ML20076L186

From kanterella
Jump to navigation Jump to search
Rev 1 to Improved Dynamic Vacuum Breaker Valve Response for Quad Cities 1 & 2
ML20076L186
Person / Time
Site: Dresden, Quad Cities, 05000000
Issue date: 09/30/1982
From: Bilanin A
CONTINUUM DYNAMICS, INC.
To:
Shared Package
ML17194B633 List:
References
82-7, 82-7-R01, 82-7-R1, NUDOCS 8307190074
Download: ML20076L186 (29)


Text

^s

-' - 'N C.D.I. TECH NOTE NO. 82-7

/ \

\

~

/ e bdrm

! (Of1Tdirimh i i

i x PROGRdif I

\ \ %/,/

w'

' x_ /'/

IMPROVED DYNAMIC VACUUM BREAKER VALVE RESPONSE FOR QUAD CITIES 1 & 2 Revision 1 Prepared by CONTINUUM DYNAMICS, INC.

for GENERAL ELECTRIC COMPANY September 1982 l

8307190074 830712 PDR ADOCK P 05000237 PDR

C.D. I . TECH NOTE NO. 82-7 IMPROVED DYNAMIC VACulN BREAKER VALVE RESPONSE FOR QUAD CITIES 1 & 2 REVISION 1 PREPARED FOR GENERAL ELECTRIC COMPANY i

175 CURTNER AVENUE SAN JOSE, CALIFORNIA 95125 UNDER. PURCHASE ORDER NO. 205-XJ102 BY CONTINUUM DYNAMICS, INC.

P.O. BOX 3073 PRINCETON, NEW JERSEY 08540 APPROVED BY R

ALAN J. BILANIN PRINCIPAL-INVESTIGATOR SEPTEMBER, 1982 m e --

7v y9 =y

l 1

DISCLAIMER OF RESPONSIBILITY ,

Neither the General Electric Company nor any of the contributors to this document makes any warranty or representation (express or implied) with respect to the accuracy, completeness, or usefulness of the information contained in this document or that the use of such infoonation may not infringe privately owned rights; nor do they assume any responsibility for liability or damage of any kind which may result from the use of any of the information contained in this document.

I

SDMARY Improved plant-unique expected and design vacuum breaker impact. velocities have. been calculated for the Quad Cities 1 and 2 plants.

The valve displacement time history was predicted using a valve dynamic model which takes credit for the reduction of hydrodynamic torque across the vacuum breaker as a consequence of valve actuation. Expected vacuum breaker actuation velocities are reduced by 217. over a prediction which does not take credit for hydrodynamic torque reduction.

l I

SUMMARY

OF THE METHODOLOGY USED TO DEFINE PLANT-UNIQUE WETWELL TO DRYWELL MARK I VACUUM BREAKER FORCING FUNCTIONS FROM FSTF DATA During the Mark I FSTF test series, wetwell to drywell vacuum breaker actuation was observed during the chugging phase of steam blowdowns. As a result of this observation, a metho-dology was developed which can be used to define the loading function acting on a vacuum breaker during chugging (Ref. 1).

The methodology developed uses FSTF pressure ttme history data and adjusts the vent system and wetwell pressures to account for plant-unique geometry. For plants with internal vacuum breakers, the most critical parameter controlling the magnitude of the vacuum breaker forcing function is the drywell volume per vent area. Vacuum breaker forcing functions are specified as a time histery of the differential pressure across the valve disc.

The steps taken in the development of the plant-unique forcing function model are shown in Figure 1. Step 1 involves the development of analytic dynamic models for the unsteady motion in the steam vent system (see Figure 2), at the steam water interface (see Figure 3) and in the suppression pool (see Figure 4) assuming that the condensation rate at the steam water interface i e, known. The dynamics in the vent system are assu=ed to be governed by one-dimensional acoustic theory and jump con-ditions across the steam water interface are the Rankine-Hugoniot rela:icns. A one-dimensional model of the suppression pool was developed which acetunts for compression of the wetwell airspace

-l l

l

STEP Develop a dynamic model of the vent system, steam water inter-I f ace and pool slosh with the condensatic' rate of the inter-f aee unknowr..

p 2 Use measured drywell pressure to determine the condensation rate.

p With the condensation rate 3 predict unsteady determined, pressures a t other vent locations to validate the model.

u Use the condensation source of the vent exit to drive dynamic 4 models of Mark I plants to determine unique vacuum breaker forcing functions.

i Figure 1. Steps in determining plant unique vacuum breaker forcing functions.

L i

3

, - ,_ , - - , - - - - - - - - . _ . . - , , - - , . - - , , , , _ , - - - , , ~ , . _ , . ~ ~ , . , , , , ~ , -

10

- Drywell External Vacuum - --

Breaker Piping _ 9_- - Jet Deflector Plate I \ , __

8 -

Main Vent l ll 2 . . . .

7 Wetwell l 6 l 5 l 4 Airspace -- -- --

12 3 2 I Wsm  % ~ ~

Downcomers Fig :e.2. Schematic model of the vent system depicted by 12 dynamic components.

t i

i l

l l

4

+

  • T r

l i

1 s

i s

Steam Side

  • s u Steam Water a Inferlaciii ~

i

-u*

dh, Water Side di Figure 3. Details of the steam water interface.

l l

l l

i 5

b jWetwell Airspace a /

  • A  ;
p

~~ _ __ - =- Pool a o A

u, H

h t -.

h I

u w

hw a

X V 9 y

-a ,

u= O i

Figure 4 Details of the pool dynamic model around each downcomer.

c

. - . . . - - - ~ ,. .. _ _ . - -

with the lowering of the steam water interface in the downcomer.

Assuming a unit condensation source in frequency space, a trans-fer function is then developed between the condensation source and the pressure in the drywell. Once this transfer function has been established, the condensation tbse history at the steam water interface can be extracted from a measured drywell pressure time history which is step 2 in Figure 1.

The model developed permits validation (step 3 in Figure 1) provided that an additional pressure time history, at another tocation in the suppression system, is available. With the con-densation rate determined at the vent exit using a pressure time

'nistory from the drywell, the pressure history in the ring header vas predicted and compared against measured data. The comparison was very favorable (Ref. 1).

I: order to predict plant-unique vacuum breaker forcing r: r - 'ns . the key assumption is made that the condensation rate

- t faci'.ity independent quant it y . This assumption is supported

,- ;he observation that the condensation rate is fixed by local nditions at the vent exit; i.e., steam mass flow rate, non-

. d,. a s i'al e s and thermodynamic conditions, and that these-local

'. .ditions ea ry slightly be tween plants . Using this condensation 4:e, the forcing function parameters given in Table 1 were used

_s cempute expected and design loads across the Quad Cities 1&2 "acd.:m breakc rs (Ref. 1).

L

TABLE 1 Forcing Function Parameters for Quad Cities 1 & 2 Value Used Parameter In Computation

  • Vent /pcol area ratio 0.045 Drywell volume /=ain vent 413.62 ft**

crea ra:io

'Si, ven area /dcwnce=er area- 0.99 2 .'r. ven: length 37.32 ft Heuder area /downce=er area 1.47 Header leng:h 15.0 ft Dewnc =er area 3.01 ft2 Jawncc=er length 10.8 ft fubmerg nce head

. 3.67 ft water

- modelcd plant is FSTF C r , :p 1 calue used even though Quad Cities 1 & 2 n' s L 91. . Et.

SU:CGRY OF THE METHODOLOGY OF THE MARK I/ MARK II VACUUM BREAKER VALVE MODEL (INCLUDING HYDRODYNAMIC EFFECTS)

During the Mark I shakedown tests, the vacuum breaker displacement time history was recorded. Use of a simple single-2 degree-of-freedom valve model resulted in large overly conserva-tive. predictions of the resulting valve dynamics. In an effort to reduce the conservatism in this test series, and additionally to reicx the prediction of valve impact velocities in expected

'brP :: dcwncorer-counted applications during chugging, a metho-d ; 1 c ;.c was developed which uses the differential forcing function a ct n :he vacuum breaker (computed by the vent dynamic model) rn includes the effect of torque alleviation as a consequence a: valve flew (Ref. 2). With the valve in an open position,

'e pressure difference across the valve is not the pressure dif-farence felt by :he valve disc, because of flow effects across

'r arcn talve disc. This reduction in hydrodynamic torque is ri:Artd '- the following:

. .  :.c. ear analysis of the pressure field on either side c: . '. e closed valve permits the solution for pressure I ant: .eiocity in the vicinity of the valve disc without

.f1:u.

2. The flow effect is modeled as a mathematical source /

sink around the circumference of the open valve.

3. The local pressure and velocity fields permit evaluation of the strength of the flow source / sink.

9

i 4

1-

- 4. The response of the valve to both flow and up and downstream pressure transients is computed as a super- ,

position of these influences. In all cases flow tends to reduce the pressure load felt by the disc.

The IS" A&M valve characteristics for Quad Cities 1&2

. are_shown in Table 2.

s 4

i 4

10 i

+

., , , .-- .,-- , - , , - - - , - . , , , , , -, ,---,n -n-. - ~es-, ee , , , - , , - + ,r,. w -r , , e

TABLE 2 Vacuum Breaker Characteristics for Quad Cities 1 & 2 Vacuu= breaker type 18" A&M internal o

Syster mesent of inertia (lb-in-s-) 55.645 Syste= norent arm (in) 2.418 Dise accen: arm (in) 11.375 system weight (lb) 108.54 2

Disc area (in ) 283.53

'yster res angle (rad) 1.021 Ees: angle (rad) 0.3491 Ecdy angle (rad) 1.1345 Feat coefficien: restitution 0.6 cy c efficien: restitutien 0 .- 7 t

1 9 A-

A RESULTS The pressure ti=e history shown in Figure 5 was used to

+

drive a valve dynamic model with/without flow for the A&M valve with characteristics given in Table 2. The response of the valva for displacement and angular velocity are given in

, Figures 6 and 7. All results shown are for the expected pres-sure-loading function with flow. Table 3 su=marizes the valve imjac: data for both expected and design loading response.

f

.1

+

i L'

l t

i 12 x .. . . _ _. _ . . . _ ,

c,. , di li._l.D.__t

_t4 il' O_H. i_i _5, . }_E c._' . .7_____

f l

I 1

II l

\

\ l lI l

[

i t I p, ,

n l l l t

l .

t' l

F--4 f i t ,

' L

'I f <

.l t m

l 1

1 i

.j. ,f Q_

S' 04l..__

" . .g[L . _ q- q p p'

,n P

, ;7 1 j

T i ,

[

(Jh

, . l

,#I f Il s- '[f( w l l g q

, t

[(r L ,i f ' q,%,Il r

I ,( '

,l g t ] -}

, a; .

. i 4

(.

/ ,] g o ,g to ( ,s -

.I < j c p1.h, s i.

3

k- -

g j'

G, I CD - L.

D ,.~ 3.1 L l-

-  ;'  ;/. ' _

< ,' e \i

-n,.,7 '

w .f r, .\

' t + \ ,

. :t

< v.w ,r

.. u , ., s .t, J -

, .ys, .

11 t ji

.x,n  ; ,'1  ; .< C. .

/ )* ' . ' ' '

/ ,'

lt ..

N f ld y '

,' 1 t' } 4

-. a

~ %' ' ',

, ,  ;? *

\

/ ",

,4

, ,/ ,

i -1 i . ,

t ,

<,. 2, -

-2 ,s -

s

{ ,', s.: '.-( ,< ;

> s .- , .

y ,)

-( , , / ,;, - 't  !, . ,

. t - ,

,' .l b

.\ ' ,  ?  ;

  • l  :

,y, ' -

,7 .. a- t. ,- < -

q, ,

6~.c ' .;

,i ,

a y ,, . >. > ,

,s ,

4 1, 'g- . , /

N ,.  ; - ,. ,; <

fl " '

', ', . s!<

Y f. ' '

, ,/ , i 1 _3 e

  • 4 6 8,'

10 0 s, __ E 4  :, - ./ TIME ,CSEC) v. a e c,. .

i y,

.a. . _

1 m . ,, l3 .

fl' f

< Figpre Sa, ?gessurd, time hi storj pr er'i,eted .' cross a vacuum- breaker -

lhcated,bt the main vent -h(ader ' junction in ,a Group' 1 / k

  • / '

t!a e k.1 p Lin t . Submergen4 thead has not beein -added .

T ,s -

q, f 'O - 10 ..eyi.nds .

=

4

'g. h

  • f t, -g

-/

~

. ' ,1 -

+

N. o } ,

{ -

t e. ,4 s ir,-

? e s

.b

,o a l

- s ,

.s .

f' e  ? :_ _ _ . _ _ _ _ _ _ _ _ _ _ _ . - -

a ' h N

d

_  % -w -

t l >s i, #

. O (D

-O W

v W-4 m

,- y _ __ -

n c

_\ L Vf ,g q: --

.as --

o el

_m q <* -

7 f ~

-N Q)' .O 3W C

~

0 ,

- r _

- g

~

N T'

. y .. m

.- -gO N A LU

~-

m (.D v %_

M W .-

_r

~ ~~

h ~

~

q N

r p '

f I-- -.

- j -

z._ _ u ,_

2 __

u, - -- R w

~

Q

~ _ . _ _ _ _ N N U , _

N j

<I -=--- e -

a 7-Q y ,_

i ms , , .-

N ~

Q ~

i N MO A i IN f.ISd) 3dnSS3dd -

15

o,

~

_m n .

e -  :=

_e m no ua a

to cu v

uJ d -

~ _.

E en W

e M

-_ . - u.

s -- .

t

. e

~

(,,

s ') l -

~g..

tuj

~,.

= e vet..  ? .

C ----=====E5~_ _$ iijj.a..;D u _=, __ .

w.3. :5 ?

u. . .

C _ .r . .' ,. d - -

p

]

7 <4,4,k %t ,'e.n u, - g .s . , 44

-- .- e' 'a ,.

t i i N -

no m -

0 -

m g, - -.

I I IM $y N.

4. . ,, , e. . c CISd) 3dnSS3dd- .TIiO

. W Q):.

b %.'

. v.<

',.e ,

a e, ' 3. . '; ..

i Id pb

.lI l!

0 e 1 v l

a v

1 1

l a

- n

- r

- e t

n

r. - 8 i

_ M

_ A .

. s

" d 8n 1 o c

ee hs t

, . 0 6 )C f1 o

E y G r0 t

o s

. E i2 1_ . Mhe I

S ,. - '

4T m1 i

I- t s l-e l- ti nt I_

I 1

ei mC e

cd ai  :

L l u pQ I, s l - 2 in l Di C

a D i 6

f e U r O u g

(I _ _ i 5 4 3 2 0 1

O0 F 0 0 0 0 0 0 0 0 0 ,.

-,D

- .CqOv _

)L J_3_G L

.L7 m

u l 1l Illl lll li!! l

E i 4 I OJ

~

-Q ~

s.

b s

a u

I_I o

y, w

e W

  • w O

== -

5i li W 7F y"$

-l

~

c-d Ml

- a U C

I N t

'. } I n J ,J it . .-*

W

~

A D

L. -

.=

W

_ p d h6

.g u i  ! I e

'4

$b 7 i *~l 6'a J

{, .)

O C C C '> -

$ f .f 6 6 0 3

a 18

a , i ,

o ro I

i i

P -.I

! OJ L ~ .

i 3

,f J W

1 g

S *

~

T

__ j ..; e a

._ . < }

U 0

el C

1i l

P g '

t 'J N

OJ

-I .

.I o '

L__jt 'O ~

'1l 0 't.

-, L4 I~.

~

, J, " .

s 1 i LI U 7 f.'. . ,j -

.C C. C. C. O. O, " .'.J g a c c, e o C.

  • I

.f l _

I ', !

r 19 m.__

. , , . a T

~ - .

3 fq l

e I l r.,_

,,i 1 -

t I ~~,l d M r*

h t M

. ' 7

_, en ,Z J I C

O m' $

m O

- 4

_~. 4

- I

/t) O .

~' M M

,I

-i

'e

_I v

L t _' l. 3 g

.__a I  ! . *=J

[ ~

7 It (4J

^

- ma N

.. 'J.

,' is,

'=.-

6[]9 d

I' 2

l.i -n. .H. I

. l. H. $,

20

l 0

1 l

a n

r e

i t

_ n

_ i

_ M .

_ & s

_ Ad

, j n

"c i

8 o 8

1 e s

e h0 t1 f -

o 0

y r

t_ tO

_ e -

_. o .

t2 E. s i_

_ 3 i&

h i 1 E

e E ms ie l

ti I_ _

b t p yi

_ I

-. tC i

4 T i I_ cd N. _ oa I.

l u I

_ eQ I

v n

- _ ri

_ a l e I. uv I .- gl l.,

a 2' na Av I

b_

4_

a b.

N 7

! e r

0- _ u

. g

_ - i l _

5 O F

1 s.- h. 5 0 50 1

0 0 1 2 2

- ~ -

. u ]o J

~ tL t; CGbh . . p_ ~ m l_ J_J_'-

t t t u

o#

tlll1 l'I

i , a i . O nj I

l De p '

a f " t_)

i 4 4,

. i > -.

I ,I C

c... g W

  • h L *

'6.' "yW g

- -J 6

C Y O

  • N

- .  : m

- I . C

'. [',

v t

N

"[ H . ,j e

- - ~

l I e

U N

<T + o,.

)-.

L a

a ,

i- L 1 i i i . .a c; O u;' O u;> c u ,- g uC N o o , ,

c.; c; i I e.

=,m -

-m ,

. l w* / k I .

9

- .*a . .I,

.. I.. ~9 .i  :

))

em -

l- l1ll(l

' - - - - - 0 3

. i' '

8 2

I l

i I

3 i3 '

g, I- -

E 2 S

.L P

E l

1 l

I .

S1 ,i

' 4 T sd 2

T n l o l c i -

e U s

- 0 S 3 E

I T-r ui L 0 2 2 I 2 C .

c D 7 e

r U

A_ u O i g

_ _ _ _ _ F s

O. s. e 5 0 5 0 ". 0 1 I o 0 1 1 2 2 2

- - - sr e

.OJDuCN CqC._

3 '1 -

,, F ~ U O J_ Lj >--

- i m r

o s

ra

- 1 l '1 l! I'

C 7

.I m

i L, __

e..,

r o. .

I LJ t.n v

~..

Lu

-: -?

.or --

,s .,

-l m =

~! C e

w' O U,

e O

-- t

~ e,

, ,e m a,

s _

-L i- - , ..

e > .

x x '# u} Q O y, 3 x

2 .'-~ u} ,,

g,M O Q .-. -

n3 i I I

  • I i p s

r 035/0H&D M.IJ013n  !

I w

l l

L_

l l

TABLE 3 Vacuum Breaker Valve Response for Quad Cities 1 & 2 ,

Maximum Impact Number Maximum Opening Velocity of Angle (rad /sec) Impacts (2) (rad)(3)

Expected Leading Function (1)

'a flew effects 2.62 9 0.060 Flow effects 2.08 4 0.046 jj De s ign Lea ding Functicn (L )

~

?!o flow effects 3.09 r1 w effects 2.45

1) Submergence head is taken as 1.59 psi. ,

Vacuum breaker assumed to be mounted at the main vent-header junction. l (2) Seat impacts above 1 rad /sec.

(3) Body impacts do not occur. ,

(') Design impact velocity is 1.18 times the expected impact velocity (Ref. 3).

Revision 1 25

REFERENCES

-1. '.' Mark I Vacuum Breaker Dynamic Load Specification, Revision 3," C.D.I. Report No. 80-4, February 1980.

2-. " Mark I Vacuum Breaker Improved Valve Dynamic Model -

Model Development and Validation," C.D. I. Tech Note No. 82-31, August 1982.

3. General Electric Company letter MI-G-43, July 9, 1982 Mark I Containment Program - Task 9.5.1, Architect Engineer Question F2 ply No. 315.

I 26 L ,,,i . . .. . ..

.. .... .m. . . . . . . . . . _ _ . . . _ . . . . . . . _ _ _ _ _ _ _ _ _ _ _ . _ _ _ . _ _