4.3.74

. n St 40 j

ei i

at 4)

[

46

.w

)

I a

f

?

-y.

. ~,,

s,....,m.,y

.,.y..

.,,.,.s.,,.y,.,

.,.-.,,,..,,.m_,w..,,._,_,,_,,,,,..,,

,,,., ye w

%,,,,,p..+m

.j,wr...

,,,p

svoNE & CES$7EQ EN4tNEERING C00P00 A?t0N 1,

CALCULATION SHEET j

a una es C ALCUL Afl0N IDENTIFICAfl0N halugER

/0 I

J.O. O R W.O. NO.

OlVillON & GROUP CALCUL Afl0N NO.

OPTIONAL TASK CODE PAGE 1

)43 9f*

KYYS)

/40. Rent 3 0 P-lA

_ 977hc++ f a

.DM/WO77WkI T"'t 0 #*

330 * $40 C0V M cN6 W

/ w m tuo H swerA>rnia nun ~.r.Mcas i

r s

f k w x i1-1 er

?4J Cnws w nuu betm > blens*s-t t

e ( t/c-4/o) 245 av cearli r

2 10 z'+ (t/c-4/s) ' ;7 C D o n 9

  • 0
  • L 1 i

.

M'PbMC 1

/tont*C W ht. " Y U

t s 24

  1. #5

($$$*

bl%

(8$lns" A WW!

2 er

  1. RWCM
  • f ai 30 hL M /ft # $ W $#18 C5 0Y ff).44SsHy6W LeobcO~f'YhCO cksL4

/A>

ps,gtagar~ p p g_

n cari:

4

( n. conne, era a + 1 )

cas er 2. :

cme 3 ',

f 39 40 Y

ObM fhNlOll$W (N L)L./97kN V0f3*V4m*.$-

48 el 44 45 de l..

l 1.

s---

2

--,%2 4-,, -

e.-.

c..

w..r.

-,,...,,,3r,,w,-wc y, -

,r--w-.,,

..y,y.

w.-

+

e.,,,,.y

,c~ w

--rv.--

,yw

-c s-

i 1

i STONE h WERSTER ENSINEEQlNG CORPOR Afl0N i

CALCULATION SHEET i

C ALCUL ATICP, IDEN TIFIC ATICS NUWSER PAGE O J.0. 0 R W.O. NO.

Olvil10N O GROUP CALCUL AT10N NO.

OPfl0NAL TASK CODE jf 745' EYla)

)40. 2 ci t.

M '.

on M onxce f k

8 i

DCT&12/?!)NE k?nt'tctr Y 69-11D ~ 460 C0vflafD CM;t t.eT

/4,,)

7L4 V p)s!?

9itw JN' I

4 3

4 e

woTW Levbom w,7%ncMMi e

~

Am tna

  • 4 e

60 a

$1 l

CAss I :

Tgg

  • 3 2, i.

i siact 32 >.2Fisf %

l 1

i.

MC,M 8

'I

,8 i

g# /

N 84 l

$/NW )$ ) }& $ SS ie (f7M$CW$

  • h t.

af Ie i

29 3

30 j

st i

n>

)4 3%

$6 37 38 39 60 44 43 44 44 l

45 4

I

.-w wr--.

~


.-e

,.e r

.g y

-p i.

i 3

i STONE fa UERSTER ENel'dEERING CORPORAfl0N i

CALCULATION SHEET l

a w..

C ALCUL ATION 10ENTIFIC ATION Nubittft i

J.0. 0 R W.O. NO, DIVISION D GROUP CALCUL Afl0N NO.

OPTIONAL TA$k CODE PAGE M i

)434f fft%.

/16. 2.N2 M

d+I4

  1. 7?ky ul~

i 1

2 Dc78A/Nwa~ Ah?!P*>ry of CW y.' cow, Door couc2s0 i

w TH 'T30-64Q E<> basM U s

e

= zof b; -

c4% i,*

Q 1

12, cwDucroR4 JH CaHDUIT, _

i Wf* LL1 stP184Cfr't /PtULT)PL.125

  • Q,M 4

i.

{

]

.'Z%g g

  • 2 M xo,*7s/43,.T 4

SJN49

) 4 3, 5 4, / 1 /, 9 7t.,

MMMR

  • I 80

.C&G L '

54cb

  • 49 El Co A/D u c7D A t / A.o CC#Jbu IQ MMfsWei 4?'1/'#CJTY 41UL7164. jut
  • O o f*

t t5

&gy

  • k $ D $5
  • 8(

t,

.9suce 24.c< 2.t*ff%,

ww e t

n S0

\\

cc f 3:

ZA u * '24.,

32

/0 L CONDWO M *U CON bsteT, fkartd/%Af $n,AI'corY 41UL7'It*Udt.* Oil e

38 Z Q cu = '2.Jo' 0,f '

/]>

3, l

Jm:C j3 4 /.% 4124, i9rris*eiv4

  • l j

la

'r' 00 (4

et l

41 ee el 44

)

.t.

. - - nn

-1

,-,e--,-.

,-,,..,.,N...

,N.-

-,..n

,,w'--

,a.,',,Zw<

-,<-e-

l STONE & CE8 STER ENGINEERING CORPORATION CALCULATION SHEET s w..

I calcut AttoN IDENTIFIC Atl0N NUWRER J,0. o R W.C. No.

OlVISION O GR?UP CALCUL ATION NO.

OPTIONAL T.tSK CODE PAGE /3 i

/1345""

EE (B)

J46. RaN 2-Hx 6F

)4

  1. 77)ptM if*

1 i

8

)

Di *TCRM /M W A.w m d G.t'.

4f AtLou..ede La WRn?p@

l Pfalil'

,#'t A..*

2 C._*_A L 65_3j AJ- - - -

4 Ot$C/ /

  • f

( /2 t*wb ut.'rvL$ $.5 )

A 1

/)

6t16 1

'o 4.

e i

Ctr r 3.'

f/

I A

Phm A2 rvlouIt3 ch$ cut.ryrus V M A --

3 f

is

]

CM1 tv&

H M M Cor't e f 64ded ) AJ idHDU *T C0A2dD W rYN 330-l,&b.s itart.s DenGICa.)

to l

f)?TIO of SMdt1 4%* wry TO Jans. 47n/K W N a

  • D e9 W / dos * * /s/fL W as CMEL

/ Ifl.2h H1,f' //f,932-

?

C % d' 2.

/o15*b344 2.A,{s:24,3221 it

/ f'. d 3 1 i

C43d 3

/,/ G W e /3

-8 34 la 55 3e

)%

a S6 37 SS 39 e0 4q 4:

j 43 4e

'4$

-44 I

m.,;._

.~ m

.y<-.

,w-

,,..,.._,..,~r.

i STONE & CESSTER ENGINEERING CORPOR Afl0N CALCULATION SHEET C ALCUL ATION IDENTIFICATION NUWSER II J.O. 0 R W.0. N O.

OlVl810N & GROUP C ALCUL Afl0N NO.

0*TIONAL TASK CODE PAGE

?

J4.M[

ff(2)

/40,?ary 2 XM 0F iA M 7M e n. f_

Oc%tout swnrv oe (n.ite.t

  • co u e uss-causeo tuiru 3.ro-r.co, s ers:Lt o e s ic a.>

6 l

C%f.i s'

.Smed /4QZL4 )7/o4jf.

  1. mfeMX
  • I e

CM** 'L !

fiucc 2h33tl 4 2toL522.

emseHic

  • I w

,qrm cn*

  • A (M33.'

S/Hes!- IS'o03 I > ).$o 49M s

et en i.

DLTeniemwg 7M~.vumdee src duou.WYL5 WdnWKD cesw$ JAJ P har" M t!

3 m

ca$c / !

'4 I 12 cuovctea.s -f D s

40 coss-a 1 19 M

48 n

g,msst 3

  • O 6

84 n

M P$ tem i'kytou.tt Y cns.t.uurre:0 v m.uer at D r.i n AMIMP 7 H N.,

T,,

' RED U CTIO M 19 AMf 8Cl'TY Tof( LtJ.e o F o.4515 inch avg -T HicKOcJJ 7HEAtT3-AVG T Wic Kurd 0 (kfiAc.HMEOT jd )

se

- AA G Vd.

e 312,5 nacH 50cM #1 TACH H CA5Y. n !

\\N\\. 9 N - \\%.03T =

1.014 l.10-

\\1).T R R N

N a

CM D. E e O A 'd h *"" U.1 i.C 5 10% ~

n..u.3 N N CAJ A 3 *,

IJ. 0 J f - 13. 4 E "l.

hl01 I

le l I 8

13. f.3 %

g y

4#

el 44 49 40 L

CFSES UNTT 1 1045 EE(B) 140, Ret 2 page 1 of 2 ATTACHMDC F Went of Ampemy Diversity Futorr j

ATIACHKENT F DEVEIcfMENT OF AMPACITY DIVEPJiITY FACTORS 1

ORIGIN N 1 As discussed in the methodology, as the number of cable contained within a 9

wrap increases it beccess advantageous to account for diversity of loading.

All power cables are sized per D8D-EE-052, which requires the cables to have a minima ampacity of 1.25 times full load current. In large groups of cables it is practical to consider only a few ". ables are operating at 1.25 times full load current arx1 the remaining cantes are carrying 1.0 times full load current.

This attachment will calenlate the equivalent heat produces by varies number of cable bundle sizes. An equivalent N'- number of cables will be calculated representing equivalent heat production.

N := 1. 10 The ntunber of cables in a bundle.

2 i

Heat t= 1.25 N This is heat production per unit I-full load N

current assuming all cables carry 1.25 times full load current, watt Heat' t= Heat 1

1 This is the prjected heat production of just one cable in a bundle Heat'

= Heat This is the projected heat production of two 2

2 cable in a bundle h t = 3. 10 2

Heat'

= Heat'

+ (k - 2) 1 This is the projected heat k

2 production of three to 10 cables in a bundle. Cables 3 to 10 carry 1.0 tir.as full load currant.

.. - - -. ~. -... -. -

4 1

CPS 28(NT1 MM5 ENapl4 Rm 2 pay 2of 2 l

ATTAQOctHT F T l,

" of Asapeiry DNoru'sy Futers' s

+

i i'

i i

i Heat' N

~

1 N'

=

'this is the divarsity multiplier to obtaine N

Heat equivalent n'.unber of cables /coru$uctors in a bundla

{:

N-for on an equivalent heat production basis.. This j

will be used in Attachment 21A. As N spproaches m,- H$ approachsa 0.64.

i i

Neat Heat'-

N' W

N W

W W

,s w

-, y 3..

--r--

-1 a w i

.2 1

y ',,,,.

j d

J.'.

g

o. a.

j b

i

,s _

s_

1

.2 0.C J

i,. '

[ y d AM

_~0. 71 4 J L O. 7' i.

,4p i..

tj L

1 m -

1 l

.0.9 8

1 l...

J t..'.2.

12.,

..t_

4,0< '3

.0.125-O.72

[1

5. 6; 5

'..1,16 0.712

((

i a

e t

i b

6 d

.U 4

9 o

a 8

f f

l1 i

i e

5,..

c 4

4

,4,-

g y-

~vg-t 9.-

.e y

--.,aw

,,ps,,%,w g;%,

e,y

..<,.9, v-r,

.,....-rw.

W-e-,f,-

y

i 4

0 i

A1TAQD4E!G 01 CPSE.S UNrf i 1945.EE(B).140 REV 3 Page 1 d 9

  • taterim Cakululaa d Cabb Ampacity d hrmolaapd Cable in Ftw Air Tesiphas I: Mo65ed for a cablu' 4

i e

~

)

This templetas calev.lates interin vLlues for input into Teglate Attachment G2 Specifically, number of cables and corductors and effective bundle i

diameterw, and marinum rmaber of cablem which can fit into a conduit are d

calculated in this template.

3 I

j I.

CABM INP(7f DATA PRNPREC%SION := 8 Files cable.prn vos prod 4ced by CAB 12 := READPRN ' cable template Attachment.u ana is prn,

documented separately.

ORIGIN m A defines the upper cor:ner of a matrix as 1,1 j:=1.7 i : = 1. 21 n'

= 0 Cdian
= 0 1,j i,j Matrix CAB 12 is comprisM of the following indicated columns.

4

<1>

<2>

<3>

<4) i Rdc25 := CABM.

Yc := CABIZ Do := CABIE Ac := CAB M

<1>

<5h

<6>

<7>

<8>

n'

= CABIE It := CASE 1 Jt := CABIA ei := CABLE

<9>

<10>

<1>

<11>

pj

= CARI2 Diam 1C := CABIE Cdian

= CABIE Where l

Rdc25 Conductor dc resistanca at 25 deg C, n/ft Yc conductor proximity / skin offact Oc conductor diameter, in.

Ac Conductor cross-sectior.al area, sq ma n'

Number of conductors in cable It Insulation thickness, mils Jt overall jackat thickness, mils pi Insulation thermal resistivity, C-ca/w pj Jacket thermal resistivity, C-cm/w Diaalc Diamatar of 1/c cable or 1 cable of multi-conductor cable, in, cdica overall diameter of cable, in.

sw-v p

A'ITACHMENT G1 CPSES UNrf 116MS EE BF140 RL".' 3 Pass a rJ 9

  • tank tsi-ta= a cens Ampacisy d nwootagg(ed Cab 6e in Free Air Templau 1: Mo&5ed t:or a cath CABLE PHYSICAL P90PEltTIES Rdc25 Do Ac It Jt Dian1C Caiam IVft Ye in.

ma2 n'

mil mil pi pj inch inch

-5 2.22 10 0.06 0.813 253.4 1 280 0 500 500 1.373 2.95195

-5 3.2 10 0.03 0.681 177.3 1 280 0 500 500 1.241 2.66415

~5 CABLE =

5.25 10 0.01 0.528 107.2 1 280 0 500 500 1.088 2.3392

~5 1.48 10 0.13 0.993 380 1 145 0 500 500 1.288 2.7692

-5 2.22 10 0.06 0.813 251.4 1 130 0 500 500 1.073 2.30695

-5 3.2 10 0.03 0.681 177.3 1 130 0 500 500 0.941 2.02315

-5 5.25 10-0.01 0.528 107.2 1 100 0 500 500 0.728 1.5652

-5 8.43 10 0 0.418 67.43 1 100 0 500 500 0.616 1.3287

-5 5.25 10 0.01 0.528 107.2 3

100 0 500 500 0.728 1.5652

-5 8.43 10 0 0.418 67.43 3 100 0 500 500 0.618 1.3287

-4 1.69 10 0 0.292 33.62 3 75 0 500 500 0.442 0.9503 u4 2.69 10 0 0.232 21.15 3 75 80 500 500 0.382 0.9813

~4 4.274 10 0 0.184 13.3 3 75 80 500 500 0.334 0.8781

.g 6.79 10 0 0.146 8.37 3 60 60 500 500 0.266 0.6919 0.00108 0 0.116 5.26 3 45 60 500 500 0.206 0.5629 0.00172 0 0.092 3.31 3 30 60 500 500 0.152 0.4468

~4 1.69 10 0

0.292-33.62 2 75 80 300 500 0.442 1.044

(

-4 4.27 10 0 0.184 13.3 2 75 60 500 500 0.334 0.788

-4 6.79 10 0 0.146 8.37 2 60 60 500 500 0.266 0.652 0.00108 0 0.116 5.26 2 45 60 500 500 0.206 0.532 0.00172 0 0.092 3.31 2 30.60 500 500 0.152 0.424,

~

The above matrix is manually compared with the matrix. CABLE of Attach-mant A to demonstrate successful data transfer.

i k

m

-,.__.__----~_-a___---

-____---_____-------____------------.-----__--.---_.--__--___----_-_---_-----------_--__----_-_____-_-.--__.---------,_,a

ATTACHMENT 01 CPSES UNrr 116345 EE(B) 140 REV 3 Page 3 of 9

' Interim C4culation oiCalne Amped.y of Thermolaged Cabia in Free Air Tr.mplate 1: Mak6ed for 8 cable.s' II.

BUNDLED CONDUCICR DIAMETER j := 1. 5 i' = 1. 21 N = (1 2 3 6 8)

This is the number of cables in a bundle, except that 3 -

single conductors are counted N

t= N as one.

The numbers were i,j 1,j arbitrarily selected.

The following determines the marian.m number of canles which can fit in a o

w conduit using the 40% afill by area" criteria (see Reference 14).

Acnd3 := 7.38 Acad5 = 20 Area of a 3,4,5,6 inch ronduit, Sourcet Reference 14 (NEC).

Acnd4 := 12.12 Acnd6 := 28.89 0.4+Acnd3

'0.4 Acnd3 *

., floor N

= if n' m 1, floor 1,6 1,1 2

2 Diam 1C Cdian 1,1 1,1

3. g..-

y.

4 4

O.4'Acnd4

'O.4 Acnd4 **

~

N

= if n'

= 1, floor

, floor 1,7 i,1 2

2 Diam 1C Cdias a

1,1 1,1 3r-r-

=

4 4

0.4 Acnd5

'O.4.Acnd5

N

= if n' e 1, floor

, floor i,8 1,1 2

2 Diam 1C Cdias 1,1 1,1

3. r-r-

4 4

O.4 Acad6

'0.4 Acnd6

N

= if n'

= 1, floor

, floor i,9 1,1 2

2 Diam 1C Cdian 1,1 1,1 3 r*

r-4 4

1

1 A1TACID4ENT 01 CPSES UNrr 116345 EE(8)140 REY 3 Pass 4 o(9 taterin Calentados d Cable Amposy of TLmt f Cab 6e la Fru Air Templats 1: Madded for 8 cablev j := 1. 9 1

N

= i f 'N m 0,1,N This ensures that N is never zero 1,j

,i,j i, j,

)

i conduit Sizet 3

4 5

6

'l 2 3 5 8 1

1 1

2" 1/C-500,8 KV 1 2 3 5 8 1

1 2

3 1/C-350,8 KV 1 2 3 5 8 1

1 2

4 1/C-4/0,8 KV 1

'e 3 5 8 1

1 2

2 1/C-750,600 V 1 2 3 5 8 1

1 2

4 1/C-500 N=

1 2 3 5 8 1

2 3

5 1/C-350 1 2 3 5 8 2

4 6

9 1/C-4/0 1-2 3

5 8 3

5 8 12 1/C-2/0 1 2 3 5 8 1

2 4

6 TRI-4/0 1 2 3 5 8 2

3 5-8 TRI-2/0 1 2 3 5 8 4

7 11 16 TRI-2ANG 1 2 3 5 8 3

t, 10 15 3/C-4ANG 1 2 3 5 8 4

6 13 19 3/C-6ANG 1 2 3 5 8 7

13 21 30 3/C-RANG 1 2 3 5 8 11 20 32 46 3/C-10ANG 1 2 3 5 8 18 32 51 73 3/C-12ANG 1 2 3 5

8.

3 5

9 13 2/C-2ANG 1 2 3 5 8 6

10 16 23 2/C-6AMG 1 2 3 5 8 8

15-23 34 2/C-8ANG 1 2 3

$ 8 13 32 35 51 2/C-10ANG

,1 2 3 5 8 20 36 56 81, 2/C-12ANG WRITEPRN'N t= N

'1his stores the N matix in an ASCII file for use in Template Appendix G2 and G3

,prn.)

5 r

i e

.+e m

+

-4,_.-

~

J A7TACEMENT G1 CPSES UNTT 116345 EE(B).140 REV 3 Page C of 9 4

fi f

'Interbo Cakulados of Cable Ampeciry of Thermolagged Cab e la Fr$c Air Tc p! ate 1: Modi ed or 8 cables' No. of cables in a Bundle s

No. of ' Cables / Coixtuit Size 1 2 3 5-8 3"

4" 5"

6"

'l 2 3 5 8 1

1 1

2' 1/C-500,8 KV 1 2 3 5 8 1

1 2

3 1/C-350,8 KV 1 2 3 5 4 1

1 2

4 1/C-4/0,8 KV 1 2 3 5 8 1

1 2

2 1/C-750,600 V j

1 2 3 5 8 1

1 2

4 1/C-500 N=

1 2 3 5 8 1

2 3

5 1/C-350 1 2 3 5 8 2

4 6

9 1/C-4/0 1 2 3 5 8 3

5 8 12 1/C-2/0 1 2 3 5 8 1

2 4

6 m -4/0 1 2 3

5 4 2

3 5

8 m -2/0 1 2 3 5 8 4

7 11 16 m-2AM 1 2 3

5 8 3

6 10 15 3/C-4AM 1 2 3 5 8 4

8 13 19 3/C-6AW 1 2 3 5 8 7 13 21 30 3/C SANG 1 2 3 5 8 11 20 32 46 3/C-10AM i 2 3 5 8 18 32 51 7J 3/C-12AW 1 2 3 5 8 3

5 9

13 2/C-2ANG 1 2 3 5 5 6 10 16 23 2/C-6ANG j

1 2 3 5 8 8 15 23 34 2/C-SAW 1 2 3

5 8 13 22 35 51 2/C-10AM 1 2 3 5 8 20 36 56 81, 2/C-12AM Equivalent multiplier to obtain bundle dia:sater = F

  • cable diameter.

Number of Cables /

Conduit Size ~

s 1 2 3

5 8

3" 4"

5" 6"

'l 2 2.15 2.7 3.31 1

1 1

2' 1/C-500,8 KV 1 2 2.15 2.7 3.31 1

1 2

2.15 1/C-350,8 KV 1 2 2.15 2.7 3.31 1

1 2

2.14 1/C-4/0,8 KV 1 2 2.15 2.7 3.31 1

1 2

2 1/C-750,600 V 1 2 2.15 2.7 3.31 1

1 2

2.14 1/C-500 F=

1 2 2.15 2.7 3.31 1

2 2.15 2.7.

1/C-350 1 2 2.15 2.7 3.31 2 2.14 3

3.62 1/C-4/0 1 2 2.15 2.7 3.31 2.15 2.7 3.31 4.15 1/C-2/0 4

1 2 2.15 2.7 3.31 1

2 2.14 3

M -4/0 1.2 2.15 2.7 3.31 2 2.15 2.7 3.31 M -2/0 1 2 2.15 2.7 3.31 2.14 3

4 4.7 M -2AdG 1 2 2.15 2.7 3.31 2.15 3

4 4.7 3/C-4AWG 1 2 2.15 2.7 3.31 2.14 3.31 4.41 5

3/C-6AWG 1 2 2.15 2.7 3.31 3

4.41 5.31 6.41 3/C-8AWG 1 _2 2.15 2.7 3.31 4

5.31 6.7 8-3/C-10AWG 1 2 2.15 2.7 3.31 5

6.7 8.41 10 3/C-12AWG 1 2 2.15 2.7 3.31 2.15 2.7 3.62 4.41 2/C-2AWG 1 2 2.15 2.7 3.31 3

4 4.7 6

2/C-6AWG 1 2 2.15 2.7 3.31 3.31 4.7 6

7 2/C-GAWG 1 2 2.15 2.7 3.31 4.41 5.62 7

8.41 2/C-10AWG

,1 2

2.15 2.7 3.31 5.31 7

8.7 10.41, 2/C-12AW 1

, ~.. _

ATTACHMENT G1 CPSES INT 116345EE(B) 10 REV 3 Pass 7 of 9

'Interms C=Wi'*H d Cable Ampeory of W.w' _' f Cable in Free Air Tessplate 1: Modi 6cd for 8 cables

  • j := 1. 9 This redefines the number of n'
= if'n' su 1,3, n' conductors for 1/C cable as 1,1 1,1 1,1, 3 fo:" N = 1.

ORIGIN = 1 nn'

= n' N

This calculataa the nuabar 1,j 1,1 i,j of conductors under the WP +

w s

Actual number of condu.tra inside ihmdie Number of Cables /

Conduit Sixs 1 2 3 5 8

3" 4"

5" 6"

'3 6 9 15 24 3

3 3

6' 1/C-500,8 K7 3 6 9 15 24 3

3 6

9 1/C-350,8 KV 3 6 9 15 24 3

3 6

12 1/C-4/0,8 KV c

3 6 9 15 24 3

3 6

6 1/C-750,600 V 3 6 9 15 24 3

3 6

12 1/C-500 nn' =

3 6 9 15 24 3

6 9

15 1/C-350

1 6 9 15 24 6 VA 18 27 1/C-4/0 3 6 9 15 24 9 15 24 36 1/C-2/0 6

3 6 9 15 24 3

6 12 18 TRI4/0 3 6 9 15 24 6

9 15 24 TRI-2/0 3 6 7 15 24 12 21 33 48.

TRI-2ANG

~

3 6 9 15 24 9 18 30 45 3/C-4)WG 3 6 9 15 24 12 24 39 57 3/C-6ANG 3 6 9 15 24 21 39 63 90 3/C-8ANG 3

6 9 15 24 33 60 96 l'18 3/C-10ANG

?

6 9 15 24 54 96 153 219 3/C-12ANG 2 4 6 10 16 6 '10 18 26 2/C-2ANG 4

2 4 6 10 16 12 20 32 46

'2/C-6ANG 2 4 6 10 16 16 30 46 6'8 2/C-8ANG 2 4 6 10 16 26 44 70 102 2/C-10ANG 2 4 6 10.16 40 72 112 162, 2/C-12ANG m_______.__________._________._.___-_..m__.__.__________._________.______s-_.

--mw

?

ATTACHMENT Ut CP5EC W.? 116MEE(B) 140 REV 3 Pay 8 of 9

'lararianalalade= of Cable Ampecay of hr 'f Cabis na Fros Air Tempiess 1: Modi 6ed for o cabina*

P 4

l' nn' is the actuel neber of conductor 1s inside a bundle l

nnn' is tne esp 11 valent number _of conductors for heat production basis The following accounts-for load diversity in larger cable bundles, see template Appendix F and the Methodology,section for further amplaination.

i f

nnn'

= if M
2. ' 3,0. 88* nn'

,nn' Mjust nn' for N=3 l

1,j

,i,j 1,j i, j, nnn'

= if V 2 4,0.82 nn'1,j,nnn'-

Mjcst nni for N=4 i,3

,1,3 1, j, 1

i nnn'

= if M k 5,0.784 nn'

,nnn':

Mjust nn for' N=5 i

1,j.

,i,j:

1,j 1, j, nnn'

= if M'.

2 6,0.76'nn'

,nnn8 Mjust nn> - for N=6 1,j j 1,3 1,j 1, j, Mjust un' for N=7 or-nnn'

= if N 2 7,0.743'nn' grinater, for conservatise 1,j

,1,j i,j,nnni, j, no value ser11er than 0.743 vill-be used i

l Equivalent: number of _ conductors in Bondle t

i Number of Cables /~

Cenduit Size

)

l 1 2 3

5 8

3" 4"

5" 6"

l_

'3. 6 7.92 11.76 -17.83 3

3' 3

6'

_1/C-500,8 KV 3 6 7.92: 11.76 17.83 3

3 6.

=7.92 1/C-350,8 KV 3 6 7.92 '11.76 17,83 3

3 6

-9.84 1/C-4/0,8 KV I

3

-6. 7.92 11.76 17.83 -

3 3

-6

-- 6

1/C-750,600 V I
3. - 6 7.92 11.76 -17.83'

-3.

3 6

9.84 1/C-500 i

nnn' =

3 6 7.92 11=.76 '17.83 3-6:

7.92

'11.76 1/C-350 3-6 7.92. 11.76--17.83?

6 9.84

-13.68

_20.06 1/C-4/0 l

3-6 7.92 11.76 17.83 7.92 11.76 17.83 26.75 1/C-2/0 3 6 7.92--.11.76 -17.83 3-6 9.84=

'13.68

TRI-4/0 3

-6 o7.92' 11.76 :17,83 6

7.97.

11.76 17.83 TRI-2/0 3.6 7.93 11.76 17.83-9.84

.M.6-24.52 35.66 TRI-2AWG B

3 6 7.93-11'.76 17.83. : ?,i,2 ' 13.681 22.29

'33.44

3/C-4AWG~-

3 6.

7.92 11.76 17.83 9.84L 17.83,_28,98-42.35 3/C-6AWG p

36

7. 92 ~ -11.7f.

17.83- ~15.6 ^28.98

'46.81-66.87 3/C-8AWG 3 14---7.92 11.76 17.83 24.52.44.58 71.33 102.53 3/C-10AWG 3 6 7.92 :11.76-17.83^ 40.12 '71'.33-113.64' 162.72 13/C-12AWG-4 2 4 5.18-

-7.84-31.89-5.26-L7.84 13.37- '19.32 2/C-2AWG 2 4 5.28 7.84 11.89 9.12 14.86 23.78 34.18 2/C-6AWG-2-4 5.28' 7.84 11.89--11.894 22.29 34.18 50.52 2/C-8AWG 2 4 5.28 7.84. 11.89 19.32 32.69 52.0T 75.79 2/C-10AWG-

,2 4~

5.28

_7.84 11.89 29.72' 53.'5

_83.22 120.37, 2/C-12AWG p

4 p

e n

=

=

m A*ITACHMElff 01 CPSES UNIT 116345 EW8) 10 REV 3 PaSe 9 d 9

  • Interim Ca culatme of Cable Aspecity of Thermolagged Cable in Fra Air Tamplas 1: Meddied not 8 cables
  • WRITEPRN DCE
= rnn' Both natives nnn' and nn' are saved to an ASCII file for later use by tcaplate WRITEPRN'nn ta nn' Appendix G2 and G3 PHI.

c CCdian t= Cdiam F

This calculates the diamet.or i,j i,1 1,j of a bunits of cables, for -

variousa nunper of cables in the bun 11a.

Dundle diameter No. of Cables / Con &dit Size 1

2 3

.5 8

3" 4"

5"

-6"

'2.95 5.9 6.35 7.97 9.77 2.95 2.95 2.95

5. 9' 1/C-500,8 KV 2.67 L.34 5.74 7.2 8.83 2.67. 2.67 3.34 5.74 1/C-350,8 KV 2.34 4.64 5.03 6.32 7.74 2.34 2.34 4.68 5.01 1/C-4/0,8 KV 2'.77 5.54 5.95 7.45 9.17 2.77 2.77 5.b4 5.54 1/C-750,600 V 2.31 4.61 4.96 6.23 7.64 2.31 2.31 4.61 4.94 1/C-500 5

CCdiam =

2.02 4.05.4.35 5.46 6.7 2.02 4.05 4.35. 5.46 1/C-350 1.57 3.13 3.37 4.23 5.18 3.13 3.35, 4.7 5.67 1/C-4/0 1.33 2.66 2.86 3.59 4.4 2.86 3.59 4.4 5.51 1/C-2/0 1.ti7 3.13 3.37 4.23 5.18 1.57 3.13 3.35 4.7 TRI-4/0 1.33 2.66 2.86 3.59 4.4 2.66 2.86 3.59 4.4 TRI-2/0 0.95 1.9 2.04 2.57 3.15 2.03 2.85 3.8 4.47 TRI-2AWG 0.98 1.96 2.11 2.65 3.25-2.11 2.94 3.93 4.61 3/C-4AWG 0.88 1.76 1.89 2.37 2.91 1.88 2.91

'k.87 4.39 3/C-6AfdG

!.69 1.38 1.49 1.87 2.29 2.08 3.05 3.6; 4.44 3/C-8AWG O.56 1.13 1.21 3.52 1.86 2.25 2.99 3.77. 4.5 3/C-10AWG 0.45 0.89 0.96 1.21. 1.48. 2.23 2.99 3.76 4.47 3/C-12AWG-1.04 2.09 2.24 2.82 3.46 2.24 2.82 3.78 4.6 2/C-2AWG 0.79 1.58 1.69 2.13 2.61-2.36 3.15 3.7 4.73 2/C-6AWG 0.as5 1.3 1.4 1.76 2.16 2.16 3.06 3.91 -4.56 2/C-8AWG 0.53 2.06 1.14-1.44 1,76 2.35 2.99 3.72 4.47 2/C-10AWG

,0.42 0.85 0.91 1.14 1.4 2.25 2.97 3.69 4.41, 2/C-12AWG WRITEPRN[CCdiam

-:= CCdiam' This saves matrix CCdian for use s

prn,

by template Appendix G2-9.

1

ATTACHMENT G2 CPSES UNIT 116345 EE(B) l'J REV 3 Pass 1 d 14

  • Cable aspecisy of t: xt d cable 3/8 inch podsat in Pres Air: templete 2*

This templates calculates the thermal resistance terms and cable ampacity. Die cable ampacity is input to template Attachment G3 for comparison with unpacity of the cable its adjacent raceways sections.

w I.

CABM INPUT DATA PRNPRECISICH := 6 Files cable.prn was p e a'd by CARM = READPRN ' cable template-Attachment A and is

prn, docttu nced separately.

CRIGIN a 1 definen the upper corner of a matrix as 1,1 j:=1.7 i = 1.. 21 n' -

= 0 Cdiam
= 0 1,3 1,j Matrix CAP M is comprised of the following indicated columns.

<1>

<2>

<3>

<4>

Roc 25 := CABM Yc := CABM

. De t

<1>

<5>

<6>

<7)

<8>

n'

= CAB 3 It = CABM Jt ta CABM pi t= CABLE

<9>

<10>

. - <1>

<11>

pj := CAB 2 Diam 1C t= CABM Cdiam

= CAPG Wherst Rdc25 Coeductor dc resistance at 25 deg C,' 4/ft -

Yc C=hN prrwinity/ skin sf.fect De Conductor diameter, in.

Ae Conductor cross-sectional area, sq ana n'

Etaber of conductorii in cable

-It Insulation thickness, mils-Jt Overall jacket thickness, mila ei Insulation thermal resistivity, C-cm/w ej Jacket thermal resistivity, C-cm/w.

Diam 1C Diameter of 1/c cable or 1 cabla of multi-conductor cable, in.

Cdian overall diameter of cable, in.

-1:

1 Q,

i ATTAQOODfT G2 CPSES UNTT 116345 EE(B) 140 REV 3 Page 2 of 14

  • Cable asspeary of thermolage4 cable 3/8 inch prodem la Free Ak: template 2" i

CABLE PHYSICAL PROPERTIES Roc 25 Dc Ac

'It Jt Diam 1C Cdian n/ft Ye in.

mm2 n'

mil mil pi pf inch inch

'*r

-5 m

2.22 10 0.06 0.813 253.4 1 280 0 500 500 1.373 2.95195

-5 3.2 10 0.03 0.681 177.3 1 280

-0~ 500 500 1.241 2.G6815

-5 CABLE =

5.25 10 0.01 0.528 107.2 1 280 0 500 500 1.088 2.3392

~5 1.48 10 C.L

% 998 380 1 145 0 500 500 1.286 2.7692

-5 2.22 10 0.06 0.813 253.4 1 130 0 500 500 1.073 2.30695

-9 3.2 10 0.03 0.681 177.3 1 130 0 500 500 0.941 2.02315

-5 5.25 10 0.01 0.528 107.2 1 100 0 500 500 0.728 1.5652

~5 8.43 10 0 0.418 67.43 1 100 0 500 500 0.618 1.3287

-5 5.25 10 0.01 0.524 107.2 3 '100 0 500 500 0.728 1.5652 4

-5 8.43 10

'O 0.415 67.43 3 100 0 500 500' O.618 1.3287

-4 1.69 10 0- 0.292 33.62 3 75 0-500- 500 0.442 0.9503

-4 2.69 10 0 0.232 21.15 3 75 80 500 500- 0.382 0.9813 q

-4 4.27 10 0 0.184 13.3 75 80 500 500 0.334-0.0781

-4 6.79 10 0 0.146 8.37 3 60 60 500 500 0.266 0.6919 0.00108

'O 0.116 5.26 3-45 60 500 500 0.206 0.5629 0.00172 0- 0.092 3.31' 3 30 60 500 500 0.152 0.4468

-4 1.69 10 0 0.292 33.62 2 75 80 500 500 0.442'-

1.044

-4 4.27 10 0 0.184 13.3 2 75 60 500 500 0.334 0.788

-4 6.79 10 0 0.146 8.37 2 60 60 500 500 0.268 0.652 0.00108 0 0.116 5.26 2 45 60 500 500 0.206 0.532

,.0.00172 0 0.092 3.31 2

-30 60 500 500 0.152 0.424, The above matrix is manually e v _ red with the matrix CAB 2 of Attach-ment A to demonstrate successful data transfer.

ATTACHMENT G2 CPSES UNrr 116345EE(B).140 REV 3 Page 3 d 14

  • Cable anspeciry d thermolaged cable 3/8 ind. pmdmet la Free Air: tennplass 2' 3

f

)

N, nnn', and CCdian were developed in tar.platea Attachiment G1 N := REACPRN'N nnn' := READPRN 'NNN

. PU8 Prn.

4 CCdian := READPR"'*:Oiiam i.

prn,

w No. of cablee in a Bundle No. of cables / Conduit Size 1 2 3 5 8 38 4 " 5 " 6"

'l 2 3 5 8 1

1 1

2' 1 2 3 5 8 1

1 2

3 1 2 3 5 8 1

1 2

4 1 2 3 5 8 1

1 2

2 1 2 3 5 8 1

1 2

4

'21 =

1 2 3 5 8 1

2 3

5 1 2 3 5 4 2

4 6

9 1 2 3 5 8 3

5 8 12 1 2 3 5 8 1

2 4

6 1 2 3 5 8 2

3 5

8 1

1 2 3 5 8 4

7 11 16 1 2 3 5 8 3

6 10 15 1

.2 3 5 8 4

8 13 19 1 2 3 5 8 7

13-21 30 6

1 2 3 5 8 l '. 20 32 46 1 2 3 5 8 18 32 51 73 1 2 3 5 8 3

5 9 13 1 2 3 5 8 6 13 16 23 1 2 3 5 8 8 15 23 34 1 2 3 5 8 13 22 35 51 i

,1 2 3 5 8 20 36 56 81, i

d

+

9 4

i 4

I w

,~u s

,s..

ATTAQD4ENT G2 CPSES UNTT 11945-ER(3) 140 REV 3 Fags 4 of 14 i.

"Cabis aspenity of thermolaged cabio 3/8 loch podes in Fre Ala tempissa 2' Equivalent No.'of conductors in a Mndle~

s No. of cables / Conduit Size 1 2 3

5 8

3" 4"

5" 6"

'3 6 7.92 11.76 17.83 3

3 3

6' 3 6 7.92 11.76 17.83 3

3 6

7.92 3 6 7.92 11.76 17.83 3_

3 6

9.84 3 6 7.92 11.76 17.83 3-3 6

6 3 6 7.92 11.76 17.83 0

3 6'

9.84 nnn' =

3 6 7.92-11.76 17.83 3;

6 7.92 11.76 3

6-7.92-11.76 17.83 6

9.84 13.68

.20.04 g>_

i 3 6 7.92 11.76-17.83 7.92 11.76 17.83 26.75 1

3-6 7.92 11.76 17.83 3

6 9.84 13.68 3 6

'7. 92 - 11.76 17.83

'6-7.92 11.76 17.83 3 -6 7.92-11.76 17.83-9.84 15.6 34.52 35.66 3 6 7.92 11.76 17.83 7.92 13.64 22.29 33.44 3

6-7.92 11.74 17.83 9.84 -17.43 28.96 42.35 3 6 7.92 11.76 17,83-15.6-28.98 46.81-64.87 3

6-7.92 11.76 17.83 24.52 44.58 71.33 102.53 3 6 7.92 11.75 17.83 -40.12 71.33 113.68 162.72 2-4 5.24

-7.84 11.89.

5.2:s 3.84_

- 13.37 19.32 2

4 5.28 7.84 11.89' 9.12-14.86

' 23.78

-34.18 2-4 5.28' -7.84 11.89 11.89 22.29

' 34.18 50.52 2 4 5.28 7.84 11.89 -19.32 32.69-52.01 75.79

,2 4 5.28 7.84 -11.89 29.72 53.5 83.22 120.37, O

Diameter of cable Bundle.

No. of cables / Conduit S!.2e 1

2-3 5.

8 3'"

4"

5 "

6" 2.95 -2.95

5. 9'

'2.90 5.9 -6.35 :7.97 9.77 2.95 ' 2.67.5.34 '5.74 2.67 5.34-5.74 7.2 8.83 2.67 2.34' 4.64 5.03 6.32 7.74 2.34 2.34 4.68 5.01 2.77' -5.54 - 5.95-7.48 9.17 2.77 2.77 '5.54 5.54 2.31 4.61 4.96 6.23.7.64 2.31 2.31 4.61' 4.94 CCdian =

2.02 4.05 4.35 5.46 6.7-2.02 4.05 4.35 5.46 1.57 3.13 :3.37: 4.23 5.18 3.13..-3.35 4.7 5.67 1.33 2.66-- 2.56 3.59

-4.4 2.86 '3.59 4.4 5.51 1.57 '3.13'.3.37.

4.23 5.18 1.57 3.13 :3.35 4.7 1.33-2.66= 2.86-3.59 4.4 2.66 - 2.86 3.59' 4.4 0.95 1.9 2.04-2.57 3.15. 2.03 2.85 3.8' 4.47 0.98 1.96 -2.11 2.65 3.25 ~2.11 2.94 -3.93 4.61 0.88.1.76 1.49 2.37 2.91 -1.88 12.91 3.37-4.39 0.69 1.38 1.49 1.87 2.29 2.08 3.05-3.67 4.44 0.56 1.13 1.21-1.52-=1.86 2.25 2.99 3.77 4.5 0.45 0;89 0.96 1.21--1.48 -2.23 2.99 -3.76-4.47 1.04-2.09 2.24 2.82 3.46 ~ 2.24' 2.82 ' 3.78 4.6 0.79-1.58 1.69-2.13 2.61 2.36 3.15' 3.7 4.73 0.65 1.3

'1.4 1.76 2.16-- 2.16 3.06-3.31 4.56 0.53 1.06-1.14 1.44 1.76 2.35 2.99 3.72 4.47

,0.42 0.85 _0.91 1.14 1.4 2.2" 2.97 3.69 4.41, 4

4

-,,,--..,,_.y

.,,-,.-wg-g

,,_,,_,.d r J +'*

  • d

^ = # sv y

=?w1 w

'-*n-tv e.

2

, - +,

ATTACHMENT G2 CPSES UNIT 116345 EE(B) 140 REV 3 Pass $ of 14 Cable amp city of thermonessed cabw,/sinch prodeain Fr Air, template 2-III. Calculation of thermal resistance taras j := 1. 9 f

' Diam 1C" i

thermal resistance of insulation Ri

= 0.012 pi log C-ft/ watt i,j i

Dc Sourcet Reference 3 (Nehr-McGrath,,

i equation 38.

Mermal Resistance of Insulation

~

No. of cablas / Conduit Size 1

2 3

5 8

3" 4*

5" 6"

'1. 4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

1. 4' 1/C-500,8 KV 1.6 1.6 1.6 1.6
1. 6 1.6 1.6 1.6 1.6 1/C-350,8 KV 1.9. 1.9 -1.9 1.9 1.9 1.9 1.9 1.9 1.9 1/C-4/0,8 KV 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1/C-750,600 V 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1/C-500 Ri =

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1/C-350 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1/C-4/0-1 1

1 1

1 1

l' 1

1 1/C-2/0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 TRI-4/0 1

1 1

1 1

1 1

1 1

TRI-2/0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 TRI-2AWG 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 3/C-4AWG 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 3/C-6AWG 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 3/C-8ANG 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 3/C-10AEG-1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 3/C-12AWG 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 2/C-2AWG 1.6 1.6_ 1.6 1.6 1.6 1.6 1.6 1.6 1.6 2/C-6AWG 1.6 1.6 1.C 1.6 1.6 1.6 1.6

-1.6 1.6 2/C-8AWG 1.5 1.5 1.5 1.5 1.5 1.5 1.5 l'. 5 1.5 2/C-10AWG

,1. 3 1.3 1.3 1.3 1.3 1.3 1.3 1.3_

1. 3, 2/C-12AWG l

A7TACHMENT G2 CPSES Uh7T 116345 EE(B)-140 REV 3 Page 6 of 14

  • Cable ampwiry of thermolagged cable 3/8 inch prodea is Free Air. templess 2' Tnermal Resistance of the Jackat on 2/C and 3/C cable 1,1 0.012 n' pj log Rj
=

"J P.

> O' 1,j i

1,1 1

-3 Cdian

- 2 Jt 10 1,1 i

Thermal resistance of jacket, C-ft/vatt Source Derived from equation 38 in Reference 3 (Nehr-McGrath) This first part of the expression is a logical statement to only calculate Rj if a jackat exists.

Thermal Resistance of Jackat 1

No. of cables / Conduit Size 1

2 3

5 8

3

  • 4" 5"

6" 0

0 0

0 0

0 0

0-0' O

O O

O O

O O

O O

O 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 Rj =

0 0

0 0

0 0

0 0

0 0

0 0.

0 0

0 0

0 0.

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0-0 0

0 0

0 1.39 1.39 1.39 1.39 1.39 1.39' 1.39 1.39 1.39 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57-1.57 1.49 1.49 1.49 1.49.1.49 1.49 1.49 1.49 1.49 1.87 1.87 1.87 1.87 1.67 1.87 1.87 1.87 1.87 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 0.87 0.87 0.87 0.87 0.87 0.87- 0.87 0.87 0.87 0.86 0.86- 0.8C 0.86 0.86 0.86 0.86 0.86 0.86 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.33 1.33 1.33 1.33 1.33.1.33 1.33 1.33 1.33

,1.71 1.73 1.73 1.73 1.73 -1.73.

1 73 1.73 1.73.

_________m_

4 ATTACHMFET G2 CPSES UNTT 116345 EE(B)-140 REV 3 Pass 7 of 14 1

"Cabic aspecity of thermolegged cal.e 3/8 lach product la Free Air: template 2' J

4 i

1.

A' := 4.5 B' := 0.27 factors used in Rad, developed const.uts in Table VII of Reference 3 (Nehr-McGrath). See

= Methodology 8.

thermal resistance between A'

cable and 330-660, C-ft/ watt this assumes an a kiyap betvoen i

Rad

= nnn' i,j 1,j CCdiam

+ B' the two surfaces. Equation 41A-i i,j from Reference 3, (Nehr-McGrath).

' 4.2 4.4 5.4 6.4 8

4.2 4.2 4.2 4. 4~

1/C-500,8 KV 4.6 4.8 5.9 l7.1 8.8 4.6 4.6 4.8 5.9 1/C-350,8 KV 5.2 5.5 6.7 8

10 5.2 5.2 5.5 8.4 1/C-4/0,8 KV 4.4 4.6 5.7 6.4 8.5 4.4 4.4 4.6-4.6 1/C-750,600 V-5.2 5.5-6.8 8.1 '10.1 5.2 5.2 5.S-8.5 1/C-500 Rad =

5.9 6.3 7.7 9.2 11.5

_5.9 6.3 7.7 9.2 1/C-350 7.4 7.9 9.4 11.8 14.7 7.9 12.2 12.4 15.2 1/C-4/0 i

8.4 9.2 11.4 13.7 17.2 11.4 13.7 17.2 20.8 1/C-2/0 14 7.9 9.8 11.8-14.7 7.4 7.9-12.2 12.4 TRI-4/0 t

8.4 9.2 11.4 13.7 17.2 9.2 11.4 13;7 17.2 TRI-2/0 11.1' 12.4 15.4 18.7 23.5 19.2 22.5. 27.1 33.9

.TRI-2AWG-10.8-12.1 15 18.1 22.8-15 19.2 23.9 30.8 3/C-4AWG-11.8-13.3 16.5 20 25.3 -20.6 25.3-= 31.5 40.9 3/C-6AWG 14 16.3 20.3 24.8 31.3 29.9 39.3 53.4 64

'3/C-BAWG l

16.2 19.3 24.1 29.6 37.6 43.8 61.6 79.4-96.7 3/C-10AWG

[

18.8 23.2

=29 35.8_ 45.9-72.1--98.4_

127 154.5 3/C-12AWG 6.8 7.6 9.4 11.4-14.4 9.4: 11.4 14.9 17.8 2/C-2AWG 8.5 9.8 12.1-14.7 18.6 15.6 19.5 26.9

-30.8 2/C-6AWG 9.8 11.4 14.2 17.4 22.

22 30.1-36.8 47 2/C-8AWG s

11.2 13.5 16.8 20.7 26.3 33.2 -45.1 58.6._ 71.9 2/C-10Abr, 13 16.1-20.1 24.9

-32 53-74.3 94.6 115.6, 2/C-12AWG e

r E.

d' 1

[

ATTACHMENT G1 CPSES UbTT 116345 EE(B) 140 RZV 3 Fage 8 of 14 s

' Cable aspecify of therinolegged caNo 3/8 inch prodoct im Free Air template 2*

l f

THERMAL RESISTANCE OF THERMOIAG 330-660 MGP j

J Btu /hr = B B :=.2931 watts Ft = 30,4785 ca 5

F := -

This is to convert degree F 9

to degrees, C B 1 K := (0.249) - -

See Attachment D (corstuctivity)

Ft Y 1

pw := =

K pw = 232.01 thermal resistivity of 330-660 wrap,C-Cs/ watt 3

thickness of vrap, inch (4 layers of animum Tvrap := 4 -

avarage thickness, see Attachment I)

S Tvrap = 1.5

'CCdiam

+ 2 Twrap Thermal resistance 1,j of thermolag wrap, i

RW

= 0.012 nnn' pw log thermal O/ft i,j 1,j CCdian Source: Refarance 2, 1,j equation 6 Thermal Resistance of Wrap No. of cables / Conduit Size 1

2 3

5 8

3" 4"

5 "

6"

'2. 5 3

3.7 4.5 5.8 2.5 2.5 2.5 3'

1/C-500,8 KV 2.7 3.2 4

5 6.3 2.7 2.7 3.2 4

1/C-350,8 KV 3

3.6 4.5 5.5 7.1 3

3 3.6 5.6 1/C-4/0,8 KV 2.7-3.1 3.9 4.8 6.1 2.7 2.7

$.11 3.1 1/C-750,600-V 3

3.6 4.5 5.6 7.1 3

3 3.6 5.6 1/C-500 RV =

3.3 4

5 6.2 8

3.3 4

5 6.2 1/C-350 3.9 4.9 6.1 7.6 9.8 4.9 7.6 8.2 10.3 1/C-4/0 4.3 5.5 6.9 8.6 11.2 6.9 8.6 11.2 14 1/C-2/0 3.9 4.9 6.1 7.6 9.8 3.9 4.9 7.6 8.2 TRI-4/0 1

4.3 5.5 5.9 8.G 11.2 5.5 6.9 8.6 11.2 TRI-2/0 5.2 6.9 8.7 11 14.4 10.8 13.6 17.2 22.2 TRI-2AWG 5.1 6.7 8.5 10.8 14.1 8.5 11.6 15.3 20.3 3/C-4AWG 5.4 7.2 9.1 11.6 15.3 11.4 15.3 20.1 26.7 3/C-6AWG 6.1' 8.4 10.6 13.6 18.1 16.9 24 33.8 41.8 3/C-8AWG 6.7 9.4.11.9 15.5 20.7 25.1 37.5 50.5 63.3 3/C-10AWG 7.4 10.7 13.6 17.8 23.9 = 41. 3 59.9 80.7 101.1 3/C-12AWG 3.3 4.3 5.4 G.9 9-

5. 4 - 6.9 9.4 11.7 2/C-2AWG 3.8 5.2 6.5 8.3 11 9

- 12 17.1 20.3 2/C-6AWG 4.2 5.8 7.3 9.4 12.5 12.5 18.4 23.5 30.9 2/C-SAWG 4.6 6.5 8.2 10.7 14.3 19.2 27.5 37.2 47

.2/C-10AWG

,5.1 7.3 9.3 12.2 16.4 30.4 45.2 59.9 75.5 2/C-12AWG

A77ACHMFNr G2 CPSES UNTT 116345.EE(B) 140 REV 3 Page 9 of 14

' Cable aspeciry cithermolagsod cabic4/8 lack prodna in Proe Air: template 2' THERMAL RESISTANCE BE7 WEEN THE THERMOLAG AND AMBIENT AIR Dwrap

= 2 Tvrap + CCdiam ov&rall diameter of wrap, in.

a w

Diameter ove" the Wrap No. of cables / Conduit Size 1

2 3

5 8

3 4a 5"

6" 6

8.9 9.3 11 12.8 6

6 6

8. 9' 1/C-500,8 KV 5.7 8.3 8.7 10.2 11.8 5.7 5.7 8.3 8.7 1/C-350,6 IV 5.3 7.7 8

9.3 10.7 5.3 5.3 7.7 8

1/C-4/0,8 KV 5.8 8.5 9 10.5 12.2 5.8 5.8 8.5-8.5 1/C-750,600 V 5.3 7.6 8

9.2 10.6 5.3 5.3 7.6 7.9 1/C-500 Dwrap =

5 7

7.3 8.5 9.7 5

7 7.3 8.5 1/C-350 4.6 6.1 6.4 7.2 8.2 6.1 6.3 7.7 8.7 1/C-4/0 4.3 5.7 5.9 6.6 7.4 5.9 6.6 7.4 8.5 1/C-2/0 4.6 6.1 6.4 7.2 8.2 4.6 6.1 6.3 7.7 TRI-4/0 4.3 5.7 5.9 6.6 7.4 5.7 5.9 6.6 7.4 TRI-2/0 4

4.3 5

5.6 6.1 5

5.9 6.8 7.5 TRI-2AWG t

4 5

5.1 5.6 6.2 5.1 5.9 6.9 7.6 3/C-4AWG 3.9 4.8 4.9 5.4 5.9 4.9 5.9 6.9 7.4 3/C-6AWG 3.7 4.4 4.5 4.9 5.3 5.1 6.1 6.7 7.4 3/C-GANG-3.64.1 4.2 4.5 4.9 5.3 6

6.8 7.5 3/C-10AM 3.4 3.9 4

-4.2 4.5 5.2 6

6.8 7.5 3/C-12AWG 4

5.1 5.2' 5.8-6.5 5.2 5.8 6.8 7.6 2/C-2AW 3.8 4.6 4.7 5.1 5.6 5.4 6.2 6.7 7.7 2/C-6AWG 3.7 4.3 4.4 4.8 5.2 5.2 6.1 6.9 7.6 2/C-8AW3 3.5 4.1 4.1 4.4 4.8 5.3 6

6.7 7.5 2/C-10ANG

,3. 4 3.8 3.9 4.1 4.4 5.3 6

6.7

7. 4, 2/C-12AWG I

i f

ATTACbErT G2 CPSES UNIT 116M. S EP(B) 140 REV 3 Paes 10 of 14

  • Cabb ampacity d tiermelagged cable 3/8 iv.h prodect k; Pree Air: templue 2" e = 0.89 amissivity of Thermolag 330-660 (se's Attachment D) 9.5 nnn' i,j Therral natist.ance between

-wrap and a2ient air, w

Rwa ta _

-(c + 0.41) thermd 0-ft (C+ft/ watt) i,j 1 + 1.7 Dwrap 1,j Source: Referencs 3 (Nettr-McGrath, equation 42A)

Thartaal Resistance of Wrap to-Air No.' of cables / Conduit Size 1

2 3

5 8

3" 4"

5" 6"

i 2

2.8 3.5-4.4 5.8 2

3

-2

2. 8' 1/C-500,8 XV 2.1 2.9 3.7 4.7 6.2 2.1 2.1 2.9 3.7 1/C-350,8 KV i

2.2 3.2 4

5.2 6.8 2.2 2.2 3.2 5

1/C-4/0,8 KV 2.1 2.9 3.6 4.6 6.1 2.1 2.1 2.9 2.9 1/C-750,600 V-2.2 3.2 4

5.2 6.9 2.2 2.2-3.2 5

1/C+500 Rwa =- 3.4_

3.4 4.4 5.7 7.6 2.4 3.4.

4.4 5.7 1/C-350 2.6 3.9 5

6.6 8.9 3.9 6.2 72 9.5 1/C-4/0 2.7-4.2 5.4 7.2 9.9 5.4 7.2-9.8 12.8 1/C-2/0 l

2.6 3.9 5

6.6 8.9 2.6 3.9 "2

7.2-TRI-4/0 2.7

.4.2 5.4 7.2 9.8

.4.2 5.4-7.2

-9.8 TRI-2/0-t 2.9 4.8 6.2 8.4 11.6 7.7 10.6 14.5 19.4 TRI-2AWG 2,9 4.8 6.1 8.3 11.4 6.1 9.2 13 17.8 3/C-4AW 3

5 6.4 8.7 12.1 7.9 12.1 17 23.E 3/C-6AWG 3.1 5.3 6.9 9.5 13.3 12.1' 19.E 28.2_.36.4 3/C-8AWG i

3.2 5.6 7.3 10.2 14.4 18.5 29,7 42.4 55.4 3/C-10AWG.

3.3 5.9 7.7 10.9 15.5

  • G.3 47.6 67.8 88.3 3/C-12AWG 1.9 3.1 4

5.4 7.4 4

5.4 7.9 10.3 2/C-2AWG

~4 3.4 4.4 6

6.4 6.7

-9.7 14.3 18 2/C-6AWG 2.1 3.6 4.7 6.5 9.1 9.1 24.7 19.9 27.1

-2/C-SAWG 2.2 3.8 4.9 6.9 9.8 14.3 21.8 31.2 41.1 2/C-10AWG

,2. 2 4

5.2 7.3 10.5 22.4 35.8 -50.1 65.8, 2/C-12AWG

.g 4

4

,,,,,s s,v.

y +, -

A7TACHMENT G2 CPSES UNIT 116345 EE(B) It0 REV 3 Pass 11 of 14

  • Cable ampaciny of thermolagged cable 3/8 inch prodect (a has Alt: template 2*

TICRMAL RESISTANCE BETWEEN CONDUC70R AND AMBIENT AIR Rthi := Ri e Rj + Rad + Rw + kwa thermal resistance between the conductor and outside ambient air, thermal G-ft w

(C-ft/vatt)

Thermal Rasistance B6t.veen Conductor and Air

~

No. of cables / Conduit Size 4"

5 "

6" 1

2 3

5 8

3

'.10.1 11.5 13.9 16.8 20.9 10.1 10.1 10.1 11.5' 11 2.2.6 15.2 18.3 22.9 11 11 12.6 15.2 12.3 14.1 17.1 20.6 25.8 12.3 12.3 14.1 20.9 0.0 11.3 13.9 16.9 21.3 9.8 9.9 12.3 11.3 11.2 13.1 16.1 19.7 24.9 11.2 11.2 13.'1 19.9 Rtal =

12.4 14.6 17.9 22 27.9 12.4 14.6 17.9 22 14.6 17.6 21.7 26.8 34.3 17.6 26.9 28.6 35.8' 16.4 19.9 24.7 30.6 39.2 24.7 30.6 39.2 48.7 i

14.6 17.6 21.7 26.8 34.3 14.6 17.6 26.9 28.6 16.4 1949 24.7 30.6 39.2 29.9 24.7 30.6 39.2 20.2 25.2 31.3 39.2 50.6

.38.8 47.6

-60 76.5 m

21.5 26.3 32.3 39.9 51 32.3 42.7 54.9 71.6 23.3 28.6 35.1 43.5 55.7 43 55.7 71.7 93.9 26.3 33.1 40.8 50.9 65.8 62 85.5 118.5 145.2 4

29.5 37.8 46.7 54.6 76.1 90.7 132.1 175.7 218.7 33.3 43'.6 54 68.2 89.1 147.5 209.5 279.2 -347.7 14 17 20.8 25.6 32.7 20.3 25.6 34.2 41.8 16.7 20.7 25.4 31.5 40.4 33.8 43.6 60.7 71.5 18.6 23.4 28.8 35.9 46.3 46.3 65.8 B2.9 107.6 20.8 26.6 J2.0- 41.1 53.3 69.6 97.2 129.7 162.8 (23.3 30.f 37.6 47.5 62 108.9 158.4 207.6 259.9,

4

ATTACHMENT G2 CPSES UNIT 116345-EE(B) 140 REV 3 hoc 12 oD.4

  • Cable ampacky chhermotagged catb3/8 inch product la Free Air, temple 42' RRdc25

= Rdc25 We

= Yc Converts vector into i

1,j i

1,j i

matrix.

Tc := 90 conductor temperature, dog. C (see DBD-EE-52)

Ta != 50 ambient temperature, deg. C (see DBD-EE-52) aar Cable aspecity of Thermoiaq 230-660 Wrapped Cable in Free Air 234.5 + 25 (Tc - Ta)

,Rthi IampN

=

,1 + Wc

-(234.5 + Tc)-

RRdc25 i,j i,j i,j 1,3.

~

Source Reference 3 (Nahr-McGrath, equation 9, with Rthi = Rch',

delta TD - 0, Rdc expressed at temperature Tc).

6 Cable Aspecity of Wrapped Cable in Freo

  • Ho. of cables / Conduit Size 1

2 3

5 8

3" 4"

5" 6*

'367 344 312 285 255 367 367 367 344" 1/C-500,8 KV 297 278 252 230 206 297 297 278 252 1/C-350,8 KV-222 207 188 17 1 153 222 222 207 170 1/C-4/0,8 KV 441 411 371 336 399 441 441 411.411 1/C-750,630 V 344 322 290 2f3 734-348 344 -322 261 1/C-500 IampN = ' 280 258 233 210 187 280- 258 233 210 1/C-350 203 185 167 150 133 185 150 145 130 1/C-4/0 152 138 124 111 98 124 111 98

-88 1/C-2/0 203 185 167 150 133 203 185 150 145 TRI-4/0 152 138 124 111 98 138 12f 111 98 TRI-2/0 97 87 78-70 61 70 63 56 50 TRI-2AWG 74 67 61 55 48 61 53 47

.41 3/C-4AWG 57-51 46

-42 37 42 37 32

.2b 3/C-6AWG 42 30 34 30 27

-28 23 20 18 3/C-8AWG

)

32 28 25 22 20 18 15 13-12 3/C-10ANG 24 21 19 17 14 11 9

8 7

3/C-12AWG 116 106 95 86 76 95-86 74 67 2/C-2AWG 67 60 54 49 43 47 41 35 32 2/C-6AWG 50 45 40 36 32 32 27 24 21 2/C-8AWG 38 33 30 27 24 21 17 15 13 2/C-10AWG

.s

, 2s 25 22 m

17 13 11 9

8 2/C-12AWG-i

. _ - -. -. _ ~.. _,.

n r

if

}

' ATTAOD4ENT G2 CPSES UNIT 116 4.EE(B).140 REY 3 Pa8 13 of14_

  • C4ble amperisy of thermeissed cable 3/4 ind prodes is Free Alr: tem $ 2*

L N

Iagn_ expressed to one deciaal place L

l'366.6 344.2 312.3 284.8 254.9 366.6 366.6 366.6 -- 3 4 4. 2' 297 278.1 252.4' 230 '205.7 297 297 278.1 252.4 221.7 206.8 -187.8-171 152.9 -121.7 222.7' 206.8 170

.440.8 411 370.7 336.2 299.3 440.8 440.8 411 411 l

344 322.3 290.4 262.8 233.5 348 348 322.3 261.2 IampN =

279.9 255.2 2:.2.6 4 0.2-186.5 279.9 158.2 232.6 210.2 203 185.3 166.6 150 132.6 185.3 149.8 -145.2 129.8 151.9 137.9 124 111.4 98.4 114 111.4 98.4 88.3 l-203 18 5. ~,

166.6

-150 132.6 203 185.3 147.R.-145.2 151.9 137.9 124 111.4 98.4 137.9 124 111.4 98.4 96.7 86.7 77.7~

69.5-61.1 69.8 62.9.

56.2 49.7 74.4 67.3 60.71 54.6 48.3-60.7 52.8 46.5

-40.8 1

56.8 51.2 46.2 41.5' 36.7 41.7 36.7' 32.3' ~28.2 42.3 37.7 34 30.4 26.8' 17.6 23.5 19.9

. 18 i

31.7 28 25.2 22.5 19.7 18.1 15 13 11.6 23.6 20.7-18.6 16.5 14.4 11.2-9.4'

-8.2' 7.3 116.3 105.5 95'.4 86 76.1 95.4 86 74.4 67.3 66.9 60.1 54.3 48.8

-- 4 3 47.1 41.4 35.1 32.4 j:

50.3 44.8 40.4 36.2 31.9 31.9 26.8 23.8 20.9 l.

37.7-33.4 30.1 26.8 23.6 2 0. 6.-

17.5 15.1 13.5 i-28.3 24.7 22.2, 19.8 17.3 13.1

.10.8 9.5 8. 5, iI The followirs produces a roundtsd up/down set of canle av.pacity to the nearest whole. number for cable ampacity comparison puzy mes.

4 L

CI

= cell"IangW 1,j

' i, j, I

1 i

FI

= floor'IampN l

1,1 ici.

p IampNRd_

=,1f 'IampN

- FI

< 0.5,FI, -, CI ' _ '

j i,j iii l,j 1,3-1, $.

j-i e

1 4

q f

.a

ATTACHMENT G2 CPSES UNIT 116345 EE(B) 140 REV 3 Page 14 ol14

  • Cable aspecify of Gir'^ - t caNo 3/8 inch prodect in Free Aituemplate 2'

'367 344 312 285 255 367 367 367 344' 297 278 252 230 206 297 297 278 252 222 207 188 171 153 -222 222 207 170 441 411 371 336 299 441 441 411 411 348 322 290 263 234 348 348 -322 261 2ampHRd =

280 -258 233 - 210 187 280.258 233 210 203 185. 167 150 133 135 150 145 130 152 138 124 111 98 124 111 98 88 203 185 167 150 133 203 185 150 145 152 138 124 111 98 138 124 111 98 97 87 78 70 G1 70 63 56 50 74 67 61 55 48 61 53 47 41 57 51 46 42 37 42 37 32 28 42 38 34-30 27 28 23 20 18 32 28 25 22 20 18 15 13 12 24 21 19 17 14 11

-9 8

7 116 106 95 86 76 95 86 74 67 67 60 54 49 43 47 41-35 32 50 45 40 36 32 32 27 24 21 38 33 30 27 24 21 17 15 13

, 28 25 22 20 17 13 11 9

8, i

I WRITEPRN'iampn

= IampN This saves Iamp in an ASCII file for use prn,

in template Attachment G3 WRI72PRN 'iampard t= IampNRd Ps.

I I

l

l 4

ATTACHnGDff G3 CPSES UNIT 11 NEE (BF140 REV 3 Page 1 of 17

'Ampecity Compmaan Benmen Free Air 1ktmolagged Cabina (3/8 inch podnet la Free Air: template Y i

i

=

e This templates compares the ampacity of thermolagged cables in free air with those of thermolegged raceway maintained W tray, ransed filled tray, w

l Thermolag 330-1 enclosed conduit (both bcat and shall design) l s

I.

CABI2 INPUF DATA 9

PRNPFSCISION := 8 i

Iamp := READPRN(iampHRd)

N := READPRN(N) nn' := READPRN(NN) 1 I

The above' files were pr M a d by template Attachment G1 : N and nn't Attachment G2: Iamp.

)

ORIGIN = 1 defines the upper corner of a matrix as 1,1 l-j:=1.9 i := 1. 21 4

e i

4 i

e i '

4 s

d 3

ATTACHMENT G3 CP5ES UNTT 116145 EE(B) 140 REY 3 Page 2 of 17

'Ampuity Compensoe Bemesa Free Air 11weinolagged Cables (3/8 inch product in Free Air: template 2*

Cable Agacity of Wrapped Cable in Free Air No. of Cables / Conduit Site 1

2 3

5 8

3" 4"

5" 6"

'367 344 312 285 255 367 367 357 344' 1/C-500,8 KV 297 278 252 230 206 297 397 278 252 1/C-350,8 KV 222 207 188 171 153 222 222 207 170 1/C-4/0,8 KV 441 411 371 336 299 441 441 411 411 1/C-750,600 V 348 322 290 263 234 348 348 322 261 1/C-500 Iasp =

280 258 233 210 187 280 258 233 210 1/C-350 203 185 167 150 133 185 150 145 130 1/C-4/0 152 138 124 111 98 124 111 98 88 1/C-2/0 203 185 167 150 133 203 185 150. 145 M -4/0 152 138 124 111 98 138 124 111 98 M -2/0 97 87 78 70 61 70 63 56 50 M -2AWG 74 67 61 55 (h

61 53 47 41 3/C-4AW.

57 51 46 42 37 42 37 32 28 3/C-6AWG 42 3h 34 30 27 28 23 20 18 3/C-8AWG 31 28 25 22 20 18 25 13 12 3/C-10AWG 24 21 19 17 14 11 9

8 7

3/C-12AWG 116 106 95 86 76 95 86 74 67 2/C-2AWG 67 60 54 49 43 47 41 35 32.

2/C-6AWG 50 45

.40 36 32 32 27 24 21' 2/C-8AWG 38 33 30 27 24 21 17 15 13 2/C-10AWG

, 28 25 22 20 17 13 11 9

8, 2/C-12AWG Nimhar of Cables in a Bendle No. of Cables / Conduit Size 1 2 3 5 8 3

4" 5"

6"

'l 2 3 5 8 1

1 1

2' 1/C-500,8 KV 1 2 3 5 8 1

1 2

3 1/C-350,8 KV 1 2 3 5 8 1

1 2

4 1/C-4/0,8 KV 1 2 3 5 8 1

1 2

2 1/C-750,600 V 1 2 3 5 8 1

1-2 4

1/C-500 N=

1 2 3 5 8 1

2 3

5 1/C-350 1 2 3 5 8 2

4 6

9 1/C-4/0 1 2 3 5 8 3

5 8

12 1/C-2/0 1 2 3 5 8 1

2 4

6 M -4/0 1 2 3 5 8 2

3 5

8 M -2/0 Note 1/C cable are 1 2 3 5 8 4

7 11 16 M -2AWG bundled in groups of 1 2 3 5.8 3

6 10 15 3/C-4AWG-three. Therefore, if

1. 2 "I

5 8 4

8 13-19 3/C-6AWG N=3 then the actual 1 2 3 5 8 7 13 21 30 3/C-8AWG number of cables for 1 2 3 5 8 11 20 32 46-3/C-10AWG 1/C is 3 x 3 a.9 1 2 3 5 8 18 32 51 70 3/C-12AWG 1 2 3 5 8 3

5 9 13 2/C-2AWG 1 2 3 5 8 6 10 16 23 2/C-6ANG

,1 2 3 5 8 8 15 23 34 2/C-8AWG 1 2 3 5 8 13 22 35 -51 2/C-10AWG

,1 2 3 5 8 20 36 56 81, 2/C-12AWG 4

1

ATTACHMENT G3 CPSES UNTT 116345 E2(8) 140 REV 3 Page 3 c(17

'Ampacity Compennom Between Free Air Thermolassed Cables (3/siach pmduct la Free Air: tempare 2*

Humbur of Conductors in a Bundle No. of Cables / Conduit 51Te 1

2 3 5

8 3

4" 5"

6"

'3 6 9 15 24 3

3-3 6'

1/C-500,8 KV 3 6 9 15 24 3

3 6

9 1/C-350,8 KV 3 6 9 15 24 3

3 6-12 1/C-4/0,8 KY w

3 6 9 15 24 3

3 6

6 1/C-750,600 V 3 6 9 15-24 3

3 6

12 1/C-500 nn' =

3 6 9 15 24 3

6 9

15 1/C-350 3 6 9 15 24 6 12 18 27 1/C-4/0 3

6 9 15 24

-9 15 24 36 1/C-2/0 3 6 9 15 24 3

6 12 18 TRI*4/0 3 6 9 15 24 6

9 15 24 TRI-2/0-3 6 9 15 24 12 21 33 48 TRI-2ANG 3 6 9 15 24 9 18 30 45 3/C-4ANG 3 6 9

15. 24 12 24 39 57 3/C-6ANG 3 6 9 15 24 21 39 63 90 3/C-SANG 3 6 9 15 24 33 60 96 138 3/C-10ANG 3 6 9 15 24 54 96 153 219 3/C-12ANG 2 4 6 10 16 6 10 18 26 2/C-2ANG 2 4 6 10 16
12. 20 32 46 2/C-6ANG 2 4 6 10 16 16 30 46 68 2/C-8ANG 2 4 6 10 16 26 44 70 102 2/C-10ANG

,2 4

6 10 16 40 72 112 162, 2/C-12ANG i

(

4

E ATTACHMENT 03 CPSES UNIT 11634512(B) 140 REY 3 Page 4 of 17

  • Ampadry Ccepanoos Between Free A*r Thenaclagged Cables (3/8 inch predoct in Free Air: template 2*

l Aspacities of Iharmolagged Maintained Spaced Tray 4

i Ampacity of thereolag covsred 600 V cable with maintained spacian in a 50 C ambient see Reference 1 (DBD-EE-052) v 4 Reference 18.

Development of Thermolagged Tray ampacities for 8 kV cabit4:

'515' 1/C-500, 8KV Values obtained from Ileference 18, 4

It := -

386 1/C-350, 8KV Table 33 where depth > diameter.

  • er

,265, 1/C-4/0, 8KV IthMS8kv := 0.90 0.69 It where s' O.90'is multiplier for correcting ambient temperature frta 40 C to 50 C (Raf. 18, page 1).

0.69 is thermolog derating factor (Raf. 1).

^

'319.S' IthMS8kV =

239.7

,164.6J

'320' 1/C-500,8 KV 240 1/C-350,8 KV 165 1/C-4/0,8 AV These ampacities were input frean l

391 1/C-750,600 V 8 KV Cable - calculated results of 270 1/C-500 IthMS8kV shown abover 600 V cables - from 199 1/C-350 DBD-EE-052. A value of 999 id entered when 148 1/C-4/0 no aspacities are appropriate because the 100 1/C-2/0 cables would not be installed in a

148 TRI-4/0 maintained spaced trays 100 TRI-2/0 IthMS :=

50 TRI-2AWG 999 3/C-4AWG 999 3/C-6ANG 999 3/C-?AWG i

999 3/C-10AWG 999 3/C-12ANG i

J 69 2/C-2AWG 999 2/C-6AWG 999 2/C-8ANG 999 2/C-10AWG

)

,999, 2/C-12AWG

)

IIthMS

= IthMS i,j i

A.M

= if'IIthMS 5 Iamp

,1, 0' i,j i,j i,j i

A'ITACHMPRT G3 CPSES UNrr 11045-EE(BF140 REY 3 Pass 5 of 17

  • Ampecity Cooperwm Setween Free Air Thersnolaged Cddes (3/Riach prode: in Free Alr: template 2' CNBCK OF CABIZ AMPACITY ADEQUACY WrIH MAINTAINED SPACING IN TRAY

>.upacity Comparison with MG Tray No. of Cables / Conf 61t Size i

1 2 3 5 8 3' 4" 5" 6"

'l 10 0 0 1 1 1 l'

1/C-500,8 KV w

1 1-1 0 0 1 1 1 1 1/C-350,8 KV i

1 1-1 1 0 1 1 1 1 1/C-4/0,4 KV 1-1 0 0 0 1 1 1 1 1/C-750,600 V 1 1 1 0 -0 1 1 1 0 1/C-500 1 1 1 0 1 1 1 1 1/C-350 AMPCHK

..1 1 1 1 0 1 1 0 0 1/C-4/0 4

1 1 1 1 0 1 1 0 0 1/C-2/0 1 1 1 1 0 1 1 1 0 TRI-4/0 NCfrEt 1 1 1 1 0 1 1 1 0

.TRI-3/0 1 - Adequate cable 1 1 1 1 1 1 1 1 1 TRI-2ANG ampacity 0 0 0 0 0 0 0 0 0 3/C-4AWG 0 - Inadequate cable 0 0 0 0 0 0 0 0 0 3/C-6ANG ampacity 0 0 0 0 O_ 0 0 0 0 3/C-8ANG 0 0 0 0 0 0 0 0 0 3/C-10AuG i

0 0 0 0 0 0 0 0 0 3/C-12ANG 1 1 1-1 1 1 1 1 0 2/C-2ANG 0 0 0 0 0 0 0 0 0 2/C-6AWG 0 0 0 0 0 0 0 0 0 2/C-sAwG 0 0 0 0 0 0 0 0 0 2/C-10ANG

{0 0 0 0 0 0 0 0 0,

2/C-12AWG Caldmit t= if 'AMLGK m 1, 'N 0'

1,j i,j

, 1,1 e

CaLimit-

= if 'Iamp a 999,0,CaIlmit i,3 1,3 1,1 1

4

7

\\

ATTACHMENT G3 CFSES UNrf 1 %345-EE(8) 140 REV 3 Pass 6 o( 17

  • Ampecify Compenson Between Free Air hermolegged Cables (3/8 inch predes is Free Alt: template 2* -

L 1

4 4

Limit of Number of Cable ~ in Burdlet Not to Exceed Ampacity of Cable in.

Ns Thermolagged Tray No.-of Cablee / Conduit Size i

1 2 3-5 8-3" 4" Sa 6"

'l 2 0 0 0 1 1 1

2' 1/C-500,8 RV l

1 2

3. 0 0-1 1

2-3 1/C-350,8 KV 1 2 13 5 0 1 1 2

4 1/C-4/0,8 KV 1 2 0 0 0 1 1 2

2 1/C-750,600, V 1 2 3 0 0' 1 1 2

0 1/C-500 l

t*204=it =

1 2 3 5 0

1. 2 3-5 1/C-350 1 2 3 5 0 2 4 0

0 1/C-4/0-1 2 35'O 3 5

-0

-0 1/C-2/0 1 2 3 5 0 1~2 4

0 TRI-4/0 The limit to the 4

1 2 3 5 0 2 3 5

O TRI-2/0 number of cables-2 1 2 3 58 4 7 11 16 TRI-2ANG under a wrap, use<

0 O O O O 0 0

0 3/C-4ANG mawimm num*m in 0.0 0

0.-0 0

0 3'/C-6ANG a given row.-

0 0 0 0 0 0 0 'O O

O 3/C-8ANG.

Three>1/C cables 0 0 0 0 0 0 0 0

0

'3/C-10ANG are considered as 0 0 0 0 0 0.

0 0

0 3/C-12ANG

' one (1) 3/C cable.

1 2 3 5 8 3 5 9

0 2/C-2ANG 0 0 0 0 0 0 0 0

0 2/C-6A*1G 0 0 0 0 0 _0 0

0 0

2/C-SANG l

^

0 0 0 0 0 0 0 0

0 2/C-10ANG

,0 0 0 0-0-0 0

0 0,

2/C-12ANG l-4 l

l 1

1 A

i e

i e

d 1

1 1

1 A1TACHMENT G3 CP$713 UNTT 11636EE(B)-140 REV 3 Pass 7 d 17

  • Ampecity Compennom Beces Free Air Thermotagged Cables (3/Sanch product la Free Air, ternplate 2' Aspecities of Thensolagged Random lay Tray t

d Ampa' city of theunclag

[

'999*

1/C-500,8 KV covered cable with 999 1/C-350,8 KV randce lay (no main-909 1/C-4/0,8 KV tained spacing), see 420 1/C-750,600 V Reference 1 (DBD-EE-052) 290 1/C-500 g

215 1/C-350 130 1/C-4/0 68 1/C-2/0 157 TRI-4/0 106 TRI-2/0 IthRS t=

54 TRI-2AWG 44 3/C-4ANG 32 3/C-6AWG 20 3/C-SANG 12 3/C-10AWG 8

3/C-12AWG 75 2/C-2ANG 36 2/C-6ANG 24 2/C-sam 15 2/C-10ANG

,9, 2/C-12AWG 5

F 4

4 4

a 3

~-,

. _~

1 ATTACHMENT G3 CPSES (JNT!* 116345 EE(B) 140 REV 3 Fagn 8 of 17 -

  • Ampeciry Compenson Between Free Air Thermolegged Cables (3/8ind product in Free Air: template 2*

IIthRS

= IthRS i,j i

AMPC9K

='if IIthRS S Iamp

,1, 0' i

1,1 1,3 1,$

w l

Agacity cerison with Randca 'nt-Tray Ifo. of Cables / Contuit Size 1 2 3 5 8 3" 4" 5" 6"

'O O O O O O O O O'

1/C-500,8 KV 0 0 0 0 0 0 0 0 0 1/C-350,8 KV 0 0 0 0 0 0 0 0 ' O 1/C-4/0,8 KV 1 0 0 0 0 1 1 0 0 1/C-750,600 V I'

1 1 1 0 0 1 1 1 0 1/C-500-AMPCHK =

1 1 1 0 0 1 1 10 1/C-350 l

1 1 1 1 1 1 1 1 1 1/C-4/0 1 1 1 1 1 1 1 1 1

'1/C-2/0 1 1 1 0 0 1 1 0 0 TRI-4/0 1 1 1 1 0 1 1 1 0 TRI-2/0

~ 1 1 i 1 1 1 1 0 TRI-2ANG 1 1 1 1 1 1 1 1 0 3/C-4ANG 4

1 1 1 1 1 1 1 1_0 3/C-6ANG NCrl'E:

3 1 1 1 1,

1 1 1 1 0 3/C-8ANG~

1 - Adequate cable 1 1 1 1 1 1 1 1 1 3/C-10ANG aupacity 1 1 1 11 1 1 1 0 3/C-12ANG 0 - Inadequate cable 1 1 1 1 1 1 1 0 0 2/C-2ANG ampacity.-

- 1 1 1 1 1 1 1 0 0 2/C-6ANG-1 1 1 1 1 1 1 1 0

-2/C-8ANG 1 1 1 1-1 1 1 1 0 2/C-10.WG t1 1 1-1 1 1 1 1 0,

2/C-12ANG CaLimit

= ifTAKPatK n 1, "'N

, O' i,j l,

1,j-

,, 1,j CaLimit

= if'Iaq as 999,0,CaLimit 1,j 1,j 1, j, 1

4 k

4

-o%

w-

.,y,ym..n'v

+wr"~'

r--'

t

~

ATTACHMENT G3 CPSES UhTT 116345-EE(B).140 REV 3 Fe68 9 0(17

  • Ampecity Comparuon Between Free Air Detmolagged Ndan (3/8 inch product in Free Air; tr.mplate 2' Limit of Number of Cable in Burriles Not to Exceed AYapacity of Cable in Rarxicea Iay That1molagged Tray No. of Cables / Cont.iuit Size 1 2 3 5 8 3" 4" 5"

6"

'O O O O O O

O O

O'1/C-500,8 KV O O O O O O

O O

O 1/C-350,8 KV 0 0 0 0 0 0

0 0

0 1/C-4/0,8 KV w

1 0 0 0 0 1

1 0

0 1/C-750 600 V f

1 2 3 0 0 1

1 2

0 1/C-000 CaLimit =

1 2 3 0 0 1

2 3

0 1/C-350 1 2 3 5 8 2

4 6

9 1/C-4/0 1 2 3 5 8 3

5 8 12 1/C-2/0 4

1 2 3 0 0 1

2 0

0 TRI-4/0 The limit to the 1 2 3 5 0 2

3 5

0 TRI-2/0 number of cables 1 2 3 5 8 4

7 11 0 TRI-2ANG under a wrap, use 1 2 3 5 8 3

6 10 0 3/C-4AWU maximum number in 1 2 3 5 8 4

8 13 0 3/C-6AWG a given row.

1 2 3 5 8 7 13 21 0 3/C-8AWG Three 1/C cables 1 2 3 5 8 11 20 32 46 3/C-10AWG-are considared as 1 2 3 5 4 -18 32 51 0 3/C-12AWG one (1) 3/C cable.

1 2 3 5 8 3

5 0

0 2/C-2AWG 1 2 3 5 8 6 10 0

0 2/C-6ANG 1 2 3 5 8 8 15 23 0 2/C-8AWG 1 2 3 5 8 13 22 35 0 2/C-10AWG

,1 2 3 5 8 20 36 56 0,2/C-12AWG i

s i

e G

4 4

4 4

0

ATTACHMENT G3 CPSES UNIT 116345 EE(B) 140 REV 3 Pass 10 of 17

'Ampacity Compennon Between Free Air 7bermolegged Cables (3/8 beck svoduct in Free Alt: template 2* -

7ta following equation produce multipying factors for multiple cables in a conduit

~

j CDimp

= 0 1

CDamp

= if "nn'

< 3.01,1,CDamp l

1,j i,j 1, j, s

CDamp

= if'nn'-

> 3.01,0.8,cDamp i,j i,j 1, j, CDamp

= if'nn'

> 6.01,0.7,CDamp 1,j i,j 1, j,

?

CDamp

= if'nn'

> 24.01,0.6,CDamp i,j 1,3 1, j, CDamp

= if'nn'

> 42.1,0.5,CDaup 1,j 1,j 1, j, i

i I

Condelt Ampacity Multiplying Factors For More than 3 conductors in a Conduit NEC liallti.

plying factor No. of Cables / Conduit Size for multiple-1 2

3 5

8 3"

4" 5"

6" conductors in conduit J

'l 0.8 0.7 0.7 0.7 1

1 1 0. 8' 1/C-500,8'KV 1

0.8 0.7

.0.7 0.7 1

1 0.8 0.7 1/C-350,8 KV 1

0.8 0.7 0.7 0.7.

1 1

0.8 0.7

.1/C-4/0,8 KV l

0.8 0.7 0.7 0.7 1

1 0.8 0.0 1/C-750,600 V i

1 0.8 0.7 0.7 0.7 1

1 0.8 0.7 1/C-500 CDamp =

1 0.8 0.7 0.7 0.7 1

0.8 0.7-0.7 1/C-350 l

1 0.s 0.7 0.7 0.7 0.8 0.7 0.7 0.6 1/C-4/0-1 0.4 0.7 0.7 0.7 0.7 0.7 0.7 0.6 1/C-2/0 1

0.8 0.7 0 -. 7 0.7

-1 0.8

.0.7 0.7 TRI-4/0 1

0.8 0.7 0.7 0.7 0.8 0.7 0.7 0.7 TRI-2/0-1 0.8 0.7 0.7 0.7 0.7 0.7 0.6 0.5 7RI-2AWG 1

.0.8 0.7 0.7 0.7 0.7 0.7 0.6 0.5 3/C-4AWG 1

1 0.8 0.7 0.7

.0.7 0.7 0.7 0.6 0.5 3/C-6AWG 1

0.8 0.7 0.7 0.7 0.7 0.6. 0.5- 0.5 3/C-BAWG 1

0.8 0.7 0.7 0.7- 0.6 0.5 0.5 0.5 3/C-10AWG 1

0.8 0.7.

0.7 0.7 0.5 0.5 0.5 0.5 3/C-12AWG 1

0.8 0.8 0.7 0.7 0.8 0.7- 0.7 0.6 2/C-2AWG 1

0.8 0.8 0.7 0.7 0.7 0.7

.0.6 0.5 2/C-6AWG-1 0.8 0.8 0.7 0.7 0.7 0.6 0.5 0.5 2/C-8AWG-1 0.8 0.8 0.7 0.7 0.6 0.5 0.5 0.5 2/C-10AWG

,1 0.8 -0.8 0.7 0.7 0.6 0.5 0.5

0. 5, 2/C-12AWG

2

- ATTACHMT2fT G3 CPSES UNIT 11MEE(B)144 REV 3 Pass 11 of 17 -

'Ampacity Compensos Seeseen Free Air Thermolasped Canes (3/8 inch product la Free Ain templete 2' t

Aupacities of Cable in Thomolagged conduit,(Box Design) 3 4

Reference 1 (DBD-EE-052)

~3 3 8' 1/C-500,8 KV aspecity for three conductors 277 1/C-350,8 KV in conduit, enclosed in 205 1/C-4/0,8 KV Tharinolag 330-660, Box Design 428 1/C-750,600 V 341 1/C-500 275 1/C-350 199 1/C-4/0 146 1/C-2/0 i

199 TRI-4/0 146 TRI-2/0 IthCD :=

93 TRI-2AWG 65 3/C-4AM3 49 3/C-6AWG 37 3/C-8AWG 26 3/C-10AWG 20 3/C-12ANG 8a 2/C-2AWG 49 2/C-6AWG 37 2/C-8AWG 26 2/C-10AWG

, 2 0, 2/C-12AWG

)

4 M

k 2

ATTACHMDff 03 CPSES UNIT 11945EE(B) 140 REV 3 Page 12 of 17 Ampaaty Compsrs;s Between Froa Air Thev.nolagged Cables (3/81ach produs la free Air: template 2' 3

IIthCD

= CDamp IthCD 1,j i,j i

Thermolaggal Ampacities in Cor.duit(Box Design)

Ho. of Cables / Corduit biza 1

2 3

5 8

3a 4"

5" 6"

w 338 270 237 237 237 338 338 338 270' 1/C-500,8 KV 277 222 194 194 194 277 277 222 19A 1/C-350,8 KV 205 164 144 144 144 205 205 164 144 1/C-4/0,8 KV 428 342 300 300 300 424 428 342 347 1/C-750,600 V 341 273 239 239 239.141 341 272 23Di 1/C-500 IIthCD =

275 220 193 193 193 275 220 193 193 1/C-350 L

199 159 139 139 239 159 139 139 119 1/C-4/0 346 117 102 102 102 102 102 102 84 1/C-2/0 t

199 159 139 139 139 199 159 139 139' 'rRT-4/0 146 117 102 102 102 117 102 102 102 TRI-2/0 93 74 65 65 65 65 65 56 47 TRI-18.KG 6ti 52 46 46 46 46 46 39 33 3/C-4tJdG 49 39 34 34 34 34 34 29 25 3/C-6AWG 37 30 26 26 26 26 22 19 19 3/C-8AWG 26 21 18 18 18 16 13 13 13 3/C-10AWG 20 16 14 14 14 10 10 10 10 3/C-12AWG

\\

88 70 70 62 62 70 62 62 53 2/C-2AWG

/

49 39 39 34 34 34 34 29 25 2/C-6AWG 37 30 30 26 26 26 22 19 19 2/C-BANG 26 21 21 18 18 16 13 13 13 2/C-10AWG

, 20 16 16 14 11 12 10 10 1(, 2/C-11AWG n.

AMPCHK

= if'IIthCD 5 Iamp

,1, 0'l Ampacity Ccapariuon i,j i,j 1,j j

equation

?

l

(

ATTAODdENT G3 CP$ES UNIT 116345 EE'BF140 REV 3 Page U of 17

'Ampecity Comparnos Benses ?res Air Thermolaspd Cables (3/Aiach prodwa la Free Air: template 2' Ampacit'/ Compari. van with Thermolagged conduit (Box Design)

No. of cables / Conduit size" 1 2 3 5 3 4 4" 5" 6" "1

1 1 1 1 1 1 1

l' 1/C-5'00,8 KV 1 1 1 1

1 1 1 1 1 1/C-350,8 KV

,l 1 1 1 1 1 1 1 1 1 1/C-4/0,8 KV 1/ -750,600 V C

4 1

1 1 1 0 1 1 1 1 i

1 1 1 1 0 1 1 1 1

1/C-500 f

AMPCHX =

1 1 1 1 0.1 1 1 1

1/C-350 w

l 1 1 1 1 0 1 1 1 1 1/C-4/0 1 1 1 1 0 1 1 0 1 3/C-2/0 1 1 1 1 0 1 1 1 1 TRI-4/0 l

1 1 1 1 0 1 1 1 0 TRI-2/0 1 1 1 1 0 1 0 1 1 TRI-2AM i

1 1 1 1 1 1 1 1,

1 3/C-4AW3 1 1 1

1 1 1 1 1 1 3/C-6AM

]

1 1 1 1 1 1 7.

1 0 3/C-BAM NOTE 1 1 1 1 1 3 1 1 0 3/c-10AM 1 - Adequate cable i

1 1 1 1 1 1 0 0 0 3/C-12AW ampacity 1

1 1 1 3 1 1 1 1 1 2/C-2AWG 0 - Inaderpate cable 1 1 1 1 1 1 1 1 1 2/C-6AM ampacity 1 1 1 1 1 1 1 1 1 2/C-SANG 1 1 1 1 1 1 1 1 1 2/C-10ANG 1 1 1 1 1.1 1 0 0,

2/C-12A!X3 1

1 6

i l

CaLimit

= if'AMPWK w 1, 'N

', 0' i,j 1,j

,i,j, CaLimit

= if'Iamp

= 999,0,ChLimit 1

l 1,3 1,3 1,33 b

4 t

I d

l a

i i

NITACHMENT G3 OfES UNIT 11045 EF43).140 REV 3 Pass 14 of 17

'Ampnary Companai Betwees Free Air Thermolas8ed Cabka (3/8 inch produa in Frw Ain temp!ste 2' j

\\

1.init of Number of Cable in Burdlet Not to Exceed Ampacity of Cable in -

i Thermolagged Conduit (Box Design) f 4

No. of Cables / Conduit Size 1 2 3 5 8

3" 4"

5" 6"

l w

'l 2 3 5 8 1

1 1

29 1/C-500,8 KV l

1 2 3 5 8 1

1 2

3 1/C-350,8 KV l

1 2 3 5 8 1

1 2

4 1/C-4/0,8 KV 4

1 2 3 5 0 1

1 2

2 1/C-750,600 V 1 2 3 5 0 1

1 2

4 1/C-500 CaLimit =

1 2 3 5 0 1

2 3

5 1/C-350 1 2 3 5 0 2

4 6

9 1/C-4/0 1 2 3 3 C 3

5 0 12, 1/C-2/0 a

J 1 2 3 5 0 1

2 4

6 TRI-4/0 The limit to the 1 2 3 5 0 2

3 5

0 TRI-2/0 number of cables 1 3 3 5 0 4

0 11 16 TRI-2ANG under a wrap, use 1 2 3 5 8 3

6 10 15 3/C-4AWG maximum number in 1 2 3 5 8 4

4 13 19 3/C-6AWG a given row.

l 1 2 3 5 8 7 13 21 0

3/C-SANG Three 1/C cables 3

2 3 5 8 11 20 32 0

3/C-10ANG are considetwi as 12 3

5 8 18 0

0 0

.3/C-12ANG one (1) 3/C cable.

1 2 3

5-8 3

5 9 13 2/C-2ANG 1 2 3 5 8 6 10 16 23 2/C-6ANG 1 2 3 5 8 8 15 23 34 2/C-BAWG l

1 2 3 5 0 13 22 35 51 2/C-10AWG

,1 2

3 5 8 20 35 0

0, 2/C-12AWG i

i 9

1 h

)

i i

ATTAC104ENT 03 CPSES UNTT 116345 EE(B).140 REV 3 Pap 15 of 17

)

'Ampnary Camparisco Between Free Air neradespd Cables (3/8 tack product la Fru Alr: template 2*

l Ampacities of Cable in Thannolagged Conduit (shell Design) 4 t

5 i

I t

0.925 Reference i D80-EE-052, Rev 3 J

l IIthCDehell :=

- IIthCD page 22,sectLon 4.1.2.6 g.) provides O.8 relative factors for shell vs bcz design.

Thermolagged Agacities in conduit (shell Design)

~~

~

No. of Cables / Conduit size 1

2 3

5 8

3" 4"

5" 6"

"391 313 274 274 274 391 391 391 313' 1/C-500,8 KV 320 254 224 224 224 320 320 256 224 1/C-353,8 KV 237 190 166 166 166 237 237 190 166 1/C-4/0,8 KV 495 396 346 346 346 495 495 396 396 1/C-750,600 V 394 315 276. 276 276 394 394 315 276 1/C-500 IIthCDehall =

318 254 223 223 223 318 354 223 223 1/C-350 230 184 161 161 161 184 161 161 138 1/C-4/0 4

169 135 118 118 118 118 118 118 101 1/C-2/0 230 184 161 161 161 230 184 161 161 TRI-4/0 4

169 135 118 lit 113 135 118 118 114 11tI-2/0 108 86 75 75 75 75 75 65 54 TRI-2AWG 75 60 53 53 53 53 53 45 34 3/C-4AWG-57 45 40 40 40 40 40 34 28 3/C-6AM 43 34 30 30 30 30 26 21 21 3/C-SANG i

30 24 21 21 21 18-15 15 15 3/C-10ANG 23 19 16 16 16 12 12 13 12 3/C-1MWG 102 81 41 71 71 81 71 71 61 2/C-2AWG 57 45 45 40 40 40 40 34 28 2/C-6ANG 43 34 34 30 30 30 26 21 21 2/C-8AWG i

30 24 24 21 21 18 15 15 15 2/C-10AWG

, 23 19 19 16 16 14 12 12 12j 2/C-12AWG

..,..c m

,._.,..,_y

,.,e

,,.r.

...,.r.w_,.

l 1

ATTAC}D4ENT 03 CPSES UNTT 116345 EE(B) 140 REV 3 Fage 16 of 17

'Ampu.iry Compennon Between Free Air nonsolagend Canes (3/8 inch prodes la Free Alr: template 2' j

3 3

i e j,1,0' j

AMPC2tX.

t= if'IIthCDehell 5 ! amp 1,3 1,3 i

~

i

  • et 4

Ampacity comparison with thennolagrted Conduit (shell Design)

I No. of Cables / Conduit $1se j

1 2 3 5 8 3" 4" 5" 6" l

'O 1 1 1 0 0 0 0 l'

1/C-500,8 KV i

0 1 1 1 0 0 0 1 1 1/C-350,8 KV 0 1 1 1 0 0 0 1 1 1/C-4/0,8 K7 i

0 1 1 0 0 0 0 1 1 1/C-750,600 V' O 1 1 0 0 0 0 1 0 1/C-500 AMPCHK =

0 1 1 0 0 0 1 1 0 1/C-350 0 1 1 0 0 1 0 0 0 1/C-4/0 1

0 1 1 0 0 1 0 0 0 1/C-2/0 O' 1 1 0 0 0 1 0 0 TRI-4/0 1

0 1 1 0 0 1 1 0 0 TRI-2/0 0 1 1 0 0 0 0 0 0 TRI-2ANG NOTE:

5 l

0 1 1 -1 0 1 1 1 1 3/C-4ANG 1 - Adequate cable 1 1 1 1 0 1 0 0 0 3/C-6ANG ampacity 0 1 1 1 0 0 0 0 0 3/C-8ANG 0 - Inadequate cable 1 1

'l 1 0 0 0 0 0 3/Ca10ANG aupacity 1 1 1 1 0 0 0 0 0 3/C-12ANG j

1 1 1 1

1. 1 1 1 1 2/C-2 mfg 1 1 1-1 1 1 1 1 1 2/C-6ANG 1 1 1 1 1 1 1 1 0 3/C-8ANG 1 1 1 1 1 1 1 0 0 2/C-10ANG j

,1

1. 1 1 1- 0 0 0 0,

2/C-12ANG CaLir.it la if 'AMPCHK

= 1, 'N -

', O' isi i,j

. i,3.

i,j]j C1 Limit t= if "Imap a 999,0,Catdmit 1,j i,j i

s

~.

j ATTAC1BGD(T 03 CPSRS UNTT 116345 EE(B).140 REV 3 Pass 17 of 17

'Ampecity comparece Between Free Air 11wsaolagged Caoles (3/8 lack product la Free Air: template 2' l

Li.ait of Number of Cable in Bundlet Not to Excmd Anpacity of Cable in thermolagged Conduit (Shall Design) 3 No. of Cables / Conduit size L 2 3 5 8 3

4" 5"

6" 4

I

'O 2 3 5 0

0 0

0 2'

1/C-500,8 KV 0 2 3 5 0 0

0 2

3 1/C-350,8 KV 0 2 3 5 0 0

0 2

4 1/C-4/0,8 KV O 2 3 0 0 0

0 2

2 1/C-750,600 V O 2 3 0 0 0

0 2

0 1/C-500

.g j

cafimit =

0 2 3 0 0 0

2 3

0 1/C-350 i

0 2 3 0 0 2

0 0

0 1/C-4/0 l

0 2 3 0 0 3

0 0

0 1/C-2/0 0 2 3 0 0 0

2 0

0 TRI-4/0 The linit to the j

0 2 3 0 0 2

3 0

0 TRI-2/0 nuabar of cables 0 2 3 0 0 0

0 0

0 TRI-2ANG under a wrap, use O 2 3 5 0 3

6 10 15 3/C-4ANG maximum number in 1 2 3 5 0 4

0 0

0 3/C-6ANG a given rw.

0 2 3 5 0 0

0 0

0 3/C-SANG Three 1/C cables I

j 1 2 3 5 0 0

0 0

0 3/C-10 mfg tre conridered as 1 2 3 5 0 0

0 0

0 3/C-12AWG one- (1) 3/C cable.

4 1 2 3 5 8 3

3 9

13 2/C-2ANG 1 2 3 5 8

-6 10 16 23 2/C-6ANG 1 2 3 5 8 8 15 23 0

2/C-SANG 1 2 3 5 8 13 22 0

0 2/C-10AWG

,1 2 3 5 8 0

0 0

0, 2/C-12ANG 6

=

40 IIthCDahall

,Iasp j

(15,j)

(15,j) m %._..

j i

10 o

N 50 (15,j)

I J

,,,e

-.r-e a-a r m--

w-

+

l ATTACHMFNr H CPSES UNrr 116345 EE(B).140 REV 3 Pats 1 of 5

'Compenson of Ampeana for 3/16' vs 3/8" %ermo&ag product

  • t i

ee i

PRNPRECISION := 8 1

(

IampH tm READPR4"IampN Developed in At;tachment G2

)

PfD.

Iamp := READPRN'Iaup Devel.: ped in Attachasnt B2 Prn,

i Cable ampacity fftm Attachment B2 4

5/16 inch product i

l 1

2 3

5 3"

4" 5"

G" 369.35 348.2 316.24 288.44 369.35 369.35 369.35 3 4 U. 2" 299.07 281.25 255.4 233.13 299.07 299.07 281.15 255.4 223 208.89 139.85 173.18 223 223 208.89 171.92 444.2 416 375.43 341.06 444.2 444.2 41G 416 350.32 325.87 293.8 265.3 350.32 350.32 325.87 264.20 Iamp =

231.59 260.76 235.04 212.77 281.59 260.76 235.04 312.77 i

203.9 186.87 168.1 151.58 186.87 151.12 146.83 131.45 152.51 138.96 124.97 112.49 124.97 112.49 99.48 89.38 203.9 166.87 163.1 151.58 203.9 186.87 151.12 146.83 152.51 138.76 124.97 133.49 138.96 124.97 112.49 99.48 96.98 81.14 78.2 70.05 70.28 63.45 56.75 50.31 74.63 67.64 61.08 55.02 61.08 53.22 47.01 41.21 56.9 51.4 46.43 41.79 41.96 36.S5 32.64 28.55 42.43 37.89 34.13 30.58 27.74 23.68 20.14 18.21 31.14 28.1 25.28 22.58 18.19 15.1 13.11 11.77 23.66 20.71 18.61 16.57 11.3 3.5 8.24 7.4 116.fc 106.15 95.99 86.62 95.99 96.62 75.1 68.03 67.03 60.37 54.54 49.06 47.41 41.78 35.48 32.75 50.35 44.99 40.6 3G.41 32.1' 26.98 24.08 21.16 37.8 33.46 30.15 26.96 20.77 17.6 15.26 13.64 28.3 24.77 22.28 19.85 13.15 10.93 9.56 8.55, 4

....~----m----,,

,._,,,,i,,,--

,.nw

4 ATrAccepir H CE5ES UNTT 116M$4E(BF1m %ItV5 Iaili2 al s camperuna of Ampemmes for 5/16* w 3/8 Thermala8 ProdM8" i

f cable ity from Attach =arit G2 3/8 product j

1 2

3 5

8 3"

4" 5"

6" i

I

'366.6 344.2 312.3 284.8 254.9 366.6 366.6 366.6 344.2' b-297 278.1 --252.4 230 205.7 297 297 278.1 252.4 223.7 206.8 187.8 171 152.9 221.7 221.7 206.8 170 l

440.8 411 370.7 336.2 299.3-440.8 440.8 411 411 348 322.3 :290.4 262.8 233.5 348 348 322.3 261.2 IampN =

279.9 254.2 232.6 210.2 186.5 279.9-258.2 232.6 210.2 3

203 185.3 -164.4 150 132.6 185.3 149.8 145.2 129.8 151.9 137.9 124 111.4 98.4 124 -111.4 98.4 40.3 203 185.3 164.4 150 132.6 203 185.3 149.8 145.2 1

151.9 137.9 124 111.4 98.4 137.9

-124 111.4 98.4 2

96.7 86.7 77.7 69.5 61.1 69.8~

62.9 56.2 49.7

)

[

74.4 67.3 60.7 54.4 48.3 60.7 52.8 46.5 40.8 56.4 51.2 46.2 41.5 36.7 41.7 36.7 32.3 28.2 1

42.3 37.7 34 30.4 26.8 27.6-23.5 19.9 18 31.7 28 25.2 22.5 19.7 18.1 15 13 11.6 l_

23.6 20.7 18.4 16.5 14.4 11.2 9.4 8.2

. 7.3 l

1 116.3 105.5 95.4 86 76.1 95.4 86 74.4 67.3 64.9 60.1 54.3 48.8 43 47.1 41.4 35.1 32.4 l

50.3 44.8 40.4 34.2 31.9 31.9 24.8 23.8 20.9 37.7 33.4 30.1 26.8 23.6 20.6 17.5 15.1 13.5 l

[28.3 24.7 22.2 19.8 17.3 13.1 10.8

' 9. 5 8. 5, i

I 1

i Notes that the above matrix has an extra column,i.e' data on 8 cables in a bundle. 7ttis column will be resswed-tor comparison purposes.

1-

<1>

<1)

2>

<2>

<3> '

' <3>

j InspM'

= InspN IampM'
= IampM IampM' t= IampN i

I

44>

<5>-

<6>

<6>

<7>

l j_

IampW'

= IampN IampN'
= IampH

-IampM'

= IampN E

<7>

<8>

-

<9>

1ampN'-

= InspN IampW8
= IampN l

I h

{-

't a

l' Y

i

,-ve.,m->

,e,,

.r..e-.+-+,r.,i.r-ar*-s*--**'+--

--w~+,w-*i"--+4-*

+ - ' ' '

vet--v+

r*E--va-v--~w-a

  • -,*ev"'e's"=*-**'vr-www==*-=~--*---weur'*w*'s 4-**c-wv'**W**'**=A*-*--='***'*-

. = _

a f

l ATTA*2DdDfT H CPSES UN!T 116345.EE('d) 140 REY 3 Fats 3 d $

'Cosspensna of Anspeanes (tr $/19 vs 3/3' Thenmolag pro 4es*

l j

1 2

3 5

3" 4"

5" 6"

i

'366.6 344.2 312.3 284.8 366'.6 366.6 366.6 344.2'

~

297 278.1 252.4 230 297 297 278.1 252.4 221.7 206.8 187.8 171 221.7 221.7 206.8 170 440.8 411 370.7 33G.2 440.8 440.8 411 411 348 322.3 290.4 262.8 348 348 322.3 261.2 279.9 256.2 232.6 210.2 279.9 258.2 232.6 210.2 IampM8

=

203 185.3 166.6 150 185.3 149.8 145.2 129.8 i

151.9 137.9 124 111.4 124 111.4 98.4 88.3 203 185.3 164.6 150 203 185.3 149.8 145.2 i

i 151.9 137.9 124 - 111.4 137.9 1%4 111.4 98.4 96.7 86.7 77.7 69.5 69.8 6".9 56.2 49.7 l

74.4 67.3 60.7 54.6 60.7 52.8 46.5 40.8 56.8 51.2 46.2 41.5 41.7 36.7 32.3 28.2 i

42.3 37.7 34 30.4 27.6 23.5 19.9 18 31.7 28 25.2 23.5 18.1 15 13 11.6 23.6 20.7 18.6 13.5 1 1. 74 9.4 8.2 7.3 116.3 105.5 95.4 86 95.4 86 74.4 67.3 66.9 60.1 54.3 48.8 47.1 41.4

?5.1 32.4 4

50.3 44.8 40.4 36.2 31.9 26.8 23.8 20.9 4

37.7 33.4 30.1 26.8

'10. 6 17.5 15.1 13.5

,28.3 24.7 22.2 19.8 13.1 10.8 9.5 8. 5, i

I 1

w d

4 e

a m,

m,,,ea e

v.e.

.,v, e

.mw sen~

l 1

i ATTACiOGNT H CPSES UNIT 116MS IE(B) 140 REY 3 Peas 4 of 5 1

  • Coopennon of Ampeaues for 5/16' vs 3/r Thenecias prodea' ORIGIN m 1 j

1 i

I J := 1. 8 I : = 1. 21 i

l Iasp

- IampH' I,J I,J i

DIFF%

t=

~100 I,J Iamp i

I,J

_j i

Ampacity - in 4 - Reduction for Use of 3/8 inch i

thattolag vs 5/16 inch Thermolag l

I No. of Cables /

Conduit $1se 1

2 3

5 3"

4" 5"

6" l

'O.74 1.16 1.23 1.39 0.74 0.74 0.74 1.16' 1/C-500, 8kV 6

0.68 1.09 1.16 1.32 0.68 0.68 1.09 1.16 1/C-350, 8kV 0.6 1 1.07 1.24 0.6 0.6 1

1.1 1/C-4/0, 8 kV 0.76 1.2 1.26 1.41 0.76 0.76 1.2 1,2 1/C-750, 600 V O.66 1.09 1.14 1.3 0.66 0.66 1.09 1.15 1/C-500 DIFF% =

0.54 1 1.06 1.22 0.58 1 1.06 1.22 1/C-350 0.47 0.85 0.9 1.05 0.85 0.9 1.13 1.26 1/C-4/O 0.4 0.74 0.8 0.95 0.8 0.95 1.09 1.24 1/C-2/O 0.47 0.85 0.9 1.05 0.47 0.85 0.9 1.13 TRI-4/0 0.4 0.74 0.8 0.95 0.74 0.8 0.95 1.09 TRI-2/O O.29 0.57 0.01 0.74 0.61 0.81 1 1.11 TRI-2 AWG i

0.27 0.55 0.6 0.73 0.6 0.8 0.99 1.11 3/C-4 AWG 0.24 0.49 0.54 0.66 0.54 0.79 0.98 1.08 3/C-6:

0.19 0.4 0.44 0.55 0.61 0.84 0.97 1.1 3/C-8 i

0.16 0.33 0.36 0.45 0.66 0.84 0.99 1.11 3/C-10 l

0.12 0.2C 0.29 0.36 0.66 0.84 1 1.11 3/C-12 2

0.29 0.57 0.62 0.76 0.62 0.76 0.96 1.09 2/C-2 0.21 0.44 0.48 0.5 0.66 0.84 0.96 1.13 2/C 0.18 0.37 0.41.0.51-0.62 0.84 1 1.11 2/C-8 0.14-0.3- 0.33 0.43 0.68 0.43.0.98 1.11 2/C-10

,0.11 0.24 0.27 0.34 0.67 0.84 0.98 1.11, 2/C-12 min (UIFF%) = 0.115 MINDE1M % DIFFERENCE max (DIFF%) = 1.414 MAXD4UM % DIFFERENCE d

)

i ATTAODENT H CPSES IJN!T 11945 EE(B).140 REV 3 Pass 5 of 5

'Compenam of Aepeados fer 3/16' n 3/r hersnelag prodest

,l i

For Reviewer's ability to check the above difference calculation, the two ampacity matrix's 8th colmens are shown below to 3 significant digits a

1 4

1

'344.163'

'348.199' 8

252.429 255.4 170.039 171.922 411.014 415 999

<8) 261.239

<8>

264.283 212.766 210.181 Insp

=

IampH'

=

129.794 131.448 88.269

89. 8 1

145.176 146.83 98.403 99.485 49.747 50.304 40.757 41.212 28.246 28.553 18.011 18.211 11.637 11.768 7.314 7.394,

67.284 68.028 32.38 32.748 20.923 21.159 13.487 13.638 8.459, 8.553, a

4 e

[

NITACHMENT I OSES UNIT 11045 EE(B).1CD REV 3 Page 1 of a

'I.etter from TSI 11/17/89' 7

l l

17 November 1989 w maan p a w Joe

...Mr. John Wewmnlak A@AME MARGINALQUALrry j

Im P'31 Co'"'e. uo'n gygy _49 g I)ATg kva Aa FN Reed %

5 Miles Noethwist of Gen Rose Gen Roos, Texas 76043 I

Reference:

Texas Utilities Purchaw Order No. 665-71871 i

Dear Mr. Wawrrenlak The fonowing is the information rapeced regarding certain properties of the THERMO LAG K10 460 Ylext.stanket Wrmal Barrier Mv.arial being supplied to j

Texas Utilities under the above referenced Pumhase Order.

1. Max 1rnum Spedfle Weight When Delivered 2.11hs/Pt2
2. A Wolght Reduction at equilibrium of et least 75 is expected.
3. Mtnlmum Wright based on 0.2.kr thkkness L4 the/Ft2
4. Mastmum Average Thkknese 3/f"
5. Maximum Individual nicknew not to exewd 2% of the total surface area 7/M"
6. Minimum Individual Thkkness not to exceed 1% of the total surfxe arn 0.2W 11 you have any addittoral gucstiot4 do not he61 tate to contact ms.

Y

truly, r

-. W

_ --a

.ubin Feldman President RF/ meg THtRMAL SCitNCE, lHC.

  • 2200 CAS$4N5 08L
  • ST. toute. MO 43034 * (314) 34e 1233 Telez: Domeek 44 2M4
  • Owwon 20t901
  • hiocopW(Sid) $491201

n k

E Calc. Number EEB-140 i

Rev. Namber 4 Page Number 1 of 14 l

1 l

ATTACHMENT 982 i

CABLE AMPACITY OF THERMOLAGGED CABLE IN TREE AIR:

TEMPIA'f E 2 (FOR THREE LAYERS OF THERMOLAG ON. BUNDLES LEPS THAN THREE INCHES)

J t

5 I

i 4

h

?

i 4

t S

E 4

-w

~

,.n,,,,w<.

-.,.w-,

.y

- w

,,,. - -,,-, +.,

.~.

)

Calc. Number EEB-110 4

Rev. Number 4 Page Number 2 of 14

]

4 ATTACHMENT BB2 CABLE AMPACITY OF THERMOLAOGED CABLE IN FREE AIR TEMPMTE 2 (FOR THREE LAYERS OF THERMOLAG ON BUNDLES LESS TtfAN THREE INCHES)

This templates calculates the thermal resistance terms and cable ampacity. The cable ampacity is input to templato Attachment BB3 for comparison with ampacity of the cable in adjacent racways sections.

N I.

CE LE INPUT DATA 2

PRNPRECISION := 8 File:-cable.prn was produced by CABLE := READPPJi ' cable template-Attaqchment A and is

~

L prn,

documented separately.

CRIGIN m 1 defines the upper corner of a matrix as 1,1 j := 1. 7 i := 1. 21 n'

= 0 Cdiam
= 0 i

1,j 1,j Matrix CABLE is comprised of the following indicated columns.

i

<1>

<2>

<3>-

<4>

Rdc25 := CABLE Yc := CABLE Dc := CABLE Ac := CABLE 4

<1>

<5>

(6)

<7)

CABLE It := CABLE Jt := CABLE pi := CABLE n'

=

<9)

<10>

<1>

<11>

pj := CABLE Diam 1C := CABLE Cdiam

= CABLE i

Where:

i Rdc25 Conductor dc resistance at 25 deg C, C/ft Yc conductor proximity / skin effect Dc conductor diameter, in.

E Ac Conductor cross-sectional area, 'sq tm n'

Number of conductors in cable It Insulation thii:kness, mils Jt Overall jacket thickness, mils ei Insulation tnermal resistivity, C-cm/w ej Jacket thermal resistivity, C-cm/w Diam 1C Diameter of 1/c cable or 1 cable of multi-cnnductor cable, in.

Cdiam overall diameter of cable, in.

I f

.,r_.

- - -r

,w.-y v

s e

Calc. Number EED-140 Rev. Number 4 l

Page Humbor 3 of 14 CABLE PHYSICAL PROPERTIES i

Rdc25 Dc Ac It Jt Diam 1C Cdiam j

n/ft Ye in.

mm2 n'

mil mil pi pj inch inch 1

l, ww

-5 2.22 10 0.06 0.813 253.4 1

280 0 500 500 1.373 2.95195

-5 3.2 10 0.03 0.681 177.1 1

280 0 500 500 1.241 2.66815

-5 l

CABLE =

5.25 10 0.01 0.528 107.2 1

280 0

500 500 1.088 2.3392

-5 1

1.48 10 0.13 0.998 380 1

145 0

500 500 1.288 2.7692

-5 2.22 10 0.06 0.813 253.4 1

130 0 500 500 1.073 2.30695

-5 3.2 10 0.03 0.681 177.3 1

1.30 0

500 500 0.941 2.02315

-5 5.25 10 0.01 0.528 107.2 1

100 0

500 500 0.728 1.5654

-5 I

6.43 10 0 0.418 67.43 1

100 0 500 500 0.C18 1.3287

-5 5.25 10 0.01 0.528 107.2 3

100 0 500 500 0.728 1.5E52

-5 i

8.43 10 0 0.418 67.43 3

100 0

500 S00 0.618 1.3287

-4 1.69 10 0 0.292 33.62 3

75 0

500 500 0.442 0.9503

.4 2.69 10 0 0.232 21.15 3 75 80 500 500 0.382 0.9813

-4 4.27 10 0 0.104 13.3 3

75 80 500 500 0.33A 0.8781

-4 6.79 10 0 0.146 8.37 3 60 60 500 500 0.266 0.6919

)

0.00108 0 0.116 5.25 3 45 60 S00 503 0.206 0.5629 O.00172 0 0.092 3.31 3 30 60 500 500 0.153 0.4468

-4 1.69 10 0 0.292 33.62 2

75 80 500 500 0.442 1.044

-4 4.27 10 0 0.184 13.3 2

75 60 500 000 0.034 0.788

-4 6.79 10 0 0.146 8.37 2

60 -60 500 500 0.266-0.602 O.00108 0 0.116 5.25 2 45 60 500 500 0.206 0.532 0.00172 0 0.092 3.31 2 30 60 500 500 'O.152 0.424 The above matrix is manually carpared with the matrix CABII of Attar.h-me.nt. A to demonstrate successful data transfer.

4 N

~,

e

,v.,

ev-,,

1 l

4 Calc. Number EEB 140 Rev. Number 4 Page Number 4 of 14 i

N, nnn', and CCdiam were developed in template-Attachment B1 i

i it := READPRN'N nnn' := READPRN'tM1 i

. Prn,

pm,

1 CCdiam = READPRN'CCdiam l

prn,

l No. of cables in a Bundle No. of cables / Conduit Size 1 2 3

5 3 " 4 " 5 " 6"

'l 2

3 5

1 1

1 2'

1 2 3

5 1

1 2

3 j

1 2 3

5 1

1 2

4 1 2 3 5

1 1

2 2

4 1 2 3

5 1

1 2

4 N=

1 2 3

5 1

2 3

5 1 2 3

5 2

4 6

9 1 2 3

5 3

5 8

12 1 2 3

5 1

2 4

6 1 2 3

5 2

3 5

8 s

1 2 3

5 4

7 11 16 l

1 2 3' S 3

6 10 15 1 2 3

5 4

8 13 19 1 2 3

5 7

13 21 30 1 2 3 5

11 20 32 46 1 2 3

5 18 32 51 73 1 2 3 5

3 5

9 13 1

2 3

5 6 10 16 23 1 2 3

5

'8 15 23 34 1 2 3

5 13 22 35 51

,1 2 3 5 20 36 56 81, 4

i

Calc. Number EEB-140 P.ev, Number 4 Equivalent No. of conductora in a Bundle No. of cab [is / Conduit Size 1 2 3

5 3"

4" 5"

6"

'3 6 7.92 11.76 3

3 3

6' 3 6 7.92 11.76 3

3 6

7.92 3 6 7.92 11.76 3

3 6

9.84 3

6 7.92 11.76 3

3 6

6 3

6 7.92 11.76 3

3 6

9.84 nnn' =

3 6 7.92 11.76 3

6 7.92 11.76 3 6 7.92 11.76 6

9.84 13.68 20.06 3-6 7.92 11.76 7.92 11.76 17.83 26.75 3

6 7.92 11.76 3

6 9.84 13.68 3 6 7.92 11.76 6

7.92 11.76 17.83 3 6 7.92 11.76 9.84 15.6 24.52 35.66 3 6 7.92 11.76 7.92 13.68 22.29 33.44 3

6 7.92 11.76 9.84 17.83 28.98 22.35 3 6 7.92 11.76 15.6 28.98 46.81 66.87 3 6 7.92 11.76 24.52 44.58 71.33 102.53 3

6 7.92 11.76 40.22 71.33 113.68 162.72 2

4 5.28 7.84 5.28 7.84 13.37 19.32 2 4 5.28 7.84 9.12 14.86 23.78 34.18 2 4 5.28 7.84 11.55 2 2. 2')

34.18 50.52 2

4 5.28 7.84 19.32 32.69 52.01 75.79

,2 4

5.28 7.84 29.72 53.5 83.22 120.37, Diameter of cable Bundle No. of cables / Conduit Size 1

2 3

5 3"

4" 5"

6"

'2.95 5.9 5.35 7.97 2.95 2.95 2.95

5. 9' 2.67 5.34 5.74 7.2 2.67 2.67 5.34 5.74 2.34 4.68 5.03 6.32 2.34 2.34 4.68 5.01 2.77 5.54 5.95 7.48 2.77 2.77 5.54 5.54 2.31 4.61 4.96 6.23 2.31 2.31 4.61 4.94 CCdian a 2.02 4.05 4.35 5.46 2.02 4.05 4.35 5.46 1.57 3.13 3.37 4.23 3.13 3.35 4.7 5.67 a

1.33 2.66 2.86 3.59 2.86 3.59 4.4 5.51 1.57 3.13 3.37 4.23 1,57 3.13 3.35 4.7 1.33 2.66 2.86 3.59 2.66 2.86 3.59 4.4 0.95 1.9 2.04 2.57 2.03 2.85 3.8 4.47 0.98 1.96 2.11 2.65 2.11 2.94 3.93 4.61 0.88 1.76 1.89 2.37 1.88 2.91 3.87 4.39 0.69 1.38 1.49 1.87 2.08 3.05 3.67 4.44 0.56 1.13 1.21 1.52 2.25 2.99 3.77 4.5 0.45 0.89 0.96 1.21 2.23 2.99 3.76 4.47 1.04 2.09 2.24 2.82 2.24 -2.82 3.78 4.0 0.79 1.58 1.69 2.13 2.36 3.15 3.7 4.73 0.65 1.3 1.4 1.76 2.16 3.06 3.91 4.56 0.53 1.06 1.14 1.44 2.35 2.99 3.72 4.47

,0.42 0.85 0.91 1.14 2.25 2.97 3.69 4.41,

Calc. Number EEB-140 t

Rev. Number 4 Page Number 6 of 14 III. Calculation of thermal resistance terms j := 1. 8

' Diam 1C '

i thermal resistance of insulation Ri

= 0.012 91 log C-ft/ watt 1,j i

Dc Sources Reference 3 (Nehr-McGrath),

i equation 38.

Thermal Resistance of. Insulation ilo. of cables / Conduit Size 1

2 3

5 3"

4" 5"

6"

'1. 4 1.4 1.4 1.4 1.4 1.4 1.4

1. 4' 1/C-500,8 KV 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1/C-350,8 KV 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1/C-4/0,8 KV e

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1/C-750.600 V 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1/C-500 Ri =

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1/C-350 i

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1/C-4/0 1

1 1

1 1

1 1

1 1/C-2/0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 TRI-4/0 1

1 1

1 1

1 1

1 TRI-2/0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 TRI-2AWG 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 3/C-4AWG 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 3/C-6AWG 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 3/C-8AWG 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 3/C-10AWG 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 3/C-12AWG 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 2/C-2AWG 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 2/C-6AWG 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 2/C-8AWG 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2/C-10AWG

,1. 3 1.3 1.3 1.3 1.3 1.3 1.3

1. 3, 2/C-12AWG

__ _~ _ _ _ _.. _.. _ _ _ _

Calc. Number EEB-140 t

Rev. Humber 4 Page Humber 7 of 14 i

l Thermal Resistance of the Jacket en 2/C and 3/C cable j

Cdiam

~

1,1 d

R$

= 'J t > O' O.012 n' pj log j

i,j i

1,1 1

-3 Cdian J t 10 iel i

Thermal resistance of jacket, C-ft/ watt Source Derived from equation 38 in Referenca 3 (behr-McGrath) This first-part of the expression is a logical statement to only calculate Rj if a jacket exists.

4 Thermal Resistance of Jacket No. of cables / Conduit Size 1

2 3.

5 3

4" 5"

6" 0

0 0

0 0

0 0

0' 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 Rj =

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

i 1.39 1,39 1.39 1.39 1.39 1.39 1.39 1.39 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.87 1.87 1.87 1.07 1.87 1.87 1.87 1-,87 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 0.87 0.07 0.87 0.87 0.87 0.87 0.97 0.87 O.86 0.66 0.86 0.86 0.86 0.86 0.86 0.86 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.33 1.33 1.33 1.33 1.33 -1.33 1.33 1.33

,1.73 1.73 1,73 1.73 1.73 1.73 1.73 1.73 4

1 4

y

-w w

Calc. Number EEB-140 Rev. Number 4 Page Number 8 of 14 t

A' t= 4.5 B'

t= 0.27 factors used in Rsd, developed constants in

~

j Table VII of Reference 3 (Nehr-McGrath). See Methodology 8 d

thermal resistance between j

A' cable and 330-660, C-ft/ watt i

Rsd

= nnn' this assumes an airgap between i,j 1,j CCdiam

+ B' the two surfaces. Equation 41A i,j from Reference 3, 1

(Nahr-McGrath).

4 4.2 4.4 5.4 6.4 4.2 4.2 4.2 4. 4~

1/C-500,8 KV 4.6 4.8 5.9 7.1 4.6 4.6 4.8 5.9 1/C-350,8 KV i

5.2 5.5 6.7 8

5.2 5.2 5.5 8.4 1/C-4/0,8 KV 4.4 4.6 5.7 6.8 4.4 4.4 4.6 4.6 1/C-750,600 V 5.2 5.5 6.8 8.1 5.2 5.2 5.5 9.5 1/C-500 i

Rsd =

5.9 6.3 7.7 9.2 5.9 6.3 7.7 9.2 1/C-350 1

7.4 7.9 9.8 11.8 7.9 12.2 12.4 15.2 1/C-4/0 8.4 9.2 11.4 13.7 11.4 13.7 17.2 20.8 1/C-2/0 7.4 7.9 9.8 11.8 7.4-7.9 12.2 12.4 TRI-4/0 i

8.4 9.2 11.4 13.7 9.2 11.4 13.7 17.2 TRI-2/0 11.1 12.4 15.4 18.7 19.2 22.5 27.1 33.9 TRI-2AWG 10.8 12.1 15 18.1 15 19.2 23.9_

30.8 3/C-4AWG 11.8 13.3 16.5 20 20.6 25.3 31.5 40.9 3/C-6AWG

)

14 16.3 20.3 24.8 29.9 39.3 S3.4 64 3/C-8AWG 16.2 19.3 24.1 29.6 43.8 61.6 79.4 96.7 3/C-10AWG i

18.8 23.2 29 35.8 72.1 98.4 127 154.5 3/C-12AWG 6.8 7.6 9.4 11.4 9.4 11.4 14.9 17.8 2/C-2AWG J.5 9.8 12.1 14.7 15.6 19.5 26.9 30.8 2/C-6AWG 9.9 11.4 14.2 17.4 22 30.1 36.8 47 2/C-8AWG 4

l 11.2 13.5 16.8 20.7 33.2-45.1 58.6 71.9 2/C-10AWG j

13 16.1 20.1 24.9 53 74.3 94.6 115.6, 2/C-12AWG 1

1 4

l

.e-

Calc. Number EEB-140 Rev. Number 4 Page Number 9 of 14 l

THERMAL RESISTANCE OF THERMOLAG 330-660 WRAP

(

6 Btu /hr = B B =.2931 watts Pt = 30.4785 cm 5

F := -

This is to convert degree F i

9 to degrees C B 1 K := (0.249) -- -

See Attachment D (conductivity)

Pt F

    • o 1

pw := -

K s

pw = 232.01 thermal resistivity of 330-660 wrap,C-Cm/ watt 3

3' l

Tvrapi

= if CCdiam

< 3,6

,4 ~

Thickness of wrap (bundles of less 1,j i,j 8

8, than 3 inches have a maximum of 6 layers of Thermolag) 3 Conduit of 3 inches or greater will Twrap

= if j > 4,4

,Tarapi have a maximum of 4 layers of Thermolag 1,j 8

1, j, Thickness of Wrap No. of cables / Conduit Size 1

2 3

5 3"

4" 5

6"

~2.25 1.5 1.5 1.5 1.5 1.5 1.5

1. 5' 1/C-500,8 KV 5

2.25 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1/C-350,8 KV 2.25 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1/C-4/0,8 KV 2.25 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1/C-750,600 V 2.25 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1/C-500 Tvrap =

2.25 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1/C-350 4

2.25 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1/C-4/0 2.25 2.25 2.25 1.5 1.5 1.5 1.5 1.5 1/C-2/0 l

2.25 1.5 1.5 1.5 1.5 1.5 1.5 1.5 TRI-4/0 2.25 '2.25 2.25 1.5 1.5 1.5 1.5 1.5 TRI-2/0 2.25 2.25 2.25 2.25 1.5 1.5 1.5 1.5 1RI-2AWG 2.25 2.25 2.25 2.25 1.5 1.5 1.b 1.5 3/C-4AWG 2.25 2.25 2.25 2.25 1.5 1.5 1.5 1.5

- 3/C-6AWG 2.25 2.25 2.25 2.25 1.5 1.5 1.5 1.5 3/C-SAWG 2.25 2.25 2.25 2.25 1.5 1.5 1.5 1.5 3/C-10AWG 2.25 2.25 2.25 2.25 1.5 1.5 1.5 1.5 3/C-12AWG 2.25 2.25 2.25 2.25 1.5 1.5 1.5 1.5 2/C-2AWG 2.25 2.25 2.25 2.25 1.5 1.5 1.5 1.5 2/C-6AWG 2.25 2.25 2.25 2.25 1.5 1.5 1.5 1.5 2/C-8AWG 2.25 2.25 2.25 2.25 1.5 1.5 1.5 1.5 2/C-10AWG

,2.25 2.25 2.25 2.25 1.5 1.5 1.5

1. 5, 2/C-12AWG

+-

.,-m

.,,,,e e--.

g

...y.9 7

+ --

e,

-g

. - + -

wi

-.m--

w-e=wm=

1 1

Calc. Number EEB-140 l

Rev. Number 4 Pago Humber 10 of 14 i

'CCdiam

+ 2 Tvrap 1,j i,j Thermal resistance i

Rw

= 0.012 nnn' f44 log of Thermolag vrap, i,j 1,j CCdiam ~

Therral O/ft.

i,j source: Reference 2 equation 6 Thermal Resistance of Wrap y

No. of cables / Conduit Size i

1 2

3 5

3" 4"

5 6"

1

'34 3

3.7 4.5 2.5 2.S 2.5 3'

1/C-500,8 KV 3.6 3.2 4

5 2.7 2.7 3.2 4

1/C-350,8 KV 3.9 3.6 4.5 5.5 3

3 3.6 5.6 1/C-4/0,8 KV 3.5 3.1 3.9 4.8 2.7 2.7 3.1 1.1 1/C-750,600 V 3.9 3.6 4.5 5.6 3

3 3.6 5.6 1/C-500 RW =

4.2 4

5 6.2 3.3 4

5 6.2 1/C-350 4.9 4.9 6.1 7.6 4.9 7.6 8.2 10.3 1/C-4/0 j

5.4 7.2 9.1 8.6 6.9 8.6 11.2 14 1/C-2/0 4.9 4.9 6.1 7.6 3.9 4.9 7.6 8.2 TRI-4/0 5.4 7.2 9.1 8.6 5.5 6.9 8.6 11.2 TRI-2/0 6.3 8.8 11.1 14.4 10.8 13.6 17.2 22.2 TRI-2AWG 6.2 8.6 10.9 14.1 8.5 11.6 15.3 20.3 3/C-4AWG 6.6 9.2 11.7 15.1 11.4 15.3 20.1 26.7 3/C-6AWG 7.3 10.5 13.3 17.4 16.9 24 33.8 41.8 3/C-8AWG 8

11.7 14.9 19.6 25.1 37.5 50.5 63.3 3/C-10AWG l

8.7 13 16.6 22.1 41.3 59.9 30.7 101.1 3/C-12AWG 4

5.6 7

9 5.4 6.9 9.4 11.7 2/C-2AWG 4.6 6.5 8.3 10.8 9

12 17.1 20.3 2/C-6AWG S

7.2 9.2 12 12.5 18.4 23.5 30.9 2/C-8AWG 5.4 8

10.2 13.5 19.2 27.5 37.2 47 2/C-10AWG

,5. 9 8.9 11.4 15.1 30.4 45.2 59.9 75.5, 2/C-12AWG i

i e

't

.r-9---r y*

+~-

r

,---r-e

-r~-

- -- +-

l Calc. Number EEB-140 l

Rev. 14 umber 4 j

page Number 11 of 14 THERMAL RESISTANCE BETWEEN THE THERMOLAG AND AMBIENT AIR i

J I

Dvrap

= 2 Twrap

+ CCdiam overall diameter of wrap, i,j 1,j 1,j in.

I ww 4

i Diameter over the Wrap No. of cabler / fonduit size 1

2 3

5 3

4" 5"

6"

'7. 5 8.9 9.3 11 6

6 6 8. 9' 1/C-500,8 KV 7.2 8.3 8.7 10.2 5.7 5.7 8.3 8.7 1/C-350,8 KV 6.8 7.7 8

9.3 5.3 5.3 7.7 9

1/C-4/0,8 KV 4

7.3 8.5 9

10.5 5.8 5.8 8.5 8.5 1/C-750,600 V 6.8 7.6 8

9.2 5.3 5.3 7.6 7.9 1/C-500 Dvrap =

6.5 7

7.3 8.5 5

7 7.3 8.5 1/C-350 6.1 6.1 6.4 7.2 6.1 6.3 7.7 8.7 1/C-4/0 j

5.8 7.2 7.4 6.6 5.9

6. ti 7.4 8.5 1/C-2/0 6.1 6.1 6.4 7.2 4.6 6.1 6.3 7.7 TRI-4/0 5.B 7.2 7.4 6.6 5.7 5.9 6.6 7.4 TRI-2/0 4

5.5 6.4 6.5 7.1 5

5.9 6.8 7.5 TRI-2AWG S

5.5 6.5 6.6 7.1 5.1 5.9 6.9 7.6 3/C-4AWG 5.4 6.3 6.4 6.9 4.9 5.9 6.9 7.4 3/C-6AWG 5.2 5.9 6

6.4 5.1 6.1 6.7 7.4 3/C-8AWG 5.1 5.6 5.7 6

5.3 6

6.8 7.5 3/C-10AWG 4.9 5.4 5.5 5.7 5.2 6

6.8 7.5 3/C-12AWG 5.5 6.6 6.7 7.3 5.2 5.8 6.8 7.6 2/C-2AWG 5.3 6.1 6.2 6.6 5.4 6.2 6.7 7.7 2/C-6AWG 5.2 5.8 5.9 6.3 5.2 6.1 6.9 7.6 2/C-8AWG i

5 5.6 5.6 5.9 5.3 6

6.7 7.5 2/C-10AWG

,4. 9 5.3 5.4 5.6 5.3 6

6.7 7. 4,

.2/C-12AWG i

F

~..,

Calc. Number EEB-140 i

Rev. Number 4 Page Number 12 of 14 1

( := 0.89 emissivity of Thermolag 330-660 (see Attachment D) a 5

9.5 nnn' i,j Thermal resistance between kwa

=

wrap and ambient air, 4

i,j 1 + 1.7 Dwrap (c + 0.41) thermal H-ft (C-ft/ watt)

{

1,j Source: Reference 3 (Nahr-McGrath, equation 42A) j i

)

Thermal Resistance of Wrap to Air No. of cables / Conduit Siza 1

2 3

5 3"

4" 5"

6"

'1. 6 2.8 3.5 4.4 2

2 2

2. 8' 1/C-500,8 KV 1.7 2.9 3.7 d.7 2.1 2.1 2.9 3.7 1/C-350,8 KV 1.8 3.2 4

5.2 2.2 2.2 3.2 5

1/C-4/0,8 KV 1.7 2.9 3.6 4.6 2.1 2.1 2.9 2.9 1/C-750,600 V 1.8 3.2 4

5.2 2.2 2.2 3.2 5

1/C-500 Rwa =

1.8 3.4 4.4 5.7 2.4 3.4 4.4 5.7 1/C-350 2

3.9 5

6.6 3.9 6.2 7.2 9.5 1/C-4/0 l

2.1 3.4 4.4 7.2 5.4 7.2 9.8 12.8 1/ C-2/0 1

2 3.9 5

6.6 2.6 3.9 6.2 7.2 TRI-4/0 2.1 3.4 4.4 7.2 4.2 5.4 7.2 9.8 TRI-2/0 2.2 3.8 4.9 6.7 7.7 10.6 14.S 19.4 TRI-2AWG 2.2 3.7 4.8 6.6 6.1 9.2

-13 17.8 3/C-4AWG 2.2 3.8 5

6.9 7.9 12.1 17 23.2 3/C-6AWG 2.3 4.1 5.3 7.4 12.1 19.2 28.2 36.4 3/C-BAWG 2.3 4.2 5.5 7.8 18.5 29.7 42.4 55.4 3/C-10AWG i

2.4 4.4 5.8 8.2 30.3 47.6 67.8 88.3 3/C-12AWG 1.4 24 3.2 4.3 4

5.4 7.9 10.3 2/C-2AWG 1

1.5 2.6 3.4 4.8-6.7 9.7 14.3 13 2/C-6AWG 1.5 2.7 3.6 5

9.1 14.7 19.9 27.1 2/C-8AWG 1.6 2.9 3.7 5.3 14.3 21.8 31.2 41.1 2/C-10AWG

,1. 6 3

3.9 5.5 22.4 35.8 50.1 65.8, 2/C-12AWG 4

-.v.,

r

.,r

,,,w..

l i

Calc. !! umber EEB-140 Rev. Number 4 Page Number 13 of 14 i

THEPJfAL RESISTANCE BETWED1 CONDUCTOR AND AMBIDTI AIR f

Rthi := Ri + Rj + Rsd + RW + Rwa thermal resistance between the conductor and outside ambient air, thermal 0-ft

'C-ft/ watt)

Thermal Resistance Between conductor and Air y

No. o'f cables / Conduit Size 1

2 3

5 3

4" 5

H 6"

4

'10.5 11.5 13.9 16.8 10.1 10.1 10.1 11.5' 1/C-500,8 KV j

11.4 12.6 15.2 18.3 11 11 12.6 15.2 1/C-350,8 KV i-1?.7 14.1 17.1 20.6 12.3 12.3 14.1 20.9 1/C-4/0,8 KV 10.3 11.3 13.9 16.9 9.8 9.8 11.3 11.3 1/C-750,600 V 4

11.7 13.1 16.1 19.7 11.2 11.2 13.1 19.9 1/C-500 Rthi =

12.8 14.6 17.9 22 12.4 14.6.

17.9 22 1/C-350 15.1 17.6 21.7 26.8 17.6 26.9 28.6 35.8 1/C-4/0 3

16.9 20.8 25.8 30.6 24.7 30.6 39.2 48.7 1/C-2/0 15.1 17.6 21.7 26.8 14.6 17.6 26.9 28.6 TRI-4/0 16.9 20.8 25.8 30.6 19.9 24.7 30.6 39.2 TRI-2/0 20.7 26.1 32.5 40.9 38.8 47.8 60 76.5 TRI-2AWG 21.9 27.2 33.4 41.6 32.3 42.7 54.9 71.6 3/C-4AWG i

23.7 29.5 36.3 45.2 43 55.7 71.7 93.9 3/C-6AWG 26.7 33.9 42 52.7 62 85.5 118.5 145.2 3/C-8AWG 29.9 38.6 47.8 60.3 90.7 132.1 175.7 218.7 3/C-10AWG 33.7 44.4 55.1 69.9 147.5 209.5 279.2 347.7 3/C-12AWG 4

14.3 17.6 21.6 26.8 20.8 25.6-34.2 41.8 2/C-2AWG 17 21.3 26.2 32.7 33.8 43.6 60.7 71.5 2/C-6AWG 18.9 24 29.6 37 46.3 65.8 82.9 107.6 2/C-BAWG f

21.1 27.2 33.5 42.2 69.6 97.2 129.7 162.0 2/C-10AWG

,23.5 31 39.4 48.6 108.9 158.4 207.6 259.9 2/C-12AWG i

l 4

i 4

9

Calc. Numb 0r EEB-140 Rev. Number 4 Page Number 14 of 14 RRdc25

= Rdc25 YYe t= Yc Converts vector into 1,)

i 1,j i

matrix.

Tc := 90 conductor temperature, ceg. C (see DBD-EE-52)

Ta := 50 ambient temperature, deg. C (see DBD-EE-52)

Cable ampacity of Thermolag 330-660 Wrtpped Cable in Free Air 9

I 234.5 + 25 IamP

=

(Tc - Ta) yy (234.5 + Tc) i,j i,j le ).

3 Source: Reference 3 (Nehr-McGrath, equation 9, with Rthi = Rea',

delta TD = 0, Rdc expressed at temperature Tc).

WRITEPRN' lamp

= Iamp This saves Iamp in an ASCII file for use prn,

in template Attachme.1t BB3-Cable Ampacity of Wrapped cable in free Air i

No. of cables / Conduit Size 1

2 3

5 3"

4" 5"

6"

'359 344 312 235 367 367 367 344' 1/C-500,8 KV 291 278 252 230 297 297 278 252 1/C-350,8 KV 216 207 188 171 222 222 207 170 1/C-4/0,8 KV 431 411 371 336 441 441 411 411 1/C-750,600 V 341 322 290 263 348 348 322 261 1/C-500 Tamp =

275 258 233 210 280 258 233 210 1/C-350 200 185 167 150 185 150 145 130 1/C-4/0 150 135 121 111 124 111 98 86 1/C-2/0 200 185 167 150 203 185 150 145 TRI-4/0 150 135 121 111 138 124 111 98 TRI-2/0 96 85 76 68 70 63 56 50.

TRI-2AWG 74 66 60 53 61 53 47 41 3/C-4AWG 56 50 45 41 42 37 32 28 3/C-6AWG 42 37 34 30 28 23 20 18 3/C-8AWG 31 28 25 22 18 15 13 12 3/C-10AWG 23 20 18 16 11 9

8 7

3/C-12AWG 115 104 94 84 95 36 74 67 2/C-2AWG 66 59 53 48 47 41 35 32 2/C-6AWG SO 44 40 36 32 27 24 21 2/C-8AWG 38 33 30 26 21 17 15 13 2/C-10AWG

.28 24 22 20 13 11 9

8, 2/C-12AWG t

l

{

1

i e

i i;

1 j

Calc. Number EEB-140 Rev. Number 4 Page-l Number 1 of 18 1

4

)

i ATTACIMENT BB3 1

i i

COMPARISON BETWEEN FREE AIR THERM 0 LAGGED CABLES AND CABLES IN THERMOIAGGED RACEWAYS (FOR THREE LAYERS OF-THERMOLAG ON BUNDLES LESS THAN THREE INCHES) AND CABLES IN THERM 0 LAGGED RACEWAY.

i 9

a i

1 l

4 4

4

.I i

i e

i i

i

1 i

cole. Number EEB-140 Rev. Number 4 i

Page Number 2 of 18 4

i i

ATTACHMENT BB3 s

I i

comparison between free air Thermolagged cables (for three layers of Thermolag on bundles less than three inches and 2

cables in Thermolagged raceway l'

i t

i I

9 1

This templates compares the ampacity of thermolagged cables in free air with j

those of thermolagged raceway -maintained spaced tray, ransod # tiled tray, 3

Thermolag 330-1 enclosed conduit (both box and shell design) i 1

I.

CABLE INPUT DATA j

i PRNPRECISION := 8 e

1 i

Iamp := READPRN(jamp)

N := READPRN(N) nn' := READPRN(NN) 1 i

j i

The above files were produced by template Attachment B1 : N and nn';

i Attachment BB2 Iamp.

I I

ORIGIN = 1 defines the upper-corner of a matrix as:1,1 4

1

.j:=1.8 i : = 1. 21 4.

4.-

i 4--

4-1 1

4 i-4 4

I e

,..w..

.w,.

.....,.c..e

..w',w,%

,c.,,.L._,

.%,m...,,

,r%.,+.,,

.m,..,,y

  1. w.,.m%,,,'.,

vm.p p,,+, yw y-,- ei

Calc. Nur.ber EEB-140 Rev. Number 4 Page Number 3 of 18 Cable Ampacity of Wrapped Cable in Free Air No. of Cables /

Conduit Size 1

2 3

5 3"

4" 5"

6"

'359 344 312 285 367 367 367 3441 1/C-500,8 KV 291 278 252 230 297 297 278 252 1/C-350,8 KV 218 207 168 171 222 222 207 176 1/C-4/0,8 KV 431 411 371 336 441 441 411 All 1/C-750,600 V 341 322 290 263 348 348 322 261 1/C-500 Ilmp =

275 258 233 210 280 258 233 210 1/C-350 200 185 167 150 185 150 145 130 1/C-4/0 9

150 135 121 111 124 111 98 88 1/C-2/0 200 185 167 150 203 185 150 145 TRI-4/0 150 135 121 111 138 124 111 98 TRI-2/0 96 85 76 68 70 63 56 50 TRI-2hWG 74 66 60 53 61 53 47 41 3/C-4AWG 56 50 45 41 42 37 32 28 3/U-6AWG 42 37 34 30 28 23 20 18 3/C-8AWG 31 28 25 22 18 15 13 12 3/C-10AWG 23 20 18 16 11 9

8 7

3/C-12AWG 115 104 94 84 95 86 74 67 2/C-2AWG 66 59 53 48 47 41 15 32 2/C-6AWG 50 44 40 36 32 27 24 21 2/C-8AkG 38 33 30 26 21 17 15 13 2/C-10AWG

, 28 24 22 20 13 11 9

8, 2/C-12AWG Nurber of Cables in a Bundle No. cf Cables / Conduit Size 1

1 2 3

5 3

4" 5"

6" 9

T

'l 2

3 5

1 1

1 2'

1/C-500,8 KV 1 2 3

5 1

1 2

3 1/C-350,8 KV 1 2 3

5 1

1 2

4, 1/C-4/0,8 KV 1 2 3

5 1

1 2

2 1/C-750,600 V 1 2 3

5 1

1 2

4 1/C-500 N=

1 2

~,

5 1

2 3

5 1/C-350 1 2 3

5 2

4 6

9 1/C-4/0 1

2 3

5 3

5 8 12 1/C-2/0 1 2 3

5 1

2 4

6 TRI-4/0 1 2 3

5 2

3 5

8 TRI-2/0 Note: 1/C cable are 1 2 3

5 4

7 11 16 TRI-2AWG bundled in groups of 1 2 3

5 3

6 10 15 3/C-4AWG three. Therefore, if 1 2 3

5 4

8 13 19 3/C-6AWG N=3 then the actual 1 2 3

5 7

13 21 30 3/C-8AWG number of cables for 1 2 3

5 11 20 32 46 3/C-10AWG 1/C is 3 K 3 = 9 1 2 3

5 18 32 51 73 3/C-12AWG 1

2 3

5 3

3 9

13 2/C-2AWG 1 2 3

5 6

10 16 23 2/C-6AWG 1 2 3

5 8

15 23 34 2/C-0AWG 1 2 3

5 13 22 35 51 2/C-10AWG

,1 3

5 20 36 56 81_

2/C-12AWG

t 1

Calc. Number EEB-140 Rev. Number 4 i

Page Number 4 of 18 e

f a

Number of Conductors in a Bundle No. of Cables /

Chrid

- Size 1

2 3

5 3

4" 5"

6" i

'3 6 9 15 3

3 3

6' 1/C-500,8 KV 3

6 9 15 3

3 6

9 1/C-350,8 KV 3

6 9 15 3

3 6

12 1/C-4/0,8 KV 9

y 3

6 9 15 3

3 6

6 1/C-750,600 V 3

6 9 15 3

3 6

12 1/C-500 nn' =

3 6 9 15 3

6 9

15 1/C-350 3 6 9 15 6 12 18 27 1/C-4/0 3

6 9 15 9

15 24 36 1/C-2/0 3 6 9 15 3

6 12 18 TRI-4/0 3

6 9 15 6

9 15 24 TRI-2/0 3

6 9 15 12 21 33 48 TRI-2AWG 3

6 9 15 9

18 30 45

.3/C-4AWG 3

6 9 15 12 24 39 57 3/C-6AWG 3

6 9 15 21 39.

63 90 3/C-8AWG 3

6 9 15 33 60 96 138 3/C-10AWG 3

6 9 15 54 96 153 219 3/C-12AWG 2

4 6

10 6

10 18 26 2/C-2AWG 2 4 6

10 12 20 32 46 2/C-6AWG 2 4 6

10 16 30 46 68 2/c-8AWC 2 4 6

10 26 44 70 102 2/C-10AWG l

_2 4

6 10 40 72 112

162, 2/C-12AWG y

f l

4 w

t en -

n

Calc. Number EEB-140 Rev. Number A Page Number 5 of 18 Ampacities of Thermolagged Maintained Spaced Tray Ampacity of themolag covered 600 V cable with maintained spacing in a 50 C anbient see Reference 1 (DBD-EE-052) and Reference 10.

Development of Thermolagged Tray ampacities for 8 kV cable:

'515' 1/C-500, 8KV Values obtained from Reference 18, It :=

386 1/C-350, 8KV Table 33 where depth > diaceter.

265, 1/C-4/0, 8KV IthMS8kV := 0.90 0.60 It where:

0.90 is multiplier for correcting ambient temperature frotr 40 C L

to 50 C (Ref. 18, page 1).

0.60 is thermolag derating factor (Ref. 1).

'278.1' IthP3BkV =

208.4

[143.1, t

'278' 1/C-500,8 KV 208 1/C-350,8 KV 143 1/C-4/0,8 KV These ampacities were input frota:

340 1/C-750,600 V S KV Cable - calculated results of 235 1/C-500 IthMS8kV shown above; 600 V cables - from 173 1/C-350 DBD-EE-052. A value of 999 is entered when 129 1/C-4/0 no anpacities are appropriate because the 87 1/C-2/0 cables would not be installed in 179 TRI-4/0 maintained spaced trays 17 TRI-2/ 0 Itl.MS :=

43 TRI 2AWG 999 3/C-4AWG 999 3/C-6AWG 999 3/C-8AWG 999 3/C-10AWG 999 3/C-12AWG 60 2/C-2AWG 999 2/C-GAWG 999 2/C-SAUG 999 2/C-10AWG

,999, 2/C-12AWG r

IIthMS

= IthMS i,j i

AMPCHK

= iff1IthMS

( lamp

,1, 0' A

i,j

[

i,j i,j l

i 4

~

Calc.-Number EEB-140 b

Rev. Number 4-Page Number 6:of 18 l'

CHECK OF CABLE AMPACITY ADEQUACY-j WITH MAINTAINED SPACING IN TRAY f:

j i

Ampacity comparison with MS Tray No. of Cables / Conduit Size i-1

-2 3

5 3 4" 5" 6"

+

'1 1

1 1

1 1 1 l'

1/C-500,8 KV N

i 1

1-1 -1 1: 1 1

1 1/C-350,8 KV l

1 1 1-1 1 11 1 1/C-4/0,8'KV 1 1 10 1 1

1 1

1/C-750,600 V 1.1 11

1. 1 1

1 1/C-500 t

AMPCHK =

1 1 1

1 1-1

.1 1

1/C-350-1-1 1

1 1 1 1

1 1/C-4/0' 1

1-1 11 1

1 1

1/C-2/0-NOTE:

3 3

1 1 1 1

1 1-1 1

TRI-4/0

}

1 1

~1 1 -1 1

.1 1

TRI-2/U 1 - Adequate cable

..ampacity i

1-1 1-1 1 1

1 1

TRI-2AWG-O--0 0 0 0 0'O O

3/C-4AWG 0 - Inadequate cable O O 0-0 0 0 0 0 3/C-6AWG ampacity i

O O O O O-0 0

0 3/C-BAWG i

0 0.

0 0-0 0 0 0 3/C-10AWG i

0 0 0 0 0 0 0 0 3/C-12AWG l

1 1 1

.1 1 1 1 1

2/C-2AWG 0

0' O O O O O O 2/C-6AWG i'

0-O..0 0 0 0 0 0 2/C-8AWG 0 0 O'

O. 0 0.

0~

0 2/C-10AWG

- t l

LO ' O O'O 0 0 0 ' O, 2/C-12AWG-i L

CaLimit

= if'AMPCHK u 1, 'N

', 0' I.

1,3 1,3

. i,j,

~

CaLimit

= if'Iamp.

= 999,0,CaLimit...

{

1,j-i,j 1, j, i.

t -

i i

9.-

t%._

I i

}

L.

i

t 4

Calc. Number EEB-140 I

-Rev. Nurber 4 i'

Page Number 7-of 18 i-i Limit of Number of Cable in Bundle:

1 Not to Exceed Ampacity-of Cable in i

MS Thermolagged Tray l-l No. of Cables / Conduit Size 1 2 3 5

3 4"-

5" 6"

'1 ' 2 3 5'

1 1

' 3' 1/C-500,8 KV i

1 2'3 5

1 1-2 3

1/C-3'J0,8 'KV 1 2 3=5 1 1 2

4 1/C-4/0,8 KV y

1 2 3 0-1 1 2

2 1/C-750,600 V 1 2 3 5

1 1 2.

4 1/C-500 CaLimit =

1 2 3 5 1

2-3 5

1/C-350 1 2 35 2 4 6

9 1/C-4/0 1

-2 3 53 5 8

12 1/C-2/0 i

1 2 3 5 1 2 4

6 TRI-4/0 The limit to the 4

i 1

2~

3 5 2 3'

5 8

TRI-2/0 number of cables

(

1 2 3-5 4 7 11 16 TRI-2AWG under a wrap, use-l 0

0-0 0 0 0-

-0

.0 3/C-4AWG maximum number in

[

0 0 0 0 0 0 0

0 3/C-6AWG

.a given row..

~

i 0 0-00 0-0 0

0 3/C-8AWG Thise.1/C Oables 0 0 0 0- 0 0=

0 0

3/C-10AWG are considered as i'

O 0 0 0 0'

0' O

O 3/C-12AWG one'(1) 3/C cable..

j 1.

2 3=5 3

5-9.

13 2/C 2AWG 0 0 0 0 0 0 0-0 2/C-6AWG l

0 0 0 0 0 0 0

-0 2/C-8AWG.

i O'0.0

'O 0 0 0

0 2/C-10AWG-0.0 0 0 0 0 0

C

-.~ 2/ C-12 AWG 5

i

!j.

!v e

4 e

k:

it t

ji i

i

Calc. Number EEB-140 Rev. Number 4 Page Number 8 of 18 Ampacities of Thermolagged Random Lay Tray e

~

Ampacity of thermolag

,999, 1/C-500,8 KV covered cable with 999 1/C-350,8 KV random lay (no main-999 1/C-4/0,8 KV tained spacing), see 365 1/C-750,600 V Reference 1-(DBD-EE-052) 252 1/C-500 y

187 1/C-350 1.'.3 1/C-4/0 16 1/C-2/0 136 TRI-4/0 92 TRI-2/0 IthRS :=

47 TRI-2AWG 38 3/C-4AWG 28 3/C-6AWG 17 3/C-8AWG 11 3/C-10AWG 7

3/C-12AWG 65 2/C-2AWG 31 2/C-6AWG 21 2/C-8AWG 13 2/C-10AWG

,8, 2/C-12AWG i

a m

Calc. Nunber EEB-140 Rev. Number 4 Page Number 9 of 18 IIthRS

= IthRS i,j i

.BMPcHK

= if'IIthRS

< Iamp

,1, 0' i,j i,j 1,j r

Ampacity Comparison with Random TH-Tray No. of cables / Conduit Size 1 2 3 $ 3 4" 5" 6"

(

00 0 0 0 0 0 0

0" 1/C-500,B KV 0 0 0 0 0 0 0 0 1/C-350,3 KV O O O O O O O O 1/C-4/0,8 KV

?.

1 1 0 1 1 1

l' 1/C-750,600 V 1

1 1 1 1 1 1 1 1/C-500 AMPCHK =

1 1 1 1 1

1 1 1 1/C-350

,1 1

1 1 1

1 1

1 1/C-4/0 1

1 1 1 1 1

1 1

1/C-2/0 1

1 1 1 1 1 1

1 TRI-4/0 1

1 1 1 1 1 1 1

TRl-2/0 1 1 1

1 1

1 1

1

'"RI-2AWG 1

1 1 1 1 1 1 1 3/C-4AWG 1

1 1 1 1

1 1

3/C-6AWG NOTE:

1 1 1 1 1

1 1 1

3/C-8AWG 1 - Adequate cable 1

1 1

1 1

1 1

1 3/C-10AWG ampacity 1

1 1 1 1

1 1

1 3/C-12AWG 0 - Inadequate cable 1

1 1 1 1

1 1

1 2/C-2AWG ampacity 1

1 1 1 1

1 1

1 2/C-6AWG 1

1 1 1 1

1 1

0 2/C-8AWG 1

1 1

1 1

1 1

1 2/C-10AWG

,1 1

1 1

1 1 1

1, 2/C-12 AdG s

CaLimit

= if'AMPCHK
= 1,

'N

, O' i,j 1,j

,,i,jj, CaLimit

= if'Iamp

= 999,0,CaLinit i,j i,j 1,j, 1

~..

4 Calc. Number EEB-140 Rev. Number 4 i

Page-Number 10 of 18 i-4 Limit of Number of Cable in Bundle:

Not to Exceed Ampacity of Cable in Random Lay Thermolagged Tray l

So. of Cables / Conduit Size 1 2

.3

.5-3 4"

5" 6"

i

}

'O O O O O

O 0-

- O' 1/C-500,8 KV O O O O O

O O

O 1/C-350,8 KV l

0 0 0-0 0

0 0

0 1/C-4/0,5 KV ll 1

2.

3 0

1 1

2 2

.1/C-750,600 V l-1 2 3

5 1

1 2-4 1/C-500 i

CaLimit =

1 2 3

.5 1

2 3

5 1/C-350.

(

1 2 3

5 2

4 6

9 1/C-4/0 1 2 3

-5 3

5 8

12 1/C-2/0 1 2 3 5

1 2

4 6

TRI-4/0 The limit to the

?

1 2 3

5 2

3 5

8 TRI-2/0 number of cables 1 2 3

J

~4 7

11 16 TRI-2AWG' under a wrap, use 1 2 3 5

3

-6 10 15 3/C-4AWG maximum number lin 1 2 3 5 4

8 13 19 3/C-6AWG a given' row.

1 2 3

5 7

13 21 30

'3/C-8AWG.

Three 1/C cables 1 2 3.

5 11.20 -32 46 3/C-10AWG; are considered as 4

1 2 3

5 -18 32 51_ 73 3/C-12AWG one (1)~ 3/C cable.

1 2

.3 5

3 5-O 13 2/C-2AWG j

1 2 3

5 6 10 -16 23 2/C-6AWG 1

2-3' 5

8.15 - 23 0

2/C-8AWG' l'

1 2 3 5-13 22 35 51 2/C-10AWG

,1 2

3' 5 ~20 36 56 81.,

2/C-12AWG:

i i.

3 f

1

)

J

-.. ~

....~..;-..

Calc. Number EEB-140 Rev. Number 4 Page Number 11 of 18 Ampacities of Cable in Themolagged Conduit (Box Design)

. Reference 1 (DBD-EE-052)

'338' 1/C-500,8 KV ampacity for three conductors 277 1/C-350,8 KV in conduit, enclosed in 2

205 1/C-4/0,8 KV Thermolag 330-660, Box Design 428 1/C-750,600 V 341 1/C-500 275 1/C-350 199 1/C-4/0 146 1/C-2/0 199 TRI-4/0 146 TRI-2/0 IthCD :=

93 TRI-2AWG 65 3/C-4AWG 49 3/C-6AWG 37

-3/C-8AWG 26 3/C-10AWG 20 3/C-12AWG 88 2/C-2AWG 49 2/C-6AWG-37 2/C-8AWG 26 i 2/C-10AWF,

, 2 0j '

2/C-12AWG f

l

,.__.m d'

s 1-y Calc. Number EEB-140 Rev. Number 4

-Page Number 12 of 18 4-i The following equations produce multipying factors for i

~

j.

multiple cables in a conduit j

CDamp

= 0

~

i 1,j j

CDamp

= if'nn'

< 3.01,1,CDamp j.

1, t,j i,j d

i CDe.mp

= if'nn'

> 3 01,0.8,CDamp

. Ne i-1,3 1,j 1, j.

a CDamp

= i f 'nn '-

> 6.01,0.7,CDamp i,j i,j 1, j.

i I

CDamp

= if'nn'

> 24.01,0.6,CDamp i

1,3 i,j L i, j.

i

~

CDamp

= if'nn'

> 42.1,0.5,CDamp i,j 1,3 1, j.

4 i

i

[

Conduit Ampacity-Multiplying Facters For More than 3 conductors in a Conduit-I f

No. of Cables / Conduit Size i

1 2

3 5

3 4"'

5" 6"

1.

0. 8'

-1/C-500,8'KV

'l 0.8

0. 7.

0.7 1

1

_O.8 0.7 1/C-350,8 KVL 1

0.8 0.7-0.7 l'

l' 1

0.8,

0. 7.

0.7 1

1 0.8= 0.7 1/C-4/0,8.KV-1 0.8 0.7 0.7 1

1 10. 8 0.8 1/C-750,600 V 1

1.

0.8 0.7 0.7 1

1 0.8 0.7 1/C-500' L

CDamp =.

11 0.8 0.7 -

0. 7 '

1 0.8 0.7 0.7 1/C-350-NEC militi-1 0.8 0.7=

0.7 0.8 0.7 0.7 0.6

~1/C-4/0-

. plying factor-3 i'

1-0.8 0.7

.0.7.

0.7L 0.7 0.7 0.6 1/C-2/0 for: multiple 1

0. 81 0.7.

0.7' 1:

0.8- 0.7 ;0.7 TRI-4/0

-conductors in j-1 - O. 8.' O.7 0.7 0.8 0.7' O.7 0.7

-TRI-2/0-conduit' 1

'O.8~

0.7 10.7. 0.7 - 0_7 - 0.6;.0.5 TRI-2AWG 1

0.8 :0.7' 0.7 0.7: 0.7 0.6- 'O.5 3/C-4AWG-l 1

0.8 0.7 0.7! 0.7 0.7 0.6 0.5 3/C-6AWG i

11 0.8 0.7 Ol. 7 0.7.

0.6 0.5.

0.5 3/C-8AWG i-1 0. 8 -- 0.7 0. 7 --

0.6.-0.5 0.5. 0.5 3/C-10AWG 1

0.8: 0.7 0.7

-0.5^'0.5 0.5' O.5 3/C-12AWG-1 0.8; 0.8:-

0.7' O.8 0.7 ~ 0 0.6 2/C-2AWG I

1 0.8.LO.8-0.7 0.7 -0.7 0.6 0.5 2/C-6AWG i-1 0.8 0.8EO7 0.7

'O.6 0.5 0.5 2/C-8AWG-1-

0.8-0.8 0.7 0.6 0.5 0.5 0.5 2/C-10AWG

,1 0.8 0.8.

0.7-

0. 6: 0.5 0.5' O5 2/C-12AWG v

i-i'

+-

,m

.~..;_.-_.... -.. - -,...,, -. -

-_= -

l~

2-1

- Calc. Number EED-140.

t Rev. Number 4 j

Page Number 13 of 18

=,

I i

IIthCD

= CDamp _

IthCD i,j 1,j i

4 h

n 6

Thermolagged Ampacities in-Conduit (Box Design)-

NO. of Cables /= Conduit Size 1

2 3

5 3

4" 5"

6" i

'338 270 237 237 338 338 138_-270' 1/C-500,8 KV 277 222 194 194' 277 277 222 194

_ 1/C-350,8 KV

{-

205 164 144 144 205 205 164 - 144 1/C-4/0,8 KV.

l 428 342 300 300 428 428 342 342

'1/C-750,600 V i

IIthCD =

275 220 193 193 275 220 193 193

'1/C-500 341 273 239 239-341-341 273 ' 239 1/C-350 l

199 159 139-139. 159 139 139 119

-1/C-4/0 146 117 102 102 102 102 _ 102 88

-1/C-2/0 I

199 '159 139l 139 199 159 ~ 139. 139 TRI-4/0

_102 LTRI-2/0 146 117 102 102 117 102 102 93 74 65 65 65 65-56.

47 TRI-2AWG i

65 52 46 46' 46 46 39

'33

3/C-4AWG i

49 39 34 34 34 34 29 25 3/C-6AWG' 37 30 26 26 26 22.

19 19 3/C-8AWG 26 21 18 18 16 13 13-

-13 3/C-10AWG 20 16 14 14 10 10

~10

-10 3/C-12AWG 88 70 70 62 70 62 62 53 2/C-2AWG i

l 49 39 39 34 34 34 29 25

- 2/C-6AWG 37 30 30 26 26 22

~19 19 12/C-8AWG 26 21

~21 18 16 13-13 13 2/C-10AWG-

. 20 16 116

-14 12 10 10 10 2/C-12AWG l

lI AMPCHK

= if 'IIthCD

. < Iamp 1 ~ 0'

-Ampacity Comparison 1,j i,j 1, j -

equation i-f I

b o

I l

~r e

u

,a-

-rse

,a s-n.

^~-,.ns

.,-,-a-e-we.

--.me++~

.<w a."

Calc.-Humber EEB-140 Rev. Number 4 Page Number-14 cf 18 Ampacity Comparison with Thermolagged conduit (Box Design)

No. of Cables / Conduit size 1 2 3

5 3

'4" 5" 6" 4

'l 1

1 1

1 1 l ~ l' 1/C-506,8 KV 1

1 1

1 1 1 1 1

1/C-350,8 KV 1

1 1

1 1

1 1

1 1/C-4/0,8'KV -

1 1 1

1 1 - 1. 1 1

1/C-750,600 V 1 1 1

1 1 1 1

1 1/C-500-AMPCHK =

1 1 1

1 1 1 1

1

-1/C-350 1 1 -1 1

1 1-1 1

1/C-4/0 1 1 1

1

-l' l'

O

-1 1/C-2/0 1 1 1 1

1 1 1 1

TRI-4/0 1 1 1

1 1 1

1 0

TRI-2/0 1 1 1 1 1 0 1 1

TRI-2AWG 1 1 1

1 1 1 1 1 3/C-4AWG 1 1 1

1 1 ;1 - 1 1 3/C-6AWG 1 1,1 1

1 1 1

0 3/C-8AWG.

NOTE:

1 1 1 1 1_ 1 0 0 3/C-10AWG_

1 - Adequate cable 1 1 1 1- 0 0 0 3/C-12AWG ampacity.

1 1 1

1 1 1-1 11' 2/C-2AWG 0 - Inadequate-cable 1 1 1

1 1 1 1

-1 2/C-6AWG ampacity 1 1 1 1 1

1 1-1 12/C-8AWG 1 1 1-1 1 1 1 El 2/C-10AWG

,1 1 1 l'

1 1 0 0,

2/C-12AWG 1

CaLimit

= if'AMPCHK -

m 1, 'N

~, 0' i,j 1,j

,1,j, ',

CaLimit-

=.if 'Iamp

= 999,0,CaLimit 1, j, i,j i,j

... ~..

.- ~

3 4

1 I-Calc. Numcer EEB-140 Rev. Number 4 Page. Number 15-of 18 t

l

-limit of Number of Cable in Bundle:

Not to Exceed Ampacity of Cable in Tlwrmolagged Conduit (Box Design) t No. of Cables / Conduit Sizo 1 2 3-5-

3 4"

5" 6"

l

'l 2

3 5

1 1

1 2'

1/C-500,8 KV-

- se 1

2 3

5 1

1-2 3

1/C-350,b KV l

1 2

,1 5.

I 1

'*L 4

1/C-4/0,8 KV 1

2 3 5 1

1 2

2

1/C-750,600 V 4

l 1

2-3 5 1

1 2

4 1/C-500 Caldmit =

1 2 3~5 1

2 3

5 1/C-350 I

1 2 35 2

4 6-9 1/C-4/0 1-2 3 5 3

5 0 12 1/C-2/0 1-23 5

1 2

4 6

TRI-4/0 The limit to the-l 1

2-3 5

2 3

5 0

TIC-2/0 number of cables i

1-2-

3-5 4

0 11 16 TRI-2AWG under a wrap, use j

1 2 3

'S 3

6 10 15 3/C-4AWG

. maximum number.in 1

2 3

5 4-8 13-19 3/C-6AWG-a given row..

i 1

2-3 -- S 7

13 21 0

3/C-8AWG.

Thres '1/C cables 1 2 35 11 20 0

0 3/C-1CAWG are: considered'ns 1

1 2 3

5-18 0

0 0

3/C-12AW3-or.e (1) 3/C canie.

~

1 2 3 5 3

5 9

13 2/C-2AWG 1 2 3 5 6 10 16 23 2/C-6AWG 1 23'S 8

15 23 34 2/C-8AWG i

i 1

2-3 5 13

.22.

35 51 2/C-10AWG I

JL 2-3 5' 20 36 0

0, 2/C-12AWG i

+

4 i

l 4

2.

t

?;-

?.

.n g x._,

.s_,,

-p.,

- +,,.

.,,_we,,,,

l Calc. Number EEB-140 Rev. Number 4 Page Number 16 of 18 Ampacities of *able in Themolagged Conduit (Shell Design)

CCdiam := READPRN'CCDIAM prn,

t

~

O.65 0.925 IIthCDshelli

= if CGdiam

< 3, IIthCD IIthCD w

1,j 1,j 0.8 1,j 0.8 i, j, 0.925 IIthCDshell

= if j > 4, IIthCD

,IIthCDshelli 1,j 0.8 1,j i, j.

Thermolagged Ampacities in Conduit (Sholl Design)

No. of Cables / Conduit Size 1

2 3

5 3"

4" 5"

6" i'275 313 274 274 391 391 391 313' 1/C-500,8 KV 225 256 224 224 320 320 256 224 1/C-350,8 KV 167 190

'66 166 237 237 190 166 3/C-4/0,8 KV l348 396 346 346 495 49b 396 396 1/C-750,600 V y

277

  • 15 276 276 394 394 315 276 1/C-500 s

IlthCDshell =

223 254 223 223 S18 254 223 223 l'/C-3 50 162 184 161 161 184 161 161 138 1/C-4/0 119 35 03 116 118 118 118 101 1/C-2/0 162 194 16i 161 230 184 161 161 TRI-4/O 119 95 83 118 135 118 118 118 1RI-2/0 76 60 53 53 75 75 65 54 TRI-2AWG 53 42 37 37 53 S3 45 38 3/C-4AWG 40 32 28 28 40 40 34 28 3/C-6AWG 30 24 21 21 30 26 21 21 3/C-8AWG 21 17 15 15 18 15 15 15 3/C-10AWG 16 13 11 21 12 17 12 12 3/C-12AWG 72 57 57 50 81 71 71 61 2/C-2AWG 40 32 32 28 40 40 34 28 2/C-6ARG 30 24 24 21 30 26 21 21 2/C-8AWG 21 17 17 15 18 15 15 15' 2/C-10AWG

, 15 13 13 11 14 12 12 12, 2/C-12AWG e

Calc. Number EEB-140

-Rev. Number 4 Page Nu2er 17 of 18 AKPCHK

= if ~1IthCDshell

< Iamp

,1, 0' i,j 1,j 1,3 w

Ampacity Comparison With Thermolagged Corduit (Shell Design)

No. of Cables / Conduit Size 1 2 3

5 3 4' 5" 6"

'l 1 1 1

0- 0

.0 l'

1/C-500,8 KV 1 1 1 1-0 0 1 1 1/C-350,8 KV 1 1 3

1-0 0 1 1

1/C-4/0,8 KV 1 1 1 0 0 0 1 1 1/C-750,600 V 1 1 1 0 0 0-1 0

1/C-500 AMPCHK =

1 1 1 0 0 1-1-

0 1/C-350 1 1 1-0

-l-0 0 0 1/C-4/O 1 1 1 0 1 0 0 _0

.1/C-2/0 1 1 1 0 0 1 0 0 TRI-4/0 1 1 1 0 1 1 0

.0 TRI-2/0 1 1 1-1 0- 0 0 0 TRI-2AWG

NOTE

1 1 1-1 - 1 1 3/C-4AWG

.l'--Adequate cable 1 1 1

-1 1

0-0 0

3/C-6AWG

-ampacity-1 1 1 1 0 0 3/C-BAWG 0 - Inadequate cable 1

1 l'

1 1-0 - 0 0 3/C-10AWG ampacity 1 1 1 1 __ 0 0

_0 0

13/C-12AWG 1

.1 1 1 1 1-1

-2/C-2AWG 1 1

.1 - 1 ~1-1-1 1

2/C-6AWG 1 1 1 1 :1 1-1-0 2/C-8AWG

-1 1 1 1 1 1.O 2/C-10AWG

,1 1 1 1 0 0.

0 0.

2/C-12AWG CaLimit - - := if'AMPCHK

= - 1, 'N

~

, 'O' i j.

. ir j, i,1 i

CaLimit-

= if"Iamp _ = 999,0,CaLimit i,j;

- t,j 1, j,

q l

i 4

1 I'

Calc. Number EED-140 i

Rev. Number 4 I

l Page Number 18 of 18 1

4 4

e i

Limit of Number of Cable in Bundle:

Not to Exceed Ampacity of Cable in_

Thermolagged-Conduit (Shell Design) s No. of~ Cables / C6nduit Size i

1 2 3

5 3

4" 5"

6" 2]

1/C-500,8 KV

')

2 3

5 0-0 0-i 1

2 3 3

0 0

2 3

1/C-350,8 KV 1

2 3

5 0

0 2

4 1/C-4/0,8 KV-1 2

3 0

0 0

2 2

1/C-750,600 V i

1-2 3

0 0

0 2

0 1/C-500 CaLinit =

1 2

3 0

0 2-3 0

1/C-350 i

1 2 3 0 2

0 0

0 1/C-4/0 1 2 3 0 3

0 0

0 1/C-2/0

{

1 2 3

0 0

2 0

0 TRI-4/0 The limit to-the i

1 2 3 0 2

.3 0

0 TRI-2/0 number of cables 1 2 3 5

0 0

0 0

TRI-2AWG under a wrap, use l

1 2 3 5

3 16 10 15 3/C-4AWG maximum number in 1

2 3 '5 4

0 0

0

-3/C-6AWG a given row.

1 2 3 5

0 0

0 0

3/C-SAWG Three 1/C cables-l 1

2 3

5 11 0

0 0

3/C-10ANG

_are considered as 1 2 3

5 0

0 0.

0 3/C-12AWG ons (1) 3/C cable.

l 1 2 3

5 3

5 9

13 2/C-2AWG j

1 2 35 6

10 16 23 2/C-6AWG 1

2 3 5

8 15 23 0

2/C-8AWG-12 3

5 13 22 35-0 2/C-10AWG i

,1 2 3 5

0 0

0 0,

2/C-12AkG 6

i i

i 40 i

i t

I' IIthCDshell

,Iamp l'

(15,j)

(15,j) x g

N,_

~

10 0

N 50 (15,j) v i

4

?

m

- - ~, -.,. - -

.... -,.. ~, -...... _...... - +, -. -.. -, -. ~ - -

.. ~,,...

-