ML20128G994

From kanterella
Jump to navigation Jump to search
Draft P848/D11, Procedure for Determination of Ampacity Derating of Fire Protected Cables
ML20128G994
Person / Time
Site: Comanche Peak Luminant icon.png
Issue date: 04/06/1992
From: Alhussaini T, Bhatia P, Gwal A
INSTITUTE OF ELECTRICAL & ELECTRONICS ENGINEERS
To:
Shared Package
ML20127K787 List:
References
P848-D11-DRFT, NUDOCS 9302160221
Download: ML20128G994 (30)


Text

__ _____ - _ _ _- _ _ _ _ _ - - _ _ _

April 6,1992 P848/D11 PROCEDURE FOR TIIE DETERMINATIGN OF TIE AMPACITY DERATING OF FIRE PROTELW CABLES Prepared by Task Group 12-45 . . ,,_.

d of the Test and Measurements Subcommittec #12 of the IEEE lnsulated Conductors Committee e

All rights reserved by the Institute of Electrical and Electronics Engineers, Inc, s

9302160221 930339

{DR ADOCK'03000446 PDR I

} - _ _ _ _ _ _ - _ _ - - _ _ _ _ _ - _ - _ _ _ _ _ - _ _ _ - _ - _ _ - _ _

j

_____ ______ __.. _._. _ ___ _. . - . . _ ~. .._ . . _ . . _ _ _ _ __ __ . _._

i . - '.

1 8

At the time this draft was completed, the Task Group on Procedure for the i Determination of the Ampacity Derating of Fire Protected Cables had the following membership.

l A.K. Gwal, Chairman .

i 4 T. J. Al-Hussaini R. G. Koza P. Bhatia R. Ucht

[ J. E. Merando, Jr.

, E. A. Capouch

E. J. Coffey K. W. Prier

! E. J. D'Aquanno D. N. Priest R. Das B. E. Reagan

j. J. DalyL G. A. Remaley P. D. Skelly P. J. Finnerty

=

J. B. Gardner M. Spurlock -

P. A. Giaccaglia - W. Torok

= A. Hiranandani J. R. Tuzinski -

CV. Johnson F. W. Van Nest A.E/Kollar T. A Venkataraman

- J. G. Waligorski 4

Other individuals who have contributed are: - .

K. W. Brovm -

D. C Gasda f

i A

A i

e 4

+

1 1

n e i

i 1

.-~y.,., .,,...?,e,,,.m.,........,,,,._,,,;3,,:_,e,, .,_.,,,.,,._,.,,_,..,.,.ry..;.,,,,,,,,,m., ,,,,,,_,,,,,,,,m,,,,,.m.._m_, ,,,,,.4_,,g,,,w,.,,.w.,

i e,- '.

i

?

PROCEDURE f for the Determination of the l

i AMPACITY DERATING OF FIRE PROTECTED CABLES i

i D. RAFT 11

Apdl 1992 l

i l*

INTRODUC110N Many instahations incorporate individual or grouped cables which do not limit the flame propagation under fire conditions. This deficiency can be attributed to conventional:

[ cable constructions, such as polyethylene insulated PVC jacketed control cables; widch

were popular in the sixties and early seventies. Such cables do not meet the flame ;

! spread criteria when subjected to the vertical tray flame test which has been accepted in-

one form or another. Other installations which fall in the same category indude metal j- sheathed or arinored vertical shaft cables with overall polyethylene jacket and secured.

! with clamps at various intervals. Polyethylene jacket is used because of its high resistance _.,,_

to creep under pressure in the clamp area to support the sheer weight of the cable, i

l The foregoing installations include industrial, commercial, marine, nuclear or fossil i generating stations and others.-

i h To retard the flame propagation propmics of cables in cable trays, protective coatings

! are applied either along the entire length of the cable (s) or in certain sections as deemed

! necessary. The flame retardant coatings may be;in a form of tapes, blankets, liquids or >

mastics applied to individual or to grouped cables, both for retrofitting cixisting

[ imtallations or for new installations.

1. PURPOSE I ' Die purpose of the standard is to provide a test procedure which may be used to .

determine the ampacity derating required for fire protected cables in conduit, in p penetrations (fire stop) and in cable tray systems.

l 1 L  :

1

2. SCOPE This standard provides a detailed procedure for determining the ampacity derating required for fire protected cable systems. The tests are intended to be used to determine the ampacity derating of fire protected systems which is to be applied to the ampacity of cables determined by standard methods such as ICEA P-46-426 Power Cable Ampacity Volumes 1 & 2, and ICEA P-54-440 Cables in Open top Cable Trays.

2.1 General The procedure presented in this standard includes the principles and methods of

testing. This test procedure will provide the ampacity derating of a fire protected cable system.

2.2 Applicability Fire protected cable systems outlined herein are intended for use in power generating stations, both nuclear and fossil, as well as other applicable commercial and industrial installations, both outdoors and indoor. The categories of cables include, but are not limited to: power, control, and instrumentation including signal and communication cables. Testing of flame retardant coatings on horizontal cables will qualify the coatings for all orientations. The tests as

- described herein are intended to be used in determining the derating factor, which .

may be required for fire protected cables in conduits and trays. The ampacity of the cable in raceway will typically have first been determined using accepted

~ practices such as ICEA P-46-426 Power Cable Ampacities Volumes 1 and II, and ICEA P-54-440 Cables in Open Top Cable Trays.

The user of flame retardant coatings is cautioned to determine that the coating is compatible with the cable materials with which it comes in contact and with the.

environment in which it is installed; The user may specify tests in addition to those specified in this standard to reflect the installation conditions, e.g., for nuclear stations, the user may /ish to add irradiation test or effects of added weight; or for outdoor installations, the user may wish to add a U.V. resistance test.

3. DEFINITIONS These definitions establish the meanings of v/ords in the context of their use in this standard.

2

d Fire Protected Cable Systems t

Cable systems to which an application of a flame retardant barrier, fire resistive barrier or coating (Game retardant coating) to protect cables from fires from any cause has been applied.

4 Mame Retardant Coatings A material applied to a completed cable or assembly of cables to prevent the propagation of ihme when exposed to a flame source. Flame retardant coatings

. include tapes, blankets, liquids, flame retardant mechanical system or mastics.

Passive Fire Pmtection Systems l Systems which einbody fire resistant construction such as coatings, barriers, walls, and penetrations (fire stops) as opposed to water sprinkler systems or gaseous

extinguishing system
.

'Ihrough-Penetration Fire-stop i

A specific construction of devices, fill materials, or both, designed to resist the -

penetration of fire through those openings in fire resistive floors or walls that are j

intended to accommodate electric cables, raceways and me**1 service ,_

penetrations.

l Ampacity Derating Factor A factor appiicable to the ampacity rating of a cable (or other device) to account i for the adverse affects of some installation or environmental condition.

Raceway Any channel that is designed and used expressly for supporting or enclosing wires, cables, or bus barr~ _ Raceways consist primarily of, but are not restricted to, cable trays and conduits.

1 Cable Tray A continuous rigid structure used to support cables. Cable trap include ladders, troughs, channels and other similar structures. Conduits are not included in this category.

3

.s j

l l

Enclosures A surrounding case or housing used to protect the contained equipment and prevent personnel from accidentally contacting live parts.

l

4. REFERENCES The followirig standards were used as references in preparing this standard and may be useful in the interpretation of its meaning:

ICEA P-46-426/IEEE S-135 Power Cable Ampacities, Vols.1 and 2. Dated 1%2 (Reprinted in 1984).

ICEA P-54-440/ NEMA WC-51 Ampacities - Cable in Open Top Cable Trays. Dated 1986.

5. TEST DESCRIPIION 5.1 General l

This section describes the method for determining arapacities of cable passing

' through single tray and conduit with and without a passive fire protection systern. , .

. 5.1.1 Applicability

~

This method shall be. applicable to a single cable or groups of cables enclosed in a passive fire protection system. Cables may be contained in a raceway or as dictated by the actual installation.

. 5.1.2 Method of Testing Ampacity derating for cables of a passive fire protective system shall be by testing. Testing shall be performed using the configurations depicted in Figures 1 and 2. As an alternative, tests may be performed using representative assembly which can be analyzed to ~

show its applicability to actual installed comlitions. Results are also applicable for 1000 volts and higher rated cables.

4 9

4

5.2 Test Specimens 5.2.1 Cable Selection The cable to be utilized is chosen as one which is representative of a 4 wide range of cables. The selection of a 3 conductor cross link polyethylene insulated, #6 AWG 600 volts copper cable widi an overall chlorosulfonated polyethylene (i.e. hypalon) jacket was chosen as representative.

I i

5.2.2 Cable Fill Cable fill is the ratio of cable area to the inside area of the tray expressed in percentage. A 40 percent cable fill, as determined V from actual measurement shall be used for cable trays, i 5.2.3 Cable I.ayout The length of both the conduit and the tray shall be twelve feet.

One to two feet of cable shall extend out each end and shall be wrapped with unfaced hberglass blanket insulation (or ciectrically-heated tape) as necessary to eliminate heat flow out of raceway ends.

}

5.2.4 Conduit The conduit system shall be 4 inch and 1 inch steel rigid conduit,12 feet long supported every 18 inches from each end by a horizontal piece of "H"-shaped or 2" x 2" square structural tubing.

5.2.5 Tray The tray shall be a 4 inch deep,24 inch wide kdder-back steel cable tray 12 feet and support similarly to the ccaduit system. The tray and conduit systems, if tested together, must be at least 36 inches j apart along their lengths.

5.2.6 Through-Penetration Fire-stops A through-penetration fire-stop intended for installation in a fire resistive floor assembly, wall assembly, or both, is to be installed in a wall section so that the electrical cables pass horizontally through

+

the wall. The through penetration fire-stop is to be installed in 5

-w w , v-- -e- r-- g

.- 1 l

accordance with all requirements specified for the fire stop being tested.

i The sample wall section is to be representative of that specified for the through-penetration fire stop. The thickness of the wall section 4 is to be equal to the maximum thickness of the fir-estop system or device. The size of the through opening i2 the wall section is to be representative of the through opening size specified for the through-l penetration fire-stop.

T

$ The fire protective system is to be installed around the electrical cable (s) and raceway (s) in accordant.c with all requirements specified for the system.

5.3 Test Facility 5.3.1 Test Room The ampacity test shall be conducted in an enclosure as defined in Figure 3, The test specimen shall be suitably enclosed such that temperature around the specimen shall be controlled at the test a temperature of 40 C 2 C. The enclosure surrounding the test specimen shall be of even temperature, but must not cause drafts on i the test specimen. The temperature inside the. enclosure shall be _ ._ _

measured at no less than three places one foot from the specimen, and in the horizontal p!ane of the test specimen. The temperature of the enclosure shall be taken as the average of the steady state

measurements.

5.3.2 Cable Installation 4

5.3.2.1 Tray The tray is to be loaded with three conductor #6 AWG,3/c copper cable, with an overall chlorosulfonated polyethylene jacket. The tray fill should be based on 40 percent fill.

i Tray cables should be installed in an orderly, symmetric manner, so as to limit the flow of air through the bundle, and to facilitate -

inter and intra-laboratory repeatability of these tests. The

, cables shall be connected as a single series electrical circuit, which contains all conductors in the system. The tray is to be  ;

supported by two horizontal pieces of "H"-shaped or a suitable ,

support system, located as shown in Figure 3. A 3" x 25" piece l

l 6 l 1

l l

l l

of 1" thick mineral fiber blanket shall be placed between the tray and support system to fotm a thermal break. Thermal insulation (e.g., fiberglass or electrically-heated tape) shall be wrapped around the cable which extends out of both ends of the tray to allow adjustment of eno temperatures. The end temperatures must be adjusted such that the average values for the thermocouples at locations 1 and 3 are within 4*C of the average for location 2 to minimize axial heat flow.

5.3.2.2 Conduit Since the application of the fire protection system may result in differing derating for different conduit sizes, two sizes of conduits shall be tested:

(a) 1 inch rigid steel conduit with one 3/c No 6 AWG copper cable (b) 4 inch rigid steel conduit with one 3/c,750 Kcmil copper cable Derating for both sizes shall be reported. Lowest factor shall be used for ampacity derating. The bundle shall be instrumented with thermocouples as shown in Figure 2, tied with wraps every. _ _ ~

2 feet, and pulled into position in the conduit. The cables shall be connected as a single series electrical circuit, which contains all conductors in the system. The conduit is to be supported by two horizontal pieces of "H" shaped or 2" x 2" structural square tubing with a minimum of 36 inches clearance from the tray or walls of the enclosure. The attachment points between the conduit and the supporting beam are to be insulated with 1" thick mineral fiber blanket to form a thermal break similar to the tray system. Insulation (or electrically-heated tape) shall be wrapped around the cable which extends out of both ends of the conduit to allow adjustment of end temperatures. The end temperatures must be adjusted such that the average values for the thermocouples at locations 1 and 3 are within 4 C of the average for location 2, to minimize axial heat flow. In other.

words, the ends should be close to the same temperatures as the middle, thereby minimizing axial heat flow.

7 l

- 1

i

  • e 5.3.2.3 Through Penetration Fire-stops The electrical cabic(s) and raceway (s) penetrating the sample wall section are to be representative of those specified for the through-penetration fire-stop and are to be of sufficient length to project a minimum of 24 inches beyond both sides of the wall section. For this purpose maximum thickness of fire-stop shall be measured. Thermocouples on the electrical cables in through-penetration fire-stops are to be located so that temperatures are measured in the interior of the fire-stop and at

' the fire-stop mid-depth as in figure 5.

5.3.2.4 Orientation The test spechnens shall be mounted and the tests run in the horizontal direction so as to eliminate any possibility of a

" chimney effect" which could cause air movement within the j system.

l 5.3.2.5 Thermocouple Placement Thermocouples (24 gage, Type K [Special Grade] Chromel-Alumel, accuracy 1.15 C) shall be installed by slitting the cable insulation and jacket and placing the thermojunction.in intimate ._ _

physical contact with the conductor strands, as illustrated in Figure 4. The cable shall then be restored as closely as possible

~

to its original condition, and the slit sealed with a single-layer

spiral wrap of electrical tape. Since the test is evaluating the temperature at the hottest position, rather than the average of all thermocouples, the cables within the bundle have been instrumented, instead of those near the outside. For both the conduit and tray systems, thermocouples shall be placed at each of three vertical planes along their lengths, as illustrated in Figures 1 and 2. The tray system shall be instrumented with 13 thermocouples at each plane, for a total of 39 thermocouples, and the conduit system shall be monitored with 1 thermocouple at each plane, for a total of 3 thermocouples.

5.3.2.6 Installation of Passive Fire Protection Systems The tray and/or conduit is to be lifted off it's support after the completion of the baseline test, the passive fire protective system applied in accordance with the manufacturer's instructions, and the entire assembly lowered onto the horizontal 8

i

. support, thereby minimizing any heat sink effect from the  !

support system. After installation, the passive fire protection system shall be allowed to equilibrate (or cure) to a state of constant moisture content, if applicable. Moisture content (in l tcims of percent moisture) shall be taken 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> .or less before i the test is begun and within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> after completion of the t st, using either a hand. held moisture meter, or standard 120 C oven-dry methods). Such moisture de'ermination is to be ma.,

on the top and bottom exterior surfaces of both the tray and conduit systems at their mid-length, and the results of top and bottom averaged.

5.4 Test Procedure 5.4.1 Baseline Evaluation At least one baseline experiment for each system (conduit and tray) using Sections 5.4.2,5.4.4, and 5.4.5 shall be conducted to establish the cable ampacity prior to application of the fire protective system. The ampacity value measured should be compared to the E2E-ICEA Power Cable ampacities standards.

5.4.2 Current -

The circuit shall be energized with 60 Hz, single phase a!:ernating current suf5cient to reach a steady-state temperature of 9')C at the hottest single point monitored at location 2 (see Figures 1 & 2). The current values measured shall be reported to the nearest 0.1 ampere. The use of a constant-current amplifier is highly recommended as a power source, since the increasing temperatures of the conductor circuit cause resistance changes. Alternatively large variable transformers may be used, with constant readjustment to maintain a set current flow 5.4.3 Temperature Measurement All temperatures shall be recorded at in ervals no greater than 1 minute. The current in each test circuit shall be at justed so as to give an equilibrium temperature of 90 C 1.1 C At the hottest point monitored within location #2 (those located at the center of the system). The average temperatures of thermocouple locations #1 and #3 shall be within 4 C of the average of thermocouple location #2. Each cable circuit shall be 9

. considered to be in, steady state conditien when a three-hour period has elapsed since any perturbation of the system 2 occurred (current adjustment, box temperature change, additional insulation placed on ends, etc.) and the rate of i change of the average of all monitored conductor temperatures in that circuit does not exceed 0.55 C for the conduit1 and 0.35 C for tray2 . Re-adjustment of the current flow to a circuit in order to maintain a given amperage value is not to be considered a perturbation.

In order to statistically assure thermal equilibrium, the conductor

temperatures should be averaged at each sampling period and a linear regression analysis (least-squares fit) performed on the data obtained from that and all other averages taken over the preceding 60 minute period. 'Ihe slope of the line obtained will be in units of "C/ hour. As soon as the absolute value of the slope of these data becomes less than 0.55 (conduit) or 0.35 (tray), equilibrium has been reached. The degrees of freedom obtained by averaging many thermocouple locations (3 for conduit,39 for tray), allows the precision to exceed the 1.1 C limit of any one thermocouple. The only practical m:thod of obtaining the required accuracy in determining thermal j equilibrium is through the use of computerized data retrieval As an example of the least-squares technique, consider the tray system in Figure 1. At each sampling time, an average temperature of thermocouples 1 through 39 will be calculated.

This value will then be added to the top of an array large enough to hold 60 minutes worth of these averages, and the oldest value discarded. A linear regression fit is then performed on the array and presented on the video screen to the operator.

When the next data sampling is completed, the entire process is

. repeated, thus yield a linear regression fit of the data from the previous 60 minutes. As cach new data point is added to array, all previous ones are shifted down one time increment, until each is finally discarded due to the fixed size of the array, i

^

l Chosen as the 95% confidence limits fcr Special Grade, Type K thermocouples at  ;

90 C.

10 1

l I

LINEAR REGRESSION (LEAST SOUARES METHOD) FIT:

, Y = mX + b N = EXfn

? = EY/n y

1

EXY EXEY n '

. M= i i gg2 _ {EN) l n

i.

i .

l b= - m2

) Where:

Y = Average Conductor Temperature (*C)

X = Time Increment (min)

mr Slope ofline (C/ min)

. S = Y-Aris intercept ("C) . ,

j

! 5.4.4 Enclosure Temperature The temperature within the test enclosure shall be controlled to 40C 22 C. Some induced dr movement within the enclosure is necessary to achieve uniform steady-state temperatures, but care

must be taken to avoid direct air currents against the test specimens.

Method of amolent temperature control within the test enclosure iz important and care must be taken to a' old any additional heat 4

loading on the cables by radiation froh. heat source.

6. li. VALUATION OF TESTS By a simple comparison of the baseline and test specimen ampacities, a derating '

factor i m be calculated.

Data Interpretatian: Ampacity Demting Factor The maximuio current carrying capacity shell be determined by derating applied as dictated by the test. The derating factor as determined by the test is to be ceJcolateu as follows:

11

4 j  % Ampacity Derating Factor = (lo .1,)/ lo x 100

Where

i lo u Current in amperes required to attain a temperature i of 90 *C for the baseline (un protected) system.

i However, if Io is larger than published ampacity i.e.

ICEA P-46-426, P 54-440 then published ampacity 1

. hall be used for 1.3 I t= Current in amperes required to attain a temperature 4 of 90 *C for the systcm as protected by the passive fire protection system.

j -

7. DOCUMENTATION OF TFSTING ,

3 Following the procedure outlined in this standard, provide percentage ampacity 1 derating and record the following specific data.

  • Description of cables and raceway,if different from specifico herein.

. All thermocouple data

  • All current m.d voltage values .

!

  • Current and conductor temperature values observed at equilibrium

! e Vreight of passive fire protection eystem (Ib/ft) e Average thickness of tire protective system (icches) e Details ofinstallation of fire protecthre system j The documentation of records shall be provided in the form of e FINAL REPORT. The report shall contain for permanent record allinformation-

, - pertaining to the test including the Test Plan, laboratory notebook, til raw data, interpretations, and observations. The report shall provide the. documentation of all the above parameters and cvidence of calibration to NIST standstds for equipment used in obtaining this dsta (including before and after calibration of thermocouples), and appropriate resolution of any test anomalies. All calculations, conclusions or interpretations shall have been checked and approved by authorized individuals certified by the tet. ting organization to be knowledgeable of the techniques used. 1 j

12 l I

-- - _ - i

l .-

3

)..

h

,1i wg I

4" x 24" x 12' Steel, ladder back Cable Tray l

c ,

l q l L d A l l l 4 l k 36"  : - 36"  : : - 36"  : : - 3 6" di .

! i j

I i

t Thermocouple Thermocouple Thermooouple

' Location #2 Location #3 Location #1 f

j SIDE VIEW Scale: 0.5'- l' l LOCAtl0  ;

j uJL h jL' h n h n~ n h JL hJL  ;

4 l 12 34 56 78 910 1112 13 4---TO LD. Numbers

! 1 o #2

~

i h u h h A h n'h haA dk a

I -

' 14 15 16 17 18 19 2021 2223 24 25 26 +--TC l.D. Numbers '

i l

ev m er-m c w o m r %oi--. no._, Thermocouple

r. .,. ..a. .-. -

._ . m I 5: "::: T::" T:.2L 'u Q Location #3 a .

I nu nA a n- - a n a n a n n I

I I i 2728 29 30 3132 3334 35 36 373835 4--TC l.D. Numbers i

CROSS SECTIONAL VIEWS  ;

i Scale: 1.5" - l' L. ,

'\

. NOTE: Cable tray is to be 100i4 visual-fill with 3 Conductor #6 AWG Cable.

Number of cables = 122. Cable dameter = 0.75 inch.

n TRAY AMPACITY DESIGN -

. Ficture 1 i

-I j

.I L

-..v,c.4, e~,#,-w.e-~n..:y.,,,,-,,,cc-

i.

4-8

= , I 4" x 12' Stosi Conduit 1

I

! I a u u l

\ l 36' 3G* .-W l k' 36'  : : 36* :_  : :

I J .

' Thermocouple Tt.ormocouple Therinocouple 1 Location #1 Location #2 Location #3 a

1 a9de View scate: og - t' j

s Y Cot 4 DV t*t t L) l l _

i.<5nmotvPLE I

gg"3/g*l60 kCMik CoYPEA CA64,6eov l

l i-l- .;

1"Cogt>o 5(.Rlg) em i , ._on, 3/g (, Aus c.epor

>#^'AL,he*V wJ

(

. - . . w. -n ,

l I

i l -.

e

=

c .

1 I

-CONDUlT AMPACITY DESIGN -;

t .

I Flaute 2 l

j. _

-- 2 ,:- , . _ _ _ . , . . - . . - . . _ . . .. _ .. _ ._ .._-._. _ ._._ _ . . . . _ . . _ _ _ . . . . . . . _ . - . . _ _ _ . _ . . .

l' 1 d

4 i

i-1 1

.i i l

1 - .- 132" t

J 1

4* Steel Condull 4" x 24" Ladder-Back

>- f Steel Cable Tray

/ Uni Strut i

l [ ,

Support 72 o , n a 1 a ..

k i + 18* ++ 18- ; 36"  : : 24" --><eis" ++ 18" >

l 40*C HEATED AREA

y Cross Sectional VJqE l . . . - . . .

t i

t

-4 144* b-

! + 1s > + 1r +

i I .

I

> H H l Conduit & Tray Suoport Polata 4

l 1

COMOUIT AND TRAY AMPACITY DESIGR Floure 3 P __

y . - - - ,--r .

. . , - ,e -

,,,,e+ .- - -,_.._---r -- --s- -

i j'  ?.

j

) . .

1 i

l

1 1

)

Type K,'Spectar

! Clwomel-Alumet,24 Gage

! Thermocouple Wire I

i sgsg -

i ,

.r%*. *.t*. u k Est*> ~ ku.*.4.*.v:*k.*.v.t* 2 i

i 1Z'CEE!$Z

'.,. c d-l .

'*2Y*%??;*;*;*%%Y*%%%%Y*Y&%%%;*;*%;*;*?Y<*%Y*%;*'*%Y

Insulation i

j I

4 i r NOTE:

l

! To attach thermo-junction to copper conductor, make an approximmuly 2 inch  !

i long slit in the outer wrap, expose the three conductors, k,cate the conductor to be instrumented, make a 1 inch slit in the insulation ar.d insert the -

! thermocouple junction in contact with the strands, Close the slit, reposition the

wouter wrap and seal with a spiral wind of a single layer of glass-reinforcea l clectrical tape.

1 i

j

\

saure 4 1

l 1

I i

I

-ceh=esme.<E.-m a 4m .,.ia-j-

i e

  1. 6 U 4

LOdATION OF THERMOCOUPLE-TRROUGH-PENLTRATION FIRESTOP i .

n' i '

I.

t i

f

+

h MfH' i Stat 1 %5CFIdlW trtTW tussem-rguRT9AT10m i Frasmr 08vtM

}

a - 1 a

l m.

j 1- ,e i i ,

, 8

  • L. - ===== n==

J:4tle.. --

l 4 3

4 4

i i

.I 1

~

v d

i i

t - -

4 s l

t i

(

1

?

4 i

e i

4 4

4

~

4 IE[BQUGH PENETRATION FIRESTOP AMPACITY DESIGN .

i 1

i Fiaure 5 3-e 1

1 1.

?-

i _. j

- - ~ . . . , . , , . . . _ . . . . . , _ . . . . . _ - - .,..m._,,..,..-...,.,-. . . _ . . . - . , . . . . _ . , , , . . , . . - . _ _ _ . _ . . . ~ . . . . . . ~ , _ _ _ . . - _ _ _ , _ - . _ . . . . . _ . , . . . -

FICuas 7.1 COMANCHE PEAX STEAM ELECTRIC STATION [. 'y7Wl8"**, i wuur DESIGN CHANGE AUTHORIZATION h4 a ,c , , ,, a f Orcs sei un.u mte === mevarwaeuwwa e res t.acarne 4 wwwa s.mem, om a(=

a mm ,,.e.em. .,m n , s ,.. a

.. . r res to seu e n., enrrnesuernn, equ GD/r a sc ._ - - *.~ - t r m. tet es.,

a,-.~, ar , d.

McEAsse chapet 85 at3DW19/PSSP'49E9 tussa firfsm4&s REY. 0 - SEE M' 2 l RE/ .i - Abbt TicNAL EAMINEERING basts PROVIDED.

6ll*,acyngh% awn t _, se .,om *,..m T4* Lher EterAa,8 gr eneuets DN AUDITIOd$ TQ MS ~ 32// SL'E ATTACK $'b R4GLS, FOR "IEEC EIV E D "m is er cruuo ANpongggggg.0ct 2 719so E caucasms m.m.

g 00 ,

.CEf PAcd' 2.

arrerne wcvwer nu=uus Wu sweear== "'"' E 08 C'"*'"*""

an unaw main

,o,,,,,,, UT IlAt-!70'i SW. 02 pry ep-1 Ar_- ! 701 sir,01 Rev. cp-1

/

= - .,m n ,o m m . ., d eu . .a e..s- ,rr

/ * * * *~'

  • * * * * * * * * * " U "
  • U ** * "

& IRQ 1 REl-C9-f Shoe s

u 7

/ --.

a D% A esas w>es ty.t czaey"~samanc etevawws ~

  • 5 SnwMfd r ft?,'cVatts**wenet _merd "ge,# 7#

l ffgg g, U y e ns. e marine seirse O ns Cifme .5cJ-os.25 Y  %'.4 .  !,. E  ;

f

  • nneract ewwws a m e sui e m ,e care sets woen cassa -rtet ecssa eases cervwun

- . U "' E ** ' "* '" "J - -

  • o ts m.,= cmat arren a teres s ensuu n

_ l Cns (2 mm a res, cseetsreetact sea -

    • me ws emmt wem rac ww er a /

ewvente asure cacmarew cacunes ma a ns s ee e ns, i A , eners .

nv.i mu.1tu e O m (if *Er us, a carra J e 4.c cucuries me,,, se e. namwn Om CTwe r m,

/$ '

-e Ar/8 amm

, m ,. i i

.:.u , _ ,,; , ,,,_ _gupgg .

nues,s' ft'ty#te:da S/- .meti.fe/22 N E ases erse wurwa ~,m..~,, -

n < !A. % - C R /f 04@ rtsTQ se r us, mecare; ' tasner tres new,.-"* --

aire: --* - * * .

kypo% ee% 3 l

7~ MA eNHE = *t)f /R f di? '

NAns$$er, " " ,,. . , . ,

/r

~ 2 #E.Ekt~5 - C O 2 4 /:45hc - TM f S***""'- - " " 8'"' #"

J.Tggg7dkomu WMb g

aart: #- /N Imv 1

% 5.01-03 Dates 12/1/87 Page 7.1-1 of 1

++

COMANCHE PEAX 8 TEAM ELECTRIC 3 TAT 1CN N EE45", I

,. DESIGN CHANGE AU?HORIZAT10N CONT 1MUATION SHEET % ::t -

RE ALON CHANGE (SLCCk 3c)

ATTACHM ENT A Of PMc7EC*r PAccEDUAE !!-\08 (f!~tos-A)

. DETAIL.S TetF, TYPLS0F PACTAUb tNG. AACdWAYS WHICH DO

,ND T RKquIA K AN AnPACiTY REVIEW.

ATTACHMENT .8 LISP'I THE AACEWAYS / Aour/N& CoWTAf NING.

CAELK2 WHICH REqutAE 19 Go/t 50 SKAL M ATKhl AL DU6 70 An9ACIT*Y CCHCEANS, WHEN PEHETRAYtoN SEAL.C ARE RGQUIREO SF-ilLO JGAL MATRAIA L M A Y RE USED fo A AI.L oTNER RncEwAYs.

  • ENGINf EA tH G- BACIC: (Bloch 76)

ATTACHMENTS A L B WILL PAovtDE ccAssynucTroH DIRECTf0H foA FPIA fish =ouT*cf NdN n t ~ f?oO PKo rnublNG AACKWAYS3 AMD THE 1.NETALLATION

_OF THE APHtofttATE PENETA AT/0N CEAL.

k REPLACING SF-20 IJfrH SF*ie0/t.SO .&fCULD Al07 NAVE ANY 5'GN/fACAAIr IMPACT CD CABLE Lift.

CLA551C CABl.ES ARE SIEED BASED CAI J.25 k VULL LCAD c:URMNT, BU'r ACTLlAU.Y CPERATL AY /.00 X FCLL 404D CVAREUT OR 80% OF RATING . TH/S MEMS THRT &4% of THE Attok/ABLE /tSAY IS GEAICRATCD IN 'fftE CABLE Also THESE CAEut.s HAsE Brad ANER&lECD INTERAITTENTL;Y AND /d /tANY CASES LESS TRAN FVLL LCA D.

7dtAEWRE

  • TMSE f. ABLES HAVE NOT RUA) AT OR NEAR DE5IG d TSs1prRATORrs. 2"Al YNESG c.Ascs untRE SF-2o uAS wt.T/AU.Y ksrALLED AND Is BEING REPLACED gjlTN $r-40, ysteg gycyLO BE NO APPRECTABLE EF"fECT CN THE Gt/ALITIED ufE or THE CABLE.

s D.  : REV. : AFPtuato W m T PEV.  : REY.  :

l

!, , COSAANCHE PSAM STEAM ELECTRIC STAT 10N " IYo%'""**, t 1

DESIGN CHANGE AUTHORIZATION CONTINUATION SHEET %2 - sa i

1 I

i

}

ATT t#Y" taimau muums A

i i

I .- , te, -e,-

.3*.-

{ Di.R JOMr.R la T ., ,, . El 6

! SACHAY N C&MK

{ - kEis. M EAI A3LBRE 4

1 2 Fr. (Ltt) ING RETI N REQ'D i '

l 2 2 FT. (LII) ENS RETIN 22Q'D i

j 3 30 LDIIT no LD617 30 LIMIT i

A i .

30 LDt17 m LIMIT '

50 !.DtIT 5

l WD LIMIT W LIMIT NO LIMIT 6 30 LDEIT 30 LIIIIT 30 LIMIT (1) Cables Analysed for SF.20 Firestep IInterial,

(2) This Criteria is IIet applicable to Raceways which have SF+40 Fire ' Steps. -

i (3) saTo j This critarla is for themselas only. .a #((,5

! @ so . RErstENc5 DCA $7040 FQR RACEWAYS -Yt4AT l AEQUI)tt SF-teo /l50 SE AL nMTCAIAL s CM00LD )

L PsssrnA7 tan SEALS BE REqulRE.D. .

- - w= -m OTE V

sa. narracuce oc.A evo+o ren anceways ruaT-l a rauf AK 57-( o / iso StA L. Murra s AL , SHo0L ,

!. PEHETRArton stALs se acquinto, i m . . ,0 w a w .

.r Mt-9701. IM. + .

l.

! RIEV. o : . A5 Norto- REY. : AMECTED Nsu ers

ptr.y. .
ggy, ; .M f - 17oI- og& o+-

t .

- .- .,- a . - , . . .-.,-.-...--..-._.:. _ . _ . _ _ _ _ _ _ _ - - .

. COMANCHE PEAX STEAM ELECTRIC STATIEN i P184T*', ; _,

DESIGN CHANGE AUTHOMf2ATION CONTINUAT!ON SHEET a',.a + y A

. ATTACHMENT 8 TU CLCCTRIC CorwsCHC PfA4 SICAM CLCCfRIC $fAf!ON Uni? WO. 1 Arvl810#e C00(s CP* tE58 PPCC: $W877*tet*0542 RUN 84fCs 23 M4? 1909 S#aeora30

C*02681041 C*02014223
C-42003104 C*I2000314 C *I2005044

! C-02903104 C*l2001023 Cal 26050o6 C+020$4130 C*1264102e C*12008007 C**2904974 C*12901027 C*t2003444 C*02907023 C*I2801029 C*i200S044 C*t200e340 Colgeet030 C 'S2006007 C-02904349 C.I2641033 . C *12006109 C-02009923 C*I2001032 C*12606S04 C420 00s7 Cal 2008033 Cal 20e$807

. C*'02910321 C*12901034 C*42005124 C*12901037 C *1290s18 e, C-02010326 C-02040333 *C+12904033 C*12905887 i C 02810234 C-1200:039 Cat:005121 C*02910323 =12001000 C.I200s123 C-0ka107SO Cal 290teer C-1290stF9 C*0281C823 C*12001044 C*12005180 C*02680424 Cal 2901047 C-1290St#5 i

C*02stoest C-1290404g C-1200s t e A C420 $0664 C*12001049 C*12003ise C+02Sil233 C*12001010 C-12905204 C*028titSS Cal 2901051 C*t2003454 C =02911940 C*I2601082 C=1260sto7 C-02st2128 Cal 2301023 C*1200de?9

  • C*0291212? C-12901057 C*t:90 ecto C*02013725 C*1280t060 C=42006038 C*029193Je C
  • t 2002s52 Cal 2906059 C*02019211 C t2403124 C*I200+040

< C*02830057 Cal 200326g C-12004042 C*02003tti C-12903:4, C*t200404J C 02003114 Ca12003272 Ca12006044 C+02003117

  • C*12003274 C*I2004043 C*02005et8 t*42002275 C*12004o72 4 C-020054.s3 Cal 2643273 C*12004073 C*0200Sase C-12003391 C* 128060 ?e C*oko#5427 C-82003323 C-1200607e
C=12006079 C-02905423 C*t23037 3 C*02004273 C=t2004490 2*t20040st C+0200e274 Cal 25447s2 C*12004642 C+02011F39 C-12904927 C#1*#0+042 C*02041540 Cat 2004et3 C*L2006004 C-020:19er C-12004085 C=02011948 C-8 20050Sa, C-4000505 Cal 200ecea C-02011977 C-120030 0 Cal 200wwe C-8200411g C-020:22S7 Cat 200504 C 02912'J27 C*1200SO42 C*t200eJ4b i C+020124J8 C-12ts0$0e l Cat:064574 C-02014147 Ca t2006ste C-020:4222 LA8LC ma0 PACCW DAT A SYS TCM i

l REV.  : REY.  : AFFECTED DOCUMENT i

REV.

REV.  : ..

s

COMANCHE PEAK STIAM ELECTRIC 3 TAT 10N l'Ai47"",I

=

DESIGN CHANGE AUTHORIZAT10N CONTINUAT10H SHERT ,*4. s, .,2,;L fU ELECitfC CDMAssCHE PE AN Stran titCrelt Sf 4flose LMil NO. t DEVISIDM COtte CP=1558 PkOCs *We#7.W9-9582 auN OAfts 23 M4f 1999

) Sfe40/850 i

Cel20lH 44 JetA1100

, . C L30tM47 Jethg170 J317433)G CelsetMF3 JetT41228 C*120194 TF J3145100 J81748348 Jg1A3193 poetA1e3 C*12019621 Jg1Am200 Ca12019422 poet A2*3 Jg1As290 C*l29tte23 Jg1 Ass 29 Pee-tEC4 C+120lf431 Pgh t(C3 Jt1AS344 Pct-C10*4 Cal 2017682 J31Assos C*l2888867 pg2e*411

  • JetAS489 ft2sAWO2 C*I203960t J$1AS490*1 C=12039842 782848FO2 4 JS1 ASS?S 712eA W10 Cat 2030503 J41An740 i

C 12030$04 Jg1AS740e1 712easFl1 Ca12034447 712eAWi2 JS1Ase29 T12eeer13 Cel3034247 JC1A7530 C.12072425 T12Er40F14 45147350 712 DAW 15 Ca12872427 JetAtse C=12072422 T12eAarlo J81C1329 712eAWL 7 Cel2073390 J01C2208 941A4=94 7126AW19 I

JS1C3444 712 thaw 19 tetA2=64e4 JS1F031*1

  • telAp=44 T12 eat"20 .

481F104 T1294ar21 IV1C1 JB1F191 IV!EC268 712eA F22 J88F129 71'feAer23 IV1EC2 Jelpt2044*2 JVSEC4*l 712sasF24

' J81904*O ft2eaeF24*

a IV1PC182 J0190450 IVIPC2 JS151216 1

!VIPC3 712sAW25 J81830264 T12WA8F2A

!WIPC4*l JE1830270 JCIA40410 T120AW24 Jt1534296 1 J01A82040 J818302tS J 9*. A2229 T12SAW27 J813345 7129A8F27e J414245 J81840e00 441A243*l J81543844 1

.C8A244 T12945#29 JSitSS2 Y t 29AW29 J81A244*4 Js15eetoe2 J01A2439 710SASF30 JS184140 T12e4W21 J81A2444 J415A895 J81A3370 T129AOF22 J0187706 T120A8F33 J81A41240 J519899 J81A412SG T12SA4F22e J818932 1 J01A43440 JS199330 JS1A43790 T&20AW34 d4187330*l 7120A8F24*

JS1A43030 J81740846 Jt1A451 4 J!t1741200 7120ASF24*

t =64.1 Am 0 a Aa.g wa , pa r a g g g g g n REV.  : REV.  : AFFECTED OCCUMENT FEV.  : REV.  : .

4

_ - ~, w ,

m _ _ ._. _ .._ _ .~. _ _

s.. , . . . . . . . .

l COMANCHE PEAX STEAM ELESTmc 3 TAT 32N

  • df4 h"**, 4 l

DESIGN CHANGE AUTHORf2AT10N CONTINUATION SHEETF e -

7 ,a _

l l

} i fu ELatT0!c connW.Mt rTat 97fAA ELECTelc statten uset f aso. 1

  1. WWISless CeWe CP 1558 PWENC s 9&c77 99 4 13 gue AAfts 33 anf 1999  !

l $F=60/150 l

\

I d

i e i 713AAW34*

i F 713enePts 718E48'M i F13edeP38 713MeeP17 718988863 f13eneras. f13eneP17. flannePe4 .

g T17BASPe4+

l. 1 i

namneru fischapte 1 T13848'd

?1 21.GF37 713entePloe l yggenygg 3 T13848 Pee f13GAGF3? T12e4471, 713theM7

'i I13848#88

?13044F40 f13enopse

T13eA8F41 713eheP31 713840768* i

?13e48P43 T13eseP33 1 I

T139AGF43 713ehePSS f1MeePe#* ,

! 713eAGF44 113emeP34 3

Y130AW49 f13eA4.>39 W T17ehgr44 713348r36 T18848'e9*

71MA#P l 713'A48P47 T130644P37 1 1

713enW(4 713eneP3e 712848849* *~

! 713etW49 713 Seep 39 3 j f13eAGP34 flas)Aerse F13948PT1 '

713endP11 713enePSg T13944#71e

! F13eneP71 713 Seep 33 1

' ,i T13WAere4 flateers) 713AA4P73 i

. 713SeePe4+ 713theP33 713344973 1 1- 713entP74 l 713AAWSE flatterse f19846??5 l 7EM eePee T11.3Aerse 713044PF4 4 7tammere? ?13eeerse flasAGF77 T130ASFee 713344937 71394 EPM ,

i 713enePM T139Aemse f173AGP79 6 T32SeeF99 713eAeP39 713344PG6*

l T13SeeM1 713thePee 1 ,

! T13enePete T13e w p43- , 713entrete i 1 713eteP43 1 7139A*PS3 T139Aeshea f133ASM3 l 713eAeMe f;3eAeP43. - 7130ASM3

?13neePO4 3 713048M4 flammePee 713eneP44 F130ASPet T13964GMP T13eAeP4e. T13940M4 i 7133AePee 3 f130 ASP 90*-

Y13SAGPW T1
seAePee 3

! f*T3ASPlc T13e64P57 T13eASP91 l

713044P11 713e440Se T13eaRP92

, f13en4P13 713e40P99 713eAeP93 1- 7139 ASP 13 - 7139Att'6e Y139 ASP 94* -

TJ7eseP14 743eAmeece- 1

- 1 7138A4P99 l --713eA4 Pet 71394WM4 ,

e '

i i

C ASkC . f#ft SACEMT OMA SYSTEM

" ~

[ REV.  : RO/. -: AFFECTED DOCUMENT

, AEV. : : REY. -: .

4 4

r

- ., - . .w. , w w. ..--+-m.~.---,-c...--,#-... ,.--e e, -w.a-.'5- .--w#..-w..-, .-..r,- .w- r m em ,,.w,,,r.,,,,.-2ws,,.m,< ,.+m .se--w -~ .vw-w y

l

COMANCHE PEAK STRAM ELECTRl3 STATISN ItilAT**, t l OESIGN CHANG 3t AUTHORtEATICN CONTINUATION SHERY %a,m-l 3 -

79 Et.EcTelt cuan-r.w Peas etten rtsCtete ufortow unit me. 1

SSN1910st Cette EPe1958 PacCs twe77.pe.eg13 sum 34Its 23 aug 19e9

,t

  • 9F=44/IP9 i

I a

f13emep97 71MC38le 712SE9837 flageoppo T1.10G9587 713888838 l

f13peop9 ,
  • 7130C8188 718888844 ft:Jamesta F130C8009 713MOS41 ,

{; f13044013 f130CSSee T13888982 713esente T130Cas40e 7138E0944 l 713e4e017 1 712988844

finese.7 1120CeP48 T12SEPS49 3 1 7130C8P49* T133E8888

's tStese t e 1 .

712MBSS1 T12eeee87 f139C999e* T12928854 T13960021 3 7128E0058

  • i f12944821 1120CBN48 e
  • T135E0854

?lasettaa 3 713dB8854e i f12848333 713080864 1 a

I F128444824 7130E0325 712E 8057 flattami flarsende F1383tR14 l T120Cw 32 712este27 T12980se15

T120CF52 713eE0038 712eessete I 4 713ecerS4 7130EOG39 713GSSR17 T130 Carts . 712eE8839* T13Seen18 F130CW54 1 713SeSR19

! T133COF97 713RR9000 ftabe2:T89 T13088FTe T120E8888* TIMeenal

! 713dC4rT9 2 T13SESR22 i

flaeCtree T12W8888+ T120efeu!2 T13ECMe t  ? Y13Stast34 1

' ?13ACSF62 712es 4*4 h 713e8 gests i T120CW63 4

  • T13sesse24' f120CFee f128t8031 T12SetR21 l f129C8Fes ?12SE0831* 7129e9882'.

I f f 2etF44 1 T123deK2+

f124fCOFer 7120steJ2 flatteFee 7129848430 712SE8883 . T12Se9R31 712ecerev 7128E8828 712seest32 f120CW70 7135 0835 T135stel88 5 Y129 Car 73 T120E8825*

7129CSF74 11295est34 2 712984P435 i

' f130COF75 T12SE8834 7g3eef?nse 7120C0f*75* T13GE8S'3* f1268es*37 l 1 3- 712900s*30 l 712ectF76 f13W 8034* T1390est19 T129C8F76e 4

T1'seetse*0 1 ?12SEBe34* T1298ene1

} T129CGP77 3

f12e7908642 F120C9F79 7130E9834* ft23eest4 712ecer79 e -fsaseen.34 l 1

s.4ett ano eactuar otra sistta :  !

i i i n l ,

l REV. -
%N,  : AFrECTEIl 00CUMENT i REV  :

- { REY. I -

=

t \

3 _l i,y--m,.--w. v r g-- , , - . me -W etv- m-

  • w. w n-+ - - . c==.we.-a-e-~.w-w--e+=a^v - - - * - - - -----a-----e-* - - - N-- --^- - " ""

i . .

u COMANCHE PEAK STEAM BLACTRIC STATEGN . a 7a +em e wt.,,

l ' DESIGN CHANGE AUTHORIZATION CONTINUAT10N SHEET = ,

I

.tsk h <

1 s'U 6L&Ctefc CthM ME PfAa estase slasteic teatttes ~

] sevlttaw CAW 4 CPal5&W unit wu. 1 [

PDOCs Ma477+97+9942 8Usf De f le 23 res t 4909 '

i sf e4/t00 i

i i

i i f1aseepsee 3 713048644*

1

?12eesm44 YtSaseeta 1-fSassesse7 7130080834 f12J44448

. flatensei.e 1 713enemese ,

I t1Seesseef f13808004 1 7128s8003 flam0 Joe . 713e44eee 713988e02 732sseJef 713048447 l 713880808 fa2sseJae T13040440 '

T138s8004 7121r80J11 fl3eneaef

! T12000000 f12NSSJ13 713eAemed l ftMesese 713sS0J13 flasheasle j 713ee8347 f1258e043 1 e

f120stees T82EEste3e f83048404*

l f13esseet 2 3 faaessene r13 a swee 713enenet.

flaessett 712w eUse 3

' 713Seest3 f13RFsWe7 ?19948882 7130ee843 712rreves fl3sseess e

f13eese4 733w swe, , T13enemo4

.1 7lasseste ?12NFSW1e ?ISeteASS j

fl3sse034 f!2EFeWil 713theate

! T13988e19 YSkr av13 78mesee7 -

l flaneeest ttIw OW12 71SenaAGS T1Sesages 71MaeAsf l 112sFeWt4 j *13esenS9 T33rovis 71 * **^^

T13e083*e 712sysWte 7130nenet T13830341 712aFsw17 71SeheAe3 i

i13000345 712EFevie '

f13eheA6e T13ese844 713seen12 7830Aem64 T12eeee47 7130Ae443 713enenes f12heesee t33esaa1,4 7130aenee i  ?!3808848= 713ements F120se467 3 712a64486 71 * **^*

T12essese 713ene417 f1senenet i

?!3estese* ftsenents

  • T1,10AeA74 i 1 713ementy 71Mee471

! 733888800* T1306443e 712eaea72 i 3 713enen21 flanneen {

i i

fIattesse+ f130senee 713emeeve i 3

f130aenet 713944A97 l 7120 sees 1 713044443 ~ flashe**e l

flattesel* T12e44443e 713048841.

i 1

'1  !

713e60043 I i

71300eesJ T13044443 f130AceW3

  • T13 esses 36 71mam. 713044004 .
  • 1 1 713eheese -

, 7128880s3* 7A3ene644 713040004 i

l 4

. CAeLE Asee anctuer Onta etsfgn
- 1 i l I

1  !

' ' ~

j REV.  ; REV,  : AFF ETED OCCUMENT '

~

REV.  : REV. . : .

4

__=

-,.-,i-~_,.,m_ . . , . _, L,,,.,. . , - . ..,-em., . . , ..#v.

~I N _ _M v t

COMANCHE PEAK 3 TEAM ELECTRIC STATION -_I*4MN8""#

1 DESIGN CHANGE AUTHORIZATION CONTINUATION SHEETr me_to #12 i

l fu 21.tCfflC Conn uoet Maa $ 1E Aes 8 LEC f 81C a f A flON uni f W1. 1

  1. CVISIDW COOCs CP*t35u PROCi %W877 89-0S84 Alue 04tts 23 fH f 1999 l#*60#1$4 f t2048087 ft2048 W 7120ABC22 ft2048 bet ygym e,47 ft20ABC24 712048809 ft20AetAs IIEU'8M A T12049910 7120A8847 III0d 8"I

?!20AS411 T130A4WFe 712001e834 t

7120AA012 71244807g 7133C2825

?!20A8824 712M8972 II M 88J' T120A0824* fgggegg73 71 2 5837 1 f1 E taJe 712M 4074 ,

ft20A8023 7120At975 II*I8" 7120 Ass 25*  ?!20A8874 f t 20C 8015 3 II

  • 888'

. 7120A08:'T '

712048024  ?!2 GAS 479 fl20C8417 ft20A8824* T120A0479 f t2DC 8019 1 1 ft20te m IIEU8828 ft20Att27 7120A8 M t 7120 Car 21 712ba882e T120Aett2 7120 css 22 7120A8929 T12003123 7120AS82te ft2048682e g T1200.802 4 1

7120A86tSe 712DC3025

.ft20A4830 g fl E 302e 7120Att13 7820Attt2  ?!20C8827 ft20AttSe 782048993 ft20C8027e ft2One850* 7820A6494 1 i' 2  ?!?0A4e,5 fl20C302w ft20ASDS2 7120ASC0g  ?!20C8018e 712044eS3 712940C02 i A 712049954 7g204acog i100CD029 ft20A4834'  ?!20ASC04 7120C10s t 1

7120ASC03 fl E tb82 7120AttS4* fl20ASC04 ft m ac35 3 TI20%8025 7120ASC07 7120Ae935 7120ASC00 fI m t06/

7120Aa954 71204GC09 IIIOC8A*8 712040854' fl20ASClO 7820C8049 1

71204tC11 7120C50/0 f100A4DSA* 7120ASC12 f1 2 507I 2 T1h00070 T120AeC12 712048007 7120deC14 I tJ0UWOM T12088054 712044C13 T12008000 T120A4839 712040Cle II

  • 8888*

T120ARSA0 7120ASC17 I f12048&*I T120ASC18 f120E8432 i

fl2DA86A2 7120ASC19 IIEUE8433 7120A8&A3 ft20A4C20 III9EE"Ji

?120Ae 544 7120AAC21 7120234J5 782GA8SAS Y120ASC22 f120184Je CAftt A*0 SACEWar ca t A sig rtM REV. : REY.  : AFFECTED DOCUMENT FEV. : Rgy,  ; . . ,

3

.<.s..,

~--- -

m. 1

. . i 3

i COMANINEMAK STEAM ELECTNC $?ATION 5 "'M b ,1 i

OtslGN CHANGE AUTHINUIATION CONTINUAT10N SNEET E ea. d , g.,  !

r s

fu strevele omw wm tserete of.n n mit W. 1 aEvi9Ium coese fP.4SEs Peeta sese77.et-ce42 anos entga 23 seaf apov l SF-ee/tte j , . ,

1 t '.

j flaeE2437 713g3333. ygggggge flass e** * * - nassenes

, i138E8887 ftsamma'" isMemet j f13043e e teemanama ygggggggy  !

j ft20E0919 yg m .

yg g i 1 flasseette 3 yggggggg, ,

2 '

T1300See l T130000e90

fisettelte ggggges -g 1 3 ftMSeeee yeamammap, ia

! T13EtoGet. ygageges 3, j ftsetseda yggggee yggggggge

!  ?!2eEssas - flasses44. - naissen1

- f12eEs044 -

fasesessa a

f$3emeses naWeses . Tsasseems i

TI M 8844 fl M TMAPeeG8 n f13M8eB1 713g3ep rgesspenes -i d

7121E853 73 3 388476 mfd ==e=4eee

, T130 8835 g 3 l 7120E8958 . Ti m epe ygg,*=400*

T130Ebesse *3 3 -
  • namessae. Tup =ees -

T138 Esses

  • 1 m 4 78MeACaen g .

7125 00884 4 ygg ,,,,ggg, ,

1 7 F8WeWW g 4

flaoEses4 u gesens no=*-+ee.

j 7120Ese87 7tasseg54 g j T1258012 Ytsm ,

a T130 Beet 2+ yemmamana g i 1 m gg ,,g, J l  ?!2000042e Tlassagm 3 .

1 S T1364339 ygg w .

ft20Be#13 flageeged 4 i 71209e013* Tmp . w i

l' nsanecn '

s -

71 M88414 fi m g- yg,, ,g ,

l 712098085 Y3 m yyp ,gg.

1 T120$0C35 712000373 3 f12000C2e famsegy4 ftG=*=48to T120 SOC 27 l

7120seCm T120seC29 T13AgeR rasmets e,75 n agegr7 e4 g

J T120eeC30 7130serpo yyg.e q p.

l f120seC3& tt30SEC79 g

, f12098C32 7180808300 yyg.e.,gge.

t i12eSoC23* 1 y l

4 7M Tgn=4 4&1e l

, cam s aae n.C 9., S.,. Su ,g , .

I r- -

REV.  : REV.  : M~5ECTG 00CUMENT -

h PEv. .  :- NEV.  : .

[

,i - e i  !

i .

l

~

'u

  • - ,,w,,,,,

CCMANCHE PEAX STEAM ELECTRIC STATION ava+o , t OESIGN CHANGE AUTHORIZATION CONTINUATION SHERT? ..a ta ,/a 4

s .. .

fle CLt2TBIC afVI3 test C0tas CP-t338 COMseC Mt PtAt 5fEan EtICTGIC 97AFIDW LetIf NO. t J

l P80C8 SW 77-#f-0912 auw antea 23 seef 1ft?

b#-60/150 i

1 TW8*4a41ie tw4-g3 p.

2 7W8"*-411

  • 3 TVD-6-01D*

g M ****11* n4D.8-41Se 4 g FWS-e-411

  • fyg*6-419e I

f N it' TUS-9-422sr 0

11 M ****I' FW-*=919e Two-e-022e .

g3 6

TVS-*-42Se yug.6-422e

  • 13

' 7 WM TWD-9-0226 y

TLD-C-448 Tys.g-gr,*3

' TMS-C-eese e 2 fup-s-023 fuG-C491e 3

TWS-C-601 o.

4 fMG-C-942 TUS*C-0624 '

i Yve-C 403e 3

TWS-C-044 TUS-C-004e fut-C-00**

  • 3 -

TWs-t-90e TUG =#-447e 4

M45-4-443*

7 7U0-6-004 f*C 043 TW4-5-Sete 3

Tve-e-et r YW6-9-418 cap 4K 440 SACEMAT DATA SYSTEM I

i

~

PEV.  : REV.  : -'

~- l .

l

COMANCHE PEAK STEAM El.ECTRIC STATIN IYd&*11 I DENIGN CHANGE AUTHORIZATION CONTINUAT10N SHEET

  • y 5 ,,La.

i TU ELECTfIC Comascret Ptos 8 f t AM ELECTf!C 57AfIt*4 134 8 7 too . I REVIS!CDs Coota CP=tste Pe0Ci $ue 77.e v .05 t 2 tune OAft: 23 M r a f tf EFaeo/150 Cal 2007121 C*t20J4504 Cal 2001334 i Cal 200712J C+12034505 C.spoogs44 1 i

C-129001la C*12072649 Cal 2001478 l

C-12000114 C+12072470 Cal 2002424 C*129048IS Cal 2072471 Cal 2002e32 Cat 2soelF7 Cat 2:02334 C-13002834 C-12eost94 C 12504047 C*120est44 Cat 2eoe;sSJ C

  • t 2K04050 C*12003 tee C=12613249 C*42506054 C=12003144 C-12913354 C *12294052 C=12003406 Cal 2982542 Cal 2804053 Cal 200 Set!

Cal 2914454 C+12E060ee C=t2003334 C*t2014725 C-12Koe04/ C-12002537 Ca128150$4 C=12R04048 C=12002539 C=12015032 C=12204049 C-82003544 C=12815053 C *12504772 C 12003544 Caste 13054 Cal 2E1279t C*12U02S49 C=12e13721 C 82t12300 C+12G04290 C*12839614 Cal 2t!260s C+12004291 C-12019757 C a t 2E 128 Je Cal 2004282 C=8201975e C 12tt2s37 Cal 2004eco C = 129 89755 C = 12815022 C.1200goyy C=12SMoss C.I2 r 15050 C=12009079 C-12830044 C = 12R1 0 74 C-12005093 C*1203esen C*12583041 C.1200s094 C=12n30sva C-t2E15082 C=12005099 C=12039307 C *124113043 g.t300g1Og C.I2s3050w C=12E1511e C=12005442 C-12233494 C+12ESSit? C=1200SSSO Ca12033493 C 12000+52 C=1200$151 C-12033344 Cal 200095* C*120024e9 Ca12012555 C*I h>0Vhe C=12005190 C=12033544 C=120009b9 C*1200S310 C-t20335t7 C=12000t90 C=12005442 Cal 293351s Cal 2000 M C-1200S$39 C*t2033549 C- t *001002 C=1200SeJt ca12C333*1 C-1200100e C*12001432 l C*12S33322 C=12004005 C=12006ft4 l C a t 20.3s524 Cal 2001004 Cat 20ee014 l C=12933325 C-12Det0cs C*1206ect7 l *-12833326 C+1200tooV C=t2004488 C+12033527 Cal 2004040 Cat 20tet?S C-82033528 Cal 2Dondle Cat &Ottle?

C*t203352V C=L200s0tv C+12C12e04 Ca82033 tac C*t2WC1028 Cat 2013024 C+12033138 C-120013te C*1201302S C-82c33SJ2 C-12004315 C=12013044 (A8LE **O AActute SATA SYSTEM l

l l

l l l l

l REV.  : REV.  : AFFECTED OccA*ENT i REV. - I

REV.  : .

t 1

I

. . - __ _- - .