ML20038B939

From kanterella
Jump to navigation Jump to search
180-day Rept in Response to IE Bulletin 80-11.
ML20038B939
Person / Time
Site: Dresden  Constellation icon.png
Issue date: 11/23/1981
From:
BECHTEL GROUP, INC.
To:
Shared Package
ML20038B936 List:
References
IEB-80-11, NUDOCS 8112090334
Download: ML20038B939 (61)


Text

__

=

t 180-DAY REPORT IN RESPONSE TO IE BULLETIN 80-11 FOR DRESDEN NUCLEAR POWER STATION UNITS 2 AND 3 COMMONWEALTH EDISON COMPANY DOCKET NUMBERS 50-237 AND 50-249 PREPARED BY: Bechtel Power Corporation Report Date: November 23, 1981 Revision 1 9112090334 811130 PDR ADOCK 050002g G

L 2

TABLE OF CONTENTS Page 10 INTRODUCTION 1 3

2.0 SCOPE 1 9

3.0 DESCRIPTION

OF MASONRY WALLS 1 3.1 LOCATION 1 3.2 FUNCTION 1 3.3 WALL CONFIGURATION 2 3.4 CONSTRUCTION MATERIALS 2 3.5 CONSTRUCTION PRACTICES 3 3.6 RECONCILIATION WITH 60-DAY REPORT 3 4.0 REEVALUATION OF MASONRY WALLS 4 4.1 POSTULATED LOADS 4 4.2 ALLOWABLE STRESSES 6 4.3 JUSTIFICATION OF THE REEVALUATION CRITERIA 6 4.4 SEQUENCE OF ANALYSIS 7 4.5 METHOD OF ANALYSIS AND ACCEPTANCE CRITERIA 7 4.6 ASSUMPTIONS AND ANALYSIS CONSTRAINTS 8 4.7 MASONRY WALL TESTING PROGRAM 10 5.0 RESULTS OF MASONRY WALL EVALUATION 10 5.1

SUMMARY

10

6.0 REFERENCES

10 TABLES 1 Masonry Walls - Function and Physical Properties 2 Allowable Stresses in Concrete Masonry Walls 3 Applied Loads and Evaluation Results APPENDIXES A Masonry Wall Plans B Additional Justification of the Reevaluation Criteria 11 2

1.0 INTRODUCTION

This 180-day ' report is being issued in response to NRC IE Bulletin 80-11, dated May 8, 1980 (Reference 6.2) . This report has been prepared by Bechtel Power Corporation, Ann Arbor, Michigan, for Commonwealth Edison Company's Dresden Nuclear Power Station, Units 2 and 3. It is subsequent to the 60-day report dated July 3,1980 (Reference 6.8), which furnished information requested in Items 1, 2a, and 3 of the above NRC IE Bulletin 80-11.

2.0 SCOPE The 180-day report furnishes information requested in Item 2b of NRC IE Bulletin 80-11. It deals solely with masonry walls iden-tified in this report as safety-related. Any masonry wall is considered safety-related when it is in proximity to or has attachments from safety-related piping or equipment such that wall failure could damage a safety-related system.

The analyses are based on as-built conditions identified during site surveys of June and July 1980 and July 1981.

3.0 DESCRIPTION

OF MASONRY WALLS 3.1 LOCATION The figures in Appendix A show the location of all safety-related masonry walls.

3.2 FUNCTION The function of each masonry wall is identified in Table 1 according to one of the following categories.

3.2.1 Fire Wall These walls were constructed to prevent the spread of fire from one side of the wall to the other according to the appropriate fire rating associated with the wall's thickness.

3.2.2 Partition Wall The partition walls are interior dividing walls whose sole pur-pose is to separate a portion of a room from the remainder.

3.2.3 Shielding Wall The masonry shielding walls, typically made of solid units which are required to restrict radiation exposures.

1

3.2.4 Blockout A blockout, made of masonry, seals an opening in a larger con-crete wall. These openings are lef t in the concrete walls to provide for equipment installation or pipe penetrations before the opening is sealed with the masonry.

3.2.5 Exterior Wall Exterior walls have at least a part of one face exposed to the outside, or are a part of the boundary of the Units 2 and 3 reactor turbine building complex. Only exterior walls are subject to wind or tornado loads.

3.3 WALL CONFIGURATION Wall dimensions and boundary conditions for each wall are indi-cated in Table 1. Each boundary is categorized as either a fixed support capable of providing both moment and shear resistance, a simple support resisting only shear forces, or a free edge through which no forces can be transferred.

3.4 CONSTRUCTION MATERIALS 3.4.1 Hollow Masonry The hollow masonry units, which are identified on the design drawings, are three-core blocks conforming to ASTM C 270, Grade N-I, Lightweight Aggregate, with a minimum test compressive strength of 1,000 psi on the gross area. Masonry walls, which are not shown on the design drawings, are assumed to consist of hollow units of the same type and strength specified above (see Section 4.7).

3.4.2 Solid Masonry

)

There are two types of solid blocks (normal weight solid masonry and magnetite solid masonry) with unit weights of 140 pcf and 185 pcf, respectively. The solid units which are called for on the design drawings are not addressed in the available design specifications. Therefore, the material properties of the solid walls at Dresden are assumed to be the same as those specifie6 for Commonwealth Edison Company's Quad Cities Nuclear Power Station, Units 1 and 2. At this station, the solid masonry conforms to ASTM C 145, Grade N-I, with a compressive strength of 1,800 psi (see Section 4.7) .

2

- e

,/ . .

~

a , ,

4 _

~

~

, f. ,

< i

~

_s'~ , , , .

v. If ~ ,

3.4.3- Mortar e, , ,

The mortar used in the' construction of the~ hollow masonry walls -

conforms to ASTM C 270, Type N, with a 28-day compressive strength ,

of 750 psi. This type of mortar is also assumed for the walls. '

i <

not shown on the design drawings. The soiter for the. solid ,

masonry walls, which are 'shown on the design drawings but not covered in the design specification, is _taken'to be the same asi

~

that used at the: Quad Cities" station. Tais. mortar is a special,'

high-density mortar (185 pcf).whose compressive strength was -

taken as 2,500 psi (see Section(4.'7).

aeinforcing Steel 7,

[ 3.4.4 ,

i According to the~ design drawings and specifications, the masonry -

1 walls are reinforced in the bed joint of every other ' course. ~

This joint reinforcement consists of heavy-duty, continuous, o J rectangular, ladder type steel reinforcement, whose minimum yield .

strength is 65 kai. Deformed bar steel, where shown on the ,

drawings, has a minimum yield strength of 40 ksi.

,r' ,

l 3.4.5 Anchors , ,

s, Masonry anchors have been used in certain locations to tie the masonry wall to an adjacent structural. element. These anchors consist of two types: corr'ugated metal ties (dovetail anchors) which are used for connections to concrete walls or columns and 3/16-inch diameter adjustable bar ties welded to the supporting structural steel.

3.5 CONSTRUCTION PRACTICES The masonry walls at the station were constructed in accordance with the Sp'plicable job 'andf atandard specifications for masonry work and' have a- hfgn ' quality of masonry workmanship. Conformance to applicable ASTE apecifications was required for concrete blocks, mortar, ie.inforcing ties, and anchors. Storage and protection of biceks and walls, as well as cold weather protection, were specified.. The mortar joints of solid masonry walls were required; to be c'onstructed..with full mortar coverage on all vertical and' horizontal faces. The vertical- joints were to be shoved tightc/ A full mortar bedding was specified for webs and f ace shell's of the hollow masonry walls. Face shells were required to be fully buttered and pressed into place to ensure f ull, well-compacted horizontal and vertical mortar joints.

3.6 RECONCILIATION WITH 6fl~ DAY REPORT The 60-Day Report (Reference 6.8) identified 48 safety-related masonry walls and 36 other masonry walls requiring further study.

3

s By the completion of the field survey, 31 of the above 36 walls plus 13 additional masonry walls were shown to be safety-related.

Therefore, a total of 92 masonry walls are addressed by this report. The remaining five walls listed in the 60-Day Report were verified to be nonsafety-related. Table 1 identifies these walls along with the 13 additional safety-related masonry walls.

4.0 REEVALUATION OF MASONRY WALLS 4.1 POSTULATED LOADS The loads which were considered in the evaluation of each wall are identified in Table 3.

4.1.1 Dead Load (D)

This load includes the dead weight of the wall and all permanently attached equipment, piping, conduit, and cable trays. The con-struction sequences have allowed the permanent dead load deflec-tion to occur prior to the erection of the masonry walls. There-fore, the dead loads from the floor above are not transferred to the masonry walls.

4.1.2 Live Load (L)

This load includes applicable live loads w'hich can be transferred to the masonry wall through the floor framing. The live loads are not considered in those load combinations when they would relieve wall stresses.

4.1.3 Attachment Loads (R and R,)

The attachment loads are localized , loads which are a result of the reactions from the supports of piping, cable trays, conduits, HVAC ducts, and other systems. The reactions are determined for the normal operating or shutdown condition (R ) and for the accident condition (R ) which results from th8 thermal conditions generated by the postBlated pipe break and includes R .

4.1.4 Wind Load (W)

Exterior walls are subject to a uniform pressure load corres-ponding to the design wind speed. The design wind speed for Dresden Units 2 and 3 is 110 miles per hour.

4.1.5 Tornado Load (Wt I Exterior walls are subject to velocity pressures, differential pressures, and tornado missiles of the design tornado identified in the plant FSAR.

4

The maximum tornado wind speed is 300 miles per hour. The maxi-num differential pressure is 170 psf.

The following missiles are generated by the design tornados

a. A telephone pole 35'-0" long, with a butt diameter of e 13 inches, a unit weight of 50 pcf, and total weight of

~~ ' 1,200 pounds, and having a velocity of 150 miles per hour r

b. A 1-ton mass with a velocity of 100 miles per hour and a contact area of 25 square feet

) The original design considered the buildings housing safety-related piping, conduit, cable trays, and equipment as sealed, therefore, tornado loadings do not affect interior walls.

4.1.6 Operating Basis Earthquake (E 9)

This load represents the seismic load generated by the operating basis earthquake (OBE) . The design ground accelerations are as follows:

a. Horizontal = 0.1 g
b. Vertical = 0.067 g 4.1.7 Safe Shutdown Earthquake (E,)

This load represents the seismic load generated by the safe shutdown earthquake (SSE) . The design ground accelerations are twice those shown for the OBE.

4.1.8 Thermal Loads (T g and T,)

Thermal loads account for the effects of thermal gradients under normal operating (T g) and accident (T ) conditions. The operating loads represent the most critical steldy-state condition, while the accident condition is a short-term thermal transient resulting from the postulated pipe break, including T o.

4.1.9 High-Energy Pipe Break The effects of a postulated high-energy pipe break outside the primary containment have been identified and their applicability to the masonry walls were established. In the analysis for a high-energy pipe break, the following loads are considered:

a. Differential Pressure (P,)

This load is represented by an equivalent static pressure across a wall generated by the postulated pipe break and includes an approrpiate dynamic load factor.

s 5

.i

't

! b. uocal Loads Generated by Pipe Break (Y p)

These loads are equivalent static loads resulting from the pipe break and include an appropriate dynamic load factor.

These loads consist of the following: *

1) Broken pipe reaction (Y r)
2) Jet Lspingement (Y))
3) Pipe whip (Y,)

4.2 ALLOWABLE STRESSES The allowable masonry stresses, excluding collar joint stresses, under normal load combinations are in accordance with those given by the Building Code Requirements for Concrete Masonry Structures (ACI 531-79)(Reference 6.1). Allowable stresses for extreme environmental and abnormal load combinations are increased by a 4

factor of 1.67 over the above ACI code allowable stresses.

Por the mortar collar joints, the allowable shear and tension stresses are 14 psi for normal load combinations and 18 psi for extreme environmental and abnormal load combinations subject to confirmation by tests (see Section 4.7).

Allowable stresses applicable to the different types of masonry are given in Table 2.

4.3 JUSTIFICATION OF THE REEVALUATION CRITERIA Except as noted, allowable stresses of masonry units and mortar are based on the code values as published in ACI 531-79. These values are considered reasonable and conservative. References to tests and other codes are provided in the commentary to ACI 531-79.

It is noted that the allowable stresses are used for the evaluation of existing masonry walls and not for the design of new walls.

Because building codes do not address abnormal and extreme environ-mental conditions, a factor of 1.67 was used to provide allowable stresses under these loading combinations. Based on available margins of safety, this factor is considered to be reasonable.

l Published data on tension and shear strength of collar joints are ,

i almost nonexistent. The allowable stresses have been selected based on the experience obtained by others with in situ tests and are in the process of being verified by the sampling and testing program as noted in Section 4.7 of this report.

Additional justification of the reevaluation criteria is provided in Appendix B.

l t

i 6

I

1 I

4.4 SEQUENCE OF ANALYSIS l

Each wall is initially analyzed considering only dead and seismic l loads or dead and tornado loads, whichever appears most critical.

For all walls which are found to be acceptable, the following applicable loadings are considered: live load, attachment loads, pipe break loads, and interstory drift.

4.5 METHOD OF ANALYSIS AND ACCEPTANCE CRITERIA 4.5.1 Stress Analysis Based on the walls' boundary conditions, each wall is idealized as either a cantilever, one-way strip, or two-way plate which is supported along at least two adjacent edges. The wall is then considered acceptable if all wall stresses under all load combi-nations are less than or equal to the established allowable stresses.

4 5.2 Stability and Sliding Analysis Cantilever walls which do not meet the acceptance criteria for allowable stresses are analyzed with regard to overturning stability and sliding movement. Using energy balance methods, a factor of safety against overturning is determined for both OBE and SSE loads. The minimum acceptable factors of safety are 2.0 for OBE and 1.5 for SSE conditions. Before the wall is considered accep-table, the total wall movement, including rocking and sliding, must not adversely affect any safety-related items.

4.5.3 Analysis of Arching Effects Masonry walls with mortared joints at both the top and bottom boundaries that do not meet the acceptance criteria for allowable stresses are investigated for arching effects. The wall's capability of resisting horizontal loads, after ultimate tension stresses are exceeded, is developed when the wall jams at the top and bottom against the supporting structural members. The center of the wall cracks due to tension stresses, and a three-hinged arch is formed to resist the loads through compres lon stresses only.

Design seismic loads generated by the safe shutdown earthquake are based on the peak acceleration of the applicable response criteria and a damping factor of 10% of critical.

The stiffnesses of the supporting structural elements are accounted for in the annlysis. Also, the deflection at the center hinge must be less than or equal to one third of the wall thickness.

If an arching wall meets the above requirement, it is considered acceptable when the compression stress developed in the arch is less than or equal to the allowable flexural compression stress shown in Table 2.

7


e-o_ . . _ . _ , -

4.5.4 Interstory Drif t Under Seismic Loads The effects of interstory drif t are considered by determining the in-plane shear strain in the wall due to the relative displace-ment between the top and bottom of the wall. The allowable in-plane strains are 0.0001 for unconfined walls and 0.001 for confined walls. An unconfined wall is defined as a wall supported t

only on two adjacent sides. A confined wall is supported on any three sides or at the top and bottom of the wall (References 6.5, 6.6, and 6.7).

These acceptance criteria are considered to be justified because none of the masonry walls carry a significant part of the buildings' story shear or moment. Also, test data indicate that the gross shear strain of walls is a more reliable indicator for predicting the onset of cracking than loads or stresses.

The out-of-plane relative displacement creates a bending moment in the wall only in the case where the top and bottom boundaries are supported, and at least one represents a fixed condition.

None of the masonry walls at the Dresden station are effectively fixed at either the top or the bottom boundary; therefore, the out-of-plane interstory drif t is not considered.

4.6 ASSUMPTIONS AND ANALYSIS CONSTRAINTS The following assumptions and constraints were employed in the reevaluation of the masonry walls.

4.6.1 Nonsafety-related walls, anchor bolts, and embedments >

were not within the scope of the reevaluation.

4.6.2 All loads and load combinations outlined in the plant FSAR are considered in the reevaluation.

4.6.3 The seismic loads on masonry walls are dependent on the damping characteristics of the material, which are expressed in percentage of critical damping as follows (References 6.3 and 6.4):

a. Uncracked Masonry Wall, Out-of-Plane Acceleration
1) OBE: 2%
2) SSE: 2%
b. Vital Piping Systems, Horizontal and Vertical Accelerations
1) OBE: 0.5%
2) SSE: 2%

8

l .

The plant FSAR specifies damping of 0.5% under OBE conditions for vital piping systems. For the purpose of this evaluation, vital piping are defined as all safety-related piping.

c. Other Attached Systems, Borizontal and Vertical Accelerations
1) OBE: 14
2) SSE: 24 This category includes nonsafety-related piping and safety-related and nonsafety-related conduit, cable trays, and BVAC ductwork.

4.6.4 A masonry wall is considered an isotropic, elastic material. Its natural frequency-is calculated using standard plate formulas. For a wall with an opening, the calculated frequency is reduced by 9% if the size of the opening equals or is greater than 15% of the wall area. The reduction is proportionally less for a smaller opening. For multiple openings, the largest one is considered. To account for variation in stiff-ness and mass of the wall, the above frequency is varied by + 10% and the maximum response in used in the analysis.

4.6.5 In accordance with the plant FSAR, the effects of the seismic loads of one horizontal and the vertical direction are added arithmetically.

4.6.6 Dead loads from the floor above are not considered being transferred to the masonry walls. A part of the live load from these floors is transferred to the walls; however, it is not consid9 red if it will relieve wall stresses.

4.6.7 Shear and tensile stresses are not transferred across the continuous vertical mortar joints of walls laid in stack bond or the vertical mortar joints of a wall boundary adjacent to a concrete structural member.

4 6.8 Standard, prefabricated sections of the horizontal joint reinforcing steel are provided at all corners of masonry walls. However, their contribution to the strength capacity of this intersection is not con-sidered.

9

i l

4.7 MASONRY WALL TESTING PROGRAM A sampling and testing program is in progress and intends to accomplish the following:

4.7.1 Verify the type and strength of block used for the walls which do not appear on any design drawings.

4.7.2 Justify the assumed stresses used for the block and mortar of the normal and magnetite solid masonry walls.

4.7.3 Determine the allowable stress which can be transmitted across a mortared collar joint.

4.7.4 Justify the use of inspected allowable stresses.

5.0 RESULTS OF MASONRY WALL EVALUATION Table 3 lists the results of the masonry wall reevaluation. The criteria used to justify the wall's acceptance or mode in which it does not meet the criteria are identified.

5.1

SUMMARY

The following summarizes the results of the reevaluation of 92 safety-related masonry walls:

5.1.1 Total number of walls meeting the acceptance criteria:

56 5.1.2 Total number of walls which do not meet the acceptance criteria: 29 5.1.3 Total number of walls which are still under further evaluation: 7

6.0 REFERENCES

6.1 Building Code Requirements for Concrete Masonry Structures, ACI 531-79, American Concrete Institute, Detroit, Michigan, 1979 6.2 USNRC IE Bulletin 80-11, dated May 8, 1980 6.3 Final Safety Analysis Report (FSAR) for the Dresden Nuclear Power Station Units 2 and 3 6.4 Damping values for Seismic Design of Nuclear Power Plants, U.S.

Nuclear Regulatory Commission Regulatory Guide 1.61, October 1973 10

i 6.5 Becica, I.J. and H.G. Harris, Evaluation of hchniques in the Direct Modeling of Concrete Masonry Structures, Drexel University Structural Models Laboratory Report M77-1, June 1977 6.6 Fishburn, C.C. , Effect of Mortar Properties on Strength of Masonry, National Bureau of Standards Monograph 36 U.S.

Government Printing Office, November 1961 6.7 Mayes, R.L. ; Clough, R.W. ; et al, Cyclic Inading Tests of Masonry Piers, 3 volumes, EERC 76/8, 78/28, 79/12 Earthquake Engineering Research Center, College of Engineering University of California, Berkeley, California 6.8 60-Day Report in response to IE Bulletin 80-11 for Dresden Nuclear Power Station Units 2 and 3, Commonwealth Edison Company, Docket Numbers 50-237 and 50-249 dated July 3,1980 11

y y a a .

d d -

0 0 6d 6d e e nm iu i u nm s s s ds eA d s eA k 7 r d - d - _

a u* lu* f m l o e c: c; R nt nt 1 i r ir _

t o

pt p o t oeoe e _

Nr Nr e h

S n s onE gn nii s s s s s s s s s s wsw oea e e e e Y

e Y

e Y

e Y

e Y

e Y

e N

o N

o Y Y Y Y hDr S D y

rt g g g  ;  ;

ar l y X

  • m S

E I

d o np up yo u

w w

u gE K

E g

g rNgmx a

a T ou {l g R BS E

P O )

R h F t d " " "

L i "0 7 7 1 "l " "l A w - - " 0 "1 - 1 l C e ' 8 - "6 -

'1 - - 7 "0 l I sx ' " . 1 - - '

'2 '3 S i S t, 2 2 '8 7 2 '

'2 Y x x '8 1 '9 1 x 2 x

2 x

9 x x l

H h " x x x x "

x F E "9 3 " 3 "

i - - "1 1 "0 "1 - 5 5 "9 "6 "4 D e - - - - ' - - - - -

1 N

A (

h '4 1

'6 1 7' 7

7 7

6 1 '5 '5 '9 'l 'l E N g g g g g g g g g g g g L O n n n n n n n n n n n n B I d i i i i i i i i i i i i A T n n n n n n n n n n n n n T C o n n n n n n n n n n n n N B u u u u u u u u u u u u U R R R R R R R R R R R R F

- s

  • e
  • S h 1 1 2 3 2 3 1 1 1 1 2 2 L t y

L A W W

Y *

  • R w w w w w w w w N e p o o d d d d o o o o o o O y l l i i i i l l l l l l S l l l l l l l l l l l l A T o o o o o o o o o o o o M H H S S S S H H H H H H

_ k cs " " " " "

i s "2 "2 "2 8 2 "8 "2 6 6 "2 4 4" he 1 1 1 1 1 1 1 1 2 2 t n g g n n n n n g g g g n n n n n n o o o t t o io i i i i i i i i i u u i t d d d d d d t t t o o t i l l l l l l i i i k k c t e e e e e e t t t c e t r

n r i i i i i i r r r o c t u a a a i S o r F a h h h h h h l P S s S S S S P P P B B T p p

o p

R O e u p

_ l 2 3 4 5 6 P g s u 1 2 3 4 7 8 l 1 1 1 1 1 P d s

- - - - - - - - - - - - U e e K K K M D D D K K S l d M M J 8 4 5 4 3 5 e p e 0 9 3 2 5 5 l 4 3 4 4 4 4 3 4 4 4 4 4 Y e m x l - - - - - - - - - - - R r i i Wa

- A F S F 0 0 0 0 0 0 0 1 1 5 0 0 7 7 7 7 7 7 7 6 6 4 7 7 D 5 5 5 5 5 5 5 5 5 5 5 5 N XxX

- - - - - - - - - - - - U 2 2 2 2 3 3 2 2 3 3 2 3 O D D D D D D D D D D D D B l

> , l'

s k 7 r

a f m o e

R 2 t

e e

h S

n ong s

gn nii s wsw oea s

e s

e s

e s

e s

e s

e s

e s

e s

e s

e s

e s

e e s

e hDr Y Y Y Y Y Y Y Y Y Y Y Y Y Y S D y {j k l

rt k ,B .

x y  ; ";v l// I ar w^;X  ;

nI s s 1 13  %

5 1

, w I

x = /

/

/

/

S do sA 1 , r X 5 ,

, x x x / /

E np n 1 ,

, r s K x 5 , x /

/

"* x O up E x , '

ya - w Sra eIx I I y 1 g l I 5 , g y g

/

I

//

T ou g I ,

R BS E

P O )

R h -

F t 4 "0 "0 d " "6 1 1 L i "1 " " "2 -

A w - 4 "8 6 - " 2 "8 - - -

C e - - ' 7 - "0 '1 - "0 ' '

I sx '9

' 4 - ' - 1 ' - 1 '4 4 S i x '6 '6 8 1 ' 7

'6 "

x 4 ' 1 1 x

1 x

Y St 1 x x x 6 x

1 x

x 6 x H h "0 x "

x 0 "0

x "8

F g 1 "6 0' "3 " 1 "1

8 8 i - "9 - - - 1 0 "0 - -

D e -

'4 '4 '2 - - -

'0 '0 '0 '2 N h '6 '8 '8 '8 .

'8 2

1 A ( 2 '9 1 2 1 1 1 1 1 1 E N g g g g g g g g g g g g L O n n n n n n n n n n n B I d n i i i i A T n i k i n

i n

i n

i n

k i n

i n

i n n n n n T C o n c n n n n c

a n n n n n n n N B n a u u u u u u u u u U u t R

u R

u t t

s t t t t t t t R S t F

- s e

S h 1 4 2 3 8 8 3 8 1 1 L t 1 3 1 4 L y A W W

Y R w w N e w w o

w o d d d o o O r o d i l l d

i d

i d

i d

i d

i i i i l l S i l l l l l l l l l l l l l A T l l o o o o o M o o o o o o o S o S o S S S i  !

H S H R S S S f  !

k cs " " "

is "8 "2 "2 he "2 "8 "8 "2 4 4 "6 "8 "8 6 "8 1 2 2 1 1 4 5 1 4 1 1 T n 1 1 n g g g g g g g g n o t t l n n n n n n n n l l o i u u l i i i i i i i i l a

l a

i t o o a d d d d d d d d t i k k w l l l l l l l l w w c t c c e e e e e e e e e e e n r o o r i i i ' i i i i r r h h h h i i u a l B

l B

i F

h S

h S

h S

h S s S S S F F F P 2 3 4 5 6 1 2 3 4 8 0 1 0 1 3 3 3 4 4 2 2 2 2 2 2 2 3 3 E G H H J J H J L M J L N N 1 3 3 3 8 9 9 1 4 3 3 4 5 8 0 1 3 3 3 3 3 3 4 4 4 4 4 4 4 4 s - - - - - - - - - - - - - -

5 5 5 5 5 5 5 5 5 U 43 4 3

4 3 4 5

4 5

4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 3 3 3 2 3 3 3 3 3 )

D D D D D 3 3 3

!L  ; ;f 1  ;:

r r e e b b m m u u n n dd dd ne ne am am u u

k s ks e cs cs k oa oa 7 r l l a b s bs e e r

n m fh fh m ot y ot 1 E y ew p

ew p e.

yf yf o To To h c

n ong s

gn '

sii s s s s s s s s s s usw oea s

e s

e s

e s

e s

e e e e e e e e e e e o o Y Y Y Y Y Y Y Y Y Y Y Y N N hDr Y Y Y S D -

y rt g 'F g. g gd g. gx '5. "E. *g jX "'. 'Baa x]g xl n ar *gx " m n E . x . . X . x" , x x S do x = m E . x . " X "" - x" . x t E np " x ^ x . .

< x'g. tli I up "g x "g x - - K 4x 4 ,1,.<

^gK "1 1 x9 gv T ou - - */

R BS E '

P O )

R h P t " "

" " ~

d "0 4 8 "9 2 "5 3 "8 L i "8 "4 "8 - - - - 0 - "8 "9 " "

A w - - -

- ' ' - - - 3 5 "5 C e - -

'2 1 ' '0 7 1 '7 '4

'4 '6 I sx '1 2

'8 2 2 9 2 1 2 1 '6 1

'4 S i x x 0

x x x x x x x x x x x 7 x

7 x

Y St 1 x " x " "

H h "6 "6 "6 "6 "6 "6 "1 "0 "0 "6 "6

  • F g "5 6

- - - - 1 - - - - l 6 6 i - - "0 - -

D e '

'4

'0 '0 '0 '0 '0 '2 '2 4 '4 '3 '3 N h 3 1 2 '9 0

1 1 1 1 1 1 '8 1 1 1 1 '8 1 A (

g g g g g g g g g E N g g g g g g g g n n n L O n n n n n n n n n n n n n B I d in i i i i i i i i i i i i i n

A T n n i n

i n

i n n n n n n n n n n n n n C o n n n n n n n n n n n n n n T B n n n u u u u u u u u u u N u o u u u u u R R R R R R R U R R R R R R R R R R F

- s e 1 4 2 2 S h 4 1 1 1 1 1 1 1 1 1 1 1 2 L t L y A W W

Y w w w R w w w w w w w w w w w o o N e.

w o o o o o o o o o o o o o d O m d l l l l l l l l l l i l l i l l l l l l l l l S i l l l l l A T l l l l o

l o

l o o o o o o o o o o o o o o o H H H H H H H S H H M S H H H H H H k- "

cs " "

"8 "8 "8 "0 "8 "4 4 "4 is 4 "2 "8 8 "8 "8 "8 "8 "8 2 2 2 he 2 2 1 1n g

g n l l l l t t t t n t t n n o l l l l l l l l u u u u i u u o i i l l l a

l a a a a a o o o o d o o d t a a w w k k k k l k k i i w w w w w w c c e c c t

l e e e e e e e e c c o o o c ie t r r r r r r i

r i

r i

r l

o l

o l o l i

h l l n

u h a i i i i F

i F F F F B B B B S B B S P F F F F

1 2 3 4 5 6 6 7 8 2 4 5 6 7 8 9 0 5 5 6 6 6 4 4 4 4 4 5 5 5 5 5 4 4 - - - - - - - - -

G M M H F F F G G G G G H G J H F 1 2 2 2 2 1 2 3 3 3 3 9 7 7 9 0 2 3 3 3 3 3 3 3 4 4 l 4 5 3 3 3 3 3 3 - -

l - - - - - - -

4 4 5 5 S 9 9 9 9 9 9 a 5 5 9 9 9 9 4 4 4 4 4 3 3 4 4 TS W 4 4 5

4 5

4 5

4 5

4 5

4 5 5 5 5 5 3 5 5 5 5 5 - - - - - - - - -

- - - - - - - - 2 2 3 3 2 2 2 2 2 2 2 2 3 3 2 2 2 D D D D D D D D D D D

. D D D D D D 4

. y y a a d d 0 0 6 6 n n i i s d d k e e 7 r d d -

a u u f m l l o .

E m c c 4 nt nt ir ir t t p o t p o e _

oe oe e Nr Nr h S

n oag s

gn nii s s s s s s s s s s s s s s s e s esw e e e e e e e e e e e e e e e e e oea Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y n

Dr S D y g ' g k rt ar "

s n*

a* K y g I r.

a

.x l

n  ?. g'A M r

u*

  • 1 M ,,

S E

I d o np up

" "ga@o"gK

" u K

K g

  • I8 4

gru 9 gV A

A y mdvn" s g

X L

T ou ',9 r g g

R BS E

F O )

R h "0 "

F t " " 1 d " 4 "3 - "0 "0 "0 8 "0 "

L i 6" 7

- ' - - - - - 8 "5 "0 w "0 - 7 - 1 A "0 "1 ' 1 ' - -

C e ' -

'4

'9 - 9 3 '3 '9 3 '0 '8 ' -

I sx '6 '9 1 9 3 x x 2 3 2 2 1 '8 4 '

S i 2 x x x x '4 '4 x x x x x x 1 9 Y St x x "1 "1 " " x x h x R "5 "5 5 4" 1 1 "0 "0 "0 "0 3 7 "2

F g "5 - - - - "1 "2 - - - - - - - - "0 i ' -

D e - '

3 '3 '3 1

'5 '9 '6 '6 '6 '3 4 7 '

'8 N h '8 '8 1 1 1 1 1 2 7

( '3 1 1 1 1 1 2 1 A g g g g g g g g g g g g E N g g g g g n n n n n n L O n n n n n n n n n n n i i i i B I d i i i i i i i i A T n in i

n i

n i

n i

n n n n n n n n n n n n n C o n n n n n n n n n n n n n n n B n n T u u u u u u u u u N u u u u u u u u R R R R R R R R U R R R R R R R R R F

- s e 1 1 1 4 4 S h 1 1 1 1 1 4 4 1 6 1 1 1 L t y

L A W W

Y v R w w w w w w w w w w w N e, o o o o o d d o d o 0 o o o e d 1 l l l l i O l l l l i i l i l S n ll l l l l l l l l l 1 l l o

l o

l o

l o

A T o o o o o o o o o o 0 o S

N H H l l H H S S H S l f

1 1 H l l H l l

~

k " "

cs " "

"2 "2 "2 "2 "2 4" ia "2 2 "2 "2 "2 4" 4 2 "6 1 1 2

1 4

2 2 he 1 1 1 1 2 2 1 3 1 1 1 T n 1 g g n n n n n g g n g n n o o o o n n o n l l l l l t n o i i i i i i i i i l l a

l a

i l a

l a

u o

i o t t t t t d d t d a w

d l w w k d

l i i i l l i l w w e t i i i t t e e t e e e e e e e c c r t t r

t r r r i i r i r r r i r r o i n a a a h i i i h i i l h u P a a a h h P S F F F S F F B s P P P P S S F

6 7 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 8 8 8 8 8 7 7 7 7 7 7 7 8 8 8 8 8

- - - - - - - - 1 K

D D D C J H E E F F G H 1 1

l i 1 H 3 1 6 3 5 1 2 2 3 3 8 9 9 3 5 4 4 3 3 3 3 3 3 3 1 4 4 4 4 4 4 4 3 3 3 1 - - - - - - - - -

- - - - - - - - 7 s 4 4 4 4 9 5 5 7 3 7, 7 7 7 7 7 7 1

U 3 3 3 3 2 4 4 1 0 1 5

1 5

1 5

1 5

1 5 5 1 1 5 5 5 5 5 5 5 5 5 5 5 2 2 2 3 3 2 2 3 2 2 2 2 2 2 2 2 3 D D D D D D 0 D D D D D D D D D D

r r e e ,

b b m m u u n n dd dd ne ne amu amu ks ks e cs cs k l oa loa 7 r b s b s e e e f o

m fh fh m ot y ot y 5 E

ew p

ew p t yf yf e To To e h

S n

oag e

gn .

s s s s nii s s s s s s s s s s o o e asw e e e e e e e e e e e e e ea Y Y Y Y Y Y Y Y Y N N Y SwDr Y Y Y Y D

y g- g , g y

,E x

rt g"EIJ ,*gn ]"m g g ,

ar L ,

3 , x S do e K ya = u u.hm A E

I T

np up ou g " hum gw F -

% p gm g x_6 1x g g

<-[u"{ ,

.f l A R BS E

F O )

R h " " "

F t

" " "6 5 "6 1 d " "0 9 "8 - - "3 - 4" L i "6 "8 0 - -

"0 5 5 A w ' - 1 ' "0 - - -

'0 '0 7 3 C e ' - '9 5 - -

'1 '1 '6 '2 '6 x I sx 7 '8 ' 2 x 1 x

1 x x 1

x x "

S i 1 x 9 x " '8 '8 1 1 1 Y St x x 1 x x x x x "0 "0 "1 "6 "1 1

1 H hg "5 " "0 1 "0 "0 - 1 -

F "6 - 2 - - "8 "8 "0 '

D i

e - '

7 '

'1 '5 7 '0 '0 . '2

' '5 N h '8 2 8 3 1 '9 9 7 7 7 2 3 1 _1 7 1 1 A (

g g g g g g g g g g g E N g g g g g n n n n n n n n n n n n n n n L O n i i i i i i i i i i B I d i i i i i i n n n n n n n n n A T n n n n n n n n n n n n n n n n T C o n n n n n n n n u u u u u u N B u u u u u u u u u u R R R U R R R R R R R R R R R R R F

- e e 1 1 1 1 1 2 1 1 1 S h 1 1 4 1 1 3 3 L t y

L W

A W Y w w w w w w w w R w w w w o o o o o o o N g o o d o o d d o l l d

i l l l l l l O l l i l l i i l l l l l l l l l l S i l l l l l l o o o o o o o o o o o A T o o o o o S H H H H H S H H H M H H S H H S k " "

cs "6 "2 "2 "2 "2 "2 "2 8 2" 2 ie "2 "2 "4 "2 "2 "8 1 1 1 1 1 1 1 he 1 1 2 1 1 1 1 1 t n g n n g n n n g n n g o o n o t o

~

n t o n o o n n l l l u i ou i o i

t i

d i

t i

t i

d i

d l

a l

a l

a i

t i

i t

i d

l i

i t

k o

i t

l l w w w i t k i l e

i i e e e e e t t e t c t c c t t t r r r o r n

u o l r

a h i r a

r a

i h

i h i r

i r

i r

a a i

h P

a l B P a

S S F F F P P S F B P S P P 0 1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 0 2 3 4 5 6 1 1 1 1 1 9 9 9 9 9 1 1 9 9 9 9 - - - - - -

- - - - - - E G H H N N N H H C G G 6 H J E 6 6 8 0 4 6 1 3 2 9 9 4 3 3 5 6 3 3 l 3 4 4 4 4 4 3 5 4 4 4 4 4 3 - - - - -

l - - - - - - - - -

- - 7 7 7 7 7 e 7 7 7 7 7 7 7 7 7 1

7 1

7 1 1 0 1 1 1 W 1 1 5

1 5

1 5

1 5

1 5

1 5

1 5 5 5 5 5 5 5 5 5 5 - - - - - - - - -

- - - - - - - 3 2 2 2 2 2 3 3 3 3 2 3 3 2 3 3 D D D D D D D D D D

_ D D D D D D

]

TABLE 1 MASONEY WALLS - FUNCTION AND PHYSICAL PROPERTIES I

shown on Yhick- Sise Boundary Design Well Function nees Tg 1 Wythee Bond (height x width) Support Drawings Remarks

""*" Yes D3-517-45D-107 Blockout 12" llollow 1 Running 14',-10"x14'-7" i

D2-517-44D-108 Shielding 12" Hollow 1 Running 7'-5"x6'-0" Yes D2-517-44E-109 Partition 12" Hollow 1 Running 9'-10"x13'-2" Yes rAMKW D2-517-43E-110 Partition 12" Hollow 1 Running 9 ' - i.0" x9 ' -6" Yes D2-517-39H-111 Blockout 24" Hollow

  • 4* Running 6'-5"x2'-5" No *-Assumed D2-528-35H-112 Firewall 12" Hollow 1 Running 5'-1"x13'-3" Yes Not included in 60-day report D2-528-3{eH-113 Firewall 12" Hollow 1 Running 7'-8"x6'-10" w < Yes Not included in 60-day report D3-528-54H-114 Firewall 12" Hollow 1 Running 8'-1"x14'-0" x Yes Not included in 60-day A report Hollow 1 Running 8'-1"x8'-6" Yes Not included in 60-day D3-528-54H-115 Firewall :12" g w report D2-517-4311-116 Blockout 12" Hollow 1 Running 9'-4"x25'-11" Yes Not included in 60-day report 24" Hollow
  • 2* Running 6'-4"x2'-4" No Not included in 60-day D3-517-49H-117 Shielding report
  • Assumed 8" 1 Stack 6'-3"x2'-3" Yes Not included in 60-day D2-507-45C-118 Shielding solid renare Running 20'-2"x14'-11" ="* Yes D2-517-5A-120 Exterior 12" Hollow 1 1 I wx=4 D2-517-3A-121 Exterior 12" Hollow 1 Running 20'-2"x14'-11" Yes xxxx N
  • Sheet 6 of 7 ,

r r .

e e l l l l l b b l l l l m m l u u a a a a a n n w w J w w dd dd d d d d d ne ne e e e e e amu amu t a

t a

t a

t a

t a

l l l l l s ks kscs e e e e e k cs r r r r r 7 r l oa oa l - - - - -

a y y y y y f m bs b s e e t t t t t o m fh fh e e e e e 7 E ot ot f f f f f y y a a a a a t ew ew s s s s s p p n n n n n e yf yf o o o o o e N N N N N h To To S n s onn ga nii wsv oea o o N N hDr s D T

R y O rt P ar g u " d.

E R

S do E

I np up *"

[ n "I . Y T ou A D

R BS E -

F 0 O ) 6 R h F t E d H L i " " T A w ~4 4 C e - - N I sx ' I S i 9 9' D Y St x x E H h F s "5 "8 S i - - S D s ' ' E N h 4 4 R .

1 A ( D D

E N g g A L O d n n E .

B I i i A T n n n R T C o n n E N B u u W U R R F S L

- s L e A S h t

3 3 W L y L G A W N W I W

Y O R w w L N e o o L O r l l O S i l l F A T o o M H H E H

T k

cs "

is "6 6 he 3 3 T n n

o t t i u u t o o c k k n c c ,

u o o l l F B B 2 3 1 2 2 7 3 9 5 1 1 2 4 6 7 9

- H H H J J H J 5 3 2 9 4 9 9 1 4 4 4 4 4 4 4 1 - - - - - -

s - 5 5 7 6 6 5 5 u 7 7 4 5

4 5

4 5

4 5

1 5

4 4 - -

3 3 2 3 2 3 3 D D D D D D D

TABLE 2 ALLOWABLE STRSSSES(II IN CONCRETE MASONRY WALLS Type 1 Wall Type 2 Wall Loading Condition Loading Condition Abnormal Abnormal and Extreme and Extreme Type of Stress (psi) Normal Environmental Normal Environmental 340 560 420 700 Flexural compression, F, Transverse and punching shear, V 35 59 39 66 (1) 14 18 14 18 Shear in mortar collar joint, y, 3 Direct or 14 23 -- --

flexural Hollow Normal to bed joints, FParallel to bed joints,tgn 27 46 -- --

tsn 40 67 tension Normal to bed joints, F -- --

Solid -

Parallel to bed j ts,tyntsp -- --

75 125 Mortar collar joints, F tcj I4 10 14 10 Axial compression allowable (F,) is dependent upon the height and thickness of the wall F, = 0.225 f' [1 - (4 tI Type 1 Wall Type 2 Wall ;

Hollow-unit wall Solid-unit wall f' = 1,020 psi f' = 1,270 psi m" = 750 psi m",= 2,500 psi III Allowable stresses, considering special inspection, and shear and tension capacities in mortar ints are to be verified by field tests.

(2)cForliar walls laid in stack bond, shear and tensile stresses shall not be transferred across the continuous vertical joints.

1!

2 1

f o _

1 t

s e _

k e -

r h n S e

e R

g g a g g n n i n n i i r i i n n t e n n r r e t r r u u e i u u t t M r t t r r C r r e e t e e v vo s o e v v o S t N c o o a a T l n a a si si L u s a si si d r d r U s e t d r d r ee e e S e o p ee ee et et E R D e et et ci ci R c ci ci xr x r n c xr xr Ec E c N o A E c E c 0 i s t a a T a e a a i i A u c i i r r U l n r r L a a e e e e t t 3 A v t ~a t t i i - i V E p i - i rr rr rr E E e r rr ec ec L c e ec ec B D c t v v vog vog A N A i og og T A r n n n n s C si si si si S t t n t n t n t n D e er er er er A e eu eu eu eu H t M Mt Mt Mt AT p

D Y E ,

I L P P

P l ,

A a T m

r ,

o R s n ,

d b a A E o

L t d

W e r i D l

p ,

p R A ,

l E a

m r

o W

N L

D 1 2 8 1 1 1 2 3 4 7 -

K- K- M D

.l M M K J 2 5 5 8 4 l 0 9 3 4 3 4 4 4

- a 4 3 4 - - - -

W 0- 0 0

0 0

0 7

0 7

1 6

7 7 7 7 5 7 5 5 5 5 5 5 5 - - -

- - - 2

. - - 2 3 3 2 2 2 2 D D D D D D D D

' ' t ' i! tI [ *1 . f

- 2 1

f o

- s ' 2 k

r t -

a e

. s s h e

- E S m

a g g n i

r n e i t e i l n e t n b r r a u

e i M r u w t

. c r t o r l e t

s o e v e l v S t N c a o T l n o a s" si a

L u s a si d d r

- U s e t d r e .

ee S e o p ee e et E R D e c et x" c ci R xr c ci n xr E' Ec N o A Ec .

O i g I t T a e e e e A u c n

e e l l l U l l l b b L a a b b b a a 3 A v tp i'a a a a w w w V E w w o o E E e r o o o l l L c e l l l l s l l s B D c t l s l s a ae A N A i ae ae aes s T A r s s s ss s C ss ss ss t t e S t t e t e t e er D e er er er e A e et et et e et M s

. D M Ms Ms Ms M 1

p D Y E

. I ,

L P

- P P l ,

. A a T

_ m r

o R

, )

s n d b a A o

e d )

L t W

d i

e D

r )

l A

p p R d )

l a

E d )

m r W o

N L

D } )

- 3 4 5 6 0 1 2 2

3 2

1 1 2 2 1 1 - - - -

K- E C H H

-l D D K- 3 3 3 8 l 5 4 3 5 3 3 4 3 3 Wa 4-4 4 - - -

- 4 4 4 5 1 5 0 0 3 3 4 4 7 7 3 5 6 5 5 5 5 5 5 5 - - - -

- - - - 2 2 2 2 3 2 3 3 D D D D D D D D

]< i i l,,! ;1 ) ' iI;ll 4 l

2 1

n n n f o o o o i i i t t t 3 s a a a u u u t k

r l l l e a a a e n

e v v v h e e e S e

R r r r e e e h h h t t t r r r u u u f f f r r r e e e d d d n n n U U U a g g i

r n i n

i t e n n e t r ' r e i u u

- M r C

t r

t r

- E e e sJI e c v v S t P o o T l n a a L u s a si si U s e t d r d r S e o p ee ee E R D e et et R c ci ci n c xr xr N o A E c E c O i I t T a e a A u c e e i U l n l l r L a a b b e 3 A v t 'a a a t V E p i w w i E E e c e r o o rr L l l ec B D c t l s l s v A N A i ae aes og T A r s n s C ss ss si S t t e t e t n D e er er er A e et et eu D M Ms Ms Mt I

p D

E I a L

P P l a A a m

r a s n o J d b u e A e

J L t d

W e r J

i D l

p ,

A p R J l

a E J m

r o

W N

L D J 5 6 1 2 3 4 8 4 3 3 3 3 2 2 2 3

- L

.l J J H J L- M J .

l 9 1 4 3 3 4 5

- a 9 4 4 4 3 3 4 4 4 W - - -

5 5

5 5

5 5 5 5 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5

- 2 2 3 3 2 2 2 2 D D D D D D D D i

jl! il ),

!!! 1  !

.  !' I ii j i i \  !

i 2

1 f

o 4

s t k e r e m h a S e

R a

i r e e e t e l l e t b b e i a a .

M r w w t

C o o l l s o e l l S

T t

l N c n a s a, L u s a s e s U s e t d s d S e o p es e E R D e ee e R

N O i n

o c cr c xt A E s g I t T a e e e c e A u c e e i l U l n l l l b

l b b b L a a b b a a a a 3 A v t 'a a a w w w w w V E p i w o o o o E E e r o o l l l L c e l l l s l

l

  • l s l s l s B D c t l s a ae ae ae A N A i ae ae T A S t s C r

ss t e s

ss t e s

t s" ss t e s

ss t e s

ss t e er s

D e er er e er er A e et et e et et et Ms O M Ms Ms M* Ms Ms L

p D

E I a L

P P l a A a m

r o

a J j s n s

d b a A o

J L t d

W e r i D l

p ,

A p R J l

a E J m

r o

W N

L D J 2 4 5 6 7 8 0 1 4 4 4 4 4 4 4 4

- - - F F

.l N N H H F F 2 l 9 0 2 1 2 8 0 3 3 3 3 a 4 4 4 5 -

W -

5 5 5

5 9

9 9

4 9

4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 - -

- 3 2 2 2 2 3 2 3 D D D D D D D D

i f  !  ! I L' 1!  ; j i  ;}l f]  ! :I 2

2 1

f o

5 s

k t r e a e m h e S R

a i

r e e -

t e l l e t b b e i a a M r w w C o o l l t l S t s o e N c l

a a T l n sn sn L u s at d o d o U s e ei S e o p ei es es E R D e cn cn R c xe xe n c Et Et N o A O i I t T a e e e e A u c e e e l l U l n l l l l b b L a a b b b a a 3 A v t 'a ba a a a w w w V E p i w w o o E E e r w c e lo o l o l o l l L l l s l s l s B D c t l s l s l s ae ae ae A N A i ae ae ae s s s T A r s s s ss ss s C ss ss ss ss t e t e S t e t e t e er D

t e

t e er er er er er et et A e et et et et Ms M s A M Ms Ms Ms M s I

p D

E I a L

P P l a A a m

r o

a J s n d b a A e J o

L t W

d i

e r D

1 J

l p

p R

, J A

l E

, ,d J a

m r W o

N L

D J 2 3 4 5 6 9 0 1 5 5 5 5 5 5 5 4 - - - -

- - - G G C G H G

.l G G 2 3 3 3 3 l 2 2 1 3 3 3 3 3 3 a 3 3 - - - -

W - 9 9

9 9 9 4 4 9 4 4 4 3 3 4 4 4 5 5 5 5 5 5 5 5 - - - -

- - - - 2 2 2 2 2 2 2 2 D D D D D D D D

'  ;'  ! I l

2 1 .

f _

o 6

s t k e r e a h m S e

R a

i r e l

t e b e t e i

, a M r w C o l

t l S t s o e N ci a

T L

l u s a t sn d o U s e t ei S e o p es E R D e cn R c xe n c E t N e A O i I t T a e e e e e A u c e e e l l U l n i l l l l b b b L a a b b b b a a a a 3 A v t 'a s a a w w V E p i w w w w o E E e

e r wo o l o l o l o l o l L l l l s l s l s l s B D c t l s l s l s ae ae ae A N A i ae aes ae ae s s s T A r s s s ss s C ss ss ss ss ss ss t e t e t e t e t e S t t e t e er er er D e er er er er et et A e et et et et et Ms Ms Ms M s A M Ms Ms Ms I

. p D

E I a L

P P l a A a m

r a o

s n

_ d b e

- a A o

L t d

W e r i D l

p ,

p R A ,

l E a

- m  %

r o

W N

L

. D 1 2 3 4 6 7 8 0 7 7 7 6 6 7 7 6 - - - -

- C M

H D D D

.l J M 3 5 4 4 3 l 9 7 7 4 4 4 4 4 4 a 3 4 - - -

W 5- 5 5

4 4

4 4 3

9 2

4 4 3 3 3 4 5 5 5 5 5 5 5 5 - -

- - 3 3 3 2 3 3 2 D 2

D D D D D D D

2 n n 1 o o f i i t t o _

s a a 7 u u _

k l l t _

r a a e s v v e e e e e h S

R r r e e h h t t r r u u f f r r e e d d n n U U a g i n e r e e i e t e l l n l l e t b g b r b b e i a n a u a a M r w i w t w w C o h o r o o t l c l e l l s o e l r l v l a

l a

S t N c a a a o T n a a sn L

l u s a sn si sn si sn s o pe t d r d o d r d o d o U d o ee ee ei ei S e ei ei es et es es E R D e es et cn ci cn cn R c cn ci xe xr xe xe

_ n c xe xr E c Et Et

_ N o A Et E c Et O i I t T a e A u c U l n L a a ^

3 A v t a V E p i E E e c e r

L B D c t A N A ir T A s C S t D e A e A M I

. _ p D

E I a '

L P

P i a A m u ,4 r a J o

s n j d b a A o

e J N L t d

e i

l p

p o J jN A

o J l

a m

r o

N J

j J V 1 2 3 4 5 6 7 0 8 8 8 8 7 7 8 8 - -

E F F G H

'l J H E 1 2 2 3 l 1 6 3 5 3 3 8 3 3 a 4 4 3 - -

W -

5 5 7

3 7

7 1

7 1

7 1

4 1 0 1 5 4 5 5 5 5 5 5 5 - -

2 2 2 2 3 2 2 D 2

D D D D D D D

s'  : l!  !

7 1

r n

R r

s e k e r h a S m

e R

g a n i i r e n t e l r e t b u e i M r a t C w r t

o e s o e l l vo S t N c T n a a s at ses l si L u d r U e s o p d s ee S e es et E R D e R c eecr ci xr n c N o A Exts E c O i I t T a e a e A u c e e e i e U l n l l l r l l L a a b b b e b b a

3 A v t 'a a a a t i

a w w V E p i w w w rr o o E E e c e r o l o l o

ec l l L l vog l s l s B D c t l s

. l s l s ae ae A N A i ae ae ae n s s T A r s s s ss s C ss ss ss si ss S t t e t e t n t e t e t e er er D e er er er er A e et et et eu et M s et H s A M Ms Ms Ms Mt I

p D Y E

I ,

L P P

P l ,

A a T m

r ,

o R s n d b a a A o

L t d ,

e #

i l

p o p

A o

l a

m r

o N

b 0 2 3 4 6 7 8 9 9 9 8 8 8 9 9 8 - - - -

'l H

K- G H J E H H 2 9 9 4 l 3 8 9 9 3 3 4 4 4

. a 3 3 3 -

W 7- 7 7

7 7

7 7

1 7

1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 -

- - - 3 3 2 2 2 2 2 2 D D D D D D D D

~

TABLE 3

~

APPLIED IDADS AND EVALUATION RESULTS ~

.i j Applied Loads Evaluation Results 0 -

Normal Abnormal Meets Acceptance Does Not Meet f Wall' o o t E, R, T, P, Y p Criteria' Acceptance Criteria ' Remarks D2-517-33G-95 Exceeds allowable tension D2-517-43H-96 Exceeds overturning criteria 1

! D3-517-45H-97 Meets over-turning criteria N ,

I Y'

l D3-517-46N-98 Meets allowable 1 stresses I

l D3-517-46N-99 Meets allowable stresses ,

, D3-517-46N-100 Exceeds allowable tension 1

j D2-517- 38H-101 Meets allowable stresses D3-517-50H-102 Meets allowable stresses Sheet 9 of 12 4

2 1

f o o d 0 a

s n 1 k r t r o e a t m e e ot h R t c S ep a

um di ee rl ui l s i s ai P m a

i r ,

t e e t o e i d M r a C n t r S

s t

o e N c t o

T l n a L u s a si U s e t d r S e o p ee E R D e et R c ci n c xr N o A Ec O i I t a T a e a e e e A u c i e i r l l U l n r l l b e b b L a a e g b a a a 3 A v t 'a t n a w w - i t

w w V E p i - i i o rr o o E E e r rr h o l ec l l L c e ec c l l v l s l s B D c t v ra l s aes a og ae aes A N A i og ai n s T A r n r ss s si es ss s C si se t e t t n t e t e S t t n t t e er er er D e er ei er e eu et et A e eu er et Ms M Mt Ms M s A M Mt Mc I

p D

E I a L

P P l a

_ A a

_ m r a s n o J d b a A s J o

L t d

W i

e D

r J l

A p

p R J l

a E J m

r W o

N L

D J 5 6 7 8 9 0 3 4 0 0 b 1 0 0 0 0 1 l 1 1 1 1 1 -

1 - - - -

- - D E E

.l C G G E D 4 3 1 3 5 4 l 4 6 3 3 4 4 4 4

- a 4 4 - -

W 7- 7 7

7 7

7 1

7 1

7 1

1 1 1 0 1 5 5 5 5 5 5 5 5 - -

- - 3 2 2 2 3 2 2 D D 3

D D D D D D l '

! l :I , , ,

i, , i ;j L r .! -

.l

, t i,i , , t t  ;  ;

l]-

2 .

1 _

n n f o o o .

i i .

t t 1 .

s a a 1 _

k u u l l _

r a a t .

n v v e e e e e

- e h B r r S -

e e

- h h

- t t r r u u f f

- r r e d e

d

- n n

- U U i g

a n i i r n t e r e t u

- e i t M r r C e t v -

S e

t o n N e o

a T l m si L u s a d r

. U s eo tp e

ee et S

E R D e ci R c xr n c E c

- N o A O i .

I t T a e e -

- A u c e e e e l -

U l n l l l b

~ L a a l b b b b a

. 3 A v t 'a a a a a w o

V E p i w w w E E e r w o o o o l L c e l l l l l s ae B D c t l s l s l s l a

A N A i aes ae ae ss s

T A r s s s C es ss ss s t e S t t e t e t er D e t e er er er e et

- A e et kts et W Ms

. A M M s 1 s I _

p D

E Y J

. I ,

L F F ,

F l _

A a T m

J r ,

s n ,

o R J d b a A E o

J J _

L t .

d i

e

  • J J l

p o A

p J -

o l

a J J m

r o -

N J

J J _

3 4 5 6 7 8 _

. 1 2 1 1 1 1 _

1 1 1 1 1 1 1 1 1 1 1 1 - - - -

- - - C

'l -

H H H H H H l H 3 4 4 3 9 5 9 5

- - a 3 3 3 5 5 4 4 4 W - - -

8 8

7 7

7 7 8 8 1 1 0 1 2 2 2 2 .

5 5 5 5 5 5 5 5 - - - -

- - - - - 2 3 2 2 2 2 3 3 D D D D D D _

D D _

' lj} lI,l 1,i j iII .

!jiI!l! I ji ,1 , I

2 1

f o

s 2 1

k r t a e m e m h E S

~

a i

r e e t e l l e t b b e i a a M r w w C o o t l l s o e l l a

n a s S t N c T l s L u s at ce se U s e d s d s S e o p es es R D e ee c ee E

cr R

n c cr xt xt N o A E s E s O i I t T a e e A u c e U l n l l b

L a a b 3_ A v t a a a V E p i w w E_ E e r o o L c e l l s l

l s B D c t ae ae A N A i s s T A r ss s C ss t e S t t e D e er er A e et et ,

M Ms Ms D

I m

P I

p  %*

D E

I a L P P

P l a A a  !

m r a s n o J d b s a A o

J L t d'

W J e r i D l

p ,

p R J 1 A

l a

E J m

r o

W J ,

N L

D J ' ,

8 2 3 y 1 2 2 0

2 1 1 r 2

1 1 - - o

.l - H H t s

l A 5 3

- a 5A- 3 4 4 rt ef . '

V - -

6 6 D ti 7

1 7

1 7 7 N nr 5 5 4 4 E I D

- - G -

  • - - 3 E r 2 3 2

D D D D L D 0

, L

\ -

I

~

e r

o e e _, e e e r- ,

tg . .. .

, .e . E-1 .y a g '.

oj'hs i+ <

in

- - m ,rr II /m.l 10 q$j! fF ~

z j,

@ J" 'r d i ji

[*11k--h'g@k

j r

ll If<t4 !bri i' g;l

.~

3 om u",. lij J  :

-.wi s n 1 .

i - ,

za ,

i.5 ii.  : [

P4 ,'

4 M.gl g' 2 :

.j i.a g i.p .

. -r s .p ,,, 3 og.

'l .,

q.

E<l;1% c --

t {n f- '2 p'. i..e i t! . . _ . 4l .gl .. . .l x- >

ql,1 i

- . i.- H .

si i i i +

r  : il'i ,,l

'; mje'j, it Ll1 FA

  1. o 3

i ..t.

, f . rq [ .fe,pb. c, r!,- JT-, 3J t

-gl g-n; ;p.it  ::

b;i-r w

Iril  ; F

[-

g m,o , ; --

.! .l-

[a ,-

0f "'

(- E n; hg -

t h l%In i .i  % d gl i .

d L 'h T-7 'l '"

k I

M';I.F/l[,'l'p$^9hk.3bb E' ~

!I -)' ('.7';', -

-d f:l Y

M- 6 2 1 '

A 9 jj h ' N$

-f (w.$Ft-l>

I l'

lf@',[lr  % g;jbjU'] h ml d[D.$

~

'Q U %b $NQ ij h l gililiw" J j '19,5{f

=- -

..yr .t,:.

'[, .

-!q *i pll;rp=, y .es d;[g*. ,@ 6, g..isd

.1..

1 Si I i

'f> d b,p _ '. c.

i;II5D])lgni'i,5 L.

i I w 5 n

i i - grnrE 'l _

k, N / ja d I k .}i [

I,I ,-

m f.0

. $@u.nM a"._QYM'

.r7 Ng.

s .#

~

r.Pd ~.

J ~

.- Q' ' '_-q? .g3 &. rd!ql j- -t i* Fj' .*.

F. ul.? 7:I n u- 4..

-s f, .s ttf .

I '

I hhi!

~

i ii ;i

~

'I. k, ((p l 'i pr

~

L r

$@ i L s Jrf i "- 1 F.f

~

= r 7 i Sf 4- t i '

.b<

~

'N '! -

rI.:mr!' j..

[L y. r,h-- ;_ y r.l' o c i 4-

@- -- i 7 jk :-%)i 2  ! 'i.k 3 0.', " gd q c

? ig  ! .

g. I ' l '. .) l l' I *9.n.r.

2 ,-

l- fh 1.F A

- If ai d _"",r.4.f I N8 ,h  ! s'. .e O . -

~

,s 3 ip I i .

3  ! l Nlc I

sa . m i f j.d h . b~ I, ii

[

~

[.-  :

a >  !

t I

E N og h. ].! N9._lig.IR$.,o

--7 m - --

. -p .

I

i. - -

- a 11 tdd... I ;,- o - >

7 !a j

l p il -

li r

u wm;i j

d ,y k -

s e

=

F. .g: -, . . _ -. n ,

,,,.+

o. '

s  ! ! 6 g op.f p ,. ii . ,

p - -

. . - 'T 4

g

,, 4 = * * '

,,. ,, yg 8 f

c; h  ;

r,i r=%" r o  ;

N; kke _h, Ifl !)

m %}[e $f .

rgww.$[qu o h [..

y n i $

3.

aX m4 prr

.t ,

i .c MM_c i u

f$$$gn(( ft h $2 i

b. m: wws t

i,g }'lM y h@  % u.  % J, f. -

g. $,[:8ly-.;a, .y -.u a p fm,n ,i-$J_' :1 4 - '-

w, M ,i- t - r- a 4 i g ; ~ o3- g".:- ~

j t 4

ig di gn=ls ;g -,-'

nm . [P l .p _ .qm- -f,w.d * .

A:

I m mx- .B=x i .

N-,c.,Il f -g 7*

,).C 6i .g9 gb .'

h' r;;;1d%jj' A m)j- '

= e w;.1,. -,. 'gc8U a .2. m_ y pl m 11 59 p!i hhf.-4[?

L &_ _ _ - . +

1- te .-;. q: _ w g p -; Ao i m.

4 i g 1 .

? I j --

MW, q

w #w e%;3s .. /gdO g ,Pd

~

=,:

kk y

% T-h s e_.g h ,

'ENbjhfS ..w'liii~ . gih Mqk..

rs ., m l ifl3 1(. '

M NhN i lhl i M. aa((,#l %-M M i. h d*a"%[@

f ti

  • i iM LnW 2 J w a ! .ar W.McD Khd3 D

!4 h _Y -4 hi ; i.r

( "-

_- (- FlM M Ci, !;'((,$'g!

i

$ig nh i li gj7. g% lll{d, gg

, . p, w .

QJpM it;w ---'

! Q.I_h!ti

.a __c .

m.N # - -

p; 2 ,I e.i i i lgi,p ljai i i i n.

- I p.c,%. w f - .

cc

3. n . g< 1. t .

-% g

@m,.m. .-

J

~,7 ,

3. ' Ef $

3 .,, ) l

$ i* Y 11-Ig!

m y)

Iq ijlhJ-#"ii---- _ c[-b 3 5

]{ mlN9[ ]L s'.y? 2.,- - >h Q

@ ,j 2 S i } i. d TP .]r Mjlqpd t, -

3 4 j f.lIli j ]9

! U P i ,I! Ih jfMd I g; $ -u yd s p,(!_.u.: ch--

>' y s -

l'  !!I dp,JWWE67

!i ..

n e Lg'didd o

i!o 5: 1s iy---

3,., <p.

2 5 dfa j -

{

8 E s  % ' %!id tdiw!l _

l s L

q

~

i , A}J o

?

e e.

e.

Wir!

nu.w- w - am- o-eJ, i

Y

, ;i

l l

1 1 G o .e @ @ e @_.serg e- g v . . .. /_., _-

o E> o

_.;{...: oJ If*f

? ?y lf Ip! , g,I2ll %_p'i9 r JW=M,

[!

l'2 , , . u - i o h. .

h,p' Ipj g/

y, '~

i i .I o ,

(I; 1 . g

{

K~

^~

h{ !Y

'8l 20  !

, qll f I ( 3 Il f, 9 f*

k fd 'Ik- F r

, Li m 1~.jl'i _.r.Ru'  :: }n r a m' r

=; e3 e1 fi r wh- y ng lLiEEL{at' p'

.

la  ? lI%;. p i =N 4j - -%Il-44 N 6 e. ,

m a +4ra'  !!' : " . -

NM;q_

1 tin lyqj-v11)(de+dTv[h im t ir t,m 4.astt nFiY . y' ==y.A m ..

~'

C fj:

lkr- r,

_a i,2 = m. 1

  • l N) j,4 -

.l[' ff, rt(g"i.ml j ll.,i .

'I ,

- .j . hS. jgf' / lu$,. jg-l i g4 , _ r, . .

' l'p. d bR gihrg Y },$;i.3 h, 4@u,%jyg f.i.

a

$Ily

_. h p dii ~k,.f,j 'i w_gg g~ n4 n i iijin.-" .4 i,! r ;swa, - -

I

-l; - -h-l"p tesir""~~~" lim E$ jj; {il1 r -- - d j i ~

7 ll 52- a 5 m!

@ g!  : ,I'.!jj!

p. g E I

~M w -

e egg-e

!- t ' f w=~@isy --_oy@7 ,

is [ f

.fJ ri 5' 5 OL 4

\ l, i -A c, a= i9 als!ijb. Jg$ jh g 2 1 g ,

,g -e -- 0 i o

a u z Ir. aw= .

<1 ape ?. .

p g

,  ! !j qigjij th. a Wr4'4. $#!!j!!8. v% .

~

I

~

aitj a >'

l *n! 0 1 6 f w.uki$N'iiiiiIl!!@F}D=D ,

H

. L _

s ,

. p t

,. 4 ec. -

r- e m i s O p - ,

m [

.. 2 ,

O G 4 lI. N i t s e.

t .

,. k ,

c , q rt, g ,, *

'! 1 {i, . i ,l. zC Qr: -e L_ w.pp i y a<

h ..b p# 7 W r0

..ir .-

yy '

l

/_ _r ./. .,G:y::, m:,:y Fn

'l I '.T

  1. o

- is s,; n ...r. f

[ ',.c'W, i i 1-w -

,;*x . 1. . ;.

~. h**! l ,,.e 8 "- -

g.

- A ..  ; ss.::g-./ -.a y fii f '. ; ti g p, f S

1 ,

I N a ',i .fi sf,#w!

an t

?>i;.) sim~ aie n

r.. s~  :

i .,.

- .! 3 .

J k "s' J .. ..,).! I L-h,- ' f(gr 7

rc t) i.i "5

h{$.. ,

t ::h.._ 'j.N',M ji ll j , -fj g h h :i !@

i mr.- J,tL g p' ,b 5 a h 7*

4 hy h "9k n=sw .+

d%

e a $8.D.,n w& A$. 8 o$p I -,h ni .L f. iii X l@ i w .e

,'c 4 i.

m T h '~1j'M L v. 4 -

,P o c, .v'N y- m m. i+ .-: , .. r,.p.an/ a-ne g

,I . p rg i. '

j e

e g f-; ji

, - g< l  :

g -- '^

- f;

-! t)

  • li l ;;*I. j: .:  :,

L L_f. eis J =-

. gi ,m: <$. n, r;1 e a. . -.c nm . &e 'h  ::nW:,

d"-m $

l1'

? lr Ia .T, , I i1  ! 1,14.m'b. rti,gbyt+z.t. hs.?J..'o.a.-

,i . m ,. .e

~

!.! eg - . u .. ,

7n T !i- l }!+7 kui

  • Ar-- .^rsi l~ II g_g[,n

{g[ljI

.# / --

- ! I N si E fi l!k 4 -

, o r L .

- - - il k gY. p qu ,i 4

j.$ li l Ij> '

@4

g II 3

dy> 5 li i .. .e:

lE @r Mj i lj ifj I -

i .

5

._Ib -hn, i ," .1 . .s .. .. o g .it.,, [, , ,. o y., ,g 1,$ ej

-M- -e o  ? 6 4 g 4

,Et yt _ _._ ..

? - -

r- p p,

l '% = =$

v k . jj ho8 i,

__a_ , Q-e .

f ,{

e { S.

N rs.

[ se 4

,i e an hh I! S .

51!h ,

e e5

V c -- . . . . . .

__ q o.e,e

.e.e i 111 k-a 5

  • j i b

=r h ~r:t g.r o a r ] fli!!!- _-

i,3 f. w%n}, i' . m u.

.. J

, N ( -. .

{ g I 8

it .O Sl

..e u

3{N I 1"g ---f

,i Ij a

II , 1 % La',

= . . _ _ . . $e>

i'l l

l

[g f fj E h .' 4 N d' g J.I

. . _I 24 '

hj P ~$ Tf IW ife l l !!NdE%gg*!

tW9.; g , gT gg[ir[agid w -

  1. $g'. _-.rpQMQ

!((

! RL l a 7 g y '"

% .6((l{

g

. + , ,

, .. _ - - .g. . d 3_. i. a l[',:'i '

l/'

r '

}

- ;. ... ~

Q 70 '

1 . 4 _ .

[ { b ' J III II h N!

&g., .

L! pt'L %M;.

i .

['

i

.a t

, hy -

in ig 4 .{L

p t

g 6

2' 1;C'3T

~

@j{

-p<,9 .V * '

., p*

_) j

' -- C C -

' [1@' .. ..

I,, Nhi 'I'd II,[3 iijff' gg,i 3 c J!E;@-A' ' --!{

-d h[g!!@li g pt t.,h-9-f a :p.

9F .

i

!l U

" " l *

)

dk h

r.

gf p s24 }'T t i f9 '

5 i 1 ik / fi 6 _ . + [D- A >

ikh. -..

fa .

. . E__ p a ., i i j!rii$k L _f  !%h-Dg'  ;

,r_ .

4 .

_L d,% TJ l

$ h,.

_rg 5IU 5%N

i. _ .hdy

'! [

b5 e 6 Gf -- --If ----l hp] ;'aCT-

' E t -- -- bl -!

l(Ihs'y =1--il_.n-

.e.

l y '~

l

^]

y y.  :.jli

-+- -- -- 'Vf I

g .-

, Lg  ; S

g. N- '_ . 5 l d ~~

21- g# 2 5 -i?_ w ii  !

.[J , MlIl-t'-!

Ir ! A -

3 -!'

t 4-L - - ,

pp

_~'_ ji- ~8  !  !"

E no t

^$ E h (4 h5. l f b k h! y( b3 $a f~ Y -

1 !s ! lh(tah !

p .JP m, r wi i

j< Glo , 5 _

g o p _4 'o 4 i  :

l l

1 APPENDIX B ADDITIONAL JUSTIFICATION OF THE REEVALUATION CRITERIA

' Appendix D, P g211 of 11 TABLE OF CONTENTS Page

1.0 INTRODUCTION

1 2.0 ABBREVIATIONS 1 3.0 ALLOWABLE STRESSES 1 3.1 AXIAL COMPRESSION 1 3.2 FLEXURAL COMPRESSION 3 3.3 BEARING 3 3.4 SHEAR 3 TENSION - 4 3.5 3.6 SHEAR AND TENSILE BOND STRENGTH OF MASONRY 6 COLLAR JOINT 4.0 IN-PLANE EVALUATION CRITERIA 7 4.1 ' INTRODUCTION 7 -

4.2 TEST RESULTS 8 5.0 ALTERNATIVE EVALUATION CRITERIA 8 ARCHING 8 5.1 ROCKING 9 5.2 5.3 SLIDING 9

6.0 REFERENCES

11 TABLES B-1 Compressive Strength of Axially Loaded Concrete Masonry Walls B-2 Flexural Strength - Single Wythe Walls of Hollow Units, Uniform Load, Vertical Span B-3 Flexural Strength, vertical Span Concrete Masonry Walls, From Tests at NCMA Laboratory B-4 Flexural Strength, Horizontal Span, Nonreinforced Concrete Masonry Walls 4

Appendix D, P2921 of 13

1.0 INTRODUCTION

The following discussions and test results are intended to pro-vide additional justification of the reevaluation criteria for the safety-related masonry walls. This information has been extracted from the references identified in Section 6.0.

2.0 ABBREVIATIONS Abbreviation Title ACI American Concrete Institute ,

ASCE American Society of Civil Engineers ATC Applied Technology Council EERC Earthquake Engineering Research Center NBS National Bureau of Standards NCMA National Concrete Masonry Association 3.C ALLOWABLE STRESSES 3.1 AXIAL COMPRESSION The objective was to develop reasonable and safe engineering design criteria for nonreinforced concrete masonry based on all existing data. A review in 1967 of the compilation of all avail-able test data on compressive strength of concrete masonry walls did rot, according to some, provide a suitable relationship between wall strength and slenderness ratio. From a more recent analysis, it was noted in many of the 418 individual pieces of data that either the masonry units or mortar, or in some cases, both units and 'murtar, did not comply with the minimum strength requirements established for the materials permitted fcr use in l " engineered concrete masonry" construction. Accordingly, it was l decided to reexamine the data, discarding all tests which included materials that did not comply with the following minimum requirements:

Compressive Strength Material (psi)

Solid units 1,000 Bollow units 600 (gross)

Mortar 700

Appendix 0, P293 2 of 13 Also eliminated from the new correlation were walls with a slenderness ratio of less than 6; walls with an h/t ratio of less than 6 were considered to be in the category of " prisms." For evaluation of slenderness reduction criteria, only axially loaded walls were used. The data that were available consisted of tests on 159 axially loaded walls with the h/t ratio ranging between 6 and 18. With this as a starting point, the data were analyzed assuming that the parabolic slenderness reduction function (1-(ghg)3) is valid.

The basic equation used to evaluate the test data was:

test 3 (y)

, g, f gy ,g 3) test =C (2) g g x S.F.

ff(1-(40t'3 I Cg x S.F. = K (3) where f' = Assumed masonry strength, net area, based on 8 strength of units f test = Net area compressive strength of panel S.F. = Safety Factor C, = Strength reduction coefficient h = Height of specimen, inches t = Thickness of specimen, inches The net area used in the above formulae is the net area of the masonry, and does not distinguish between type of mortar bedding.

In the evaluation, mortar strength was assumed to be constant and' was not considered a significant influence on wall strength.

It was determined that the objective of reasonable and safe criteria would be met if 90% of the K values were greater than the K value selected and gave a minimum safety factor of 3.

Accordingly, the K values were listed in ascending order and the value satisfying the above conditions was K = 0.610 for the 159 tests as seen from Table B-1 Therefore, from Equation (3):

l l

l l

Appendix D, P2ga 3 of 13 Cy x S.F. = K Cg x 3 = 0.610 l

= 0.205 Cf = 0.610 This value (0.205) agrees very closely with the coefficient 0.20 I which had been used for a number of years with reinforced masorry l design. An analysis of the safety factors present with the i

formula:

f,= 0.205 f' (1-(h) )

indicates the following: - 1 A safety factor greater than 3 is available in 934 of the tests, greater than 4 in 51% of the tests, greater than 5 in 15% of the tests, and greater than 6 in 5% of the tests.

In ACI 531, the factor of 0.20 was increased to 0.225. The recommended value of 0.22 for unfactored loads has factors of safety comparable to those given above.

3.2 FLEXURAL COMPRESSION It is assumed that masonry can develop 85% of its specified compressive strength at any section. The recommended procedure for calculating the flexural strength of a section is the working stress procedure, which assumes a triangular distribution of strain.

For normal loads, an allowable stress of 0.33 f' has a factor of safety of 2.6 for the peak stress, which only eIists at the extreme fiber of the unit and has been used in practice for many years. The recommended value for factored loads also only exists at the extreme fiber and is the value recommended in the ATC-3-06

- provisions.

3.3 BEARING These values for normal loads are taken directly from the ACI 531-79 code.

3.4 SHEAR The most extensive review on shear strength literature appears to have been done by Mayes, et al (Reference 6.1), and published in Earthquake Engineering Research Center Report EERC 75-15 which was performed for both brick and masonry block.

e

Appendix D, P ga 4 of 13 This report attempts to summarize some of the findings that appear to be pertinent towards defining permissible shear stress values that can be used for reevaluation of the nonreinforced concrete masonry.

A number of tests have been identified as being the primary basis for permissible shear stress values in both NCMA Specifications for the Design and Construction of Load-Bearing Concrete Masonry (References 6.4 and 6.5) and the ACI Standard Building Code Requirements for Concrete Masonry Structures, ACI 531-79 (Refer-ences 6.2 and 6.3).

Out-of-plane flexural shear is ~ defined by the code (References 6 2 and 6.3) as equaling 1.l s/fr. The derivation of this value is analogous to the permissible shear value of concrete, disregarding any reinforcement, of 1.1 v rf' . Although this is somewhat different (there is no tension steel by which to determine the appropriate j distance), the actual value is a mute point because tension will be the critical value for determining out-of-plane accept-ability of a flexural member.

Because of the nature of the stresses, however, and the various concerns with regard to the correctness of interpretation of the effects on boundary conditions, as well as such conditions as actual mortar properties, absorbtivity of the mortar, confinement j or lack of it on the test specimen during test, and arrangement  ;

and effect of actual load, it does not seem warranted to increase these stresses beyond a factor of 1.67 under abnormal and extreme environmental loads.

3.5 TENSION

. 3.5.1 Normal to the Bed Joint A summary of the static monotonic tests performed to determine code allowable stress for tension normal to the bed joint was l given in the NCMA specifications. 1 Stresses for tension in flexure are related to the type of mortar and the type of unit (hollow or solid) . Research used to arrive l at allowable stresses for tension in flexure in the vertical span (i.e. , tension perpendicular to the bed joints) consisted of I 27 flexural tests of uniformly loaded single-wythe walls of  ;

hollow units. These monotonic tests were made in accordance with ASTM E 72. Table B-2 summarizes the test results.

From Table B-2, the average modulus of rupture for walls built with Types M and S mortar is 93 psi on net area. For Type N mortar, the value is 64 psi. Applying a safety factor of 4 to these values results in allowable stresses for hollow units as follows:

~ ' ' * - - - - --- . _ . _ _ , _

Appendix D, P29a 5 of 33 Mortar Type Allowable Tension in Flexure (psi) j M& S 23 N 16 Those values are consistent with those published in the 1970 ACI Committee 531 report, which have been only slightly altered in the ACI 531-79 code. .

Based upon these tests, the minimum factors of safety for each mortar type are:

Mortar Type Factor of Safety M 3.87 , , ,

S 2.60 N 2.81 To establish allowable tensile stresses for walls of solid units, the 8-inch composite walls in Table B-3 were used. These walls, composed of 4-inch concrete brick and 4-inch hollow block, were greater than 75% solid, and thus, were evaluated as solid masonry construction. The modulus of rupture (gross area) for these walls averaged 157 psi, giving an allowable stress of 39 psi when a safety factor of 4 is applied. The composite wall tests in Table B-3 used Type S mortar. Tc establish allowable stresses for solid units with Type N mortar, the mortar influence estab-lished previously for hollow units was used.

323 = 739; f = 27 psi The minimum factor of safety for these tests for Type S mortar was 2.33.

Recent dynamic tests have been performed at Berkeley and the values of tension obtained at cracking at the mid-height of the walls are as follows: 13 psi, 20 psi, 23 psi, and 27 psi.

The recommended values have a factor of safety of 2.8 with respect to the lower bound of the static tests for the unfactored loads

- and are towards the lower ILait of the initiation of cracking for the dynamic tests. An increase of 1.67 appeared reasonable for factored loads based on the static tests.

, - = = - . -e

Appendix D, Pzg2 6 of 13 3.5.2 Tension Parallel to Bed Joints values for allowable tennion in flexure for walls supported in l the horizontal span are established by doubling the allowable i stresses in the vertical span. While it is recognized that )

flexural tensile strength of walls spanning horizontally is more ,

a function of unit strength than mortar, it is conservative to use double the vertical span values. Table B-4 lists a summary of all published tests and indicates an' average safety factor of 5.3 for the 43 walls containing no joint reinforcement and 5.6 for the 15 walls containing joint reinforcement.

It is important to note that the factor of safety for those walls loaded at the quarter points (Reference 6.6) have an average factor of safety of 2.02 with a minimum value of 1.22, while those loaded at the center had an average factor of safety of 6.08 with a minimum value of 3.59. Bowever, it should be noted that the values tested at the quarter points were also tested at 15 days.

The results associated with the early date of testing and the use of quarter-point loading are difficult to explain other than to state they are at variance with all other test results.

An increase in the allowable stresses by a factor of 1.67 is recommended for abnormal and extreme environmental loads. The recommended values could be increased because of the larger factors of safety in the test results, however, the value of 1.67 was chosen to be compatible with the increase in other stresses for unreinforced masonry.

3.6 SHEAR AND TENSILE BOND STRENGTH OF MASONRY COLLAR JOINT The collar joint shear and tensile bond strength is a major factor in the behavior of multi-wythe masonry construction, particularly with respect to weak axis bending. A widely stated position is that for composite construction, the collar joint must be completely filled with mortar. However, even if this l joint is filled, there must be a transfer of shearing stress across this joint without significant slip in order for full composite interaction of the multiple wythes to be realized.

Because the cracking strength, moment of inertia, and ultimate flexural strengh of the wall cross-section are significantly influenced by the interaction of multiple wythes, it is crucial to establish the collar joint shear bond strength.

The only applicable published data on the shear bond strength of collar joints is that determined by Bechtel on the Trojan Nuclear Power Plant (Reference 6.29) .

- Appendix B, Pigs 7 of 13 There are conflicting data available on the relationship between the shear and tensile bond strengths. In most tests performed on ,

mortar bed joints (couplet tests), the shear bond strength was )

approximately twice the tensile bond strength. In a more recent I method of evaluation by means of centrifugal force, the shear bond strength was found to be 60% of the tensile bond strength (Reference 6.16) . The authors of the report consider the test procedure to be an improvement over present methods because joint precompression is essentially eliminated as a result of the testing procedure. l Because of the conflict in the test data, it is recommended that i the values for tensile bond strength be the same as for shear l bond.

Unless metal ties are used at closely spaced intervals (less than 16 inches on center), it is recommended that their contribution to shear and tensile bond strength be neglected.

4.0 IN-PLANE EVALUATION CRITERIA

4.1 INTRODUCTION

Much of the effort to define a permissible in-plane shear stress may be somewhat academic in that the normal case for unreinforced walls being used in nuclear plant structures, the nature of the shear, is one of being forced on the structural panel as a result of being confined by the building frame and not one of depending on the panel to transmit building shear forces. This forced drift or displacement results in shear stresses and strains, but because of the complex interaction between the panel and the confining structural elements, strain or displacement is a more meaningful index for qualifying the in-plane performance of the panel.

In-plane effects may be imposed on masonry walls by the relative displacement between floors during seismic events. However, the walls do not carry a significant part of the associated story i

shear, and their stiffness is extremely difficult to define. In i addition, because the experimental evidence to date demonstrates that the apparent in-plane strength of masonry walls depends heavily upon the in-plane boundary conditions, load or stress on the walls is not a reasonable basis for evaluation criteria.

However, examination of the test data provided by the list of references of Section 4.2 indicates that the gross shear strain of walls is a reliable indicator for predicting the onset of significant cracking. A significant crack is considered here to be a crack in the central portion of the wall extending at least l

10% of a wall's width or height. Cracking along the interface between a block wall and steel or concrete members does not limit the integrity of the wall.

Appendix D, PagS B Cf 13 4.2 TEST RESULTS Test results indicate that to predict the initiation of signi-ficant cracking, masonry walls must be divided into two categories:

4.2.1 Unconfined walls: Not bounded by adjacent steel or concrete primary structure. Significant " confining" stresses cannot be expected.

, 4.2.2 Confined Walls: At a minimum, bounded top and bottom or bounded on three sides.

For unconfined concrete block masonry walls, the works of Fishburn (Reference 6.18) and Becica (Reference 6.17), yield an allowable shear strain of 0.0001. It should be noted that Fishburn's test specimens were an average o'f 15 days old.

J For confined walls, the most reliable data appears to be that of Mayes et al (Reference 6.20) . In static and dynamic tests of masonry piers (confined top and bottom) . varying block properties, mortar properties, reinforcement, vertical load, and grout con-ditions, significant cracking was initiated at strains exceeding approximately 0.001. It should be noted here that reinforcement can have no significant effect on the behavior prior to cracking.

Similarly, the presence of cell grout should have no effect on stress or cracking in the mortar joints at a given strain. Bo th predictions are confirmed by the data in Reference 6.20. In i addition, the data shows that the onset of cracking is not sen-sitive to the magnitude of initial applied vertical load.

Klingner and Bertero (Reference 6.19) performed a series of

! cyclic tests to failure and found excellent correspondence with a nonlinear analysis in which the behavior of an infilled frame prior to cracking is determined by an equivalent diagonal strut.

l While the egoivalent strut technique has been used by many investi-gators to study the stiffness and load-carrying mechanisms of infilled frames, Klingner and Bertero found that the quasi-

compressive failure of the strut could be used to predict the onset of significant cracking.

l:

l 5.0 ALTERNATIVE EVALUATION CRITERIA 5.1 ARCBING 1

An extensive test program performed by Gabrielson (Reference 6.21)

! on blast loading of masonry walls provides validation of the concept of arching action of masonry walls subjected to loads that exceed those that cause flexural cracking of an unreinforced masonry wall. An analytical procedure was developed to predict with reasonable accuracy the ultimate capacity of the unrein-forced walls tested.

i

=www~ew,,-,

l Appendix D, P gs 9 of 13 1

5.2 ROCKING Freestanding block walls may rock or slide as rigid bodies during an earthquake. Such rocking and sliding of walls in nuclear plants is permissible as long as it is within certain tolerance limits. Only when the rocking of a wall increases to a critical, value does the wall become unstable and overturn.

A freestanding wall starts to rock about an edge when the su porting '

floor moves horisontally with an acceleration greater than ( )g, where t = thickness of wall, h = height of wall, and g = acc leration due to gravity. If the coeff$cient of friction y between the wall and floor is less than (j), the wall will nbt rock, but will i slide instead.

The rocking behavior of cantilever structures has been studied  ;

I and reported in References 6.23, 6 24, and 6.25. In References 6.24 and 6.25, a nonlinear differential equation for the rocking ,

motion is formulated and solved numerically for different support excitations. Some test results on the rocking of block specimens are reported in Reference 6.24. A simple energy balance method is used to predict the rocking of block walls. The method is similar to the one in References 6.22 and 6.23 for cantilever structures. Application of the method to seismic rocking of structures has been justified in Reference 6.26 based on the numerical results using ANSYS program.

l l

A rocking wall switches from one edge to another and a consider-able amount of energy is dissipated whenever the wall impacts the floor. Thus, the seismic rocking behavior of a wall is nonlinear and the frequency of rocking varies as a function of the maximum rocking angle in a cycle (Reference 6.23).

5.3 SLIDING Sliding is the horizontal movement of a wall as a rigid body with respect to the supporting floor. In general, a wall will either rock or slide during an earthquake. It appears that a rocking wall will not slide and vice versa. Sliding resistance and i

sliding displacement of a wall depend on theThe coefficient of following are friction between the two contact surfaces.

reasonable friction values for concrete depending on the surface roughnesses:

p = 0.33 - between smooth surfaces y = 0.67 - between smooth and rough surfaces

y = 1.0 - between rough surfaces 1

d

m. s su m=~e We+ M'W-1Wh--PT'e *g 7 w.. W+M *1 MN Ntw Mg e-rw=g wy,* g weg

Appendix B, Pcga 10 of 13 seismic sliding of cantilever structures is studied in Refer-ence 6.28 by nonlinear seismic analyses using ANSYS program.

This study substantiates the simple energy balance method given in References 6.22 and 6.27 to predict sliding.

A wall begins to have sliding oscillations whenever the hori-sontal seismic floor acceleration in g-units exceeds the friction coefficient.

e e . .m w- ese

Appendix D, P ga 11 of 13

6.0 REFERENCES

6.1 Mayes and Clough, " Literature Survey - Compressive, Tensile, Bond, and Shear Strength of Masonry," Esrthquake Engineering Research Center, University of California,1975 6.2 ACI Standard, " Building Code Requirements for Concrete Masonry Structures" (ACI 531-79) 6.3 Commentary on " Building Code Requirements for Concrete Masonry Structures" (ACI 531-79) 6.4 " Specification for the Design and Construction of Load-Bearing Concrete Masonry," NCMA,1979 6.5 Research Data and Discussion Relating to " Specification for the Design and Construction of Load-Bearing Concrete Masonry,"

NCMA, 1970 6.6 Fishburn, "Effect of Mortar Strength and Strength of Unit on the Strength of Concrete Masonry Walls," Monograph 36, NBS, 1961 6.7 Copeland, R.E. and Saxer, E.L. , " Tests of Structural Bond of Masonry Mortars to Concrete Block," Proceedings, American Concrete Institute, Volume 61, Number 11, November 1964 6.8 Richart, Frank E. , Moorman, Robert B.B. , and Woodworth, Paul M. ,

" Strength and Stability of Concrete Masonry Walls," Bulletin 251, Engineering Experiment Station, University of Illinois, 1932 6.1 Bedstrom, R.O. , " Load Tests of Patterned Concrete Masonry Walls," Proceedings, American Concrete Institute, Volume 57, p 1265, 1961 6.10 tienzel, Carl A. , " Tests of the Fire Resistance and Strength of Walls of Concrete Masonry Units," Portland Cement Association, 1934 6.11 Nylander, H., " Investigation of the Strength of Concrete Block Walls," Swedish Cement Association, Technical Communi-cations and Reports of Investigations,1944, Number 6 (October) 6.12 Copeland , R.E. and Timms , A.G. , "Ef fect of Mortar Strength and Strength of Unit on the Strength of Concrete Masonry Walls," Proceedings, American Concrete Institute, volume 28, p 551, 1932 e

e- - - --w-~- - - --- - _ _ _ _ - - - - - - - _ _ _ - - - - , m,*-

, Appendix B, P:gs 12 of 13 6.13 Beyer, A.B. and Krefeld, W.J. , " Comparative Tests of Clay, Sand-Line, and Concrete Brick Masonry," Columbia University, Department of Civil Engineering, April 1923 6.14 Livingston, A.R. , Manootich, E. , and Dikkers, R. , " Flexural Strength of Bollow Unit Concrete Masonry Walls in the Bori-sontal Span," Technical Report 62, NCMA,1958

- 6.15 Cox, F.W. and Ennenga, J.L. , " Transverse Strength of Concrete Block Walls," Proceedings, ACI, Volume 54, p 951, 1958 6.16 Batzinkolas , M. , Longworth, J. , and Wararuk, J. ,

" Evaluation of Tensile Bond and Shear Bond of Masonry by Means of Centrifugal Force," Alberta Masonry Institute, J Edmonton, Alberta 6.17 Becica, I.J. and Barris, B.G. , " Evaluation of Techniques in the Direct Modeling of Concrete Masonry Structures," Drexel University Structural Models Laboratory Report M77-1, June 1977 6.18 Fishburn, C.C. , "Ef fect of Mortar Properties on Strength of Masonry," National Bureau of Standards Monograph 36, U.S.

Government Printing Office, November 1961 6.19 Klingner, R.E. and Bertero, V.V. , " Earthquake Resistance of Infilled Frames," Journal of the Structural Divison, ASCE, June 1978 6.20 Mayes, R.L. , Clough, R.W. , et al, " Cyclic Loading Tests of Masonry Piers," 3 volumes, EERC 76/8, 78/28, 79/12, Earth-quake Engineering Research Center, College of Engineering, University of California, Berkeley, California 6.21 Gabrielson , G. , Wilton , C. , and Kaplan, K. , " Response of Arching Walls and Debris from Interior Walls Caused by Blast Loading ," URS Report 2030-23, URS Research Company,1975 6.22 Topical Report, " Seismic Analyses of Structures and Equip-ment for Nuclear Power Plants," BC-TOP-4, Revision 4, Bechtel Power Corporation, 1980 6.23 Bousner, G.W. , "The Behavior of Inverted Pendulum Structures During Earthquakes," Bulletin of the Seismological Society 1 of America, Volume 53, Number 2, February 1963 6.24 Aslam, M. , et al, " Earthquake Rocking Response of Rigid j Bodies," ASCE, Journal of the Structural Division, ST2, February 1980  ;

l

- - - - - , - - ---r= ,-- - -

-w w s we, -------t* - - --iv.-,.-,e g- w w,,,,.-.r-----,-,we~,- - -

-*-ev -w s.--,-,-- , . , , , ,-w, - -y- - --. .-----,, ,.-n,wv i-,m-.-w

Appendix D, Paga 13 of 13 l

6.25 Yim, C-S. , et al, " Rocking Response of Rigid Blocks to Earthquakes," Report UCB/EERC-80/02, University of California, Berkeley, January 1980 s 6.26 " Seismic Loadint; Criteria for Base Mat Design," Bechtel Power Corporation, San Francisco, Internal Report, Revision 2, November 1976 6.27 Newmark, N.M. , " Effects of Earthquakes on Dams and Embank-ments," Geotechnique, Voltane XV, Number 2, pp 139-159, June 1965 6.28 Kausel, E. A. , et al, " Seismically Induced Sliding of Massive Structures," ASCE, Journal of the Geotechnical Engineering Division, GT12, December 1979 6.29 Report on '14sts of Shear Strength of Collar Joint Mortar in Double Wythe Masonry Walls, Trojan Nuclear Power Plant, Portland General Electric Cbmpany, April 14, 1980 e

e 6

e O

e w -e -wa g

~ .w e -

..*Y. ?"f;,]p.

-l-?,k

~ii .

TABLE B-1 ,

,yi -

COMPRESSIVE STRENGTH OF AIIALLY LOADED CONCRETE MASONRY WALLS

... ' ' . 4,,

. './ "

g

'. '~:t . ~

  • 0 " Concrete Masonry Units Nortar Walls Strength. Strength,

.. ' ~

Str. ,~ psi, net

., Percent psi, net Ref. Solid area ff, psi psi Bedding h/t f test ffC K . S.F.

6.8 63 1160 980 1180 Full 6. 0.. 750 978 .798 3.83

- 63 1160 980 1180 Full 6.0' 685 978 .701 3.49

- - 63 1160 980 1160 FS 6.0 670 978 .686 3.42}

63 1160 980 900 FS 6.0 555 978 .568 2.83

- 63 1200 1000 1230 Full 6.0 860 995 .863 4.30 63 1200 1000 730 Full 6.0 625 995 .627 3.12 63 1200 1000 960 FS 6.0 580 995 .582 2.89 63 1200 1000 780 FS 6.0 650 '995 .652 3.25

- 63 1320 1060 880 Full 6.0 1110 1055 1.050 '5.25 63 1320 1060 810 Full 6.0 970 1055 .918 4.58 63 1320 1060 810 'FS 6.0 780 1055 .738 3.69 63 1160 980 1080 Full 6.0 800 978 .818 4.C8 63 1160 980 1080 Full 6.0 670 978 .686 3.42 ,

63 1810 1275 1270 Full 6.0 940 1270 .739 3.67 63 1810 1275 1270 Full i 6.0 940 1270 .739 3.67 825 1145 .719 3.60 63 1505 1150 1670 Full l 6.0 820 1145 .715 3.57

~

63 1505 1150 1670 Full j 6.0 63 1240 1020 980 Full i 6.0 1010 1015 .993 4.95 63 1240 1020 980 Full 6.0 870 1015 .856 4.26 63 1720 1230 880 Full 6.0 1035 1225 .844 4.21 63 1720 1230 880 Full 6.0 940 1225 .766 3.81 63 1380 1090 1730 Full 6.0 1000 1085 .920 4.58 63 1380 1090 1730 Full 6.0 1010 1065 .930 4.63 1780 1262 1870 Full 6.0 1450 1257 1.152 5.75 63 1780 1262 1870 Full 6.0 1570 1257 1.248 6.22 63 3300 1790 1230 Full j 6.0 1560 1782 .674 4.36 43 3300 1790 1230 Full ' 6.0 1730 1782 .969 4.84 43 70 1645 1208 1140 Full ;i 6.0 1000 1200 .830 4.15 1208 1140 Full i 6.0 1220 1200 1.013 5.06 70 1645 I . l 458 3140 Full e' 6.0 303 455 .664 3.30 1.12 63 509 63 509 458 1610 Full j 6.0 295 455 .646 3.21 63 509 458 1060 Full , 6.0 295 455 .646 3.21 756 3140 Full ' 6.0 532 753 .706 3.52 63 840

?.610 Full 6.0 540 753 .716 3.52 63 840 756 756 1060 Full 6.0 505 753 .670 3.35 63 840 785 .558 2.79 63 875 788 3140 Full ; 6.0 438 i

../ Op'M"**

e- . . . ese _

l , , ,

onees e oz

  • T .b13 B-1 (continued) .

Concrete Ma sonry Units kbrtar Walls Strengthe Strength, ,

Percent ysi, met Str., pai, net Ref. Solid . area fa, psi psi Bedding h/t f test fd C K S.F.

63 s75 788 1610 Full 6.0 430 785 .547 2.74 6l12 63 875 788 1060 Full 6.0 500 785 .637 3.17 936 .646 3.22 63 1080 940 3140 Full 6.0 605 936 .763 3.81 63 1080 940 1610 Full 6.0 715 63 1080 940 1060 Full 6.0 765 936 .817 4.07 1010 1.146 5.70 63 1230 1015 3140 Full 6.0 1160 63 1230 . 1015 1610 Full 6.0 1000 1010 .988 4.92 63 1230 1015 1060 Full 6.0 1110 1010 1.097 5.46 63 1410 1105 3140 Full 6.0 1140 1100 1.030 5.16 63 . 1410 1105 1610 Full 6.0 985 1100 .893 4.45 1305 1060 Full 6 . 0,. 1030 1100 .935 ;4.66 63 1410 63 1520 li57 3140 Full 6.0 660 1152 .572 2.85 63 1520 1157 1610 Full 6.0 740 1152 .642 3.20 .

63 1520 1157 4780 Full 6.0 830 1152 . 719 3.58 63 1860 1295 3140 Full 6.0 1476 1290 1.143 5.70 63 1860 1295 1610 Full 6.0 1539 1290 1.192 5.94 63 1860 1295 1060 Full 6.0 1365 1290 1.058 5.27 63 2510 1554 3140 Full 6.0 1698 1550 1.096 '5.47 63 2510 1554 1610 Full 6.0 1365 1550 . 881 4.39 63 2510 1554 1060 Full 6.0 1325 1550 . 856 4.27 63 3030 1710 3140 Full 6.0 2222 1705 1.304 6.50 63 3030 1710 1610 Full 6.0 2222 1705 1.304 6.50 63 3030 1710 1060 Full 6.0 1984 1705 1.164 5.80 3740 1923 3140 Full 6.0 1857 1918 . 969 4.82 63 63 3740 1923 1610 Full 6.0 2523 1918 1.316 6.56 63 3740 1923 4780 Full 6.0 2317 1918 1.209 6.03 63 6640 2400 3140 Full 6.0 35E7 2392 1.499 7.48 63 6640 2400 1610 Full 6.0 3856 2392 1.612 8.04 6640 2400 4780 Full 6.0 5031 2392 2.102 10.49 63 ee 1254 .910 4.13 6.13 100 1383 1E57 2562 Full 7.0 1140 100 1388 1640 3017 Full 7.0 1358 1635 .830 4.57 1846 .795 4.52 100 1892 1853 2317 Full 7.0 1469 100 1923 1630 2153 Full 7.0 1394 1625 .858 4.29 100 2508 2390 2427' Full 7.0 1947 2380 .817 4.56 2529 2630 2347 Full 7.0 2151 2620 .820 4.68 100 2120 .909 4.17 7.0 1930 2143 Full

'$'; 100 100 2545 2610 2130 2220 3195 Full 7.0 2078 2210 .939 4.71 100 2678 2030 2322 Full 7.0 1832 2020 .905 3.99

} 2792 Full 7.0 1810 2200 .821 4.10

' 200 4474 2210 4

100 4474 2540 2154 Full 7.0 2157 2530 .937 4.09 5

    • ff values from this reference were determined from prism tests in-stead of assumed values. Test results multiplied by factor of 1.2 ,

- - I - I u.

+ - - * . m-e- -w,ny ,-y c---w-------.--w9- *w,,.w,.,--.,,r---=.r,,v.%,---- ,- -m,- -- - - - - - .e- e-,.a--,.--.-,,-,,-e-

-- -m -- -r--- - - -

.q
:- '

Shsst 3 ef k

. ,[ . ,

p - .

- Table 3-1(contpued) .

- Concrete Masonry tinits Nortar Walls Strength, Strength, Percent ' psi, met Str., psi, net Raf. Solid area ff, psi poi Bedding h/t f test ffC E 8.F.

6.10 62 2547 1556 1400 PS 9.0 1241' 1540 .807 4.05 62 1886 1305' 1400 -FS 9.0 1153 1293 .894 4.50 62 1999 1350 1400 PS 9.0 967 1335 .724 3.63 62 1499 1150 1400 PS 9.0 685 1135 .603 3.02 62 1934 1325 1400 Full 9.0 1354 1310 1.033 5.19 62 2305' 1473 1400 FS 9.0 1096 1455 .752 3.78 62 2136 1405 1400 PS 9.0 1128 1390 .812 4.07 62 1773 1260 1400 PS 9.0 1088 1245 .873 4.38 62 1298 1049 1400 PS 9.'0 854 1037 .823 4.14

- 62 1241 1031 1400 FS 9.0 685 1010 .678 3.41 62 1612 1196 1400 FS 9.0 991 1180 .838 4.20 .

62 1805 1273 1400 FS 9.0 1088 1260 .864 4.33 62 1491 1146 1400 FS 9.0 854 1133 .754 3.78 62 1088 . 944 1400 PS 9.0 629 933 .673 3.38 62 1918 1318 1400 FS 9.0 1072 1302 .822 4.12 62 1169 985 1400 FS 9.0 605 975 .621 3.12 45 2655 1598 1400 FS 9.0 989 1578 .626 3.15 62 1088 944 1400 FS 9.0 564 933 .604 3.03 62 1290 1045 1400 FS 9.0 701 1032 .673 3.41 62 1999 1350 1400 FS 9.0 1104 1335 .826 4.16 1296 1400 Full 9.0 1378+ 1280 1.075 5.44+

62 1862 62 967 870 1400 Full 9.0 758 860 .881 4.42 62 1967 1338 1400 Full 9.0 1241 1320 .938 4.72 2280 1463 1400 FS 9.3 1228 1450 .849 4.27

, 6.10 57 1302 .642 3.23 67 1917 1318 1400 FS 9.3 836 67 1090 1400 FS 9.3 724 1078 .672 3.37 13.80 67 1902 1312 1400 FS 9.3 1223 1300 .943 4.74

' 67 1246 1023 1400 FS 9.3 739 1010 .731 3.67 2087 '1386 1400 FS 9.3 1193 1370 .871 4.38 57 1370 .948 4.76  !

57 2087 '1386 830. FS 9.3 1298 1 4

2385 1505 1400 FS 9.3 719 1485 .484 2.44 57 1485 .530 2.67 57 2385 1505 1400 FS 9.3 789

-8 2385 1505 1400 FS 9.3 1105 1485 .743 3.74

[ 57 1485 .766 3.85 57 2385 1505 1400 FS 9.3 1140 I

?

6.8 1590 1187 1130 Full 9.5 885 1170 .756 3.79 39 1170 .853 4.28

. h.

39 1590 1187 1010 ,Tull 9.5 1000 f 1718 1238 1070 Full 9.5 949 1220 .777 3.89 a 39 1220 .745 3.73 39 1718 1238 840 Full ,9.5 910 0 ,

O ..

G

h. _ _, , _ _ _ , . .. . . . . , . . . - . . _ _ . _ - . . . -- _. __ . . . _ - -

,,,,,ew-, -

- . , ,,,..,-_,--.,,--,,_.,e-.

, . - - - . , - - , , - ,e.-, ,-----w---.-_,

  • unIst a cz
  • j . ,s ' ,

Table B-1 (continued)

Concrete Nhsonry Units Mortar Walls Strength. Strength, Percent'ps.i. net Str., psi, net psi Bedding h/t f test f' C K S.F.

e Ref. Solid area fj, psi 6.8 , 63 1159 985 1180 Full 14.3 683 940 .726 3.62 63 1159 985 1440 Phil 14.3 690 940 .734 3.66 63 1159 985 1440 Full 14.3 738 940 .784 3.91 63 1159 985 1060 FS 14.3 532 940 .565 2.82 63 1159 985 900 PS 14.3 563 940 .599 2.98

63 1159 . 985 1920 FS 14.3 563 940 .599 2.98 63 1206 1020 1230 Full 14.3 738 974 .758 3.80 63 1206 1020 730 Full 14.3 683 974 .702 3.51 f

63 1206 1020 1130 Full 14.3 746 974 .765 3.83 63 1206 1020' 960 FS 14.3. 571 974 .586 2.94 63 1206 1020 780 'FS 14.3' 603 974 .619 3.10 63 1206 1020 1250 FS 14.3 595 . 974 .610 3.05 .

63 1317 1080 880 Full 14.3 905 1030 .877 4.38 i 1030 1.030. 5.14 63 1317 1080 750 Full 14.3 1063 63 1317 1080 810 Full 14.3 929 1030 .901 4.49 63 1317 1080 1020 FS 14.3 714 1030 .692 3.45 63 1317 1080 1020 FS 14.3 667 1030 .647 3.23

~

63 1159 985 1120 Full 14.3 579 940 .616 '3.07 985 1150 Full 14.3 635 940 .675 3.37 63 1159 3.37 63 1159 985 1080 ' Full 14.3 635 940 .675 1274 Full 14.3 873 1218 .717 3.54 63 1810 12.70 3.58 63 1810 1274 940 Full 14.3 881 1218 .725 1274 1120 Full 14.3 817 1218 .671 3.32 63 1610 3.17 63 1508 1153 1380 Full 14.3 706 1100 .641 1153 1380 Full 14.3 746 1100 .677 3.34 63 1508 2.88 63 1508 1153 1670 Full ,14.3 643 1100 .584 1920 Full '14.3 833 978 .851 4.24 63 1238 1025 14.3 802 978 .819 4.09 63 1238 '1025 980 Full 4.16 63 1238 1025 1280 Full 14.3 617 978 .835 800 Full 14.3 1111 1172 .946 4.73 63 1714 1230 800 Full 14.3 1127 1172 .959 4.79 63 1714 1230 750 Full '14.3 1079 1172 .918 4.59 63 1714 1230 4.64 1381 1090 1730 Full 14.3 968 1040 .930 63 1040 .923 4.61 63 1381 1090 2200* Full 14.3 960 5.21 63 1774 1245 2100 Full 14.3 1240 1190 1.043 2253 1450 1230 Fuli 14.3 936 1385 .675 3.42 63 1385 .664 3.37 2253 1450 1270 Fuli 14.3 920 63 1150 .701 3.55 70 1643 1206 1180 Full 14.3 807 1643 1206 1300 Fuli 14.3 986 1150 .857 4.33 70 993 .732 3.66 1040 1220 Full .14.3 727 55 1273

  • 1273 1040 1220 Full l 14.3 764 993 .770 3.84 55 .

1475 Full 15.0 1250 1565 .801 3.93 100 2900 1665 I 1400 Full 18.0 1108 1135 .975 4.87 6.10 65 1746 1250 4.25 65 1246 2015 1400 Full L18.0 785 925 .850 1065 1.131 5.66 65 1562 1175 ;1400 Full l18.0 1203

-. .-.- . - - ~ . - . . . - _ . .

P *

-nw-- -m---- - - - - - - - - - - -- - - - , - -

.' ..s*

. Sh et 1 cf 1 TABLE B-2 FLEIURAL STRENGTH-SINGLE WTTHE WALLS OF BOLLOW UNITS-UNIFORM LOAD-VERTICAL SPAN i

O Mortar Type ,

Proportion Modulus of Rupture I

- ASTM C 270 psi. Net Area Reference

- M

~

110 6.7 108 NCPA

- M M 102 -6.7 M 97

6.7 95 RCMA M

94 NCYA S '

91 NCYA M

89 NCFA M

N 88 6.9 5 84 I 6.7 83 NCFA 5

S 81 6.7 75 NCMA .

5 69 , NCMA S

N 67 6.9 N 62 6.9 S 60 6.7 N $8 ,

6.9 45 9 N g.7

+

~O 60 41 6.9 0 6.9 0 36 o

36 69 33 6.9 o 6.9 0 32 30 6.7 0 6.9 i 27 0 .

. N

~

i e

s

=: . .

~ ^

boo , .J

.:.g3 2 3_3

  • FLtAM STRIKUTH, mTICAL SPAN CONCRITE MASONRY WALLS "

.. - FRCD1 TESTS AT SC):A 1ARDRATORY -

~- . .

Wall

  • Modulus of Ruature

- Max. Net Mortar AST)I Rominal

  • Uniform Section Cross Sedded Hortar Thickness* . load Mod.lus Area. , Area, .

Type

  • in. psf. in 3/ft psi  ! psi ,

Honowythe Walls of Hollow Units -

M 8 85.15 80.97 61.74 88.73 i M 8 --

87.10 80.97 63.15 90.76 l M -

8 91.00 r80.97 65.97 8 94.82 M 8 103.35 80.97 74.93 [ 107.69 5 8 62.40 80.97 45.24 69.47 8 -

8 72.15 80.97 52.31 <. 75.18 * '

5 12 . 383.3 164.64 57.11 ; 93.94 S 12 161.2 ** 164.64 50.22 ; S2.62 I

Composite Walls of Concrete Brick & Bo11ov O m .

S -- 4 8 . 222.3 103.82 161.16' }i180.67 5 8- 219.7 103.82 159.29 -

178.55 5 8 187.2 78.16 135.72 : 202.09 !

S 8 228.8 103.82 165.58 185.95 i 5 8 218.4 78.16 158.34 , 235.77 l 5 8 223.6 78.16 162.11 241.35 i '

~

S 12 171.6 139.83 53.46 ' 103.55 * .

S 12 150.8 139.83 46.98 91.00 l 5 12 156.0 139.83 48.60 94.14  ;

l 5 12 213.2 139.83 ' 66.42 ,

128.66 (

, 1 Cavity Valls

! i 1 S. 10 - -

98.8 . . 50.36 150.62 165.55 ! l 156.0 50.36 250.44 261.38 j i 5 . 10 10 38.4 48.16 141.91 154.ES :

i S. ,

~

50.3G 192.01 200.40 i  !

S 10 119.6 114.4 50.36 183.66 191.65 .# l 10

~

S l 209.2 40.16 175.30 3S1.32 5 10 213.9; i l 145.6' I 50.36 233.73 5 12(4-4-4) 50.36 233.73 243.94 e  ;

5 12(4-4-4)  ! 145.6 l 110.03 *

  • 135.2 77.80 127.33

~

S 12(6-7-4)

  • g 77.C0 112.fS S 12(6-2-4) 119.6 3 329.70l-I I I_

l . - .

f I -
  • Mortar type by 3reportien rWs

~

~

. ~* . ~~-.*~~_ ' ~ T_ _ . . . _ _ _ _ _ .

gp -. .... . ,

i Shiet 1 CT 2 -

...-l.

(h

.e, ,. ,-

N,U-

?

4 TABLE B-b o. . .

FLEIURAL STRENGTH, HORIZONTAL SPAN, HO"REINMRCED CONCRETE MASONRY WALLS

, ._ ' Modulus **

.a -lT -

Mortar Leading of Rupture d[

psf Nee Area

  • psf Act./ Allow Ref.

Construetion Type Type rI.r .

-.6.9

~....

Uniform 127 132 -4.13 Nonowythe'8" N 4.41 6.9 i ': -

N'

'" 136 141

' ~ ,' ,,g Hollow, 3-Core " 132 4.13 6.9 N 127 6.9 l, " 169 176 5.50

~

W 5.63 6.9 W

'" 173 180 4.00 6.9

'O

" ~123 l'28 6.9 4F: ' '

u 0

" 158 1 64 5.13 -

" 4.84 6.9

.'N 149 155 6.9

~

Monowythe 8" " 166 5.19 N 160 6.9 Hollow, Joint 6.28

~

" 193 201 Reinf. 4 16 in.cc N 4.88 6.9 O

" 150 156 6.9

" 186 193 6.03

.A: " ,'

e o .

.e - " 6.59 6.9 N 203 211 6.9 Monowythe 8" " 204 6.38 N 196 6.9 Hollow Joint " 202 210 6.56 Reinf. e 8 in.cc 0 6.34 6.9 0

" 195 203 1.81 6.6 N 1/4 pt 56 58 6.6 Monowythe 8" " 39 1.22 Hollow N 38 1.97 6.6

" 61 63 6.6 N 1.94

" 60 62 6.6 N 2.22

-N

" 69 71 6.6

" 93 96 3.00 N

4.72 6.15 199 217 8" Monowythe M - Center 4.17 6.15

" 176 192 6.15 Hollow, 2-Core  !! 3.59

" 151 165 M ,

['

M

" 111 210 4.57 6.15 6.15 4-2-4 Cavity " '255 5.54

.. M- 135 6.15

- Wall, Bollow " '180 3.91 M 95 Units

" 173 3.76 6.15 8" Monowythe M 159 6.15 I -

'" 159 173 3.76 Hollow 2-Core M 4.52

-M

" 191 ;208 6.15 l ,

Joint Re. 8 8"oc

" 159 300 6.52 6.15 4-2-4 Cavity of M " 300 6.52 6.15 159 Hollow Units Tied M " 159 300 6.52 g,yg w/ Joint Re. t 8"oc M

. c- .;

..,w _

  • e.

J

Y p;t r-9' - - - , . .

Shzt 3 of 2 .

.' c. ,

'/ . j'

...a .

<f. .. i

.r. ,

_ ei e . . - . ,

4 ' '. , .*. Table B-b (contiriued)

Modulus

. % (**/ ' ~' "

~

14ading s

of Rupture S.F. . - l

.. . Mortar ~

^

. Construction Type iType i psf Net Area: psi Act / Allow i . Pef

..,.. t t

N, Center 138 365 '11.41. 6.1h 4" gallow * ,

6.1h

. g p; 4.f- . '- N

, 157 - -. 415 12.97 '

e .. . : . Honovythe * .

r268 8.33' 6.1h

. N . -. 401 . .

y.,, . f 6.lk M'

268 20'2 . '4.39 7-- '

8" Hollow

  • M' " -

314 237 5.15 6.1h Monowythe '" L.15 6.1h M 314- 237

" 21 6.56 6.1h ,

N 277 8" Bollow " 237 7.41 6.1h l

  • Monowythe N, 314 6.14 314 237 7.41 ,

N '

" 195 6.09 6.1h 8" Hollow 0 259 o " 277 210 6.56 ,6.1h Monowythe 6.56 I o " 277 210

. l6.1h i '

6.1h

~

M

" 268 202 4.39 8" Hollow " -

4.87 6.14 Honowythe M 297 2 2.".

" 277 210 4.56 6.1h M

" 277 -210 6.56 6.1h 8" Hollow N 6.1h

  • " 259 195 6.09 Monowythe N

- - N

" 297 224 7.00 6.lk

i. " 360 27i 8.45 E.1h B" Hollow 0 6.14 i " 297 224 7.00 Monowythe O 6,1h i

268 202 6.31 O

" 352 142 4.44 6.lb-12" Hollow N 3.97 6.1h, ,

" 314 127 Konowythe N 4.19 6.14 p ~ N

" 333 134

. i. - .

H

., ,^

t;

  • - j

- 1 1

l 4

s

- - - - - - - - - ~ ~ * * * "

. . _ e f g

. . , _, . . . , . _ . . . , _ _ . - , , , . . , _ - - - , . , _ . . , , ,.....m.. . - - - , . . - , . .