ML20085M487

From kanterella
Jump to navigation Jump to search
Cooling Water Intake Impact Rept
ML20085M487
Person / Time
Site: Dresden  Constellation icon.png
Issue date: 02/28/1977
From:
COMMONWEALTH EDISON CO.
To:
References
RTR-NUREG-1437 AR, NUDOCS 9111110049
Download: ML20085M487 (215)


Text

,r--

s t'3 -

'yf DRESDEN GENERATING STATION COOLING WATER INTAKE IMPACT REPORT l

(')

'x.J PREPARED BY COMMONWEALTH EDISON COMPAri CHICAGO, ILLINOIS FEBRUARY 28, 1977 O

l 9111110049 770229 l PDR- NUREG PDR 1437 C

O DRESDD' GENERATING STATION COOLING WATER INTAKE D PACT REPORT O

PREPARED BY COMMONWEALTH EDISON COMPAri CHICAGO, ILLINOIS FEBRUARY 28, 1977 3

(a

p TABLE OF CONTENTS 4

I Section Title _Page 1.0: INTRODUCTION 1.1 2.0 PLANT INFORMATION 2.1 2.1 - The Station 2.1

' 2.2 River Intake System 2.5 s

2. 2.1- General '

2.2.2 .

2.5 2.2.3 River Inlet and Intake Canals

.Bar Racks 2.7

'2.2.4 The Crib House 2,12 1

2. 2. 5- Traveling Screens 2.15 .

2.2.6~ l2.18 Circulating Water Pumps 2.24 P . .'5 -

- Other River Structures 2,27

.3.0 GENERAL ECOLOGICAL SETTING 3.1-3.1 General Hydrology 3.1 3.2 Water Quality 3.10 3.3 Biota of the: Illinois and Kankakee Rivers 3.18 -

3.3.1 Benthos L3.3.2- Plankton 3.18 15, 3 . 3 Periphyton 3.29 4 3.38 4.0;

- FISHERY INFORMATION' 4.1 4'.1 Historical Studies ~and Changes 4.1

'4.1.- 1 Kankakee River L 14.1.2- Des Plaines River 4.1- -

L 4.1.3- Illinois River- 4.2  :

4.11-4.2 Commercial and Sport Fjshery Utilization ,

4.15 4.2.1 Commercial Fishing-4.2.2 -Sport Fishing 4 15 >

4.19 4;3 L: Freoperational and Operational ^

Fishery Monitoring Program 4.22

{ --

p: P*-'-y7d$* g -- e

F

, 4

Section Title Page 4.3.1 Sampling Techniques 4.22 O 4.3.2 Study Results 4.23 5.0- INTAKE EFFECTS 5.1 5.1. Entrainment Effects 5.3 5.1.1 Methods, 5.3 5.1.2. Results and Discussion 5.6 o 5.1.2.1 Fish Eggs 5.6' 5.1. 2 e 2. Fish Larvae 5.25-5.2 Impingement Effects 5,46 2- - 5. 2.1 - Methods- -

5.46.

5.2.2 Results and Discussion -

5.47 5.2.2.1- Ancillary Data 5.47 5.2.2.2 Fish Impingement: 5.52- .i.

a

6.0 CONCLUSION

S 6.1-7.0 1EFERENCES CITED 7.1' e

I i

l[

O

_. _ . _ - . - _ -__ .--_. . . ~ . . . _ _ . _ _ _ . . . _ _ _ _ - .._ _ _ . - _ . . __

r's V

1.0 INTRODUCTION

The Dresden Station is located near Morris, Illinois

. at the point where the DesPlaines and Kankakee Rivers merge to form the Illinois River. The station consists of three boiling water reactor units which provide a combined 1883 megawatt not generating capability. Unit 1 provides 215 MWe and uses an open-cycle condenser cooling water system.

Units 2 and 3, which produce 834 MWe each, are provided with a 1275 acre cooling pond with approximately two miles of spray canals and are also capable of open-cycle operation.

National Pollutant Discharge Elimination Systea (NPDES)

(T qj Permit No. IL 0002224 was issued for the Dresden Generating Station September 26, 1974 and reissued December 30, 197o.

Stipulation case no.: NPDES-V-056 (AH), Issue II, as reflected in the reissued NPDES Permit, requires Commonwealth Edison Company to sub=it to the U.S. EPA Regional Administrator and the Illinois Environmental Protection Agency final reports on engineering and biological studies of the present intake system. This report is submitted in accordance with these requirements. In support of this demonstration additional in-formation regarding receiving water hydrology, intake siting and design, and actual intake operation has been included.

1.1

s-2.0 -PLANT'INFORMATION 2.1 .The Station lll ,

The Dresden nuclear power station is a 3 unit facility

-located"in- Goose Lake Township, Grundy County, . Illinois. The station is situated on a site near the confluence of the Kankakee and Des Plaines Rivers. The approximate geographic '

coordinates of the station are 41'20' N and 88* 15' W.

The-Dresden site covers approxim'tely 2,500 acres. The topography of the site.is relatively flat with elevations varying from.509 to 526 feet MSL. A plan layout of the site is shown-in Figure 2.1. Depicted in the figure are all major structures of the station including a 1275 acre cooling pond, and-'the cooling water intake and discharge canals. Also shown in the figure are .the relative locations .of the Kankakee, Des Plaines O-

-and Illinois Rivers.

Unit.1, the first unit to be constructed, began commercial operation.in August, 1960. The' station as.it existed in 1960 7 was the first privately owned and operated. nuclear generating

-station inLthe world. At the time Unit 1 was constructed, specific commitments to the construction of-Units 2 and 3 were not finalized. As such the one unit facility was constructed as an entirely self contained power station.

The Unit 1 nuclear steam supply system (NSSS) consists cf a General Electric boiling water reactor (BWR) rated at 215 MWe, O

2.1

a J ,_e h- 'F' n- *

.L)

  1. l$:

1 4

A p 8 -

1.

r i y . i .

'fSc1 dj){,[ . /,/

N* J '%%ji ,

, .i

  1. i

,I4n;df r e i \m! .

!.! ./!

I a, h Fg i

- c

! s 8e 1

\ m{g'

\ U

  • Mh

] ke \ .

g o $$.

m g,

D x CO s i oL

'O C-y:

+

0 lh '

,i l! Em 3

1 {},'" -

i

'm -

'N. s

!: O e-.

L L0

--- . \ . i

n;tg PO

, 1- t'-t-. gu a

{ '\

y! 1; w

!? { ! Ib ;l t'

/

/r

s. , cy-1

/Ie5f-_#1 -

. r=s ,;

a

/  :

? - / l

.f a

i i.

p /

li

. igx (P , .

/ ,

g __

.C)  !!*

j hrammesrusamm\

j -

[ 9l; ert '

  • 0'soe _

88083'8

~

l s v

$;,/

t _W

.v. . _ -

Condenser cooling water-is. supplied by open cycle cooling with i

water obtained from the Kankakee and Des Plaines Rivers.

Units 2 and 3 were put into service in August, 1970 and November,1971, respectively. The two units utilize General Electric single-cycled forced circ.ulation BWP's, each with a rated output of 834 MWe. Condenser cooling water for Units 2 and 3 is largely l obtained from the 1275 acre cooling pond. Intake and discharge canals to the pond are equipped with banks of spray nozzles to I

further assist heat dissipation. The cooling pond generally l provides Units 2 and 3 with the capability to operate closed cycle, i Due to the isolation of Unit 1 from Units 2 and 3, the ggg Dresden Station essentially takes on the appearance of two stations. LUnits~2 and 3, for example, are housed in reactor, turbine and radwaste buildings separate from Unit 1. Also, significant from the_ standpoint of this report, are the

~1ndependent cooling systems for Unit 1 and Units 2 and 3.

These independent systems are depicted in Figure 2.2 which identifies the separate intake and disdiarge canals and cribhouses for Unit 1 and Units 2 and 3 2.3

m f

/  % ' %d i

'O **'I

N I f in cagg a noss MOUSE s.a f t k .J g i **Ot*5 E ,g ,

" '[ Mcwartt f amas f/ u .

t**" fi l a 3 j

  1. 3 f j . 0rirmaat, (ages tig.f . g g I - . - --. '

e%

\  :

g 3D av Se'f W apD

/

e, 4

\,

t 7

, _ , , . _ D'

  • G A ** 8 ' L i s se es t p4, ,

\

~ > - -

L._.,

\\ .n'et

\\

1 ,

1er3m s aci g o , <j-I."[

m

[ 4 t

' (g ggg ._,- . N WIIl%32 , 9 ,^ s . _, l'%il 8 .w

~~_ ',

i s a pea $T E ~. s

+

~'

tt Vers

'--~j1

's

  • Puett um r s's% za3 I -I d ~ ~~ II ' N d-] / -N'

~

1 s

N

'N '

U M'

Ep

.;s'a ' cotm conc = ,,, M S E U ' "l '-

'k, ( *es.s '" te..( lE

r. ( N pt oc '#

,I  % '3 7N E Uw 7 8

' n' ( i O gg,:gyo ~5 o i @~ gfj'1Dl 9p'

'p mssE sa cf;q

)I (j~ Q 3,,,g

} [ [-

-) ,

I

{

h".~Jsw//

/ -

' 1uit eanM twf. Pnt t*eL 1

  1. C80

' k '. . .

N. . '

xJ /

O U

  • / * ,."L  %'

N;,

4 gm  !- ,c ar vuna r.c r f., we a vana.w.s em :vec

l y f

/ nm m: / / ,,,,, g ,, g (

, . .a < ,,,,,, A.

D.

N

. __ __\. _ _ _

, f __ ,.;

,p. '

u ns e'= i.

._a**,.

4

. -- s

__----- J ,.#, y

'l 11 l' li ,

F#0V YO fen o.

ta:t f\.n,o s car im

{.cae stat! -'

Figure 2.2 Plot Plan of' the Dronden Fluclear Station.

^

2.2 River Intake System ll(

H2.2.1 oeneral-Condenser cooling at Dresden Station involves both open- l 1

' and closed-cycle systems. Cooling water used in either system )

is obtained from a' river intake inlet on the Kankakee River.

The river intake consists of a three section floating log boom, j The : log boom, which skims intake river water flowing to both

,- the1 Unit =1 and Units 2 and~3 intake canals, is positioned even 1 with the shoreline. .Because of the close nroximity of the intake i toithe confluence of the Kankakee and res Plaines Rivers, cooling water.is usually drawn from both rivers.

Unit 1 operates entirely with open-cycle cooling. The Unit 1 intake canal runs approximately 2,000 ft from the Kankukee <

Fiver to the Unit 1 cribhouse. Two cooling water circuletion O pumps, each rated at 85,000 gpm, are housed in the Unit I crib-house, During most periods of operation both pumps are used.

e .

The combined output of the 2 pumps is approximately 426 cfs.

The Units 2'and 3 cooling system has the capability to operate both open and closed-cycle. -A separate canal adjacent and parallel to the Unit 1 ir.take canal is used to channel river water to the Units-2 and 3 cribhouse. During closed-cycle opera-tion of Units 2 and 3 the maximum rate of withdrawal is about-70,000 spm.- This quantity roughly breaks down to 50,000 gpm blowdown and 20,000 gpm. evaporative and seepEge losses. With O

23

l open cycle operation, the maximum withdrawal rate 'is approximately

,e 2230 efs. These withdrawal rates are just the cooling water V) requirements of Units 2 and 3 and do not include water withdrawn by the house service water pumps (134 cis).

Both intake canals are fitted with ' deicing systems. The deicinE systems are located just downstream from each cribhouse.

The systems essentially recycle a portion of the condenser cooling discharge back to the two intake canals. Heated water to the Units 2 and 3 canal is distributed along the canal bottom by 4 h' dia. discharge nozzles. The Unit I deicing system con-sists of two pipes (48" dia. end 20" dia . ) which introduce heated water along the north bank cf the Unit 1 intal:e canal.

There is no addition of biocides into either intake canal.

,~ For Unit 1, a chlorinating system injects hypochlorite into the

\~)3 two circulating water intake bays and the auxiliary service water bay. The chlorination system for Units 2 and 3 chlorinates circulatinE water and house service water at several locations in _

the cribhouse and at the condensers.

G b

l 2.6 L_-__----- - - - - - - - - - - - - - - - - - - - - - - - - - -

2.2.2 River Inlet and intake Canals Dresden_Stationoperateswith_condensercoolingwaterwithl) -

drawn from'a river inlet on the Kankakee River. The river inlet consists of a three section floating log boom positioned even with the' shoreline of the Kankakee River. Water entering the inlet passes beneath the boom before it is directed to one of the two in-take canals.

The river inlet for Dresden Station is approximately 0 5 miles frem the confluence of the Kankakee and-Des Plaines Rivers.

Due to the close proximity.of the inlet to the confluence, water from the Des Plaines River is also drawn 'into the intake structure.

The normal static river elevation at the log booms is 505'-0" (MSL).- The static low and high water elevations have been deter-mined atL503'-0" (MSL), respectively.

The bottom of the intake canal and inlet consists of O natural bedrock, characteristic of the entire Dresden site. At the log boom-the elevation of the inlet bottom is approximately 492' (MSL). - Approximately 10 feet exists .between .the inlet bottom at the log boom and the bottom of the deflection panel of the boom.

The intake inlat continues out about 80 feet past the shoreline where the inlet _ bottom has been excavated down: to elevation 492' .

The formation of the two intake canals begins about 100

-feet behind the floating log boom. Both canals, each approximately 2000_ feet long with Unit One canal approximately 37 feet wide and Unit Two/Three canal approximately 50 feet wide, are excavated into bedrock. i'he bottom elevations of the two canals at their for=a-tion are each approximately 495' (MSL). The two canal-bottoms lll 2.7

slope slightly down (0.0011%) to the crib. houses.

Approximately several hundred feet- from the crib houses the

{- slope increases such that the elevations of the bottoms- at the crib-hcuses are each at 482'-6" (MSL).

The floating log boom consists of three sections which span the entire 320 feet opening of the intake inlet.

During the 1960's when only Unit I was in operation, the boom was.a one section unit. The construction of Units 2 and 3 necessitated the enlargement of the canal inlet and so two additional boom sections were added.

The two newer booms are similar in construction to

  • 'e initial boom. Essentially the only differences lie.in their-lengths-(120' vs 96') and the depth of submergence of the skimmer panals (3'-O" vs 3'-6"). The log booms are de-([ signed to float free lwith fluctuations in the' river surface.

This is accomplished with the use of drums and logs. Tying the drums.and logs together are wooden frames which also provide a walkway across the canal inlet. Attached to the front of.-the frames are skimmer panels. It is these panels which actually prevent al? floating debris from entering the intake. The panels on the _ initial boom section consist of 2"x8"x8'-O" wooden planks. When submerged,-the planks extend about 3'-O" below the water surface. The ekimmer panels on the two newer booms consist of #10 gauge steel plates.

The plates are 4'~6" long and are submerged approximately 3'-6". >

The Unit 1- intake canal operates completely open f-4 cycle. Therefore, water entering the canal is always ob-(/-

tained from the river. Unlike Unit 1, cooling water L

2.8

for Units 2 and 3 may originate from either the river (open- (g) cycle operation) or from the return canal from the cooling

. pond-(closed-cycle operation) or any combination of the two.

During closed-cycle- operation a reduced quantity of "new" water is needed from the river. These reduced quantities result in lower river intake velocities at the floating boem and in the intake canal, i

In addition to the closed-c*jele operation of Units 2 and 3, the intake deicing- sys tems installed in both intake canals similarly raduces intake velocities. However, these

-systems are used on a limited basis, during the winter months.

Vater velocities in the vicinity of the two crib houses however, are not reduced since water from both the deicing and closed-cycle sources has already entered the canal.

Water velocities at the floating log boo = and at the formation of each intake canal are listed in Table 2.1. The

velocities are calculated for the various station operatinc modes at low, normal and high rivar etages.

O 2.9

Tcblo 2.1 Dresden Intake Canal Velocities n

C/

at Floating Log Boom and Formation of Two Canals Water High Normal Low Elevation 50s.ft. 505 ft. 503 ft.

Approximate Intake Flow Location _(Gal./ Min.) Velocity (Feet /Sec.)

Floating 250,000(1) 0.1 0.1 0, ?

L 8B 760,000(2) 0.5 0.6 0. 'f 1,260,000(3) 0.7 09 1.1 Fomation of Unit 1 200,000(4) 1.3 2.5 4.8 Canal For=ation 50,000(5) g,1 g,1 g,1 of Units 2 560,000(6)

(V~') and 3 Canal 0.6 0.8 0.9 1,060,000(7) 1.1 1.4 1.8 Doerating Mode and Flow Assumptions (1) Unit I c;. rating open cycle (426 cfs) and with 1 house service water pump (10 efs). Units 2 and 3 operating closed cycle (111 cfs).

(2) Unit 1 operating open cycle (426 cfs) with 1 house service water pump (10 efs) and Units 2 and 3 operating half-open cycle (1115 cfs) with 4 house service water pumps (134 cfs).

(3) Unit 1 operating open cycle (426 cfs) with 1 house service water pump (10 cfs) and Units 2 and 3 operating full open cycle (2230 cfs) with 4 house service water pumps (134 cfs).

(4) Unit 1 operating open cycle and with 1 house service water pump.

(5) Units 2 and 3 operating clored cycle.

(6) Units 2 and 3 operating half open cycle and with 4 house service water pumps.

b (7) Units 2 and 3 operating full open cycle and with 4 house service water pumps.

2.10

l 2.23; Bar Packo l

-l Unit 1 The- circulating water intake structure of the Unit I crib house is constructed so that there are two main intake 1 i

compa; +. men ts . Each compartment is divided into two sections forming a total of four sections. One bar rack and one revol-ving screen are located in each section. The bar racks collect large debris swept in with the river water.

Each bar rack in the Unit 1 crib-house is 31'-1" long and 11'-7" wide. The racks are held in position by steel bar rack guides set in the concrete walls'at an angle 15 degrees from vertical. The bar racks are made in two similar fabricated sections 15'-6-1/2" long and 11'-7" wide . Each section is fabricated from 6-inch channels. The channels form the rec-

-tangular framework to which the bars, cross bracing, and air ggg stop plates are welded.

The bars are'3"x1/2" flat steel stock horizontally spaced.on 2-1/2-inch centers. The bars-are welded vertically on edge to the front face of the rectangular' frame work. Five 6-inch I-beams extend across the width of the framework and form a bracing to which the bars are welded.

One bar rack cleaner, manufactured by the Pacific -Coast Engineering Co., is provided for the purpose of removing accumu-lated trash from the bar racks. The rack cleaner is mounted on rails and'is' designed to clear the full width of one bar rack

-without requiring relocation of the hoist frame. The collected debris is dumped in a trash cart cnd periodically emptied by a local dispr un i t ontractor.

O 2.11

-r?

l l

., Units 2 and 3  ;

Eight bar rack. grill sections are installed across the

-entrance of each' inlet bay. The grill sections, shown in Figure 2.3, i l

are 3 feet across and extend 26 feet from the inlet bay floor to l the topLof-the inlet bay structure. The racks are inclined approxi-I mately 15 degrees. The grill sections are made from 1/2"x5"x35' 1 J

steel-bars spaced 2-1/2" on center. The grill sections rest in a steel lined trough in the inlet bay floor and are secured at the top by hook bolts.

L l The traversing trash rake shown in Figure 2.4 is used to

. remove debris that accumulates.on the upstream face of the bar l- racks. The trash rake system consists of a trash rake frame,-trash I

cart,-and rake basket. The rake assembly travels across the top of the inlet bay structure on two rails. The rake can 51 ear debris

(]) from a 10 foot wide section of- the bar rack with each raking operation.

Ope 2ation of the rake is similar to the Unit 1 rack cleaner. Eriefly, the operator positions the trash rake along the portion of bar-rack to be cleaned and lowers the rake basket.

V L In.the lowered position basket teeth penetrate 3/4 inch into the

- rack bars. The basket is then raised to remove debris from the

-bars. When the- basket reaches the raised position, it is then opened to' release trash into a trash cart. The trash' cart is l -

E periodically emptied by a local disposal contractor.

LO 2.12

_ . ~ . . _ _ _ _ _ _ . . _ _ _ _ _ . . _

, t d a'i, sW \1

\

\\

t

\.-

\

1 v'

7 lf2;l:n \,  ;.

4

, \D \ ' t

..., 4  ;'\

\ '$t _,

,.  ; {... \ '_ \ ,

.j

, i '

\

!; - .. \ .<\^\

e.

l::c

\ \\\\

',\\\\\ h

\s\ \ \\ \, \ , i I

\ \\ >

\ \\\ \

O

~

\ \ , , , , ,,

\\_\\- \ . \ \'\

'~ N '\, N

,- 'y \'r 't

\

'\ \ ' '.

!st,

\ '; \

/ \ ,\ \ ', ,

I V L\

[

\ o'gg&l\\'\y\l\l\ \ \ /

w\ .

(,\\ \ -

/

k

/

Figure 2,3 Section View of Units 2 and 3 Bar Packs ,

g

?.13

. ~ . _

l

?

f O i

,d j#

m

%, y taAss wt os f

f N b]s . s - l

' # ), . ' -

li

\ldl q ;I Udi ; q  ;

!.'l)[ g&;Y y

\/ e, I gsf- \

- f n..ano.c c ..

n v g, \g

\A; 7l '

- 4 \g l

' ffm

  • s, r

l e

...,, co.,.m y ' "'""" "

c w.ne m n {,,  ? )

- " -gp h' a i~ f/,,,,,,,.

g [ ',

im. c..v ...> ...c. ~ ,.', 1 h

.ll i g4 Y lyd

~ / M -

s fn lill -

i

.e ,4,1 s

. c s/

orno ,.

-0 \ \ \ \\

') - \\\,'\,\ h\

\,\f\\p'*v! h f\ \\c\u\ ~ . / '

..u .n.o

\'\\\

n,< \, i ~\ -

\

l- tuut -

e

.....:. d' Figure 2.4 Units 2 and 3 Traversing Trash Rake . .

2.14

/

2.24 The Crib House Befors water from the Kankakee and DesPlaines Rivers are pumped to the turbine building, refuse and other materials which restrict water flow are removed in the crib house. Additionally, other vital station systems are housed in the crib house.

Unit 1 The Unit ' crib house is divided into two intake bays.

Each bay is equipped with two trash bar racks, two travelinE water screens, and one circulating pump. An auxiliary service bey is connected to the two circulatinE water pump bays by two 42-inch sqlare openinEs in the bay walls, Each opening is controlled by a m.,ually operated vertical slide gete.

Chlorine solution is injected intermittently into the circulatinE water at the two circulating water intake bays. Chlorine solution is also injected to the service water system through a lll neader at the bottom of the auxiliary service bay.

Each circulating pump discharges through a 72-inch dis-charEe pipe, t 48-inch equalicinE pipe ccnnects the two 72-inch pipes approximately 55 feet south of the intake structure. Thit cross connection equalizes pressure between the pump discharge lines and also allows unit operation of the condensers with only one circulatinE pump.

Uni',s 2 and 3 The Units 2 and 3 crib house (see Figure 2.5) provides condenser cooling water to Units 2 and 3 The crib house is divided into six intake boys. Each bay is equipped with trash bar racks, two traveling water screens, and one circulating water pump, Five service water pumps, three service water strainers, and a diesel O

2.15

i 6: .

O. O O. ,

SERV 8CE WI4TER PURPS

( TRAVEll886 3CPEEM5

( ROOr VEF.TILAT(R$

ITYPtCA L Or el (TwcLLEYSTO't.0C AIG ROOF EL 529 ft 0 In. {

Roor Et 54a . 0 m. # '

i '

I c I I#

" .g i I '

j [

e TRA94MAKE TRAVELfMG 44015T CAft i

{ ( 5TRAIMER N

7 7 '

' k TR0tt.EY t EL 517 ft s on. -  :

! /s. D l-

= mCM WATER LEVEL E L SIF ft 6 in.

GMADE EL SIF ft 0 in.

i EL M " ' '"-(STAT'Cl EL SG3 ft 6 in. s b~

ROAD

,O<eV#" W Wg#, h

\ l h__ \

p McRae4L WATTR LEVEL

. .; % iQl a m-- I

{

im

~

- C EL 505 ft 9 m.,(STA Tit *1  !

eN 4*

\ --

l', _a M, f

/

@ WATER LivEL i

l f f EL 5"5 4 0 in. (STATIC) ,

WALMWAY% N #. '- [

- l -

,, .; e -i = a ii -i t

\

~~

'..-*- ~

{

w == .- -

[ '"( g

  • i RAKE BAR RACM u

L

.*'= v:

& /D u  : 5 l TE Stf7TERFLY YALVE EM y'/,

8-

[, , z .h N2 ft -8 in. =

~

=

i EXPAPt3f0N JCINT e . *,

8 ft-C in. - ' 2

.'. <- i A15EM3LfE5 I;.} i. ,

\ Y If". f .-, ** ' .# ,, , * - *.I b. *L i

I

,f kk* h c.#.*\

$ERVCE WATER PtpF Et,, asre ft E In "

( M ft 0 m., diam DISCHARGE

~

EL 475 ft 4 in' El 490 ft 0 m.

( CIMC WATER PUMP 5 E L 494 f16 fe. INTAME TUMMEL i

i Figure 2.5 Section View Units 2 and 3 Crib Hou.5e.

1 l

1 1

drivon om3Pgency fire water pump are also located in the crib house, _

The intake bays funnel water from the intake canal to the circulating water and service water pumps. The emergency- lhI fire water pump takes its suction from a bay located in the center ,

of the crib house. Stop logs are provided to close_off the inlet  !

l bays and the emergency fire water pump compartment, All bays may l

be dewatered individually for equipment maintenance without. dis- l turbing the other operating bays, i

t c

h 2.17

.-.2.  :---__._ _ _ . _ . _ . ~ . _ . . . . . . _ . _ _ . . _ . _ - _ _ _ _ . _ _ _ . _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ - . _ _ _ _ _ _ ~ . -

2.26 Traveling Scraens  !

(

Debris small enough to pass through the bar racks is O removed from the intake water by traveling screens. The traveling screens used in both crib houses are vertical rotating, single entry, band-type screens. Fepresentative drawings of the travelinE screens are shown in-Figures 2.6 and 2.7. t As depicted in Figure 2.7 the screens are positioned with one face toward-the incominE water. Water entering the '

screen enters from the front face and exits through the back face.

As water flows through the screen panels, debris is deposited on the screen face and held against the screen by the force-of the flowinE water. When enough debris has collected' to affect the flow of water, the screen panels are rotated upward. A series of spray nozzels located near the top of the screen assemb:' 9 e then ,

_(1 actuated and wash off the debris as the panels pass througn- the spray, Major components of the screen include the screen baskets, the drive mechanism, the screen frame and the screen basket cleaning system.

Specific information about the traveling screens used in .

each crib house is provided in the following sub-sections.

Unit 1 Four Link Belt Co. Model 45A traveling water screens are installed in the circulating water intake bays of the Unit 1 crib house. Each revolving screen is located in a-separate bay 11'-2" wide and 19' deep. '

The traveling screens consist of 26 screen panels or baskets continuously connected which revolve around upper and Iower sprockets. The screening surface is mounted on a heavy steel i

O. '

frame constructed from anele bar. The screening media consists of R

2.18 _. - . _ _ _ _ _ _ _ _ _ _ _

J

.=a_,_ d-a24smea ai ,,J__ a dh-e *n__.___h_A+ ,.,-wra= . - _ a- -A.-aa. m 6 6 s-*a_ _.a. ...m ma_aAew m - m4__ _** 'Asa__.-_. m --.A.* _ .4.- _A._aa.,2. . , _ .

e

%, Y..

ESky7 5  !

U -

&%f

%7w.,w.. s.. ,,- .

?, ns, .

~ **

I n~;, . w.v. ,;

.1.

.,  ?

w~-(e- w ; Wgv.

.c , l g5 6

~

a .. f * ?  ?':" ,

', a ,

  • -f,  :

e if..

r h

,7 ..

(

mq

, . , s x- t,

-  ; w _e y7

,

  • j, 4,4:

jy p.r 4' 1

%'i < .

y p p g A* y ~*

~ y.> .d'

' ' * , .f

  • ?

j'

' "'e 2.c un,,,

    • 1ing . Screen, F.

2.19

~

O -

(/

f i ,

SPRAY NOZZLES [

FOR CLE ANING %  !

'N s DEBRIS TROUGH i

/ 4 _ OPERATING DECK .

N N l1 -4

,HIGH WATE R I .

\

i l

l SCREEN BASKETS -f (OR "T R AYS") \ 'g, i II O V WAT ER F LOW I

WATER FLOW /

h Wa==-*-

DIRTY , 1'2 CLEAN a i::

JOW WATE,R b ,

P

== _ . ,ess I

l l l

l/ - iLOOR OF SCREEN STRUCTURE

('

/

y Figure 2,7 Schematic Diagram of Units 2 and 3 O Traveling Screen.

2.20

Washburn and Moen #14-gaugo monel cire screen with a 3/8 inch tesh size The drive mtchinery essentially consists of a 1-1/2 hp, induction motor coupled to a triple-reduction helical gear speed llI reducer, and a steel roller chain.

Each screen is equipped with a front and rear spray clean-ing system. The system operates using 630 spm of water at 80 prig.

All four screens are washed simultaneously by screened river water supplied by either one of the two screen wash pumps. Eefuse washed from the screeno is collected in troughs running the length of the crib house. The troughs slope to a screen refuse sump at the west end of the crib house. A basket-like container is fitted 1

in the sump to collect all dislodged refuse. The tasket is per-iodically emptied and the refuse is carted offsite for disposal by local scavanger.

Units 2 and 3 gg In the Units 2 and 3 crib house two traveling screen assemblies are installed in each inlet bay. These traveling i

screens are similar in design and operation to those insta11ec in the Unit I crib house. The screens operate with interlocking panels mounted on continuous loop chains.

The screen dri"e is powered by a two-speed, 440-volt, 3-phase motor connected to a speed reducer. The motor develops 5 horsepower at fast speed and 1/2 horsepower at slow speed. During manual operation, the screen may be run at high speed or low speed.

High speed (approximately 10 rpm) operation is used for quick cleaning cycles of short duration. Low speed (approximately 2-1/3 fpm) is used for continunus operation during periods when the volume of incoming trash to be removed fron thewaterisheavyorduringlI periods when the operator will not be present.

2.21

The traveling screen drive may be operated either manual-1, or automatically. With the screen spray and screen drive control O switches in AUTO, the operation of the traveling screens is controlled by differential head across the screens. As the water from the intake canal flows through the screens, a slight differen tial head occurs. When the increasing differential head across a pair of screens equals 6 inches, three screen spray control valves are actuated. Screen wash spray water at 80 psig is then sprayed.

The spray water is supplied from the service water system. When the differential head returns to normal, a timer in the controls continues to operate the screen wash spray and screen drive for approximately one revolution before stopping the screen drive and closing the screen spray valves.

Befuse washed f om the screens is flushed in troughs

() running the length of the crib house. A basket-like container is fitted in a rump or. the west end of the crib house and strains the incomming refuse. The basket is periodically emptied and the refute is carted offsite for disposal by local scavanger.

Water velocities at the traveling screens of each crib house are listed in Table 2.2 Tne velocities are calculated for the various operating modes of the station under low, normal and high river stages, i

l 1

2.22

Table 2.2 Dresden Intake Canal Velocities at Traveling Screene Near Crib House Water High Normal Low Elevation 208 ft. 505 ft. 503 f t Approximate Intake Flow; Location (Gal./ Min.) Velocity (Feet /Sec.)

200,000 II)

Traveling 0.6 0.8 09 Screens Unit 1 Crib House Taveling Screens Units 2 1,060,000 (2) 0.8 09 09 and 3 Crib House O

Operating Mode and Flow Assumptions (1) Unit 1 operatir.g open cycle (426 cfs) and with I house service water pump (10 cis).

(2)

Units (22302cfs) andand 3 operating with 6 with 4 house condenser service watercooling pumps(water pumpsEach 134 cfs).

condenser cooling water pump is served by two traveling screens, therefore, the velocities at the screens will ossentially be equal to the above for all operating modes.

l 2.23 l

. - . - . . . - . _ - - . - . - - - . - - _ - . ~ . . . _ ... _.

2.2% Circulating Water and House ___ Service Water Pumps '

Unit 1 The two circulating water pumps used in the. Unit 1

.r-).

\~). i crib house are Worthington 60-inch "Hiflo" submerged pumps.

The pumps have a capacity of 85,000 gpm, and provide a total dynamie ,

head of 26.0 feet of water. The circulating pump motors are made by the General Electric Company and rated at 360 rpm, 4000 v, .

and 700 hp. During most periods of operation both pumps are used. The total output of the two pumps is approximately 426 cfs. .

The pump casing is composed of four flanged sections, the-outer. suction bell at the bottom, the pump barrel, the drop pipe and-the discharge elbow. All four sections are bolted together to form the complete easing 26 feet long exte4 ding from the motor base plate to the bottom of the outer suction bell.

( The pump is supported froh. the bottom flanEe of the discharEe elbow at floor elevation and the motor is bolted to the top

-flange of the discharge elbow. The bottom of the outer suction

  • bell is 9 feet below minimum-low water level. The inner suc-tion bell and diffuser -are 1 bolted together forming a venturi shaped interior contour promoting a-smooth flow of water into  :

and out of the pump impeller.

Three vertical service water pumps are installed in the Unit 1 crib house. Normal operation of the service water pumps calls for one pamp to operate approximately two-thirds of the time.

During the remaining third, two pumpa are used.

The pumps take their suction from the middle bay of the intake structure down stream of the trash racks and traveling screens. '

q{}-

2.24

-. .- .a. . . . - . . - . . .-.._a.--.-..-_....-.. - - . - . - - - . -

Th9 throo 72-inch pump discharga linos combino in a 20-inch hoodor which delivers the water to the service water strainer located in the intake attucture. After the water passes through the strainer g

it is carried by a 20-inch header to the various services.

The three service water pumps are of the single-stage, vertical- turbine type , manufactured by the Peerless Divisicn of the Food Machinery Corporation. Each pump is rated at h300 gpm against a total head of 105 feet of water, Units 2 and 3 Circulating water for Units 2 and 3 is supplied by six vertical, mixed flow, volute circulating water pumps. The pumps art installed in the crib house over the intake tunnels. Each pump has a capacity of 157.000 gpm, a total head of 36 feet and a ,

speed of 236 rpm. During normal summer operation, all six pumps (3 pumpa per unit) operate to deliver approximately 2230 cfs for condenser cooling. Typical winter operation involves O

four circulating pumps (2 pumps per unit) .

Each pump suction bay is sectionalized to permit de-watering of one bay for maintenance while the remaining two pumps (for Unit 2 or 3) are in operation. The pumps take suction directly from the crib house intake bays and discharge to 84-inch diameter pipes which later combine to form the 14-foot diameter main circulating water pipe for each unit.

The two units normally operate with two service water pumps ee:h. A fifth pump is provided for standby. The service water systems provide strained river water for reactor and turbine building closed cooling water heat exchangers, the traveling water screen wash spray, the fire protection system, and other miscellaneous equipment cooling.

2.25 l

The service water pumps each has a capacity of 15,000 gpm at 91 psig. The pumps are manufactured by the Worthington Corp. and are vertical, double suction type.

Each pump is driven by a 1000 hp, 1200 rpm,'3 phase 4000-volt induction notor.

4

O 4

4 10-2.26

2.3 Oth7r River Structurns At Dresden Station there are two separate discharge canals. One discharges cooling water fro = the Unit 1 condenser and the other discharges water from the return canal of the 9

cooling pond.

The Unit I discharge canal discharges condenser cooling water from the Unit I condensers. Because Unit 1 operates only open-cycle, the amount of discharge can be assumed to roughly equal the ospacity of the circulation pumos. Therefore, during most periods of station operation approximately 160,000 gpm is continuously discharged from the Unit 1 discharEe canal.

Discharge fnom the Units 2 and 3 canal is not as direct as with the Unit I canal. To completely understand the discharge from the Units 2 and 3 canal, a brief explan-ation of the cooling pond and discharge flume is necessary.

The cooling pond la monnected to the Units 2 and 3 discharge flume by a car _2 , h is approximately 8500 feet long and 57 feet wide. A J  ; station with six 167,000 gpm pumps is located at the end of the canal adjacent to the pond. The lift station raises about 1,000,000 gpm of water approximate?y 22 feet and discharges it into the cooling pond. The water then circulates through the pond in a clockwise direction and returns to the pond discharge adjacent to the lift station.

Dischstge

  • ontrolled by a spillway. The approximate recir-I culation .hrough tre pond is about 2 - 8 days. The pond l discharge water then riows through a second canal which runs parallel to the aforementioned canal and is returned to a point (lg near the Units 2 and 3 crib house intake. Cate structures in 1

2.27

l l

the return canal, intake canal, and river discharge canal are used to regulate the division of flow for recirculation and discharga I ( to the Illinois River.

During most periods the Units 2 and 3 cooling system operates closed-cycle. Discharge t'o the Illinois River consists essentially of cooling pond blowdown and averages approximately 50,000 gpm. Blowdown is discharged for control of dissolved solids in the cooling pond. When the Station operates in a completely open-c/cle mode, discharge from the Units 2 and 3 river discharge canal averages about 1,000,000 gpm.

Discharge from both river discharge canals will not interact with the Dresden intake area on the Kankakee River. This conclusion is based on not only the relative locations of the intake and discharge structures (see Figure 2.1) but also on

() field tests conducted over the past few years. Intake for the Station is withdrawn from an inlet structure on the Kankakee diver and discharge is to the Illinois River.

O 4

2.28

3.0 CDERAL ECOLOGIt'AL SETTING 3.1 CDERAL HYDROLOGY g

Dresden Station is located in Coose Lake Township, Grundy County, Illinois approximately 50 miles southwest of Chicago. It is situated en the parcel of land lying on the south ahore of the Illinois River and the west shore of the Kankakee River at the point where the Kankakee and the Des Plaines Rivers doin to form the Illinois River as shown in Figure 3.1. The approximate geographic U

coordinates are 41 20'N and 88#15'V. The sito, as shown in Figure 3.1 cons 1 Ms of a tract or land approximately 2,500 acres which contain the station, cooling (sproy) canals ar4d a coeling lake to the south and east of the Rtation.

The Illinois and Des Plaines Risere are prosently used for navigation, sewage treatment plant effluent disposal for met- Q ropolitan Chicago and some of its suburbs, and for industrial water supply purposes. All potable water in the area is obtained from underground sources because of the poor quality of the waters in the area 's riurs.

The primary surface water resources in the area are the Illinois Watsrway and one of its largest tributaries, the Des Plaines River. The Illinois Waterway is a series of eight navigational pools (with headwaters above a lock and dam) extending 327.2 miles from its confluence with the Mississippi River at Grafton, Illinois, to the Chicago River outlet at Lcke Michigan (Figure 3.2). The Illinois River is the stretch of the Waterway from the confluence of the Kankakee and Des Plaines Rivers te the Mississippi. h 3.1

.- . . - . . . - - . _ . - - - - __ -.. . _ - . - - ~ - . . . . - -

8 w tt a

., W g 6, b

    • g .p a. O C V

) . s- g k ( f ;y WO ia C

-4 . . <r p, ne

( '

b Ch k[$

to

. s .r. c.e- , yi .. , =

ar * * * . ' S Cg 5, o '

.l '.,

a y,. ,c cca-

~  : - i ctp e

      • av4a --,

aq ,<.

88

$[ ~

{J 4. w e * [ fit '. M

& %U

"'o i

. ~  ?& {. , 1lq h4 l E I

o o*

'4 Of r 5

6

" ' = , ,, - -

  • * - , ', r.  % fj ) 0 0 eg C l '%< r, {ti $$ *:

E e I

~

- .; I

'{j 6 5, -

a 5, *% , D

//

, t'f o U f.

,b

+wu c',/

u ... t -

,,. 5. s . .

,y

e.  ;; t >: .:* .  :

. :s y

.s .8

=,

C-s .4 q . ,_/  ! fa na y ., 4 # q p

.F

.: ; $, "c.

! U O i ca.

64 p t

./

.%,( .,, f*, O

-6

/'

3 ne W

C i' g-/ '/  ? 'l ) ) . + '#g ' '

6) sie f. *"'

0 E

- y r

< '. O

'j Y !l*

r [

St) ' l I s ) , ' N'.

61)), i))

V*

.fc

. Y u ',t'

, )ie).) C ra Ly'*

tein) )n) i ',

ep

\' [ * >il))

n ) ) ) ')i

))i til 3f c 64 4

, S'y' 't)eeti1) M ***

,8

-

  • l *\ l?1*\ )l kr.

h

' ' ', <,w M O / ,'  ! 00 5, 55

% yIrg.b )- 3 g

%,k/

j / ,0

))>I

'. -. s )i i II L J ,l ( k,,[ ] ,

y1 #'

22 f

  • g'y

.- ' ' I ..i))))

, n v ni ,b ) z. s.

~ .

O .-4 w.

y C

/,'

' )*))) , i j i ' t '. "

V O C. ** <

U is. ., . . '. )3})) iY) * * .

. . . .I'::- ~

EI J V 0 b O f.11 A l t. rl t>'); -

-,V %v in))1 )il1 .e e' e t.; *:

s,, v1 l 41r f '))))\ ))))%

  • c 11 y a ) ,g , -0 **.

u ,y ,,

. / - A 0 f. O h 11 m ?

f

. - .,., g ,.y . . gs,,,> 3

  • m, ) e ,.

3 g;o Ob . . - .c u t,...i i)f ,)))i,.

  • f.,

0 , , . , / .:,e f , i t i iieii>;ii n M O t e.v i n ) ) , 6 ) ) 'i n' t iji i i i ) ) ) !,

e.N g #'

f

- (;h **

i.f.ni){\ pi)) I e *C

,;, . - - f-f

) - if ,

i))\',, g . .

C P

- c, ad

. iv..o . ,  :\, y -f.,1,r3 , . .. , .,,,,,,,n,.n,,

- , , , . c, m . , n c, . -

~

ne

_c

&,. m y , . i i n , , p .i a n > 1

,,n,,,.no,nii, 5 "y o5 oe

/. / . r* ,; /. ivi)\ 61)))))i f' N m #~~ % , ;r 33,. . c n+

  • c . ,/ r ,

c.*  ;, e l

, / )5 .,5 .r*

tin.- ~ - v. u .

s 5 f. 4L-,q,. ff- - . #'

./

om a.

y y ;-<

F e! n b-

= i L c. { -[ r; c~)

,e c . ;l M.;:.

' e

(*- 1

.a.b a 4 is o,

n

) ,- is ')

, . s y s.i .

Y8 .

g

.$.e $ - w . e o ,,

v. w ** A nb ik '

a 3.2

t I

g,yg O

.\

i I MICHIGAN

'o).s, + .. .-

.i ...i 1

(, i I ,

. . . . )o', . I$66: '

> .. .. e-i'r**Tee 9 $nar cnecAso g# GasA 4s4(4

,n l

,*...<,* osa w ' > g;*

I .....I......4LDCa f y* -g o.....J...y..,. , ...,,

e i 6 OcatOst l

} gpglf * *4 &#C" *SJF i i

{p

  • s D*tSDtk

,,.e'.) s.o.:.=. .*. u. .u .

-1 angrggrj, ,'  %

s**) t h,v N' f .. s* * * * .*.}. i l.,  ! 404a*#de s s

g .,...o.......t

,- s..I #1J*vfd MC8

./ L .. ..s t ..oca*sa i. . ""

"d

,,*  ; . . . . . 1.1 1j

  • #fMed 4 Aa[, i j s' l  !

? A"i pres "* "'t

.{ . . . .;

%cu y one e  !

)

'00 t"

j.

'. ...Q:\ .-

,, .I . *

[ .  :. 8 ]

e,*'g,% .. ,*. . . . . . . ,e [, . i g . .., 4 l

1 t" * 'y * ' ~ -

. 4.} ,.*

-% g ...g *F4 ***i*****'..g........,..{

! e- . . #

.,a i. .

,,,...$', I fp . .. ..,[

o::

,b,e e se2naseraa  ;

5,.tocr e pav s.t a.ncs'owie-

=

,,e )..... ....t ....w.,

s . . J .'

.- ; /.

j

, . ,'s f'

i ) . ...s , f . ...

... ...... . .  ;,. .s. '+

.. pl

, ,.' , . ...s p/

5- -

t .

) I

i .

j GmaFT0.g). J,. -,J..*,,***

a > .

i

,a .

s . .

Al t0A soca

  • Nu .i.-. .

3 St LOU:S wp ,  :

- , .. .. t

- r '

. . , 1..

A-

. , t

-Fig. 3.2 N -

.-Illinois River Drainate  ! . . . . .;: i Basin with Approximate J l {  !

-1,imits Indicated by the ^"" "" f " .8 4 Heavv' Broken' Lines. i Modifted from. Illinois i . - !. .

Natural History Survev 4

/

Biological Noten No. 57, Urbana, Ill., June 1966, 33 4

[ - . - * . , - . . - , . - . . ..,,.,.w.-, . .- ,,,,,or, ,m.,m.,,e,,,.,,,-..7,,- .-E-,,, .m v . , E- . ,, , , r.- -e ,-- ,-r--vy--

-- . - . . - . . . - - - . ~ . _ - - . - - -- - . . _ . .

1 The Illinois River and its tribut ries drain an area of 32,081 square miles (Milla et al. 1966) and is unique in the sense O

that its headwaters during dry weather (low flow) are essentially the treated liquid wastes from about 5.5 uillion people and the various industries in the metropolitan Chicago area, mixed with water diverted from Lake Michigan (Illinois State Water Survey 1972).

The Illinois River was described in 1787 as being " clear" (Mills et al. 1966). Agricultural activities since the early 1800's have increased the silt load of the river. Movement of tow boats and dredging to maintain the navigational channel-have kept much of the river in a turbid condition. Turbidity has been a factor in the decline of aquatic vegetation, and it depresses phytoplankton photosynthesis.

Stream flows on the Illinois Waterway have been found to fluctuate signific utly due not only to seasonal effects but to man's regulatory activities through Lake Michigan diversion and the lock-and-dam system. For example, on September 20, 1971, flows in the Dresden Pool dropped from about 17,000 cfs on the preceeding day to 2400 cfs (Illinois State Water Survey 1972). Average flow rate ove.- the period 1921 to 1945 as measured at Marseilles (down-stream of the Dresden Pool) was 12,050 cfs (5,400,000 gpm)(Mitchell 1957). A seven-day 10-year Jow flow of 3300 cfs was determined from data collected from 1940 to 1965 at Marseilles (Illinois State Water Survey 1972). A maximum discharge of 93,900 cfs occurred at -

gg) Marseilles in April of 1957 (Commonwealth Edison Company 1965).

t L 3.4 l

The Station is located at approximately River Mile 273 (River Mile 0 is at the Mississippi River) and discharges into the Dresden Island Pool of the Vaterway. The Station draws its greatest O

percentage of cooling water from the Kankakee River. Compared to the Illinois River, the Kankakee is a relatively small river with an average flow rate of 3810 cfs (1,710,000 gpm), a minimum of 204 cfs (91,600 gpm), and a maximum of 75,900 cfs (measured at Wilmington, Illinois) as reported by Mitchell (1957) and Commonwealth Edison (1965). Seven-day low flow occurrences as measured at Wilmington are shown in Fig. 3 3 The Kankakee is usually several degrees cooler than the Illinois (see Table 3.1), and is not dis-turbed by barge traffic or dredging, as is the Illinois. These are probably the major factors for the existence of a more diverse fish pcpulation in the Kankakee than in the Illinois. Water quality of the Kankakee is not spectacularly better than that of the Illinois, $

and in some respects is even poorer (compare Table 3 1 with Table 3.2).

The water in the upper Illinois River where the station's discharge is located is composed in part of Kankakee and Des Plaines River water. Where these two rivers flow together to form the waters of the upper Illinois River (Dresden Pool), the water is distinctly horizontally separated because of temperature differences between the two rivers causing the water to remain separated as it flows into the Dresden Pool.

The magnitude of this separation is dependent on river flow and season. As a rt.sult of this separation, the difference in water temperature, water quality and biological communities of 35

O O O 1000

_ l l I l l 1 1Ii l 1 _ 4s0,000 800 -

- KANKAXEE RIVF" AT WILMINGTON - 360,000 7-DAY LOW FLOW RECURRENCE 600 -

... 1934 THP:U 1966 DATA -

270,000 400 - ' -

180,000 FLOW _

FLOW (cfs)

(gpm) 200 -

90,000 Y

m 100 I I I I I I III I I I 45,000 1 2 3 4 5 6 78910 20 30 40 50 RECURRENCE INTERVAL, IN YEARS I

Fig. 3.3 Recurrence Interval for Seven-Day Low Flow for the Kankakee River at l Wilmington, Illinois. From "A Water Quality Investigation of the l Upper Illinois Waterway," Preliminary Report, Water Quality Section, Illinois State Water Survey, Jily 1972.

l l

l l

l l

i ZABIE. 3.1 Characteristics of the Kankrhee River at the Rt . 66 Bridge,1971 1971 1958-1971 Parameter" Range Average Range Average Temperature. *T 32-78 53 32-86 $7 Turbidity JTU 7-400 121 1-400 38 D,issolved oxygen, eg/l 5.4-13.4 10.7 5.4-14.6 10.1 Biochemical oxygen demand, eg/l 1-30 3 Chemical oxygen demand, eg/l 6-162 42 5-162 17 Alkalinity, mg/l as CACO 3 130-130 130 116-220 178 Hardness, ag/l as CACO 3 116-576 308 Total dissolved solids, eg/l 170-525 336 170-530 362 Chloride, mg/l 25-25 25 9-56 21 Sulfate, mg/1 100-100 100 20-152 78 Nitrate, eg/l as NO3 1-6 2 0-24 6 Annonia, eg/l as N 0.3-10.1 2.8 0-10.1 1.0 Orthophosphate.

mg/l as PO S 0.9-0.9 0.9 Total P, mg/l as P0 u 0.24 0.8 0.0-10.0 1.1 pH 7.1-8.8 8.1 7.1-8.8 7.9 Methylene blue active substances, eg/l 1.1-2.0 1.4 0.0-2.4 0.5 Fluoride, eg/l 0.0-0.4 0.2 Iron, eg/l 0.0-12.0 1.1 Coliform /100 ml 10-30,000 4120 10-260,000 13,601 Fecal coli/100 10-110 45 10-800,000 31,848 Compiled from Water Qaality Network 1971. Summary of Lata, Vol. 1 Envirorse.7tal Protection Agency, State of Illinois.

For definition of terms see " Standard Methods", APHA, AWA, WPCF (1971).

3.7

O TABLE 3 2 characteristics of the Illinois River at Morris, Illinois 1971 1938-1971 Parameter s Range Average Range Average Water temp., 'T 44 - 77 60 34 - 85 60 Turbidity, JTU 16 - 190 78 16 - 330 67 Dissolved oxygen, s.g/l 2.6 - 12.5b 8.1 Biochemical oxygen 3 - 12 6 demand, eg/l Chemical oxygen demand, eg/l 16 - 48 35 6 - 48 21 Alkalinity, ag/l as CACO 3 96 - 2D8 174 Hardness, eg/l as CACO 3 144 - 388 283 Total dissolved solids, eg/l 41$ - $20 464 250 - 670 448 Chloride, ag/l 23 - 162 58 Sulfate, ng/l 11 - 125 48 Nitrate, og/l as NO3 0-5 1 0 - 35 6 Ammonia, eg/l as N 2.3 - 8.2 5.3 0 - 11 3.9 Orthophosphate, mg/l as Po, 0 - 1. 5 0.4 Total P, ag/l as PO,, 1.2 - 5.0 3.5 0,1 - 37.0 3.8 pH 7,6 - 7.9 7.8 7.2 - 8.2 7.6 Methylene blue active

! substances, eg/l 1.2 - 1.7 1.3 0.1 - 2.3 0.7 T1uoride, eg/l 0.4 - 1.1 0.8 0.4 - 2.1 0.9 l- Iron, og/l 0.1 - 0.5 0.3 0.0 - 0.5 0.1 Specific conductivity.

miarombos 700 - 810 770 410 - 1050 700 Coliform /100 34 700 - 17,600 8660 140 - 100,000 22,716 Tecal coli./100 ml 10 - 1300 665 10 - 2000 977 Trom Water Quality Network, 1971. Sumary of Data, Vol.1. T.nvironmental Protection Agency, State of I??.inois, aTor definition of c erms see " Standard Methods," 1971. APMA, AWA, WPCT.

b l972 data collected by !!11nois Environmental Protection Agency, Springfield, Illinois.

l 3.s

i 1

these two rivers and the resulting water quality in the area of the Dresden Station discharge is characteristically that of a two g river system, i i

I I

i I

f i

f i

i i

t

)

A A

i l-l-

-i t

3.9

(' . . ..

3.2 VATER QUALITY OF THE KANKAXEE AND DES PLAINES RIVERS Q The general condition of the Des Plaines and Kankakee -

Rivers which flow together and become the Illinois River in the  ;

i vicinity of the Dresden Station is essentially unchanged since 1969 when the aquatic monitoring program was initiated. Some water '

quality parametera have shown a trend towards improvement. Others have shown a-trend toward further degradation. The majority are essentially unchanged or are too variable to observe any trend with time (Industrial Bio-Test 1969-1975).

Because the water quality in the area of the Dresden

-Station discharge is characteristically that of a two river system, -

a number of separate ambient control monitoring stations existed during the conduct of the monitoring program. Station #1 was h located in the Des Plaines River and station #2 was located in the -

Kankakee River with 2 more stations in the Illinois River and station #6 in the mouth of the discharge canal. The remaining stations were located downstream of the dischar& and- were experi-mental sampling locations (See Figure 3.4).

Samples for physical, chemical and bacteriological ,

analysis have been taken during each sampling period since the mon- $

itoring-program began. Analysis of 25 parameters have been conducted throughout the study periods. The parameters are total-alkalinity, ammonia, ' total coliform and~ fecal colifom bacteria,- biochemical oxygen demand, calcium, chemical oxygen demand, chloride, total '

hardness, total iron, magnesium, manganese, nitrate, nitrite, O s 1uw1 orthephosphete, d1 e 1ved oxygen, oxygen seturetion, pu, 3.10

a -..-...-..-.__---:-...

Dre den . , , .

i -

.. ; R. wee Mile 272 4 * ,_ING t.OC ATION -

N ,, l i/fN II. 20

  • g h otRECTion or RivtR Flow .

i

.NP A L

,9 19 ,% '-

05 wi rdI

. . .K . -

a.7 s e

9,,

-a J - -

gN .

~~ ^ L -

oNTRot c ~

,gL w;osE ~e ,,d, sd ~ ,,',j *"**^'/

5 "r.e . ..

~

, . . t.

h; fem 4(,

'\^ Dresden 1stond

~

0.

I 1 **

E t ock 8 Dom i

.h w l l} :

N Z

g ,'. ,1 , . , Revet Mile 274 9 . -.

'T ~ '

y - -

~. . .

~

4 1 = =.v s a s .% ' . .s e

o.,r .... -

c...t '

5 * .

2  : %s. '

s svs't= -

IDRESDEN. 16

' ' U" -

- ~

' STATION" b -'I f

a u d, N '. ' -A - I ' I h

.\ .

h Op *- ~ ^ $g6

?

-.4 - h e pk

_s z \.

.. x ,

A h~. ., , . :t L. - -

o  ; ,  %  : ..

. a m .:

W h L' , bi

,;",....,,--I,.'~

n, .

. -  % . . . . .  % er .te 2f40 m. .

rg ,

. Mx1. .--

. To ,D * . -

STATION S e 2 s e 7 e Kleinn2C ,

' . , *, FEET

.-__ :Fr

. o,9.,ig

,,,,,,.. ~~

Physical Measurements e=0 est Pondi =

' pond - 'l i

. ' l o

H~ t  ! roco 2tx=> 3000 4ax) 5000 -

Field Chemistry

+4 4_..- ---

r' .-  %

MILE .

~ - .

[

~

L rotory Chemistry -* ^ o o *> 80 ..

[ ,,, _

Figure 3.6 Sampling locations for water quality and bacteriological analyses in the vicinity of the Dresden Station, March through tiovember 1975.

  • O O

\

1 total phosphorus, silica, sodium, total dissolved solids, sulfate, O te=Pereture ==a turdiaity-Analysis of 13 additional parameters have been conducted since 1971. These parameters are arsenic, fecal streptococci bacteria, barium, cadmium, hexavalent chromium, total chromium, copper, ferrous iron, lead, methylene blue-active substances, total organic nitrogen, phenols, and zine.

Analysis of five additional parameters, cyanide, hexane soluble materials, molybdenum, threshold odor and selenium were begun in 1972. Thrity-three parameters were collected and analyzed in the 1976 monitoring progras.

The results of water quality measurements from August,

([) 1969 to December, 1973 at station f's 1, 2, and 6 are summarized in Table 3.3. This data suggests that the water quality in the Des Plaines River, location 1 was generally poorer than that of the Kankakee River, location 2. The data also indicates that generally there is little overall differences in water quality between Dresden Station intake sampling location #2, and discharge sampling location

  1. 6. The lack of any significant change between these sampling sta-tions strongly suggests that there is no 1 9ect of Dresden Station operation upon water quality.

As briefly mentioned earlier, the general condition of the Des Plaines, Kankakee, and Illinois Rivers in the vicinity of Dresden Station is essentially unchanged since the monJtorir w 4

3.12

i I

program began in 1969. The majority of parameters measured are essentially unchanged or too variable to deliniate any overall llI trend. There are apparent seasonal variations in c'*"+ _in of the parameters, but the normal variability shown in water quality from day to day _is, in general, Greater than the apparent seasonal changes..

Biochemical oxygen demand data does show an apparent trend toward improvement in water quality of the Dec ?laines River, although a comparison of the data obtained in '974 with data from 1 the previous year shows little change for B.O.D.

The data ahows that in 1972, there was a trend toward improvement for ammonia, soluble orthophosphate, end dissolved oxygen in the Des Plaine.r and Kankakee Rivers.

In1973and1974,however,g

. there appears to be f'trther degradation of water quality in the Des Pleines and Kankakee Rivers as concentrations of ammonia in both 4 rivers inceensed considerably over the values recorded in 1972 and ccacentrations of dissolved oxygen-in both rivers-decreased since 1972. The values for oxygen saturation were notably lover in 1974 than values recorded in 1973 The low oxygen saturation values in-L _ditate that the organic loadi measured by blocremicci and chemical oxygen demand were also important in setting the dissolved oxygen concentrations ar.d saturations measured in the three river system.

The 1973 and -974 d?ta shows a continuation in the trend towards improvement of water quality in'the Kankakee River. Concen-trationsofeightwaterqualityparameters(fecalcoliformbacteria,ggg l

3. J J

if copper, hexane _ soluble materials, total iron, manganese, phenols, .

g tota 1' phosphorus,-total' dissolved solids) eveeeded the 1972-Illinois Pollution' Control Board -(I.P.C.B. ) Standards in :1973 and-  :

1 concontrations_of only three water quality parameters (anmonia, i'

fecal coliform bacteria, total ~ iron) were ir excess of these same standards in 1974.

~

'1 en P

f 0:

O 3.14

l , eq

  • ] n u ., ~ - at

---cge - - .c-

  • e-.

ea

- as .s . n. s.  %. 8 0e. %OE 4 y

e e. c.

a:, c e

~e e*

O.,.. 8. O C.O. c.

e 4 ,.- .e.

e,~

m~% E4 G e.

O. . C. C. C.

g y

a 4

e or m OOO 9 .n e>e. OOO...

V V V OOO O W v V O.OC. OOO 1 , e f ,l * . -% . C*e m e. e O e0- ege e

.st

.e

4. c. c-e ,O e e. , e,C

=. . =.

= a* Oe OO O*N e 84 P Ce4-

.c. .E.et

+

C. C. C. C.,4 e4 m

sN cee 4. C. ,,, OOO O. O. C. O. C. G.

- eOO - g ,, , O O. 9- E 4>b N N - E - -e

(

P~ OOO -.g WWV a OOO OO O v v v C OO a,. 4

  • O..

e- . . .

eOC

.O.

o. . .O.

m-yy. C. e. n.

~,-

aa O c O. .. .

O O O C.

% .- C O

h f

OO O. Q. O.

OOO

..e.

O.

4, .e == ag g .c sy e. .

OOO*

V 4 y OC &

C

- O. C.

8" P' b

==

8"' e.

  • e *e

, eM te *= .= O. O. O.

OOO O. C. C.

OOO 2 - 00C w y v 0

  • E b , c- *4 C ma O C -f =.= C <.O$

C C O# C C tr N " " * ***N "3 N #

  • e. tP*

C C C - *C*C*

E

- O. N. ,. c. *

  • F , ,W l

g 2 eC

- == N NOO O. C. C.

OOO

e. 4. W.
  • u 4 .- r r- .* e e ing .- gy y CC*-

WV C' C((

C 4W t- ad e.

4E E 4 -- O. O. C.

OC C C. O. O.

OC O 4 s.e. s .= C' C C. y v v y y G

b N , * * ,*4 -

CQg C C # C C N, -eaO C

,C- - g

. * .z~ , ee; e < ,C 4 ~C

  • z ,4 ==. =. se eeC . sen N g C , g C

- - ~ C. q q C C tm, c. E. OC.

C C. O. l. .g.U. * **

  • O. O. c.

.s. ,

,. N K.

. .e. CC C. C. .. C. - N -. r* =- =- v v g C. C C. 4 ., .4 4 OC C CCC 6

2 4

d- CC C C 4

  • 4 -,
  • C C C v v v g O 04 c

h Op C C C. ,

8 %' e -c4

.e.

= 65% ,c - a--

C '

c , -- ** c.i..y,, , ~

.e 4, -, .

a E" .e.'.

w' e' <

. . .e.

a e a4 ee-

-Oe O C a

e. , , .- .

OeO 6

2

8. g. e. O. .* e. e a . ..

OOO < - a . - y e ,.

4 C

OCC O. O. O. , # 4 # e .a . .e. o. o. e. 3. e cC =.

  • = OOO OC O OO O

& V N V V F

  • 'b e eee T

N P'

C cC e,e ee OO

, e,

~

C ~. .

2. *5. .g C 4 4, * - ,O ,

e4 O ae

.; %. O, -* -? -N p ,

a. e.==.c.

.. C.

g N ".". *. . . e. . . ..

O C. O 6 -

6EO 4 s~

Oe C OO O

.- e OC C. 0. C. .r

  • a p C O C, g

& 4 CC C -.e .

0OO O. 5 O.

O O O O. O. C.

O CO v v W g v v v e

  • - C C C CC 3' N
  • C >

e 4 , , gC g g*-5* E 6 *.

  • ,C O e-NN N , O4 E 4

% y #.. ---

, ,,.,O m.,. 4, . . *: Ov - . c. ..

C. ** f

e. a. ...

O gC - , 4 OgO C OCC 4

. -.% W- C* 4se OOO e, Z O. O. C.

"e7" -N O. .0 04 O. OO C CO OOO OOC C O gl

-O v v v w y y b

~ ~- - - eg -o

,I , EC C C C

  • M. 2C- ~ e .C. z

~ #. - N, 4, ,4 , , 4

,.j ~ - 4.a ,%

4

... . C O. g C. C. C. z . ** C. ,. C. .

O OC O C, C_

C O D eoO

. = - -- eNo C.$. $ - ~e ~ en d 90 0 O, 0 0 0 0 3

, < C CC.. DN - -

3OO O OO O OO

, v v v v v L*

6 -1 -- - . , -0 cgy - -

4

-x* s C : r 4 e, -e .c.~. "C c- OC* e# -- --- 4 y-- --- - -y 9,

--- 4Oc v v C. C. i.. C. z e. ~

C eC ---

6e9 0 E 8.6".

e.

O?9 O.

.. -O.C 9 2

e 4 Oce .e. .

, ae.

00, QCO OC O g V w N is v t

e

- # t. J. *4

  • 8* ,C
  • T , # N e. 4 -

e O ._ *,

j- g m.c

~~- - e.<ce . . .

  • i e 5 :. .x_.

yg  ;, ~ - ~. -,- .

eeO

-- ~- - 4 0., -

i 4E 3 C

( b E

en e- e %

.r.- e e.

e c.,. -. . . .

C

,..e yy-. -

z? z

<# - =* -rr- e,,

4 2 .

% ex

- -O c -t ..

e e. .

O ee

.s. N MN O =-

C C T O O y C e

C

  • CO C C
  • g; ge qy M e2 , . -

a ,e.

., an . .  ?. f. 2 O. O. d. 4. y 4 .

. r-m O, e, P e . +

h .'E El*. *4 *$ $ . I .

9

.. d.

4x- , .N.

g. n .

.n * * * * *

=

4 E 6

I {6 * ~# n. y ~. j9E '::;r, . - ~ y eaz <

$ 't 4 . . . . . ~. -> . O. e.

--*ae-e- e a--

-y,'.

n .* **

  • CC O. ,;. =
  • N , *P

. E 's--O g -

gE Oc e et : eC C

?, 4OO *"E

e. e'. ,.

4 C OO C C O # # O g <=~ . . . < ~~ . . O. e. e-o --- O. O. #'. i

e. s. e 4 4

-. --- <~, O Ag =P.

. v e

.e. . .

e4,

4. 1e I .=

6C N g

) t*

. N. 4 - . ^.4 4

.*N. 4

. ==. N. 4 . N. 4 ==.N.

4

. a.s 4 .

9, 4 y f,

. N.

4 .g

. . g._ .o.

g 4, . . .

, g , y ,

Oe , COO 000 00O 000 OJO 0OO 000 00O 000 000 OOi 000 OOO OOO

.: 1 .

.i.

g 4 e c E 9' L

$ . en *

- . ~

N.

g

'w.s

  1. U N ( = > f ,

e j r*  :

  • H y . C WW 6 -#. ~

-er . ,,

g C'

^gn E

. C.

s W

t E U, . E- 0 ., .

%, e- EE a - -4 .

. &e * .a5 - =.

C cc - .  : E, 2, 9 .e. !

  • ~g a; J ue =.6 C C - .

~

y y ,

., ( ,

f. m

- wy [ g b

O [ b 4

  • U & . + -3 5 g e ,

c=

g 6.e

(,, - * - ,. e er t

  • - 4 4..,

4 ~.

O  ;

o

.o 6, w.

t. . g

.e. c - = w y 2. 2 z, e*ce- , 6 6 . ,.5 r.

- c - . . m. . 4- e eO=

< < < G E & c t J V Q v y y. -

S _ 1 1"' _. _ _ _ _ _ _ _ _ . . _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ - _

_ 4 . . . - . . . . _ ... _ . . . . 4 to '

  1. 4e PN=

'** ** N N --4 mN*

m te

' asi

    • .e. 4 w ee. e.

y, v e= N Oe O. & ' O. @.

' + J O. est. m. A O t.

@ te

  • t @q p g er e y mN*

O. g a. =. . ,

COC CC@ *OC ,C ce OC e g e.

NNN ...

O. OO. 0OO - e @

m m.

O. J. O. 00.O. ce

== 0 0 .dd OCO OOO COC = * * *

m. N. N. @

. N. M.

NNN U V V OOO * = - =

em N

o. W f *4 4W **

NC -

OOO' g-. um me me'-

46 e ad O- O e ceO Oq C ggg s et #

  • e e*

,NNO- - pe o o N,O . em N sa

  • G- . - 4*

-8

( eOO v OOO- OOO V V N *e N O. O. O. te. t . s.

Ne-O. O. O

, g ..g .

. g. c.

set

y. O. c.

C e a, g N C t'*

  • OCO vy OCO OOO- NNN OOO OOO iOO ONN

. . '. O. O. 2": .tE. OC

'y V OOO em *= 84

@= #8 M #

-O 48* @ NgC p. .m == - es 8" O g ggg qP e#

  • * . . O. O. O.
  • s e e- OO4 pyy - .er.a .m.e g g e, ,N, ,se,i eNN e o se E E 4' F **
  • OOC , , ,,

ygg ggg O. E. b.

2  ;,* *gg-OOO OCO vv se N N * - Ng. e. O. O. C.

== ,e # . . . . . geO T. N."".

4 oeO NNN C. OO .

  • N**

y y OOO OOO O C O' OOO T

  • N " " *
  • v v vv m h w b **M 6

" { tm

- O -CO =ee e ne w wN= 4 4 o. O. O* =.=.. SOC OeC N 3 , am O se ne ne

} OOO O c. C.

OOO OOC N=

  • O. C C.
  • e. e.-

. 4.

e g, *, _ -m# e4 ee >-- te d. 9 e c4 e-- *#0 v y vv 0CC O%C O. C. O. y yy s==

. 0. O., == 0. C.

O O. O. *9f OOo

      • eao C CO OCC e ap G. C. C * -

4CF

  • v CCC O C D' N

N ., .

  • e -O -O

.-N -

4. 0 .- ; u=

-eC ..N NN N

. N. v. - < - e:; . ,a

, O 900

'~ N Oe3 .*-9 . N. s f. e. ,. e..g.

p ses 666 ' -

Oss e6s

. . e e. e. . .,.e. ,. g.

. m. .g C.

- N~ eC= 0;; = ~ ++ C00 C ,.

~- -sC

n. . ..

w 9 N NN h #E NC av se f ee .C .g eg P*** N ** C C C C e *. N #N st

' ' , N< T NT C CK # c' [ e.' . . . [ g* g* g* gCC

< C. h. h. $ $, .3 OOO 1( '

M e* C^

O. , .

~ H OGO Y \ V ' * *

  • [

M c' f .CO, E, J = =

  • I B e OQ3 4

> C e + ne

    1. E E N N NN an~ en" C - . e > N P

.*2 *

  • ad -*4
  • T, T, T == b C y-g C, C, C, g e a **N .

g a t e a4 N * . N.*. M. 4. *=. E . N. 4- * ,,J C C 4 g g, e 9

h I. O. C. O.

3h # ON O O ** O

- * =

qgg ggg. . .

g O,. y . .

en g ggg

. a. c. me f ..

OOO C. D. --N ggg OOC,

", ++e P 7 y y $#3 O "O3- *4%

.*. C. v. e.

== 4 N ch NNN e , e "e*

e g * ' ' ' ' ' as N -54

  • JV N N to
  • g 3- , C, C, O. O. C.

ggg .,

e d, e e s #4*

,O,,

a: h. h. h. fff ffg [ ". h. "" N OCO V b w OC", 000 OGC OOO .

OOO p

  • me b 3k
  • 4 .0 y . . . -eef.*. .x. 9 *" # ae + +

e u s

- O C. O.

=99

  • C O.OO 44 "* O

,O = ces >se

=

we NN N

, , , ea e c e1+ an z w- O.- C. C. C.

+ +

4 OOC + .c rm- ***

  • s . .

OO C. O. C. C.

COO === C CC Cv C s C, . s s OOC nt.' . N.

  • N.N.

CCC CCC

- wz

'* M N 4 9 4N i . . . O. O. 4% N PNN ,.y w

'*

  • 46 9 39 9 OOO 4 . . ye e: e .=.
e. N. "# #'

=== $w NN C - , , ,

,a= P P "*

O==== -0 #C O -C- E, # N "N 2' . O. O.

OOO

. . N***

CCD* * *

  • CCO *
  • O w ee*

CCC*

O O=

  • V 0C C O

~ - . ,

, O..- .

i

. . .. , . 1 . N . . . c.-.,.

C, ,N e

. . . O. C. O, CC=

. . . . . . e. . ,. ~ O. C. . . .

?': .-.- .

OC O .n e N ,c isi 888 3OC n .

P* .es e en

-- w > X E 3 * * * *

=

-*a*

N,

'05 ---

OO O

. . . O, c. c. . . . . . .

2 4

  • * *
  • 0, #.
g. c-, ,.,-

4 *4 *4 N OOC. OC 3 cc= . , ,, . . .

4 ,n OOO I

i C O b  % ,O ,e

  • 4--=.

I p,

, e e e P N, O. .=...N

.,=, , , , s e .y e

. . . - am N e . e t 4 4 =, .

4 mm

  • 4-** OC C **, ==, ,

CC C,

, 4 4 4 t t t I

I eg 4 N4 f N N e

  • art

$ 4 t a e a *

  • 6 sq me ar

,ct #

e

, , , b 'O *

=

oyg. ,

sr* f 'C' #. C. C. g , , , , g

4. A...P. =C C NN N C CC s '. , , , , , ,
  • 4 at its CD0 i=

I * ,N 4

! + .

Ono +**

l W

. . . N NN . . e 9.

. . . O c'* +t Nt>

, O Ci O # * * , , , , , , - eN ~-- , , ,

< == N ' C* CO* ==

  • 0**=* * *
  • 0CC

-e 0

" , N. 4  %.

4 *ae w ..

. . s .

. . e. ==N.

. 4, ,4 4 - av 4 == N .c - *.s e **e as .N ,c

h h . . e e e e e e e e ,e. e e == N .c == N ,4 = a4 ,e - Nq 6 hh. hO e 6 e e e e e e e e e a

.a h

h e

E *

$ "Q* E "M'. h M g e

  • u '
  • g 2 *e $
  • * "n s ? ea - h 2 =k */

3 cs

. 4 j aa e C- L 3 --

  • a i O ta e- a ei 3 *:- n. A C ~-

$, .e e

. u. 3 *

. N( V '

  • ". 43 E 'm -er e 6

.O . -

~- gV 5 g m.

k

  • IN e E
s m 4  %

3 3

4 i . - 2 '; -

f.~

I I 6 g

)

~

1 2 8. i: 4% 1 -E; 1  ;

- =

is i

..4n- c

- e,  ;

et i.... .y

_ p .

.x

'r'....

a e .: .-e e .

," 2 .E. .c. <i a,2 - ..a: --

o --

.....T b...-- - -" e a .. s_ --Ea - . - - A ...

Tahle 1. 3 C Mtism*1 Pa rame t e r la a tion Aug 69 Ua a d,9 May 70 Aug 70 Nov 70 May 71 Aug 7! Nov 78 Mad 2 A wL72 New 72 Mae73 May 7) Ach 73 N**. 73 D.I 3.97 5. 0 1. 8 . . 4,2 3.5 1. 8 . 0,80 0, 7 ' O.M 1.5 Lt 0.94 Orthophoolsat *,

0.6 *2 n , 15 3, 5 O.23 6. 14 0.089 0.072 9.37 6.49 Soloble. ma t t -l'0 4 D.2 2.28 . . . 8. 5 .

0.075 O.Il 0.2- 0.46 ft.6 3.38 0. M l.1 . . n.15 1, 2 4.1 . 0.23 0. IS D-1 5. 2 I W 99 0* I2 I9 Oxygen. fhanolved, 2. 7 (P/ t 6.4(Mt 3. ) 6.1(Mi 1. 4 4, I 6.0 6.8 5.% 9. 6 D2 s. 8 D e t 4. 0 4. 9 6,2 10.8 II.2 6.4 8. 8 mg/l 10. 4 ( M t 10. 7 t hf t 3. 7 10. 9 ( Mi 4.2 M. 9 I q,7 D6 4.6 395 6.M(Ms 9. o l kti 1. 8 4.2 6.4 i n. R 88.0 *4 10.5 31.8 6.1 18.0

10. 4 ( M t 4.9 .

%5 s5 64 at 92 67 . 76 Oxygen. Sa s u r a t wr.. D.I - 44 #l Ac gg 4, n1 70 g0g 87 las . 73 Pe e< ent D.2 47 .s4 ,4 u 105 140 102 91 lin . 78 Il t- - e7 42 sit 51<

7. 5 7.7 7. 7 7. 4 7.6 0.004 pp D-l 74 7.2 7. t 7. % 7. 4 70 7.6 7.1 7.2
  • e, 7. % 6.7 7.k 7. 5 7. 7 T.1 7. ; 9.1 0.003

, ts.2 M.I H.I 74 , M.I 7.6 p.o 7,5 e. 7 7.M R.2 p.2 A 2 7. 9 A.) 0.002 D.*- 7. 7 N.! 7. 6 7.M 79 l

Ps D - 0.001 0.00t 0.040 <0.000 0.004 0.002 0.005 0.008 1. 0 l l'he not s , eng / l D.8 .

0.66

D.2 - Nu o u01 0.001 0. W <0. HOB 0.001 40.004 <0 001 <0.001 ND 0 006 =0.001 0. f H s0 <0.006 *0.001 <0.001 <0.001 <0.001 0.65 D - 4. -

1 4.25  %. 5 2.1 4.1 4.8 4.t 1. 0 2.2 1. 'd 2.4 1.1 0.00*

t h aphoews. D-l -

p.2 o.2% t. 5 0.44 0. t.0 8.0 0. 1.' O.64 0.26 0.001 l ot a l. mg / l. lT)4 2.4R l.i 1. t _

0.002 D-6 l. %M l.4 1.4 . 0.24 2.4 0.21 0. 16 n.44 0. il 0.64 0.41 0.006 < 0. fHi t 40.001 <0.001 0.004 7. 0 i Sele ns um :sig /l D.B -

6. 3 0.00% <0.006 <0.001 <0.001 4 0,00 g p is.2 -

<0.005 <0.001 <G.001 <0.005 <0.003 62 O.6 . - .

'J Salse a. mg / t-ssOy D.I 4.0 7.75 6. 5 5.0 5.4 2.5 6.4 5.4 6.5 9.2 1. 8 5.0 4. 0 D.2 4.4 18.0 6.1 4 4 6.4 2.2 7.2 6.1 9. 4 9.R 6.4 7, 9 6.2 D6 4.2 18.0 6 H 4.* 6.* 2. A.R 5 f* 10.4 9.H 6.1 7. 2 10.5 1

%BD Sodaum, mg/l D.9 is 5(a il 7% 63 70 ZM 50 53 25.0 25.8 45 35 69

( 25 46 13.0 7. A 7. 9 U.2 9 10 2.5 67 9.5 9. I 7.4 6.4 7.'

%10 D6 12 12 2.5 42 16 9. 5 24 44 7. 7 8.4 1.M 7. 5 7. 7 10.2 IM Soh d e . Total D.I 428 4 72 12 't 44M 640 5)6 26% 359 510 %04 403 377 448 Dusolved , ma il D '2 4?N 449 170 442 441 4 T2 2RO iMt lHO 446 448 3R0 36 6 I"

D -i 42 8 4a5 Ing 4l4 47, 4%4 247 439 422 170 41) 375 37p pp 14'4 S,.Ma r e , nig li D.I 95 450 150 k0 189 *+0 5s 61 800 67 4 t. 70 97 ,

~

D.2 90 200 45 7M til 70 62 55 79 %9  % 75 82 78 76 181 74 92 74 73 13.6 95 150 17 65 t>0 st4 si 30 8

t empe r atu r e. F DR st 6 04.5 00 M6. 5 82.4 74.% 79.5 54.0 %M. t 72.5 49.5  %).6 62.2 <D 6 #. 4 D.2 H1 4 16 ## M4.4 4n.0 79.6 50.5  % %. 4 71.8 40.4 48.2 62.2 NT)

D6 h4 59 74 M0.4  %.B 6*s . H 90.5 %2.2 %n.I H 3. 3 66.0 %H.0 69.1 t<D Turt sdiev. t . T .1 ' . D.I to M5 in 4% 10 24 16 40 66 29 26 49 22 1>.4 . 15 17% lu .' S 20 IR 16 4% 10 2% 2% 78 21 D (. 40 i f, 5 87 /5 LO 8% 19 7 IM , 26 67 21 2 sne , n.s ti 101 - 0 10 0.12 *0.001 0.003 <0.005 0.05A o Oc% 0.14 0.068 lbf 0.002 0.050 < 4.001 c onn <0 000 0.001 p otz 0.065 0.001 lb6 9.UIM 0.000 < 0.f>0 6 O EoM 0.004 0.0n2 n.049 0.042 C.0s)

{ Sirigle s al.se le mean of d .pli< 4 t* m are pte analy se s to . d .. . .nm .o l u , mb l .4 f - amW

33 BIOTA 0F THE ILLINOIS AND KANKAKEE RIVERS 3.3 1- BENTHOS.

Mills et, el (19f() have described the general biological characteristics of the Illinois River in 1965 and ntted the decline of diversity in ~oenthic organisms compared to earlier reports.

Populations in 1965 were predominantly tubific.id woms. Below beardstown (in the Alton Pool) mayfly nymphs (Hexagenia) and fingernail clams (Sphaeriidae) were noted, but here also tubificid woms were abundant. A once-flourishing population of 38 kinds of mussels reported in the upper Illinois River from 1870 to 1900 has been virtually eliminated by pollution (Starrett 1971). Dredging of the channel to maintain navigability for barge traffic and.the traffic itself probably_ prevent establishment of a core stable benthic community.

93 V

Using a four barrel core sampler, Industrial Bio-Test Laboratories (1969 G70) found that the benthic population near the Dre:, den Power St.. tion intake canal on the Kankakee River was com-

[ posed- primarily of mayfly nymphs (Hexagenia), chironomids t

(Procladius), and tubificid worms.

Benthos as well as other trophic lerels have been sampled at a number of locations since the aquatic moi.itoring program at Dresden Station began in 1969 (See Figure 3.5). Since 1972, sampling i

i has been conducted in similar habitats in the Illinois River up stream and immediately downstream of Dresden Station's discharge.

l _In addition, sampling was conducted uostream of the intake in the Q Kankakee River. Date. from this period (1969 through 1973) is . mown in Table 3.4.

3 18

~

. ./

Rner hk 272 4 e SAMPLING LOCATION stand , pR a

  1. h D!RtcHON OF W N .% .,

v Ib g ot S

. ..p W O '9 *7 6 * ^

~

~~

. - r

> L. * ' CONTROL ' Pl[Rk er u atswe . ,eS h. . 4

. HJUSE S '

  • Ho*' C

. ,N,

. st' .

% q' O .

Dresden Island -

4'

' c.

-(

Lock & Dam -

'l t

3*.

.1 -

%g p,ver Mile 274 8 . ,

) ' U&%,'- -:, $: ..'

Q#

I um,es ->  ? }k4s. ,y . ' ' ,j i77 T'

~

a oiscua est ,' }

taunt 2 I '

z k sysses IDRESDEN ,

.. ~.

) ".c

. . P a J S T AT IO N..

g .

tJa l h, N

., . tl(, * - o4 ff

- Iw

,s h

4 N .

k pp ' '.'"..k L. **

g . .J<:

.a 1 r,.,",-

g 4 p: - ..

og.. [,.. . . '

h . ,.*S, .- ., .

( - ,%, ,

F. /

. A .-

p , ,, .se 2/40

  • N ' *
  • w  : .-

3

.- q -

M.~.

3

. .X I .

! D e. * .

e 3 Froen .

C oo8 'a g '

' . To

!Coolsag '

FEET l ft l i Pond ', = . Pond 2 l

  • ' ,.' j

', O 1000 20m 3000 4W M

. y.* , '... usLE 3 -

f.:

, 25,, _, ,. o o3 to .

y

. i b-1 i

l Figure 3.5 sampling locations in the Des Plaines, Kankakee and Illinois rivers near Dresden Station, 1975.

O O O

-- - - - - - - - - - - - - - - - - - - - - - - - - - . - - - -- ---J

O O O Table 3.4 Composition and stundance of benthic organisms in the vicinity of the Dresden Nuclene Power Station. 1969-1973.

Number of Menn Number Mean Number l

~ommunity Composition Tara and Level of Organines/m 2 of Organisms /a 2 Dete of  %  % of Ta*onomic Above Discharge Below Discharge Method of Collection lubificids Chironomids iden ti fica tion (Location 5) (Location 7) Snap 11ng 8/69 51.8 15.8 12  ! 1,109 525 Ponar Families or Ger. era 10/69 62.2 11.1 9 189 103 Poner Families or Genera 3/70 95.8 2.8 9 321 510 Ponar Femilies or Genern 5/70 99.5- 0.0 4 340 793 Poner Families or Genera u 8/70 30.8 38.8 8 132 122 Poner At Lowest Taxos U (usually species) 11/70 96.9 0.0 8 166 279 Ponar At Lowest Taxon (usually species) 8 5/71 98.7 1.0 25 24,725 37,009 Ponar At Lowest Taxon (usually species) 8/71 'i6.5 3.5 17 23,541 45,662 Ponar At Lowest Taxon (usually species) 11/71 90.1 9.5 15 5.019 11,6 3 P nar At Lowest Taxon (usually species)

D 4/72 92.6 7.4 9 8,260 10,147 hultiple Femilies or Cerer Genera 8/72 95 5 4.5 9 700 1,870 Multiple At Lowest Taxon Corer (usually speeles)

_y, . .

< r w w

Table.3.4.(Cont'd) -

Number of . Mean Number. Mean Number Community Composition ' Taxa and Level of Organisms /m2 of Organisms /m 2- ..

Date of-  %. .  % . of Taxonomic- Above Discharge Below Discharge - Method of -,

Collection Tubificids' Chironocids, Identification (Location 5) (Location 7) . Sayg1fng_

' -11/72 97.7 L2.3 7 812 2.450 Multiple At Lowest Taxon Corer (usually species)'

3

, 3/73 97.6 1.0 ~ . 20 1,778 6.759' . Multiple. F At Lowest Taxon Corer (usually species):

5/73 99.0 0.3 19 974 12,964 Multiple.

At Lowest Taxon Corer- 1 (unually species) 1 8/73c 93.2 6.4 12 1.330 3.752 - Multiple-At Lowest Taxon Corer i (usually species) l 11/73 96.4 3.2 14 582 13.782 ' Multiple i id At Lowest Taxon Corer u (usually species).-

l~ -

i l

1 -

l a'Improsc,1 <.ieving and sempling techniques init12ted. '

b Change to new method of sampling..

c Change in sampling locatione affects community compositmon for 8/73. j i

.O e ,

.e

__m

-_________m_____& _ _ _ _ _ _ . _ . _ _ . _ _ _ _ _ _ _ _ _ _ _ _

Sampling techniques prior to 1971 were not adequate to-OL previae cons 1ctent esta regarding population. densities upstream  :

and downstream of the station's discharge. The two major families, ,

Tubificidae and Chironomidae (midges), constitute nearly 100 percent of the benthic fauna with Tubificidae alone accounting for 87 per-cent of the total benthic organisms collected in 1974'; similar per-centeges were_noted from collectionstmade during 1970 through 1973. '

' Sampling from 1975 indicates similar populations. Their distribu-

-tion, however, when compared with total macroinvertebrates in the Dresden area is somewhat different (See Figure 3.6).

The number of tubificids decreased seasonally from spring to fall and. numbers found in 1974 were lower than for comparable

< unpling periods in 1973. Table.3.5 is a species list-illustrating-O the mecroinvertebretes co11ected neer oresden ste11on in xerch-November, 1975.

O 3 22

6-m 95 a

g u- 4 -

E Chironomidae

- s m:3 -

2

  • 2 -

z

<t : -

e oo _b Nm Mh 2579 2579 2579 2579 7- m m 6 -

9  :}i

= 5 -

u f; Tubific'dce.

E 4 -

0 s- .

m '

2 3 - -

m

'i:

z2 -

m:; -

- <1 .. -  :

e e:  :, .. ' . -

g' ! -

] _

'.'  ?../;] *?l-  ;; p ] j

  • ,?N $:

o Ql GbfNh g_. f'I 2379 2579 2579 2579 -

4 8 -

Total -Macroinvertebrates m

7 -

, ?,

e 's:

9 6. -

?

w t ',

-N$ -

h E (c '

)4 2

',c

.- m'3 -

f z  :

<1 g -

C *.

f *.

O V n K = v m g er:

m : .. ,.~  ? ~.

O l

~

".V.* $:I' 1 --

2.0 $

./i.

th: !?- l- .; h3: '""

,-C 0#'2579' 25?S -2579 2579 MAR MAY AVG NOV Figure 3,6 Abundance - (no./m 2 ) of major macroinvertebrate families and total macroinvertebrates collected from natural substrates near the Drcsden Station, March-November 1975.

3.23

- > . , - , , -, _ ,,.,r f q.s --w

Table 3 5 Macroinvertebrates collected in the Des Plaines, 7"x

(_) Kankakee and Illinois rivers near the Dresden Station, March - November 1975.

Porifera Demospongia Spongillidae Spongilla fragilis Leidy Cnidaria Hydrotoa Hydroida Hydridae Hydra Linnaeus Pla tyhelmir.the s Turbellaria Tricladida Planariidae Dugesia Girard D. tigrina (Girard)

Endoprocta

(~} Urnatella gracilis Leidy

\_/

Nematoda Nematomorpha Ectoprocta Phylactolaemata Cristatellidae Cristatella mucedo Cuvier Lophopodidae Pectinatella magnifica Leidy Plumatella repens Leidy Mollusca Gastropoda Pulmonata Ancylidae Ferrissia Walker Planorbidae Gyraulus Charpentier Menetus H. and A. Adcms Physidae Physa Draparnaud Pelecypoda Corbiculidae

{} Corbicula manilensis Phillipi 3 24

Table 3.5 (cont.)

Sphaeriidae Pisidium Pfeiffer Sphaerium Scopoli Annelida Oligochaeta Plesiopora Enchytraeidae Naididae Au:ophorus furcatus (Muller)

Chat togaster von Baer Dero digitata (Muller)

Mais sp.

N. barbata O. F. Muller NT behningi Michaelson N. bretscheri Michaelson N. communis Piquet Ophidonais serpentina O. F. Muller Paranais frici (Hrabe)

Pristina longiseta Ehrenberg P. unidentata Harman Slavina appendiculata (d'Udekem)

Stylaria lacustris Leidy Tubificidae Aulodrilus piqueti Kowalewski Branchiura sowerby1 Beddard llh Cocoons, undetermined Ilyodrilus templetoni (Southern)

Limnodrilus cervix Brinkhurst L. clapared'eianus Ratzel L. hoffmeisteri Claparede ET maumeensis Brinkhurst & Cook LT spiralis Eisen LT udekemianus Claparede FT multisetosus multisetosus Brinkht rst & Cook Undetermined immature, with capillitorm chaetae Undetermined immature, without capilliform chac:ae C Prosopora Lumbriculidae Hirudinea Erpobdellidae [

Dina (Mooreobdella) microstoma Moore l Arthropoda Erpobdella punctata (Leidy)

Arachnida Acari Crustacea Amphipoda Gammaridae h

Gammarus Fabricius 3 25

Table 3.5 (cont. )

Talitridae r

Hyallela azteca (Saussure)

Q- Insecta Plecoptera Perlidae Perlesta placida (Hagen)

Perlodidae Isoperla Banks Taeniopteryginae Taeniopteryx Pictet T. maura (Pictet)

Ephe Eroptera Ephemeridae Hexagenia Walsh Potamanthus Pictet Caenidae Caenis Stephens Tricorythodes Ulmer Baetidae Baetis intercalaris McDunnough Isonychia Eaton Heptageniidae Heptagonia Walsh Ih aphrodite Mc Dunnough H. diabasia Burks fi marginalis Banks Stenonema Traver S. exiguum Traver S. integrum (McDunnough)

5. interpunctatum (Say)

S. pulchellum (Walsh)

Odonata Coenagrionidae Argia Rambur Enallagma Carpentier Libellulidae Somatochlora Sely .

Trichoptera Hydropsychidae C_houmatopsy ge, Wallengr('

Hydrops _yche Pictet II. aorata Ross

11. frisoni Ross H. orris Ross ii~ rhalerata Hagen

{ simulans Ross ,

Potamyla flava (Hagen) pupae Hydroptilidae Leucotrichia gictipes (Banks)

Mayatrichia ayama Mosely O . _

3 26

Tablo 3.5 (cont. )

Leptoceridae Leptocella candita (Hagen)

Oecetis McLachlaiI~

Psychomyiidae lll 2 Cyrnellus fraternus (Banks) pupae Coleoptera Elmidae Dubiraphia Sanderson Macronychus glabratus Muller

. Stenelmis Dufour Diptera Culicidae Chaoborus punctipennis (Say)

Simuliidae Simulium Latreille Chironomidae Ablabesmyia Johannsen Chironomus (Heigen)

Coerotanypus Kieffer Conchapelopia Fitthau Cricotopus v.d. Wulp C. bic nctus Meigen

(( (Isocladius) (Meigen)

Cryptochiroaomus Kieffer Cryptotendipes Lenz Dicrotendipes Kieffer Endochironomus Kieffer g Eukiefferiella Theinemann Glyptotendipes Kieffer Harnischia (Kieffer)

Librundinia Fittkau Larsia Fittkau Lauterborniella Vause Microcricotopus (Malloch)

Micropsectra (Kieffer)

Microtendipes Kieffer Orthocladius (v.d. Wulp)

Parachironomus Lenz P. n.r. pectinatellae (Dendy & Sublett)

Paracladopelma Harnisch Parakiefferiella (Thienemann)

Paratanytarsus Kieffer Phaenopsectra Kieffer Polypedilum convictum Type Kieffer P. scalaenum Type Kieffer P. simulans Type Kieffer Procladius Skuse Rheocricotopus (Thienemann & Harnisch)

Rheotanytarsus (Eause)

Rheopelopia Fittkau Stenochironomus Kieffer 3 27

Table 3Tanypus 5 (cont.)Sublette Tanytarsus v.d. Wulp G Thienemanniella Kieffer Thienemannimyia Series Fittkau Trissocladius TKieffer)

~

pupae Ceratopogonidae Empididae O

I O

3.as ,

l l

1 3.3.2 flankton

a. Phytoplankton llh i

l Surface samples collected in the summer of 1971 by the I Illinois State Water Survey (1972) indicated that the dominant genera in the upper Illinois Vaterway were diatoms, particularly )

Cyclotella, Navicula, and Melosira. Green algae, particularly

.Scenedesmus,--flagellates, and blue-green algae were also present.

The'Dresden Island Pool appeared to be the most diverse of the Illinois Waterway pools in terms of the algal populations noted in-the study by the Illinois Water Survey. Algal densities ranged from about 300 counts per milliliter to 13,700 counts per milliliter, and appeared to increase progressively downstream, on a pool-by-pool basis (See Figure ~3.7). lll

-In the Dresden Island Pool green algae were found to predominate in October 1968 and August 1969, while diatoms predominated-in October 1969.- These results were attributed to seasonal water temperature-fluctuations. In 1972, Industrial Bio-Test Laboratories found that' diatoms composed about 85% of the phytoplankton in the

. Illinois River near Dresden Station (predominantly Stephanodiscus and Cyclotelle).

A total of 358 species distributed among 107 genera re-presenting eight-algal divisions were recorded from the rivers near Dresden Station during the 1975 investigation (See Table 3.6).

Mean phytoplankton densities ranged from 1098 units /ml dust immediatelg 3.29

-t n i v

o 16 I I I I Illl I l I I I I e w

m U >-

- o

% 2 D .

H o Ps u y <w w ,_.,

g - o u u E - m WO y Q M C

  • O  % EUN s Cr. N C7 @

O & u W mb D"

uC-J t5 w 3 o o 3 E *,

o -

o

  • A N <M a a

W w g a

  • 4 T - EA >

t & W C 6

$ o J b**

4

  • v.

C g w -

I A E f*

M k l C *3 0 t UM w > Le u

'N -> M 4 e g

g 3u3 E bC I W3 W i M u u 8 E M E C I w' 3*u h i W

5 13.

C LA LJ  : e

>g L3 C-*

. 1 a gy o Z Ce C

  • T '

qo -

v W wM C 6 pg N M

  • I g LL. - LM g a >=4 4M g

- CW I

M WC g A 4%

  • I y W u C 8

i A o 0 C U CEw W o U

=

y g

- @- Ww &

g N n C v.

s l f M C b

<C U l H ww t M2 + uM j oo AooZc" Cee w3 I MZ< W bwC A

8 O < o CD<Z o u 4.#

w m%

a oX&

J C3 W .J W C M

'\ m ,-

~

M 0 4

/

/ s 9

'g ,

O N C > u WCM CW 3 m' N

\..

N 1 6

en lill l I I l ll11 i l l I 8 m

+

te o o o o o o a o o o o o o A o* o o m -

r o. m m 1 o o N m LW/s43 ' AllSN30 7VDW

(')s s.

l 3 30

, [ t i , .>;3 ,. , i ;l' tt 5,; i  :..I 4 L. i! P

,w e

d .

e

.s-l t

c e

  • O <

s l - . -

o .

  • 46e9ee 9eeeee 89e00e eeeWee w

. c -

C t

f .-

s S*

  • t 9980e9 0 9ee99e . 9091e9 999ee9 0 n

i -

. n

o. u I

O -

4 l 4 2 i 1 l8 o 97 e. 049,11 _

s5 e s 999c6e 6ee00G P 949e00 S0Oe9e ,-

t i7 hJ s v9 we.

=/ 80083e 3 See324 e49294 O0ee99 0' i1 t e

r d i y.

P .

o nn )21604 e.14844 1,18 e01 31 752079 oo ti

. e 11148 4 381111 0e9e0O 444221 ,_

t.

kt .

na a.

9668 6a 7 8 048o44 .l 4573 3$ 7 % 43 l 42e 27 m

.- e. 69 e7 80t 12 0 3 ne 58312l 323i3 2 2 at e.

1 l 18t S 7 lS N m p

i -

on 998847 336242 966453 789926 .J

._9 t e 4217 07

- 11 134224 S00949 9091S0 -

yd _ . .

hs .

pe /. 20el7 %

61li41 3 4 83 t6s7 e6

- e7o47 9 e3 e9 t

S96 55M94 t 4 22 7 6 057894 3 223 22 t7 is2 r -

e i

- 331 61 B1 s 1 rD taim .

o . 28 w279 341726 20 011348 jf . . 4. e. 6 011 9744 ao a

e te y Le 013320 312611 0e2050 m l. h y s.

y 1 97 6$7 0 a

ft 0

wees 4nl79o It57t 33 42 7 07 69M 9 441 4

9 l

l ne0

.s5&04 0 6 69 f 2 f1 227 667 1 2211 46 1 0 22 1 . I 1 ~

4 1 _

'oi n n1 a

to.n -

ni t

1 Oa 4 2960 636960 3 - 2 25 36 9. e. S.

ii oc

  • e 0ae109' e9ee01 e303 33 c08eS3 r

tv h i.

i qes 88e77e 3 4 4 -- la0%%I 2 t2 l9 441 463 + te232'4 2 40 8 7 23 506e65 09 2

se .t e

S' l i3 03 oh Rem pt 290060 725270 3 4. e.5 7 0 m 4 2% 9. L 7 7 92 %. 5. ?

on e 469.3217 1 5 . 1 3543S3 377844 ci M*_s.

9457 49 082590 %959%l 1 3 ts /, l e924I e9936I21I 7 6 52 71 52369 9 223422

=6 6 7 52 6 4 4 2$35 42 47 0M 7

3891 7e B 4231t 00 22 nr 8 i s2 i 2 5

'e e m es.

cv

  • ri '2* 0 4. e. 3 9 9 51567 9 663.S'.
  • 915. $ 2 6 er *, 94t129 93S67#

,9t 60%8 8Fe8e7 4 B 8 46.

999989 -069E7 977B8e 4 e

p 'm n1 e

a .

0%221'8 87 4747 75 1k6628 2t 406e 42 95

. do t t /. 04 475 3 47 3%007 9 489067 M60 5a7 4 1 J t93 0 4 4 1 1 24M2480 2G 4 g nr a.c t

n a

92 9803 11 ' 111 01 7 8 231521 w4 i

2 9e5M67 8 S6 S 8 3 84 4

322313 7 k 1

af 6v n.

ey -.t e

  • cl e n' n.

nr t eelpe ae s %9989m8 04 9.

e8 06 674066 91 007 b 99 23 2f 93 91 5' 969 7 17 2 8 997714 443S25 15 F94 ae w s.

44 0e451 118t3 7 8 01 81 2 28 ?

22261 2

. 8

. 3 17 428 9 731 1 1

' 8 7 47 2e 493?7 5 3 23?32 03 2

4 dt T e a

vu i -

nr r-ua S bu 5 U Aq S

? -

7 9

R 9 9 1 e

. 3 7

. t 9 l 6 . 4i e t te!25699 e.m t 912549e t.. n a

t.

2564o a.

t e 12$690 R. m t e . "

e a r y eI oo 1 nr pe .

t.

e h e

3 hsee s i.

l . e 7 m a

e t

Tn Sse 3 e m 4 7 3 4

2 2 3 2 e

l b

a i'

T O

  • WP m

. 4 I,. ,i Ii5 l'j 7s t ' , {

  • 1 S ,4

-- - . - _ . .. .. . .~. .. - . .

upstream of the Dresden Station discharge in March to ",263 units /ml O at ~ the discharge in August 1975. Minimum phytoplankton densities occurred in March samples, maximum densities in August, with a sub-sequent decrease recorded in November, 1975. This pattern of seasonal variation is typical of a sluggish temperate region river.

(Hynes 1970).

The phytoplankton densities observed during the period 1970 through 1975 in the Dresden Station study area are summarized in Figure 3.8, Diatoms (Baci11ariophyta) once again were found to be the most ebundant and diverse group of the phytoplankton community near Dresden Station during 1975. They comprised 65% to 95% of the total

( phytoplankton population and dominated all sampling locations through-out the study (See Table 3.6). Bacillarjophyta (diatoms), Chlorophyta (green algae), Cryptophyta (cryptomonads), Euglenophyta (euglenoids),

Chrysophyta (golden-brown algae), and Cyanophyta (blue-green algae),

L in decreasing order of abundance, were the major divisions of phyto-1 plankton collected near Dresden Station during 1975, A species list of the dominant' taxa collected near Dresden Station in 1975 can be L found in Table 3.7.

I-

b. Zooplankton In 1908 early studies conducted on the Illinois River at Havana, N111nois by Kofold (1908) showed that Polyarthra and Synchaeta were the two most abundant rotifers. Two subsequent studies in the 3 32

y 1970 19 71 1972 t 1973 1974 1975

,, a Location I Location 6 i i. t *

  • I a

6 -

. 6 -

a 5 -

j 5 -

4 -

5 4 -

3 -

! 3 -

3 -

! i

s. 1
r .

2 I '

E I 2 -

F0 0

I

-I f.

5 19,435 b

O i -

B ,

N k

!f b h.

b p: l

\

O 7,e st Location 2 h to,taf Location 9 s M 6 -

6 -

E E s 5 -

5 (4 -

,  ! 4 -

53 -

j 3 -

,. : ] v

' 1 y2 -

f 2 -

,, h 5l -

i:1 I i d - i i -

3  ;;  !!:i l o

o. 0 In E  : c 4 0 3 .:

L:!i ,

'W 7,199 7,9 11 l 6 Location 5 6 -

Loco tio n 10 l

5 -

5 -

4 - 4 -

3 -

l 3 -

^ '

2 -

f  ! 2 -

- 1l!dd MAR MAY JUN AUG NOV
I MAR M AY J'JN AUG NOV l;

Figure 3.8 Total phytoplankton density in rivers near Dresden Station, 1970-1975.

O 3 53

n C;

s. (m

'J Table 3.7 Abundance and percent composition of dominant taxa collected quarterly from the rivers in the vicinity of Dresden Station, 1975.

sampInnq meations t 2 5 6 9 le Date and Tasa Units /mi 4 Units /mi 4 hi t s/eI~ T Unsts/=I t Units /m3 4 Unite /e1 4 24 Marcia 1975 Chlamydomonas sp. 18 1.2 57. 4.1 64 S.7 323 s.9 99 6.9 61 3.0 Q Tena proaama 1 e.t e 0.6 e e.7 47 $.3 se 4.1 99 6.2 GgMa rostril..a 0 9.0 14 0.9 4 0.3 221 12.3 50 3.5 0 0.0 siviTJTa trigonetata 4 e.2 99 7.1 11 a.2 to 3.9 s2 s.s 26 a.6

f. e scTdaTd a c ul a r i s 12 2.2 77  %.5 OS 7.3 39 2.1  !)6 9.6 35 2.2 1- MU d is s i *e 1 t 4~ $ 0.8 ISI 18.7 ** 8.9 40 2.2 57 4.0 7 0.4 i.u niEEII Fifa ~

hanoliscLi astraea is 7

2.4 se 1.3 .e 5.6 15 0e e o.e 65 4.1 9.5 4 0.3 0 0.0 33 3 18 ETTg 5 Afdlisiss 655U 5EFn6 424 286 17.0 1.2 C 6.3 29.1 20.1 242 19.1 205 11.3 243 17.4 119 S @urareTla ovata-~~~ 98 6.7 28 1.4 7 0.6 23 1.3 13 9.9 76 20.0 4.0 Q li_I~Line 181 6.9 14 9.9 5 0.4 5 0.3 16 4.2 $5 3.5

. 27 May 1975 C1 clotella atomos 1 74 5.9 92 4.4 202 209 1.2 cyc1 GTia m Mehintana see 9.- 246 7.0 160 7.1 30.4 102 239 W saFr~csTj672na notamis 93 3.2 157 14.3 7.4 237 to.e 16.7 2ss 1156 4.6 18.6 40s 344 42.9 sie 22.9 le.97 63 2.s Eli~sichnT M l M iFis 21 0.7 $6 2. 7 ' 188 S.$ 11$ 1.9  !)6 4.3 $6 2.$

V)

~

j iTeT las 4.1 7s p.s 323 s.6 49 f.- ' 5te3 Rit ssn~o3tc schII p27Thant escht i 100 3. 5 28 0.e 346 4.6 so 3.s 1 0.3 3.6 941 19.6 199 6.3 64 2.9 3g,hanmliscos inv a siv at es S 52 -).8 124 5.9 56 2.6 390 6.3 71 2.3 31 2.2 13 August 1975 CE rtomonas ovatr 27 0.4 89 8.8 171 2.4 0 0.0 400 5.2 64 0.0 ryclotelli atEmu~s 787 to,7 1821 11.2 591 4.2 1188 10.5 $49 6.9 $72 7.2 Crefoiilla mene<aTinhana

~~

3129 45.3 4889 45.3 3239 44.9 Stel $2.2 1610 45.9 3658 46.2 o 00 .e49 7.9 506 3.o ess 7.7 GE16silla Ancio~eTp'hGnap}~3em1e-i~filipra Tiamos ise 4.5 553 5.9 17 c.2 597 5.5 146 2.0 292 sit sschaa pales 2.6 IS6 2.4 122 1.5 506 f9 9% 0.9 377 4.2 143 1.5 3.3 306 jp'TahidizEnlautus E - 477 2 *> s 4.9

.6.3 944 7.8 let 4.0 925 S.2 477 6.0 5$0 7.0 3

24 seos . -r ! ?:?S Cryntonome ;t-ate 16 0.5 237 7.4 190  %.7 171 4.6 115 99 TyclaiiTT~a aro-Us 272 7.e its 6.2 4st la.o 556 2.9 2.0 14.s 325 s.9 279 7.s CycloteD a wre g hialana 1068 30.8 157 5.3 519 15.3 767 20.4 050 22.9 972 27.3 havicula conGrvacea 21? 6.3 0 0.0 0 0.0 0 0.0 47.

67 1.3 $9 1.7 Miliinod i sc u s'TGWG sch 61 1.9 190 6.4 lit 6.3 89 2.4 202 5.4 Is7 4.1 liegTeiidliscu s a nv 2 s s t a t es 133 3.3 353 11.9 217 6.4 198  %.0 177 fiephiiAI scus sea neo us 4.9 2ll 5.9 296 5.9 204 7.0 196 S.9 343 301

$j g b M ascus sp. 9.8 0.1 325 9.1 Il 3.2 390 32.9 160 4.9 56 1.5 1%) 4.1 50 0.8 e

Illinois River e.t Peoria, Illinois (Williams 1966) and at LaSalle, Illinois (Alberico 1975) show differing results. Williams and g f,berico found Brachionus to be the dominant rotifer or at least a seasonal dominant. Man-made changes upon the Illinois River which occurred around the vear 1900 (Starret 1971) may have caused sufficient ecological change to affect the zooplankton distribution reported by Kofoid (1908).

A total of 14 species of Copepoda,13 species of 01adocera, 4 and 17 taxa of Rotifera were collected in the vicinity of Dresden Station during 1975 (See Table 3.8).

The numerically dominant organisms were limited to four taxa of Rotifera, which accounted for approximately 45-89% of the zooplankton standing crop, vid two groups of immature copepods. The Rotifera are generally the most abundant metazoan taxon in river zoo O plankton and large blooms are believed to correspond to increased phytoplankton density.(Wi]11ams 1966, Hynes 1970). These observations

~

are consistent with those made in the 1975 study conducted near Dresden Station. The rotifers were the dominant metazoan during three of the four collection dates and maximum rotifer densities in August did correspond to a seasonal peak in phytoplankton abundance.

The zooplankton in the I121nois River . tear Dresden Station generally reflect three distinct assemblages. The first two are found in the LesPlaines and Kankakee Rivers and the third is that group of organisms found in the upper Illinois River, above Dresden Lock and Dam.

Another physical characteristic of the study area which may, under cer tain circumst.ances, influence the spatial distribution of 3.35

l

  • table 3*8 List of zooplankton taxa collected at six locations V('T in the vicinity of Dresden Stction, March-November, 1975.

= --

COPEPODA Cyclops bicuspidatus thomasi S. A. Forbes Cyclops varicans rubellus Lilljeborg Cyclops vernalis Fischer Diaptomus oregonensis Lilljeborg Diaptomus fallidos Herrick Diaptomus sanguineus S. A. Forbes Diaptomus siciloides i,illjeborg Eucyclops agilis (Koch)

Eucyclops macrurus (Sars)

Eucyclops prionophorus Kiefer Eucyclops speratus Lilljeborg Mesocyclops edax (S.A. Forbes)

Paracyclops fimbriatus poppei (Rehberg)

Tropocyclops prasinus mexicanus Kiefer CLADOCERA Alona circumfimbria Megard Alona guttata Sars Bosmina longirostris (O.F. Muller) c}

(s Ceriodaphnia cuadrangula (O.F. Muller)

Chydorus sphaericus (0.F. Muller)

Daphnia galeata mendotae Birge Daphnia parvula Fordyce Diaphanosoma brachyurum (Lieven)

Ilyocryptus sordidus (Lieven)

Macrothrix laticornis (Jurine)

Moina micura Kurz Pleuroxus denticulatus Birge Sida crystallina ( 40 . F . Muller)

ROTIFERA Asplanchna spp. Gosse Bdelloid rotifers Brachionus spp. Pallas Cephalodella spp. Bory di St. Vincent

'Conochilcides spp. .Hlava conochilus spp. Blava Euchlanis spp. Ehrenberg Filinia spp. Bory de St. Vj.. cent Hexarthra spp. Schmorda Kellicottia spp. Ahlstrom Keratella spp. Bory de St. Vincent O

V

~

3 36

Table 3.8 (continued) g ROTIFERA (continued) .

Le:ane spp. Nitzsch Monostyla spp. Ehrenberg Notholca spp. Grosse Polyarthra spp. Ehrenberg Synchaeta spp. Ehrenberg trichocerca spp. Lamarck Trichotria spp. Bory de St. Vincent O

O 3 37

zooplankton populations is the pool environment which results from

/~g Dresden . Island Lock and Dam. The extremely slow moving water in this V

area is conducive to in situ production that would not occur in faster moving areas. Former studies conducted in the vicinity of Dresden

-Station have demonstrated that the assemblages are likely to retain their unique compositions below the confluence of the DesPlaines and Kankakee Rivers since minimal horizontal mixing oesurs above Dreaden Lock and Dam (Industrial Bio-Test Laboratories, I .c.1976).

Differences in population densities berveen the DesPlaines River and Kankakee River appeared to be a result of differences in seasonal temperatures (See Table 3 9). A trend of higher zooplankton densities in the DesPlaines River was attributed to slow current velocity and organically enriched conditions.

A kJ The zoenisdr.Lon community composition in 1975 was similar to that of 1974 with rotifers daminating in each study period.

3racnionus, Keratella, Polyarthra, and Synchaeta were the mest common taxa in each collection (See Ta' les 3.10 and 3.11). Zooplankton density and species diversity were not significantly lower in the Illinois River below the Station when compared to upstream locations.

3 3.3 Periphyton i

The study of the periphyton community has long been ree-ognized as an important method for the evaluation of river biodynamics (Grzenda and Brehmer 1960).

I 3.38

Table 3*9 Field temperatures measu?.ed at zooplankton sampling locations, 1975.

Field Temperature Data 'C (*F)

Date Locations 1 2 5 _6_ 9 10 March 24 14.5 (58.1) 10.5 (50.9) 10.5 (50.9) 11.0 (51.8) 12.0 (53.6) 13.5 (56.3)

May 27 25.4 (77.7) 21.5 (7 0. 7 ) 21.7 (71.1) 28.8 (83.8) 27.8 (82.0) 24.8 (76.6)

August 13 30.9 (87.6) 26.4 (7 9. 5 ) 29.9 (85.8) 33.5 (92.3) 31.1 (88.0) 30.9 (87.6)

November 24 13.0 (55.4) 4.5 (4 0.1) 19.1 (50.2) 5.0 (41. 0) 9.5 (49.1) 9.9 (49.8)

Y U

l O O .O

(~h

.v .

Table 310 Summary of density and percent composition for zooplankton samples collected at six locations in the vicinity of Dresden Station, 18 March 1974.

Loc a hon 1 2 5 6 9 Tason Nn  % he.  % ,No.

10 Combined stean

% No.  % No.  % No , e. No, __4 COf'E PODA na uplia 2067 14 26e S SI 2016 55 249 64 2918 69 1910 19 2004 30.at talanoid copepodites 0 0 0 0 0 0 0 0 0 0 157 2 ca 0, 0u c ur lepotd c ope poJat r e 288 2 31 1 17 0 16 4 15 0 1 0 to 1.37 Culops bicuspidaeus ihoma si 56 0 2 0 0 0 0 4 4 0 8 0 12 0, le C3 teps verna h s 3 0 0 0 0 0 0 0 0 0 0 0 Da o, ,w.

Dsamomus palbows 0 0 0 0 0 0 0 0 0 0 1 0 Oa 0.0c D

y temus ateiloir.es 9 0 0 0 0 0 0 0 0 0 9 0 3 c. 94 Eucyc lops ar tlis 3 0 0 0 c 0 1 0 0 0 3 0 1 0 nl

_ g fociclere g 3 0 0 0 0 0 0 0 0 0 0 0 T reperycloys pre stnus mestrapus & 0 0 04 0.00 1 1 0 0 4 re 0 0 0 4 0,01 Ha r pac tic otda 0 0 a 0 0 0 0 0 0 0 4 0 0* 0,01 Tosal Cupepoda 2465 16 2894 51 2034 55 267 68 2937 69 2093 20 2116 12.57 CLADOCER A seeminalenetyperis 38 0 6 0 0 0 1 1 20 0 20 0 14 0.21

. Chyd erus spha e ricu s e 0 0 0 1 0 3 1 1 0 1 0 3 0,04

' Daphnta talesta reenectae 0 0 0 0 0 0 0 0 0 0 1 0 0* 0,00

.Dep*.nia pa rvula 0 0 1 0 0 0 0 0 0

' ' 0 0 0 Da 0,00 Total CJacoc era 47 0 7 0 2 0 4 I 23 0 22 0 17 0, 26 R OTITER A Bdelloid Rottfera app, 11866 80 221 4 177 $ 6

  • 142 3 6809 66 Brac hienus opp. 3204 49.33 245 2 3 0 1 0 10 3 89 2 425 4 I ag 12e Coneckelmees spp. 16 0 68 2 0 0 0 0 0 0 36 0 24 c. 36 Conoc hs ta s app, 0 0 0 0 0 0 0 0 0 h 14 0 3 0, 04 Enc ent row a pp. 0 0 1 0 0 0 0 0 0 0 0 Fihma spp, 0 Da 0.00 0 0 6 0 53 1 3 36 53 k ethe ertta app, 1 1 1 25 0 36 0 0. 0 0 36 1 0 0 0 0 0 Keratella opp.

0 .6 0.00 59 0- 327 6 198 S 29 7 283 7 159 2 171 2. 6 w Manont vla ap,. O C 18 0 16 0 0 0 0 0 0 0 Nott el a spp. 0 6 0.04 71 183 3 33( 9 38 10 194 S 14 1 1 16 l 2.47 Plan ia s spp. 0 0 3 0 0 0 0 0 0 0 0 0 ea 0, 00 Poivarera spp. 0 0 708 13 442 12 22 6 34* 8 syndaeta a pp, 14 2 1 272 4.16 6 0 1814 20 371 10 8 2 212 425 4 S 366 S. 4 B Toral Pot:fera 12265 83 2673 47 In29 44 116 29 1275 30 8206 'e 4361 67,15 Total Zooplankton 14777 $$79 3665 387 4233 10323 6494

  • Organiam present tn densities les s than one per c uh.c rnete r, 3 #0

Summary of density and percent composition for zooplankton O

i Table 3.10 i (Cont'd) samples collected at six locations in.the vicinit of Dresden j

Station, 20 June 1974.

I

_ _ _ . .L" ? 4 ' '

- t_ .* _ . . . . . * ' '.. *

  • 19 _ C om en ne et Mise T e m n,  % .  %  ?. . . *.

ha 8 No_

  • . f. , *. t# r,

(.s e i s f1 A 1301 2 ts) 2 457 7 407 16 2034 t 2 5t 4 2 Ill* 2,4a e..urto

. ala ae.et e ne. pau r s o n n n 2 o e n 3 0 2 o 2 g e; 101 0 t' I 4% 82 1 101 0 174 0 '** n 13 3clepaid s ap. Tad it e s 1 8 O I n 3 n 4 ^ 2 9 11 0 tt n 04 gaf t,

{bLingh*29s palm 3 0 0 4 h o n 6 u n e f 0 . n et a5 0 0 1 0 a ^ ^ n o e n 6 M n c3 D_nyp ;.a y@<n = ^ ea 1, yl 7,. p, q i e 7 n

  • O I

^ "  ? 6 I to o no 1 o I o la < t o 1 > tu n 4 0 n.*

t y, yj 7. g..y q.

(fM1.* 1 C,!'19 1.C't f.1'l'_ ? 1:."*f.i ^ 9 0 t e n 1 o ^ 0 o os nn*

T .p gr i a;, m p e n > = n i. . r e a , . o n o e n n i a n n i o na a na 1814 164 %3'

  • 504  ?^ 2154 o 277 2 12't \ 26 Total Cerrrh 2 4

( 1 A f1 N t 1+ %

1:q = t pra inem pg'j s J5 0  ? O

  • O ". D 18 0 11 0 19 a 02

" 0 1 6 0 o o 6 o o O n Sa n n' Q, gyr'2.pjw a fpj u ..

6 o e n n n e n n ne n no ti 34 nf gy g- 2 n i 6 m o n 9 6 o oa o c3 icyJ-ensi opp t Nat tra 5 0 P 1 l ays.g i i p- *;*,i n. O p q n i n o n I F 0 0 64 0, n'

& 1 0 0 a 1 0 0 C e 1 6 i* h..n Ip.yt ,y epgelf2 7 t/ 0 1 0  %

  • D 0 in 6  % n II si n' 9'oeg .-yyj a g 9 0 1 0 A n e e O r 1 0 "A 3.41 ypb}. h. rse [ ipp ,an 6 0 a a 1 0 0 3 I o n (, 3a S iggd m. v m n.-

f ot41 Ciadnev ra 3+ is 4  ? 12 0 0 0 24 a 51 n n os la'TtTl r A i** 54 2 to-

  • o a =46 '

24?t 1 TU L 7, d.yhybg. apr 1 4'8 L 17= 4 4 53 2 14Av 4 341? 3 .$w 4_ n l l'

  • 11 a
  • H unife ra si c st i 11, $ . k . ri. opp L*).4 A' 28.14 a $^11 ?S 551 22 /4431 ** 6073= 74 36412  ?. 44 p .g a .. pa **I .

1 6 sa g4; e 74 2 ggen l gia 3 [i

. n n r- l= n o n o n 0 a i a aa

} ac hbai, nr.

u n *1 6 0 'l O  ?*t i 44 0 ** D. I 3 Q,y 3 app

    • <. t a n 2- > 71 3 sii > 7- t 4t- i. is 3.m a r rp a a r o n n
  • a o at e , n. nn I .. p s?p
c. n n a e -3 e n 6 , n <

c o2 mm . ,,. . ,,

),'s i n i. . c. -- .

s1- i u , e. i- , 4 gu i g__,p p . , ,

L- L .., ,rp to' . 4- 2 o i ti . 44 4. c is e 42 i ;5 i. e .

.t r, at n m o. r, e. a . i e lat e v. o .i conn 7- j us. u i ni? et or . .n T 91.1 E pe.% 4 P k6 tif, 67$ $7 2 %i4 I II[ 2%'4 t'W71 $5Al%b 1'i l

  • Y f a Ni % N O k k $ I' h ' %$ 4 bI $l E h ( O% h h f h' < * .' f f NhI( Ni k h I' I O

3.41 -- - .

k

,O4 v

Table 3.10 Summary of density and percent composition for zooplankton (Cont'd) samples collected at six locations in the vicinity of Dresden Station, 20 Novembe r 1974.

L et ation I . 2 5 t- 9 10 Taen '. Cambined Mean Ne Le . *. NL. S , be '. No  % No  ?. No. e, COPLPCDA n a uplii 765 10 5t5 IW 602 t- 512 24 344 6 837 14 til 10.35 ralamoid cepepedot e 6 0 0 0 15 0 5 0 I O 5 0 5 0.09 rwaltpotJ copepedee s 302 4 54 2 98 53 254 1 2 5 444 6 203 3.43 Cv el:rt bet srida3e thra si 4 0 Da 0 0 0 0 0 7 0 9 0 4 Enh ve rr.4 -- 13 0 0 e 5 o 1 0 35 0 16 0 0, 0t D:aete m s treeeeee,s, 10 0 0 n 2 0 12 0.20 0 0 2 0 Dis mery galM ,, 4 0 3 0 0 1 0 2 0.04 0 0 0 2 0 0 b ei mu s p ic 61w!e , 0 1 0.01 5 0 0 a 4 0 0 1 3 0 0 0 c 02 L_.,gtre ber @ 12 0 6 0 24 0 1 0 7 0 7 2

0 9 r,, l 4 Euevctc re ereratut 2 0 85 0 17 0 4 15 Fe r a cy c l er s f e b r a N s EI.E75J 0 0 G 0 4 0 to 0.19 4 0 0 0 0 0 0 0 0 0 T resocs riers t ra s ieut rne ticat ur 11 0 7 0 20 0 08 0.01 0 0 3 0 0 Iatal Capepoda 1139 14 7s4 4 7 c.11 6tn 21 5 617 28 673 12 1327 17 867 14. 5S CLADOCLPA Mena t ercamfMriata 0 0 lb 0 15 0 7 0 35 1 15 0 18 0.30 hsmina ker ras 2.2.1.3 45 0 3 0 0 0 1 0 l 0 5 Ch erup sekserim 0 0 7 0 0 5 0 on J 0 0 0 6 0 0 0 Dae w a spp umrna t u re i 0 0 2 0 3 0.05 0 0 0 0 0 0 0 0 D4phe;4 zerysts 0 0 12 0 0 6 08 0.00 0 0 0 0 0 0 Etere rslena r es.reta 0 0 2 0 0 2 0.03 0 0 0 0

-O Lute n~ ira c;?e rar i 0 0 0 08 0.00 2 0 0 0 0 0 0 0 1 0 0 0 Os o,no.

Ilv oc rv e'u n s eri e s, 15 0 t r6 0 17 0 3 0 0 Les d i,a af rd n 0 1 0 6 c.13 0 0 0 0 0 0 0 0 1 0 0 0 08 0,00 Mac ree rtw latn ;rm 0 0 4 0 2 0 5 0 0 0 0 0 2 0,03 M ma b r. Ma 0 0 2 0 0 0 1 0 0 0 0 0 Da e, 3 3 Pleurevus cenn w a'un 0 0 14 0 0 0 0 1 3 0 1 0 0.05 Total Cladm ra 32 0 71 2 45 0 20 0 45 0 3

42 0 45 0.74 PCIWLRA Astlar-ke. spp. 25 0 to 0 15 0 n 0 0 0 t 0 9 0.15 Nd= Lloid R ottfera app. 4566 55 997 29 515b ** 601 28 P s k,-et.s opp 405e 75 3920 53 3202 $4. 2 4

!?% 22 412 13 2314 25 I?? 8 514 10 136s 19 1094 CeeaMdette spp, 16.53 0 0 to 0 0 0 0 0 0 0 0 0

E # 12 9 app. I t. 0 332 12 til 17?

E o 03 1 8 30 1 183 2 154 2, e #

Ti.M 9 sup 37 0 20 148 1 2 18 1 6 0-  ?!  ! 50 hill c r.Lj spp C. 64 l C 0 10 0 0 0 0 0 0 0 0 0 2 0,03 Vera*d te spp 13t 2 301 10 2 3e 2 274 13 47 Lec a m opp 4 372  % 226 1 et 0 0 Ill 4 30 0 35 2 0 0 12 0 31 0 52 SMj spp e 0 0 0 103 1 0 0 0 0 Pla tv ie s opp 0 0 17 0 29 9 0 0 0 15 0 0 0 0 0 0 0 4 0. 0i f.212.anbLa spp Sa i 10 0 133 1 44 2 59 I 41  ! Sh 0, %

Sv er ha et, sp- $2 dl  ! 74 1 1 133 6 6 0 6 0 52 0.69 II.;1 e, k e r r a spp 0 0 20 1 1la 0 0 1 0 0 0 0 23 0M T r @ cing a pp.- 0 0 152 5 IM 44 L 2 0 0 59 4 65 1.40 Tctal Rothfe ra 6t ?2 M5 2376 76 8640 of 1503 70 l 4723 85 6056 84 4841 84.5%

= Total Zooplartaton 7843 3815 4444 2140 5441 7425 5902

" Organum present in densities lees than one per cv%c meter, i

l O

3 . %,

l l

Table 3.10 Summary of density and percent composition for zr;0 plankton g (Cont'd) sample s collected at six locations in the vicinity of Dresden Station, 22 August 1974. .

{h 1 1 2 5 t 5 in ( -- t.u . e f , a ,.

lase 6  %* * *e  ; e ',

'o r. ==.-?.

  • f(: ! f'UDA me.7 1 u *9 'l l^28 0 IW e 31- m 16 3 n lmim n 3,=4 ,

..ae m i J < ipi p-4 r . .

0 7 9 n n a

  • n c. , n 3 d s .w p4.e * ,,, a 69: n n po9 gv e

.t a r> 4 t 1, ') s  %

i n; e a r e g *

  • rei ' s n 11 6 6 1 r. m e T o .

1.3 _Lyf :n,r a '_* * '

o et 9 1; 0 te f. 9 l' gif;p g i' t > '

i 4 r 6 e L,>: u u.y ' < -

n  :+ n :z a  :' .n s'--- enrn*, 1 e o i i 4 e ,a 4

. . "  ; ye ans i a

3 9 ja n ,

34 ,

n .

? a re .13. Q' r : a r * ;;m ' #

0 .i , n *

  • F q 7 ;a: C rp* ; w a l~ '

147- ' 2004 a 62* l'-  ;,44 .

C. '(tPA e a A 'y ,e ,709e. T 9 0 t r 4 3 .

.- - , .rp -r,..-., <1 e p , ,

i;_, y a * , * ~-- i *t.3 3 ;.; r > p p )34 e . j;* ,

! gg t - -ia I e .f v e - Myjg 0 * .4 r- S e O n

  • j

,.;.. ..;. ...a a..  ;- ,

n a n 3 CW *.,*.g.;I;t.J f.' f* 4' 4.' 0 i!* I il4 i I. .

]

a i c .* c , r. is s m n 4- ... ;5.  : -- ,

.3

$g ' f i E.A md; h a spr 1i  ?-+ t 6

  • 9 e!* n t'** t #. t id :1 . ' f et d. a , et -4'  ; -, i 1 4145 s  ;&4. 4 6.14 4

[,a,- . . ,pp t. . + s i u. 9 -

.g j . 4- . g .,7 3 g .. gapiy: -

s,,, ,. ,. ,

(. e-*. . e r; s 7 9 e s r. Jn' 6 ,a

^ 4 16)

{ . Lr'i{ 8P7 O l l' 4 4>4 1 .* 4-L., *g,' 3 e; p "

  • 11** 0  ;*e e  ?( t ^ ;7; 4- ^

a4

,,,ne ea* T a o o e n ..

i~; _3 opp .,A $?; n (i ?se n a a

24 _

'

  • SL4 9 '\'
  • A '<j ^

I' sPf. *t- In t.

[.

[ . ;* f *_,1 h *** 0 4 4* O e A i (t h * ; "_ : . ' D - r*. * ' ' 271? '4- 1 16 1

  • tr"6 -.

i s gl P. 3 ** * 'r, 42 0 7 4,. r i o. 74 i., i nyi s ? .

. ,q. .

T a --a, nc g., , e,t a-ars 7, 335 pns.4; (g,  ; ,

e i; r g a r i e n pree< ~ ir deve 9,3

  • e , f
  • a r : n, pa r ,,t- e nwur O

r me E

3 . '+ j l

D C

M U

U Oa ss .s ~

C M o - e.

Memoooooooooo o o o - o .e o o eme ooooooooo e. ~~~~o--de .po- o o da o o e o o e o o o e e e o e o - = c i o o O ** * - -

- - - - < - - - emee-U E M'o' e o e o o o e' o e o o e o e o e o e o o o' e o' -. a. as e o o' o . .em.*-e o o mm Ia ca e e

ne--eon.m

. e - e c .- ,. n. o. .= .o mb w == N e to W a m -

  • e n me W . e e c e. e . W M@
  • es me w e.4 e e'* *e es eeee e e p.

o n r, e e e an ese > eu Os d 8 on e n e es e e m - em e E

c .C ~

to 0

= o-oooooooooo e.

s emoc oooo -e s o oc .r.n e o .s o w - e m o n e Q

Cc :s a O

- .m r. e e. .4

e. - - e eeq e. o o o. oeseoco...-

ce e

me e em m we n .e eseerm o .e . ett e.. o o .M s

p * . ef.'t e

e av s e e e e m

n k.

MY e m.

r e4 t.o. - e

- P.

CN N

4 *

  • -ooooooooocoe - ocooooooo o a .~ ,e e e c o .c o e - e- es m o o e 1C OO e- . . . .. .

O I e* =s **e re m o - o =e e m o e = = = = . = a o == m

  • E mM w .

NM N. e o.

o a.a o **n.. M o e o. ce. s.e *x.m . **., ae e N se e ce

  • e. a .e ya 2 o M em e
  • w - @ W O ta N
  • ooooooooooooo o ooooooooo o cocoo-owo-goo e C e w e CC OD e.4 m i* \~a coe.

e

- e. ~ o o m.e e - o .

w

-e.. .

.- - o o ce o e o -w ~eno o - o e . e. e. o mm o M@

4

,f+ e t

es e o e ** % M ee- em q p f we o == ce ce .*

  • e d[* O e. e c. e. .e e.

t0 a i.o se o o

.e..

.o. e. n (t

W y > .e. o - o o o o o o o o o o e o0000000o o -

EO a

., .= o m no o c o o n e .eene o o e O

ON- '

'a

+ *

  • m .o . .e o o o o ,,,o m o .

.cmoco.

M e e a eo-cocoee.-ceo e -

A yy s. e e

d r*. e e o e s* O en o o o o-c,e. o. e

/' }t x CC c*

<1

. e ee m

e m

  • e UU = decocoooooooo e ooooooooo e omeocoowaveos m ie Q **4 eg N -e m e 3 C> g Or o C ~ta . . . -

doe.co-ooo=~~o ~ ~~e-o-oao e oe o e gyg w

g

  • ee

.e e e == o e9 eS.

w*o. e owe e o e se **co es m

=0 o.

CM ta C ee .em

= h M et m. e er e

en g i.

c L

>+

y n- .o.eooe=soooooo e

ooooooooo o o ee e eoooommeneo. o e

.e4 ta MC -~ . .

  • cO e s .e r. .. - o, o o wm es o e c.

cowocoooo e.

- c re ~ ,.e o ~ ~~eee+osc o~e-e.

  • }

Q *e4 -

o e W == o eu awoe * .o O

TM 2:

e e em e.

-* e m w

o c e' a WU e **

OO  :

s -i J.

s' L

! =

-.e N 3 tt e4 -- ik, i == e i  !

e g - ,I e -f e m a6em e o mi .eiet n ei et . - of o m.j QM *b.ec=e.'.3.,

3. e!% 45 4

utsi g

9 8.=,i r i w'ei 4

m

) .s i S9 sC v st "l4I

.ce L:

6.b' t.; J 4* t O l w e'2 9 *f **J p e i,. e=-

, -e,4 'i.*;A .44 .3.sJ  ; ~ - !d C =iO ?= 4 4

es

..-: 3 m' O-.' W g.a g;: 4. ,r (.1 F ' k. m e *.3.<i ~p-4 j k to *

  • e u a- c $a

.el n.:. i.Je - w e : o -.$. +a M q k s.,c e L. = d,ed- dt0 - 1 3 C < e.ik.*e*'m%. F l r et ve..

> 8 s

W U17 a w I

  • e W U u

J

- c. - e iej9 u e, en

.a*

C..

Fi e- 3.- r w ur g y ei .w > m m "i WI e #! e ** .

I N

= 4.

  • w -

c.

st E

C 4

== - y if n e

-= ga. 7, E ; Q . .#.+:=1 *,s.e. gwN Osei%

C. i : C3.

1 i. e t *H 9 - a.';' M Cida * = : *= . an ;

e 1"

  • C ~mb +CC # Q >g: * + .4 w **

g e e*f KW i 9* =!=!all-V

= 4 f 4 .* O Q C - O C. 0 i. .wi4-'. v 6 gHg cIC e:i Cii - U s 1.

  • A.N'8 hq Lo,I: s C,.O g =

9 71 c3 **-Q-U~V % :.e: u 6.

w .y w. 3' m u e m p ,c; h

cuwW--- >vp=v ab se g Oie M Da y e e P.>=>9> U,< 9 4wi9 g i V

.: 99vvv i c*+o:o=,w w$;k.Oia.

3i gi Q

o. du.N 4 ., c w.i-e . n..e== : 1 *l 9 9

~. M b ; &

c c'*,d .r4 .z M w s'e 9

to Q. b e clUa *1% aiv w.i s=* e. t o -*

6 6i P a'ur?iaO. inhad C

me e

e

ne 4

-O o tp ee

@ O D - O C o-p u *e u +- a O t- *- .

O V

3.M

s e4 e N C m o e o. o o.*.

n ~.e,o. o oo.no.+o.s o. o o o o e c. .oooen n e e - - s n e -e - - e e. n e ge e. o.e. e. eg O D. o. **. o. O. n. o. o. o. u. t.e. O. N. **. *.. es. e. o F o. ==. to. o. o. me. e. o. .

E aowoo-ooooon a

" oooooooooooo a a**ooooanoaoo U "

99 t ** e e e e N L et 8'. e o S e* ee og p 4 4 4 e g . - s.

.O ce

,e gp

.e G. Q 889 -

er p

sus o ,me *% - 6 @ g m o e. eig a

. ee .**. m w W e ee .up oesog eg g .e. g p g

.e e-4 L/1 o w .#* 9 en eA O .e= Pt e ce e.,.

g T. w == m

  • N
    • o en.

s m m Em N c-4 .*

cooooooooooo e oceccooooooo o ec co o o n no o nc e ,

m e e

>e e ,

C4 - c c .e e e o .

om s

- o~n -oo omo O s

+

n se 4

..e e m ce a e. .i. . . o . .e-o o * .e., e. n ,.

M er

. c ce

.O w

  • ew e yp M g

e e=

e se ma 4.== #

em e 6 e C (N C )* o o *= 2 o se o o o e o o = Qoooooeoeoo O g s w N it' 4 == *-o o o o o a- o e se es o et m

Ce C OO e - e . . .

O .H N E P o #e== O emO ***

  • e e o
  • % w
  • e e

o o e. w o en es e *= o se o e ce

  • -a e
  • O e ed 89 w NM *
  • o -

- ers

-O*ew e<-

e .a. o e e.

e

> .* - o e e w e. N o e 4

I en N e ** e .e. m .ms e

e-m O VJ y e woooowsoouOc e noeocooooooo o .e w - v o c em m e, n m w o o

  • 1 C N m l C 0 O *3 #

6 O ap1 w e. D * ** ce eo o o ** *e n ** O m

o o ** .* N**w.

  • e **
  • o =e 4' o N **ot ' **
  • Co D e. es o > e l M,

e .

e c.

N @ w up e4 w 'm o to *= w j W C C m M c .* e -e = ,

.e4 N O Z  % m P 1

~

j mQ e O e m o *= o o o o (, oooo Q,, 44 s

o *J

  • o == 6 Q C o o D o re , o e l ee e"s o e c w o e .= e en 9 ec s e.

EO O c .,

e ,

U >2 r. - eo.~ooe.-- ~

~ ewe., e oeco d

~

e e o e o ~-.c.e e . o ~~ n e o o ,< . ,

e

.e i M +p4 C. es c= *e g e. a m

' me N M C C Q * *.4 QU .e oE4oCoE o .D o o O oQoCo7oooooo o o es ==

  • O O i.e t* O o o e o >

h e

9 ,g e4 e er as 0> 6 C. ~ , -

-r u

e ee *e c re w o n es he- sA e' - e * *' es + e c c o c w w+otm e e o -

w w a ** e. N .e .s c==e *- m' h g4 N. * = en o *is ec es e # .* e e /,,

CU a e c,an # , w e a

~ w C - '

W l +

y en o .* o e c o c o c c o e cocceoccocco o 46 NM a e e e o rt c o m.c o as c o o

a sJ e &

c

  • c=4 O MC ir m a **
  • gO k .a c e~ o e. % e---
  • n u o c oo c ,e o c o c e a--m -

e..~e.<,o c o cc. o e,- c o =e- .en c .

.o x

. ~ . - .ie. ne #,

0e 0, w e a ce e-og ',p'd r. *

    • e

=

e 4 6 wU **

OO y -"!

H .

eR f Q m i9' ux e+

a. .

- - C e

10 *M eie $ 11 g i c

  • ge a s t *i g( 9,4 e, n. f s.

13

. ww

. . .aast u. .,ct .. ..

g6 e s n. w . 3 rie 3

s. f .i! e.t *f 6. .l,.1

.} c N es e

( s. .. (

  • J.I t .e g e O e.*r,i J =

aa l' + e...p,

?.

l py ml s ,v

b. i rl e,

. t' ta.Si

  • ' i .,

, 4 g p a ie t., a j g 's.

t e * -

C 4 e.

21 as

.!;. As . It . f E

.a 5 ...,.6.,.

. t.,

. q. i e. .t. :L w a a ,

-- . m, m , , < j e4 e,: - a m- .w :,e ,i . c. r. a, 6 c( a .-_ .o . -;

.e .. ..

i; ; . , +u p , , c. q

.e.. .a e.c c . .o.

r5 e . .c .- .=

,j . x .i e=4 nv u i.sn eag a d. i c e u. y u. r.,.u e, . 6 m - n. . H; e en e s s e.s6 t -- e s.

c' .w..i

. .. ..t < 4 a 3 y e e a

.m 93 a ' ? i ' > s t .e t a v v,i c .. w s's's ; -4 1 *.is ni , i. ci e *- ...

a

,t, e, -

KN80 S.s e. e, i m s . v, . n . . - i d, rt. . 4 ( .i 5 .b ..g> 6 .* F e e e e .i c w i , s . , s= ". ' .so -m ve- o r I..i. e.=,r s.:.-4 s.,.3,3 ,.e f.

a e.:.t

.=* g r>.o',e es .e ik.,,r t  : i. - g .n 6 C a .. .

o C =

e gj+ ' cirb.i 'i i . ; . .i.,' . ir v c, ,., . e-;*

, v . c, .,a.;,$ . . f.

v aj .r =pi-23 . r. . ,i ..g e e, ** C to) .$.J 9 **

g .e g

< ..o v . , e. . .. e ,e e w ge) N -i * = i ! c t + 1. t .i

  • e e t.,...u.,,

i  :

    • t.,..,

. . y. ,4, -

1 =

.'t .I-. . ' i . ,a .h',s*irs. .em.g; .. .,,-;,, a .

- e e

~.Or # e

,Q O O C E fa p Uw,> N iQ ei4 44 4. i4 !'4 9 d' h . % ',,14 > it) . l.1.r' ' . g* b i e-o as ur w.<ic.

et io e 4 b 6.?J h. i .t d.*. h' Of 1* . i ak i A +d e

4, 4

  • . O e.

O O ** C C V b O O C b (,.)a l. a. F b e 3 . b, -D

_ m . _ . - _m. m .,m .m . .- -

  • e Y

v l

U

/ G

-( e4

% g O

U

  • i m
  • Mh W Ch ed ed e CL

-u C w c

e ne.aocoooooooo naeo-oooooooo m e ooooooemco e oe oe ooeo o.o e,re e eo e

    • meneo.

eo ee e- c o r eoone oe o. o en e qm le conooooooooooe e o e o e e o e e e e e

e oooooooooo o e e wnenooomnooe e o

~ se e

mD . .

d. N. emeeeoeeoe.e
r . . . .

C e e e e e e e e e e *

  • e e e o e o e a e e e e e e e e e e e e o e e e CQ >- n ~~m ce e se N .*

e e 9 ev ao n see to 6 e o emm w

e eee

- o c. =e,=

e 9= w

  • es e a nn .c n . e.

e n

n O 8C < e .* .e e e e e . ee m - e- m e y u e m - enom mn e m n es e MN no C *H ee e w ,

m -oeoooooooooo e oooooooo.co - emewoo eneo ,ee pq e E Q. C e re-e o e s n n~ o o o o n e ee o m o o o o .nav o m me o e 0 awe ** e.

wmee e o .r..co. o-es em o o 8 ee4 r= 1 -l .** O m e e o

em m.e ee me o e >ce>ere o m e **

sa e e ce e

o o e e

e NM ' ' * * * *

  • ee n e e o kD memooooooocoo e oooooooooo o nmemomeoneo e OM h, w *%

-n.nmoo~ooman emw e on. coo--oo e em-co.o__oo . e r* = me ee-o e ce n -

n e. e.

e m .o m C0 e* n m. . ,mwe e n - .enne se e e .

a n re Omsr . o we ee ese e

ce ri O

'M C o e e o m o se c c o o o o o o o n s 4y ,

- ovoooooono n reenwo son noe o m C3 e v es e m e - a m e n e m e oecewmeena e mee ocoe.eee n O C M5 l n ** e em o me 8

oe4 an e e me me e o emse og ee .m.e C, W 4 e s'* ** m N es mo g > e

' o*) e n e ce .r* e. w*i

. e em .va's n. e

!! O p .

e e

ee 0

Uhg I* ea momoooooooooo n

a oooooooooo o n

TMNeomomnoe e M **4 h CC e r w e.n.,a n .c. o re.w o o ,e o s.

  • o o o e * *e o e enn~omonnoo e
  • s m .a e s. e,n e- a e

ee n r. e e

~

ce ovan e co nece ~ es e

e e

lgg sur ee 9 in en

.e .4 es en e"5 b QQ .e* n ** in P' Q eq U_> , o . e . m - e S mo-onoooooooo - ooooooooCo o mNhaemoaMoo e 0 m tr x .neo-onmocoo- r -meneo .mo - . >

CM rio s o o - em o .m. moe e se neeo ee ew -we oe w e

> ~ e .e. eee- ce eo e e g y h e. M b g m b g ee n a b' e > e M ** o 'e o o o o o o o o o o e e c o c o o o c o s, a er

r. m e n o m o o o o o e e*4 N .

OC r ow so nee n,o m o cce *o e-o m o c c o es e e o e *

  • e NO ,

e me o ==n= .w.eu ve e ene o a o e n e eo en e e ee v e. e e o e e t- ~>**e, mw we e ce J:

QH f o

e e een owns si a m o *

- 'O 4J ,

  • e e

.o.e - e 4

  • e, M U e **

OO ,a E e e .

6

  • b == .d WX 0

$ **4 .e g ' k' .e.i C c g -t et St -&. El 3 #

63 e 6e .g? i e8 N

." Pi e bi

. --ese 6.')5 3. el e i cj p  :' r M 6=2 e= *i c '-!* e!w b' i { *" " Cb w - wl' eih ee +d 7e* (l: e mq u3 v w y ;J r! W t , L is. m , y 4.l' e. le. b.->it e3 g ! st e=t . .

. t e ;i c' e. '

=e 6

.eI.7ciei. ;e.i .e-- r,.

h.s: =I e e c

ad t CE 4e* (s{ -*e

  • 1 e = i g e. a mit

- *

  • I C' % * *G I d C *

& e S. e o N 6 e- 4*e . - &

M' -. ekkMT LJ

! T U eImi-e Lm2 f6 L fk 6 eu g 1 C. usact a; bhV.

L. ,w

e. ., *Im e c e -i c ' * > q. w= i-} w e Ik it c6 a ea e A el
  • A e

a e o s,, oi c . c. i. d e*,du are-o.e v + ee --=,

9 6 emi

r. - r en c ,e

. } u e elee oee e16et a oLa Ues 6 as aa M c e eM eie:(e w qw-t e u si es m ei n ew s , i b a u es mne Wr o,'e i u *,.-:rOc:. ce :coo e , r*. pdt m 06' . **v=. =4 i ! e = -

.T

-e E e qwo-

m. - ,- +d e - m'ed p e. i , e u 4*qrVP-v pm =&

e a es th -

oMk

.an~ kw ao,o a

g-E 043

,4 C r

o

-e I o c.i m o.o.i.W.e4.e.

ci aee -4.e. -: e <, e -t ' l u, u, om .nt i m. v < e-e

  • riu-c.

M ; M'ma i

6 1'

- b' t<*$

  • '. i m w a s se

-0 e

w e,

e -6 I

'e m'. %uw 'a

-ee C s e

r>

-e,1 =

= s - u ut uW - u viv-c - c -cietowc

-v -

.Q O y e

L e eauuu

>= %m,w1 uswa e a :i e w u zae .e, v, eb %r-,ww- akc.o.Ir w *i e-l e a .

.%. .r . - - r wlwgo'A r ->.e

< neu g weela.s,ve!-

a e

e a

e t-wc oo 0

N(,) 6 u +e e o E 1' e o

E =

e 3e4b

1 i

l i

l I

I T

M 8

, ww--odeocaceo -

m coomo .e as e=eoceacoceme= e 9 ,

C e **

om .e

s. e O. re. o. o. D. o. o. o. o. o. 0 0 onoooooooooo o

. o. O. O. f' O. C. C. O.

o c. o c o c c o o

. . . O. e. 4. C. o. o. o. s. o. me. o. e. e. e.

o m e.e o n e. c o m o e m o e.

e I

U (** E e W5 e

@ 9 mM e- . e. e e. . . .ee e .

e. e as - o e
e. . .

ei W

ccN e e 9 e.- one w o o N o a 2 es e

o - o N * **

  • e

's*.* @

e, W

  • o e o e o e m *e e **

e es M

& & .e n'. f9 e. 9 4 m'G 4 O.e m p=

Od h '

U E .O cE ., o o % o a c, o v o u c o coooooo, o nv# acou-oo..c.- e 1 N h e - - m C .O o. 4

, m . o o s ., e - o - o o o .# ..- - . o o

  • c e e a e .. o ~ ., ~

O ** 'm.

s,..e .ee 4 2 ee * - e e. +

M .r. # #*- M i e cN. @ .e.e 8'.*

. . ~

.%t 't a' .e C IN C ca ovoooooooo ** ce,sosene o e.

84 **

e se ese.co e o

aoe.oo e ey O. C OO e - . .

O* 8 e O d o o to o .e . eie g e , o # p q o es o aie .a p w e me di o o ** O % g e g 4 o F e e *.

NM  %.

e e.

ee .c.

. *e

.e - saro.4 v.

r-e e

h D O W *'s e e.e Ld E **

i O to a .e O .* o o o O o O o o o o .. o a f') e O E* C o o c AOOmo.eoesaeoa e a

[ e .* d CU OT av . e e.= n c e

    • a en m

.,4 O s E

1

< o ar o o e. O s.e o a w

.-e -

.o N c.'

e ~e c e+ 4.e e *'. w 4 m a ee - e.

aa o e. e e. m M%

MQ

  • c C j W W N@

- m e - e O  ? i .

C. w . ~ , - e e c e o -s o o o o ~ ooon ooo o war..r e e - o-e. o. c

.3 r e -

EO O

UN 6 c .- ~ e - o e

.. o e c . . , ~ e e. n - e

e. #m7 - c o **# ~ .* o.*ee eo. ,

M N.,, ne se m e.

e 4 p .a . e- e- *  % m .en. , -

e #.

. en e. +

C C s c .-4 OU N *r4

~.oooooooooooo

,e ci o o o o o o o o e . . c o.r. o ~ o . . c o e** .y e 6 O

0>  ;

s

    • ~p . .

O e oireoe-eoooe.e # e c.o-o . 4 c. oe . e o c #., e r e.,oe< ~ e ~ # e u o o a . e N ** s. en m . r~ . 6 me a;s C 4.J e - n .e.

c g 1 O C s*

>,-i , -ceooooconoco e- o c o a c c. c o o e r e- c e n o o v o m ,. e ,

%, L y e * - .

er

.e4 O to C -

C O ' , ' ' '- ' ' * * * * * ** * ~ ' ~ * * * * * ' ' ' '

  • C '

hM N

+

,~-

~,**'*****'",e:

W .*

~ ,

Mm * '"..W e

g

,C og y j c - *. e d e e

U el &

OO m -r fi

<i

~

e g

N e. {.l t .e .' -

p g 6I a; o-w m:

y -

a

@ .s"4 b f* l e a.+.. . e a s. u A Ok l 9 eI h 3

. . 6 n;.%t - et - r 9. ;

. .: m e! ,%

M .&

6

.'t #e b . 6,! O - nj C je m

    • .. i . It. i5".14 S &* -=

6.

-r.I .e e a ,i = . e NO  :

e .,e W em,;.% t. I , . ej. ,.2 i .t. t t o. j -y-6.

4f e- 4 f, w rk .

rm. a; .+ . s. i.. c u

.'. ; .i.e i .

r i H n e.sa ; J .m.

i ei=;4 .

1 . . . . .c'n;,i.3 l

l . r .i .

i . 0 *. r, e..f .1 . is . s .c. c c 2 . . . t . c. rs c.

d

,^

Au .r .-.4a, 4,, .*.N i ij.

,,J' d, e.)., , =

, . , .k, , yp e

a, u , ey. , ,;9; .,.i g,

.n . e ,.e,it ,e ti , ., ,.1 r

, ,.1, 4

a m s.

g e

g

.. g .

.. ap 3. , . I.

. v r .r . a . . . ~; ca e e .,. : u. . 4 o a

Pt"\ g c .,.

n g%,e i s t e. : m, s .. .i sm. .u ..e . . ,, w. _ t.3 p. -. - c -

.. i ..l .. .m.:e , % .u. , - .

s

.O M I$- . . -I, k k I' W

  • I% 9 N .g* 'W h . j l 8

.!',E f,. 4 t .f

.P.g', ' I, o .. 'g.,,4, q h.

e. e. kl c !O , -

.,i.4' v-Op r

v. . ..et w,%.s y, v<> .o. .E.

g C e

= ^ r . e ..-....o.. .y..*4..: .p.,

v n r, i

, xg .-

- , ,c

u. - : L. ..mi .- ; .,s . l ,y . 1 . . . .

..,.p-n .

r -- e g ft 5 .,. i, e. i -s

. ., - { . . .. .e . . .

.r. , . i .,t . g-

.,- .. . . - - < , ,. w.

e

,Q O i. .

c. c. 6 y du,,d. .3,o-! , in. Am i, d. a4 , ..'1 I .

e e <NcWI L~p . I .-

o Cii s

. r

., m y .n6.-. L,,i, 4 2 e 4vivws!a..

.i a r y . 3 un ei .a - ., w e

O O - O r a

O gv v .C. u o .o. r .C 1

3A7

Samples were analyzed during 1971, 1972 and 1973 to deter-mine differences in algal species, chlorophyll a content, and biomass

(])

(ash-free dry weight) at periphyton sampling locations upstream and I downstream of Dresden Station.

The periphyton sampling locations in the Dresden Pool near j Dresden Station' (See Figure 3.5) are influenced by the Des Plaines and the Kankakee rivers. Warmer water from, and the greater flow of, the Des Plaines River and cooler waters from the Kankakee River re-sults in the waters of the Illinois River immediately downstream of this confluence becoming both vertically and laterally stratified along the north shore (Beer and Pipes 1969; Industrial Bio-Test Laboratories, Inc. 1973). Differences which are observed in the peri-phyton communities at the monitoring locations are indicative of temperature and differences in current velocity throughout the season.

(])

During the 1975 study, 221 taxa distributed among 37 genera were collected from artificial substrates near Dresden Station. The dominant periphytic algae included three divisions, Bacillariophyta (diatoms), Chlorophyta (green algae), and Cyanophyta (blue-green algae) (See Table 3.12). The relatively sparse growth at all sampling locations during the spring was attributed to water temperatures below the optimum for growth of most green algae. The growth of blue-green algae was inconspicuous during the 1975 study period, except for the month of August. Relatively abundant growth of blue-green algae oc-curred during August in response to warmer water temperatures.

Bacillariophyta accounted for more than 50% of the total periphytic

( ) algal density and biovolume in all three rivers during 1975 (See Table 3.13).

3.48

Table 3.12 Periphytic algal taxa collected from artificial sub-strates near the Dresden Station, March through Novembe 1975.

BACILLARIOPHYTA Achnanthes Bory affinis Grunow exioua Grunow ianceolata Brebisson minutissima Kuetzing Amphora Ehrenberg ovalis var. pediculus Kuetzing perpusilla Grunow Asterionella Hassall formosa var. gracillima (Hantzsch) Grunow gracillima (Hantz) Heiberg

  • Bacillaria Gmelin paradoxa Gmelin Caloneis Cleve bacillum (Grunow) Mereschkowsky lewisii Patrick Locconeis Ehrenberg diminuta Pantocsek pediculus Ehrenberg &

placentula Ehrenberg W

scutellum Ehrenberg scutellum var. parva Grunow Coscinodiscus Ehrenberg rothii (Ehrenberg) Grunow Cyclotella Kuetzing atomus Hustedt facetia Hohn and Hellerman glomerata Bachmann kutzingiana Thwaites meneghiniana Kuetzing michiganiana Skvoritzow ocellata Pantocsek pseudostelligera Fustedt stelligera Cleve J. Gronow striata (Kuetzing) Grunow Cymbella Agardh affinis Kuetzina microcephala Grunow tumida (Brebisson) V. Heurck ventricosa Kuetzing Diatoma De Candolle anceps (Ehrenberg) Grunow 9

3.49

Table 3 12 (continued)

G-O tenue: var.-elongatum Lyngbye -

.vul g a re- Bory vulgare var. breve Grunow vulgare var, linearis Grunow Epithemia Brebisson argus Kuetzing turgida (Ehrenberg) Kuetzing .

Eunctia Ehrenberg pectinalis (Kuetzing) Rabenhorst pectinalis var. minor (Kuetzing) Rabenhorst Fragilaria Lyngbye capucina Desmazieres capucina var. mesolepta (Rabenhorst) Grunow crotonensis Kitton pinnata Ehrenbcrg silendum Hohn and Hellerman vaucheriae (Kuetzing) Peters Gomphonema Agardh abbreviatum Agardh Kuetzing acuminatum var turris (Ehrenberg) Cleve angustatum (Kuetzing) Rabenhorst engustatum var, undulata Grunow f- bohemicum Reichelt et Fricke

(_)g lanceolatum Ehrenberg lanceolatum var, insignis (Gregory) Cleve longiceps Ehrenberg lonalcops var. subclavata Grunow ol2veceum (Lvngbye) Kuetzing parvulum Kt tzing sphaerophorum Ehrenberg Gyrosigma -HassalT acuminatum (Kuetzing) Rabenhorst kutzingii (Grunow) Cleve scalproides- (Rabenhorst) Cleve Melosira Agardh distans (Ehrenberg)'Kuetzing

.granulata (Ehrenberg) Ralfs granulata var. angustissima Muller islandica O. Muller varians C.A. Agardh ,

Meridion Agardh circulare Agardh Microsiphona Weber potamos Weber O

3 50

4

- Table 3.12 (continued)

O I

fla v i c u l a Bnry -

accomoda lius ted t

a. r.. v.e.n.s i s ilus tof f
a. t_ o_ m u.n -

(tJacqe 1 i ) Giunow auricusata liust eilt c_ A,p . . .i -t -a. . t_ a Chroulerc c.. i_n. c...t. a (1:h re n!)e ry ) Ra1fs c3trus Franske EonIdrvacea Kueta1nq

c. o n s t a n s.

this t ed t contenrta Krasshe costulata Grunow

[IhteVeFha1,a Unet7ina crL' Qocephala var, intermedia G r o v v.

cryptocephala vir. veneta, (Fui' j uq) G i u ni nc c__r__yl_i .. _ t _o._c o n h._a_ _) n i__d._e. llostedt

_s.

cuspidata. var. arnb i q ua (1:h renle t o ) Cleo

i. o..a s..t.._r u.i i (Chrenbera) Kurtrina oracileides A. Mayer

! grcuaria Donkin t

b r u f l. e_ c. t_

G r o nc.w h niitar ica Grunow i nd i f fi i etc, Ilu::t 4 dt k E d_S S k i .

_i lbssito ll 1 a ri t 2 Manquin I [15UC t e I . i l. ,,) (Iv i. I i tlliI N U O t. ".1 ni l reniscu1us Schumann treninculus var, upsaliensic

-t .

0'unnwl Gronow m i n a rna Grunow

,m,utica_ Kuet::ng rin t a c a var, stroma Patrick notna ~

U?a 1 1 a c '

{dITicu1osa (1* robi s sno ) llilFr popula Kuctaini I

i ra d i o__s_a .

U nc t .'i n o rflv]lCbtICQI ha J .i i ti<, t n i n r ,

I S til n.1! uio VE ilal crim ili i (GtUnow) C I r V(*

l seminulum Gronow

. O.t'). I i .

sjtlf.i ll11 iI t tl!

b d 4 1('lH ? r et lli t r.1.nel I t Y i j' tin * ! ll il (t 1. I . Mit i lCT) Ilo r y Va '1cht r 1 a<s Pe?trr30n V i .r i d u l ."1

( M ut' t :' i 110 ) U t!O f /. i no

. C mO ' 'i Van lietj l ek Vitahuti3 Ilunt~ndt Zan,.o.._n_i-lius ted t til,1ClU n1 1 1,1 C G G ii .

3 51

Table 3.12 (continued)

(~h.

\_/

Neidium Pfitzer unidentified sp. .

Nitzschia Hassall accommodata Hustadt acicularis W. Smith acuta Hustedt adapta Hustedt agnewii Cholnoky agnita Hustedt allansonii Cholnoky amphibia Grunow amphioxys Hustedt angustata (W. Smith) Grunow angustata var. acuta Grunow a_piculata (Gregory) Grunow bacata Hustedt capitellata Hustedt clausii Hantzsch closterium (Ehrenberg) W. Smith communis Rabenhorst confinis Hustedt cryptastriata Hohn and Hellerman diserta Hustedt g- dissipata (Kuetzing) Grunow

\s_)g elliptica Hustedt epiphytica Hustedt epiphyticoides Hustedt fasciculata Grunow filiformis (W. Smith) HustE3' fonticola Grunow fruttulum Kuetzing frustulum var. perpusilla (Rabenhorst) Grunow gracilis Hantzsch hantzschiana Rabenhorst holsatica Hustedt hungarica Grunow kutzingiana Hilse kutzingioides lanceolata W. Smith latens Hustedt lauenburgiana Hustedt liebetruthii Grunow et Rabenhorst linearis W. Smith mediastalsis Hohn and Hellerman mediocris Hustedt microcephala Grunow obligata obsidialis Hustedt 3.52

Table 5.12 (continued) obsoleta ilus ted t palea (Kuetzing) W. Smith parvula Levis pertica llohn and llellerman recta ~llan t z s c h romana Grunow ~

spicu1oides ilus t edt subcommunis !!us t ed t sublinraras ilu s ted t sueseca (Grunow) Cle';e tarda ilus t ed t therma;is Kurtzino trybli onella vat, debilis (Arnott) A. Mayer tryblannei3a v.i: . ] o v i sie n s i s tW. Sr.i th ) C r u t.m t ryb1_i,nne l ] a v7r. viet oriae Grunow v erniciiTh ri s (Kuetzing) Grunow vitrea Norman unidentified sp.

Opephora Petit martyi lle ri ba u l Pinnularia 1:h renbo rn borealis var. rectanquiaris Carlson braun13 (GrunEw) Clerc i~raunai var. aml:hiceliha l a (A. Meyer) Ilustedt microstauror. (rhvenberq) Clevo subcapitata Gregory Rhoicosphenia Grunev curvatT (Kuetzing) Grunow Rhopa Edia 'n. Mu))er n,i bba (rhrenbera) O. Muller -

Stephanodiscus Ehrenberg astraea_ (Ehrenberg) Grunow astraea var. rinutula (Kuetzing) Grunow dubius (Fricke) lius ted t -

hantzschii Grunow invisitatan llohn and Hellerman mi nut ur. Grunow c3 Cleve and Mulle r tenuis liuste<lt.

Sur$FP13a Tu rlii n anqust a Kuct/inq dvat I l'untrin.i ovata war, jainnata (W. Sriith) ovata 'ir. salina (W. Smith)

Sg edra Chrenboro acus Kuetuin

eNee ce bL C'

C; 6. e@- \/ V o N an em-OD 3 c

'O 'O o TC C CO y e .-

sJ c me e C5 I

-C s

m r- e ce ee--

- N e e

eromNN e-N m w e

cc e m n- ce O tr) - o- sn

.x N g

'**O

> T

- at O TC -

L

  • Q 7, C e OL r c es e N c c es e m cr e er e s c -~ tt e - ~ e-M n me , cN-~~

,g

.C C C. .,

+'

-m ,

ne m

=

QD -

Q. C .E.

y

.-4 4  :.

Q d T E cm z  :*! 2

-4 0 g se, [e e c ia e-e e et r-er in n w cn e e e e e.een-6% .

r, e

i.m c.-

m .- r 4 4

.4

.-.c.- . c.

+ eNmm tw X *P FS et pas 4 and ei UC I M * *4 0U M.

44 -=9 CM L

CC .

O c 3E L,.

" C 6 OL

> 'u

.g I.

- .i

' .' i I

-* 'O -

^j s,

fi O - 6 . -

t ,. ,

.ej. ,1 :1  !

u rl " .: t ~

n.., O

  • T C

4 . . .. j - .' . .

l,

- .m .

p , .

4i P - j F e .(- l

  • K 1. ' f* I ', s *
  • F' M e s' t. { .

d ,,;-? i -

r, e . r g

c. m .".) - '; c . i.- . : . j

. .- . - a r e t r- p . l, - - , ,i .l .. ,

.' , C Ce 1. -

C ,. . 1. ~) i e r .* \ . '

  • C t.

- C44a' -

L-jai j y Q - ,. n 1: r. - . . M. :- :l i-a l .

.y .

6

-4

-o!-l-cr c a -.

.u u ,~ h,- .Cn .- ml. ."l . .

r

-- .--r. := l.-a -.

n .

2 cm - m _

.- c

-+ - n. ..l~

c - - ~ -n: -

s oe C, M r e "m r o c. - .- e . .- j = 7I i

  • C, -- c e}* . .~ -C e e. . .9

,9r . ,0 ,m -.lc -

c M - , - .o e t- e. .m n .-

" li

, ,I f

- , a e c . . .

- cy -4

r. ~ .I .

- . 4 .

. - et v. .l -

i, g; . . ..

G >lS e i(

p

-g

-='

I t  :. Ig"*, !';'-t!

O" e x{-

<- 4 en I I

  • t 1, . . e j N

c,.

P v4 't b l 5

.. 4

~

c> e

,J$

3 55

f _ s

~

Ta*71c 3,{3 (continued)' .

Date and Division and Mear. Density M an f4invoicm location Dominant Taxa No. x l O ' /cm' 4 of Totif p l /drr'

  • of Total 24 March (cont'd) 7 Pacillariophyta 401 10h 42 100

' Navicula tripunctata 128 32 20 39 Gomp5onema olivaceum 59 15 7 :13 Surirella ovata 80 10 5 '10 Nitzschia dissipata 38 10 1 2 tie t os i ra varians 34 8 8 15 Navicula g jtW ephala v. venta 31 8 1 2 tlavicula viridula 11 3  ? 6 Total Periphyton 403 42 10 nacil la r iophyt a 2548 99 328 99 Gomphonema olivaceum 1358 53 156 47

-Fraqilaria vaucheriao 352 14 19 6 Syrmdra ulna 263 10 78 24

'f Surirella ovata 157 6 l 'a f

$ Chlorophyta 19 1 2 1 Total Periphyton 2568 330 27 May 1 Dacillariophyts 2035 85 249 84 Nitzschia filiformis 409 17 48 16 Melosira varians 353 15 67 23 Navicula graciloides 200 8 17 6 I4itzschia arnphioxys 122 5 4 1 Synedra ulna 89 4 33 11 Navicula viridula 83 3 24 8 Chlorophyta 351 15 49 16 Stigeoclonium sp. 284 12 18 6 Spirogyra sp. 56 2 29 10 L

a .

l a

t 9

o e T '

_ m 1 765127 3 87462 2 822) 1777 u f < 92 2 9421 92 1

_ l o

_ o

_ v

  • a i

H n

a e

M

/

  • 1 8

?

428217 4 8 41 1 7 1 I 4 501 21 R1 3

_ < 54 2 5 4 21 4 41 J 2 1 1 t

l n.

t

-s T -

1 n47 r, *. 4 2 7 24 q7 I

< 921 9 7 097 f . ) 1 9TI 91 1

'o y,

t

- i n-

-+ -

D n -

a 1 e

M i 1 9 064 s91 1 i 3} H? 1 5 9 ' 1 9191 l o

'4 9 3 2ao41 6  ? ', 4 6?3 I 6 726544 lt -

3 3 9 '. l1 1 3 2 2

t. 61 R 2 O

1 1 E' %

r.

. i s a ts_

_ n t s

e a i .

_ i n l n s.

n

i. -i i.

- n .

s. v ,

-s 9

s. a r- ,-

n vn l n o n a m ask

)

e a i i o a o as t e hG.oF_

d t

  • ss a t-
  • t a s i yl enG

_ r n t t e a y r i-x yui hl T i.

i.

y y !. o r y i a s o'i .

u tn' e h

p po i i r

a 3 6 h t no w4 h r e 1

h p

h t i po r ot s o a r n aT t i oc *t o i

"on t i ol . nr t i ol e r -

w%.

rc c nE ni. hrs.irv i + r is n h t i f r ii h i. v r l i h riw t n- -

M ri i c r- t 5 >a rc h o aI t on S an m u '. r aa sr p aa u l ~" m r s'f ..

P n i- p T

l e o

f a- o ra a o sn e n

l l ms vcv i r a r I i r l g a c : r l l

l gvF s at.

c ii n i t i i c cala Et a a. e. 3

>- i j ca

~

o ari l o a i ca ea a nh Ni

(

-o t f r l '

h t

o al n e l

h 'a al l t t i.

r

+

n U-OD o T Bu n u :- t. C T B ia o t i C T Bu u n n i o@-

i t

e c a c - c hp -+.- a t c c a a s hi m n 2 -

i i n i i i n n o n N,- m v h v r- e) v 1 n v v n h l r .

a c v~r r a,Fi a a cc a a E..

NAt 'a

)

r -

1 1

  • G NNAAMDi.

1

  • t

_ 1 -

r

. a 3 (c 1

e nn: i 2 6 7

_ l ai ,

S

_ t s b ei '

N a t c T a o.

Dt 7

2 1

4. , VN t

r 0 -

t 6

4 Table 3.13 (continued) -

Date a nal Division arkt Mean bensity- Mean Biovolume Location Dominant Taxa tJo . x 10' /cm'- t of Total. p l /,W t of Total 27 May (cont *d) 7 Chlorophyta 15 2 1 2 Total Periphyton 692 46 10 Bacillariophyta. 1754 83 194 85 Melosira varians 197 19 76 35 NitzschiafrTTT5rmis Ino 14 35 16-Navicula vncheriac 187 9 2 1 GomphonemTsiihaerophorum- 121 6 19 9 fy . Ira liTna 31 1 12 5 Chlorophyta 367 17 32 15 Stineoclonium sp. 342 16 22 10

  • Total Periphyton 2121 216 t.n) 13 August 1 Baciliariophyta 1132 99 78 Navicula confervacea 61 157 29 27 22 CycloteTla maneghiniana las is 23 la fea t zschia gaTha 73 6 UItzsenia ailITormis 69 s 1

7 1

5 Chlorophyta 91 7 49 35 Spirogyra_ sp. 71 6 49 38 Cyanophyta 49 4 <1 <1 Total Periphyton 1272 126

l a

t o

e T '

m 34206e 65 1 1 07249 gg 11

. u f 5 1 44 < ( 6 1 3 3 l

o o

v *.

o i

B n

a e

M "m: 07 179i R6 1 1 8 521 42

/ 9 00 11 6 l

1 1 l 71 1

6 1 11 << 2 p

Ht e

l 4 00966 41 65 77A3 -

1 44 a3 R3 1 51 22

'o l1 i

s n

N n

a eM MW 67 , a 21 09 00 56208 13

'i 6 22 O

)

  • 23l 65 27 89 W. 0453 2 1 1 66 R l'

S x

o 48221 1 2

1 11 7 2

51 22 1 1 q O

i l

l i

s u

r r

o n

a~

n n a n

) i - ' e. y o i i o

, b ii ".

d t r t t e i yu a -.;F i. a y yvi n o 1 i .

i n

l x 5 l, a r h hi I 5:

u e na pu rnl o p pr c o eIn ap r

r n aT ot S

- .iT

  • EI c

ta~

yo a i r

ae i*T -

t s y

1, a i i i n *. . nh t nI t i r nt hl yp e rc n** hn y t

n o

cn ii sa lf I

ruei}$

ar tT5 v%

j p1 o

ri or hs n

on nu P

1 au l a l v or.Er a g po oi rn h+

pr oo w

t l

c ii va t a 'ss sn s i a[ oc nn a ci ,i i s l c c aT1 a l! a t

'o

( io ah l n -. ?

h5 yi al[ i a l hc ya o DD Pc u n n u C ct_ Ci T t u c t u Co Cv T s c o 3 m i c s e c c b o_

6 z a - c t l_ r i z l a s

< g

- t " -: n. c " t c i n

  • i a e T; r 5 a i. (vCv t- y

' NMCF l_.

C '

I  ? . S 1 3 n 7

1 c

, (

3

.n m e no 2 6 O

i(

l - t b ai a

T i o.

D1  !

3

[ Uo 1

t

~

l O O l

Tabic 3.13 (continued) l

Date and Division anal Mean Density Mean Diovolume l.ocation Dominant Taxa No . x 10' /cm' 3 of Total pl/W t of Total

(

l 13 August (cont'd) 7 nacillarlophyta 1121 85 15 97 Nitzschia frustulum v. perpusilla 436 33 4 11 Navicula vaucheriae 105 8 1 3 Cocconnis placentula 100 9 7 20 Navicula seminulum R2 6 <1 1 Navicula graciloi<1eg 60 5 5 14 Gomphonema sphaerotharum M 3 2 7 CyclotelH srv.negIGnGiT 20 2 2 7 Melostra varsann  !! 1 2 7 Cyanophyta 201 15 <1 1 Phormitlium sp. 183 14 1 3 w ~ Total Periphyton 1322 M OT O 10 Flacil la rlophyt a 1194 73 61 73 Cyclotella rwneghinian=1 187 12 23 27

Navicula vaucheriae- 139 9 2 2 Nitzschia palea 100 6 1 1 Nitzschia filif3rmis 58 4 6 7 Chlorophyta 337 21 22 27 Stigeoclonium sp. 326 20 15 18 Qirogyra sp. 11 1 7 9 Cyanophyta 101 6 1 1 Phormitlium sp. 96 5 <1 <1 Total Periphyton 1632 83 '

I 1

t Table 3 13 (continued) .

M.*a 1 Densit; Mean Date and Di.r19 ion Lncitten Do-inan'. Taxa flo . v l 9 ' h*

  • of To* il pl/ tn liiovolume__T
  • of Tota 24 ' o. . . m? o r I naci11arinphyta 1500 77 150 93 Navicula iracilot les 79i ) (, 58 J2 FJm'TJion.m i s ch i. t . . ,nr er l ', S 9 13 7 4.7IoTITI~h 6761'~ " ~ i29 7 29 16 sy ne tra utns s. 6 3 23 13 l Chlorophyta 439 21 31 17 Stigeocloniu_m sp. 446 23 22 12 i 10 e,
. cit ro n t .n sp. 1)

Cyanophyta 2 <l <1 c1 Total Periphy+on 1962 1R2 2 Bacillartophyta 1996 97 131 99 Malosira varians 671 14 151 45 Nitzschin dissafata 219 11 11 )

5

[ tJavic:a W or3cs1iIE s Na.rirul s t r i;iure -' ,e

  • i 299 159 11 9

17

2) 7 m 9 64 19 F# D i a t uraa 1 W3ir. I43 126 6 44 1)

{in. J a . : oini 16 1 3 g Chlorop6yta Total l'eriphy*oi l 'n 51 334 ,

6 fia c i l l a r ion'vit a 2119 93 197 94 Navicula graciloid*<. 1-?? c, 122 SR 177 g an 19 Molosir.s varian:

Sy m';M~u 1 n n ' ~' )1 1 11 $

Chlorouhyta 1*9 7 12 6 Stilaoclons m w.  !=1 v, 7 3, O O O

.O fl LO ,

Table 3.13 (continued).

Dale and Divisiote 1,ocation Media Density . Mean Diovolume Dominant Taxa. No . x 10 ' /cra'

  • of Total tel/tm'  % of Total 24 November (cont'd) 6 Cyanophyta 12 <3 <3 <1 Total Periphyton 2270 209 7 Dacillariophyta 613 99 122 99 S

J nedra ulna 218 3% 77 Navicula graciloides 63 68 11 6 5 Molosita varians 56 9 Navicula tripunctata 13 10 54 9 8 7 Gomdiorsema ndi.mrnphorum 53 9 4 3-W Chlorophyta 5 Ch 1 <1 <1 Total Periphyton 618 122 In nacillar!ophyta 1830 64 215 74' Navicula graciloides 600 21 49 17 Melosira varians 238 8 G , hon w T .phaerophorum 54 19 2 18 8 19 7 Synedra uTni 131 5 46 16

.Chlorophyta 1042 36 Stigeoclonium sp. 74 26 1009 35 49 17 Spirogyra sp. 33 1 25 9

. Total Periphyton 2872 289 s 6

4 b

1 I

, . . ~,

l

+

l The species diversity was relatively high in the Illinois,  ;

Kankakee and Des Plaines-Rivers during the 1975 survey. This can be - O.

~

I attributed to the highly variable yet favorable environment of eu-trophic natural rivers such as the Illinois River near-Dresden Station (Industrial Bio-Test, 1975).

+

0 e

3.63

1 4.0 FISHERY _INFORMATION

() 4.1 Historical Studies and Changes of Fish Population In Upper 211inois River Dresden Nuclear Power Station is located at River Mile 273 (above Grafton) at the junction of the Des Plaines and Kankakee river s. The junction of these two rivers forms the upstream origin of the Illinois River.

Because the Dresden Station's cooling water intake is-situated on the Kankakee River and its discharge is to what is nominally the beginning of the Illinois River, it is necessary to address the welf are of the fisher y resour ce within all three imme-diate vater courses in order to make judgement concerning possible

~

impact of the Station's water usage for condenser caoling upon the fishes present and their life history requirements.

() The purpose of this section is to address those biological studies which have been concerned with the fishery resource, othet than those which were specifically designed or oriented toward the Dresden Station. The discussion of plant-related studies will appear later in Sections 4.3, 5.1 and 5.2.

The Illinois River has been called the "most studied" river in the world (Mills et al. 1966), although it is apparent from reviewing the literature that this qualification does not accurately l

apply to the Kankakee and Des Plaines rivers.

1 i 4.1.1 Kankakee River The only literature source which records fish collections l

in the Kankakee River is from Muench (1964). In this account of the inventory of fishes in that basin the nearest mainstream fish col-k'S.l lection location to the Dresden Station was near Custer Park, a i

ti .1

distance of about twelve miles upstream of the station. Here 14 lh species of fish wer e collected by alectroshocking (Table 4.1) and eight by seining (Table 4.2).

Several of the species were sunfishes, along with a darter, both of which would be considered intolerant to chronically degraded water quality. Standing crop estimates in lbs/ acre of fish were not made in the mainstream Kankakee, although the weight-class data listed are useful for estimating ctanding crop of fish in the Kankakee near the Dresden intake as the populationn in both areas are similar (Table 4.3).

4.1.2 Des Plaines River A fishery inventory was also conducted by the Illinois Department of Conservation (Muench 1968) in the Des Plaines River basin. The nearest kampling location to Dresden was at approxi-mately River Mile 292, 19 miles above Dresden Station. Tnese col-lections were made in the original Des Plaines River just upstreac of its junction with the Chicago Sanitat y and Ship Canal. As a con-sequence the fish collected cannot be considered typical of the Des Plaines River near Dresden Station, although the carp and gold-fish hybrid and goldfish are the predominant species (Table 4.4) just as they are in the other recent lower Des Plaines River studies.

Good information exists for the Des Plaines River irme- a diately above Dresden in the reports of the Illinois Natural History Survey of 1959, 1962, 1973 and 1974 (Sparks and Startet 1975). In these studies, an electrofishing survey was conducted at a location near River Mile 27'/, less than four miles upstream of Dresden Station 4.2

- l O

,Jegra ft t- ocan22auaa 03 3Tsy sdaalas Iu aya g>euaexas. <bnots aTAOJ 9vSTus* -

< - eup sycaga2 serudI as(

  • axaInpiu6 yupippacI upuuca sdaayas ) 8o 3 I69C*

oaan2sama Sd*OI88 lu ' C t 5 9 Z 8 6 10 II IZ IE 19 iS IS IZ loaet a.2a.ua .

x n x x x x x x x x x x x x x x x 19 100 wtsa* syuuo%s o x x x x x x x x x x .k x lE SI otnyg 1qcaz )aeJdsnaxaJs( x x x 13 96 x 1 x x x x x x x x 3eid x x x 10 9(

otalaJs x x x x x x x sya2gyaep Japyo2sa x s x x x x x x x x x fO 9(

y x x x x x x x x x 6 59 .

syy2a snagaJ swettwu)y qess x w x x x x x x x E 6 59 J x x x x x x x x x 6 59 f 92aau sn.p}sy pp u033 qess x g< x x x x x x t l x x x x x Z pp l 3ycuueI ae) sis 3 x x x x x x x Z pp sacuaarg 0 x x x x x 9 ;g go6snaaaJ x x x x x x x x x 9 ES sleaw qntgyaep x x x x x 5 tI no21yamu dyna 5 92ess 3.)agaiaI x x x x x tI j swetiwonay qnjjego x x x x D ZS x x p ZS 4 dib NniM gn]jeIo x x e ZS

 .           lau6aem snujisy                x           x       x        x g                                                                       x            x   x     x     y       gS A.igtom gn11yaep x   x         x           E       16 gf433a a2edJga ogzzeip syep                   x                                   x                     Z       I(

selAaJ 2apit02 va x x Z I( x x Z IE slatnap snuaJ E IC { x x u'UJetamonTy Z a dggusaapqess snu;ysy x x I[ c_eu6 estav aap unn 2 3sy x x Z IE

             .regI.la                                                 x                   x           Z       I[

x I 9 l'auauosa beJ x 1 9 ggeag qnjjego l a.vpgu x I 9 x I 9 d I.rab 1 I I loaeI *da3Tas - tI ID 9 I6 5 E ID t tZ IC ID IC 9 10 IS IO 8 '

             , ircauqiou I ys useJa h aJ*sp*.u saeayou*

3,Jom wn,.uay 169D*

l i Table 4.2. Summary of fishes and stations in Kankakee- O l Iroquois basin collected by minnow seine hauls, 1963a, , Lampetra lamottei, American brook lamprey: 9, 12 Dorosoma ceredianum, Gizzard shad: 4 Esox americanus, Grass pickerel: 12  ; Carpiodes cyprinus, Quillback carpsucker: 1, 3, 13, 14, 17 j

                      .atostomus commersoni, White sucker:                                                                                                                     3, 6, 7, 10, 11, 17 IJtiobus lev rinellus, Bigmouth buffalo:                                                                                                                       10 Minytrema meJ'nops,~ Spotted sucker:                                                                                                                     4 Roxostoma anisurum, Silver redhorse:                                                                                                                       4, 12 Moxostoma crythrurum, Golden redhorse:                                                                                                                        4, 7 Moxostoma macrolepidotum, Shorthead redhorse:                                                                                                                              1,   4,  15 Campostoma anomalum, Stoneroller: 3, 5, 6, 7, 8, 9, 10, 17 Chrosomus erythrogaster, Redbelly dace:                                                                                                                          5, 6 Cyprinus carpio, Carp:                                                                                               10, 13, 14, 15, 17 Ericymba buccata, Silverjaw minnow:                                                                                                                       3, 6, 8, 9, 17 1topsis H              biguttata, Hornyhead chub:                                                                                                                 3,   4,   5,    6,   7,   12 Notemigonus urysoleucas, Golden shiner:
                   "                     ~

3, 4, 5, 6, 7, 8, 9, 10, 12, 14 16, 17 g-Notropis heterolepis, Blacknose shiner: 4 Notropis lutrenis, Red shiner: 9, 10, 11, 14, 15, 16, 17 Rotropis rubellus, Roseyface shiner: 4, 12 Notropis spi)rpterus, Spotfin shir.er: 1, 3, 4, 9, 11, 12, 14 Notropis strXmineus, Sand shiner: 3, 4, 7, 11, 12, 15, 17 Notropis texanus, Weed shiner: 12 Notropis umbratilis, Redfin shiner: 2, 12, 15 Notropis volucellus, Mimic shiner: 4 Opsopoedus emiliae, Pugnose minnow: 4, 12 Phenacobius mirabilis, Suckermouth minnow: 9 Finephales notatus , Bluntnose minnow: 1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15 Pimephales vigila, Bullhead minnow: 4 Semotilus atromaculatus, Creek chub: 3, 5, 6, 8, 10, 14, 17 Ictalurus melas, Black bullhead: 10, 17 I::talurus naiaTis , Yellow bullhead: 17 Ictalurus punctatus, Channel catfish: 14 Noturus flavus , Stonecat: 12, 16 Noturus gyrinus, Tadpole madtom: 7 Fundulus notatus, Blackstripe topminnow: 7, 12 Labidesthes sicculus, Brook silverside: 12 lll 4.4

E Table 4.2. (continued) Aphredoderus sayanus, Pirateperch: 12 Ambloplites rupestris, Rock bass: 1, 4 , 7, 12, 16 Lepomis ;yanellus, Green sunfish: 9, 10, 11, 12, 14, 15, 17 Lepomis humilis, Orangespotted sunfish 14, 15 ' Lepomis macrochirus, Bluegill: 4, 12, 15 Lepomis megalotis, Northern longear sunfish: 7 i RIeropterus dolomieui, Smallmouth bass: 1, 3 , 4 , 7, 16 Micropterus salmoides, Largemouth bass: 1, 12 Poxomis annularis, White crappie: 14, 15 Pomoxis nigromaculatus, Black crappie: 12, 14 I Etheostoma caeruleum, Rainbow darter: 12 Etheostoma nigrum, Johnny darter: 1, 4 , 6, 12, 15, 16, 17 Percina maculata, Blackside darter: 3, 4, 10, 12, 14 Percina phoxocephala, Slenderhead darter: 9, 12, 14, 15 Identification cf fish in minnow seine samples by: Dr. P. Smith, Taxonomist, Illinois Natural History Survey () ^ Location 1 is nearest Dresden Station. From: Muanch 1964. I l

                  .O 4.5

Table 4.3 Fishery &.ta from the Kankakee-Iroqueis river basins, 1963. - Seine Cape O w rc6aI rorao* TetaIe Ibs./ Strean Statten IJm . Sire Hey .  %  % tio . _a ths. 4 tap .  % _Ihq. t 963 thg. Acre K.mb sh ee River 18  %" 43 39 8.74 15 53 ed 5n.4R 84% IS 49 0.25  % Ill 59.57 a.a.b S. Br. Fothed "r. 3  %* 6 2 0.62 20 f.7 20 0.14 10 244 78 2.23 70 312 3.19 31.90 Kankakaa River 4  %" 71 16 % . 69 8 2A4 4.% 407.39 92 t:2 19 0.20 tr. 437 444.27 n.a. R W Creek 5 4" 46 3 4.66 21 17 12 1792 4 2.64 96 13.63 65 1351 20.95 167.44 welt.ut Creek 6  %" o 146 12 8.54 43 1215 89 11.99 57 1361 20.55 205.50 tiline Creek 7  %* 1%1 10 7.74 8 2% 4% 92.30 8*8% 140 25 2.43 2% 527 92.47 $45.00 Trise Crack 8  %* 1 tr. 0.01 tr. 3 4 0.02 tr. 476 99 ' .15 99% 4R0 7.19 141.60 rantnSe. River 9  %* 4 6 2.72 2 59 84 142.76 99 7 10 C .25 tr. 70 145.73 n.a. t=.gan Cract 10  %* 436 64 12.R9 2R 199 2 84 32.69 70% 27 4 4.51 1 711 46.99 315.00 P* aver Creek 11 4" 12 80 6.74 65 11 9 3.89 35 13 11 9.05 tr. 116 10.64 106.80 f re=psois Fiver 12  %" 20 16 4.16 6 76 60 64.*O 93% 10 24 0.39  % 126 (4.84 n.a. I'rairie Creek 13  %" 9 1% 0.44 7 427 788 4.74 73 211 2R% 1.30 20 647 6.50 92.00 Epting Creek 14  %" 51 60 1.6R 26 12 It 4.64 73 23 25 0.09 1 86 6.42 60.00 Irewrriis Piver 15  %" 17 9 3.69 1% 167 87% 136.52 97% 7 3 0.07 tr. 191 140.29 n.e. 5saar Creek 16  %" 22 23 2.50 17 55 5'1 11.95 82 l# 19 0.16 1 95 14.61 73.05 [ Mwl Creek 17 \" 194 13 8.65 19 427 42 5.04 60 463 46 1.7f 21 1994 e.40 24.00 Ct Totals 16 1213 94.93 2233 9 % .29 4259 42.39 7705 1095.51 160.40 g tocati m I is nearvet Dresden Stat tom. b gg,)t sprlicable. Fremt Wiench 1964 9

                                                                                                                                                                                ~

9 9 9

(- J. Table 4.4. Number of_ fishes collected by Rotenone and shocker in the Des Plaines . river basin. station N. ber Percent + specias 1 2 3 4 5 6 7 m

  • 12 to la 1 34 15 16 17 20* 21 o cure w + ,

tilse einnma 3 1 15 - 1 1 7 - R5 - - 1 - Creen sunfish 208 1 - 6 53 49 11 135 5 5 8 1 2 7 15 69 2 - 1 19 23 - 51 90 Carp 36 1 2 - 23 6 17 219 49 1 - 5 - 3 12 73 69 plu.q111 4 14 2 29 - 1 25 9 1 - 2 - - - 1 53 suuntnose winnow $5 17 - - - - 1 1 - - 8 47 10 14 - 23 es i Goldfish - - - - 2 6 - 28 -

                                                                                                                - lin                      4   6
                                                                                                                                                            - 167      19             43 plack bullhand.                        121        6      2       2    -

1 - - - - 1 2 3

                                                                                                                                    -     -          -      -     -      -            42                   j Colden shiner                               3     -   40         1     -

1 2 - 1 - - - - - - - - - 1 37 Creek chub - - - - - - 64 - 12 - - M - 1 9 - 21 - - 32 Pedfin sSiner - 14 - 1 - - - - - - - 1 - - - 3 15 - - 27 Datter sp. 4 - - - - - - - - - - 3 5 2 4 Goldfish a carp 27

                                                     -     -      -       -     7    1     -

19 - . 3 - 7 27 P.e :Alpsces 2 4 - - - 1 - 1 - - - - - - - - - - 7 27 7 ellen, tmi t head 5 3 - 2 - - - - - - - - - - - 9 tarveeyut h tass 21 14 - - 1 - - - - - - - 3 to - s corse i,uc*.er - - 21 3 21 - - 16 - North?rn rika 25 13 - 1 - - ' - - - - - - - - - - - - - 16 t sla:A cragpie 1 5 - 1 - - - 1 - - 5 - - cc m shanar - - - - 26 J

                                                                                                                       - 120       -     -    -

16 52 - - 16 pr,,-g 1, ass - - - - - - - - - - - 2'. - - - 3 4 - - 16 5*w. cat 2 - - - - - - - - - - 1 7 16 smallumath bass - - - - - - - - 9 2 2 - - 16 ' Or an9*sget ted sunfish - - - - - - - - - - - 9 - - - 1 31 Steneroller - - - - - - - - - 15 2 - - - 11 = stornfbaad chub - - - - - - - - - - - 4 - - - 5 - - - Il so m ucker - - - - - - - - - - - II - - - - 4 - - II 651'.c crapple - 1 - - - - - - - - 4 - - - - Grass picheral 11 i 1 - - - - - - - - - - - - - - - 4 - - 11

         ??llew Ferch                              -       -     -      -      -

1 - 1 - - - - - - - - 33 Ouillback carpsucker - - - - - - 11 2 - - 5 Pirata perch 63 - - - - - - - - i

                                                                                                              -      -      -     -     -    -     -      ,     ,      ,               g Black
  • tripe togvinnow - - - - - - - - - - - - - , - - g , ,

{ Pronk stickleback 3 - - - - - - - - - - - - - - - Inno-ar sunfish - - - - - - -

                                                                                                                                                                                       $                   p 15     -      -

5 ' l Murdwar of species pres-nt et station 18 13 6 10 5  ! 8 6 8 5 1 9 19 7 2 7 32 19 2 11 e tocatien naarest Dresd*n Station. rrtwa: M.nerg.h 1984.

These studies precede and coincide with both the operation of Unit 1 (1960) and Units 2 and 3 (1970 and 1971) of Dresden Station. ) This sampling location at river mile 277 and the Dresden Station at r iver mile 273 are on the river pool formed by the Dreseen Lock and Dam, situated at River Mile 171.5. The mouth of the Kankakae River is also influenced by this pool formation. The Kankukea i t, l relatively unpolluted, while the Des Plaines receives municipal l and industrial effluent f r om the Chicago Metropolitan ar ea, via the Chicago Sanitary and Ship Canal. The Des Plaines Rives also receives Lake Michigan diversion watet which entets thtough the Chicago River and Cal-Sag Canal. A minimum of 9 feet of navigation channel is maintained in the Illinois River, including the Ship Canal. lll Methods of electrofishing conducted in these studies are almost identical to those conducted by Meench in the Des Plaines and Kankakee studies and also the electrofishing conducted in the Commonwealth Edison Dresden Station studies discussed in section

4. 3. As a consequence, there is a relatively good base of co -

parative information from which to make judgements. Table 4.5 lists the species of fish and frequency with which they appeared in the Illinois Natural History Survey's electr ofishing collec-tions. It is apparent that there is a good concensus between those collections made by Sparks and Starrett with those made by Muench in the Des Plaines and with collections made in the Dresden Station studies (Section 4.3). O 4.8

                                                     .O                                                 O'                                                                            O
                                                                                                                                                                                               ~

Table 4.5 Average number of fish taken per 30 minutes of electrofishing in each navigation pool of the Illinois Waterway during the period 1959-1974. ~ Pools } Downstream La Starved Upstream i Species Alton Grange Peoria Rock Marseilles ~Isresden~a 1 i

Shortnose gar 0.07b o,07b 0.05 0.00 0.00 0.00 0.07b Bowfin 0.02 0.01 0.00 0.00 0.00

[ Gizzard shad 18.09 43.55 63.20b 9.22 12.52 2.66 ' 0.41b Goldeye 0.02 0.02 0.00 0.03 0.00 -

Mooneye 0.05 b 0.00 0.01 0.00 0.00 0.00 Goldfish 0.00 0.37 0.73 17.02 12.02 42.76b  ;

Carp x goldfish 0.01 6.18 1.39 2.02b 0.80 1.05 l Carp 19.81 34.69b 18.67 18.92 14.29 12.06  ! l River carpsucker 0.27 0.39 0.44b 0.34, 0.04 0.00 1 Qui 11back carpsucker 0.11 0.16 0.5? 1.38D 0.71 0.00 i l t Smallmouth buffalo 0.11 1.04b 0.67 0.25 0.03 0.00 i e- Bigmouth buffalo 0.33 4.21 5.79b 0.05 0.01 0.00 Black buffalo 0.04 0.24b 0.19 0.02 G.00 0.00 i Shorthead redhorse 0.08 0.21 0.09 0.02 0.00 0.00 Black bullhead 0.00 0.12 0.35 0.38 4.39b o,og l Yellow bullhead 0.01 0.10b 0.07 0.00 0.00 0.00 . i Channel catfish 3.76b 1.60 0.17 0.34 0.01 0.00 I Flathead catfish 0.19b 0.09 0.00 0.00 0.00 0.00 t ! White bass 2.65b 0.42 0.64 0.44 0.07 0.00  ! ! Green sunfish 0.52 1.77 2.91b 0.65 1.01 0.23 I Bluegill 4.90 7.12b 3.10 0.06 0.33 0.00 Largemouth bass 1.70 4.23b 2.82 0.13 0.47 0.00 ! White crappie 1.07 1.75b 1.47 0.05 0.32 0.00  ! 3 Black crappie 2.99 5.55b 2.44 0.18 0.04 0.00 Freshwater drum 1.49 2.49a 0.34 0.03 0.14 0.00 f l l a Location of Dresden Station. i b Indicates the pool or pools where the maximum number of individuals of each species i was taken in the period 1959-1974. From: Sparks and Starrett 1957. l

  • i r

_m

l 1 Although a total of 67 species of fishes were collected in  ! the Illinois River during electrofishing surveys by the Illinois llh f Natural History Survey from 1959 to 1974, only five species were docu-  ! mented in the Dresden location. These five species were gizzard shad, carp, goldfish and the carp and goldfish hybrid along with l The carp, goldfish and the hybrid 1 green sunfish (Table 4.5). l carp and goldfish comprised 95% of the fish collected by number. These species are noted for their tolerance to pollution and their ' i survival in this portion of the Des Plaines, virtually exclusive-of other species. In a 1973 fishery survey of the Illinois River (Stinauer 1974), the uppermost collection location was near Marseilles, a  : distance cf about 30 stream miles below Dresden. Here gizzard shad, , carp, goldfish, and skipjack herring predominated, along with other h i minnow species. A total of 14 species of fish were collected here, ' which is in considerable contrast to the fewer species taken at Dresden, although the dominant species are similar. In a study conducted by Environmental Analysts in 1973 5 miles below Dresden Lock and Dam the fishery was described as consisting of similar fish in extremely poor health. The effect of municipal and industrial discharges from f the-Chicago-Joliet area on the upper portion of the river is evi-dent in the electrofishing catches from the upper Illinois River and the Des Plaines River.- The introduced carp, galdfish and hybr ids of those two pollution-tolerant species are relatively  ; o abundant and the incidence of disease and dr formities ic relatively high (Sparks 1976). 4.10

    - . - - - -        - . . . . . - . ~ . -       . - - - -      - ..- .- - . - .- - . - _ .- -_-                                 _- _.- ---
 .   .                                                                                                                                  l I

I () , Twenty species of fish were extirpated from the Illinois j

                                                                                                                           ~           ;

River between 1908 and 1970 (Table 4.6). Such species as the j walleye and northern pike, which had been common in the river , before 1908, now are rate or limited in their distrit.41on. t Much of the historical information on fish distribution  ; in the Illinois River, such as Forbes and Richardson (1920) are

  • 1 not pertinent for comparison regarding the present Dresden pool ,

for two reasons:

1. The species presence and distributions in these old studies are listed for the entire Illinois basin, which includes its tributaries, and 5
2. The Dresden Pool area was not included among the ,

collection locations. - 4.1.3 History of Flow and Water Quality Changes of Eper ITTinois liiUei-In 1871, the flow of the Chicago River was reversed in order to divert sanitary wastes from the-City of Chicago away from i Lake Michigan, to protect the drinking water source from sanitary waste for that city. The polluted water of the Chicago River was directed throuEh the Illinois-Michigan Canal into the DesPlaines River and subsequently into the Illinois River at Hennepin. This caused extensive fish kills to occur in these rivers which had pre-viously contained many species of desirable fish (Nelson 1878). In 1900, the Sanitary and Ship canal was opened at- ,

         - Chicago, connecting the Des Plaines and Illinois rivers with Lake Michigan.                           Water was diverted from Lake Michigan through this system in order to flush municipal and industrial wastes into the 4.11
 . .__-_a__,_._.--_.___

4 Table 4.6. Fish specios extirpated from the Illinois River and its bottomland lakes between 1908 and.1970s, Common Name Scientific Name American brook lamprey Lampetra lamottei Alligator gar Lepisosteus spstula Cisco Coregonus artedii Ozark minnow Dionda nubila Pugnose shiner Notropis anogenus Common shiner N. cornutus Blackchin shiner R. heterodon Blacknose shiner R. heterolepis Rosyface shiner R. rubellus Weed shiner R. texanus Blacknose dace Rhinichythys atratulus Creek chubsucher Erimyzon oblongus Spotted sucker f.inytrema melanops River redhorse Moxostoma carinatum Black redhorse M. duquesnei Freckled madtom Roturus nocturnus Bantam sunfish Lepomis symmetricus Iowa darter Etheostoma exile Fantail darter E. flabellare llh a Taken from Starrett 1972. O 4.12

l. 4 Illinois River system. The quantity and quality of this diverted water had tremendous impacts on the Illinois River. In addition to raising the water level throughout the system, it temporsrily im-proved the water quality by dilution effect. By 1910, however, I the pollution load had increased to the extent that critically low dissolved oxygen was progressively occurring further downstream (Sparks and Starrett 1975). In 1938, the amount of water which could be diverted from Lake Michigan wes limited by the U.S. Supreme Court to a yearly average of 42.48 m 3/sec (1500 cfs). In 1966, dissolved oxygen levels in the -Dr esden Pool were still occurring below 1.0 mg/1. Improved sewage treatment in upstream cities has probably improved, however, water quality (]) parameter s in the upper Illinois River over the past twenty year s. A report by Thompson (1925) addressed the effects of low oxygen on fishes in the middle Illinois River but did not discuss that part of the river upstream from LaSalle. In addition to the change in water quality brought about by the influence of Lake Michigan diver sion water on the uppe Illinois River, a few species of fish may also have been contributed to the Dresden Pool via this source (e.g., yellow perch, alewife, and lake emerald shiners), Litigation over the diversion of Lake Michigan waters in the 1950's and-60's served to stimulcte a comprehensive study by the U.S. Public Health Service in the early 60's of the Great Lakes-( () Illinois River basins. Although fish collections were not conducted in i 4.13

i these studies, a great deal of oth : biological and water chemistry llI data was accumulated which provided a clear picture of the degraded 1 condition of the Illinois Waterway. It also substantiated that, at that time, nearly every water quality criteria indicated extreme pollution (G.L.I.R.B. 1961). The Kankakee River, on the other hand, 1 is relatively unpolluted. Because the Des Plaines River contr ibutes more to the total flow of the upper Illinois, the water quality is more characteristic of the Des Plaines River than the Kankakee Rives in the Dresden Pool. As a consequence, thick oxygen-consuming sludge and sedi-ment exist s in the Dresden Pool and there is 7.o significant carbona-coous oxygen demand exerted ther e (Butts 1975). It is interesting to read an account by Forbes and Richardson (1920) written about 1908, that the Illinois Rivet fishery products were of greater value than all other waters of the state combined. It also served an indispensible purpose in conveying away the liquid wastes of the City of Chicago, rendeting them " harmless by decomposition and useful by converting them into a food supply for fishes." Further plans which could result in additional alteta-tion of the river at Diesden include the possibility of increasing the water outflow from Lake Michigan from 3200 cfs and deepening of the present 9 foot chantiel to a 12 foot minimum, which would include new locks and dams (Stinauer 1974). O 4.14

_ _. =- - ._ - -. .. .- ._ 4.2 Commercial and Sport Fishery Utilization 4.2.1 Commerical Fishing *

                                                                                                             \

Although the Illinois River is one of the four river  ! basins in Illinois wher e commercial fishing is permitted, no com-mercial fishing has been recorded f or the Dresden Pool. No commer-cial fishing is permitted on the Kankakee or Des Plaines rivers, t I

  ,                           Goldfish wer e not mentioned by Forbes and Richardson (1920) and were probably introduced sometime between 1908 and 1935.

l Carp were introduced about 1885 to the Illinois River and the com-mercial catch of this species was as high as 15 million pounds in 1908. It was believed that between 1699 and 1908 the Illinois Rivet was being overfished. Af ter that period the fishery declined due to () pc11ution and the dr ainage of bottomland lakes. In 1950 the total annual commercial yield from the Illinois River was 5.6 million pounds, but in 1969 it was only 1.7 million pounds. The present-day  ! resout ee of commercial fishes from the river by man probably has only a minor effect on the fish community (Starrett 1972) and no commercial fishing has existed in the Dres'en Pool in years of se-cold. ' In an Illinois Department of Conservation r eport in 1956, no commercial fish species were reported as taken above the Starved Rock Pool, which is about 30 miles below Dresden Station. The total 1972 catch of commercial fish from the Illinois River was 653,0' pounds and consisted mainly of carp, buffalos, j freshwater drum and catfishes (Stinauer 1974). This compares to a - t total of 10.5 million pounds of commercial fish yield in 1922 4 4.15

(Thompson 1925). Depending on whether the Illinois Department of $ Conservation figures or the National Marine Fisheries Service statistics are used, the catch fell under 1 million pounds in 1971 or 1972 (Sparks and Starrett 1975) and has remained below 1 million pounds through 1975 (Table 4.7). Since 1950, carp, buffalo and catfish have comprised the , majority of the commercial fish catch from the Illinois Waterway (Sparks and Starrett 1975). carp and buffalo species accounted for 82 9% of the commercial catch for the four year period, 1972 , through 1975 (87.4,_82.5, 82.4 and 79.2 respectively) while catfish species comparison 10.2% of the catch during the same period (8.3,  ! 11.3 9.4 and 11.6 respectively). carp and buffalo are rough fish  ; with the majority of the catch being used in pet food and fer-O~ . tilizer production. The only game fish commercial fishemen seem to be actively seeking is catfish.  : 1 The number of commercial fishemen utilizing the Illinois River has decreased in the last twenty-five years (Table 4.8). In 1950'there were 106 full-time fishermen and 169 part-time fishermen while in 1975 there was only 1 full-time fisherman and 34 part-time , tishermen.

                                                                                                                      ?

L 9: 4.16

l l. 1 1 1 Table 4,7 - Reported catch in pounds of fish taken from Illinois O River by Illinois commercial fishermen in 1972-1975, as reported by the Illinois Department of Conservation I1 1inois R i y e, r

      !C..a of Fish                 197.'            1973                               3o74           1975 Carp                       310,780          212,953                     263,164               214,196 Burralo                    260,312          117,S26                      2ci,76h              161,149 Drum                         16,910            7,239                              L,929         13,601 Catfish                      5L,261           45,429                             53,675         5L,97:

Bu11 heads 6,62: 15.113 25,036 lu,35i Sturgecn -- 100 -- 20 Faddlerish 3,123 807 16,365 3,43E White carr 600 600 190 5,550 Suckers 200 1,000 (]) Garr -- -- -- 3,240 Bowrin 600 500 -- 2,200-Mooneye (a) -- 2 -- 1C0 Eel -- -- 35 ( Craprie: -- -- -- -- Y. Ferch -- -- -- -- Grass Carr (t3 (b) (b) 10; TOTAL 653,2cf 400,77] 571,155 47 3, f0 5 (a) Mooneye also includes Goldeye (b) Grass Carp not included O 4.17

O Tarle 4.8 - Rerorted nur.ber of full-timc and p a r t -t i me t r .ne r c i r.1 fishermen actively enpared in Illinois liiver fishinc from 195? to 1975. (C'nly those fishermen were included in thir or followinc, thole.9 who had purchased tarr cr licenses for five or more netc.) Tyre of Fishermsn Ic~C 106: 1970 1971 1972 1973 1 m: 0 197t g Full-time 106 60 22 9 13 13 15 1 Tart-time 360 L6 L7 4p u 7' r> u 6_ _f o m it * , s

  • 1 O

l 4.16 1

f ( 4.2.2 Sport Fishing Because of the poor water quality conditions existing in the'Dresden Pool and in the Des Plaines River immediately above the Dresden Pool, sport fishing has not been recorded in any of the more recent fishery studies. Some sport fishing activity has . been observed in the Kankakee River near the Dresden Station. Sport fishing was considered light in the Kankakee River near the

                                                                                                                              ~

Braidwood Power Station on July 1973 according to a creel cen:~as report by Westinghouse Environmental Systems (1973). Of the 1.3 species of fish caught by fishermen, catfish was the most fre-quently caught fish, followed by carp and rock bass. Muench (19f4) reported that sport fishing usage near Custer Park was heavy. ( } Species of fish from collections in this area whict were classified as commercial or " rough" fish were estimated to comprise 84% by weight and game fish 151 by weight of the fish population (Table 4.3). Although no sport fishing activity has been recorded on the Dresden Pool, there is evidence of considerable use of this area for waterfowl hunting. In a report for iecreational development of Illinois River backwater areas issued by the Illinois Division of Waterways (1967), it was concluded that the development of the proposed plan would be feasible only if the water quality standards being eatablished were met in the near future. It is of special interest that this plan wa 3 aimed at backwater sloughs, swamps, and lakes of the rivor O and not at the mainstreain itself. 4.19

The upper reaches of the Ders Plaines River above Lockport O contain populations of largemouth bass, sunfish, crappiis, r.orthern pike, and carp, according to a special r epor t by the U.S. rish and Wildlife Service (1963). Below Lockport, the same report states, the Des Plaines River is quite polluted, as indicated by the highet population of pollution-tolerant specien of carp and goldfish. Downs t r eam r.ovel:.ent of more desirable 'ish species is limited due to adverse water quality conditions. A simplified graph (rigure 4.1) fioc this report shows an estimate of sport firnerman usage along the Illinois River as of 1963 in relation t.o dif ferent wate quality zones. The location of the Dresden Stat:on has been added to this graph for bettet illustrction. Ifovever, this graph must be considered schematic, as it it doubtful that the estimates made h for fishetman ese above Starved Rock were based on actual deta. 4.20 g

                       .O  .

O . _ . . I o DECRADtD ~ lone m - ( etCovtay smossty Pgttyt tg . RtCovtRv ZONE romt romt  !' o s A Tf 4 T T r r r 4 I

              > e
            ,   t.

4 b E e P-en E , w (L s 9 z a w I a e e

                                                          , 2 _.

r

            ',                                           [' ' #
                .,                                    i 1,    .          =     ,

sta=,te sece to tec ce=, e ,.s g 5 1 5, I, i .

                        .:     $,                     .          .    *          .     ;                              3 o     a
                         =
  • 7 1 * ,  ?

o . a e 3 f. STREAM fL 0sf 2 cataf taats e att woes newta pasms PeoJTCT g EStinaarto e. eso or resntswatg Pts l

                                                                                                                        $Tetaas set A3 attattO 1g Pot 1UTscos h

it=f s atow tw ttmois elvu, 4 ' . , - =

                                             .                                                                           Ow*t tw er 9.O.T f.t te t, ese Mgge*f
                                                                                                                                 ,               ..m . - se.

1 . Estimated average number of fishermen per stream mile as related to pollution zones Figure 4.1. along the Illinois River.

                                                                                                                                                                                    .s s,                     ,c,                   .,
                                                   *                                                                                              <                          I     y
                                                                                                                                                                               ;_        l
                                    *                                        =

l ,

4.3 Preoperational and Operational Fishery i Monitoring Program The fish monitoring program at the Dresden Nuclear Station  ; began in June 1971 and continues to the present time. Except for the first sampling period in June when operation of Unit 2 was in-termittent and Unit 3 was not yet operational, fish data have been 1 obtained at periodic intervals througFout the operationel phase of

                                                                                  )

Units 2 and 3. Over the period of six years, additions have been made to the experimental monitoring program design wh*ch have in-creased sampling intensity, sampling locations, ut?lizing different techniques 'to characterize and assess the effect of station opera-tion on the fish community in the immediate area of the Dresden Station, h.3.1 Sampling Techni;ues Since 1974, two sampling techniques have bcen employed for the collection of fish; electroshocking and seining, Frier to 197U, seining was the only method of collection. Both sampling methods are selective in nature; however, they hr.ve been found to be the most applicable methods for the collection of fish in the habitats found near the Dresden Ftation. The use of other technliver such as gill nets, trawls, and wing nets have been evoluoted in similar habitats in the Mississippi 91ver and have been found l a c h-ing in applicability. Both techniques presently employed, when combined, give a representative characterization and estessP.ent er the fish popula tion in the immediate viainity of the presden Sta tion. Electroshocking ll) Electroshocking has been the most successful te c hn i .lue s for sampling the fish population both in numbers and species obtainei 4.22

                                                                                                                                  -)

4 ' . l l l (]) within the study area._ It is especially effective in collecting l { larger individuals, obtaining live weight and length measurements  : e l! and insures that stomach contents are in optimum condition for atomach analysis.  ! Seining Seining near Dresden Station was utilized in locations 1 which are shallow water areas. It has been demonstrated to be ' one of the best devices for collectinE small fishes in the littoral zone. It is effective, however, only in shallow water habitats f exhibitinF a- relatively unobstructed bottom. Of the many i similar shallow areas present, three locations were sampled by l seining in 1971-1973 and four locations in 1974-1976 ' The primary _ objective of utilizing this technique was to ' O_ provide a rough indication or reproductive success of certain species ' and the composition of the foraEe fish-population. h.3.2 Study Results  : i As discussed in detail in Section 4.1, the Dresden study k area is represented by three rivers; the Xankakee, Des Plaines and Illinois rivers. The Des Plaines Elver is characterized as I beinE warmer and of poorer water quality than the Kankakee Rive. . , i ThorouEh mixing of'the two rivers, which form the_ Illinois, usually does not- occur in the study area. As . a. re sult, the south shore area of -the Illinois Fiver represents, for the most part, -Kankakee Fiver _ water while the north shore area represents Des Plaines P.iver water. _ Habitat type -in the study area. is- limited primarily I)- to main channel and main channel border which is not as conducive to supporting a prr aductive warm water fishery as backwater lakes and sloughs. 4.23

                                   . -.=. - -.- .       . .  - . . -  . . . .   .  - - . . . . - . _    - . . . . - . - - . - . ,

I ' i 4 Frior to the 1974 study periods, seining was the only method of collection, Collections were made at Locations 2, 5 and 7 which represent primarily Kankakee River water (Figure 4.2). The total number of species collected in 1971, 1972 and 1973 was similar (23-26 species). The fewest number of species was consis-tently obtained at Location 5. Forage fish constituted most of the individuals obtained in the collections. The emerald shiner was the most abundant species collected during each of the three years of sampling (Table 4.9). Electroshocking was added as a sampling technique in 1974, Collections were made at six locations, resulting in more efficient characterization of fish in the study area. As a re-sult, a greater diversity of species was obtained. ll) A total of 44 species of fish have been collected in the study area by electroshocking and saining during the 197h-1976 study period (Table 4.10). Carp, gizzard shad, and emerald shiners were the three most abundant species collected during the three [' years of study which, in combination, represented over 70C of the total catch, The shif t in the ranking order of abundance from emerald shiner as the dominant species during the 1971-1973 period to carp, gizzard shad and emerald shiners, respectively, during the 1974-1976 period is a result of adding electroshocking as a sampling technique, Overall differences were apparent in the composition and relative abundance of species among the three rivers, These differences were related mainly to the combined differences in 9 water quality and temperature. A total of 26 species of fish were 1 4.24 __ --- -- '~

                                                                                                                       .., ...U
                                      ,-                  e                                                                                                              :
                                              .             4, . ,' .:. ........_-',,.'Y g g g y r C W ,,
                                                           *^
                                                                                                                                                                                                 *.>., \,
                                                                                                                                                                                                                                  }

g, , . . j ; . * * .

                                                                                                                                                                         .         .                                    .          C
                                    .\ ...                                                                                         *
                                       .~.
                                                     ,..             -Q                                                '.:' . *. *.*. ,,. ,
                                                                                                                                                                                            "g g            ,o  ~

m c. 9 e, . . b -t. .'. O a CC

                                                                                                                                                                                                                                 *** o y                                 c .s
                                                                                                                                                           .,                                                                    PM M
                             = '                                                  -?                                        . ;-               o. <. o                                                                           CC oa                                                   a                                                                                                                                                    d yaw                                                                                              ..  :                                                 ,
                                                                                                                                                              .e . c.                 w            w                              m va oa                                                    ;                                         ..                                                       w            :'      ;g                     c o
                             *    b a
                                                                                                                   *,....   ...                            .;-g
                                                                                                                                                                +      -,.            s         ps
                                                                                                                                                                                                ,                                oc 9

o= , i

                                                                                                                                                              '/
  • g N I .q E9 .

5 '. - E oo a> d h *

                                                                                                                                                                 .a p

h g~ j x6 po I,nS

                                                                                             . c'                   p                            -

l l x cQ n 5 - JC o cw

                                                                                                                              . ..                                         n                                                      eo
                                                                               $(.h*
  • x
                                                                          \L Y                                                                          . . -
                                                                                                                                                                                 ,                          ..                    OP
                                                                                                                                                                                                            ,                   ,c .en
                                                                                                                                                                                                   ,;,                          yc
                                                           *[

s. A, , j

                                                                                                                                                                       . . . . . ...-       ...      11ip )(                  . .C9
                                                                                                                                                                                                                                     .g e               \a Il                                                             -
                                                                                                              ~                        .

h* d e N cQ

                         %
  • y} . . '
                                                                                   , }*/ ,.' '                                         M4&gg Kl"[                                                                            .O      ,c:

r.-[ gs c 4

                                                                                       ,/ i a
                                                                                                                                                                                                                                 .A 2 *                *<,
                                                                                                                                                                                       *      **            **
  • OC e,f- 4.no -. u s +. er !} j.
  • a t.

P't' N-

  • s wO- Mb f .
                                                                                                                                                           , .                         en
                                                                                                                                                                                  ,1 ,g .... ' ' .        .

U *" o

  • N N' M_ f $' 4 w< . *. *. * * ..I. 4 *. . = . * . L,-

L 2 , ' Y. O *

w. . u . .
                                                                                                                                                                                                                             - u
                           .                 *./

t .

                                                                                                                     -                                                           .u
                                                                                                                                                                                'u                                              a E L*.

E i",T 2 ,E .!.T.h

                                                                                                        ..                                                                                                                      [g *,)
. 4 mQ a*e C a & v e>
        .         : gJ                           -                   ' *                                                                                                                                                    ,c .,4
                                                                                                                                                                                                                            .'3 :
                     ,t;
  • I k.hw % eo w~

pa wa t, Oc

                                                 ' , 3Y
g .i f

W'> .u

      /.
  • t
  • M._ N g  %" s x rg
       .                      ..           +
  • e*/*. o1
                        $5 4

en c . g O

                        ??                              J y

Df *g

                                                                                                     'A a N ar 315 7 3 9
  • L 3170f ' N ID7 3 .

D tr. _y _,

                                                 . ' .%,{" -                                                                                                                                                                L

_WN

  • 4.25

Table 4.9. Number and percent abundance of major fish species collected by seining all locations in the vicinity of Dresden Nuclear Station, 1971-1973. 1971 1912 Species No. & Species No. IE/3

                                                                 &    Species          No,       t Emerald shiner       387  50.3   Emerald shiner         852 73.0  Dnerald shiner     454    69.5 Bluntnose minnow     127  16.5   Sand shiner             70  6.0  Bluntnose minnow    60     9.2 Green sunfish         99  12.9   Bluntnose minnow        54  4.6  Gi zard shad        56     8.6 Bullhead minnow       23   3.0   Green sunfish           35  30   Bullhead minnow     20     3.1 Gizzard shad          20   2.6   Bullhead minnow k                                                           18  1.5  Sand shiner         11     1.7 ru Red shiner            18   2.3  Orangespotted sunrish    18  1.5 Green sunfish 0%                                                                                        7     1.1 TCyrAL 674  87.6                         1047  89.6                    608    93.2 e

e O *

                                                                                                                                           ~

o O O~ Tabic 4.10. Catch totals of individual fish species collected by electroshocking and minnow seining for cornbined area and for each river (Kankakce, ' Des Plaines and Illinois rivers) near the Dresden Nuclear Station, 1974-1976 monitoring studies. Kankakce Havera Des Plaancs Haverd IllAnois RiverU Percent of Percent Percent rercent ' Speeles _ tiumbers Total Catch Number of Catch resember of Catch tiumbe r of Catch. Carp 1078 29.3 75 12.8 241 43.7 762 30.0 Gizzard shad 914 24.9 232 39.7 114 20.7 568 22.4 Emerald shiner 596 16.2 44 7.5 46 S.3 506 19.9 l r.ullhead minnov 241 6.6 103 17.6 2 0.4 136 5.4 Green sunfish 154 4.2 11 1.9 9 1.6 13C 5.3 Goldfish 122 3.3 2 0.3 93 16.8 27 1.1 Smallmouth bass 71 1.9 20 3.4 0 0 51 2.0 River carpsucker 50 1.4 8 1.4 4 0.7 38 1.5 Bluegill 50 1.4 5 0.9 9 1.6 36 1.4 Channel catfish 44 1.2 9 1.5 0 0 35 1.4 lifuntnose minnow 36 1.0 6 1.0 6 1.1 24 0.9 p 1,crge m th bass 35 0.9 4 0.7 3 0.5 28 1.1

 .               Sneillmouth buffalo                   30      0.8         4         0.7         3         0.5      23          0.9 FN)             end shiner                            28      0.8        0          0          0         0        28           1.1 N               Shortheart redherse                   22      0.6        7          1.2        0         0        15           0.6 White sucker                          20      0.5       13          2.2        0         0          7          0.3 River shiner                          1R      0.5        5          0.9        0         0        13           0.5 ficJhorse sp.                         17      0.5       10          1.7        0         0          7          0.3 Outllback                             17      0.5        2          0.3         3        0.5      12           0.5 Spotfin shiner                        14      0.4        0          0          0         0        14           C.6 Carp x goldfish hybrid                13      0.4        0          C         12         2.2        1        <0.1 Freshwater drum                       12      0.3        6          1.0        2         0.4        4          0.2 Stril ed shiner                       11      0.3        0          0          2         0.4        9          0.4 toi ta bass                           10      0.3        4          0.7        0         0          6          0.2 orangespotted suntish                  9      0.2        0          0          0         0          9          0.4 Skipjack herring                       9      0.2        2          0.3        0         0          7          0.3 rock bass                              7      9.2        6          1.0        0         0          1        40.1 Sunfish hybrid                         7      0.2        0         0           0         0          7          q.3 Uhita crappie                          6      0.2        2         0.3         0         0          4          0.2 rathead minnow                         5      0.1        0         0           0         0          5          0.2 Longnose gar                           4      0.1        0         0           1         0.2        3          0.1 Steelcolor shiner                      4     0.1         0         0           0         0          4         0.2 Trout-perch                            4     0.1         0         0           0         0          4         0.2 Signouth buffalo                       3    <0.1         1         0.2         0         0          2         0.1 Colden shiner                          2    <0.1         0         0           0         0          2         0.1 runpkinseed                            2    <0.1         0         0           1         0.2        1        <0.1

Tabic 4.10. (continued) Kankake*e Rtver Des Plannes Paver Species Percent Percent Illanoas Raver Numbers Total Catch Number l'e r cent Percent of Catch Nuwber of Catch Number of Catch Ghost shiner 2 (0.1 0 Co w n shiner 1 <0.1 0 0 0 2 Spottail shiner 0 0 0 0.1 1 <0.1 0 1 Emtperch 0 0 0 (0.1 I

                                               <0.1                                       0          1 Walleye                                              0         0        0                               <0.1
                                               <0.1                                       0 Alewife 1

1 0.2 0 1 <0.1 1 <0.1 0 0 0 Mooneye 0 0 0 1 <0.1 0 1 Sand shiner 1 0.2 0 (0.1 I <0.1 0 0 0 Stonecat 1 0,2 0 I <0.1 0 0 0 0 Black bullhead I <0.1 0 P O O 1 (0.1 Yellow perch 0 1 0 1 <0.1 0 0 0 O D 0 1 (0.1 p Total Number 3677 5P4 552 fu 2541 m a L' p, presents one samplir; locaticn. . Represents four sepling locations. i I e l l L L e O *

() obtained in the Kankakee Pl . er, 17 species in the Des Plaines River and 40 species in the Illinois River. The comparativa1y hiEher number of species recorded for the Illinois River was attributed, in part, to the Ereater sampling effort (4 locations in the Illinois River vs 1 location each in the Kankaee and res Plaines rivers). It should be noted that species composition and abundance differed substantially between the north and south sides of the Illinois Fiver within the study area. The greater species diversity and abundance of fish fcund on the south side of the river was related principally to the better water quality and preferred temperature regime (Kankakee Fiver water) and, to a lesser extent, to greater habitat diversity. Noticeable overall differences were apparent in the rela. tive abundance of major species within the study area. Ove ra ll percent abundance of carp and Eoldfish was greatest in the Des Plaine Eiver whereas gizzard shad and bullhead minnows comprised the great-est portion of the overall catch from the Kankakee River. The emerald shiner was most abundant in the Illinois River collections. Electroshocking A yearly summarization of the catch-per~ unit-effort (CPE) data for 1974, 1975 and 1976 are presented in Tables 4.11 to 4.13. Sampling loca+1ons for electroshocking are shown in Figure 4.2. Greater species diversity was observed at Locations 2, 5, (^T 6 and 7 than at Locations 1 and 10 during each of the three years k/ of study. Better water quality and preferred temperatures were the primary reasons for the higher diversity at those four locations. 4.29 '

Table 4.19 Ca tch-per -un i t-o f-e f fort (fish collected per hour of electroshocking) of each species March-November 1974. at each sampling location near the Dresden Station, Species 1.ocation 1 _I,ocation 2 C l't?

                                                               !.ocation 5 _I,oca t i on 6 J,oca t i on 7 Cl't; CPE          C1'n                     Location 10 CPI:          CI'E Longnose gar                        -

Alcwife - 0.9 - Gizzard shad 2.0 28.0 0.9 11ooneye - 50.9 51.8 9.4 carp 58.3 0.8 - 4.6 Gold fi sh 13.6 73.1 115.7 44.4 0.8 53.8 45.4 Emerald shiner 5.6 0.0 1.9 2.4 1.7 5.6 Smallmouth buffalo - 0.8 1.9 2. I 2i Digmout h buf falo - 6.6 1.7 River carpsucker 0.8 - 0.9 3.7  %.' - Oui 11back 4.0 3.7 O.9 3.6 3.4 Floxostema sp. 0.8 0.9

                                      -                                        1.2             0.9

,w f White sucker - 4.8 8.0 0.9 - channel catfish 0.9 1.2 O - 1.2 3.4 - White bass - 6.8 Smallmouth bass 1.6 1.9 1.2 0.9 4.0 0.9 - Largemouth bars 0.9 1.2 2.4 2.6 White crappie - 1.9 10.8 1.7 Rock bass 0.8 -

                                     -                                         1.1              -

1.6 - Green sunfish 0.9 1.6 Bluegill 4.6 42.2 3.7 - 9.4 0.9 erangespotted sunfish 0.9 10.8

                                                    -                                         4.3           0.9 Sunfish hybrid                                                 0.9         7.2 Drum 1.7             -

0.9 - 0.9 - No. of Species 9 Ig Total CPC 121.2 14 16 17 70.4 145.3 260.1 106.1 60.1 . e 9 8 1

E

                                                                                                                ~

e G O Table 4.12. Catch-per-unit-of-effort (fish collected per hour of electroshocking) of each species at each sampling location near the Dresden Station, March-November 1975. Location 1 Location 2 Location 5 Location 6 Location 7 Location IT cpl; CPf: cpl; CP" cpl; CPE Species Longnose car - - - 1.8 - 57.0 85.1 21.0 104.9 12.0 21.6 Gizzard shad - Skipjack herring - 0.9 - 4.6 - 101.2 28.2 37.0 38.6 90.2 36.0 Carp 24.G - 1.0 0.9 1.8 2.4 l Goldfish - - - - l Carp x goldfish hybrid 2.8 - Emerald shiner 13.8 2.6 1.0 23.0 12.0 6.0 Golden shiner - - 1.0 - 0.9 - Spottail shiner - - - - 0.9 - Bluntnose minnow - 0.9 - - Bullhead minnow - 1.7 - - 1.8 - 2.6 2.0 0.9 0.9 2.4 Smallmouth buffalo - Bigmouth betffalo - - - 0.9 - Piver carpsucker - 1.7 8.0 4.6 1.8 3.6 3.0 1.8 1.8 1.2 y Oui 11back - -

 .           milte sucker                  -

2.6 - - - - U8 Shorthead redhorse - - 2.0 - 0.9 -

 "                                                  3.4          2.0        0.9         0.9        2.4 rioxostoma sp.                -

2.6 1.0 3.7 2.0 1.2 -

           . Channel catfish White bass                    -

1.7 - Largemouth bass 1.8 - - 2.8 3.7 - Smallmouth bass - 2.6 5.0 2.8 10.1 - Rock bass - 1.7 - - 0.9 - Pumpkinseed 0.9 - - - 0.9 - Bluegill - 0.9 2.0 2.8 2.0 - Green sunfish 1.8 1.7 1.0 9.2 12.0 - Sunfish hybrid - - - 3.7 - Walleye - 0.9 - Preshwater drt'm - 2.6 - - 0.9 - No. of 1pecies 10 18 14 17 20 9 Total CPC 205.9 139.4 87.0 207.9 160.0 76.8 l

                                                                     =

1 Table 4.13. Catch-per-unit-of-effort (fish collected per hour of electroshocking) of each species at each sampling location near the Dresden Station, March-August 1976.

                                                                                      ~

1,0 cation Species 1 2 5 6 7 10 Gizzard shad 45.8 103.6 57.2 260.3 85.1 Skipjack herring 45.2 1.1 - - 1.3 Carp 64.3 33.8 113.1 90.1 87.8 55.9 Goldfish 1G.5 1.1 4.0 1.4 1.3 2.7 Carp x goldfish hybrid 9.8 - 1.3 - - -

       ,  Emerald shiner                 4.4     12.0         8.0             40.0 Sand shiner                                                                    34.6        6.7 1.1           -                -          -

River carpsucker - 2.2 4.0 2.9 Quillback 4.0 - 2.2 1.1 - 1.4 - - Smallmouth buffalo 3.3 - 1.3 8.6 - Shorthead redhorse - 7.6 9.3 - 2.7 r- White sucker - - 4.0 y Channel catfish - 2.2 5.3 2.9 1.3 - l N Stonecc.t - 8.0 - 1.3 - - - Black bullhead 1.1 - White bass - - 1.3 1.4 - Smallmouth bass - 9.8 5.3 10.0 14.6 Largemouth bass - 1.1 6.7 7.2 - 1.3 Green sunfish 5.5 4.4 1.3 34.3 Bluegill 33.3 4.0 i 2.2 - 1.3 5.7 1.3 - l Sunfish hybrid - - 1.4 - Yellow perch - -

                                                               -               1.4         -

Freshwater drum 2.2 2.2 1.4 1.3 - No. of Species 11 14 15 16 Total CPE 12 8 159.3 183.3 220.7 470.4 275.3 121.1 Data for November sampling was not complete so was therefore not included. l l 1 9 9 8 L___ .

                                                                               )

A total of 44 species of fish have been collected in the study area by electroshocking and seining during the 1974-1976 study period (Table 4.10). Carp, gizzard shad, and emerald chiner s were the three most abundant species collected during the three years of study which, in combination, represented over 70% of the total catch. The shift in the ranking order of abundance from emerald shiner as the dominant species during the 1971-1973 period to carp, gizzard shad and emerald shiners, respectively, during the 1974-1976 period resulted primarily from the addition of electrosnocking as a sampling technique. Overall differences were apparen in the composition and relative abundance of species among the three rivers. These differ-() ences were related mainly to the combined dif ferences in water qual-ity and temperature. A total of 26 species of fish were obtained in the Kankakee River, 17 species in the Des Plaines River and 40 species in the Illinois River. The comparatively higher number of species recorded for the Illinois River was attributed, in part, to the greater sampling effort (4 locations in the Illinois River vs 1 location each in the Kankakee and Des Plaines rivers). It should be noted that species composition and abundance differed substan-tially between the north and south sides of the Illinois River with-in the study area. The greater species diversity and abundance of fish found on the south side of the river was related principally to the better water quality and more preferred temperature (Kankaken River water) and, to a lesser extent, to greater habitat diversity. 4.33

9 Although CPE values for carp and gizzard shad varied substantially among locations, they were generally the two most abundant species obtained in electroshocking collections at each location during the 1974-1976 study period. Goldfish were also abundant in the collec-tions at Location 1 but were only incidental in the catches at the other five locations. Total CPE values were variable among locations during each of the three years of study. Although the area represented by Locations 2, 5, 6 and 7 are comprised mainly of Kankakee River

        . water, total CPE values were noticeably higher at Location 6 (dis-charge area). Fish species which were most frequently obtained in greater numbers at this location than at Locations 2, 5 and 7 were gizzard shad, carp, and green sunfish.

Higher temperatures observed gg(

       - at Location 6 appeared to be the major factor related to the high occurrence of these fishes at this location.                    The lowest total CPE value was recorded at Locatian 10 during each year.                             Location l         1, which like Location 10, represents Des Plaines River water, l

showed much higher CPE values than '<ere recorded at Location 10. l Goldfish generally contributed subt.tantially to the greater overall-catches et Location 1. Seasonal trends in the catch data were obvious among sam-pling locations. Temperature preferenco and to a lesser extent l

       - water quality conditions appeared to be major factors related to j        the abundance of fishes on a seasonal basis. Highest CPE values were obtained at Locations 1 and 6 during the March and November sampling periods where water temperatures were generally the                                    e 4.34

() warmest. Carp and/or gizzard shad comprised most of the catches at these two locations during the two periods. Both species appear to respond most favorably to the warmest temperatures in the study area during the winter and fall periods. Lowest catches were gen-erally associated with areas such as Locations 2 and 5 where tem-peratures were coolest during March and November. Fish selected the coolest thermal region in the study area during the warmest sampling period in August. Highest catches were obtained at Locations 2 and 5 during this period, where water tempr atures were coolest. Gizzard shad and carp showed the greatest preference for the cool temperatures at Locations 2 and 5 during this period. The concentration of these two species durirs August suggest that temperature preference is a major factor in their attraction to these areas. Locations which exhibited the highest temperatures and poor water quality were avoided. Lowest catches were obtained at Location-6 in August where water tempera-tures were generally the highest and at Location 10 where high tem-peratures and low water quality conditions were observed. Fish appeared to be evenly distributed throughout the study area during the spring sampling period in May, Catches were most similar among the-six. locations at this time. Obvious differences were noted in the CPE values amnng most locations among the-three years of study. These differences were principally attributed to an increase in the abundance of young-of-year shad at most locations in 1975 and 1976 when com-l ( ) pared with 1974. Changes in the abundance of carp among most 4.33

                  -      --    . . _ -    - . - _ -            .   .     -      - ~ .   ~   .-

l locations were also observed. The changes in abundance of gizzard shad andzcarp were apparent at locations unaffected by station op-eration as well as-those which were affected. Seining Seining has been used as a sampling technique since 1971. Locations 2, 5 and 7 have been sampled during this period in addi-tion to Location 1 which was added in 1974. Seine haul data have been userul in providing an indication of the reproductive success of certain species and the composition of the forage fish popula-tion in the Dresden Station area. However, due to the limitations of the technique and the problems associated with sampling in the study area (i.e. heavy debris load in the river), quantitative com-parisons among locations cannot be done. ggg A yearly summarization of the seine haul catches for 1971-1976 are presented in Tables 4.14 to 4.19. The highest number of species and individuals were consistently obtained at Location 7 during the six years of study. The greater abundance of fishes

found at Location 7 than at Locations 1, 2 and 5 is indicative of the more prefereable habitat type and the better seining conditions at Location 7. Minnov species of the family Cyprindae, represented primarily by the emerald shiner and to a lesser extent the bullhead minnow, were the dominant fishes obtained in the collections in the study area during each sampling year. A variety of young-of-year individuals of other species were also collected in the study area, especially at Locations 2 and 7. Gizzard shad, green sunfish, blue-gill, rock bass, carp and smallmouth bass were most commonly rep-O resented.

4 .36

                                                                                                         . ,e m O                                             O U

Table 4.14. Species composition and relative abundance of fishes collected by seining at Locations 2, 5 and 7 near the Dresden Station, June-November 1971. Location 2 Location 5 Location 7 Percent Percent Percent Species Number Abundance Number Abundance Number Abundance Longnose gar 2 0.8 - - - - Gizzard shad 9 3.4 - - 12 2.7 River carpsucker 2 0.8 - - - - Golden redhorse - - - Carp 1 0.2 1 0.3 - 6 1.3 Goldfish 1 0.3 1 1.6 12 2.7 Stoneroller - - - River chub 1 0.2 1 0.3 - - Bullhead minnow 18 6.9 2 3.3 3 0.7 Bluntnose minnow 71 27.1 - - 56 12.6 t- River shiner 2 0.8 - - 6

  • 1.3 Common shiner - - - -

9 2.0 N Red shiner - - - - 18 4.1 Sand shiner - - 3 4.9 - - Emerald shiner 24 9.2 54 90.2 308 Channel catfish 69.2 1 0.3 - - 5 1.1 Brook silverside 11 4.2 - - - - Logperch 1 0.3 - - - - , Rockbass 3 1.2 - - 2 0.5 Green sunfish 96 36.7 - 3 Orangespotted sunfish 2 0.7 0.8 - - 3 0.7 Black crappie 2 0.8 - - - Smallmouth bass 15 5.8 - - Total Number 262 60 445 Number of Species 18 4 15 , 4

Table 4.15. Species composition and relative abundance of fishes collected by seining at Locations 2, 5 and 7 near the Dresden Station, May-November 1972. Location 2 Location 5 Location 7 Percent Percent Percent Species Number Abundance Number Abundance Number Abundance Gizzard shad 1 0.5 1 0.8 6 Goldfish - - 0.8 Carp 7 0.9 2 1.0 2 1.6 10 1.2 Bullhead rainnow 13 6.3 1 0.8 4 Bluntnose minnow 14 0.5 6.7 3 2.4 37 4.4 Fathead minnow 1 0.5 - - - - Spot tail shiner - - Spotfin shiner - 18 2.2 2 0.2 Emerald shiner 69 33.2 112 .#' Sand shiner 88.9 669 80.4

45. 21.6 1 0.8 24 y Red shiner - - -

2.9 1 0.1 River carpsucker - - - - 2 0.2 Silver redhorse 2 1.0 1 0.8 1 0.1 Shorthead redhorse 5 2.4 - - 5 Channel catfish - 0.6 3 2.4 - - Trout-perch 12 5.8 - Largemouth bass 3 0.4 1 0.5 - 1 0.1 Smallmouth bass - - 1 0.8 - - White crappie - - - - 2 0.2 Black crappie 1 0.5 - - - - Green sunfish 14 6.7 Bluegill 21 2.5 5 2.4 Rockbass 10 1.2 4 1.9 - Orangespotted sunfish 3 0.4 13 6.3 - Logperch 5 0.6 4 1.9 1 0.8 1 0.1 Johnny darter 2 1.0 - - - - Total ?! umber 208 12G Number of Species 832 18 10 21 e 9 #

s 4 .

                                                                                =....

[h o O,- u Table 4.16. Species composition and relative abundance of fishes collected by seining at Locations 2, 5 and 7 near the Dresden Station, 1973.

                                                                                                                             ~~

Location 2 Location 5 Location 7 Percent Percent Percent Species Number Abundance Number Abundance Number Abundance Gizzard shad 18 13.8 14 7.4 24 7.2 Carp - - 1 0.5 1 0.3 Bluntnose minnow 22 16.9 7 3.7 31 9.3 Bullhead minnow - - 1 0.5 19 5.7 Bigmouth shiner - - - - 1 0.3 Common shiner - - - - 4 1.2 Eraerald shiner 76 58.5 161 85.2 217 65.0 Ghost shiner - - - - 3 0.9 Golden shiner - - - - 1 0.3 Red shiner - - - - 1 0.3 Sand shiner - - 1 0.5 10 3.0 . Spotfin shiner - - 1 0.5 3 0.9 u Striped shiner - - - - 6 1.8 Shorthead redhorse 1 0.8 - - - - White sucker - - - 1 0.3 Channel catfish 1 0.8 - - - - White bass 1 0.8 - - - - Brook silverside - - 1 0.5 2 0.6 Largemouth bass 1 0.8 - - 1 0.3 Smallmouth bass 3 2.3 1 0.5 1 0.3 Rock bass 1 0.8 - - - - Green sunfish 2 1.5 - - 5 1.5 Bluegill 1 0.8 1 0.5 3 0.9 Logperch 2 1.5 - - - - Johnny darter 1 0.8 - - - - Total Number 130 189 334 Number of Species 13 10 19

Table 4.17. Species composition and relative abundance of fishes collected by seining at Locations 1, 2, 5 and 7 near the Dresden Station, March-November 1974. Location 1 Incat.on 2 Incation 5 Location 7 Percent Percont Percent Species Nurnbe r Abundance Percent Number Abundance Number Abundance Number Abundance Longnose gar 1 4.0 - - - - - - Skipjack berring - - - - - - 1 0.4 Ginard shad 1 4.0 12 Carp 5 32.4 35 13.3 20.0 - - - - Bluntnose minnow 2 7.7 7 18.9 1 Bullhead minnow - 0.4 4 15.4 5 13.5 6 Emerald shiner 17 68.0 2.3 16 61.5 7 10.9 195 Ghost shiner - - 73.9 2 0.8

 . Dod shiner             -            -        -           -         -

1 0.4 Itiver shiner - - - O Spotfin shiner - - 1 0.4 Striped shiner - - 14 5.3 Channel catfish - - 6 2.3 4 10.8 - - Largemouth bass - - - - - - 1 0.4 Smallmouth bass - - - - 2 5.4 Blueqill 1 0.4 1 4.0 4 15.4 - - - - Total Number 25 26 37 Number of Species 264 5 4 6 12 l l e o e

            ')
                                                                  /-

Qy (,,) . (O G ' Table 4.18. Species composition and relative abundance of fishes collected by seining at Locations.1, 2, 5 and 7.near the Dresden Station, i March-November 1975. Location 1 Location 2 Location 's Percent Location 7 Species Percent Percent Number Abundance Number Percent Abundance Number Abundance Number Abundance Gizzard shad 4 30.8 2 7.7 Carp 1 - 3.5 2 1 7.7 - - - 2.8 Goldfish 1 7.7 - 1 1.4 i Emerald shiner 1 7.7 7 26.9 1 1.4 8 27.6 Common shiner - - - - - - 32 45.1 River shiner - - 1 1.4 5 19.2 1 3.5 Stec1 color shiner - - 3 4.2 Striped shiner 2 15.4 - - 1 1.4 1

 .D Bluntnose minnow       4          30.8       -

3.5 1 1.4 e

 "  Bullhead-minnow        -             -

9 1 3.5 6 8.5 34.6 11 Smallmouth buffalo - - - - 2 37.9 11 15.5 River carpsucker - - - 6.9 - Smallmouth bass 1 1.4 White crappie - - 1 3.8 1 1.4 Rock bass -

1. 3.5 2 2.8 Green sunfish -

1 3. il - - - 1 3.8 - Bluegill - - - - 1 1.4 Logperch 1 3.5 4 5.6 Fathead minnow - - - - 1 3.5 - - 1 3.5 3 4.2 Total Nwnber 13 26 Number of Species 6 29 71 7 11 16

t,

                                                                                                                                                                                     .h '          i Table 4.19.;  .
                                                          . species-composition and.-relative abundanc'e or fishes. collected.by.

seining at Locations?l,c2, 5-and 7 near the Dresden Station, Ma rch-Augus t .~ 197.6. a l Location 1 Location i Location 5 -Location 7 Percent- Percen t .. Percent Species Number Percent: Abundance Number Abundance -Number Abundance Number ' Abundance Gizzard shad "2- 10.5- 2 1.8 '3 2.8 10 Carp. 5.0: 3 15.0. - Emerald' shiner 7 36.8 13 Red shiner -- - - 11.9 '60 56.6 84 42.0 Striped shiner - - 27 13.5'- 1 0.5 Steelcolor shiner - - - 2 1.9 2 1.0 Du11 head minnow 2 '10.5 88 80.7 35 Bluntnose minnow 2 33.0 66 33.0 p 10.5 3 2.8- 5 4.7 4 2.0 ru Pathend minnow ' 1 Trout-perch l . - - 0.9 - - 4 2.0 Smallmouth bass - 1 0.9 - Green sunfish 1 0.5

                                                                  -1            S.3                 1           0.9            -

Bluegill 1 0.5-2 10.5 . Rock bass - - 1 0.9 - - - Total Number 19 109 106 Namber of Species 7 200 7 6 10 No data available for the Novembar sampling period. i w ,_m. -

                                                                                         +m.s...- .

(v") Vide variability was evident in the number of species and individuals obtained throughout the six years of study. This variability, however, was not restricted to Location 7 (the only seining location affected by station operatica) but was also ob-served at the other three locations (Locations 1, 2 and 5). The variability was attributed to the reproductive success of fishes in the study area and also to the ineffectiveness in obtaining rep-resentative samples of the forage fish population present at each location. Ace Group Distribution Age group distribution analysis was not performed on fish curing any of the six years of study. However, data on length dis-7_ V tribution of the three major species, carp, gizzard shad, and em-erald shiner, gave an indication of their age group distribution. Length data were compared with age group analysis data performed on these same three species in the Illinois River near Marseilles, (Patulski 1975; 1976) which is 30 miles downstream. Length data for gizzard shad and carp were used from the electroshocking collections in 1974, 1975 and 1976 and for emerald shiner during the six years of study. These data provide only a general indication of the age group distribution of these species i l since only qualitative analysis was made. Gizzard shad and emerald l shiners from Age Group O (young-of-year fish) dominated the August l and Nove=ber catches at all locations while March and May collec- ) tions were comprised mainly of individuals of Age Group I. Older ()agegroupsrepresentedaminorportionofthecatchesforthesetwo l l 4.43

       -    =  -      - -.   ..    .-          .-  . _ - _ - . .     . . _- --

i species. Carp catchen were comprised mainly of large individuals. $ Due to the overlap in the length distribution among carp of older i age groups, differentiation into specific age groups was not attempted. However, it was obvious from the data that older carp ( Age Group I) dominated the catches at all six locations. Apparently, the study area is not heavily utilized by carp during their first two years of life. 1 O O 4.44

l l n 5^ INTAKE EFFECTS t) Section 316(b) of Public Law 92-500 requires that the lo-cation, design, construction, and capacity of cooling water intake structures reflect the "best technology available for minimizing adverse environmental impact." As required by the National Pollu-tion Discharge Elimination System (NPDES) Permit IL 0002224, a one-year study was undertaken to assess the environmental impact of the presen'. Dresden Station cooling water intake system. Reported herein are the data collected and an evaluation of the effects resulting from the intake of water to Dresden Station. Due to the proximity of the intake to the confluence of the Kankakee and DesPlaines Rivers the source of the Dresden intake water is a co=bination of DesPlaines and Kankakee water. The exact percentage ( ) of intake flow from eich source is dependent on the relative flows, ambient temperatures of the rivers, bouyancy, and other effects. While we have estimated with acceptible accuracy the percentage of the intake flow which originates in the Kanhakee river during the biological sampling periods we have not developed a method to con-sistently predict with precision this percentage with the data that is nor= ally available to us. For this reason we have evaluated the data under the assumption that the entire plant intake flow has as its source the Kankakee River. We know this is not true, but such an assumption provides a " worst case" analysis in that it overstates to the maximum degree possible the stress to the Kankakee River ecosystem. Our estimates of the actual source of the intake water is presented in Section 5.2. We have also examined the Kankakee River

                                                                                                             )

51

bathymetry in tha croo of the station intake os en oid in determining its environmental effects. The resultsof this in-vestigation indicate that the intake is located in a desirable llh 4 position with respect to the most productive area of the river. I Dur results our explained more fully in 5.1. During the period of re-productive activity of fishes found in the area of the inte).e (April through August), quantitative sampling for fish eggs and larvae, was conducted in the Des Plaines and Kankakee Rivers and the station intake once per week for a 5 month period. Results permitted the  ! I estimation of total numbers of eggs and larvae which passed-through the station. In addition sampling was conducted twice per week for l a period of one year for adult and juvenile fishes removed from the l cooling water by the traveling screens to evaluate total numbers and weight of fish removed from and lost through impingement. O The primary objectives of the study were to provide infor-mation on:

              - 1. the composition, abundance and biomass of fishes im-pinged on the traveling screens of Units 1, 2 and 3 of the Dresden Station; and 2.

the composition and abundance of drif ting fish eggs and larvae in the station's intake water and in the adjacent Kankakee and Des Plaines rivers. O 52

j - 4 O V 5.1 Entrainment Effects 5.1.1 Methods Fish eggs and larvac were sampled from April 12 through August 25, 1976. Nineteen sets of drif t samples were collected at weekly intervals during the study, On each sampling date, when possible, samples were collected at B-hour intervals over a 24-hour period, thus prot'iding thr ee separ ate sampling periods on each given date. Period I samples were ecliected during the morning daylight hours beginning at 0700 hours; Period II samples were taken during the af*ernoon and early evening beginning at 1500 hours; and Period III samples were collected between sunset and sunrise beginn::ng at 2300 hours. Samples were taken at two stations near the mouth of e

)

2 (-) the intake canal (Stations 1 and 2)(Figure 5.1). There were also three stations on a transect across the Kankakee River upstream of the intake area (Stations 4, 5 and 6), and three stations on a transect across the Des Plaines River above its confluence with the Kankakee (Stations 7, 8 and 3). By sampling at these various locations and comparing data, the source of eggs and larvae could be determined among the various sampling stations. Samples wer e not collected during Period I at Stations 1-9 on May 5, Period II at Stations 7-9 on July 7, and Period III at Stations 4-9 on August 11 because of hazardous weather conditions. Sampling was not con-ducted during Period I on July 21 due to ecuipment breakdown. O 1 1

a 1 With the exception of Stations 6- and 7, which have an ap-91j proximate depth of less than one meter, duplicate samples were col- -; lected just below the surface and near the bottom. At Stations 6 1 and 7, only duplicate surface samples were taken. Samples were-col- ' i lected with No. O mesh (571-micron) plankton nets with 0.5-meter , diameter openings. A digital flowmeter _ (calibrated monthly) was affixed to the opening of each net. On the first sampling date, April 22, 1976, the nets were placed over the side of an anchored

              ~

boat, and water passed through the nets via the river flow. How-ever, low flow velocities of both the Kankakee and Des Plaines rivers made it necessary. to tow the nets on each. subsequent date. Surface tows were made for-8 minutes, while bottom tows were made for 10 minutes in order to_ sample approximately equivalent amou.'ts 9f J of water.. Tows were made at slower speeds for bottom samples to 1 ensure th'at the net assembly did not lif t off the bottom; thus, the time of tow was increased to compensate for the speed of towing.

        . The; volume of water filtered per sample averaged approximately 37
        - cubic meters or _10,000 gallons.

The ends-of the nets were equipped with threaded adapters to accept standard wide-mouth canning jars, thus allowing the use of j ers' for both sample ecllection and sample containers. Each

        . sample;was preserved in the field with 5 percent buffered Formalin,
        .and -the j ars- were capped witn prelabeled lids indicating the -date, period of sampling, station, depth, and replicate.                                  In the . labor a-tory,_ samples-were individually hand-picked, and eggs and larvae lll  ;

transferred to labeled vials containing 70 percent alcohol. Wk _. . _. - .. .

4 O scale in feet k""  %"" W 0 1,000 2.000 l f( .

                                                                         'O' ,                                                                                          N
                                             .f                                 b Aversoe Deptfu (fret) q                                                                                                                    Station 1    10.8 Station 2 11.2 Stat;on 4    11.0 Station 5    15.4 SW'on 6       4.0 Station 7     3.0 Station B 10.6 Station 9 13 0 2

a%y J $ DRESDEN  %,, ,'bry  ;

  • STATION g i /
  • 8 4
                                                                                                  $                ~

fs C 4 g

                                                                                                  *~

4 J Z N  % 4 t Figure 5.1 Fish egg and larvae sampling stations in the vicinity of Dresden Nuclear Power Station. . _ - - - - - - - - - - _ - - - - - _ -. --. -- ------------------55----_-----_- - - - - - - - - - -

4

                                                                                                                       )

Analysis included egg & larvae counts, determination of . viability of-fish eggs,1and taxonomic composition (to the lowest

          -possib,t taxonomic level) of larvae.                         Taxonomic keys utilized in-                    ;

cluded May and Gasaway (1967), Winn and Miller'(1954), Taber (1969), and others'as appropriate. Following the analysis, all vials con-taining eggs and larvae samples collected were sealed to prevent evaporation and stored for reference purposes. Ancillary ~ measurements taken during sampling included water-temperature (prof 11e-1 ft intervals), sur face dissolved oxy- '

         -gen, sur f ace water velocity, and water depth. Temperatures and dissolved oxygen were measured with a YSI Model 54 oxygen meter
         -with attached temperature probe (Yellow sp.ings Instrument Company,                                          t Yellow ~ Spr ings, Ohio) . TS urf ace water velocity was measured with a
                                                                                                                 -llk f actory. calibrated No. 2232-WA-080 Price current meter -(Kahl Scien-tific Instrument Corp. , El Cajon, California), and depths were de-
         .termined with a Heath . Kit Model M1-101-1 digital display depth sounder (Heath = Company, Benton Harbor, Michigan) .                                  The oxygen meter Lwas calibrated prior to each sampling period.                           Temperature measure-L ments were also taken with a thermometer.

5.1.2: Results and Discussion 5.1.2.1 . Fish Eggs Fish eggs were notfidentified to' taxonomic level during g the study. Consequently, data are presented only as numbers and O 5.6

-q (/ 3 densities (number /m ). It should be noted, however, that the eggs collected probably represent only a few species since the eggs of most fishes present in the two rivers are non-buoyant and/or adhe-sive, and would not normally be subject to drift. A total of 7525 fish eggs were collected during the study at Locations 1, 2, 4, 5, 6, 7, 8, and 9. Based on the presence of the blastoderm, it was determined that 7479 of these eggs (99%) were fertilized. The total numbers and densities of fertilized fish eggs collected at each station during each sampling period are presented in Table 5.1 through 5.5. Fish eggs were collected at one or more stations on 16 of the 19 sampling dates. The absence or low numbers of fish eggs at

 ^T the beginning and end of the study period indicates that the sem-(V pling program encompassed the major duration of the spawning period of fishes occurring in the proximity of the Dresden station.      Den-3 sities of eggs ranged f rom 0 to 7.5/m . Greatest densities in the study area occurred on June 9 and 16. Greatest mean densities occurred in the Kankakee River during most sampling periods while lowest densities generally occurred in the Des Plaines River.

Stations 4 and 5 on the Kankakee River' generally represen-ted the intake with regard to densities of fish eggs (Figure 5.5). Abundance of eggs at Stetion 6, across the Kankakee River from the intake was, however, substantially greater in late May to the middle 5.7 .

jl i 9 m 201 3264 5002 6

                 /.       000 000 0000 0000 1201 0000 0

0 e o . . . a it 000 0000 0000 - 0 v r a r L e 5 0 0 2 b . . m 100 1111 1502 01 h R u 1 s 2 i r i f l i l . r 3 a6 p m 000 0000 0003 1 v7 r9 A

                 /.       000 000 0000 0000 0000 0000 0

0 a1 o . . . . . . . . . . l s i t 000 0000 0000 - 0 l g di g nr ap E r e 7 2 A b . s m 000 0000 0200 20 n, u an J r co i ft oat 3 m 947 3572 0757 9 sS e /. 000 000 2001 0000 4243 0000 1 0 ir e Jo . . . . . . . . . . ta ie sl nc a v r a r t 000 0000 0000 0 9 eu L e 0 0 7 9 dN b . . . . m 312 4112 0840 24 dn 2 u 1 11 4 ne 2 i t ad s l se i rr r p eD m 000 0000 4001 1 b me A

                  /.       000 000 0000 0000 0000 0000 0

0 uh o . . . . . . . . . . . . nt s i t 000 0000 0000 - 0 g < nr g aa E r ee e 3 1 mn b 1000 10 m 000 0000 dd u ne J t at c le al r tl e oo r v Tc i 12 e456 R789 v ann innn snnn l eoo Rooo eooo an rii iii niii t a 1 n Attn etttn i ttt n oe 5 o aaa eaaaa aaaaa TM i ett e kttt e lttt e t kSSM aSSSM PSSSM dd i b c a c o a t n k n a s e nn aa rr 9 a L I K D GG T

                                                             "I (n llll   i r
   .,                                  . . . .   . --- - -                                    .        . . ~          -          . -                   .. .. . . ..- - .

7

    .                                                           i            ,

_ m :-

                                  @                                                        -p
                           --. u --

e .g * ~. 8o 3o- 8

2. *.
                               . S..                                  g i              das                isis              - siis              e-i                         <

em t M s g e e a . O. O= g g -z:5 **gf ga;f g

                                                                                                                              ----.f                                         )

. 2 l 1 m 4- aa -

                              .w
                                                                     . I

[soo

                                                                                        . '8. '8 215,1   .. n..               3 ...
                                                                                                                                 . . .R        ,(. .                        -

C

                                ~                                    -

c - 4 . m .-: . ,:- ...; :; W

                              .CH                                        -

a g-e =-~ . *- ,

                               ~T-~ .                                                                          13-            h5EO
                                                                                                                                               's 1

g l ~idi sisi said c . . 3 m, ,

                                                               -         ]b-         ::: . . s::
s ,.

we , en 2,  !!,. - e s e- ss !- 8 . j- , a sii didi dead 'a w - 5. 6

                                                                                                                             .-..            -o
                               *H pr.

3 "c i .- mO h *j gI 1 ..gg dai

                                                                                                     -[~en  ggg s i i s' l { { l-sisi .i l                         1 c c-   p                            3 6                  e                      e*                           a

_t t,o , 1 *~; e-~~. oooo e4 c-

                                                              -         t                                                                                                  1
                              .Q k                             ?

C t' - e

                              -m o                                      a           *ye Iod              .=~=~                        ** .          c.

um - d i d. c8o3 88 e ou , died diad *i

                             . .o c -                              g .,8l -

EZ *H q n- e . J.cc . p  ::- :s-R a-~~ C5 i .- ~~ e C5 7 E8 E . B $.8 8 yC  : S ~iii

                                                                                 .                    siis                  sasi               a a                              :. .                                             *
                             ~D                                   3    '
  • cy 1 ooo --oo moo. *. eo.
                             . e ,c                          -         2 a                         -

H f ~ n Jg i til  !!!!  !!!! -f O0- 'd* '

                                                                                                      *
  • o c' **55 **

sc F"I .

                                                                      }            ooo               -oooo                  ...o'          oo
                                                                   !  E N-g                                                    ~~             p.e.                   :-..
2 re  : rst .

e

                                                                      ,        2::.               ::::. 3:::. 3;
              ^

H

                             ,o y ;u.I e'
  • 1.: .'. .:- r: 2a .' .3 3 a:

g s .. t . 77

                            -@                                       .3l E                        al                     8.               OO 1
 . _ _ . . _ _ . - - ._ _.                                ___._____59.----.--------
             . _                   . . - . . -.                        . - . .             . _ .                                    - . . .         .. .~. ,        ~ , .,

A '

'O *

[30  :- a *3,"3,O., . 2 [ .=; =~ 5,

                                                                                                                        .... , e, g                                             -

0 i .. ee-o

                       .a                                        '

e a e e

                       - H.                         R        a              - 33$                     :I1.              $ 2 0. .d.R
                                                                                                                               .          e I
                         ,.4 -

r O 's 0 1 Ia- 85 Ia s3 I Is.IS 's

                         .C el                  sii                   sidi                 sidi                   s F

m ' ' e e e .

                         .e4 -

W

                                                               t-          . . .:                .. J                 . . .a=.:         I i

i M 4 e I00o I2*g*t. o .RP.RI . 2

                        .$                               g i                 d i e'               sidi                 sisi 'i
  • L- .

4 3i *

  • 8
  • m- ,e e+.

l- . .oR g;

                                                  -                          ..                   . -~                                    g   ,

c  % a .. - ..-- ggy- . C. 7 Eef eBoE bEEE E m i e F l(' - sai siis disi *J cn e -- *;ll . . . . 7 g ,%

j. .~ .; . . e .'
                                                                                                  == -                 eoes ya ed                            '
                       -W                                                    --a                  goe.                 -.=~                  .

00 N :1 ~2F3 2:28  ; C ti sii didi . d i e' s 'i mc

  • 09 3 e* * * -
                         <*4                                                                         ..;                                       '
a. .
                                                  -           e             .$. .$. - $         .- ~- -+              e.e.a
                                                                                                                          .~..n.

e 4-C mO C "d C4

                                                  }ITrs
                                                                            =;1
                                                                            .: 4 .:
t; 4 .: .:4
                                                                                                                    ..o..

EWER I TC

                                                        ,'    i                                                       Wisi                *4 F          1
  • M ~ ~1 ,

ee c t. .a ...- .__a. e e *. E

                                                                            .. --                 .,e-.             -.,                      ,

mW -

c. .
                        - mg                                 (              23:

u4 gg )I . ene 3 : ,{. "."

                                                                                                 -o--                 2
                                                                                                                      ***f{ . I.
                                                                                                                          ..o               .
                          .c 3                         4 .
                                                                                   *                      *                      *.       ^*

G Z. * %I r -,e. .-e. . .- .o. D *  :::

                        - GC                  ..  .

f 3%A:  :::4 := -~

c. f cm * .L Ct ' **
                                                                                                 $..S i. ~;.
                                                                                                                      ~

I. **

                                                                                                                          . :. ;'. , C c _. m                            .:             e.*.*..                                                           ,

e g. ge een eo-o ocos o

                         .Ek                          . .

Q. *. . T -- '* 2%l:  : *:. T:. cg e . f. aa -

                         ' C .C                           .

y a es- ~*.e --~~

  • 2 s 7 fl6 . E S :i' SEEE o eu }5 dia didi .sidi *i e
                        ..ae                                                           ~

O'O S i g 7 = pc ~ i, ..,

                                                                                                    . . .t
                                                                                                  . . -              ge,...             o
                                                         ;a
  • M e a teg *ea- -~ta R
                           ..                             7          .
e. 6 6 E. 8. '. E. $. 5. b. 3 o g .I noe c o o c. omeo . o.

e i e , IA 6 [ a-ooo -and a,,a o s g i O e-v

  • A s
                         -c-                                            .--                 .i    . . ,              -..

p . -

                                                          ,             .!.
  • E. E. F. .t. i f- .5 g *.I
                                                                        .;5 l ',4                     % ! 2%%:5
                                                          %.1

( 6

                                                                        - 3F34              1. L  a  7 1 ', 3 : 3 1                 I. T.

es t - h g t > b' w s 5.10

b s m e e me. .e c g .e , M . 353 3713 .355 3 0 t i 444 4444 dedd ad G t M w S i e.

                                                                                                                                                                              -                                             o
                                                                                                                                                                                                                             . $ a.
                                                                                                          .-e                         e. - a                                                                      ..

O , t, ~~- . ~ . U ~

                                                                                     -m
             .C                                                                       .

s.

                                                                                                            .e                                      .--

m > =r< ~<- -

             +                                                                                  g
o. o. @. o. 9. o. G. . . . '. e o.

y - ooo 000o ocoo o m . M j . . .e .e - e ooo. e '. g ~ ~~ ---- .- 3 k

                                                                                               =

C s .. a.-~ .. P"4 N . =wo ea >o .

                                                                                                              .A        e                                                                                                           ,-o.

g ,y =. . =w. oooo . ..h. o. o. o. C. coco o g oco C ,, Q = g o e o .e

                                                                                                'l             w40
                                                                                                               ..                      eenn ,e e                                                                  emodnn-
                                                                                                                                                                                                                                  $) -

m , _ [

               &C
               &&                                                                     t         -
                                                                                                                        -.                                                       e                                                      o ce                                                                       3 "b        \

e

  • o == .#dQ 0 F g e.m e= c M

p .f.,*

                                                                                                                  =.=.=.

ooo g oooo

                                                                                                                                              ...m.                                                                 . D. 3. e.

oooo g m. o 16 4 O >, .E'gr. W o e o eN CD }l m=E we= mooE

                                                                                                                                         -m-e oceM nE               e cn
               *4 P

9 ~ . e ~~e ( 4 C_ - e a ~ . e. n. o.

                                                                                                                                                                                                                      . L. ,.,          n,,
               < Q                                                                               N.                 a=  e 0  .o.            C .e m-                     ~-                                           cooo                 o u *M                                                                                                  N$d                   dNd$                                                                     4dd$                 $

c> a o

                                                                                                  $,                        o.                                                    a.                                         e a                                                                             li i

e*e oce == 1. m>e. Q L*,

  • _ g cwe e. e-ww e* N C

CW -1 C 4 e ..# - e CC u- D. o~$

                                                                                                                    *: 8. .                " i f. E                                                                h. k. k. p5 8
  • 3 ooo ooeo. . . .

oooo o eo g

             .o s                                                                           i.     .

a E '~ T' ; --ea "* 'a O E

                                                                                                                    ~$wE e                      em4e oooo                  m CC C                                                                                                                                                                                                       .

g ar. # E .=P= , e C *. M @ oM e, CZ e % - m *= c - C > a. e N. e4 c . g o. o. O. o. o. e. o. . = = . = = . =*= . . o. EW c  ; J

              .c                                                                                    u                        o.

Co 1 ..o ae- cee e. mm a mm mMem m 4 m 4

                                                                                        ,.                                                                                                                                 e-
               .w        as e

c e. . c, p %e . e e ,~. e, MC 4 c. *. I. *. a. ~. * . . b. E. ,. OO *l* oco ococ. cooo o E* : I m . g e o o *. l' mod-e e. .*. ~C E

                                                                                                                                                                                                                    = Mmh I .M.

E-e m .

                 .                                                                                                                 .                                                                            .t.

O e mM

                                                                                                                                 .h. w e d                                                                       .M    . e           ~

0 2' _E .5 g_S_E.E .I.E.E.E O! g M - .: 15 .:  : : : 3:::: gg 4  : 1,% s & dss;1 t * .asst 57 a c g b a 2 2 3 50 I

                                                                                                                                                                                                                                                              ,1 I
                                                                                                                                                                                                    .il       ..
                    .       .             .            .                       - -                     .               - . -                     ~-   ..

i I 4l l o <- 4 III IIII- IIII sees 'Is

g. ese .see  !

l . 2  %

         -o i             - ...            ....-            .... ..

U- E

  • p a- .}. 4  !!!  !!!! Itti B l c- ,
                                                                                           .se           ce.e             se ss. 's                           !

E - g g ... ..oo e... e. u j

           ,e                                                        4; i

I E's es Ilsi esse sees I

                                                                                                                                      'e*
            .cw   .                                                  1     -
                                                                                            ...-         ..-a             .... -e en enu                                                m il.
         - tr w                                          ,'
                                                                          .                                                                                   i S                                                   f;.

o --  ;  !!!  !!!!  !!!!  ! J we ,a see sees sses '.

           -0=                                                        F1                                                                                       l en                                                        ;
           -==:

O< i a

           .M u .                                                           ~
           =A C                                                                                                                 pn e o'                                                          5
                                                                                       .sse IeIB         $$fm5            e$a8-asas '8s S

g- .

                                                ..                   gs                                  eies
                                                                                                                                                    ,    4, mC-                                                       a t                         .               -                -    c
           ,, t                                                                            ..;           ..-s             ...e .J c1
                                                                -          I m u.                                                 -
               'C m o-L i,           -1,e    8:        ss
                                                                                                         ==i=s            !!!!
                                                                                                                        -ases '=8 u~                                                      .:                 - ass            asas                          s                     ,
            .88                                                      B

_a sz --- cc I C b hSb h$bh g

           .gu.                                                       ['i did          deid             hkkh:^ 'd didi         k O
           .%                                                        S      i                    *
                                                                                                         *a.,.

a .. ."

           -cc
  • 1, co- aa G .C . i U t
            *-4                                                   L       ,

c'W. -j s , . e, a g ;

                                                                                                         .8..             ofg6 856 e

8 ac o. E ~S T

                                                                                                                                      's OU                                                      .I               -idi              didd             dadi
           ->c                                                       '

V e n . i.- {' .J ..c4 .. 4 ;J A

           -e-                                                                                                         y m                                                                        .- . . .           ...               -..

o -sss asss  :: w  : 2ss *

.*  ::: e  ::: = Al a
            .g.
. 1 .: .: I 1. 5 .: .: !" I. . .: .: a* 7,, 7, b _$ A 3 A 80 -

5 12

     -
  • a, , a '- r- -~m ., ,,es..,, ,.-,,e-,e - -

i u- u o e ll6ny c:E e v~ x a a j p 6ny j~ aa Wm

                                                                                                                                  )        BZ inP   v5
                                                                                                                                                   .c
                                                                                                          .m    m m ,.

r- 8: 13 ine

                                                                                                                                                   .5 <=  u
                                                                                                                                                   *c o m_-__.--.

cc G L y n e '--- Q pl inc ae

                                                                                                                                                       , .c c    c     c                                                                                                             1
                                                                                                                                                   ~

e, o o o

                                                                                                                                                  .c p
          =C =      =O =                                                                                                             H 4 Ine
          ~

D O M c ,_- E m mm ..c. mas s=m c=3 ess i OE une y e,

                                                                                                                                                  % =c          .

oa EZunc .c , ed L. gs ,,. . ._-- - - - . "N eq*

     *                               ,7 =

w' , c,w s- s,- ,,,_,,,,_ 9lunr p ee ammmmes _ _ J u9 u w ._ - - .-._. -- - o .5 r,J- ,, ,, a t,- S unt  : 3 C Z

                                                                                                                         -j                2 une  g{

J >> m d ~5

                                                                                                                                   'r' 92 ADW  Eh o

O ,n 6lADn b El ADW . v 6 9 ADW @ 4.,I . J. __f I I I L O O m @ t N O O N ~ O O O O (tw/ 5663) A.LISN30 0 5.13

of Juno then at the intake and Stations- 4 cnd 5. Apporontly this

 ,   side of the river is more preferred by a,dult fish for spawning than on the side where the station intake in located. -It also indicates      g that very little intake water was obtained frem the east side of the--Kankakee River , opposite of the Dresden Station intake area.

The lower mean densities of fish' eggs reported for the Des Plaines River as compared to the Kankakee River'and intake area relates, in part, to the lower diversity and overall lower abundance of most fishes in the Des Plaines River (Table 4.2). Egg-densi-ties f rom samples . collected at Stations 8 and 9 (Figure 5.1) were 3 never greater than 0.06 eggs /m and nearly 60% of the samples did not contain eggs. Most of the eggs (nearly 80%) taken from the Des Plaines River were obtained f rom samples collected at Station

7. Apparently, most spawning activity in this area of the Des Plaines River occurs on the side of the river adjacent to Station 7.

In estimating the total number of eggs taken into the intake f rom the river during 1976, several assumptions were made: 1._All intake water for Dresden Station had as its source the Kankakee River during-the-sampling period. As stated in E5.0 we know this is not-true. However this assumption results in over-stating the stress on the Kankakee River the maximte extent possible.

2. the water sampled at_the intake is representative of the water taken into Dresden Station for cooling purposes;
3. the number of eggs per given volume of water sampled is proportional to the number present in the river water utilized by the station; and
4. the flow rates and densities of eggs for any given date are representative of the flow rates and ' densities for the 9

per iod of time between sampling dates. The latter two assumptions also apply for estimating the 5.1h

I i

                                                                                                                                      +                                                 l i

I total number of eggs present in the Kankakee and Des Plaines rivers. . 3 An estimated 107,453 x 10 eggn were taken into the sta-tion intake from April through August 1976. This represents 47% of { the total number of eggs estimated to be in the Kankakee River drift I and 38% of the combined drift in the Kankakee and Des Plaines rivers (Table 5.6). Highest numbers of eggs were entrained in the intake f during the month of June, comprising over 91% of the total estimated number entrained during the five month sampling period. Highest densities of eggs were noted in June at the station intake, espe- . cially on June 9 and 16. At the same tire, cooling water utiliza- , tion from the-river was also highest (2656 cfs on four of the five sampling dates)(Table 5.7). These two factors, when combined, I probably account for the relatively large number of eggs entrained ({J in June. As a result, highest percent losses occurred f rom the [ Kankakee River (53%) and cambined Kankakee and Des Plaines rivers (43%). 'The relatively low number of eggs taken into the intake. during May,. July, and August was attributed'to the low densities present in the intake water and che low rate of cooling water utili-zation from the river. In April, fish-eggs were not obtained at the intake sarapling stations and thus presumably not taken into the-intake. The impact of removing 4 substantial proportion of the  ; L fish eggs-from the Kankakee River on the fish population in the vicinity cf the Dresden Station can not be quantified. However, f several factors which are beyond the scope of this evaluation cust be considered in relating the loss to the fishery: , l l 5 15

Table 5.6 Estimated total fish egg drift in the Kankakee and Des Plaines rivers in the vicinity of the Dresden Nuclear Station and the proportion ~ entrained in the station intake, April through August 1976. I Nt rd ar o f Estimatml Total turmle r of f.ggi ( = 10 M t of Combined KankahrY sampling D.s Plaines rank.ikce Entrained 1 of Kanhakee River and Des P! nnes R. vers Month 7ays River River in intake F999 Entrained Eqq1 Entrained Tpril 2 1313.4 0 0 0 0 Miy 4 1789.6 23974.5 1458.5 6.1 5.7 J r..e 5 42776.6 185344.0 7R139.2 52.9 43.0 AD July 4 3007.8 21916.8 7647.7

  • 34.9 30.2 p August i 62.1 543.2 207.? 38.2 34.3 CT Total 19 48967.4 231135.3 107453.1 46.5 38.4 f

4 9 .9 - 9:

O O O TabJe 5.7 Plow data and percent of river . low utilized by the station during periods of fish c<vi and larvac sampling, April 22 through August 25, 1976. t l Sanpling I'l ow Rate ki s )  % of Kankakee t-a te Des Plaines Rivera t anGee haver" 4 of Combaned Kankakee and Haver Inta W' River Utilized Des Plaines Rivers Utilfred , April 22 2305 4160 1169 2R.1 17.9 i April 28 11270 7590 1169 15.4 6.2 ttiy 5 7060 4R40 1169 24.2 May 12 6400 9.8 7570 1169 15.4 8.4 May 19 3090 57R0 1913 May 26 3298 31.1 19.8 4310 1913 44.4 25.1 Juna 2 3504 7750 2656 34.3 June 9 2380 23.6 3740 2656 71.0 43.4 Jure 16 J790 2910 2646 BR.9 39.2 J ur- 23 5730 3 R'70 26 % 6R.3 June 30 3260 27.5 11200 537 4.8 3.7 July 7 2075 4470 1317 29.5 LD July 14 20.1 3455 2150 1005 46.1

  • 17.8 p Jaly 21 14590 In60 1094 58.8

-q Jaly 20 4520 6.7 2010 1541 78. 7 23.4 t,uoust a 3310 2270 1541 67.9 27.6 August 11 3580 2000 983 Aug s:t 18 1230 4?.2 17.& 1370 1541 >100 59 f r.uqust 25 2940 1050 1541 >100 38 6 Avera-g= 4672 4265 1591 37.3 17.s a D Data taken frs,cs Equitable Environme ntal 11ealth Inc. Report. Data provided by Co m nwealth Edinnn rnepany. w - ,- n

1. The number of oggs os discuscod in this section and the number of larvae, as discussed in Section 5.1.2.3, which are removed from the Kankakee diver as a result of entrairanent cannot g be determined with precision. The reason for this is that the 1 percentage of intake flow that originates in the Kankakee River can not be predicted with precision. We have developed a mathematical model which can be used to provide a reasonable approximation of the composition of the intake flow which is described in detail below.

This model was used to determine the intake composition as it existed during the sampling periods during which the biological data for this' report were obtained. The results of these calculations are presented in table 5.8. Model Description The composition of the intake water can be determined using a i modified discharge-weighted temperature equation. If the intake water temperature and the ambient t.1tter temperatures of the Kankakee h and Des Plaines Rivers are known and if the intake flow rate is known, then the portions of water entering the intake from each , river may be determined. The flow of the intake canals multiplied by the intake te=perature is equal to the sum of the portion of water from each river entering the canals multiplied by the re-spective ambient river temperatures: (1) Op Tp = C'n Ty, + C'D TD  ; where Cp = intake flow in CFS O'x = portion of Kankakee River water entering the intake in CFS O'p = portion of Desplaines River water entering the intake in CFS g Tp = temperature of the intake water Tg = ambient temperature of the Kankakee River , Tp = ambient temperature of the DesPlaines River _ _ _ _ _ . . EdS __ ___ . _. . . , __ , _ .

The flow, Qg , mEy-be expressed as (Qp - Q'g). When this expression is substituted, equation (1) becomes: []} (2) op Tp Q'g Tg + (op-Q'g) To Equaticn (2) is solved for O'g yielding the following equations

                                                     -(3)                            C'g = Cp (TD-Tp)

(TD-Tg) Using intake water temperatures obtained from a continuous recording temperature monitor maintained by the station, intake canal flows furnished by the station and Kankakee and Desplainer River water temperatures furnished by Equitable Environmental () Health, Incorporated, equation (3) was solved and Table 5.8 prepared. The first column on the table is the sample date, the second is the plant intake flow in CFS, the third column is the quantity of Kankakee River water in CFS entering the plant and the last column is the result of dividing the third column by the respective mean daily flow in-CFS of the Kankakee River and multiplying the quotient by 100 to express it in percent. It is apparent that the worst case presented earlier for impingement and entrainment effects caused by Dresden Station operation is not completely accurate since a portion of Des Plaines River water is utilized as-intake water in combination with the Kankakee River water. Conssquently a proportional number of () various lifestages of fish enter cooling canals from both rivers for most times of the year. _L19

Another factor which needs to be considered in evaluating the effects on the productivity of the 'iankakee River as a result l of entrainment is the bathymetry in the vicinity of the intake. Figures 5 2, 5 3 and 5.4 which are based on U.S. Army Corps of Engineers soundings show the significant cross sections in this part of the river. It is clear from these that the intake is located farthest from the most productive part of the river, namely the shallow areas of the East bank. During the course of our monitoring program station 6, which lies in the shallow backwater opposite the intake was consistently the most productive area. Even if all intake water came from the Kankakee it is obvious that this shallow area would be largely unaffected by the intake. It is-

                                                                                                                                                                        )

for this reason that we assumed, for a worst case analysis that all intake water came from the Kankakee River. The effect on the g Kankakee, if this assumption were true, would-still be negligible.- 1 E r O s.n

                                                                                        -                 =                                .                                                         . - ...

w s p  ;

                                                                                                                                                                                                                           ~,.

a . < I. _ J.. . . _ _ . . - - . . .

                                                                                                                      ...y_                                      .      . . .        . .                                     N              l 7 .o .e                              ...                                            a            ;

S

  • c '
                                               . . . . . . - . . . . .                                                           . .. . t..          ,

9-9o y - . . . . E j U g.... i

                                                                                                                                         .e                                                                                                 ,

[g G I _ .. e . .. c., , , i N b

                                                                                                                                         +o .s          ts O w v,                                                                          ;

LC

  • Q. '
      ?

L o o SM) -- e i OWEW { f E

e. t *
       ,s
                                                                           .e  *

(. f M G*  !

                                                                                                                                                                                                                   *2 r-         <ti
                                                                                                                                                                                                                                            +
d. l
  • 8; c.) c.

( L:I e . Y . 4' hi

                                  <                                                                                                                                                                                p.,               -i CC ;

r L. Gl c? i 3 ,a' , . {j

u. A4 1 C' p j # t.'

h k* ;

      .                                                                                                                                                                                                              L.             kI C

Of k.

                                                                                                                                                                                              /                    a -:              e:

i .C . 4

                                                                                                                                                                                                                                   +*       r

, -u.'. h

                                                                                                                                                                                        \

O G1 t:' I g ** d k PL g . . c>

                                                                  -                                                                                                                                                                u
                                   - - -..                       g.                                                                                                                                                       _(
                                                          ..7                                        m
                                                                                                     %d (y .

e } 0; ,

                                                                . ,o, L
                                                                                                     *y (U M g.

t W 'C g f. ce e ., Ln O

                                             ~                                              -
                 .!                                        'tL.                         .
                                                                                                              '         .;scu                                                                                                      t
                                                  ._....._g                                                           . ._,d ,

l' ,

                                                                                                  .        3.p
                                                                                                            .a              ...._.a_.                           ...           ..          ..           ;i c-o            N         v         .9 p,21 e 9                           ef      f            f2R                                                         o r
 --..a. ...-..,_....__,-.,..,.-_,_.....-....._.w.__._..-,.__,...__...,
                                                                                                                .           ,.,_., ,__,- ,_ __ _ - , ,~.,..                               ;,__ _,,._. .. , ._ ..~ ,..,,_._;- ,     ,,

g 9 Ag. M.m 4 6os -m44.=a

                              .                  4. Am a W.Ah a sas.m w aw.          pie._a4._,,.._4i..       4
                                     - p
                                                                                                                                 " - ~ ~
                                                                                                                                                        'WQ&H.M                                         ,

9 . .' y .p . p

                 .         . _ . . . - -                                - - - -                 ..a..-...-.

g - 4 ......--..

                                                                                                                                                                                                                      ~3 8                    i O-(i                --                                                                                     6
                                                                                                                                                     -Q W L-              -
                                                                                                                                                                                           -         d -- -

i ,p . . . . _.* ~ . i hy 4 C e\. sv fc .-......-..

                                    .. ...                       . . . . .                              3              . . . .               .=

Jg - E

                          ..a   -

1 . .. _... .! I

d. 2.

y 3 7-(W aW %e o i 9 i

                                                                                                         '                                                w      9Y i                                                O      O c *"O    "

C 0-

                                                                                                         ;                                            Q (f) 1.1. W                                                   <--

4" l I l

                                                                                                          \

C vk~ oc e

 .                                                                                                                                                                                                              C 0     C.-

G= C; I'~ C-F- -

                                                                                                                                                                                       !                        m                 L.

W e o c= . L { 4 4 O f. D (.. Q. 'Y L ,' - 3 .. g h C

                                                                                                                                                                                                              -p uc v            c c.

I h "j 4-p-

                                                                                                                                                                                               ,l                                C LO
  .                                                                                                                                                                                                                   g ,.
c. . cyp 03
                ',                                                          LS)                                                                                                                                                 %

( U 9 o

                                         ~ ,                               -Y                                                                                                                                         n-          e-b.
                                                                             'O                                                          6                                                                                      e-g                     ,5                                                        +

n' i i

g. . _ .. . . .. - _ _ .

I

w. ._-_4.
                                                                                                                ,,:J e                  g"4[    ,

l g< h

                                                                                                                                                                                                                             ,a .

yv .3

                     ..... .                             . ...o.                        .                       D tJ O                     _ _ _ . , _      b.                     . . . .                ,      .           <

w 0 C-N y .s u- o N cr e N O - - - - - 5-.pp

J v s.A4; . + - - . .4a ou _m 4 A2 4-A._en.m_@_a a h. A&3+A 4yu m4-Am,4MA4.A u h w'wemr.4--

                                                                                                                                                                .--             .2h_*Jmv.M hJa. m.-4 4- M 4- 44.4 A es.he*

4 e- o w n e ev _s r-

                                                                                                           . .s 4

gN - 8Ea m8 s aa i s .- x

                                                                                                .            _                _ ._.. ..                               _.g                               ._.

6

                                                                                                               /
                                                                                                                                                    ..... ,...,5,. . .
                                                                                                                                                                                                          ._: E ._              .               ,o      .

a a (. # I U h a9 l n

                                                                                                                                                                      ..y s g)u[. wR.
                                                                                              ...h                                     ..
                                                                                                                                                    .... __% yl                                                   hi                             h,
                                                                                                     '                                                                    m
s. E e; a a C-
                                                                                                                                                                                                     - at-                                                       o ou 1

O c +o (l- W

t. . D c

,. \ e q C* O t.*

     ,                                                                                                                                                                                                                                                           C

(.

                                                                                    *                              ~

(. - h

                                                                                                                                            %                                                                                                                  M 1                                                                                                                                                                       gg
                                                                                                                                                                                                                                                               .Ce
                                                                                                                                                                              =

0 3 O- o P .C C Y W

                                                                                                                                            .S                                                                                         2 O                                                                                                                                  t\ n e

c-i -4.-- = '4 ** 2 CO j,. o' g\. s , G: Ha b-J C. a cc 3- - g.

    ,                                                                                                                                                                                                                                                           ID :
    -                                                                                                                                                                                                                                                        y
    .                                                                                                                                                                                                                     I

( S. X C g ( C 1 c c.

                                                                                                                                                                                                                                   - be.- ts:

g _w C h C

i. c W (i - m M

i j U p) dl 4- [ 3 n "2 e

                                                                        -                                                                                                                                                                       Q c.

s. g ., [. (N . .

                                                                        ')                                                                         c                                                                                                         u
                                                                     -5                                                                            9
c. -g v -

([]

  • l Q. .n
                                                                      -g ai a
                                                                                                                                                 .q)                                                                                           Q_;    .
                                                             . ..x(                                                                 '
                                      .                                       w                                                                                                                                                                       -

t. u6 - E- - ( p

                                                                                      .        . -.      .         ~ - . . - .

g o. O e a co

                                                                                                                                                                                                                               ,a og     .

c) OJ t $ - - - - - CJ

            . _ -                                                                                                                            w

k

 .                                                                                                       i Toble 5.8 Amount of Xankakee River Vater Entering the Plant Quantity of                          Quantity of                Percent of DesPlaines River                    Xankakee River              Xankakee River.

Plant Intake Water Entering Vater Entering Entering the Date- Flov CTS the Plant. CFS the Plant. CTS Plant. E i 4/22/76 1,169 524.0 649.0 15.6 4/28/76 1,169 421.3 447.7 5.9 5/05/76 1,169 211.1 957.9 19.8 5/12/76 1,169 269.6 899.2 11.9 5/19/76 1,913 1,417.0 496.0 8.6 5/26/76- 1,913 1,487.9 425.1 9.9 6/02/76 2,656 1,416.5 1,239.5 16.0 6/09/76 2,656 1,869 0 50.0 6/16/76 2,656 1,166.0 1,495.0 50.0 2,656 (l) 6/23/76 971.6 1,684.4 43.4 6/30/76 537 201.0 336.0 3.0 7/07/76 1,317 440.9 876.1 19.6 7/14/76 1,005 222.4 782.6 35 9 7/21/76 1,094 439.3 654.7 35.2 7/28/76 1,541 793.3 747.7 37.2 8/04/76 1,541 742.0 799.0 35.2 8/11/76 983 81.0 902.0 45.> 8/18/76 1,541 930 611.0 44.6 8/25/76 1,541 685.2 855.8 81.5 1 i e s.24

i

2. eggs of most fishes occurring in the vicinity of the Dresden Station are non-buoyant and/or adhesive and do not normally occur in the drif t. As a result, the number of fish eggs in the drift is likely to be a small percent of the total number produced in the study area. In a similar study conducted on the Mississippi River, freshwater drum eggs were dominated in the drift even though it was not a major species f ound in either river (Latvaitis 1976) .

Freshwater drum airo occur in the Kankakee River in the vicinity of the Dresden Station;

3. natural mortality of fish eggs is high; 4 some survival of entrained fish eggs may occur f ol-lowing condensor passager
5. fecundity of species occurring in the study area

(]) which produce buoyant or semi-buoyant eggs is generally high;

6. most viable fish eggs in the drif t in the vicinity of the Dresden Station would not hatch until they were a consider-able distance downstream in the Illinois River and would not con-tribute substantially to the fish population in the study area.

5.1. 2 .2. Fish Larvae A total of 7447 larval fish were collected during the course of the study period at Stations 1, 2, 4, 5, 6, 7, 8 and 9. The total number and densities of larval fish collected at each station during each sampling period ar e presented in Tables 5.1 through 5.5. Carp was the dominant species obtained in the sam-ples dur ing the study (39%), followed by individuals of the clupeidae O family (31%) which were probably gizzard shad. Nearly 10% obtained 5.25

1 I l belonged to the sucker family (Catostomidae); 5% were identified as 9 log perch and 4% were minnows (Table 5.9). The relative abundances of these taxa were substantially different, however, among the three sampling areas. Clupeids were the dominant larvae in the intake and Kankakee River samples (44 and 40% of the mean density, respec-tively), whereas carp larvae dominated in the Des Plaines River

                                                                                   )

samples (80% of the mean density). These figures compare favorably with the abundance of juveniles and adults of these species in the area. Highest larval densities occur.ed on June 9 in the study area (Figure 5.6). Kankakee River and intake samples were dom-inated by larval herring (clupeidae) whereas samples from the Des Plaines River contained primarily carp on this date. Another period of high density occurred at the intake on May 19 when a high number of suckers was obtained in the samplec. Densities of larval fis! were generally similar at the intake and in the Kankakee River at Stations 4 and 5 (Figure 5.7). l However , densities in the r iver at Station 6 were, on most occasions, not comparable. This observation was further substantiated statis-tically (Equitable Environmental Health Inc.1976). Taxa which showed a substantially higher overall density on the east side of the Kankakee River (station 6-opposite the intake) were herring, carp, minnows and log perch. The density of suckers however, was higher on the intake side of the river (Figure 5.8). The higher densities observed in the Kankakee River relative to the intake ggg i area (Stations 1 and 2) on June 16 and 30 (Figure 5.6) reflected l _ 3 26 _ .

111

        )

e. es .e. g N. e. e.e . m. os. se. m. g O. m. t e. mv mDc O e N N O O en en O N b 6 $= ** M w O 6 *

                             'a            -

U O e e e. e O w e. - e ee a .. M $ 5E e W

  • s'* O O * ** O
  • W E 0 a.me O O O O O 6OO $e e r"4 = e 6 N. **

e ge O. se. O. O. O. O. O. e.i O. O. . O

  • 1 90099OO w

DO O O Q 4 P . b .k a b Owenmno O e. ** O b leter mDN $@ M

                              >                                                       ~~

k i C e4 se e em C ** A L e w. e. e. e.

  • m. P. g O. e. M. t*.

Gwy C

  • Cb 3

D 'u d M a= *= a. mOOw N $e wM == Q b .$ 4 - b [ o m m t t c3 ~,O.OO-Oe O % -- m a O e n. +* eee O 6 es ee .-=ceO e0-00 e e==. ,e 1

  • g g gt O. O. J -. O. O. O. O. O. O. O. O. em.
                                             .*                   1                     0000000 0000 O E             c N
  • 2 s Oc O == > w O O e. meee e Sb i bMNwwwelNmNm w w
                                >p                                                      menn                                   n         m

.a b pH C m C .

                              .es ..e              et G             **

4 gm g u m .9 as. m. m. m. m. e. d. M. a en. m.e ce. o. he C? O w ** m se e'sse en O es M O d ,3 0 t e w- a v

                              .m .O  m             6 YY
                               .** C          g M d.J         ,a                m                we e m O ee O O .= en e w ** w                                e
  • 88 ******
  • C, V) e, aN *Ce=O * * *' N C C O C 0 "0 'e"o e.

h C'

                                              -             l e*                   C. J. O. O. O. O. O. O. O. O. O. O. O. m.
                               -y w                                  1               000000000c000                                                O C                                                                                v 6

CQ b C, e4 ig eg me N e= em *= m N ee > w e m e 00 >

  • 4 9 >< m m ew N
                                                                                                                                                *e

( E .D, .i, n m E d CC C0 7 .

                                     'C                               e gn                   4 . a.                       ce. m. w. en.. e- e. O. e. =. O. e. a. e.
v. o c
                                                      .                            O wmm eeee.            .=OmeOw bQ                   6              >                                                  w Dk            (4 MO E             2                  *
                                                                                   .                O,~wm...e.                                   e m

r DQ - ea O w 4 e er h en N O *w + o 4 OweO-DOOOOsoo . EE E 85 % O. O. 0 0. C. C. C. O. D. O. C. 0 0 y L $. . g - L C 0000000000000 O

g. v v MC 0
  • 00 e. e.

O e - m e Oe c. w bC .q, e mOe e e. e, e- e= m. s =ee

                                                                                                                             . e m .

m e . a NM M l:

                                @                                                     A                     #,
                                                                                                             -           ,A e                                                  ,
                                                                                                        & 6.                 2             %

f y a ** t .F 6 5 3 %a9 4 D[v** *

                                                                      .b.             .&, e 8        ==           P b L 9 9.= p l.b f   E h

A,

  • Q yT e L se < W e e-B ed E 9d .w 4 .a *J C M (,l D a f , ,O b a 4 em
                                 .o                                                  -         1. c.e0 e- CCese.*I<=*     . f; i e*
                                                                                                                                 *.o -     oc e f C =* < ed C                                                    4           ee    g"      W4
  • t C Of b
                                                                                               ./ U E V U *. =l L IA .4 Th D                        (*

h on 5.27

sa*G O D EN SI TY( Lorvae / m 3) o o o 9 0 9 .- o - N w b u- o l l l l 1 i I_ 1 Apr 22 - 33 9 lp Apr 28 - w. l m May 5 - f Moy 12 - u 3

         -p
          -a                     --
                                 % . ... .- ~~.~.. . . * ~* ..

0-3 Moy 19 - 'o ~ ~ ] "~ 2 ' ~J: D

                                                -**'"...~.-a,,.
    ==
                                                            ~

o . mT M ly 26 -

                                                                               ~~.                                  . 30 L

mu ra _. d,. y Jun 2 - 6 * ~~_ ,_ - a% m Jun 9 - . 22 ...'..- p M O i!

    ?$        Jun 23 -               V
                                                                        #'o'
     > 5-       Jul 28 -        p' p '..                                                                                  7 55                         1/                                                                                         I              e 5{         Aug 4 -      6; o

4 x O g y -. l M 3 O

     @p23.      Aug 11 - tI                                                                                               3 O

E

                                                                                                                                  ==

I

          ~.                 )                                                                                            5'      @

Aug l8 - 9, 5 3 G a =3 a m5 Aug 25 - 3 Q* 7; .E' u 3 x" u S O O 9

                                                                                                                                                ~

t2 Say a 316ny

                                                                                                                                                          '    11 Shy a

L y Sny g k . t-T C @ -- - h e e o e o e g GZ ine ,, ao o

                                        .=    ;          ;    ;                                                                                             ,               .2 D
                                                                                                                                                                             $n D         D    o                                                        GC# ~ ~~~~ '                             gg gnp          u e o             m    n                                                              - - - -

gg aus CI3 t:3 E;2 0 "

                                                                                                                            -- ,an m y                                      .c D
                                                                                                                                          --s-i     ""'

pl lnr -< C-gi-- a...e~~1 5 ds Or, au G .C e h jn w Og une ammmmmmmman -n

                                                                                                                                                                           '=C "
                                                                                                                                              "t"              tg une        c '_

o r n y e. i i... ; - ., . , 9lunc e

                                                                                                                                                                             -C
                                                                                                                                                                                't' 91--- v-                                  _ -- - = = _ -                                          _ : r_._ _ . _ _;                      .,, a N                 'dln,                                                   MM 2 '.J5 inh. '. '.' '_ ' I b Unb 4

I C '. am ,-' 2 unr

                                                                                                                                                                            @U
s. e

( f6 C

                                                                                                                                                                           ~

e -. - -. .. - .  : g *)Z A0W j 3

                                                                                                                                                             )             : V'
                                                                                                                                     , _ _ . .                             w    t El iDW       0 w,m;m- j_3                                                        g j              "*

C t*. II OW b ax . I G AoW e. O L 33 JdY t,t 4 y I i i i L O o e, m u _ o O O O O O O (gW/ DD AJD'1) Alls N3 0 5.29

i l] l!1 ) l ll n i o t n ae t f ss ee O h t r D t ae h d' . te r ct i ce n l or T h ce c v l r hi e sl T p i f g e GL o l ak v rk e a e t a n a r a d i oK

                                                                                                   -                   m o       ne t        oht
                                                                                                   /                   s o

x 4 5 G LL;h l an n n r I o t i o o o C d s e i i f i f en k f o o o t o . o c c c "

S ciG et f

I n L o L o o L

                                                                       ~

c. wE o : l et ! an n C s s! l n E r e , P oen Ei M S t yhi t r o t O i a sdt

                                                   .                                                                           n e nS I

1 d a r

                                                                                                             -          p r     nk c ea

_o a et a c 1

                                                                                           . h,C                              min   nu e
                                                                                            . I f            a    8
                                                                                        - _ ~ .: i
                                                                                                '                      d
                                                                        '-                                             i e    5
                                                                /

fd(./ e p u r 4 r, r- ~ l C u g i

                        -                      -              -                         -                                     F g

8 G 4 2 0

  • 0 0 0 0 0 0 0 G 0 0 FEN,0..5$ ]*

O l l llil, V' $l llllll .llllll

( ) the higher densities at Station 6 than at the intake (rigure 5.7). Carp and log perch were the dominant larvae in the samples on these two dates. Samples containing larvae obtained f rom the Des Plaines River were dominated by carp on nearly every sampling date (Table , 5.10 through 5.14). In addition to the peak density observed on June 9 in the Des Plaines River samples, another pet iod of high den-sity was observed on May 26. Carp was again the dominant species in the samples at that time. In estimating the total number of larval fish entrained at the Dresden Station and present in the Kankakee and Des Plaines rivers, the same assumptions apply as those mentioned for fish eggs 3 in Section 5.1.2.2. An estimated 77151 x10 larvae were taken into the station intake f rom April through August 1976, representing 32% of the total number of larvae estin.ated in the Kankakee River drift and 19% of the combined Kankakee and Des Plaines rivers drif t (Table 5.15). Highest numbers of la.vae were taken into the sta-tion intake during June, representing 63% of the total estimated number for the five month period. Most of the J- vae in the intake samples in June were herring (Table 5.16). As was previously noted for fish eggs, highest larval fish densities were recorded at the intake during the month of June. At the same time, cooling water utilization from the river during the study period was greatest (Table 5.7). However, although a high percent of the Kankakee River was utilized by the station, comparatively feu of the larvae in the river (on a percentage basis) wer e er.tr a ined. As shown in 5 31

I r i O n obw o c c5 com omo ch o m CNm .C CE o e ed .* o N oom con ohm o .* o e4 coo o o .4 ooo ooo ooo ooo H C D. 0 N. o. o. o. o. o. o. 0 EO o o. o. e o. c. o. c* o. o. o. c. o. F d C C Z oco ooo coo ooo ooo ooo m .O

    >         re                                                                                                                                           y m

L C C U e4 4 L k

              <   -O                                                                                                                                        O
   .C             C .C                                                                                                                              O      eA m             uE           omN       Nom           ooe                              e4 N v                            NHM       o ed e4                N
   *4
  • Oc N N m WC PC C h k We c .O
                                                                                                                                                   .C       4 0 e4                                               com                                                                bom       coo            y        C M         ooo        coo                                            obo ooo        ooo          ..<         J a ed                E       oNo        ooo          o o ed                             o ed v m    .t             N       coo        oco           coo                               ooo                             oco        coo            c         i EL N c.

to N O e

c. o. o . o. o. o . o. o o. . c. o. o. c. o. o . c o. o
                                                                                                                                      .      . 4         t.

CJ < Z C00 0o0 0o0 ooo ooo oco C C C em C ed

     > *          .m 0       C.

WC L 4 E CO C< L U C e4 e4 < c v m

    ~P                 .D                                                                                                                           cA C             E      o e4 C     000           o c ed                               ONw                          e4 0 e4    000 ma                 5                                                                                                                           es      m C Li              Z                                                                                                                             O U        k O                                                                                                                                                        O
    .eg L 4C               ,0                                                                                                                             0 C0                9       omh        och           Com                                   meo                          005       omo             C      N k **               E      o5N        Noe           ooe                                   .* o o                       ** N N    o N -*          >

vO ooc con oco oco coo ooo 6 k N. C C CD c. o o. o. c. o. o. o. o. oZ N O Oe o. c. o. c o.

                                               .        C. 0. o.                                                      .

g .C U N Z coo coo ooo oco ooo coo W M CC 0 0 . 0C e4 .- Ot .e4 k w v. c b c c O .C C0 C< L

                                                                                                                                                     .Q             ~O C%            <    O                                                                                                                             E       >     m+

0Q .0 C4 E E oeN Nom ooe ed o o e4 H N o e4 e4 D # O C N C *4 OM L1 .m e T .C Z  % C UC CD O O C C t eum L .Ce4 - tS - to C C CC

                                                                                                                                                      .Q
       %Q                O                                                                                                                             E        CCmL 0C               .c<

O OO*C

      .O                 v       UD D                                                                                                 MMC                               >

ET C Mxc HMQ HMC wMQ HMO D . E .* # 6 e4 p0 0 tiCmCC% Cu Q 9OPM> U C

  • C th 4 C ed C CMO CC C C* to C to N C
       & e-4                                                                                                                                            OOC *0+

OO WOW tc bO O..A 0. O x ~ O .C  % 0 % C) x C C C U Q k th k C X e W e4 C & C L* O e ., g u u o,<m CCc s H C E CA. .e4 e- EMMO t to O M m' .e4 )O a 3 C AECM N. Il 1: li C 0 m O c b&O h, O A 4 C O M T ZMZHMO . x C u C o M .-

       ,C                                                   .e4                                              C               0           C C,     *=4        Q                                                                                          D             C      4UTC H U               U                E                                             U                 M h

5 32

l D m .d e O wmO >>O CE www wo@ OeO CeO I e tas e Mwe OwO D=N OOO MMO m@O W N. sw O O Ooe OOO *e w O ODO O ** O OOO C' O O DOO OOO C Oe D. O. O. Oe w e Oe Oe O. Me Oe O. O, De Oe OOO p o. O 000 R 000 000 000 e e e e e e e h 000 000 000 000 000 O k e $. m it mm@ meM mWO NOO g e @Nm MO MON MeO peO HND O b ea m mM

                                                                                                @                  MN
                 .=4                                             HE                                                                                              O
                 .C m                                                   a       emo eOm                080          omm
  • E P W ea *OP OM O 000 Omo 080 080 W Oee OOO .4 Eo o@O e
                                                                 @     \.      @ e= *a O. C. 0 ONw 000 OCO          DOO           OOO          OOO          OOO          OOO
                                                                                                                                                                           .4 O wg                                             N      g                              0. C. O. C. 0 0        00.O.        O. O. O. C. D. O.

000 000 POO C00 000 D. O. O. 05 000 000 000 7 L mM b M E **. emM ** N e

                \C                                                     g'      e a a         am O ed O      4 80 N          OOO        ed W O        O*O          NMO 03'
  • w (C

40 m g Cho see 00N nrN NOc Nec eOm OOm eOO OND Cmc 080 Occ Cow -00 ,,0 000 M .M P s. Coe emo DeO Coe 000 000 wy 00C w 000 e c O. O. O. O. O. C. e e e . *=e

                                                                                                                        . o. O. O. O.      OeOe O.

C 2 000 000 000 O00 D. Oe O. O. C. O. h 000 000 000 000 MU

  • C V. $ u
                .O
                 -L                                                    g
                &C                                                             in e u     Nm@        mmo         er e e,
                                                                                                                               .* O O me0
                 %0                                                  h                         *                 *V 0-0          One L ew                                                 $

MO C3 De m O F eee cee OOO OOO ceo CCC emo wwO oco coo Coe bNO Doe OOO 000 gg N N. Occ 000 cec coc ; Occ wc 000 000 CeO OOC Coe OO m e O. c. c. 000 000 000 000

                                                                                                      . .<                                                            000 a

OT h 000 000 000 000. 000 000 000 000 y R C C L w g CC 000 000 DOC E w*O DOO mmo DOC 000 0 m T. C *> C ,3 b + CNm g r*- DeC DcO OOm OCm 050 E oON OOO OcO C0N OON 000 0CO bC N. C00 COO OCO OOO OCO Occ cec OCC OcO 0Co 0C e 000 000 000 000 000 OCO

               .o                                              e ::.                                                          C. e. o.                 O. c. c.      000 Occ         000        000         000           000 Et                                              >

000 000 000 D0 e Cv E i U " MC I O-- CM COO 000 cow 00- 0-0 000 000 vm E 00 " bO C C Y ( e wxc Mgc MMC HMQ HMC

              &                                                                                                                            6d k O      MWD           NWC rH e

g Q 4-R

  • 4 U

T E b M C e g - e ' C C # y

              =                                                    n       .t                       e                         e                        t.e 6             -                                                       i g                                                                                   w h                                C Ps C               '
g. .o se
                                                                            =           &.

h C *' s=

                                                                                                                                          =
0. U w g .= W 80 4 4 V V E V w > w A 0

5e33 -

Table 5 .1.1 (continued) May 5 May May 12 May 19 ttay 26 Taxoa 1.oc a t ion jneter Total rican No./m> Nimle r No./n* thr=Im r Nc./m> P4 ele r No./n3 Nwrd+ r No./m3 Unidantifici I O 0.0000 0 0.0000 K 8 0.0105 1 0.0015 9 0.0030 O 0.0000 1 0.000) 8 0.0067 D 3 0.0027 12 0.0024 0 0.0000 0 0.0000 0 0 0000 1 0.0007 1 0.0002 D b Manber represents combined nieber of larvae collected at either 2 or 3 sampling sta 'ons/ location. 12o./m3 represents mean c 1 = Intake density of either 2 or 3 sampling stations / location. (2 stations). d

  • K = Kankakee River (3 Stations).

D = Des riainas River (3 station-). e e 9 -1

r 4 a

     -k                                                                                                                                                                       l 0

C g ei g8 oo es .e. oe* owe we nam .=ao e. m m. noo cw .aaee, p.o m . w a. o 9oa ko eeo bee hw. e =wo wee ooa 4A eoo o m tP * ** e o .* o ooo oeo ooo eoo ooe o .e o .omo oe o

o. o. o. o. o o. o. o. o o. o. o. . o.eo o o. oeo C * *
o. o. o* **
                                                  . M. o.
             -             jt                                  o. M. N    o. e. o. a. o. e. o. e. o                                                                    e. o.

ooo ooo oo ooo ooo oo ooo e . oo ooo oo ooo g

             .c        .,
                                        =oo                e   m.         .c.                  e==
             *'4           .e,y 3

e-% D .e c. nea

                                                               #4 W .

me. m,e an

                                                                                                         ,, o e.

n .m8

                                                                                                                           ..       oo -

ae m=

                                                                                                                                                         .m           no O (;

a. b.i . M ** g ta l ' Wb = oor .s o n omo aoe .c o m ~=~ o** oma oma emo*.e ooo -o oe. ooo O ,ch4 8 ooo o eaoe~ emm

                                                                          .ew
                                                                          -=e
                                                                                     -.e ooo ooo e--
                                                                                                        *o .n*e- o--              oeo e.r m s .e o .c-to d ~ s          oo.

ooe

o. o. o, tn C o
                          *     $      *.**o o.**U
  • e. m. N.
o. o. o. o. o. o. o. o. o. o. o. o. e. o. o. o. o.o.
                                                                                    **o       *** *** ***                         *oo o o. e. .
                                                                                                                                             *** Doo ***
o. .e om. o. o. o.o.

Ec g

             \D            e           oeo emmn oeewoec e -n               e.          >      c e. n e m e.         hwa             oo ee                eeo ooo On g

n g[ NN

                                                                                                        ~m                en                             ~e pm               E WC mO               -       ooo M   **4           %

e oop oeo

                                                    .o.e.ne    e. m o one ooo so c o r. oco ooo
                                                                                              .o oo o o owoveo con    ..o o  ne    c on o co e, e l o s.        o m.      ooo oco g                                 et ma C. o == N                es o e ooc ooc eoC o oC                                oEC          oae       o@o a     =-      o. o. o. c. o. n. o. c. h. o. o. o. c. o. o. o. o. s. o. o. o. p o. o.          .        o. e. o. o. o. o. o. c. o. o. o. o.

C w i ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ma Cm t - O M h ) 5 con ... NN . seom. ~. .~ ooo oe o~o e .< - ooo o .4 o .eM ooo aC z C9 k ** .- one coo een ecameraesehm*see C&C omo oma o oo ome c o e, MQ E wCC o=C m o oo Nab PNm ooo ocC EN W m %. oeo .m Ce

                                                      =od     A d. e o%e
                                                              .= e                  oCN ooc oeo                    o .o*ew      oCC        a. N = o ** C           eoC
                                .      p o. C.      m. m. m. o. u. m. o. C. o.      o. G. C. o. o. o. o. Q. o. o. o. o.                 c. o. C. C. o. o.

Q "~" d

                                          .                                                                                     G. G. G.                           c. o. E.

g ooD ooo ooo ooo oGe ooo ooo ooo ooo ooo eoo ooO CC '

                           =

00 yg [ . .> c *.m mym e.e mmm ene=m mas m ooo oo moe ooo a m .= emNm. . .e - oue MNm M C0 3 C L4 b - one oCC emoehe emo N m a. cooNweeco ooo ooo emo

                                                                               .= E o oCC               oCC c heo  oeooc              .enecn e *EC e e. o obc  ooo

( e. e

                               %       oCo          edh       k ooo omo oor Coo coC o no                                           poC        omC        oCC oc C W

g f

                                    ; oo.u. o -o. #. N. o. M. ..a. n  o. o. C. o. a. o. a. o. o. e. d. o.

o ooc ooo ooo ooo ooo ooo ooo ooo ooo coo ooo

e. o. p . o. c. o. o. o. o. o. C. o. o. o. C. I CW 3 *

("* as b g ( coo oeo mee mee

                                                   = w as w* e e                   M .o o ooo
                                                                                        =

4' o o M*o ooo **c **o.* aro

             @q               {                    eb         mad LC               i 0C
            .O c.

sm oeo c o .m o > sa o e o is

  • aCo o* ooe eoh oeo omC D0 .m . m. .=

we e. b ooo oeo o sOQD g oCC m ao N t4 4CC a. e oDC m (*- .= NNC a*C ga-  %. ooo n m .o. .N. .o => e r. oC oe ooe ooe ooc o o c. Q n e o. o. o. o. o. o. o. o. o. o. o. o. o. < . u. 69 p

                                                                                                          . o. . o. o. o. o. o. o. o. o. c. o. o. o. c. o. c.

M g 1 ooc ooo ooo ooo on o Joo Aoo ooo boo oCo ooo ooo C .-4 Me4 b- " OO pg I ooo oe* NN

                                                              ~*e MmW enn        "~o       s <* ooo " . *
  • ooo "*~ "~o "o D
                            'b w                 I ti'o                ... ... .: - o                            ~=e       -:                 so    -o        -o           -a        ~=c v
a. 3
                                         .                                                   R
  • U a a th e *. E i ,

M 4 48 4

           .O                          y                                            w        w          &           .           e          u Q
                                       ~

{ s o

  • D e

T e se g' s. y e a p r L @

                                                                                                       -=

6 9 a e b s t R O .o  % en L *  % U.

  • a .ew a

f,. g, $g r O 4; C

                                                                                                       .D
                                                                                                        =

S I' 6 .b* b a D.

                                                                                                                                                                .D W
                             ).        h            p          w
                                                                        .c s'

m & e ed V 4 d

                                                                                                                               .O1
                                                                                                                                          **                      b 6'                      4                                                                           4=                     6 4          y          y         E          Q         V         -          J            b.         Da                    fe

e e l I l I O, i l l i m o me me . t8  % o ** I es e == == l i g, t* OOO s e e 4 to E O90 1 vb h 1 MNP

  • w as e e l C
        ?$                                                           \

in ome i oce coe e  %. M 3 o. o. o. ' ooo  ! i 1 . D C

         %             g us e          c
                                      -                             1 e
                .                      4 I

E eoo NNN kr N OeC C m 0 0 0. C. N ka+OOO

  • 4
         %                            w C b                           E F     g       Nem l                        {
            ..t,                     e  e

[ m-N

                      @MN
                                      .d     :

to 'w* C Pe # m 4-=.

  • et ce @e C. C.

E 000 6 .g 4 C= [ s N a N t

       % g            M*N                   C N=           b g .0 E                        d *
                                    == et 19         % P GE.

t NO" *

            \         C N me        e&

g

                                          +

p *= 0eC. O. 4 2 oco I. t  % h 6 6

  • h .g N to as se e ,===*

Z E.C eN a o c e. c4 E == c N e4 m '% DCC eo b= T N e= Q. O. C* C4

  • e
   ,  41 i         coo hw y

s C C e C g 2 == C

 * =4
      %    m.                            b.      F a g        as O m         ,w            g-g                                c-            es r =*

C -{I MC & v 0 z L& = Q cve- -m=

  • c =. ) C e O teCew e

ie 5t *o - c> MMO wb= V Dm4 &E q Mu& > C g e - ga 4% &4 erN C (M 44*%" g >b e e c. 64m 9

c. t t S.-t p & hh ts
                   ==                        wCF w               ha C eg D                s               es=mw
 -                  C             A N. . ..

g A e nE- e 9 - b $ eeuws Of

                                                                                                                                                                                                              ~

O O O.' Table 5 13 Total numbers and mean concentrations (la rvae/m3) of fish larvae collected near the Dresden Nuclear Station, July 1976. " July 7 July 14 Jyly Tarea July 21 July 28 Total Mean Location rinale r

  • No./m>h taumie r No./mJ Number !Jo./mJ Number No./mJ Number No./m3 Lepisceteus sp. IC 0 0.0000 1 0.0010 0 0.0000 Kd 0 0 0.0000 1 0.0003 0 0000 0 0 0000 0 0 0000 D" 0 0 0.0000 0 0 0000 0.0000 0 0.0000 0 0.0000 0 0 0000 0 0 0000 Clupeldae I 2 0.0020 11 0.0n15 3 0.0045 1 0.0010 K 9 0.00R0 29 0.0253 5 17 0.0048 D

0.0060 0 0.0000 31 0.0098 1 0.0010 2 0.0023 0 0.0000 0 0.0000 3 0.0008 ' Carp I 9 0.0005 11 0.0115 24 0.0380 0 0.0000 44 K 5 0.0033 7 0.0060 44 0.0145 0.0707 0 0.0000 56 0.0200 D 106 0.1177 23 0.0187 38 0.0493 8 0.0060 175 0.0479 Minnows I 1 0.0010 7 0.0075 10 0.0160 4 0.0050 22 K 0 0.0000 14 0.0150 0.0074 38 0.0733 15 0.0237 67 0 0 0.0000 1 0.0007 0.0280 2 0.0020 4 0.0050 7 0.0019 Cotostomidae I O 0.0000 4 0.0040 3 0.0045 0 0.0000 K 0 0.0000 3 0.0020 0 0.0000 7 0.0021 D 1 0 0.0000 3 0.0005 n.0020 15 0.0101 3 0.0047 0 0.0000 19 0.0063 ' Channal catfish I 5 0.0050 4 0.0040 4 0.0065 3 0.0035 K 6 0. 0 t* 50 16 0.0190 21 0.0163 5 0.0037 2 0.0017 b 0 0.00n0 0 0.0000 0 0. 0 0f i-3 34 0.0072 1 0.0007 1 0.0002 Ictsluridae I 2 0.0040 3 0.0030 3 0.0045 4 0.0050 K 4 0.0030 5 0.0040 12 0.0041 3 0.0037 2 0.0023 D 0 0.00f,0 0 0.0000 0 14 0.0033 0.0000 0 0.0000 0 0.0000 i ~ ~ ~ ~Leemi =p. s I O 0.0000 0.0010 K 1 1 9 0.0145 2 0.0025 12 0.0045 0.0013 2 0.0023 5 0.0070 5 D 0 0.0000 3 0.0050 13 0.0039 0.0037 5 0.0057 0 0.0000 8 0.0024 I

                                                                                                                                                             - . ,                            -       -   m _

e e m ONO WWW -wO Mow CE MmO mem Mmo POO eN OOO OOO OOO NNO O e COO COO DOO 000 ty e o e e e e e e e o e e Z 000 000 000 000 h 3 7 -s b 4 MNO COM MMO NmN

                &             M    wN            M       C to                           !

Of M I 62 e j C

  • O
                                                             . w
  • OmO Com OOO OON y E OmO - sc @ 000 mwo e '

N OOO O av O OOO N == c Q l 80 e QQC 000 OOO O00 0 i N C e e e e o e e e e e e e 2 000 000 000 000 N h E

               **                                                   C 3                                                   0
               % w                                                 w i                                            M
                    ~     ONO      --N       000         .N-        e l                n                 NM        y
                      *l                                            M 1

P C

                                                                   =

19 OmO eOO eme MOO em E M ID C NeO wNO NwO Ae N OOC ** O C O ** C mM C C M

  • OOO C N C Oe O. O. Oe O O. e e e Oe O. O. gw 2 0CO COO COO 000 w h MC m

S b

               -7 w                                                0 e=

k N Nno so w O n-O --O Ne T M NM C f 2

                      =                                            uo 0-e
                                                                  .C sa
                                                                   # 4 d w 9      OOO      DOO       OOO         @OO       $e E   ** m O   OmO       OOC         O CC Q
                   %      COc      OCC       COC         f ee O    & tm w        e m      c   O O. O. C De C. D. C. C. Oe O O. C .. C.

2 ODO COO OCO C00 ys=C h

               **
  • E-D Un
               %      6                                            6 Y i

E dmo Omc OCO NNO

                                                        @f "m

d C 2 Ou Z C 4 th b be

                   "      OOO      OmC       OOO         OOO       C C E   OOC      == e e   OOC          CN-      a .C
                   %      CDO      OOO      OOC          CCO             ed Ov              0 e

C. C. C. 0 7. C. 000 000e e b* C& e C) N 2 COO 00C OOO COO a km e G

                %                                                  L C          eC e                                                  L           ~c
      .=4       m                                                  gW><        m=

g  % b. . W E 5* C= c C00 MMO C00 OmM M ** O T mC ea y  : t 0 e _ Z C s e u e-e =m-Cm eCML C &0-0 he >

                  .C                                                        ahw G                                               @ F%W%

r, C += t' C M ag Q e EQ MEC #MM> O CCm*M d ( &4 emN K& C p @ %*Tm ww oe Co Cs G x an 0 4: m &C4 eA

      ~                    u                            -

E uwes M b vCe u 6m Cg 4 C g- 0

  • E a h. O b4 C U e. 2  %

o a w e.e C e ees k o 4 O C0 e - Le .U v E 2. w M C

t. - r w **

W J O E

                          >e       e.2      A           D         5 fe O *Q C 5 33
                               . _ - .        _                                         . _ _ _ - _ . -                     _.         , ~ _.~ . ~. _ . - - . .-.

l . \ m omM og m O en b cC OOM NOO ee O c.. wmO OeO gN 00O DOO O ** O OM O

  • 000 OUO OOO OOO d

A< e

                     'd,                000 e e e      09O.

e e O. O. O. DeOe O. O. Oe O. l e 000 000 000 000 I o N  ! 9 E k OMm ONO ewO NWO OwO

           .         dg sz                                                                                                    e
          .d                                                                                                            C U '                                                                                                          O m              000           000
         *@                E            C00           OcC 000          000                  000               %

w& 000 000 000 e N 000 000 000 000 O e OOO 000 o WM + C e e e Oe Oe O. O. Oe Oe Oe O, Oe O. O. O. 6 N 2 000 000 000 m O 000 000 g a e 9 e c 8* U p h M D .C. E& { ~{

                    ~
                                       *** *** *** * * ***                                                            W
        %D         " L
  • U$ k E m F

C00 000- COO C00 QQ E C00 000 OCO O ** O 000 ODO m g .,e N OOO OCC COO CCC %e wM WD

  • COO gg C

M o O.09 O. O. O. O. O. O. O. C. O. O. O. O. 9 m .0a z 000 000 000 000 000 ea M

  • Me a

CM 0 k j$ h6 O8 c0 }k 000 000 000 OMO 000 N) u- z L$

\      av                                                                                                            w .-

aD 5" CZ m OON eOO DoD ON O Q E C0* WOC OOC 000 000 C"O 6m EE N OOC O OO OOC M

  • 000 000 OOO OO O M t*

8g 9 m W c 2 000 e 000 O. C. C. 000 000 000 000 000 4c T. . U e @t CC D #g Cb b U= 00 { &d E

  • k 6 00 OMb OCO e "m c *O0 0 9L W0 s E C-N c-O e e N*C Q w" o O W4 Coc O c c. Occ CO O C O O v C
  • c O. O. O. O. D. O. O. Q. C. O. C8- 0
0. C*O.

2 000 000 O00 OE o F 000 000 d'c e ku m a oe e NM h o a u 1

b. m, MQ m ; cw
                                                                                                                        -        c gg          a +              O-N            ONO         mwo NeO Omo 0C e

vM 0 y 4 f

                    .z                                                                                           T co**m

[ 'Y # av

                                                                                                                 **         a r=

a cm r 4cmL g g f,' 4 .O ~ t

                    .m                                                                                                       .e    >

y y ett $t #km g MMC MMQ RF@ k% c pq MMQ MMC MMA M&M> ccm*e

       *                                                                                                         @0             K0 40                                                       g                                                  emN               c GUw            G, =

g, uW 4 9 U w A  % $e G N

  • 4 &
  • 4 f.=
     &                                                        v             t                                    he h CE 4                                                        r,            e                                               G c@

g O 80 bem ce0 c e w

                                                                           =.           c                        t E H E C4 b               c                            3           gi 6

O w 0 .0 % C *# $8 k O c ** NO 4 4 W c c 4 l' 4 23MMQ b c 4 W e - c L p 3* U N 4 .2 0 4 W i

                                                                    .ra _ _s n

Tabic 5.15 Estimated total larval fish drift in the Kankakee and Des Plaines rivers in the vicinity of the Dresden tinclear Station and the proportion entrained in the station intake, April through August 1976. t t Estimated Total fiumlmr of I,arvae ixlOJ) 4 of Comizined Rankakee tsunber of Sampling pe<. :lannes rankakee a;ntrained 4 of Rankakee River and Des Plaines Rivers l Days River River in intake Larvac Entrained L.arvae Entrainta l Month 2 8109.8 2913.2 339.4 11.7 3.1 Rpril 70,4 30.1 May 4 39789.8 29637.9 20R64.3 192689.7 49794.4 25.3 17.2 June 5 91199.8 1768R.4 6726.5 38.0 15.3 l July 4 26127.8

  • 281.7 696.5 425.9 61.1 43.5 l

[y August 4 \ 243625.7 77150.5 31.7 18.9 () Total 19 165568.9

                                                                                                                         ~

e e G

T A O. V Table 5.16 Estimated total numbers (x103) and relative abundance of fish lervae in the Kankakee and Des Plaines rivers and station intake in the vicinity of the Dresden Nuclear Station,. April through August 1976. Month .. Total 4 of Total  ; Tavon Location Apri1 May June JuIy August. Number per Location ' a Lepleosteus sp. I 0 0 38.6 18.8 0 57.4 0.1 Kb 0 0 0 0 0 0 0.0 DC 0 0 0 0 0 0 0.0 Clupcidae I O 2743.8 36034.1 377.0 0 39159.9 50.8 I K 1652.8 24n5.1 64997.8 1913.8 0 71049.5 29.2 D 233.7 1473.3 12671.9 187.9 0 14566.8 8.8 Carp I 84.8 161.4 8153.5 1206.0 0 9605.7 12.5 K 0 2153.0 68842.4 2997.8 55.3 74053.5 30.5 D 2224.3 37079.4 68338.3 19791.3 2R1.7 127715.0 77.3 Minnows I O 96.8 857.2 638.6 156.7 1749.3 2.3 K 0 679.2 8910.6 4062.4 42.6 13714.8 5.6 D 990.4 0 2274.1 1021.8 0 4286.3 2.6 Catostomidae I 55.1 16962.8 482.0 167.7 0 17667.6 22.9 K 440.7 20868.1 2605.0 al.7 0 23996.3 9.9 - D 2167.5 872.8 1353.4 2548.9 0 6942.6 4.2 Channal catfish I O O 77.5 433.3 187.8 698.6 0.9 K 0 0 211.3 1348.1 140.5 1699.9 0.7 0 0 0 61.5 60.1 0 121.G 0.1 Ictaluridae I O O 155.9 332.1 72.2 620.2 0.8 K 0 0 3046.8 630.6 175.9 3873.3 1.6 D 0 0 80.4 0 0 80.4 (0.1 LeImmis sp. I O 53.8 905.8 388.5 0 1348.1 1.7 K 0 0 4172.9 635.5 0 4808.4 2.0 D 0 304.4 1194.4 1798.9 0 3297.7 2.0 Micropterus sp. I O O 7.8 0 0 7.8 <0.1 K 0 0 0 0 0 0 0.0 D 0 0 0 0 0 0 0.0 _ _ _ _ _ _ _ _ _ _ _ _ _ - - _ _ _ _ _J

Tabic 5.16 (continued) ttonth Total 4 of Total Taxen I,oc.i t ion April tiay . lune July Augu r. t Number per Location Yellow perch I 72.1 332.8 1053.0 80.4 0 1538.3 2.0 K 301.9 1527.4 5232.0 526.0 0 7587.1 3.1 D 2278.5 0 1071.3 0 0 3349.8 2.0 Iogperch I O O 764.9 310.0 0 1074.9 1.4 K 0 617.3 31491.0 1789.6 246.8 34145.5 14.0 D 0 0 202.6 541.0 0 743.6 0.5 Percidae I O 35.9 38.6 92.3 0 166.8 0.2 K 0 213.2 526.3 463.8 0 1203.3 0.5 D 0 0 0 0 0 0 0U Unident8.fiable I O 430.4 462.6 2510.0 0 2403.0 4.4 g K 347.2 986.8 2514.7 3220 7

                                                                                                          . 0        7069.4       2.9 D         86.5      43.3   3932.3       99.0    0        4161.1       2.5 L~

Total I 212.0 20817.7 49036.5 6614.7 416.7 77097.6 0.0 K 2742.6 29535.1 192572.4 17670.0 681.1 243201.2 0.0 D 7980.9 39773.2 91180.2 26048.9 281.7 165264.9- 0.0 a I = Intake area. b K = Kanks te River e D = Des Plaines River G 9 9 '

e'- *

      )                

Figure 5.Jr , substantially higher densities were observed at Station 6 than at the intake and Stations 4 and 5 in June. The river water was apparently not drawn into the intake. Cooling water utilization .. from the river was low on June 30. At this time a high density of larvae was observed in the Kankakee River (Figure 5 6); primarily at Station 6 (Figure 5.7) . Although the percent of the Kankakee River water utilized for cooling was low (ranging from 15-44%) in May compared to the other f our months, high entrainment losses were measered. This was attributed to the high density of larvae present at the intake and Station 4 on May 19. As a result, an est in tv 70% of the total

        ' larvae present in the Kankakee River wer2 ? ? ke: into the intake.

O 5- Most of the larvae obtained in the intakt semp ?s in May were suck-er s (Table 5.16) . The impact on larval fish populations in the KL eakee River was greatest among suckers, herring and channel catfish where 74, 55 and 41%,- respectivly, of their estimated numbers in the-Kankakee River drift, wer e entr ained (Table 5.17) . The impact of removing frvm the fi heries an estimated 32% of the drif ting larvac f rom the Kan' liver and to a lesser extent from the Des Plaines River on tn Ec;slation of a particular cpecies or in the vicinity of the Dresden Station cannot be quanti-fled. However, the.3oss of an estimated 55% of the herring larvae from the drif t in the Kankakee River has apparently not had.a signi-

  -( ) ficant impact on the herring population (gizzard shad) in the Kankakee River.-  As shown in Table 4.2 (Section 4.3),gi::ard shed is the i

w n1

                                                                                       % v.. '--
            ~ Table 5.17      ; Estimated total:larvalifish drift by taxon-in the Kankakee and Des Plaines rivers in the vi;inity of the.Dresden: Nuclear Station                                      j and the proportion entrained in'the station intake,.1976.

i I .i i 1 Estimated Total Number of Larvae (x10>l 1 of Combined Kankakee i Des Plaines Kankakce Entra ned  % of Kankakee River and Des Plaines Rivers Species River River- in Intc Larvae Entrained Larvae Entrained I l Lepisosteus sp.. 0 0 57.4 -100 U upeidae 100 1 14566.8 :71049.5 '39159.9 55.1 45.7 Carp 127715.0 74053.5 -9605.7 13.0 4.8 Minnows 4286.3 .13714.8 1749.3 12.8 ,

      "atostomidae              6942.6                                                                  9.7 23996.3       17667.6           73.6                        57.1 Channel. catfish          '121.6      1699.9           698.6         41.1                        38.4 Ictaluridae                 00.4      3073.3           620.2         16.0                        15.7 f      Igenomis ' rp.

Hieropterus sp. 3297.7

                                  .n-4000.4 0

1348.1 7.8 28.0 100 16.6' , 100 h Yellow perch 3349.8 75R7.3 1538.3 20.3 i Logperch 14.1 [ l 743.6 34145.5 1074.9 3.1 3.1

Percidae 0 1203.3 166.8 Unidentified- 4161.1 13.9 13.9 I l 7069.4 3403.0 48.1 30.3
Total 165264.9 243201.2 77097.6- 31.7- 18.9 t

i 1  : i g - e 9 1

     '. most abundant species in the river.

G Factors that must be considered in assessing the extent and subsequent impact of larval fish mortality on the fish popula-tions in the river include;

1. natural mortality of fish in the planktonic stage is very high;
2. the number of larvae occurring in the drift probably represents only a small percent of their total number of some species in the river; 3 Some survival of larval fish may occur after condenser passage. Although the actual percentage of survival of larvae en- ,

trained at Dresden is not known, studies have shown that survival may O occur (Marcy 1971, Leur et al.1974). The presence of about a dozen species of fish in the Dresden cooling lake indicates that a propor-tion of fish, either as egg, larvae or small juveniles, have survived entrainment (U.S. AEC 1973). i l l I t 5.45 _ ,

i l

                                                                                               )

5.2 Impingement Effects lh l 5.2.1 . Methods 1 l Impingement samples were taken approximate 1y'two times  ! 1 per week from-December 23, 1975 through December 28, 1976. Some samples were missed due to icing conditions of the trash collec- 3 tion baskets or mechanical f ailure of the winch system which was used to retrive-the baskets. On Monday and Thursday of each week i at approximately 0800 hour s Dresden Station personnel operated  ; the sprayes systems manually to 11ush the traveling screens at both j Unit 1 and Units 2-3 Intake bays. The trash collection baskets were then pulled-out, emptied and replaced. The time the baskets were put back into place was noted in a logbook. On Tuesday and Friday of each week, a staff biologist arranged to flush the ggg screens and remove the trash baskets. Every atteqpt was made to remove the baskets so the collection would represent a 24-hour period. The time of basket removal was also noted in the logbook so that the nu=ber of minutes the baskets were actually in place could be deter =ined. Analysis of the fish impinged over each 24-hour period included species identifj eation, size ranges and total weight per species. Fish were also examined for presence of external para-sites. Each non-shed species was weighed and measured when num-bers were less than 30 per species. When numbers were over 30 per species, the fish were divided into three size groups and ten of each group were weighed and measured. In cases where a group con-O 5.46

s O' s isted of less than 10 individuals, additional fish of the other groups were weighed and asasured so that the total equalled 30. When gizzard shad in a sample numbered less than 300 the fish were divided into five Lize groups. Ten individuals for each group were weighed and measured. All individuals were counted. When the sample numbered over 300, a representative subsample was i taken and analyzed as above. The total number of subsamples in the whole sample was recorded. Fish which were not positively identified in the field were placed on ice and returned to the laboratory for more detailed taxonomic evaluations. A reference collection consisting of one individual of () each species was compiled over the course of the study. 5.2.2 Results and Discussion 5.2.2.1 Ancillary Data Dresden circulating water flow data and the percent of condenser cooling water utilized from the river for Unit 1 and Units 2 & 3 are presented in Table 5 18. During the study period extending from December 1975 through December 1976, approximately 25% of the total condenser water utilized by Dresden Station fot Unit 1 and Units 2 & 3 was sampled for impingement (Table 5.19. . River water was used exclusively for cooling purposes at Unit l' whereas approximately 46% of the cooling water used at Units 2 & 3 I originated from the river during the study period. The r emaining 54% of the water was taken from the Dresden cooling pond. (} 5.u7 L . - .. -

Table 5.'18 Circulating water flowJdata for~Dresden Nuclear Station, December'1975

               'through December 1976.

Unit 1 (gal / day) x 10b Units 2/3 (gal / day) x 10D , niver Condenser ]ntake Flow River Condenser. Intake Flow ~ ~ Intake ~ Cooling Water Condeiner:riow Intake Cooling Water- Condenser riow Date Flow- Flow (1) Flow ' Flow' (%) i , 12/23/75 188.09 144.00 100.00 72.00 .1,599.36 .4.50 l 12/30/75 - - - 72.00 ' 942.48 7.60 l t j 1/6/76 188.09 155.40 100.00 72.00 1,149.12 6.27 1/21/76 180.09 190.10 100.00 72.,00 1,149.12 6.27 1/23/76 188.09 149.10 100.00 72.00 1,111.32 6.48 , 1/27/76 188.09 188.20 100.00 72.00 1,111.32 6.48 [ 1/30/76 188.09 183.00 100.00 72.00 1,088.64 6.61 2/3/76 188.09 184.30 100.00 '72.00 1,050.84 6.65 2/6/76 188.09 182.40 100.00 72.00 1,081.08 6.66 2/10/76 188.09 183.70 100.00 72.00 1,069.74 6.73 2/13/'t6 188.09 185.00 '100.00 72.00 1,073.52 6.71 2/17/76 188.09 182.40 100.00 72.00 1,043.28 6.90 2/20/76 188.09. 185.60 100.00 72.00 1,096.20 6.57 2/21/76 188.09 183.68 100.00 72.00 1,065.96. 6.75 2/27/76 188.09 -182.40 100.00 72.00 1,058.40 6.80

  • 8 i

3/2/76 188.09- 184.32 100.00 72.00 1,065.96 6.75 3/5/76 188.09 185.60 100.00 72.00 1,065.96 6.75 l 3/9/76 18n.09 186.88 100.00 72.00 1,092.42 6.59 l 3/12/76 188.09 181.76 100.00 72.00 1,062.18 6.78 ' I [ 3/16/76 180.09 181.76 100.00 72.00 1,069.74 6.73 3/19/76 188.09 184.32 100.00 72.00 534.87 13.46 I 3/23/76 188.09 182.40 100.00 7?.00 536.76 13.41 3/26/76 188.09 186.08 100.00 . ?.0 0 548.10 13.14 3/30/76 188.09 184.32 100.00 72.00. 540.54 13.32 . 4/2/76 275.35 247.38 100.00

                                                                                                                           ; a 72.00         532.98            13.51 4/9/76    275.35-         247.38            100.00      72.00         534.87 4/13/76   275.35                      ~                                                 13.46                               .l 248.24             100.00    180.04         538.65           33.42 4/20/76   275.35          248.24             100.00    538.65         538.65          100.00 4/23/76   275.35          245.67            100.00     544.32        544.32           100.00                                 i 4/27/76   275.35         .249 45    -

100.00 551.88 551.88 100.00 1

                                                                                                                       !      i i

Q v - Table 5.18 (continued) tinit 1 (gal / day) x 10h Units 2/3 (gal / day) x 100 River Condenwr Intake Flow Hiver Condenser Intake Conting Water intake F]cw Condenner Itow Intake Cooling Water Condenser Flow Date Plow Flow Flow ( 9. ) Flow (t) 5/4/76 275.35 247.38 100.00 544.32 544.32 100.00 5/11/76 275.35 246.53 100.00 546.21 546.21 100.00 5/14/76 275.35 249.10 100.00 1,081.00 1,081.08 100.00 5/18/76 275.35 248.24 100.00 1,088.64 1,080.64 100.00 5/21/76 275.35 246.53 100.00 1,077.30 1,077.39 100.00 5/25/76 275.35 249.10 100.00 1,092.42 1,092.42 100.00 6/1/76 275.35 246.53 100.00 1,229.76 1,229.76 100.00 6/4/76 275.35 246.53 100.00 1,229.76 1,229.76 100.00 6/8/76 275.35 253.38 100.00 1,385.16 1,385.16 100.00 6/11/76 275.35 243.96 100.00 1,351.84 1,351.84 100.00 tn 6/15/76 275.35 249.95 100.00 1,366.12 1,366.12 100.00 6/18/76 275.35 243.96 100.00 1,351.84 1,351.04 100.00 $ 6/22/76 6/25/76 275.35 275.35 249.10 253.38 100.00 1,380.40 1,300.40 100.00 100.00 1,380.40 1,380.40 100,00 6/29/76 275.35 248.24 100.00 72.0 1,375.64 5.23 7/2/76 275.35 243.96 100.00 72.0 1,356.60 5.31 7/9/76 275.35 244.82 100.00 1,361.36 1,361.36 7/13/76 275.35 247.38 100.09 100.00 374.4 1,375.64 27.23 7/16/76 275.35 249.95 100.00 432.0 1,380.40 7/20/76 275.35 31.30 249.10 100.00 432.0 1,361.36 31.73 7/23/76 275.35 272.21 100.00 432.0 818.72 7/27/76 275.35 252.52 52.77 100.00 518.4 1,380.40 37.55 7/30/76 275.35 192.60 100.00 108.0 1,051.96 10.27 8/3/76 275.35 249.95 100.00 720.0 1,380.40 8/6/76 275.35 256.80 52.16 100.00 661.20 1,413.72 46.77 8/10/76 275.35 248.24 100.00 360.00 1,246.84 8/13/76 275.35 248.24 28.87 8/17/76 100.00 213.00 1,225.49 17.38 275.35 247.38 100.00 720.00 1,375.64 8/20/76 275.35 247.38 100.00 720.00 1,225.49 52.34 8/24/76 275.35 249.10 58.75 100.00 720.00 1,234.03 58.35 8/27/76 275.35 248.24 100.00 720.00 1,229.76 R/11/76 275.35 247.83 58.55 100.00 720.00 1,214.64 59.23

                                                                                                                  ~

Table 5.18 (continued) Unit l_ (gal / day) x 10b Units 2/3 (gal / day) x 106 River CorF h"' n t' r Intake i' low Itiver Condenser Intake Flow Intake Cooling Water Condenser Flow Intake Cooling Water Date Flow Condenser Flow Flow (t) Flow Flow (%) 9/3/76 275.35 147.23 100.00 720.00 1,214.03 58.35 9/7/76 235.19 151.51 100.00 720.00 1,152.90 62.45 9/10/76 275.35 243.96 100.00 720.00 1,229.76 58.55 9/14/76 275.35 244.82 100.00 1,077.30 1,077.30 100.00 9/17/76 275.35 246.53 100.00 1,092.42 1,092.42 100.00 9/21/76 275.35 249.10 100.00 1,096.20 1,096.20 100.00 9/24/76 275.35 243.96 100.00 1,073.52 1,073.52 100.00 9/28/76 275.35 246.53 100.ru 6n5.44 685.44 100.00 10/1/76 275.35 245.67 100.00 72.0 685.44 10.50 10/5/76 275.35 - 100.00 72.0 683.06 10.54 10/8/76 275.35 245.67 100.00 72.0 683.06 10.54 10/12/76 275.35 247.38 100.00 72.0 656.88 10.96 10/15/76 275.35 250.81 100.00 72.0 699.72 10.29 10/19/76 275.35 245.67 100.06 680.68 680.68 100.00 10/22/76 275.35 256.80 100.00 716.38 716.38 100.00 10/26/76 215.35 242.25 100.00 600.68 680.68 100.00 10/29/76 275.35 243.96 100.00 607.02 687.82 100.00 11/2/76 275.35 246.53 100.00 802.00 802.00 100.00 11/5/76 275.35 250.81 100.00 699.72 699.72 100.00 11/9/76 275.35 246.53 100.00 1,088.64 1,088.64 100.00 11/12/76 246.53 100.00 1,088.64 1,080.64 100.09 11/16/76 246.53 1n0.00 72.0 1,088.64 6.61 11/19/76 259.37 100.00 72.0 1,156.68 6.22 11/23/76 251.66 100.00 72.0 1,145.34 6.29

  • 11/26/76 249.95 100.00 72.0 1,096.20 6.57 11/30/76 -

100.00 72.0 1,202.04 5.99 12/13/76 243.94 100.00 72.0 1,107.54 6.50 12/10/76 248 24 100.00 72.0 1,0H4.86 6.64 12/14/76 246.53 100.00 72.0 1,08R.64 6.61 12/17/76 252.52 100.00 72.0 1,115.10 6.4G 12/21/76 223.42 100.00 72.0 997.92 7.22 12/23/76 246.53 100.00 72.0 1,089.64 6.61 w - O . _ - - - - - - - - o

r +  ; .  %~.. .

                                                                                                                                                                                                                                                   ?

Table 5.19 volumes of water sampled.for impingement andLutilized by. station for. j condenser. cooling.at Unit 1 and Units 2 &.-3, Dresden Nuclear: Station, December 1975 throdgh. December 1976. l l-I twis t i Condenser coatseg ttatte 2 s 3 ' o e,6-neer roasin,1 6 se=g,1+4 ca denser ra=Bing - Camdeneer coollag 9 sesyled water. sampled for Water 13t116:=4 For .. Water $napled for - water titilleedt Y Mcath impangament (Isle) qal)- ty seatson 18:103 qall Tapt w at for impingeneet 18:193 9 ell ter stat ten 1ta19I gall 1 spin 9eussut 5 December 1975 344,000 - 2.949,120' 4,9 ' 2,94 5,8 4't 21,$eg,802 II,3 , Jansary I??4 965,740 5, l a6, 36a Fe brues y 8976 In.n 3,609,520 8 M ,520.35e l$,4 1,469.440 S,94%,220 27,5 8,519,020 11,570,460 27,0 i Pas c* 1876 1,656,249  %,781.970 29,0 ' 7. %2 6,5 M 25,293.9nO - 29,7 agell 1974 5,4*4,872 7,195,849 .l 2G.1 3,241,350 16,329,600 19,8 Fay 1976 4 J3w 1976 2,49%,872 1,642,3he 19,4 5,429,970 2s, t ha,754 - 19,3 [ 2,235,016 7,19%,240 30.2 . 12.050,920 41,124.400 J st y 1776 2,19 9,*M 4 7,642,964 29.8 29.3 L Aoq=es t 1116 le,462,0#O 42,497,2SO 27,9 ) 2,242,120' 1,442, % s 29,3 11.546,010 39,803,402' sept e*ter **f6 1,775,692 7,095,641 29.9  ; 25.0 9,648,570 32,495.570 3 nt taker * * *b 2,224,744 1,447, % 4 - 29.1 26,1 j how=efer 49 76 6,173,770 22, 96 7, $ 20 27,6 2,24F,902e 7,19%,m40 30.4 { 9,447,990 jl,Dil,7ne . 30.5 t+ rant 4 r 1976 2,461,192 7.642,364 { 19.1 6,4R2,7nO 33,747,p40 19,3 Total

l.  ;

t i 21,595.454 .96,649,689 me== 24,9 . g 99,64),130 4Ja,613,974 24,9 . i [ Estimeted nem@er, 4 e t = 2. i , a .> 1 e b i i 9

                                         .%                                                 _                    ,             a                      y.      y -%-_m              ,        .-          an e ,   -w..+        q             y   q,

5.2.2,2 Fish Impingement The numbers, peNent of total number, weights and percent of total weight of fish (by species) from collections made ~from Units-1, 2 and 3 traveling screens at Dresden Station from December 1975 through December 1976 are presented in Table 5.20 Fifty-six species of. fish, representing 116,477 indivi-

    -dcals weighing 23158 kg (5105 lbs) were removed from the traveling screen at the Dresden Station during 95 sampling dates extending from Deceaber 23, 1975 through December 28, 1976 (Table 5. 20.

Of this total 7% of the total fish implinged by number and 10% by weight were removed from the traveling screens at Unit 1 and 93% by number and 90% by weight were removed at Units 2 & 3. In order ggg , of nun,erical rank, species contributing 1% or more of the total number impinged were: gizzard shad, 90.7t; carp, 1.5%; bluegill 1.2%; and freshwater drum 1.1%. Species contributing 1% or more of those impinged by weight were; gizzard shad, 80.1%; carp, 3.7%; freshwater drum, 2.1%; and channel catfish, 2.1%. Combined, these species constitued 94.8% of the numerical total and 88.0% of the total by weight of fish impinged. Species removed from the travel-ing screens during the study which are not considered native to the area adjacent to the Dresden Station but are are native to either Lake Michigan or tributary streams include: alewife, rainbow trout, longnose dace, troutperch, nine-spine stickleback and yellow perch. Impingement rates were generally lowest during the spring and early summer months and progressively increased in late suma.e2 O 5 52

_ _ _.______ _ __ _ ~ - - - - - - - . I ' l i I N D .C . O v tn

               *C UCO                  e     n.     .. .. .. n.O.  .           . . . m.a.n. .a.               . . .       .O.            .n.                                   -
                                                                                                                                          .O.m.O. . . .m.e.e. .O.n. . . .- m - . - ,0
          .*gQ                                                                                                               .

D .C 000000000000m0000000000000-00 ve vvv v vvvv vv v vvv DmOOONOOOOOOOOOO-O v vvvv v vv y M *C a 0C 3m+ E

                                      .O .c..-e O c c c b           .s                                     nO nnmeeeena O. c c e e m - c D.O=e mm=e O                            e n.eO O. -~OOm-              e O O .O c e O O m...         .                                    e eOe.O w. e .e. cee O. O O c c. . ~, e MMO              m m
                                      - .-e.@ e.-- ce .=                  c.see.C. e. ...% e.                                       e. .                e. O. m. m e m. es.. .W.e e. .m c       et          -              - e                                 MmW
                                                                                    . o m                                  m                  cO-n               m-e            -m                                             e.

w m en. e O. m. M 9D OM k " w- . - e. c PCC e DA " W E

                         ~

OQ ei

4. e. . m. . e . . . . . e. . *. . . . . O. . . . . O. . . . . . a. .m. . .- .e.- .- .- - . -. -. e. -. -.e. . -

3 se . O O vv O O vev O O - O Ovvv O O O O O .= v 0 0 C O O O vvvv vvvv O O O O Ovvvvv O O O O O O Ov O O O O O O O O OvvO O O O O .* O U C vvvvvv v CNO C Q" ygg M t

                               .}

e-w

                                      -       6 n m-e e n O m mnedNm          m . ~ m , ~ mNm - n oe --- DNee - m - m M                                                                               ee-en-..m-snemeeem N.---                                          e-O-m-CCO                                           m.

O

                                                                                 - - e.  -

Nem e- - e e. C,, ) . 4 A * - a DCC CUM C e4 t.Q ,.

                                      - O. e. C. e. . . .

O. c. e.. e . .. . O O O - - - e - - . m O O n n n - iz e m .- O m - e - - e . 3 000000000000mO000cO00000000000. v evvvy

                                                                                                                                               . . . . . . . .n-DOnOOOOOOOOOOOe   . . . . . . . .v . . . . . . . . . . . . ..                                              .

v vvv vv v v v M C v

        .C C C
        ..D=i Oc M U     -    -
                               ?
   \      g                          O D    O eee C Seee-    a c o c- e C e#=~e       c D. .e e O O .c e-e             e O Cc=O-e      OcceOOO                                - O     c O. c ee~C e C                                  O O .~-mmmOceO-Oc
          )Eg  g Z      , h, a

e. N

n. o.
                                                                                 *= - e
e. e - mew r e-
n. o.

en N n e. m Nm e e n - n. Ct @ e .- h CC 3* er.

                                                        .=

3 LOC Q .e4 'O

       ~ '. M  OoO                     . C. =. O.           . . . . . O. M.                                                                                                               . O.. p. . . M.... .O.- .e .- N
                                                                                                                  . . . o. . . . . . C. O.                                                                                                                      .. ..-
                                                                                       . e. . e. O. O. C.                                                                     . n. #.

CCN v O .a O ey O e Ovvv O O O O O O es O .= 0 O O OvvO O O O O O O O OvO O O -. O O == 0 0 0 OvvO C Cv O O C O e C e 4 C1 vvvv w e-4 H 04 y CUC , g

                                     ,0,0,--omomo,..

e e COO.,-C nn- ,mumOO .arce.e-,0,~,~co-

                              ,                         N                                N      c.=                                                                             -e             w-                           nm                       o        -m OEe                   t                        *
                                                            '                                                                                                                                  .=

M OC 2 LC WWC O W

              ^    U                                                                         e                         e                                                         t aam                                                                                  =                      et=                                                         .P                                                    e CC                                   r'='s-e'                                       v o y, e tg a
                                                                                                                    *fm E

o e s c.g b. eq t

                                                                                                  . -.              v                   E                              e:.                  etri                              o         e:
                                                                                            -           -           es              e e                                                                                                           6                 e UUCC                                                                                c:-                                                                        : -0 p.e                 e-                                                                                                        E                        mpi                              C n , -

w c .w d e -M sg

                                           ,b t m 1

e s ee t.. 4

,e,u
                                                                                                            *lwi w ,o}'3 c
                                                                                                                                        -   el smi m - 3 6 w e                -el vc  ,-                                     6 ,; =. e el
                                                                                                                                                                                                                                                                    =

we I= ele .i e u o - e. s-- i ~ e-e m .,i.e ;Ngr . -leet - -rl c-e - q e- t - <s c ,.:ia e ,- r C O. e-4 m m e - - -r- - c. - , w:- w g 2 = le erp s e sic.c tq: w c,, m , < .w e  :. w A - - :- u :IE u- m.1 se

fi r=.e
                                                                                                                                                                                                                                                               - p   . :: ,i z

wo h<3,.- - E.i

m. e 3' -

t ea c e ese c - t e: Cl> c e s ot- v .. -

                                                                                                                                                                ,ne
                                                                                                                                                                       -           -       l-. e:

e > ,-le ; q :w e c:

ri C u dw ep $ :t ea
                                                                                                                                                                                                                                                               - -r e et:

p u - c,o w S le s i. 6nlc. e -p . c r

           ., g > g          .e                                                  . :- e usc e u:                    -
                                     .t e p:G, es e .c..s.                                                                                                                                                         w-
  • c l@. : c
                                                                                                                                                                                                                                                                    -t-[

r, - - - 6,- et e m

                                                                             ..                         -              e e th .,-Q. CC          .                                                    o aeoeeA                   ei W ep.                                                           a2 n       z e eh                     e4e rigi ,--w.N: c,.

clelrl  : : : s l

o. - E rc r  :. t
                                                                                                                                    ; cc}i                      p;pr,v         a'e                                         T               .r.

p y a u o- e-m e- c

                                                                                                 --Le ewee  ~

co - .- - em. .d c ri -l ivue9E .- ed:

                                                                                            -i                        e-t                                           -a - .a - s                 : n m                                 :                             e :e t
                                                                                                                                                                                       -2a--

MEg M6,. i t,. C Ne = -d - bt : - y 4 oi e - s.1 - A- -* w  : e* e*- ag -i -h-c  ; ce .. % c=v e 4-c - -i 9.:e a? = .gi r-r, c c- .- - e Lg s o e n o e

                                                                                                                                                                    =            x em                         =                  u   n:

ci- .:

                                                                                                                                                                                                       .= -b M Edddb--l1.,0# pa!- {

E to n U CM l C M LC SIMd.in.:l e

                                                                        !$ $ $ d         OYu.w-     .E ad5 6T 0bw d A S .N:.ESS                                                   x bE 244NQ                      8 a                   z a            h, e

v e o as o e - s tr .o w x - e C 5 C 1> C 9 6. v= we te @* 6 - s c n

                                             -.                          C-                      . s .C. c     .}     uuc                                           t       (* O       9       J'
  • e I A *
  • e r e e e o
6. -. 64 ed a. t 4 he & Dk C 4&Va t wteae- e e g (\) m.  ;

O %q & w as g g 6; .C- C v b 3 8C w 3 *)  : o- wO6a. O 6 6 I & w .oeE u e .c -. eL& E r.

  • C & C. - e 4= mD&F e t *.

CP b 4 4 6 -C. -* K - M 9I O f w 4 8- K ** * *- C

            .                 e                         e            eDAC6                  .c e E ** c C 9 0 0+ .K 4 J*** T 4 T                                           *"                           M.*         *W Ofe e                          -          T
        @                     6      ees                                                                                       w 4 v J ' ** Cd *: % Sa*                                    **l'
c. , .c.,

e m m4 o emeeeL 24 mph 6 6. "e occ .3 "ae 4' e p s LP = e. n 4, oy e e e U .t. 9 $- h. $ m.e C .-.%. e - 4c-n 0#

  • be e O 6, .C 4C. & c a boeOEA a w h 4 A) 3 eu-S CC.t '.r. bQ 4 a 0 4.=C.s ta ** we a s .- e e 'C C Ci ta b. L6 J .e 4 6 /2 w e. r, *. cs L - '# .C w - % , - E D 6s c Osr.#. .% D s' I* 4 y = +8 e & 4 C Q '# C' 4 i r e. -. - rg er S. C e - p u35- u r'2 - C .d.

g e -

                                              - o          .   'D  C p.CC.  .e   e'  #  'J  C   t  h                             &.   **   **  4,            -    U  L' L    *=3 h. O- 4 fL                        .A        's        'S N 4 LC
                                                                                                                               .            4
                                                                                                                                              .eg-                     >-                        s
                                                                                                                                                                                                                                                         -  e v s.6 M -- c
                                                                                                                                                                                                                                                                  '. t "              i dS3i.I h N b b. N g No EeI*- Ee.NI I..c8l9ee -sk- hok N..8fM4 O*              Ct             5.****                                                                             =..d                                         !

7e.hYN T-& 6 c fc e ( O Q '3 Em NON.

                                                                                                                                                                                                                                               }C. N M h O .(.

I"'

                          *
  • e e

9 se me e w me we e se me se O e e e e e e e e e e e e OOOOOOOChMO O Vv vvv v O es P me=emOOOemO O

                               **     O P emg w m e s > e                         en
                               ** l   m        O ah e N                  PW       F*

J" l * * *

  • e M e m M
                               'a              .e r= em
                                                =s                       e        e
                            =0   L                                                O 3                                                    o N                                                     Pe S

es

                            >m C        == em as as om ao em sue N *e               O D  or       e s e e e e e e o e                         e C0000000m*O                                 O vv                 vvvv                   v O ve b    m N e
  • C' e W a4 O == m 4 OOm en N N
f. eg me g N. e.

m M

                               .T.                                                O ye
                                      ,e a m M .s ce m O                  N ==    0 en        e o e e e e e e o e                        e DODODOOONO                                  O vv                     vv                 v O sue M OC4PeeeOOOO                                    m ww                                           mN       f*
w. l' N a= c @ e,* cm N w m.N m. m 6
                            .- :-                    .=                  c        e g i .3,                                              m 3    .                                                N 3

es a .e. . e. .e. .=. e= 0 r=

                                                                    . e  e .e. O.

DO00000000 O vv vv O pe

6. ,e we ce d E *e en O O sa
  • g e d me e m *
                                 %                                                  =    e 3                                                e   >

Z f* 9 se e f: O C we r D P we D L ]j ad E C D L ,*:. C D f. *

       *                               ; .               e.                ..         g
       r"                                 Q* . v
                                            .,1 4 3            h    C Cl e

m

  • C >- w .nw.=
r.
  • C, e O t{mOe!c(* > 6!

C t rJ C ""J d >= C 6 &. 74 E C z == p = e- r em LJ @.#'C L.

                                                                  =b= 5'Sjl           sw M                         u       a  3 p C        .=   >   -

e

                               ==      E    e- e,'4C4             i, 6" i       **

C-tee

                               ==

L L == t l.L4 I. i CC C C U as .e .e e e.p, lJ e. ,w. h o g g u 4 Q C, O C, *

  • 9 - 0 y uu e=

C w t en e . O

                               ==           ts L      (jf     6. ee  - P=             to Y e5h:                     N C

ew 4 m O 4 b rr [ zev e cegg e w 3 se M J;l ~ = 4 T; T 7 O t. C. 6 6 m C .C Z C. f.== T4 b == gw a pi 3 as me e .g. g

         %s                    .ee     is       36.           go, C       as me   ==   e.

p=t U CUV W D 4 *' 4 & b f h esc ** M

                                                              't e     =e.      t a s n & t, e it                  c   %,.

i Q ba d d u' *g V*.ed ba f.

  • tP T b b.

p e m e. =e 6 -=

        ,                              b J            [ #4 h E= E W b
a. m 4 & a . 3' 3 fee ::.

i l e9

O and early fall and were highest in the late fall and early winter months, approximately 13 and 34%, of the total number of fish were impinged in January and November 1976, respectively (Table 5.2-4). Gizzard shad comprised 98% of the fish impinged in January and 911 in November. Bluegill, carp and freshwater drum constituted 5% of the fish impinged in November. The seasonal difference in impingement rate is further il-lustrated when it is standarized to fish impinged per given ur.it of volume. Highest impingeraent generally occured dur ing the late f all and ea:1y wintet months (Table 5, 22) . The number impinged at Units 2& 3 wer e substantially higher , however , than at Unit I during these months. At this time, most of the condenser cooling water utilized at Units 2 & 3 was taken from the st6 tion's cooling pond. This ob-servation suggests that a substantial proportion of the fish impinged in January and November may have come from the cooling pnnd. The consistant increase in impingement rate from late summer to early winter coincided with the occurrence of young-of-yeat fish following the spawning period. Dur ing this time, thay were most abundant in the study area and were most vulnerable to impingement. As indicated by the average weight of fish impingad (Table 5. 23) most fish impinged during the study wer e young-of-yec: individuals. The relatively lar ge number of young-of-year gizzar d shad impinged and to a lesser extent, carp, and bluegill in the November collections indicate a successful spawn and survival of (]) these species. It may also indicate s preference of these species for the intake area, and their difficulty in negotiating the tur-bulence and currents near the intake structures.

                                                    . _ _ - - _ _ _ _ _ _ _ _ _ . __ _ - - _ _---__-_-_-X-RC         - - - -      -

Table 5 21 Total number and weight and percent abunoance by month of fish impinged

  • on traveling screens at Unit 1, Units 2 & 3 and combined units, Dresden Nuclear Station, December 1975 through December l')76.

1 i

                   . . . , , ,                   .%... t    -
                                                                          .4.                   ... 2.         .                  .. .. i ,2, 3,
                  %erglan9       Totat            ~f..e e t           Sa*yllog    Te a t                  TM el         Tat a t               trtet

_*wst % ftet ee, HsW r e efet.yht .ql  % f *4 t *9 hed er  % tepightig)  % mader  % tfe t.ftt (g)  %

 .T e J =r   1975      1            66     0.9     2,549       1.4         2        %, 899     5.3       19,970    1.9   %,##%    S.0       42,449       1,9 8 e :2 rf le%        %            94     5.8     9,r*6       4.0         5      2 0 , ' **  20.ft    29h , 9% J 14.2  21,EN2   19.6     20%,948       13.2 r '*u ry I??t         4           193     2.2   17, JL'       7. 7        M        9,f %I     3.%       $ 4,116   2.6    f.945   f.6       73,$89        3.3
  • s e ". 1974 9 OM 9.4 19,841 1 9 . 83 9 ),3 %'9 2.9 99,29n 4.1 9, we 3.4 B ar, tel 5,2 E Ap s 19*4 6 Ell 2.7 7,5 *,% 3.4 & 48 6 0.4 1%,9 90 0.7 700 0.4 22,6mg 3,e
 's. I D 'S            6           161     1.4   19,643        4.1         6           SF#     G.9       %9,979    2.9   3,642    0.9       6 9. 64 9 w  3.3 Ju7* $176             9            9%     3.8     2,7 M       1.2         9        1.8 18     1.7     I D I ,8V9  4.9   1,974    1.7     I P 3,9 2 7    4.6 3 If l '            9           219     2.7     3.599       1.6         9        4,1nt      1.9     185,931     6.5   4,4 51   3.9     839,$tt        4.0 42;>e- 1976           9           298     1.4     4, 145      2.n         9        6.94F      6.4    172. J P6    8.9   7,2 94   6.2     !?7,329        7.4 te;
  • m er 1976 9 316 p. 7 5,142 2.4 A 7.919 7,3 146,M14 7.9 8.244 7.1 152,Jo4 6.6 nrt ter 1176 9 IM2 12.4 2 4 , 7-90 13.0 9 9,71*, R,8 217,799 6.6 9,797 8.4 16 2,Sa p 7.e feverker 1996 9 44*.I %4.4 92,123 41.0 9 14,771 12,2 707,011 39.9 }9,422 )).A 799,8$2 }4.3 t-ceef*r 19?6 4 MI 4.5 14.5 % 7.2 6 I D,0 tre 9,9 135,944 6.5 10. 9R 5 9.9 133,244 4.$

fatat *4 9%%% 228,4 % 9% 107,92) 2,M I , 3 29 386,479 2,111,753 l l e O

  • W .
                                                                                                                                        ~

l 0 O O: Table 5.22 Number of fish impinged per unit of volume at Unit I and Units 2 & 3 and percent of intake water utilized from the river for Units 2 & 3, Dresden Nuclear Station, December 1975 through December 1976. tJumber of tJumber Impinged /lx10" gal Sampling Unit 1 Units 2 & 3 Differences in fiumber 1 Intake Water Month Dates tiumber flua6e r at Units 2 & 3 from River for Units 2 & 3 l l December 1975 2 45.8 201.2 +155.4 6.1 January 1976 4 8.9 102.3 +93.4 6.5 February 1976 8 12.9 19.8 46.9 6.8

     !! arch 1976                 9      49.0          37.6                 -11.4                     9.7 April 1976                   6      15.7          14.4                  -1.3                    60.1 May 1976                     6      11.1          16.9                  45.0                   100.0 June 1976                    9       4.2          15.4                 411.2                    89.5 July 1976                    9      10.0          40.7                 430.7                    37.0 Au.;ust 1976                 9      13.0          SB.6                 +45.6                    48.1 September 1976               0      17.4          92.5                 +75.1                    84.9 October 1976                 9      47.6         140.2                 492.6                    50.3 tievember 1976               9 ~195.6            407.6               +212.0                     48.0 December 1976                6      24.0        i160.2               +136.2                      6.7 ftonthly Mean                       35.0         100.6                 +65.6                    42.6

Table .5.23 Number, weight and percent abundance of major species impinged on traveling screens at Units 1, 2 and 3, Dresden NucIcar Station, . December 1975 through December 1976. F .smbe r of Ileh Igged/Na t h Speel** 14 P2 1936 ITTC ~ ~ TITE 13 N 1976 19 6 1976 ' Dee Jan f'et. N orth Apr_4l ._]py J wn. July I l ShirlJek herring Nesmbe r 3 123 120 12 0 0 2 6 i weight (q) 90 3,840 2,954 690 0 0 Avg. wt.(gl 305 245 ' 30 30 25 58 0 0 153 el l Clarard she(I Nurber 5,764 21,379 1,255 3,074 204 435 1.117 3,819 wesghtig) 38,91! 277.863 33,033 69,mp3 9,359 17,671 31,673  !!6,186 Avg. wt.(g) 7 13 26 23 44 41 JS 30 Northern pile Number 1 0 0 1 0 3 108 32 Wesqbttgl 595 0 0 860 0 let 6,010 475 Avg. wt.lg) 545 0 0 360 0 63 $4 IS Coldfish Number 2 6 0 5 Ockght(g) 1 3 le 12 245 990 0 605 140 725 2,745 2,095 Avg. wt . 8g) 321 165 0 128 140 242 I5I 314 Carp Number IC 137 3 le 13 IS 39 19 ( wa s . h t ig ) 725 2,6)$ 5,250 22,223 1,460 2,795 11,965 5.665 g Avg. we . tgl 242 264 292 199 112 186 3n7 145 Cnistem *t.inar tSereer 0 t I 5 1 5 17 6 waschttq) 0 5 25 95 12 30 A wa, 125 75 wt. (g) O 3 25 19 12 10 7 13 neerald chiner Number 34 42 99 392 i 167 IIS 45 Walqhtigt IG 320 328 643 1,124 1,05) 625 275 Av1. wt.(g) 30 9 A 7 4 6 5 6 Outllbach Number 0 3 0 0 2 1 4 wal e.h t ig) 1 O 960 0 0 90 to 995 5 Avg. we . (g) 0 32n 0 0 45 40 246 5 Shorthead radhorse Nu*bar 0 0 0 1 le 102 17s ' waaght tg) 0 2 0 0 405 4,925 33,079 34,120 495

  • Avg. wt . (g l 0 0 0 405 3 5,* 3'4 192 248 alack bollhead pierbar 1 19 35 230 56 106 4 14 hr s ght ig) 10 332 955 6,779 1,276 2,486 250 Avg. wt. (gl 30 455 16 28 24 23 29 31 33 Channel retfish N'mie r 2 47 48 62 <>

weight (q) 121 102 Of IIS 2.043 3, 361 3,411 1,418 6,496 3,#35 2,170 Av1. wt . fol ". 4 60 34 55 32 $n 57 26 Wie s t a hegn thwd er 2 is 6 Il 6 2 wasghtiql 2 2 16e 1,44g gis ,!S O 325 Sep Av1, kt.89) 239 Inn en 1 16 F7 0 363 270 195 Creen sunfish Number 3 21 27 79 4 13 22 59 wangh*(g) 75 745 015 755 170 175 450 1,970 n +g , we.41) 25 V, Je 10 4) 3e 20

                                                                                            -                                                       33 O                                                                                 "

r i (D 4 s 4

  'Q/

me 1 se e Ow C a# >

c. o. >
                                                  . e. m. e.         se. e.        e. >.             m. ee.                  .e es
                         .J      eo             oo             eo            oo                                          e. m.         . .          m. m.        e. e.        m. .e.               m.

C em .a m so es ao om 00 o es

                                                                                                                                                                                               .            e. e.

me vv w Oo ao 9m

4. 8%

eaw e. 4 w e, o eee >> eee ea >e.w e. =ee se, e bee m es .0 ee ee, sa .=

  • e e . .e se .e e w eo= o=

e ow e oaw m .m e em , e c .>

                                      .         e.

sen m vs. w h. e es e. >. h.

                                                                                           =e em
                                                                                                                +

e a. e. m e.ce en e. o. e. cw e. m.

                                                                                                                                                                                                     .      e,m oe b                          >                           .e.           e                              o           m              ei                   .=*=                e e            .m
                                                .o e.
                                                    .e
                                                                                                                                                                     =           w                             es.

4 000 .s e w coo ee rs b > w .= .s e eu m emo .ee. coe woem 000 000 000

                 -a A                                                      m                                                                                            em
e. eA c e o e.

m.. e em.

                                                                                                                                                                                                            ..      m.e .e 9-                            O. en.

ce e.m e.

                                                                                                                                                                                                 .             es i                                                                             e ce s

t u .m. L u C.J- b .m

                                 = ee e eu e eoes
                                                > ee o ooo                      ee
p. O w eo **

mo* m eoe me e .e e. eo o.e e. ee

                 &c e mag we w en. e.                           m.
                                                                                         .e 3. em                           a       M .*e
  • b e= .e e r se *.oeea .oeMe o == 9* W ce m

ee e e. su m.

                ,e                             mo m                                                                                                                e. - em ce.

a > .ee e

                                                                                                                                                                                .o.e a              w
                 =

L. a em e e>e ooo eoe eoe m .e ooo eoe e e e= c Pe. u e. == .ie w p. e o e.

                                  . ==                                          m e.o.

e h mN ee o o eoo eow eem m ei e. e m. e c. .,- gp c . c. e. .e e. .

                                                                                                                                                                                                =ce e
                                                                                                                                                                                                              .e. m F

I

                   !              .=           co                                            .e                                                                                 e.

e m

    /                                             "

l ww moe ce ==..p == c e e. o ce ce a e. ooo

e. ;, ew- ee ee ce - e oe e. e me o o v. e ee em f4 a c. e m- ee . c.=.c. wwe c. ceee .ene .o %e e.P.ne% m. es. ce. eu. es ene
                                  ==          Mk                               es            e                                                                                 en.

e .e m a rp r p

e. o e m, em . een eo ce =oe ooo em o e e te e ee wo* .e m m ce ee =. e m ec mc ooo mee
                   =<         ***                                                                                                      cd             *w          me           ee em. mece o'e             ce                                                                                               m .
  • ce
e. w. ce e m .e m

en e w

                                                                               ==            e
                                                                                              .                                                                   ei
                                                                                                                                                                           .e.c ee.                           r e
         ,i==

e-= e e -e u (,; e

                                     -           .~

e C=

                                                                                  .e               e
                                                                                                                 -      -e            --

e

                                                                                                                                                         .e.         ..e e
                                                                                                                                                                                                   .?            e e,                           e             e      .          e           e*
                                                                                                                                      .e .                        e,.e         -.

e, ,r .i e

                                                                                                           ..e.3                                     .e .e.
           -                  osa=
i. ,a .. 3 e. a 6. 3 bua *** e. . a 6. , 3 a. w 2 ***

e. C In-e'e . 1' ' =+2

e. 1
                                                                                            'e .           %'.            'r . 1'
                                                            }E 3.'.r.

i'  %'

         .eA M                   3L >

13<

                                  -v 3

E I' sc

e. 1e.

24>

                                                                               - e 134 2 bv &.D }&
                                                                                             -e                   e E3C 124 R2C E24
                                                                                                                         -e L &   }e.
                                                                                                                                  .&D e     N'
                                                                                                                                                  =t >
                                                                                                                                                       'e .
                                                                                                                                                      -r          .. e L >

2 *b

                                                                                                                                                                               =.:-
                                                                                                                                                                               -e
                                                                                                                                                                                         }r.e f-;>:
                                                                                                                                                                                          .L 5               L C                                                                                       &

Ea< 3 i ar. g3a r. 3 5 C-

         .U.                                                                                                                                     e e                                                                                                                   e b

E

                            -                                                                                         br C                       E b                               $                                                                                   &           T            s
6. 4 T 4 ae 9 a 4 C
                                                                                                                                                                         ==                            K 6              C
  • 6 & tw W 4 A. ==.

C .C 2 en E se .it= e E= o e w 6.

                     .O. s                                                                                                   4:              'C
  • b C E .C e is y it
         %            O L

ss 9 T 6e 6 L e 9 # 6 .It

  • 4 e S S
                                                                         =e                               C          *'         D                                         S N.           te v,. e%

S. f en G e *. 2.*. M C C e

a. * .L,
                            .a.             en              e.

b .e*

                                                                                                                                                 =

C v C e == S M w. e E .es. L Lk

v. c [ E [ b u O en e' U 2 t' C.'

s r- m o I ) == b L f~* 5.99

jl)IjiI O 6y 658 603 104 306 3 l 373 03 184 36 9 u 3, 4,2 4 17 1J 1 1 6* 40e 454 355 404 7 a 272 97 146 22e 9 u 6 2 1J 0 0, 2 6 h7 r 0e9 155 253 000 tT a 195 63 m1a r 5 4~ 7 fl e e g n ip i. it en9 205 732 253 m7 r e1 31 94 05 IT p t 2 1 Is h s 6 F f o h 6 c ee2 941 551 654 r7 r 362 101 48 525 eI a 7 2 6 JTn 0, P 3 u N d t e a7 6 m 9 +. 31F 50I 100 367 459 169 659 4 O a 1 r 9 3, 3, 7 "7, t s 2 1 3 E 6 7 n 050 732 702 323 1 a 392 212 172 036 4J 5 2,1 0,1 15, 3 2 6 P 9 c; 6 0 54 2 703 46 248 7 3 258 36 2 4 21 1 j

  )

7n , d e u n t l g

                                                                 )

g

                                                                             )

i )lg t n. lt q . ll g .

                                                                          )

gig . n rtW it rth it rt W tt rt w it o eh aL eh . eh ( c bg mig

                                       . bg mig uev uav uevmi1u <- r
                                                    . bg            b.s ,

m6 g nwA NwA NwA NwA 3 s m s u 2 b a l e r d

      .                                                   p e                 h               p            r 5                    e                 t              a            e t      l            u              r           t c     l             o             c            a e                   e i p g m

e e h w l a g s O t b s_ u r a i h e r _s t a L W F T . I V. O ll ll1II1t l l!

  ~                                                        ~                                                       wJ Table 5. 23         (continued)                                                                                     .

rstamatsd Nied= r of F i *.h Img*1ple g mth Spectee n6 Ateg m6 ms i .1., v76 rere ,e er Set +t oct Nov 8-c Total Grand Total Bleagit! Numlie r 29 15 43 907 175 1,372 1.2 t*- s 1h t. (g l 9 15 155 451 Av1 wt.fg) 13.260 1,565 21,663 0.9 32 10 10 15 9 16 L4rge wsth been th:rdw r 1 4 2 11 9 115 0.1 if*ightfq) 10 290 294 1,980 0 10,401 0.5 Avg. wt.(g) 10 73 145 180 0 90 White crappie Nur+c r 16 8 23 2 le 137 e.1 heightigt 505 560 7e5 1, Iso 165 9,353 0.4 Av1. Wt . trl) 32 70 50 51 91 69 Freshwater drum Ww=be r 143 66 109 559 39 1,312 Weight (q) 1.1 3,220 2,995 3,280 20,120 1,$85 Avg. Wt.(g) 23 47,532 2.1 45 34 40 41 36 UI 01 H

Shorthead redhorse was the only species of fish impinged'

           = the- population of which was not dominated by young individuals.

Over 98% of the .shorthead redhorse were impinged in April, May and June which coincides with their spawning _ period (Mansueti and  : Hardy 1967; Carlander 1969). Length range and average weight mea- 1 surements (Taole 5, 23) indicate most individuals impinged in April, May and June were adults. ' A monthly estimate of-the total number and weight of fish impinged' on the traveling screens ist the Dresden Station was calcu-lated on a volumetric basis using the formula: Estimated Total Number i Volume Cooling Water Total Number or = or Weight collected / Sampled During Col-Weight Impinged / Month Month lection Monch/ Total Volume Cooling Water Utilized by Station / llk Month This formula was. applied separately for Unit 1 and Units 2 & 3. Using -this -f ormula, variability in cooling water utilizetion by the station, theoretically af fecting impingement rate,- is directly con-sidered. An estimated 517,535 fish weighing 95b2 Kg (21057 lbs)

          - were. impinged on the traveling screens at the Dresden Station _from l
          - December 1975 through December 1976 L(Table 5. 24),                            Of these totals,

_94% by number and 91% by weight were impinged on the screens at L L Units 2 &.3. Numerically, major species impinged were: gizzard shad, j 92%;_ carp, 1.2t; and bluegill 1.0% - (Table 5. 25). By weight, major species impinged were: gizzard shad 81.0%; shorthead redhorse, 3.3%;

           . carp, 3.2%; channel catfish 2.0%; and freshwater drum, 1.9%.                               An      lh estimated 72% of the total number of fish were impinged in November, i

l I l- -

n <~s - N U. Table 5 24 Estimated Unit 1, total Unitsnumber and weight of fish impinged or traveling screens

  • at 2 T.

3 December 1975 through December 1976. and combined units at Dresden Nuclear Station, Unit 1 Units 2:3 Units 1,2,3  % of Total Month Number Weight (g) tJumbe r We i qh t (g ) Humber Wei gh t (g ) Number Weight [gT December 1975 1,347 52,020 48,636 338,305 49,983 390.325 9.7 4.1 January 1976 500 47,957 140,1?2 1,924,364 140,682 1,972,321 27.2 20.6 February 1976 691 62,735 6,115 201,244 6,806 263,979 1.3 2.8 March 1976 2,790 100,486 10,636 300,471 13,426 400,957 2.6 4.2 April 1976 1,164 37,587 2,354 76,414 3,518 114,001 0.7 1.2 Hay 1976 846 49,544 4,544 310,772 5,390 360,316 1.0 3.8 June 1976 315 9,265 6,249 344,809 6,564 354,074 1.3 3.7 i July 1976 799 12,465 15,559 503,411 16,358 515,876 3.2 5.4 August 1976 993 15,000 23,955 595,607 24,948 610,607 4.8 6.4 Spetember 1976 1,264 21,528 29,917 554,053 31,181 575,581 6.0 6.0 October 1976 3,650 85,189 31.649 499,259 35,299 584,439 6.8 6.1 November 197G 15,299 303,029 114,003 2,318,134 129,302 2,621,163 25.0 27.4 December 1976 1,838 84,639 52,240 703,375 54,078 788,014 10.5 8.2 Total 31,496 881,444 486,039 8,670,209 51'i,535 9,551,653

                             '"otal weight                                                                                                                                                             ,

(Ibs) 1943 19114 21057 . t e e

                                                                                                                                                                               ,   e
   - Table 5. 25 .         Estimated -number and weight ofl fish of major spec %s impinged on traveling. screens at Units 1,. 2 and 3, Dresden Nwe '.ca r d ta t ion ,

December 1975 through December 1976. c. F.st li. th 19 rs . 19 . 1776 'Nu=@ner 1976 of Fleh I ginjep~T976 1976 avis avis __speeles Dec Jan Feb March April May June July skiplock herring Numfrer ' 27 el5 44) 41 0 0 7 22' Welyhtig) ett 24,45* ' 10,900 2,331 0 0 1,034 901 Cissard shad Number 52,400 134,8?2 4,611 10,385 1,020 2,254 3,706 14,040 Watghttg) 352,e27 1,733,522 121,493 236,091 93,300 49,295 107,359 427.154 2 Dorthern pike Number 9 0 0 3 0 16 366 lit Wesghtig) 5,318 0 0 2,905 0 974 20,37} 1,74f

                                                                                                                                                                            .l Goldfish               Number                    '18                 39                   p             17          $           16          61        44 Weightfal             2,227              6,306                     0        2,044         700       3,756       9.305      7,645 Carp                    Number                      27                64                  66 395         45            ft        132       143 Weig5t(g)             6,591           . 17,039             19,373         75,078       7,300        9,108     40,559     29.827 Colden shiner        'pueber                         O'                6                   4            17           5           16 tsalghtig) 5S        23     ,

0 32 92 321 600 155 424

 ~

276 . twetald shleer Number 9 217 355 334 1,519 Walghttq) 845 399 165 7 91 2,038 1,210 2,240 5.620 5,456 2,319 1,011 Ostilbark Numiser 0 19 0 0 s0  ? 14 4 I ble igtet (q) O 6,115 0 0 450 207 3,339 le Shorthead redhorse Number 0 0 0 70 waaghtig) 3 528 603 7 0 0 e 1,363 24,625 171,389 115,661 1,020 slack bastlhead Number 9 121 129 946 2a0 " ' neluhtig)

                                                                                                                                           %49          27        51 91           1,987               3,568        22,902       6,3ne       12.981         047     1,673 f

Channel catfish Jumber it 299 362 209 225 627 4 We*.3h t(q) 1,445 346 301

  • IS, Ins 12,402 11,524 7,C10 36,197 19,779 1,973
  • Nhtte base 'PsnLer le RIS 22 a 37 le 7 7 Walghtig) 3,271 9,872- 3,007 2 s72 0 1,684 1,831 1,415 Creen uunfiv% w erber 27 1 34 100 267 Aelsht(g) 20 52 15 217 6#2 4,74% 3,007 2,551 950 907 1.525 7,243 alsegili Number 54 198 199 128 40 52 uaiehtig) 2,273 3,790 31 133 3,320 2,595 740 3,057 2.271 5.055 Largemouth. bete pumher 44 172 114 64 10 5
                                   *:e sqht (gl           4,000                                                                                         14        22 20,974               7,970              703        150           26     1,000     5,147 khite crapple         Numbar                       10              10C                   52            27         35           le          #4        40 M* 4 g' a t tg l       2,500-            13,In5              5.017          2,179       I,46'          337      2,964      1,765 Feshwater drum         Numbar                       18              6%6                290             389         10             0         81      489 Walghtig)              I,227            41,605              13,854         10,220          525            0     6,847     2,794 Total             puebar
                                  *ff.t(gl l
            ~

% . . - .- _ _ _ .._. m

                                                                                              ~

_sh , e Table 5.25 , (continued) , 1..

                                                                                                                                                                                           )

1

                                                       ~            Estseated Homeba t of Fath Impi mmed/ Mrtet h                                                                  '*
                   .                                      19n            ~1576          106            aus       ~I176                                   Percent of

_,Speclas Aug ' Sept Oct Nov Dec Total-(Ibel Crend Total

  • Stipjach herrisq Number 1,852 354 254 . 384 9 4,199 I

Waightts) 0.8 11,#62 5.095 '4,125 11,242 0 72,767 (160) 9.8 Glasard ehed Number 20,444 27,726 31,100 118,043 52,453- 476,038 Weightfq) 515,210 .92.9 522,019 539.775 '2,317,711 726,P13 7,739,965 417,063) 81.e 6 t

             . Northern pike        - Number                     3             4            0              0          0             519                       0.1 weight (gl          276              361              0              0          0      31,953         (70)              9.3 Coldfish                Numbar                30             103            21           233                          657 Waaghtig)
                                                                                                                   '63                                        9.1 5,276'         8,403'        2,250          11,098       1,542        60,572         (1343             0.6
                                                                        ~

Carp Mumber 969 2,213 $a9 1,593 42 6,376 1.2 weightig) 27,655 16,273 4,142 54,903 0,950 310,079 #604) 3. 2 J1 Coldan shiner Nunber 0 0' .O le 9 130 4#.1 I weightig) 0 e 'O 66 0 1,426 (3) 40.3  ! ruerald shiper Nmmber 121 46 14 05 U 21 3,932 0.8 waightfq) 690 2A5 78 525- 156 21,512 (4 7) 0.2 Out!!back Manber 21- 4 18 115 0 210 Weightig) 1,397 (9.1 l $9 482 3,656 0 15,702 'E15) 0.2 *

Shorthand redhorse Mmmber 3 4 4- 3 0 1,225 9.2 weightig) 500 $,084 214 210 0 316,891 (697) 3.3
             'mfack bullhead          Mwmber               le                 3            0            36           9 waightig)       1,134                 39             0        2,754 2,143                          9.4 6      54,252         (1*0)             0.6
Channel cetrich 'pueber 486 106 209 . 823 130 4,212 ,0.9 i Weeght(g) 18,15% 5,a56 6,714 -34,000 13,776 192,624 8425) 2,9 White base Mueber O 8 11 33 5 273 9,1 i Weight (g) 'O 95 2,643 5,344 677 31,913 (70) 9,3 ,

Green sunfloh pnnbar 79 23 46 999 70 j 2,098 9.4 ve4 3%ttg) 1,914 532 589 20,475 1,194 46,25e t (102) e,5 } blurgilt wucher toe 57 154 2,974 911 5,063 1.9 waighttg) 3,224 Se9 1,611 43,475 t,151 80,156 (177) 9.e Largeeouth base womber 3 . 15 7 34 e 526 4.1 j wasshtig) 34 1,103 1,036 6,492 0 48,535 (187) 9.5 " 3 White errpple ~ humber' 55 34 t 50 15 le 544 9.1 Wesghtig) 1.741 :2.329 2.518 3.069 - 959 40,44a (89) 9.4  ! Freshwiter drum Member 413 251 389 1,833 203 4,997 ' O.9 - Weightfq) .II,In3 11,344 18,714 65,9E7 0,255 te5,50s t 7409) 1.9 Toest Muaber , walmhtig) 513.065 99.8- , 9.250,618 L (20,3g2) 96.6 a i a - - - -

       ,      _ _ _ .      _~      . .      ..

December and Janunty. Lowest impingement rates occurred in April and May. In order to provide some comparative basis for assessing _the_ impact of impingment losses in the Kankakee, Des Plaines and Illinois Rivers-by the operation of the Dresden Station, an estimate of standing. crop in lbs/ acre for some important fish species is pro-vided - (Table 5. 26) Information used for deriving standing crop estimates comes-from Carlander (1955) and collection data obtained during DresdenLaquatic monitoring' studies from 197 4-19 7 6 (Table 4.10) . In using the data from Carlander, there was a selection process 1 toward the kinds of impoundments (mainstream), geographic location, and species that would be most comparable to the rivers and pool lll at Dresden. . In making final estimates for: the Kankakee,-Des Plaines and. Illinois Rivers, knowledge of selectivity and limitations of fish- collection -gear used was taken into consideration. There is no commercial or sport catch information from the;immediate area of the Dresden Station. The percentage of weight

           .estimateduby Muench (1964) for the Kankakee River sport, commercial,
           .and? f orage fish was utilized-(Table 4.3) for estimation of stand! < ,
         ,  crop.- The contrast in standing crop of the Kankakee and Des Plaines Rivers.(240 vs1 98 lbs/ acre)_ is an indication of the negative ef fect 1=

of poor-water quality on both species diversity and upon food sup-plies. This effect is obscured somewhat in standing crop estimates for the Illinois River due to the beneficial impact of the Kankakee River on the-fish population in the Illinois River. Some locations O i- 5.66

Table 5. 26. Standing crop of fishes (Ibs./ acre) for reservoirs, from Carlandera compared with estimates for tho.Kankakee, Des Plaines and Illinois rivers.b Reservoirs Kankakee Des Plaines IllinoisC Impingement Species Mean Range River River River Loss (lbs) Gizzard shad 204 26-468 70 25 60 17063 Carp (incl. goldfish) 73 4.6-233 50 60 70 818 Suckers 38 0.6-2175 40 5 20 732 Duffalo (all spp.) 161 0.5-10,( 15 3 10 NA Bullhead (all spp.) 60 0.1-292 1 2 1 120d Channel catfish 1, 4-57 10 0 P 425 White bass 3 0.1-23 3 0 1 70 Largemouth bass 19 0.1-59 7 1 9 107 Crappies (all spp.) 31 1-85 3 0 2 89e Freshwater drum 20 -80 10 2 5 409 Misc. species NA NA 30 5 20 1234

g To ta l 240 98 202 21057
 'os
 -a  a Carlander, K.D. 1955.

b l Estimates based on three years of fishery surveys, 1974-1976. c The Illinois River stations represent either Kankakee or Des Plaines river water. e imp i ngement loss for black bullhead only. Impingement loss for white crappie only. I l l

sampled in the Illinois' River during the fish monitoring studies in 1974-1976 were in the area influenced by the Kankakee River, as has been discussed in Section 4.3.2. A comparison of the estimated standing crop of fish in the source waters and weight of various species impinged on the , traveling screens of the Dresden Station is presented in Table 5 26..

      - It is difficult to precisely assess the impact of impingernent loss on- the standing crop of fishes in these source waters due to the differences which exist in their estimate among the three rivers.

It is also compounded by the vagueness regarding the full extent . to which fishes f rom the cooling pond cor. tribute to the total im-pingement loss at-the station. As previously indicated in this section, the contribution may be substantial. However, when consi- llh. dering the potential- number of acres which could be affected due to impingement loss, the impact on the' standing crop in the river system adjacent to the. Dresden Station appears to be minimal. As

       -indicated.in Table 5.23,       most of the fish impinged-during-tht. Study-period wer e young-o'f-year individuals which have high mortality

' rates under natural conditions and for- which the greatest number of individuals are present.- Larger fish which represent the mature . individuals- and the reproductive potential of that species consti-

      - tuted only-a small proportion of the impingement. loss.

1 0 5.65

6.O- CONCLUSIONS A fish. egg and larvae study and a fish impingement study were  ; conducted to document the composition and abundance of drifting fish

   . eggs and larvae in the Dresden Station intake water and in adjacent Kankakee and DesPlaines Rivers and the fish impinged on the traveling screens at the Dresden Station. Data gathered from these two studies provided useful information for essessing the effect of the cooling water intake system on the fish community adjacent to the station. From these two studies as well as other studies con-ducted in the DesPlaines, Kankakee and Illinois Rivers, the following conclusions are presented:
1. As a result of man's activities, ecological changes have occurred in the Illinois and DesPlaines Rivers which have altered O the habitat and water quality conditions of these two rivers. As a consequence, these rivers have become severely degraded and the
   -fish populations in them consist primarily of pollution-tolerant species. Water quality and habitat are better in the Kankakee River which supports a higher diversity of fish, the most dominant of which are rough fish.
2. Commercial fishin5 has not been recorded for the Dresder.

Pool and is not permitted in the Kankakee or Des Plaines Rivers.

3. Sport fishing has not been recorded in the Dresden Pool-or Des Plaines River in any of the more recent fishery studies but has been observed in the Kankakee River in the proximity of the Dresden Station.

J . 6.1

~

4. The. fish population in the vicinity of the Dresden Station is dominated by rough fish such as gizzard shad, carp and M goldfish. Game species represent a small proportion of the total population and occur primarily in the Kankakee River.
5. Eggs of most fish species occurring in the vicinity of the Dresden Station are non-buoyant and/or adhesive and do not normally occur in the drift.
6. The majority of the fish larvae collected in the study area in 1976 were composed of roug.. fish, primari2y carp, members of the Clupeidae family (probably gizzard shad) and suckers, followed by forage species such as logperch and minnows. When combined, these larvae constituted 90% of the total estimated numbers in this area of the Kankakee River, 93% in the DesPlaines River and 90% taken into the station intake.
7. The area in the Kankakee River across from the intake (Station 6) generally produced the largest numbers of eggs and larvae during the study period which was attributed to the favorable spawning area near the collection site. This area appears to be little affected by station operation.

B. The i= pact of removing from the fisheries an estimated 32% of the. drifting larvae from the Kankakee River and to a lesser extent from the DesPlaines River on the population of a particular species or in the vicinity of the Dresden Station cannot be quanti-fled. However, the loss of an estimated 55% of the gizzard shad larvae from the drift in the Kankakee River has apparently not had a significant impact on the gizzard shad population in the Kankakee River.

6. 2

I

9. Most of the fish impinged during the study period were es young-nf-year individuals which have high natural mortality rates.

U Larger, mature individuals which represent the reproductive poten-tial of a species constituted only a small proportion of the impingement loss.

10. An appreciable proportion of the fish inpinged at Units 2 & 5 may have come from the station's cooling pond.
11. An estimated 21067 pounds of fish were impinged on the intake screens at the Dresden Station from December 1975 through December 1976. The me3erity of the fish impinged by number and weight were rough fish. Combined, gizzard shad and carp comprised 03X of the estimated number and B4% of the estimated weight of impinged fish.
12. The stand;og crop of fishes in the Desplaines, Kankakee
    )

and Illinois Rivers is composed primarily of rough fish such as gizzard shad, corp and suckers.

13. Assessing the impact of impingement loss on the standing crop of fishes in the Kankakee, Des Plaines and Illinois Rivers in the vicinity cf LresJan Station is difficult because of the differences in standing c.op among these rivers, and the ambiguity regarding the extent to which the standing crop in each river is affected. Impact assessment is further complicated by the uncer-tainty as to the extent to which fishes from the cooling pond contribute to the total impingement loss. When considerinE the potential number of acres which could be affected due to impingement loss, the impact on the standing clop in the river I

6.3

syste= adjacent to the Dresden Station appears to be minimal. Most of the fish impinged during the etudy period were young-of- 9 year individuals which have high mortality rates under natural conditions and for which the greatest number of individuals are present. Larger fish which represent the mature individuals and the reproductive potential of that species constituted only a small proportion of the impingement loss.

14. A review of the bathymetry in the vicinity of the intake reveals that the intake is so located as to cause the minimum effect possible on the productive capacity of the river.

In summary the intake, as it is designed and operated has no detectible adverse affect on the fish population in the DesPlaines or Kankakee Rivers, even when assuming a worst case condition lll wherein all of the intake water originates in the most productive of the two rivers, the Kankakee. O , 6.4

7.0 REFERENCES CITED O Alberico, R. A. 1975. Zooplankton Studies. Pages 87-119 Aquatic monitoring program for the construction phase 'Ln of the LaSalle County Station, 1974. (IBT Ho. 4508). First annual report by Industrial BIO-TEST Laboratories, Inc. to Commonwealth Edison Company, Chicago. Chapt. 4. M pp. Beer, L. P., and V. O. Pipes. 1969. A practical a,pproach to the preservation of the aquatic environment: 2he effects of discharge of condenser water into the Illinois River. (IBT No. W 7178). Report by Industrial BIO-TEST L-boratories, Inc. to Commonwealth Idison Company, Chicago, Illinois. 69 pp. Butts, T. A. 1975. Nitrification effects on the dissolved oxygen resources of the Illinois waterway. In: Water--1974: II. Municipal wastewater treatment. AmerTean Institute of Chemical Engineers, Symposium Series 71: 38-43. Carlander, K. D. 1955. The standin cro J. Fish. Res. Bd. Canada. 12(4 1534p of fish in lakes. 570. Com=onwealth Edison Company. 1965. Dresden Nuclear Power Station, Unit 2, plant design and analysis report, Vol. III, (AEC C Report Docket No. 50237-86), Exhibits III-5-2, 3 Commonwealth Edison Company. 1974. Evidence to support a 316(a) demonstration for Dresden Generating Station, ILOx3 349 Devyatkin, V. G. 1970. The effect of power station hot water on phytoplankton of the Dam Reach of the Ivan'kov Reservoir. Hydrobiol. J. (Engl. Transl. Gidrobial Zh.) 6(2): 31-35. Equitable Environmental Health, Inc. 1976. A five-month study of fish eggs and larvae of the Kankakee and Des Plaines rivers in the vicinity of Dresden Station. Final Report. 42 p. Forbes, S. A., and R. E. Richardson. 1920. The fishes of I1111tois. Second Ed. State of Illinois Natural History Survey Division. 357 p. Great Lakes-Illinois River Barins Project. 1961. I. Interim Report-Illinois River Basin, comprehensive study. U. S. Public Health Service. 83 p. Grzenda, A. R., and Mr. L. Brehmer. 1963. A quatitative method for the collectic,n and measurement of stream periphyton. Limnol. Oceanogr. 5:190-194. 7.1

l Hynes. H. B. N. 1970. The ecology of running waters. Toronto Press, Toructo. 555 pp. Univ. $ Illinois Division of Waterways. 1967. Report for recreational development Illinois River backwater areas. Summary Report. Dept. Public Works and 21dgs. 87 p. Illinois State Water Survey . 1972. A water quality investigation of the upper Illinois Vaterway, Preliminary Report, Water Quality Section. Inc. Preoperational environmental Industrial Bio-Test monitoring Laboratories, (thermal) of the Illinois River near Dresden Nuclear Power Station, July 1969-June 1970. Industrial Bio-Test Laboratories, Inc. Environmental neonitoring (thermal) of the DesPlaines, Kankakee, and Illinois Rivers near the Dresden Nuclear Power Station, January - December, 1972. Industrial Bio Test Laboratories. Inc. Environmental monitoring (thermal) of the DesPlaines, Kankakee and Illinois Rivers near the Dresden Nuclear Power Station, Januar/ - December,1973. t Industrial Bio-Test Laboratories, Inc. Environmental monitoring the Dresden Nuclear Power Station, January - December, 1974. Johnson, B. G. and L. P. Beer. 1972. Environmental monitoring (thermal) of the DesPlaines, Kankakee and Illinois Rivers near Dresden Nuclear Power Station, Industrial Bio-Test Laboratories, Inc. Kofoid, C. A. 1908. Plankton Studies. V. The plankton of the Illinois River, 1894-1899. Part II. Constituent organisms and their seasonal distribution. Bull. Ill. State Lab. Natur. Hist. 8: 3-360. Latvaitis, P. B. 1976. Fish eggs and larvae study. Pages 219-277 Ln_ Operational anvironmental monitoring in the Mississippi River near Quad Cities Station, February 1975 through January 1976. Annual report by NALCO Environmental Sciences for Commonwealth Edison. Co., Chicago, Illinois. . Lauer, G. S. , W. J. Waller, and D. W. Bath. 1974. F1sh egg and larvae- entrainment by the Indian Point Power Plant on the Hudson River estuary. Paper presented at the N.E. Div. Amer. Fish. Soc. Meeting, February. Hansueti, A. J. , and J. D. Hardy. 1967. Development of fishes of the Chesapeake Bay region. Part I. An atlas of egg, larval, 3 and juvenile stages. Nat. Resources Institute, Univ. of W Maryland. 202 p.

                                           . _ _-__ __st a _ __. _ _ _ ___ _ _. _ _ _ __ _ _ _ _ _ ___

l Marcy, B. D., Jr. 1971. Survival of young fish in the discharge canal of a nuclear power plant. J. Flah. Res. Bd. Canada 28:1057-1060. May, E. B., and C. R. Gasaway. 1967. A preliminary key to the identification of larval fishes of Oklahoma, with particular reference to Canton Reservoir, including a selected biblio-graphy. Okla. Dept. of Wild 1. Conn. Contri. No. 164 of Okla. Fish. Research Lab., Norman, Okla. 33 p. Mills. H. B., W. C. Starrett, and F. C. Bellrose. 1966. Man's effect on the fish and wildlife of the Illinois River. Illinois Natural History Survey. Biol. Notes No. 57. Mitchell, W. D. 1957. Flow duration of Illinois streams, Divisio. ' of Waterways. U.S. Department of Interior, pps. 73, 74, 83, 84. Muench, B. I. 1964. Kankakee and Iroquois river basins. Pages 25-35 g Inventory of the fishes of four river basins in Illinois 1963 Special Fish. Rept. No. 3, Ill. Dept. Cons. Nalco Environmental Sciences. Environmental monitoring (thermal) of the DesPlaines, Kankakee and Illinois Rivers near the Dresden Station, January - December,1975. O Nelson, E. W. 1878. Fisheries of Chicago and vicinity. 783-800 in Report of the U.S. Commissioner of Fish and Fisheries Pages for 1875 1876, Part 4, Appendix B. Patuiski, D. E. 1975. Fisheries studies. In Aquatic monitoring program ft,r the construction phase of tFe LaSalle County Station 1974. First annual report by Industrial BIO. TEST Laboratories, Inc.,6.to Commonwealth Illinois. Chapter 49 p. Edison Company, Chicago Sp ark s , R. E. Aquatic biological investigations. Pages '33-35 in Proceedings of the Illinois River workshop. Spec. Rept. IIo. 4. Vater Resources Center, Univ. of Illinoi s, Urbana, Illinois. Sparks, R. E., and W. C. Starrett. 1975. An electrofishing survey of the Illinois River 1959-1974. Illinois Natu. Hist. Survey. Bull. Vol. 31, Art 8: 317-380. Starrett, W. C. 1972. Man and the Illinois River. Pages 131-169 M River ecology and man. Academic Press, New York. Starrett, W. C. 1971. A survey of the mussels (Unionacea) of the Illinois River, a polluted stream, Natural History Survey Division, Dept. of Registration and Education, State of Illinois. Stinauer, R. 1974, 1973 fishery survey of the Illinois River ard backwater areas. Ill. Dept. Cons., Spec. Fish. Rept. No. 45 10 p. 7.3

l I Taber, C. A. 1969 The distribution and identification of larval a W fishes in the Bancombe Creek arm of Lake Texoma with observa- ' tions on spawning habits and relative abundance. Ph.D. dis-sertation. Univ of Okla. , Norman. 120 p. Tho=pson, D. C. 1925. Some observations on the oxygen requirements ' Ill. Nat. Hist. Sury. Bull. of fishes in the Illinois River. Vol.15, Art. 7:423-437. United States Atomic Energy Commission. 1973 Drc'ft environmental statement related to the Dresden Nuclear Power Station Units 2 Docket No. 50-237 and 50-249, pp. 2-31 and 5-22. and 3 United Stated Environmental Protection Agency, Development document for proposed effluent limitations guidelines and new source performance standards for the steam electric power generating point source category, March, 1974 and December, 1976. 1963. Fish and wildlife United States Fish and Wildlife Service. as related to water quality of the Illinois RiverU.S. basin. Dept. Special report on fish and wildlife resources. of Interior. 100 p. , 1973. Final report of Westinghouse Env!ronmental Systems. aquatic monitoring program for Braidwood Station. Villiams, L. G. 1966. Dominant planktonic rotifers of major water-11383-91. ways of the United States, Limnol. Oceanogr. Winn, H. E., and R. R. Miller. 1954. Native post-larval fishes of the lower Colorado River basin, with a key to their identification. California Fish and Game. 40(3):273-285

                                               . 1968. Upper Illinois                Pages River tributaries and the 5-33 in Invento;y of the               fishes DesPlaines River basin.                                                                                     Rept. No.

of nine river basins in Illinois 19 7 Special Fish 25, Ill. Dept. Cons. __- . 1969. Handbook of freshwater fishery biology. 752 p. The Iowa St. Univ. Press. , Ames. Fisheries studies. In Aquatic monitoring

                                                . 1976.                                                      ~

program for the construction phase o7 the LaSalle CountySeco Station 1975. Laboratories, Inc. , to Commonwealth Edison Company, Chicago, I111noirs. 79 p.

                                                  . 1977. A one-year fishFive                               impingement study at Dresden Tables.

Station. Methods and Data. 9

   .~          _ - . . , _ _ _ , _ _ _                                                              - - _ .            _}}